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Abstract
Inference problems, typically posed as the computation of summarizing statistics (e.g.,
marginals, modes, means, likelihoods), arise in a variety of scientific fields and engi-
neering applications. Probabilistic graphical models provide a scalable framework for
developing efficient inference methods, such as message-passing algorithms that exploit
the conditional independencies encoded by the given graph. Conceptually, this frame-
work extends naturally to a distributed network setting: by associating to each node and
edge in the graph a distinct sensor and communication link, respectively, the iterative
message-passing algorithms are equivalent to a sequence of purely-local computations
and nearest-neighbor communications.

Practically, modern sensor networks can also involve distributed resource constraints
beyond those satisfied by existing message-passing algorithms, including e.g., a fixed
small number of iterations, the presence of low-rate or unreliable links, or a communi-
cation topology that differs from the probabilistic graph. The principal focus of this
thesis is to augment the optimization problems from which existing message-passing
algorithms are derived, explicitly taking into account that there may be decision-driven
processing objectives as well as constraints or costs on available network resources. The
resulting problems continue to be NP-hard, in general, but under certain conditions be-
come amenable to an established team-theoretic relaxation technique by which a new
class of efficient message-passing algorithms can be derived.

From the academic perspective, this thesis marks the intersection of two lines of
active research, namely approximate inference methods for graphical models and de-
centralized Bayesian methods for multi-sensor detection. The respective primary con-
tributions are new message-passing algorithms for (i) “online” measurement processing
in which global decision performance degrades gracefully as network constraints become
arbitrarily severe and for (ii) “offline” strategy optimization that remain tractable in
a larger class of detection objectives and network constraints than previously consid-
ered. From the engineering perspective, the analysis and results of this thesis both
expose fundamental issues in distributed sensor systems and advance the development
of so-called “self-organizing fusion-layer” protocols compatible with emerging concepts
in ad-hoc wireless networking.

Thesis Supervisor: Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

PROBLEMS of inferring, estimating or deciding upon the value of a (hidden) random

vector based on the observed value of a related random vector are fundamental to

a variety of scientific fields and engineering applications. Canonical examples include

hypothesis testing in applied statistics [44], spin classification in statistical physics [4],

gene phylogeny in molecular biology [25], block decoding in communication theory [32],

speech recognition in computer science [85] and texture discrimination in image pro-

cessing [120]. Seemingly different computational solution methods that appear across

these traditionally separated fields can all be studied in the formalism of probabilistic

graphical models [28, 49, 51, 60, 79, 117, 120]. Graphical models derive their power by

combining a parsimonious representation of large random vectors with a precise corre-

spondence between the underlying graph structure and the complexity of computing key

summarizing statistics (i.e., marginals, modes, means, likelihoods) to support inference

objectives.

When observations are collected by a network of distributed sensors, application

of the graphical model formalism may at first seem trivial, as there already exists a

natural graph defined by the sensor nodes and the inter-sensor communication struc-

ture. Also, the most efficient solutions to key inference problems can be interpreted

as iterative message-passing algorithms defined on the graph, featuring a sequence of

purely-local computations interleaved with only nearest-neighbor communications and

greatly facilitating distributed implementations. However, questions outside the usual

lines of inquiry arise if the communication structure implied by the network topology

need not be equivalent to the information structure implied by the graphical model.

Even otherwise, popular message-passing algorithms (e.g., belief propagation [79]) are

derived without consideration for the possibility of decision-driven processing goals or

explicit constraints and costs on available network resources (e.g., computation cy-

cles, communication bandwidths). Such issues have already inspired inquiries into the
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robustness of existing message-passing algorithms to unmodeled resource constraints

[18, 24, 47, 77, 78, 90, 95], demonstrating limits to their reliability and motivating al-

ternative distributed solutions that will degrade gracefully even as network constraints

become severe.

This thesis focuses on an important class of network-constrained decision problems,

the key challenge being that the information structure and the network constraints are

generally defined by two different graphs. One graph underlies the probabilistic model

that jointly describes all sensors’ hidden and observable random variables, while the

other graph underlies the communication model that renders the usual graph-based

message-passing algorithms infeasible or unreliable. For example, assuming the special

case where the two graphs are identical, it is well known that the popular belief prop-

agation algorithm ideally requires communication overhead of at least two real-valued

messages per edge. In contrast, our class of problems moves towards having to com-

press, or quantize, these messages such that total communication overhead is at most a

fixed number of finite-alphabet symbols (e.g., two “bits” per edge). Goals of processing

(i.e., decisions to be made by some or all sensors) need to be taken into account to make

best use of these limited bits. The necessary departure from existing message-passing

solutions only becomes more pronounced when the communication graph may differ

from the probability graph.

� 1.1 Motivation

� 1.1.1 A Simple Puzzler

Figure 1.1 depicts a simplest instance of the class of network-constrained decision prob-

lems addressed in this thesis. Four hats, two colored white and two colored black, are

randomly assigned to four different nodes. Each node is able to observe only the hats

in its forward view, yet no node is able to observe beyond the brick wall; that is, nodes

one and two observe only the wall, while node three observes hat two and node four

observes both hats two and three. The decision objective is that exactly one node calls

out the correct color of its own hat, and the network constraint is that no one node

communicates to another (except via the final call).

The problem would be trivial without the network constraint e.g., elect node three

as the leader, making the correct call after node four has communicated the observed

color of hat three. With the network constraint, however, it is not immediately apparent

that there exists a feasible solution with error-free performance. Specifically, if we elect
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(a) Random hat configuration in which node four can always make the correct call.

(b) Random hat configuration in which no one node can always make the correct call.

Figure 1.1. Illustration of the two types of hat configurations that arise in the simple network-

constrained inference problem considered in Section 1.1. The configuration in (a), in which case node

four can always make the correct call, occurs only one-third of the time. Two-thirds of the time node

four faces the hat configuration in (b), in which case its call amounts to a blind guess.

nodes one or two to make the call, each knowing only that its own hat is equally-likely to

be white or black, there is 50% chance of error. If node three makes the call, knowing

that there are exactly two hats of each color and thus always choosing the opposite

color of hat two, there is 33% chance of error. Electing node four to make the call also

leads to 33% chance of error: while the correct call is easily made when node four faces

the hat configuration of Figure 1.1(a), two-thirds of the time node four faces the hat

configuration of Figure 1.1(b) and its information degenerates to that of nodes one or

two.

The best solution, feasible yet also achieving zero error, is for nodes three and four

to cooperatively exercise a leadership role; that is, if node four makes the call only

when facing the hat configuration in Figure 1.1(a), then upon not hearing from node

four, node three can deduce its own hat must be different from hat two and itself make

the correct call. Note that the selective silence, resourcefully communicating one bit of

information from node four to node three, is maximally informative only because all of

the nodes a-priori agree on its meaning in the global context of the probabilistic model

and inference objective; that is, not only must nodes three and four appropriately

coordinate their leadership roles, nodes one and two must also agree to never enter

into their respective leadership roles. Stated more generally, to maintain satisfactory

decision performance subject to severe network constraints, every node must acquire a
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fairly rich understanding of the global problem before it can determine a local rule that

is simultaneously resourceful and informative to the team [42, 86].

� 1.1.2 Collaborative Self-Organizing Sensor Networks

The vision of collaborative self-organizing sensor networks, a confluence of emerging

technology in both miniaturized devices and wireless communications, is important to

numerous scientific fields and engineering applications e.g., geology, biology, surveil-

lance, fault-monitoring [19, 34, 45, 87, 92, 124]. Their promising feature is the oppor-

tunity for each spatially-distributed sensor node to receive measurements from its local

environment and transmit information that is relevant for effective global decision-

making. No matter the specific application, because each node possesses only finite

battery power, the design of a network-wide measurement processing strategy faces an

inherent yet complex tradeoff between maximizing the application-layer global objec-

tive of decision-making performance and the network-layer global objective of energy

efficiency.

Most classical decision-theoretic problem formulations are agnostic about explicit

constraints or costs on algorithmic resources (e.g., computation cycles, communica-

tion bandwidths). In turn, while perhaps providing a useful benchmark on achievable

decision-making performance, a classically-derived measurement processing strategy is

unlikely to admit an energy-efficient distributed implementation. Conversely, suppose

each node implements a local measurement processing rule that is classically-derived

as if assuming complete isolation from all peripheral nodes. Then, especially when lo-

cal measurements are strongly correlated and constraints on computation or inter-node

communication are severe, the resulting network-wide strategy may become overly my-

opic, in the sense that the achieved decision-making performance is unsatisfactory for

the application at hand long before the end of the network’s operational lifetime.

A wireless sensor network therefore befits a measurement processing strategy that

is both optimized for application-layer decision performance and subject to energy-

based constraints dictated by the network layer. On the other hand, because an ad-hoc

network is anticipated to repeatedly self-organize (e.g., to stay connected due to node

dropouts, link failures, etc.) over its lifetime, we should anticipate having to repeat-

edly re-optimize the network-constrained strategy. So, unless this offline optimization

algorithm is itself amenable to an energy-efficient distributed implementation, there

is little hope for maintaining application-layer decision objectives without also rapidly

diminishing the network-layer resources that remain for actual online measurement pro-
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Figure 1.2. Extrapolation of the simple hat problem depicted in Figure 1.1 in ways motivated by

sensor network applications. Each sensor node i receives noisy measurements from its local environment,

may share compressed information over low-rate or unreliable communication links with its neighbors

and, ultimately, may form its own local state estimates. However, these spatially-distributed nodes

are generally initialized without detailed knowledge of the environment beyond its nearest neighbors,

suggesting some amount of costly communication is essential. The core design problems arise due to

the competing global objectives of maximizing application-layer decision performance and maximizing

network-layer energy efficiency.

cessing. In particular, it must be that the price of performing these intermittent offline

optimizations can be amortized over a substantial number of online usages, so that the

total network resources consumed for offline purposes still represents only a modest

fraction of the resources available over the total operational lifetime.

Figure 1.2 extrapolates from the simple hat problem discussed in the preceding sub-

section in ways motivated by emerging concepts in wireless sensor networks. The ran-

dom hat configurations correspond to states of the global environment, each spatially-

distributed node receiving a noisy measurement related only to the state of its local

environment. A node calling out its own hat color corresponds to a sensor provid-

ing an estimate of its local state to the network “gateway,” which in general can in-

clude multiple or even all sensor nodes (and any node not in this gateway is thus a

“communication-only” node). The dominant resource constraints are assumed to arise

from the underlying communication medium, the network topology defined by a graph

with each edge representing a point-to-point, low-rate link between two nodes. Every

active symbol transmission consumes significant power, incentivising each node to use

the links with its neighbors selectively, and the multipoint-to-point link into each node

from its neighbors can be unreliable e.g., due to uncoded interference or packet loss.

Especially in sparsely-connected sensor networks, it is clear that some online com-

munication, whether costly or unreliable, is required if each gateway decision is to

have any hope of accounting for valuable information observed by communication-only
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nodes. Even so, the central offline design questions are analogous to those explored

in the simple hat problem. How do the distributed nodes collectively identify and re-

sourcefully disseminate this valuable information? What are the achievable tradeoffs

between the two competing global objectives of minimal “gateway node-error-rate” and

minimal “networkwide link-use-rate?”

� 1.2 Principal Research Areas and Thesis Contributions

The overarching objective in this thesis is to characterize the most resourceful dis-

tributed algorithmic solutions possible for the class of network-constrained decision

problems motivated in the preceding section. The distinguishing assumption from their

unconstrained counterparts is the non-ideal communication model, which includes the

possibilities of finite-rate, unreliable links and a network topology different from the

graph structure underlying the probabilistic model. Explicit constraints and costs on

communication resources, especially if severe, fundamentally alter the character of sat-

isfactory solution methods. For instance, the canonical inference challenge of finding

efficient yet convergent message-passing approximations for online estimation in “loopy”

graphical models is met trivially by constraint. The key challenges rather arise in find-

ing tractable distributed solutions to the associated offline design problems, seeking to

preserve satisfactory decision performance no matter the explicit online constraints.

The team-theoretic approach to network-constrained decision problems described

in this thesis both draws from and contributes to the intersection of two established

research areas, namely approximate inference methods in graphical models [28, 49,

51, 60, 79, 117, 120] and decentralized Bayesian methods in multi-sensor detection

[11, 106, 109, 110]. Our problem formulation leverages the former primarily for compact

representations of the probabilistic model and the latter primarily for non-ideal repre-

sentations of the communication model. Our solution methods contribute, respectively,

• new quantized message-passing algorithms for online estimation in which global

decision performance degrades gracefully as network constraints become arbitrarily

severe and

• new efficient message-passing interpretations for offline optimization that remain

tractable in a larger class of decision objectives and network constraints than

previously considered.

Our distinction between online processing and offline optimization underscores a fun-

damental consideration for engineering collaborative self-organizing sensor networks: if
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self-organization procedures are expected to maintain application-layer decision perfor-

mance in the face of network-layer resource constraints, then assessing the value and

feasibility of design alternatives cannot neglect the fact that such procedures will them-

selves consume some of the resources that the stipulated constraints aim to conserve.

We now survey these two principal research areas, also elaborating upon both their

influence on our approach and our advances on their state-of-the-art.

� 1.2.1 Approximate Inference Methods in Graphical Models

Many important inference problems can be posed as the computation of certain sum-

marizing statistics (e.g., marginals, modes, means, likelihoods) given a multi-variate

probability distribution, where some variables are measured while others must be es-

timated based on the observed measurements. The practical challenges stem from the

fact that, in general, the representation and manipulation of a joint probability dis-

tribution scales exponentially with the number of random variables being described.

The graphical model formalism [28, 49, 51, 60, 79, 117, 120] provides both a compact

representation of large multivariate distributions and a systematic characterization of

the associated probabilistic structure to be exploited for computational efficiency. Fun-

damentally, a graphical model represents a family of probability distributions on the

underlying graph: nodes are identified with random variables and edges (or the lack

thereof) encode Markov properties among subsets of random variables. Indeed, the for-

malized idea of exploiting Markov structure for computational efficiency is evident in a

number of applied statistical fields e.g., Ising models in physics [4], low-density parity

check codes in communications [31], hidden Markov models in speech recognition [85],

multi-resolution models in image processing [120].

A compact representation of joint probability distributions is, by itself, not sufficient

to tractably solve large-scale inference problems. The complexity of inference given a

graphical model also depends strongly on the underlying graph, where the fundamental

divide is whether it contains cycles. For graphs without cycles, or trees, direct computa-

tion of many important summarizing statistics can be organized recursively in a manner

that scales linearly in the number of nodes [120]. The many variants of this basic idea

comprise the class of graph-based message-passing algorithms broadly lumped under

the term of belief propagation [28, 51, 79]. Belief propagation algorithms essentially

amount to iterating over a certain set of nonlinear fixed-point equations [6, 71], relating

the desired inference solution to so-called messages passed between every node and its

immediate neighbors in the graph. Such iterations always converge in a tree-structured
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graphical model, the final messages into each node representing sufficient statistics of

the information at all other nodes. The junction-tree algorithm [49] is a generaliza-

tion of these iterative solution methods, resting upon a precise procedure for adding

edges and aggregating nodes to convert the original cyclic, or loopy, graphical model to

an equivalent tree-structured model. This technique exposes that optimal inference in

graphical models remains tractable only for graphs with narrow tree-width i.e., cyclic

graphs in which only a relatively small number of nodes need to be aggregated to form

the equivalent junction tree.

Many practical applications, of course, give rise to graphical models for which exact

inference is computationally infeasible. Variational methods for approximate inference

start by expressing the intractable solution as the minimizing (or maximizing) argument

of a mathematical optimization problem [50, 52, 113, 123]. One can often recover

existing algorithms from different specializations of such an optimization problem. More

importantly, by relaxing or otherwise modifying this optimization problem to render it

amenable to mathematical programming techniques [5, 6, 7, 9], one can obtain tractable

yet effective approximations to the original inference problem and, ideally, an analysis

of error bounds or other fundamental limits associated with alternative approximations.

Variational methods have recently been the vehicle towards an improved under-

standing of the popular loopy belief propagation (BP) algorithms (see [113] for a broad

view of these ideas). Originally a heuristic proposal to simply iterate the BP fixed-

point equations as if the underlying graph were free of cycles [79], the efficient algo-

rithm (if it converged) found considerable empirical success in a variety of large-scale

practical applications [29, 53, 57, 65, 70]. Early theoretical explorations into its con-

vergence and correctness properties considered special-case cyclic structures (e.g., a

single-cycle graph [114] or the limit of infinite-length cycles [89]). Variational interpre-

tations uncovered links between loopy BP and the rich class of entropy-based Bethe

free energy approximations in statistical physics, collectively establishing that every

graphical model has at least one BP fixed point [99, 123], that stable BP fixed points

are local minima of this free energy [39, 116, 123], sufficient conditions for uniqueness

of BP fixed-points [40, 47, 99], several different characterizations of the convergence

dynamics [47, 63, 67, 94, 111], as well as algorithmic extensions based on higher-order

entropy-based approximations [66, 115, 123] and connections to information geometry

and convex programming [112, 113, 118].

The variational methods in this thesis forge a sharp departure from belief prop-

agation (BP). Firstly, motivated by sensor network applications, we return to BP’s
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traditional message-passing view, assuming that the nodes in the graph physically cor-

respond to spatially distributed sensors/processors. Secondly, our need for approxi-

mation is dominated by (typically severe) constraints on the available communication

resources, assuming a low-rate or unreliable network with topology not necessarily re-

lated to the given probability graph. Efficient computation remains a concern as well:

in particular, we essentially bypass the issue of convergence by allowing from the start

only a fixed small number of message-passing iterations. Altogether, our variational for-

mulation expresses the need to essentially redesign the online measurement processing

algorithm subject to the explicit network constraints. Also in contrast to other varia-

tional methods, our approximation is driven by decision-based objectives (as opposed

to entropy-based objectives) that may also capture costs associated to communication-

related decisions, which tune our network-constrained solutions for more focused high-

level goals than the relatively generic processing goals of traditional message-passing

solutions. Even so, certain special cases of our formulation allow for approximations of

these more generic statistical quantities (e.g., posterior node marginals or data likeli-

hoods), should they also be of direct interest.

Other recent works in approximate inference, also looking towards distributed sens-

ing applications, consider communication-constrained variants of graph-based message-

passing algorithms. An experimental implementation of belief propagation within an

actual sensor network concludes that reliable communications are indeed the dominant

drain on battery power, with overhead varying substantially over different message

schedules and network topologies [24]. Also in the context of sensor networks, a modifi-

cation of the junction-tree algorithm introduces redundant representations to compen-

sate for anticipated packet losses and node dropouts [77, 78]. Some theoretical impacts

of finite-rate links in belief propagation have also been addressed [47, 90], essentially

proving that “small-enough” quantization errors do not alter the behavior of BP algo-

rithms. A similar robustness property is observed empirically in an application of belief

propagation to distributed target tracking problems, where “occasionally” suppressing

the transmission of a message is shown to have negligible impact on performance and, in

some cases, can even speed up convergence [18]. Conceptually, these views on commu-

nication constraints relate closely to the general problem of BP message approximation

[47, 53, 66, 95], which generically arises due to the infinite-dimensional messages implied

by BP in the case of (non-Gaussian) continuous-variable graphical models.

The network communication constraints considered in this thesis depart signifi-

cantly from those found in existing belief propagation (BP) algorithms. In contrast to
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proposing modifications directly to the BP algorithms, we explicitly model the network

constraints inside an otherwise unconstrained formulation by which the algorithms can

be derived. Then, via analysis of the resulting constrained optimization problem, we

can examine the extent to which different processing algorithms mitigate the loss from

optimal performance subject to the network constraints. While still conceptually re-

lated to the problem of BP message quantization, especially when the communication

and probability graphs happen to coincide, our consideration for the “low-rate” regime

appears to be unique.

� 1.2.2 Decentralized Bayesian Methods in Multi-Sensor Detection

Classical single-sensor detection, or hypothesis testing, is perhaps the most elementary

decision problem under uncertainty [108]. The true state of the environment is not fully

observable but a sensor, upon receiving a noisy measurement, must generate a state-

related decision without delay. Subject to design is the decision rule, or the function

or algorithm, by which any particular measurement is mapped to a particular decision.

The choice of decision rule clearly depends on both a probabilistic model of the uncer-

tain environment and the criterion by which one quantifies the rule-dependent decision

performance. The basic problem has been studied under a number of different decision

criteria e.g., Neyman-Pearson [108], Ali-Silvey distances [82], mutual information [30],

robust/minimax [46]. This thesis focuses exclusively on the canonical minimum-Bayes-

risk criterion, a special case of which is the basic error probability criterion [108].

Though formally posed as a minimization over a function space, in which optimality

is generally intractable [10, 73], the single-sensor Bayesian detection problem admits a

straightforward analytical simplification called the likelihood-ratio test. The problem’s

decentralized counterpart [11, 106, 109, 110] was formally introduced in [104] for the

special case of a binary hypothesis test with two distributed sensor nodes. Taking a

team-theoretic perspective [42, 64], which assumes the nodes agree on a common or-

ganizational objective but will generate local decisions based on different information,

the solution was expressed as a pair of likelihood-ratio tests with appropriately cou-

pled threshold values. This initial analysis required a certain statistical independence

assumption, later established to be essential for analytical tractability: in general, even

for just two nodes, the problem of optimal decentralized detection is proven to be NP-

complete [107]. A related implication is that the optimal decentralized strategy, again

in general, need not lie within a finitely-parameterized subset of the function space

defined by all feasible online processing strategies [48, 119, 125].
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Assuming conditional independence, computing the coupled likelihood-ratio tests

boils down to solving a system of nonlinear equations, each expressing one sensor’s

threshold as a function of the (global) probabilistic model, decision objective and the

other sensor’s threshold. The natural algorithm for solving these equations starts with

an arbitrary initial set of thresholds and iterates the equations on a sensor-by-sensor

basis (i.e., a Gauss-Seidel iterative solution [6, 71]). The (generally non-unique) fixed

points of this iterative algorithm correspond to different so-called person-by-person op-

timal processing strategies in team theory [42, 64, 106], each known to satisfy necessary

(but not always sufficient) optimality conditions of the original problem. That is, while

the set of all fixed points will contain the globally-optimal decentralized strategy, it also

contains any number of local optima or saddle-points in the absence of additional con-

vexity assumptions [6, 41]. Nevertheless, the correspondence between person-by-person

optimality conditions and cyclically iterating the fixed-point equations guarantees the

sequence of strategies monotonically improves (or at least never degrades) the global

decision performance.

These fundamental analytical and algorithmic results readily extend to a variety

of detection networks involving more than two sensors as well as inter-sensor commu-

nication. The canonical formulation considers a set of sensors collectively solving a

binary hypothesis test, where each receives its own local measurement and transmits

a binary-valued signal to a common “fusion center” responsible for making the final

(team) decision [21, 26, 38, 43, 98, 106, 109, 110]. Called the parallel (or fusion)

architecture, referring to the graph structure underlying the communication model, a

person-by-person optimal strategy is generally seen to introduce asymmetry across the

local processing rules e.g., even if all remote sensors have identical noise characteristics,

the fusion center generally benefits when they employ the correct combination of non-

identical local rules. Analogous results exist for a series (or tandem) architecture, where

the sensor at the end of the line makes the final team decision, and tree architectures,

where the root sensor makes the final team decision [26, 96, 97].

The decision architectures considered in this thesis include many of the ones con-

sidered in previous work, certainly those mentioned above, as special cases. Firstly,

our analysis applies to any directed acyclic architecture, reducing the person-by-person

optimality conditions to a finite-dimensional fixed-point equation (assuming conditional

independence, of course). This reduction was previously thought to be possible only

for tree-structured networks [97, 106, 110] or, in the case of general directed acyclic

networks, alongside additional simplifying assumptions on the probabilistic model and
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decision objectives [80, 81]. The generality of our formulation and proof technique also

recovers numerous other extensions examined separately in the literature, including a

vector state process along with a distributed decision objective [80, 81] (versus only

a global binary hypothesis test by a designated fusion center), as well as selective or

unreliable online communication [16, 17, 74, 83, 88] (e.g., a sensor may opt to sup-

press a costly transmission, a link may experience a symbol erasure). Our generality

also affords extensions to undirected and hybrid architectures, respectively allowing for

bidirectional and (perhaps costly) long-distance communication, as well as to multi-

stage communication architectures. The associated team-theoretic analyses provide

new structural results that complement an existing class of decentralized processing

solutions for sequential binary detection problems [3, 36, 72, 103]. Finally, experiments

throughout the thesis also add to the understanding of fundamental tradeoffs between

performance and communication with respect to architecture selection [37, 76].

Other recent work in decentralized binary detection, also looking towards sensor

network applications, steers away entirely from the team-optimal algorithmic solution

discussed above [1, 15, 75, 101, 102, 105, 122]. The reasons cited include the worst-

case NP-completeness result and the (correct) recognition that, even with conditional

independence, the convergent offline algorithm generally requires that (i) all nodes are

initialized with a consistent global picture of both the uncertain environment and the

decision objectives, and (ii) iterative per-node computation (and offline communication)

overhead scales exponentially with the number of nodes. Instead, this other recent work

focuses on understanding performance and communication tradeoffs across different

classes of asymptotic approximations, each based on the limit of an infinite number of

nodes under assumptions of network regularity and sensor homogeneity.

The offline iterative algorithms developed in this thesis can be viewed as “best-case”

solutions to the team-optimal fixed-point equations. The generality of our proof tech-

nique exposes special structure associated with the communication model, analogous

to that associated with the probabilistic model in the derivation of belief propagation

algorithms. Taken in combination with additional model assumptions (which include

conditional independence), we discover that the offline algorithm admits an efficient

message-passing interpretation; each node need only be initialized with a local picture

of the uncertain environment and decision objectives, while iterative per-node over-

head becomes invariant to the number of nodes (but still scales exponentially with the

number of neighbors, so large networks are taken to be sparsely connected). In the

well-studied case of binary hypothesis testing in directed networks with a designated
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fusion center, our algorithm specializes to a known efficient algorithm [96, 97], but we

note that our derivation does not depend on a differentiable measure of decision per-

formance nor on quantities tied to binary detection. This special case of our algorithm

also complements the recent work on asymptotic approximations mentioned above, of-

fering a tractable design alternative when assumptions of network regularity or sensor

homogeneity cannot be made. Our offline message-passing algorithm also generalizes

known computational methods for the case of a structured state process [80, 81], in

the sense that we guarantee efficiency and correctness without assuming that the two

graphs be the same. The extensions of our message-passing solution to the cases of

undirected networks and multi-stage architectures appear to be unique.1

� 1.3 Thesis Organization

The overarching hypothesis driving this thesis is that fully distributed algorithmic so-

lutions for an important class of network-constrained decision problems can be found

at the intersection of two traditionally separated areas of active research, namely ap-

proximate inference methods in graphical models and decentralized Bayesian methods

in multi-sensor detection. The former provides a compact representation of spatially-

distributed random vectors and focuses on the tractable computation of key summariz-

ing statistics, but the possibility of explicit (and typically severe) constraints/costs on

communication resources is largely unaddressed. The latter folds in a non-ideal com-

munication model and the possibility of higher-level decision-making goals at the start,

but to preserve satisfactory (online) performance depends upon the (offline) solution to

a generally intractable constrained optimization problem. We reconcile the contrasting

perspectives of these two research areas, fostering strong support for our hypothesis, in

the remainder of this thesis: its chapter-by-chapter organization is as follows.

Chapter 2: Background

This chapter contains the background underlying the developments in the remainder

of this thesis. It first reviews notational conventions and other basic concepts in graph

theory and probability theory. These concepts are used to describe the two princi-

pal mathematical models that inspire the problems to be formulated and analyzed in

subsequent chapters. For Bayesian detection models, we discuss the classical single-

sensor formulation and its optimal solution. The natural generalization to multi-sensor

problems suggests two baseline decision strategies: the optimal centralized strategy,

1The message-passing algorithms discussed in this paragraph have been published [54, 55, 56, 121].



26 CHAPTER 1. INTRODUCTION

having no regard for possible communication constraints, and the myopic decentralized

strategy, satisfying the extreme constraint of zero communication overhead. For prob-

abilistic graphical models, we discuss pairwise discrete representations and a couple of

different message-passing algorithms for efficient online estimation. Connections are

made between the optimal centralized detector and several different online estimation

problems that can be posed given a graphical model. Even at the introductory level,

the inherent complexity that drives the active research interest in approximate infer-

ence, and the necessary departure from existing message-passing solutions in the face

of explicit communication constraints, both become apparent.

Chapter 3: Directed Network Constraints

This chapter describes the team-theoretic solution approach for network constraints

in which only unidirectional inter-sensor communication is assumed. Specifically, no

matter the graph structure underlying the probabilistic model, we assume the nodes

communicate in succession according to a given directed acyclic graph, each node trans-

mitting at most one finite-alphabet symbol (per local measurement). The constrained

optimization problem proposed here extends the canonical decentralized detection prob-

lem in a number of ways: first, each sensor’s measurement relates only to its local state,

which is itself correlated with the states local to all other nodes; second, each node can

employ a selective, or censored, transmission scheme (i.e., each sensor may, per out-

going link, exercise a cost-free “no-send” option); and, third, the multipoint-to-point

channel into each node can be unreliable (e.g., due to uncoded interference or packet

loss). Existing team theory establishes when necessary optimality conditions reduce

to a convergent iterative algorithm to be executed offline. While the resulting online

strategy is efficient by design, this most-general offline algorithm is seen to have expo-

nential complexity in the number of nodes and its distributed implementation assumes

a fully-connected network.

We state conditions under which the offline algorithm admits an efficient message-

passing interpretation, featuring linear complexity in the number of nodes and a natu-

ral distributed implementation. Specifically, the algorithm can be viewed as perform-

ing repeated forward-backward sweeps though the given network: each forward sweep

propagates “likelihood” messages, encoding what online communication along each link

means from the transmitter’s perspective, while each backward sweep propagates “cost-

to-go” messages, encoding what online communication along each link means from the

receiver’s perspective. In each offline iteration, both types of incoming messages in-
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fluence how each node updates its local rule parameters before it engages in the next

iteration. We apply the efficient message-passing algorithm in experiments with a simu-

lated network of binary detectors, characterizing the achievable tradeoff between global

detection performance and networkwide online communication in a variety of scenarios.

The empirical analysis reveals that, considering the severity of the online communication

constraints, relatively dramatic improvements over myopic decentralized performance

are possible. In addition, the team strategies are observed to resourcefully attach value

to remaining silent, essentially conveying an extra half-bit of information per link even

in the presence of faulty channels and cost-free communication. Our empirical analysis

also exposes a design tradeoff between constraining in-network processing to conserve

algorithmic resources (per online measurement) but then having to consume resources

(per offline organization) for the sensors to maintain satisfactory decision performance

subject to these constraints.

Chapter 4: Undirected Network Constraints

This chapter develops the team-theoretic solution approach for network constraints

defined by an undirected graph, each edge representing a bidirectional (and perhaps

unreliable) finite-rate communication link between two distributed sensor nodes. Every

node operates in parallel, processing any particular local measurement in two (discrete)

decision stages: the first selects the symbols (if any) transmitted to its immediate

neighbors and the second, upon receiving the symbols (or lack thereof) from neighbors,

decides the estimate of its local state. Our analysis proves that, relative to the analysis

for directed networks in Chapter 3, the model requires more restrictive assumptions

to avoid worst-case offline complexity, yet less restrictive assumptions to attain best-

case offline efficiency. The offline message-passing algorithm translates into a two-

stage parallel schedule on the undirected network, where the nodes alternate between

exchanging “likelihood” messages (followed by updates to local detection rules) and

exchanging “cost-to-go” messages (followed by updates to local communication rules).

We assess empirically the performance of the undirected message-passing algorithm,

using essentially the same models and setup used in the experiments of Chapter 3.

Architecturally, our analysis and experiments suggest a directed network is prefer-

able when only a few nodes are to provide state estimates (and these nodes are at the

end of the succession implied by the directed graph), and an undirected network is

preferable when all nodes are to provide state estimates. We also examine the prospect

of hybrid network constraints to improve performance in problems for which neither
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network alone is satisfactory. We specifically consider two hierarchical decision archi-

tectures relevant to sensor network applications, each assuming a subset of the nodes are

capable of “long-distance” communication amongst themselves in between communica-

tions with their spatially-local neighbors. We show that, in each hierarchical decision

architecture, team-optimality conditions are satisfied by an appropriate combination of

the directed and undirected offline message-passing algorithms.

Chapter 5: On Multi-Stage Communication Architectures

The two preceding chapters focus on network-constrained decision architectures in

which there is only a single-stage of online communication; this chapter aims to gener-

alize the formulation, analyses and results to allow for multiple online communication

stages. The multi-stage architectures we consider take their inspiration from the canon-

ical message-passing algorithms that exist for probabilistic graphical models, where we

formulate repeated forward-backward sweeps given a directed network and repeated

parallel exchanges given an undirected network within a common mathematical frame-

work. Of course, as in our single-stage formulations, the online network is constrained to

low-rate or unreliable links and the associated communication graph need not be equiv-

alent to the probability graph. We then apply the team-theoretic analysis of previous

chapters, exposing a number of new structural properties that an optimal multi-stage

decision strategy should satisfy. These include the minimal assumptions under which

online computation grows linearly with the number of nodes (given a sparsely-connected

communication graph). Moreover, we show how each local processing rule can make

explicit use of memory, affording each node an increasingly accurate sequence of deci-

sions as a function of all previously observed information (i.e., all symbols the node has

both received and transmitted in earlier communication stages).

Even under best-case model assumptions, however, the required memory and, in

turn, the offline solution complexity scales exponentially with the number of online

communication stages, necessitating additional approximations. We describe one such

approximate offline algorithm, leveraging the offline message-passing algorithms derived

in preceding chapters. The key idea is to limit the look-ahead of each node when

designing its multi-stage communication rule, but then compensate for their collective

sub-optimality via our analytical result for the optimal structure of the final-stage

detection rules. A number of small-scale experiments with this approximation indicate

that near-optimal detection performance is achievable (despite the constraint to ternary-

valued symbols) in a number of communication stages comparable to the diameter of
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the network. These experiments also include direct comparisons with approximations

based on the (unconstrained) belief propagation algorithm, demonstrating our network-

constrained online strategies can yield reliable solutions even in so-called “frustrated”

graphical models when belief propagation (BP) often fails to converge. Altogether, the

results of this chapter provide the first inroads into the difficult problem of BP message

quantization in the “low-rate” regime.

Chapter 6: Conclusion

This chapter summarizes the contributions of this thesis and identifies a number of open

questions for future research. The fundamental divide in complexity between single-

stage and multi-stage decision architectures exposed during the course of this thesis is

evident in both our contributions summary and our future work recommendations.
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Chapter 2

Background

THIS chapter summarizes the essential background to understand the problem for-

mulations and solution algorithms presented in subsequent chapters. Section 2.1

starts with a self-contained primer on the mathematical subjects of graph theory and

probability theory, both fundamental to the two principal models reviewed in the re-

maining sections. For Bayesian detection models (Section 2.2), we discuss the classical

single-sensor formulation and its well-known optimal solution. The natural general-

ization to multi-sensor problems suggests two baseline decision strategies: the optimal

centralized strategy, having no regard for possible communication constraints, and the

myopic decentralized strategy, satisfying the extreme constraint of zero communication

overhead. For probabilistic graphical models (Section 2.3), we discuss pairwise discrete

representations and a couple of different message-passing algorithms for efficient on-

line estimation. Throughout, key definitions and concepts are illustrated by examples,

many of which will also be used in experiments described in future chapters.

� 2.1 Mathematical Preliminaries

We begin by reviewing basic terminology and notational conventions from both graph

theory and probability theory used in this thesis (more detailed introductions appear

in e.g., [12] and [8], respectively). Both make use of standard set theory [68], and we

sometimes employ a short-hand notation for certain set differences. Specifically, let V
be any set and consider any two subsets V1,V2 ⊂ V. The notation V1\V2 is equivalent to

the set difference V1 −V2. We may write V1\v in the special case that V2 is a singleton

set {v} for some v ∈ V, and \v if it is also the case that V1 = V.



32 CHAPTER 2. BACKGROUND

� 2.1.1 Elements of Graph Theory

A graph G = (V, E) is defined by a finite set of nodes, or vertices, V = {1, . . . , n} and a set

of node pairs, or edges E ⊂ V×V. We focus only on simple graphs for which an edge from

any node back to itself and duplicate edges can both be omitted from edge set E without

loss of generality. Simple graphs can be undirected or directed, the edge set of the former

being any subset of the (unordered) node pairs {{i, j} | i ∈ V and j ∈ {i+ 1, . . . , n}},
while the edge set of the latter being any subset of the (ordered) node pairs {(i, j) |
i ∈ V and j ∈ V\i}. These different edge sets emphasize that node pairs (i, j) and (j, i)

denote different edges in a directed graph, but the same edge {i, j} in an undirected

graph. We say that {i, j} is the undirected counterpart to the directed edge (i, j) or

(j, i). In definitions that apply to either type of graph, our convention is to use the

finer directed edge notation but where, in the case of an undirected graph, each (i, j)

or (j, i) is understood to indicate the undirected counterpart {i, j}.
The set of neighbors, or open neighborhood, of node i in graph G refers to its adjacent

nodes defined by

ne(i) = {j ∈ V | (i, j) ∈ E or (j, i) ∈ E}.

The closed neighborhood of node i in G is the union ne(i)
⋃{i}. The degree of node i

in G is the number of neighbors |ne(i)|.
Define a path as any graph with edge set of the form {(v1, v2), (v2, v3), . . . , (vn−1, vn)},

where v1, v2, . . . , vn denote some permutation of its node set. We see that all nodes in

a path have degree two, except for the endpoint nodes {v1, vn} which each have degree

one. We say that G is a length-n path from v1 to vn. A cycle is any path with the

additional edge (vn, v1). A length-n cycle can be viewed as a length-n path from any

node back to itself, except for the resulting absence of uniquely defined endpoint nodes.

We say that G′ = (V ′, E ′) is a subgraph of G if V ′ ⊂ V and E ′ ⊂ E . If V ′ = V, then

G′ is called a spanning subgraph of G. A subgraph of G that is itself a path (cycle) is

said to be a path (cycle) in G. If V1, V2 and V3 denote three disjoint subsets of V, then

the set V2 is said to separate sets V1 and V3 if every path in G between a node in V1

and a node in V3 passes through a node in V2.

Undirected Graphs

Assume G = (V, E) is any n-node undirected graph. The graph is connected if for

each pair of distinct nodes i and j, there exists a path in G from i to j. A graph

is said to be disconnected if it is not connected. A component of the graph G is a

connected subgraph G′ of G for which the addition of any edge in E −E ′ to G′ results in
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a disconnected subgraph of G. Thus, a disconnected graph can be viewed as the union

of at least two components.

We can now define the important class of undirected graphs called trees: any undi-

rected graph consisting of a single component with no cycles is a tree. The union of a

collection of trees, assuming each tree’s vertex set is disjoint from those of all others, is

called a forest. A subtree of an undirected graph G is any subgraph of G that is itself a

tree. A spanning tree of G is a subtree with vertex set equal to all of V. Note that a

path of an undirected graph can be viewed as a special case of a tree, in which context

it is sometimes called a chain.

Given any pair of nodes i and j in a connected graph G, their distance is the length

of the minimum-length path among all paths from i to j in G. A clique in G is any

subset of nodes for which all pairs are connected by an edge in G. Note that the set of all

cliques in G trivially includes every one-node subset of V as well as the two-node subsets

implied by the edges in E . Indeed, these one-node and two-node subsets comprise the

set of all cliques only if G is a tree (or a forest).

A tree also has the important property that its node set can always be partially-

ordered ; specifically, given G is a tree, we can always organize the node set V hierarchi-

cally in scale s = 0, 1, 2, . . . as follows. First choose an arbitrary root i ∈ V and assign

it to scale zero; then, assign each other node j ∈ V\i to the scale equal to its distance

from i in G. No matter the choice of root i, the sequence of node subsets associated

with increasing scale yields a well-defined partial-ordering of V in G.

Figure 2.1 illustrates an undirected graph along with examples of this terminology.

Directed Graphs

Assume G = (V, E) is any n-node directed graph. The neighbors of node i in G can be

partitioned into the parents and the children of node i, denoted by subsets

pa(i) = {j ∈ V | (j, i) ∈ E} and ch(i) = {j ∈ V | (i, j) ∈ E},

respectively. The in-degree and out-degree of node i in G are the number of parents

|pa(i)| and the number of children |ch(i)|, respectively. A node i for which pa(i) = ∅ or

ch(i) = ∅ is said to be a parentless or childless node in G, respectively.

The ancestors of node i collectively refer to the parents pa(i), the parents pa(j) of

each such parent j ∈ pa(i), and so on ad infinitum, while always excluding i. Formally,

initializing V1(i) := pa(i) and applying the recursion

Vt+1(i) :=
⋃

j∈Vt(i)

pa(j)\i, t = 1, 2, . . . ,
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Figure 2.1. (a) A 12-node undirected graph G with four cycles, two of length four and the others of

length three. We say that node 4 has neighbors {1, 2, 6, 7}, while node 5 has neighbors {3, 8, 9}. The

set of all cliques in G consists of the one-node sets {{i}; i ∈ V}, the two-node sets {{i, j} ∈ E} as well

as the three-node sets {1, 2, 4} and {7, 8, 11}. (b) A disconnected subgraph of G with two components,

each with one cycle. (c) A spanning tree of G, where one valid partial-order is {7}, {4, 11}, {1, 2, 6, 8},
{5, 10}, {3, 9}, {12}.

the set of ancestors of node i is the union an(i) =
⋃

t Vt(i). The descendants de(i)

of node i are defined by the same union but where the recursion is initialized to the

children ch(i), then includes the children ch(j) of each such child j ∈ ch(i), and so on.

Given any directed graph G, the graph obtained by substituting all edges in G by

their undirected counterparts is called the undirected topology of G. A directed graph is

said to be acyclic if it contains no (directed) cycles, but note that its undirected topology

need not necessarily be free of cycles. The special case in which the undirected topology

of G is cycle-free, or a forest as defined above, is called a polytree.

A directed acyclic graph G has a number of important properties. Firstly, given any

nodes i and j both in V, the edge set cannot contain both (i, j) and (j, i). Secondly,

for every node, the ancestors are disjoint from the descendants i.e., the intersection

an(i)
⋂
de(i) is empty for every i ∈ V. Thirdly, the node set V can always be partially-

ordered by level ℓ = 0, 1, . . . as follows. Start by assigning all parentless nodes to level

zero; then, assign each remaining node i to level ℓ only upon all of its parents pa(i)

being contained in the union of the node subsets associated with previous levels 0 to

ℓ−1. The sequence of node subsets with increasing level yields the forward partial-order

of V implied by G. The analogous recursive construction, but based on children instead

of parents, yields the backward partial-order of V implied by G. A property unique to

the special case of a polytree is that, for every node, no two parents share a common

ancestor and, equivalently, no two children share a common descendant.

Figure 2.2 illustrates a directed graph along with examples of this terminology.
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Figure 2.2. (a) A 12-node directed graph G with three cycles, one of length four and the others of

length two. We say that node 4 has parents {1, 2}, children {6, 7}, ancestors {1, 2, 6, 10} and descendants

{1, 2, 6, 7, 8, 10, 11}; meanwhile, node 5 has parents {3}, children {8, 9}, ancestors {3} and descendants

{7, 8, 9, 11, 12}. (b) A directed acyclic subgraph of G, where the forward partial order is {1, 3}, {2, 5},
{4, 8, 9}, {6, 11, 12}, {10} and the backward partial-order is {10, 11, 12}, {6, 8, 9}, {4, 5}, {2, 3}, {1}.
(c) A polytree subgraph of G. Their respective undirected counterparts are shown in Figure 2.1.

� 2.1.2 Elements of Probability Theory

A discrete (continuous) random variable X is defined by a discrete (Euclidean) set X
and a probability mass (density) function pX : X → [0,∞) for which the sum (integral)

over x ∈ X evaluates to unity. We say that X takes values x ∈ X according to

the probability distribution pX(x). In definitions that apply to either type of random

variable, our convention is to assume X is discrete, understanding that any summation

over values in X is replaced by the analogous integration if X is continuous. Any real-

valued function of the form cX : X → R will be called a cost function for X, and we

say a cost cX(x) is assigned to each x ∈ X . The subscript notation will be suppressed

when the random variable involved is implied by the functional argument; that is, we

let p(x) ≡ pX(x) and c(x) ≡ cX(x) for every x in X . Also note that p(X) and c(X)

are themselves well-defined random variables, each taking values in R according to a

distribution derived from X and the functions pX and cX , respectively.

Let X1,X2, . . . ,Xn denote n distinct random variables with marginal distributions

p(x1), p(x2), . . . , p(xn), respectively. The random vector X = (X1, . . . ,Xn) takes its

values in the product set X = X1×· · ·×Xn according to a joint probability distribution

p(x) = p(x1, . . . , xn). Consider any i and xi ∈ Xi such that p(xi) is nonzero: assuming

that Xi = xi, let the vector of all other random variables X\i take its values x\i ∈ X\i

according to a probability distribution p(x\i|xi). The resulting function pX\i|Xi
: X →

[0,∞), in essence a collection of up to |Xi| different distributions for random vector

X\i, is called the conditional distribution of X\i given Xi. The marginal, joint and
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conditional distributions are related via the identities

p(xi) =
∑

x\i∈X\i

p(x) and p(x) = p(xi)p(x\i|xi), i ∈ {1, 2, . . . , n}.

The components of a random vector X are said to be mutually independent if their

joint distribution satisfies

p(x) =
n∏

i=1

p(xi) ⇒ p(x\i|xi) = p(x\i), i ∈ {1, 2, . . . , n}.

Any two components Xi and Xj are said to be independent if p(xi, xj) = p(xi)p(xj).

Note that mutual independence is (in general) a stronger condition than independence

between all
(n
2

)
pairs of component random variables.

The expected cost E [c(X)] denotes the sum (integral) over x ∈ X of the product

c(x)p(x). An important special case is the probability that X takes values in a given

subset A ⊂ X , denoted by P [X ∈ A], obtained by choosing c(x) to be the indicator

function on A i.e., unit cost for x ∈ A and zero cost otherwise. For a scalar random

variable X, special cases include the mean and variance of X obtained by choosing

c(x) = x and c(x) = (x − E [X])2, respectively. In the case of a random vector,

we distinguish between the joint expected cost E [c(X)] = E [c(X1, . . . ,Xn)] and a

conditional expected cost E [c(X)|Xi = xi], denoting the sum (integral) over x\i ∈ X\i

of the product c(x)p(x\i|xi). The latter can be viewed as a particular cost function for

Xi—indeed, evaluating its expected cost recovers the joint expected cost,

E [E [c(X)|Xi]] =
∑

xi∈Xi

E
[
c
(
X\i, xi

)∣
∣Xi = xi

]
p(xi) = E [c(X)] , i ∈ {1, 2, . . . , n}.

