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Abstract

Synthetic-Aperture Radar (SAR) is an imaging technique that achieves high azimuth reso-
lution by using coherent processing to exploit the relative motion between an airborne or
spaceborne radar antenna and the imaged target field (effectively synthesizing the effect of
a larger aperture array). From an estimation-theoretic perspective, this thesis addresses the
following limitations of conventional imaging techniques for the spotlight-mode version of
SAR: sidelobe imaging artifacts and loss of resolution for stationary SAR scenes containing
high-amplitude scatterers, and blurring and object-displacement artifacts in the presence of
moving targets.

First, this thesis presents a generalized estimation-theoretic SAR imaging framework
which exploits the idea of L1-norm regularization. Some results are included which demon-
strate the utility of this approach for reducing sidelobes and improving resolution for sta-
tionary SAR images. A parameterized Li-norm-based moving-target imaging technique is
also presented. For the case of a single moving target, this technique is able to compensate
for the blurring due to temporally-constant velocity rigid-body motion (even if the target
scatterers are closely-spaced). However, the motion-induced object-displacement compen-
sation performance of this technique is significantly affected by velocity estimation errors.

This thesis also presents an estimation-theoretic moving-target SAR imaging framework
which uses a multi-dimensional matched-filter for computing a set of scatterer-velocity esti-
mates which are used as initial conditions for an Li-norm-based estimation algorithm which
assumes that the target scatterers have temporally-constant spatially-independent veloci-
ties. Therefore, this framework is able to image a moving target and nearby high-amplitude
stationary clutter simultaneously. This framework also shows potential for imaging targets
~ with non-rigid body motion. However, the motion-induced object-displacement compen-
sation performance of this approach is significantly affected by cross-scatterer interference
- effects.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering, Massachusetts Institute of Technology

Thesis Supervisor: Hamid Krim
Title: Assistant Professor of Electrical Engineering, North Carolina State University

Thesis Committee Member: Ronald D. Chaney
Title: Associate Division Manager, Alphatech, Inc.

Thesis Committee Member: Jeffery H. Shapiro
Title: Professor of Electrical Engineering, Massachusetts Institute of Technology

3







Acknowledgments

First, I would like to thank the Air Force Office of Scientific Research (AFOSR) for
their financial support under the Multidisciplinary University Research Initiative (MURI)
program. I would also like to thank the Defense Advanced Research Projects Agency
(DARPA), the Office of Naval Research (ONR), and the Army Research Office (ARO)
for their financial support of this work as well. In addition, I would like to thank Lincoln
Laboratory Group 47 for supporting me as a Research Assistant for part of this research
(as well as providing me with much needed technical advice on SAR). I would like to thank
the Graduate Student Office (GSO) for providing financial assistance during my final .
semester at MIT,

Next, I would like to thank my thesis supervisor, Professor Alan S. Willsky, for
allowing me the privilege and opportunity to work closely with him as a member of the
Stochastic Systems Group (SSG). I have benefited immensely from his insight, wisdom,
suggestions, comments, and constructive criticism of my work. I especially thank him for
teaching me how to see the “big picture”, as related to my research. I also thank Alan
for teaching me how to explain my work in a straightforward fashion (rather than getting
caught up in unnecessary details). Along with his outstanding intellectual qualities, Alan
shows true compassion, patience, and concern for his students (especially when they deserve
it the least). If I ever became a university professor, Alan would be my role model.

I would also like to thank my thesis co-supervisor, Professor Hamid Krim, for his
friendship, support, and encouragement (as well as our many stimulating intellectual dis-
cussions). I especially thank him for his advice and expertise in the area of array-processing
(such that I was able to gain a different, but needed, perspective on my research).

In addition, I would like to thank my remaining two thesis committee members, Dr.
" Ron Chaney, and Professor Jeff Shapiro for their expertise and advice, especially as

related to SAR and ATR. I especially thank Ron for being a great mentor to me during the
periods I did research at Lincoln Laboratory (and for his patience in helping to understand
the mechanics of the Lincoln Laboratory ADTS SAR system). In addition to being on my
thesis committee, Jeff also acted as my academic advisor during the entire course of my
graduate studies at MIT. His advice and counsel were crucial for helping me to navigate
the MIT EECS doctoral process.

I would like to thank my parents, Sidney Jr. and Earlean Logan, for their love,
support, and encouragement during my graduate studies. Mere words cannot begin to
express how much I love and appreciate them (and admire their example of hard work,
sacrifice, and perseverance). I especially thank them for their financial support during
the last few months of my graduate studies at MIT (as well as their help which allowed

5 .



me to purchase a car in order to travel to my new workplace). I also thank my sisters
and brothers for their love and encouragement: Arnell Jones, Mildred Murray, Sidney
Logan III, Rodney Logan, Winfred Logan, Cassandra Logan, and Marcella Logan.
In addition, I thank my grandparents, Callum and Hildra Hayes, for their love and
encouragement as well.

It has truly been a privilege to interact with my fellow members of the Stochastic
Systems Group. First of all, I would like to thank my fellow “SAR Boyz”, Andrew Kim
and John Richards, for our many fun times hanging out and discussing just about anything
under the sun, for our many trips to the Food Trucks (especially the BBQ truck, operated
by Butch Harris), for being fellow Founders and Keepers of the SSG Manifesto Board,
and for their patience with my strange, bizarre, and sometimes unending stream of jokes
and non sequiturs. Andrew also deserves praise for his excellent job of maintaining the
SSG computer system (otherwise I would be doing my thesis research using slide-rules and
abacuses). Next, I would like to thank Taylore Kelly for being a great friend, and for
being there to listen during those (very rare) occasions when I air one of my latest gripes.
In addition, she has helped us “MIT” types at the SSG to “lighten up” a little and enjoy
life. :

I would like to thank the rest of the SSG (past and present) for many fond memories
over the last few years: Terrence Ho (for being a great friend, as well as clearing a path
through the SSG doctoral “pipeline”, especially the “Chapter 5 bottleneck”), W. Clem
Karl (for his encouragement and advice during the first couple of years I was in the SSG),
Rachel Learned (for “pestering” me to come and interview with Lockheed Sanders, and
for “going to bat” for me during the interview process. Otherwise, I probably wouldn’t
have a job...), Mike Daniel, Seema Jaggi, John Fisher (even if he did graduate from
the U. of FL), Andy Tsai (aka PK), Dewey Tucker (for not going “postal” on the rest of
the SSG when our jokes got a little out of hand), Charlie Fosgate, Bill Irving, Austin
Frakt, Mike Schneider (for our many fruitful discussions on the absurdities of American
politics), Paul Fieguth (whom I want to express congratulations on getting married, even
‘though that is one of the signs that the End Times foretold in the book of Revelation is
upon us...), Ilya Pollak, Ron Dror (winner of the SSG Golden Plunger Award), Martin
Wainwright, Alex Ihler, Erik Sudderth, Junmo Kim, Ben Halpern (for going out
- of his way to help with SSG computer system, in addition to his many duties with Alan),
Paula Place, Jerry Weinstein, Gerald Spica, Susan Sheldon, Eric Miller, Mickey
- Bhatia, Lori Belcastro, Mark Luettgen, Jun Zhang, Khalid Daoudi, and Tony
Yezzi.

I have also had many fond memories and fruitful interactions with many others (past and
present) in the Laboratory for Information and Decision Systems (LIDS) (which the SSG
is a part). First, I would like to thank Kathleen O’Sullivan for her concern and care (in-
cluding, for many years, ensuring that we had enough coffee (and food) to do our research)
for the LIDS students (as well as the LIDS faculty). Here is to a happy and well-deserved
retirement. I also want to thank Prof. Vincent Chan, Fifa Monserrate, Doris Inslee,
and Kathy Sullivan for their concern and support of the LIDS students as well (and for en-
suring that the administrative “wheels” of LIDS are greased and run smoothly). I would like
to thank Mike Branicky, Mitch Livstone, Prof. Steve Massaquoi (for his friendship

and encouragement, especially during my thesis writing), Pierre-Arthur Elysee, Mike

6



Deplonty, Constantinos Boussios, Diana Dabby, Prof. Michael Athans, Som-
mer Gentry, Navid Sabbaghi, Reza Olfati-Saber, Sekhar Tatikonda, Venkatesh
Saligrama, Prof. Muriel Medard, Shane Haas, Patrick Maurer, Prof. Mitch
Trott, Stefano Casadei, Emre and Asu Koksal, Prof. Eric Feron, Prof. Munther
Dahleh, Jinane Abounadi, James Sarvis, Arthur Berger, Phillip Lin, Thierry
Klein, Sean Warnick, Edmund Yeh, Aradhana Narula, Cynara Wu, Joel Dou-
glas , Alan Chao, Wesley McDermott, Steve Patek, Nicola Elia, Sheila Hegarty,
and Julie Stewart.

In addition to their financial support of my research, I would like to thank Lincoln
Laboratory Group 47 (and others at Lincoln), for their expertise in SAR and ATR (as well
as being a great group of people to work with). From this group, I especially want to thank
John Henry, Les Novak, Phil Fleck, Howard Nichols, Robert Catalan, Shawn
Verbout, Greg Owirka, Shawn Halversen, Jennifer Cox, Alison Weaver, Brian
Hodges, Dennis Blejer, Mitch Mirkin, Dan Dudgeon, and Robin Lucente.

Next, I would like to thank my spiritual “family” here in Boston (as well as those who
have moved on to other parts of the world). Your support and encouragement have allowed
me to make it to this point in my life in every way. First, I would like to thank Chris Hall
and Allison Morrill, for being stellar examples of Christ’s standard of unselfish leadership
(serving others and putting the needs of others above their own needs). I feel honored to
be with them. I want to thank Rob Brooks for the great friendship we have developed
over the last few months (and for the many ways he made our friendship a priority, in spite
of me being extremely busy with my thesis). I also want to thank Ray Anderson, Serge
Guillaume, Lewis West, Eric Tamburro, Graham Morehead, Brian Kopitsky,
Roderick Newton, Vincent Moy, Chris Bennett, Lesly Larose, and Job Didier. In
numerous ways, they have helped me through some of the roughest periods of my life. Truly,
deep friendships are born in adversity. Along with them, I would like to thank Edward
and Natashya Sumitra for their love and godly joy (as well as their incredible example
of a married couple who want God’s name to be glorified above their own). For always
speaking the truth in love to me (and many others), I want to thank Ken and Liliana
Zindler. I will always remember the many spiritual lessons I have learned from them. I also
thank Monique Harold, Greta Buck, Debbie Souther, Carla Banks, Jean Banks,
Dawn Spencer, Renee Robinson, Toni Franklin, Naidene Waller, Deborah Har-
mon, Cynthia Brown, Patricia Evans, Lisa Trifari, Tara Carr, Helena Walker,
 Ingrid Marseille, Adriana Pardo, Marianne Anzuoni, Trish Darrigo, Doudoune

Pierre, Amy Clark, Julie Freschi, Zahra Brewster, Juliet Lee, Wyvonne Stevens,
Katherine Boyd, Tanya Mealy, Laura Meyer, Celeste Pagano, Nete Rocha, No-
rah Wason, Christine Stowe, Nancy DiGeso, Denise Lemon, Schella Orcel, Es-
telle Thompson, Cristina Trifari, Raquel Delancy, Flava Galbreath, Abbi Hill,
Sally Lee, Reggie Pagan, Ryvette Pagan, Catherine Owen, Anne Conklin, Au-
drey Pinato, Reeney Karakhanian, Carolyn Dunn, Paula Gagen, Megan Quin-
lan, Rita Hicks, Janet Appleby, Harolyn Smith, Holli Smiley, Marie Lampron,
April Beane, Fritza Jacques, C.C. Campbell, Mary Edmonds, Charleen Tier-
ney, Kathy Conkey, Cherie Cere, Karen Henry, Dana McCants, So-Young Lee,
Kelly Ellsworth, Madeline Gonzalez, Colleen Kennedy, Kathleen McGuinness,
Beth Trantolo, Michelle Thorne, Carol Griffin, Leah Schmidt, Florence Cook,

7 .



and Stephanie Braude, for the countless ways they have encouraged me and cheered
me on when I was writing this thesis (especially for the occasional free meals, which were
greatly appreciated by a grad student with a limited food budget, such as yours truly).

I would like to thank Jimmy Souther (for teaching me what it means to be a true friend
to someone, even if they are from a completely different background, as well as teaching
me how to “lighten up” a little bit and have fun !), John Thornton (for sympathizing
with my struggles, yet giving me much-needed admonishments to keep going. 2DOCS
Painting, Moving, and Auto-Detailing, coming to a location near you!), Wei-Ming Zheng
(for also being there to sympathize with my struggles. Good things will eventually come
to those who persevere), Marty Dudek, Leopold Lowe (for the many great times we
had together, especially the early Monday-morning coffee breaks), Ohene Quapong, Ed
Jacinthe, Joe McElroy, Brian Ruuska, Tony Oliveira, Jun Nam, Aaron Belyea
(especially for those early-morning Young-Guns classes. Those were great times), Michael
Barton, Edgar Bacalla (for his hospitality on X-Files night), Chris Emudeoue, Jim
Cafarella, Dave Hubbell, Luc Gilles, Dave Jeffrey, Joe Sardaro, Mike Grady,
Curtis Peregram, Kevin L. Surrett, Jay Allison, Tim Power, Jim Mattuchio,
Ted Van Patten, Kelly Paris, Steve Rankel, Bob Molloy, Howard Chao, Brian
Goode, David Allen, Jian Song Zhang, Jerry Stephenson, Peter Leung, Reed
and Tina Avéry, Sean Caez, Nick and Tina Macy, Howard Moreno (for his high
standard of excellence, especially in leading the counting team), Victor and Iman Moy,
Steve Pedro (my “good twin brother”), Aaron Porter, Ron Mendes, Andy Ciampa,
Kenny Callahan, Dave Mello, Glenn Harris, Roger Johnson, John Willis, Rob
Weigle, Matt Paradise, Cire Jones (along with Eye2Eye, for being one of the clearest
and most powerful examples of using your talents to glorify God), Carl Thompson, TC
Major, Brian Keep, and Gordon Little.

I want to thank Howard and Ann Loree for being spiritual role models for me (even
from the very beginning of my graduate studies at MIT). They are one of the truest exam-
ples of a lifestyle of hard work and discipline (yet with the ultimate purpose of serving God
and caring for others). I want to thank many others who have been there for me from the
very beginning (plus a few who came a little later): Dan Zachary (congratulations again
on your engagement), Pete Rothschild, Vic and Julie Gobbell (thank you eternally,
Vie, for meeting me that fateful day in the Ashdown Crafts Lounge in September 1989),
Ted and Yuri Sung, Michael and Sharon Metzger (a special thanks for helping me
" to proofread the immense number of names in these acknowledgments), Todd DeLuca,

Jude and Christine Federspiel, Marlon Shows, Harris Gilliam, Rob and He-
len LaChance, Will Deshazer, Gina Villamar, Mike and Tracy Reynolds, Lynn
Jean-Denis, Piper Keables, Lisa Chou, Roy and Chelly Larson (for their example of
godly zeal, coupled with a true concern for the well-being of others), Adam and Lea Hoy-
htya, Damian and Chelsea Humphrey, Sajjan and Lisa Sharma, Kevin Mahoney,
Mark and Sayaka Rawizza, Don and Erica Macheca, Will Potter (for always being
a loyal and caring friend. You are one of the reasons that made the last few years worth it),
Erin O’Neill, Josh and Marisa Lewis, Scott and Danielle Sweeney (especially for
their hospitality during my visit to VT in 1998), Mike and Cindy Hrnicek, Wendell
Stallings, Jim Ryan, Kimberly Neat, Mark and Andrea Moormans, Brett Krei-
der, Byron and Kim Stewart, Jesse and Judi Tauriac, Randy Saunders, Mike

8



Domroese, Bryan Klassen, Siew-Hee and Joyce (Lee) Tan, Anthony and Janine
Cozier, Andrew Romain, Jim and Kim Allegretto, Joanne Liu, Supatra Sritu-
lanondha, Michael and Agnes Voligny, Mike Lee, John Clark, Amber and Matt
Westergard, Michelle Moody, Mark Wintersmith, Patti Kellett, John and Karen
Oates (for also “pestering” me to work at Sanders, as well as their great advice to me dur-
ing my job search), Bruce and Jessica Lewis, Trevor and CarolAnn Mendez, Lou
and Patty Bonhomme, Todd and Kristine Isherwood, Rob and Michelle Grace
(fellow denizens of the Doom-Factory circuit), Johnnie Garcia, Benoit DeGouville,
Jose Elizondo, Aaron Cardenas, Andrew Henshaw, Steve Body, Dean and Kim
Farmer, Susan Park, Ric Dargusch, Ethan Wenger, Elsa Mak, Blane and Jee-
Lian Parry, Mark and Charlotte Sensinger, Harold Cadet, John Epps, Venecia
Conton, Matt Brownell, Maria Sisneros, Rodney Belony, David Tarin, Megan
Cooney, Shannon Dickinson, Josh Rheinbolt, Darrell Drake, Guy and Jenny
Prince, Mike and Scarlette Van Auken, Tim Chien, Vincent Chien, Mike and
Gwen Jones, Mikhail Veshtort, Nicolas Puget (who still beat me out of MIT), Freddy
Cachazo, Amy Wendland, Tamara Wendland, Jen Martinez, J. Kevin Morris,
Anna Schoenfeld, Brian and Caryn Homet, Andy and Staci Yeatman, Chad and
Mara Winchell, Ouma Dennis, Sandy Reed, Rick Rodriguez, Omar Richard-
"Sutherland, Chris Van, and Joe and Aleah Gerena.

I want to thank Bob and Laurie Tranchell for their incredible example of unselfish
leadership. Even though they lead a relatively large group, one always senses that every
individual in the group is important to them. The same can be said for Randy and Kay
McKean. They have helped me through some very difficult times. I want to thank Jeff
and Debbie Chappell (for always speaking the truth in love, but continuing to believe in
me), Steve and Brenda Neff (for their care, concern, hospitality, as well as being a great
example of what it means to have true faith in the most difficult of circumstances), Jim
and Irene Valente, Greg and Leanne Martin, Jim and Helen Lenahen, Larry and
Carrie Jackson, Marvin and Sharisse Lucas, Doug and Joanne Webber (for being
a great example of what it means to sacrifice worldly ambitions for the sake of Christ), Sal
and Jen DiFusco, Robert and Kim Duncan (along with the rest of the Radicals, for
being another clear and powerful example of using your talents for God’s glory), John and
Colleen Voccio, Jim and Jean Peterson, Don and Lara Glorioso, Reggie and Lisa
Solomon, Jerry and Nerrisa Hixon, Joanne Kegel, Ann-Marie Miele, Doug and
" Linda Meacham, Malu and Brenda Omeonga, Conrad and Corliss Drew, Richard
and Irene Maxwell, Ken and Margaret Cooper, Bob and Brenda Harris, Bob
and Maggie Bitgood, Fred and Maura Maddox, Al and Mary Eliasen, Bill and
Sue Dwyer, Bruce and Cindy Wells, Jayson and Laura Colby, Steve and Teryl
Brand, Steve and Debbie Hasty, Jose and Brenda Villalta, Fred and Glenn
Smith, Richard and Jerri Newman, Robert and Victoria Jean-Simon, Chip and
Phinney Morrison, Mike and Diane Sanders, Lionel and Jackie Richardson, Rob
and Amy Urbani, Marcel and Ose Schwab, Ose Manheim, Bob and Maureen
Ghoman (for also pestering me to work at Sanders), Mark and Val Fiedor, Chuck and
‘Alison Pike, and Ryan and Mary Beth Bayes.

I want to thank Dave and Peggy Bragg for the many invaluable lessons they taught
me when we served in the Children’s Ministry together (as well as their example of pa-

9 .



tience and humility). Let’s just say that very few things stretch your communication and
presentation skills like trying to explain the Virgin Birth to a two or three-year old. I also
want to thank others that I have interacted with in the CM as well: Steve and Kelly
Keyser (who have been stellar examples of godly patience), Dan and Lory Demshar,
Joe and Patrice Gattozzi, Jean Shimer, Larry and Judith Hicks, LeRoy and Jill
Moriuchi, B.K. and Elaine Lau, and Toni Paraiso (who has taught me so much about
how to really connect with kids and help them learn). I want to thank Josh Wairi, for
our many fun times together, and for being the little brother that I never had. I also thank
Vicki Wairi for her hospitality on many occasions.

One of the people I have known the longest at MIT (ever since my first week as a grad
student at MIT Sea Grant) is Tom Consi. Thanks for being my friend over the long
haul (and for our many entertaining discussions about anything and everything, especially
politics). I guess I beat your record for graduate-school longevity by a mile (and then
some....). I also want to thank others at MIT Sea Grant who have helped and encouraged me
over the years: Jim Bellingham (Pro-JimBob), Jim Bales (Anti-JimBob), ReRe Quinn,
Rita Queen, Prof. John Leonard, Cliff Goudey, Brad Moran, Diane DiMassa,
Brian Tracey, Drew Bennett, Prof. Chrys Chryssostomidis, Max Defenbaugh,
Bill Hall, Omar Green, and Tim Downes. Along with them, I would like to thank a
few at Draper Laboratory who have helped me along the way: Rod Clark (for being a
consistent friend throughout my entire graduate career, as well as hooking me up with some
seriously kickin’ haircuts. In many ways, he has been like a big brother to me...), Fred
Browne, Brent Appleby, Rami Mangoubi, Bill Bonnice, Dino DiAngelis, Kortney
Leabourne, Pete Millington, Doug Humphrey, Walt Baker, Achille Messac, Paul
Motyka, John Dowdle, Bob Regan, Jay Farrell, and Eli Gai.

For my entire graduate career at MIT, I have lived at Ashdown House (and I have
never regretted a single moment). The memories and the friendships that I built there, I
will always treasure (especially those from the 9PM Thursday Night Coffee Hours). First
of all, T want to thank the Ashdown Housemasters, Prof. Vernon and Beth Ingram,
for their tireless devotion and service to the residents of Ashdown. Even though they are
extremely busy people, they still take the time to really listen to the cares and concerns
of the students. Thank you again. I want to thank the following people for ensuring that
Ashdown runs smoothly (as well as being great friends): Christine Vardaro, Carmen
Turner, Joe Melo (who hold the undisputed world record for the most light bulbs ever
' changed by one person, or at least he is well on his way...), John Gravito, and Lenny

Ferrari. In addition, I want to thank my “late-night buddies” Virgil Foster, Dave
Moreno, and Dick Packard, for keeping Ashdown safe for democracy. From the (past
and present) Ashdown student population (and various associates), I want to thank the
following: Kathy Misovec (for being a consistent friend thoughout the many ups and
downs of graduate life, and for all the cups of Trader Joe’s/Macella’s coffee when I needed
it), Diane Ho, Tara Goodman, Paki Taylor (for encouraging me in so many ways,
especially the occasional free meals, courtesy of the care-packages from her mom. I hope
that my Control-Systems tutoring in return wasn’t too atrocious), Rama Mukkamala
(Sorry HOMESLICE, for taking so long. Now that I am finally departing, I hereby bequeath
the title of HOMES to you. Use it for good, not evil, my son), Tom Lee, Pat Walton,
Debbie Hyams (soon to be Walton), John Matz (for being a great neighbor, for showing

10



much mercy to the MITCSA as a room-reservations officer, as well as being a fellow Doctor
of Science), Cathy Liu, Derrick Tate (for our many discussions on the South and other
various subjects, and for being a tolerant next-door neighbor of my random/night-owl grad-
student lifestyle), Tal Malkin (congrats on finishing. I saw your thesis in the EECS grad
office), Maya Farhoud, Susana Heipcke, Tom Burbine (whose devotion to Ashdown is
rivaled only by the Ingrams. Thanks for taking on Godzilla, again...), John-Paul Mattia,
Laura Adams, Tara Arthur, Juan Bruno, Dale Fried, Daniel Freire, Claudia Ro-
driguez, S.S. Papa Rao, Glenn Tessler (I hope you got the security clearance. I didn’t
say anything too bad about you), Richard Stone, Brian Eidson, Thomas Kettler,
Jee-Hoon and Shane Krska, Jarvis Jacobs, Peter Trapa, Patrick Trapa, Victor
Martinez, Nitya Kitchloo, Mario DeCaro, Elliot Mack, Guillermo Ameer, Christ
Richmond (for our many encouraging spiritual discussions), Gerald Prioleou, Anthony
Chatelain, Adriana Guzman, Katherine Holden, Lynne Svedberg, Constantine
Morfopoulos, Jim Derksen, Eric Stuckey, Emma Shepherdson, Haydee Saffari,
Sanjay Pahuja, Victor Lee, Paul Barrett, Ann Park, Yonald Chery (I hope the
start-up does well), Brian Bowers, Ed Chalom, John Kubiatowicz, Dhaya Lakshmi-
narayanan, Ted Hsu (whose place I can crash out in Nashua, NH if the snow gets too bad,
right?? buddy, friend, pal????), Pamela Ku, Alice Liu, Jen Sullivan, Laura John-
son, Jen Healey, Chris Spohr (foundef and CEO of SpohrCorps), Jeff Hiller, Ben
Williams, Arnold Seto, Dave Tahmoush, Brad Backus, Mike Gordon, Christina
Manolatou, Jenny Farver, Ronak Bhatt, Manish Jethwa, Sham Sokka, Keith
Duggar (for helping the Ashdown front desk run like a well-oiled machine), Janice Lee,
Catherine Yen, Javier Guajardo, Victor Luchangco, Bill Blackwell, Megan Hep-
ler (soon to be Blackwell), Tolulope Okusanya, Justin Legakis, Matt Secor, Benji
Sun, Emerson Quan, Doug Twisselmann, Arnaud Wisnia, Ron Kappesser, Ve-
dran Knezevic, Jim Mattis (for supplying a portion of my thesis paper, as well as
a plastic tree), Babu Bangaru, Cathy Bambenek, Bill Moyne, Ramses Agustin,
Prof. Adam IV and Colleen Powell (it looks like at least 3 of the 4 C’s are work-
ing out pretty well), Erik Duerr (for being the only other 'Bama fan at MIT), Vahe
Caliskan, Rebecca Xiong, Vikek Sujan, Rob Jagnow, Mike Muno, Ted Weath-
erly, Guoling Shen, Yogesh Joshi, Niranjan Kundapur, Carl Chen, Ed Daw,
- Dan and Lauren Crews, George Zonios, Salma Quatran, Duncan Renijan, Kevin
O’Brien (of vacuum-closet fame), Andre Fletcher, Winfred Lohmiller, Jim Reardon
- (who almost had the misfortune of being my roommate), Steve Seel (who did have the
misfortune of being my roommate), Athol Williams, Neal Mitra, Kevin Benjamin,
Marcus Stewart, Orlando Taylor, Ed Middleton, Priti Naik, Otis Riley III, Mike
Dixon, Shawn Escoffery, Mike Perrott, Pierre Mulgrave, and Kevin Gies.

I also want to thank the Thirsty Ear Crew for many fun memories: Steve and Hilary
Schultz, Wayne Hsiao (for not killing me for all the times I interrupted him at his lab in
Building 35 on my way to get coffee), Jeanie Cherng, Tom Heun, Markus Michaels
(for being a great friend and teaching me how to play Skat), Fletch Freeman, Allen Hunt,
Brett Bochner, Brian Jacobson, Jen Carlson, Jeff Bowers, Markus Leiendecker,
Chris Dunn, and Brandon Gordon.

Over my many years at MIT, I have had the pleasure to interact with many others as
well. Thank you all. First, I would like to thank Dean Isaac Colbert, for being a great

11



friend and mentor to me from the very first day I arrived at MIT. I especially want to thank
him for arranging much needed financial support for me through the Graduate Education
Office. I also want to thank the following people for their encouragement and support:
Dean Margot Tyler, Dean Leo Osgood, Prof. Lynda Jordan, Prof. Phil Clay,
Prof. Wesley Harris, Prof. Paula Hammond, Dean Judy Jackson, Dean Ayida
Mthembu, Ruben Morfin-Raimirez, Constance Parvey, Bob Sales, Dean Robert
Randolph, Dean Margaret Bates, Steve Isabell, Dean Roy Charles, Stephen
Charles, Derrick Barnes (in spite of the occasional bad e-mail jokes...), Kimani Stancil,
Tamara Williams, Tehani Finch, John Selormey (rest in peace, my friend), Sean
Sutherland, Albert Essiam, Dean Blanche Staton, Gail-Lenora Staton, Christian
Parry, Prof. Arthur G.O. Mutambara, Mike Berhan, Frank Espinoza, Aaron
Flores, Larry Sass, Reggie Brothers, Robin Chapman, Robert Selders, Simon
Onuenyenwa, Kabini Sani, Mark Hampton, Prof. Akintunde Akinwande, Kirk
Gilpin, Kenroy Cayetano, Prof. John-Paul Clarke, and Michael Clarke.

For giving me more administrative breaks than I could ever count (especially when it
came to turning this thesis in), I want to thank Marilyn Pierce, Monica Bell, and
Peggy Carney, of the EECS Grad office. You are all life savers.

I want to thank Prof. Al Drake for allowing me to work closely with him as a TA
for 6.041. It was a great learning experience. I also want to thank some of my other fellow
TA’s (as well as students) for providing many pleasant interactions: Jeff Bounds, Phil
Greenspun, Janice Young, Babak Ayazifar, Christian Trott, Sherman Powell,
Chux Amoebi, Kevin Yu, and Andrew Begel. :

In addition, I would like to thank others (inside and outside of MIT) who have been
great friends to me: Hugh Herr (for trying to teach me the fine art of rock-climbing,
which T still have not quite put into practice. I hope the “shoe thing” works out), Marci
and Bryan Bleyaert-Schiller (for all the fun times hanging out in the MIT student
center), Chong Chow (for being a loyal and consistent friend, as well as all the great
times hanging out and watching movies together), John Nickrosz (for his hospitality
shown to me on many occasions, especially on Thanksgiving), Margaret Riley, Eric
Thomas (for being a great friend, as well as being practically the only relative I have in
all of New England), Dale Joachim, Seong-Bae Chun, Bill Moore, Paul Fordjour,
Ranjan Sahay, Sunny Bhatia, James Watts (for being a great friend since we were in
grade school, and for being the only person to name his kid after me), Brent and Clarissa
~ Hill, Bill Stapleton, Prof. W.C. Stapleton, Prof. James Dudgeon, Prof. Mario
Magana (who convinced me to apply to MIT in the first place), Dean W. K. Rey, Greg
Singleton, Foy and Carolyn Barge, Doug Robinson, Kim Draughn, and David
Smithermann.

I also want to thank Schlumberger Well Services for sponsoring me as a GEM
fellow. I want to thank Bill Flanagan, Guy Vachon, Clay Jordan, and Diane Wallace
for making my summer internships at Schlumberger enjoyable ones. I want to thank the
teachers and staff of the Central High School (Hayneville, AL), as well as the teachers
and staff of the Lowndes County Area Vocational School, for training me at an early
age. I will never forget where I came from.

To those whom I may have missed (because I have to turn this thing in eventually), I
thank you all. You know who you are.



...Well, T don’t know what will happen now. We’ve got some difficult days ahead. But
it really doesn’t matter with me now. Because I've been to the mountain top. And I don’t
mind. Like anybody, I would like to live a long life. Longevity has its place. But I’'m not
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Land. So I am happy tonight. I'm not worried about anything. I'm not fearing any man.
Mine eyes have seen the glory of the coming of the LORD.

Excerpts from the

last public address of

Dr. Martin Luther King Jr.
Memphis, TN

April 3, 1968

Who shall separate us from the love of Christ? Shall trouble or hardship or persecution
or famine or nakedness or danger or sword? As it is written: “For your sake we face death
all day long; we are considered as sheep to be slaughtered.” No, in all these things we are
more than conquerors through Him who loved us. For I am convinced that nesther death nor
life, neither angels nor demons, neither the present nor the future, nor any powers, neither
height nor depth, nor anything else n all creation, will be able to separate us from the love
of God that is 1n Christ Jesus our LORD. :

Romans 8:35-39 (NIV)
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Chapter 1
Introduction

YNTHETIC-APERTURE RADAR(SAR) is an imaging technique that achieves high

azimuth resolution by exploiting the relative motion between a (airborne or spaceborne)
vehicle-mounted radar antenna and the observed target field[10, 13, 18]. This is done by
coherently processing the returned radar signals so as to synthesize the effect of a larger
aperture array laid out along the vehicle’s path of motion. _

Most SAR systems tend to have two main modes of operation. In’ Strip-Map Mode,
the physical antenna has a constant orientation relative to the radar platform. The radar’s
“footprint” is dragged along with platform, as shown in Figure 1.1 . In Spotlight Mode, the
physical antenna is oriented such as to illuminate the same segment of the target area over
the SAR’s “dwell” time. The radar’s footprint is stationary with respect to the ground,
as also shown in Figure 1.1. An example of a typical spotlight-mode SAR image shown
in Figure 1.2 (which is part of a data set collected by Sandia National Laboratory in 1995
under DARPA’s Moving and Stationary Target Acquisition and Recognition (MSTAR) pro-
gram). This image consists of a T-72 tank (from the former Soviet Union) in a grass clutter
background (with an approximate resolution of 0.25m in range and 0.25m in azimuth).

One important application of the SAR imaging technique is as a front-end sensor for the
purposes of Automatic Target Recognition (ATR) [12]. For a SAR-based automatic target
recognition system, the fundamental goal is to detect and recognize objects of interest
* (targets) in a noisy environment (clutter). As shown in Figure 1.3, a typical SAR-based
ATR system is usually divided into three main subsystems: a prescreener, a discriminator,
- and a classifier. The prescreener searches for high-amplitude regions over the collection of
images generated by the SAR image-formation process (which may represent several square
kilometers of terrain), and outputs a series of sub-images called regions-of-interest (ROI).
These ROI’s correspond to rough guesses of target locations in the SAR images. The
discriminator then refines the rough guesses of the prescreener by sorting out the ROI’s
that correspond to false alarms caused by high-amplitude natural clutter, such as trees.
Lastly, the classifier sorts the remaining ROI’s into a set of predefined target categories (or
into a none-of-the-above man-made clutter category, such as the ROI's corresponding to
buildings). This classification is usually done by comparing the number and configuration of
the higher-amplitude feature scatterers in the ROI’s to the corresponding feature scatterers
found in some pre-determined database of target images.
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Figure 1.1: Strip-Map Mode and Spotlight-Mode SAR Imaging Configurations
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Figure 1.2: Spotlight-Mode SAR Image of a Soviet T-72 Tank
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SAR Data SAR Image
Collection Formation

Target-Field SAR Image

Man-made Natural clutter SAR imagery
clutter "false alarms" with no potential
targets

- Figure 1.3: Typical SAR-based Automatic Target Recognition System

1.1 Problem Motivation: Moving-Target SAR Imaging

In 1983, Munson [28] formulated a relationship between spotlight-mode SAR imaging and
tomography. Now, the goal of tomography is to reconstruct a 2-D function A(z,y) from its
Radon Transform, pg(u) [6, 24], which is defined by the following Projection Integral

po(u) = /A(ucos@ —wvsing,usinf + vcosf)dv . (1.1)

From Figure 1.4, we see that the value of the Radon transform at a given point u = wu, is
equal to the line integral of A(z,y) along the path parallel to the v-axis that passes through
U = Up.

The basic idea behind Munson’s formulation is that we can describe a given received
spotlight-mode radar signal as the convolution of the corresponding transmitted signal with
the tomographic projection p(r) (where the look-angle 6 of the SAR system is proportional to
~ the integer k) of the illuminated target-field’s complez-reflectivity density A(z,y), as shown
in Figure 1.5. In other words, we can think of the spotlight-mode SAR imaging problem as
a (very) limited-angle tomographic reconstruction problem (since for most SAR systems,
the total range of the look angle 6 is usually less than 10 degrees).

In the context of tomography, if we let A be a (lexicographically-ordered) vector of
samples of the (time-invariant) 2-D function A(z,y), and we let p be a (lexicographically-
ordered) vector of samples of the projections, pg(u), the tomographic data can be repre-
sented by the following estimation-theoretic model

p=PA+17, (1.2)

where P is a “projection matrix” and 7 is a vector of additive noise. Then the tomographic-
reconstruction problem is equivalent to the corresponding estimation-theoretic inverse prob-
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Figure 1.5: Relationship between Tomography and Spotlight-Mode SAR
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lem of estimating the vector A, given the vector of noisy measurements p. Because of the
previously-mentioned relationship between spotlight-mode imaging and tomography, if we
let A be a (lexicographically-ordered) vector of samples of the (time-invariant) target-field
reflectivity function A(z,y) and we let f be a (lexicographically-ordered) vector of samples
of the (complex-valued) received SAR data (after the appropriate demodulation operations
by the radar system’s receiver hardware), the spotlight-mode SAR data can be expressed
in a similar fashion by the following estimation-theoretic model

f=FA+n. (1.3)

For this case, F is a matrix composed of (approximately-orthogonal) complex-exponential
basis functions, while 7 is again a vector of additive noise. This particular model essentially
says that the demodulated received SAR data is given by a limited-support scaled 2-D
Fourler Transform of the sampled target-field reflectivity function. From this model, the
goal of spotlight-mode SAR is to solve the estimation-theoretic inverse problem of estimating
the vector A, given the vector of noisy measurements f.

The maximum-likelihood least-squares solution to the spotlight-mode SAR inverse prob-
lem (for zero-mean circularly-complex Gaussian noise with a spatial-correlation matrix,
K, = E[nnt]) is given by "

~ -1
A= (FPK'F) FPK; I (1.4)

If the noise is also spatially-statistically independent and isotropic, (which is usually the
case) the noise spatial-correlation matrix is given by K, = crf,I. Therefore, the maximum-
likelihood least-squares solution is given by

-1
A 1 -1
A= (%FHF) —Ff = (FHF) " FHf. (1.5)
o o.
7 n
However, a direct computation of the maximum-likelihood solution to the spotlight-mode

SAR inverse problem (using the inverse of FZF) can be computationally intensive, even

- for a relatively moderate-sized SAR scene. In order to reduce this computational load,

most conventional spotlight-mode SAR imaging techniques make the following simplifying

- assumption (which is equivalent to assuming that the complex-exponential basis-functions

corresponding to the columns of F are orthogonal)
FAF~T. (1.6)

Given this assumption, the maximum-likelihood least-squares solution is approximately
given by

A ~FHf . (1.7)

This is equivalent to using a limited-support scaled inverse 2-D Fourier Transform to (ap-
proximately) recover the target-field reflectivities from the demodulated SAR data. How-

ever, a side effect of this assumption is the introduction of artifacts such as sidelobes into
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Conventional SAR Image
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Figure 1.6: Simulated Conventional Spotlight-mode SAR Image of a Moving Soviet T-72
Tank

the conventional SAR image for high-amplitude scatterers. In addition, the SAR 1mage will
also be limited in resolution. ‘

If there is target motion in the SAR scene, the target-field reflectivity function A(z,y)
will no longer be strictly time-invariant. However, if we now let the vector A correspond to
samples of the target-field reflectivity function at some initial time to, (usually the midpoint
of the SAR’s dwell-time interval) we can still represent the SAR data by the following
parameterized estimation-theoretic model

f=F()A +7 (1.8)

* Here, the complex-exponential basis-functions of the estimation-theoretic spotlight-mode
SAR model are (nonlinear) functions of a set of motion parameters v. Because of these
- motion parameters, the corresponding inverse problem of estimating the vector A (given
the vector of moisy measurements ) will be in general ill-posed (i.e., we will not have a
unique least-squares solution for both A and v). If we again assume that there is no motion
in the SAR scene, and use the conventional SAR estimator for A (i.e., a scaled inverse
2-D Fourier Transform), the non-orthogonality of the velocity-dependent basis-functions in
F(v) will cause the resulting conventional SAR image to exhibit significant blurring and
object-displacement artifacts [10, 37]. This is illustrated in the simulated spotlight-mode
moving-target image of a Soviet T-72 tank (which is a moving version of the T-72 target
shown in the conventional MSTAR image of Figure 1.2) shown in Figure 1.6. From the
standpoint of ATR applications, if we have moving targets, this ultimately implies that we
will have a degradation in the performance of any ATR system based upon conventiona
SAR processing. '
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Given these limitations of conventional SAR imaging techniques, the main issues of this
research are the following:

* Reducing sidelobe imaging artifacts and improving resolution for stationary SAR scenes
containing high-amplitude scatterers.

e Improving the spotlight-mode SAR image formation process (without significantly in-
creasing the computational burden) in the presence of moving targets (so as to minimize
the performance degradation of applications such as SAR-based ATR)).

1.2 Previous Work

There have been a variety of research efforts in the literature dealing with the moving-
target SAR imaging problem. Most approaches to this problem assume that a given SAR
scene 1s entirely composed of a single rigid-body moving target. This implies that these
approaches cannot image both a moving target and nearby stationary clutter simultaneously.
In addition, some of these techniques require the tracking of high-amplitude prominent-point
scatterers in order to estimate the motion of the rigid-body target. Here, we briefly describe
some of these approaclies (some of which are discussed in greater detail in Appendix A) They
can be divided into four distinct subclasses: prominent-point techniques , phase-estimation
techniques, space-time-frequency techniques, and polynomial-phase techniques.

1.2.1 Prominent-Point SAR Motion-Compensation Techniques

The prominent-point class of SAR motion-compensation algorithms essentially correct for
target motion by tracking a number of bright (i.e., high signal-to-noise ratio) target scat-
terers. The Range-Migration ISAR (RMI) technique [16] developed by Lincoln Laboratory
focuses the SAR image by subtracting out the complex phase of the highest-amplitude
scatterer (which is assumed to be from the moving target) from the demodulated SAR
data. This technique can compensate for both unknown, purely translational motion and
known, constant rotational motion. The Geometric-Analysis Automated Imaging (GAI)

technique [39], developed by the Environmental Research Institute of Michigan (ERIM), is
~ a somewhat more sophisticated multiple prominent-point cousin of the Lincoln Lab Range-
Migration ISAR algorithm. Whereas the Lincoln Lab algorithm only compensates for pure
 translational motion (and known rotational motion), the Geometric Analysis technique also
compensates for unknown rotational motion and other complicated target motions (again
with the assumption that the target is a rigid body). »

1.2.2 Phase-Estimation SAR Motion-Compensation Techniques

The phase-estimation techniques are similar to the Lincoln Laboratory RMI technique, in
that they assume that each target scatterer has the same motion-induced complex-phase
error (i.e., purely translational rigid body motion). Unlike the RMI technique, however, this
class of algorithms assume that the motion-induced phase error is purely in azimuth (i.e.,
no range-walk[10]). But since they do not require the tracking of bright prominent-point
scatterers, they tend to be more robust to noise. Phase-Gradient Autofocusing (PGA)[7],
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developed by Sandia Laboratory, is an imaging technique where the derivative of the motion-
induced phase error is first estimated from the SAR data. Once the phase error is obtained
by integrating the estimated phase-error derivative, it is then used to correct the original
SAR imagery. Shear-Averaging [14], is an imaging technique where the pulse-to-pulse dif-
ference of the motion-induced phase error is first estimated from the SAR data. Once the
phase error is obtained by a recursive sum of the estimated phase-error differences, it is then
used to correct the original SAR imagery. As with the PGA algorithm discussed earlier,
the Shear-Averaging technique corresponds to the case where we assume that each target
scatterer has the same phase error.

1.2.3 = Space-Time-Frequency SAR Motion-Compensation Techniques

Just like the previously-mentioned phase-estimation techniques the space-time-frequency|l,
2, 3] class of SAR motion-compensation algorithms assume that each target scatterer has
the same motion-induced phase error (i.e., purely translational rigid body motion), and they
assume that this phase error is purely in azimuth (i.e., no range-walk). The space-time-
frequency techniques also do not require the tracking of bright prominent-point scatterers,
thus they are somewhat more robust to noise than the prominent-point techniques. Unlike
the phase-estimation techniques, the space-time-frequency techniques estimate the phase-
error by integrating the instantaneous Doppler frequency (from pulse to pulse) of the target
(which is dependent upon the relative velocity between the target and the SAR antenna).
This Doppler-frequency estimation is usually performed by using the Wigner- Ville time-
frequency distribution Fy(t,w)[2], which for a complex-valued 1 — D time-domain signal s(t)

is defined as
+o0 .
Fyt,w) = / s <t+ %) 5 (t— %) e (1.9)

1.2.4 Polynomial-Phase SAR Motion-Compensation Techniques

Another class of phase-estimation algorithms are the polynomial-phase algorithms [4, 33].
Just like the phase-estimation techniques and the space-time-frequency techniques, the poly-
nomial phase algorithms assume that each target scatterer has the same motion-induced
phase error, and they assume that this phase error is purely in azimuth. Unlike these two
- classes of motion-compensation algorithms, the polynomial-phase algorithms assume that
the phase error is a parametric polynomial function with respect to time. In the literature,
the parameters of this polynomial function are usually estimated by using the so-called
Higher-Order Ambiguity function [33].
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1.3 Thesis Organization and Main Contributions

Here, we summarize the remainder of this thesis, along with the main contributions.