For a random vector X, its mean vector contains all of the component means,

the ith element of which equals E [Xi]. Given two component random variables Xi

and Xj , their covariance is the joint expectation E [c(Xi,Xj)] with c(xi, xj) = (xi −
E [Xi])(xj −E [Xj]), which specializes to the variance of Xi if i = j. We say Xi and Xj

are uncorrelated if their covariance is zero, or equivalently that E [XiXj ] = E [Xi]E [Xj ],

which is (in general) a weaker condition than independence. The covariance matrix of

X contains all such pairwise covariances, each (i, j)th element equal to the covariance

of Xi and Xj . Algebraically, this matrix is symmetric and positive semi-definite [93],

and it is diagonal if the components of X are mutually uncorrelated, meaning every pair

of distinct component variables are uncorrelated.



Sec. 2.2. Bayesian Detection Models 37

Example 2.1 (Gaussian Random Variables). A random variable X is said to be Gaussian

(or normal) if its distribution takes the form

p(x) =
1√
2πσ

exp

(

− (x− µ)2

2σ2

)

, x ∈ R,

where µ and σ2 denote, respectively, the mean and variance of X. This distribution has

no analytical anti-derivative and, hence, calculating various probabilities for a Gaussian

random variable is accomplished numerically. Assume the probability that a zero-mean,

unit-variance Gaussian random variable W takes values less than or equal to w, denoted by

φ(w) = P [W ≤ w] =

∫ w

−∞

1√
2π

exp
(
−z2/2

)
dz,

is available (as tabulated in e.g., [8]). Then, the probability that X takes values less than

or equal to x is given by

P [X ≤ x] = P

[
X − µ

σ
≤ x− µ

σ

]

= P
[

Y ≤ x− µ

σ

]

= Φ
(x− µ

σ

)

.

Example 2.2 (Gaussian Random Vectors). A length-n random vector X is said to be

multivariate Gaussian if its distribution takes the form

p(x) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x− µ)′Σ−1(x− µ)

)

, x ∈ R
n,

where µ ∈ R
n is the mean vector of X and Σ ∈ R

n×n is the covariance matrix of X,

while A′, A−1 and |A| denote the transpose, inverse and determinant, respectively, of any

given matrix A [93]. Important properties include that (i) marginals and conditionals of

a multivariate Gaussian distribution, as well as any linear transformation of a Gaussian

random vector, all remain Gaussian and (ii) any two component random variables that are

uncorrelated are also statistically independent [8], implying every Gaussian random vector

with diagonal covariance matrix is a collection of mutually independent random variables.

� 2.2 Bayesian Detection Models

Classicalm-ary detection, or hypothesis testing, is perhaps the most elementary decision

problem under uncertainty [108]. The basic setup is depicted in Figure 2.3. The true

state x ∈ X = {1, . . . ,m} of the environment, taking one of m ≥ 2 discrete values,

is not fully observable but a sensor, upon receiving a noisy measurement y ∈ Y, must

generate a state-related decision x̂ ∈ X without delay. Subject to design is the decision

rule, or the function γ : Y → X by which any particular measurement y is mapped to a

particular decision x̂. The choice of decision rule clearly depends on both a probabilistic

model of the uncertain environment and the criterion by which one quantifies the rule-

dependent decision performance.
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State
x ∈ X = {1, . . . ,m}

Measurement

y ∈ Y
Sensor

Decision

x̂ ∈ X

Decision Rule: x̂ = γ(y)

Figure 2.3. The single-sensor m-ary detection problem: a sensor receives noisy measurements from

its otherwise unobservable, discrete-state environment, and subject to design is the rule by which the

sensor generates its (discrete) state-related decision based on each received measurement.

� 2.2.1 Minimum-Bayes-Risk Decision Criterion

Starting from the basic setup in Figure 2.3, the minimum-Bayes-risk criterion (i) as-

sumes the (hidden) state process X and (observed) measurement process Y are jointly

described by a given probability distribution p(x, y), and (ii) assigns a numerical cost

c(x̂, x) to each possible state-decision outcome. The performance of any rule-induced

decision process X̂ = γ(Y ) is then measured by the expected cost, or Bayes risk,

Jd(γ) = E
[

c(X̂,X)
]

= E [E [c(γ(Y ),X)| Y ]] = E

[
∑

x∈X

c(γ(Y ), x)p(x|Y )

]

. (2.1)

An important special case of (2.1) is the error probability, which corresponds to choosing

c(x̂, x) to be the indicator function on {(x̂, x) ∈ X × X | x̂ 6= x}.
Recognizing that p(x|y) = p(x, y)/p(y) is proportional to p(x)p(y|x) for every y ∈ Y

such that p(y) is nonzero, it follows that γ̄ minimizes (2.1) if and only if

γ̄(Y ) = arg min
x̂∈X

∑

x∈X

c(x̂, x)p(x)p(Y |x) (2.2)

with probability one. Note that (i) the likelihood function p(Y |x), taking its values

L(y) =
(
pY |X(y|1), . . . , pY |X(y|m)

)
in the product set L = [0,∞)m ⊂ R

m, provides a

sufficient statistic of the online measurement process Y and (ii) the parameter matrix

θ ∈ R
m×m, where the optimal values are given by

θ̄(x̂, x) = p(x)c(x̂, x),

can be specified offline, or prior to the processing of any actual measurements. In other

words, given any particular measurement Y = y, implementation of (2.2) reduces to a

matrix multiplication θ̄L(y), yielding a length-m real-valued vector, followed by m− 1

comparisons to select the minimizing argument over x̂ ∈ X .
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One may also view the optimal detector in (2.2) as a particular partition of the

likelihood set L into the regions L1, . . . ,Lm, always choosing the decision x̂ such that

L(y) ∈ Lx̂. To see this, note that (2.2) implies

p(x̂|y; γ̄) =

{

1 , if x̂ = γ̄(y)

0 , otherwise

and, in turn, the identity

p(x̂|x; γ̄) =

∫

y∈Y
p(y|x)p(x̂|y; γ̄) dy =

∫

y∈{y′∈Y|L(y′)∈Lx̂}
p(y|x) dy. (2.3)

While the system of linear inequalities implied by (2.2) guarantees each region Lx̂ ⊂ L is

polyhedral, the associated subset of Y (via inversion of the likelihood function) may be

non-polyhedral or disconnected, making the computation of p(x̂|x; γ̄) cumbersome if m

grows large or the measurement model is complicated. Nonetheless, a characterization

of p(x̂|x; γ̄) is essential to determine the achieved penalty

Jd(γ̄) =
∑

x∈X

p(x)
∑

x̂∈X

c(x̂, x)p(x̂|x; γ̄).

In problems where the integrals in (2.3) do not admit analytical solution nor reliable

numerical approximation, Monte-Carlo methods (i.e., drawing samples from the joint

process (X,Y ) and simulating the decision process X̂ = γ̄(Y )) can be employed to

approximate empirically the distribution p(x̂|x; γ̄) or the expected cost Jd(γ̄).

Example 2.3 (Binary Detectors, m = 2). The special case in which the hidden state

process X takes just two values, which in preparation for future examples we label as −1

and +1, reduces the optimal rule in (2.2) to a particularly convenient form. Making the

natural assumption that an error event X̂ 6= x is more costly than an error-free event X̂ = x

for either possible value of x, (2.2) is equivalent to the binary threshold rule

pY |X(y| + 1)

pY |X(y| − 1)
≡ Λ(y)

x̂ = +1

>

<

x̂ = −1

η̄ ≡ θ̄(+1,−1) − θ̄(−1,−1)

θ̄(−1,+1) − θ̄(+1,+1)
.

Here, the (scalar) quantity Λ(y) is called the likelihood-ratio and η̄ denotes the optimal

value of a parameter η ∈ [0,∞) called the threshold. The error probability P
[

X̂ 6= X
]

is

minimized by choosing η = pX(−1)/pX(+1), and this threshold becomes unity if p(x) is also

uniform. The distribution p(x̂|x; γ) induced upon fixing the threshold η can be specified in

terms of the so-called false-alarm and detection probabilities, denoted by PF (η) and PD(η),

respectively, and defined by

P
[

X̂ = +1
∣
∣
∣X = x

]

= P [Λ(Y ) > η|X = x] =

{

PF (η) , x = −1

PD(η) , x = +1
.
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The subset of the unit plane [0, 1]2 defined by {(PF (η), PD(η)) | η ≥ 0} is called the

Receiver-Operating-Characteristic curve—its many interesting properties (see e.g., [108])

are not needed in the scope of this thesis.

Example 2.4 (Linear Binary Detectors). The special case of a linear-Gaussian measure-

ment model allows the decision regions in measurement space Y to retain the polyhedral

form of their counterparts in likelihood space L, simplifying the multi-dimensional inte-

grals that must be solved to obtain the rule-dependent distribution p(x̂|x; γ). Starting with

the binary problem in Example 2.3, denote by µ− and µ+ the real-valued vector signals

associated to the two possible states and assume the measurement process is

Y = µX +W

where the additive noise process W is a zero-mean Gaussian random vector with (known)

covariance matrix Σ (see Example 2.2). The resulting likelihood function p(y|x) consists of

a pair of multivariate Gaussian distributions with mean vectors µ− and µ+, respectively,

and common covariance matrix Σ. In turn, the likelihood-ratio specializes to

Λ(y) = exp

(

−1

2
(y − µ+)′Σ−1(y − µ+) +

1

2
(y − µ−)′Σ−1(y − µ−)

)

and the binary threshold rule as a function of η reduces to

(µ+ − µ−)′Σ−1y

x̂ = +1

>

<

x̂ = −1

log(η) +
1

2

(

µ+′
Σ−1µ+ − µ−′

Σ−1µ−
)

,

a form that is linear in the measurement vector y. If the components of W are also mutually

independent, so that Σ is diagonal with the (i, i)th element denoted by σ2
i , then the rule is

n∑

i=1

(
µ+

i − µ−
i

σ2
i

)

yi

x̂ = +1

>

<

x̂ = −1

log(η) +
1

2

n∑

i=1

µ+
i µ

+
i − µ−

i µ
−
i

σ2
i

.

If the components of Y are also identically distributed, meaning conditional means µ±
i = µ±

and variances σ2
i = σ2 for all i, then

n∑

i=1

yi

x̂ = +1

>

<

x̂ = −1

(
σ2

µ+ − µ−

)

log(η) +
n

2

(
µ− + µ+

)
.

Note that this rule continues to require joint processing of the component measurements

y = (y1, . . . , yn). Finally, if Y is also scalar, the binary threshold rule with parameter

η (in likelihood space) can be implemented via a threshold rule in measurement space,

comparing y to the threshold τ =
(

σ2

µ+−µ−

)

log(η) + µ−+µ+

2
. Accordingly, the false-alarm

and detection probabilities simplify to

P [Λ(Y ) > η|X = x] = P [Y > τ |X = x] =

∫ ∞

τ

p(y|x) dy = 1 − Φ

(
τ − µx

σ

)

with function Φ as defined in Example 2.1.
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Subsequent chapters of this thesis will rely on the model in Figure 2.3 but where

the decision space, call it U = {1, . . . , d}, can have cardinality d different from the state

cardinality m. The structure of the problem is essentially unchanged. Decision rules

and costs take the form of functions γ : Y → U and c(u, x), respectively. It follows that

the optimal detector in (2.2) uses rule parameters θ̄(u, x) = p(x)c(u, x), performing

d − 1 comparisons to select the minimizing argument over u ∈ U . Similarly, (2.2) can

be viewed as a particular partition of the likelihood set L into the regions L1, . . . ,Ld so

that the the rule-dependent distribution in (2.3) is

p(u|x; γ̄) =

∫

y∈Y
p(y|x)p(u|y; γ̄) dy =

∫

y∈{y′∈Y|L(y′)∈Lu}
p(y|x) dy.

Example 2.5 (Binary Detectors with Non-Binary Decision Spaces). Consider the binary

detector in Example 2.3 but with decision space U = {1, . . . , d} for d ≥ 2. Any given rule

parameters θ ∈ R
d×m define a particular partition of the likelihood-ratio space [0,∞) into

(at most) d subintervals, characterized by d− 1 threshold values satisfying

0 ≤ η1 ≤ η2 ≤ · · · ≤ ηd−1 ≤ ∞.

This monotone threshold rule alongside the natural assumption that the d elements of U
are labeled such that

P [U = u|X = +1]

P [U = u|X = −1]
≤ P [U = u+ 1|X = +1]

P [U = u+ 1|X = −1]
, u = 1, . . . , d− 1,

simplifies to making the decision u ∈ U such that Λ(y) ∈ [ηu−1, ηu), taking η0 = 0 and

ηd = ∞. In the special case of a scalar linear binary detector (see Example 2.4), we retain

the analogous partition in measurement space (−∞,∞) with respective thresholds

−∞ ≤ τ 1 ≤ τ 2 ≤ · · · ≤ τd−1 ≤ ∞

determined by τu =
(

σ2

µ+−µ−

)

log(ηu) + µ−+µ+

2
. The rule is simplified to making decision

u such that y ∈ [τu−1, τu), implying

P [U = u|X = x] = P
[
y ∈ [τu−1, τu)

∣
∣X = x

]
= Φ

(
τu − µx

σ

)

− Φ

(
τu−1 − µx

σ

)

.

� 2.2.2 Baseline Multi-Sensor Decision Strategies

The generalization of (2.1)–(2.3) to n sensors, as depicted in Figure 2.4(a), is con-

ceptually simple: let the states and measurements take values in product sets X =

X1 × · · · ×Xn and Y = Y1 × · · · × Yn, respectively, the components xi ∈ Xi and yi ∈ Yi

denoting the discrete state and noisy measurement of the environment local to the ith

sensor. However, then m scales exponentially with n, so performing directly the com-

putations implied by (2.1)–(2.3) becomes challenging for even modest values of n. The

following two examples illustrate some of the computational challenges associated with

optimal processing in the n-sensor model.
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States

x ∈ X1 × · · · × Xn

Measurements

y1 ∈ Y1

......
yn ∈ Yn

Decisions

x̂ ∈ X1 × · · · × XnCommon

Processor

(a) Optimal Centralized Strategy: (x̂1, . . . , x̂n) = γ̄(y1, . . . , yn)

States

x ∈ X1 × · · · × Xn

Measurements

y1 ∈ Y1

...... ...
yn ∈ Yn

Decisions

Sensor

Sensor

1

n

x̂1 ∈ X1

x̂n ∈ Xn

(b) Myopic Decentralized Strategy: x̂i = δ̄i(yi), i = 1, . . . , n

Figure 2.4. The two baseline multi-sensor decision strategies for processing spatially-distributed

measurements, (a) the optimal centralized strategy for which online communication overhead can be

unbounded and (b) the myopic decentralized processing strategy for which online communication over-

head is zero.

Example 2.6 (Maximum-A-Posterior (MAP) Estimation). In the n-sensor Bayesian

detection model, assume the global cost function

c(x̂, x) =

{

1 , if x̂i 6= xi for at least one component i

0 , otherwise
.

The risk in (2.1) specializes to the error probability P
[

X̂ 6= X
]

and the optimal detector

in (2.2) specializes to

γ̄(Y ) = arg max
x∈X

p(x|Y ),

referred to as the Maximum A-Posterior (MAP) strategy. If the prior probabilities p(x)

are also uniform over X , in which case p(x|y) ∝ p(y|x) for every y ∈ Y such that p(y) > 0,

we obtain the Maximum-Likelihood (ML) strategy,

γ̄(Y ) = arg max
x∈X

p(Y |x).

Direct implementation of either strategy, per measurement Y = y, amounts to solving an

integer program over a solution space that scales exponentially with n.
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Example 2.7 (Maximum-Posterior-Marginal (MPM) Estimation). In the n-sensor Bayesian

detection model, assume the global cost function

c(x̂, x) =
n∑

i=1

c(x̂i, xi), where c(x̂i, xi) =

{

1 , if x̂i 6= xi

0 , otherwise
for i = 1, . . . , n.

The risk in (2.1) specializes to the sum-error probability, or the expected number of com-

ponent errors between vectors X̂ and X, and the optimal detector in (2.2) specializes to

γ̄(Y ) = (γ̄1(Y ), . . . , γ̄n(Y )) , where γ̄i(Y ) = arg max
xi∈Xi

p(xi|Y ) for i = 1, . . . , n,

referred to as the Maximum-Posterior-Marginal (MPM) strategy. This strategy is easy to

implement given the local marginals p(xi|y) conditioned on all measurements Y = y; of

course, starting from the global posterior p(x|y), direct computation of each ith such local

posterior involves summation over a number of terms that scales exponentially with n.

In the next section, we discuss graph-based message-passing algorithms that effi-

ciently implement the n-sensor generalization of (2.2), in the sense that total computa-

tion overhead (per online decision) scales only linearly in n. However, notice that (2.2)

pays no attention to the practical caveat that sensors may be arranged in a spatially-

distributed network. That is, the n-sensor generalization of (2.2) is said to be a central-

ized processing strategy, where the requirement to evaluate the global likelihood vector

p(y|x) before making an optimal decision x̂ = γ̄(y) assumes all n measurements (or

at least their sufficient statistics e.g., their weighted sum in Example 2.4, the posterior

marginals p(xi|y) local to each node i in Example 2.7) have been reliably communicated

via the network. We say that an n-sensor processing strategy is decentralized if it must

make decisions based on strictly less information than is assumed to be available by the

optimal centralized strategy (e.g., due to algorithmic resource constraints beyond those

satisfied by even the most efficient centralized implementations).1

The remaining chapters of this thesis develop and analyze a particular class of decen-

tralized strategies, assuming the dominant resource constraints arise from the unreliable

(and costly) communication medium. The graph-based message-passing algorithms de-

scribed in the next section will (precluding trivial problem instances) imply that the

centralized communication overhead cannot be less than n − 1 real-valued messages

(per online decision). In contrast, we will assume a non-ideal communication model

from the start, constraining communication overhead to no more than a fixed number

of discrete-valued messages, or symbols, and, in turn, seeking the feasible strategy that

best mitigates the potential loss from optimal centralized performance.

1This distinction between centralized and decentralized strategies precludes certain trivial instances

of the multi-sensor problem formulation, namely those for which the optimal centralized strategy de-

generates to a feasible decentralized strategy.
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A trivial member in our class of decentralized strategies is the myopic strategy,

having zero communication overhead; see Figure 2.4(b). It assumes each sensor i is

initialized knowing only its local model for Bayesian detection i.e., the distribution

p(xi, yi) and a cost function c(x̂i, xi), and, using only this local model, determines its

component estimate x̂i from the local measurement yi as if in isolation i.e., the rule at

node i is

δ̄i(Yi) = arg min
x̂i∈Xi

∑

xi∈Xi

c(x̂i, xi)p(xi)
︸ ︷︷ ︸

φ̄i(x̂i,xi)∈R

p(Yi|xi). (2.4)

That is, the myopic strategy is a particular collection of single-sensor decision rules

δ̄ = (δ̄1, . . . , δ̄n), specified offline by parameters φ̄ = (φ̄1, . . . , φ̄n), where no one node

transmits nor receives information and total online computation scales linearly with n.

It is easy to see that the myopic strategy is sub-optimal, meaning Jd(δ̄) ≥ Jd(γ̄)

over all multi-sensor problem instances. Equality is achieved only in certain degenerate

(and arguably uninteresting) cases, including the zero cost function i.e., c(x̂, x) = 0 for

all (x̂, x) ∈ X × X , or the case of n unrelated single-sensor problems i.e.,

p(x, y) =

n∏

i=1

p(xi, yi) and c(x̂, x) =

n∑

i=1

c(x̂i, xi).

More generally, the extent to which the myopic strategy δ̄ falls short from optimal

centralized performance, or the loss Jd(δ̄) − Jd(γ̄), remains a complicated function of

the global detection model i.e., the distribution p(x, y) and cost function c(x̂, x).

While the optimal centralized strategy γ̄ and the myopic decentralized strategy δ̄

are both functions that map Y to X , the different processing assumptions amount to

different size-m partitions of the joint likelihood space L. In particular, under myopic

processing assumptions, the strategy-dependent conditional distribution in the inte-

grand of (2.3) inherits the factored structure

p(x̂|y; δ̄) =
n∏

i=1

p(x̂i|yi; δ̄i),

where each ith term involves variables only at the individual node i. This structure can

lead to desirable computational ramifications: to illustrate, suppose only the decision

at node i is costly, captured by choosing c(x̂, x) = c(x̂i, xi) for all (x̂, x) ∈ X ×X . Then,

the strategy γ̄i : Y → Xi defined by selecting the ith component of x̂ = γ̄(y) is the
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global minimizer of (2.1), achieving penalty

Jd(γ̄i) = E
[

c(X̂i,Xi)
]

= E [E [c(γ̄i(Y ),Xi)|Y ]]

=
∑

xi∈Xi

p(xi)
∑

x̂i∈Xi

c(x̂i, xi)
∑

x\i

∑

x̂\i

p(x\i|xi)p(x̂|x; γ̄)

︸ ︷︷ ︸

p(x̂i|xi;γ̄i)

in contrast, the local myopic rule δ̄i minimizes (2.1) over only the subset of all such

rules having the form δi : Yi → Xi, achieving penalty

Jd(δ̄i) = E
[
E
[
c(δ̄i(Yi),Xi)

∣
∣Yi

]]

=
∑

xi∈Xi

p(xi)
∑

x̂i∈Xi

c(x̂i, xi)

∫

yi∈Yi

p(yi|xi)p(x̂i|yi; δ̄i) dyi

︸ ︷︷ ︸

p(x̂i|xi;δ̄i)

(2.5)

regardless of the non-local conditional distribution p(x\i, y\i|xi, yi) and the collective

strategy δ\i : Y\i → X\i of all other nodes. Thus, assuming myopic processing con-

straints and focusing on a cost function local to node i, the global penalty Jd involves

sums and integrals over only local random variables (Xi, Yi, X̂i). This simplification

foreshadows the key problem structure to be exploited in subsequent chapters of this

thesis, seeking to retain a similarly tractable decomposition of the general n-sensor

sums and integrals, yet also relaxing the constraint of zero online communication and

considering costs that can depend on all sensors’ decisions.

� 2.3 Probabilistic Graphical Models

Many estimation problems, including those motivating this thesis (e.g., the n-sensor

detection problems in Example 2.6 and Example 2.7), involve the joint distribution of

a large number of random variables. The formalism of graphical models [28, 49, 51,

60, 79, 117, 120] provides both a compact representation of large random vectors and a

systematic characterization of probabilistic structure to be exploited for computational

efficiency. We focus on models in which, given an n-node (directed or undirected)

graph G = (V, E), each node i in V is identified with a pair of random variables, a

hidden (discrete) random variableXi and an observable (discrete or continuous) random

variable Yi. The joint distribution of the respective random vectors X = {Xi; i ∈ V}
and Y = {Yi; i ∈ V} takes the form

p(x, y) = p(x)
∏

i∈V

p(yi|xi), (2.6)
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where prior probabilities p(x) are represented as a set of local interactions among dif-

ferent subvectors of X in correspondence with the edge set E of G. This representation

encodes structure built upon a precise correspondence between the probabilistic concept

of conditional independence and the graph-theoretic concept of node separation. Fur-

thermore, these conditional independencies allow the computation of key summarizing

statistics to be organized recursively, leading to especially efficient optimal algorithms

(i.e., scaling linearly with |V| = n) when the underlying graph G is tree-structured.

Example 2.8 (Linear Binary Detectors in Spatially-Uncorrelated Noise). Let there be

n spatially-distributed sensors, each ith such sensor a scalar linear binary detector (see

Example 2.4) with local likelihood function given by

p(yi|xi) =
1√
2π

exp

(

−1

2

(

yi − xiri

2

)2
)

, xi ∈ {−1,+1} and yi ∈ R.

xi = −1 xi = +1

yi

p
(y

i
|x

i
)

ri

Likelihood Function at Node i

Here, we have chosen state-related means ± ri

2
and a unit-variance noise process Wi so that

the single parameter ri ∈ (0,∞) captures the effective noise level e.g., measurements by

sensor i are less noisy, or equivalently more informative on the average, than measurements

by sensor j if ri > rj . If the Gaussian noise processes W1, . . . ,Wn are mutually uncorrelated

(i.e., the case of a diagonal covariance matrix Σ in Example 2.4), then the observable

processes Y1, . . . , Yn are mutually independent conditioned on the global hidden process

X = x i.e., the global likelihood function p(y|x) satisfies (2.6).

� 2.3.1 Compact Representations

There are two types of graphical models for a given random vector X, depending on

whether the underlying graph G is undirected or directed. The respective edge sets

make, in general, distinct assertions on the conditional independence properties satis-

fied by the joint distribution p(x). For models in which the undirected topology of G
is a tree (e.g., as in Example 2.9), these distinctions seem almost superfluous because

the two representations are defined on this same tree topology. For non-tree-structured

models, however, maintaining equivalence between the two types of representations re-

quires more care. The following examples discuss the most commonly studied graphical

models, introducing key concepts we treat more formally in the next two subsections.
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Example 2.9 (Hidden Markov Models). An important special case of the joint distribution

in (2.6) is called a hidden Markov model [14, 27, 84]. The prior probabilities p(x) are

described by a temporal Markov chain [8, 33], typically expressed as the product of an

initial state distribution and so-called transition probabilities,

p(x) = p(x1)

n−1∏

i=1

p(xi+1|xi).

Note that this distribution factors over pairs of random variables (Xi,Xi+1) in correspon-

dence with directed edge set {(i, i+ 1); i = 1, . . . , n− 1}, or a length-n path from node 1 to

node n. An equivalent representation, using the identity p(xi+1|xi) = p(xi, xi+1)/p(xi), is

given by

p(x) =
n∏

i=1

p(xi)
n−1∏

i=1

p(xi, xi+1)

p(xi)p(xi+1)
,

in which the factors more naturally correspond to the undirected counterpart of the under-

lying path. Another equivalent representation is

p(x) = p(xn)

n−1∏

i=1

p(xi|xi+1),

having factors in correspondence with the same path but in the reverse direction. Regardless

of the particular representation, the fundamental property of a Markov chain is that the

past and future are conditionally independent given the present i.e.,

p(x\i|xi) = p(x1, . . . , xi−1|xi)p(xi+1, . . . , xn|xi), i = 1, 2, . . . n.

It follows from these conditional independence properties that

p(xi|x\i) =
p(x)

p(x\i)
=
p(xi−1, xi, xi+1)

p(xi−1, xi+1)
= p(xi|xi−1, xi+1), i = 1, 2, . . . , n,

or that each hidden variable Xi is conditionally independent of all non-neighboring variables

given both (Xi−1,Xi+1). The respective graphical models for these three mathematically

equivalent representations of an n-step Markov chain model are illustrated below.

X1 Xn· · ·X2

X1 Xn· · ·X2

X1 Xn· · · Xn−1

Example 2.10 (Multiresolution Markov Models). Another important special case of the

joint distribution in (2.6) is a multiresolution Markov model [20, 59, 61, 120], essentially

generalizing the properties described in Example 2.9 for a simple chain to any underlying
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graph whose undirected topology is cycle-free. One representation of a tree-structured

random process X is as a Markov chain indexed in scale, starting from any particular

root node sc(0) ∈ V and categorizing the remaining nodes into disjoint subsets {sc(s); s =

1, 2, . . . d} for some d ≤ n− 1 according to their distance s from this root i.e.,

p(x) = p(xsc(0))
d∏

s=1

p(xsc(s)|xsc(s−1)).

Moreover, these transition probabilities further decompose within each scale, viewing the

unique path from root to any other node as its own temporal Markov chain: letting pa(i)

denote the node in scale s− 1 that lies on the path from root to the node i in scale s,

p(xsc(s)|xsc(s−1)) =
∏

i∈sc(s)

p(xi|xpa(i)).

The distribution p(x) thus factors in correspondence with directed edges E = {(pa(i), i); i ∈
V\sc(0)}. Recognizing that

⋃d
s=1 sc(s) = V\sc(0) and employing the identity p(xi|xpa(i)) =

p(xpa(i), xi)/p(xpa(i)), we may equivalently write

p(x) =
∏

i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
, (2.7)

removing the asymmetry that resulted from the arbitrary choice of root node. Figure 2.5(a)

illustrates the graphical models implied by these equivalent representations.

Example 2.11 (Nearest-Neighbor Grid Models). Yet another important special case of

the joint distribution in (2.6) is a nearest-neighbor grid model, which is distinct from the

previous two examples in that the underlying graph has cycles. As shown in Figure 2.5(b),

each hidden variable inside the grid’s perimeter is connected to its four closest spatial

neighbors, while corner variables have two neighbors and all other variables on the perimeter

have three neighbors. Analogous to the conditional independencies noted for the Markov

chain in Example 2.9, the implication here is that each hidden variable Xi is conditionally

independent of all non-neighboring processes given only its neighboring processes i.e.,

p(xi|x\i) = p(xi|xne(i)), i = 1, 2, . . . n.

As will be described more formally in the next subsection, this graphical model encompasses

all prior distributions having the structural form (up to normalization)

p(x) ∝
∏

(i,j)∈E

ψi,j(xi, xj),

where ψi,j : Xi ×Xj → [0,∞) denotes any nonnegative real-valued function of the variables

connected by each edge (i, j) in E . Note that, in contrast to the tree-structured models in

Example 2.9 and Example 2.10, each factor ψi,j need not be a valid (joint or conditional)

probability distribution for Xi and Xj . Yet if we aggregate the variables row-by-row,

defining “super-nodes” for the subvectors Xrw(s) = (Xds−d+1, . . . ,Xds) for s = 1, 2, . . . , d,

then we may write

p(xrw(s)|x\rw(s)) = p(xrw(s)|xrw(s−1), xrw(s+1)),

which corresponds to a Markov chain on these aggregated variables.
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Xsc(0)

Xpa(i)

Xi

Xpa(j)

Xj

Xsc(1)

Xsc(2)

Xsc(d) · · ·

· · ·

· · ·· · ·

· · ·· · ·· · ·

· · ·

· · ·· · ·
...

...

Xsc(0)

Xpa(i)

Xi

Xpa(j)

Xj

· · ·

· · ·

...

...

...
...

(a) Two Equivalent Representations of a d-Scale Multiresolution Markov Model

X1 X2 Xd

Xd+1 Xd+2 X2d

Xd2

Xrw(1)

Xrw(2)

Xrw(d) · · ·

· · ·

· · ·

...
...

...
. . .

...

Xrw(1)

Xrw(2)

Xrw(d)

(b) Two Equivalent Representations of a d-by-d Nearest-Neighbor Grid Model

Figure 2.5. Well-studied examples of directed and undirected graphical models for the compact

representation of prior probabilities p(x) in large-scale estimation problems (see Examples 2.9–2.11).

The tree-structured models in (a) admit representation using either type of graph without modification

to its undirected topology, whereas the lack of a natural partial-order in graphs with cycles prohibits

a valid directed representation for (b) without first introducing node aggregation and losing explicit

structure, illustrated here by the Markov chain on the row-by-row subvectors of the original grid model.
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Undirected Graphical Models (Markov Random Fields)

An undirected graphical model, or Markov random field, rests upon an undirected graph

G. We say that the random vector X is (globally) Markov with respect to the graph

G if, whenever node set V2 separates the node sets V1 and V3, the subvectors XV1 and

XV3 are independent conditioned on XV2 i.e.,

p(xV1, xV3 |xV2) = p(xV1 |xV2)p(xV3 |xV2). (2.8)

As an example, the model with underlying graph shown in Figure 2.1(a) implies the

conditional independencies

p(x1, x2, x3, x4, x5|x7, x8) = p(x1, x2, x3|x7, x8)p(x4, x5|x7, x8),

p(x5, x12|x3, x9) = p(x5|x3, x9)p(x12|x3, x9)

and many others. Important special cases of (2.8) are the (local) Markov properties

p(xi|xV\i) = p(xi|xne(i)), i = 1, . . . , n,

stating that each Xi, conditioned on the immediate neighbors’ hidden variables Xne(i),

is independent of all other hidden variables in the model.

In a general graph G, the connection between the set of all Markov properties

and a joint distribution satisfying them is not as readily apparent as was the case in

Example 2.9. The celebrated Hammersley-Clifford theorem [13, 35] provides a sufficient

condition (also necessary if p(x) is strictly positive for all x ∈ X ): denoting by C the

collection of all cliques C ⊂ V in G, the random vector X is Markov with respect to G
if (and only if for strictly positive distributions)

p(x) ∝
∏

C∈C

ψC(xC), (2.9)

where each clique potential ψC represents some nonnegative real-valued function of its

arguments.2 It is easily seen that it suffices to restrict the collection C to only the set

of maximal cliques in G, or only the cliques that are not a strict subset of any other

clique. It is typically not the case that the right-hand-side of (2.9) sums to unity, so to

achieve equality with p(x) requires normalizing the right-hand-side, in general a sum

over a number of terms exponential in n. It is also not necessarily the case, even if

2A clique potential is conventionally the quantity logψC, calling ψC a compatibility function, but this

distinction can be ignored in the scope of this thesis.
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we assume the right-hand-side is normalized, that any particular clique potential ψC is

itself a valid probability distribution for the subvector XC .

The graph-dependent structure exhibited by (2.9) defines a family of probability

distributions for random vector X, members of which correspond to different choices of

clique potentials. The graph structure can also be viewed as placing explicit constraints

on the set of all valid distributions forX. This structure can often be further constrained

by the choice of clique potentials: for example, assuming each clique potential factors

in direct correspondence with the edges in the respective clique, (2.9) specializes to the

pairwise representation

p(x) ∝
∏

i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj), (2.10)

where (nonnegative real-valued) functions ψi and ψi,j are called node potentials and edge

potentials, respectively.3 Note that all models discussed in Examples 2.9–2.11 admit

representation of the form in (2.10); moreover, in the special case that G is a tree, we

achieve equality in (2.10) by choosing ψi(xi) = p(xi) and ψi,j(xi, xj) =
p(xi,xj)

p(xi)p(xj)
.

Directed Graphical Models (Bayesian Networks)

A directed graphical model, often referred to as a Bayesian network, constrains the

distribution of a random vector X to a factored representation defined on a directed

acyclic graph G. In contrast with undirected models, there are at most n factors and

each ith such factor is itself a valid conditional distribution, describing component

variable Xi given its parents’ variables Xpa(i) i.e., taking p(xi|xpa(i)) = p(xi) if node i

is parentless, random process X has distribution

p(x) =
∏

i∈V

p(xi|xpa(i)). (2.11)

That the directed graph G is acyclic ensures the parent-child relationships expressed in

(2.11) coincide with a well-defined partial ordering of the nodes. In turn, the random

vector X is seen to realize its components sequentially in the forward partial order

implied by G.

Comparing (2.11) and (2.9), the global Markov properties implied by a directed

graphical model are structurally equivalent to those implied by an undirected model

with n cliques, each ith clique involving node i and its parents pa(i). That is, in

3Factor graphs [58] are one way to explicitly differentiate between such specialized structures within

the most general representation of (2.9), but these tools are not employed in the scope of this thesis.
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X1 X3

X4X2

X5

X6

X7

X8

X10

X9 X1 X3

X4X2

X5
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X7

X8

X10

X9

(a) Directed Graphical Model (b) Equivalent Undirected Model

Figure 2.6. (a) A particular non-tree-structured directed graphical model and (b) its equivalent

representation as an undirected model. The latter requires a clique for every node i and its parents

pa(i) in the former, which in this example adds the undirected edges {1, 4}, {6, 8} and {7, 8} to the

undirected counterparts of all directed edges already in (a).

general, the equivalent undirected model is defined on a graph that includes not only

the undirected topology of G, but also edges between every two nodes that share a

common child; see Figure 2.6 for an example and its so-called moral graph [23, 60]. In

turn, the local Markov properties can extend beyond the immediate neighborhood in

the directed graph: in particular, the process Xi is conditionally independent of the

remaining process given both its neighbors’ variables, namely Xpa(i) and Xch(i), and

every child’s other parents’ variables, namely {Xpa(j)\i; j ∈ ch(i)}.
The introduction of additional edges to retain an equivalent undirected model is

unnecessary in the special case that G is a polytree. Because no two parents of the

same node i share either a common ancestor or a common descendant (other than, of

course, node i and its descendants), the joint distribution of all ancestors’ states Xan(i),

conditioned on the local state Xi = xi, can be factored across the parents’ sub-polytrees

i.e.,

p(xan(i)|xi) =
∏

j∈pa(i)

p(xan(j), xj |xi), i = 1, . . . n.

By marginalizing over all nodes other than node i and its parents pa(i), we see that

p(xpa(i)|xi) =
∏

j∈pa(i)

p(xj|xi), i = 1, . . . n.

Substituting p(xi|xpa(i)) ∝ p(xi)
∏

j∈pa(i) p(xj|xi) into (2.11), the representation spe-

cializes to exactly the pairwise form of (2.10) assuming the tree topology of G.

� 2.3.2 Message-Passing Algorithms on Trees

Assuming G is a relatively sparse graph, the representations of (2.6) along with (2.10)

or (2.11) when G is undirected or directed, respectively, provide the means to specify
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the joint distribution of a large number of (hidden and observable) random variables.

Moreover, in many estimation and decision problems (including those considered in

this thesis), such a specification is readily available. Typically, however, the individual

factors do not readily describe the quantities of most interest for the purposes of esti-

mation and decision-making (e.g., the posterior marginal at every node for the MPM

estimation problem in Example 2.7). Indeed, for the discrete-valued hidden variables

under consideration, the computation of such quantities in general graphs is known to

be NP hard, scaling exponentially with the number of nodes n.

For prior probabilities p(x) defined on trees, however, computation of key statistical

quantities is relatively straightforward. The hidden Markov model described in Exam-

ple 2.9 is the most widely studied example, for which there exist many efficient recursive

algorithms, scaling linearly in n [27, 84]: there is the forward algorithm to compute the

likelihood of a particular observation, the forward-backward algorithm to compute the

posterior marginals, and the Viterbi algorithm to compute the posterior mode. By es-

sentially generalizing these time series recursions to respect the partial-order implied by

a tree topology, similarly efficient algorithms are available for tree-structured graphical

models [79, 120]. In this subsection, we focus on so-called (sum-product) belief propa-

gation algorithms [58, 79] to efficiently compute the posterior marginals at every node,

addressing the MPM estimation problem described in Example 2.7.4

The fundamental property of a tree, which ultimately leads to the efficient recursive

algorithms, is that each single node separates the graph into disjoint subtrees. More

formally, for any node i ∈ V and neighbor j ∈ ne(i), let V(j, i) denote the vertex

set of the subtree rooted at node j looking away from neighbor i. Notice that {i} ∪
(
∪j∈ne(i)V(j, i)

)
comprises a disjoint union of the entire node set V. The associated

Markov properties then imply that the posterior marginal local to each node i satisfies

p(xi|y) =
p(y|xi)p(xi)

p(y)
∝ p(xi)p(yi|xi)

∏

j∈ne(i)

p(yV(j,i)|xi). (2.12)

Thus, for the purposes of calculating p(xi|y) local to node i, the conditional likelihood

p(yV(j,i)|xi) is a sufficient statistic of the information in the subtree associated with

neighbor j ∈ ne(i). Moreover, again applying the Markov properties implied by G, we

4The key ideas are essentially the same for tree-based algorithms to obtain other statistical quantities

of interest (e.g., the max-product algorithm for solving the MAP estimation problem in Example 2.6),

but their details are omitted here because subsequent chapters of this thesis primarily address network-

constrained analogs of the MPM estimation problem.
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can relate the conditional likelihoods at neighboring nodes to one another:

p(yV(j,i)|xi) =

∑

xj
p(xi, xj , yV(j,i))

p(xi)
=

∑

xj
p(xi, xj)p(yV(j,i)|xj)

p(xi)

=
∑

xj

p(xj |xi)p(yj |xj)
∏

m∈ne(j)\i

p(yV(m,j)|xj). (2.13)

The decompositions of (2.12) and (2.13) form the basis of a variety of algorithms for

computing posterior marginals in a tree-structured graphical model. In particular, given

any particular joint observation Y = y, we may view (2.13) as a system of nonlinear

equations coupling all 2|E| sufficient statistics, each edge (i, j) in correspondence with

non-negative real-valued vectors Mi→j ∈ [0,∞)|Xj | and Mj→i ∈ [0,∞)|Xi|. Also notice

that the prior model appears in (2.13) only in terms of p(xj |xi) =
p(xi,xj)

p(xi)p(xj)
p(xj) for

every edge in G. In tree-structured models, these terms correspond to the canonical

instance (2.7) of the more general pairwise representation (2.10). Taken as equivalent

representations of the same joint distribution p(x), we have

p(xm|y) ∝
∑

x\m

p(x, y) =
∑

x\m

∏

i∈V

p(xi)p(yi|xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)

∝
∑

x\m

∏

i∈V

ψi(xi)p(yi|xi)
∏

(i,j)∈E

ψi,j(xi, xj).

It follows that satisfying the system of equations implied by (2.13) is equivalent to

satisfying, up to proportionality, the system of equations implied by

Mj→i(xi) =
∑

xj

ψj(xj)p(yj|xj)ψi,j(xi, xj)
∏

m∈ne(j)\i

Mm→j(xj). (2.14)

While the statistics Mne(i)→i = {Mj→i(xi) | j ∈ ne(i)} are, in general, no longer equal

to the conditional likelihoods {p(yV(j,i)|xi) | j ∈ ne(i)}, up to proportionality they

remain sufficient statistics for computing the posterior marginal local to node i,

p(xi|y) ∝ ψi(xi)p(yi|xi)
∏

j∈ne(i)

Mj→i(xi). (2.15)

Belief propagation algorithms amounts to different iterative methods for solving the

system of 2|E| equations implied by (2.14). Each sufficient statistic Mj→i(xi) is viewed

as a message that node j sends to node i, providing all the information about Xi

contained in the subset of measurements yV(j,i). One way to organize these equations is
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on a node-by-node basis, where for each node i the outgoing message vectors Mi→ne(i) =

{Mi→j(xj) | j ∈ ne(i)} are collectively determined by an operator, call it fi, on the

local measurement yi and the incoming message vectors Mne(i)→i i.e., (2.14) can be

viewed as fixed-point equations having the form

Mi→ne(i) = fi

(
yi,Mne(i)→i

)
, i = 1, . . . , n. (2.16)

Given a solution to these fixed-point equations, computing the posterior marginals

p(xi|y), or the “beliefs,” is straightforward via (2.15).

The parallel message schedule in belief propagation is the easiest to describe. We

first initialize all messages to some arbitrary value, say M0
j→i(xi) = 1 for all i ∈ V and

j ∈ ne(i). Then, we generate the sequence of messages {Mk
i→ne(i) | i ∈ V} via successive

so-called Jacobi iterations of (2.16), meaning all nodes update their outgoing messages

in parallel based on the incoming messages of the preceding iteration i.e., iteration

k = 1, 2, . . . , is

Mk
i→ne(i) := fi

(

yi,M
k−1
ne(i)→i

)

, i = 1, . . . , n.

In trees, after a number of iterations equal to the diameter of the graph (intuitively,

enough iterations for data from one end of the graph to propagate to the other), the

messages will converge to a unique fixed point of (2.16). One may also define the

associated sequence of beliefs {Mk
i } local to each node i, applying (2.15) after every

kth message update,

Mk
i (xi) ∝ ψi(xi)p(yi|xi)

∏

j∈ne(i)

Mk
j→i(xi).

Each belief sequence {Mk
i } is effectively a series of higher-fidelity approximations to

the posterior marginal p(xi|y), iteratively incorporating data over an expanding neigh-

borhood about node i in the graph G.

From the communication perspective, associating each outgoing message to an ac-

tual transmission between two nodes, the parallel message schedule takes at least 2|E|
real-valued transmissions per iteration. It is also possible to schedule messages more

efficiently, taking advantage of the partial-order implied by the tree-structured graph.

In particular, by organizing the tree relative to a chosen root node (as was discussed

in Example 2.10), posterior marginals can be computed via a two-pass sweep through

the tree. That is, processing proceeds recursively, first from the most distant nodes to

the root, and then from the root back outward (see [20, 59, 62, 79] for details). The

posterior marginals can be computed after the second pass and so each individual mes-

sage must only be computed once, amounting to at least 2|E| real-valued transmissions.
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The first pass is sufficient if we desire only the posterior marginal at the designated

root node, amounting to total communication overhead of at least n − 1 real-valued

transmissions.



Chapter 3

Directed Network Constraints

THIS chapter begins our deeper exploration into the connections made in Chap-

ter 2 between Bayesian detection models and probabilistic graphical models. We

reviewed that different estimation problems given an n-node graphical model (e.g.,

MAP estimation, likelihood calculation) can be equated with implementing the opti-

mal centralized strategy for different cost functions given an n-sensor detection model.

Efficient message-passing solutions to the former imply that communication overhead

associated with the latter is at least n − 1 real-valued messages (per online estimate),

and is potentially unbounded in the absence of the ideal communication model. Even

if ideal communication can be assumed for these efficient message-passing algorithms,

when applied to graphical models with arbitrary graph structure, they need not nec-

essarily lead to optimal estimates nor even converge, implying the potential for poor

performance or excessive computation.

Recall from Chapter 1 that this thesis rests upon the recognition that network-

constrained inference problems are characterized by two different graphs, one underlying

the probabilistic model and the other underlying the communication model. The non-

ideal communication models considered here take their inspiration from the efficient

message-passing interpretations that exist for graphical models, while managing the

twists that (i) the two graphs need not bear any relation to one another, nor even be

tree-structured, (ii) every message takes values in a finite-alphabet set and (iii) the

message schedule is limited to a fixed number of iterations. In following this approach,

we enter the realm of approximate inference on a path that intersects with the theory

of decentralized detection when the communication model imposes severe constraints

(e.g., exactly one iteration with single-bit messages) in comparison to the most efficient

implementations of the optimal counterpart. While in this case the online message-

passing algorithms, or equivalently decentralized decision strategies, are then efficient

and convergent by constraint, the key challenges arise in tractably solving the associated
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States

x ∈ X1 × · · · × Xn

Measurements

y1 ∈ Y1

yn ∈ Yn

......

n-Node Directed Network
Decisions

x̂1 ∈ X1

x̂n ∈ Xn

...... Sensor
Channel

i i
x̂i

yi

zi

ui

Symbols from
parents pa(i)

Symbols to

children ch(i)

Decentralized strategy: (ui, x̂i) = γi(yi, zi), i = 1, . . . , n

Figure 3.1. The n-sensor detection model described in Chapter 2, but assuming a decentralized

decision strategy subject to network constraints defined on an n-th order directed acyclic graph, each

edge representing a unidirectional finite-rate (and perhaps unreliable) communication link between two

spatially-distributed nodes. The online message schedule is constrained to just a single forward sweep

through the network, each node successively receiving information from its parents (if any), transmitting

information to its children (if any), and forming a local state estimate (if in the gateway).

offline design problems, optimizing over the set of feasible strategies such that the loss

from optimal centralized performance is minimized.