Chapter 2, Spotlight-Mode SAR Model

In this chapter, we present a series of estimation-theoretic models for the spotlight-mode
version of SAR. First, we derive a general-motion data model for our spotlight-mode SAR
imaging geometry with the following set of five fundamental ideas: tomographic convolu-
tion, two-dimensional slant-plane, far-field plane-wave, ideal isotropic point-scatterers, and
transmitted chirp pulse with quadrature demodulation. From this general-motion model,
we develop an estimation-theoretic model for the conventional zero-velocity case. We also
develop estimation-theoretic models for the special cases of spatially-varying temporally-
constant velocity (where each scatterer can have independent temporally-constant motions)
and rigid-body temporally-constant velocity (where we have a single moving-target with
temporally-constant translational velocities and a temporally-constant rotation rate).

- Chapter 3, L;-Norm Based SAR Processing

In this chapter, we develop a generalized SAR imaging framework which exploits the idea of
Li-norm regularization in order to compensate for the non-orthogonality of the spotlight-
"mode SAR basis functions. In this chapter, we also address the research issue of sidelobe
imaging artifacts and resolution for stationary SAR scenes containing high-amplitude scat-
terers.

For comparison purposes, we first present a brief overview of a conventional SAR pro-
cessing algorithm. Next, we present an a estimation-theoretic justification for the L;-norm-
based SAR processing framework, from the context of the ill-posed over-complete basis-
pursuit estimation problem in the literature. We also present a means for implementing an
Li-norm-based algorithm by using a coordinate-descent line-minimization scheme. We then
present some results for some stationary SAR scenes in order to demonstrate the utility of
an Li-norm based approach for enhancing feature scatterers in SAR images by reducing

~ sidelobes and improving resolution.

. Chapter 4, Matched-Filter SAR Processing

In this chapter, we address the issue of SAR imaging in the presence of moving targets,
in the context of imaging both a moving target and nearby stationary clutter simultane-
ously. Here, we present the Matched-Filter SAR processing technique, which uses a multi-
dimensional matched-filter as a means of computing a set of scatterer-velocity estimates
which are used as initial conditions for an L;-norm based estimation algorithm derived for
the spatially-varying temporally-constant velocity (SVTCV) SAR model (which assumes
that the imaged target field consists of a 2 — D array of ideal point scatterers with spatially
independent velocities). The matched filter also computes a target detection statistic for
‘determining which spatial locations in a particular SAR scene correspond to actual mov-
ing scatterers (allowing a reduction in the computational intensity of the SVITCV L;-norm
based estimation algorithm). '
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We first present the SVTCV L;-norm based algorithm for estimating the scatterer veloc-
ities, along with a standard least-squares algorithm for estimating the scatterer amplitudes.
Next, we present the matched filter algorithm itself, along with a discussion of the methods
it uses to compute the scatterer-velocity estimates and the target-detection statistic. We
also discuss some of the issues encountered in the actual implementation of the matched-
filter algorithm. In addition, we discuss methods for reducing cross-scatterer interference
effects in the matched-filter scatterer-velocity estimates. Then, we present a Monte Carlo
analysis of the detection and velocity-estimation performance of the matched-filter algo-
rithm. Lastly, we present some results for both synthetic point scatterers embedded in real
clutter, and a synthetic-motion real target embedded in real clutter. From these results, we
show that this approach can image a moving target and nearby high-amplitude stationary
clutter simultaneously.

Chapter 5, Rigid-Body L;-Norm SAR Processing

In this chapter, we again address the issue of SAR imaging in the presence of moving targets.
Here, we present an estimation-theoretic L;-norm based approach for imaging constant-
velocity rigid-body moving targets. First, we detail the development of the rigid-body SAR
processing algorithm. We also discuss some of the implementation issues associated with
this algorithm. Lastly, we present some results for both synthetic moving point-scatterers
embedded in real clutter and synthetic-motion real targets embedded in real clutter.

Chapter 6, Contributions and Suggestions for Further Research

In this chapter, we briefly summarize the contributions of this thesis and we present the
overall conclusions which can be derived from the results of our research. We also present
some suggestions for extending this work.



Chapter 2

Spotlight-Mode SAR Model

OR our research, we first focus on developing an estimation-theoretic model for the

spotlight-mode version of SAR. First, we derive a general-motion data model for our
spotlight-mode SAR imaging geometry with the following set of “fundamental” ideas (which
we will describe more fully in the later sections): tomographic convolution (i.e., we describe
a given received spotlight-mode radar signal as the convolution of the corresponding trans-
mitted signal with the tomographic projection of the illuminated target-field’s so-called
complex-reflectivity density), two-dimensional slant-plane (i.e., we “throw away” all height
information about the target field, and we approximate the actual three-dimensional imag-
ing geometry by a two-dimensional imaging geometry ), far-field plane-wave (i.e.,we as-
sume that the distance from the SAR antenna to the illuminated target-field is “large”
compared to both the length of the synthetic aperture and the effective radius of the illu-
minated target-field, which implies that the far-field wavefront from the SAR antenna is
a straight line perpendicular to the radar’s “line-of-sight”), ideal isotropic point-scatterers
(i.e.,we approximate the illuminated target-field’s complex-reflectivity density by a finite
array of complex-amplitude isotropic “ideal” point-scatterers), and transmitted chirp pulse
with quadrature demodulation (i.e., we assume that the transmitted SAR signal is a series
of broadband frequency-modulated “chirp” pulses). From this general-motion model, we
develop an estimation-theoretic model for the “conventional” zero-velocity case. We also
~ develop estimation-theoretic models for the special cases of spatially-varying temporally-
constant velocity and “rigid-body” temporally-constant velocity.

2.1 General-Motion Spotlight-Mode SAR Data Model

We consider the pulsed spotlight-mode SAR (moving with velocity v, and imaging a target
field centered at range R, from the radar’s flight path) shown in Figure 2.1. In Figure 2.1,
(X,Y, Z) refer to the earth-relative coordinates of the target-field, while (x,y, z) refer to the
so-called slant-plane coordinates [7, 18] of the target-field. These coordinate systems are
related by

(X,Y,Z) = (=,ycos(¥g) + zsin(Vg), zcos(¥g) —ysin(Vg) ), (2.1)

where the elevation angle Vg is given by Ug = sin“l(%) (with Z, referring to the altitude
of the SAR platform). In the context of moving-target imaging, our ultimate goal is to

44
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Figure 2.1: Spotlight-Mode SAR Imaging Model

recover the time-varying 3-D complex “reflectivity density” A(z,y,z,t) (in the slant-plane
coordinate system) of the illuminated target-field from our received SAR data.

For this pulsed-SAR model, we assume that the SAR system transmits a total of 2K +1
pulses over a “dwell” time of 27" (which implies that the length of our synthetic antenna
array is given by L = 2vT). In other words, the SAR system transmits the following
pulse-train signal sp(t)

Transmitted Spotlight-Mode SAR Signal
s7(t) = Cheog Solt —trlk]), -T<k<T (22)

where s,(t) is a time-limited SAR “mother” pulse (i.e., s,(t) = 0 for |¢| > Z;E) Each of the
transmitted pulses are centered at the time instants tr(k], given by
2T k

= = — = .= < k< . .
ty[k] 21{ k Frrr TprF k K<k<K (2.3)

(where in the SAR literature[7, 18], fprr = % is known as the Pulse-Repetition Frequency).
Note that the duration T, of the SAR “mother” pulse s,(t) is assumed to be much less than
the time 7prr between pulse transmissions, given by 7prpr = ﬁ. Given the pulsed-SAR
imaging geometry shown in Figure 2.1, we can develop a model for the pulsed spotlight-mode
SAR data with the set of fundamental ideas previously discussed.
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2.1.1 Tomographic Convolution

In 1983, Munson [28] formulated a relationship between the tomographic reconstruction
problem and the spotlight-mode SAR imaging problem. The basic idea behind his formula-
tion was that we can describe a given received spotlight-mode radar signal as the convolution
of the corresponding transmitted signal with the tomographic projection of the illuminated
target-field’s complex-reflectivity density.

In the context of our SAR imaging model, when the SAR system transmits the pulse-
train signal st (t), the corresponding (delayed) received signal sg(t) is given by the following
convolution (where ¢ =3 x 108 m/s, and v < ¢ )

Received Spotlight-Mode SAR Signal

sr(t) = z I () 5o (t = k] - 2r) dr (2.4)

=—K r € Target Field

where the tomographic projection pg(r,t) of the time-varying 3-D target-field reﬂect1v1ty
density A(z,y, z,t) in the slant-plane coordinate system is given by

(r,t) /// Alz,y,2,t) 8 (7‘ - \/(m —vtr[k])® + (y + R,)? +z2> dzdydz .

z,y,z € Target Field

(2.5)

From this equation, we see that the value of pg(7,t), (usually referred to in the SAR literature
as a range profile) at a given range 7 = 7, is equal to the surface integral of A(x,y, z,t) over
a spherical surface of radius r,, centered at the SAR antenna location at ¢t = t7[k]. In other
words, we can think of the value of pg(r,t) at a given range as being the superposition of all
illuminated target-field scatterers located at that particular range from the SAR antenna.
Note that we are assuming that the received signal is amplified by the radar hardware in
such a manner that the magnitude of py(r,t) is not dependent upon the range (i.e., we
compensate for the ;1; propagation attenuation of the radar pulse).

2.1.2 Two-Dimensional Slant-Plane

If we make the assumption that the slant-plane height, z, of each target in the illuminated
- target field is much less than the center range distance R, (and if we neglect target occlusion
and “shadowing” effects), we can approximate the projection pg(r,t) by

pr(r,t) = // [/ A(a:,y,z,t)dz} 6 (r — \/(33 —vtp[k])2 + (y + RO)2) dxdy

= [[A@yne (7’ — @ vtk + (o + RO)Z) dedy . (2.6)

Here, we see that the time-varying 2-D reflectivity density A(z,y,t) is given by the pro-
jection of the time-varying 3-D reflectivity density A(z,y, z,t) upon the slant-plane given
by z = 0. In other words, we are throwing away all height information about the target
field. The key implication of the “slant-plane” assumption is that we can approzimate the
actual three-dimensional imaging geometry of Figure 2.1 by the two-dimensional geometry
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A(x,y,t)

Figure 2.2: Slant-Plane Spotlight-Mode SAR Imaging Model

shown in Figure 2.2. The value of the range profile pi(r,t) at 7 = 7, is now equal to the
line integral of A(z,y,t) along a circular path of radius 7,, centered at the SAR antenna
location at t = tp[k].

If we substitute the projection equation into the SAR received-signal convolution equa-
tion, and simplify by integrating with respect to the range variable 7, we can express sg(t)

K
sr(t) = kgK//A(x,y,t) 3o (t —trlk] — %\/(:c —vtr[k])?2 + (y + Ro)2> dzdy . (2.7)

Let R,[k] = /(vtr[k])> + (R,)? be the range to the center of the target field (as a function
of pulse number k), and let (z/,7') be the rotated coordinates with respect to the SAR’s
“line of sight”, as shown in Figure 2.2. Then we can express sg(t) as

Recewved SAR Signal (2-D Slant-Plane)

sr(t) = k =§_K ST Ay, 1) 5o (t = trlk] = 2/ @+ W + RolRD?) da'dy’ . (2.8)
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where the slant-plane coordinates (z,7) and the rotated coordinates (z,y’) (for a given k)
are related by

z =z cos(0[k]) — v/ sin(6[k]) (2.9)
y = y' cos(8[k]) + 2’ sin(0[k)) , (2.10)

and where the rotated 2-D reflectivity density A} (z’,v/,t) is given by _
W@y, 1) = A(a’ cos(0[k]) — y'sin([k]),y’ cos(8[k]) + =’ sin(A[k]), 1) . (2.11)

Note that the angle 8[k| refers to the so-called SAR “look angle”, which is given by
8k] = tan~! (WT_[’“]> (2.12)

R,

For most SAR systems, the angle #{k] is usually assumed to be “small” (less than 10 degrees),
so we can approximate it by
v

[k] ~ 23

tr[k] = Otr[k] (2.13)
where the “look angle rotation rate” 0 is given by 6 = -

2.1.3 Far-field Plane-Wave

We assume that the distance R, is “large” compared to both the length of the synthetic
aperture and the effective radius of our illuminated target-field. This implies that we can
approximate the center range R,[k] by

(vtr[k])®
2R,

This also implies that we can approximate the received signal equation sg(t) by

R.[k] = R, + (2.14)

sgr(t) =
s oot 2 / ! (xl)Z 1 g
[ e (= (R v+ it ) ) o

~ 3 /] Ay 1) 5, (t—tT[kJ—é(R;[kHy’)) dx'dy’

k=—-K

~ k_]ZK 1] A as] so (¢ -t - 2000 +9) ) ay

K
= 2 [0 so (1= trlk - 2 (RH +9) ) (2.15)
k=—-K

Here, we see that the value of the projection pi(y’,t) at a given “relative range” 7' =
y cos(0[k])—z sin(f[k]) is given by the line integral of A(z,y, t) along the line 2’ = z cos(9[k])+
ysin(0[k]), as shown in Figure 2.3. We are essentially assuming that the far-field wavefront
from the SAR antenna is a straight line perpendicular to the radar’s “line-of-sight”.
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Figure 2.3: Far-Field Slant-Plane Spotlight-Mode SAR Imaging Model

2.1.4 Ideal Point-Scatterers

Up to this point in the derivation of the SAR received-signal equation sgp(t), we have
implicitly assumed that the target-field’s time-varying 3 — D reflectivity density A(z,v, z,1)
(and its 2 — D projection A(z,y,t)) was continuous. From the SAR literature [7, 18], one
way of simplifying this equation even further (as will be shown here) is to approximate
the 2-D projection of the time-varying illuminated target-field by a 2-D finite array of
complex-amplitude isotropic “ideal” point-scatterers, i.e.,

Az,y,t) = Z Z A[nmany] 6(z — Tnzny (t),y — Ynany (1) .

Ng Ty

{Znany (1), Ynan, ()} € Target Field (2.16)
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Here, (Zngn, (t),Yn.n, (t)) refer to the 2 — D trajectories of the (possibly moving) point
scatterers. For this point-scatterer array, we assume that the initial positions of the point
scatterers are located at the following sampled spatial positions

Tnon, (0) = Azng {ng,ny} € Target Field (2.17)
Ynany (0) = Ayny . {ngz,ny} € Target Field (2.18)

where A, and Ay are the spatial sampling-interval constants (whose values we will derive
later in Chapter 3). We also assume that the received signal is amplified by the radar
hardware in such a manner that the magnitudes of the compler elements of Alng,ny are
only dependent upon the reflectivity intensity(but not the range) of the corresponding point
scatterers in the 2 — D array (i.e., we compensate for the ;15 propagation attenuation). The
phases of the elements of A[n;,n,] are the phase shifts between the incident and reflected
signals at the corresponding point scatterers. Since we assume that the velocities of the
point-scatterers are much less than the speed of light, then for each pulse transmit time
tr[k], we can express the 2 — D projection of the time-varying reflectivity in the rotated-
coordinate system (z’,7') by

2@, y) =30 Alng,ny] 8(z' — 2'[ne, 1y, k), Y — Y/ [ne, 1y, K]) (2.19)

Ny TNy

where trajectories (z'[ng, ny, k], ¥'[nz, ny, k) of the point-scatterers in the rotated coordinate
system are given by

z'[ng, Ny, k] = Trgny (tr[k]) cos(O[k]) + Ynany (tr[k]) sin(6[E]) (2.20)
Y' [N, vy, k] = Ynan, (t7(k]) cOS(B[K]) = Znyn, (t7[k]) sin(8[k]) . (2.21)

~ If we substitute A (z',3') into the plane-wave approximation for the SAR received signal
equation, we get the following expression for sg(?)

Q

ki\/ A ] so (1= a2 (Rl +9) )

SR(t)

K 5 ' '
~ Z ZZA[R-T’“?!] So (t —tr(k] — - (RL[k] + y'[nm,ny,k])) . (2.22)

k=—K nz Ny

Therefore, we see that the isotropic “ideal” point-scatterer assumption allows us to ap-
proximate the SAR received-signal equation sg(t) by a “simple” superposition of delayed
versions of the SAR “mother” pulse s,(t).

2.1.5 Chirp-Pulse with Quadrature Demodulation

For our SAR imaging model, we consider the case where the SAR “mother” pulse s,(t) is
a broadband complex “chirp” signal of the form

ol 7y et
so(t) = e’ (fCH : >rect (%) . (2.23)

p
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Here, T}, is the pulse-width, f. is the “center” frequency, and o is the chirp rate. The
“rectangle” function rect(t) is defined to be

1 —i<t<d
— 2 =t3>3
rect(z) { 0 otherwise (2.24)
The actual transmitted (real-valued) pulse-train signal sr(¢) is then given by
K
sp(t)=Re | D so(t—trlk])] . —-T<k<T (2.25)
k=—K

For an array of “ideal” point scatterers with complex reflectivities given by A[ng,n,], the
received signal is approximately given by the following (real-valued) superposition of delayed
versions of the SAR “mother” pulse s,(t)

sr(t) =~. Re

’C:—K Nz ny

K 2
D DD Alng,ny] s (t — trlk] = = (Ro[K] + 9/ [na,my, k]))] (2.26)

s

The center range R, [k] and the relative range y'[ng, ny, k| are given by the following expres-
sions

" (vtr[k])?
RJ[k] = R,+ R, (2.27)
V' [ne,ny, k] = ynon, (trlk]) cos(O[E]) — zn.n, (t7[k]) sin(9[k)) . (2.28)
Let the signal sg,(t) be a complex “reference chirp” pulse-train given by
K
2R [k
snt)= 3 s (t [k - —ﬂ>
k= K ¢
K jon (fc (t—tﬂk]—%)+%(t—tT[k]—z—Ré[&])?) £ — tp[k] — 2EalH]
= E e _ rect T < .
k=-K p
(2.29)

The real part of this complex reference signal describes a return signal from a unit-intensity
point scatterer located at the origin of the target-field coordinate system. If we now assume
that the relative round-trip travel time 7/[ng, ny, k] — 7)[k], given by

T'[nm,HQ,k]—Té[k] = (2(R;[k]+yl[nm’ny’k])> -~ (%) , (2.30)

C Cc

is “small” (compared to the pulse-width T},) for all scatterers in the target-field, we can
express the received signal sp(t) as

sr(t) = Relsi, (t) £(2). (231)



52 : CHAPTER 2. SPOTLIGHT-MODE SAR MODEL

t Low-—Pass Filter —— Re[f(t)]

sg(t) V 2 Re[sg, (V]

L Low-—Pass Filter —— Im[f(t)]

-2 Im[S Ro(t)]

Figure 2.4: SAR Quadrature-Demodulation Systém

The signal f(t) is an (analog) complex “baseband” pulse-train given by

X —jor (fc(—ﬁ"—"’”""”’" ’k])+2a(t—tT[k])(—Ly,[n“"'n 'k])+¢nvp[nz,ny,k])
f@) = Alng,nyl e ’ y ¢
- _ 2R.[K]
xrect (t tT[k,__]Fp < ) ) (2.32)

where ¢ry p[ng, ny, k] is a nonlinear phase term (usually referred to in the literature as the
Residual Video Phase (RVP)[7]) given by

S ol K] = 2<<2R’[k]) (Z(Ré[k]-l-y'[nx,ny,k]))?). (2.3

C C

~ This re51dual phase term can usually be neglected (since |y'[ng, ny, k]| < R,[k]). For many
SAR imaging systems(7], the baseband signal f(t) is obtained by quadrature-demodulating
the return signals with the reference “chirp” (as shown in Figure 2.4).

If we shift the demodulated baseband pulses by the round-trip travel times 7/[k] = 2_}2'31131
of the reference chirp pulses (so as to get rid of the dependence upon R][k]), we can express

f(t) as

y’["m."g;’“]))

OB 5 5 S S Pl e A

—K nz ny

xrect (%T[H) . (2.34)
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Note that we also neglected the Residual Video Phase term @ryp[nz,ny, k] as well. Sim-
plifying this expression even further, we obtain

K
ft) = Z Z ZA[nx’ nyle ™7 EFely/ [nz ny K] Felt=tr [K)(Y' [rany D] oot (t —_tT[k])
k=—K Nz ny TP
X ' t—trlk
= Z 2 EA[niL‘,ﬂ"y] e _j 4Tw[(.f(:"'o‘(t_t'l"[k]))(y’["7'2177'1,'11‘:])]I-ect (L”)
—K ng Ny Tp
aTp (t—tp[k]) \, 4 _
= Z SN Alng,nyle K YRR >(y [nm'ny’k])] rect (t——w> .(2.35)
—K nz ny Tp
Here, /\ = + is the “center” wavelength of the transmitted chirp pulses.

Define the “pulse-relative” continuous time variable ¢ as £ = t — t[k] (with —gﬂ <t<
Z;E) If we sample the “pulse-relatlve time variable { at time instants

Tpn -N N

t —<n< —

| =" — <n<3

(where for this case, the integer IV is assumed to be even) we can rearrange the one-
dimensional pulse train f(t) into the following equivalent discrete two-dimensional SAR

data function f[n, k]

(2.36)

fln, K = F@n] +to[k]) = SO Alng,nyl e (1452 B ) rem k)] |

Ng Ny

~K<k<K, <n< (2.37)

-N N
2 2
In the SAR literature, the (discrete) sampled “pulse-relative” time variable £[n] is usually
referred to as the “fast” sampling time [7, 10], while the (discrete) pulse-transmit time
tr[k] = ZLE is usually referred to as the “slow” sampling time.

It We let Y'[na, Ny, k] = Yngn, (tr]k]) cos(0[k]) — Tn,n, (t7[k])sin(f[k]) (the plane-wave
relative range relation with 8[k] = 1;aLn‘1(Ri0 tr[k]) = - trlk]), we can express the complex
baseband signal by the following relation (where the “look-angle” rotation rate 6 is given

by 6 = %)

General-Motion SAR Data Model

fln, k] = ZZA[%’”L']

e -j 5T [( +% %;1) (Ynany (t[k)) cos(Btr[k]) ~Tngn, (tT[k])Sin(étT[k]))] .

N
2

(2.38)

-K<k<K -

Note that we have not as yet made any assumptions about the trajectories (Trgny (t); Yngn, (1))
of the point-scatterers (other than the previous assumption that the point-scatterers do not
move significantly over the duration of a single pulse).
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2.2 General-Motion Estimation Theoretic SAR Model

Suppose we assume that the trajectories (zn,n, (%), Yn.n, (t)) of the point-scatterers are also
functions of a general-motion parameter vector v i.e., (Tn,n,(t,V),Yngn,(t,v)) . Here,
v can represent translational motion parameters, rotational motion parameters, velocity
basis-function coefficients, etc. In its most general form, v can represent the velocities of
all of the point scatterers for all pulse transmit times ¢7[k]. We can now write a general-
motion estimation-theoretic model of the complex SAR data by substituting the general-
motion parameterized trajectories into the general-motion SAR data model (and include
an additive-noise term 7[n, k|)

General-Motion Estimation- Theoretic SAR Model

fln k] = Z ZA['n'E) ny]

iz Ny

=5 42 [ (152 ) (e e lk1:v) cos(Otr k) =2nmy (el V) sin(Btr())

= ZZA[nm’ny]SV[nmny,n, k] +n(n, k] .

Ng Ny

Xe + n(n, k] (2.39)

-K<k<K —%

N
<n< —
SN 2

The additive noise is modeled as zero-mean and circularly-compler Gaussian, i.e.,

Re|[n[n, k] | ~ N(0,02/2) (2.40)
Im [ n[n, k] | ~ N(0, 0727/2) (2.41)
E[Re[n[n, k] ] Im [.n[n, k]]]=0. (2.42)

We can also express the general-motion estimation-theoretic model in the following matrix
form

f=F(v)A + 1, (2.43)

where f is the SAR data, and v is the general-motion parameter vector. The vector A is
the vector of scatterer intensities, given by

A[(;, 0]

A=1 40 1

(2.44)

and 7 is the additive Gaussian noise. The matrix F(v) has the form

F(v)=[ ... s[0,0] 0,1 ... ], (2.45)
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where each column vector sy[ng,n,| corresponds to a lexicographical ordering of the 2 — D
complex-exponential basis-function given by sy[ng,ny,n, k]. If we assume that the additive
noise 7 is spatially statistically-independent, then its spatial-correlation matrix is given by

K,=E [nnH ] =olI. (2.46)

2.3 Zero-Velocity Estimation-Theoretic SAR Model

If we make the assumption that the SAR “look” angle 8[k| is “small”, and if we make the
assumption that the center frequency f. is much greater than the chirp bandwidth BW =
oT), then for a stationary array of point scatterers (where (Zn,n, (t7[k]), Yngn, (t7[k])) =
(Azng, Ayny)), we can write the sampled complex baseband signal f[n, k] as

. 4 _ . Arm aT, ﬂﬂl_ .
Fl =S5 Al o7 i o 7 [ T -bamiinte]
Mg n‘y
N N
—ysnsy ~K<k<K (2.47)
where, again, the “look-angle” rotation rate 6 is given by 6 = Rio. If we merge the constant-

phase term e ~7 329" into the complex phase of A[ng,ny| (since for most SAR imaging
applications, we are generally more interested in the amplitude of the target-field complex
reflectivity density rather than its phase), the complex baseband signal for the stationary-
scatterer zero-velocity case can be written as

Zero-Velocity SAR Data Model

. g 4m Aynyﬂ'ﬁﬂﬂl e b
Sk = S5 Ay e EBmEER] o) (2.48)
N
= ZZA[nz,ny]sy[ny,n]sm[nz,k] .= %7_ <n< 5 - K<k<K

Nz Ny

~ Here, we see that the SAR data for the zero-velocity case is essentially given by a limited-
support scaled 2-D Fourier Transform of the imaged target field.

From this result, we can write our estimation-theoretic model of the zero-velocity com-

plex SAR data by simply including an additive-noise term n[n, k| to the SAR data model.

Zero- Velocity Estimation- Theoretic SAR Data Model
f[n, 'Ic] = Z Z A[nz:: nylsy[ny: n]sz[n:c; k] + 77[77') k] : (2.49)

Nz Ny

—%ﬁnsg ~-K<k<K
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Noise Complex
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Figure 2.5: Zero-Velocity Estimation-Theoretic SAR Data Model

The additive noise is modeled as zero-mean and circularly-complezr Gaussian, i.e.,

Re[n[n, k] | ~ N(0,02/2) (2.50)
Im[ n[n, k] ] ~ N(0,02/2) (2.51)
E[Re[n[n, k] ]Im[n[n,k]]]=0. (2.52)

From this framework, we can think of the SAR imaging problem as an estimation problem

where we are “transmitting “ a set of complex-valued coefficients (parameterized by the

scatterer reflectivities A[n, ny| ) by using a set of approzimately orthogonal basis-functions

~ (given by the limited-support scaled 2-D Fourier Transform, and parameterized by the initial

scatterer positions (Azng, Ayny)), over a  noisy” channel, as shown in Figure 2.5. _

v We can also express the zero-velocity estimation-theoretic model in the following matrix
form

f=TFA +7, (2.53)

where f is the SAR data and 7 is the additive Gaussian noise. For a set of ideal point
scatterers located at the sampled spatial positions (Agng, Ayny), the vector A of scatterer
intensities is given by

A0

A= 401 |

(2.54)
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The matrix F has the form
F=[.. s00 s01 .. ], (2.55)

where each column vector s[ng,ny] correspond to a lexicographical ordering of the 2 —
D complex-exponential basis-function given by sy[ny,nlss[ng, k]. If we assume that the
additive noise 7 is spatially statistically-independent, then its spatial-correlation matrix is
given by

K,=F [m;H] =0ll. (2.56)

2.4 Spatially-Varying Temporally-Constant Velocity
(SVTCV) Estimation Theoretic SAR Model

If we assume that the velocity of each moving point scatterer is constant over the SAR’s

“dwell time” —T <t < T (but independent from scatterer to scatterer), then the scatterer
trajectories are given by the following relations

" Tpgn, (t) = Agng + T[ng, nylt (2.57)

Ynany (1) = Bymy + Y[ne, nylt (2.58)

where &[ng,ny] and y[na,ny] are the respective azimuth velocities and range velocities of

the point scatterers corresponding to A[nz,ny]. Recall from Section 2.1.5 that the SAR
relative-range equation y'(ns,ny, k| was given by

y'lne, ny, k| = ynzny(tr[k])COS(étT[k])—fcnzny(tT[k])Sin(étT[k])- (2.59)

We can also think of this equation as being a discrete-time version (for ¢ = tr[k]) of the
following continuous-time SAR relative-range equation

Yuny(t) = Ynany (1) 008(6t) — Tn,n, (t)sin(ft) . (2.60)

(i-e., ¥ [Nz, Ny k) = Ynon, (br(K]) ). TE we substitute the SVTCV trajectory relations into the
continuous-time SAR relative-range equation, we obtain the following third-order polyno-
mial approximation about t =0,

Wnan, (0) 1 9%Ynn, (0) 1 8°Y,n,(0)

~ 3
Ynary (8) % Yo, (0) + — 55—t + 5 ty et (2.61)
where
Unon, (0) = Byny (2.62)
oyl (0 .
ot Y
&%yl (0 . . :
M = —(2z[ng, nylf + Ayn 62 2.64
82t - Yy y'ey
8°Yn.n, (0) . " "
T (—By[nx,ny]ﬁ ,+ Az”"l:r:e ) . (2.65)
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Note that for our case of a constant “look-angle” rotation rate = %> the mapping from
the scatterer’s motion parameters to the relative-range derivatives is both linear and non-

singular. Rearranging terms, the polynomial approximation to the relative-range can be
written in the following form

1. . 1.
Ynon, (B) & (Ee?’ﬁ - Ot) Agng + (1 - 59%2) Aymy
o 1. . '
—0t%i[ng, ny] + <t - 502t3) Y[nz, nyl - (2.66)
Therefore, we can write the original discrete-time relative-range equation y'[ng, ny, k] as

y,[nw’ ny’ k] = ynmny (tT[k])

= Ynon, ( ) '
( ( )3 ( >>Anw+<1——62 (2“) )Ayny
—6 (?{k> T[ng, ny| + ((?) ;92 (z;{k) ) ylng,nyl . (2.67)

This implies that we can express the sampled demodulated 2 — D SAR data function for
the spatially-varying temporally-constant velocity case as

Q

f[n, k] — ZZ A[nz,ny] ej [¢=[n,k]A,nm+¢y[n,k]Ayny+¢z-[n,k]:i:[nm,ny]+¢y[n,kz]y[n,;,ny]] ,

o4 .
where
O I dc e
skl = = L (142 ”)[1——92( )2] (2.70)
$iln, k] = 4—” aT” [ } (2.71)
e ey @-w@) e

In a similar fashion to the generalized-motion case, we can write an estimation-theoretic
model for the spatially-varying temporally-constant velocity (SVTCV) SAR data by includ-
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ing an additive-noise term 7n[n, k|,

Spatially- Varying Temporally-Constant Velocity
(SVTCV) Estimation- Theoretic SAR Data Model

fln, k] = Z:ZA[nmany]SV[nz’ny’n’ k] +nln, k], (2.73)
Nz Ny
—%gngg -K<k<K

where the velocity-parameter vector v consists of the azimuth velocities and range velocities
of the point scatterers

[0, 0]
[0, 1]
v = : (2.74)
9[0,0]
y(0,1]
We model the additive noise as zero-mean and circularly-complex Gaussian, i.e.,
Re [ n[n, k] ] ~ N(0,07/2) (2.75)
Im [ n[n, K] | ~ N(0, 62/2) (2.76)
B[ Re[nln, kI | m [nfn, k] 1] = 0. (2.77)

We see that the SVT'CV estimation-theoretic SAR data model is composed of non-orthogonal
basis-functions, which are parameterized by both the scatterer initial positions and the scat-
terer velocities, as shown in Figure 2.6.

Just as with the generalized-motion model discussed previously, we can express the
SVTCYV estimation-theoretic model in the following matrix form

f=F(V)A +7, (2.78)

where f is the SAR data. The vector A is the vector of scatterer intensities, given by

A[(;, 0]

A= 4,1

(2.79)

Again, the vector v is the vector of the corresponding scatterer velocities, and 7 is the
additive Gaussian noise. The matrix F(v) has the form

F(v)=[...s[0,0 s[0,1] ... ], (2.80)
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Non-orthogonal

Basis
Functions
$,[0,0,n,k]
Scatterer
Reflectivity
A[0,0] X
Noise
M[n,k] Complex
s,[0,1,n,k] , [nk] SAp

R
~ Data
A1) .Q*Q > fln.k]

s, [n,n,nk]

Aln,ny 4é

Figure 2.6: Spatially-Varying Temporally-Constant Velocity Estimation-Theoretic SAR
Data Model

where each column vector sy [ng, ny] corresponds to a lexicographical ordering of the complex-
exponential basis-function given by sy[ng,ny,n, k]. If we assume that the additive noise n
is spatially statistically-independent, then its spatial-correlation matrix is given by

K, =E[m"] =02 (2.81)

2.5 Rigid-Body Temporally-Constant Velocity Estimation
Theoretic SAR Model

Here, we now consider the case where the 2— D array of point scatterers belong to a rotating,
~translating rigid-body target, i.e., the scatterers have the following trajectories
Trgny (t) = zrB + TrBt + (Agnz — TRB) COS(?j)RBt) + (Ayny — YrB) sin(g[l)RBt) (2.82)
Yneny (t) = YrB + YRBE + (By7y — YRB) C0S(YRBE) — (Bong — ZrB)sin(Yrpt) . (2.83)
As before, (Agng, Ayny) are the initial positions (at ¢ = 0) of the point-scatterers, and
(xrB,yRB) is the initial position (at ¢ = 0) of the center-of-rotation. The velocities
(ZrB,YrRB) are the initial velocities of the center-of-rotation, and ¥ gp is the target rotation
rate. If we assume that ¥rp is “small”, we can simplify these expressions to
Trigny (t) = Agng + (:i:RB + (Ayny - yRB)'lp-RB> t (2.84)

Ynany (1) = Dyny + (’!)RB — (Agng — JJRBWRB) t. (2.85)
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This implies that the scatterer velocities are approximately given by

&g, ny) = &rp + (Ayny — yrB)YRE (2.86)
Y[na,ny] = YrB — (Aenz — TRB)YRE - (2.87)

Just as with the general SVTCV estimation theoretic model, we are essentially assuming
that the velocity of each moving point scatterer is constant over the SAR’s “dwell time”
—-T <t < T. However, the scatterer velocities are now correlated by the rigid-body
equations. '

For the simplified rigid-body scatterer-velocity equations derived here, suppose we are
given (2rpB,YrB,ZrB,YRB) = (TRB,,YRB,, 0, 0). We see that for Yrp # 0, this is is equiv-
alent to (zrB,YRB,TRBE,VRE) = (0,0, —YRB,YRB,TRB,¥rB). This implies that the center-
of-rotation position variables (zgrp,yrp) are redundant variables. This also implies that
we can simplify the scatterer-velocity equations by “merging” the terms —ngql}RB and
TrRBYRB into (trB,YRB)

t[ng, ny| = Tpp + ¢RBAyny (2.88)
’.l][nxa ny] = yRB - wRBAInz . (289)

If we substitute the expressions for the scatterer velocities into the SVTCV 2 — D SAR
data function derived in the previous section, we get the following expression for the rigid-
body SAR data

fin k] = e’ ((8=[n.k]=8;[n, k[ RB) Axna+(by[nk]+s[n,kldrE) Ayny ]

x ed[#elnKlErp+oy[nklins | (2.90)

We can write an estimation-theoretic model for the rigid-body temporally-constant velocity
(RBTCV) SAR data by including an additive-noise term n[n, k],

Rigid-Body Temporally-Constant Velocity (RBTCYV)
Estimation-Theoretic SAR Data Model

' (2.91)
fln, k= 3,. Zn, A[nx,ny]sd}m (M2 Ny, 1y kSa g5 grpn, k] +nin, k]
-F<n<ld ~K<k<K
We model the additive noise as zero-mean and circularly-complex Gaussian, i.e.,
Re[nfn, k] | ~ N(0,02/2) (2.92)
Im [ gln, k] ] ~ N(0,02/2) (2.93)
E[Re[nfn, & ] Im[nln,k]]] =0. (2.94)

We can also express the RBTCV estimation-theoretic model in the following matrix
form - '

f=F(v)A +7, (2.95)
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where f is the SAR data. The vector A is the vector of scatterer intensities, given by

A[(;,O]

A= A[0.1] (2.96)
The vector v is the vector of the rigid-body scatterer-velocity parameters,
TRB
v=|9rB | . (2.97)
YRB
and 7 is the additive Gaussian noise. The matrix F(v) has the form
F(v)=[ ... s[0,0] s[01] ... ] (2.98)

where each column vector sy[ng,n,] corresponds to a complex exponential basis function
given by s [ns,my, n,k|siyp yrp[n, k] If we assume that the additive noise 7 is spatially
statistically-independent, then its spatial-correlation matrix is given by

K,=E [m,H] =o21. (2.99)



Chapter 3

L{-Norm Based SAR Processing

N this chapter, we present a generalized SAR imaging framework which exploits the

idea of Li-norm regularization in order to address the limitations of conventional SAR
imaging (e.g., blurring to motion, sidelobe artifacts, and loss of scatterer resolution). For
comparison purposes, we first present a brief overview of a conventional SAR processing
algorithm. Next, we present an a estimation-theoretic justification for the L;-norm-based
SAR processing framework, from the context of the ill-posed over-complete basis-pursuit
estimation problem. We also present a means for implementing an L;-norm-based algorithm
by using a coordinate-descent line-minimization scheme. Later in Chapter 5, we will present
a parameterized estimation-theoretic L;-norm regularized approach for imaging rigid-body
moving targets. In this chapter, we also present some results in order to demonstrate the
utility of an Lj-norm regularized approach for reducing sidelobes and improving resolution
for stationary SAR images.

3.1 Conventional Spotlight-Mode SAR Processing

- In the previous chapter, we derived the following zero-velocity estimation-theoretic model
for the quadrature-demodulated sampled “baseband” SAR data f[n, k] ( where we have a
. 2 — D array of stationary isotropic “ideal” point-scatterers)

Zero-Velocity SAR Model

oy ifn]

fln k] = ZZA[nm,ny] e—j %[AynchE Tp] 7 3= [Aenabir(k]] + 7ln, k]

ne Ty (3.1)
= S5 Alng, nylsylng, nlsalne, k] + 10, k] -

Ng TNy

N N

SRSE -K<k<L<K

63
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Recall that we assumed that ideal point-scatterers were located at the following sampled
spatial positions

Tngn, (t) = Dgng {nz,ny} € Target Field (3.2)
Ynany (1) = Dyny . {ng,ny} € Target Field (3.3)

where Az and Ay are spatial sampling-interval constants (whose values we will derive later
in this chapter). Also recall that the set of corresponding point-scatterer reflectivities were
given by the 2— D function A[ng, n,]. For this zero-velocity case, we see that the SAR data is
essentially given by a limited-support scaled 2-D Fourier Transform of the imaged target field.
This implies that we can simply use a limited-support scaled inverse 2-D Fourier Transform
to (approzimately) recover the target-field reflectivities Alng,ny] from the demodulated SAR
data f[n,k]. _

From the previous chapter, we can express the zero-velocity estimation-theoretic model
in the following matrix form

f=FA +n, (3.4)
where f is the SAR data and 7 is the additive Gaussian noise. For a set of ideal point

scatterers located at the sampled spatial positions (Ayn., Ayny), the vector A of scatterer
intensities is given by

A[(;, 0]

A= 0] (3.5)
The matrix F has the form
F=[.. s/00 sfo1 ..], (3.6)

where each column vector s[ng, ny] corresponds to a lexicographical ordering of the éomplex-
~exponential basis-function given by sy[ny,n]sz[ne, k]. Since we assume that the additive
- noise 7 is spatially statistically-independent, then its spatial-correlation matrix is given by

K,=F [m;H ] =021, (3.7)

For the matrix zero-velocity model presented here, the maximume-likelihood estimate for
the scatterer vector A is given by

“ -1
Ayp = (FPK;'F) FPK'f. (3.8)
This is equivalent to minimizing the following standard least-squares cost function J(A)

J(A) = |If — FA||’;’<'771 = (f-FA)P K ! (f - FA) . (3.9)
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For the case where the noise 7 is spatially statistically-independent and isotropic, the
maximum-likelihood estimate can be simplified to

-1
R 1 1. -1
Ay = (—ZFHF> S FAf = (FHF) FAf (3.10)
0’17 O’,7

However, direct calculation of the inverse of the matrix FZF can be computationally in-
tensive, even for a moderately sized SAR scene. Therefore, the following approximation
is typically made to the so-called ambiguity-function matrix F¥F (where the ambiguity
function[42] refers to the response of the maximum-likelihood estimator to a unit-amplitude
point-scatterer located at the center of the imaged target-field)

FAF~T. (3.11)
Thus, the conventional-SAR maximum-likelihood estimate is given by
Ayp =~ FAf, (3.12)

which is essentially the inverse Fourier Transform (with limited support) of the demodulated
SAR data. The effect of this approximation is the introduction of sidelobes into the final
SAR image for high-amplitude scatterers (since the ambiguity function for an estimator
based upon the limited-extent Fourier-Transform is a.pﬁroximately a scaled sinc function).
This approximation also limits the conventional SAR image in resolution.

In terms of the original sampled 2-D target-field reflectivity A[ng, ny|, the approximation
to the maximum-likelihood estimate is given by

Alng,ny] ~ Z ZQ: fln, k] e c[ g v%%l] ¢ 7 $E[Bansbir(K]
/c_—Kn__7
1 N
= GO Z Z fln, k] hyny,n] hgng, k] . (3.13)
k=—Kp—_N

The (sampled) scaled inverse Fourier-Transform basis-functions (hg[ng, k] and hy[n,, n]) are
given by the respective complex-conjugates of the zero-velocity SAR model basis-functions
" 82N, k] and sy[ny, n].

In the literature[7, 10], this conventional SAR processing algorithm is usually divided
- into two main steps, range-processing and azimuth processing. The first part of the so-called
range-processing step is the quadrature-demodulation process (plus the required analog-to-
digital conversion) used to obtain the complex baseband SAR data, f[n, k], from the received
“chirp” signals reflected from the point scatterers. This part of the range-processing is
performed by the radar hardware at each pulse-transmit time t7[k]. After f[n, k] is obtained,
the next part of the range-processing step is a scaled 1 — D Fourier-transform with respect to
the “fast” sampling time #[n] = Iﬁ,ﬂ This forms a series of so-called Relative-Range Profiles
(RRP). Then, the azimuth-processing step is simply a scaled 1 — D Fourier Transform
“across” the relative-range profile data with respect to the “slow time” (pulse-transmit
time) tp[k] = T’“ . This gives us the final complex SAR image A[n;, n,]. One interpretation
of the conventlona,l range and azimuth processing algorithms presented in the literature 1s
as a row- column decomposmon of the 2-D inverse scaled Fourier Transform.
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Range Resolution and Azimuth Resolution

Here, we derive values for the spatial sampling intervals, A; and Ay. In the literature[18],
these sampling intervals are usually some fraction of the corresponding “inherent” azimuth
and range resolutions, 6, and 6y, of the SAR system (whose values we will derive here).

Suppose we are given the following noiseless zero-velocity SAR data set f[n, k] which
corresponds to an array of ideal point scatterers with initial positions at (6;n}, 6,n/ y) (where
{ng,ny} € Target Field).

f[n, k] ZZA[TL:L"ny] e Ac [_CE Tp 5yny] 6'7 i—c[etT[k]Jznz] -

NN
2 == 73

~K<k<K (3.14)

Again, f[n,k] is a scaled Fourier Transform of the imaged target field reflectivity. This
scaled Fourier Transform can also be expressed in the following form

f[’l’b, k;] ZEA[n’v’ny] el kAwgbznl, e 1 nBwyby n, ,

! !
Ny ny

N N

where the spatial frequencies (kAwg, nAw,) are given by

dmftp(k]  4nd [k(ZT)]
kAw, = —= =7 3.16
’ e Ae | 2K (3.16)
_ 4w [oTpin]| _ 4rmadln]  dmo [nTp]
nfwy = 3 lfc T,,]‘ c e InN] (3.17)

As shown in Figure 3.1, this Fourier-Transform equation essentially says that the SAR data
15 contasned within a 2K Aw, x NAw, subset of the target-field’s 2-D Fourier Transform
[28], where the dimensions of this subset, 2K Aw, and NAuwy, are given by

2K Awy = 87;9T (3.18)
C
4raT,

NAw, = “z‘ 2 (3.19)

The variables (wg,wy) shown in Figure 3.1 are the spatial frequencies corresponding to
(z,y). Therefore, the noiseless-data maximum-likelihood estimate, A[ng,n,] (using (3.11),
which is the discrete scaled inverse Fourier Transform of f[n, k]) is approximately given by
the following set of scaled sampled 2-D sinc functions (where the spatial sampling intervals
are again given by Az and Ay)

N
2

Z f[n, k] e —7 kAwz Azng ej nAwyAyny
=N

A [Pz, ny]

K
ZK)(N _2_:
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( — 621 NAw,(Ayn, — 8,1
~ Z ZA[n:,m n;]sinc (211 A(«Um(Azznz 5:1:”:1:))) sine ( wy( ’y721'y 5yny))) -

nl ny
(3.20)

In order for the sinc-function mainlobe “peaks”(corresponding to each point scatterer) to
be distinct, the initial positions (6,n., (5yn;) of the ideal point scatterers must be separated
by an azimuth distance and a range distance equal to the corresponding azimuth and range
widths of the mainlobes of the scaled sampled sinc functions. This implies that the ultimate
SAR azimuth resolution 6, and range resolution &, are given by the following expressions

SAR Azimuth Resolution and Range Resolution

s _ Ac
b = 2 (aimy = i (3.21)
by =2 e

s -
Nsz) T alp
2

We see that the range resolution 6, is inversely proportional to the approzimate bandwidth
aT, of the transmitted “chirp” signals, while the azimuth resolution &, is inversely propor-
tional to the length of the radar’s “synthetic-aperture angle” 20T. As stated earlier, in the
literature[18], the spatidl sampling-interval constants, A, and Ay, are usually chosen to be
some fraction of 6; and 6, (e.g., Az = 0.56; and Ay = 0.56,).

Range Walk and the Polar Format Algorithm

In order for the Fourier-Transform based conventional SAR processing technique to produce

acceptable results, the relative-range variations of the target-field point scatterers must be

less than the range sampling interval A,. In terms of the general-motion SAR relative-

range equation derived in the previous chapter, the following condition must be satisfied

for the set of stationary scatterers with trajectories given by (Znn, (tr[k]), Yn.n, (t7[k])) =
(Ayny, Ayny)

(81 = 5 < Wnan, (47141) cOS(O[K] = ., (1K) sin(O18]) < (A +52) -

(3.22)
This condition can also be written as
SAR Range-Walk Condition
(Ayny = 5) < (Ayny cos(0]k]) - Agnzsin(6]K])) < (ayny+52) . (3.23)

If this condition is violated, the final SAR image will be degraded by an effect known as
range-walk, where the energy from a given point-scatterer is dispersed over several spatial
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\ ® _ Input Samples

—

— Output Samples

Figure 3.1: Fourier Data Domain for SAR Imaging Geometry and Polar Format Resampling

sampling-interval “cells”. Even for stationary targets, range walk can still occur for higher-
resolution SAR systems (with smaller range sampling-interval constants A, and/or larger
look angle extents, [K] — 6[—K] = 26T). This essentially arises from our assumption that
our data samples correspond to an approximately rectangular portion of the 2-D Fourier
Transform of the target-field reflectivity density, when in reality, it is an angular section.
One common means of compensating for range-walk (without sacrificing range resolution) is
to resample the demodulated SAR data by interpolating from a polar grid to a rectangular
grid, as shown in Figure 3.1.

For the experimental results presented later in this chapter for the enhancement of
stationary SAR scenes, we found that we did not have to consider range-walk as an issue,
since the SAR’s look angle extent was relatively small (about 0.036 radians). Therefore,

- we did not need to use polar-format resampling for these particular examples. However,
for the L;-Norm based SAR processing technique presented in Chapter 5 for the rigid-body

~motion case, we used a polar-format resampling based algorithm in order to compensate
for target rotation (which is equivalent to having a larger SAR look angle extent).
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3.2  General-Motion Li;-Norm Based SAR Processing Algo-
rithm

Recall from Chapter 2 that we derived the following general-motion parameterized estimation-
theoretic model

General-Motion Estimation- Theoretic SAR Model

fln, k] = ZZA[nm,ny]

Nz Ny

: o - % [(1+3fzcﬂ 't"I[‘%l) (vrzny (t7[k],v) COS(étT[k])_xnmny (tr[k],v)sin(ftr [k]))J

= Z ZA[nm,ny]sv[nm,ny, n, k] +7n, k] .

Nz Ny

+ nn, &] (3.24)

-K<k<K —%

N
<n< —
_n_Z

The vector v is a general-motion parameter vector which can represent translational motion
parameters, rotational motion parameters, velocity basis-function coeflicients, etc. We can
also express the general-motion estimation-theoretic model in the following matrix form

f=F(V)A +1, (3.25)

where f is the SAR data. The vector A is the vector of scatterer intensities, given by

A[O:, 0]

A=l | (3.26)

and 7 is the additive Gaussian noise. The matrix F(v) has the form
F(v)=[... s0,0] s[0,1] ... ], (3.27)

- where each column vector s, [z, ny] corresponds to a lexicographical ordering of the 2 — D
complex-exponential basis-function given by sy[ng, ny,n, k]. If we assume that the additive
noise 7 is spatially statistically-independent and isotropic, then its spatial-correlation matrix
is given by

K,=FE [m;H] =olI. (3.28)

Given the general-motion estimation-theoretic model with the form, f = F(v)A +7, the
maximum likelihood estimate for the scatterer-amplitude vector A and scatterer-velocity
vector v is equivalent to finding the scatterer amplitudes A and velocity-parameters ¢ which
minimizes the following standard least-squares cost function J(A,v)

J(AY) = [[f < F(v)A|? ';1 = (f~ FWA) K1 (£ - F(v)A) . (3.20)
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From this cost function, the maximum-likelihood estimate for the scatterer-amplitude vector
A is given by

- -1 :

Ay = (FH(oML)K,;lF(vML)) FA(901)K; (3.30)

where the maximum-likelihood estimate ¥, of the velocity-parameter vector v is given by
-1

v = argmax [ || (P (VK F(v)) FAWK; ] (3.31)

However, for many moving-target SAR imaging applications, our estimation problem will
be ill-posed (i.e., we will not have a unique solution for both Aprp and Oy 1), which implies
that we must add some type of regularization to this problem. In the literature[21], one
common means of regularizing an estimation problem of this form is to add a quadratic
penalty upon the vector A to the cost function J(A,v), e.g.,

J(A,v) =||f - F(v)A||§(;1 +yaATA (3.32)

The corresponding solution to this so-called Lo regularized problem is then given by

~

~1
Ayp = (FHEOM)K F(In) +7al) FH (00K, (3.33)
where, in a similar fashion to before, the maximum-likelihood estimate ¥, is given by
-1
Vap = argmax [ || (F¥(V)K;'F(v) +v41) " FE (VK3 ] - (3.34)
For a given set of velocity parameters v, it can be shown [19, 21, 27] that the quadratic

Ly penalty y4A® A is equivalent to the following zero-mean circularly-complex Gaussian
prior model for the scatterer amplitudes A[nz, ny]

Re [ Afng,ny] | ~ N(0,75"/2) (3.35)
Im [ Alng,ny] ] ~ N(0,7;"/2) (3.36)
E[Re[ A[ng,ny| |Im[ A[ng,ny]]]=0. (3.37)

Note that this particular prior model also assumes that the scatterer amplitudes are spatially
~ statistically-independent, which implies that the spatial-correlation matrix for A is given
by

Kao=E [AAH] = ;1. (3.38)

In the SAR literature[19, 29], it has been shown that this type of Gaussian Ly prior model
gives a very good statistical description for the scatterer amplitudes of “natural” clutter,
such as trees or grass. However, for a scene containing a “man-made” target, the SAR image
will also contain a small number of relatively high-amplitude elements (corresponding to the
target scatterers), which would appear as statistical “outliers” to the Gaussian prior model.
This implies that the Ly regularized estimator will try to “smooth out” the portions of
the SAR image containing the target-scatterer amplitudes, (which is clearly undesirable for
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SAR automatic-target recognition applications, since it is usually the target portions of the
SAR image that are the most important). In other words, if we think of a target-containing
SAR image as being approximately sparse (i.e., containing only a small number of non-zero
elements), the Ly regularized estimator will try to approzimate each high-amplitude target
scatterer by a non-sparse (spatially-distributed) superposition of smaller amplitude elements
wn the SAR image.

In addition, for moving-target applications, the (nonlinear) estimation of the velocity
parameters v is directly dependent upon the prior model for the scatterer amplitudes. This
implies that the Lo regularized estimator may not give good estimates for these parameters,
which implies that the Lo reqularized A prr, and ¥prp, may not correspond to a focused image
of the target-field.

Even if there is no target motion, the Ly regularized estimator will also suffer from the
following problems (due to the non-orthogonality of the complex-exponential basis-functions
contained in the columns of F(v)): the high-amplitude target portions of the SAR image
will contain artifacts such as sidelobes, and the SAR image will be resolution-limited by the
so-called ambiguity-function matriz FH(v)F(v).

In many respects, this type of ill-posed estimation problem has many similarities to
the so-called over-complete basis-pursuit problem in the literature [8, 9, 11]. For basis pur-
suit, the goal is to represent a given signal or image by a sparse superposition of scaled
basis functions taken from some (possibly non-orthogonal) basis-function “dictionary”. If
this basis-function dictionary is over-complete, this essentially means that some of its basis
functions can also be represented by a superposition of other basis functions found in the
dictionary. This implies that a given signal or image will not have a unique representa-
tion with an over-complete basis-function dictionary. Therefore, if we do not regularize the
scaling coeflicients of the basis functions, we will not necessarily get a sparse representa-
tion. The basis pursuit technique tries to achieve a sparse representation for this case by
reqularizing the L1 norm of the set of basis-function scaling coefficients.

If we think of the set of generalized-parameter complex-exponential basis-functions given
by sv[ns, ny,n, k| (for all possible combinations of velocity-parameters v) as being an over-
complete basis-function dictionary (with the estimated scatterer amplitudes being the basis-
- function scaling coefficients), we can use the L;-norm regularization idea from basis pursuit
to obtain a (hopefully) sparse estimate to the scatterer amplitudes (which for our SAR imag-

ing application, implies that we will correctly recover the high-amplitude target portions of
~ the SAR image). In the context of our estimation problem, this is done by computing the
A and ¥ which minimizes the following Lj-norm regularized cost function J(A,v)

J(A,v) = If — F(V)A[[f- +7allAllL+ L(v) - (3.39)

This cost function is a standard least-squares cost function for f = F(v)A + 7, augmented
by a L; penalty upon the scatterer amplitudes (with an optional penalty J,(v) upon the
velocity parameters). This type of Lj-norm based formation also has many similarities to
the so-called total-variation imaging techniques in the literature [32, 35, 36] (which remove
noise by minimizing the L;-norm of the intensity gradient of a given image).

For the case where the noise 7 is spatially statistically-independent and isotropic, the
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cost function can be simplified to
J(A,v) 2l|f FV)A[]} +7all Al + Jo(v) . (3.40)

Since the location of the minimum of this cost-function is unaffected by multiplication by
a constant, we see that varying the assumed noise variance 0727 is equivalent to varying the
Ly weighting 74 (along with the optional penalty Jy(v)). Therefore, we can normalize the
cost function by assuming that the noise variance is unity (i.e., a% = 1), and just vary the
L, weighting v4 (along with the optional penalty Jy(v)), i.e.,

J(A,v) = ||f = F(V)A|[3 +vallAll1 + Jo(v) . (3.41)

3.3 Implementation Issues

In the literature (8, 9, 11, 20], the basis-pursuit Li-minimization over the set of basis-function
scaling coefficients is usually computed by recasting the problem as a linear programming
problem. However, for a large-scale estimation problem such as our SAR imaging problem,
the linear-programming techniques used by basis-pursuit can be somewhat computationally
intensive. Here, we present an alternative method for performing the L; minimization for
our SAR imaging estimation problem. This method involves calculation of the approzimate
gradient of the L; cost function.

3.3.1 Continuous Approximation to the L;-Norm

For our SAR imaging problem, the gradient, sgn[A], of the L;-norm of A is discontinuous at
A = 0, which implies that any type of calculation based upon this gradient will be ill-posed
for “small” values of A. In order to avoid this type of computational difficulty, we first
make the following continuous approximation to the Li-norm of A (where the parameter
. €4 is an Ly approzimation constant)

1Al = > 1Alns,ny|

Ne Ny

S Al ny) A [, ] + € (3.42)

Ny Ny

Q

Then the corresponding continuous approximation asgn[A] to the gradient, sgn[A], is given
by
[Sgn[A]]nmny ~ [a‘sgn[A]]nzny
= asgn(A[nz,ny))

A[niva ny]

\/A[nm, Nyl A*[ng, ny] + ei

(3.43)

For small values of A (i.e., |A[ng,ny]| < €4), asgn(A[ng,ny]) is approximately given by

asgn(A[ng,ny]) =~ A[”:—/;”y] . (3.44)
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This implies that an estimation scheme based upon this type of approximation will exhibit
(well-posed) Ly regularization behavior for small values of A (since the gradient of the L
quadratic penalty v4AT A is given by v4A).

3.3.2 Gradient-Descent

Once we have the continuous approximation to the Li-norm of A (and its gradient), the
most straightforward method for performing the L; minimization for the normalized cost
function is to use the following recursive gradient-descent algorithm

. . aJ(A,v)1H
Am+1 = A, - (87 [%]
Az-A-myV—_-‘?m
= A+ s FH@)[f ~ FOm)An] — asvasgn]A,,] (3.45)
R . 1. [0J(A,v)
V41 = Vm — av§§R [ v ] ‘AZAm, v=0..
. - OFH(9.) L dJy (v
= Um+ R lAﬁa—v[f—F(vm)Am] - ay 8‘(, ) o (3.46)

Here, we are simultaneously estimating both A and v. The constants a4 and o, control
the rate of convergence (and stability) of the gradient-descent algorithm.

3.3.3 Coordinate-Descent Line Minimization

One major disadvantage of the gradient-descent implementation is its sensitivity to the
presence of local minima in the cost function J(A,v). For our SAR imaging application,
this implies that the gradient-descent algorithm may converge to a solution set A and ¥
where the gradient of J(A, v) is locally small, but where the SAR image is not focused.

One way of reducing this sensitivity to local minima is by using the following coordinate-
descent line minimization based algorithm. For this algorithm (given the normalized L cost
- function J(A,v)), we first define the following set of velocity-dependent target-scatterer
amplitudes, A(v)

A(v) =arg mjin [J(A,v)] . (3.47)

In other words, for a given set of velocity parameters v, A(v) is defined as the set of scatterer
amplitudes which minimizes the L; cost function J(A,v). We can evaluate A(v) (for a
given v) by the following version of the previously-presented gradient-descent algorithm
(which incorporates the continuous approximation, asgn[A], to the gradient of the L norm
of A)

-

Api(v) = AL()+ asFEW)[f - F(v)A, (V)] — aavaasgn[An,(v)] . (3.48)

For a given set of velocity parameters v (and velocity-dependent target-scatterer am-
plitudes A(v)), the real part of the gradient (with respect to the velocity parameters v) of
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the L, cost-function J(A,v) evaluated at A = A(v) is given by

R [BJ(A,V)

- i IET (V) o VA(v |
ov ”A:A(V) - [A ) ov [f-FWAM] | - (3.49)

The coordinate-descent line-minimization algorithm uses this gradient to minimize the L
cost function in the following manner:

I. For a set of given initial velocity-parameters v, we first compute the following search
direction, do, given by the negative of the real part of the gradient (with respect to
the velocity parameters) of the Ly cost-function J(A,v) evaluated at A = A(vq) and
vV =V

I, [BJ(A,v)

- (3.50)

av :HA:A(VQ),VZVU -

This quantity is then used as the initial condition for a set of recursive coordinate-
descent 1-D line minimizations|5, 15].

II. For each iteration m (given the corresponding set of velocity-parameters, v,,, and
given the corresponding direction vector d,,):

A. We perform the following 1 — D minimization over the scalar \

Am = arg m}\in [J(A(Vim + Adm), v + Adi)] - (3.51)

Essentially, we are searching the velocity—parameter.space v along a 1 — D line
(parameterized by the scalar ) defined by v = v, + Ad,, for a new value of v
which minimizes the L; cost function.

B. Once we obtain this new minimum, given by
Vmal = Vm + Amdm (3.52)

we then compute a new direction vector, d,,1, which we use in the next iteration
of this algorithm to start a new search for a lower minimum.

+ pmdy (3.53)

1. [0J(A,v
dmy1 = —§§R [#}

ov

A=A(Vmi1),
V=Vm+1

In the literature[5, 15], the scalar ., for the coordinate-descent line-minimization algo-
rithm is generally given by the following ratio of vector inner products

T
l% aJ A,V\l lé}% aJ(A,V)
2 ov A:A(Vm-}-l)' 2 ov A=A(vm+l)l

T mil = —mdl (3.54)
(82 12552 g ) 32282 ],

V=Vm

Hm =
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However, for some of the results presented in this thesis (in Chapter 5), we used the following
alternative form for p,, (which has been shown in the literature [5] to be less sensitive to
the presence of local minima in the L; cost function)

Hm =
l 3J(A v) ] 1§R OJ(A,v)
A A(vmtl), 2 A=A(vm+1) 2 ov A=A(vm)
V=Vm+1 V=Vm+1 V=Vm
T
1 A,v) 1 8J(A,v
( R [ av ”A:A(vm),> 2% [ ov ]‘A:A(vm)
V=Vm V=Vm

(3.55)

For the coordinate-descent line-minimization algorithm, it can be shown[5, 15] that each
new direction vector d,,+; is approximately orthogonal to the previous direction vector d,,
As compared to the direct gradient-descent algorithm, we see that this algorithm has a
somewhat more robust “global” minima search strategy.

Once we have obtained a convergent estimate ¥ of the velocity-parameters, the (hope-
fully) focused SAR image is given by A = A(%). Now, for higher values of the L, weighting
4, the sparseness assumption of the L; imaging technique implies that most of the target
scatterers will be attenuated, except for the “brighter” higher-amplitude feature scatter-
ers (which would be advantageous for some automatic target recognition applications).
However, if we want to attenuate the target scatterers as little as possible(for the sake of
comparison to the conventional SAR imaging techniques), we can compute the scatterer
amplitudes by finding the A which minimizes the (normalized) standard least-squares cost
function (given that we have obtained a convergent estimate ¥ of the velocity-parameters
from the before-mentioned coordinate-descent line-minimization algorithm),i.e.,

A = arg min[J(A,¥)] = arg min [lIf - F)Al5] - (3.56)

Note that this is equivalent to y4 = 0. This computation can be done by the following
recursive gradient-descent algorithm (with Ay = 0)

o\ 1 H
Ay = Am_a[M]
oA A=A

= A, +oFI@)f-FE)AL]. (3.57)
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3.4 Example Problem: Feature and Resolution Enhancement
of Stationary SAR Scenes

For many types of SAR-based automatic target recognition (ATR) algorithms found in
the literature[12, 19, 23, 29, 44], the stated fundamental goal is to detect and recognize
objects of interest (targets) in a noisy environment (clutter). After a potential target has
been detected, the ATR system must then determine whether it belongs to a given set of
targets (usually by comparing it to a database of test target images). However, the target-
recognition performance of many SAR ATR schemes presented in the literature generally
depend upon both the number and the configuration of the so-called feature scatterers (i.e.,
the brighter scatterers) of the target of interest. This implies that the performance of most
of these SAR ATR schemes will be affected by the previously mentioned effects of the
nonorthogonality of the complex-exponential SAR model basis-functions (i.e., blurring due
to scatterer motion, imaging artifacts (sidelobes), and loss of scatterer resolution).

In Chapter 5, we will present a method for using the Li-norm based approach presented
in this chapter to correct for blurring due to motion in the SAR images, thereby potentially
improving SAR ATR performance. Here, we present some results for some stationary SAR
scenes in order to demonstrate the utility of the L;-norm based approach for enhancing
feature scatterers in SAR images by reducing sidelobes and improving resolution.

3.4.1 L; Enhancement Algorithm

From Chapter 2 (and Section 3.1), recall that we can express the SAR data for the stationary
target case by the following zero-velocity estimation-theoretic model

Zero-Velocity SAR Model

P o N 3 0| R :
f[n, /C] _ ZZA[TL:C,TLy] e J e [Ay Y Fe TP] el i—c[AznzetT[k]] + 77[77«, k]
| ne my (3.58)
= > Alng, nylsylny, n]sene, k] + nln, k] .

Nz Ny

Ny
2

N
<n<

D) -K<k<K

We can also express the zero-velocity estimation-theoretic model in the following matrix
form

f=FA+7, (3.59)

where f is the SAR data and 7 is the additive Gaussian noise. For a set of ideal point
scatterers located at the sampled spatial positions (z[ng],y[ny|), the vector A of scatterer
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intensities is given by

_ | A[6,0]
A= Al0.1] , (3.60)
The matrix F has the form
F=[.. 50,0 s0,1] -1 (3.61)

where each column vector s[nz,n,| corresponds to a to a lexicographical ordering of the
complex-exponential basis-function given by sy[ny, n]sz[ns, k).

For this zero-velocity estimation-theoretic model, our goal is to minimize the following
normalized-noise Ly cost function (without the optional regularization upon the velocity-
parameters which we essentially assume are known, i.e. the velocity-parameters are zero)

J(A) = [|f — FA[5 +vallAll1 - (3.62)

Therefore, we can use the following recursive gradient-descent algorithm (with the contin-
uous approximation to the discontinuous gradient of the L; norm)

Aps1 = A, + aAFH[f — FAm] - aA'yAasgn[Am] (3.63)

[asgn[Am]]nm ny asgn(fim [Nz, ny))

Am[ng, ny]

VAmne, ny A% e, ny] + €

(3.64)

which is well-posed for the known (zero) velocity parameters.

3.4.2 Experimental Results

Here, we present some examples of the feature enhancement imaging capabilities of the
L;-based algorithm. For these results, we were given two conventional complex SAR data
sets (in the discrete 2 — D form Aconv|na,ny]). We converted these data sets into “raw”
demodulated SAR data f by normalizing the data sets (by their respective maximum mag-
nitude over n; and n, , denoted by Apax) and performing a scaled Fourier Transform
corresponding to the “conventional” zero-velocity SAR model, i.e.,

1
Amax

f= FAconv - (3.65)
We also used the normalized conventional SAR data as the “initial-condition” for the I,
gradient-descent recursion, i.e., Ay = AMle Acony. After the L; gradient-descent con-
verged to a final value, we then post-multiplied this final value by Ap;4x in order to obtain

the final L; processed SAR image.
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F, Center Frequency 33.5 GHz

Ae Center Wavelength 0.009 m
ody Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 512 pulse/s
N Complex Samples per Range Profile | 512

2K Pulses per Synthetic Aperture 512

R, Center Slant-Range 2778 M

v SAR Platform Velocity 100 m/s

0 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0 s

L Synthetic-Aperture Length 100 m

Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m

by Range Resolution 0.25 m

bs Azimuth Resolution 0.25 m

Table 3.1: System Parameters for First L; SAR Processing Example

Clutter Scene

For the first example, we have a 512 x 512 pixel “clutter” scene consisting mainly of trees
and grass (with an approximate resolution in range and azimuth of of 6, = 0.25m and
8z = 0.25m). As shown in the conventional SAR image of Figure 3.2, we also have
two man-made high-amplitude “corner-reflector” scatterers. An azimuthal cross-section of
the SAR image (at a range of y = —5.7m, which includes the corner reflector located at
(z,y) = (—8.8m,—5.7m) ) is shown in Figure 3.3. For the corner reflector (with a mainlobe
peak of about 30dB), we have two “dominant” sidelobes at about 10dB, and several smaller
sidelobes at about 0dB.

The SAR image was also “oversampled” in both range and azimuth, i.e., the values of the
range and azimuth sampling interval constants, A, and A, were one-half the approximate
resolution of of the image. The parameters of our zero-velocity SAR model were chosen
" to be as similar as possible to the 33.5 GHz Lincoln Laboratory Advanced Detection and

Tracking System (ADTS)[16] system operating in spotlight mode, as shown in Table 3.1.
‘ The results of the L; enhancement algorithm are shown in Figures 3.4 through 3.11.
For these experiments, we found that it was best to chose the L; approximation constant
€4 as the product of a4 and the L; weight parameter v4. For v4 = 0.001, we see that the
resulting SAR image is slightly more “grainy” than the conventional image, with a somewhat
higher contrast. The tree “shadows” and the road begin to become more apparent.

For v4 = 0.01, the two “corner-reflectors” begin to dominate the SAR image. However,
we also begin to see more clearly the boundary between the trees and the grassy field (due
to the enhancement of the slightly brighter tree scatterers). We also see this enhancement
effect in the azimuthal cross-section plot, where the “nulls” between the smaller azimuthal
sidelobes of the corner reflector are more pronounced (by about 20dB). The mainlobe width
of the corner reflector is still approximately the same as the conventional image.

For 74 = 0.1, the two corner reflectors are virtually the only features left in the SAR
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image (which is very desirable from a target detection point-of-view). From the azimuthal
cross-section plot, we see that all of the sidelobes (including the two dominant sidelobes)
from the corner reflector are significantly reduced (by about 20dB). However, the mainlobe
width of the corner reflector is still approximately the same as the conventional image,
which implies that the feature-scatterer resolving performance is about the same.

For 74 = 0.5, the sidelobes from the two corner-reflectors are reduced even further (by
about 40dB from the conventional image). We also see that the width of the mainlobe of
the corner reflector has been reduced by half. This implies that for this value of 4, the
L; enhancement algorithm can now resolve feature scatterers at about half the azimuth
resolving distance of the conventional SAR imaging algorithm. Later in this section, we
will illustrate this further with a synthetic-data example. However, note that the mainlobe
height has decreased from about 32dB to about 27dB. This implies that if we increased v4
beyond 0.5 for this example, the resulting SAR image of the two corner-reflectors would be
significantly attenuated. Thus, we see that there is a limit to the resolution improvement
attainable with the L; enhancement algorithm.
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Figure 3.2: Conventional SAR Image
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Figure 3.3:

Azimuthal Cross-section of Conventional SAR Image at y = —5.7m
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Figure 3.4: L; SAR Image for ay = 0.1,74 = 0.001,e4 = 0.0001, m = 20
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Figure 3.5: Azimuthal Cross-section of L1 SAR Image at y = —5.7m for aq = 0.1,74 =
0.001,e4 = 0.0001,m = 20



82 : CHAPTER 3. L;-NORM BASED SAR PROCESSING
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Figure 3.6: L; SAR Image for a4 = 0.1,74 = 0.01,e4 = 0.001,m = 20
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Figure 3.7: Azimuthal Cross-section of L; SAR Image at y = —5.7m for ay = 0.1,y4 =
0.01,e4 = 0.001,m = 20
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Figure 3.8: Ly SAR Image for g = 0.1,74 = 0.1,e4 = 0.01,m = 20
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Figure 3.9: Azimuthal Cross-section of L; SAR Image at y = —5.7m for aq = 0.1,y4 =
0.1,e4 = 0.01,m = 20 '
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Figure 3.10: L; SAR Image for a4 = 0.01,74 = 0.5,e4 = 0.005,m = 200
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Figure 3.11: Azimuthal Cross-section of L; SAR Image at y = —5.7m for a4 = 0.01,7y4 =
0.5,e4 = 0.005,m = 200
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F. Center Frequency 33.5 GHz
A Center Wavelength 0.009 m
od Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 128 pulse/s
N Complex Samples per Range Profile | 128

2K Pulses per Synthetic Aperture 128

R, Center Slant-Range 2778 M

v SAR Platform Velocity 100 m/s

6 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0s

L Synthetic-Aperture Length 100 m

Ay Range Sampling Interval 0.125 m
Ag Azimuth Sampling Interval 0.125 m

by Range Resolution 0.25 m

bz Azimuth Resolution 0.25 m

Table 3.2: System Parameters for Second L; SAR Processing Example

Target Scene

For our next example, we have a 128 x 128 pixel “typical” target scene (with an approximate
resolution in range and azimuth of of 6y = 0.25m and 6, = 0.25m) consisting of a T-72
tank from the former Soviet Union, in a grass clutter background (shown in Figure 3.12).
This particular image was part of a spotlight-mode SAR data set collected by Sandia Na-
tional Laboratory in 1995 under DARPA’s Moving and Stationary Target Acquisition and
Recognition (MSTAR) program.

An azimuthal cross-section (at a range of 0.45m) of the target image is shown in Fig-
ure 3.13 (which shows some of the feature scatterers corresponding to the tank’s treads
centered at approximately (z,y) = (—1m,0.45m) ). Just as with the previous “clutter”
scene, this image was also “oversampled” in both range and azimuth, i.e., the values of the
range and-azimuth sampling resolution constants, A, and A; were one-half the approxi-
mate range and azimuth resolutions of the image. The parameters of our zero-velocity SAR
model were again chosen to be as similar as possible to the 33.5 GHz Lincoln Laboratory
- ADTS system operating in spotlight mode, as shown in Table 3.2.

The results of the L; enhancement algorithm are shown in Figures 3.14 through 3.21.
For these cases, the L; approximation constant ¢4 was again chosen to be the product of
oq and the L; weight parameter v4. For comparison purposes, we show the azimuthal
cross-sections at a range of 0.45m (which contain the set of feature scatterers corresponding
to the tank’s treads centered at approximately (z,y) = (—1m,0.45m) ).

For v4 = 0.01, the resulting SAR image is somewhat more “grainy” than the conven-
tional image. The tank’s shadow begins to become more apparent.

For v4 = 0.1, the outline of the target is clearly seen. From the azimuthal cross-section
plot, we see that most of the background grass-clutter scatterers are significantly attenuated
(by about 20dB). From the azimuthal cross-section, we also see that the “nulls” between
the target feature scatterers are somewhat more pronounced (by about 10dB). ‘
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For 74 = 0.5, we begin to see a “sharpening” of the target “feature” scatterers from the
treads and turret of the T-72 tank. The clutter scatterers have been attenuated by over
40dB.

Finally, for v4 = 0.7, we see which of the target feature scatterers are dominant (which
should be quite useful for target detection and classification). However, note that the
mainlobe height of the brightest dominant target-scatterer at (z,y) = (1.3m,0.45m) has
decreased from about 3dB to about —5dB. In a similar fashion to the previous clutter-scene
example, this implies that if we increased 4 beyond 0.7, the resulting SAR image of this
dominant target-scatterer would be significantly attenuated. Again, we see that there is a
limit to the resolution improvement attainable with the L; enhancement algorithm.
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Figure 3.13: Azimuthal Cross-section of Conventional SAR Image at y = 0.45m
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Figure 3.14: L; SAR Image for oy =0.1,v4 = 0.01,e4 = 0.001,m = 20
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Figure 3.15: Azimuthal Cross-section of L; SAR Image at y = 0.45m for ay = 0.1,y4 =
0.01,e4 = 0.001,m = 20
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Figure 3.16: L; SAR Image for g = 0.1,74 = 0.1,e4 = 0.01,m = 20
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Figure 3.17: Azimuthal Cross-section of L; SAR Image at y = 0.45m for ag = 0.1,v4 =
0.1,e4 = 0.01,m =20
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Figure 3.18: L; SAR Image for oy = 0.01,v4 = 0.5,e4 = 0.005,m = 200
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Figure 3.19: Azimuthal Cross-section of L; SAR Image at y = 0.45m for oy = 0.01,y4 =
0.5,e4 = 0.005,m = 200
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Figure 3.20: L; SAR Image for a4 = 0.01,v4 = 0.7,e4 = 0.007, m = 200
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Figure 3.21: Azimuthal Cross-section of L; SAR Image at y = 0.45m for ag = 0.01,y4 =
0.7,e4 = 0.007,m = 200
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F, Center Frequency 33.5 GHz
Ae Center Wavelength 0.009 m
oy Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 64 pulse/s
N Complex Samples per Range Profile | 64

2K Pulses per Synthetic Aperture 64

R, Center Slant-Range 27718 M

v SAR Platform Velocity 100 m/s

0 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time , 0.5s

L Synthetic-Aperture Length 50 m

Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m
by Range Resolution 0.25 m

I Azimuth Resolution 0.5 m

Table 3.3: System Parameters for Third L; SAR Processing Example

Synthetic-Data Example

For our last example, we have a 64 x 64 pixel data set generated by the general-motion
SAR data model presented in Chapter 2. In order to illustrate the resolution enhance-
ment, capabilities of the Ly algorithm, the azimuth resolution of this data was deliberately
degraded (as compared to the previous data sets) by reducing the dwell time to 0.5s, as
shown in Table 3.3 (which gives an approximate resolution in azimuth of of §; = 0.5m).
The range resolution 6, = 0.25m was the same as the previous examples. Using these
system parameters, we generated synthetic data sets with two stationary unit-amplitude
(random-phase) synthetic point-scatterers (with one scatterer at (z,y) = (0m, 0m), and the
other scatterer at (x,y) = (609,0m)). We added circularly-complex spatially statistically-
independent, isotropic, zero-mean Gaussian noise with a variance o2 = 0.12, which implied

n
that the signal-to-noise ratio (SNR), given by SNR = 20logo —eotremy el g5, 4pig
~ example was 20dB. !
The results (SAR images and azimuthal cross-sections) of the L; enhancement algorithm

" for a scatterer azimuth separation of §; = §; = 0.5m are shown in Figure 3.22 for y4 =
{0,0.5,0.7,1} (with increasing 4 from top to bottom). Here, we see that even for the
conventional imaging case (y4 = 0), the two scatterers are resolved. However, we do see
a decrease in the width of the mainlobes as we increase 4 (as well as a reduction in the
amplitudes of the sidelobes). ’

The results for a scatterer azimuth separation of §y = 0.756, = 0.375m are shown in
Figure 3.23 for y4 = {0,0.5,0.7,1} (with increasing v4 from top to bottom). Here, we see
that for the conventional imaging case (y4 = 0), the two scatterers are barely resolved in
azimuth(with a “null” of less than 4dB between the scatterers). In contrast, these same
scatterers are clearly resolved in azimuth by the L; enhancement algorithm at the higher
weightings (with a “null” of about 20dB at y4 = 1). In addition, the sidelobes are reduced
as well, even for the smaller weightings. ’
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The results for a scatterer azimuth separation of §y = 0.56; = 0.25m are shown in
Figure 3.24 for v4 = {0,0.5,0.7,1} (with increasing y4 from top to bottom). Here, we
see that for the conventional imaging case (y4 = 0), the two scatterers are not resolved
at all. Again, in contrast, these same scatterers are clearly resolved in azimuth by the L,
enhancement algorithm at the higher weightings (with a “null” of about 10dB at v4 =
1). Therefore, we see that the L, enhancement algorithm can significantly improve the
inherent imaging resolution of the SAR system for relatively “bright” feature scatterers
with a relatively high SNR (greater than or equal to 20dB). This improvement in imaging
resolution may not hold true for lower SNR's.
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Figure 3.22: L; SAR Images and Azimuthal Cross-sections (at y = 0m) for
v4 = {0,0.5,0.7,1} and ag = 0.01,e4 = 0.01y4,m = 200 (6o = 0.5m)
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Figure 3.23: L; SAR Images and Azimuthal Cross-sections (at y = 0m) for

v4 = {0,0.5,0.7,1} and ag = 0.01,e4 = 0.01y4, m = 200 (6o = 0.375m)
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Figure 3.24:

L; SAR Images and Azimuthal Cross-sections (at y

v4 = {0,0.5,0.7,1} and a4 = 0.01,e4 = 0.01y4,m = 200 (6y = 0.25m)



Chapter 4

Matched-Filter SAR Processing

N this chapter, we present the Matched-Filter SAR processing technique, which uses a

multi-dimensional matched-filter as a means of computing a set of scatterer-velocity es-
timates which are used as initial conditions for an L;-norm based estimation algorithm
derived for the spatially-varying temporally-constant velocity (SVITCV) SAR model pre-
sented in Chapter 2 (which assumes that the target field consists of a 2 — D array of ideal
point scatterers with spatially independent velocities). The matched filter also computes a
target detection statistic for determining which spatial locations in a particular SAR scene
correspond to actual moving scatterers (allowing a reduction in the computational intensity
of the SVTCV L;-norm based estimation algorithm).

First, we present the SVI'CV Li-norm based algorithm for estimating the scatterer
velocities, along with a standard least-squares algorithm for estimating the scatterer am-
plitudes. In this presentation, we also discuss the motivation for the development of the
matched filter. Next, we present the matched filter algorithm itself, along with a discussion
of the methods it uses to compute the scatterer-velocity estimates and the target-detection
statistic. We also discuss some of the issues encountered in the actual implementation of
the matched-filter algorithm. In addition, we discuss methods for reducing cross-scatterer
interference effects. Then, we present a Monte Carlo analysis of the detection and velocity-
estimation performance of the matched-filter algorithm. Lastly, we present some results for
" both synthetic point-scatterers embedded in real clutter, and a synthetic-motion real target
embedded in real clutter.

4.1 Motivation: The Spatially-Varying Temporally-Constant
Velocity (SVTCV) SAR Estimation Problem

Recall from Chapter 2 that for the spatially-varying temporally-constant velocity (SVTCV)
case, we assumed that the target field consists of a 2 — D array of ideal point scatterers,
with reflectivities given by A[ng,ny]. The corresponding SVTCV trajectories of these point
scatterers were given by the following relations, where A; and Ay are the so-called spatial
sampling-interval constants (whose values we derived in (3.19) of Chapter 3)

zn.t'ny (t) = A.’EnI + i[nmy ny]t (4.1)
Ynzny (t) = Ayny + y[nz, ny]t . (4.2)
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Here, Z[ng,ny] and g[ng,ny] are the respective azimuth velocities and range velocities of
the point scatterers. From Chapter 2, recall that the corresponding SVTCV estimation-
theoretic SAR data model was given by

Spatially- Varying Temporally-Constant Velocity
(SVTCV) Estimation-Theoretic SAR Data Model

fln, k] = ZZA[n:cany]Sv[na::nyan’ k] + 77[”: k] , (4.3)
Nz Ty
—%Snﬁ—g—ffﬁkSK.

The non-orthogonal basis-functions sy[ng, ny,n, k] are given by

5ol s, b] = 7 [BeH1Aen= [0 K1y sl Flsfre mal 5l Klitnasm] |

(4.4)

The corresponding velocity-parameter vector v consists of the azimuth velocities and range
velocities of the point scatterers

¢@m
[0, 1]

4(0,0)
300,1]

The SVTCV estimation-theoretic model can also be expressed in the following general
~ matrix form

f=F(v)A +7, (4.6)

where f is the SAR data. The vector A is the vector of scatterer intensities, given by

A,

A= 40,1

(4.7)

Again, the vector v is the vector of the corresponding scatterer ve10c1t1es and 7 is the
additive Gaussian noise. The matrix F(v) has the form

Fw)=[.“&Mm]sqmu -1 (4.8)
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where each column vector sy[ng,ny] correspond to a lexicographical ordering of the com-
plex exponential basis-function given by sy[nz,ny,n,k]. As before, the additive noise 7 is
assumed to be zero-mean, spatially statistically-independent, and isotropic, which implies
that its spatial-correlation matrix is given by

K, =E [m?] = o2l (4.9)

For the matrix SVTCV model presented here, the maximum-likelihood estimates for
the scatterer-amplitude vector and the scatterer-velocity vector are given by the A and v
which minimize the following standard least-squares cost function

J(A,v) = |[f =F)AZ
Uyl
1
= U—%Hf—F(v)AH%- (4.10)

Since the location of the minimum of this cost function is unaffected by a constant scaling,
we can normalize it by setting 0127 = 1, which gives the following expression

JA,v) = |[f -F)A|3. (4.11)

From this minimization of the (normalized) cost function, it can be shown[21] that the
closed-form expression for the maximum-likelihood estimate of the scatterer-amplitude vec-
tor A is given by

AML = (FH({’.ML)F(\?’ML))—lFH(VML)f, (4.12)

where the maximum-likelihood estimate ¥ sz of the scatterer-velocity vector v is given by
-1 '
Iy = argmax | || (FH(v)F(v)) FEF|2]. (4.13)

However, direct calculation of the closed-form solutions for A and Vg (using the inverse
of the matrix F¥ (v)F(v)) can be computationally intensive even for a moderately sized SAR.
scene (since the dimensions of these vectors are directly proportional to the total number
of scatterers in the 2 — D target-scatterer array).

' If we are given the maximum-likelihood estimate ¥psy, of the scatterer-velocity vector,
we can compute the maximum-likelihood estimate A jsp of the scatterer-amplitude vector
by the following recursive gradient-descent algorithm for the normalized least-squares cost
function (with Ay = 0)

- o OJ(A,¥
Am+1 = A.m - O."——( BXML) .
A=A,
= An+ P Oy)lf - FOuMp)Am] . (4.14)

However, if we try to use this technique to minimize the least-squares cost function over
both A and v, the corresponding gradient-descent algorithm may converge to a solution
which does not result in a focused SAR image (since this cost function is a nonlinear
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function of the scatterer velocity vector v, which implies that it may have local minima).
In Chapter 3, we presented the L;-norm based SAR processing technique, which was based
upon finding the scatterer velocity and amplitude estimates which minimized the following
Ly -norm regularized cost function

J(A,v) = |If = F(VA[S +yallAlls + K (v) (4.15)

which the standard (normalized) least-squares cost function augmented by an L; penalty
upon the scatterer amplitude estimates (plus an (optional) regularization penalty upon the
velocity estimates). The solution for this cost function can be computed by the following
gradient-descent algorithm

R _ 3 dJ(A,v)
Vm4l = Vm av—_—av Ach,. veon
. L OFH (9 ] 8y (v,
= U+ oy 2R (A,’:{ Bi"m) [f - F(\‘/m)Am]> - % (4.16)
A R 8J(A,¥
— Ap+ oFF@)f - F(Om)Am] — ayaasgn[Am],  (4.17)

where asgn[A] is the following continuous approximation to the discontinuous gradient
sgn|[A] of the Li-norm of A

Alng, ny
\/A[nz,ny]A*[nx,ny] + €2
~ sgn(Alng,nyl) (4.18)

asgn(Alln.n, =

As discussed in Chapter 3, this technique essentially tries to find an A and v where the
estimated SAR image A is sparse (i.e., the image has only a small number of scatterers with
" non-zero amplitudes). This implies that the L;-norm gradient-descent algorithm would be
more likely to converge to a solution for the scatterer velocities v, which results a focused
* SAR image. Therefore, we can use the L;-norm based technique to estimate v, then use
the least-squares gradient-descent algorithm (with this L; estimate of v) to estimate the
scatterer amplitudes A.

However, even though the L;-norm based algorithm may converge to a more acceptable
solution for v than a least-squares based algorithm, the underlying L;-norm regularized
cost-function may still exhibit some local minima. Thus, it would be beneficial for the the
L;-norm based algorithm to start with a good initial condition ¥ for the scatterer velocities.

In addition, for many SAR scenes containing moving targets, it is usually the case that
only a relatively small number of scatterers in the scene actually have a non-zero velocity.
This implies that the scatterer-velocity vector v will in general be sparse (i.e., most of its
elements can be assumed to be zero). In other words, if we knew which scatterers are moving,
we can decompose the scatterer-velocity vector v and the scatterer-amplitude vector A into
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the following forms (by multiplying them by a pair of “segmentation-projection” matrices
Pyv and Pa)

Py v=| — | =]| — (4.19)
vo 0

Ar
PaA=| — |. (4.20)
Ac

In these expressions, v is a (reduced-order) vector of target scatterer velocities, vo = 0 is
a corresponding vector of (zero) clutter scatterer velocities, Ap is a reduced-order vector of
target scatterer amplitudes, and A¢ is the corresponding vector of (zero-velocity) clutter
scatterer amplitudes. Note that the segmentation-projection matrices consist solely of 0’s
and 1’s, and have the properties

I | o
PP, = | — — - (4.21)
0 | 0 |

PoATPA =1. (4.22)

Again, if we know the location of the target scatterers in the SAR scene (i.e., we know Py
and P, ), we can express the SVTCV SAR model in the following matrix form

f = Fr(vr)Ar+Fce(ve)Ac+1
= Fr(vr)Ar +Fc(0)Ac +1
= Fr(vr)Ar +FcAc+7, (4.23)

The matrix Fr(vr) corresponds to a reduced-order set of target-scatterer complex exponen-
tial SVTCV basis-functions, while the matrix F¢ corresponds to the set of (zero velocity)
- clutter-scatterer complex-exponential SVTCV basis-functions (which is essentially the con-
ventional SAR scaled Fourier Transform of F¢). For this form of the SVTCV SAR model,
the Ly -norm regularized cost function is given by

J(Ar,Ac,vr) =|[f = Fr(vr)Ar — FcAcll; +7a (|Azll + |Acll) + Jv(vr) , (4.24)

which implies that the resulting reduced-order L;-norm gradient-descent algorithm is given
by

Orlmi = [0zln + av2R ([Aﬂ#%“—)u ~ Br([orlm)[Arhn - Fe[Ach ])

_ Oy ([vr]m)

vr (4.25)
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[Arlmi1 = [Ar]m + aFfrI([‘"’T]m)[f = Fr([97]m)[Ar]m — FclAc]m]
—ayaasgn([AT|m) (4.26)
[Aclmin = [Aclm + aFE[f = Fr([07]m)[Ar]m — FolAc]n]
—aysasgn][Ac)m] - (4.27)

Once the (reduced-order) L;-norm target-scatterer velocity estimates ¥r are obtained, we
can compute the target-scatterer amplitudes Az and the clutter-scatterer amplitudes Ac
by the following recursive gradient-descent least-squares estimation algorithm

[Arlmt1 = [A7lm + oFE(F7)[f — Fr(37)[Ar]m — Fo[Ag]m) (4.28)

Allmsr = [Ac]m + oF&[f — Fr(¥7)[Az]m — FolAclm] - (4.29)

Note that this algdrithm is essentially trying to minimize the following version of the least-
squares cost function over Ar and Ac (for a given ¥r)

J(Ar,Ac, V1) = ||f — Fr(vr)Ar — FgAcll} . (4.30)

We see that since the dimension of the reduced-order Fr(vr) is less than the dimension
of the full matrix F(v) (and the matrices Fc and FZ can be computed by fast FFT
algorithms), the reduced-order algorithms will be computationally less intensive than the
previous full-order versions (which assumed that every spatial location in a particular SAR
scene corresponded to a moving scatterer). However, for the reduced-order algorithms, we
still need to have some type of target detection scheme which would be able to tell whether
a particular spatial location in a SAR scene corresponds to a moving target or not (i.e., we
are able to compute Py and Pa).