� 3.1 Chapter Overview

This chapter focuses on the non-ideal communication model in which the online message

schedule is constrained to exactly one forward sweep on a given directed acyclic graph.

As illustrated in Figure 3.1, each node successively receives information from its parents,

may transmit at most one discrete symbol to its children, and then may form its own

local state estimate. In the special case that the probabilistic graphical model and

directed network topology have identical tree structure, this online message schedule

can be viewed as the quantized analog to the forward-sweep algorithm for calculating

exact likelihoods at all childless nodes as discussed in Chapter 2. The variational

formulation and team-theoretic analysis presented in this chapter generalizes a number

of previous studies in the decentralized detection literature [11, 106, 109, 110], including

the consideration of an arbitrary directed network topology [26, 81, 96, 97, 98], a vector

state process along with a distributed decision objective [80, 81], as well as selective or

unreliable online communication [16, 17, 74, 83, 88].

Section 3.2 augments the n-sensor detection formulation to account for the directed

network constraints in the generality implied by Figure 3.1. Existing team theory estab-

lishes when necessary optimality conditions reduce to a convergent iterative algorithm

to be executed offline. While the resulting online strategy admits an efficient distributed

implementation by design, without introducing additional structure the associated of-
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fline algorithm has exponential complexity in the number of nodes, and its distributed

implementation assumes every node will iteratively broadcast to all other nodes in the

network.

In Section 3.3, we identify a class of models for which the convergent offline al-

gorithm itself admits an efficient message-passing interpretation on the given network

topology. In each offline iteration, every node adjusts its local rule (for subsequent

online processing) based on incoming messages from its neighbors and, in turn, sends

adjusted outgoing messages to its neighbors. The messages received by each node from

its parents define, in the context of its local objectives, a “likelihood function” for the

symbols it may receive online (e.g., “what does the information from my neighbors mean

to me”) while the messages from its children define, in the context of all other nodes’

objectives, a “cost-to-go function” for the symbols it may transmit online (e.g., “what

does the information from me mean to my children and their descendents”). Each

node need only be initialized with local statistics and iterative per-node computation

becomes invariant to n (but still scales exponentially with the number of neighbors, so

the algorithm is best-suited for sparsely-connected networks).

The end result of this offline message-passing process can be thought of as a dis-

tributed fusion protocol, in which the nodes of the network have collectively determined

their individual rules for transmitting information to their children and interpreting

information transmitted by their parents. As we will illustrate, this protocol takes into

account explicitly the limits on available communication resources, in effect using the

absence of communication as another noisy signal from one node to another, which

we show can be of value even when communication channels are unreliable or commu-

nication costs are negligible. In addition, the prospect of a computationally-efficient

algorithm to optimize large-scale decentralized detection networks is complementary to

other recent work, which focuses on asymptotic analyses [1, 15, 75, 101, 102, 105, 122],

typically under assumptions regarding network regularity or sensor homogeneity. The

message-passing algorithm we propose here may offer a tractable design alternative

for applications in which such assumptions cannot be made, and especially if network

connectivity is also sparse and the detection objective is itself spatially-distributed.

Section 3.4 describes a number of experiments with a simulated network of binary

detectors, applying the offline message-passing algorithm to optimize the achievable

tradeoff between global detection performance and network-wide online communica-

tion. The results illustrate that, considering the severity of the online communication

constraints, relatively dramatic improvements over myopic decentralized performance
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are possible. Our empirical analysis also exposes a design tradeoff between constrain-

ing in-network processing to conserve algorithmic resources (per online measurement)

but then having to consume resources (per offline organization) to maintain detection

performance.

Section 3.5 closes this chapter by summarizing these results in preparation for their

extension to the more elaborate online message schedules considered in subsequent

chapters. Chapter 4 focuses on network constraints defined on an undirected graph,

showing that, under certain assumptions, the problem is structurally equivalent to

that addressed in this chapter. In Chapter 5, we formulate the possibility of multiple

online communication stages: its team solution turns out to be intractable even under

best-case assumptions, but the offline message-passing interpretations developed for the

single-stage communication architectures form an integral part of the approximations

we propose to tackle these difficult problems.

� 3.2 Decentralized Detection Networks

This section reviews the theory of decentralized Bayesian detection [106, 109, 110] in the

generality implied by Figure 3.1. Our main model builds upon the n-sensor detection

model discussed in Chapter 2. As before, we first assume (i) the hidden state x and

observable measurement y take their values in, respectively, a discrete product space

X = X1 × · · · × Xn and Euclidean product space Y = Y1 × · · · × Yn. We assume

a given distribution p(x, y) jointly describes the hidden state process X and noisy

measurement process Y . Note that an m-ary hypothesis test can be viewed as a special

of this model, corresponding to |Xi| = m for every i and prior probabilities p(x) such

that P [X1 = X2 = · · · = Xn] = 1. Different from before, we assume the global estimate

x̂ ∈ X is generated sequentially in the forward partial order of a given n-node directed

acyclic graph F = (V,D), each edge (i, j) in F indicating a (perhaps unreliable) low-

rate communication link from node i to node j. As illustrated in Figure 3.1, each

node i, observing only the component measurement yi and the symbol(s) zi received on

incoming links with all parents pa(i) = {j ∈ V | (j, i) ∈ D} (if any), is to decide upon

both its component estimate x̂i and the symbol(s) ui transmitted on outgoing links with

all children ch(i) = {j ∈ V | (i, j) ∈ D} (if any). We now proceed to more carefully

formulate such online processing constraints, translating them to explicit restrictions

on the set of decision strategies over which the Bayes risk function is minimized.
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� 3.2.1 Network-Constrained Online Processing Model

Suppose each edge (i, j) in F is assigned an integer di→j ≥ 2 denoting the size of the

symbol set supported by this link (i.e., the link rate is log2 di→j bits per measurement).

The symbol(s) ui transmitted by node i can thus take at most
∏

j∈ch(i) di→j distinct

values. For example, a scheme in which node i may transmit a different symbol to

each child is modeled by a finite set Ui with cardinality equal to
∏

j∈ch(i) di→j, while a

scheme in which node i transmits the same symbol to every child corresponds to |Ui| =

minj∈ch(i) di→j . In any case, the focus is on models that require each node to somehow

compress its local data into a relatively small number of logical outgoing symbols (e.g.,

one symbol per outgoing link). We similarly assume the symbol(s) zi received by node

i take their values in a given discrete set Zi. The cardinality of Zi will certainly reflect

the joint cardinality |Upa(i)| =
∏

j∈pa(i) |Uj | of its parents’ transmissions, but the exact

relation is determined by the given multipoint-to-point channel into each node i. In

any case, each such channel is modeled by a conditional distribution p(zi|x, y, upa(i)),

describing the information Zi received by node i based on its parents’ transmitted

symbols upa(i) = {uj ∈ Uj | j ∈ pa(i)}.1

Example 3.1 (Peer-to-Peer Binary Communication with Erasures). Associate each edge

(i, j) in directed graph F with a unit-rate communication link, meaning di→j = 2. If ui→j ∈
{−1,+1} denotes the actual symbol transmitted by node i to its child j ∈ ch(i), then the

collective communication decision ui takes its values in Ui = {−1,+1}|ch(i)|. The collection

of all symbols transmitted to a particular node j is denoted by upa(j)→j = {ui→j ; i ∈ pa(j)}.
On the receiving end, let zj→i ∈ {−1, 0,+1} denote the actual symbol received by node i

from its parent j ∈ pa(i), where the value “0” indicates an erasure and otherwise zj→i =

uj→i. It follows that the symbol zi received by node i takes values in Zi = {−1, 0,+1}|pa(i)|.

Upa(i)→i Zi

−1

0

+1

−1

+1

Upa(i)→i

uj→i uk→i

Zi

uj→i uk→i

uj→i 0

0 uk→i

0 0

Given Node i has One Parent Given Node i has Two Parents

1Here, we have also allowed the channel model to depend on the processes (X,Y ) of the environment

external to the network. Whether such generality is warranted will, of course, depend on the application

(e.g., the sensor seeks to detect the presence of a malicious jammer), and later sections will indeed

sacrifice some generality in the interest of scalable representations and tractable algorithms.
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Example 3.2 (Broadcast Binary Communication with Interference). As in Example 3.1,

let di→j = 2 for each edge (i, j) in F . However, now assume each node i always transmits the

same binary-valued symbol to all of its children, meaning Ui = {−1,+1}. On the receiving

end there are two possibilities: either zi = upa(i) or, when there are two or more parents,

none of the incoming symbols are received due to inter-symbol interference. Denoting the

latter event by zi = 0, it follows that Zi = {−1,+1}|pa(i)| × {0}.

Upa(i) Zi

−1

+1

−1

+1

Upa(i)

uj uk

zi

uj uk

0

Given Node i has One Parent Given Node i has Two Parents

Altogether, the collections of transmitted symbols u and received symbols z thus

take their values in discrete product spaces U = U1 × · · · × Un and Z = Z1 × · · · × Zn,

respectively. By constraint, the global decision process X̂ is generated in a component-

wise fashion in the forward partial order of network topology F , each node i individually

generating both Ui and X̂i upon observing both Yi and Zi. It follows that any particular

strategy γ : Y ×Z → U ×X induces a global decision process (U, X̂) = γ(Y,Z). Denote

by Γ̄ the set of all such strategies and by Γ ⊂ Γ̄ the admissible, or feasible, subset of

these strategies given the network topology F ; specifically, denoting by Γi the set of all

rules γi : Yi ×Zi → Ui ×Xi local to node i, we let Γ = Γ1 × · · · × Γn.

� 3.2.2 Bayesian Formulation with Costly Communication

The Bayesian criterion is essentially the same as in the centralized detection problem,

but also accounting for the communication-related decision process U . We assign to

every possible realization of the joint process (U, X̂,X) a cost of the form

c(u, x̂, x) = c(x̂, x) + λc(u, x),

where non-negative constant λ specifies the unit conversion between detection costs

c(x̂, x) and communication costs c(u, x). In turn, the Bayes risk function is given by

J(γ) = E
[

c(U, X̂,X)
]

= E [E [c(γ(Y,Z),X)| Y,Z]] (3.1)

and the decentralized design problem is to find the strategy γ∗ ∈ Γ ⊂ Γ̄ such that

J(γ∗) = Jd(γ
∗) + λJc(γ

∗)

= min
γ∈Γ̄

Jd(γ) + λJc(γ) subject to γ ∈ Γ,
(3.2)
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where functions Jd : Γ̄ → R and Jc : Γ̄ → R quantify the detection penalty and

communication penalty, respectively. Viewing (3.2) as a multi-objective criterion pa-

rameterized by λ, the achievable design tradeoff is then captured by the pareto-optimal

planar curve {(Jc(γ
∗), Jd(γ

∗)) ;λ ≥ 0}.
Example 3.3 (Selective Binary Communication Schemes). As in Example 3.1 and Ex-

ample 3.2, let di→j = 2 for each edge (i, j) in F . A selective communication scheme refers

to each node having the option to suppress transmission on, or remain silent, on one or

more of its outgoing links. We denote this option to remain silent by the symbol “0”, and

we assume it is always both cost-free and reliably received. In Example 3.1, for exam-

ple, this implies any communicating node i selects from an augmented decision space of

Ui = {−1, 0,+1}|pa(i)|. Meanwhile, upon receiving zi→j = 0, any child j ∈ ch(i) is then

uncertain as to whether node i elected silence or link (i, j) experienced an erasure; on the

other hand, if zi→j 6= 0, then child j knows neither selective silence nor an erasure has

occurred. In Example 3.1, we let Ui = {−1, 0,+1} for node i, while on the receiving end

the effects of interference occur only among the subset of actively transmitting parents.

Uj→i Uk→i Zi

uj→i uk→i

uj→i 0

0 uk→i

0 0

±1 ±1

±1 0

0 ±1

0 0

Uj Uk zi

uj uk

uj 0

0 uk

0 0

±1 ±1

±1 0

0 ±1

0 0

Selective Communication in Example 3.1 Selective Communication in Example 3.2

The formulation in (3.2) specializes to the centralized design problem when online

communication is both unconstrained and unpenalized i.e., Γ is the set of all functions

γ : Y → X and λ = 0. In general, however, the function space Γ excludes the optimal

centralized strategy γ̄ in (2.2), but always includes the myopic decentralized strategy

δ̄ in (2.4). The non-ideal communication model also manifests itself as a factored

representation within the distribution underlying (3.1). By construction, fixing a rule

γi ∈ Γi is equivalent to specifying the distribution

p(ui, x̂i|yi, zi; γi) =

{

1 , if (ui, x̂i) = γi(yi, zi)

0 , otherwise
.

It follows that fixing a strategy γ ∈ Γ ⊂ Γ̄ specifies the distribution

p(u, z, x̂|x, y; γ) =

n∏

i=1

p(zi|x, y, upa(i))p(ui, x̂i|yi, zi; γi), (3.3)
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reflecting the causal processing implied by the directed network topology F . In turn,

the distribution that determines the global penalty function J(γ) in (3.1) becomes

p(u, x̂, x; γ) =

∫

y∈Y
p(x, y)

n∏

i=1

p(ui, x̂i|x, y, upa(i); γi) dy, (3.4)

where the summation over Z is taken inside the product i.e., for each node i, we have

p(ui, x̂i|x, y, upa(i); γi) =
∑

zi∈Zi

p(zi|x, y, upa(i))p(ui, x̂i|yi, zi; γi).

Note that the integration over Y cannot be decomposed in the absence of additional

model assumptions, a possibility we explore subsequently.

� 3.2.3 Team-Theoretic Solution

In general, it is not known whether the strategy γ∗ in (3.2) lies in a finitely-parameterized

subspace of Γ. The team-theoretic approximation used here is to satisfy a set of person-

by-person optimality conditions, each based on a simple observation: if a decentral-

ized strategy γ∗ = (γ∗1 , . . . , γ
∗
n) is optimal over Γ, then for each i and assuming rules

γ∗\i = {γ∗j ∈ Γj | j 6= i} are fixed, the rule γ∗i is optimal over Γi i.e., for each i,

γ∗i = arg min
γi∈Γi

Jd(γ
∗
\i, γi) + λJc(γ

∗
\i, γi). (3.5)

Simultaneously satisfying (3.5) for all i is (by definition) a necessary optimality con-

dition, but it is not sufficient because, in general, it does not preclude a decrease in

J via joint minimization over multiple nodes simultaneously. Under certain model as-

sumptions, finding a solution to the n coupled optimization problems in (3.5) reduces

analytically to finding a fixed-point of a particular system of nonlinear equations.

In this and subsequent sections we introduce a sequence of further model assump-

tions, each of which introduces additional local structure to our problem which we

exploit in constructing our efficient iterative offline algorithm. We do this in stages to

help elucidate the value and impact of each of these successive assumptions.

Assumption 3.1 (Conditional Independence). Conditioned on the state process X,

the measurement Yi and received symbol Zi local to node i are mutually independent

as well as independent of all other information observed in the network, namely the

measurements Y\i and symbols Z\i received by all other nodes i.e., for every i,

p(yi, zi|x, y\i, z\i, u\i) = p(yi|x)p(zi|x, upa(i)). (3.6)
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For example, Assumption 3.1 is satisfied if each measurement Yi is a function of X

corrupted by noise, each received symbol Zi is a function of X (and transmitted symbols

Upa(i)) corrupted by noise, and all of these noise processes are mutually independent.

Lemma 3.1 (Factored Representation). Let Assumption 3.1 hold. For every strategy

γ ∈ Γ, the distribution in (3.4) specializes to

p(u, x̂, x; γ) = p(x)

n∏

i=1

p(ui, x̂i|x, upa(i); γi),

where for every i,

p(ui, x̂i|x, upa(i); γi) =
∑

zi∈Zi

p(zi|x, upa(i))

∫

yi∈Yi

p(yi|x)p(ui, x̂i|yi, zi; γi) dyi. (3.7)

Proof. Substituting (3.6) into (3.3) and (3.4) results in

p(u, x̂|x; γ) =
∑

z∈Z

∫

y∈Y

n∏

i=1

p(yi|x)p(zi|x, upa(i))p(ui, x̂i|yi, zi; γi) dy.

Because only the ith factor in the integrand involves variables (yi, zi), global marginal-

ization over (Y,Z) simplifies to n local marginalizations, each over (Yi, Zi).

Proposition 3.1 (Person-by-Person Optimality). Let Assumption 3.1 hold. The ith

component optimization in (3.5) reduces to

γ∗i (Yi, Zi) = arg min
(ui,x̂i)∈Ui×Xi

∑

x∈X

θ∗i (ui, x̂i, x;Zi)p(Yi|x) (3.8)

where, for each zi ∈ Zi such that p(Yi, zi; γ
∗
\i) > 0, the parameter values θ∗i (zi) ∈

R
|Ui|×|Xi|×|X | are given by

θ∗i (ui, x̂i, x; zi) = p(x)
∑

u\i∈U\i

p(zi|x, upa(i))
∑

x̂\i∈X\i

c(u, x̂, x)
∏

j 6=i

p(uj , x̂j |x, upa(j); γ
∗
j ).

(3.9)

Proof. The proof follows the same key steps by which (2.2) is derived in the centralized

case, but accounting for a composite measurement (Yi, Zi) and a cost function that also

depends on non-local decision variables (U\i, X̂\i). Assumption 3.1 is essential for the

parameter values θ∗i to be independent of the local measurement Yi. See Appendix A.1.
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It is instructive to note the similarity between a local rule γ∗i in Proposition 3.1 and

the centralized strategy in (2.2). Both process an |X |-dimensional sufficient statistic of

the available measurement with optimal parameter values to be computed offline. In

rule γ∗i , however, the offline computation is more than simple multiplication of prob-

abilities p(x) and costs c(u, x̂, x): parameter values θ∗i ∈ R
|Ui|×|Xi|×|X |×|Zi| in (3.9)

now involve conditional expectations, taken over distributions that depend on the fixed

rules γ∗\i of all other nodes j 6= i. Each such fixed rule γ∗j is similarly of the form in

Proposition 3.1, where fixing parameter values θ∗j specifies p(uj, x̂j |x, upa(j); θ
∗
j ) local to

node j through (3.7) and (3.8). Each ith minimization in (3.5) is thereby equivalent to

minimizing

J(γ∗\i, γi) =
∑

x∈X

p(x)
∑

u∈U

∑

x̂∈X

c(u, x̂, x)p(u, x̂|x; θ∗\i, θi)

over the parameterized space of distributions defined by

p(u, x̂|x; θ∗\i, θi) = p(ui, x̂i|x, upa(i), θi)
∏

j 6=i

p(uj, x̂j |x, upa(j); θ
∗
j ).

It follows that the simultaneous satisfaction of (3.5) at all nodes corresponds to solving

for θ∗ = (θ∗1, . . . , θ
∗
n) in a system of nonlinear equations expressed by (3.7)–(3.9). Specif-

ically, if we let fi(θ
∗
\i) denote the right-hand-side of (3.9), then offline computation of a

person-by-person optimal strategy reduces to solving the fixed-point equations

θi = fi(θ\i), i = 1, . . . , n. (3.10)

Corollary 3.1 (Offline Iterative Algorithm). Initialize parameters θ0 = (θ0
1, . . . , θ

0
n)

and generate the sequence {θk} by iterating (3.10) in any component-by-component

order e.g., iteration k = 1, 2, . . . is

θk
i := fi(θ

k
1 , . . . , θ

k
i−1, θ

k−1
i+1 , . . . , θ

k−1
n ), i = 1, . . . , n.

If Assumption 3.1 holds, then the associated sequence {J(γk)} is non-increasing and

converges.

Proof. By virtue of Proposition 3.1, each operator fi is the solution to the minimization

of J over the ith coordinate function space Γi. Any component-wise iteration of f is

thus equivalent to a coordinate-descent iteration of J , implying J(γk) ≤ J(γk−1) for

every k [6]. Because the real-valued, non-increasing sequence {J(γk)} is also bounded

below, it has a limit point.
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In the absence of additional technical conditions (e.g., J is convex, f is contracting

[6]), it is not known whether the sequence {J(γk)} converges to the optimal performance

J(γ∗), whether the achieved performance is invariant to the choice of initial parameters

θ0, nor whether the associated sequence {θk} converges. Indeed, the possibility of a

poorly performing person-by-person-optimal strategy is known to exist (see [48] and [21]

for such crafted special cases). These theoretical limitations are inherent to nonlinear

minimization problems, in general, where second-order optimality conditions can be

“locally” satisfied at many points, but only one of them may achieve the “global”

minimum. Nonetheless, the iterative algorithm is often reported to yield reasonable

decision strategies, which has also been our experience (in experiments to be described)

providing the iterative algorithm is initialized with some care.

Also note that Corollary 3.1 assume every node i can exactly compute the local

marginalization of (3.7). Some measurement models of practical interest lead to nu-

merical or Monte-Carlo approximation of these marginalizations at each iteration k,

and the extent to which the resulting errors may affect convergence is also not known.

This issue is beyond the scope of this thesis and, as such, all of our experiments will

involve sensor models in which such complications do not arise (e.g., the models in

Example 2.5 and Example 2.8).

� 3.3 Efficient Message-Passing Interpretations

Online measurement processing implied by Proposition 3.1 is, by design, well-suited for

distributed implementation. However, a number of practical difficulties remain:

• convergent offline optimization requires global knowledge of probabilities p(x),

costs c(u, x̂, x) and statistics {p(ui, x̂i|x, upa(i); θ
k
i )} in every iteration k;

• total (offline and online) memory/computation requirements scale exponentially

with the number of nodes n.

In this section, we establish conditions so that convergent offline optimization can be ex-

ecuted in a recursive fashion: each node i starts with local probabilities p(xpa(i), xi) and

local costs c(ui, x̂i, xi), then in each iteration computes and exchanges rule-dependent

statistics, or messages, with only its neighbors pa(i) ∪ ch(i). We will interpret this

message-passing algorithm as an instance of Corollary 3.1 under some additional model

assumptions. Thus, when these additional assumptions hold, it inherits the same the-

oretical convergence properties. Moreover, we will see that total memory/computation

requirements scale only linearly with n.
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The decentralized detection formulation discussed in Section 3.2 belongs to the class

of (static, discrete) team decision problems, which have been studied for many decades

in both the economics and engineering literature. The message-passing algorithm de-

scribed in the following subsections is primarily built upon the computational theory

discussed in [80, 81, 96, 97, 98, 106], albeit each of these considers only certain special

cases of Figure 3.1. For example, both [98] and [106] develop Proposition 3.1 and Corol-

lary 3.1 assuming a global binary hypothesis test and the parallel network topology (i.e.,

a set of mutually-disconnected peripheral nodes reliably connected to a common fusion

node). Both [106] and [97] extend the analysis to a singly-rooted tree topology, as-

suming the objective is for just the root node to make the final binary-valued decision

with minimum error probability. The extension to problems in which the discrete state

process X is itself spatially-distributed, in the sense that a different state variable Xi

is associated with each node i, has been studied in [80, 81].

One contribution of the development in this chapter is the generality with which

the results apply. For example, the efficient algorithm proposed in [97] is a special case

of our message-passing algorithm; yet our derivation need not assume from the start

that all nodes must employ local likelihood-ratio tests, nor that the penalty function

J is differentiable with respect to the threshold parameters. Our general development

also incorporates the possibility of a selective (or censored) transmission scheme and

unreliable communication channels, aspects also considered for the parallel network

topology with a global fusion node in [88] and [16], respectively. Our main contribution,

however, stems from our emphasis not just on preserving algorithm correctness as we

make these generalizations, but also on preserving algorithmic efficiency. As will be

discussed, an important new insight provided by our analysis is the extent to which

the graphical structure underlying the distributed state process may deviate from the

communication network topology without sacrificing either algorithm correctness or

efficiency. Moreover, the local recursive structure of the message-passing equations

can be applied to network topologies beyond those for which it is originally derived,

providing a new approximation paradigm for large irregular networks of heterogeneous

sensors in which the general algorithm of Corollary 3.1 is intractable and conclusions

based on asymptotic analyses are not readily available.

� 3.3.1 Online Measurement Processing

We first introduce an assumption that removes the exponential dependence on the

number of nodes n of the online computation i.e., the actual operation of the optimized
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strategy as data are received and communication and decision-making takes place. This

exponential dependence is due to the appearance of the global state vector X in (3.8).

The following assumption reduces this to a dependence only on the local state compo-

nent of each node.

Assumption 3.2 (Measurement/Channel Locality). In addition to the conditions of

Assumption 3.1, the measurement and channel models local to node i do not directly

depend on any of the non-local state processes X\i i.e., for every i,

p(yi, zi|x, y\i, z\i, u\i) = p(yi|xi)p(zi|xi, upa(i)). (3.11)

Corollary 3.2 (Online Efficiency). If Assumption 3.2 holds, then (3.8) and (3.9) in

Proposition 3.1 specialize to

γ∗i (Yi, Zi) = arg min
(ui,x̂i)∈Ui×Xi

∑

xi∈Xi

φ∗i (ui, x̂i, xi;Zi)p(Yi|xi) (3.12)

and

φ∗i (ui, x̂i, xi; zi) =
∑

x\i

p(x)
∑

u\i

p(zi|xi, upa(i))
∑

x̂\i

c(u, x̂, x)
∏

j 6=i

p(uj, x̂j |xj , upa(j); γ
∗
j ),

(3.13)

respectively.

Proof. Recognizing (3.11) to be the special case of (3.6) with p(yi|x) = p(yi|xi) and

p(zi|x, upa(i)) = p(zi|xi, upa(i)) for every i, (3.7) in Lemma 3.1 similarly specializes to

p(ui, x̂i|xi, upa(i); γi) =
∑

zi∈Zi

p(zi|xi, upa(i))

∫

yi∈Yi

p(yi|xi)p(ui, x̂i|yi, zi; γi) dyi (3.14)

for every i. We then apply Proposition 3.1 with

φ∗i (ui, x̂i, xi; zi) =
∑

x\i∈X\i

θ∗i (ui, x̂i, x; zi).

It is instructive to note the similarity between γ∗i in Corollary 3.2 and the local

myopic rule δ̄i in (2.4). Online computation is nearly identical, but with γ∗i using

parameters that reflect the composite decision space Ui×Xi and depend explicitly on the

received information Zi = zi. This similarity is also apparent in the offline computation

implied by (3.14) for fixed parameters φ∗i in (3.12), which per value zi ∈ Zi involves the

same local marginalization over Yi highlighted for fixed parameters φ̄i in (2.5).
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� 3.3.2 Offline Strategy Optimization

Efficiency in the offline iterative algorithm—i.e., in the algorithm for computing the

optimized decision rules at each node—requires not only the locality of the measure-

ments and channels as in Assumption 3.2 but a bit more, namely that the overall cost

function decomposes into a sum of per-node local costs, and that network topology is

a polytree.

Assumption 3.3 (Cost Locality). The Bayesian cost function is additive across the

nodes of the network i.e.,

c(u, x̂, x) =

n∑

i=1

c(ui, x̂i, xi). (3.15)

Assumption 3.4 (Polytree Topology). Directed graph F is a polytree i.e., there is at

most one (directed) path between any pair of nodes.

Proposition 3.2 (Offline Efficiency). If Assumptions 3.2–3.4 hold, then (3.12) applies

with (3.13) specialized to the proportionality

φ∗i (ui, x̂i, xi; zi) ∝ p(xi)P
∗
i (zi|xi) [c(ui, x̂i, xi) + C∗

i (ui, xi)] , (3.16)

where (i) the likelihood function Pi(zi|xi) for received information Zi is determined by

the forward recursion

P ∗
i (zi|xi) =







1 , pa(i) empty
∑

xpa(i)

∑

upa(i)

p(xpa(i)|xi)p(zi|xi, upa(i))
∏

j∈pa(i)

P ∗
j→i(uj |xj) , otherwise

(3.17)

with the forward message from each parent j ∈ pa(i) given by

P ∗
j→i(uj |xj) =

∑

zj

P ∗
j (zj |xj)

∑

x̂j

p(uj, x̂j |xj , zj ; γ
∗
j ), (3.18)

and (ii) the cost-to-go function Ci(ui, xi) for transmitted information Ui is determined

by the backward recursion

C∗
i (ui, xi) =







0 , ch(i) empty
∑

j∈ch(i)

C∗
j→i(ui, xi) , otherwise

(3.19)
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with the backward message from each child j ∈ ch(i) given by

C∗
j→i(ui, xi) =

∑

xj

∑

uj

∑

x̂j

[
c(uj , x̂j , xj) + C∗

j (uj , xj)
]
Q∗

j→i(uj , x̂j , xj |ui, xi) (3.20)

with

Q∗
j→i(uj , x̂j , xj |ui, xi) =

∑

xpa(j)\i

p(xpa(j), xj |xi)R
∗
j→i(uj , x̂j |xj , xpa(j)\i),

R∗
j→i(uj , x̂j |xj , xpa(j)\i) =

∑

upa(j)\i

p(uj , x̂j|xj , upa(j); γ
∗
j )

∏

m∈pa(j)\i

P ∗
m→j(um|xm).

Proof. We provide only the sketch here; see Appendix A.2 for details. By virtue of As-

sumption 3.2, the global likelihood function for received information Zi is independent

of the rules and states local to nodes other than i and its ancestors (i.e., the parents

pa(i), each such parent’s parents, and so on). By virtue of Assumption 3.3, the global

penalty function itself takes an additive form over all nodes, where terms local to nodes

other than i and its descendants (i.e., the children ch(i), each such child’s children, and

so on) cannot be influenced by local decision (ui, x̂i) and, hence, have no bearing on

the optimization of rule γi. By virtue of Assumption 3.4, the information observed and

generated by all ancestors is independent (conditioned on X while optimizing γi) of the

information to be observed and generated by all descendents. This conditional inde-

pendence between the “upstream” likelihood statistics and the “downstream” expected

costs specializes the parameter values φ∗i of Corollary 3.2 to the particular form of (3.16).

Assumption 3.4 also guarantees no two parents have a common ancestor, implying that

upstream likelihoods decompose multiplicatively across parent nodes, and similarly no

two children have a common descendant, implying that downstream costs decompose

additively across child nodes. Altogether, Assumptions 3.2–3.4 and their respective

structural implications yield the recursive formulas expressed by (3.17)–(3.20).

Proposition 3.2 has a number of important implications. The first is that param-

eters φ∗i at node i are now completely determined by the incoming messages from its

neighbors pa(i)∪ch(i). Specifically, we see in (3.16) that the global meaning of received

information Zi manifests itself as a Bayesian correction to the myopic prior p(xi), while

the global meaning of transmitted information Ui manifests itself as an additive correc-

tion to the myopic cost c(ui, x̂i, xi). The former correction requires the likelihood func-

tion P ∗
i expressed by (3.17), uniquely determined from the incoming forward messages

P ∗
pa(i)→i = {P ∗

j→i; j ∈ pa(i)} from all parents, while the latter involves the cost-to-go
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function C∗
i expressed by (3.19), uniquely determined from the incoming backward mes-

sages C∗
ch(i)→i = {C∗

j→i; j ∈ ch(i)} from all children. Thus, after substitution of (3.17)

and (3.19), we see that the right-hand-side of (3.16) can be viewed as an operator

fi(P
∗
pa(i)→i, C

∗
ch(i)→i). Similarly, person-by-person optimality at every node other than

i requires the outgoing messages from node i to its neighbors pa(i) ∪ ch(i). The out-

going forward messages P ∗
i→ch(i) = {P ∗

i→j ; j ∈ ch(i)} are collectively determined by the

right-hand-side of (3.18), which after substitution of (3.17) and (3.14) we denote by the

operator gi(φ
∗
i , P

∗
pa(i)→i). The outgoing backward messages C∗

i→pa(i) = {C∗
i→j; j ∈ pa(i)}

are collectively determined by the right-hand-side of (3.20), which after substitution of

(3.19) and (3.14) we denote by the operator hi(φ
∗
i , P

∗
pa(i)→i, C

∗
ch(i)→i). Altogether, we

see that Proposition 3.2 specializes the nonlinear fixed-point equations in (3.10) to the

block-structured form

φi = fi

(
Ppa(i)→i, Cch(i)→i

)

Pi→ch(i) = gi

(
φi, Ppa(i)→i

)

Ci→pa(i) = hi

(
φi, Ppa(i)→i, Cch(i)→i

)

i = 1, . . . , n. (3.21)

Corollary 3.3 (Offline Message-Passing Algorithm). Initialize all rule parameters φ0 =

(φ0
1, . . . , φ

0
n) and generate the sequence {φk} by iterating (3.21) in a repeated forward-

backward pass through F e.g., iteration k = 1, 2, . . . is

P k
i→ch(i) := gi(φ

k−1
i , P k

pa(i)→i)

from i = 1, 2, . . . n and

φk
i := fi(P

k
pa(i)→i, C

k
ch(i)→i)

Ck
i→pa(i) := hi(φ

k
i , P

k
pa(i)→i, C

k
ch(i)→i)

from i = n, n− 1, . . . , 1 as illustrated in Figure 3.2. If Assumptions 3.2–3.4 hold, then

the associated sequence {J(γk)} converges.

Proof. By virtue of Proposition 3.2, a sequence {φk} is the special case of a sequence

{θk} considered in Corollary 3.1. Each forward-backward pass in the partial-order

implied by F ensures each iterate φk is generated in the node-by-node coordinate descent

fashion required for convergence.

Proposition 3.2 also implies that, to carry out the iterations defined in Corollary 3.3,

each node no longer needs a complete description of the global state distribution p(x).

This is arguably surprising, since we have not yet made a restrictive assumption about
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...... Node
i

1 2

P k
pa(i)→i P k

i→ch(i)

Likelihood
messages from
parents pa(i)

Likelihood
messages to

children ch(i)

(a) Forward Pass at Node i: “Receive & Transmit”

...... Node
i

123

Ck
i→pa(i) Ck

ch(i)→i

Cost-to-go
messages to
parents pa(i)

Cost-to-go
messages from
children ch(i)

(b) Backward Pass at Node i: “Receive, Update & Transmit”

Figure 3.2. The distributed message-passing interpretation of the kth iteration in the offline algorithm

discussed in Corollary 3.3, each node i interleaving its purely-local computations with only nearest-

neighbor communications.

the state process X. As seen from (3.16)–(3.20), it is sufficient for each node i to know

the joint distribution p(xpa(i), xi) of only the states local to itself and its parents. In our

work here, we assume that these local probabilities are available at initialization. How-

ever, computing such local probabilities for a general random vector X has exponential

complexity and must often be approximated. Of course, if process X is itself defined on

a graphical model with tractable structure commensurate with the network topology

F , then the distributed computation to first obtain the local priors p(xpa(i), xi) at each

node i is straightforward and tractable e.g., via belief propagation. For problems in

which each node’s local state Xi can also depend on its parents’ decisions Upa(i), as

considered in [81], Proposition 3.2 continues to apply provided we generalize the local

prior available at each node i to the quantity p(xpa(i), xi|upa(i)), then using it in place

of the quantity p(xpa(i), xi) in (3.17) and (3.20).

A final implication of Proposition 3.2 is the simplicity with which the sequence

{J(γk)} can be computed. Specifically, the global penalty associated to iterate φk is

given by

J(γk) :=
∑

i

Gi(γ
k)

with

Gi(γ
k) :=

∑

xi

p(xi)
∑

ui

∑

x̂i

c(ui, x̂i, xi)
∑

zi

P k+1
i (zi|xi)p(ui, x̂i|xi, zi;φ

k
i )

for every i. That is, given that the likelihood function P k+1
i is known local to each node

i (which occurs upon completion of the forward pass in iteration k + 1), each penalty
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term Gi can be locally computed by each node i and, in turn, computation of the total

penalty J(γk) scales linearly in n.

As was the case for Corollary 3.1, the choice of initial parameter vector φ0 in Corol-

lary 3.3 can be important. Consider, for example, initializing to the myopic strategy

δ̄ = (δ̄1, . . . , δ̄n), where every node employs the rule in (2.4) that both ignores its re-

ceived information and transmits no information (i.e., always transmits the same zero-

cost symbol so that Jc(δ̄) is zero): given Assumption 3.2 and Assumption 3.3 both hold

and also assuming

c(ui, x̂i, xi) = c(x̂i, xi) + λc(ui, xi)

for every i, it turns out that this myopic strategy is person-by-person optimal! That

is, the parameter vector φ = (φ̄1, . . . , φ̄n) is itself a fixed-point of (3.21), and as such

the algorithm will make no progress from the associated myopic (and typically sub-

optimal) performance J(δ̄) = Jd(δ̄). While most details will vary for different classes

of models, one general guideline is to initialize with a strategy such that every possible

transmission/state pair (ui, xi) at every node i has a nonzero probability of occurrence.

This will ensure that the algorithm explores, at least to some degree, the cost/benefit

tradeoff of the online communication, making convergence to the myopic fixed-point

likely only when λ is so large in (3.2) that communication penalty Jc(γ
∗) should be

zero, as will be demonstrated by examples in Section 3.4.

Assumption 3.4 is arguably the most restrictive in Proposition 3.2, in the sense that

satisfying it in practice must contend with non-local network connectivity constraints.

For example, while any node may have more than one parent node, none of those

parents may have a common ancestor. In principle, as illustrated in Figure 3.3, this

restriction can be removed by merging such parent nodes together into single “super-

nodes,” but doing this recognizes the associated need for direct “offline” communication

among these merged parent nodes while designing the decision rules (even though these

decision rules continue to respect the online network topology F). Combining such

parent nodes also leads to increasing complexity in the offline computation local to that

super-node (as we must consider the joint states/decisions at the nodes being merged);

however, for sparse network structures, such merged state/decision spaces (if necessary)

will still be of relatively small cardinality. Alternatively, there is nothing that prevents

one from applying the message-passing algorithm as an efficient approximation within a

general directed acyclic network, an idea we illustrate for a simple non-tree-structured

model in Section 3.4.
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1 2

3 4

5 6

p(u3, u4|x3, x4; γ) 6= P3→5(u3|x3)P4→5(u4|x4)

C1(u1, x1) 6= C3→1(u1, x1) + C4→1(u1, x1)

(a) Non-tree structured network topology

1 2

3 4

5 6

p(u3, u4|x3, x4; γ) = P{3,4}→5(u3, u4|x3, x4)

C1(u1, x1) = C{3,4}→1(u1, x1)

(b) Equivalent tree-structured network topology

Figure 3.3. An example of (a) a non-tree-structured network topology F and (b) its equivalent

polytree topology for which Proposition 3.2 is applicable. Specifically, the parents of node 5, namely

nodes 3 and 4, have node 1 as a common ancestor so we “merge” nodes 3 and 4. This is done at the

(strictly offline) expense of requiring both direct communication between nodes 3 and 4 and increased

local computation by nodes 3 and 4, so the message-passing algorithm in Corollary 3.3 can jointly

consider the random variables X3,X4, U3 and U4.

� 3.4 Examples and Experiments

This section summarizes experiments with the offline message-passing algorithm pre-

sented in Section 3.3. Throughout, as will be detailed in Subsection 3.4.1, we model

each sensing node as the linear binary detector of Example 2.4 and each communica-

tion link as the peer-to-peer erasure channel of Example 3.1. We define the global costs

c(x̂, x) and c(u, x) so that detection penalty Jd and communication penalty Jc mea-

sure precisely the gateway node-error-rate and network-wide link-use-rate, respectively.

Our purpose is to characterize the team-optimal performance, examining the tradeoff

formulated in Section 3.2 relative to the benchmark centralized and myopic solutions
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discussed in Chapter 2. Our procedure is to sample the range of λ in (3.2), each time

recording the point (Jd, Jc) achieved by the message-passing algorithm.

Subsections 3.4.2–3.4.4 present experimental results across different network topolo-

gies, different levels of measurement/channel noise and different prior probability mod-

els. These results illustrate how the decentralized strategy produced by the message-

passing algorithm consistently exploits the selective transmission scheme: even when

actual symbols can be transmitted reliably and without penalty (i.e., when erasure

probabilities are zero and λ = 0 in (3.2)), a node’s selective silence can convey valuable

information to its children. Our experimental procedure also records the average num-

ber of message-passing iterations to convergence, recognizing that per offline iteration

k each link (i, j) must reliably compute and communicate messages P k
i→j and Ck

j→i,

each a collection of up to |Xi × Ui| real numbers. This empirical measure of offline

overhead is, we believe, an important point in understanding the value and feasibil-

ity of self-organizing sensor networks, as it allows us to assess the price of adaptive

organization, or re-organization. In particular, our analysis emphasizes that for such

offline organization to be warranted, it must be that the price of performing it can be

amortized over a substantial number of online usages, or equivalently that the network

resources consumed for organization represent only a modest fraction of the resources

available over the total operational lifetime.

� 3.4.1 Local Node Models

To apply the offline message-passing algorithm developed in Section 3.3 given a directed

network topology F , each node i requires the following local models: likelihoods p(yi|xi),

channels p(zi|xi, upa(i)), costs c(ui, x̂i, xi), priors p(xpa(i), xi) and an initial rule γ0
i ∈ Γi.

This subsection describes the parametric forms of the local models that are in common

with all experiments to be described in the following subsections. In particular, only

the local priors will be different across these experiments, so we now describe all other

such local models and leave the description of priors for later subsections.

The global sensing model is that of the n independent linear Gaussian binary de-

tectors as introduced in Example 2.8, assuming homogeneous sensors i.e., ri ≡ r for all

i. We restate this sensing model here for convenience: each node’s local likelihood is

given by

p(yi|xi) =
1√
2π

exp

(

−1

2

(

yi −
rxi

2

)2
)

, (xi, yi) ∈ {−1,+1} × R

with parameter r ∈ (0,∞) inversely related to the measurement noise level local to
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(y

i
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i
)

r p(zj→i|uj→i)
Uj→i Zj→i

−1 −1

0 0

+1 +1

1

1 − q

1 − q

(a) Measurement Model at Node i (b) Channel Model at Link (j, i)

Figure 3.4. The per-node measurement model and per-link channel model used in our experiments:

(a) the ith node’s likelihood function p(yi|xi), defining a linear-Gaussian binary detector with parameter

r ∈ (0,∞) inversely related to the measurement noise level; and (b) the transition probabilities defining

the point-to-point link to node i from each parent j ∈ pa(i), each such link (j, i) with parameter

q ∈ [0, 1] directly related to the channel noise level. Even though node j selecting Uj→i = 0 avoids the

potential of a link erasure, upon receiving Zj→i = 0, node i will not be able to determine conclusively

(unless q = 0) whether parent j elected to be silent or to transmit an actual symbol but link (j, i) then

experienced an erasure.

each node; see Figure 3.4(a). The myopic rule in (2.4) then reduces to a threshold test,

where parameters φ̄(x̂i, xi) = p(xi)c(x̂i, xi) collectively determine the myopic threshold,

pYi|Xi
(yi| + 1)

pYi|Xi
(yi| − 1)

= exp(ryi) ≡ Λi(yi)

x̂i = +1

>
<

x̂i = −1

η̄i ≡ φ̄i(+1,−1) − φ̄i(−1,−1)

φ̄i(−1,+1) − φ̄i(+1,+1)
.

In turn, the local marginalization over Yi reduces to computing the false-alarm and

true-detection probabilities, for any fixed threshold value ηi given by

pX̂i|Xi
(+1|xi) =

∫ ∞

log(ηi)/r
p(yi|xi) dyi

when xi = −1 and xi = +1, respectively.

The channel model local to each node i assumes all incoming links from parents

pa(i) are mutually-independent erasure channels as introduced in Example 3.1, each

also independent of the local state process Xi. More specifically, we assume

p(zi|xi, upa(i)) =
∏

j∈pa(i)

p(zj→i|uj→i)

where for each link (j, i), as depicted in Figure 3.4(b), both the transmitted symbol

Uj→i and the received symbol Zj→i take values in the ternary alphabet {−1, 0,+1}
and parameter q ∈ [0, 1] is equal to the link’s erasure probability. As was discussed in
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(a) Given Node i has One Child (b) Given Node i has Two Children

Figure 3.5. The initial rule γ0
i used in our experiments. For all zi, we partition the real yi-axis into a

set of intervals with 2(2|ch(i)| − 1) thresholds to decide ui ∈ {−1, 0,+1}|ch(i)| and a threshold of zero to

decide x̂i ∈ {−1,+1}. In essence, each node i is initialized to (i) ignore all information received on the

incoming links, (ii) myopically make a maximum-likelihood estimate of its local state and (iii) make a

binary-valued decision per outgoing link (i, j), remaining silent (with ui→j = 0) when the measurement

is near its least-informative values or transmitting its local state estimate (with ui→j = x̂i) otherwise.

Example 3.3, the event Uj→i = 0 represents node j suppressing its transmission to child

i ∈ ch(j), in which case the event Zj→i = 0 occurs with probability one: however, each

actual transmission by parent j ∈ pa(i) (represented by the event Uj→i 6= 0) is erased

(represented by Zj→i = 0) with probability q or otherwise successfully received by node

i (represented by Zj→i = Uj→i).

The cost function local to node i is defined such that detection penalty Jd and

communication penalty Jc in (3.2) equal the gateway node-error-rate and network-wide

link-use-rate, respectively. Specifically, letting g(i) = 1 denote that node i is in the

gateway and g(i) = 0 denote otherwise, the global cost function satisfies Assumption 3.3

with each ith term given by

c(ui, x̂i, xi) = g(i)c(x̂i, xi) + λ
∑

j∈ch(i)

c(ui→j),

where the detection-related costs indicate node errors and the communication-related

costs indicate link uses i.e.,

c(x̂i, xi) =

{

0, x̂i = xi

1, x̂i 6= xi

and c(ui→j) =

{

0, ui→j = 0

1, ui→j 6= 0
.