4.2 The Matched-Filter Algorithm

Here, we present a matched-filter based algorithm which computes a set of initial velocity-
estimates for the L;-norm based gradient-descent algorithm. In addition, this matched-filter
algorithm generates a target-detection statistic for determining which spatial locations in
" a SAR scene correspond to target scatterers, thus allowing us to use the reduced-order
gradient-descent estimation algorithms presented in the previous section.

Recall from the previous section that the closed-form solution for the maximum-likelihood
estimate ¥y, of the scatterer-velocity vector v for the normalized least-squares cost func-
tion was given by

Oz = argmx || (F/)FW) FAWEI3] (431)

Also recall that a direct calculation of the closed-form solution for ¥, (using the inverse
of the matrix F¥ (v)F(v)) can be computationally intensive even for a “moderately” sized
SAR scene. Therefore, in a similar fashion to the conventional imaging algorithm presented
in Section 3.1, we make the following approximation to the ambiguity function matrix
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FH(v)F(v) (where the “ambiguity ” function[42] refers to the response of the maximum-
likelihood estimator to a unit-amplitude point-scatterer located at the center of the imaged
target-field)

FAVF(v) ~ 1. (4.32)

We can then approximate the maximum-likelihood estimate ¥, of the scatterer-velocity
vector v by the output of the following matched-filter

a1 ~ argmax [ [F¥(v)f][3 . (4.33)

However, since the matrix F(v) actually consists of a set of non-orthogonal basis-functions,
this implies that the matched-filter will suffer from scatterer cross-interference effects (i.e.,
the matched-filter velocity estimates for a particular scatterer will be corrupted by the
presence of nearby scatterers. Later, in Section 4.4, we will discuss ways of reducing these
scatterer cross-interference effects. Here, we discuss in more detail the computation of the
matched-filter velocity estimates and the matched-filter target-detection statistic.

4.2.1 Matched-Filter Velocity Estimation

In order to perform the matched-filter velocity estimation, we first represent the SVTCV
point-scatterer azimuth-velocity and range-velocity functions, Z[nz,n,] and §[ng,n,], in the
following quantized form
T[Nz, ny) = ng[ng, ny|Az (4.34)
Ynz, ny] = ng[ng, nylAy . (4.35)
Here, the parameters A; and Ay are velocity-quantization constants, while the functions
ni[ng, ny| and ng[ng,ny] are 2 — D integer-valued azimuth-velocity and range-velocity func-
tions(i.e., {nz[ng, nyl, ny[ne, nyl} € {...,-2,-1,0,1,2,...} ). Then the matched-filter com-
putation is equivalent to the following maximization over the integer-valued “free” param-
eters n; and ny (which have the same domain as nz[ng, ny) and nylng, ny))

(Nipry [nw’ny]’nilML[nmny]) = arg max [ IA[nmany)ni,nQ” ] ) (4.36)

z, Ty

- where || is the standard magnitude operator. The function Afng,ny,ns,ny] is a 4 — D
SVTCYV quantized likelihood function given by the following integral summation

A[nm,ny,na-c,ny] = (EKI)(—N) ;zk:f[n,k]h[nm,ny,ni,ni,n, k],
(4.37)
where the SVTCV quantized basis-functions h[ng, ny, ngz, ny,n, k] are given by
h[f, Ny g, gy M, k] = o3 [be[nklne Ac ¢y [n,kIny Ay +¢s [nkln: As+y [n.k]ny A4 ) (4.38)

Note that h[ng,ny,mn:;ny,n, k] is equivalent to the complex-conjugate of the original non-
orthogonal SVTCV basis function sy[ns,ny,n, k] (with the discretized azimuth velocities
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and range velocities parameterized by the “free” parameters, n; and ny). After we com-
pute ng,,; [Pz, ny] and ny,,; [7z,ny], the corresponding matched-filter maximum-likelihood
estimates of the scatterer velocities are simply given by

&:ML[nz,ny] = Ny May Ny As (4.39)
yML[nic’ny] = nQML[nIany]AQ : (4'40)

In other words, for a given range location, nyAy, and a given azimuth location, nyA,,
the estimated scatterer velocities are proportional to the location of the mazimum of the
likelihood function over the velocities nyQg and nydy.

4.2.2 Matched-Filter Target-Detection Statistic

Recall from Section 4.1 that in order to use the reduced-order gradient-descent algorithms
(with their attendant computational savings), we need to have some type of target detection
scheme which would be able to tell whether a particular spatial location in a SAR scene
corresponds to a moving target or not. In addition, for the matched filter algorithm, it
would be useful to compute a measure of the validity of its estimates. In a sense, one would

. like to know whether the matched-filter has detected an actual moving target scatterer at

a given spatial location, or have its estimates been corrupted by the interference from a
nearby scatterer. Here, we present a method for computing such a measure.

Suppose we are given the matched-filter quantized likelihood function A[ng, Tys N, ]
for a given spatial location (Azng, Ayny)). Recall from Section 4.2.1 that the matched-filter
maximum-likelihood estimates of the scatterer velocities are given by

;UML[nx:ny] = niML[n:Eany]A:i: (441)
UML [nm’ny] = Nymy [nz,ﬂy]Ag ’ (4'42)

where
(Mo e ), iz (12 m0]) = axg e [ [Alme,my,ms, ol | (4.43)

- Let Apax([nz, ne) be the maximum magnitude of Alng,ny, ng, ny] over ng and ny

Apaxlne, ny) = max [ |Alng, ny,ne,nyll ] - (4.44)
) Tty -

This is also the approximate magnitude of the maximum-likelihood estimate for the scatterer
amplitude fl[nm,ny] at the spatial location (Agng, Ayny). Given this estimate, we make
use of the following empirical observation: For a given moving scatterer, the mazimum
amplitude of the scatterer in a focused SAR image will be greater than the amplitude of
the spatially-distributed blur region corresponding to this scatterer in a conventional SAR
tmage. This implies that we can determine whether a particular spatial location contains a
moving target by comparing Ausax[ng,nz] to the average amplitude of the blur region in

the corresponding conventional SAR image given by Aconv|nz, nzl.

Another empirical observation is that the blur region due to a moving scatterer in the
conventional SAR image tends to be spatially localized around the initial spatial position of
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that moving scatterer. This implies that for a given spatial location (Azng, Ayny), we only
need to compare AMA X [nz,nz] to the average blur amplitude within a spatially-localized

“window” region AW[nm, Ny, iz, Ny, ] around this spatial location in the conventional i image,
where this window region is given by the following expression (where (ng,ny) are a set of
“dummy” discrete parameters with the same domain as (n,ny))

Awlng, ny,nl, ny| = Aconv[n. + ng, ny + nylwlng, ny] (4.45)

where the “window” function w[ng,ny| (of azimuth width Ay, and range width Aw,) is
given by

Aw.
1 |ngfg] < &%= [n,A | < 22
W(Ng, Ny| = = 2 vyl = 2 . 4.46
[ o) {0 otherwise ( )

Let AMEAN [nm, ny] be the mean magnitude of the windowed SAR image Aw[nz, Ny, T
over n., and n

= 1y
AMEAN[n,;,ny] = mean [ |flw[n$,ny,n;,n;]| ]- (4.47)
ny.ny

Also, let o 4[ng,ny] be the standard deviation of the magnitudes of the elements of the
windowed SAR image Aw [ng,ny, ny,ny] over nf; and n;,

0 ;M ny] =0 [ Aw[nx,ny,n;,n;]l . (4.48) ,

zr Ny

Then, we can compute the following detection statistic x[nz,ny]

Anaxlne, ny] — Avrpan(ng, nyl (4.49)
0 j[nz, ny] '

X[nz,ny] =

For a given spatial location (Agng, Ayny), we are comparing the maximum magnitude
Ayax [nz, ny] of the quantized likelihood function with the mean magnitude Ay g4 N[Nz, iy
of the corresponding windowed conventional image (scaled by the standard deviation
- 0 4[nz,ny] of the windowed image, so as to lessen the dependence of the detection statistic

upon the absolute amplitudes of the target point-scatterers). Recall that the matched-
filter velocity estimates for a given spatial location are proportional to the spatial location
of the maximum magnitude of A[nm,ny,nw,ny] over ng and ng. If there actually is a
strong scatterer at the given spatial location (Agng, Ayny), then the maximum magnitude
Arrax [nz,ny] will be significantly greater than the average magnitude of the blur region in
the conventional image. In other words, the detection statistic x[ng,ny] gives a measure of
how sharply focused is the scatterer as compared to the original conventional SAR image.
If the statistic x[ng,ny] at a particular spatial location, (Agng, Ayny), is above some
threshold XMmax, we state that a target scatterer has been detected, which implies that
the maximum of the magnitudes of the matched-filter quantized likelihood-function over
n; and ny (whose location is used to estimate the range and azimuth velocities of the
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point scatterer) is due to the presence of an actual target scatterer at (Azng, Ayny), rather
than due to other types of variations (such as those caused by either additive noise or
the interference of a nearby scatterer). Therefore, we can classify the scatterer at this
particular spatial location as a valid target scatterer, which means that we assume that the
corresponding matched-filter velocity estimates are also valid. Otherwise, we assume that
the scatterer velocity is zero, since most scatterers in typical SAR image are stationary (as
stated earlier in Section 4.1). In other words, if we define x as the vector of target-detection
statistics, given by

x[d,O]

=11 | (4.50)

then the segmentation-projection matrices, Py (used to decompose the scatterer-velocity
vector v into a (reduced-dimension) target-scatterer velocity vector, vr, and a clutter-
scatterer velocity-vector v¢ = 0) and Pa (used to decompose the scatterer-amplitude
vector A into a (reduced-dimension) target-scatterer amplitude vector, A7, and a_clutter-
scatterer amplitude-vector A¢) are functions of both x and xarax, i.e.,

vT vT
Py xmax)v=| — | =| — (4.51)
vo 0

At
Paltxmax)A=| — | . (4.52)
Ac

Note that the number of spatial locations classified as “targets” will depend upon the thresh-
old on x[ngz,ny]. In the detection-theoretic literature, this particular detection statistic has
 many similarities to the so-called Constant False-Alarm Rate(CFAR) detection statistic
(which is solely dependent upon the relative intensities of the scatterer to the additive
" noise). :
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4.3 Matched-Filter Implementation Issues

In this section, we discuss some of the significant issues encountered in the actual imple-
mentation of the matched-filter algorithm. First, we discuss a “fast” method for computing
the matched-filter likelihood function integral (by using the Fourier Transform). Then we
discuss a method for modifying the matched-filter algorithm so as to compensate for range-
velocity induced azimuth displacement.

4.3.1 Fast Computation of the Matched-Filter Likelihood Function

Rather than evaluating the matched-filter quantized likelihood function directly (which can
be computationally prohibitive), the following fast and easily implementable solution can
be used (with equivalent performance). First, we rewrite the quantized likelihood function
Alng, Ty, Nz, Ng) in the following form

Alng,ny,nz,ng = (2K ZZf[nm,ny,n klh[ng, ng,n, k] . (4.53)

Here, the phased-shzfted SAR data f[ng, ny,n, k] and the quantized basis- functions
hlng,ng,n, k] are given by~ ~

f[neny,n k] = fln, kle ™I @elrbinebeteylnkingay)] (4.54)
h[ni,ny,n,k] _ e"j[d’a;-[n,k]nz'Az'-l-‘ﬁy'[n.k]ngAg] ) (4.55)

Let (kz, ky) be a set of discrete spatial-frequencies (i.e., {kz,ky} € {...,—2,-1,0,1,2,...}).
For a given azimuth and range location, (nzAz,nyAy) , we reparameterize the phased-
shifted SAR data to form the following discrete space-time multi-dimensional signal (where
the function 6[kz, ky] is the usual 2 — D Kronecker delta-function)

flks, ks Ny gy, 1, k| = fng, ny, n, kl6[kz — ¢zn, k]A,;l, ky — ¢gln, k]A;yl] . (4.56)

The parameters (Aki,Akg) determines the sampling rate of the SVTCV phase functions
(¢2([n, k], ¢y[n, k]) to (ks, ky). For the results presented in this chapter, we chose (Ag,, Ay, )
- such that the phase-shifted SAR data had approximately the same spatial extent in (k;, k i)
space as it had in (k,n) space, i.e.,

max bz[n, k] — min ¢z[n, k]

n
., = : ’ 4
Ay, ¥e (4.57)

max Pgln, k] — milgl oyln, k|

n, n,

Ay, = ~ . : (4.58)
It can be shown that for a given azimuth and range location, (nsAz,nyAy), the quantized
likelihood function A[nw, Ny, Na, Nz 18 exactly equivalent to the following multi-dimensional
spatio-temporal Fourier Transform[21]

F[nm,ny,n,;,ny] =

(2K Zzzzf[kmky,nz,ny,n kle™ [kiAkiniAi+kgAk9n9Aﬁ] . (4.59)
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Figure 4.1: Ambiguity Between Azimuth Position and Range Velocity

This reformulation clearly improves the computational efficiency of the motion compensated
SAR technique, since the spatio-temporal FT can be calculated by standard “fast” multi-
dimensional FFT algorithms.

4.3.2 Compensation of Range-Velocity Induced Azimuth-Displacement

Recall from Chapter 2 that the polynomial approximation to the SVT'CV phase functions
were given by

baln K] = = ‘f\—” <1+ O‘;}%) [%és (%)3_9(%)] (4.60)
R A EON an
dsln k] = i—” O‘T n [9 ] (4.62)
¢yln, k] = —4 ( = ;) [( ) (1;?)] (4.63)

Upon closer inspection, we see that for 0 small, ¢y[n, k] =~ —ds[n, k| /6. For a given scat-
terer (with an initial spatial position given by (Agng, Ayny)), this implies that a matched
filter based upon these phase functions will have difficulty distinguishing between the ini-
tial azimuth position Agn, and the range-velocity induced displacement xprsp(y[ne, ny]) =
—9[na,ny]/0 (as illustrated in Figure 4.1).

We can alleviate this problem for the matched-filter algorithm in the following manner.
First, we remove the linear portion of the polynomial approximation to the range-velocity
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phase function, ¢y[n, k], which leaves the following “leftover” dominant term

o = - (T (2]

In the literature[18], this dominant cross-phase term between n and k corresponds to motion-
induced range-walk (i.e., when we perform a Fourier Transform with respect to the “fast-
time” index n, we have a displacement in range proportional to the “slow-time” index k).
Next, we use the matched-filter algorithm (with the modified range-velocity phase function)
to obtain maximum-likelihood estimates, n;,,, [nz, ny] and ny,,; [ns, ny), of the 2— D integer-
valued velocity functions, from which we get the following maximum-likelihood estimates
of the scatterer velocities

:%ML[nx’ny] = niML [nxany]Ai: (465)
Ymrlne nyl = Ty r [Ny Nyl Ay - (4.66)

These maximum-likelihood estimates are used as initial conditions by the L;-based velocity-
estimation algorithm (which was discussed earlier in Section 4.1). This algorithm then
produces a set of velocity-estimates which are used by the least-squares algorithm to obtain
an uncorrected estimate, flU[nz,ny], of the amplitudes of the 2 — D point-scatterer array.
Since we removed the linear portion of the polynomial approximation to the range-velocity
phase function, the matched-filter is essentially estimating the range-velocities solely from
the range-walk induced blurring. Lastly, we use the L; range-velocity estimates to correct
the amplitude estimates for the azimuth displacement

N ~ 1 ~
Aneyny] = Ay [na = - Zilne,my)my] (4,67

z

since we assume that we know the look-angle rotation rate &.
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4.4 Reduction of Scatterer Cross-Interference Effects

Recall from Section 3.2 that we simplified the expression for the matched-filter maximum-
likelihood estimate by making the following approximation to the so-called ambiguity func-
tion matrix F# (v)F(v)

FIP(v) = 1. ’ (4.68)

Since the matrix F(v) actually consists of a set of non-orthogonal basis-functions, this
implies that the matched-filter algorithm (as presented up to this point) will suffer from
scatterer cross-interference effects (i.e., the matched-filter velocity estimates for a particular
scatterer will be corrupted by the presence of nearby scatterers.

First, we present two algorithms, image-windowing and clutter-nulling, for reducing
scatterer cross-interference effects. The image-windowing algorithm starts with a conven-
tional SAR image (with the polar-format resampling technique discussed in Section 3.1)
Aco NV [Nz, nyl, and assumes that the motion-induced blur energy for a given point scat-
terer in this image is localized about the scatterer’s initial spatial position (Azng, Ayny).
By windowing this conventional SAR image about the motion-induced blur of the given
scatterer (and converting this windowed image back into the original SAR data domain
with a scaled Fourier Transform), the image-windowing algorithm sharply reduces interfer-
ence effects from scatterers outside of the motion-induced blur area. For the SAR image
window generated by the image-windowing algorithm for a given point-scatterer, the clutter-
nulling algorithm reduces interference from nearby strong stationary scatterers (within the
image window) by zeroing out all portions of the image window that have a higher mag-
nitude than a threshold proportional to the magnitude of the conventional SAR image at
the initial spatial location (Azng, Ayny) of the given point-scatterer. Lastly, we present
a prefiltering algorithm for the matched-filter which uses median filtering[24] in order to
eliminate high-value spurious velocity estimates caused by cross-scatterer interference.

4.4.1 Image Windowing

For the matched-filter algorithm, we are essentially estimating the motion of a given moving-
- target scatterer from its motion-induced blurring. However, one implicit assumption of
the matched-filter algorithm is that the motion-induced blurring due to a single scatterer
- can be distributed over the entire SAR image (since we are using all of the SAR data
fln, k]). Generally (for target velocities much smaller than the velocity of the SAR antenna
platform), the motion-induced blur tends to be localized around the initial position of the
moving-target scatterer. Here, we present a windowing method which exploits this spatial
localization effect in order to sharply reduce interference effects from scatterers outside of
the motion-induced blur area.

As illustrated in Figure 4.3, we begin with a conventional SAR image Aco NV [Nz, ],
computed from the SAR data f[n,k] by the standard Fourier-Transform based processing
algorithm presented in Section 3.1, with polar-format resampling. Let (k, ky) be a set of
discrete spatial-frequencies (i.e., {ks, ky}e{...,-2,-1,0,1,2,...}), and let (n', k') be a set
of discrete parameters with the same domain as the SAR fast sampling time n and the SAR
slow time k. Then the conventional image ( with polar-format resampling) is equivalent to
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the following Fourier Transform

ACONV[nz::ny] = ZZZZf[nI,k/](S ky — ¢:c£n’,k’],ky B ¢y[n”k/]
k

kz ky n' K z Aky-

X e"j[k::Al:z A:nnx'i'kyAky Ayny]
= Z Z fin, k’]e_j[d’z[""k']A=”=+¢v[”"kl]Av"y] ) (4.69)

n' k'

where 6[kz, ky] is the usual two-dimensional Kronecker delta-function. The constants A,
and Ag, control the sampling of the SVICV phase functions ¢[n, k] and éy[n, k] to k; and
ky. For the results presented in this thesis, the values of (Ak,, Ak ) were chosen such that
the remapped SAR data had approximately the same spatial extent in (kz, ky) space as it
had in (k’,n’) space, i.e.,

max go[n’, k'] — min ¢ [0, K]
A — n ) n y .
ko K (4.70)
rr,laé),{ ¢y [nlﬂ k/] - H}l}g;l ¢y [TL', ki]
A, = N”’ : (4.71)

Let (ng,ny) be a set of “dummy” discrete parameters with the same domain as (ng, Ty).
For a given scatterer location (n;Az,nyAy ), we first “window” the conventional SAR image
ACONV[nx,ny] to produce AW[nz,ny,nz,ny], given by

Aw g, ny,np,my] = Aconvinl, + g, Ty + My wng, ny) (4.72)

where the “window” function w[ng,n,] (of azimuth width Ay, and range width Aw,) is
given by

1 |nedg] < =5= AW Iny Ayl <
. — z ) 4.73
i ny] { 0 otherwise ( )

~ Therefore, if an mterferlng scatterer is located outside the window, its energy will be elimi-
nated from Ay [Nz, Ny, 1L, ny] In terms of the Fourier Transform equation for Aco NV [T, Ny,

the windowed SAR image, Ay [ng,ny,n., nyl, is given by

= Z Z f['n;’, k’]e_j[¢1 [nlv.k‘]Aznz+¢y[’n’,k’]Ayny]
n' k'

xw(nf,nyle™? [#aln K] AcntdyIn' K] Ayn) ]

= 5 flnes gy, Kl ) e lb=m K18 b b K18y
nl i

Aw[ng, ny,nl, ]

(4.74)

where f[ng,ny,n, k| is the phase-shifted data set presented in Section 4.2.1.
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Let (kg, ky) be a set of discrete spatial-frequencies with the same domain as (ke ky).
Then the inverse Fourier-Transform of the windowed image (with respect to the “dummy”

spatial-parameters (nj,n;)) is given by

FW[nman'yﬂ k:/c)k’] = AW[nl‘7ny)n;:’n'/]ej[k;Ak:Aznz_Fk;AkyAyny]
Y Y

/ /
Ng TLy

=SS Flne, ny,n, Kwin, n Je 9ol K1Aenctdy 18, m)
ny ny n Kk

xéj[k’z.{.\.kz Aano+ky Ag, Ayny

AWm AWy
D 2Ay,
= 2 X XXl K]
Ay, Aw, n! k'
nz——#ny:—ﬁ-j'-

Xe-j[%[n K ]Amnz+¢y[n’,k’]Ayn’y]ej[k’zAsz,_-nz+k;Aky Ayny]

= ZZf[nm,ny,n’, k']
n' k'
lbl O ) S0 D)

X sine
smc( 5 5

(4.75)

The final phase-shifted data set fy [ng,ny,n, k] is given by the following interpolation within
the inverse Fourier Transform Fyy [ng, ny, ks, ky)

v

T 17 ! ’,k,
fW[nz,ny,n,k] =FW [nm,ny, ¢ [n k],¢y[n ]J
Alcz Ak

— ZZf[np,ny,n',k']
n' k!
W$(¢m[nv k] — ¢z‘[n/>kl])> sinc (AWy (¢y[nak] - ¢y[nlw k,])> )

) A
Xsine 5 5

4

(4.76)

Recall from Chapter 2 that the polynomial approximations to the SVTCV phase functions

were given by
- (1 ) [ (TEY (T
$zln, k] = . (1+ T N)[(s@ = 0% (4.77)

¢y[n‘,k] = - i—f (1+ afz‘: n) [1— Z g2 (7;“) ] . (4.78)
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For § and QT? “small”, the dominant terms in the SVICV phase functions are given by

4r . (Tk

¢z[n, k] = A—te (f) (4.79)
4 T,

byln, k] = —A—t(1+°‘fc”%). (4.80)

This implies that fw [ns,ny, n, k] is approximately equal to the convolution of f[ng, Ny, N, k]
with a 2— D sinc function whose mainlobe widths are inversely proportional to the azimuth
and range widths of the window function w(ng,n,]. Thus, fw[ns,ny,n, k] is approximately
equivalent to a lowpass-filtered version of the original phase-shifted data set flng, ny,n, k.
In addition, we can downsample fiy[ns,ny,n, k|, such that the fast computation of the
subsequent matched-filter likelihood function need only involve Fourier transforms on the
order of the size of the data window (rather than on the order of the size of the entire
SAR image). Therefore, we can significantly improve the computational efficiency of the
matched-filter algorithm.

4.4.2 Clutter Nulling

Even after we perform the windowing operation for a given scatterer at the spatial location
(neAz, nyAy), we can still get significant interference from nearby bright stationary clut-
ter scatterers (whose amplitudes are on the order of the amplitude of the given scatterer)
located within the image window. However, we can reduce the effects of these types of
scatterers by taking advantage of the following empirical observation: Given a conventional
SAR image containing two scatterers of equal amplitudes (with one moving and one station-
ary), the mazimum magnitude of the spatially-distributed blur region corresponding to the
moving scatterer in the conventional SAR image will be less than the mazimum magnitude
of the stationary scatterer in the conventional image (as illustrated with the example shown
in Figure 4.2, where we have a unit-amplitude stationary scatterer and a unit-amplitude
moving scatterer with an azimuth velocity of 1m/s). This implies that for the SAR image
window generated by the image-windowing algorithm for a given point-scatterer, we can re-
duce interference from nearby “strong” stationary scatterers (within the image window) by
zeroing out all portions of the image window that have a higher magnitude than a “clutter-

- nulling” threshold , Acy[ns, ny| (which is proportional to the magnitude of the conventional

SAR image at the initial spatial location (Azng, Ayny) of the given point-scatterer),i.e.,

AW[nwa Ny, nrlmn;] =

ACONV[n; + ng, ny + nylwn, ] |ACONV[n§B + 1y 1y, + nyl| < Ao [ng, ny)
0 otherwise

(4.81)
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Cross~Section of Conventional SAR Image
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Figure 4.2: Azimuthal Cross-section of Conventional SAR Image Containing Both a Sta-
tionary Scatterer and a Moving Scatterer (with Equal Amplitudes)
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Flgure 4.3: Image Windowing and Clutter Nulling (for a Point-Scatterer with Initial Spatial
Location (Agng, Ayny))
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4.4.3 Median Prefiltering of Matched-Filter Velocity Estimates

In the previous sections, we presented two methods, image-windowing and clutter-nulling,
for reducing scatter cross-interference effects in the matched-filter velocity estimates. How-
ever, these two techniques do not completely eliminate these effects, especially for closely-
spaced moving scatterers of relatively equal amplitudes (but different velocities). Empir-
ically, we found that one major effect of scatterer cross-interference was the introduction
of large-valued spurious velocity-estimates into the results of the matched filter. These
spurious estimates have many similarities to so-called impulsive “salt-and-pepper” noise
in the image-processing literature[24]. From the image-processing literature, one relatively
effective method for reducing this type of noise (while minimizing distortion of spatial dis-
continuities in the velocity estimates, unlike linear lowpass filtering) is the so-called median
filtering technique[24], where the filtered image value at a given spatial location is given by
the median of the original image values over some region surrounding that location. This
implies that we can use a median filter as a “prefilter” in order to eliminate high-value
spurious matched-filter velocity estimates (before they are used as initial conditions for the
Li-norm based velocity estimation algorithm.

Recall from Section 4.2.1 that the matched-filter maximum-likelihood estimates of the

scatterer velocities are given by -
TMLIN2, Ny] = Ny N2 ny | A (4.82)
Unrr[ne, ny] = ng,, [ng, ny|Ay , (4.83)
where
(M prr [na, nyl, Mg [N, 1)) = arg max [’A[nz:ny,nz},ng]’] . (4.84)

For a given spatial location (Agng, Ayny), the corresponding median filtered velocity es-
timates are given by following median of the matched-filter maximum-likelihood velocity-
estimates over a spatial “region-of-interest” (ROI) surrounding this location (where (n”, n/ )

Y
are a set of “dummy” discrete parameters with the same domain as (g, ny))
LM ED [Nz, Ny] = ,1"nel<,iianOI Tarp[ng +nl ny + ] (4.85)
ng Ty
g}MED[nz,ny] = median f/ML[nx +ng,ny + ng] ) (4.86)
ng, n,’y' € ROI

For all of the matched-filter results presented in this chapter, we used an ROT of 0.5m % 0.5m
for the median velocity filters. ' ,
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4;5 Summary of the Matched-Filter SAR Processing Algo-
rithm

Here, we present a summary of the overall matched-filter SAR processing algorithm dis-
cussed in this chapter, with the following notational conventions:

Symbol Definition

Aylng, ny) Matched-Filter Least-Squares SAR Image
Before Azimuth-Compensation

Aaclng, Ty Matched-Filter Least-Squares Image

f:l[nz, Ny, N, Nt
Amax[ng, ny
Aconv(ng, ny]
Acn([ng, ny)
AW[n:z:a Ty, n:m ny]
ApmEanIng, ny

04 [nz, ny]
Fyng, Ny, kL, k;]

fwlng, ny,n, k|
flks, ky, ng, ny, n, k]
X[z, 1y
X

xML['n:z:: 'n'y]»yML[nI’ ny])
(fCMED [nz, "], Ypr D[N nyl)
VYMED
XMAX
Pyv(x, xmax), Pa(x,xmax)
[VT]m

After Azimuth-Compensation

Quantized Likelihood Function

Maximum Magnitude of fi[nm,ny,nrb,ng] over (ng,ny)
Conventional SAR Image

Clutter-Nulling Threshold

Windowed Conventional SAR Image

Mean Magnitude of
flw[nm,ny,nm,ny] over (ng,n,)
Std. Dev. of the Magnitudes of
Aw[ng,ny,nl,n y) over (n,n
Fourier Transform of
Awng, Ny, Ny, 1y ] (With respect to (n
Windowed Phased-Shifted SAR Data
Discrete Space-Time multi-dimensional SAR data.
Matched-Filter Detection Statistic

Vector of Matched-Filter Detection Statistics

ML velocity estimates

Median-Filtered ML Velocity Estimates

Vector of Median-Filtered ML Velocity Estimates
Detection-Statistic Threshold
Projection-Segmentation Matrices

Reduced-Order Vector of

Target-Scatterer Velocity Estimates

Vector of (zero) Target-Scatterer Velocity Estimates
Reduced-Order Vector of

Target-Scatterer Amplitude Estimates

Vector of Clutter-Scatterer Amplitude Estimates
(Sparse) Full-Order Vector of

Ly Scatterer-Velocity Estimates

2> Tly)

2 My))

As illustrated by Figure 4.4, the overall matched-filter based SAR processing algonthm

consmts of the followmg steps:
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I. Form a conventional SAR image ACONV[nz,ny] from the demodulated SAR data
f[n, k] by a scaled Fourier Transform (with polar-format resampling).

II. For each initial scatterer spatial location, (neAg, nyAy)

A. Window the conventional SAAR image Aco Nv[nz,ny] around the spatial location
(Agng, Ayny) to produce A [ng, ny,nl, ny], given by

Ap[ng, ny,nl, ny) = Aconv(ng, nlwln), — ng, My — Ny . (4.87)

B. Apply the “clutter nulling” algorithm by zeroing out all portions of the windowed
image Aw [ng,ny,ny,n,] that have an amplitude greater than the clutter-nulling

threshold Acn([ng,ny] (which is proportional to the magnitude of Aconv [N, ny)).
C. Fourier-Transform the windowed image A [Nz, Ny, g, ny] (with respect to n/,

and ny) to produce Fyy[ng,ny, ki, ky], then interpolate within Fyy [ng, ny, k., ky ]

(using the SVTCV phase functions) to produce the windowed phase-shifted data
set fw[ng, ny,n, k|

D. Reparameterize the windowed phased-shifted SAR data to form the following
" discrete space-time multi-dimensional signal (with the linear portion of the range-
velocity phase-function ¢y[n, k] removed)

Flka, kg oy, K] = [, my,m, RS ks = galn, kAR by = d5n, KIATY]
(4.88)

E. Compute the quantized likelihood function fi[nm, Ty, Mg, Ny by using the follow-
ing Fourier Transform

A[nz,ny,ni,ny] =
1 —7 ks Dp. ngDe+kyAg. 1Ay
ERN) 2 2 2 2 b iy g Rl 7 buamstetiotagmas]
s Ky T
(4.89)

F. Compute the maximum-likelihood estimates of the 2 — D discrete integer-valued
initial-velocity functions at (ng,n,), given by

(niML[nm,ny],ny-ML[nx,ny]) = arggrz_la% [ {fl[nz,ny,na-;,ny]‘ ] . (4.90)

G. Compute the detection statistic x[ng,ny)

AMAX[”::, ny] - AMEAN[nfB) ny]
0 z[nz,ny)

X[z, ny| = , (4.91)
where

AMA)([TLI,ny] = T{nagc [ IA[nz,ny,nz-,ng” ] (4.92)
z, Ty
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Avpaningny) = mean [ |Aw[ng, ny,n,nl]|] (4.93)
ng.ny
7 4[Nz, ny] =0 Awing,ny, )], (4.94)

Y

III. Median-filter the maximum-likelihood estimates of the scatterer velocities to produce
TMED[M, ny] and YmED(Ma, Ny

TMED[NS, Ty) = medianOI Trr[ng + ny,my + ny] (4.95)
: n'm’, n;} €
@MED[nm,ny] =median g,/ [n, + Ny Ny + nyl (4.96)
n.lrl, n..i; € ROI
of the maximum-likelihood estimates given by
%ML[nz,ny] = Npep [Ny gy ) A (4.97)
Ynplne, ny] = Mnr [y 1] Ay (4.98)

IV. Given the vector of median-prefiltered velocity estimates VMED, given by
%MED (0,0]
TymEeD[0, 1]
Vs ED = , (499)

@}MED [Ov 0]
YmEeD0,1]

L : i
and the vector of detection statistics x given by

_ | x[0,0]

along with the detection threshold y /4 X, decompose VrmED into a (reduced~order)
“target” scatterer velocity vector, [¥7]o, and a “clutter” scatterer velocity-vector ¥ =
0 by using the segmentation-projection matrix Py(x, xmax)

Y7o vr
Pyt xmax)omep=| — |[=| = | (4.101)
Ve 0

In other words, for x[nz, ny] greater than the threshold xpr4x, the spatial location
(nzlg, nyAy) is classified as belonging to a target scatterer, with velocities given by
the median prefiltered values. Otherwise, the scatterer velocities are assumed to be
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V. Use [¥7]p as an initial condition for following recursive reduced-order gradient-descent
L;-based velocity-estimation algorithm (where 0 < m < M; — 1, with [A7]p = 0 and

[Aclo = 0)
[O7lmt1 = [Vr]m + on2R <[ATJﬁ@¥—;‘[I—{;T]—m)[f — Fr([97]m)[AT]m — Fc[Ac]m ])
BJVT([VT]m)
-2 Vi) (4.102)
[A7lmer = [Ar)m + aFE([97]m)[f — Fr([97]m)[AT]m — FolAc]m]
—a'yAasgn[[AT]m] , (4.103)
[Aclnt1 = [Aglm + aFEIf — Fr([07]m)[Ar]m — Fo[Acm]
—aryaasgn[[Ac)m] . (4.104)

VI. Once the (reduced-order) Li-norm target-scatterer velocity estimates Y1), are ob-
tained, compute the target-scatterer amplitudes Ap and the clutter-scatterer am-
plitudes A by the following recursive reduced-order gradient-descent least-squares
estimation algorithm (where M; < m < My — 1, with [Ar]a, =0 and [Ac]a, = 0)

[Arlmtn = [Arlm + oFF ([07]an)[f = Fr(07]a)[AT]m — FelAc]m]
(4.105)

[Aclm+r = [Aclm + oFE[f — Fr([¥7)a)[Ar)m — FolAclm] . (4.106)

VII. Given the full-order scatterer-velocity estimates ¥, (given by the following remapping
of the reduced-order velocity estimates [V7]y, generated by the L;-norm algorithm)

%Ll [0’ 0]
[{’T]Ml Tr, [0’ 1]
Vi, = PvT(X,XMAX) — = : , (4.107)
0 91, (0,0]
yLl [0! 1]

and the “uncorrected” scatterer-amplitude estimates Ay (given by the following
remapping of the scatterer-amplitude estimates generated by the least-squares al-
gorithm)

=R
A My Ayl0,0
Ay =PaT(x, xmax) — = | A0l , (4.108)
, R Ayl0,1]
[ C]IWQ :
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use the range-velocity estimates to correct the target-scatterer amplitude estimates
for azimuth displacement

il i 1 1‘;
Asclng, ny) = Ay [ng — A—EyLl [Nz, nyl,ny| - (4.109)
. m .
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4.6 Performance Analysis

As presented in this chapter, the matched-filter SAR processing technique uses the following
decision rule (based upon the detection statistic x[ng,ny))

Target

xlnanyl 2 xmax, (4.110)
Clutter

for determining the presence of a “target” point-scatterer at a given spatial location (n,A,,
nyAy). If this rule decides that a (possibly moving) target is present, the matched filter then
provides estimates of both the range velocity and azimuth velocity of this point-scatterer
(otherwise, the matched-filter assumes that the point-scatterer at this spatial location cor-
responds to stationary clutter, with both a range velocity and an azimuth velocity of zero).
These scatterer-velocity estimates are then used as an initial estimate by the Li-norm based
velocity-estimation algorithm.

Ultimately, we would like to use the results of the matched-filter SAR processing algo-
rithm for the purpose of automatic target recognition. For this particular purpose, it would
be useful to analyze (and quantify) both the detection performance and the estimation
performance of the matched-filter algorithm. In this section, we present such a perfor-
mance analysis (first for the presence of additive noise, then for the presence of interfering
scatterers).

4.6.1 Monte Carlo Performance Analysis

In order to analyze the detection and estimation performance of the matched filter, we
consider the following binary hypothesis problem for the demodulated SAR data fln, k]

Hi:  flnk]= A[O’O]e—j[%[n,k]"m'[O:O]Az"*“i’y'[”wk]”z;:[U,O]Azi] +
Z Z A[nx’ny]e—j[451-[n,k]nzAz+¢>y[n,k]nyﬁﬁm[n»k]n:’[nz,ny]Az'+¢g[n»’C]ng[n=yny]AzJ]
Nz #0 ny#0
+n[n, k]

Hy:  fln k] =
Z Z A[nx,ny]e—j[¢'z[n,k]nmA:-i-dJy[n,k]nyAy+¢,-,.[n,k]n,-_-[n:,ny]Ai+¢g[n,k]ng[nz,ny]Ag]
Nz 7#0 ny #0
+nn, k] , (4.111)

where the additive noise 7[n, k] is circularly-complex spatially-independent Gaussian noise
(with variance 0127). We also have a set of interfering scatterers with initial spatial-locations
(neAz,nyly) and initial velocities (£[ny, ny), y(ng, ny]) = (s [z, ny)Ag, 1y [ng, ny| Ay). For
hypothesis H;, we have a single “target” point-scatterer at the initial spatial-location
(nzlAg,nyAy) = (0m,0m) (which is not equal to any of the initial spatial-locations of the
interfering scatterers) and initial velocity ([0, 0],%[0,0]) = (n3[0,0]Az,n4[0,0]Ay). Other-
wise, we just have the interfering scatterers, plus the additive noise. In matrix-vector form,
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this binary hypothesis problem is given by

H;: f=A[0,0]sy[0,0] + z Z Alng, nylsy[ng, ny] + 7
Nz 7#0 ny 70

Hy: f=) > Alng,nylsyng,ny) +17, (4.112)
ngy#0ny #0

where the velocity-parameter vector v is given by

I N
[0, 0] n3[0,0]As
%[0, 1] 1[0, 1]A;
v = : = : : (4.113)
9[0,0] ny[0,0]4,
[0,1] ny(0, 1] Ay
Lo 1L : )

The matched-filter target-scatterer decision rule for this problem is given by

H,

xo(f) 2 xmax , (4.114)
Ho

where xo(f) = x[0,0] is the matched-filter detection statistic corresponding to the initial
spatial location, (nzAz,nyAy) = (0m, 0m).

Since it is assumed that the a priori probabilities of the two hypotheses are unknown, we
must analyze the the detection performance of the matched-filter decision rule by computing
the following Neyman-Pearson criterion[21]

+0co
Pp(xmax) =/ PxolH: (X0l H1)dxo (4.115)
XMAX
+oo
Pr(xmax) = / Pxol Ho (Xo| Ho)dXo (4.116)
XMAX

where Pp(xarax) is the so-called probability of detection (i.e., the probability of the decision
rule saying that there is a target point-scatterer when there actually is one), and where
Pr(xmax) is the so-called probability of false alarm (i.e., the probability of the decision
rule saying that there is a target point-scatterer when there actually is not).

In order to compute the Neyman-Pearson criterion for the matched-filter decision rule ,
we need to first determine the conditional probability densities, Pxoli: (Xo|H1) and pyg g, (X0
[Hyo), of xo given the respective hypotheses H; and Hy. However, the detection statistic
Xo(f) is a nonlinear function of the target point-scatterer parameters, the interfering point-
scatterer parameters and the additive-noise parameters, which implies that it may not be
possible to compute a “closed-form” representation of the conditional probabilities as a

_function of these parameters. However, we can estimate the Neyman-Pearson criterion
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by performing a Monte Carlo based simulation analysis of the matched-filter algorithm.
For a given set of target point-scatterer parameters, interfering point-scatterer parameters,
and noise parameters, we first generate the following synthetic SAR data sets (under hy-
potheses Hy and Hy), {fi|H1,f5|Hy,...,fi|H1} and {f1|Ho,f2|Ho, ..., fam|Ho}, (where M
is the number of Monte Carlo “trials”). These synthetic data sets are then used to gen-
erate the following sets of detection statistics, {xo(fi|H1), Xo(leHl) ., Xo(fm|Hy)} and
{xo(f1|Ho), xo(f2|Ho), - .., xo(farr|Ho)}. Then the estimate, PF(XMAX) of the probability-
of-detection is given by the number of detection statistics in the set {xo(f1|H1), xo(f2| H1),

-y Xo{far|H1)} which exceed the threshold xprax (divided by the number of Monte Carlo
trials, M),i.e.,

N #{xo0 € {xo(f1]H1), xo(f2|H1), ..., xo(Ear [ H1) Yo > xarax}
Pp(xmax) = i .

(4.117)

The corresponding estimate, PF(XMAX), of the probability-of-false-alarm is given by the
number of detection statistics in the set {xo(f1|Ho), xo(f2|Ho), - - - , Xo(far|Ho)} which exceed
the threshold xpax (divided by the number of Monte Carlo trials, M),i.e.,

#{Xo0 € {xo(f1|Ho), xo(f2| Hp), . .. )XO(fMlHO)}lXO'Z XMAX } _

Pr(xmax) = %

(4.118)

If we plot the probability-of-detection versus the probability-of-false-alarm for a given set
of model parameters, we get what is known in the literature[21] as a Receiver Operating
Characteristic (ROC) curve for this detection scheme. From the literature[21], it can be
shown that the estimates of Pp(xmax) and Pr(xpax) are unbiased, with error variances
approximately given by

o’ [PD(XMAX)} = E [(pD(XMAX) - PD(XMAX))?
Pp(xmax)(1 = Po(xmax))
M

Po(xarax)(1 = Po(xmax))
M

(4.119)

Q

o’ [PF(XMAX)] = FE (pF(XMAx)—PF(XMAx))2]
Pp(xmax)(1 — Pr(xmax))
M

Pr(xmax)(1 = Pr(xmax))
= X0

Q

(4.120)

For the Monte Carlo results presented in this chapter, we used these expressions to compute
one-standard-deviation “error bars” for the receiver-operating-characteristic curves. Note
that since we are using the estimates PD(‘(MAX) and PF(XMAX) rather than the actual
probabilities, Pp(xmax) and Pr(xaax), these error bars will tend to be smaller than the
actual error standard deviation when either PD(XM AX) OF PF(XM Ax) arenear O or 1.



4.6. PERFORMANCE ANALYSIS 125

Recall that the matched-filter also provides estimates Tpr(f) = 2a]0,0] = T 10, 0] A
and yupr(f) = gme[0,0] = ny,,[0,0]Ay of both the azimuth velocity and range veloc-
ity of the scatterer at (0,0). Given hypothesis H; (i.e., we actually have a target point-
scatterer with initial spatial-location (0,0) and initial velocity ([0, 0], 5[0, 0]) = (nz[0,0]A;,
ng(0,0]Ay)), we can analyze the velocity-estimation performance of the matched-filter from
the following sets of synthetic Monte Carlo velocity data, {Zaer(fL|Hy), 2prr (2] HY), ...,
Ear(fa|H)} and {yap(filHr), 9aer(falHn), ... gmp(f|H1)}. For example, given the
actual target point-scatterer velocities of (2[0,0],9[0,0]), the approximate mean-square
velocity-estimation errors are given by

B [(@mn(f1H) = 200,00%] = B[(@ur(E|H) - Elaa(fH)))]
+ (B [&pmp(f|Hy) — a'c[O,O]])2
o? [Enr (£1HD)] + (b (Eaez (F] H1)J2[0,0))))% (4.121)

B [@aap(f1H2) = 910,00 = B [@aen(E1H) ~ B sz (E1H)))’]
+ (B [gmp(f|Hy) — [0, 0]])2
= o [gar(f|H1)] + (0 (garn(E1HD)[9[0,00)))? , (4.122)

where ¢?[] is the sample variance and b(.) is the estimation bias.

4.6.2 Performance in the Presence of Additive Noise with No Interfering
Scatterers

Here, we present a Monte Carlo analysis of the noisy-data detection and velocity-estimation
performance of the matched-filter algorithm (where we have no nearby interfering scatter-
ers). The parameters of the estimation-theoretic model used to generate the synthetic
Monte Carlo SAR data (plus the parameters of the matched-filter) are shown in Table 4.1.
The estimation-theoretic model parameters were chosen to be as similar as possible to the
33.5 GHz Lincoln Laboratory Advanced Detection and Tracking System (ADTS)[16] sys-
- tem operating in spotlight mode. Since we are interested in the “worst-case” detection and
velocity-estimation performance of the matched-filter, we did not use the clutter-nulling
- algorithm (which was discussed in Section 4.4.2) for reducing cross-scatterer interference.

Stationary Target Scatterer

For this case, the target point-scatterer (which under hypothesis H; was located at the
center of the illuminated target field, (nzAg,nyAy) = (0m,0m)) was stationary, i.e.,
(n3[0,0]Az,my[0,0]Ay) = (0m/s,0m/s). The magnitude of the point-scatterer amplitude
was unit-magnitude, i.e., [A[0,0]| = 1. For each Monte Carlo trial the phase angle of the
target point-scatterer amplitude was a random variable uniformly distributed between 0
and 27. We ran M = 100 Monte Carlo trials (under both hypotheses H; and H,) for
signal-to-noise ratios (SNR) (defined by SNR = 20logy, (Jﬁa@nﬂﬂ)) of 20dB, 14dB, 9.5dB,
6dB, and 0dB. '
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F, Center Frequency 33.5 GHz
Ac Center Wavelength 0.009 m
oT, | Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency | 128 pulse/s
N Complex Samples per Range Profile 64

2K Pulses per Synthetic Aperture 128

R, Center Slant-Range 2778 M

v SAR Platform Velocity 100 m/s

7 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0 s

L Synthetic-Aperture Length 100 m

Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m

by Range Resolution 0.25 m

I Azimuth Resolution 0.25 m

Ay MF Range-Velocity Quantization 0.25 m/s
Ag MF Azimuth-Velocity Quantization 0.5 m/s
Aw, | Range Width of MF Image-Window 4m

Aw, | Azimuth Width of MF Image-Window | 8 m

Table 4.1: System Parameters for Monte Carlo Analysis of Matched-Filter

Figure 4.5 shows a plot of the approximate probability-of-detection and probability-of-
false-alarm, versus the detection-rule threshold x4 x, for an SN R of 20dB (with error bars
equal to the estimated error standard-deviation). Here, we see that for 6 < Xmax < 22,
Pp(xnmax) is approximately unity, and Pp(xarax) is approximately zero. This implies that
for this range of threshold values, the matched-filter detection-rule has near-perfect discrim-
ination between the hypotheses Hi and Hy. Figure 4.6 shows a plot of the approximate
probability-of-detection and probability-of-false-alarm, versus the detection-rule threshold
XMmax, for SNR = 14dB. We see that the probability-of-false-alarm is essentially the same
- as the SNR = 20dB case. However, the probability-of-detection is somewhat lower. The
range of threshold values that give near-perfect discrimination between the hypotheses H 1
- and Hp is now only 6 < xpax < 8.

For an SNR of 9.5dB (shown in Figure 4.7), we see that we can no longer pick a
detection threshold that has near-perfect discrimination between the hypotheses. However,
we can still make a trade-off between the probability-of-detection and the probability-of-
false-alarm. For example, if we desire a probability-of-false-alarm of Pr(xarax) = 0, we can
choose a detection threshold of xprax = 6, which gives a probability-of-detection of about
Pp(xmax) = 0.85. But if we choose a slightly lower detection threshold of xprax = 5,
we get a slightly higher probability-of-false-alarm of about Pr(xarax) = 0.1, and a slightly
higher probability-of-detection of about Pp(xprax) = 0.95.

For an SNR of 6dB (shown in Figure 4.8), the detection performance of the matched-
filter begins to fall to somewhat poor levels. For example, if we again choose a detection
threshold of xprax = 5, we again get a probability-of-false-alarm of about Pr(xmax) =0.1.



4.6. PERFORMANCE ANALYSIS 127
SNR Azimuth Vel. Var. | Azimuth Vel. Bias Range Vel. Var. | Range Vel. Bias |
0dB | 84.58 m?/s? -1.29 m/s 6.05 m?/s? - 0.01 m/s
6 dB | 24.11 m?/s? 0.02 m/s 2.00 m?/s? - 0.09 m/s
9.5 dB | 4.33 m?/s? -0.02 m/s 0.19 m?/s? -0.03 m/s
14 dB | 0.00 m?/s? 0.00 m/s 0.00 m?/s? 0.00 m/s
20 dB | 0.00 m?/s? 0.00 m/s 0.00 m?/s? 0.00 m/s

~ Table 4.2: Matched-Filter Velocity-Estimation Performance for Noisy-Data, Stationary
Target-Scatterer Examples

But we get a probability-of-detection of only about Pp(xmax) = 0.4 (which is less than
half of the probability-of-detection for the 9.5dB case). And for an SNR of 0dB, the
probability-of-false-alarm and the probability-of-detection are approximately equal for all
detection thresholds, which implies that the matched-filter would be unable to discriminate
between the two hypotheses. For comparison purposes, we also show the Receiver Operating
Characteristic (ROC) curves in Figure 4.10. Since we have near perfect discrimination for
the 20dB and the 14dB cases, both of the corresponding ROC curves will lie along the lines
Pp=00<Pp<1)and Pp =1(0 < Pr < 1)). Again, we see that the performance of
the matched-filter detection scheme is marginally acceptable for the 9.5dB case, and drops
dramatically for the lower SN R’s.

We analyzed the noisy-data stationary-target velocity-estimation performance of the
matched-filter (for SNR’s of 9.5dB, 6dB, 9.5dB, 6dB,and 0dB) by computing the sample
variance and bias of the the Monte Carlo range-velocity and azimuth-estimates, as shown in
Table 4.2. For SNR’s of 20dB and 14dB, we essentially have zero estimation error in both
range velocity and azimuth velocity, which of course implies that the matched-filter will
generally do an excellent job of estimating these quantities for a SINR above 14dB. For an
SNR of 9.5dB, we begin to see some degradation in the velocity-estimation performance,
especially in the azimuth velocity. This also goes along with the fact that we no longer
have “perfect” detection (as discussed previously). And for SNR’s of 6dB and 0dB, the
estimation-performance of the matched-filter has fallen to completely unacceptable levels.
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Moving Target Scatterer

For this case, we analyzed the noisy-data detection and velocity-estimation performance
of the matched-filter for a moving target point-scatterer. Just as with the previous ex-
ample, we have no interfering scatterers. Here, the initial-position of the target point-
scatterer (under hypothesis H;) was again located at the center of the illuminated target
field, (nzAg,nyAy) = (0m,0m). However, the initial velocity of the target point-scatterer
was now given by (&[0, 0], 5[0, 0]) = (n5[0,0]Az, ny[0,0]4,) = (1m/s, 1.152m/s). The point-
scatterer amplitude was unit-magnitude (|A[0,0]| = 1) with a random complex phase angle
(uniformly distributed between 0 and 27 for each Monte Carlo trial). We ran M = 100
Monte Carlo trials (under both hypotheses H; and Hy) for signal-to-noise ratios (SNR) of
20dB, 14dB, 9.5dB, 6dB, and 0dB.

Figure 4.11 shows a plot of the approximate probability-of-detection and probability-
of-false-alarm, versus the detection-rule threshold XmAx, for an SNR of 20dB. Similarly
to the stationary target-scatterer case, Pp(xmax) is approximately unity, and Pp (Xmax)
is approximately zero (for the range 6 < ypax < 19). Therefore, even for the moving
target-scatterer case, the matched-filter detection-rule can have near-perfect discrimination
between the hypotheses Hy and Hy (though the range of detection-rule thresholds is slightly
less than for the stationary target-scatterer case). Figure 4.12 shows a plot of the ap-
proximate probability-of-detection and probability-of-false-alarm, versus the detection-rule
threshold xprax, for SNR = 14dB. We see that the probability-of-detection is again some-
what lower than for the SNR = 20dB case. As compared to the stationary target case, the
range of threshold values that give near-perfect discrimination between the hypotheses Hy
and Hy is now only about 6 < xprax < 7.

For an SNR of 9.5dB (shown in Figure 4.13), we see that just as with the stationary
target case, we can no longer pick a detection threshold that has near-perfect discrimination
between the hypotheses, but must now make a trade-off between the probability-of-detection
and the probability-of-false-alarm. For example, if we desire a probability-of-false-alarm of
Pr(xmax) = 0.1, we choose a detection threshold of XMAXx = 9, which gives a probability-
of-detection of about Pp(xaax) = 0.65 (which is significantly lower than the corresponding
probability-of-detection Pp(xpax) = 0.95 for the stationary target scatterer case). Just as
with the stationary target-scatterer case, for SNR’s of 6dB and 0dB (shown in Figure 4.14
and Figure 4.15), the detection performance of the matched-filter begins to fall to fairly
- poor levels. We also show a plot (in Figure 4.16) of the receiver operating characteristic
(ROC) curves. Since we have near perfect discrimination for the 20dB and the 14dB cases,
both the corresponding ROC curves will lie along the lines Pr = 0(0 < Pp < 1) and
Pp = 1(0 < Pp < 1), just as with the previous stationary-target case. We also see that
the performance of the matched-filter detection scheme drops even more dramatically for
SNR’s less than or equal to 14dB, as compared to the stationary-target case. In fact,
we see in the ROC curve plot of Figure 4.16 that the ROC curve for the SNR = 0dB is
no longer strictly convex, but instead nearly lies on the line Pp = Pp. This implies that
the matched-filter detection scheme performs only marginally better than purely random
guessing for this low SNR case.

As shown in Table 4.3, for SNR’s of 20dB and 14dB, we essentially have zero estimation
error for azimuth velocity. However, we do have a small estimation error for range-velocity



132

CHAPTER 4. MATCHED-FILTER SAR PROCESSING

SNR Azimuth Vel. Var. | Azimuth Vel. Bias [ Range Vel. Var. Range Vel. Bias
0dB | 7557 m?/s? -0.76 m/s 5.42 m?/s? -1.00 m/s
6 dB | 47.38 m?/s? -1.15 m/s 3.74 m?/s? -0.71 m/s
9.5 dB | 7.61 m?/s? 0.20 m/s 0.63 m?/s? -0.12 m/s
14 dB | 0.00 m?/s? 0.0 m/s 0.01 m2/s? - 0.07 m/s
20 dB | 0.00 m?/s? 0.0 m/s 0.01 m2/s? - 0.11 m/s

Table 4.3: Matched-Filter Velocity-Estimation Performance for Noisy-Data, Moving Target-
Scatterer Examples

(which is caused by the range-velocity quantization of the matched-filter). For a SNR
of 9.5dB, we begin to see some degradation in the velocity-estimation performance. This
again goes along with the fact that we no longer have “perfect” detection for this case. And
for SNR’s of 6dB and 0dB, the estimation-performance of the matched-filter has fallen to
completely undesirable levels.
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Figure 4.13: Pp(xmax) and Pr(xmax) for SNR = 9.5dB (Moving Target-Scatterer) with
One-Standard-Deviation Error Bars

PD and P for SNR =6 dB

-

o o o o
(2] ~ @ w
T T T
1 1 1 1

PD (solid) ‘EF (dashed)
o
L
i

0.4} 4
0.3F I
1
0.2+
0.1 ’-
0 P 1 1 1
0 5 10 15 20 25 30

Xmax

Figure_4.14: Pp(xmax) and Pr(xmax) for SNR = 6dB (Moving Target-Scatterer) with
One-Standard-Deviation Error Bars -



4.6. PERFORMANCE ANALYSIS 135

Py and PF for SNR =0dB

T T L T

-

o o o
N @ ©
T T T
) { L

(dashed)
o
(o))
T
I

oFf
(4]

T

1

Py (solid) P,
o
o
T
1

o
w
T

L

0.2+ 4

0 —l i 1 1 1
- Q 5 10 185 20 25 30
Xmax

Figure 4.15: Pp(xmax) and Pr(xmax) for SNR = 0dB (Moving Target-Scatterer) with
One-Standard-Deviation Error Bars

Receiver Operating Characteristic

09k SNR = SNR =9.5d8

14 dB, 20 dB

0.8 SNR =6 dB

0.7 SNR=0dB —

0.6

™

0.4

0.3

l_
[

0.2

T
I
r
L

0.1 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.16: Receiver Operating Characteristic (Moving Target-Scatterer) with One-
Standard-Deviation Error Bars



136 : CHAPTER 4. MATCHED-FILTER SAR PROCESSING

4.6.3 Performance in the Presence of Interfering Scatterers

Here, we present a Monte Carlo analysis of the matched-filter’s detection and Velocity-
estimation performance in the presence of interfering point-scatterers. The parameters of
the estimation-theoretic model used to generate the synthetic Monte Carlo SAR data (plus
the parameters of the matched-filter) are again shown in Table 4.1. As with the previous
noisy-data examples, these model parameters were chosen to be as similar as possible to
the 33.5 GHz Lincoln Laboratory Advanced Detection and Tracking System (ADTS)[16]
system operating in spotlight mode. Again, we did not use the clutter-nulling algorithm for
reducing cross-scatterer interference.

For the Monte Carlo analysis presented in this section, the experimental set-up involved
a 2 — D “square box” (of variable size) of eight interfering scatterers with initial spatial
locations surrounding the initial-position of the target point-scatterer. As shown in in
Figure 4.17, this box was centered at the spatial location (nzlg,nyAy) = (0,0) of the
target scatterer. The size of this box was given by 2§ m, which implied that the spatial
locations of the interfering scatterers were given by

Scatterer #1: (nyAg, nyAy) = (8 m,0 m)

Scatterer #2: (ngAg,nyAy) = (=6 m,0 m)

Scatterer #3: (neAz,nyAy) = (0 m, 8 m)

Scatterer #4: (ngeAz,nyAy) = (0 m, -6 m)

Scatterer #5: (nzAg,nyAy) = (6o m, 6o m)

Scatterer #6: (ngAz,nyAy) = (=6 m, 8 m)

Scatterer #7: (ngAg, nyAy) = (6 m, —8 m)

Scatterer #8: (ngAz,nyAy) = (=8 m, -6 m)

- As shown Figure 4.17, we see that the spatial separation (in both range and azimuth)
between the interfering scatterers and the target scatterer is given by 6. Just as with the
stationary-target Monte Carlo experiments, the target point-scatterer complex amplitude
was unit-magnitude (|A[0,0]] = 1), with a random (uniformly distributed between 0 and
2m) phase-angle for each Monte Carlo trial. The magnitudes of the interfering scatterers’
reflectivities were equal (but with spatially statistically-independent random phase-angles

uniformly distributed between 0 and 27)and parameterized by the signal-to-clutter ratio
(SCR), defined by

SCR = 201ogy, 1410, 0] (4.123)
mean _ [Alna,ny || ~
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Figure 4.17: Spatial Configuration of Interfering Scatterers for Matched-Filter Monte-Carlo
Analysis (with Target Scatterer at (z,y) = (0,0))

Moving Target Scatterer in the Presence of Stationary Interfering Scatterers
with Varying Spatial Separation (SNR = 20dB, SCR = 0dB)

For this case, we analyzed the effect of varying the scatterer spatial separation &g upon the
detection and velocity-estimation performance of the matched-filter (for a moving target
* point-scatterer with stationary interfering scatterers, i.e., (%[ng, ny],¥[nz, ny]) = (0,0) for
ng # 0 and ny # 0). For this particular case, we used a relatively high SNR of 20dB
(e, EELOM = 10). The initial velocity of the moving target point-scatterer was chosen
to be the same as the noisy-data moving target-scatterer example of the previous section,
Le., (£[0,0],9[0,0]) = (nz[0,0]Az,my[0,0]Ay) = (1m/s,1.152m/s). Both the target point-
scatterer amplitude and the interfering scatterer amplitudes were unit-magnitude (which
implied that we had an SCR of 0dB), with random (uniformly distributed between 0 and
2m) complex phase-angles, for each Monte Carlo trial. We ran M = 100 Monte Carlo trials
(under both hypotheses H; and Hy) for scatterer spatial separations, 6g, of 1.00 m, 0.75 m,
0.50 m, and 0.25 m.

~ Figure 4.18 shows a plot of the approximate probability-of-detection and probability-
of-false-alarm, versus the detection-rule threshold Xmax, for a 8y of 1.00m. The “perfect-
discrimination” detection threshold range is approximately given by 8 < xarax < 9. This
implies that the detection performance (for detection-rule thresholds within the perfect-
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bo Azimuth Vel. Var. | Azimuth Vel. Bias Range Vel. Var. | Range Vel. Bias

0.25 m | 0.16 m?/s? -0.18 m/s 022 m?/s*>  [-0.27m/s
0.50 m | 0.00 m?/s? 0.00 m/s 0.01 m?2/s? -0.07 m/s
0.75 m | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.10 m/s
1.00 m | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.10 m/s

- Table.4.4: Matched-Filter Velocity-Estimation Performance for a Moving Target-Scatterer
with Stationary Interfering Scatterers and an SNR = 20dB

discrimination range) of the matched-filter is essentially unaffected by stationary interfering
scatterers located at least 1.00m away from the target scatterer. Figure 4.19 shows a
plot of the approximate probability-of-detection and probability-of-false-alarm, versus the
detection-rule threshold xasax, for a &y of 0.75m. We see that the probability-of-detection
is slightly less, as compared to the §y of 1.00m case. The range of threshold values that give
near-perfect discrimination between the hypotheses H; and Hj is again about 8 < ypyrax <
9. This implies that the detection performance (for detection-rule thresholds within the
perfect-discrimination range) of the matched-filter is essentially unaffected by stationary
interfering scatterers located at least 0.75m away from the target scatterer. .

For a éo of 0.5m (shown in Figure 4.20), we see that the interfering scatterers are now
starting to affect the “optimal” detection performance of the matched-filter. For example,
if we desire a probability-of-false-alarm of Pp (x4 x) = 0, we choose a detection threshold
of Xxmax = 9, which gives a maximum probability-of-detection of about Pp (Xmax) = 0.95.

For a 6o of 0.25m (shown in Figure 4.21), we see that the detection performance of
the matched-filter is significantly degraded by the presence of the interfering scatterers. If
we again desire a probability-of-false-alarm of Pp(xarax) = 0, we must choose a detection
threshold of xpax = 14, which gives a maximum probability-of-detection of only about
Pp(xmax) = 0.2. Even if we again chose xpax = 9 (which gives a probability-of-false-
alarm of about Pr(xpax) = 0.4), we would only get a maximum probability-of-detection
of about Pp(xmax) = 0.85. Therefore, we see that for this case, where we have distinct
and independent scatterer motions, the matched-filter has an effective detection spatial-
resolution of approximately 0.50m (for an SNR = 20dB and an SCR = 0dB). The
~ receiver operating characteristic (ROC) curves are shown in Figure 4.22. Again, we see the
dramatic drop in the detection performance of the matched-filter detection scheme as the
- spacing between the scatterers decreases. ' :

In Table 4.4, we see that for y’s equal to 1.00 m, 0.75 m, and 0.50 m, the velocity-
estimation errors are relatively small and are caused by the velocity quantizations of the
matched-filter. For a éy of 0.25 m, we do see some degradation in the velocity-estimation
performance, though the degradation is within acceptable limits.
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Figure 4.18: Pp(xmax) and Pp(xmax) for §o = 1.00m (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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'Figure 4.19: Pp(xmax) and Pp(xmax) for 8o = 0.75m (Moving Target-Scatterer with
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Ppand P fora Scatterer Spacing of 0.5 m
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Figure 4.20: Pp(xmax) and Pr(xmax) for §g = 0.50m (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.21: Pp(xmax) and Pr{xmax) for 6o = 0.25m (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Receiver Operating Characteristic
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Figure 4.22: Receiver Operating Characteristic (Moving Target-Scatterer with Stationary
Interfering Scatterers) with One-Standard-Deviation Error Bars

Moving Target Scatterer in the Presence of Stationary Interfering Scatterers
with Varying SCR (SNR = 20dB, &, = 0.25m)

For this case, we analyzed the effect of varying the signal-to-clutter ratio (SCR) of the inter-
fering scatterers upon the detection and velocity-estimation performance of the matched-
filter.  As with the previous example, this was done for a moving target point-scatterer with
stationary interfering scatterers (i.e., (Z[ne, ny), y[nz, ny]) = (0,0) for ng # 0 and Ny # 0).
Again, we used an SNR of 20dB. The initial velocity of the moving target point-scatterer
was chosen to be the same as the noisy-data moving target-scatterer example of the previ-
- ous section, i.e., (£[0,0],5[0,0]) = (nz[0,0]Az,ny[0,0]A,) = (1m/s,1.152m/s). The target
point-scatterer amplitude was unit-magnitude, with a random (uniformly distributed be-
tween 0 and 27) phase-angle, for each Monte Carlo trial. Recall from the Monte Carlo
experiments presented in the previous section (with stationary interfering scatterers and
varying scatterer spacing) that the performance of the matched-filter was seriously degraded
for g = 0.25m (with an SCR of 0dB). Therefore, for this set of Monte Carlo experiments,
we set the interfering scatterer spacing to §y = 0.25m and increased the effective SCR (by
reducing the amplitudes of the interfering scatterers) in order to see how this degradation
decreases with increasing SCR. We ran M = 100 Monte Carlo trials (under both hypotheses
H; and Hy) for SCR’s of of 20dB, 14dB, 9.5dB, 6dB, 3.5dB, and compared them to the
0dB case.

For an increased SCR of 3.5dB, (shown in Figure 4.24), we begin to see a substantial
improvement in the detection performance of the matched-filter, as compared to the SCR =
0dB case. For example, if we desire a probability-of-false-alarm of Pr(xmax) = 0, we
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SCR | Azimuth Vel. Var. | Azimuth Vel. Bias Range Vel. Var. | Range Vel. Bias
0dB | 0.16 m?/s? -0.18 m/s 0.22 m?/s? -0.27 m/s
3.5 dB | 0.01 m?/s? - 0.01 m/s 0.01 m?/s? - 0.09 m/s
6 dB | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.07m/s
9.5 dB | 0.00 m?/s? 0.00 m/s 0.01 m?2/s> -0.10 m/s
14 dB | 0.00 m?/s> 0.00 m/s 0.01 m?2/s? -0.12 m/s
20 dB | 0.00 m?/s? 0.00 m/s 0.01 m?2/s? -0.12 m/s

Table 4.5: Matched-Filter Velocity-Estimation Performance (as a Function of SCR) for a
Moving Target-Scatterer with Stationary Interfering Scatterers and an SNR = 204B

choose a detection threshold of xpr4x = 13. However, we now get a maximum probability-
of-detection of Pp(xamax) = 0.85, which is much better than Pp(xmax) = 0.2 for the
SCR = 0dB case.

For an SCR of 6dB (shown in Figure 4.25), we see that the effects of the interfering
scatterers upon the detection performance of the matched-filter has been reduced even
further. We now have “perfect-discrimination” for the detection threshold 12 < xmax < 13.

Figure 4.26, Figure 4.27, and Figure 4.28 show the approximate probability-of-detection
and probability of-false-alarm, versus the detection-rule threshold xasax, for SCR = 9.5dB ,
SCR = 14dB, and SCR = 20dB respectively. For all of these cases, we see that we have
approximately “perfect-discrimination” in the detection threshold range of 10 < Xmax <
15. This implies that the detection performance (for detection-rule thresholds within the
perfect-discrimination range) of the matched-filter is essentially unaffected by stationary
interfering scatterers with magnitudes less than 30 percent of the magnitude of the target
scatterer (and located at least 0.25m away from the target scatterer).

The receiver operating characteristic (ROC) curves are shown in Figure 4.29. Again,
we see the improvement in the detection performance of the matched-filter as the SCR
increases. In addition, we see a similar improvement in the velocity-estimation performance
in Table 4.5. For an SCR greater than 6dB, the performance of the matched-filter is
essentially limited by velocity-quantization errors.
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Figure 4.23: Pp(xmax) and Pr(xmax) for SCR = 0dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.24: Pp(xmax) and Pp(xmax) for SCR = 3.5dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Py and P fora Scatterer Spacing of 0.25 m and an SCR = 6 dB
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Figure 4.25: Pp(xmax) and Pr(xmax) for SCR = 6dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figurev 4.26: Pp(xmax) and Pr(xpmax) for SCR = 9.5dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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PD and P for a Scalterer Spacing of 0.25 m and an SCR = 14 dB
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Figure 4.27: Pp(xmax) and Pr(xmax) for SCR = 14dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.28: Pp(xmax) and Pr(xmax) for SCR = 20dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Receiver Operating Characteristic
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Figure 4.29: Receiver Operating Characteristic (Moving Target-Scatterer with Stationary
Interfering Scatterers) with One-Standard-Deviation Error Bars

Moving Target Scatterer in the Presence of Stationary Interfering Scatterers
and Varying SNR (SCR = 0dB, 6, = 0.5m)

Here, we illustrate the effect of the additive-noise SNR for the case where we have a moving
target point-scatterer with stationary interfering scatterers. The initial-position of the tar-
get point-scatterer (under hypothesis H;) was again located at the center of the illuminated
target fleld, (ngAg, nyAy) = (0m,0m), with the same initial velocity as the previous cases
(£[0,0],9[0,0]) = (n[0,0]A;, ny[0,0]Ay) = (1m/s,1.152m/s). The target point-scatterer
amplitude and the interfering-scatterer amplitudes were unit-magnitude (with implied that
- we had an SCR of 0dB), with random (uniformly distributed between 0 and 27) com-
plex phase-angles, for each Monte Carlo trial. The interfering scatterer spacing was set to
- 69 = 0.5m (which was the approximate detection resolution of the matched-filter observed
in the previous Monte Carlo experiment with SNR = 20dB). We ran M = 100 Monte
Carlo trials (under both hypotheses H; and Hp) for SNR’s of of 20dB, 14dB, 9.5dB, and
6dB..

The SNR = 20dB case is shown in Figure 4.30, which is the same as the §; = 0.5m
presented earlier in Figure 4.20. For this case, if we desire a probability-of-false-alarm of
Pr(xmax) = 0, we choose a detection threshold of xprax = 9, wh1ch gives a maximum
probability-of-detection of about Pp(xarax) = 0.95.

For an SNR = 14dB, we begin to see a degradation of the matched-filter detection
vperformance due to the noise. For example, if we again desire a probability-of-false-alarm
of Pr(xmax) =0, we choose a detection threshold of Xmax = 8, which gives a maximum
probab111ty-0f detectlon of only about Pp(xamax) =0.7.
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SNR Azimuth Vel. Var. | Azimuth Vel. Bias Range Vel. Var. | Range Vel. Bias
6 dB | 38.91 m?/s? -0.68 m/s 2.63 m?/s? -0.87 m/s
9.5 dB | 8.04 m?/s? -0.37 m/s 0.34 m?/s? -0.18 m/s
14 dB | 0.08 m?/s? - 0.05 m/s 0.05 m?/s? - 0.10 m/s
20 dB | 0.00 m?/s? 0.00 m/s 0.01 m?/s? - 0.07 m/s
Table 4.6: Matched-Filter Velocity-Estimation Performance for Moving Target-Scatterer

with Stationary Interfering Scatterers and Additive Noise
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Figure 4.30: Pp(xmax) and Pr(xmax) for SNR = 20dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars

For lower SNR’s, the performance begins to seriously degrade. In fact, for the SNR =
9.5dB, as shown in Figure 4.32, the performance has degraded to a level comparable to the
. SNR = 20dB performance with &, = 0.25m, shown in Figure 4.21. This implies that the
matched-filter has a detection resolution of 6y = 0.5 only if the SNR 1is greater than 14dB
(for an SCR of 0dB). This is confirmed by the ROC curves shown in Figure 4.34 and the

velocity-estimation performance shown in Table 4.6.
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Py and P fora Scatterer Spacing of 0.5 m and an SNR = 14 dB
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Figure 4.31: Pp(xmax) and Pp(xpmax) for SNR = 14dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.32: Pp(xarax) and Pr(xarax) for SNR = 9.5dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Py and PF fora Scatterer Spacing of 0.5 m and an SNR = 6 dB
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Figure 4.33: Pp(xmax) and Pp(xmax) for SNR = 6dB (Moving Target-Scatterer with
Stationary Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.34: Receiver Operating Characteristic for SNR = 204B, 14dB, 9.5dB, and
6dB (Moving Target-Scatterer with Stationary Interfering Scatterers) with One-Standard-
Deviation Error Bars '
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Moving Target Scatterer in the Presence of Moving Interfering Scatterers with
Varying Spatial Separation (SNR = 20dB, SCR = 0dB)

For our next case, we analyzed the detection and velocity-estimation performance of the
matched-filter for a moving target point-scatterer with moving interfering scatterers. The
initial-position of the target point-scatterer (under hypothesis H;) was again located at
the center of the illuminated target field, (ngAz,nyA,) = (0m,0m), with the same initial
velocity as the previous stationary interfering-scatterers case (z[0, 0},9[0,0]) = (nz[0,0]A;,
ny[0,0]Ay) = (1m/s,1.152m/s). We again had eight interfering scatterers with initial spa-
tial locations along the sides and corners of a square “box” (of width 26, m) surrounding
the initial-position of the target point-scatterer, as shown previously in Figure 4.17. How-
ever, these interfering scatterers now have the same velocities as the target point-scatterer
(i-e., ([nz,nyl,9[na,ny]) = (Im/s,1.152m/s) for ny # 0 and ny # 0) (which is equiva-
lent to the target scatterer and the interfering scatterers acting together as a “rigid-body”
target with purely-translational motion). Both the target point-scatterer amplitude and
the interfering-scatterer amplitudes were unit-magnitude (|A[ng, ny]| = 1 which implied an
SCR = 0dB), with random (uniformly distributed between 0 and 2) complex phase-angles,
for each Monte Carlo trial. We ran M = 100 Monte Carlo trials (under both hypotheses
Hi and Hy) for scatterer spacings, &y, of 1.00 m, 0.75 m, 0.50 m, and 0.25 m.

Figure 4.35 shows a plot of the approximate probability-of-detection and probability-of-
false-alarm, versus the detection-rule threshold x4 x, for 6y equal to 1.00m. The “perfect-
discrimination” detection threshold range is approximately given by 8 < xmax < 13,
which is slightly larger than for the previous stationary interfering-scatterer case. Again,
the detection performance (for detection-rule thresholds within the perfect-discrimination
range) of the matched-filter is essentially unaffected by moving interfering scatterers located
at least 1.00m away from the target scatterer. Figure 4.36 shows the probability-of-detection
and probability-of-false-alarm, versus the detection-rule threshold xasax, for & equal to
0.75m. The range of threshold values that give near-perfect discrimination between the
hypotheses H; and Hy is about 8 < ypax < 12 which is slightly smaller than the §; of
1.00m case. Again, for detection-rule thresholds within the perfect-discrimination range, the
detection performance of the matched-filter is essentially unaffected by moving interfering
- scatterers located at least 0.75m away from the target scatterer.

For a 8y of 0.5m (shown in Figure 4.37), we begin to see the effect of the interfering
- scatterers upon the “optimal” detection performance of the matched-filter. For instance, if
we desire a probability-of-false-alarm of Pr(xarax) = 0, we choose a detection threshold of
Xmax = 12, which gives a maximum probability-of-detection of about Pp(xarax) = 0.95.

For a 6y of 0.25m (shown in Figure 4.38), the detection performance of the matched-
filter is significantly degraded by the presence of the interfering scatterers. If we desire
a probability-of-false-alarm of Pr(xpax) = 0, we must choose a detection threshold of
Xxmax = 18, which gives a maximum probability-of-detection of only about Pp(xamrax) =
0.05.

Thus, in the presence of moving interfering-scatterers, the matched-filter has an ef-
fective detection spatial-resolution of approximately 0.50m (for an SNR = 20dB and an
SCR = 0dB), just as with the stationary interfering-scatterer case. The receiver operating
characteristic (ROC) curves are shown in Figure 4.39. Again, we see the dramatic drop in
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do Azimuth Vel. Var. | Azimuth Vel. Bias | Range Vel. Var. | Range Vel. Bias
0.25 m | 0.06 m?/s? 0.02 m/s 0.04 m?/s? - 0.09 m/s
0.50 m | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.10 m/s
0.75 m | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.11 m/s
1.00 m | 0.00 m?/s? 0.00 m/s 0.01 m?/s? -0.11 m/s

Table 4.7: Matched-Filter Velocity-Estimation Performance for Moving Target-Scatterer
with Moving Interfering Scatterers
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Figure 4.35: Pp(xmax) and Pp(xmax) for 6 = 1.00m (Moving Target-Scatterer with

Moving Interfering Scatterers) with One-Standard-Deviation Error Bars

- the detection performance of the matched-filter detection scheme as the spacing between
the scatterers decreases below 0.5m.

As shown in Table 4.7, the velocity-estimation errors are relatively small and are caused
by the velocity quantizations of the matched-filter. For a &y of 0.25 m, we actually see an
overall improvement in the velocity-estimation performance, as compared to the previous
stationary interfering-scatterer case shown in Table 4.4. One explanation for this improve-
ment is the fact that the interfering scatterers now have the same velocity as the target
scatterer. This implies that the matched filter will exhibit better performance for a moving
target with strongly correlated (e.g., rigid-body) motion.
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SNR Azimuth Vel. Var. | Azimuth Vel. Bias [ Range Vel. Var. Range Vel. Bias
6 dB | 47.44 m?*/s? -0.44d m/s 2.05 m?/s? -0.20 m/s
9.5 dB | 19.99 m?/s? -0.05m/s 0.99 m?/s? -0.23 m/s
14 dB | 0.01 m?/s? 0.01 m/s 0.01 m?2/s? - 0.08 m/s
20 dB | 0.00 m?/s? 0.00 m/s 0.01 m?/s? - 0.10 m/s

Table 4.8: Matched-Filter Velocity-Estimation Performance for Moving Target-Scatterer
with Moving Interfering Scatterers and Additive Noise

Moving Target Scatterer in the Presence of Moving Interfering Scatterers and
Varying SNR (SCR = 0dB, & = 0.5m)

Here, we illustrate the effects of the SNR upon the performance of the matched-filter where
we have a moving target point-scatterer with moving interfering scatterers. The initial-
position of the target point-scatterer (under hypothesis H;) was again located at the center
of the illuminated target field, (nzAz,nyA,) = (0m,0m), with the same initial veloc-
ity as the previous cases (£(0,0],9[0,0]) = (ng[0,0]Az, nyl0,0]A;) = (1m/s,1.152m/s).
The interfering scatterers again had the same velocities as the target point-scatterer (i.e.,
(&[ng, ny], Y[ne, nyl) = (Im/s,1.152m/s) for ny # 0 and ny # 0) (which, as before, is equiv-
alent to the target scatterer and the interfering scatterers acting together as a “rigid-body”
target with purely-translational motion). Both the target point-scatterer amplitude and the
interfering-scatterer amplitudes were unit-magnitude (with implied that we had an SCR of
0dB), with random (uniformly distributed between 0 and 2) reflectivity phase-angles, for
each Monte Carlo trial. Recall from the previous example where we had a moving target-
scatterer with moving interfering scatterers that the approximate detection resolution of
the matched-filter was 6y = 0.5m (for an SNR = 20dB). Therefore, for this example, we
also set the scatterer spacing to 6o = 0.5m. We ran M = 100 Monte Carlo trials (under
both hypotheses H; and Hy) for SNR’s of of 20dB, 14dB, 9.5dB, and 6dB.

We again show the SN R = 20dB case in Figure 4.40, which is the same as the §; = 0.5m,
case presented earlier in Figure 4.37. For this example, if we desire a probability-of-false-
alarm of Pr(xmax) = 0, we choose a detection threshold of Xmax = 12, which gives a

maximum-probability-of-detection of about Pp(xpax) = 0.95.
' We begin to see the effects of the noise for the SNR = 14dB case. For example, if we
desire a probability-of-false-alarm of Pr(xarax) = 0, we choose a detection threshold of
 Xmax = 8, which gives a maximum probability-of-detection of about Pp(xmax)=0.7.

For lower SNR’s, the performance begins to seriously degrade. In fact, for SNR =
9.5dB, as shown in Figure 4.42, the performance is comparable to the SNR = 204dB per-
formance with 6y = 0.25m, shown in Figure 4.38. Just as with the previous Monte-Carlo
example with stationary interfering-scatterers (and varying SNR), we can conclude that
the effective detection resolution of the matched-filter in the presence of moving interfering-
scatterers is approzimately 0.5m only for an SNR greater than 14dB. This is confirmed
by the ROC curves shown in Figure 4.44 and the velocity-estimation performance shown in
Table 4.8.
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Py and P_fora Scatterer Spacing of 0.5 m and an SNR = 20 dB
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Figure 4.40: Pp(xmax) and Pr(xmax) for SNR = 20dB (Moving Target-Scatterer with
Moving Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.41: Pp(xmax) and Pr(xmax) for SNR = 14dB (Moving Target-Scatterer with
Moving Interfering Scatterers) with One-Standard-Deviation Error Bars
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Ppand P fora Scatterer Spacing of 0.5 m and an SNR = 9.5 dB
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Figure 4.42: Pp(xmax) and Pr(xmax) for SNR = 9.5dB (Moving Target-Scatterer with
Moving Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.43: Pp(xamax) and Pp(xpax) for SNR = 6dB (Moving Target-Scatterer with
Moving Interfering Scatterers) with One-Standard-Deviation Error Bars
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Figure 4.44: Receiver Operating Characteristic for SNR = 20dB, 14dB, 9.5dB, and 6dB
(Moving Target-Scatterer with Moving Interfering Scatterers) with One-Standard-Deviation
Error Bars

4.7 Experimental Results

Here, we present some experimental results in order to illustrate the motion-compensated
imaging capabilities of the matched-filter SAR processing algorithm. In Section 4.7.1, we
first present some examples where we have synthetic moving point scatterers embedded in
an actual stationary-clutter conventional SAR image. Then in Section 4.7.2, we present an
example where we (manually) segmented the target portion of the conventional SAR image
- of an actual (stationary) target, and used it to generate a synthetic-motion moving target.

For these experimental examples, we assumed that we were only given the conventional
 moving-target (complex) SAR images (in the discrete 2 — D form Aconv[nz, ny]). These
images were converted into “raw” demodulated SAR data f by normalizing the images (by
their respective maximum magnitude over n; and n, , denoted by Ajrax) and performing
a scaled Fourier Transform corresponding to the “conventional” zero-velocity SAR model,
ie.,

. 1
Apax

f FAcony . (4.124)

Once we obtained a focused image from the least-squares amplitude-estimation portion of
the matched-filter SAR processing algorithm, we then post-multiplied this image by A 4x.
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4.7.1 Synthetic Point Scatterers Embedded in Real Clutter

In this section, we present a set of experimental examples where we have a synthetic moving-
target (consisting of a 2 — D array of ideal point-scatterers) embedded in a real stationary
clutter scene. This particular scene consisted mainly of trees and grass, as shown in the
conventional SAR image of Figure 4.45 (with an approximate resolution in range and az-
imuth of of 6, = 0.25m and §, = 0.25m). In addition, the clutter scene had two man-made
high-amplitude scatterers with a magnitude of about 35dB.

We generated the SAR data for these examples by first performing a scaled Fourier
Transform (corresponding to the conventional zero-velocity SAR model) upon the conven-
tional SAR image of the clutter scene. These transformed data sets were then added to the
SAR data corresponding to the synthetic target (which as stated earlier, consisted of a 2— D
array of moving ideal point scatterers). The synthetic-target portion of the SAR data sets
was generated using the general-motion estimation-theoretic SAR data model presented
in Chapter 2, with parameters chosen to be as similar as possible to the 33.5 GHz Lin-
coln Laboratory Advanced Detection and Tracking System (ADTS)[16] system operating
in spotlight mode (as shown in Table 4.9 for the synthetic target).

For all of the synthetic-target examples presented here, the 2 — D target-scatterer array
consisted of nine synthetic meving point-scatterers. The initial positions of these scat-
terers were centered near the two “man-made” high-amplitude scatterers in the following
configuration about the point (z,y) = (—6.5m, —4m):

Il

Scatterer #0: (nzAg, nyA 6.5m, —4m)

Scatterer #1: (ngAgz, nyA —6.5m — 6o, —4m — &)

6.5m — 6o, —4m)

Scatterer #2: (neAg, nyA

Scatterer #3: (ngAg, nyA

6.5m — 6o, —4m + &g)

Scatterer #5: (ngAz,nyA —6.5m + 89, —4m)

Scatterer #6: (nzAz, nyA —6.5m + &, —4m + &)

Scatterer #7: (nzAg, nyA

v)
y)
y)
y)
Scatterer #4: (ngAz,nyAy)
v)
y)
y) = (=6.5m, —4m — &)
y) =

(=
(=
(=
(=
(—6.5m + 69, —4m — &)
(=
(=
(=
(=

Scatterer #8: (nzAg,nyA 6.5m, —4m + &)

We see that the synthetic-target array for this examples had a spatial spacing of §om with
respect to both range and azimuth,

Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 1m

For the first synthetic-target example, we have a rigid-body target with purely-translational
motion, i.e., all of the nine moving point-scatterers in the 2-D synthetic-target array had
a velocity of (£[ng,ny|,¥[ne, ny]) = .(2m/s,2.304m/s). In order to examine the azimuth-
displacement compensation performance of the matched-filter SAR processing algorithm
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F, Center Frequency 33.5 GHz
Ae Center Wavelength 0.009 m
a1, | Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 512 pulse/s
N Complex Samples per Range Profile 512
2K Pulses per Synthetic Aperture 512
R, Center Slant-Range 2778 M
v SAR Platform Velocity 100 m/s
g Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0s
L Synthetic-Aperture Length 100 m
Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m
by Range Resolution 0.25 m
Oz Azimuth Resolution 0.25 m
Ay MF Range-Velocity Quantization 0.25 m/s
A MF Azimuth-Velocity Quantization 0.5 m/s
Aw, | Range Width of MF Image-Window 4m
Aw, | Azimuth Width of MF Image-Window | 8 m

Table 4.9: System Parameters for Matched-Filter SAR Processing Examples (Synthetic
Point Scatterers Embedded in Real Clutter )

separately from its velocity-estimation and image-focusing performance, we chose the range
velocities 9[ng, ny] such the synthetic-target scatterers “wrapped around” to their actual
position in the SAR image. This was done for all of the experimental examples presented
in this chapter.

For this first example, the spatial spacing §gm of the scatterers in the synthetic target
was chosen to be 1m. Each of these scatterers had an amplitude of 40dB, which was slightly
greater than the amplitude of the man-made scatterers in the clutter image, as shown in the
- stationary-target conventional SAR images of Figure 4.46 and Figure 4.47. A cross-section
of the stationary-target conventional SAR image (at y = —4m) is also shown in Figure
+ 4.48. Here, we see three peaks corresponding to scatterers #’s 0, 2, and 5.

The conventional SAR images of these moving synthetic point-scatterers after being
embedded in the background-clutter SAR image are shown in Figure 4.49 and Figure 4.50.
A cross-section of the conventional SAR image (at y = —4m) is also shown in Figure 4.51.
Here, we see that the image of the moving point-scatterers is blurred to the point so as to
be essentially useless the purposes of automatic-target recognition (if used directly).

For the matched-filter, we used the clutter-nulling cross-interference reduction algorithm
(which was discussed in Section 4.3.3) with a threshold of of Ay [ne,ny] = 10|x‘ico NV [ng, nyll.
The resulting target-detection statistic, x[ny,ny], is shown in Figure 4.52. Here, the loca-
tions of the nine moving synthetic scatterers (plus the two stationary “man-made clutter”
scatterers) become readily apparent from the “darker” areas of this image. For this matched-
filter processing example, we chose a detection-statistic threshold xasax of 6, allowing us
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to capture any slight initial spatial-location variation in the target scatterers without in-
troducing an unacceptable number of false-alarm target locations. A corresponding image
of the scatterer locations which were classified (using this threshold) as belonging to tar-
get scatterers is shown in Figure 4.53. We see that the matched-filter detection scheme
correctly picked the initial location of all of the synthetic moving point-scatterers, plus
the location of the stationary man-made clutter scatterers. we also see that the detection
scheme also picked some spurious false-alarm target locations, especially around the the
stationary man-made clutter scatterers.

In order to compute the median-prefiltered matched-filter velocity estimates (which were
used as the initial conditions for the L;-Norm based velocity-estimation algorithm) we used
median filters with a spatial region-of-interest (ROI) of 0.5m x 0.5m. For the reduced-order
L1-Norm based velocity-estimation algorithm, we used an L; weighting of v4 = 1.1. For the
results presented in this chapter, we did not use a regularization penalty upon the velocity
estimates, which implied Jy(v) = 0. '

The estimated azimuth velocities and range velocities are shown in Figure 4.54 and
Figure 4.55, and in the cross-sections of Figure 4.56 and Figure 4.57. We see from these
cross-sections that the L;-Norm based velocity-estimation algorithm gave reasonable esti-
mates of the velocities of both the synthetic moving point-scatterers and the stationary
man-made clutter scatterers. Note that we still had a few spurious velocity estimates at
the false-alarm spatial locations.

The resulting SAR images generated by the least-squares amplitude-estimation algo-
rithm are shown in Figure 4.58 and Figure 4.59. We see that all nine of the synthetic
moving point-scatterers are now focused and distinct In fact, it compares quite well to the
SAR images formed by the least-squares amplitude-estimation algorithm when the scatterer-
velocities are known exactly, (shown Figure 4.65 and Figure 4.66). The mainlobe height of
the moving-target scatterers in the matched-filter SAR image are approximately 15dB, as
shown in the azimuthal cross-section (at y = —4m) of Figure 4.60 (which again compares
favorably to the cross-section shown in Figure 4.67 of the exact-velocity image , where the
scatterers have a mainlobe height of approximately 20dB) As compared to some of the
moving-target SAR imaging techniques presented in the literature[14, 16, 39], we see that
the matched-filter technique can image both the moving point-scatterers and the stationary
clutter scatterers, even if they are relatively near each other. In terms of automatic tar-
get recognition, the matched-filter shows promise for having the ability to focus a moving
* target, while preserving nearby stationary “landmark” scatterers.