As discussed for the channel model in Figure 3.4, the event Ui→j = 0 indicates that

node i suppresses the transmission on the outgoing link to child j, so it is associated to

zero communication cost. Also note that the myopic threshold for each gateway node

reduces to η̄i = pXi(−1)/pXi(+1).

A final consideration in the model local to node i is the initial rule γ0
i . As remarked

after Corollary 3.3 in Section 3.3, initializing to a myopic rule in (2.4) would prohibit

the offline algorithm from making progress. Figure 3.5 illustrates our choice of initial
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rule γ0
i , and we observe the algorithm making reliable progress from this initialization

as long as the induced statistics at every node i satisfy p(ui|xi; γ
0
i ) > 0 for all (xi, ui) ∈

{−1,+1} × {−1, 0,+1}|ch(i)|. In the absence of parents, this rule is equivalent to the

class of monotone threshold rules for linear-Gaussian binary detectors described in

Example 2.5. The same threshold parameterization extends to nodes with parents,

only that there can be |Zi| such partitions of the likelihood-ratio space [0,∞), namely

one set of such thresholds per symbol value Zi = zi.

� 3.4.2 A Small Illustrative Network

This subsection assumes the local models discussed in the preceding subsection, and

considers the prior probability model p(x) and network topology F depicted in Fig-

ure 3.6. Specifically, let the hidden state process X be Markov on the undirected graph

G illustrated in Figure 3.6(a), assuming edge potentials

ψ(xi, xj) =

{

w , xi = xj

1 − w , xi 6= xj

that express the correlation (i.e., negative, zero, or positive when w is less than, equal

to, or greater than 0.5, respectively) between neighboring binary-valued states Xi and

Xj . Note that, with just n = 12 nodes, the computation to obtain the neighborhood

marginal p(xπ(i), xi) for each node i can be performed directly. Also observe that, in

this example, the links in the network topology are a proper subset of the edges in the

(loopy) undirected graph upon which X is defined.

Figure 3.7 displays the tradeoff between node-error-rate Jd and link-use-rate Jc

achieved by the message-passing algorithm across different model parameters. In each

case, every node is in the gateway (so that the maximal node error rate is twelve) and,

for each parameter pair (w, r) under investigation, the tradeoff curve is computed for

three different erasure probabilities. We see that these three curves always start from

a common point, corresponding to λ being large enough so that zero link-use-rate (and

thus myopic node-error-rate) is optimal. The smallest value of λ achieving this myopic

point, call it λ∗, can be interpreted (for that model instance) as the maximal price (in

units of detection penalty) that the optimized network is willing to pay per unit of online

communication. For λ less than λ∗, we see that the message-passing algorithm smoothly

trades off increasing link-use-rate with decreasing node-error-rate. Not surprisingly, this

tradeoff is most pronounced when the erasure probability q is zero, and approaches the

myopic detection penalty as q approaches unity. Also shown per instance of parameters
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X1 X2 X3

X4 X5

X6 X7 X8 X9

X10 X11 X12

1 2 3

4 5

6 7 8 9

10 11 12

(a) Correlated Binary States (b) Directed Polytree Network

Figure 3.6. A small (n = 12) decentralized detection network used in our experiments: (a) the

(undirected) graph G upon which the spatially-distributed state process X is defined and (b) a tree-

structured (directed) network topology F that spans the vertices in (a). Observe that the links in the

polytree network topology in (b) are a proper subset of the edges in the undirected graph in (a).

(w, r) is a Monte-Carlo estimate of the optimal centralized performance Jd(γ̄), computed

using 1000 samples from p(x, y) and simulating the strategy in (2.2).

The second row of curves displays the same data as in the first row, but after (i)

normalizing the achieved link-use-rate by its capacity (i.e., eleven unit-rate links) and

(ii) expressing the achieved node-error-rate on a unit-scale relative to the benchmark

centralized detection penalty and the myopic detection penalty (i.e., representing the

fraction of this centralized versus myopic gap gained via team-optimized coordination).

These rescalings emphasize that the maximum link-use-rates on each optimized curve

are well below network capacity and that the message-passing algorithm consistently

converges to a strategy that exploits the selective silence: intuitively, each node in the

cooperative strategy is able to interpret “no news as providing news.” The curves show

that, subject to less than eleven bits (per global estimate) of online communication, up

to 40% of the optimal performance lost by the purely myopic strategy can be recovered.

For further comparison, consider the model with selective communication disabled,

meaning each node must always transmit either a +1 or −1 to each of its children and,

in turn, link-use-rate is at 100% capacity. Applying the message-passing algorithm to

these models yields the points indicated by “+” marks: indeed, we see that selective

communication affords up to an additional 10% recovery of detection performance while

using only 70% of the online communication capacity.

The tables in Figure 3.7 list two key quantities recorded during the generation of each

of the nine tradeoff curves, namely λ∗ and k∗ denoting the lowest value of λ for which
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(a) Nominal Environment (b) Low State Correlation (c) Low Measurement Noise

Figure 3.7. Optimized tradeoff curves for the model in Subsection 3.4.2 given (a) a nominal envi-

ronment, (b) low state correlation and (c) low measurement noise, each such environment with three

different link erasure probabilities q = 0 (solid line), 0.3 (dashed line) and 0.6 (dash-dotted line). Each

curve is obtained by sampling λ in increments of 10−4, starting with λ = 0, and declaring convergence

in iteration k when J(γk−1) − J(γk) < 10−3. The second row of figures uses the same data as the

first, normalizing the two penalties to better compare across the different model instances. The tables

contain the two key quantities λ∗ and k∗ we record while computing each curve, respectively the lowest

value of λ for which the myopic operating point is team-optimal and the average number of offline

iterations to convergence. See Subsection 3.4.2 for more discussion of these results.

the myopic point is optimal and the average number of offline iterations to convergence,

respectively. As discussed above, the former can be interpreted as the “fair” per-unit

price of online communication: indeed, from the tables, we see that λ∗ is inversely

related to erasure probability q, quantifying the diminishing value of active transmission

as link reliability degrades. Moreover, comparing λ∗ in (a) with those in (b) and (c),

we see that lower state correlation or lower measurement noise similarly diminish the

value of active transmission. The empirical value of k∗ is related to the price of offline



82 CHAPTER 3. DIRECTED NETWORK CONSTRAINTS

self-organization: we see that it measures between 3 and 4 iterations, implying that

maintaining the optimized online tradeoff depends (per offline reorganization) upon the

exact computation and reliable communication of roughly 684 to 912 real numbers in

total, or roughly 57 to 76 real numbers per node.

� 3.4.3 Large Randomly-Generated Networks

This subsection performs a similar analysis as in Subsection 3.4.2, except that we con-

sider a collection of randomly-generated model instances of more realistic size and

character. Figure 3.8 illustrates a typical output of our model generation procedure:

it starts with n = 100 nodes, each randomly positioned within a unit-area square and

connected to a randomly selected subset of its spatial neighbors. The vector state

process X is this time described by a directed graphical model, constructed such that

the correlation between neighboring states reflects the spatial proximity of the neigh-

bors; specifically, we let d(i, j) be the spatial distance between node i and node j and,

denoting by p̄a(i) the parents of each node i on the probability graph G, we choose

p(xi|xp̄a(i)) =

{

1 − ρ(xp̄a(i)) , xi = −1

ρ(xp̄a(i)) , xi = +1
,

ρ(xp̄a(i)) =

∑

j∈p̄a(i)

1j(xp̄a(i))d(i, j)
−1

∑

j∈p̄a(i)

d(i, j)−1
,

1j(xp̄a(i)) =

{

1 , xj = +1

0 , xj = −1
.

Given such a directed graphical model for X, we use Murphy’s Bayesian Network Tool-

box in Matlab [69]) to find the clique marginals p(xp̄a(i), xi) for each i. Note that,

further exploiting the Markov properties of X, this allows us to readily compute the

neighborhood marginals (for the probability graph G) via

p(xn̄e(i), xi) = p(xp̄a(i), xi, xc̄h(i)) = p(xp̄a(i), xi)
∏

j∈c̄h(i)

p(xj |xi). (3.22)

The next step of model generation is to select ten gateway nodes at random, which

in these particular experiments we assume will be the childless nodes of a spanning

polytree network F . We then build this network via Kruskal’s spanning tree algorithm,

maximizing edge weights proportional to the pairwise correlation between the states
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(a) Random Spatial Configuration (b) Directed Graphical Model (c) Polytree Network Topology

Figure 3.8. A typical 100-node detection network generated randomly for our experiments: (a)

the spatial configuration of all nodes in the unit-area square, (b) an arbitrary directed acyclic graph G
upon which the spatially-distributed state process X is defined and (c) the polytree network topology F ,

where the ten randomly-selected gateway nodes are denoted by the filled node markers. Subsection 3.4.3

described the construction in more detail.

sharing each edge. Thus, the directed polytree F has a topology contained in the

undirected topology of G (i.e., pa(i) ⊆ n̄e(i) for every i, where pa(i) denote the par-

ents on the communication graph F) and so the local marginals p(xpa(i), xi) for every

node i required by the offline message-passing algorithm can be found by appropriate

marginalization of (3.22).

Figure 3.9 depicts the average-case performance achieved by the message-passing

algorithm over 50 randomly-generated model instances. Each plot consists of four

clusters of points, three corresponding to the optimized point assuming three different

values of λ and one corresponding to the point achieved by a heuristic strategy, which

essentially interprets each incoming symbol as indicating the true value of the neighbors’

local states. We see that the heuristic strategy fails catastrophically, in the sense that

communication penalty is nonzero and yet the detection penalty is larger than even that

of the myopic strategy! This unsatisfactory heuristic performance underscores the value

of our offline message-passing algorithm, which via parameter λ consistently decreases

global detection penalty (from that of the myopic strategy) as global communication

penalty increases.

Also shown for each optimized cluster is k∗, or the average number of iterations to

convergence, which underscores the price of our offline coordination in the same sense

discussed in Subsection 3.4.2. We see that roughly eight iterations can be required

in the 100-node models, in comparison to roughly three iterations in the twelve-node

models of the previous subsection, suggesting the price of offline coordination scales

sublinearly with the number of nodes n. It is worth noting that the communication
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λ k∗
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(a) Nominal Environment (b) Zero Channel Noise (c) Low Measurement Noise

Figure 3.9. Performance of five different strategies for 50 randomly generated models of the type

described in Subsection 3.4.3 given (a) a nominal environment, (b) zero channel noise and (c) low

measurement noise. In each plot, the dotted horizontal line is the detection penalty achieved by the

myopic strategy; the three clusters below this dotted line shows the performance of the optimized

strategies for three different values of λ, and the cluster above the myopic strategy shows the perfor-

mance of a heuristic strategy. Each ellipse is the least-squares fit to the 50 data points associated to

each candidate strategy. For the three optimized strategies, we declare convergence in iteration k when

J(γk−1) − J(γk) < 10−3, and each table lists the average number of offline iterations to convergence.

See Subsection 3.4.3 for more discussion of these results.

overhead associated with each offline iteration also depends on the connectivity of the

network topology, each node exchanging a number of messages that scales linearly with

its degree.

� 3.4.4 A Small Non-Tree-Structured Network

The preceding experiments focused on models that satisfy all assumptions under which

the offline message-passing algorithm is derived. We now discuss experiments for a

model in which the network topology is not a polytree. In such cases the local fixed-

point equations in Corollary 3.3 are no longer guaranteed to be equivalent to the gen-

eral fixed-point equations in Corollary 3.1. In turn, the message-passing algorithm no

longer necessarily inherits the general convergence and correctness guarantees discussed

for Corollary 3.1. As remarked in Section 3.3, the team-optimal solution can be com-

puted by aggregating nodes in the original graph so as to form a polytree to which our

message-passing algorithm can be applied. Of course, such a process implicitly requires
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(a) Correlated Binary States (b) Directed Non-Tree Topology

Figure 3.10. Another small (n = 4) decentralized detection network used in our experiments: (a) the

(undirected) graph upon which the spatially-distributed state process X is defined and (b) the (directed)

network topology that spans the vertices in (a). Observe that, in contrast to our preceding experiments,

the network topology (i) is not tree-structured and (ii) includes a link between two nodes that do not

share an edge in (a).

communication among nodes that have been aggregated but are not neighbors in the

original graph. Moreover, this approach is computationally tractable only if a small

number of nodes need to be aggregated.

For the above reasons, it is useful to understand both what the fully team-optimal

methods can achieve as well as what can be accomplished if we simply apply the local

message-passing algorithm to the original non-tree-structured graph. In this section, we

present and discuss experiments on a small example in order to explore these questions.

Even in such small models, the team-optimal solution is seen to produce rather so-

phisticated signaling strategies, exploiting the non-tree network structure in ways that

cannot be accomplished via the message-passing approximation. Nonetheless, with re-

gard to achieved performance, our analysis of these simple models suggests that the

local message-passing algorithm can provide an effective approximation.

Let us consider a model of the same type as in Subsection 3.4.2, except involving only

four nodes in the non-tree configuration depicted in Figure 3.10. Assume for illustration

that r = 1, q = 0, and w = 0.9, so that all measurements have the same noise, all

channels have zero erasure probability and the states are (attractively) Markov on the

single-cycle graph in Figure 3.10(a). Moreover, assume node 4 is the lone gateway node,

while nodes 1, 2 and 3 are communication-only nodes. The team objective essentially

boils down to having the communication-only nodes collectively generate the “most-

informative-yet-resourceful” signal to support the gateway node’s final decision. Indeed,

we should anticipate node 1 to play the dominant role in any such signaling strategy,

given its direct link to every other node in the communication network topology of

Figure 3.10(b). Note, in particular, that this communication topology includes a direct
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Figure 3.11. Performance comparison between the team-optimal solution and the message-passing

approximation for the non-tree-structured model in Subsection 3.4.4. Three tradeoff curves are shown,

dashed being that achieved by the message-passing approximation, solid being that achieved by the

team-optimal solution, and dash-dotted being that predicted by the message-passing approximation.

Each curve is obtained by sampling λ in increments of 10−3, starting with λ = 0, and declaring

convergence in iteration k when J(γk−1) − J(γk) < 10−3. Also shown is the empirical estimate (plus

or minus one standard deviation based on 10000 samples) of the optimal centralized performance. See

Subsection 3.4.4 for more discussion of these results.

path from node 1 to node 4 which is not present in the graph of Figure 3.10(a) which

captures the statistical structure among the variables sensed at each node. Thus, this

example also allows us to illustrate the value of longer-distance messaging than would

be found, for example, if loopy belief propagation were applied to this problem.

Figure 3.11 displays the tradeoff between node-error-rate Jd and link-use-rate Jc

achieved by both the team-optimal solution and the message-passing approximation.

We also show the performance tradeoff predicted by the message-passing algorithm

(but based on incorrect assumptions). All three curves coincide at very low link-use-

rates, a regime in which enough links remain unused so that the network topology is

effectively tree-structured. For higher link-use-rates, we see that the message-passing

prediction is consistently over-optimistic, eventually even suggesting that the achieved

node-error-rate surpasses the optimal centralized performance in the actual network;

meanwhile, the actual performance achieved by the message-passing approximation is

consistently inferior to that of the team-optimal solution, yet for this simple model still

a reliable improvement relative to myopic detection performance. Also notice how the

message-passing approximation does not produce a monotonic tradeoff curve, in the

sense that it permits link-use-rates to increase beyond the range over which the node-
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error-rate remains non-increasing. The team-optimal solution is, of course, monotonic

in this sense, with peak link-use-rate well below that determined by the message-passing

approximation. Finally, the table in Figure 3.11 shows that the team-optimal solution

is (i) more resourceful with its link usage, as quantified by λ∗, and (ii) takes on-average

more iterations to converge, as quantified by k∗. The latter is arguably surprising,

considering it is the message-passing approximation that comes without any theoretical

guarantee of convergence. Indeed, these particular experiments did not encounter a

problem instance in which the message-passing algorithm failed to converge.

We conjecture that algorithm convergence failures will be experienced when the

message-passing approximation is applied to more elaborate non-tree-structured mod-

els. To help justify this point, Figure 3.12 depicts the key discrepancy between the

team-optimal solution and the message-passing approximation. As each node performs

each of its local message-passing iterations, it neglects the possibility that any two

parents could have a common ancestor (or, equivalently, that any two children could

have a common descendant), implicitly introducing fictitious replications of any such

neighbors and essentially “double-counting” their influence. This replication is remi-

niscent of the replications seen in the so-called computation tree interpretation of loopy

belief propagation [100]. However, there are important differences in our case, as this

replication is both in upstream nodes that provide information to a specific node and

in downstream nodes whose decision costs must be propagated back to the node in

question. Moreover, the nature of these replications is itself node-dependent, meaning

each iteration of the algorithm may be cycling over n different assumptions about the

global network structure.

The potential for erroneous message iterates illustrated in Figure 3.12 manifests

itself in the performance difference, most apparent for small values of λ, between the

solutions compared in Figure 3.11. While both solutions yield a signaling strategy in

which node 1 takes a leadership role, the team-optimal strategy consistently uses nodes

2 and 3 in a more resourceful way, ultimately allowing gateway node 4 to receive better

side information for its final decision. We have more carefully explored this claim by

considering plots of the type depicted in Figure 3.13, concluding the following. Firstly,

in the team-optimal solution, node 1 typically signals exclusively to node 4 or exclusively

to node 3, and only for the most discriminative local measurement will it signal to both

nodes 2 and node 4; that is, node 1 never signals all three other nodes and, moreover,

the signaling rules used by nodes 2 and 3 are asymmetric. In the message-passing

approximation, however, node 1 typically uses either none or all of its links, in the
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Figure 3.12. The tree-based message-passing approximation from the perspective of each node in

the non-tree structured model of Figure 3.10. Nodes and links drawn with dashed lines represent the

fictitious nodes introduced by the approximation, which neglects the possibility that any two parents

could have a common ancestor (or, equivalently, any two children could have a common descendent).

The potential for these different perspectives to give rise to erroneous message iterates lies at the heart

of the possibility for convergence difficulties in more elaborate non-tree-structured models.

latter case transmitting the same symbol to all other nodes; in turn, nodes 2 and 3

employ identical signaling rules to node 4 in which, given node 1 has communicated,

the presence or absence of signal indicates agreement or disagreement, respectively,

with the symbol broadcasted by node 1. In short, the message-passing approximation

cannot recognize the value of introducing asymmetry and, consequently, determines

that a larger network-wide link-use-rate is necessary to achieve a comparable gateway

node-error-rate. A final observation is that the actual link-use probabilities achieved

by the signaling rules of nodes 1,2 and 3 match those predicted by the message-passing

approximation, reflecting how (in this example) the tree-based assumption is violated

only once the fusion rule of gateway node 4 enters the picture.

� 3.5 Discussion

This chapter presented our first inroads into addressing a key challenge in modern

sensor networks, namely the inherent design tradeoffs between maximizing application-

layer decision performance (e.g, node-error-rate) and maximizing network-layer energy

efficiency (e.g., link-use-rate). Assuming a decision architecture based on only a single

forward sweep in a directed acyclic network, we were able to heavily leverage known

results of the well-studied decentralized detection paradigm. Mitigating performance

loss in the presence of such severe online resource constraints demands an offline “self-

organization” algorithm by which the processing rules local to all nodes are iteratively

coupled in a manner driven by global problem statistics. We contributed to this body
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Figure 3.13. The different decentralized processing strategies found by the message-passing approx-

imation and the team-optimal solution for the non-tree-structured model in Subsection 3.4.4 when

λ = 0.01. Each strategy is comprised of (a) the fusion rule at gateway node 4 and (b) the signaling

rules at communication-only nodes 1,2 and 3. The gray-scales in (a) indicate how the different incoming

signals encode different regions of the likelihood function p(z4|x4) that, ultimately, biases the gateway’s

local processing of measurement Y4, with entirely gray meaning no bias (as when “none” of the nodes

signal) and darker or lighter shades meaning a greater bias towards X4 = −1 or X4 = +1, respectively.

For instance, consider the bars shown when “all” nodes signal to the gateway: the fusion rule achieved

by the message-passing approximation is seen to almost always output the decision that agrees with

two of the three incoming signals; in contrast, the team-optimal solution is seen to only be so heavily

biased when all incoming signals agree, and otherwise counts each incoming signal with essentially

equal weight. The gray scales in (b) indicate, for each communication-only node i ∈ {1, 2, 3}, how

the different local signals encode different regions of the composite likelihood function p(ui, zi|xi), with

gray denoting a likelihood near unity (as when “none” of the nodes are signaling) and darker or lighter

shades denoting belief in favor of Xi = −1 or Xi = +1, respectively. For instance, in both solutions,

node 1 maps only its most discriminative likelihood values into the decision to signal multiple nodes.
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of research by showing that, for a certain class of models, this offline algorithm ad-

mits an efficient message-passing interpretation: it can be implemented as a sequence

of purely-local computations interleaved with only nearest-neighbor communications.

Our experiments with the efficient message-passing algorithm underscored how: (i) the

algorithm can produce very resourceful cooperative processing strategies in which each

node becomes capable of using the absence of communication as an additional informa-

tive signal; (ii) design decisions to reduce online resource overhead by imposing explicit

in-network processing constraints must be balanced with the offline resource expendi-

ture to optimize performance subject to such constraints; and (iii) the message-passing

algorithm can be successfully applied to models that do not necessarily satisfy all of

the assumptions under which it is originally derived.

Inherent to the single-sweep directed architecture considered here is that nodes

with few ancestors are unlikely to make reliable state-related decisions in comparison

to those with more ancestors (i.e., nodes at the “end of the line” access more global

side information). Moreover, a directed architecture may not be easily compatible

with emerging concepts in ad-hoc networking, as enforcing a directed acyclic topol-

ogy on the fly could necessitate expensive non-local network-layer coordination among

the distributed nodes. These issues motivate the consideration of a less constraining

decision architecture, allowing for bidirectional inter-sensor communication defined on

an undirected network topology. In the next chapter, we focus on the simplest such

online processing architecture, analogous to running exactly one parallel iteration of

belief propagation (per global measurement) with the same network-constrained twists

(e.g., finite-alphabet messages) considered in this chapter. In Chapter 5, we carry this

analogy even further, considering decision architectures built upon repeated forward-

backward sweeps in a directed network and multiple parallel iterations on undirected

networks. The connection between designing local decision rules and modifying factors

of the conditional distribution p(u, x̂|x), already emphasized in this chapter, will be

seen to play an increasingly important role.



Chapter 4

Undirected Network Constraints

THIS chapter begins our departure from the mainstream decentralized detection

literature, which focuses almost exclusively on unidirectional inter-sensor commu-

nication defined on a directed graph, by considering a non-ideal communication model

defined on an undirected graph. Each edge in this graph is taken to indicate a bidirec-

tional (and perhaps unreliable) finite-rate communication link between two distributed

sensor nodes. An undirected network topology is arguably more compatible with the

vision of wireless sensor networks discussed in Chapter 1, since enforcing a directed

acyclic network topology “on the fly” may require expensive non-local coordination

among the distributed nodes. Moreover, if the online message schedule is restricted to

a single unidirectional sweep through the network, then only the nodes towards the end

of the forward partial-order are afforded the opportunity to make “globally-aware” es-

timates of their local states. While the simplest directed architecture considered in the

previous chapter may be satisfactory if final decisions are to be made at a comparatively

small set of “fusion centers,” other applications may desire quality state estimates at

many or all nodes of the network (as was assumed in Subsection 3.4.2, for example, in

which all nodes were gateway nodes).

� 4.1 Chapter Overview

The initial focus in this chapter is to adapt the Bayesian detection formulation and team-

theoretic analysis in Chapter 3 for a simplest undirected communication architecture,

constraining the online message schedule to exactly one parallel iteration (with finite-

alphabet messages). Every node operates in unison, processing any particular local

measurement in just two (discrete) decision stages: the first selects the symbols (if any)

transmitted to its immediate neighbors and the second, upon receiving the symbols

(or lack thereof) from the same neighbors, decides upon its local state estimate. We

could just as well consider the case in which the neighbors communicating to any
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Figure 4.1. Illustration of the key step in our analysis of the simplest decision architecture with

bidirectional inter-sensor communication: (a) an undirected network topology and (b) its “unraveled”

directed counterpart, where each node is replicated as both a transmitter and a receiver.

particular node are different from those being communicated to by that node—for ease

of exposition, we focus on the special case that these two types of neighbors are the

same set of nodes. The formal mathematical model is described in Section 4.2.

Section 4.3 develops the team-theoretic analysis for this simplest undirected archi-

tecture. The key step is illustrated in Figure 4.1, where we “unravel” the bidirectional

communication implied by an undirected topology into an equivalent directed topology

in which each node appears both as a transmitter and a receiver. Though the resulting

directed network is a polytree, because the node replication violates the critical condi-

tional independence assumption, we cannot readily conclude that the tractable solution

presented for directed networks in Chapter 3 is applicable. We prove it is applicable if

the Bayesian cost function is separable across the nodes: specifically, under both the

conditional independence and separable cost assumptions, the decision rules at every

node reduce to a pair of local likelihood ratio tests. Moreover, the forward-backward

offline algorithm defined on this equivalent directed topology translates into a parallel

offline algorithm defined on the original undirected topology: in each offline iteration,

every node exchanges both types of messages with all of its neighbors, firstly adjust-

ing its stage-one rule and outgoing “likelihood” messages, then adjusting its stage-two

rule and outgoing “cost-to-go” messages. This development is a positive result when

contrasted with the simplest directed architecture considered in Chapter 3: the offline

message-passing algorithm retains its correctness and convergence guarantees without

restrictions on the (undirected) network topology.

The basic idea of viewing bidirectional inter-sensor communication as a sequence

of unidirectional decision stages has appeared in earlier research literature. A detailed

analysis of two sensor nodes performing a global binary hypothesis test appears in [74].

Their model assumes one node is a primary decision-maker and the other acts as a
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(costly) consultant, the latter only providing input when the former explicitly requests

it. Indeed, their formulation satisfies the assumptions we require for tractability of

the two-stage team solution in arbitrary n-node network topologies (and our analysis

also accounts for the possibility of unreliable links). More general topologies or more

than two decision stages (but still for a global binary hypothesis test and with reli-

able links) are considered in [2, 3, 36, 72, 103], but distinctly assuming that each node

processes only a new measurement in every stage, essentially “forgetting” all of its pre-

ceding measurements and preserving the critical conditional independence assumption.

In contrast, our problem formulation assumes each node processes the same local mea-

surement over successive decision stages.1 Though only a subtle difference in the online

processing model, we show it gives rise to a new level of offline complexity: that is, the

usual conditional independence assumption by itself does not imply that the optimal

strategy admits a finite-dimensional parameterization.

With respect to a global decision objective of producing quality state estimates at

every node, it is easily argued that allowing only a single online communication stage

continues to over-constrain the problem. However, the impact of these constraints,

in which every node is limited to online information within only its immediate neigh-

borhood, is different from that of the one-sweep directed architecture considered in

Chapter 3. In a directed network, nodes with more ancestors have advantage over

those with few ancestors, while in an undirected network, nodes with more neighbors

have advantage over nodes with few neighbors. The complementary aspects of these

two different decision architectures motivate the consideration of hybrid network con-

straints to improve performance in problems for which neither type of network alone

may be satisfactory. Section 4.4 considers a class of hybrid network constraints in which

the online decision architecture is hierarchical, consisting of an (undirected) “leader”

network atop of a (directed) “non-leader” network; see Figure 4.2. We show that com-

bining the different offline message-passing algorithms in the natural way implied by the

hybrid network constraints continues to satisfy team-optimality conditions and yields

a convergent offline message-passing algorithm.

Section 4.5 closes this chapter with results from a number of experiments, using

essentially the same class of local models used in the experiments of Chapter 3. The

first series of experiments collectively illustrate that the choice between a directed or

undirected architecture depends heavily on specific aspects of the problem, such as the

1Extension of our formulation and analysis to the case of multiple online communication stages is

the subject of Chapter 5.
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(a) Spatial Configuration (b) “Non-Leader” Network (c) Overlay “Leader” Network

Figure 4.2. An illustration the hybrid network constraints we analyze in Section 4.4. Starting from

an arbitrary spatial configuration, as shown in (a), the “non-leader” network is any spanning directed

acyclic subgraph (where the filled markers in (b) designate its childless nodes). The “leader” network

is any undirected graph involving an arbitrary yet relatively small subset of the nodes in (a). Note that

the leader network may connect nodes that are not necessarily spatial neighbors in (a), representing the

(perhaps costly) opportunity for direct “long-distance” (e.g., multi-hop) online communication. Also

note that the leader nodes in (c) need not necessarily coincide with the childless nodes in (b).

prior probabilities and Bayes costs as well as the particular directed and undirected

network topologies being compared. Nonetheless, some general guidelines do emerge;

for example, an undirected architecture is likely to be preferable when (i) many or all

nodes are in the gateway and the network topology has small diameter in comparison

to the number of nodes, and (ii) the hidden state processes are weakly-correlated. It is

also often the case that global detection performance is best when the communication

graph coincides with the probability graph, but we present some exceptions. Another

set of experiments focuses on the presence of interference channels (i.e., the channel

model of Example 3.2) but the absence of explicit communication-related costs (i.e.,

parameter λ = 0 in the multi-objective penalty function of (3.2)), clearly demonstrating

how the offline message-passing algorithms account for the implicit informational costs

of unreliable online communication. Our final set of experiments consider examples

with hybrid network constraints, quantifying the performance gained by introducing a

“leader” network.

� 4.2 Online Processing Model

This section draws from the Bayesian decentralized formulation with costly and unreli-

able communication presented in Section 3.2, adapting it for the two-stage undirected
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Figure 4.3. The n-sensor detection model described in Chapter 2, but assuming a decentralized

decision strategy subject to network constraints defined on an n-node undirected graph, each edge rep-

resenting a bidirectional (and perhaps unreliable) communication link between two spatially-distributed

nodes. The online message schedule is constrained to exactly one parallel iteration in the network, every

node processing its local measurement in just two decision stages: the first selects the symbols (if any)

transmitted to its immediate neighbors and the second, upon receiving the symbols (or lack thereof)

from the same neighbors, decides upon its local state estimate.

architecture depicted in Figure 4.3. The key difference from Chapter 3 is that the

network topology F is undirected, where we assume every node i, initially observing

only the component measurement yi, operates in two distinct stages: the first stage

decides upon the symbols ui ∈ Ui (if any) transmitted to its neighbors2 ne(i) = {j |
edge (i, j) in F} and the second stage, upon receiving the channel-corrupted symbols

zi ∈ Zi from these same neighbors, decides upon the local estimate x̂i ∈ Xi. Note that

the rest of the model is essentially unchanged: we continue to assume (i) the hidden

state x and observable measurement y take their values in, respectively, a discrete prod-

uct space X = X1 × · · · × Xn and Euclidean product space Y = Y1 × · · · × Yn, (ii) each

component of the global state estimate x̂ ∈ X is determined by an individual sensor and

(iii) the collections of transmitted symbols u and received symbols z take their values

in discrete product spaces U = U1 × · · · × Un and Z = Z1 × · · · × Zn, respectively.

As before, the probabilistic model starts with a distribution p(x, y) that jointly

describes the hidden state process X and noisy measurement process Y . Given an

undirected network topology F , the decision processes (Ui, X̂i) local to each node i

are now generated sequentially: the stage-one decision rule defines the communication-

related decision process Ui as a function of only the component measurement process

Yi, while the stage-two decision rule defines the detection-related decision process X̂i

2As discussed in Chapter 3, and illustrated in Examples 3.1–3.3, the symbol set Ui will reflect the

particular transmission scheme employed by each node i.
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as a function of both Yi and Ui as well as the received information Zi characterized

by conditional distribution p(zi|x, y, une(i)) based on the information Une(i) = {Uj |
j ∈ ne(i)} collectively transmitted by the neighbors of node i. Let us denote by Mi

all stage-one communication rules of the form µi : Yi → Ui and by ∆i all stage-two

detection rules of the form δi : Yi × Ui × Zi → Xi. Then, defining Γi = Mi × ∆i for

each node i, the admissible subset of decentralized strategies implied by F is given by

Γ = Γ1 × · · · × Γn.

The decentralized design problem continues to be expressed by the multi-objective

optimization problem in (3.2). However, the distribution that determines J(γ) in (3.1)

inherits a different structure as a result of the undirected network constraints. By

the construction above, fixing the rules γi = (µi, δi) local to node i is equivalent to

specifying the distribution

p(ui, x̂i|yi, zi; γi) = p(ui|yi;µi)p(x̂i|yi, ui, zi; δi),

reflecting the two-stage causal processing implied by F . It follows that fixing a strategy

γ ∈ Γ specifies the distribution

p(u, z, x̂|x, y; γ) =
n∏

i=1

p
(
zi|x, y, une(i)

)
p(ui, x̂i|yi, zi; γi)

and, in turn,

p(u, x̂, x; γ) =

∫

y∈Y
p(x, y)

n∏

i=1

p(ui, x̂i|x, y, une(i); γi) dy, (4.1)

where the summation over Z is taken inside the product i.e,

p(ui, x̂i|x, y, une(i); γi) =
∑

zi∈Zi

p(zi|x, y, une(i))p(ui, x̂i|yi, zi; γi)

for each node i.

� 4.3 Team-Theoretic Solution

This section summarizes the results of applying the team-theoretic analysis to the prob-

lem formulated in Section 4.2. As already depicted in Figure 4.1, the key idea is to map

the set Γ of all two-stage strategies defined on an undirected topology F into an equiv-

alent set of strategies defined on a particular two-level directed topology. In contrast to

the results for the directed case in Chapter 3, our first result is a negative one: specifi-

cally, the usual conditional independence assumption does not by itself imply that the
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team-optimal strategy admits a finite-dimensional parameterization. Our second result

establishes that another assumption is needed, namely that the Bayesian cost function

is separable across the nodes, for the optimal rules to take the form of likelihood-

ratio tests (with measurement-independent thresholds). When both assumptions hold,

the team optimality conditions reduce analytically to a nonlinear fixed-point equation

with identical structure to that which arises for the “unraveled” directed counterpart.

In turn, the forward-backward message-passing algorithm developed for directed poly-

trees immediately applies, translating into a parallel message-passing algorithm on the

original undirected topology.

� 4.3.1 Necessary Optimality Conditions

We begin the team-theoretic analysis for the design problem formulated in Section 4.2 by

showing that the usual conditional independence assumption is not enough to guarantee

that the optimal decentralized strategy γ∗ in (3.2) admits a finite parameterization.

Recall from Chapter 3 that, in the directed case, under this assumption the global

minimizer γ∗ in (3.2) reduces to a collection of likelihood-ratio tests, the parameters

θi ∈ R
|Ui×Xi×X×Zi| local to each node i coupled to the parameters θ−i = {θj ; j 6= i}

at all other nodes via the nonlinear fixed-point equation in (3.10). That parameter

vector θ = (θ1, . . . , θn) is finite-dimensional is key to the correctness and convergence

guarantees in Corollary 3.1.

Assumption 4.1 (Conditional Independence). For every node i,

p(yi, zi|x, y\i, z\i, u\i) = p(yi|x)p(zi|x, une(i)).

Proposition 4.1 (Person-by-Person Optimality). Let Assumption 4.1 hold. Consider

any particular node i and assume both rules local to all other nodes are fixed at their

optimal values in (3.2), which we denote by γ∗\i = {γ∗j ∈ Γj | j 6= i}.

• Assume the stage-two rule local to node i is fixed at its optimal value δ∗i ∈ ∆i. The

optimal stage-one rule reduces to

µ∗i (Yi) = arg min
ui∈Ui

∑

x∈X

a∗i (ui, x;Yi)p(Yi|x), (4.2)

where the parameter values a∗i ∈ R
|Ui×X×Yi| depend on all other fixed rules through a

nonlinear operator f1
i of the form

a∗i = f1
i (δ∗i , γ

∗
\i). (4.3)
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• Assume the stage-one rule local to node i is fixed at its optimal value µ∗i ∈ Mi. The

optimal stage-two rule reduces to

δ∗i (Yi, Ui, Zi) = arg min
x̂i∈Xi

∑

x∈X

b∗i (x̂i, x;Ui, Zi)p(Yi|x), (4.4)

where parameter values b∗i ∈ R
|Xi×X×Ui×Zi| depend upon all other fixed rules through a

nonlinear operator f2
i of the form

b∗i = f2
i (µ∗i , γ

∗
\i). (4.5)

Proof. Analogous steps as taken in the proof to Proposition 3.1; see Appendix B.1.

It is instructive to contrast each part of Proposition 4.1 with Proposition 3.1 in the

case of a directed network topology. The only difference in the stage-two rule δ∗i is that

the stage-one communication decision Ui acts as side information (in addition to local

channel information Zi); in particular, parameters b∗i depend only on local measure-

ment yi through the discrete symbol ui = µ∗i (yi), so the likelihood function p(Yi|x) is

the sufficient statistic for process Yi. However, in the stage-one rule µ∗i , parameters a∗i
are seen to depend explicitly on the local measurement yi. This structure is equivalent

to that arising when Assumption 3.1 is violated for even the simplest directed networks

(e.g., two nodes in series with discrete sets Y1 and Y2), in which case the decentralized

design problem is known to be NP-complete [107]. Thus, Proposition 4.1 implies com-

parable complexity for the problem formulated in Section 4.2, which is a negative result

compared to what is known for directed networks; that is, in contrast to the directed

case, this (worst-case) complexity persists even when the conditional independence as-

sumption holds. This negative result was largely anticipated in the earlier discussion

of Figure 4.1, recognizing the equivalent directed network will comprise conditionally-

dependent measurements.

From the algorithmic perspective, Proposition 4.1 tells us that the fixed-point equa-

tion of (3.10) still applies given the undirected model, with θi = (ai, bi) and fi = (f1
i , f

2
i ),

but that the parameter vector θ need not necessarily be finite-dimensional. That is, the

space of all finite collections of likelihood-ratio tests need not necessarily contain the

optimal decentralized strategy γ∗. In essence, the fact that rule coefficients a∗i depend

explicitly on the local measurement Yi = yi blurs the distinction between online and

offline computation, and severs the associated equivalence between person-by-person

optimality and solving a (finite-dimensional) nonlinear fixed-point equation. We now

introduce an additional assumption and prove that it simultaneously alleviates the neg-

ative result and leads to a positive result: namely, the convergent offline algorithm
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admits an efficient message-passing interpretation without restrictions on the (undi-

rected) network topology (i.e., in contrast to the directed case, graph F need not be a

tree).

Assumption 4.2 (Separable Costs). The global cost function in both stages of the

decision process is additive over nodes of the network,

c(u, x̂, x) =
n∑

i=1

[c(x̂i, x) + λc(ui, x)] . (4.6)

We will need a piece of new notation: for each node i in undirected network F ,

define its two-step neighborhood by ne2(i) =
⋃

j∈ne(i) ne(j)− i, which includes all of its

immediate neighbors together with each such neighbor’s neighbors other than itself (i.e.,

all nodes within distance two from node i). It turns out that each node’s communication

rule is coupled to those of its two-step neighborhood, resulting from the facts that (i)

each node’s detection rule incorporates information based on transmissions from all of

its neighbors and (ii) any two nodes with a common neighbor can be at most a distance

two apart.

Proposition 4.2 (Tractable Person-by-Person Optimality). If Assumption 4.2 holds,

then Proposition 4.1 applies with (4.3) and (4.5) specialized to the proportionalities

a∗i (ui, x; yi) ∝ α∗
i (ui, x) = p(x) [λc(ui, x) + C∗

i (ui, x)]

and

b∗i (x̂i, x;ui, zi) ∝ β∗i (x̂i, x; zi) = p(x)P ∗
i (zi|x)c(x̂i, x),

respectively, where (i) the likelihood function Pi(zi|x) for received information Zi de-

pends upon the fixed stage-one rules in the immediate neighborhood ne(i) through a

nonlinear operator gi of the form

P ∗
i (zi|x) = gi(µ

∗
ne(i))

and (ii) the cost-to-go function Ci(ui, x) for transmitted information Ui depends upon

the fixed stage-two rules in the immediate neighborhood as well as the fixed stage-one

rules in the two-step neighborhood ne2(i) through a nonlinear operator hi of the form

C∗
i (ui, x) = hi(µ

∗
ne2(i), δ

∗
ne(i)).
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Proof. We provide only a sketch here; see Appendix B.2 for full details. Starting from

the proof to Proposition 4.1, the key step is to establish that the optimal local stage-two

rule δ∗i (assuming all other rules fixed) lies in the subset of ∆i consisting of all functions

of the form δi : Yi × Zi → Xi and, in turn, we may assume without loss of generality

that p(x̂i|yi, ui, zi; δ
∗
i ) = p(x̂i|yi, zi; δ

∗
i ). Applying this reduction to the stage-two rules

of all other nodes leads to local stage-one parameters a∗i that do not depend on Yi.

� 4.3.2 Message-Passing Interpretation

It is straightforward to verify that the equations in the proof of Proposition 4.2 are

equivalent to the equations in Proposition 3.2 for the “unraveled” 2n-node directed

(polytree) network in which (parentless) nodes 1 to n employ the rules µ∗1 to µ∗n, while

(childless) nodes n + 1 to 2n employ the rules δ∗1 to δ∗n. Hence, the efficient message-

passing interpretation presented in Chapter 3 for directed networks is readily applicable.

Assumption 4.3 (Measurement/Channel/Cost Locality). In addition to the conditions

of Assumption 4.1 and Assumption 4.2, the measurement and channel models3 as well

as both stages of the cost function local to node i depend only on the local state process

Xi i.e.,

p(yi, zi|x, y−i, z−i, u\i) = p(yi|xi)p(zi|xi, une(i))

and

c(ui, x̂i, x) = c(x̂i, xi) + λc(ui, xi).

Corollary 4.1 (Online & Offline Efficiency). If Assumption 4.3 holds, then Proposi-

tion 4.2 reduces to

µ∗i (Yi) = arg min
ui∈Ui

∑

xi∈Xi

α∗
i (ui, xi)p(Yi|xi)

with stage-one rule parameters α∗
i ∈ R

|Ui×Xi| given by

α∗
i (ui, xi) ∝ p(xi)



λc(ui, xi) +
∑

j∈ne(i)

C∗
j→i(ui, xi)



 , (4.7)

and

δ∗i (Yi, Zi) = arg min
x̂i∈Xi

∑

xi∈Xi

β∗i (x̂i, xi;Zi)p(Yi|xi)

3Detecting a jammer is one application in which Xi might appear in the local channel model.
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with stage-two rule parameters β∗i ∈ R
|Xi×Xi×Zi| given by

β∗i (x̂i, xi; zi) ∝ c(x̂i, xi)
∑

xne(i)

p(xi, xne(i))
∑

une(i)

p(zi|xi, une(i))
∏

j∈ne(i)

P ∗
j→i(uj |xj); (4.8)

each node i produces both a likelihood message for every neighbor j ∈ ne(i) given by

P ∗
i→j(ui|xi) =

∫

yi

p(yi|xi)p(ui|yi;µ
∗
i )dyi (4.9)

and a cost-to-go message for each neighbor j ∈ ne(i) given by

C∗
i→j(uj , xj) =

∑

xi

∑

x̂i

c(x̂i, xi)
∑

xne(i)−j

p(xi, xne(i)|xj)×

∑

une(i)−j

p(x̂i|xi, une(i); δ
∗
i )

∏

m∈ne(i)−j

P ∗
m→i(um|xm),

(4.10)

p(x̂i|xi, une(i); δ
∗
i ) =

∑

zi

p(zi|xi, une(i))

∫

yi

p(yi|xi)p(x̂i|yi, zi; δ
∗
i )dyi.

Proof. Corollary 3.2 and Proposition 3.2 starting from Proposition 4.2.

Corollary 4.1 implies that the rule parameters φ∗i = (α∗
i , β

∗
i ) local to node i are

completely determined by the incoming messages from neighbors ne(i) on the original

undirected network topology F . Specifically, we see in (4.8) that the stage-two parame-

ters β∗i depend upon the incoming likelihood messages P ∗
ne(i)→i = {P ∗

j→i; j ∈ ne(i)}, the

right-hand-side summarized by operator f2
i (P ∗

ne(i)→i). Meanwhile, we see in (4.7) that

the stage-one parameters α∗
i depend upon the incoming cost-to-go messages C∗

ne(i)→i =

{C∗
j→i; j ∈ ne(i)}, the right-hand-side summarized by operator f1

i (C∗
ne(i)→i). Similarly,

the satisfaction of Corollary 4.1 at all nodes other than i depends upon the outgo-

ing messages from node i to its neighbors ne(i). The outgoing likelihood messages

P ∗
i→ne(i) = {P ∗

i→j ; j ∈ ne(i)} expressed in (4.9) are summarized by operator gi(α
∗
i ),

while the outgoing cost-to-go messages C∗
i→ne(i) = {C∗

i→j ; j ∈ ne(i)} expressed in (4.10)

are summarized by operator hi(β
∗
i , P

∗
ne(i)→i). Altogether, we see that Corollary 4.1

specializes the nonlinear fixed-point equations in (3.21) to

αi = f1
i

(
Cne(i)→i

)

βi = f2
i

(
Pne(i)→i

)

Pi→ne(i) = gi (αi)

Ci→ne(i) = hi

(
βi, Pne(i)→i

)

, i = 1, . . . , n. (4.11)
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(a) Likelihood Step for Stage-Two Rule at Node i
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(b) Cost-To-Go Step for Stage-One Rule at Node i

Figure 4.4. The kth parallel message-passing iteration as discussed in Corollary 4.2, each node i

interleaving its purely-local computations with only nearest-neighbor communications.

Corollary 4.2 (Offline Message-Passing Algorithm). Initialize stage-one rule parame-

ters α0 = (α0
1, . . . , α

0
n) and stage-two rule parameters β0 = (β0

1 , . . . , β
0
n), then generate

the sequence {(αk, βk); k = 1, 2, . . .} by iterating (4.11) in a parallel message sched-

ule defined on the undirected graph F , each node interleaving local updates of stage-one

and stage-two decision rules with nearest-neighbor exchanges of likelihood and cost-to-go

messages e.g., as illustrated in Figure 4.4,

P k
i→ne(i) := gi

(

αk−1
i

)

from i = 1, . . . , n,

βk
i := f2

i

(

P k
ne(i)→i

)

from i = 1, . . . , n,

Ck
i→ne(i) := hi

(

βk
i , P

k
ne(i)→i

)

from i = 1, . . . , n and

αk
i := f1

i

(

Ck
ne(i)→i

)

from i = 1, . . . , n.

If Assumption 4.3 holds, the associated sequence {J(γk)} converges.

Proof. Corollary 3.3 starting from Corollary 4.1.

Almost all of the remarks in Chapter 3 concerning the message-passing interpre-

tation for directed networks carry over to the message-passing interpretation for undi-

rected networks presented here. Firstly, it is not known whether the sequence {J(γk)}
converges to the optimal performance J(γ∗), whether the achieved performance is in-

variant to the choice of initial parameters (α0, β0), nor whether the associated sequences

{αk} or {βk} converge. Secondly, each node need not possess a complete description of
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the global state distribution p(x) to carry out the message-passing iterations, as Corol-

lary 4.1 implies it is sufficient for each node i to know the joint distribution p(xi, xne(i))

of only the states local to itself and its neighbors. Thirdly, upon completion of the like-

lihood step in iteration k + 1, computation of the global penalty J(γk) scales linearly

with n i.e.,

J(γk) :=
∑

i

∑

xi

p(xi)
[

λG1
i (γ

k|xi) +G2
i (γ

k|xi)
]

with

G1
i (γ

k|xi) :=
∑

ui

c(ui, xi)p(ui|xi;α
k
i ),

G2
i (γ

k|xi) :=
∑

x̂i

c(x̂i, xi)
∑

zi

p(x̂i|xi, zi;β
k
i )
∑

une(i)

p(zi|xi, une(i)) ×

∑

xne(i)

p(xne(i)|xi)
∏

j∈ne(i)

P k+1
j→i (uj |xj).

An important difference from the case of directed networks is that the parallel

message-passing algorithm in Corollary 4.2 retains its correctness and convergence guar-

antees without restrictions on the undirected topology (e.g., graph F need not be a tree).

Also note that each type of network implies different explicit online constraints: in the

directed case, each node’s online data is related only to the measurements local to itself

and its ancestors (i.e., its parents, the parents of each such parent, and so on); in the

undirected case, each node’s online data is related only to the measurements local to

itself and its immediate neighbors. The different online processing constraints mani-

fest themselves in different team couplings, in the sense discussed in Figure 4.5, being

optimized by the respective offline message-passing algorithms. These architectural

considerations suggest directed networks are preferable when comparably few nodes are

to provide state estimates, while undirected networks are preferable when many nodes

are to provide state estimates. In general, as will be demonstrated empirically in Sec-

tion 4.5, such comparisons will also depend upon the particular topologies as well as

the prior, measurement, channel or cost models.

We briefly mentioned in Section 4.1 that the online processing model in Section 4.2

(and, in turn, the results in this section) readily generalize to the possibility that neigh-

bors communicating to a node, which we will call the node’s feeders, are different from

the neighbors being communicated to by that node, which we will call the node’s fol-

lowers. For example, consider an undirected network in which each node employs a

selective peer-to-peer transmission scheme (as described in Example 3.3), yet there is
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9

11

9

11

(a) Undirected Topology (b) Directed Topology

Figure 4.5. Comparison of the team coupling captured by the offline message-passing algorithm in (a)

an undirected network or (b) a directed network. In (a), the incoming messages for each rule depend

directly only on the rules of nodes within a two-step neighborhood (i.e., its immediate neighbors and

the immediate neighbors of each such neighbor); in (b), the incoming messages depend directly upon

the rules of all ancestors (a node’s parents, the parents of each such parent, and so on), all descendants

(i.e., a node’s children, the children of each such child, and so on) as well as the ancestors of each such

descendant. The dashed and dotted curves show these subsets for nodes 9 and 11, respectively, each

of which similarly intersects with such subsets (not shown) of other nodes—the team coupling in each

topology is the extent that the respective n subsets intersect.

at least one communication-only node (i.e., a node not in the gateway, meaning it need

not make a local state-related decision). Clearly, within the single-stage undirected ar-

chitecture, there is then no value in feeding information to any such communication-only

node. Indeed, as examples in Section 4.5 will demonstrate, the offline message-passing

algorithm converges to a strategy that shuts off (i.e., assigns zero use-rate to) every link

entering a communication-only node. The point to be made here, however, is that we

could equivalently have defined every node’s followers to include only its neighboring

gateway nodes; see Figure 4.6. The next section further exploits this inherent flexibil-

ity of the single-stage undirected architecture, allowing each node’s followers to differ

from its feeders and, in turn, broadening the class of detection networks for which our

message-passing algorithms remain both efficient and convergent.

� 4.4 Extension to Hybrid Network Constraints

Thus far, we have identified two simplest online decision architectures for which team-

optimality conditions give rise to an offline iterative algorithm that admits an efficient

message-passing interpretation. These are the single-sweep directed network of Chap-
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(a) Undirected Network & Gateway Nodes (b) Directed Feeder/Follower Network

Figure 4.6. An (a) undirected network with only a strict subset of nodes in the gateway, shown by

the thick-lined boxes, and (b) the equivalent directed feeder/follower network in which the directional

arrows indicate information flow from a feeder to a follower (e.g., node 2 is a feeder and follower of node

4, but only a follower of node 1; meanwhile, node 1 is only a feeder of node 2 and node 4). The set of

all followers are the gateway nodes (e.g., nodes 2,4,7,9 and 11), while the set of all feeders are all nodes

except for those communication-only nodes having no neighboring gateway node (e.g., nodes 3 and 10).

ter 3 with Assumptions 3.2–3.4 in effect, and the single-iteration undirected network of

the preceding subsections with Assumption 4.3 in effect. The complementary aspects

of these two architectures, as was discussed by Figure 4.5, motivate the consideration

of hybrid network constraints to improve detection performance in problems for which

neither type of network alone may be satisfactory. This section identifies a special class

of hybrid network constraints, along with assumptions under which negligible additional

complexity is introduced in comparison to that identified for either type of network on

its own.4 Indeed, combining the efficient message-passing interpretations in the natural

way implied by the hybrid network constraints is shown to retain analogous correctness

and convergence guarantees to those of Corollary 3.3 and Corollary 4.2.

� 4.4.1 Hierarchical Processing Model

We first introduce some notation associated with the class of hybrid network constraints

illustrated in Figure 4.2. We are given a particular n-node directed acyclic graph

FD = (V, ED) and a particular undirected graph FU = (VU , EU ) such that VU ⊂ V,

typically assuming |VU | is much less than n. The former denotes the non-leader network

and the latter the leader network, and the two together comprise an n-node hybrid

4More elaborate online decision architectures, in which there does arise additional complexity in

comparison to the simplest architectures analyzed thus far, are the subject of Chapter 5.
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network

H = FD ∪ FU = (V, ED ∪ EU ).

For every non-leader node i ∈ V\VU , all of the usual terminology associated with its

position in the directed network FD continues to apply. Its rule space Γi is no different

from before, consisting of all functions γi : Yi × Zi → Ui × Xi in which the local

communication model dictates both how symbol set Zi relates to the composite symbol

set Upa(i) of its parents and how the symbol set Ui relates to its children ch(i).

For every leader node ℓ ∈ VU , the terminology associated with its position in the

undirected network FU similarly continues to apply. However, its two-stage processing

rule may now incorporate incoming symbols from its parents in FD, taking values in

a set ZD
ℓ , and generate outgoing symbols for its children in FD, taking values in a

set UD
ℓ . These symbol sets are to be contrasted with their counterparts ZU

ℓ and UU
ℓ

within the undirected network FU . In particular, each leader node is taken to have

two distinct channel models, p(zD
ℓ |x, y, upa(ℓ)) describing information ZD

ℓ received from

its parents in FD, triggering the communication rule for the undirected network, and

p(zU
ℓ |x, y, uU

ne(ℓ)) describing information ZU
ℓ received from its neighbors in FU , triggering

the communication rule for the directed network. Altogether, we continue to assume

that Γℓ = Mℓ × ∆ℓ, but the single-stage rule spaces Mℓ and ∆ℓ are augmented to

consist of all functions

µℓ : Yℓ ×ZD
ℓ → UU

ℓ and δℓ : Yℓ ×ZD
ℓ × UU

ℓ ×ZU
ℓ → UD

ℓ ×Xℓ,

respectively. We will sometimes denote the product spaces UD
ℓ × UU

ℓ and ZD
ℓ ×ZU

ℓ by

Uℓ and Zℓ, respectively.

By the above construction, a leader node will not communicate within the undirected

network (and, in turn, with any of its children in the directed network) until it has

received symbols from all of its parents in the directed network. As illustrated in

Figure 4.7, this opens up the possibility for gridlock, in which online processing can

stall because information required before a leader node may begin cannot be realized

until after this same leader node transmits information. The following assumption on

hybrid network H ensures the absence of any such gridlock.

Assumption 4.4 (Absence of Gridlock). In hybrid network H, for every pair of adjacent

leader nodes in the undirected network FU , there exists no non-leader node that, in the

directed network FD, is both an ancestor of one and a descendant of the other.

With Assumption 4.4 in place, the strategy-dependent distribution that determines

J(γ) in (3.1) becomes well-defined. In particular, for each non-leader node i ∈ V\VU ,
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(a) Gridlock Between Leader Nodes 1 & 2 (b) Absence of Gridlock

Figure 4.7. Two simple hybrid network topologies, (a) one with gridlock and (b) one without gridlock.

In each case, the leader (non-leader) nodes are the large (small) squares, while the circled numbers

beside the links indicate the sequential partial-ordering of the nodes’ communication decisions. By

construction, each leader node is able to transmit to its neighboring leader nodes only after all of its

non-leader parents have transmitted, and is similarly able to transmit to its non-leader children only

after all of its neighboring leader nodes have transmitted. Note that (a) violates Assumption 4.4 while

(b) does not.

fixing the rule γi ∈ Γi is equivalent to specifying the distribution

p(uD
i , x̂i|x, y, uD

pa(i); γi) =
∑

zi∈Zi

p(zi|x, y, uD
pa(i))p(u

D
i , x̂i|yi, zi; γi).

Here, we have introduced the superscript-D notation on both ui and upa(i) for com-

patibility with the leader node notation, recognizing that (i) uD
i ≡ ui ∈ Ui for every

non-leader node i and (ii) uD
j ≡ uj ∈ Uj for every parent j ∈ pa(i) unless node j is also

a leader node in which case uD
j ∈ UD

j . For each leader node ℓ ∈ VU , we use uℓ and zℓ to

denote (uU
ℓ , u

D
ℓ ) and (zU

ℓ , z
D
ℓ ), respectively, so that similarly fixing the rule γℓ = (µℓ, δℓ)

is equivalent to specifying the distribution

p(uℓ, x̂ℓ|yℓ, zℓ; γℓ) = p(uU
ℓ |yℓ, z

D
ℓ ;µℓ)p(u

D
ℓ , x̂ℓ|yℓ, zℓ, u

U
ℓ ; δℓ)

and, in turn,

p(uℓ, x̂ℓ|x, y, uD
pa(ℓ), u

U
ne(ℓ); γℓ) =

∑

zD
ℓ ∈ZD

ℓ

p(zD
ℓ |x, y, uD

pa(ℓ))
∑

zU
ℓ ∈ZU

ℓ

p(zU
ℓ |x, y, uU

ne(ℓ))p(uℓ, x̂ℓ|yℓ, zℓ; γℓ).
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It follows that fixing the entire strategy γ ∈ Γ1 × · · · × Γn specifies the distribution

p(u, x̂, x; γ) =

∫

y∈Y
p(x, y)

∏

i∈V\V U

p(uD
i , x̂i|x, y, uD

pa(i); γi) ×

∏

ℓ∈VU

p(uℓ, x̂ℓ|x, y, uD
pa(ℓ), u

U
ne(ℓ); γℓ) dy.

� 4.4.2 Efficient Message-Passing Solutions

Given a hybrid network H that satisfies Assumption 4.4, team-optimality conditions

and an associated message-passing interpretation follow from, essentially, a combina-

tion of the analytical steps taken in Chapter 3 and Section 4.3 when considering either

type of network alone. Firstly, the optimal decentralized strategy γ∗ is guaranteed

to have a finite parameterization only under the conditional independence assumption

and, at nodes also in the leader network, the assumption of separable costs. Sec-

ondly, in the case that X is itself a spatially-distributed random vector, we require

the measurement/channel/cost locality assumption in order for total offline compu-

tation/communication overhead to scale only linearly with the number of nodes n.

Thirdly, for the forward likelihood messages and backward cost-to-go messages to ad-

mit a recursive definition, we require the directed network FD to be a polytree.

Assumption 4.5 (Conditional Independence & Measurement/Channel Locality). In

hybrid network H = FD ∪ FU , the global probabilistic model satisfies

p(yi, zi|x, y\i, z\i, uD
pa(i)) = p(yi|xi)p(zi|xi, u

D
pa(i))

for every non-leader node i ∈ V\VU and

p(yℓ, zℓ|x, y\ℓ, z\ℓ, uD
pa(ℓ), u

U
ne(ℓ)) = p(yℓ|xℓ)p(z

D
ℓ |xℓ, u

D
pa(i))p(z

U
ℓ |xℓ, u

U
ne(ℓ))

for every leader node ℓ ∈ VU .

Assumption 4.6 (Separable Costs & Cost Locality). In hybrid network H = FD∪FU ,

the global cost function satisfies

c(u, x̂, x) =
∑

i∈V

c(ui, x̂i, xi)

with

c(ui, x̂i, xi) =







c(uD
i , x̂i, xi) , i ∈ V\VU

c(uU
i , xi) + c(uD

i , x̂i, xi) , i ∈ VU
.
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Assumption 4.7 (Polytree Non-Leader Network). In hybrid network H = FD ∪ FU ,

the directed (non-leader) network FD is a polytree.

The remainder of this section formally deduces that Assumptions 4.4–4.7 are not

sufficient for the team-optimality conditions to admit an efficient message-passing in-

terpretation. Additional restrictions on hybrid network H = FD ∪FU , or more specifi-

cally on the interface between the directed (non-leader) network FD and the undirected

(leader) network FU , are required. These additional restrictions, subsuming Assump-

tion 4.4 and Assumption 4.7, basically ensure that the “unraveled” hybrid network

retains an overall directed polytree topology. Our approach considers two canonical

types of hybrid network constraints, each illustrated in Figure 4.8: the first we call the

hierarchical fusion architecture and the second we call the hierarchical dissemination

architecture. In the former (latter), the directed non-leader network is said to feed

(follow) the undirected leader network, analogous to the notions of “feeders” and “fol-

lowers” we introduced in Figure 4.6 for purely undirected architectures. Our analysis

proceeds by first establishing team-optimal message-passing equations for each canoni-

cal hybrid network, then combining these results to establish efficient message-passing

equations for more general hybrid networks.

Proposition 4.3 (Hierarchical Fusion Architecture). In a hybrid network H = FD ∪
FU , let Assumptions 4.5–4.7 hold and suppose FU is such that VU = {i ∈ V|ch(i) = ∅}
i.e., the leader nodes are all childless nodes in FD as shown in Figure 4.8(a). Unless

there exists a non-leader node i ∈ V\VU whose descendants (on FD) include a pair of

leader nodes with distance between them less than or equal to two (on FU ), the following

message-passing equations satisfy team-optimality conditions.

• For every non-leader node i ∈ V\VU , rule parameters φ∗i , forward messages P ∗
i→ch(i)

and backward messages C∗
i→pa(i) are as defined in Proposition 3.2.

• For every leader node ℓ ∈ VU , the stage-one rule is given by

µ∗ℓ(Yℓ, Z
D
ℓ ) = arg min

uU
ℓ ∈UU

ℓ

∑

xℓ∈Xℓ

α∗
ℓ (u

U
ℓ , xℓ;Z

D
ℓ )p(Yℓ|xℓ),

where parameters α∗
ℓ ∈ R

|UU
ℓ ×Xℓ×ZD

ℓ | satisfy

α∗
ℓ (u

U
ℓ , xℓ; z

D
ℓ ) ∝ p(xℓ)P

∗
ℓ (zD

ℓ |xℓ)



c(uU
ℓ , xℓ) +

∑

j∈ne(i)

C∗
j→ℓ(u

U
ℓ , xℓ)
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(a) A Hierarchical Fusion Architecture and Its Unraveled Counterpart

1 2

3

2

1

Leader

Follower
Network

Network

1

1

2

2

3

3

(b) A Hierarchical Dissemination Architecture and Its Unraveled Counterpart

Figure 4.8. Examples of two hierarchical decision architectures involving hybrid network constraints.

The undirected network consists of three “leader” nodes, each connected to a distinct directed subtree of

“non-leader” nodes. In (a), the flow of information begins with a single forward sweep in all non-leader

networks and, upon every leader node hearing from its non-leader parents, ends with a single parallel

iteration in the undirected network (i.e., the non-leader network is a feeder of the leader network).

The opposite flow of information is assumed in (b), involving first the leader network and then the

descendant non-leader networks (i.e., the non-leader network is a follower of the leader network).

with likelihood function P ∗
ℓ (zD

ℓ |xℓ) defined analogously to (3.17) in Proposition 3.2;

meanwhile, the stage-two rule, taking Zℓ = (ZD
ℓ , Z

U
ℓ ), is given by

δ∗ℓ (Yℓ, Zℓ) = arg min
x̂ℓ∈Xℓ

∑

xℓ∈Xℓ

β∗ℓ (x̂ℓ, xℓ;Zℓ)p(Yℓ|xℓ),
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where parameters β∗ℓ ∈ R
|Xℓ×Xℓ×Zℓ| satisfy

β∗ℓ (x̂ℓ, xℓ; zℓ) ∝ p(xℓ)P
∗
ℓ (zD

ℓ |xℓ)P
∗
ℓ (zU

ℓ |xℓ)c(x̂ℓ, xℓ)

with likelihood function

P ∗
ℓ (zU

ℓ |xℓ) =
∑

xne(ℓ)

p(xne(ℓ)|xℓ)
∑

uU
ne(ℓ)

p(zU
ℓ |xℓ, u

U
ne(ℓ))

∏

j∈ne(ℓ)

P ∗
j→ℓ(u

U
j |xj); (4.12)

each leader node ℓ produces a likelihood message for every neighboring leader j ∈ ne(ℓ)

given by

P ∗
ℓ→j(u

U
ℓ |xℓ) =

∑

zD
ℓ

P ∗
ℓ (zD

ℓ |xℓ)

∫

yℓ

p(yℓ|xℓ)p(u
U
ℓ |yℓ, z

D
ℓ ;µ∗ℓ )dyℓ, (4.13)

a cost-to-go message for each neighboring leader j ∈ ne(i) given by

C∗
ℓ→j(u

U
j , xj) =

∑

xℓ

∑

x̂ℓ

c(x̂ℓ, xℓ)
∑

xne(ℓ)\j

p(xℓ, xne(ℓ)|xj)×

∑

uU
ne(ℓ)\j

p(x̂ℓ|xℓ, u
U
ne(ℓ); δ

∗
ℓ )

∏

m∈ne(ℓ)\j

P ∗
m→ℓ(um|xm),

p(x̂ℓ|xℓ, u
U
ne(ℓ); δ

∗
ℓ ) =

∑

zℓ

P ∗
ℓ (zD

ℓ |xℓ)p(z
U
ℓ |xℓ, u

U
ne(ℓ))

∫

yℓ

p(yℓ|xℓ)p(x̂ℓ|yℓ, zℓ; δ
∗
ℓ )dyℓ,

as well as a cost-to-go message C∗
ℓ→j(u

D
j , xj) for each neighboring non-leader j ∈ pa(ℓ)

defined analogously to (3.20) in Proposition 3.2 based on the stage-one rule µ∗ℓ .

Proof. First observe that, because no leader node has any descendants, H trivially

satisfies Assumption 4.4. All assumptions under which Proposition 3.2 applies are

satisfied for every non-leader node. It suffices to show that, despite the presence of

incoming information ZD
ℓ at every leader node ℓ, Corollary 4.1 continues to apply to

the leader network FU . All of the steps in the proofs are seen to carry through provided

that the likelihood function associated with Zℓ = (ZD
ℓ , Z

U
ℓ ) and the information UU

ne(ℓ)

collectively transmitted by the neighboring leaders of node ℓ obeys the identity

p(zℓ, u
U
ne(ℓ)|x, zD

ne(ℓ); γ) = p(zD
ℓ |x; γ)p(zU

ℓ |x, uU
ne(ℓ))

∏

j∈ne(ℓ)

p(uU
j |x, zD

j ; γ)

under every fixed strategy γ ∈ Γ. This condition is violated at leader node ℓ only if it

shares an ancestor (in FD) with at least one of its neighboring leader nodes, in which

case

p(zℓ|x, zD
ne(ℓ), u

U
ne(ℓ); γ) 6= p(zD

ℓ |x; γ)p(zU
ℓ |x, uU

ne(ℓ))
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or any two of its neighboring leader nodes share a common ancestor (again in FD), in

which case

p(uU
ne(ℓ)|x, zD

ne(ℓ); γ) 6=
∏

j∈ne(ℓ)

p(uU
j |x, zD

j ; γ).

Proposition 4.4 (Hierarchical Dissemination Architecture). In a hybrid network H =

FD ∪ FU , let Assumptions 4.5–4.7 hold and suppose FU is such that VU = {i ∈
V|pa(i) = ∅} i.e., the leader nodes are all parentless nodes in FD as shown in Fig-

ure 4.8(b). Unless there exists a non-leader node i ∈ V\VU whose ancestors (on FD)

include a pair of leader nodes with distance between them less than or equal to two (on

FU ), the following message-passing equations satisfy team-optimality conditions.

• For every non-leader node i ∈ V\VU , rule parameters φ∗i , forward messages P ∗
i→ch(i)

and backward messages C∗
i→pa(i) are as defined in Proposition 3.2.

• For every leader node ℓ ∈ VU , the stage-one rule µ∗ℓ (and its parameters α∗
ℓ ) as well as

the forward messages P ∗
ℓ→ne(i) are as defined in Corollary 4.1; meanwhile, the stage-two

rule is given by

δ∗ℓ (Yℓ, Zℓ) = arg min
(ud

ℓ ,x̂ℓ)∈U
D
ℓ ×Xℓ

∑

xℓ∈Xℓ

β∗ℓ (uD
ℓ , x̂ℓ, xℓ;Zℓ)p(Yℓ|xℓ),

which is also equivalent to that of Corollary 4.1 except with an augmented decision space

that includes the symbol(s) uD
ℓ for its children ch(ℓ) and, accordingly, rule parameters

β∗ℓ and backward messages C∗
ℓ→ne(i) are also equivalently defined except that in (4.8)

and (4.10), respectively, each appearance of c(x̂ℓ, xℓ) is replaced with

c(uD
ℓ , x̂ℓ, xℓ) +

∑

j∈ch(ℓ)

C∗
j→ℓ(u

D
ℓ , xℓ);

finally, the forward message to every child j ∈ ch(ℓ) is given by

P ∗
ℓ→j(u

D
ℓ |xℓ) =

∑

zU
ℓ

P ∗
ℓ (zU

ℓ |xℓ)
∑

x̂ℓ

∫

yℓ

p(yℓ|xℓ)p(u
D
ℓ , x̂ℓ|yℓ, z

U
ℓ ; δ∗ℓ ) dyℓ

with likelihood function P ∗
ℓ (zU

ℓ |xℓ) given by (4.12).

Proof. First observe that, because no leader node has any ancestors, H trivially satisfies

Assumption 4.4. All assumptions under which Proposition 3.2 applies are satisfied

for every non-leader node. It suffices to show that, despite the presence of outgoing
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information UD
ℓ at every leader node ℓ, Corollary 4.1 continues to apply to the leader

network FU . All of the steps in the proofs are seen to carry through provided that the

cost-to-go function associated with the information UU
ℓ transmitted to the neighboring

leaders of node ℓ decomposes additively under every fixed strategy γ ∈ Γ. Now, if node

ℓ shares a descendant (in FD) with at least one if its neighboring leaders or any two of

its neighboring leaders share a descendant (again in FD), then it is no longer the case

at this shared non-leader node i that

p(upa(i)|x, zpa(i); γ) =
∏

j∈pa(i)

p(uj|x, zj ; γ)

under every fixed γ ∈ Γ. In turn, the backward cost propagation from this node i need

not necessarily decompose additively.

Combining Proposition 4.3 and Proposition 4.4 in the natural way, in which each

leader node has both a feeder and follower network (e.g., see Figure 4.9), yields the

general class of hybrid network constraints for which team-optimality conditions can

reduce to efficient message-passing equations. To apply Proposition 4.3 to the leader

network FU and the feeder subnetworks, we require that, for every pair of leader nodes

within a distance of two (on FU ), the respective pairs of ancestors (on FD) are dis-

joint. The same is required of the respective pairs of descendants (on FD) to apply

Proposition 4.4 to the leader network FU and the follower subnetworks. The following

assumption encapsulates the class of hybrid networks for which both Proposition 4.3 and

Proposition 4.4 remain applicable, where the lineage of each leader node ℓ ∈ VU refers

to the subset of nodes an(ℓ) ∪ de(ℓ), which may consist of both leader and non-leader

nodes.

Assumption 4.8 (Hybrid Interface Restrictions). In a hybrid network H = FD ∪FU ,

for every pair of leader nodes within a distance two of each other (on FU ), the respective

lineages (on FD) have no node in common: mathematically, for every ℓ ∈ VU and

m ∈ ne2(ℓ) ⊂ VU , the intersection (an(ℓ) ∪ de(ℓ)) ∩ (an(m) ∪ de(m)) is empty.

Notice that the conditions in Assumption 4.8 subsume those of Assumption 4.4, as

the latter is satisfied given every pair of adjacent leader nodes (i.e., leader nodes within

a distance of one on FU ) have disjoint lineages. The hybrid network in Figure 4.7(b),

for example, satisfies Assumption 4.4 but violates Assumption 4.8. Intuitively-speaking,

Assumption 4.8 (together with Assumption 4.7) ensures that the “unraveled” hybrid

network retains an overall directed polytree topology. Specifically, the flow of online
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(b) The “unraveled” directed counterpart of the hybrid network in (a)

Figure 4.9. A hybrid network formed from the natural junction of Figure 4.8(a) and Figure 4.8(b)

at the leader network, allowing every leader node to have both feeder and follower subnetworks. This

example lies in the class of hybrid networks for which team-optimality conditions reduce to efficient

message-passing equations¿ The associated offline iterative algorithm admits a distributed implemen-

tation consisting of repeated forward-backward sweeps on the “unraveled” directed counterpart of (a).
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measurement processing obeys the forward partial-order implied by this “unraveled”

polytree, proceeding from parentless feeder nodes to childless follower nodes, where ev-

ery leader node along the way, upon receiving symbols from all of its parents in FD,

exchanges symbols with all of its neighbors in FU before it transmits symbols to its

children in FD. The offline message-passing algorithm similarly obeys this “unrav-

eled” hybrid topology, making repeated forward-backward sweeps over the fixed-point

equations obtained by combining Proposition 4.3 and Proposition 4.4.

Corollary 4.3 (Hybrid Offline Efficiency). Consider a hybrid network H = FD ∪
FU and let Assumptions 4.5–4.8 hold. Team-optimality conditions are satisfied by the

collection of non-leader rules

γ∗i (Yi, Zi) = arg min
(ui,x̂i)∈Ui×Xi

∑

xi∈Xi

φ∗i (ui, x̂i, xi;Zi)p(Yi|xi), i ∈ V\VU

and the collection of leader rules

µ∗ℓ(Yℓ, Z
D
ℓ ) = arg min

uU
ℓ ∈UU

ℓ

∑

xℓ∈Xℓ

α∗
ℓ (u

U
ℓ , xℓ;Z

D
ℓ )p(Yℓ|xℓ)

δ∗ℓ (Yℓ, Zℓ) = arg min
(uD

ℓ ,x̂ℓ)∈U
D
ℓ ×Xℓ

∑

xℓ∈Xℓ

β∗ℓ (uD
ℓ , x̂ℓ, xℓ;Zℓ)p(Yℓ|xℓ)

, ℓ ∈ VU

with real-valued parameters

φ∗ = {φ∗i ; i ∈ V\VU}
⋃

{(α∗
ℓ , β

∗
ℓ ); ℓ ∈ VU}

denoting any solution to the following nonlinear fixed-point equations:

• For every non-leader node i ∈ V\VU , we have

φi = fi

(
Ppa(i)→i, Cch(i)→i

)

Pi→ch(i) = gi

(
φi, Ppa(i)→i

)

Ci→pa(i) = hi

(
φi, Ppa(i)→i, Cch(i)→i

)

with operators fi, gi and hi based on equations described in Proposition 3.2.

• For every leader node ℓ ∈ VU , pertaining to the stage-one rule we have

αℓ = f1
ℓ

(
Ppa(ℓ)→ℓ, Cne(ℓ)→ℓ

)

Pℓ→ne(ℓ) = gU
ℓ

(
αℓ, Ppa(ℓ)→ℓ

)

Cℓ→pa(ℓ) = hD
ℓ

(
αℓ, Ppa(ℓ)→ℓ, Cne(ℓ)→ℓ

)
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with operators f1
ℓ , gU

ℓ and hD
ℓ based on equations described in Proposition 4.3; mean-

while, pertaining to the stage-two rule we have

βℓ = f2
ℓ

(
Ppa(ℓ)→ℓ, Pne(ℓ)→ℓ, Cch(ℓ)→ℓ

)

Pℓ→ch(ℓ) = gD
ℓ

(
βℓ, Ppa(ℓ)→ℓ, Pne(ℓ)→ℓ

)

Cℓ→ne(ℓ) = hU
ℓ

(
βℓ, Ppa(ℓ)→ℓ, Pne(ℓ)→ℓ, Cch(ℓ)→ℓ

)

with operators f2
ℓ , gD

ℓ and hU
ℓ based on equations described in Proposition 4.4 but

also accounting for the composite side information Zℓ = (ZD
ℓ , Z

U
ℓ ), each appearance

of Pℓ(z
U
ℓ |xℓ) replaced with the product P ∗

ℓ (zD
ℓ |xℓ)P

∗
ℓ (zU

ℓ |xℓ).

Proof. First recognize that Assumption 4.7 and Assumption 4.8 together satisfy all

conditions on H required by Proposition 4.3 and Proposition 4.4. Then, for every

leader node ℓ in FU , we apply the message-passing equations of Proposition 4.3 to its

ancestors in FD and its local stage-one rule µ∗ℓ ; similarly, we apply Proposition 4.4 to

its descendants in FD, and the combination of Proposition 4.3 and Proposition 4.4 to

the stage-two rule δ∗ℓ .

Corollary 4.4 (Offline Message-Passing Algorithm). Initialize all rule parameters

φ0 = {φ0
i ; i ∈ V\VU}

⋃

{(α0
ℓ , β

0
ℓ ); ℓ ∈ VU},

then generate the sequence {φk} by iterating the fixed-point equations in Corollary 4.3

in repeated forward-backward passes on the “unraveled” directed counterpart to hybrid

network H i.e., the kth forward pass on H proceeds from parentless feeder nodes to

childless follower nodes, evaluating

P k
i→ch(i) := gi

(

φk−1
i , P k

pa(i)→i

)

, i ∈ V\VU

for each non-leader node and

P k
ℓ→ne(ℓ) := gU

ℓ

(

αk−1
ℓ , P k

pa(ℓ)→ℓ

)

P k
ℓ→ch(ℓ) := gD

ℓ

(

βk−1
ℓ , P k

pa(ℓ)→ℓ, P
k
ne(ℓ)→ℓ

) , ℓ ∈ VU

for each leader node, while the kth backward pass on H proceeds from childless follower

nodes to parentless feeder nodes, evaluating

φk
i := fi

(

P k
pa(i)→i, C

k
ch(i)→i

)

Ck
i→pa(i) := hi

(

φk
i , P

k
pa(i)→i, C

k
ch(i)→i

) , i ∈ V\VU
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for each non-leader node and

βk
ℓ := f2

ℓ

(

P k
pa(ℓ)→ℓ, P

k
ne(ℓ)→ℓ, C

k
ch(ℓ)→ℓ

)

Ck
ℓ→ne(ℓ) := hU

ℓ

(

βk
ℓ , P

k
pa(ℓ)→ℓ, P

k
ne(ℓ)→ℓ, C

k
ch(ℓ)→ℓ

)

αk
ℓ := f1

ℓ

(

P k
pa(ℓ)→ℓ, C

k
ne(ℓ)→ℓ

)

Ck
ℓ→pa(ℓ) := hD

ℓ

(

αk
ℓ , P

k
pa(ℓ)→ℓ, C

k
ne(ℓ)→ℓ

)

, ℓ ∈ VU

for each leader node. If Assumptions 4.5–4.8 hold, then the associated sequence {J(γk)}
converges.

Proof. Corollary 3.3 and Corollary 4.2 starting from Corollary 4.3.

Inspection of the message-passing equations for hybrid networks shows that each

non-leader node must know a local prior model related only to the directed network

FD, while each leader node must know a local prior model related to both networks

FD and FU . Specifically, in order for leader node ℓ to exchange messages with its

neighboring non-leaders in FD, it requires knowledge of p(xℓ, xpa(ℓ)); similarly, in order

to exchange messages with its neighboring leaders in FU , it requires knowledge of

p(xℓ, xne(ℓ)). As was the case when we considered each architecture on its own, the scope

of this thesis assumes these probabilities are available at initialization. It is also worth

mentioning here that Assumption 4.8 in its full generality may be difficult to ensure

in practice, requiring every node to acquire non-local properties of the overall hybrid

topology. A more easily implemented special case (e.g., the example in Figure 4.9) is to

further restrict the directed network FD to be a forest, or a collection of disconnected

polytrees, and form the undirected network FU by choosing exactly one leader from

each component polytree.

� 4.5 Examples and Experiments

This section presents experiments with the offline message-passing algorithm for the

undirected and hybrid architectures analyzed above. Throughout, the local measure-

ment, channel and cost models are the same as those employed in the experiments

of Chapter 3. Our primary purposes are threefold: firstly, we seek to compare the

achievable detection performance when imposing single-iteration undirected constraints

against that when imposing single-sweep directed constraints; secondly, we verify that

our offline message-passing algorithms can capture not just explicit communication costs
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1 2 n-1

n

· · ·
1 2 n· · ·

(a) Parallel (or Fusion) Topology (b) Series (or Tandem) Topology

Figure 4.10. The two most commonly studied online decision architectures in the decentralized

detection literature. The experiments in Subsection 4.5.1 compare each of them to the single-iteration

decision architecture implied by its undirected counterpart, holding all other models (i.e., the priors,

likelihoods, channels, and costs) equal.

(as expressed in the penalty function Jc) but also implicit, or informational, costs for

networks in which link erasures are not necessarily independent (as in the interference

channel model of Example 3.2); and thirdly, we seek to quantify the gain in performance

achieved by allowing hybrid architectures. Altogether, our architectural comparisons

suggest the severity of performance differences depend heavily on other aspects of the

problem, especially the degree of correlation between neighboring state processes and

what subset of all nodes are in the gateway (i.e., what subset of nodes are responsible

for producing local state-related decisions).

� 4.5.1 Architectural Comparisons in Parallel & Series Topologies

In the decentralized detection literature, the two most commonly studied (directed)

network topologies are the parallel (or fusion) topology and the series (or tandem)

topology, both depicted in Figure 4.10. Many questions have been asked about how

these two architectures compare when the global state process X is binary and the

team objective is for node n to make the minimum-error-probability decision (and all

finite-rate communication links are both reliable and cost-free). For example, in the

case of just two nodes (technically n = 3 in Figure 4.10(a), but where the “fusion”

node 3 receives no measurement of its own), the series topology is always better, as

its admissible subset of strategies subsumes that of the parallel topology [76]. For a

large number of (homogeneous) sensors, it is known that the parallel topology is always

better, in the sense of an error exponent tending to zero as n → ∞, while in the

series topology this same error exponent is always bounded away from zero [75, 105].

Interestingly, the prediction (other than empirically e.g., [37]) of the largest number of

sensors for which the series topology is still better than the parallel topology remains

an open problem.
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(a) Low State Correlation (b) Medium State Correlation (c) High State Correlation

Figure 4.11. Optimized node-error-rate performance in the parallel topology, under both directed and

undirected network constraints, as a function of the number of nodes and for different degrees of state

correlation. Each point is the node-error-rate achieved by the offline message-passing algorithm scaled

by the node-error-rate of the myopic strategy. The undirected architecture is consistently favorable over

the directed architecture; moreover, the (scaled) penalty of the undirected architecture is monotonically

non-increasing as the number of nodes increases, which is untrue for the directed architecture.

The experiments in this subsection use our offline message-passing algorithms to

(empirically) compare each directed architecture in Figure 4.10 with its undirected

counterpart, assuming (i) that the state process X is a spatially-distributed random

vector defined on a graphical model and (ii) the team objective is to minimize the

expected number of nodes in error (and all nodes are in the gateway). In particular,

we assume the same local models as in Subsection 3.4.1, fixing λ = 0 and q = 0

to represent cost-free communications over reliable (ternary-alphabet) links. We also

assume a global prior p(x) as defined in Subsection 3.4.2, parameterizing the state

correlation by a common edge weight w ∈ (0, 1), where in all cases the probability graph

G is identical to the undirected counterpart of network topology F . The point of these

experiments is primarily to demonstrate that the message-passing algorithms perform

as intuition would suggest: a secondary objective is to contrast the architectural issues

for our model, namely n sensors performing n binary hypothesis tests with minimum

sum-error rate, with the model of [75, 76, 105], namely n sensors performing a global

binary hypothesis test with minimum error rate.

Figure 4.11 considers the parallel network topology of Figure 4.10(a) and compares

the performance of the strategies obtained via our offline message-passing algorithms

under the directed and undirected architectures. We see that the undirected architec-

ture performs favorably relative to the directed architecture in all examples, with the

largest difference being in the case of high state correlation and most sensors. This is

easily explained by recognizing that node n receives comparable non-local information
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in either type of architecture, but all other nodes receive non-local information only

in the case of an undirected architecture. Alternatively, in the parallel topology, any

directed strategy can always be viewed as a special case of an undirected strategy e.g.,

force node n to always sends the “0” symbol to nodes 1 to n−1. It is also worth noting

that the (scaled) penalty of the undirected architecture is monotonically non-increasing

as n increases, which we see is not necessarily true for the directed architecture. How-

ever, this monotonicity is observed for a parallel directed topology in [105]—in our

model, adding a node provides a new measurement but also leads to more uncertainty

in the global decision process, whereas in [105] adding a node simply provides a new

measurement.

Figure 4.12 shows the analogous experimental results for the series topology of Fig-

ure 4.10(b). Note that with just two nodes, there is no distinction between the parallel

and series topology and, as we expect from our discussion of Figure 4.11, the undi-

rected architecture is always favorable. As the number of nodes in the series topology

increases, however, an undirected architecture remains favorable only if the states are

weakly correlated: in this case, the mixing time of the hidden process is comparable

to the single-iteration reach of the undirected architecture, so the sequential yet uni-

directional communication permitted by the directed architecture is of less value than

the bidirectional communication permitted by the undirected architecture. However, as

state correlation increases, the directed architecture permits well-informed decisions at

the downstream sensors, and leads to favorable performance as the number of sensors

grows. Not too surprisingly, the higher the state correlation, the fewer sensors are re-

quired before the directed architecture becomes favorable. The tandem model analyzed

in [75] corresponds to ours in the case of extreme state correlation (i.e., edge-weight of

w = 1), for which a directed architecture could well be favorable for every n > 2.

� 4.5.2 Alternative Network Topologies

Recall from Chapter 2 that, given prior probabilities p(x) defined by a tree structured

graphical model, optimal centralized processing (i.e., computing posterior marginals at

all nodes via belief propagation) requires communication only along the edges in the

probability graph G. For graphical models with cycles, while the belief propagation

algorithm (assuming convergence) often provides good approximations to the posterior

marginals, in the absence of convergence the approximation is poor, often performing

worse than even the myopic solution. An intuitive idea for improvement is to allow mes-

sage exchanges between non-neighboring nodes in the probability graph, which raises
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(a) Low state correlation: undirected architecture favorable for all n ≤ 100
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(b) Medium state correlation: undirected architecture favorable for n ≤ 25
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(c) High state correlation: undirected architecture favorable for n ≤ 7

Figure 4.12. Optimized node-error-rate performance in the series topology, under both directed and

undirected network constraints, as a function of the number of nodes and for different degrees of state

correlation. In contrast to the results in Figure 4.11, whether the directed or undirected architecture is

favorable depends upon both the number of nodes and the degree of state correlation.

a number of new questions: for example, which pairs of non-adjacent nodes do we

choose, and how should these messages be both generated by the transmitting node

and interpreted by the receiving node?

The results in Figure 4.13 summarize our experiments that consider the prospect of

non-identical probability and communication graphs in simple “loopy” graphical mod-
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(a) Comparison of Two Network Topologies in a 3-by-3 Nearest-Neighbor Grid Model
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(b) Comparison of Two Network Topologies in a 5-Node Single-Cycle Model
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(c) Comparison of Two Network Topologies in a 4-Node Triangulated Model

Figure 4.13. Performance comparison of identical and alternative undirected network topologies, all

other things equal, for prior probabilities p(x) defined by different “loopy” graphical models. Note

that, in all three of the graphical models considered, the alternative network has the same number of

edges as the identical network, and thus online communication overhead is also the same. Altogether,

the results suggest that identical probability and communication graphs are typically preferable in our

solution, but not always as demonstrated by (c) for “repulsive” edges (i.e. for edge weights w < 0.5).
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(a) Full Gateway (b) Half Gateway (c) Small Gateway

Figure 4.14. Three different gateways, indicated by the thick-lined markers, assumed in our empirical

comparisons between an undirected architecture (with topology shown here) and a directed architecture

(with topology shown in Figure 3.6(b)) for the twelve-node model first analyzed in Subsection 3.4.2.

els, focusing exclusively on designing the message-passing rules subject to the single-

iteration undirected architecture. While not addressing the above questions in the

context of belief propagation algorithms per se, given our solution constrains to one

iteration of online communication and relies on an offline optimization step, the results

do suggest the existence of models for which it is beneficial to allow non-identical graph

structures. Specifically, in the 4-node triangulated model in Figure 4.13(c), allowing a

communication graph that differs from the probability graph leads to improved global

detection performance over that with identical graphs. Interestingly, this phenomenon

is observed only for edge weights w leading to a so-called “frustrated” model, a case in

which the belief propagation approximation is known to have difficulty. However, this

phenomenon is not observed in the other loopy models we considered, suggesting that

whether there is benefit to non-identical graph structures is not only a matter of the

graphical model having cycles.

� 4.5.3 A Small Illustrative Network: Revisited

In this subsection, we revisit the example considered in Subsection 3.4.2 and generate

similar performance curves for the case of undirected network constraints. Throughout,

the undirected topology (see Figure 4.14) is taken to be identical to the (loopy) graphical

structure of the probabilistic model for X, with edge weight parameter fixed at w =

0.9 (i.e., neighboring binary states are positively correlated) and measurement noise

parameter fixed at r = 1. We seek to compare the achieved performance to that of

the (polytree) directed network already considered in Subsection 3.4.2. We draw this
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(a) Undirected Network Topology (b) Directed Network Topology

Figure 4.15. Optimized tradeoff curves and tables for the full-gateway model discussed in Subsec-

tion 4.5.3 with parameter values (w, r) = (0.9, 1) and q ∈ {0, 0.3, 0.6}, comparing results for (a) the

undirected topology in Figure 4.14 and (b) the directed topology already analyzed in Subsection 3.4.2.

Each curve is obtained by sampling λ in increments of 10−4, starting with λ = 0, and declaring con-

vergence in iteration k when J(γk−1) − J(γk) < 10−3. Also shown is a Monte-Carlo estimate (plus

or minus one standard deviation) of the centralized-optimal detection penalty Jd(γ̄
∗), computed using

1000 samples from p(x, y). The second row of figures uses the same data as the first, normalizing the

penalties to better compare between the different topologies.

comparison for three different choices of gateway nodes, including the full gateway

we assumed in Subsection 3.4.2, as well as a half-gateway consisting only of nodes

{4, 5, 10, 11, 12} and a small gateway consisting only of nodes {10, 11, 12} as indicated

in Figure 4.14.

Figures 4.15–4.17 display the tradeoffs between node-error-rate Jd and link-use-rate

Jc achieved by the message-passing algorithms for the different network topologies and

different gateways. In all cases, the same qualitative characteristics discussed in Sub-

section 3.4.2 for the directed topology are seen to carry over to the undirected topology.
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(a) Undirected Network Topology (b) Directed Network Topology

Figure 4.16. Analogous performance comparisons as presented in Figure 4.15, but assuming the half-

gateway model in Figure 4.14. The performance curves turn out to be comparable on the absolute scale,

implying a smaller normalized link-use-rate in the undirected topology, having 15 more unit-rate links

than the directed topology. This stems from how, in the undirected architecture, the gateway nodes

become “receive-only” nodes, learning offline that none of their neighbors benefit from whatever online

information they could actively transmit. Similarly, the links between communication-only nodes 1 &

2 and 7 & 8, or the links that are absent in the directed architecture, also remain unused.

However, there are noteworthy quantitative differences. Firstly, for the full gateway, we

see from Figure 4.15 that up to 55% of the optimal node-error-rate performance lost by

the purely myopic strategy can be recovered in the undirected network, compared to

40% in the directed network. Of course, more link usage is inherent to the undirected

topology (i.e., up to two bits per bidirectional edge, or 26 total bits per estimate, versus

up to 11 total bits per estimate in the directed topology), but we see that the normal-

ized link-use-rates are comparable. Figure 4.16 and Figure 4.17 illustrate the extent to

which the undirected architecture results in an under-utilization of online communica-
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(a) Undirected Network Topology (b) Directed Network Topology

Figure 4.17. Analogous performance comparisons as presented in Figure 4.15, but assuming the

small-gateway model in Figure 4.14. The single-iteration constraint of the undirected architecture is

especially limiting for the small gateway, resulting in the extremely low link-use-rate and, ultimately,

inferior detection performance relative to the directed architecture. Specifically, nodes 1 to 5 learn

offline that they cannot contribute information to the gateway decisions and will thus sleep even in the

special case of cost-free online communication (i.e., when λ approaches zero). Similarly, nodes 6 to 9

learn to selectively transmit only on the subset of links connected to the gateway nodes.

tion resources (and, ultimately, unsatisfactory detection performance in comparison to

that achievable by the directed architecture) as fewer nodes are part of the gateway.

These comparative trends in link usage are similarly reflected in the listed values of

λ∗ (i.e., our measure of the fair per-unit price of online communication), which for the

full gateway are much larger in the undirected topology than in the directed topology

relative to what is seen for the other two gateways. It is also seen that the listed values

of k∗ (i.e., our measure of the communication overhead for offline organization) for the

two different topologies are comparable across all gateway scenarios.