However, we found that if we used the range-velocity induced azimuth-displacement
compensation scheme directly (with the velocities generated by the L;-Norm based velocity-
estimation algorithm), we found that the resulting corrected SAR image of the moving
target scatterers would exhibit relatively severe distortions in the azimuth positions (due
to the fact that the azimuth displacement errors are proportional to the errors in the range
velocities divided by the SAR system’s look-angle rotation rate ofé = 0.036rad/s). In order
to reduce these distortions, we averaged the range velocity over a set of “bright” scatterer
locations where both the target-detection statistic, x[ns,ny|, was greater than 8.5, and
‘where the magnitude of estimated range-velocity was greater than 0.5m/s, as shown in
Figure 4.61. For this case, the average range velocity for these scatterer locations was

computed to be 2.3753m/s. We then used this velocity to compensate the scatterers at
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the previous “target” spatial locations (with x[ng,n,] < 6) which had an estimated range-
velocity with a magnitude greater than 0.5m/s. As shown in Figure 4.63 and Figure 4.64,
the resulting azimuth-displacement error for the moving target was approximately 2m.
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Figure 4.45: Conventional SAR Image of Stationary Clutter Scene used for Synthetic-Target
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Figure 4.46: Stationary-Target Conventional SAR Image with a Scatterer Spacing of 1m
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Conventional SAR Image (Expanded)
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Figure 4.47: Expanded Stationary-Target Conventional SAR Image with a Scatterer Spac-
ing of 1m
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Figure 4.48: Cross-Section of Stationary-Target Conventional SAR Image (at y = —4m)
with a Scatterer Spacing of 1m




164 CHAPTER 4. MATCHED-FILTER SAR PROCESSING

Conventional SAR Image
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Figure 4.49: Conventional SAR Image for Rigid-Body Purely-Translational Motion with a
Scatterer Spacing of 1m

Conventional SAR Image (Expanded)
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Figure 4.50: Expanded Conventional SAR Image for Rigid-Body Purely-Translational Mo-
tion with a Scatterer Spacing of 1m




4.7. EXPERIMENTAL RESULTS 165

40— ! ! !

Magnitude (dB)

Figure 4.51: Cross-Section of Conventional SAR Image (at y = —4m) for Rigid-Body
Purely-Translational Motion with a Scatterer Spacing of 1m
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.Figur‘e 4.52: Detection Statistic for Rigid-Body Purely-Translational Motion with a Scat-
terer Spacing of 1m
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Figure 4.53: Selected Target Scatterers for Rigid-Body Purely—Translatmnal Motion with a
Scatterer Spacing of 1m
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Figure 4.54: Estimated Azimuth-Velocity Field  for Rigid-Body Purely-Translational Mo-
tion with a Scatterer Spacing of 1m
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Figure 4.55: Estimated Range-Velocity Field g for Rigid-Body Purely-Translational Motion
with a Scatterer Spacing of 1m
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Figure 4.56: Cross-Section of Estimated Azimuth-Velocity Field £ (at y = —4m) for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 1m
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Figure 4.57: Cross-Section of Estimated Range-Velocity Field ¢ (at y = —4m) for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 1m

Processed SAR Image

Figure 4.58: Matched-Filter SAR Image for Rigid-Body Purely-Translational Motion with
a Scatterer Spacing of 1m
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Processed SAR Image (Expanded)

y (m)

Figure 4.59: Expanded Matched-Filter SAR Image for Rigid-Body Purely-Translational
Motion with a Scatterer Spacing of 1m
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Figure 4.60: Cross-Section of Matched-Filter SAR. Image (at y = —4m) for Rigid-Body
Purely-Translational Motion with a Scatterer Spacing of 1m
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Estimated ydot Values used for Azimuth Correction
—6.5F T T T T T T T r
Bt 4
-5.5 1
5t . | B | 1 ]
—a5) ]
E
= 4f _
g 1 n |
—S.SF 1
=3r ' k 1
-2.5 T
-2F 4
-1 .5L N L L L L L 1
-1 -10 -9 -8 -7 -6 -5 -4 -3 -2
x (m)

Figure 4.61: Estimated Range-Velocity Values used for Azimuth-Displacement Compensa-
tion for Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 1m
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Figure 4.62: Azimuth-Displacement Compensated Matched-Filter SAR Image for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 1m
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Figure 4.63: Expanded Azimuth-Displacement Compensated Matched-Filter SAR Image

for Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 1m
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Figure 4.64: Cross-Section of Azimuth-Displacement Compensated Matched-Filter SAR
Image (at y = —4m) for Rigid-Body Purely-Translational Motion with a Scatterer Spacing
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Figure 4.65:

Exact-Velocity Matched-Filter SAR Image
Translational Motion with a Scatterer Spacing of 1m
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Figure 4.66: Expanded Exact-Velocity Matched-Filter SAR Image for Rigid-Body Purely-
Translational Motion with a Scatterer Spacing of 1m
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- Figure 4.67: Cross-Section of Exact-Velocity Matched-Filter SAR Image (at y = —4m) for
Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 1m
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Rigid-Body Temporally-Constant Velocity Translational Motion with a Scat-
terer Spacing of 0.75m

For this example, we again have nine “synthetic” moving point-scatterers (with an amplitude
of 40dB), with initial positions in a “box” configuration centered at (z,y) = (—6.5m, —dm)
near the two “man-made clutter” high-amplitude scatterers, as shown in the stationary-
target conventional SAR images of Figure 4.68 and Figure 4.69. A cross-section of the
stationary-target conventional SAR image (at y = —4m) is also shown in Figure 4.70.
Here, we see three peaks corresponding to scatterers #’s 0, 2, and 5. As compared to the
previous experimental example, these synthetic scatterers have a slightly smaller spatial
separation of g = 0.75m, in order to illustrate the imaging resolution limitations of the
matched-filter algorithm.

We again have rigid-body target purely-translational motion, i.e., all of the nine moving
synthetic-target point-scatterers had a velocity of (Z[nz, ny|, [nz, nyl) = (2m/s, 2.304m/s).
As shown in Figures 4.71- 4.73, we see that the conventional SAR image is essentially useless
for the purposes of automatic target recognition. v

For the matched-filter, we used the clutter-nulling cross-interference reduction algorithm
with a threshold of of Ar[ng, n,] = IOIACONV[nI,ny]I. The resulting target-detection
statistic is shown in Figure 4.74. Again we see that the locations of the nine synthetic
moving point-scatterers (plus the two stationary “man-made clutter” scatterers) are again
readily apparent from the “darker” areas of this image. For comparison purposes, we
again chose a detection-statistic threshold xarax of 6 we used in the previous example.
The resulting target scatterer locations are shown in Figure 4.75. As compared to the
previous example, we see that the matched-filter detection scheme has generated slightly
more spurious false-alarm locations.

In order to compute the median-prefiltered matched-filter velocity estimates , we used
median filters with a spatial region-of-interest (ROI) of 0.5m x 0.5m. For the reduced-order
L,-Norm based velocity-estimation algorithm, we used an L; weighting of y4 = 1.1 (which
was identical to the first example). The estimated azimuth velocities and range velocities
are shown in Figure 4.76 and Figure 4.77, and in the cross-sections of Figure 4.78 and
Figure 4.79. As compared to the previous example, we see from the velocity-field cross-
~ sections that the matched-filter has a slightly larger azimuth-velocity error for scatterer #

5.

The matched-filter SAR images are shown in Figure 4.80 and Figure 4.81. Here, we see
that all of the target scatterers are focused and distinct. However, from the cross-section
plot of Figure 4.82, we see that the scatterers are not as sharply focused as the previous
case with the scatterer spacing of 1m. For this case, we only have a mainlobe height of
about 12dB. The SAR images formed by the least-squares amplitude-estimation algorithm
when the scatterer-velocities are known exactly are shown Figure 4.87 and Figure 4.88. Just
as with the previous example, the scatterers have a mainlobe height of approximately 20d B,
as shown in Figure 4.89.

For the azimuth-displacement compensation, we again averaged the range velocity over
a set of “bright” scatterer locations where both the target-detection statistic, x[ng,ny],
was greater than 8.5, and where the magnitude of estimated range-velocity was greater
than 0.5m/s, as shown in Figure 4.83. For this example, the average range velocity for
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these scatterer locations was computed to be 2.2745m /s, which was slightly better than the
average-velocity computed for the previous example One explanation for this smaller error
bias is that (unlike for the azimuth velocity, as we saw in the velocity-field cross-section
of Figure 4.78), the range-velocity is improved (for purely-translational rigid-body motion)
when the scatterer energy is more concentrated (due to the smaller spacing).

We then used this velocity to compensate the scatterers at the previous “target” spatial
locations (with x[nz,n,] < 6) which had an estimated range-velocity with a magnitude
greater than 0.5m/s. As shown in Figure 4.85 and Figure 4.86, the resulting azimuth-
displacement error for the moving target was approximately 1m, which again was somewhat
better than the previous example (due to the smaller average estimation-error in the range
velocity).
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Figure 4.68: Stationary-Target Conventional SAR Image with a Scatterer Spacing of 0.75m
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Figure 4.69: Expanded Stationary-Target Conventional SAR Image with a Scatterer Spac-

ing of 0.75m
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Figure 4.70: Cross-Section of Stationary-Target Conventional SAR, Image (at y = —4m)
with a Scatterer Spacing of 0.75m
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Figure 4.71: Conventional SAR Image for Rigid-Body Purely-Translational Motion with a
Scatterer Spacing of 0.75m
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Figure 4.72: Expanded Conventional SAR Image for Rigid-Body Purely-Translational Mo-
tion with a Scatterer Spacing of 0.75m
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Figure 4.73: Cross-Section of Conventional SAR Image (at y = —4m) for Rigid-Body
Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.74: Detection Statistic for Rigid-Body Purely-Translational Motion with a Scat-

terer Spacing of 0.75m
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Figure 4.75: Selected Target Scatterers for Rigid-Body Purely-Translational Motion with a

Scatterer Spacing of 0.75m
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Estimated xdot

Figure 4.76: Estimated Azimuth-Velocity Field ¢ for Rigid-Body Purely-Translational Mo-
tion with a Scatterer Spacing of 0.75m
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Figure 4.77: Estimated Range-Velocity Field y for Rigid-Body Purely-Translational Motion
with a Scatterer Spacing of 0.75m
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Figure 4.78: Cross-Section of Estimated Azimuth-Velocity Field z (at y = —4m) for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 0.75m

1.5F T

ydot

x (m)

Figure 4.79: Cross-Section of Estimated Range-Velocity Field § (at y = —4m) for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.80: Matched-Filter SAR Image for Rigid-Body Purely-Translational Motion with
a Scatterer Spacing of 0.75m
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Figure 4.81: Expanded Matched-Filter SAR Image for Rigid-Body Purely-Translational
Motion with a Scatterer Spacing of 0.75m
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Figure 4.82: Cross-Section of Matched-Filter SAR Image (at y = —4m) for Rigid-Body
Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.83: Estimated Range-Velocity Values used for Azimuth-Displacement Compensa-
tion for Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.84: Azimuth—Displacement Compensated Matched-Filter SAR Image for Rigid-
Body Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.85: Expanded Azimuth-Displacement Compensated Matched-Filter SAR Image
for Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.88: Expanded Exact-Velocity Matched-Filter SAR Image for Rigid-Body Purely-
Translational Motion with a Scatterer Spacing of 0.75m
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Figure 4.89: Cross-Section of Exact-Velocity Matched-Filter SAR Image (at y = —4m) for
Rigid-Body Purely-Translational Motion with a Scatterer Spacing of 0.75m
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Non-Rigid Body Motion with a Scatterer Spacing of 1m

For the previous two experimental examples of matched-filter SAR processing, we strictly
dealt with rigid-body, purely translational motion (i.e., all of the synthetic target scatterers
had identical velocities). For this example, we examine the effects of “non-rigid body”
spatial variations in the azimuthal scatterer velocities. For comparison purposes we again
had nine synthetic moving point-scatterers, with initial positions in a “box” configuration
centered at (z,y) = (—6.5m, —4m) near the two man-made high-amplitude scatterers. The
spatial spacing in the initial positions of the scatterers was chosen to be 1m, which was
identical to the first experimental example. However, we now chose the azimuth velocities
to be samples of a Gaussian random variable, with a mean of 2m/s and a standard-deviation
of 0.5m/s. We also chose the range velocities to be samples of a Gaussian random variable,
with a mean of 2.304m/s and a standard-deviation of 0.25m/s. In particular:

Scatterer #0: (nz0z, nyAy, E[ng, nyl, Y[ne, ny]) = (—6.5m, —4m,2.2071m/s, 2.1224m/s)
Scatterer #1: (ngAg, nyAy, £[ng, nyl, §[na, ny)]) = (—7.5m, —5m, 2.3747m/s,2.0380m/s)
Scatterer #2: (nxAI,nyAy?:b[nz,ny],y[nz,ny]) = (=7.5m,—4m,2.1588m/s,2.2517m/s)
Scatterer #3: (nzAg, nyAy, Z[ng, Ny, Yne, ny]) = (—7.5m, —3m, 2.7581m /s, 2.4445m /s)
Scatterer #4: (nzAz, nyly, T[Ng, Ny, ¥[Ne, ny]) = (—5.5m, —5m, 1.8760m/s,2.3415m/s)
Scatterer #5: (neAg, nyAy, T[ng, nyl, y(nz, nyl) = (—5.5m, —4m, 1.7467m/s,2.3919m/s)
Scatterer #6: (ngAz,nyAy, £[ng, ny], y[ne, ny]) = (—5.5m, —3m, 2.4426m /s, 2.5872m,/ )
Scatterer #7: (ngAz,nyly, £[ng, ny], §[ne, ny]) = (—6.5m, —5m, 1.4893m/s, 2.1508m/s)
Scatterer #8: (ngAz, nyly, Z[ng, 1y, §lne, ny]) = (—6.5m, —3m,1.5111,2.1927m/sm/s)

As before, these synthetic point-scatterers were embedded in the background-clutter SAR
" image as shown in the conventional SAR images of Figure 4.90 and Figure 4.91. As with
the previous examples, we cannot use these blurred images directly for automatic-target
recognition algorithms. In addition, as compared to the previous two examples, we see
severe distortion in the azimuth positions of the nine target scatterers due to the variations
in the range velocities.

For the matched-filter, we used the clutter-nulling cross-interference reduction algorithm
with a threshold of of Ar[ng,ny] = 10|Acony[nz,ny]|. The target-detection statistic is
shown in Figure 4.93. As compared to the rigid-body example with a scatterer spacing of
1m, we see that the initial locations of the scatterers are not quite as distinct. Consequently,
when we used a detection-statistic threshold xasax of 6, we see that the detection scheme
picked slightly more spurious false-alarm target locations, as shown in Figure 4.94. We
again see the effects of the azimuth-position distortion due to the variations in the range-
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velocity induced azimuth displacement (caused by the variations in the range velocity).
Even though the algorithm was able to detect all nine of the target scatterers, there were
relatively large errors in their azimuth positions. (though the detection scheme did correctly
pick the location of the two stationary man-made clutter scatterers). For example, due to
the range-velocity induced azimuth-displacement, scatterer #’s 0, 2, and 5 were detected
at (z,y) = (~1.5m, —4m), (=6.1m, —4m) , and (~7.9m, —4m), respectively, rather than at
their actual positions of (z,y) = (~6.5, —4m), (=7.5m,—4m) , and (=5.5m, —4m) (which
meant that the spatial orientation of the scatterers relative to each other was distorted).

For the median-prefiltering, we used median filters with a spatial region-of-interest (ROT)
of 0.5 x 0.5m. For the reduced-order L;-Norm based velocity-estimation algorithm, we
used an Ly weighting of v4 = 1.1 (which was identical to the first and second examples). The
estimated azimuth velocities and range velocities are shown in Figure 4.95 and Figure 4.96
and in the cross-sections of Figure 4.97 and Figure 4.98 (at y = —4m, corresponding to
scatterers #’s 0, 2, and 5). We see from the cross-section plots that the L;-Norm based
velocity-estimation algorithm was able to capture some of the spatial variations in the
velocities of the synthetic moving point-scatterers, though the velocity estimates are still at
the apparent locations of these scatterers, rather than at their actual physical location. For
example, we see in Figure 4.97 that the estimated azimuth velocities around the apparent
azimuth location of scatterer # 5 (at £ = —7.9m) were slightly lower than the azimuth
velocities around the apparent azimuth location of scatterers #’s 0 and 2, which is consistent
with the fact that this scatterer had a relatively lower azimuth velocity.

The resulting SAR images generated by the least-squares amplitude-estimation rou-
tine are shown in Figure 4.99 and Figure 4.100. Just as with the rigid-body example, the
matched-filter was able to focus both the synthetic moving point-scatterers and the station-
ary man-made clutter scatterers. As shown in the azimuthal cross-section of Figure 4.101,
the mainlobe height of the target scatterers was about 13dB, which was comparable to the
previous rigid-body examples. However, we again see that the azimuth positions of these
scatterers still have fairly severe distortions. Thus we see that the matched-filter algorithm
is able to focus a moving target containing scatterers with relatively- 1ndependent velocities,
but the resulting image will be distorted in azimuth.

For the azimuth-displacement compensation, we again averaged the range velocity over
- aset of “bright” scatterer locations where both the target-detection statistic, x[n, ny], was
greater than 8.5, and where the magnitude of estimated range-velocity was greater than
" 0.5m/s, as shown in Figure 4.102. For this example, the average range velocity for these

scatterer locations was computed to be 2.3260m /s, which was relatively close to the target’s
actual mean azimuth-velocity of 2.304m/s. We then used this velocity to compensate
the scatterers at the previous target spatial locations (with x[ng,ny] < 6) which had an
estimated range-velocity with a magnitude greater than 0.5m/s. As shown in Figure 4.104
and Figure 4.105, the resulting average azimuth-displacement error for the moving target
was approximately 1m. However, the standard deviation of the azimuth-displacement error
was approzimately 4.9m. Thus, we see that even though the algorithm did a reasonable
job of centering the target scatterers around the the correct center-location of the target
(at (z,y) = (—6.5,—4m)), it was not able to correct the relative azimuth distortion of the
scatterer positions (since the Li-Norm based velocity-estimation algorithm did not generate
range-velocity estimates of sufficient accuracy). If we knew the velocities exactly, we see that
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we actually can correct for most of the azimuth distortions, as shown in the exact-velocity
results of Figures 4.106- Figure 4.111.
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Figure 4.90: Conventional SAR Image for Non-Rigid Body Motion with a Scatterer Spacing
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Figure 4.91: Expanded Conventional SAR Image for Non-Rigid Body Motion with a Scat-
terer Spacing of 1m
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Figure 4.92: Cross-Section of Conventional SAR Image (at y = —4m) for Non-Rigid Body
Motion with a Scatterer Spacing of 1m
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Figure 4.93: Detection Statistic for Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.94: Selected Target Scatterers for Non-Rigid Body Motion with a Scatterer Spacing
of 1m
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Figure 4.95: Estimated Azimuth-Velocity Field  for Non-Rigid Body Motion with a Scat-
terer Spacing of 1m
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Figure 4.96: Estimated Range-Velocity Field y for Non-Rigid Body Motion with a Scatterer
Spacing of 1m
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Figure 4.97: Cross-Section of Estimated Azimuth-Velocity Field & (at y = —4m) for Non-
Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.98: Cross-Section of Estimated Range-Velocity Field g (at y = —4m) for Non-Rigid
Body Motion with a Scatterer Spacing of 1m
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Figure 4.99: Matched-Filter SAR Image for Non-Rigid Body Motion with a Scatterer Spac-
ing of 1m
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Estimated ydot Values used for Azimuth Correction
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Figure 4.102: Estimated Range-Velocity Values used for Azimuth-Displacement Compen-
sation for Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.103: Azimuth-Displacement Compensated Matched-Filter SAR Image for Non-
Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.104: Expanded Azimuth-Displacement Compensated Matched-Filter SAR Image

for Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.105: Cross-Section of Azimuth-Displacement Compensated Matched-Filter SAR

Image (at y = —4m) for Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.106: Exact-Velocity Matched-Filter SAR Image for Non-Rigid Body Motion with
a Scatterer Spacing of 1m '
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Figure 4.107: Expanded Exact-Velocity Matched-Filter SAR Image for Non-Rigid Body
Motion with a Scatterer Spacing of 1m
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Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.109: Exact-Velocity Azimuth-Displacement Compensated Matched-Filter SAR Im-
age for Non-Rigid Body Motion with a Scatterer Spacing of 1m
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Figure 4.110: Exact-Velocity Azimuth-Displacement Compensated Matched-Filter SAR Im—
age for Non-Rigid Body Motion with a Scatterer Spacing of 1m

Figure 4.111:

Matched-Filter SAR Image (at y =

Spacing of 1m

40

Magnitude (dB)

Cross-Section of Exact-Velocity Azimuth-Displacement Compensatedb

—4m) for Non-Rigid Body Motion with a Scatterer



4.7. EXPERIMENTAL RESULTS 201

4.7.2 Synthetic-Motion Real Target Embedded in Real Clutter

For this example, we used a 128 x 128 pixel stationary SAR scene (with an approximate
resolution in range and azimuth of of §;, = 0.25m and 6; = 0.25m) consisting of a T-72
tank from the former Soviet Union, in a grass clutter background (shown in Figure 4.112
and Figure 4.113). An azimuthal cross-section (at a range of 0.45m) of the target image
is shown in Figure 4.114 (which shows some of the feature scatterers corresponding to the
tank’s treads centered at approximately (z,y) = (—1m,0.45m) ). This particular image
was part of a spotlight-mode SAR data set collected by Sandia National Laboratory in
1995 under DARPA’s Moving and Stationary Target Acquisition and Recognition (MSTAR)
program. For these examples, we first (manually) segmented the MSTAR SAR scene into
a target portion and a clutter portion, as shown in Figure 4.115 and Figure 4.116. (where
the target portion was chosen such as to include as many of the dominant scatterers of
the tank as possible). We then used the target portion of the MSTAR SAR scene and
used it as an input into our general-motion estimation-theoretic model in order to generate
the synthetic-motion moving-target SAR data. For this example, we gave all the target
scatterers a velocity of (&[ng,ny],9[nz,ny]) = (2m/s,2.304m/s). The parameters of the
estimation-theoretic model were again chosen to be as similar as possible to the 33.5 GHz
Lincoln Laboratory Advanced Detection and Tracking System (ADTS) system operating in
spotlight mode (as shown in Table 4.10).

The synthetic-motion moving-target SAR data was then re-embedded into the stationary
clutter SAR image as shown in the conventional SAR images of Figure 4.117 and Figure
4.118 (along with the azimuthal cross-section (at a range of 0.45m) shown in Figure 4.119).
Here, we see that the added synthetic motion has seriously degraded the image of the target,
as compared to the original MSTAR target-chip stationary image.

For the matched-filter, we used the clutter-nulling cross-interference reduction algorithm
with a threshold of of Ar(ng, ny| = 10|Acony [nz,nyﬂ, which was identical to the thresh-
old used for the previous synthetic-target examples. The resulting matched-filter target-
detection statistic, x[ng,ny), is shown in Figure 4.120. Here, we see that the locations of
only the relatively “bright” moving-target scatterers are apparent (corresponding to the
tread and turret of the T-72 tank). For this example, we used a detection-statistic thresh-
" old xamrax of 2, which was much lower than the threshold xas4x of 6 used in the previous
examples. Again, the detection scheme picked many of the relatively bright moving-target
* scatterers, but it also picked substantially more spurious false-alarm target locations, as
shown in Figure 4.121. Unfortunately, we found that increasing the threshold would cause
the matched-filter detection scheme to miss an unacceptable number of target scatterers.

For the median-prefiltering, we used median filters with a spatial region-of-interest (ROI)
of 0.5m x 0.5m. For the reduced-order L;-Norm based velocity-estimation algorithm, we
used an L; weighting of v4 = 1.1 (which was identical to the previous examples). The
resulting azimuth and range velocity estimates are shown in Figure 4.122 and Figure 4.123
and in the cross-sections of Figure 4.122 and Figure 4.123. We see from these cross-sections
that the matched filter gave a reasonable estimate of the range velocities of the “brighter”
moving target-scatterers (such as the scatterer located at (z,y) = (—1m,0.45)). However,
the matched-filter gave much poorer-estimates of the azimuth velocities. This is consistent
with the first and second synthetic-target examples (rigid-body motion, with a scatterer
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spacing of 1m and 0.75m), where we observed that the azimuth velocity estimate was more
affected by a closer scatterer spacing than the range velocity.

The resulting images generated by the least-squares algorithm are shown in Figure 4.126
and Figure 4.127. Again, we see that the matched-filter based SAR processing algorithm
was able to image only the brighter of the moving target-scatterers (such as the scatterer
located at (z,y) = (—1m, 0.45)). Again, this is due to the azimuth-velocity estimation errors
caused by cross-scatterer interference. If we knew the velocities exactly, as illustrated by
the exact-velocity case in Figure 4.132 and Figure 4.133 (which was nearly identical to the
original stationary MSTAR image), we are able to image nearly all of the target scatterers.

For the azimuth-displacement compensation, we averaged the range velocity over a
set of “bright” scatterer locations where both the target-detection statistic, x[ng, ny], was
greater than 7, and where the magnitude of estimated range-velocity was greater than
0.5m/s, as shown in Figure 4.129. For this example, the average range velocity for these
scatterer locations was computed to be 1.7562m /s, which was significantly worse than the
average-velocities computed for the synthetic target examples (since even the range-velocity
estimates for the brighter scatterers had significant variation). We then used this velocity
to compensate the scatterers at the previous “target” spatial locations (with x[nz,ny] < 6)
which had an estimated range-velocity with a magnitude greater than 0.5m/s. As shown in
Figure 4.130 and Figure 4.131, because of the larger range-velocity, the resulting azimuth-
displacement error for the moving target was approximately 15m, which nearly “wrapped”
the target completely to its initial position in the image.

From this example, we see that the velocity-performance of the matched filter is severely
affected by cross-scatterer interference when the scatterers are relatively close (as with a
real target), even if the velocities are similar. We also see that the azimuth-compensation is
also severely affected by cross-scatterer interference (due to the larger range-velocity errors).
Thus we see the need for some type of regularization upon the scatterer velocities in order
to improve the imaging of closely-spaced scatterers.
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Center Frequency 33.5 GHz
Center Wavelength 0.009 m
Chirp Bandwidth 1.2 GHz
Pulse Repetition Frequency 128 pulse/s
Complex Samples per Range Profile 128
Pulses per Synthetic Aperture 128
Center Slant-Range 2778 M
v SAR Platform Velocity 100 m/s
0 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0s
L Synthetic-Aperture Length 100 m
by Range Resolution 0.25 m
bz Azimuth Resolution 0.25 m
Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m
Ay MF Range-Velocity Quantization 0.25 m/s
A; MF Azimuth-Velocity Quantization 0.5 m/s
Aw, | Range Width of MF Image-Window 4m
Aw, | Azimuth Width of MF Image-Window | 8 m

Table 4.10: System Parameters for Matched-Filter SAR Processing Example (Synthetic-
- Motion Real Target Embedded in Real Clutter )
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Figure 4.112:
Example
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Conventional SAR Image

y (m)

Stationary MSTAR Target Chip for Synthetic-Motion Real

Conventional SAR Image (Expanded

y (m)

x (m)

Moving-Target

Figure 4.113: MSTAR Target Chip for Synthetic-Motion Real Moving-Target Example
(expanded)
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Figure 4.114: Azimuthal Cross-section of MSTAR Target Chip Image at y = 0.45m
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Figure 4.115: Target Portion of MSTAR Target Chip (“Non-White” Part)
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Conventional SAR Jmage
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Figure 4.116: Clutter Portion of MSTAR Target Chip (“Non-White” Part)
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Figure 4.117: Conventional SAR Image for Synthetic-Motion Real Moving-Target Example
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Conventional SAR Image (Expanded)
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Figure 4.118: Expanded Conventional SAR Image for Synthetic-Motion Real Moving-Target
Example
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Figure 4.119: Cross-Section of Conventional SAR Image (at y = 0.45m) for Synthetic-
Motion Real Moving-Target Example
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Detection Statistic
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Figure 4.120: Detection Statistic for Synthetic-Motion Real Moving-Target Example

Scatterers Detected as Targets
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Figure 4.121: Selected Target Scatterers for Synthetic-Motion Real Moving-Target Example
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Estimated xdot

Figure 4.122: Estimated Azimuth-Velocity Field & for Synthetic-Motion Real Moving-
Target Example

Estimated ydot

y (m)

x (m)

Figure 4.123: Estimated Range-Velocity Field ¢ for Synthetic-Motion Real Moving-Target
Example ,
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x (m)

-

Figure 4.124: Cross-Section of Estimated Azimuth-Velocity Field z (at y = 0.45m) for
Synthetic-Motion Real Moving-Target Example
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Figure 4.125: Cross-Section of Estimated Range-Velocity Field y (at y = 0.45m) for
Synthetic-Motion Real Moving-Target Example
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Processed SAR Image
-8 i

Figure 4.126: Matched-Filter SAR Image for Synthetic-Motion Real Moving-Target Exam-
ple

Processed SAR Image (Expanded)

y (m)

Figure 4.127: Expanded Matched-Filter SAR Image for Synthetic-Motion Real Moving-
Target Example
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Figure 4.128: Cross-Section of Matched-Filter SAR Image (at y = 0.45m) for Synthetic-
Motion Real Moving-Target Example

Estimated ydot Values used for Azimuth Correction
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Figure 4.129: Estimated Range-Velocity Values used for Azimuth-Correction of Synthetic-
Motion Real Moving-Target Example
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Processed SAR Image (Azimuth Corrected)
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Figure 4.130: Azimuth-Corrected Matched-Filter SAR Image for Synthetic-Motion Real

Moving-Target Example
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Figure 4.131: Cross-Section of Azimuth-Corrected Matched-Filter SAR Image (at y =

0.45m) for Synthetic-Motion Real Moving-Target Example



214 CHAPTER 4. MATCHED-FILTER SAR PROCESSING

Matched-Filter SAR Image

Figure 4.132: Exact-Velocity Matched-Filter SAR Image for Synthetic-Motion Real Moving-
Target Example

Matched-Filter SAR Image (Expanded)
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Figure 4.133: Expanded Exact-Velocity Matched-Filter SAR Image for Synthetic-Motion
Real Moving-Target Example
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- Figure 4.134: Cross-Section of Exact—Veiocity Matched-Filter SAR Image (at y = 0.45m)
for Synthetic-Motion Real Moving-Target Example .



Chapter 5

Rigid-Body L;-Norm SAR
Processing

N the previous chapter, we presented a matched-filter based estimation-theoretic tech-

nique for imaging moving targets. Recall that the matched-filler SAR processing tech-
nique ysed a multi-dimensional matched-filter as a means of computing a set of scatterer-
velocity estimates which were used as initial conditions for an Lj-norm based estimation
algorithm derived for the spatially-varying temporally-constant velocity (SVTCV) SAR
model (which assumes that the target field consists of a 2 — D array of ideal point scatterers
with spatially independent velocities). Also, recall that this technique works reasonably
well for simultaneously imaging both high-amplitude moving point scatterers and “nearby”
high-amplitude stationary clutter. However, this matched-filter technique gave poor results
for closely-spaced scatterers (due to cross-scatterer interference), even if the scatterers have
similar velocities. This occurs because the matched-filter is optimized for estimating the
parameters of a single point scatterer in the presence of circularly-complex Gaussian white
noise.  Therefore, it may give poor results for some real moving targets. One possible means
of alleviating this problem is to add some type of velocity regularization to the SVICV -
L;-Norm based algorithm.

For some of the motion-compensated SAR imaging techniques presented in the litera-
~ ture [39], the spatially coarse-scale motions of many moving targets-of-interest are modeled
by a 3-D rotating, translating rigid-body (assuming that there is only one target with no
" nearby surrounding high-amplitude clutter scatterers, and assuming that there are not spa-

tially fine-scale motions such as target-articulation and vibration). In addition (at least
for these particular techniques), it has been shown [39] that for a slant-plane type of SAR
data model (such as the SAR data model presented in this thesis in Chapter 2), the SAR
data corresponding to a 3 — D rigid-body target model can be well-approximated by a
data set corresponding to a simpler 2 — D rigid-body model (with the assumption that
the “out-of-plane” rotation of the target is small). Therefore, we can use a parameterized
2 — D rigid-body kinematic model as a means of regularizing the target-scatierer motions
when imaging moving targets. '

~ In this chapter, we present an estimation-theoretic L;-Norm based approach which
exploits a parameterized 2 — D rigid-body temporally-constant velocity kinematic model
(which was presented earlier in Chapter 2) as a means of imaging closely-spaced multiple

216
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. moving scatterers over a given spatial region. In Section 5.1, we detail the development
of a “full” rigid-body L;-Norm based SAR processing algorithm from the fore-mentioned
rigid-body SAR model of Chapter 2. We also discuss in this section some of the imple-
mentation issues associated with this algorithm. In Section 5.2, we present a simplified
purely-translational version of the rigid-body L;-Norm based SAR processing algorithm.
Unlike the “full” rigid-body algorithm presented in Section 5.2, this algorithm does not
estimate rigid-body target’s rotation rate. In Section 5.3, we present some results for both
synthetic moving point scatterers embedded in real clutter and synthetic-motion real targets
embedded in real clutter.

5.1 Full Rigid-Body L;-Norm SAR Processing Algorithm

From Chapter 2, the demodulated (noise-free) SAR data, f[n,k], for a 2 — D array of
point-scatterers (corresponding to a rigid-body target) can be expressed by the following
relation

fln, k) = Z Z Alng, ny) ¢ 3 [($=[n k] —¢y[n kK RB) Aene+(dyInkl+dsln,Kldrp)ny Ay |

wed [#slnkleRE+84[nKlurB | . (5.1)

Here, (Azng, Ayny) are the initial positions (at ¢t = 0) of the point-scatterers belonging to
the 2 — D rigid-body target. The parameters £rp and ygrp are the translational velocities
of the target’s center-of-rotation, while Yrp is the target’s rotation rate. Given this model,
we can write an estimation-theoretic model for the rigid-body temporally-constant veloc-
ity SAR data by including a (zero-mean circularly-complex Gaussian) additive-noise term

nin, kl,

Rigid-Body Temporally-Constant Velocity (RBTCV)
Estimation- Theoretic SAR Data Model
fin, k] = 2, 2n, Alne, ny]S,LRB [ne, vy, 0, klSepp yrs [ k] + nn, K] -
-F<n<d -K<k<K

(5.2)

From Chapter 2, we can express the RBTCV estimation-theoretic model in the following
matrix form

f=F(V)A+7. (5.3)

Here, f is the SAR data, and A is the vector of scatterer intensities, given by

A@m

A=\ A0.1]

(5.4)
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The vector v is the vector of the rigid-body scatterer-velocity parameters

v=| YrB , (5.5)
YRB

and 7 is the additive Gaussian noise. The matrix F(v) has the form
Fv)=[... s[0,0] s0,1] ... ]. (5.6)

Each column vector sy[ng, ny| corresponds to a lexicographical reordering of the complex ex-
ponential basis-function given by s, _[ng,ny, 7, k]Sszs yag [N, k]. Since we assume that the
additive noise 7 is spatially statistically-independent (and isotropic), its spatial-correlation
matrix is given by

K, = B [m"] = o21. (B

Given the rigid-body estimation-theoretic model f = F(v)A + n , the fundamental
objective of the rigid-body Li-norm based SAR processing algorithm is to find the set of

scatterer amplitudes A and scatterer velocity-parameters ¥ = | Trp Ygc Yrg |7 which
minimizes the following Li-norm regularized cost function J(A,v)

J(Av) = [If = F(V)Allfr +7allAllL - (5.8)

From our discussion of the general L;-norm based SAR processing algorithm in Chapter 3,
this cost function is a standard least-squares cost function for f = F(v)A 417, augmented by
an L1 penalty upon the scatterer amplitudes. As compared to the more standard Lo-based
quadratic-regularization penalties (e.g. YAAT A), this type of penalty tends toward sparse
representations of A (i.e., A can be represented by a small number of zero elements).

Given that we assume that the additive noise 7 is spatially statlstlcally independent and
isotropic, the Ly cost function can be simplified to

J(A,v) = ;llf ~F(V)A|I3 +7allAllL . (5.9)
1

For the purposes of estimating A and ¥, we see from this expression that varying the
assumed noise variance 0727 is equivalent to varying the L; weighting v4 (since the location
of the minimum of the simplified version of the cost function J(A,v) is not affected by
multiplying the simplified cost function by a constant). Therefore, for the results presented
in this chapter, we normalized the noise variance to o2 = 1 and just varied the L; weighting

B n
YA, 1.€.,

J(A,v) = ||f =F()A[Z+vallAll1 . (5.10)



5.1. FULL RIGID-BODY L,-NORM SAR PROCESSING ALGORITHM 219

5.1.1 Coordinate-Descent Line-Minimization Implementation of Full Rigid-
Body L;-Norm Algorithm

As discussed in Chapter 3, the most straightforward method for minimizing the L; cost
function (for the spatially statistically-independent additive-noise case) is to use the follow-
ing recursive gradient-descent algorithm

- . aJ(A,v)1H
Anyn = Am—aa [—E’ﬂk_)}
A:Am,v=0m
= A+ aaFEE)[f — F(¥m)An] — aavasgn[An] (5.11)
. A 0J(A,v
bt = smoag® PR ]|
=Am, V=Vm

Gt arR [Af,{ oF
ov

Hr~
O m) (e _ B (9m) A ] . (5.12)
Here, we are simultaneously estimating both A and v . The constants a4 and ay ‘control
the rate of convergence (and stability) of the gradient-descent algorithm.

Recall that the gradient, sgn[A], of the L;-norm of A is discontinuous at A = 0. There-
fore, for the the gradient-descent algorithm, we use the following continuous approximation

(denoted by asgn[A])
[asgn{A]ln.n, = asgn(Alng,ny)
‘ Alng,ny)
Alng, 0] A*ng,ny] + ¢4

(5.13)

where the parameter €4 is an L; approximation constant. This continuous approximation
is simply the gradient of the following approximation to the L;-norm of A

Al = S [Afng,ny)|

Nz Ny

Z Z \/A[n:c: nylA* [Nz, ny] + €% - (5.14)

Nz TNy

Q

From the previously-mentioned discussion of Chapter 3, one major disadvantage of the
gradient-descent implementation is its sensitivity to the presence of local minima in the cost
function J(A,v). For our SAR imaging application, this implies that the gradient-descent
algorithm may converge to a solution set A and ¥ where the gradient of J(A,v) is locally
small, but where the SAR image is not focused. From Chapter 3, we saw that one way of
reducing this sensitivity to local minima is by using the following coordinate-descent line
minimization based algorithm.

For this algorithm (given the L; cost functmn J(A,v)), we first define the following set
of velocity-dependent target-scatterer amplitudes, A(v) :

A(v) = arg mAin [J(A, V)] . (5.15)
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In other words, for a given set of rigid-body velocity parameters v, A(v) is defined as the
set of scatterer amplitudes which minimizes the L; cost function J(A,v). We can evaluate
A(v) (for a given v) by the following version of the previously-presented gradient-descent
algorithm (which incorporates the continuous approximation, asgn[A], to the gradient of
the Ly norm of A) '

~

A1(v) = An(¥) + asaFEW)[f = F(v)An(v)] — cayaasgn[An(v)]  (5.16)

For a given set of rigid-body velocity parameters v (and velocity-dependent target-
scatterer amplitudes A(v)), the real part of the gradient (with respect to the velocity
parameters v) of the Ly cost-function J(A,v) evaluated at A = A(v) is given by

R [BJ(A,V)

_ _ HvaFH(V) CF(OA(y
v HA:A(V) = AT ov [f-FMAMI]| - (5.17)

The coordinate-descent line-minimization algorithm uses this gradient to minimize the L;
cost function in the following manner:

I. For a set of given initial rigid-body velocity-parameters vq, we first compute the
following search direction, dg, given by the negative of the real part of the gradient
(with respect to the rigid-body velocity parameters) of the Ly cost-function J(A,v)
evaluated at A = A(vg) and v = vg

dJ(A,v)

. 5.18
ov ] ‘ A=A(vp),v=vg (1%

1
dQI—EER[

This quantity is then used as the initial condition for a set of recursive coordinate-
descent 1-D line minimizations[5, 15].

II. For each iteration m (given the corresponding set of rigid-body velocity-parameters,
Vom, and given the corresponding direction vector dr,):

A. We perform the following 1 — D minimization over the scalar A
Am = arg min [J(A(vin + Adm), Vm + Adp)] . (5.19)

Essentially, we are searching the velocity-parameter space v along a 1 — D line
(parameterized by the scalar ) defined by v = v, + Ady, for a new value of v
which minimizes the L; cost function.

B. Once we obtain this new minimum, given by
Vm+l = Vm + ;\mdm ) (5'20)

we then compute a new direction vector, dmy1, which we use in the next iteration
of this algorithm to start a new search for a lower minimum.

1, J0J(A,v
drmt1 = —§§R [_(8\1—).]

A=A("m+1),

4 pimdin - (5.21)
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In the literature[5, 15], the scalar p,, for the coordinate-descent line-minimization algo-
rithm is generally given by the following ratio of vector inner products

T
1o [0J(A V) 1o [0J(AV
(2 % [ ov ] l A=A(Vm+1). ) 5% [ ov ] ‘ A=A(vm+1)|

= vt il (5.22)
(%% [waﬁ’v ]‘ﬁzc}:m).) iR [wa‘:'v) ]’J::e("m)r

However, for the results presented in this chapter, we used the following alternative form
for p,, (which has been shown in the literature [5] to be less sensitive to the presence of
local minima in the L; cost function)

T
(%% [MB‘:,_V) ] ‘AiA(Vm+l)v> <%§R [aJ(az‘&,,V) ”A=A("m+1)- N %%R [?J(f’#l ”A=A("m)'>

V:Vm+1 V=Vm

T
l?R AJ(A,v) lﬂ? aJ(A V)
2 ov A=A(vm}, 2 ov A=A(vm),
V=vm v=v.

m

(5.23)

For the coordinate-descent line-minimization algorithm, it can be shown[5, 15] that each
new direction vector d,+1 is approximately orthogonal to the previous direction vector d,.
As compared to the direct gradient-descent algorithm, we see that this algorithm has a
somewhat more robust “global” minima search strategy.

Once we have obtained a convergent estimate ¥ of the velocity-parameters, the focused
SAR image is given by A = A(¥). Recall from Chapter 3 that for higher values of the
Ly weighting v4, the L; imaging technique tends to attenuate most of the target scatter-
ers, except for the “brighter” feature scatterers (which would be advantageous for some
automatic target recognition applications). However, for the results presented in this chap-
ter, we computed the scatterer amplitudes by finding the A which minimized the original
standard least-squares cost function (given that we have obtained a convergent estimate
v of the velocity-parameters from the fore-mentioned coordinate-descent line-minimization
algorithm),i.e.,

A = arg min[J(A,9)] = arg min [l - F()All3] - (5.24)

Note that this is equivalent to 74 = 0. We computed the scatterer amplitudes in this
manner such that as few of the target scatterers as possible were attenuated (for the sake
of comparison to the conventional SAR imaging techniques). This computation was done

by the following recursive gradient-descent algorithm (with Ay = 0)

~ H
Ao = A, —ol?AY)
* 8A Z
A=A,
= A+ oFFI@)f -F@)AL]. (5.25)

For the least-squares cost function, we again normalized the noise variance to a% =1 (since
we assumed that the additive noise was spatially statistically-independent and isotropic).
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5.1.2 Fast Computation of the L; Cost-Function and its Gradient

In the previous section, we presented a coordinate-descent line-minimization technique for
finding estimates of A and v which minimizes the (normalized noise-variance) L; cost
function J(A,v) = ||f — F(v)A||2 + v4l|All;. This involves evaluating both the cost-
function and its gradient, which first involves computation of the following estimate of the
SAR data (given estimates of the scatterer amplitudes A and the scatterer velocities ¥)

f=F()A. (5.26)
In terms of the rigid-body SAR model, this quantity can alternately be expressed by

ol =35 Ay e’ (6216103 . ) Aers +(y k46l ) Sy |
’ - Ty 'Y

wel [#elnklErE+6;[nklURp | | | (5.27)

Then the gradients of the cost function with respect to both A and v (at (A,v) = (A, %))
are given by the following expressions (where f=f-Ff )

~ 1 H
[ﬁ%%ﬁ] = —FY(0)f + qaasen(A] = ~F(9)(f — 1) +7aa5[A]  (5.28)
R [——8‘7(61&;"7) ] = —2R [AH%@—)%] = —2R [AHa—F#(f -1 . (5.29)

In terms of the rigid-body SAR model (with f[n, k] = f[n, k] — f[n, k]), these gradients can
alternately be expressed by

- H
8J(A:‘A’) - [, k)T n,k
[__aA_]M =_Zk:2n: in, ke 7 [#sInHlEna+oslnblins |

—J z [T R[— Py T, y z Nz y'n"k 1';7}” J A
J [(¢ [n,k]—¢y[n,klY R g)Acna+(dy[nk]-+ds k]%’)ns)Ayny] + vaasgn(Alng, ny))

(5.30)

RW@wF
OtrpB

4ﬁEZM%mZme (=jdsln, k) e =7 [PslnklEns+inklins |

Ng TNy

xXe

—j [(q&z[n,k]——qﬁg[n,k]'d.)RB)Aznz+(¢y[n:k]'l‘d’i:[”:k]‘ZRB)Ayny] ] (5.31)
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9YrB

—2R

>3 A lney ] 33 Flno ] (=g, K]) ¢ 77 e tlEns oyl Kl |
kL n

Nz TNy

e -7 |:(¢z [n,k]—¢-‘,}[n,k]"ZRB)Azn$+(¢y [“rk]"‘ﬁb:&[n!k]'zRB)Ayny ] ] (532)

R [aJ(A,v) ] _
Yrs

—2R

S5 A ey 33 Fln, e 7 [$slnklenn+oilnklins |

Ne Ny k
X ( —J [¢z[n’ k]AynyAy - ¢17 [na k]Azn:t ])

=3 [(Beln k=4[ 3D ) Aen (8 [n 6]+ dcln klima) Ay | }

- Xe (5.33)

ey

Rather than evaluating these quantities directly (which can be computationally pro-
hibitive), the following “fast” and easily implementable solutions can be used (with equiv-
alent performance). Let f;[kz, ky| be the following discrete Fourier Transform of Alng,ny]
(which can be computed by standard Fast-Fourier Transform techniques)

Falka by =D "i[nm,ny]e_j[kzak’Azn”kyAkyAyny] :

Nz ny
(5.34)
Then the quantity f[n, k] is equivalent to
; [ Bl bl = 83l Fldn) (bl K] + dsln, Kl gs)
f[n7 k] - fA [ Akz ) Aky
wed [#slnklzRE+85[nklYRp | (5.35)

Here, we are essentially using the rotational-velocity dependent phase-relations (¢z[n, k] —

dg(n, k)i rg) and (¢y[n, k]+¢s[n, k¥ gg) as coordinates for performing a 2— D interpolation
within f;[kg, ky]. The constants Az, and Ay, ‘control the sampling of these phase-relations
to kz and ky.