These examples underscore that whether a directed and undirected architecture is
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preferable depends strongly on the selected gateway nodes. It is also a simplest illustra-

tion of how the offline message-passing algorithms naturally capture the informational

value of online communication: specifically, in the single-iteration undirected architec-

ture, the algorithm always find a strategy where only the links into a gateway node get

exercised, despite having been initialized otherwise, even in the absence of explicit com-

munication penalty (i.e., when λ is zero); in the single-sweep directed architecture, as

λ increases, nodes furthest from gateway nodes are the first to cease their active trans-

missions. A more compelling example of how the offline message-passing algorithm

captures the informational value of online communication is considered next.

� 4.5.4 Examples with Broadcast Communication and Interference

All examples considered thus far have used the peer-to-peer communication model with

independent erasure channels as described in Example 3.1. This subsection focuses on

examples that use the broadcast communication model with interference channels as

described in Example 3.2, where nodes with two or more incoming links must contend

with dependent erasures (i.e., whether any one symbol is erased depends on the value

of the other symbol). That is, even if parameter q takes the same value at every node,

the effective per-link erasure probabilities will be different, as they will depend on the

network topology (i.e., in particular, on the degree of each node). Our results show

that, qualitatively, the key tradeoffs and characteristics we’ve seen with independent

erasure channels carry over to the case of interference channels; quantitatively, however,

the value of online communication diminishes more rapidly as link reliability degrades

(i.e., empirically, the value of λ∗ decreases more rapidly as probability q increases).

The purpose of our first example is to illustrate how the strategies found by the

offline message-passing algorithm can capture rather subtle issues arising from inter-

ference channels. Consider the ten-node undirected detection network depicted in Fig-

ure 4.18, having identical probability and communication graphs and assuming all nodes

are in the gateway. The parameters of the local measurement models and (interference)

channel models continue to be the same across all nodes, fixed at values r = 1 and

q = 0.2, respectively. For the prior model, in contrast to all undirected graphical mod-

els considered thus far, we assign edge-dependent weights wi,j ∈ (0, 1) i.e., the edge

potentials defined in Subsection 3.4.2 are generalized to the form

ψi,j(xi, xj) =

{

wi,j , xi = xj

1 − wi,j , xi 6= xj

.

The actual values given to these edge weights are not relevant to this discussion; what
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(a) Prior Probabilities: Pairwise Correlations (b) Optimized Strategy: Transmission Rates

Figure 4.18. A ten-node undirected detection network with identical probability and communication

graphs, each node employing a selective broadcast scheme with interference parameter q = 0.2. The

undirected graphical model yields the pairwise correlation coefficients (zero being uncorrelated and unity

being always equal) shown in (a), where the bottom-most edge is associated to the weakest correlated

pair of hidden states. The per-node transmission rates of the optimized strategy (assuming r = 1 for

all nodes, all nodes are in the gateway and fixing λ to zero) are shown in (b), where the bottom-most

node ceases to transmit at all. It has learned that, within the global detection objective, the implicit

communication costs due to the interference channels outweighs the value of the information it can

provide in support of its neighbor’s final state-related decision.

is relevant is that they result in the pairwise correlation coefficients indicated in Fig-

ure 4.18(a). Specifically, notice that all adjacent state variables are positively correlated,

with the least correlated pair of states associated to the bottom-most edge.

Figure 4.18(b) indicates the per-node broadcast transmission rates of the optimized

strategy when λ = 0, in which case there are no explicit communication costs factored

into the optimization. Nonetheless, we see that the bottom-most node has elected to be

a “receive-only” node, though initialized otherwise before executing the offline message-

passing algorithm. This is clear evidence that the algorithm can capture the implicit,

or informational, costs resulting from the unreliable communication medium. That is,

the bottom-most node has learned that transmitting to its neighbor would do more

harm than good, interfering with the more informative transmissions coming from that

neighbor’s other neighbors. Recall that each node is initialized knowing nothing about

the network topology beyond its neighborhood, nor about the local models used by

nodes other than itself, so it is exclusively through the offline message-passing that the

bottom-most node is able to arrive at this conclusion. The transmission rates exercised

at other nodes follow a similar pattern, each node more likely to receive symbols from
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(a) Spatial Configuration (b) Undirected Graphical Model (c) Undirected Network Topology

Figure 4.19. A typical 100-node undirected detection network generated randomly for our experi-

ments: (a) the spatial configuration of all nodes in the unit-area square, (b) the undirected graph G
upon which the spatially-distributed state process X is defined and (c) the undirected network topology

F ⊂ G, assuming all nodes are in the gateway.

those neighbors with the stronger pairwise correlations in Figure 4.18(a).

We now repeat the set of experiments discussed in Subsection 3.4.3 for randomly-

generated 100-node detection networks, but considering undirected topologies and broad-

cast communication with interference (as opposed to the directed topologies and peer-

to-peer communication with erasures). Also in contrast to the experiments in Sub-

section 3.4.3, here the gateway includes all 100 nodes. Figure 4.19 illustrates a typical

output of our model generation procedure. The vector state process X is defined by the

same directed graphical model described in Subsection 3.4.3, but we use the equivalent

undirected graphical representation (as described in Chapter 2) to derive the undirected

network topology F . Specifically, the topology F is an arbitrary connected spanning

subgraph of G in which each node is allowed to have at most five neighbors. Recall

that local computation at each node scales exponentially in neighborhood size, so this

restriction ensures that our randomly-generated model remains tractable.

Figure 4.20 depicts the average-case performance achieved by the parallel message-

passing algorithm over 50 randomly-generated instances of an undirected detection

network. Each plot consists of three clusters of 50 points, corresponding to the optimized

performance for each model instance assuming three different values of λ. As we saw in

Subsection 3.4.3 for directed topologies, we see here that our parallel message-passing

algorithm, via parameter λ, consistently decreases global detection penalty (from that

of the myopic strategy) as global communication penalty increases. Also shown for each

optimized cluster is k∗, or the average number of iterations to convergence: interestingly,

this price of our offline coordination appears to be much more consistent across all
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(a) Nominal Environment (b) Zero Channel Noise (c) Low Measurement Noise

Figure 4.20. Performance of four different strategies for 50 randomly generated models of the type

described in Subsection 4.5.4 given (a) a nominal environment, (b) zero channel noise and (c) low mea-

surement noise. In each plot, the dotted horizontal line is the detection penalty achieved by the myopic

strategy; the three clusters below this dotted line shows the performance of the optimized strategies for

three different values of λ. Each ellipse is the least-squares fit to the 50 data points associated to each

candidate strategy. In all cases, we declared convergence in iteration k when J(γk−1) − J(γk) < 10−3,

and each table lists the average number of offline iterations to convergence. See Subsection 4.5.4 for

more discussion of these results.

scenarios than was the case for directed topologies.

� 4.5.5 Benefits of Hybrid Network Constraints

In this subsection, we investigate the benefits of hybrid network constraints. This is done

by comparing performance with and without the presence of the leader network, holding

all other aspects of the problem constant. We will examine a randomly-generated 25-

node hybrid network (see Figure 4.21), focusing on the two canonical cases discussed in

Section 4.4, namely the hierarchical fusion (dissemination) architecture with the leader

nodes consisting of all childless (parentless) nodes in the directed network FD. Our

empirical results show performance benefits of using the (undirected) leader network

FU in both of these architectures, but with the greatest benefit in the hierarchical fusion

architecture when the gateway nodes and leader nodes are one in the same.

In both sets of experiments, we assume a homogeneous network with measure-

ment model parameter r = 1 and a selective broadcast communication scheme (see

Example 3.3), obtaining results for three different values of interference probability
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(a) Random Spatial Configuration (b) Fusion Architecture (c) Dissemination Architecture

Figure 4.21. A (a) randomly generated 25-node spatial configuration, along with an embedded

spanning tree (solid edges) and a randomly chosen subset of leader nodes (square markers) to initialize

the construction of the hybrid forest topology, and the resulting hierarchical decision architectures used

in the experiments described in Subsection 4.5.5. In both (b) and (c), the larger (smaller) markers denote

the leader (non-leader) nodes and the filled (unfilled) markers denote the gateway (communication-only)

nodes. In (b) the gateway and leader nodes are one in the same, while in (c) all of the nodes are in the

gateway. Also note that the leader network includes edges between non-adjacent nodes in (a), while

the non-leader network excludes edges in (a) as it seeks to ensure that Assumption 4.8 holds.

q ∈ {0.0, 0.2, 0.4}. For simplicity with respect to initializing each node with the requisite

neighborhood priors, we assume the global state process X is a binary random variable

(i.e., the trivial graphical model with edge weights w = 1, meaning X1 = X2 = · · ·Xn

with probability one) and equally-likely to takes its two possible values. That is,

p(xi, xpa(i)) =

{

0.5 , if xi = xj for every j ∈ pa(i)

0 , otherwise

for every node i in FD, and the analogous expression for p(xi, xne(i)) if node i is also

in the leader network FU .

Figure 4.22 displays the optimized tradeoff curves for the hierarchical fusion archi-

tecture. Notice that our random construction of the hybrid network has left one leader

node without any neighboring non-leaders. Nonetheless, with the leader network in

place, up to roughly 80% of the detection performance lost by the myopic strategy (rel-

ative to the optimal centralized strategy) can be recovered; without the leader network,

only up to roughly 40% of this performance gap is recovered. Of course, the leader net-

work has a maximum of 35 active transmissions per global estimate (one transmission

for each of the 19 directed links and two transmissions for each of the 8 undirected links)

and, in turn, operates at higher total link use-rate (yet a comparable normalized link-

use-rate). These different baseline link-use-rates brings any direct comparison of λ∗, or

the fair per-unit price of online communication, between the two cases into question.
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(a) Without Leader Network (b) With Leader Network

Figure 4.22. Comparison of the optimized tradeoff curves for the hierarchical fusion architecture

in Figure 4.21(b) with and without the (undirected) leader network: in each case, we assume the

interference channel model with q = 0 (solid line), 0.2 (dashed line) and 0.4 (dash-dotted line). Each

curve is obtained by sampling λ in increments of 10−4, starting with λ = 0, and declaring convergence

in iteration k when J(γk−1)− J(γk) < 10−3. Also shown is a Monte-Carlo estimate (plus or minus one

standard deviation) of the centralized-optimal detection penalty Jd(γ̄
∗), computed using 1000 samples

from p(x, y). The tables contain the two key quantities λ∗ and k∗ we record while computing each curve,

respectively our empirical measures of the fair per-unit price of online communication resource and the

resources consumed for coordination via the offline message-passing algorithm. See Subsection 4.5.5 for

more discussion of these results.

As a zeroth-order approximation, we multiply the value of λ∗ with the leader network

in place by the fraction 35
19 , converting it to a per-unit price with the same number of

links without the leader network in place. The resulting values also appear in the table

of Figure 4.22b, and are consistently lower than the values of λ∗ found without the

leader network. In other words, all non-leader communication is significantly devalued

(i.e., their links get used less frequently in the optimized strategy) upon introducing

the leader network. This benefit has a price with respect to offline overhead, as k∗ is
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Figure 4.23. Results for the same experiments as those associated with Figure 4.22, except considering

the hierarchical dissemination architecture in Figure 4.21(c).

substantially larger with a leader network than without.

Figure 4.23 displays the optimized tradeoff curves for the hierarchical dissemination

architecture. With the leader network in place, up to roughly 50% of the detection per-

formance lost by the myopic strategy (relative to the optimal centralized strategy) can

be recovered; without the leader network, only up to roughly 20% of this performance

gap is recovered. In contrast to the hierarchical fusion architecture, we observe that

λ∗ has the same values whether or not the leader network is present. This reflects the

fact that, as λ increases towards the critical value λ∗, the optimized hybrid network

will always completely shut down the leader network before it completely shuts down

the non-leader network. We again see an increased offline overhead as measured by k∗

with the leader network in place than without, though this difference is seen to be less

dramatic than was the case for the fusion architecture in Figure 4.22.
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Chapter 5

On Multi-Stage Communication

Architectures

IN the two preceding chapters, the principal focus was on decision architectures in

which there is only a single stage of online communication. In the one-stage directed

architecture of Chapter 3, every node receives information based only on its ancestors’

measurements, and hence nodes at the beginning of the forward partial order face the

greatest risk of making poor local state-related decisions; in the one-stage undirected

architecture of Chapter 4, every node receives information based only on immediate

neighbors’ measurements, and hence nodes with smallest degree face the greatest risk

of making poor local state-related decisions. While the hybrid architectures of Chap-

ter 4 allow for “long-distance” information sharing between otherwise disconnected

nodes, the underlying non-leader network continues to operate as a one-sweep directed

architecture and, as such, nodes early in its forward partial order (and not part of the

leader network) inherit a similar risk of making poor local state-related decisions.

� 5.1 Chapter Overview

Looking towards applications in which all nodes are to make well-informed local state-

related decisions, this chapter aims to generalize both the directed and undirected ar-

chitectures of the preceding chapters to allow for multiple online communication stages.

Section 5.2 formulates these multi-stage extensions mathematically, adopting message

schedules analogous to those discussed in Chapter 2 for (optimal) belief propagation

algorithms on tree-structured graphical models. Our model however assumes, as in

our single-stage formulations, that the online network is constrained to low-rate or un-

reliable links and the associated communication graph need not be equivalent to the

probability graph. Our approximation is also more goal-directed, in the sense that (on-
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line) belief propagation seeks to map any particular global measurement Y = y to the

posterior marginals p(xi|y) for all i, while any candidate strategy in our formulation

seeks to map Y = y directly to the assigned values x̂i for all i. Recall from Example 2.7

that the former is a sufficient statistic for the latter when costs are additive across the

nodes e.g., when the objective is to minimize the expected number of nodes in error.

Section 5.3 applies the team-theoretic analysis of the previous chapters to these

multi-stage formulations, exposing a number of new structural properties that an op-

timal decentralized strategy should satisfy. Specifically, we suggest how each local

processing rule can make explicit use of memory, enabling each node to successively

pare down its local likelihood in a most informative yet resourceful way as a function of

all previously observed symbols (i.e., all symbols the node has both received and trans-

mitted in previous stages). Unfortunately, even under best-case model assumptions

(i.e., the analogous assumptions exploited in earlier chapters), the required memory

(and, in turn, the offline solution complexity) grows exponentially with the number

of communication stages. Interestingly, online computation continues to grow linearly

with the number of nodes (given a sparsely-connected communication graph), and the

expanding memory at every node essentially affords an increasingly-accurate approx-

imation to the sufficient statistic (e.g., the node’s posterior marginal) for making the

local state-related decision.

The exposed barriers to tractably computing team-optimal decision strategies in

multi-stage communication architectures motivate introducing additional approxima-

tions. Section 5.4 describes one such approximate offline algorithm, leveraging the

efficient message-passing algorithms derived in previous chapters. The nature of this

approximation makes it especially suitable to examine the extent to which performance

improves when moving from one-stage to two-stage architectures, then from two-stage

to three-stage architectures and so on. A number of small-scale experiments with the

approximation are presented in Section 5.5, indicating that near-optimal decision per-

formance is achievable in a number of stages comparable to the diameter of the network.

These experiments also include using our multi-stage approximation to obtain estimates

of all nodes’ posterior marginals, making contact with ongoing research related to belief

propagation (BP) [18, 47, 53, 66, 70, 77, 90, 116] and providing the first inroads into

the issue of BP message quantization in the low-rate regime. Nevertheless, this chapter

leaves many important theoretical and algorithmic questions about these multi-stage

architectures unanswered, which will be discussed in Chapter 6 as opportunities for

future research.
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� 5.2 Online Processing Models

This section generalizes the decentralized n-sensor detection problem expressed by the

multi-objective optimization problem in (3.2) to the case of T ≥ 2 communication

stages. The joint distribution p(x, y) for length-n random vectors X and Y , the given

network topology F and the detection-related cost function c(x̂, x) are exactly as de-

scribed in the preceding chapters. For every communication stage t ≤ T , we let ut
i

denote the symbols (if any) transmitted by node i, taking values in a finite set U t
i . The

actual cardinality of each set U t
i will, exactly as was described for the single-stage archi-

tectures in the previous chapters, reflect the neighbors of node i in network topology F
as well as the presumed transmission scheme (e.g., selective versus non-selective, peer-

to-peer versus broadcast) local to node i. In any case, upon generalizing ui for each

node i to take values in the finite set Ui = U1
i × · · · × UT

i , the communication-related

cost function c(u, x) may also be defined exactly as in previous chapters.

It is entirely through the admissible subset of strategies Γ ⊂ Γ̄ that we will capture

differences in multi-stage processing assumptions associated with the different types of

network constraints. Given network topology F is undirected, the multi-stage architec-

ture consists of T parallel communication stages, every node in each stage exchanging

symbols with only its immediate neighbors. Given network topology F is directed,

the multi-stage architecture consists of repeated forward-backward sweeps, each odd-

numbered stage t = 1, 3, . . . communicating in the forward partial order and each even-

numbered stage t = 2, 4, . . . communicating in the backward partial order. In any case,

all local state-related decisions x̂ = (x̂1, . . . , x̂n) are made upon completion of the T th

communication stage. The following subsections more carefully describe the function

space Γ of all multi-stage processing strategies for each type of network.

We will see that the two types of network constraints impose a common structure on

the probability distribution p(u, x̂|y; γ) induced by any admissible multi-stage strategy

γ ∈ Γ, which ultimately determines the associated penalty J(γ) given the distribution

p(x, y) and costs c(x̂, x) + λc(u, x). To treat these structures in a unified framework,

the following subsections will introduce a number of notational conventions along the

way. To illustrate their nature here, consider the finite set Z = Z1 × · · · × Zn, each

component set Zi representing all symbols received by node i. We let zt
i , taking values

in a finite set Zt
i , represent the symbols received by node i between making decision

ut−1
i and its stage-t decision. Note that there are always a total of T + 1 stages, but

that only the first T such stages involve communication-related decisions. Nevertheless,

it is convenient to define Zi = Z1
i × Z2

i × · · · × ZT+1
i because the specific T stages in
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which the received symbols are nonempty will depend upon the type of network.

� 5.2.1 Undirected Network Topologies

Assume network topology F is an n-node undirected graph. The multi-stage communi-

cation architecture is taken to be repeated parallel (or synchronous) symbol exchanges

between each node i and its immediate neighbors ne(i) in F . In the first stage, every

node i generates its decision u1
i as a function of only the local measurement yi. In each

subsequent communication stage t = 2, 3, . . . , T , we let zt
i denote the symbols received

by node i, taking values in a finite set Zt
i . Similarly, we let zT+1

i ∈ ZT+1
i denote the

symbols received by node i in the final state-related decision stage. It follows that the

collection of received symbols z takes its values in a finite set Z = Z1 × · · · × Zn, each

such Zi = Z2
i × · · · × ZT+1

i . As is the case for each set U t
i , the actual cardinality of

each set Zt
i is exactly as was described for the single-stage architecture in previous

chapters, reflecting the local channel model (e.g., erasure versus interference) of node

i. Namely, for each t = 2, 3, . . . , T + 1, the received information Zt
i as a function of its

neighbors preceding transmissions ut−1
ne(i) = {ut−1

j ; j ∈ ne(i)} is defined by a conditional

distribution p(zt
i |x, y, ut−1

ne(i)).

A key opportunity associated with multi-stage processing is the use of online mem-

ory, which local to each node can include (at most) the received and transmitted symbols

in all preceding stages. We denote by Mt
i the set of all stage-t communication rules

local to node i, each of the form

µt
i : Yi → U t

i

when t = 1 and, otherwise, each of the form

µt
i : Yi × U1

i ×Z2
i × · · · × U t−1

i ×Zt
i → U t

i .

Similarly, we denote by ∆i the set of all state-related decision rules local to node i, each

of the form

δi : Yi × U1
i ×Z2

i × · · · × UT
i ×ZT+1

i → Xi.

� 5.2.2 Directed Network Topologies

Assume network topology F is a directed acyclic graph, where we denote the parents

and children of each node i by pa(i) and ch(i), respectively. The multi-stage communi-

cation architecture is taken to be repeated forward-backward sweeps on F , a forward

sweep for each odd-numbered stage and a backward sweep for each even-numbered

stage. Specifically, we follow the convention, illustrated in Figure 5.1, in which each
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(a) Directed Network Topology (b) Odd-Numbered Stage (c) Even-Numbered Stage

Figure 5.1. Illustration of the multi-stage communication architecture given (a) a particular directed

acyclic network topology, alternating between (b) forward sweeps and (c) reverse sweeps with respect to

the partial order (labeled by the circled numbers) implied by the given network. In each odd-numbered

(even-numbered) stage t, our convention is to associate the processing rules of all childless (parentless)

nodes with the subsequent even-numbered (odd-numbered) stage, as indicated by the dashed nodes.

odd-numbered (even-numbered) communication stage begins with the local processing

rules at parentless (childless) nodes in F . As such, if a node is parentless, then a

communication rule exists only for odd-numbered stages t = 1, 3, . . . , 2
⌊

T−1
2

⌋
+ 1; if

a node is childless, then a communication rule exists only for even-numbered stages

t = 2, 4, . . . , 2
⌈

T−1
2

⌉
; for every other node, a communication rule exists for every stage

t = 1, 2, . . . , T .

Essentially the same notation used in the preceding subsection applies to the case

of a directed network topology F . There will, however, be different sets U t
i and Zt

i

in accordance with the per-stage unidirectional communications. In particular, the

pivoting roles of parentless/childless nodes between consecutive stages implies that, for

each parentless (childless) node i, the sets U t
i and Zt

i are empty for even-numbered (odd-

numbered) stages t ≤ T . Also in contrast to the multi-stage undirected architecture, the

set Z1
i is nonempty for every node i that is neither parentless nor childless, while ZT+1

i is

empty for every node i. Moreover, for every (i, t) pair such that the set Zt
i is nonempty,

we describe the associated channel model by conditional distribution p(zt
i |x, y, upa(i,t)),

defining the input symbols upa(i,t) by

upa(i,t) =







ut
pa(i) , t odd and node i is neither parentless nor childless

ut−1
pa(i) , t even and node i is childless

ut
ch(i) , t even and node i is neither parentless nor childless

ut−1
ch(i) , t odd and node i is parentless

.
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Similarly, the conventions of Figure 5.1 imply that, for each parentless (childless)

node i, the sets Mt
i are empty for all even-numbered (odd-numbered) stages t ≤ T .

These particular nodes act as pivots within the alternating forward-backward sweeps,

parentless nodes initiating every odd-numbered forward sweep and childless nodes ini-

tiating every even-numbered backward sweep. Every other node, having both at least

one parent and at least one child, makes a decision in every stage. More precisely, for

each parentless node i and odd-numbered stage t ≤ T , the set Mt
i consists of all rules

µt
i : Yi × U1

i ×Z3
i × U3

i ×Z5
i · · · × U t−2

i ×Zt
i → U t

i ,

while the set ∆i consists of all rules

δi : Yi × U1
i ×Z3

i × U3
i ×Z5

i × · · · × UT−2
i ×ZT

i × UT
i → Xi

when T is odd or

δi : Yi × U1
i ×Z3

i × U3
i ×Z5

i × · · · × UT−3
i ×ZT−1

i × UT−1
i ×ZT

i → Xi

when T is even. For each childless node i and even-numbered stage t ≤ T , the set Mt
i

consist of all rules

µt
i : Yi × Z2

i × U2
i × Z4

i × · · · × U t−2
i ×Zt

i → U t
i ,

while the set ∆i consists of all rules

δi : Yi ×Z2
i × U2

i ×Z4
i × U4

i × · · · × ZT−1
i × UT−1

i ×ZT
i → Xi

when T is odd or

δi : Yi ×Z2
i × U2

i ×Z4
i × U4

i × · · · × ZT
i × UT

i → Xi

when T is even. Finally, for every other node i, the set Mt
i for every stage t consists of

all rules

µt
i : Yi ×Z1

i × U1
i ×Z2

i · · · × U t−1
i ×Zt

i → U t
i ,

while the set ∆i consists of all rules

δi : Yi ×Z1
i × U1

i ×Z2
i · · · × UT−1

i ×ZT
i × UT

i → Xi.
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� 5.2.3 Multi-Stage Probabilistic Structure

We first introduce additional notation and conventions to express the network depen-

dence of a multi-stage architecture, as detailed in the preceding two subsections, in a

common mathematical framework. For every node-stage pair (i, t) such that set Zt
i is

nonempty, denote the input symbols to the associated channel model by

utr(i,t) =

{

ut−1
ne(i) , network topology F is undirected

upa(i,t) , network topology F is directed
.

Furthermore, for every node-stage pair such that set Zt
i is in fact empty, we will model

the associated lack of received information as receiving an informationless constant e.g.,

p(zt
i |x, y, utr(i,t)) =

{

1 , zt
i = 0

0 , otherwise
,

in which case the product
T+1∏

t=1

p(zt
i |x, y, utr(i,t))

is, no matter the type of network, equivalent to the product of all single-stage channel

models local to node i.

Assumption 5.1 (Memoryless Local Channels). Local to each node i, every single-

stage channel use is independent, conditioned on X and Y , of all channel uses in the

preceding stages i.e., for each i, we have

p(zi|x, y, utr(i)) =
T+1∏

t=1

p(zt
i |x, y, utr(i,t)),

where utr(i) = {utr(i,t); t = 1, 2, . . . , T + 1} denotes the collection of symbols transmitted

to node i over all communication stages.

It is convenient to view the expanding online memory at each node i as the sequential

realization of a (local) information vector, defined over successive stages t = 1, . . . , T+1

by the recursion

It
i =

{

∅ , t = 1

(It−1
i , zt−1

i , ut−1
i ) , t = 2, . . . T + 1

.

Here, we take for granted the network-dependent bookkeeping associated with whether

sets Zt
i and U t

i are in fact empty. We may thus, for each node i, concisely write
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U t
i = µt

i(Yi, I
t
i , Z

t
i ) to denote its tth communication decision and X̂i = δi(Yi, I

T+1
i , ZT+1

i )

to denote its final detection decision. By construction, fixing a stage-t communication

rule µt
i ∈ Mt

i or final detection rule δi ∈ ∆i is equivalent to specifying a distribution

p(ut
i|yi, I

t
i , z

t
i ;µ

t
i) =

{

1 , if ut
i = µt

i(yi, I
t
i , z

t
i)

0 , otherwise

or

p(x̂i|yi, I
T+1
i , zT+1

i ; δi) =

{

1 , if x̂i = δi(yi, I
T+1
i , zT+1

i )

0 , otherwise
,

respectively.

In either type of network topology, define the set of all admissible multi-stage rules

local to node i, each a particular sequence of single-stage rules γi = (µ1
i , . . . , µ

T
i , δi),

by the set Γi = M1
i × · · · × MT

i × ∆i. In turn, the set of all admissible multi-stage

strategies, each a particular collection γ = (γ1, . . . , γn) of multi-stage rules, is defined

by Γ = Γ1 × · · · × Γn. As was the case in the single-stage architectures studied in

preceding chapters, the network constraints inherent to any admissible strategy γ ∈ Γ

induces special probabilistic structure. More precisely, fixing a multi-stage rule γi ∈ Γi

is equivalent to specifying the distribution

p(ui, x̂i|yi, zi; γi) = p(x̂i|yi, I
T+1
i , zT+1

i ; δi)
T∏

t=1

p(ut
i|yi, I

t
i , z

t
i ;µ

t
i), (5.1)

which upon incorporating the multi-stage channel model local to node i yields

p(ui, x̂i|x, y, utr(i); γi) =
∑

zi∈Zi

p(zi|x, y, utr(i))p(ui, x̂i|yi, zi; γi). (5.2)

It follows that, for any candidate strategy γ ∈ Γ,

p(u, x̂|x; γ) =

∫

y∈Y
p(y|x)

n∏

i=1

p(ui, x̂i|x, y, utr(i); γi) dy (5.3)

and the strategy-dependent distribution p(u, x̂, x; γ) underlying (3.2) is simply its prod-

uct with p(x).

� 5.3 Team-Theoretic Analysis

This section analyzes the multi-stage problem formulation presented in Section 5.2,

starting from essentially the same team-theoretic approximations made in the preced-

ing chapters. Recognizing the apparent structural similarities between the strategy-

dependent distribution in (5.3) and that of the single-stage undirected architecture in
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(4.1), we impose similar simplifying assumptions as in previous chapters i.e., condi-

tional independence, separable cost and measurement/channel/cost locality. We are

able to obtain an analytical simplification for the optimal detection strategy δ∗ ∈
∆ = ∆1 × · · · × ∆n, showing each δ∗i lies in a finitely-parameterized subspace of

the function space ∆i. While this parameterization scales linearly in the number of

nodes n, it turns out to scale exponentially with the number of stages T . However,

we have been unable to analytically deduce the team-optimal communication strategy

µ∗ ∈ M = M1 × · · · × Mn, keeping open the theoretical question of whether it even

admits a finite parameterization. Turning to a more pragmatic approach, we offer a

conjecture about the form of µ∗ based on the known form of δ∗, providing the basis of

an approximate solution we describe in Section 5.4.

� 5.3.1 Necessary Optimality Conditions

As in previous chapters, we start with the conditional independence assumption, which

preserves the factorization over nodes i in (5.3) even after marginalizing over the pro-

cesses Y and Z.

Assumption 5.2 (Conditional Independence). For every node i,

p(yi, zi|x, y\i, z\i, u\i) = p(yi|x)p(zi|x, utr(i)).

Lemma 5.1 (Factored Global Representation). Let Assumption 5.2 hold. For every

multi-stage strategy γ ∈ Γ, the distribution in (5.3) specializes to

p(u, x̂|x; γ) =
n∏

i=1

p(ui, x̂i|x, utr(i); γi), (5.4)

where for every i

p(ui, x̂i|x, utr(i); γi) =
∑

zi∈Zi

p(zi|x, utr(i))

∫

yi∈Yi

p(yi|x)p(ui, x̂i|yi, zi; γi) dyi. (5.5)

Proof. With Assumption 5.2 in effect, we may substitute the identity

p(zi|x, y, utr(i)) = p(zi|x, utr(i))

into (5.2) and conclude that

p(ui, x̂i|x, y, utr(i); γi) =
∑

zi∈Zi

p(zi|x, utr(i))p(ui, x̂i|yi, zi; γi).
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It follows that we may substitute the identity

p(ui, x̂i|x, y, utr(i); γi) = p(ui, x̂i|x, yi, utr(i); γi)

for each i into (5.3). Because Assumption 5.2 also implies that p(y|x) =
∏

i p(yi|x), the

integration over Y can be carried out component-wise i.e.,

p(u, x̂, x; γ) = p(x)
n∏

i=1

∫

yi∈Yi

p(yi|x)p(ui, x̂i|x, yi, utr(i); γi) dyi.

The factorization with respect to nodes i = 1, . . . , n in Lemma 5.1 is a direct conse-

quence of Assumption 5.2 along with the constraints that every node may communicate

only with its immediate neighbors in the network. It may at first seem counter-intuitive,

in light of the causal multi-stage online processing model, that (5.4) does not also ex-

hibit an explicit factorization with respect to stages t = 1, . . . , T . The caveat is that

these successive decision stages collectively operate on the same measurement vector

Y = y. It is rather the side information local to each node i that grows over succes-

sive stages, providing the increasingly global context in which to reprocess the local

measurement Yi = yi. Nonetheless, the causal processing can be exploited to simplify

the (offline) local marginalization in (5.5) associated with fixing a local multi-stage rule

γi ∈ Γi. In particular, given Assumption 5.2 holds, each node i may firstly decompose

the integral over all of Yi into a finite collection of integrals over memory-dependent

sub-regions of Yi and secondly, given Assumption 5.1 also holds, evaluate the sum over

Zi in a recursive fashion.

The following lemmas formalize this structure in the (offline) local computation

at each node i, which will require yet more notation. What needs to expressed is a

sequential paring down of the measurement space by the successive communication

stages. Designing the stage-one rule µ1
i local to node i is essentially the same as that

of a single-stage architecture, i.e., we seek a specific partition of the local measurement

space Yi into |U1
i | decision regions, one such partition per value of z1

i . It follows that,

upon fixing the stage-one rule µ1
i , the realization of a specific value of stage-two memory

I2
i = (z1

i , u
1
i ) implies that local measurement yi must lie in the specific subset of Yi for

which u1
i = µ1

i (yi, z
1
i ). Designing the stage-two rule is similarly equated with selecting

a collection of size-|U2
i | partitions, but restricted to a different subset of Yi as a function

of the assumed value of memory I2
i and the fixed stage-one rule µ1

i . More generally,

let us:s′
i denote a subsequence of communication decisions taking values in the set Us

i ×
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Us+1
i × · · · × Us′

i . Similarly, us:s′

tr(i), z
s:s′
i or µs:s′

i denote such a sequence of channel

symbols or local communication rules, respectively. Consider a node i and assume

multi-stage rule γi = (µ1:T
i , δi) is fixed: for every stage t = 1, . . . , T , the set Yi(I

t+1
i ;µ1:t

i )

denotes the subset of Yi for which us
i = µs

i (yi, I
s
i , z

s
i ) in every stage s ≤ t. The subset

Yi(I
T+2
i ; γi) is analogously defined, including all T + 1 decision stages and the identity

IT+2
i = (IT+1

i , zT+1
i , x̂i). Recognizing that the memory It+1

i ⊃ It
i expands with each

additional stage, it follows that the subsets Yi(I
t+1
i ;µ1:t

i ) ⊂ Yi(I
t
i ;µ

1:t−1
i ) shrink with

each additional stage.

Lemma 5.2 (Factored Local Representation). Let Assumption 5.2 hold. For any fixed

multi-stage rule γi ∈ Γi local to node i, we have

p(ui, x̂i|x, zi; γi) = p(x̂i|x, IT+1
i , zT+1

i ; γi)

T∏

t=1

p(ut
i|x, It

i , z
t
i ;µ

1:t
i ) (5.6)

with

p(x̂i|x, IT+1
i , zT+1

i ; γi) =
P
[

Yi ∈ Yi(I
T+2
i ; γi)

∣
∣
∣X = x

]

P
[

Yi ∈ Yi(I
T+1
i ;µi)

∣
∣
∣X = x

]

and

p(ut
i|x, It

i , z
t
i ;µ

1:t
i ) =

P
[
Yi ∈ Yi(I

t+1
i ;µ1:t

i )
∣
∣X = x

]

P
[
Yi ∈ Yi(I

t
i ;µ

1:t−1
i )

∣
∣X = x

] , t = 1, 2, . . . , T.

Proof. Firstly, Assumption 5.2 implies that, no matter the fixed strategy γ, process Yi

and Zi are conditionally independent given X, which follows from

p(yi, zi|x; γ) =

∫

y\i

∑

z\i

∑

u\i

p(y\i, z\i, u\i|x; γ)p(yi, zi|x, y\i, z\i, u\i) dy\i

=
∑

utr(i)

p(utr(i)|x; γ)p(yi|x)p(zi|x, utr(i)) = p(yi|x)p(zi|x; γ).

Next, express p(ui, x̂i|x, zi; γi) as the product p(x̂i|x, zi, ui; γi)p(ui|x, zi; γi), then simi-

larly express p(ui|x, zi; γi) as the product p(uT
i |x, zi, u1:T−1

i ; γi)p(u
1:T−1
i |x, zi; γi) and so

on until we obtain the identity

p(ui, x̂i|x, zi; γi) = p(x̂i|x, zi, ui; γi)

T∏

t=1

p(ut
i|x, zi, u1:t−1

i ; γi).
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Consider the factor for stage t = 1 (where I1
i is empty by definition), which must itself

satisfy the identity

p(u1
i |x, zi; γi) =

∫

yi∈Yi

p(yi|x, zi; γi)p(u
1
i |x, yi, zi; γi) dyi.

We’ve already concluded that p(yi|x, zi; γi) = p(yi|x) and, for any fixed stage-one com-

munication rule µ1
i , we have p(u1

i |x, yi, zi; γi) = p(u1
i |yi, I

1
i , z

1
i ;µ1

i ), so that

p(u1
i |x, zi; γi) =

∫

yi∈Yi

p(yi|x)p(u1
i |yi, z

1
i ;µ1

i ) dyi

= P
[
µ1

i (Yi, I
1
i , z

1
i ) = u1

i

∣
∣X = x

]
= P

[
Yi ∈ Yi(I

2
i ;µ1

i )
∣
∣X = x

]

≡ p(u1
i |x, I1

i , z
1
i ;µ1

i ).

For stage t = 2, the same basic steps lead to the identity

p(u2
i |x, zi, u1

i ; γi) =

∫

yi∈Yi

p(yi|x, zi, u1
i ; γi)p(u

2
i |yi, I

2
i , z

2
i ;µ2

i ) dyi.

Again appealing to the definition of the multi-stage rule γi, we may write

p(yi|x, zi, u1
i ; γi) =

p(yi|x, zi; γi)p(u
1
i |x, yi, zi; γi)

p(u1
i |x, zi; γi)

=
p(yi|x)p(u1

i |yi, I
1
i , z

1
i ;µ1

i )

p(u1
i |x, I1

i , z
1
i ;µ1

i )

=







p(yi|x)

P[Yi∈Yi(I2
i ;µ1

i )|X=x]
, if yi ∈ Yi(I

2
i ;µ1

i )

0 , otherwise

≡ p(yi|x, I2
i ;µ1

i )

and, also recognizing that I3
i ⊃ I2

i and so Yi(I
3
i ;µ1:2

i ) ⊂ Yi(I
2
i ;µ1

i ), we have

p(u2
i |x, zi, u1

i ; γi) =

∫

yi∈Yi(I2
i ;µ1

i )

p(yi|x)p(u2
i |yi, I

2
i , z

2
i ;µ2

i )

P
[
Yi ∈ Yi(I2

i ;µ1
i )
∣
∣X = x

] dyi

=
P
[
Yi ∈ Yi(I

3
i ;µ1:2

i )
∣
∣X = x

]

P
[
Yi ∈ Yi(I

2
i ;µ1

i )
∣
∣X = x

]

≡ p(u2
i |x, I2

i , z
2
i ;µ1:2

i ).
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Continuing the induction, we conclude for every stage t ≤ T that

p(ut
i|x, zi, u1:t−1

i ; γi) =

∫

yi∈Yi

p(yi|x, zi, u1:t−1
i ; γi)p(u

t
i|yi, I

t
i , z

t
i ;µ

t
i) dyi

with

p(yi|x, zi, u1:t−1
i ; γi) =

p(yi|x)p(u1:t−1
i |yi, zi; γi)

p(u1:t−1
i |x, zi; γi)

=







p(yi|x)

P[Yi∈Yi(It
i ;µ

1:t−1
i )|X=x]

, if yi ∈ Yi(I
t
i ;µ

1:t−1
i )

0 , otherwise

≡ p(yi|x, It
i ;µ

1:t−1
i )

and, in turn,

p(ut
i|x, zi, u1:t−1

i ; γi) =
P
[
Yi ∈ Yi(I

t+1
i ;µ1:t

i )
∣
∣X = x

]

P
[
Yi ∈ Yi(I

t
i ;µ

1:t−1
i )

∣
∣X = x

]

≡ p(ut
i|x, It

i , z
t
i ;µ

1:t
i ).

The exact same arguments apply to the final decision stage t = T + 1, involving x̂i =

δi(yi, I
T+1
i , zT+1

i ).

Lemma 5.2 reveals much about the (online and offline) processing requirements

local to each node i in a multi-stage communication architecture. From the online

perspective, each node uses its memory to sequentially pare down the local likelihood

i.e., the proof to Lemma 5.2 established that

p(yi|x, It
i ; γi) ∝

{

p(yi|x) , yi ∈ Yi[I
t
i ;µ

1:t−1
i ]

0 , otherwise
(5.7)

with Yi(I
t
i ;µ

1:t−1
i ) ⊃ Yi(I

t−1
i ;µ1:t−2

i ) for every stage t. Figure 5.2 illustrates the first

stage of this memory-dependent likelihood evolution for the special case of a directed

tandem network with a global binary state and n linear Gaussian detectors. The same

trend continues with each additional stage: every node essentially hones in on a smallest

subregion over which it must make use of the likelihood vector p(yi|x), doing so in

each stage t as a function of the expanding information vector It
i and the preceding

communication rules µ1:t−1
i .
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(b) A Fixed Stage-One Communication Rule and the Memory-Dependent Stage-Two Likelihood

Figure 5.2. Illustration of the memory-dependent paring down of local likelihoods suggested by the

probabilistic structure exposed in Lemma 5.2. In the directed network shown in (a), we assume each

node i employs the first-stage communication rule u1
i = µ1

i (yi, z
1
i ) using the thresholds shown in the top

row of (b). (Strictly-speaking, only the middle column of (b) applies for node 1). The second row of (b)

shows the second-stage likelihood functions for different realizations of local memory I2
i = (z1

i , u
1
i ), each

proportional to the original likelihood p(yi|x) over a particular subinterval in R and otherwise zero.

From the offline perspective, note that Lemma 5.2 specializes (5.5) to

p(ui, x̂i|x, utr(i); γi) =
∑

zi∈Zi

p(zi|x, utr(i))p(ui, x̂i|x, zi; γi)

with

p(ui, x̂i|x, zi; γi) = P
[

Yi ∈ Yi(I
T+2
i ; γi)

∣
∣
∣X = x

]

=

∫

yi∈Yi(I
T+1
i ;γi)

p(yi|x) dyi.
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The latter equation reveals that each node i can marginalize over Yi in a piece-meal

fashion: first, partition the measurement space Yi into |Ui×Xi×Zi| disjoint subsets, one

component per possible realization of the local information vector IT+2
i ; then, compute

the event probabilities associated with Yi (conditioned on X = x for each x ∈ X )

lying in the subsets Yi(I
T+2
i ; γi) corresponding to this partition. In other words, fixing

the rule of each successive decision stage confines the probabilistic support of Yi to

a successively smaller subset of its original space Yi as a function of the expanding

information vector local to node i.

The next lemma describes an additional simplification in each node’s (offline) local

computation when its multi-stage channel model is also memoryless.

Lemma 5.3 (Recursive Local Marginalization). Let Assumption 5.1 and Assump-

tion 5.2 both hold. For any fixed multi-stage rule γi ∈ Γi local to node i, the associated

ith factor p(ui, x̂i|x, utr(i); γi) in (5.5) is given by the following recursive definition: ini-

tialize

p(x̂i|x, IT+1
i , utr(i,T+1); γi) =

∑

zT+1
i ∈ZT+1

i

p(zT+1
i |x, utr(i,T+1))p(x̂i|x, IT+1

i , zT+1
i ; γi)

and then, for t = T, T − 1, . . . , 1, evaluate

p(ut:T
i , x̂i|x, It, ut:T+1

tr(i) ; γi) =
∑

zt
i∈Z

t
i

p(zt
i |x, utr(i,t))p(u

t
i|x, It

i , z
t
i ;µ

1:t−1
i )p(ut+1:T

i , x̂i|x, It+1, ut+1:T+1
tr(i) ; γi)

.

Proof. Assumption 5.1 and Assumption 5.2 taken together implies

p(zi|x, y, utr(i)) =

T+1∏

t=1

p(zt
i |x, utr(i,t)).

Substituting this identity and (5.6) into (5.5), we have

p(ui, zi|x, utr(i); γi) =
∑

zi

p(zT+1
i |x, utr(i,T+1))p(x̂i|x, IT+1

i , zT+1
i ; γi) ×

T∏

t=1

p(zt
i |x, utr(i,t))p(u

t
i|x, It

i , z
t
i ;µ

1:t
i ).

We may then distribute the summation over Zi through the factors over stages t, yield-

ing exactly the stated recursions.
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We now present the main results of this chapter: under Assumption 5.2, the op-

timal detection strategy δ∗ = (δ∗1 , . . . , δ
∗
n) lies in a finitely-parameterized subspace of

∆1 × · · · × ∆n and, upon also introducing the usual locality assumptions, this finite

parameterization scales linearly with the number of nodes n. As mentioned earlier, we

have not been successful in similarly deducing the form of the optimal communication

strategy µ∗ = (µ∗1, . . . , µ
∗
n), each ith multi-stage rule µ∗i ∈ M1

i × · · · × MT
i . The dis-

tinct complication that arises in the case of multiple communication stages is that each

node’s current transmission can impact the information it may receive in future stages.

On the receiving side, each node can therefore exploit the context of all past informa-

tion in order to best interpret the newest symbol of information. In addition, taking

into account that every other node is able to do the same, each node aims to generate

the most resourceful sequence of transmissions for its neighbors, potentially adapting

each communication stage with each successive new symbol of information. In the final

detection stage, of course, the incentives for signaling to influence the information in

future stages entirely disappears, and it is only the receiving side that remains; yet,

even under best-case model assumptions, the form of the final-stage rule reveals that

these signaling mechanisms depend jointly, not recursively, on the available information

from other communication stages. These phenomena lie at the heart of the exponential

complexity in T exhibited by the finite parameterization for δ∗. Accordingly, recog-

nizing that each node’s communication rule will feature both sides (i.e., receiving and

transmitting) to these signaling incentives, we should expect the parameterization (if

even finite) for µ∗ to also scale exponentially in T .

Proposition 5.1 (Optimal Parameterization of Detection Stage). Let Assumption 5.2

hold. Consider any particular node i and assume that both the local communication

rules and the multi-stage rules local to all other nodes are fixed at their optimal values,

which we denote by µ∗i ∈ M1
i × · · · × MT

i and γ∗\i = {γ∗j ∈ Γj | j 6= i}, respectively.

Then, the optimal final-stage detection rule local to node i reduces to

δ∗i (Yi, Ui, Zi) = arg min
x̂i∈Xi

∑

x∈X

b∗i (x̂i, x;Ui, Zi)p(Yi|x, IT+1
i ;µ∗i ),

where parameter values b∗i ∈ R
|Xi×X×Ui×Zi| depend on all fixed rules according to

b∗i (x̂i, x;ui, zi) = p(x)
∑

u\i

∑

x̂\i

c(u, x̂, x)p(ui, zi|x, utr(i);µ
∗
i )
∏

j 6=i

p(uj , x̂j |x, utr(j); γ
∗
j )

with

p(ui, zi|x, utr(i);µ
∗
i ) = p(zi|x, utr(i))

T∏

t=1

p(ut
i|x, It

i , z
t
i ;µ

∗
i ).
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Proof. Notice that the distribution p(ui, x̂i|x, utr(i); γi) in Lemma 5.1 is structurally

identical to its counterpart for the single-stage undirected architecture, albeit here both

ui and utr(i) are discrete-valued length-T vectors. We follow essentially the same steps

taken in the proof to Proposition 4.1 for the detection rule in the single-stage undirected

architecture. See Appendix C.1 for details.

It is instructive to compare the structure of the optimal detection strategy δ∗ =

(δ∗1 , . . . , δ
∗
n) in Proposition 5.1 with that in Proposition 4.1 for the single-stage undi-

rected architecture analyzed in the preceding chapter. Here, we see that memory IT+1
i

manifests itself in the sufficient statistic for local measurement Yi = yi, appearing as

a conditioning argument to the local likelihood vector p(yi|x, IT+1
i ;µ∗i ). This expresses

the same memory-dependent sequential “paring down” of the local likelihood function

revealed in Lemma 5.2 (and illustrated in Figure 5.2).

� 5.3.2 Efficient Online Computation

As in previous chapters, with respect to the number of nodes n, efficient online compu-

tation requires the introduction of certain locality assumptions. We will see, however,

that in a multi-stage architecture these assumptions are not sufficient to guarantee ef-

ficient offline computation (with respect to n), nor do these assumption alleviate the

exponential complexity in the number of stages T .

Assumption 5.3 (Measurement/Channel Locality). The measurement model and multi-

stage channel model local to each node i are independent of all non-local state variables

X\i i.e., for every i,

p(yi|x) = p(yi|xi) and p(zi|x, y, utr(i)) = p(zi|xi, y, utr(i)).

Proposition 5.2 (Detection-Stage Online Efficiency). If Assumption 5.3 also holds,

then Proposition 5.1 specializes to

δ∗i (Yi, Ui, Zi) = arg min
x̂i∈Xi

∑

xi∈Xi

β∗i (x̂i, xi;Ui, Zi)p(Yi|xi, I
T+1
i ;µ∗i )

with

β∗i (x̂i, xi;ui, zi) =
∑

x\i

b∗i (x̂i, x;ui, zi).

Proof. Starting with Proposition 5.1, it suffices to show that the addition of Assump-

tion 5.3 implies

p(yi|x, ui, zi;µ
∗
i ) = p(yi|xi, ui, zi;µ

∗
i ).
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Measurement locality in Lemma 5.1 implies that, for any fixed local communication

rules µi,

p(yi, ui|x, zi;µi) = p(yi|xi)
T∏

t=1

p(ut
i|yi, I

t
i , z

t
i ;µ

t
i) = p(yi, ui|xi, zi;µi)

and, in turn,

p(yi|x, ui, zi;µi) =
p(yi, ui|x, zi;µi)

∫

yi
p(yi, ui|x, zi;µi) dyi

=
p(yi, ui|xi, zi;µi)

∫

yi
p(yi, ui|xi, zi;µi) dyi

= p(yi|xi, ui, zi;µi).

While Proposition 5.2 shows that the optimal detection strategy δ∗ admits a finite

parameterization β∗ = (β∗1 , . . . , β
∗
n) that scales linearly in the number of nodes n, of-

fline computation will surely scale exponentially with n in the absence of special cost

structure.

Assumption 5.4 (Cost Locality). The global communication costs and global detection

costs are additive across both nodes and stages, each term local to node i independent

of all non-local state variables X\i i.e.,

c(u, x) =

n∑

i=1

T∑

t=1

c(ut
i, xi) and c(x̂, x) =

n∑

i=1

c(x̂i, xi). (5.8)

Proposition 5.3 (Detection-Stage Offline Computation). If Assumptions 5.1–5.4 all

hold, then Proposition 5.2 applies with rule parameters specialized to the proportionality

β∗i (x̂i, xi;ui, zi) ∝ p(xi)P
∗
i (ui, zi|xi)c(x̂i, xi), (5.9)

where the (fixed) global communication strategy µ∗ determines the likelihood function

P ∗
i (ui, zi|xi) =

∑

u\i∈U\i

p(ui, zi|xi, utr(i);µ
∗
i )

∑

x\i∈X\i

p(x\i|xi)
∏

j 6=i

p(uj|xj , u
1:T
tr(j);µ

∗
j ) (5.10)

with the different factors in (5.10) given by

p(ui, zi|xi, utr(i);µ
∗
i ) = p(zi|xi, utr(i))

T∏

t=1

p(ut
i|xi, I

t
i , z

t
i ;µ

∗
i )

and, for every j 6= i,

p(uj |xj, u
1:T
tr(j);µ

∗
j) =

∑

zj∈Zj

p(zj |xj , utr(j))
T∏

t=1

p(ut
j |xj, I

t
j , z

t
j ;µ

∗
j).
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Proof. Starting with Proposition 5.2, we follow essentially the same steps taken in the

proof to Proposition 4.2 for the detection rule in the single-stage undirected architecture.

See Appendix C.2 for details.

Proposition 5.3 has a number of important implications about the structure of team-

optimal solutions in multi-stage architectures. Firstly, it is instructive to contrast δ∗

with the myopic strategy identified in Chapter 2. Each component rule δ∗i is seen to

make two different uses of memory (i.e., its local information vector IT+1
i ). The first is in

paring down its local measurement likelihoods, exactly as was highlighted in Figure 5.2.

The second is in interpreting the symbol vector zi received over the T preceding stages

of online communication, entering as a Bayesian correction (i.e., a reweighting of the

prior probabilities by the likelihood P ∗
i ) to the myopic rule parameters p(xi)c(x̂i, xi)

identified in Chapter 2. Equation (5.10) reveals how each such likelihood function P ∗
i ,

depends jointly on the local information vector (ui, zi) = (IT+1
i , zT+1

i ). That is, with

respect to making the optimal final state-related decision x̂i, each node i must interpret

the received information zi in the full context of the information ui it transmitted

in previous stages. This joint dependence of P ∗
i on (zi, ui) carries over to the local

parameterization β∗i and, in turn, the full parameter vector β∗ scales exponentially

with the number of stages T .

Proposition 5.3 also reveals interesting ties to the (sum-product) belief propagation

algorithm discussed in Chapter 2. Recall from Example 2.7 that, if for each i we choose

c(x̂i, xi) equal to unity given x̂i 6= xi and zero otherwise, then the optimal centralized

detector (per joint realization Y = y) amounts to each node selecting the mode of

its posterior marginal p(xi|y) ∝ p(xi, y). Thus, assuming the prior probabilities p(x)

are defined by a graphical model, belief propagation algorithms become applicable to

this (unconstrained) decision problem, essentially yielding at every node an exact (in

junction trees) or approximate (in graphs with cycles) sufficient statistic for the global

measurement Y = y. Let us substitute this specific cost function into Proposition 5.3,

yielding for each realization (Yi, Ui, Zi) = (yi, I
T+1
i , zT+1

i ) a final-stage detection rule of

the form

x̂i = δ∗i (yi, I
T+1
i , zT+1

i ) = arg max
xi∈Xi

p(xi)P
∗
i (IT+1

i , zT+1
i |xi)p(yi|xi, I

T+1
i ;µ∗i ). (5.11)

From the proof to Proposition 5.3, we recognize that

p(xi)P
∗
i (IT+1

i , zT+1
i |xi)p(yi|xi, I

T+1
i ;µ∗i ) ∝ p(xi|yi, ui, zi;µ

∗),
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and thus δ∗i can be viewed as selecting the mode of the network-constrained posterior

marginal p(xi|yi, I
T+1
i , zT+1

i ;µ). Assuming no explicit communication costs (i.e., as-

suming parameter λ = 0), the role of the optimal multi-stage communication strategy

µ∗ ∈ M1 × · · · ×Mn similarly specializes: it is to map the global measurement y into

the sequence of symbols (u, z) such that every node i may use the accessible portion of

those symbols, namely (ui, zi), alongside its local measurement yi to best approximate

its (centralized) sufficient statistic p(xi|y).
Carrying the observed ties to belief propagation one step further, we now use (5.11)

to back out a “belief update” equation over successive online communication stages

t = 1, 2, . . .. For the moment, let us take offline computation for granted: specifically,

we take the T -stage communication strategy µ ∈ M1×· · ·×Mn to be fixed, and assume

every node i knows the associated likelihood function Pµ
i (IT+1

i , zT+1
i |xi) as well as the

local prior p(xi). Recall from (5.10) that

Pµ
i (IT+1

i , zT+1
i |xi) = p(ui, zi|xi;µ) = p(zT+1

i |xi, I
T+1
i ;µ)p(IT+1

i |xi;µ)

and from the same reasoning underlying (5.7) that, for any yi ∈ Yi[I
T+1
i ;µi],

p(yi|xi, I
T+1
i ;µi) ∝

p(yi|xi)

p(IT+1
i |xi;µ)

.

In fact, these relationships hold for all t ≤ T+1, where from Lemma 5.2 we can suitably

marginalize the likelihood function Pµ
i to obtain

p(zt
i |xi, I

t
i ;µ) =

p(It
i , z

t
i |xi;µ)

p(It
i |xi;µ)

while from Lemma 5.3 we obtain

p(yi|xi, I
t
i ;µi) ∝

p(yi|xi)

p(It
i |xi;µ)

, yi ∈ Yi[I
t
i ;µ

1:t−1
i ].

Altogether, our network-constrained analog to the “belief update” equation local to

each node i becomes

M t
i (xi) := p(xi|yi, I

t
i , z

t
i ;µ) ∝ p(xi)p(z

t
i |xi, I

t
i ;µ)p(yi|xi), t = 1, 2, . . . T + 1. (5.12)

In the two preceding chapters, we found that Assumptions 5.2–5.4 (along with

a polytree topology in the case of a directed network F) were sufficient to obtain an

efficient message-passing algorithm for computing all nodes’ likelihood statistics {P ∗
i ; i ∈

V}. Proposition 5.3 shows that additional model assumptions will be required in multi-

stage architectures, if even an analogously efficient offline message-passing algorithm
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for its team-optimal solution exists in the first place. To better appreciate this fact,

first note that (by constraint) the subset of the communication decisions utr(i) that

influence the side information Zi local to node i excludes all non-neighboring nodes’

communication decisions i.e., utr(i) ⊆ une(i) ⊂ u\i. It follows that

∑

u\i

p(ui, zi|xi, utr(i);µ
∗
i )
∏

j 6=i

p(uj |xj , u
1:T
tr(j);µ

∗
j) =

∑

une(i)

p(ui, zi|xi, utr(i);µ
∗
i )

∑

uV\i−ne(i)

∏

j 6=i

p(uj |xj, u
1:T
tr(j);µ

∗
j ),

which upon substitution into (5.10) yields

P ∗
i (ui, zi|xi) =

∑

une(i)

p(ui, zi|xi, utr(i);µ
∗
i )P

∗
ne(i)→i(une(i)|xi, ui),

with

P ∗
ne(i)→i(une(i)|xi, ui) =

∑

x\i

p(x\i|xi)
∑

uV\i−ne(i)

∏

j 6=i

p(uj |xj , u
1:T
tr(j);µ

∗
j). (5.13)

At each node i, we may view P ∗
ne(i)→i as the multi-stage analog to the incoming likeli-

hood messages discussed in previous chapters. In contrast to the single-stage counter-

parts, however, (5.13) does not readily present itself as a recursive factorization on the

network topology F . Indeed, (5.13) suggests that the offline computation to support

the optimal detection strategy δ∗ scales exponentially with n (as well as T ), at least

without either (i) specializing the analysis to whether network topology F is directed or

undirected, (ii) introducing more structure on the probability graph G underlying the

global prior p(x) or (iii) some special-case combinations of (i) and (ii). Such pursuits

are left for future work.

As commented earlier, we expect the difficulties associated with the team-optimal

multi-stage communication strategy µ∗ to be even more pronounced than those un-

covered for δ∗. In preparation for an approximate offline algorithm we describe next,

and then experiment with in Section 5.5, we close this section with a conjecture on

the existence of a finite parameterization for µ∗. It is inspired by the efficient offline

message-passing algorithms that were derived in the preceding chapters, and its proof

(or disproof) is also left for future work.

Conjecture 5.1 (Optimal Parameterization of Communication Stages). Let Assump-

tions 5.1–5.4 hold. Assume all rules except for the stage-t communication rule lo-

cal to node i are fixed at their optimal values. There exist both a likelihood function
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P t
i (I

t
i , z

t
i |xi) and a cost function Ct

i (I
t+1
i , xi) such that the optimal rule over all Mt

i is

given by

µt
i(Yi, I

t
i , Z

t
i ) = arg min

ut
i∈U

t
i

∑

xi∈Xi

αt
i(u

t
i, xi; I

t
i , Z

t
i )p(Yi|xi, I

t
i ;µ

1:t−1
i )

with

αt
i(u

t
i, xi; I

t
i , Z

t
i ) = p(xi)P

t
i (I

t
i , Z

t
i |xi)

[
c(ut

i, xi) + Ct
i (I

t+1
i , xi)

]
.

Remark: Arguably the most optimistic part of Conjecture 5.1 is the lack of explicit

dependence on Yi in the cost function Ct
i . With such dependence, the optimal commu-

nication rule µt
i would not necessarily lie in a finitely-parameterized subset of Mt

i. In

turn, the connection between iterating the associated fixed-point equations and execut-

ing an exact coordinate-descent algorithm over the original function space Γ, which is

how the convergence guarantees in earlier chapters were deduced, would be lost.

� 5.4 An Approximate Offline Algorithm

The analysis of the preceding section reveals how generalizing to a multi-stage online

processing model brings forth a number of new barriers to tractably computing team-

optimal decision strategies. On the positive side, Proposition 5.2 establishes the minimal

assumptions under which online computation scales linearly in the number of nodes

n. These assumptions, namely conditional independence and measurement/channel

locality, are seen to coincide with those needed to guarantee online efficiency (of the

final-stage detection strategy δ∗) in the single-stage architectures. However, in contrast

to the single-stage cases, Proposition 5.3 establishes that then adding the cost locality

assumption is not enough to guarantee that the associated offline computation scales

linearly in n. Moreover, we were unable to derive analogous structural results for the

multi-stage communication strategy µ∗, offering instead Conjecture 5.1 that proposes

it enjoys the analogous online efficiency of its single-stage counterparts. Indeed, we

expect the offline computation associated with µ∗ to be no easier than that of the final-

stage detection strategy δ∗, considering the latter need only account for the receivers’

perspectives of any multi-stage signaling incentives whereas the former should also

account for the transmitters’ perspectives.

Supposing Assumptions 5.1–5.4 are in effect, this section describes an approximate

offline algorithm for generating multi-stage measurement processing strategies. We

stress that this approximation is only suited for a small number of online stages T , as
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it continues to respect the parameterization suggested by Conjecture 5.1 and Proposi-

tion 5.3 and, hence, assumes the exponential growth in T is not yet a barrier. In this

light, the approximation is most useful for addressing what performance benefits are

achievable when moving from single-stage to two-stage architectures, from two-stage to

three-stage architectures and so on as long as T is small enough such that local memory

requirements remain manageable. Of course, of equal interest is the question of finding

good limited-memory approximations for problems that merit large T , a pursuit we will

have to leave for future research.

� 5.4.1 Overview and Intuition

Before describing our approximation in full detail, let us develop an intuitive under-

standing of the overall procedure at a high level. There are two main steps:

1. find a particular communication strategy µ̃ ∈ M = M1 × · · · × Mn by making

iterative use of the efficient single-stage algorithms derived in preceding chapters;

2. find a particular detection strategy δ̃ ∈ ∆ = ∆1 × · · · × ∆n by applying Proposi-

tion 5.3 and, for problems in which the computation in (5.10) becomes impractical,

employing a sampling-based approximation to obtain the required statistics P µ̃
i for

each node i.

Recall that Proposition 5.3 characterizes the optimal detection strategy, assuming the

multi-stage communication strategy is fixed, so approximations are made primarily

within the procedure by which we first generate the communication strategy µ̃.

Our approximation of the stage-one communication rules µ̃1 = (µ̃1
1, . . . µ̃

1
n) is straight-

forward, as no node has yet to account for local memory. Applying the single-stage

solution (i.e., assuming the final decisions are made right after this single stage com-

munication), the obtained communication rule µ̃1
i for every node i is a member of the

stage-one function space M1
i . Of course, the single-stage approximation fails to cap-

ture incentives for impacting the value of later-stage transmissions. Indeed, this side

of the multi-stage signaling incentives is neglected throughout our approximation, as

we repeatedly use the single-stage solutions without any look-ahead to future rounds of

communication.

The rules µ̃2:T = (µ̃2:T
1 , . . . , µ̃2:T

n ) for all subsequent stages are selected in parallel

for each node i. Doing so clearly neglects the fact that the true conditional distribution

p(It
i , z

t
i |xi; µ̃

1:t−1) for every node-stage pair (i, t) is a function of all nodes’ communi-

cation rules µ̃1:t−1 from previous stages. Specifically, computing each such conditional
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distribution involves an analogously global computation as that described for the statis-

tics P µ̃
i (ui, zi|xi) = p(IT

i , z
T+1
i |xi; µ̃) in the final-stage detection rule local to node i. We

avoid having to keep track of all nodes’ communication rules from previous stages by

essentially assuming that, when constructing the single-stage problems at node i and

stage t to determine the communication rule µ̃t
i, the side information Zt

i is unrelated

to local memory It
i . We do, however, properly account for the local memory It

i inside

of the measurement likelihood p(yi|xi, I
t
i ; µ̃

1:t−1) in accordance with Lemma 5.2. More-

over, all of the other nodes still appear within the single-stage problems for node i, but

we extract only the rule local to node i from each single-stage solution for use in the

actual communication rule µ̃t
i. Finally, the manner in which we construct the series of

single-stage problems for each node i, including how we craft its local models from the

given multi-stage models, involves other significant yet subtle approximations. These

are described in detail in the following subsections, but the main ideas are illustrated

in Figure 5.3 by way of an example.

In summary, there are three main sources of approximation in the procedure we

use to construct a feasible multi-stage communication strategy µ̃ ∈ M. Firstly, we do

not know whether the finite parameterization proposed by Conjecture 5.1 is correct.

Secondly, the stage-t communication rule of every node i is designed assuming it is

the final round of communication. Thirdly, the side information Zt
i is represented in

each single-stage approximation as the output of phantom nodes, neglecting its true

dependence on all nodes’ communication rules µ̃1:t−1 in the preceding stages. The

overall approximation, however, does preserve two important structural attributes of

the optimal multi-stage strategy. The first is the memory-dependent paring down of

all nodes’ local likelihoods, in accordance with Lemma 5.2. The second is that, for

the particular selected communication strategy µ̃, we employ the team-optimal final-

stage detection strategy given by Proposition 5.3. These two attributes are key to

preserving satisfactory performance of the multi-stage strategy γ̃ = (µ̃, δ̃) despite the

approximations made to select the communication strategy µ̃.

� 5.4.2 Step One: Approximating the Communication Strategy

Our method for constructing an approximate multi-stage communication strategy µ̃ ∈
M combines the probabilistic structure exposed by Lemma 5.2 and Lemma 5.3, the

finite parameterization proposed by Conjecture 5.1, and repeated application of the

single-stage offline message-passing algorithms derived in previous chapters. The outer

loop of the algorithm proceeds over increasing stages, followed by an inner loop over
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1, z2
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µ̃3
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γ4

γ6 γ7

(c) Single-Stage Network for (i, t) = (1, 2) (c) Single-Stage Network for (i, t) = (1, 3)

Figure 5.3. (a) A specific undirected network topology F in a multi-stage problem and (b)-(d) the

sequence of single-stage hybrid topologies constructed from the perspective of node i = 1. All first-

stage rules (including that of node i) can be approximated by just one single-stage solution, whereas

the advent of memory in subsequent communication stages requires a single-stage solution per value

of the local memory It
i . Rules γj for j 6= i represent functions that are optimized within every single-

stage solution, but then discarded once the others are selected for the multi-stage strategy. Note the

introduction of phantom non-leader nodes to account for the presence of side information Zt
i local

to node i, which in the multi-stage strategy results from its neighbors’ decisions U t−1
ne(i) but in the

single-stage approximation is simply optimized from scratch. Moreover, because we extract only the

communication rule local to node i for use in our multi-stage strategy, we need not include the nodes

that lie beyond its two-step neighborhood in F .

nodes, constructing firstly the nodes’ stage-one communication rules µ̃1 ∈ M1 = M1
1 ×

· · · × M1
n, secondly the nodes’ stage-two communication rules µ̃2 ∈ M2 holding µ̃1

fixed, and so on through the nodes’ stage-T communication rules µ̃T ∈ MT holding

µ̃1, µ̃2, . . . , µ̃T−1 fixed. For each particular stage t and node i, there is an inner-most

loop over all values of local memory It
i , crafting a series of single-stage problems whose

solutions (via the efficient offline message-passing algorithms of the preceding chapters)
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t
i ; µ̃

1:t−1
i )

µ̃t
i(Yi, I

t
i , Z

t
i )

Figure 5.4. A high-level flowchart of our algorithm for constructing an approximate multi-stage

communication strategy µ̃. In stage t = 1, every node’s information vector is empty and the single-

stage approximation operates directly on the given network topology F , yielding all nodes’ initial

communication rules µ̃1. In successive stages t > 1, there is an inner loop over all nodes and, for each

node i, an inner-most loop over all possible values of local memory It
i , crafting a series of single-stage

problems whose solutions collectively determine all nodes’ stage-t communication rules µ̃t.

collectively determine a particular local communication rule µ̃t
i ∈ Mt

i. A high-level

flowchart of this algorithm is shown in Figure 5.4, and the remainder of this subsection

describes the details related to each module.

Constructing Single-Stage Network Topologies

Consider any stage t > 1 and any particular node i. We determine the stage-t commu-

nication rule local to node i via a series of single-stage approximations, all relying on

a particular topology we denote by F t
i to be constructed in a manner that depends on
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whether the original network topology F is undirected or directed. In either case, the

objective is to preserve a compatible structural form between the (memory-dependent)

multi-stage communication rules proposed in Conjecture 5.1 and the collection of com-

munication rules resulting from this series of single-stage approximations. Details for

constructing each single-stage network F t
i to achieve this objective are as follows.

Let us first describe the case given the original network topology F is undirected,

defining for every node i the neighbors ne(i) and the two-step neighborhood ne2(i) =

∪j∈ne(i)ne(j)−{i}. The network F t
i in the single-stage approximation is taken to be the

hybrid network in which the (undirected) leader network is the subgraph of F induced

by nodes i∪ne2(i), while the (directed) non-leader network duplicates the nodes in ne(i)

and assigns each a single outgoing link to leader node i. These phantom nodes act as

surrogates for representing the side information Zt
i based on the decisions U t−1

ne(i) from

the preceding communication stage. Figure 5.3 shows a particular undirected network

F and illustrates these single-stage networks for a specific node i. Notice that the sets

ZD
i and UU

i in the hierarchical fusion architecture given F t
i are identical to the sets Zt

i

and U t
i , respectively, in the multi-stage architecture given F .

We now describe the case given original network topology F is directed, defining

the parents pa(i) and children ch(i) for each node i. Recall from Figure 5.1 that when

stage t > 1 is odd (even), the flow of information proceeds in the forward (backward)

partial order implied by F . Accordingly, the construction of F t
i for each stage-node

pair similarly depends on whether t is odd or even, as well as whether node i is a pivot

node (i.e., a parentless or childless node in F for t odd or even, respectively). Suppose

t > 1 is odd: unless node i is parentless, it has the same parents and children in F t
i as

it has in F ; however, if node i is parentless, we duplicate the children of node i in F
and designate them as phantom parents of node i in F t

i . Similarly suppose t is even:

unless node i is childless, its parents and children in F become its children and parents,

respectively, in F t
i ; however, if node i is childless, we duplicate the parents of node i

in F and designate them as the phantom parents of node i in F t
i . Figure 5.5 shows a

particular directed network F and illustrates these single-stage networks for a specific

node i. Notice that the sets Zi and Ui given the single-sweep network F t
i are identical

to the sets Zt
i and U t

i , respectively, in the multi-stage architecture given F .

Constructing Single-Stage Local Models

At this point in our algorithm, we are given (i) a particular stage-node pair (t, i) and

(ii) the topology F t
i constructed from the original network topology F as just described.
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(a) An Original Directed Network (b) Single-Stage Network for t = 1
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(c) Single-Stage Network for (i, t) = (1, 3) (c) Single-Stage Network for (i, T ) = (1, 5)

Figure 5.5. (a) A specific directed network topology F in a multi-stage problem with T = 5 and (b)-

(d) the sequence of single-stage topologies constructed from the perspective of a pivot node i. Being

parentless in F , node i generates a communication decision on only odd-numbered stages. All first-

stage rules (including that of node i) can be approximated by just one single-stage solution, whereas

the advent of memory in subsequent communication stages requires a single-stage solution per value

of the local memory It
i . Rules γj for j 6= i represent functions that are optimized within every single-

stage solution, but then discarded once the others are selected for the multi-stage strategy. Note the

introduction of phantom parents to account for the presence of side information Zt
i local to node i,

which in the multi-stage strategy results from its children’s decisions U t−1
ch(i) in the preceding even-

numbered stage but in the single-stage approximation is simply optimized from scratch. All but the

final stage T = 5 assume only the childless nodes in F are in the gateway, consistent with us seeking

communication-only rules during stages t < T .

The task is to select a local stage-t communication rule µ̃t
i ∈ Mt

i. This is accomplished

by applying the offline message-passing algorithms of previous chapters to a series of

single-stage problems defined on the network F t
i , using a collection of local models
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crafted for each stage-node pair as follows.

Let us first specify the local cost models in each single-stage problem based on the

network topology F t
i . Recall that the original local cost models collectively satisfy

Assumption 5.4, where parameter λ is given and all nodes in F are assumed to be

in the gateway. In the single-stage approximation, however, the goal is merely to

approximate the stage-t communication rule local to node i, so we select its gateway

nodes accordingly. In particular, if F is undirected, then the single-stage gateway

consists only of the leader nodes in F t
i , while if F is directed, then the gateway consists

only of the childless nodes in F t
i . In either case, each such gateway node j in F t

i uses the

original detection-related costs c(x̂j , xj). We must also specify communication-related

costs for every node with at least one child in F t
i : if this node is a phantom of some

node j in F , then we use the previous-stage costs c(ut−1
j , xj), whereas if this node is an

actual node j in F , then we use the current-stage costs c(ut
j , xj).

We next specify the local measurement/channel models in each single-stage prob-

lem based on the network topology F t
i . Recall that the original measurement/channel

models collectively satisfy Assumption 5.2. Every node in F t
i is either an actual node j

in F or a phantom of some node j in F : in either case, we use the original measurement

model p(yj |xj). Because each phantom is parentless in F t
i , local channel models are

needed only for nodes in F t
i that correspond to actual nodes in F . Recall that the orig-

inal channel models satisfy Assumption 5.1. When F t
i is a hybrid network, only node i

has neighbors in both the leader and non-leader network, so we use p(zt
i |xi, utr(i,t)) to

describe the symbol(s) received from the former and p(zt−1
i |xi, utr(i,t−1)) to describe the

symbol(s) received from the latter. Every other leader node j 6= i has only neighboring

leaders, so we use p(zt
j |xj , utr(j,t)) to describe its received symbol(s). When F t

i is a

directed network, every non-phantom j with at least one parent and at least one child

in F t
i uses p(zt

j |xj, utr(j,t)) to describe its received symbol(s); however, recall from Fig-

ure 5.1 that node j is childless in F t
i only if it corresponds to a pivot node for the next

stage t+1, so by convention p(zt
j |xj , utr(j,t)) = 1 and we instead use p(zt+1

j |xj , utr(j,t+1))

to describe its received symbol(s).

It remains to specify the local prior models in each single-stage problem based on the

network topology F t
i . Recall our convention that p(xj , xne(j)) is known for every node j

in the original network topology F . Observe that a phantom node is always parentless

in F t
i , so its local prior model is simply the marginal p(xj) of the corresponding actual

node j in F . Next consider any non-phantom j in F t
i , including the specific node i.

When F t
i is a hybrid network, every such j is a leader node, so p(xj, xne(j)) characterizes
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its neighborhood prior for the leader network; node i also requires a local prior involving

its parents p̃a(i) in the non-leader network, which are always phantoms of ne(i) and

thus we use p(xi, xp̃a(i)) = p(xi, xne(i)). When F t
i is a directed network and the stage t

is odd (even), the parents p̃a(j) of each non-phantom j in F t
i are exactly the parents

(children) of node j in F , so we use

p(xj, xp̃a(j)) =

{ ∑

xch(j)
p(xj , xne(j)) , if stage t odd

∑

xpa(j)
p(xj, xne(j)) , if stage t even

.

Constructing Memory-Dependent Communication Rules

At this point in our algorithm, the network topology F t
i and the associated local models

completely specify a single-stage problem amenable to the efficient message-passing

algorithms of preceding chapters. However, for its solution to yield a communication

rule for node i that is compatible with the stage-t communication rule proposed in

Conjecture 5.1, the single-stage problem must also account for the local memory It
i . This

is accomplished by looping over all values of local memory It
i , in each instance using the

pared-down likelihood function p(yi|xi, I
t
i ; µ̃

1:t−1
i ) defined via (5.7) as the measurement

model local to node i. This ensures that the associated single-stage solution yields a

communication rule for node i that consists of up to |Zt
i | distinct size-|U t

i | partitions of

the restricted measurement space Yi(I
t
i ; µ̃

1:t−1
i ). Such a communication rule, by virtue

of Lemma 5.2, coincides with the stage-t communication rule local to node i for that

fixed value of memory It
i . In turn, by repeating this procedure over all values of local

memory It
i , the series of single-stage rules collectively defines a memory-dependent

communication rule µ̃t
i lying in the finitely-parameterized subspace of Mt

i proposed by

Conjecture 5.1.

� 5.4.3 Step Two: Approximating the Detection Strategy

Given Assumptions 5.1–5.4 are satisfied and the multi-stage communication strategy

is fixed to some member of the function space M, direct application of Proposi-

tion 5.3 is guaranteed to minimize the detection penalty over the function space ∆.

In other words, to find the best (online) detection strategy δ̃ for the approximate multi-

stage communication strategy µ̃, it suffices to compute (offline) the likelihood function

P µ̃
i (ui, zi|xi) ≡ P µ̃

i (IT+1
i , zT+1

i |xi) for every node i. Of course, as was emphasized in

Section 5.3, exact computation of these likelihood functions appears to be intractable

for even modestly-sized networks. While (5.10) and (5.13) reveal that computing these



Sec. 5.4. An Approximate Offline Algorithm 165

likelihood functions involve taking sums over distributions that exhibit a factored form,

the development of methods to exploit this special structure is left for future work.

In our preliminary experiments with the multi-stage architectures, described in the

next section, we rely on simulation-based approximations to the desired likelihood func-

tions P µ̃
i . Specifically, we draw independent samples from the joint distribution p(x, y),

and for each such sample apply both the multi-stage communication strategy µ̃ and sam-

ple from the local channel models to yield a specific sequence of transmitted/received

symbols (ui, zi) local to each node i. We then approximate P µ̃
i with the empirical condi-

tional distribution calculated from these generated samples i.e., if N(xi, ui, zi) denotes

the number of samples in which node i realizes the triplet (xi, ui, zi), we employ

P µ̃
i (ui, zi|xi) ≈







N(xi, ui, zi)
∑

ui,zi
N(xi, ui, zi)

, if
∑

ui,zi
N(xi, ui, zi) > 0

0 , otherwise

.

A practical caveat of this empirical approximation is worth mentioning. Firstly,

note that certain pairs (ui, zi) of symbols visible to node i may have zero probabil-

ity of occurrence under the fixed strategy µ̃. However, identifying a priori all such

improbable pairs (ui, zi) can be challenging. Moreover, with only a finite number of

samples, it is possible that probable triplets (xi, ui, zi) are never actually generated.

Thus, we must handle zeros in the empirical distribution with additional care. In par-

ticular, if N(xi, ui, zi) is zero but the sum
∑

xi
N(xi, ui, zi) is nonzero, then we reassign

P µ̃
i (ui, zi|xi) to its smallest value over all empirically probable events i.e.,

For every (xi, ui, zi) such that N(xi, ui, zi) = 0 but
∑

xi
N(xi, ui, zi) > 0, reassign

P µ̃
i (ui, zi|xi) := min

{(u′
i,z

′
i)|P

µ̃
i (u′

i,z
′
i|xi)>0}

P µ̃
i (u′i, z

′
i|xi).

This adjustment recognizes that, assuming every measurement yi ∈ Yi is probable

no matter the value of the (hidden) state Xi, the pair (ui, zi) must be probable for

every xi ∈ Xi if it is probable for at least one xi ∈ Xi. This same caveat carries

over to online processing: that is, it is possible that no instance of a probable pair

(ui, zi) is ever observed during the offline sampling procedure. Thus, if the online rule

encounters a pair (ui, zi) that was deemed improbable by offline computation (i.e., the

sum
∑

xi
N(xi, ui, zi) was zero), the above adjustment to P µ̃

i is made for every xi ∈ Xi

before proceeding with the final-stage decision x̂i = δ̃i(yi, ui, zi).
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� 5.5 Examples and Experiments

This section summarizes experiments with the multi-stage decision architectures and

the approximate offline algorithm just described. Throughout, the global sensing, com-

munication and cost models are essentially the same as those employed in the experi-

ments of previous chapters, altogether depending on just four parameters w, r, q and

λ. In particular, the hidden state process X consists of n spatially-distributed binary

random variables, their pairwise interactions defined by an undirected graphical model

with common parameter w ∈ [0, 1] for all edge potentials as was first described in Sub-

section 3.4.2. The global measurement process Y consists of n identical linear Gaussian

detectors, their spatially-independent noise processes parameterized by a common value

of r ∈ (0,∞) as was first described in Subsection 3.4.1. The multi-stage communica-

tion model is taken to be a selective broadcast transmission scheme (see Example 3.3)

along with stationary & memoryless interference channels, meaning every node’s local

channel model in every stage depends on a common unreliability parameter q ∈ [0, 1]

as was described for single-stage architectures in Subsection 4.5.4. Finally, as was first

described in Subsection 3.4.1, the global costs are chosen to optimize the sum of the

gateway node-error-rate Jd and network-wide link-use-rate Jc (weighted by λ). The

only difference in the multi-stage case is that the latter measures the sum over all com-

munication stages (i.e., the maximum value of Jc is T times that of the single-stage

counterpart).

The scope of these experiments is to investigate the extent to which global decision-

making performance can improve when we generalize to multiple online communication

stages. To this end, our initial focus is on a hidden Markov model (i.e., see Exam-

ple 2.9), for which our decision problem is easily solved in the absence of explicit

network constraints. Our results for a four-node instance of this model show that,

in either a directed or undirected multi-stage architecture, decentralized detection per-

formance approaches that of the optimal (i.e., centralized, or unconstrained) strategy

in as little as T = 3 decision stages. We then move to a four-node “loopy” graphical

model, instances of which belong to the class of so-called “frustrated” models known to

present difficulty for most existing local message-passing approximations. Experiments

on this loopy model paint a number of different algorithmic comparisons between our

team-theoretic approximations and those inspired by belief propagation algorithms. Al-

together, while our methods are superior from the communication overhead perspective

(by design), comparisons from the computation overhead or decision performance per-

spectives are less clear cut. That is, the relative advantages and disadvantages appear
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to be application-dependent and even model-dependent, raising a host of new questions

for future research to be discussed in Chapter 6.

� 5.5.1 A Small Hidden Markov Model

An n-node hidden Markov model (Example 2.9) is arguably the most commonly studied

probabilistic graphical model. Each node i in the underlying graph G has (at most) two

neighbors. Computing the posterior marginal p(xi|y) at every node i, which under our

minimum node-error-rate criterion is a sufficient statistic for deciding the optimal value

of component state estimate x̂i, is straightforward via (unconstrained) belief propaga-

tion methods. The Viterbi algorithm, starting from a directed graphical representation

for X, yields the correct marginals after only a single forward-backward sweep on the

probability graph; the sum-product algorithm, starting from an undirected graphical

representation for X, is guaranteed to converge with the correct marginals after n par-

allel message-passing iterations on the probability graph. The experiments we now

describe focus on the simple case of only n = 4 nodes, but imposing explicit online pro-

cessing constraints that render the standard belief propagation algorithms infeasible.

To be specific, instead of assuming the reliable (online) communication of real-valued

messages, we restrict the messages to ternary-valued symbols (i.e., each link is unit-

capacity with each node given a “no-send” option) and each link can be unreliable (i.e.,

a binary-valued symbol actually transmitted is not always successfully received).

The first main question we address empirically here is whether the multi-stage ap-

proximation we described in Section 5.4 has any hope of adequately capturing the so-

phisticated performance/communication tradeoffs demonstrated in previous chapters.

Recall how, for the single-stage architectures, the family of strategies obtained by our

offline algorithms (i.e., over a range of values for λ ≥ 0) monotonically trades decreas-

ing detection penalty with increasing communication penalty. Moreover, the tradeoff

became less pronounced as network reliability degraded, all other things equal e.g.,

larger values for erasure probability q yielded smaller reductions in node-error-rate per

unit increase in link-use-rate. Here, we set parameters w = r = 1 and consider three

different degrees of network reliability, namely q = 0, q = 0.2 and q = 0.4. Recall

that setting w to unity corresponds to a global binary state model (i.e., all four hidden

states are equal with probability one). Considering this special case keeps the problem

small enough to permit direct computation of the final-stage detection strategy for up

to T = 3 communication stages. Avoiding the sampling-based approximation of the

final-stage detection strategy controls our experiments in two useful ways: firstly, we
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(a) T = 1 Stage (b) T = 2 Stages (c) T = 3 Stages

Figure 5.6. Optimized tradeoff curves achieved by our team-theoretic approximations given the four-

node directed tandem network described in Subsection 5.5.1 assuming (a) T = 1, (b) T = 2 and (c) T = 3

online communication stages. The efficient message-passing solution of Chapter 3 is directly applicable

to the single-stage architecture in (a), and repeatedly applied within the approximate offline algorithm

described in Section 5.4 for the multi-stage architectures in (b) and (c). Each curve is obtained by

varying λ from zero (in increments of 0.005) up to the first value in which the myopic strategy becomes

optimal. Also shown is a Monte-Carlo estimate of the optimal centralized performance Jd(γ̄), using

1000 samples. The second row of figures uses the same data as in the first, normalizing the two penalties

to better compare across the different number of stages. The ×’s in this second row of figures mark the

specific points (Jλ
c , J

λ
d ) associated with the chosen λ values 0, 0.005, 0.010, . . ., and each curve connects

these points with line segments in the order of decreasing λ. Note the non-uniformity of the ×’s in (b)

and (c) as compared to (a), clearly an artifact of the multi-stage approximation in comparison to the

guaranteed team-optimality in (a). See Subsection 5.5.1 for more discussion of these results.

can compute the multi-stage performance (Jλ
c , J

λ
d ) for each fixed value of λ exactly,

without relying on Monte-Carlo estimates; and secondly, we can attribute any suspect

results entirely to our approximation of the multi-stage communication strategy.

Figure 5.6 displays the resulting collection of tradeoff curves given a directed net-

work topology (i.e., the four node tandem topology) over nine different values of pa-

rameters (q, T ). Indeed, we see the same general dependence on parameter q for the

multi-stage architectures as we observed in the single-stage architectures. However,

inspecting the tradeoff curves for each individual value of q more closely, the observed



Sec. 5.5. Examples and Experiments 169

0 2 4 6
0.5

1

1.5

link-use-rate, Jc

n
od

e-
er

ro
r-

ra
te

,
J

d

(w, r) = (1.0, 1.0)

q = 0.0

q = 0.2

q = 0.4

Jd(γ̄) ≈ 0.68± 0.05

0 2 4 6 8 10 12
0.5

1

1.5

link-use-rate, Jc

n
od

e-
er

ro
r-

ra
te

,
J

d

(w, r) = (1.0, 1.0)

0 5 10 15
0.5

1

1.5

link-use-rate, Jc

n
od

e-
er

ro
r-

ra
te

,
J

d

(w, r) = (1.0, 1.0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

normalized link-use-rate

n
or

m
al

iz
ed

n
od

e-
er

ro
r-

ra
te

q = 0.0

q = 0.2

q = 0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

normalized link-use-rate

n
or

m
al

iz
ed

n
od

e-
er

ro
r-

ra
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

normalized link-use-rate

n
or

m
al

iz
ed

n
od

e-
er

ro
r-

ra
te

(a) T = 1 Stage (b) T = 2 Stages (c) T = 3 Stages

Figure 5.7. The analogous results as presented in Figure 5.6, except considering the undirected network

constraints described in Subsection 5.5.1. Note that the second row of figures still show non-uniformity

of the ×’s in (b) and (c); however, in contrast to the curves shown in Figure 5.6 for the directed network

constraints, the multi-stage curves here continue to exhibit a monotonic tradeoff between increasing

communication penalty and decreasing detection penalty. See Subsection 5.5.1 for more discussion of

these results.

non-monotonicity when T > 1 implies that our multi-stage approximation does not

always yield improved detection performance upon tolerating additional communica-

tion penalty. Nonetheless, on the whole, these tradeoff curves do resemble those of

the single-stage architecture; moreover, we see that the achieved detection performance

gets significantly closer to the benchmark centralized performance with each additional

communication stage, all other things equal.

Figure 5.7 displays the analogous collection of tradeoff curves given an undirected

network topology, every stage of communication featuring bidirectional symbol ex-

changes along each link. Here, just as in the case of directed constraints, on the whole

the multi-stage approximation achieves the same type of performance tradeoffs as those

achieved by the team-optimal single-stage solution. Interestingly, in comparison to

Figure 5.6, the non-monotonicity of each individual curve is not nearly as apparent.

This suggests that the multi-stage approximation may somehow be better tuned for the

probabilistic structure induced by undirected network constraints than those induced
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by directed network constraints.

The second main question we address empirically is how well network-constrained

posterior marginals, generated via (5.12) in successive stages of our multi-stage de-

centralized strategy, can approximate those generated by successive iterations of the

(unconstrained) belief propagation algorithm. In a four-node hidden Markov model,

the belief propagation algorithm is known to converge in just three parallel iterations,

always yielding the exact posterior marginal p(xi|y) at every node i. We focus on

the instance of this model with (w, r) = (0.9, 1). The analogous network-constrained

architecture is that of three-stages with the same undirected topology as the probabil-

ity graph, setting both the erasure probability q and the weight λ on communication

penalty to zero to most closely match the ideal communication assumptions of be-

lief propagation. Note that with these parameter settings, we may view a multi-stage

communication strategy as a (severely) quantized analog to the belief propagation algo-

rithm, every pair of neighboring nodes successively exchanging ternary-valued symbols

as opposed to real-valued messages. Of course, success of our network-constrained so-

lution distinctly requires the initial investment in offline optimization. In particular, to

implement (5.12), we must both select a sound communication strategy µ̃ and determine

the associated final-stage likelihood function P µ̃
i for every node i. In the experiments

to follow, these quantities were found using the approximate offline algorithm described

in Section 5.4, generating the former via repeated applications of the single-stage algo-

rithm and the latter based on 10000 samples from the processes (X,Y ) and simulating

the processes (U,Z) = µ̃(Y ).

Figure 5.8 compares the sequence of network-constrained “beliefs” (i.e., approxima-

tion of the true posterior marginals) given by our multi-stage decentralized strategy to

those given by the (unconstrained) belief propagation algorithm. Figure 5.8(a) shows

two instances of these belief sequences, the only difference between the two being the

measurement vector Y = y. The first instance shows the network-constrained approxi-

mation being close to belief propagation after T = 3 iterations, while the second instance

exhibits disagreement between the two. The latter case turns out to be an atypical case,

as is reflected by the on-average performance comparison in Figure 5.8(b). These are cal-

culated based on 1000 samples from the measurement process Y , applying two different

measures of error on each resulting sequence of beliefs. The first we call the mode-

prediction error, which quantifies how often the mode of a node’s “belief” differs from

the mode of its true posterior marginal. Specifically, denoting the stage-t belief at node i

byM t
i , we count a mismatch at node i in stage t if arg maxxi p(xi|y) 6= arg maxxi M

t
i (xi).
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Figure 5.8. Empirical comparison between the sequence of “beliefs” (i.e., approximation of the true

posterior marginals) produced by our network-constrained strategy and those produced by (uncon-

strained) belief propagation in a four-node hidden Markov model. In (a), we show the specific belief

sequences for two of the 1000 samples from measurement process Y , while (b) compares their on-average

performance per stage t. Belief propagation always converges to the correct answers in T = 3 stages, and

our network-constrained approximation is seen to remain within statistical significance over successive

stages under two different error measures.

The mode prediction error per stage sums these mismatches over the four nodes, then

taking the average over 1000 measurement samples. The second measure of error is the

(symmetrized) relative entropy [22] between M t
i (xi) and p(xi|y), again taking the sum
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over nodes for each sample and then averaging the result over all 1000 samples. Under

either error measure, we see that our network-constrained beliefs stay within statistical

significance of the errors associated with the (optimal) belief propagation algorithm.

� 5.5.2 A Small “Loopy” Graphical Model

It is well-known that graphical models with cycles, or loops, present many additional

computational challenges in comparison to their tree-structured counterparts. Indeed,

most iterative message-passing algorithms such as belief propagation are derived assum-

ing the absence of loops, so their application to such models raises deep questions about

convergence and, given convergence does occur, the quality of the resulting solution. A

simplest example that exposes the associated limitations of loopy belief propagation is

the four-node model shown in Figure 5.9(a). We see in Figure 5.9(c) that convergence

(and hence satisfactory decision-making performance) of loopy belief propagation is lost

for parameter values of w near zero, corresponding to models in which every pairwise

interaction is (locally) repulsive. This can be attributed to the net effect of the pair of

cycles, shown in Figure 5.9(b) to make the central edge between X1 and X4 become

attractive as w tends to zero. Efficient message-passing algorithms are known to have

difficulty when “long-distance” dependencies lead to interactions between neighbors

that contradict those specified locally, commonly referred to as a “frustrated” model.

The experiments in this subsection repeat the procedure by which the results in Fig-

ure 5.8 were obtained, but using the four-node loopy model in Figure 5.9 with w = 0.05.

In contrast to the four-node chain, we no longer expect successive iterations of belief

propagation to converge to the true posterior marginals. Figure 5.10 shows the resulting

average performance comparison, based again on 1000 samples from the measurement

process Y . The network-constrained beliefs are seen to stabilize by the third stage,

while those of belief propagation already begin to diverge, or oscillate. By making

explicit use of memory, and through the offline optimization, our sequence of beliefs

appears to be less susceptible to the so-called “double-counting” effect that confounds

most other (online) message-passing algorithms when applied to loopy models.