Let the discrete space-time multi-dimensional signals f(kg,ky,n, k], fing[ka) Ky, K],
and fypp ks, ky, n, k] be given by

Flke,kym, k] = fln, ke 7 el Mionstoiln Mlin |
(Galn, k] — ¢5ln, Kldrs) . (dyln k] + doln, klvgs)
%6 |ky — Ak’i vy — -2 A

(5.36)
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Fin ke byyn k] = Fln, k] (=jdaln, K]) ¢ = [6:lntléns dslobling |
w5 | (el = dyln kldrg) |, (B4l K]+ dslm, Kl no)
’ Ay, i A,
' (5.37)
Finslhe by K] = Fln, K] (—jyln, k]) e = [$elrklina+ostrtling |
5 {,ﬂm _ (Baln —Aqii[n, Honp) j _ (lnoH % f:y[n’ kaB)} |
(5.38)

where 6[kz, ky] is the usual two-dimensional Kronecker delta-function. Then the gradients
of the cost function with respect to both A and v (at (A,v) = (A,¥)) are equivalent
to the following functions of the discrete space-time Fourier Transforms of f (ks ky,m, K],
finslkz, ky,n, k], and fypp ks, ky, n, k]

~ . H
[aj(ai’V)Ln _“ZZZZf[k by, Kl lketes Aanethybey um] (5 30)

ke ky

R [%%ﬂ} = —2R {ZZA*[??.I,TLU]

Tz My

* LN fanslhas by, e ] (5.40)

dJ(A,%) A
R '—" = —2%R A*ln ,n
l dYrB ] ; nz,_, [z ]
S STSTST Funslka, kyom, KTtk s Bana-thy Suy Syma] | (5 47)
ke ky k 7
: [8J(A7V) ] = —2R (30D A'lnay my]Ayny
OYRrB o
XSS S Firplke, ky,n, Kl et Aeniethy iy Aum]
kz ky k T
+ Z E ‘4*['”'1’ ny]Aznm
Ng Ny

x> 3N Z Fins ke, by, m, kle™ ke Dkg Aanathy Ak, Ayny] (5.42)

ke ky k
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® — Input Samples

— Output Samples

Figure 5.1: Polar Format Resampling

Essentially, this part of the implementation scheme performs a set of discrete Fourier
Transforms (which can be computed by standard Fast-Fourier Transform techniques) upon
phase-compensated versions of the SAR data which have been “remapped” according to

the rotational-velocity dependent phase-relations (¢z[n, k] — dy[n, klvrg) and (¢y[n, k] +

¢3[n, k|Ypg). In many ways, this is very similar to the Polar-Format Resampling technique
discussed in Section 3.1 (which is used in conventional SAR imaging for compensating for
range-walk without sacrificing range resolution). From this viewpoint, we are resampling
the phase-compensated SAR data set by interpolating from a polar grid to a rectangular
grid, as shown in Figure 5.1. The angular extent of the polar grid is approximately pro-
portional to the estimated relative SAR-platform-to-target rotation rate, which is given by
the sum of the SAR’s look-angle rotation rate and the estimated target rotation rate, i.e.,

O+ g
5.1.3 Azimuth-Rescaling and Azimuth-Displacement Compensation

Recall from Chapter 2 that the polynomial approximation to the RBTCV phase functions
were given by

boln k] = - 4{ (1 + azp %) [%9‘3 (%)3 —d (T?k)] (5.43)
$yln, k] = - i—t (1 + O‘;:p %) [1 - %92 (%ﬂ (5.44)

daln, k] = i—t (1 + O‘ZP _]7\"7) [é (%)2} (5.45)
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$yln, k] = - i—t <1+QZP %) [(F"I’(k) 292 (%)3] . (5.46)

Upon closer inspection, we see that for 6 “small”, the range-velocity phase-function is
approximately a linear function of the azimuth-position phase function, i.e., dygln, k] =~
—¢z[n, k]/6. This implies that for a given rigid-body target (consisting of a 2-D array of
scatterers with initial spatial positions given by (Azng, Ayny)), a rigid-body imaging algo-
rithm based upon these phase functions will have difficulty distinguishing between the ini-
tial azimuth position Agng and the range-velocity induced displacement zprsp(y[ng, nyl) =
—yrp/0. This is identical to the ambiguity problem (between the initial azimuth position
and the range-velocity induced displacement) we originally encountered with the matched-
filter phase-functions presented in Chapter 4.

In addition, this approximately-linear relationship between ¢y[n, k] and ¢g[n, k] implies
that the rotational-velocity dependent phase-relation (¢z[n, k| — ¢y(n, k]wrp) is approxi-
mately given by

$zln. k] — dyln, klvre ~ (H—wﬂ) bz[n, k] - - (5.47)

This essentially says that a rotating moving target (with a rotation rate of Yrp) will appear
to be scaled in azimuth by 1+ v¥rp/ 6. This relation also implies that a rigid-body imaging
algorithm based upon these phase functions will have difficulty distinguishing between a given
rotating (with a rotation rate of ¥rB) and a non-rotating version of the rotating-target scaled
by 1+1b rB/ 6. In other words, this implies that the rigid-body imaging algorithm will exhibit
very poor target rotation-rate estimation performance.

In an identical fashion to the matched-filter algorithm presented in Chapter 4, we can
alleviate both of these problems for the rigid-body algorithm by first removing the “linear”
portion of the polynomial approximation to the range-velocity phase function, ¢y(n, k] (such
that this function is no longer an approximately-linear function of the azimuth-position
phase-function for 0 small). This leaves the following “leftover” dominant term

¢yln, k] = _ir (a;: n) [(%k—)} : | (5.48)

. This dominant “cross-phase” term between n and k corresponds to motion-induced range-
walk (i.e., when we perform a Fourier Transform with respect to the “fast-time” index n,
we have a displacement in range proportional to the “slow-time” index k). Next, we use the
rigid-body algorithm (with the modified range-velocity phase function) to obtain estimates,

7 rp and W) rp, of the target range velocity and the target rotation rate, respectively. Once
we obtain this estimate, we then rescale the resulting SAR image of the target in azimuth

by the inverse of 1 + Yrp/0, (since we know the “look-angle” rotation rate 6). Lastly, we
use the range-velocity estimate to correct the target scatterer reflectivity estimates for the
range-velocity induced azimuth displacement

1 1.

Alng,ny] = Ay [nw - Z:eyRB’ny] . (5.49)
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5.1.4 Azimuth Resolution

In Chapter 3, we derived values for the spatial sampling intervals, A; and A,. Recall
from this chapter that these sampling intervals were some fraction of the corresponding
approximate “inherent” azimuth and range resolutions, 6, and 6, (whose values we derived
in Chapter 3), of the conventional SAR imaging system. Here, we derive an approximate
value for the inherent azimuth resolution of the rigid-body imaging algorithm, assuming that
we have v4 = 0 (since this is the L; weighting we use to form the final focused SAR image)
and assuming that we have “perfect” knowledge of the rigid-body velocity parameters, zgp,
YrB, and Yrp.

Suppose we are given a rigid-body moving target consisting of a 2 — D array of ideal
point-scatterers with initial positions at (d,ny,dyny) (where {nj,ny} € Target). For 0
“small”, the noiseless SAR data set f[n, k| for this rigid-body target (with known velocity-
parameters, Trpg, Yrp, and 'gbRB) is approximately given by

fln k] =
aTp n i N
ZZA[nmny] 3 Z((0+vre) (B )6;-77.] [Tzzwﬁyny] ej[¢m-[n,k]d:aa+¢g[n,k]gaﬂ] .
—%Sngg -K<k<K

(5.50)

We see that the noiseless data set is essentially given by a scaled Fourier Transform of
the imaged target field reflectivity (distorted by a translational-velocity dependent complex
phase term). The noiseless SAR data can also be expressed in the following form

fln, k] = ZZA[nz,n'] e

’J} ! . > . g
7 kDwe (1+—B“9 )6:713 e —J nBwybyny o j [¢,'[n,k]m53+¢g[n,k]yRB ] ’

ng ny
—%sng% ~K<k<K
(5.51)
" where the discrete spatial frequencies (kAwg,nAwy) are given by
' _ Amfirlk]  4mf [k(2T)
bhw, = TEIE [ — ] (5.52)
4 | aTp t[n) B 4ratin] _4ma [nTp]

nAwy [ I, Tp] = P ~N | (5.53)

This equation essentially says that the SAR data is a (phase-distorted) subset of the target-
field’s 2-D Fourier Transform, where the dimensions of this subset, 2K (1+vrp/0)Aw, and
NAuwy, are given by

orc (14 Ve Aw, = AR (5.54)
6 9 Ac
Now, = 9% (5.55)

C
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In matrix notation, if v, is the vector of known velocity parameters, the noiseless SAR
data is given by f = F(v,)A. This implies that for an L; weighting of y4 = 0, the maximum-
likelihood estimate Apsr for A is approximately given by the following expression

AML = (FH(VO)F(VO)>_1 FH(Vo)f
~ FH(v,)f. (5.56)

This implies that for known velocity parameters, £rp, ¥rp, and v,bRB, the noiseless-data
maximum-likelihood estimate, A[n,,n,] (which is a phase-compensated discrete scaled in-
verse Fourier Transform of f[n,k]) is approximately given by the following set of scaled
sampled 2-D sinc functions (where the spatial sampling intervals are again given by A, and
Ay)

, 1 K %

- —j [#zln.klerRB+04[n.kliRB ]
A[”'I) ny] (2}'{)(]\/') kzz—l{ n_z-:!l f[n) k]e
="32

. v
o o I RAws (H_%E)A”"” ¢ J nBwyAyny=
2K (1 + ¥82) Aw,(Agny — 6,m5)

~ Y > Alng, nylsinc 5

’ !
ng ny

NAw, (A — 6,n!
xsinc( wy y;"y yny))> .

(5.57)

Note that we are implicitly including the target rotation-rate dependent azimuth scale factor
1+ %gp/0. In order for the sinc-function mainlobe “peaks”(corresponding to each point
scatterer) to be distinct, the initial positions (6zn, 6yny) of the ideal point scatterers must
be separated by an azimuth distance and a range distance equal to the respective azimuth
width and range width of the mainlobes of the scaled sampled sinc functions. This implies
~ that the azimuth resolution 6, of the rigid-body SAR imaging algorithm is approximately
given by the following expression

Rigid-Body Azimuth Resolution

6p 22 - L — = A
z (2K(1+¢EE/9)Aw=> 2(6+yrB)T
2

(5.58)

We see that the azimuth resolution of the SAR system for a rotating target is directly
dependent upon the target’s rotation rate. For positive values of ¥grp, we have increased
target resolution, while for negative values of Yrp we have decreased target resolution. In
the literature[18], the spatial sampling-interval constants, Az and Ay, are usually chosen to
be some fraction of , and §, (e.g., Ay = 0.50; and Ay = 0.56,). Note that the approximate
range resolution of the rigid-body algorithm is identical to the approximate range resolution
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of the conventional algorithm presented in Chapter 3, given by

Rigid-Body Range Resolution

6yz2@=

(5.59)

< _
oTp

5.2 Purely-Translational Rigid-Body L;-Norm SAR Process-
ing Algorithm

In this section, we present a simplified version of the rigid-body L;-norm SAR processing

algorithm we derived for the purely-translational case (where we assumed that the rigid-

body rotation rate ¥pp was equal to zero). For this case, the rigid-body demodulated
(noise-free) SAR data f[n, k] is given by

Nz Ny

fln, k] = ZZ Alng, ny] ¢ 7 [$a[n k] Asnc+y[nkIny Ay | 5 [$2[n klirp+6y[n.klins | . (5.60)

where (Azng, Ayny) are the initial positions (at ¢ = 0) of the point-scatterers. We are
essentially assuming that the velocities of all of the scatterers of the target are equal to the
translational velocities (£rp,¥rp) of the target’s center-of-rotation. For the matrix form

of the RBTCV model, given by
f=F(Vv)A +n, (5.61)

the scatterer-velocity parameter vector v is now simply given by

VvV =

TRE ] . (5.62)
YRB

Given this simplified RBTCV model and the corresponding normalized-noise L; cost
function J(A,v) = ||f — F(v)A|l3 4+ vallAl|1, we can use the gradient-directed line mini-
~ mization algorithm to compute an estimate ¥ of the velocity parameters, just as with the
full rigid-body algorithm presented previously. Recall from the discussion of the Fourier-
Transform implementation-method in Section 5.1.2 that this involves computing the fol-
lowing estimate of the SAR data (given estimates of the scatterer amplitudes A and the
scatterer velocities V)

~

fF=F@)A . (5.63)
For the purely-translational case, this quantity can alternately be expressed by

fln, k] = ZZ Alng,n,] e’ [62[n.k]Banatey[nk)Ayny | 4 5 [$clnklERB+é50n.kliRp |
ne Ny .

(5.64)
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The corresponding gradients of the normalized-noise L cost function J(A,v) (at (A,v) =
(A, %)) for the purely-translational case are given by the following expressions (with f[n, k] =

fIn, k] = fln, k)

o H-
9J(A,) s eaimklnn byl

NzNy

w e ~3 Balnk]AonztéynklAyny ] (5.65)

R [aJ(A,v) ] _

OTrpB

—2R |30 D0 A [,y ZZf[n K] (~dsln, k]) ¢ =7 [4slnHlino+2ylnklins |

nz Ny

xe =7 [¢=[n,k]A mna:+¢y[nyk]Ayny ] ] (566)

R [aJ(_A,V) ] _

OYRB

- [ZZA [, ] ZZf[n K] (—jdyln, k) e~ [osimklora+esinkiins |

ng Ny

eI [¢m[n,k]Azn=+¢y[n,k]Ayny ] ] - (5.67)

In terms of the “fast” Fourier-Transform based implementation method presented in
Section 5.1.2, the estimate of the SAR data (given estimates of the scatterer amplitudes A
and the scatterer velocities ¥) is given by the following simplified expression

ikl = £5 [%A[n, k] , ¢yA[n, k]] ¢ 7 [¢clnk)orp+3(nkliRn | (5.68)
: k ky

- where f;[kq, ky] is the following discrete Fourier Transform of Alng,ny] (which can be
computed by standard Fast-Fourier Transform techniques)

Falkar k) = 23 Afng, nylemalketke Senethutug Sma] (5.69)

Nz My

Recall that we can compute the gradients of the L; cost function by the following Fourier
transforms of the discrete space-time multi-dimensional signals Flkz, by, m, K], Finp Eas kysn, k),
and fyRB[kI,ky,n k]

aJ(A, 1"
[ Eﬂi V)} = = SUSUSTS Flke, y,m, Kle ek Aenathi A Avm] (570
nany ke ky k n |

z Y
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222 Anaymy)

Ng Ny

- [8]([&,0)

=2
OTRB } R

X ZZZZfIRB k':c)ky;n k]e—J[kxasz’nrHc Dy Byny] ] (5.71)

’.‘!

0J(A,%) B -
R i:—ay;B—] = 2R %%A [nwany]
X Z Z Z Z fyRB [kx’ ky,n k]e_J[szkzAmnz"‘kyAkyAy'fIy] ] _(5.72)
ke ky

For the purely-translational case, these signals are given by the following (simplified) ex-
pressions

Fllia, by, ] = Fln, Kle = (610 650 Klimn |5 [kz _ gkl Sl ’“]} (5.73)
Ay Ay

Fomslkoskym k) = fln. K] (=jgiln, k) "
o =7 [#:lnKErs+enklinn | g lkm _ ¢>xA[T’LC, k], ky - ¢yA[7:uC k]} (5.74)
fyRB[kmakyan7 k] = f[na k] (_]¢y[n:k])
xe ] [¢o¢[n,k]§:RB+¢g[n,k]@R3 ]6 l: ¢a:l[£:mk] k _ ¢y£r; k]:l .

(5.75)

In a similar fashion to the previous rigid-body L; processing algorithm (which included ro-
tation), we see that this part of the implementation scheme performs a set of discrete Fourier
Transforms (which can be computed by standard Fast-Fourier Transform techniques) upon
~ phase-compensated versions of the SAR data which have been “remapped” according to

the phase-relations ¢z[n,k] and ¢y[n,k]. This is essentially equivalent to the standard
- Polar-Format Resampling algorithm presented in Chapter 3. :

The approximate azimuth resolution of the purely-translational algorithm is identical
to the full rigid-body case

2 (9 + ’lb RB) T
We see that the azimuth resolution is still directly dependent upon the target’s (actual)
rotation rate (even if the algorithm assumes that the target is not rotating). If the target is
actually rotating, we cannot rescale the resulting SAR image in azimuth (since the purely-

translational algorithm does not generate an estimate of the rotation rate 1/}33) However,

we can still compensate for the range-velocity induced azimuth-displacement, since the
algorlthm does estimate the range-velocity yrp.

(5.76)
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5.3 Experimental Results

Here, we present some examples of the motion-compensated imaging capabilities of both
the full rigid-body L;-norm based algorithm (presented in Section 5.1) and the purely-
translational rigid-body L;-norm based algorithm (presented in Section 5.2). In Section
5.3.1, we present some examples where we have a “synthetic” moving target (composed of
a 2-D array of ideal point scatterers) embedded in an actual stationary-clutter conventional
SAR image. In Section 5.3.2, we present some examples where we manually segmented the
conventional SAR image of an actual stationary target into a target portion and a clutter
portion, and used the target portion to generate a synthetic-motion moving target. In
Section 5.3.3, we present a brief summary of the velocity-parameter estimation-performance
of these two algorithms.

From the synthetic-target experimental results of Chapter 4, we found that the imag-
ing performance of the matched-filter SAR processing algorithm presented in that chapter
begins to degrade for closely spaced target scatterers (specifically for a target scatterer
2-D array spacing of 0.75m), even if they have identical velocities. This was true for the
synthetic-motion moving-target example presented in this chapter as well (where all the
scatterers had identical velocities). In order to show the clear utility of the rigid-body
algorithm for imaging closely-spaced scatterers, the synthetic-target experimental exam-
ples we present in this chapter have a closer scatterer 2-D array spacing of 0.5m. For
comparison purposes, we also include in our synthetic-motion moving-target experiments a
purely-translational motion example identical to the synthetic-motion real-target example
in Chapter 4.

As with the experimental examples presented in Chapter 3 and Chapter 4, we assumed
that we were only given the conventional moving-target (complex) SAR images (in the
discrete 2 — D form Aconv[nz, ny]). These images were converted into “raw” demodulated
SAR data f by normalizing the images (by their respective maximum magnitude over ng
and n, , denoted by Apax) and performing a scaled Fourier Transform corresponding to
the “conventional” zero-velocity SAR model, i.e.,

1
f=

= ——FAconv - (5.77)
MAX

Once we obtained a focused image from either of the L; SAR processing algorithms, we
* then post-multiplied this image by Apax.

5.3.1 Synthetic Point-Scatterers Embedded in Real Clutter

In this section, we present a set of experimental examples where we have a synthetic moving-
target (comsisting of a 2 — D array of ideal point-scatterers) embedded in a real stationary
clutter scene. For comparison purposes, we used a clutter scene that was identical to
the clutter scene used for the synthetic-target matched-filter examples in Chapter 4. This
particular scene consisted mainly of trees and grass, as shown in the conventional SAR image
of Figure 5.2 (with an approximate resolution in range and azimuth of of 6, = 0.25m and
8z = 0.25m). In addition, the clutter scene had two man-made high-amplitude scatterers
with a magnitude of about 35dB. :
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We generated the SAR data for these examples by first performing a scaled Fourier
Transform (corresponding to the conventional zero-velocity SAR model) upon the conven-
tional SAR image of the clutter scene. This transformed data was then added to the SAR
data corresponding to the synthetic target (which as stated earlier, consisted of a 2 — D
array of moving ideal point scatterers). As with the matched-filter experimental results pre-
sented in Chapter 4, the synthetic-target portion of the SAR data sets was generated using
the general-motion estimation-theoretic SAR data model presented in Chapter 2, with pa-
rameters chosen to be as similar as possible to the 33.5 GHz Lincoln Laboratory Advanced
Detection and Tracking System (ADTS)[16] system operating in spotlight mode (as shown
in Table 5.1 for the synthetic target).

For all of the synthetic-target examples presented here, the 2 — D target-scatterer array
consisted of nine synthetic moving point-scatterers, just as with the synthetic-data examples
presented in Chapter 4. The initial positions of these scatterers were centered near the
two “man-made” high-amplitude scatterers in the following configuration about the point
(z,y) = (—6.5m, —4m):

Scatterer #0: (ngAz, nyAy) = (—6.5m, —4m)
Scatterer #1: (nmﬁz,nyAy) = (=Tm,—4.5m)

Scatterer #2: (nzAg,nyAy) = (—=7Tm, —4m)

Scatterer #3: (nzAg,nyAy) = (=Tm, —3.5m)

Scatterer #4: (nzAg,nydy) = (—6m, —4.5m)

Scatterer #5: (nzAg,nyAy) = (—6m, —4m)

Scatterer #6: (nzAg,nyAy) = (—6m, —3.5m)
Scatterer #7: (nzAg,nylAy) = (—6.5m, —4.5m)
Scatterer #8: (nyAg,nyAy) = (—6.5m, —3.5m)

We see that the synthetic-target array for this examples had a spatial spacing of 0.5m
with respect to both range and azimuth, which as stated previously, was closer than the
closest-spacing example of 0.75m for the synthetic-target experiments presented in Chapter
4.

For comparison purposes, we show in Figure 5.3 and Figure 5.4 the conventional SAR
images of these synthetic point-scatterers for the case where we have zero velocity (after
we embedded these scatterers in the real clutter SAR image). A cross-section of the zero-
velocity conventional SAR image (at y = —4m) is shown in Figure 5.5 (corresponding to
synthetic-target scatterers #’s 0, 2, and 5). We see that these scatterers have a “relative”
mainlobe peak (which correspond to the depth of the “nulls” between the scatterers) of
about 15dB. '
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F, Center Frequency 33.5 GHz
Ac Center Wavelength 0.009 m
aoT, Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 512 pulse/s
N Complex Samples per Range Profile | 512

2K Pulses per Synthetic Aperture 512

R, Center Slant-Range 2778 M

v SAR Platform Velocity 100 m/s

0 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0s

L Synthetic-Aperture Length 100 m

Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m

by Range Resolution 0.25 m

bz Azimuth Resolution 0.25 m

Table 5.1:- System Parameters for Synthetic-Target L; SAR Processing Examples

e

First Example: Purely Translational Motion

For the first synthetic-target example, all of the nine moving point-scatterers in the 2-D
synthetic-target array had a velocity of (rp,yrB) = (2m/s,2.304m/s). In order to il-
lustrate the performance of the range-velocity induced azimuth-displacement compensation
portion of the Ly SAR processing algorithm, we chose the range velocity ygrp such the
synthetic-target scatterers “wrapped around” to their actual position in the SAR image.
This was done for all of the experimental examples presented in this chapter. Each of these
scatterers had an amplitude of 40dB, which was slightly greater than the amplitude of the
man-made scatterers in the clutter image. The conventional SAR images of these moving
synthetic point-scatterers after being embedded in the background-clutter SAR image are
shown in Figure 5.6 and Figure 5.7. A cross-section of the conventional SAR image (at
y = —4m) is shown in Figure 5.8 (corresponding to synthetic-target scatterers #’s 0, 2, and
5). We see that the image of the moving point-scatterers has degraded to an unacceptable
level for the purposes of automatic-target recognition.

For the full rigid-body Li-norm SAR processing algorithm, we used an L; weighting of
74 = 1 for the velocity-parameter estimation. The 2-D target scatterer array was assumed
to be over a rectangular spatial region centered at (z,y) = (—6.5m, —4m), with an azimuth
width of 8m and a range width of 4m.

The results of the full rigid-body Li-norm SAR processing algorithm are shown in Fig-

ures 5.9 through 5.15. For this example, we obtained estimates of (ZrRB,UrE, YRE) =
(1.75m/s,2.28m/s, —0.0023rad/s). As shown in the image of Figure 5.11, the SAR im-
age of the moving-target scatterers is greatly improved, as compared to the conventional
SAR image shown in Figure 5.7. However, we still see a slight blurring caused by the
azimuthal-velocity estimation error. In the azimuth cross-section plot in Figure 5.12, the
three target scatterers 0, 2, and 5, are focused and distinct, with a relative mainlobe peak
of about 12dB. This is comparable to the results shown in Figure 5.5 for the cross-section
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of the conventional SAR image of the zero-velocity scatterers . Since the algorithm as-
sumes a rigid-body velocity model over the rectangular target spatial-region, we see in
Figure 5.11 that the two stationary man-made clutter scatterers are blurred out, unlike the
corresponding synthetic-target results for the matched-filter presented in Chapter 4 (since
the matched-filter algorithm allows the scatterer velocities within the target spatial-region
to be independent from scatterer to scatterer).

The results from the purely-translational algorithm are shown in Figures 5.16 through
5.22. The assumed target spatial-region was identical to the rectangular assumed target
spatial region of the full-rigid body algorithm (with an azimuth width of 8m and a range
width of 4m, centered at (z,y) = (—6.5m, —4m)). We used an L; weighting of yv4 = 0.8 for
the velocity-parameter estimation. '

For this example, we obtained velocity estimates of (Zrp,9zg) = (1.86m/s,2.40m/s).
We see that the purely-translational algorithm has a slightly smaller azimuthal-velocity
estimation error, as compared to the full rigid-body algorithm (but a slightly larger range-
velocity estimation error). The moving scatterers in the resulting SAR image of Figure 5.18
are slightly more focused in azimuth than the moving scatterers in the resulting SAR image
generated by the full rigid-body algorithm in Figure 5.11. This due to the smaller azimuthal-
velocity estimation error. In the azimuth cross-section plot shown in Figure 5.19, we see that
the three target scatterers are focused and distinct. We also see that the smaller azimuthal-
velocity estimation-error gives us a slightly higher relative mainlobe peak of about 15dB,
just like the full rigid-body algorithm. These results are also comparable to the results
shown in the cross-section of the conventional SAR image of the zero-velocity scatterers in
Figure 5.5.

Recall from Section 5.1.3 that the range-velocity induced azimuth displacement is pro-
portional to the target’s range-velocity divided by the SAR’s look-angle rotation rate. Also
recall from this section that the corresponding azimuth-displacement compensation is sim-
ilarly proportional to the estimated range-velocity divided by the SAR’s look-angle rota-
tion rate, as given by Equation 5.49. This implies that the resulting error in the target’s
azimuth displacement after the azimuth-displacement compensation will be proportional
to the range-velocity estimation-error divided by the SAR’s look-angle rotation rate. Be-
cause the purely-translational algorithm has a larger range-velocity estimation error for this
- example than the full rigid-body algorithm, it exhibits a correspondingly larger azimuth-
displacement compensation-error (by about 2m, as shown in the azimuth-compensated re-
- sults of Figures 5.20 and 5.22, as compared to the full rigid-body azimuth-compensated
results shown in Figures 5.13 and 5.15).
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Figure 5.2: Conventional SAR Image of Stationary Clutter Scene used for Rigid-Body L
SAR-Processing Synthetic-Target Experimental Examples
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Figure 5.3: Conventional SAR Image of Synthetic Target with Zero Velocity
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Figure 5.5: Cross-Section of Conventional SAR Image (at y = —4m) of Synthetic Target

with Zero Velocity
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Figure 5.6: Conventional SAR Image for First Synthetic-Target Example
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Figure 5.8: Cross-Section of Conventional SAR Image (at y = —4m) for First Synthetic-

Target Example
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Figure 5.9: Estimated Target-Velocity Parameters for First Synthetic-Target Example using

Full Rigid-Body Processing Algorithm
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Figure 5.10: L; SAR Image for First Synthetic-Target Example using Full Rigid-Body Pro-
cessing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.11: Target Region of L1 SAR Image for First Synthetic-Target Example using Full

Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement
Compensation)
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Figure 5.12: Cross-Section of L; SAR Image (at y = —4m) for First Synthetic-Target Exam-
ple using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-
Displacement Compensation)
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'Figure 5.13: L; SAR Image for First Synthetic-Target Example using Full Rigid-Body
Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.14: Target Region of L1 SAR Image for First Synthetic-Target Example using Full

Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement
Compensation)
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Figure 5.15: Cross-Section of L; SAR Image (at y = —4m) for First Synthetic-Target Ex-

ample using Full Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-
Displacement Compensation)
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First Synthetic-Target Example
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Figure 5.17: L; SAR Image for First Synthetic-Target Example using Purely-Translational

Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.18: Target Region of L; SAR Image for First Synthetic-Target Example using
Purely-Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.19: Cross-Section of L; SAR Image‘(at y = —4m) for First Synthetic-Target

Example using Purely-Translational Processing Algorithm (Before Azimuth-Displacement
Compensation)
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Figure 5.20: L; SAR Image for First Synthetic-Target Example using Purely-Translational
Processing Algorithm (After Azimuth-Displacement Compensation)
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Figure 5.21: Target Region of L; SAR Image for First Synthetic-Target Example using
Purely-Translational Processing Algorithm (After Azimuth-Displacement Compensation)
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Figure 5.22: Cross-Section of L; SAR Image (at y = —4m) for First Synthetic-Target
Example using Purely-Translational Processing Algorithm (After Azimuth-Displacement
Compensation)
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Second Example: Purely Translational Motion with Reduced Effective Signal-
to-Clutter Ratio (SCR)

For our next synthetic-target example, we illustrate the effects of lowering the target’s effec-
tive Signal-to-Clutter Ratio (SCR) (i.e., lowering the amplitudes of the moving synthetic-
target scatterers, in relation to the amplitudes of the stationary clutter scatterers). Here,
the moving-target scatterer amplitudes were reduced from 40dB to 34dB, which was slightly
less than the amplitudes of the two nearby man-made “bright” stationary scatterers in the
background clutter image.

As with the first example, the synthetic-target consisted of a 2-D array of nine ideal
point-scatterers (with a spatial spacing of 0.5m with respect to both range and azimuth)
with initial positions centered around the point (z,y) = (—6.5m, —4m), near the two “man-
made” high-amplitude scatterers. We again gave the target a purely-translational velocity
of (trp,YrB) = (2m/s,2.304m/s).

For the sake of comparison, the L; weighting of y4 = 1 used for the velocity-parameter
estimation was identical to the L; weighting used for the first example. For the “first-
trial” results of this algorithm, we used an assumed target spatial-region identical to the
rectangular spatial region used by the full rigid-body algorithm for the first example, with
an azimuth width of 8m and a range width of 4m (centered at (z,y) = (—6.5m, —4m)).
Later in this example, we will present results generated by this algorithm where we reduced
the range width of the assumed target region (in order to reduce the influence of the two
bright man-made clutter scatterers).

The “first-trial” results obtained by the full rigid-body Lj;-norm SAR processing al-
gorithm are shown in Figures 5.26 through 5.29. For this example, we obtained velocity-

parameter estimates of (ZrB, rp, Yrp) = (—0.036m/s,0.068m /s, —0.0001rad/s). Because
of the reduced SCR, the rigid-body algorithm now tries to focus the stationary clutter scat-
terers rather than the moving target (though the clutter scatterers are still slightly blurred
in range). From these first-trial results, we can conclude that the full rigid-body algorithm
can only focus targets with a SCR greater than 0dB, i.e., the target scatterers are “brighter”
than the surrounding clutter scatterers.

The purely-translational algorithm used an L; weighting of v4 = 0.8, which was iden-
tical to the weighting used by this algorithm for the first synthetic-target example. The
“first-trial” target spatial-region was also identical, with an azimuth width of 8m and a
" range width of 4m (centered at (z,y) = (—6.5m, —4m)). Just as with the full rigid-body

algorithm, we will later show results where we reduced the range width of this assumed
target region.

The “first-trial” results generated by the purely-translational algorithm are shown in
Figures 5.30 through 5.33. Here, we obtained velocity estimates of (Zrp,¥rg) = (0.135m/s,
0.004m/s). In a similar fashion to the full rigid-body algorithm, this algorithm now tries
to focus the stationary clutter scatterers rather than the synthetic moving target (due to
the reduced SCR). In fact, we see from the SAR image of Figure 5.32 an improvement
in the focusing of the clutter scatterers in comparison to the conventional SAR image of
Figure 5.23. One explanation for this improvement is that fact that this algorithm estimates
the velocity-parameters so as to minimize the Li-norm of the SAR image (where a smaller
Li-norm implies a sharpening of the image focusing). '
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Next, we present results generated by the full rigid-body algorithm when we reduced
the range width of the target spatial region from 4m to 2m. The two bright man-made
clutter scatterers now lie outside of the assumed target region, which sharply reduces their
influence upon the performance of the SAR imaging algorithm. The azimuth width of this
region was kept at 8m, and the L; weighting was kept at y4 = 1. Essentially, we increased
the effective SCR of the target by reducing the mean amplitude of the clutter scatterers in
the target spatial region.

The results generated by the full rigid-body Li-norm SAR processing algorithm with
the reduced target spatial-region are shown in Figures 5.34 th;ough 5.37. For this example,

we now obtained velocity-parameter estimates of (SURBaT&RB,‘LRB) = (1.71m/s,2.24m/s,
0.000027ad/s), which are much improved as compared to those obtained by this algorithm
using the larger target spatial region. However, the velocity-parameter estimation-errors
are slightly greater than the corresponding velocity-parameter estimation-errors of this al-
gorithm for the first synthetic-target example (where we had both a higher SCR and a larger
assumed target spatial-region). As shown in Figure 5.36, we see that the focusing of the
moving-target scatterers is greatly improved, as compared to the “first-trial” full rigid-body
L, SAR image shown in Figure 5.28 (where the algorithm tried to focus the two bright
man-made clutter scatterers rather than the moving target). In the SAR image of Figure
5.35, the two bright man-made stationary clutter scatterers are essentially unchanged from

the conventional SAR image of Figure 5.23 (since they now lie outside of the assumed tar-
get spatial region). In the azimuth cross-section plot of Figure 5.37, we see that the three
target scatterers are focused and distinct, with a relative mainlobe peak of about 10dB.

We also present results generated by the purely-translational algorithm (with a reduced
target spatial region identical to the full rigid-body algorithm) in Figures 5.41 through 5.44.
For this example, we kept the L, weighting at y4 = 0.8.

From this example, we obtained velocity estimates of (zrp,Ygp) = (1.98m/s,2.45m/s).
Similarly to the reduced spatial-region results generated by the full rigid-body algorithm,
these results are much improved as compared to the “first-trial” results generated by the
purely-translational algorithm for this example (using the larger target spatial region). As
shown in Figure 5.43, the focusing of the moving-target scatterers is greatly improved,
as compared to the first-trial results in Figure 5.32. In the azimuth cross-section plot in
" Figure 5.44, the three target scatterers are focused and distinct, with a relative mainlobe

peak of about 13dB. )

' As compared to the estimation-performance of the full rigid-body algorithm with the
reduced target spatial region, the purely-translational algorithm appears to have better
azimuthal-velocity (Zrp) estimation-performance, but worse range-velocity (yrp) estima-
tion performance (which was exactly the case as with the previous synthetic-target example).
Since we have essentially eliminated the influence of the two “bright” stationary scatterers
(because of the reduced target spatial-region), one remaining explanation for these differ-
ences in the estimation-performance is the presence of the “extra” velocity-parameter 'z,b
in the full rigid-body algorithm. This implies that the full rigid-body algorithm’s L1 cost
function will have a somewhat different functional form than the purely-translational algo-
rithm’s L; cost function. Consequently, these two cost functions will not have the same local
minima. Recall from Section 3.1.1 that the primary motivation for using the coordinate-
descent line-minimization routine for the velocity-parameter estimation was to reduce the
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Figure 5.23: Conventional SAR Image for Second Synthetic-Target Examplée

sensitivity of the estimation-performance to local minima in the L; cost function. However,
the parameter estimation-performance of the coordinate-descent line-minimization routine
is still somewhat sensitive to local minima “near” the true global minimum of the L; cost
function. As stated previously, the full rigid-body algorithm’s L; cost function and the
purely-translational algorithm’s L1 cost function will not have the same local minima. This
ultimately implies that the respective coordinate-descent line-minimization routines of these
two algorithms may converge to slightly different values of the translational-velocity param-
eters (ZrB,URp)- :
Recall from the previous discussion of the first synthetic-target example that the error
in the azimuth-displacement after azimuth-displacement compensation is proportional to
the range-velocity error. Therefore, we see a larger azimuth-displacement error after the
~ azimuth-displacement compensation for the target scatterers in Figure 5.47, as compared to
the corresponding results .shown in Figure 5.40 generated by the full rigid-body algorithm
- with the reduced target spatial-region.
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Figure 5.24: Target Region of Conventional SAR Image for Second Synthetic-Target Ex-
ample
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Figure 5.25: Cross-Section of Conventional SAR Image (at y = —4m) for Second Synthetic-
Target Example
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Figure 5.26: Estimated Target-Velocity Parameters for Second Synthetic-Target Example
using Full Rigid-Body Processing Algorithm
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Figure 5.27: L; SAR Image for Second Synthetic-Target Example using Full Rigid-Body
Processing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement Compensa-
tion)
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Figure 5.28: Target Region of L; SAR Image for Second Synthetic-Target Example
using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-
Displacement Compensation)
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Figure 5.29: Cross-Section of L; SAR Image (at y = —4m) for Second Synthetic-Target
Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and
Azimuth-Displacement Compensation) ’
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Figure 5.30: Estimated Target-Velocity Parameters for Second Synthetic-Target Example

using Purely-Translational Processing Algorithm
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Figure 5.31: L; SAR Image for Second Synthetic-Target Example using Purely-

Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.32: Target Region of L; SAR Image for Second Synthetic-Target Example using
Purely-Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.33: Cross-Section of L SAR Image (at y = —4m) for Second Synthetic-Target
Example using Purely-Translational Processing Algorithm (Before Azimuth-Displacement
Compensation)
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Figure 5.34: Estimated Target-Velocity Parameters for Second Synthetic-Target Example
using Full Rigid-Body Processing Algorithm (with Reduced Target Spatial Region)
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Figure 5.35: L; SAR Image for Second Synthetic-Target Example (with Reduced Target
Spatial Region) using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling
and Azimuth-Displacement Compensation)
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Figure 5.36: Target Region of L; SAR Image for Second Synthetic-Target Example (with
Reduced Target Spatial Region) using Full Rigid-Body Processing Algorithm (Before Az-
imuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.37: Cross-Section of L; SAR Image (at y = —4m) for Second Synthetic-Target
Example (with Reduced Target Spatial Region) using Full Rigid-Body Processing Algorithm
(Before Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.38: L; SAR Image (with Reduced Target Spatial Region) for Second Synthetic-
Target Example using Full Rigid-Body Processing Algorithm (After Azimuth Rescaling and

Azimuth-Displacement Compensation)
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Figure 5.39: Target Region of L; SAR Image for Second Synthetic-Target Example (with
Reduced Target Spatial Region) using Full Rigid-Body Processing Algorithm (After Az-

imuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.40: Cross-Section of L; SAR Image with Reduced Target Spatial Region (at y =
—4m) for Second Synthetic-Target Example using Full Rigid-Body Processing Algorithm
(After Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.41: Estimated Target-Velocity Parameters for Second Synthetic-Target Example
using Purely-Translational Processing Algorithm (with Reduced Target Spatial Region)
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Figure 5.42: L; SAR Image for Second Synthetic-Target Example using Purely-

Translational Processing Algorithm with Reduced Target Spatial Region (Before Azimuth-
Displacement Compensation)
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Figure 5.43: Target Region of L; SAR Image for Second Synthetic-Target Example using

Purely-Translational Processing Algorithm with Reduced Target Spatial Region (Before
Azimuth-Displacement Compensation)
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Figure 5.44: Cross-Section of L1 SAR Image (at y = —4m) for Second Synthetic-Target
Example using Purely-Translational Processing Algorithm with Reduced Target Spatial
Region (Before Azimuth-Displacement Compensation)
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Figure 5.45: L; SAR Image for Second Synthetic-Target Example (with Reduced Tar-
get Spatial Region) using Purely-Translational Processing Algorithm (After Azimuth-
Displacement Compensation) ‘
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Figure 5.46: Target Region of L; SAR Image for Second Synthetic-Target Example us-
ing Purely-Translational Processing Algorithm with Reduced Target Spatial Region (After

Azimuth-Displacement Compensation)
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Figure 5.47: Cross-Section of L; SAR Image (at y = —4m) for Second Synthetic-Target
Example (with Reduced Target Spatial Region) using Purely-Translational Processing Al-

gorithm (After Azimuth-Displacement Compensation)
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Third Example: Translational and Rotational Motion

For the next synthetic-target example, we illustrate some of the effects of rotational target
motion upon the performance of both the full rigid-body L;-norm SAR. processing algo-
rithm and the purely-translational Li-norm SAR processing algorithm. As with the two
previous purely-translational examples, we used as our synthetic target a 2-D array of nine
synthetic moving point-scatterers with an amplitude of 40dB. We gave the array of target
scatterers a translational velocity of (Zgrp,yrB) = (2m/s,2.304m/s). But we also gave
the synthetic target a positive rotational velocity of ¥zp = 0.036rad/s about the point
(z,y) = (—6.5m,—4m). This rotation rate was equal to the SAR system’s “look-angle”
rotation rate of # = 0.036rad/s. The conventional SAR image of the synthetic-target
scatterers (after they are embedded in the background-clutter SAR image) is shown in Fig-
ure 5.48 (and in Figure 5.49). A cross-section of the conventional SAR image (at y = —4m)
is shown in Figure 5.50. Just with the previous purely-translational motion examples, we
see that the conventional image has degraded to a level unacceptable for most SAR ATR
applications. In the image of Figure 5.48, we see a “spreading” of the target blur area with
respect to azimuth, caused by the rotation-rate dependent azimuth scale factor 1 + YRB / 6.

For the full rigid-body algorithm, we used an L; weighting of y4 = 0.95 for the velocity-
 parameter estimation. We also assumed a target spatial-region (centered at (z,y) =
(—6.5m, —4m)) identical to the target spatial-region used by this algorithm for the first
synthetic-target example, with an azimuth width of 8m and a range width of 4m. Note
that the assumed target region included the two “bright” stationary man-made clutter scat-
terers. In spite of the azimuth spreading (due to the effects of the target’s rotation), the
target blur area was still contained within the boundaries of the assumed target spatial-
region.

The results generated by the full rigid-body L;-norm SAR processing algorithm are
shown in Figure 5.51 through 5.57. For this rigid-body example, we obtained estimates

of (zrB,Urp, Yrp) = (1.85m/s,2.40m/s,0.025rad/s). As compared to the results gener-
ated by this algorithm for first synthetic-target example (using an identical target spatial
region), we see a smaller error in the estimated azimuth velocity, but a larger error in both
the estimated range velocity and the estimated rotation rate. One hypothesis for the differ-
- ences in these errors is the interaction between the two bright stationary man-made clutter
scatterers and the moving synthetic target scatterers. Later, we will test this hypothesis by
- reducing the range extent of the assumed target spatial region (such that the two “bright”
stationary targets were excluded from this region, just as with the previous reduced-SCR
purely-translational motion synthetic-target example).