We close this chapter with some forward-looking speculation on the promise of our

method as an alternative approximation paradigm in graphical models for which exist-

ing message-passing algorithms have difficulty. This comparison neglects the differences

in communication overhead, in which our methods are superior by design. From the per-

formance perspective, our approximation always provides an improvement over myopic

performance, while loopy belief propagation (especially in the absence of convergence)
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Figure 5.9. A (a) four-node graphical model with two cycles, (b) an illustration of its dependence on

state correlation parameterized by w and (c) simulated decision performance (top figure) and conver-

gence rate (bottom figure) of the loopy belief propagation algorithm across all values of w (and with

measurement parameter r = 1, as usual). The algorithm performs reliably for edge weights above 0.5

(i.e., attractive models) and moderately below 0.5, but fails catastrophically in the “frustrated “regime

(roughly w < 0.25), performing worse than the myopic strategy (with performance shown by the dotted

horizontal line). The ×’s in the bottom figure indicate the percentage of Monte-Carlo runs in which

usual sum-product converges before the 100th iteration, occurring infrequently for the same values of

w in which performance is poor.

can fail catastrophically, performing even worse than the myopic approximation; on the

other hand, when loopy belief propagation does converge, its performance is typically

better than that of our network-constrained solutions. From the computational per-

spective, a clear disadvantage of our method is the offline overhead, an issue entirely

absent in belief propagation. On the other hand, our online processing strategy is de-

signed to terminate in only a few online iterations (by constraint), whereas the belief

propagation algorithm in even small loopy models is seen to take an order of magni-

tude more iterations to converge (if it converges). In applications where convergence

is difficult to guarantee over all probable measurements and online computation is or-

ders of magnitude more expensive than offline computation, our methods become an

attractive alternative. On the other hand, problems of practical interest will involve

large graphical models, and whether our methods can scale in a manner comparable
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Figure 5.10. Empirical comparison between the sequence of “beliefs” (i.e., approximation of the true

posterior marginals) produced by our network-constrained strategy and those produced by (uncon-

strained) belief propagation in a “frustrated” graphical model (i.e., model in Figure 5.9 with w = 0.05).

Our network-constrained beliefs indicate improvement, under both error measures, over those produced

by the (unconstrained) belief propagation algorithm.

to the scalability of belief propagation, while preserving the satisfactory performance

demonstrated here for only the simplest models, remains to be seen.



Chapter 6

Conclusion

IN this thesis, motivated by the numerous engineering challenges associated with de-

tection applications of so-called “collaborative self-organizing wireless sensor net-

works,” we have formulated and analyzed an important class of network-constrained

decision problems. The distinguishing assumption from their unconstrained counter-

parts is the presence of spatially-distributed decision objectives as well as explicit (and

typically severe) constraints or costs on the available communication resources. Our in-

troductory chapters drew connections between two traditionally separated active areas

of research, namely approximate inference methods in graphical models and decentral-

ized (team) Bayesian methods in multi-sensor detection. The complementary aspects

of the associated models and algorithms led to our overarching hypothesis that the

most promising distributed algorithmic solutions for sensor network applications lie at

the intersection of these two areas. In the next section, we summarize the analysis

and results of the preceding technical chapters in the context of how they support this

hypothesis; the final section outlines the many questions that remain unanswered by

this thesis in the context of recommendations for future research.

� 6.1 Summary of Contributions

At the highest level, the contributions of this thesis can be stated in terms of apply-

ing well-understood ideas from the formalism of probabilistic graphical models into

the formalism of decentralized detection models, and vice-versa. The manner in which

this could be accomplished, however, depends upon a number of significant yet subtle

assumptions about the global processing objectives and the network communication

constraints. Arguably the most important of these from the engineering perspective is

a crisp distinction between “online” measurement processing (i.e., the implementation

of any collection of rules by which every node maps any particular measurement into

its local decisions) and “offline” strategy optimization (i.e., the procedure by which all
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rules are designed in order to mitigate the loss in global decision performance subject

to the online network constraints). In particular, the value and feasibility of a self-

organizing sensor network is not only measured by whether satisfactory online decision

performance is achievable; it must also be the case that the network resources con-

sumed for offline organization (and re-organization) represent only a modest fraction

of the resources available over the total operational lifetime. Within the scope of this

thesis, the decision objectives and network constraints are assumed to change slowly

relative to the time intervals within which nodes are expected to receive measurements

from the environment. In this case, the relatively high price of performing each of-

fline organization can be amortized over a substantial number of highly-efficient online

usages.

From an academic perspective, the contributions involve bridging the contrasting

constraints and perspectives of the two disciplines of graphical models and decentralized

decision-making. Recall that graphical models provide compact representations for the

joint distribution of a large number of random variables, and the standard message-

passing algorithms (e.g., belief propagation) exploit the graph structure to compute

sufficient statistics efficiently for optimal decision-making. However, when each node in

the graph is taken to be a spatially-distributed sensor, these message-passing algorithms

effectively assume an ideal online communication model (e.g., a network medium fea-

turing a reliable, high-rate link for every edge in the probability graph). On the other

hand, decentralized detection models assume a non-ideal online communication model

from the start (e.g., a low-rate or unreliable network medium), but the standard offline

optimization algorithm requires that total computation/communication overhead scales

exponentially with the number of nodes.

Altogether, standard approaches in graphical models require excessive online com-

munication resources (but no need for offline organization), while standard approaches

in decentralized detection lead to feasible online strategies (by constraint) but then re-

quire excessive offline network resources. The analysis and results in Chapter 3 show a

simplest problem instance in which the best of both worlds is achieved: assuming (i) on-

line measurement processing is constrained to a single forward sweep in a directed poly-

tree network, (ii) the measurement/channel noise processes are spatially-independent

and (iii) the global decision criterion decomposes additively across the nodes, the as-

sociated offline computation admits interpretation as an iterative forward-backward

message-passing algorithm. Each forward sweep propagates likelihood messages, en-

coding what online communication along each link means from the transmitter’s per-
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spective, while each backward sweep propagates cost-to-go messages, encoding what

online communication along each link means from the receiver’s perspective. In each

offline iteration, both types of incoming messages influence how each node updates its

local rule parameters before it engages in the next iteration. The convergent offline

iterations thus correspond to all nodes simultaneously arriving at a globally-consistent

“fusion protocol” for how to both generate and interpret the communication symbols

during subsequent online measurement processing.

The key steps by which we obtain these initial results can be traced to a collection

of earlier works in the abundant decentralized (team) detection literature. As was

discussed in Chapter 3, however, each of these earlier works considered only a special

case of the model considered in Chapter 3, typically employing a proof technique not

immediately applicable to our more general case. For example, our results hold for noisy

channel models that include a dependence on the local hidden state (e.g., for detecting

the presence or absence of a jamming signal) or the composite transmissions of all parent

nodes (e.g., for modeling the effects of multipoint-to-point interference). Our results also

shed new light on the extent to which the graphical structure underlying the spatially-

distributed hidden state process may deviate from the communication network topology

without sacrificing either algorithm correctness or efficiency. In particular, no matter

the structure of the global prior probabilities p(x), the offline message-passing algorithm

assumes only that each node i is initialized with what we termed its neighborhood

priors p(xi, xpa(i)), or the joint distribution of its own local state process and those of

its parents pa(i) on the communication graph.

Using essentially the same team-theoretic analysis techniques as in Chapter 3, sub-

sequent technical chapters examine increasingly more elaborate online decision architec-

tures. Our analysis goals remain the same: identify the minimum model assumptions

under which we retain both application-layer correctness and network-layer efficiency

in the developed algorithmic solutions (i.e., we can satisfy necessary team-optimality

conditions via convergent offline message-passing algorithms). The first half of Chap-

ter 4 considers the simplest architecture that introduces the prospect of bidirectional

online communication, namely just one round of communication on an undirected net-

work topology. Our analysis reveals a somewhat curious result: relative to what is

known for the single-sweep directed architecture, the single-stage undirected architec-

ture requires more assumptions to avoid worst-case intractability (i.e., when satisfying

team-optimality conditions is NP-complete with even just two nodes), yet less assump-

tions to attain best-case tractability (i.e., when satisfying team-optimality conditions is
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accomplished by an offline message-passing algorithm). The second half of Chapter 4

combines the two types of architectures, which we call hybrid networks, to introduce

the prospect of long-distance communication among a subset of nodes. Under the usual

model assumptions (i.e., spatially-independent noise, additive costs) and some mild

restrictions on the interface between the two types of networks (e.g., a set of local di-

rected networks, each with a single root, and an undirected network connecting these

root nodes), we again show that team-optimality conditions can be satisfied with an

offline message-passing algorithm.

The key step of our analyses in Chapter 4 is to “unravel” the bidirectional com-

munication defined on the undirected or hybrid topology into an equivalent directed

topology in which each node can appear as both a transmitter and a receiver. This

simple idea has appeared in other research literature, referred to as a computation tree

in the context of analyzing the “loopy” belief propagation algorithm [47, 63, 99] and

a feedback architecture in the context of decentralized detection [3, 72]. Of course, as

in Chapter 3, our problem differs from those treated by belief propagation in that the

communication graph represents low-rate or unreliable links and need not bear any re-

lation to the graph underlying the hidden state process. Our differences from the work

on feedback architectures are more subtle. Firstly, the focus in this other work is on

performing a global binary hypothesis test (rather than ours, which allows distributed

objectives and decisions); secondly, it is assumed that each node processes only a new

measurement in each stage, all nodes essentially “forgetting” all but a single bit of infor-

mation about all previously-processed measurements. In contrast, our model assumes

every node processes the same local measurement in successive decision stages, which

in the undirected and hybrid architectures of Chapter 4 does not affect the applicability

of our efficient message-passing algorithms.

The story changes dramatically for network-constrained decision architectures in

which there are multiple stages of online communication. Drawing from the canonical

message schedules employed in belief propagation, Chapter 5 formulates multi-stage

architectures for both directed and undirected network topologies, the former consist-

ing of repeated forward-backward sweeps and the latter consisting of repeated parallel

exchanges. Our team-theoretic analysis exposes a number of new structural properties

that an optimal multi-stage processing strategy should satisfy, including how the use

of memory at each node affords an increasingly accurate approximation to its posterior

marginals (i.e., the sufficient statistic for making its local state-related decision that

sum-product belief propagation aims to compute). Unfortunately, even under best-case
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model assumptions, the required memory (and, in turn, the offline solution complexity)

grows exponentially with the number of online communication stages. Nonetheless,

an approximation that leverages repeated application of the efficient single-stage solu-

tions demonstrates appealing empirical results in comparison to unconstrained belief

propagation algorithms on several small-scale models.

We may sum up the academic contributions of this thesis as follows. From the

perspective of probabilistic graphical models, we developed new online message-passing

algorithms in which global decision performance degrades gracefully as network con-

straints become arbitrarily severe. These constraints include a fixed small number of

iterations, the presence of low-rate or unreliable links, or a communication graph that

differs from the underlying probability graph. From the perspective of decentralized

detection models, we developed new offline message-passing algorithms that remain

tractable for a larger class of detection objectives and network constraints than previ-

ously considered. This class of problems includes explicit communication-related costs

as well as the usual detection-related costs but with spatially-distributed hidden state

processes and perhaps multiple gateway (i.e., decision-making) nodes; it also extends

to unreliable networks defined on either directed and undirected topologies as well as

certain combinations of the two.

� 6.2 Recommendations for Future Research

There are a variety of open research problems arising from this thesis. Some involve

strengthening the established convergence/efficiency guarantees we’ve obtained, others

involve relaxing one or more of the modeling assumptions we’ve made, and still others

involve designing entirely new (and ideally distributed) algorithms for obtaining quan-

tities that our offline message-passing solutions consider to be given. We categorize

the recommendations for future research into whether or not there is only one stage of

online communication, reflecting the fundamental divide in complexity for multi-stage

architectures exposed during the course of this thesis.

� 6.2.1 Single-Stage Communication Architectures

Recall that the theoretical convergence guarantee for the offline message-passing algo-

rithm in Chapter 3 is only with respect to the penalty sequence {J(γk)}. However,

empirically, we have yet to observe the associated parameter sequence {θk} itself fail

to converge, but the possibility is known to exist for coordinate-descent algorithms, in

general. This begs the question as to whether the assumptions by which the offline
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message-passing is derived also allow for stronger convergence statements than those

inherited from the more general case considered in Corollary 3.1. One line of attack

could be to establish that the offline message-passing equations are contractions un-

der some distance metric between successive iterates [6, 71]. Similar questions arise as

to whether the offline message-passing algorithm is more amenable to bounds on the

achievable decentralized performance: while we have used the (zero communication)

myopic upper bound and the (infeasible) centralized lower bound to gauge the success

of our solutions, we have no results on the performance relative to that of the best

feasible strategy (i.e., not one constrained only to be person-by-person optimal).

Another important category of questions concerns the robustness of the offline

message-passing algorithm when not every assumption under which it is convergent

can be satisfied. One such question is the degree to which errors (e.g., due to high-rate

quantization) in the offline messages can be tolerated. Analogous questions have been

studied for the belief propagation message-passing algorithms [47, 90], but the key dif-

ference in our setup is that there are two different types of messages and, moreover,

the rule parameters also change with successive iterations. A similar line of questioning

could bound the adverse effects of mismatches between the local models assumed at any

particular node from the true ones. This is especially pertinent as concerns the neigh-

borhood priors p(xi, xpa(i)) in directed networks or p(xi, xne(i)) in undirected networks,

which may themselves be difficult to compute exactly when the communication graph is

radically different from the probability graph. It is also of keen interest with respect to

the rule-dependent statistics p(ui, x̂i|xi, upa(i); γi) local to each node i, as the associated

marginalization over Yi can be difficult to carry out exactly in certain measurement

models of practical interest.

The experiments in Chapter 3 only scratched the surface of the many robustness

questions with respect to whether the required model assumptions are satisfied. In par-

ticular, we compared our message-passing solution to the true team-optimal solution in

a simplest non-tree-structured detection network. While performance of the tree-based

approximation was notably inferior, it still performed well relative to the benchmark

myopic/centralized performances. Other interesting questions along these lines is how

much is lost when not all noise processes are spatially independent, or when the cost

function does not decompose additively across the nodes. Part of addressing these ques-

tions in larger examples could require a network-constrained analog to the junction-tree

algorithm [49, 60], where multiple nodes must be merged into super-nodes before one

can tractably compute the true team-optimal solution. Understanding such robustness
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properties is also a first step towards addressing the even more difficult problem of when

a detection network should reorganize i.e., when have the network topology, the deci-

sion objective or the local models changed enough to merit re-optimization as opposed

to just accepting the potentially degraded online performance using the rules obtained

from the preceding optimization.

Finally, in all of our analysis and almost all of our examples, we assumed that the

network topology and the gateway nodes were given. The one exception was when we

were randomly generating 100-node detection networks for our large-scale experiments

in Chapter 3 and Chapter 4. There we employed a simple heuristic based on the given

probabilistic model and neglecting the need for a distributed algorithm to do so, solving

for a max-weight spanning tree using as weights the pairwise correlations between the

hidden state variables. Optimizing the selection of the topology and desirable gateway

nodes is the subject of ongoing research [91]. Another interesting extension to our model

would be to equip certain nodes with the option to request additional information from

its neighbors, perhaps with some additional cost, as has been studied so far (to our

knowledge) only in a simplest two-node tandem network [74].

� 6.2.2 Multi-Stage Communication Architectures

In comparison to single-stage architectures, our understanding of multi-stage architec-

tures is far more limited and, in turn, our suggestions for future research are less specific.

One particularly obvious suggestion is a proof or disproof of Conjecture 5.1, although

our approximation that takes it to be true has shown in preliminary experiments that

it may be a sound assumption regardless. Of course, more comprehensive experimen-

tation is required to say for certain. For more realistic problems, it may also turn out

that neglecting the true dependence of each node’s stage-t side information on all nodes’

preceding communication rules is too simplistic. New methods for exploiting the causal

processing assumptions and perhaps other available structure in the prior probabilities

p(x) may lead to performance gains that are worth the additional offline computation

overhead.

There are many other facets to the exposed problem complexity that have not

been tackled satisfactorily by our approximate solution method. The main one is the

exponential complexity in the parameterization of the online processing rules. Our ex-

periments have so far considered only small-scale problems in which the this complexity

is not yet the main barrier. However, based on intuition associated with inference in

graphical models, we’d like to push towards a number of stages on the order of the di-



182 CHAPTER 6. CONCLUSION

ameter of the probability graph. In these cases, methods for systematically reducing the

memory requirements, perhaps adaptively as a function of all observed data, become

crucial. The most promising methods for such approximation may show themselves

in the limit of infinite-horizon analyses, similar to how steady-state approximations to

finite-horizon control problems often provide satisfactory approximate solutions.



Appendix A

Directed Network Constraints:

Proofs

� A.1 Person-by-Person Optimality

Proposition 3.1 is proven as follows. The rule γ∗i minimizes J in (3.1) over all Γi, holding

all other rules fixed at γ∗\i, if and only if the process (Ui, X̂i) = γi(Yi, Zi) minimizes

E
[

c
(

U\i, ui, X̂\i, x̂i,X
)∣
∣
∣Yi, Zi; γ

∗
\i

]

, (A.1)

over all possible realizations (ui, x̂i) ∈ Ui × Xi, with probability one. Fix a realization

(ui, x̂i) and consider the distribution p(u\i, x̂\i, x|yi, zi; γ
∗
\i, ui, x̂i) underlying (A.1), or

equivalently

p(u\i, x̂\i|x, yi, zi; γ
∗
\i, ui, x̂i)p(x|yi, zi; γ

∗
\i, ui, x̂i).

By virtue of Lemma 3.1, the first term simplifies to

p(u\i, x̂\i|x, yi, zi; γ
∗
\i, ui) =

p(u\i, zi, x̂\i|x; γ∗\i, ui)

p(zi|x; γ∗\i)
,

and, applying Bayes’ rule, the second term simplifies to

p(x|yi, zi; γ
∗
\i) =

p(x)p(yi|x)p(zi|x; γ∗\i)
p(yi, zi; γ

∗
\i)

for every zi ∈ Zi such that p(yi, zi; γ
∗
\i) > 0. Taking the product of the two fractions,

the positive-valued denominator neither depends on x nor on (ui, x̂i) and, as such, has

no bearing on the minimization of (A.1). Altogether, it suffices to require that γi(Yi, zi)

minimize
∑

x∈X

θ∗i (ui, x̂i, x; zi)p(Yi|x)
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with probability one, where for each fixed value of (ui, x̂i),

θ∗i (ui, x̂i, x; zi) =
∑

u\i

∑

x̂\i

c(u, x̂, x)p(u\i, zi, x̂\i, x; γ
∗
\i, ui) (A.2)

and, again by virtue of Lemma 3.1,

p(u\i, zi, x̂\i, x; γ
∗
\i, ui) = p(x)p(zi|x, upa(i))

∏

j 6=i

p(uj , x̂j |x, upa(j); γ
∗
j ).

� A.2 Offline Efficiency

Proposition 3.2 is proven as follows. With Assumption 3.2 in effect, we may begin

with the person-by-person optimality conditions expressed in Corollary 3.2. With As-

sumption 3.3 also in effect, we may substitute (3.15) into (3.1), obtaining for any fixed

strategy γ ∈ Γ an additive global penalty function,

J(γ) =

n∑

i=1

Gi(γ)

with

Gi(γ) =
∑

xi

p(xi)
∑

ui

∑

x̂i

c(ui, x̂i, xi)
∑

zi

p(zi|xi; γ)p(ui, x̂i|xi, zi; γi)

for each i, where we have employed the identities

p(ui, x̂i, xi; γ) = p(xi)
∑

zi

p(zi, ui, x̂i|xi; γ) = p(xi)
∑

zi

p(zi|xi; γ)p(ui, x̂i|xi, zi; γi).

Lemma A.1. Let Assumption 3.2 and Assumption 3.3 hold. Then Corollary 3.2 applies

with (3.13) specialized to

φ∗i (ui, x̂i, xi; zi) ∝ p(xi)P
∗
i (zi|xi) [c(ui, x̂i, xi) + C∗

i (ui, xi; zi)]

with likelihood function

P ∗
i (zi|xi) = p(zi|xi; γ

∗
\i)

and cost-to-go function

C∗
i (ui, xi; zi) =

∑

m∈de(i)

∑

xm

∑

um

∑

x̂m

p(xm, um, x̂m|zi, ui, xi; γ
∗
\i)c(um, x̂m, xm),

where de(i) denotes the descendants of node i (i.e., the children ch(i), each such child’s

children, and so on) in the directed network F .
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Proof. Substitute (3.15) into (A.2) and rearrange summations to obtain

θ∗i (ui, x̂i, x; zi) = p(x, zi; γ
∗
\i)



c(ui, x̂i, xi) +
∑

m6=i

∑

m6=i

∑

um

∑

x̂m

p(um, x̂m|x, zi, ui; γ
∗
\i)c(um, x̂m, xm)



 .

Conditioned on Zi = zi, the penalty term for each m other than the local node i or

any one of its descendants de(i) will not depend upon the candidate decision (ui, x̂i), so

each such term has no bearing on the minimization in (3.8). That is, in Proposition 3.1

it now suffices to satisfy

θ∗i (ui, x̂i, x; zi) ∝ p(x, zi; γ
∗
\i)



c(ui, x̂i, xi) +
∑

m6=i

∑

m∈de(i)

∑

um

∑

x̂m

p(um, x̂m|x, zi, ui; γ
∗
\i)c(um, x̂m, xm)





and, in turn, in Corollary 3.2 it now suffices to satisfy

φ∗i (ui, x̂i, xi; zi) ∝
∑

x\i

p(x, zi; γ
∗
\i)



c(ui, x̂i, xi) +
∑

m6=i

∑

m∈de(i)

∑

um

∑

x̂m

p(um, x̂m|x, zi, ui; γ
∗
\i)c(um, x̂m, xm)





= p(xi, zi|γ∗\i)



c(ui, x̂i, xi) +
∑

m6=i

∑

x\i

p(x\i|xi, zi; γ
∗
\i)

∑

m∈de(i)

∑

um

∑

x̂m

p(um, x̂m|x, zi, ui; γ
∗
\i)c(um, x̂m, xm)





= p(xi)P
∗
i (zi|xi) [c(ui, x̂i, xi) + C∗

i (ui, xi; zi)] ,

the last line employing the identity

∑

x\i

p(x\i|xi, zi; γ
∗
\i)p(um, x̂m|x, zi, ui; γ

∗
\i) = p(um, x̂m|xi, zi, ui; γ

∗
\i)

for every descendant m ∈ de(i).
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Lemma A.2. Let Assumption 3.2 and Assumption 3.4 hold. Then, under any fixed

strategy γ ∈ Γ, the local likelihood function for received information Zi at each node i

(with at least one ancestor) satisfies

p(zi|xi; γ) ∝
∑

upa(i)

p(zi|xi, upa(i))
∑

xpa(i)

p(xpa(i)|xi)
∏

j∈pa(i)

p(uj |xj ; γ)

with

p(uj|xj ; γ) =
∑

zj

p(zj|xj ; γ)
∑

x̂j

p(uj, x̂j |xj , zj ; γj)

for every parent j ∈ pa(i).

Proof. Let an(i) denote the ancestors of node i (i.e., the parents pa(i) of node i,

each such parent’s parents, and so on). Starting from Corollary 3.2, for every node

i without ancestors (and hence without information Zi), we have p(zi|x; γ) = 1 and

p(ui, x̂i|x, zi; γ) = p(ui, x̂i|xi; γi). For every node i with ancestors, the forward partial

order of network topology F implies the recursive definition

p(zi|x; γ) =
∑

zpa(i)

∑

upa(i)

∑

x̂pa(i)

p(zpa(i), upa(i), x̂pa(i), zi|x; γ)

=
∑

upa(i)

p(zi|xi, upa(i))
∑

zpa(i)

∑

x̂pa(i)

p(zpa(i), upa(i), x̂pa(i)|x; γ)

=
∑

upa(i)

p(zi|xi, upa(i))
∑

zpa(i)

p(zpa(i)|x; γ)
∑

x̂pa(i)

p(upa(i), x̂pa(i)|x, zpa(i); γ)

=
∑

upa(i)

p(zi|xi, upa(i))
∑

zpa(i)

p(zpa(i)|xan(i); γan(i)−pa(i)) ×

∏

j∈pa(i)

∑

x̂j

p(uj , x̂j|xj , zj ; γj)

≡ p(zi|xan(i), xi; γan(i)). (A.3)

We see that the global likelihood function for information Zi received by each node

i from its parents pa(i) (if any) depends at most on the rules γan(i) local to all ancestors

and the states (Xan(i),Xi) local to itself and its ancestors. In turn, the global likelihood

function for information Ui transmitted by each node i to its children ch(i) (if any) is

p(ui|x; γ) =
∑

zi

p(zi|x; γ)
∑

x̂i

p(ui, x̂i|xi, zi; γi)

≡ p(ui|xan(i), xi; γan(i), γi). (A.4)



Sec. A.2. Offline Efficiency 187

Now, Assumption 3.4 ensures that no two nodes have a common ancestor, or equiv-

alently that the collection of index sets {an(j); j ∈ pa(i)} partition the index set

an(i) − pa(i). Because individual measurements are assumed to be mutually inde-

pendent (conditioned on X), information derived from mutually-exclusive subsets of

measurements will be similarly independent i.e.,

p(zpa(i)|x; γ) =
∏

j∈pa(i)

p(zj |x; γ). (A.5)

Combining (A.3)–(A.5) yields

p(zi|x; γ) =
∑

upa(i)

p(zi|xi, upa(i)) ×
∏

j∈pa(i)




∑

zj

p(zj |xan(j), xj ; γan(j))
∑

x̂j

p(uj , x̂j |xj , zj ; γj)





=
∑

upa(i)

p(zi|xi, upa(i))
∏

j∈pa(i)

p(uj |x; γ),

so that

p(zi|xi; γ) =
∑

x\i

p(x\i|xi)p(zi|x; γ)

=
∑

upa(i)

p(zi|xi, upa(i))
∑

xan(i)

p(xan(i)|xi)
∏

j∈pa(i)

p(uj |x; γ)

=
∑

upa(i)

p(zi|xi, upa(i))
∑

xpa(i)

p(xpa(i)|xi) × (A.6)

∑

xan(i)\pa(i)

p(xan(i)−pa(i)|xpa(i), xi)
∏

j∈pa(i)

p(uj |x; γ).

It remains to show that the inner sum in (A.6) is proportional to

∏

j∈pa(i)

∑

xan(j)

p(xan(j)|xj)p(uj |x; γ) =
∏

j∈pa(i)

p(uj|xj ; γ), (A.7)

where each jth factor is seen to be equal to p(uj|xj ; γ) by virtue of (A.4). First recognize

that, for any particular m ∈ pa(i), we may write

p(xan(i)−pa(i)|xpa(i), xi) = p(xan(i)−pa(i)−an(m)|xpa(i), xi)p(xan(m)|xan(i)−an(m), xi),
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in which case the inner sum in (A.6) is equivalent to

p(um|xan(i)−an(m), xi; γ)
∑

xan(i)−pa(i)−an(m)

p(xan(i)−pa(i)−an(m)|xpa(i), xi)×
∏

j∈pa(i)\m

p(uj|x; γ)

with

p(um|xα(i)−α(m), xi; γ) =
∑

xα(m)

p(xα(m)|xα(i)−α(m), xi)p(um|x; γ)

=
∑

xα(m)

(
p(xα(i), xi|xm)

p(xα(i)−α(m), xi|xm)

)

p(um|x; γ)

=

∑

xα(m)

p(xα(i), xi|xm)p(um|x; γ)

p(xα(i)−α(m), xi|xm)

∝
∑

xα(m)

p(xα(m)|xm)p(um|x; γ).

For any other parent ℓ ∈ π(i) −m, if we let an(m, ℓ) denote the union an(m) ∪ an(ℓ),

we may similarly write

p(xan(i)−pa(i)−an(m)|xpa(i), xi) = p(xan(i)−pa(i)−an(m,ℓ)|xpa(i), xi)p(xan(ℓ)|xan(i)−an(m,ℓ), xi)

and conclude that the inner sum in (A.6) is equivalent to

p(um|xan(i)−an(m), xi; γ)p(uℓ|xan(i)−an(ℓ), xi; γ)×
∑

xan(i)−pa(i)−an(m,ℓ)

p(xan(i)−pa(i)−an(m,ℓ)|xpa(i), xi)
∏

j∈pa(i)\{m,ℓ}

p(uj|x; γ)

with

p(uℓ|xan(i)−an(ℓ), xi; γ) ∝
∑

xan(ℓ)

p(xan(ℓ)|xℓ)p(uℓ|x; γ).

Continuing this procedure on a parent-by-parent basis brings us to (A.7).

Taken together, Lemma A.1 and Lemma A.2 lead directly to the forward likelihood

recursions in Proposition 3.2. The backward cost-to-go recursions also result from

Lemma A.1 and Lemma A.2, taken alongside a couple of additional arguments. Firstly,

by virtue of Assumption 3.4, the one path from any ancestor of node i to any descendant
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of node i includes node i. So, when conditioning on received information Zi = zi and

holding local decision (ui, x̂i) fixed, the information already received and transmitted

by all ancestors is independent (conditioned on X) of the information to be received

and transmitted by all descendents; mathematically, for each descendant m ∈ de(i) in

Lemma A.1, we have

p(um, x̂m|x, zi, ui; γ
∗
\i) = p(um, x̂m|x, ui; γ

∗
an(m)\i−an(i), γ

∗
m)

⇒ C∗
i (ui, xi; zi) = C∗

i (ui, xi)

and, in turn, the pbp-optimal parameter values φ∗i specialize to the form in (3.16).

Secondly, Assumption 3.4 also guarantees no two children have a common descendant,

implying that downstream costs decompose additively across child nodes i.e., for each

i,

∑

j∈de(i)

Gj(γ) =
∑

j∈ch(i)



Gj(γ) +
∑

m∈de(j)

Gm(γ)



 .
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Appendix B

Undirected Network Constraints:

Proofs

� B.1 Person-by-Person Optimality

Proposition 4.1 is proven as follows. Firstly, with Assumption 4.1 in effect, the analogous

steps taken in the proof to Lemma 3.1 conclude that, for every strategy γ ∈ Γ, the

distribution in (4.1) specializes to

p(u, x̂, x; γ) = p(x)

n∏

i=1

p(ui, x̂i|x, une(i); γi), (B.1)

where for every i,

p(ui, x̂i|x, une(i); γi) =
∑

zi∈Zi

p(zi|x, une(i))

∫

yi∈Yi

p(yi|x)p(ui, x̂i|yi, zi; γi) dyi.

Each item in Proposition 4.1 is then proven via analogous steps to those taken in the

proof to Proposition 3.1.

• The stage-two rule δ∗i minimizes J in (3.1) over all ∆i, holding the local stage-

one rule and the rules local to all other nodes fixed, if and only if the process

X̂i = δi(Yi, Ui, Zi) minimizes

E
[

c(U, X̂\i, x̂i,X)|Yi, Ui, Zi;µ
∗
i , γ

∗
\i

]

, (B.2)

over all possible realizations x̂i ∈ Xi, with probability one. Fix a realization x̂i

and consider the distribution p(u, x̂\i, x|yi, ui, zi;µ
∗
i , γ

∗
\i, x̂i) underlying (B.2), or

equivalently

p(u, x̂\i|x, yi, ui, zi;µ
∗
i , γ

∗
\i, x̂i)p(x|yi, ui, zi;µ

∗
i , γ

∗
\i, x̂i).
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By virtue of (B.1), for every (ui, zi) ∈ Ui × Zi such that p(yi, ui, zi;µ
∗
i , γ

∗
\i) > 0,

the first term simplifies to

p(u, x̂\i|x, yi, ui, zi;µ
∗
i , γ

∗
\i) = p(ui|yi, ui;µ

∗
i )p(u\i, x̂\i|x, ui, zi; γ

∗
\i)

=
p(u\i, zi, x̂\i|x, ui; γ

∗
\i)

p(zi|x; γ∗\i)
,

and the second term simplifies to

p(x|yi, ui, zi;µ
∗
i , γ

∗
\i) =

p(x)p(yi, ui|x;µ∗i )p(zi|x; γ∗\i)
p(yi, ui, zi;µ∗i , γ

∗
\i)

.

Taking the product of the two fractions, the positive-valued denominator neither

depends on x nor on x̂i and, as such, has no bearing on the minimization of (A.1);

moreover, with the (deterministic) stage-one rule fixed at µ∗i , it follows that

p(yi, ui|x;µ∗i ) ∝
{

p(yi|x) , if ui = µ∗i (yi)

0 , otherwise
.

Altogether, it suffices to require that X̂i = δi(Yi, ui, zi) minimize

∑

x∈X

b∗i (X̂i, x;ui, zi)p(Yi|x)

with probability one, where for each candidate decision x̂i,

b∗i (x̂i, x;ui, zi) =
∑

u\i

∑

x̂\i

c(u, x̂, x)p(x)p(u\i, zi, x̂\i|x, ui; γ
∗
\i) (B.3)

and, again by virtue of Lemma 3.1,

p(u\i, zi, x̂\i|x, ui; γ
∗
\i) = p(zi|x, une(i))

∏

j 6=i

p(uj , x̂j|x, une(j); γ
∗
j ).

• The stage-one rule µ∗i minimizes J in (3.1) over all Mi, holding the local stage-

two rule and the rules local to all other nodes fixed, if and only if the process

Ui = µi(Yi) minimizes

E
[

c(U\i, ui, X̂,X)|Yi; δ
∗
i , γ

∗
\i

]

, (B.4)

over all possible realizations ui ∈ Ui, with probability one. Fix a realization ui and

consider the distribution p(u\i, x̂, x|yi; δ
∗
i , γ

∗
\i, ui) underlying (B.4), or equivalently

p(u\i, x̂|x, yi; δ
∗
i , γ

∗
\i, ui)p(x|yi; δ

∗
i , γ

∗
\i, ui).
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By virtue of (B.1), the first term simplifies to

p(x̂i|yi, ui, une(i); δ
∗
i )
∏

j 6=i

p(uj , x̂j |x, une(j); γ
∗
j )

and, because knowledge of decision ui implies nothing about the measurement yi

when we consider rule µi subject to design, the second term is equivalent to p(x|yi).

We also have the identity

p(x̂i|yi, ui, une(i); δ
∗
i ) =

∑

zi∈Zi

p(zi|x, une(i))p(x̂i|yi, ui, zi; δ
∗
i )

and, By Bayes’ rule, p(x|yi) is proportional to p(x)p(yi|x) for every yi. Altogether,

it suffices to require that Ui = µi(Yi) minimize

∑

x∈X

a∗i (Ui, x;Yi)p(Yi|x)

with probability one, where for each observed value of yi and candidate decision

ui,

a∗i (ui, x; yi) =
∑

u\i

∑

x̂

c(u, x̂, x)p(x)p(u\i, x̂|x, yi; δ
∗
i , γ

∗
\i, ui) (B.5)

with

p(u\i, x̂|x, yi; δ
∗
i , γ

∗
\i, ui) =
(
∑

zi

p(zi|x, une(i))p(x̂i|yi, ui, zi; δ
∗
i )

)
∏

j 6=i

p(uj, x̂j |x, une(j); γ
∗
j ).

� B.2 Tractable Person-by-Person Optimality

Proposition 4.2 is proven as follows. We start with the stage-two decision rule in

Proposition 4.1, where substitution of (4.6) into (B.3) gives

b∗i (x̂i, x;ui, zi) = p(x)
∑

u\i

∑

x̂\i

[
n∑

m=1

c(x̂m, x) + λc(um, x)

]

p(u\i, zi, x̂\i|x, ui; γ
∗
\i)

= p(x) [c(x̂i, x) + λc(ui, x)] p(zi|x, ui; γ
∗
\i) +

p(x)
∑

m6=i

[c(x̂m, x) + λc(um, x)] p(um, zi, x̂m|x, ui; γ
∗
\i).
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Only the first part of the ith term depends upon candidate decision x̂i, and all other

terms thus have no bearing on the minimization in (4.4). That is, for the stage-two rule

in Proposition 4.1, it suffices to satisfy

b∗i (x̂i, x;ui, zi) ∝ p(x)c(x̂i, x)p(zi|x, ui; γ
∗
\i)

and, by virtue of (B.1),

p(zi|x, ui; γ
∗
\i) = p(zi|x; γ∗\i)

=
∑

une(i)

p(une(i), zi|x; γ∗\i)

=
∑

une(i)

p(zi|x, une(i))p(une(i)|x; γ∗\i)

=
∑

une(i)

p(zi|x, une(i))
∏

j∈ne(i)

p(uj|x;µ∗j ),

where in the last step we have employed the identity

p(uj |x; γ∗\i) =
∑

zj

p(zj |x; γ∗\i)
∑

x̂j

p(uj, x̂j |x, zj ; γ∗j )

=
∑

zj

p(zj |x; γ∗\i)
∑

x̂j

∫

yj∈Yj

p(uj |yj;µ
∗
j )p(x̂j |yj, uj , zj ; δ

∗
j )p(yj |x)dyj

=

∫

yj∈Yj

p(uj |yj;µ
∗
j )p(yj|x)dyj = p(uj |x;µ∗j ).

Observe that parameters b∗i , and hence the stage-two rule δ∗i , no longer depend upon the

local stage-one decision ui. In other words, the optimal local stage-two rule (assuming

all other rules fixed) lies in the subset of ∆i consisting of all functions of the form δi : Yi×
Zi → Xi and, in turn, we may assume without loss of generality that p(x̂i|yi, ui, zi; δ

∗
i ) =

p(x̂i|yi, zi; δ
∗
i ). Applying this same reduction to the local stage-two rule δ∗j of every other

node, we have the identity

p(x̂j |x, zj ; γ∗j ) =
∑

uj

p(uj, x̂j |x, zj ; γ∗j )

=
∑

uj

∫

yj∈Yj

p(uj |yj;µ
∗
j )p(x̂j |yj, zj ; δ

∗
j )p(yj |x) dyj

=

∫

yj∈Yj

p(x̂j |yj, zj ; δ
∗
j )p(yj|x) dyj = p(x̂j |x, zj ; δ∗j ).
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Next consider the stage-one rule, where substitution of (4.6) into (B.5) gives

a∗i (ui, x; yi) =
∑

u\i

∑

x̂

[
n∑

m=1

c(x̂m, x) + λc(um, x)

]

p(x)p(u\i, x̂|x, yi; δ
∗
i , γ

∗
\i, ui)

= p(x)
∑

u\i

∑

x̂

[
n∑

m=1

c(x̂m, x) + λc(um, x)

]

×

p(x̂i|yi, une(i); δ
∗
i )p(u\i, x̂\i|x, ui; γ

∗
\i)

= p(x)



λc(ui, x) +
∑

x̂ne(i)

p(x̂ne(i)|x, ui; γ
∗
\i)

∑

m∈ne(i)

c(x̂m, x)



+

p(x)




∑

u\i

∑

x̂\ne(i)

p(u\i, x̂\ne(i)|x, yi; δ
∗
i , γ

∗
\i)




∑

m/∈ne(i)

c(x̂m, x) + λ
∑

m6=i

c(um, x)







 .

Only the terms in the first bracket depend upon candidate decision ui, and all other

terms thus have no bearing on the minimization in (4.2). That is, for the stage-one rule

in Proposition 4.1, it suffices to satisfy

a∗i (ui, x; yi) ∝ p(x)



λc(ui, x) +
∑

j∈ne(i)

∑

x̂j

p(x̂j|x, ui; γ
∗
\i)c(x̂j , x)





and, by virtue of (B.1),

p(x̂j |x, ui; γ
∗
\i) =

∑

une(j)\i

p(une(j)\i, x̂j |x, ui; γ
∗
\i)

=
∑

une(j)\i

p(x̂j |x, une(j); γ
∗
j )p(une(j)\i|x; γ∗\i)

=
∑

une(j)\i




∑

zj

p(zj |x, une(j))p(x̂j |x, zj ; δ∗j )




∏

m∈ne(j)\i

p(um|x;µ∗m),

where in the last step we have employed the identity p(x̂j |x, zj ; γ∗j ) = p(x̂j |x, zj ; δ∗j )

highlighted earlier in the proof. Observe that parameters a∗i no longer depend upon the

local measurement yi.
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Appendix C

On Multi-Stage Communication

Architectures: Proofs

� C.1 Optimal Parameterization of Detection Stage

Proposition 5.1 is proven via analogous steps to those taken in the proof to Proposi-

tion 4.1 for the detection rule in the single-stage undirected architecture. Notice that

the distribution p(ui, x̂i|x, utr(i); γi) in Lemma 5.1 is structurally identical to its coun-

terpart for the single-stage undirected architecture, albeit here both ui and utr(i) are

discrete-valued length-T vectors.

The final-stage rule δ∗i minimizes J in (3.1) over all ∆i, holding the local commu-

nication rules and the rules local to all other nodes fixed, if and only if the process

X̂i = δi(Yi, I
T+1
i , ZT+1

i ) minimizes

E
[

c(U, X̂\i, x̂i,X)|Yi, I
T+1
i , ZT+1

i ;µ∗i , γ
∗
\i

]

, (C.1)

over all possible realizations x̂i ∈ Xi, with probability one. Fix a realization x̂i and con-

sider the distribution p(u, x̂\i, x|yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i, x̂i) underlying (C.1), or equiva-

lently

p(u, x̂\i|x, yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i, x̂i)p(x|yi, I

T+1
i , zT+1

i ;µ∗i , γ
∗
\i, x̂i).

By virtue of Lemma 5.1, for every (ui, zi) ∈ Ui×Zi such that p(yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i) >

0, the first term simplifies to

p(u, x̂\i|x, yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i) = p(ui|yi, I

T+1
i ;µ∗i )p(u\i, x̂\i|x, IT+1

i , zT+1
i ; γ∗\i)

and the second term simplifies to

p(x|yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i) =

p(x)p(IT+1
i , zT+1

i |x;µ∗i , γ∗\i)p(yi|x, IT+1
i , zT+1

i ;µ∗i )

p(yi, I
T+1
i , zT+1

i ;µ∗i , γ
∗
\i)

.
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Taking the product of the two terms, the positive-valued denominator neither depends

on x nor on x̂i and, as such, has no bearing on the minimization of (C.1): moreover,

p(u\i, x̂\i|x, IT+1
i , zT+1

i ; γ∗\i)p(I
T+1
i , zT+1

i |x;µ∗i , γ∗\i) = p(u, zi, x̂\i|x;µ∗i , γ∗\i).

Now, because ui ⊂ IT+1
i and we have already assumed p(yi, I

T+1
i , zT+1

i ;µ∗i , γ
∗
\i) > 0,

we have that p(ui|yi, I
T+1
i ;µ∗i ) = 1. Applying Lemma 5.1 and Lemma 5.2 given δi is

unspecified, we have that

p(ui, zi|x, utr(i);µ
∗
i ) = p(zi|x, utr(i))p(ui|x, zi;µ∗i )

and

p(ui|x, zi;µ∗i ) =
T∏

t=1

p(ut
i|x, It

i , z
t
i ;µ

∗
i ),

respectively. Similarly, applying Lemma 5.3 with δi unspecified, we have that

p(yi|x, ui, zi;µ
∗
i ) = p(yi|x, ui, z

1
i , . . . , z

T
i ;µ∗i ) = p(yi|x, IT+1

i ;µ∗i ),

which simply states that ZT+1
i is independent (conditioned on X and IT+1

i ) of the local

measurement process Yi (recall that ZT+1
i is empty if F is directed). Finally, again

appealing to Lemma 5.1, we obtain

p(u, zi, x̂\i|x;µ∗i , γ∗\i) = p(ui, zi|x, utr(i);µ
∗
i )
∏

j 6=i

p(uj , x̂j |x, utr(j); γ
∗
j ).

Altogether, it suffices to require that X̂i = δi(Yi, I
T+1
i , zT+1

i ) minimize
∑

x∈X

b∗i (X̂i, x;ui, zi)p(Yi|x, IT+1
i ;µ∗i )

with probability one, where for each candidate decision x̂i,

b∗i (x̂i, x;ui, zi) = p(x)
∑

u\i

∑

x̂\i

c(u, x̂, x)p(u, zi, x̂\i|x;µ∗i , γ∗\i). (C.2)

� C.2 Detection-Stage Offline Computation

Starting from Proposition 5.1, we follow essentially the same steps taken in the proof to

Proposition 4.2 (and starting from Proposition 4.1) for the detection rule in the single-

stage undirected architecture. First note that, with Assumption 5.3 in effect, each ith

factor in Lemma 5.1 specializes to

p(ui, x̂i|x, utr(i); γi) =
∑

zi∈Zi

p(zi|xi, utr(i))

∫

yi∈Yi

p(yi|xi)p(ui, x̂i|yi, zi; γi) dyi

= p(ui, x̂i|xi, utr(i); γi),
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leading to detection-stage parameters

β∗i (x̂i, xi;ui, zi) =
∑

x̂\i

p(x)
∑

u\i

∑

x̂\i

c(u, x̂, x)p(u, zi, x̂\i|x;µ∗i , γ∗\i) (C.3)

in Proposition 5.2 with underlying probabilistic structure specializing to

p(u, zi, x̂\i|x;µ∗i , γ∗\i) = p(ui, zi|xi, utr(i);µ
∗
i )
∏

j 6=i

p(uj , x̂j |xj , utr(j); γ
∗
j ),

p(ui, zi|xi, utr(i);µ
∗
i ) = p(zi|xi, utr(i))p(ui|xi, zi;µ

∗
i )

Now, with Assumption 5.4 in effect, we may substitute (5.8) into (C.3) and observe

that the only term in which candidate decision x̂i appears specializes to

c(x̂i, xi)
∑

x\i

p(x)
∑

u\i

p(ui, zi|xi, utr(i);µ
∗
i )
∏

j 6=i

∑

x̂j

p(uj , x̂j |xj , utr(j); γ
∗
j ).

Appealing to Lemma 5.3, local to each node j 6= i we have

∑

x̂j

p(uj, x̂j |xj , utr(j); γ
∗
j ) = p(uj |xj , u

1:T
tr(j);µ

∗
j)

Altogether, it suffices to choose rule parameters

β∗i (x̂i, xi;ui, zi) ∝ p(xi)p(ui, zi|xi;µ
∗)c(x̂i, xi)

with

p(ui, zi|xi;µ
∗) =

∑

u\i

p(ui, zi|xi, utr(i);µ
∗
i )
∑

x\i

p(x\i|xi)
∏

j 6=i

p(uj |xj, u
1:T
tr(j);µ

∗
j).
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