In the “first-trial” L; SAR image of Figure 5.53, all of the target scatterers are focused
and distinct, with a relative mainlobe height of about 13dB. However, the stationary man-
made clutter scatterers are blurred out, in a similar fashion to the results obtained by this
algorithm for the first synthetic-target example. We also see the effects of the rotation-rate
dependent azimuth scale factor 1 + YRB / 6. In both the SAR image of Figure 5.53 and
the cross-section plot of Figure 5.54, the synthetic-target scatterers appear to be separated
in azimuth by approximately 1m, since the synthetic moving-target is scaled in azimuth
by 1+ YRB /9 = 2. Recall that the full rigid-body algorithm gave a larger error in the

estimated target rotation rate ¢ rp (as compared to its results for the first synthetic-target
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example). Therefore, when we rescaled the target portion of the SAR image by the inverse

of 14+ 9 rp/0 (as shown in the cross-section plot of Figure 5.57 of the azimuth-rescaled and
azimuth-displacement compensated image of Figure 5.55), we obtained a target scatterer
spacing in azimuth of approximately 0.6m (as compared to the original target azimuth
spacing of 0.5m). We also see in the cross-section plot of Figure 5.57 that we have an
azimuth-displacement error of about 2m, due to the error in the range-velocity estimate.

For the purely-translational algorithm, we used an L; weighting identical to the weight-
ing of 74 = 0.8 used by this algorithm for the first synthetic-target example. The target
spatial region was also identical to the first synthetic-target example (with an azimuth
width of 8m and a range width of 4m, centered at (z,y) = (—6.5m,—4m)). Note that
this target region included the two stationary man-made clutter scatterers. Later, we will
reduce the range extent of the assumed target spatial region, such that the two “bright”
stationary targets were excluded from this region (just as with the previous reduced-SCR
purely-translational motion synthetic-target example).

The “first-trial” results for the purely-translational algorithm are shown in Figures 5.58
through 5.61. We obtained velocity estimates of (Zrp,¥rg) = (1.86m/s,2.40m/s), which
were identical to the velocity estimates obtained by the purely-translational algorithm for
the first synthetic-target example. We see that this velocity estimates were comparable to
the estimates obtained by the full rigid-body algorithm for this example. In Figure 5.60, all
of the target scatterers are focused and distinct, with a relative mainlobe height of about
15dB (as shown in the cross-section plot of Figure 5.61). However, because this algorithm
assumes a zero target rotation rate, the scatterers at the “perimeter” of the moving target
are not as sharply focused in the range direction y as the corresponding scatterers in the
full rigid-body L; SAR image shown in Figure 5.53. After the azimuth-displacement com-
pensation, we see an azimuth-displacement error of about 2m in the cross-section plot of
Figure 5.64, This azimuth-displacement error was caused by the range-velocity estimation-
error, which was comparable to the full rigid-body range-velocity estimation-error. The
scatterers still appeared to be separated in azimuth by about 1m, since we can not rescale
the image in azimuth when using the purely-translational algorithm.

As stated earlier, the full rigid-body algorithm exhibited larger estimation-errors in
" both the range velocity yrp and the rotation rate YrB, in comparison to the corresponding
full rigid-body estimation-errors for the first purely-translational motion case. Recall that
- one hypothesis for these larger errors was the interaction of the rotating synthetic target
with the two “bright” stationary scatterers contained within the assume target spatial
region. In order to test this hypothesis, we reduced the range width of the assumed target
spatial region (centered at (z,y) = (—6.5m,—4m)) from 4m to 2m. This excluded the two
stationary “bright” scatterers (just as with the previous reduced SCR purely-translational
motion synthetic-target example). The azimuth width of the assumed target area was kept
at 8m, and the L; weighting was kept at y4 = 0.95.

The results generated by the full rigid-body L;-norm SAR processing algorithm with
‘the reduced target spatial region are shown in Figures 5.65 through 5.71. For this example,

we obtained velocity-parameter estimates of (Zgp, 7 g5, ¥rp) = (1.83m/s,2.31m/s,0.0016
rad/s). As compared to the first-trial results for the full rigid-body algorithm (with the
larger assumed target area), we see that the exclusion of the two “bright” man-made clutter



264 - CHAPTER 5. RIGID-BODY L;-NORM SAR PROCESSING

scatterers significantly improved the range-velocity estimation-error performance. However,
since the smaller assumed target spatial region excluded a portion of the moving target blur
area (as shown in Figure 5.66), we now have a larger rotation-rate estimation error.

In Figure 5.67, the target scatterers are focused and distinct, with a relative mainlobe
height of about 13dB (as shown in the cross-section plot of Figure 5.68). However, because
of the larger estimation-error in the rotation rate, we see in Figure 5.68 that the scatterers
do not appear to be as sharply focused as they are in the corresponding full rigid-body SAR
image of Figure 5.54 (with the larger assumed target spatial region). After we rescale the
SAR image in azimuth (as shown in Figure 5.69 and Figure 5.71), the scatterers still appear
to be separated in azimuth by approximately 1m, which is due to the larger rotation-
rate estimation-error. However, because of the much smaller range-velocity estimation-
error (in comparison to the range-velocity estimation-error of the full rigid-body algorithm
with the larger assumed target spatial region), we see a correspondingly smaller azimuth-
displacement error.

We next present results obtained by the purely-translational algorithm when the range
width of the assumed target spatial region (centered at (z,y) = (—6.5m, —4m)) was reduced
from 4m to 2m, which excluded the two stationary “bright” scatterers. The azimuth width
of the assumed target area was kept at 8m, and the L, weighting was kept at v4 = 0.8.

The results for the purely-translational algorithm are shown in Figures 5.72 through 5.75.
We obtained velocity-parameter estimates of (Zrg, Jgg) = (1.90m/s,2.42m/s), which were
comparable to the velocity-parameter estimates obtained by the purely-translational algo-
rithm with the larger target region (as well as comparable to the estimates obtained by
this algorithm for the previous purely-translational motion examples). Therefore, we can
conclude that the performance of the purely-translational algorithm is less affected by the
presence of the stationary scatterers than the full rigid-body algorithm, even though the
overall range-velocity estimation-error performance is somewhat poorer. In Figure 5.74, all
of the target scatterers are focused and distinct, with a relative mainlobe height of about
15dB (as shown in the cross-section plot of Figure 5.75). Just like the previous results
generated for this example by this algorithm (with the larger target spatial region), the
scatterers at the “perimeter” of the moving target are not as sharply focused in the range
direction y as they are in the corresponding full rigid-body L; SAR image shown in Fig-
~ ure 5.53 (since the purely-translational algorithm assumes that the target rotation is zero).
But these results were comparable to the results produced by the full rigid-body algorithm
. with an identical smaller assumed target region (shown in Figure 5.67 and Figure 5.68).
However, the full rigid-body algorithm with the smaller assumed target region exhibited
relatively poor rotation-rate estimation-performance for this example. '

After the azimuth-displacement compensation, we see in Figure 5.76 (and in the cross-
section plot of Figure 5.78) an azimuth displacement error of approximately 2m (caused by
the range-velocity estimation-error), which was comparable to the azimuth displacement
error of the full rigid-body algorithm. As with the first-trial results of this algorithm, the
scatterers still appeared to be separated in azimuth by about 1m (since we can not rescale
the image in azimuth).
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Figure 5.48: Conventional SAR Image for Third Synthetic-Target Example

Conventional SAR Image (Expanded)
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kFigure_ 5.49: Target Region of Conventional SAR Image for Third Synthetic-Target Example
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Figure 5.50: Cross-Section of Conventional SAR Image (at y = —4m) for Third Synthetic-
Target Example
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Figure 5.51: Estimated Target-Velocity Parameters for Third Synthetic-Target Example
using Full Rigid-Body Processing Algorithm
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Figure 5.52: L1 SAR Image for Third Synthetic-Target Example using Full Rigid—Body Pro-
cessing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.53: Target Region of L; SAR Image for Third Synthetic-Target Example using Full

Rigid-Body Processing Algorithm (
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Before Azimuth Rescaling and Azimuth-Displacement
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Figure 5.54: Cross-Section of L; SAR Image (at y = —4m) for Third Synthetic-Target

Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and
Azimuth-Displacement Compensation)
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Figure 5.55: L; SAR Image for Third Synthetic-Target Example using Full Rigid-Body
Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.56: Target Region of L; SAR Image for Third Synthetic-Target Example using Full
Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement

Compensation)
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Figure 5.58: Estimated Target-Velocity Parameters for Third Synthetic-Target Example
using Purely-Translational Processing Algorithm
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Figure 5.59: L; SAR Image for Third Synthetic-Target Example using Purely-Translational
Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.60: Target Region of L; SAR Image for Third Synthetic-Target Example using
Purely-Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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’Example using Purely-Translational Processing Algorithm (Before Azimuth-Displacement

Compensation)



272 CHAPTER 5. RIGID-BODY L;-NORM SAR PROCESSING

Processed SAR Image (Azimuth Corrected)

-30 -20 -10 0
x (m)

10 20 30

Figure 5.62: L; SAR Image for Third Synthetic-Target Example using Purely-Translational
Processing Algorithm (After Azimuth-Displacement Compensation)
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Figure 5.63: Target Region of L; SAR Image for Third Synthetic-Target Example using
Purely-Translational Processing Algorithm (After Azimuth-Displacement Compensation)
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Figure 5.64: Cross-Section of L; SAR Image (at y = —4m) for Third Synthetic-Target
Example using Purely-Translational Processing Algorithm (After Azimuth-Displacement

Compensation)
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Figure 5.65: Estimated Target-Velocity Parameters for Third Synthetic-Target Example

using Full Rigid-Body Processing Algorithm (with Reduced Target Spatial Region)



274 CHAPTER 5. RIGID-BODY L;-NORM SAR PROCESSING

Processed SAR Image
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Figure 5.66: L; SAR Image for Third Synthetic-Target Example (with Reduced Target

Spatial Region) using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling
and Azimuth-Displacement Compensation)
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Figure 5.67: Target Region of L; SAR Image for Third Synthetic-Target Example (with Re-

duced Target Spatial Region) using Full Rigid-Body Processing Algorithm (Before Azimuth
Rescaling and Azimuth-Displacement Compensation)
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Figure 5.68: Cross-Section of L; SAR Image (at y = —4m) for Third Synthetic-Target
Example (with Reduced Target Spatial Region) using Full Rigid-Body Processing Algorithm
(Before Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.69: L; SAR Image (with Reduced Target Spatial Region) for Third Synthetic-
Target Example using Full Rigid-Body Processing Algorithm (After Azimuth Rescaling

and Azimuth-Displacement Compensation)



276 - CHAPTER 5. RIGID-BODY L;-NORM SAR PROCESSING

Azimuth-Corrected Processed SAR Image {Expanded)
i

x (m)

o

Figure 5.70: Target Region of L; SAR Image for Third Synthetic-Target Example (with Re-
duced Target Spatial Region) using Full Rigid-Body Processing Algorithm (After Azimuth
Rescaling and Azimuth-Displacement Compensation)
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Figure 5.71: Cross-Section of L; SAR Image with Reduced Target Spatial Region (at y =
—4m) for Third Synthetic-Target Example using Full Rigid-Body Processing Algorithm
(After Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.72: Estimated Target-Velocity Parameters for Third Synthetic-Target Example
using Purely-Translational Processing Algorithm (with Reduced Target Spatial Region)
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Figure 5.73: L1 SAR Image for Third Synthetic-Target Example using Purely-Translational
Processing Algorithm with Reduced Target Spatial Region (Before Azimuth-Displacement

Compensation)
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Figure 5.74: Target Region of L; SAR Image for Third Synthetic—Ta,rget Example using
Purely-Translational Processing Algorithm with Reduced Target Spatial Region (Before
Azimuth-Displacement Compensation)
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Figure 5.75: Cross-Section of L; SAR Image (at y = —4m) for Third Synthetic-Target
Examiple using Purely-Translational Processing Algorithm with Reduced Target Spatial
Region (Before Azimuth-Displacement Compensation)
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Figure 5.76: L1 SAR Image for Third Synthetic-Target Example (with Reduced Target Spa-
tial Region) using Purely-Translational Processing Algorithm (After Azimuth-Displacement

Compensation)
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Figure 5.77: Target Region of L; SAR Image for Third Synthetic-Target Example us-
ing Purely-Translational Processing Algorithm with Reduced Target Spatial Region (After

Azimuth-Displacement Compensation)
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Figure 5.78: Cross-Section of L; SAR Image (at y = —4m) for Third Synthetic-Target
- Example (with Reduced Target Spatial Region) using Purely-Translational Processing Al-
gorithm (After Azimuth-Displacement Compensation)
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5.3.2 Synthetic-Motion Real Targets Embedded in Real Clutter

In this section, we present a series of experimental examples where we manually segmented
the conventional SAR image of an actual stationary target into a target portion and a
clutter portion, and used the target portion to generate a synthetic-motion moving target.
For comparison purposes, we used a 128 x 128 pixel SAR image, with an approximate
resolution in range and azimuth of of 6, = 0.25m and §; = 0.25m. This image was
identical to the stationary-target SAR image used to generate the synthetic-motion real-
target example presented in Chapter 4 for the matched-filter algorithm. It consisted of
a T-72 tank from the former Soviet Union (in a grass clutter background), as shown in
Figure 5.79. This particular image was part of a spotlight-mode SAR data set collected
by Sandia National Laboratory in 1995 under DARPA’s Moving and Stationary Target
Acquisition and Recognition (MSTAR) program. An azimuthal cross-section (at a range of
0.45m) of the target image is shown in Figure 5.81. In this cross-section, we observe some
of the “dominant” feature scatterers corresponding to the tank’s treads, (approximately
located at (z,y) = (—1m,0.45m)).

As with the synthetic-motion real-target example presented in Chapter 4, we manually
segmented the MSTAR SAR scene into a target portion and a clutter portion, as shown in
Figure 5.82 and Figure 5.83. The target portion was chosen such as to include as many of
the “dominant” feature scatterers of the tank as possible. We the used this target portion
as an input into our general-motion estimation-theoretic model in order to generate the
synthetic-motion moving-target data. The moving target was then re-embedded back into
the stationary clutter by adding this generated data to the scaled Fourier Transform of
the stationary-clutter portion (where the scaled Fourier Transform corresponds to the zero-
velocity SAR model). The parameters of the estimation-theoretic model were chosen to be
as similar as possible to the 33.5 GHz Lincoln Laboratory Advanced Detection and Tracking
System (ADTS) system operating in spotlight mode, as shown in Table 5.2.

First Example: Purely Translational Motion

For our first example, we consider the purely-translational motion case (i.e., w rB equal to
zero), where we have a target velocity of (Zrp,yrB) = (2m/s,2.304m/s). This example
" was identical to the synthetic-motion real-target example presented in Chapter 4. As shown
in Figure 5.84, the target motion has significantly degraded the conventional SAR image (in
* comparison to the original stationary-target MSTAR image of Figure 5.79). Therefore, we
can assume that the target motion would cause a similar degradation in the performance
of most SAR-image based ATR algorithms which attempt to use this conventional image
of the moving target. We also see a similar degradation in the azimuthal cross-section
of the conventional image in Figure 5.86 (in comparison to the corresponding azimuthal
cross-section of the original stationary-target MSTAR image, shown in Figure 5.81).

For the full rigid-body Li-norm SAR processing algorithm, we used an L; weighting of
v4 = 0.7 for the velocity-parameter estimation. We assumed a rectangular target spatial
region with an azimuth width of 8m and a range width of 4m, centered at (z,y) = (0m, 0m).
- The results of the full rigid-body L;-norm SAR processing algorithm are shown in
Figures 5.87 through 5.92. For this example, we obtained velocity-parameter estimates of

(ZrB,YrE, YRE) = (2.00m/s,2.28m/s,0.0002rad/s). As shown in Figure 5.88, the L; SAR
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F, Center Frequency 33.5 GHz
Ac Center Wavelength 0.009 m
aTy Chirp Bandwidth 1.2 GHz
fprr | Pulse Repetition Frequency 128 pulse/s
N Complex Samples per Range Profile | 128

2K Pulses per Synthetic Aperture 128

R, Center Slant-Range 2778 M

v SAR Platform Velocity 100 m/s

6 Look-Angle Rotation Rate 0.036 rad/s
2T Dwell Time 1.0s

L Synthetic-Aperture Length 100 m

Ay Range Sampling Interval 0.125 m
Ay Azimuth Sampling Interval 0.125 m

by Range Resolution 0.25 m

b Azimuth Resolution 0.25 m

Table 5.2: System Parameters for the Synthetic-Motion Real-Target L; SAR Processing
Examples

image is greatly improved, as compared to the conventional SAR image of Figure 5.84.
In fact, the image of the T-72 tank is nearly identical to the image of the T-72 tank
in the original MSTAR data of Figure 5.79 (except for sidelobe “streaks” near some of
the “brighter” target feature scatterers). Therefore, we can assume that a SAR-image
based ATR system which uses this image would probably see a similar improvement in
performance (in comparison to its performance when using the conventional SAR image).
The azimuthal cross-section of the L; SAR image In Figure 5.90 is also very similar to the
cross-section of the original MSTAR stationary image shown in Figure 5.81. However, the
nulls between the “dominant” feature scatterers corresponding to the tank treads are not
quite as pronounced. After we performed the azimuth rescaling and azimuth-displacement
compensation, the resulting azimuth displacement error was relatively small (approximately
- 0.75m), as shown in the azimuthal cross-section of Figure 5.92 (due to the relatively small
range-velocity estimation-error).

We show the results from the purely-translational L;-norm SAR processing algorithm
in Figures 5.94 through 5.96. For this algorithm, we used an L; weighting of v4 = 0.98
for the velocity-parameter estimation. Just as with the full rigid-body algorithm, we used
a rectangular spatial target region with an azimuth width of 8m and a range width of 4m,
centered at (z,y) = (0m,0m). _

For the purely-translational algorithm, we obtained velocity-parameter estimates of
(trB,Urp) = (1.52m/s, 2.28m/s). We observe that the purely-translational algorithm has
a somewhat larger azimuth-velocity estimation error, as compared to the azimuth-velocity
estimation error of the full rigid-body algorithm. However, the resulting SAR image in
Figure 5.95 is nearly identical to the original MSTAR image of Figure 5.79, except for the
blurring of the target’s “shadow” upon the clutter background. In fact, we see a slight
improvement in this image, as compared to the corresponding SAR image of the full rigid-
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body Li-norm algorithm in Figure 5.89 (i.e., the sidelobe “streaks” appear to have been
attenuated for some of the brighter feature scatterers). As shown in the azimuthal cross-
section of Figure 5.96, the nulls between the feature scatterers corresponding to the tank
treads are more pronounced, in comparison to the corresponding azimuthal cross-section
for the full rigid-body algorithm, shown in Figure 5.90. As with the full rigid-body results
shown in Figure 5.92, the resulting azimuth displacement error after azimuth-displacement
compensation was relatively small (approximately 0.75m), as shown in Figure 5.92 (due to
the relatively small range-velocity estimation-error).

For the results of the L; full rigid-body algorithm presented in this chapter, we computed
the scatterer amplitudes by minimizing the following standard least-squares cost function
J(A,¥) = ||f —F(¥)A||3 (given that we obtained a convergent velocity-parameter estimate
¥ from the coordinate-descent line-minimization portion of this algorithm). Recall from
Section 3.1.1 that the prime motivation for computing the scatterer amplitudes in this
manner was to reduce the attenuation of the target scatterers as much as possible (for
the sake of comparison to the conventional SAR imaging techniques). In order to examine
the effects of velocity-parameter estimation errors upon the images generated by the full
rigid-body L; algorithm, we include results generated by the standard least-squares cost-
function minimization for this experimental case when the velocity parameters are known
ezactly. As shown in Figure 5.99, the SAR image produced by this minimization (using the
exact velocity parameters) is slightly sharper (as would be expected) than the corresponding
image produced by the full rigid-body algorithm using the estimated velocity-parameters
(shown in Figure 5.88). However, as compared to the image produced in Figure 5.95 by
the purely-translational algorithm, the sidelobe “streaks” near the bright target scatterers
are still somewhat apparent. In the azimuthal cross-section of the “exact-velocity” SAR
image (shown in Figure 5.101), the nulls between the feature scatterers corresponding to the
tank treads are slightly more pronounced, in comparison to the corresponding cross-section
(shown in Figure 5.90) of the rigid-body SAR image produced using the estimated velocity
parameters.
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Figure 5.81: Azimuthal Cross-section of MSTAR Target Chip Image at y = 0.45m
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Figure 5.82: Target Portion of MSTAR Target Chip
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Figure 5.83: Clutter Portion of MSTAR Target Chip (“Non-white” Part)
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Figure 5.84: Conventional SAR Image for First Synthetic-Motion Real-Target Example
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Figure 5.86: Cross-Section of Conventional SAR Image (at y = 0.45m) for First Synthetic-
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Figure 5.87: Estimated Target-Velocity Parameters for First Synthetic-Motion Real-Target
Example using Full Rigid-Body Processing Algorithm
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Figure 5.88: L; SAR Image for First Synthetic-Motion Real-Target Example using Full
Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement
Compensation) :
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Figure 5.89: Target Region of L; SAR Image for First Synthetic-Motion Real-Target Exam-

ple using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-
Displacement Compensation)
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Figure 5.90: Cross-Section of L; SAR Image (at y = 0.45m) for First Synthetic-Motion Real-

Target Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling
and Azimuth-Displacement Compensation)
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Figure 5.91: L; SAR Image for First Synthetic-Motion Real-Target Example using Full

Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement
Compensation)
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Figure 5.92: Cross-Section of L; SAR Image (at y = 0.45m) for First Synthetic-Motion Real-
Target Example using Full Rigid-Body Processing Algorithm (After Azimuth Rescaling and
Azimuth-Displacement Compensation)



5.3. EXPERIMENTAL RESULTS 291

=y
o
T

Azimuth Vel. (m/s)
o
o -
T T

0 i 1 1 1
0 5 10 15 20 25
# of iterations

-
5]

Range Vel. (m/s)
- o N
T T T

1

o
(3]
T

(=]

10 15 20 25
~ # of iterations

(=)
o

Figure 5.93: Estimated Target-Velocity Parameters for First Synthetié—Motion Real-Target
Example using Purely-Translational Processing Algorithm
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Figure 5.94: L; SAR Image for First Synthetic-Motion Real-Target Example using Purely-
Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.95: Target Region of L; SAR Image for First Synthetic-Motion Real-Target Exam-

ple using Purely-Translational Processing Algorithm (Before Azimuth-Displacement Com-
pensation)
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Figure 5.96: Cross-Section of L; SAR Image (at y = 0.45m) for First Synthetic-Motion

Real-Target Example using Purely-Translational Processing Algorithm (Before Azimuth-
Displacement Compensation)
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Figure 5.97: L; SAR Image for First Synthetic-Motion Real-Target Example using Purely-
Translational Processing (After Azimuth-Displacement Compensation)
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Figure 5.98: Cross-Section of L; SAR Image (at y = 0.45m) for First Synthetic-Motion

Real-Target Example using Purely-Translational Processing (After Azimuth-Displacement
Compensation)
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ple using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-

Displacement Compensation)

-2

-1.58

-1

y (m)

a8 - 0
x (m)

Processed SAR Image (Expanded)

Figure 5.100: Target Region of Exact-Velocity L; SAR Image for First Synthetic-Motion
Real-Target Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescal-

ing and Azimuth-Displacement Compensation)
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Figure 5.101: Cross-Section of Exact-Velocity L, SAR Image (at y = 0.45m) for First
Synthetic-Motion Real-Target Example using Full Rigid-Body Processing Algorithm (Before
Azimuth Rescaling and Azimuth-Displacement Compensation)
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Second Example: Translational and Rotational Motion (Positive Rotation)

For the next synthetic-motion real-target example, we illustrate some of the effects of target
rotation, just as with the third synthetic-target example presented in the previous section.
We again have a translational target velocity of (frp,YrB) = (2m/s,2.304m/s). However,
we now have a positive target rotational rate equal to the SAR’s look-angle rotational rate
(i.e., Yrp = 0 = 0.036rad/s). Physically, this corresponds to the moving target rotating in
the d1rect10n of negative “look” angle, which implies that the relative rotation rate between
the target and the SAR platform is larger than 6. As shown in the conventional image of
Figure 5.102, we again see that the target motion has seriously degraded the SAR image,
as compared to the original stationary-target MSTAR image of Figure 5.79. Recall from
Section 5.1.3 that the azimuth scaling of a rotating target is directly dependent upon the
target rotation rate. For this case, the azimuth scale factor for the moving target is given
by 1+ 1,&33 / 6 = 2, which causes the target blur area to appear “spread out” in azimuth.

For the full rigid-body algorithm, we used an L, weighting of y4 = 1 for estimating the
velocity parameters. We assumed a rectangular target spatial region with an azimuth width
of 16m and a range width of 4m, centered at (z,y) = (Om,0m). Since we knew a priori
that the rotating target was scaled in azimuth by a factor of two, we scaled the azimuth
width of the target region of the full rigid-body algorithm by a corresponding factor of two
(in comparison to the target region used in previous purely-translational motion example).
For an actual SAR ATR system based upon this algorithm, the size and location of the
assumed target spatial region would be determined by the size and location of the moving-
target “blur” area in the conventional SAR image.

The results of the full rigid-body L;-norm SAR processing algorlthm are shown in Fig-
ures 5.105 tﬂhrough 5.110. For this example, we obtained velocity-parameter estimates of

(2B, VB, YrE) = (1.97m/s,2.19m/s,0.037rad/s). As compared to the results of the full
rigid-body algorithm for the previous purely-translational motion example, we see a rela-
tively larger estimation error in the range velocity yrp. The focusing of the moving target
in resulting SAR image of Figure 5.106 is still improved, in comparison to the conventional
SAR image of Figure 5.102. However, this image does not appear to be as focused as the
resulting full rigid-body SAR image for the previous purely-translational moving-target case

" in Figure 5.88. The target portion of the SAR image (i.e., the T-72 tank) is a scaled version

of the target portion of the original MSTAR image of Figure 5.79, due to the rotation-rate

- dependent azimuthal scale factor 1 + zp rB/0.

For the full rigid-body algorithm, the target portion of the resulting SAR image in
Figure 5.106 exhibited “streaking” artifacts along the range direction y. As we will show
later, these artifacts are caused by the presence of spatially-periodic “nulls” (with respect to
the azimuth direction) between the target scatterers. An example of the effect of these nulls
is shown in the azimuth cross-section of Figure 5.108. We will also show that the azimuth
location of these nulls are highly spatially-correlated with respect to range. In addition, the
scatterers from a “real” target (such as the T-72 tank) tend to be spatially-distributed (i.e.,
their amplitudes are spatially-correlated in both range and azimuth, as shown in the original

MSTAR image of Figure 5.79). This implies that the amplitudes of the target scatterers

between the nulls will also be correlated with respect to range. Therefore, the azimuth

cross-sections (as a function of range) of any resulting SAR image will be correlated with
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respect to range, thereby producing the streaking artifacts.

One hypothesis for the cause of the spatially-periodic nulls is the interaction between
the rotation-rate dependent azimuthal scale factor 1+ YRB /6 and the azimuthal sampling
interval A, of the original conventional MSTAR image used to generate the SAR data.
Later, we will discuss this hypothesis in more detail when we present the results produced
by the full rigid-body algorithm when the velocity-parameters are known exactly.

The full rigid-body SAR image, (after azimuth-rescaling and azimuth-displacement com-
pensation) is shown in Figure 5.109. The image of the T-72 moving target appears to have
the correct scaling, though it is slightly blurred in comparison to the corresponding SAR im-
age (shown in Figure 5.91) generated by this algorithm for the previous purely-translational
motion example. However, we have an azimuth-displacement error of approximately 4m,
due to the range-velocity estimation-error. Note that the “streaking” artifacts exhibited in
the uncompensated image of Figure 5.106 are no longer present. The azimuthal cross-section
of the azimuth-compensated SAR image is shown in Figure 5.110. As with the previous
purely-translational motion example, the azimuthal cross-section is similar to the azimuthal
cross-section of the original MSTAR stationary image shown in Figure 5.81. However, the
nulls between the “dominant” feature scatterers corresponding to the tank treads are not
quite as pronounced. In addition, the spatially-periodic nulls with respect to the azimuth
direction exhibited in the cross-section (shown in Figure 5.106) of the uncompensated image
are no longer present in this cross-section.

We show the results of the purely-translational L;-norm SAR processing algorithm in
Figures 5.111 through 5.116. For this example, we used an L; weighting of v4 = 0.8 for the
velocity-parameter estimation. We assumed a rectangular target spatial region identical to
the larger target region used by the full rigid-body algorithm for this experimental example
(with an azimuth width of 16m and a range width of 4m, centered at (z,y) = (0m, 0m)).

For this algorithm, we obtained velocity-parameter estimates of (rB,Upp) = (1.95m/s,
2.28m/s). We see that the purely-translational L;-norm algorithm exhibits better estima-
tion performance for these velocity parameters than the full rigid-body algorithm does for
this example (even though the target is rotating). In fact, this algorithm exhibits bet-
ter azimuth-velocity estimation performance for this example than it did for the previous

purely-translational velocity experimental example. One hypothesis for this performance
~ improvement is the increased azimuth spacing between the moving-target scatterers, due
to the rotation-rate dependent azimuthal scale factor 1 + YrB / 0 (which implies less cross-
" interference between these scatterers).

We see in Figure 5.112 that even with the target rotation, the purely-translational
L;-norm algorithm focuses the resulting SAR image almost as well as the full rigid-body
Ly-norm algorithm did in Figure 5.106. However, the SAR image produced by the purely-
translational algorithm exhibited streaking artifacts identical to the streaking artifacts ex-
hibited by the SAR image produced by the full rigid-body algorithm. As with the full
rigid-body SAR image, these artifacts are caused by the interaction between the range-
correlated spatially-periodic “nulls” (with respect to the azimuth direction, as shown in
the azimuth cross-section of Figure 5.114) and the spatially-distributed real-target scatter-
ers. Recall that one hypothesis for the cause of these nulls is the interaction between the
rotation-rate dependent azimuthal scale factor 1+¢ rB/ 6 and the azimuth sampling interval
of the original corwentlonal MSTAR image used to generate the SAR data. We will discuss

O
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this hypothesis in more detail later when we present the exact-velocity results for the full
rigid-body algorithm.

The SAR image produced by the purely-translational algorithm after azimuth displace-
ment compensation is shown in Figure 5.115. In comparison to the compensated image
produced by the full rigid-body algorithm in Figure 5.109, we see a smaller azimuth-
displacement error (of approximately 1m), due to a smaller range-velocity estimation-error.
However, unlike the compensated full rigid-body image, the “streaking” artifacts are still
present, since the image could not be rescaled in azimuth by this algorithm.

As with the previous purely-translational motion example, we include results produced
by the minimization of the standard least-squares cost function J(A,¥) = ||f = F(¥)A]|3 of
the full rigid-body algorithm when the velocity parameters ¥ are known ezactly (in order
to illustrate the effects of velocity-parameter estimation-error upon the images produced by
this algorithm). As shown in Figure 5.117, we see that the target portion of the SAR image
(before azimuth compensation) is a scaled version of the target portion of the original
MSTAR image of Figure 5.79, due to the rotation-rate dependent azimuth scale factor.
However, this image is better focused (as would be expected) than the images produced
with estimated velocity parameters by either the full rigid-body algorithm (in Figure 5.106)
or the purely-translational algorithm (in Figure 5.112). The streaking artifacts along the
range direction y are still apparent in the exact-velocity full rigid-body image. Recall
that these artifacts are caused by the interaction of the range-correlated spatially-periodic
nulls (with respect to the azimuth direction, as shown in the azimuthal cross-section of
Figure 5.119) with the spatially-distributed real-target scatterers. We will discuss the cause
of these nulls in more detail shortly.

After we perform the azimuth-rescaling (according to the exact target rotation rate),
we see that the resulting SAR image in Figure 5.120 is better focused than the correspond-
ing azimuth-rescaled full rigid-body SAR image of Figure 5.109 (produced using estimated
velocity parameters). The streaking artifacts due to the spatially-periodic nulls have again
disappeared. As shown in the azimuthal cross-section of Figure 5.121 the nulls between
the feature scatterers corresponding to the tank treads are more pronounced, in compar-
ison to the azimuthal cross-section of the azimuth-rescaled full rigid-body SAR image in

Figure 5.110.

' As stated previously, the uncompensated exact-velocity SAR image produced by the
full-rigid body algorithm (shown in Figure 5.120) exhibited significant streaking artifacts in
" the range direction (as well as the corresponding full rigid-body SAR image produced using
estimated velocity-parameters, shown in Figure 5.109). These artifacts are caused by the
interaction of range-correlated spatially-periodic “nulls” in the SAR image (with respect
to the azimuth direction, as shown in the cross-section of Figure 5.121) with the spatially-
distributed real-target scatterers. Recall that one hypothesis for the cause of these nulls is
the interaction between the rotation-rate dependent azimuthal scale factor 1 + 1/.)RB / 6 and
the azimuth image sampling-interval A, of the original conventional MSTAR image used
to generate the SAR data. Here, we present this hypothesis in more detail.

 Let Alnj,ny] (where {ng,ny} € Target) represent the (focused) target region of the
conventional MSTAR image used to generate the moving-target SAR data. This target
region is essentially assumed to consist of a 2 — D array of ideal point-scatterers with initial
positions at (Agnl, Ayny ), where A, and A, are the azimuth and range image sampling-
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intervals of the conventional MSTAR image. For a “small” look-angle rotation-rate 9, recall
from Section 5.1.4 that the noiseless SAR data set f[n, k] for a rigid-body moving-target
(with known velocity-parameters, £rp, YrB, and Yrp) is approximately given by

fin, k] =
ZZA[nz,ny] oI 3Z[(0+drs) () 2ent] ,

n’, n’

aTp n !
[75 ﬁAv"v] e [#s[nkl2RE+65[n klirE ]

SO Al e 5 (TR s o sinlsnstsiniting |

—%Sngg —-K<k<K
(5.78)
In this expression, the discrete spatial frequencies (kAwz, nAwy) are given by
_ dnbtrlk] 4 [k(ZT)]
BAwe = == |5F * (5.79)
4m | aTp i[n] 4rat[n]  dma [nTp]
A = —|——=|= = : .

nAwy [ LT, } . — |~ (5.80)

We see that the exact-velocity SAR data set is essentially a scaled Fourier Transform of the
imaged target field reflectivity (distorted by a transla.tmnal-velomty dependent nonlinear
complex phase term).

Recall from Section 5.1.4 that if v, is the vector of known velocity parameters, the
exact-velocity SAR data is given in matrix notation by f = F(v,)A. This implies that the
maximum-likelihood estimate A (which minimizes the standard least-squares cost function
J(A,v,) = ||f = F(v,)A||3), is approximately given by the following expression

~

A = (FI)F(v.))  F(vo)f
~ FE(v,)f. (5.81)

In other words, for known velocity parameters, Zrp, yrB, and ¢RB, the approximation to
~ the maximum-likelihood SAR image (before azimuth-rescaling) Ay[ng,ny] is given by the
following convolution of the conventional MSTAR image A[ng,n,] with a scaled sampled
2-D sinc function (where the spatial sampling intervals are given by A, and A,)

N

Z i fln, ke 7 [#2InKlers+ésinklins |

k=—K p

Avlnz,ny] = (ZK) N)

—j kDwzAgng 6'7 nAwWy Ayny

2K Awz Ay (nx - (1 + 1134;&) n;) sine (NAwyAy(ny - nly)>

X e

= Z Z A[ng,ny]sinc 5 5

nl .nl

(5.82)
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Essentially, this expression is equivalent to first removing the translational-velocity de-
pendent nonlinear phase from the SAR data, then performing a scaled Fourier transform. If
we include the “linear” portion of the phase function ¢y[n, k] (which was discussed in Sec-
tion 5.1.3) in this calculation, we implicitly perform the compensation for the range-velocity
induced azimuth-displacement.

For the MSTAR image used for the results of this chapter, the spatial sampling intervals
A, and A, were chosen to be one-half the respective inherent spatial resolutions 6 and 6, of
the conventional SAR imaging system. Recall from Chapter 3 that these spatial resolutions
were given by

A
6y =2 (ZKZ%) = (5.83)
8, =2 (E;a) = af_rp . (5.84)

This implies that the approximation (before azimuth-rescaling) Aylng,ny] to the exact-
velocity maximum-likelihood SAR image is given by -

) 0y (ne — (1+82) n, -
Aylng,ny) = ; nZ/ Alnl,n,]sine il (gm i) ) sinc (%Ay(;bj ”y)>
= Z ZA N, Ny lsine (w (nm - <1 + }/);;) n;)) sinc (w(ny - n;)) . (5.85)

- Since the variables ng, ny, 1}, and nj, are integer-valued, the unscaled SAR image can be
simplified further to

Aln,my) - (1-i-ﬂ’v—‘9‘3)n’z S%, lny—n; §-12-,

-~ ! 7

Aulriz, ny] ~ {ng,ny} € Target . (5.86)
0 otherwise

For an azimuthal scale factor 1 + 1gp/0 greater than unity (i.e., positive rotation), this -
expression implies that the target region of the unscaled SAR image will ezhibit spatially-
periodic nulls in azimuth with an approzimate period of (1 -I-?JJRB/Q)A meters. We also see
that the spatial location of these nulls is not a function of the discrete-valued range-sampling
variable ny, which implies that these locations will be highly-correlated with respect to the
range direction. '

Another implication of this result is that if we estimate the period of these nulls (from
the SAR image) we can then estimate the target rotation rate. However, for a real moving-
target which is actually physically rotating (rather than the synthetic-motion real target
used for this example), the spatially-periodic nulls may not necessarily be as clearly-defined
in the SAR image, which implies that it may be difficult to estimate this period. However,
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if we have a SAR image of the target when it is stationary, we can estimate the rotation
rate by comparing the relative scaling in azimuth.

For this example, the positive target rotation-rate v,b rB Wwas equal to the SAR system’s
look-angle rotation-rate §. This gave an azimuthal scale factor of 1+¢rp/6 = 2. Recall that
the assumed azimuth sampling interval A, of the MSTAR image was equal to 0.125m. This
implies that the exact-velocity SAR image (before azimuth rescaling) for the full rigid-body
algorithm will exhibit spatially-periodic nulls in azimuth with a period of approximately
(1+ z/}RB/é)A:,; = 0.25m. This indeed is the case, as shown by both the uncompensated
exact-velocity SAR image of Figure 5.117 (where we see that the streaking artifacts are
separated in azimuth by about 0.25m) and the azimuthal cross-section of Figure 5.119. In
addition, we see that the streaking artifacts in the uncompensated full rigid-body SAR image
of Figure 5.106 (computed with estimated velocity-parameters) also had an approximate
azimuth separation of 0.25m (as well as the streaking artifacts in the uncompensated SAR
image of Figure 5.112, computed with the purely-translational algorithm).
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Conventional SAR Image
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Figure 5.102: Conventional SAR Image for Second Synthetic-Motion Real-Target Example
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Figure 5.103: Target Region of Conventional SAR Image for Second Synthetic-Motion Real-
Target Example
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Figure 5.104: Cross-Section of Conventional SAR Image (at y = 0.45m) for Second
Synthetic-Motion Real-Target Example
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Figure 5.105: Estimated Target-Velocity Parameters for Second Synthetic-Motion Real-
Target Example using Full Rigid-Body Processing Algorithm
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Processed SAR Image
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Figure 5.106: L, SAR Image for Second Synthetic-Motion Real-Target Example using Full
Rigid-Body Processing Algorithm (Before Azimuth Rescaling and Azimuth-Displacement
Compensation)
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Figure 5.107: Target Region of L; SAR Image for Second Synthetic-Motion Real-Target

Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and
Azimuth-Displacement Compensation)
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Figure 5.108: Cross-Section of L; SAR Image (at y = 0.45m) for Second Synthetic-Motion
Real-Target Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescal-
ing and Azimuth-Displacement Compensation)
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Figure 5.109: L; SAR Image for Second Synthetic-Motion Real-Target Example using Full
Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-Displacement

Compensation)
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Figure 5.110: Cross-Section of L; SAR Image (at y = 0.45m) for Second Synthetic-Motion
Real-Target Example using Full Rigid-Body Processing Algorithm (After Azimuth Rescal-
ing and Azimuth-Displacement Compensation)

N

Azimuth Vel. (m/s)
— (¢,
T L

d

a
T
1

1 1 1
0 5 10 15 20 25
# of iterations

(=]

N
n
B

g 2 1
e |
;1.5' -
>
5 1
g
To5f -
O A 1 1 | I
0 5 10 15 20 25

# of iterations

Figure 5.111: Estimated Target-Velocity Parameters for Second Synthetic-Motion Real-
Target Example using Purely-Translational Processing Algorithm
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Figure 5.112: L, SAR Image for Second Synthetic-Motion Real-Target Example using
Purely-Translational Processing Algorithm (Before Azimuth-Displacement Compensation)
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Figure 5.113: Target Region of Ly SAR Image for Second Synthetic-Motion Real-Target

Example using Purely-Translational Processing Algorithm (Before Azimuth-Displacement
Compensation)
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Figure 5.114: Cross-Section of L; SAR Image (at y = 0.45m) for Second Synthetic-Motion

Real-Target Example using Purely-Translational Processing Algorithm (Before Azimuth-
Displacement Compensation)
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Figure 5.115: L; SAR Image for Second Synthetic-Motion Real-Target Example using
Purely-Translational Processing (After Azimuth-Displacement Compensation)
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Figure 5.116: Cross-Section of L; SAR Image (at y = 0.45m) for Second Synthetic-Motion

Real-Target Example using Purely-Translational Processing (After Azimuth-Displacement
Compensation)
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Figure 5.117: Exact-Velocity L; SAR Image for Second Synthetic-Motion Real-Target

Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescaling and
Azimuth-Displacement Compensation)
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Figure 5.118: Target Region of Exact-Velocity L; SAR Image for Second Synthetic-Motion
Real-Target Example using Full Rigid-Body Processing Algorithm (Before Azimuth Rescal-
ing and Azimuth-Displacement Compensation)
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Figure 5.119: Cross-Section of Exact-Velocity L; SAR Image (at y = 0.45m) for Second
Synthetic-Motion Real-Target Example using Full Rigid-Body Processing Algorithm (Before
Azimuth Rescaling and Azimuth-Displacement Compensation)
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Figure 5.120: Exact-Velocity L, SAR Image for Second Synthetic-Motion Real-Target Ex-

ample using Full Rigid-Body Processing Algorithm (After Azimuth Rescaling and Azimuth-
Displacement Compensation
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Figure 5.121: Cross-Section of Exact-Velocity L; SAR Image (at y = 0.45m) for Second

Synthetic-Motion Real-Target Example using Full Rigid-Body Processing Algorithm (After
Azimuth Rescaling and Azimuth-Displacement Compensation
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Third Example: Translational and Rotational Motion (Negative Rotation)

For our next synthetic-motion real-target example, we illustrate the effects of negative target
rotation upon the performance of the two L1 SAR processing algorithm. For this éxample
the target’s rotation rate is equal to minus one-half times the SAR’s look-angle rotational
rate (i.e., Yrp = ——9 = —0.018rad/s). Physically, this corresponds to the moving target
rotating in the dlrectlon of positive “look” angle, which implies that the relative rotation
rate between the target and the SAR platform is smaller than 0. As with the previous
examples, we have a translational target velocity of (Zrs,yrB) = (2m/s,2.304m/s).

As shown in the conventional image of Figure 5.122, the target motion has seriously
degraded the SAR image, just as with the previous example with positive rotation. For
this example, the rotation-rate dependent azimuth scale factor is given by 1 +YrB / 6 =0.5.
Therefore, the target blur area appears to be “ shrunken” in azimuth (in comparison to the
target blur area of the conventional SAR image shown in Figure 5.84 for the first purely-
translational motion example).

For the full rigid-body Li-norm SAR processing algorithm, we used an L; weighting of
4 = 0.9 for the velocity-parameter estimation. We assumed a rectangular target spatial
region identical to the region used by this algorithm for the first purely-translational motion
example (with an azimuth width of 8m and a range width of 4m, centered at (z,y) =
(0m, 0m)).

The results of the rigid-body Lj-norm SAR processing algorithm are shown in Fig-
ures 5.125 through 5.130. For this case, we obtained velocity-parameter estimates of

(rB,Urp, VrE) = (1.94m/s,2.21m/s, —0.013rad/s). As compared to the first synthetic-
motion real-target example, we see a larger estimation- error in both the target rotation
rate and the range velocity. One factor contributing to this increased error is the smaller
effective look-angle extent for the SAR system, due to the negative target rotation rate. As
shown in Figure 5.126, the SAR image is still improved, in comparison to the conventional
SAR image of Figure 5.122, even with the larger estimation errors in both the range velocity
and the rotation rate. We again see the effect of the rotation-rate dependent azimuth scale
factor 1 +¢RB/9, in that the target portion of the SAR image of Figure 5.126 is a (smaller)
scaled version of the target portion of the original MSTAR image of Figure 5.79. Since we
" have an azimuth image sampling interval A, = 0.125 equal to the azimuth image sampling
interval of the conventional image, the azimuth scale factor has the effect of “merging” (i.e.,
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