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Abstract

This thesis develops the novel method of recursive cavity modeling as a tractable ap-
proach to approximate inference in large Gauss-Markov random fields. The main idea
is to recursively dissect the field, constructing a cavity model for each subfield at each
level of dissection. The cavity model provides a compact yet (nearly) faithful model
for the surface of one subfield sufficient for inferring other parts of the field. This ba-
sic idea is developed into a two-pass inference/modeling procedure which recursively
builds cavity models by an “upward” pass and then builds complementary blanket
models by a “downward” pass. Marginal models are then constructed at the finest
level of dissection. Information-theoretic principles are employed for model thinning
so as to develop compact yet faithful cavity and blanket models thereby providing
tractable yet near-optimal inference. In this regard, recursive cavity modeling blends
recursive inference and iterative modeling methodologies. While the main focus is on
Gaussian processes, general principles are emphasized throughout suggesting the ap-
plicability of the basic framework for more general families of Markov random fields.
The main objective of the method is to provide efficient, scalable, near-optimal infer-
ence for many problems of practical interest. Experiments performed thus far, with
simulated Gauss-Markov random fields defined on two-dimensional grids, indicate
good reliability and scalability of the method.

The recursive cavity modeling method intersects with a variety of inference tech-
niques arising in the graphical modeling literature including multiscale modeling,
junction trees, projection filtering, Markov-blanket filtering, expectation propagation
and other methods relying on reduction of embedded models. These connections are
explored and important distinctions and extensions are noted. The author believes
this thesis represents a significant generalization of existing methods, extending the
class of Markov random fields for which reliable, scalable inference is available. But
much work remains to better characterize and investigate this claim. Recommenda-
tions for furthering this agenda are outlined.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

A Markov random field (MRF) is a collection of random variables characterized
by a set of interactions (dependencies) among subsets of these random variables
[44, 45, 66, 18, 107, 37, 97, 67, 25, 137]. Typically, these random variables (state
variables) are naturally indexed by spatial locations (sites) where the interactions
among random variables involve sets of nearby sites. While originally developed as
phenomenological models to aid in the understanding of physical processes, MRFs
now play an increasingly important role in the numeric solution, by digital com-
puter, of large-scale problems of statistical inference. In this context, MRFs are often
described as graphical models indicating the importance of graph theory in the de-
scription, representation and inference of these statistical models [105, 88, 77]. In
any case, MRFs have been exploited for modeling, simulation and estimation in a
wide variety of scientific and engineering disciplines including: physics [20, 62, 101];
geophysics and remote sensing [52]; communication and coding [59]; image process-
ing [134, 60, 19, 87]; medical imaging [90]; speech and natural language processing
[108, 106]; as well as artificial intelligence and machine learning [76, 100]. Gauss-
Markov random fields (GMRFs) are jointly Gaussian1 MRFs and are prevalent for
modeling random fields with continuous-valued states [118, 43, 124, 117].

This thesis introduces recursive cavity modeling (RCM) as a novel framework
for approximate inference of large, intractable MRFs and develops this framework for
GMRFs in particular. This is a recursive inference approach which adopts information
theoretic modeling principles – such as information projection, iterative scaling and
model selection by generalization of the Akaike information criterion – to develop
tractable models of the interaction between subfields of an otherwise intractable MRF.

This introductory chapter poses the fundamental inference problem in the context
of GMRFs (introducing some useful notation and terminology), motivates the need
for tractable methods of approximate inference for large GMRFs, provides a high-
level preview of the RCM method to be developed, and summarizes the content of
later chapters.

1Multivariate Gaussian distributions are reviewed in Chapter 2.
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1.1 Problem Statement

An appealing representation of a GMRF as a graphical model is provided by the
information parameterization of the Gaussian density. This representation tradi-
tionally arises in the information filter implementation of the Kalman filter and re-
lated smoothing algorithms (Kalman [78], Kalman and Bucy [79], Rauch, Tung and
Striebel [110], Fraser [58]). Consider a Gaussian random vector x ∼ N (x̂, P ), with
moment parameters (x̂, P ) given by the mean vector x̂ = E{x} and the covariance
matrix P = E{(x − x̂)(x − x̂)′}.2 The information parameterization is defined as
(h, J) = (P−1x̂, P−1). For non-singular systems, where P and J are invertible, mo-
ment parameters and information parameters are in one-to-one correspondence. Mo-
ment parameters are recovered from information parameters by (x̂, P ) = (J−1h, J−1).
Adopting notation as in Sudderth [125], we write x ∼ N−1(h, J) to indicate that the
random vector x is distributed according to the Gaussian distribution with informa-
tion parameters (h, J). The vector h will be referred to as the influence vector and
the matrix J as the interaction matrix.

Consider a GMRF having real-valued vector states {xγ ∈ Rnγ |γ ∈ Γ}, where xγ
is the state of site γ, nγ is the state-dimension, and Γ is the set of all sites. We
will let xγ denote a state variable (a random variable) and let xγ denote a specific
state value (a realization of that random variable). For GMRFs, the joint state
x = (xγ,∀γ ∈ Γ) is a Gaussian random vector of dimension n =

∑
γ nγ, which has

moment and information parameters as above. We respectively denote by x̂γ and hγ
the corresponding nγ-dimensional subvectors of x̂ and h. For a pair of sites γ, λ ∈ Γ,
we denote by Pγ,λ and Jγ,λ the corresponding nγ × nλ submatrices of P and J . We
employ the abbreviations Jγ = Jγ,γ and Pγ = Pγ,γ . The state variable xγ ∼ N (x̂γ, Pγ)
is also a Gaussian random vector with marginal moment parameters (x̂γ , Pγ) and with

marginal information parameters defined as (ĥγ, Ĵγ) = (P
−1
γ x̂γ, P

−1
γ ). An important

inference problem is the calculation of marginal distributions p(xγ) =
∫
p(x)dxΓ\γ,

the integral of p(x) over all other state variables xΓ\γ besides xγ, given the information
model x ∼ N−1(h, J). This may be posed as either computation of marginal moment
parameters xγ ∼ N (x̂γ, Pγ) or, equivalently, as computation of marginal information
parameters xγ ∼ N−1(ĥγ, Ĵγ).

One compelling reason for considering the information parameterization (h, J) is
that this often provides a compact graphical model of a GMRF so that the interaction
matrix J is sparse. This occurs because the fill-pattern of the interaction matrix
reflects the Markov structure of the field (reviewed in Section 2.1). Specifically, the
interactions Jγ,λ between sites γ and λ are zero when (only when) the states xγ and
xλ are conditionally independent given the joint state of all other sites. The Markov
structure of the field is then summarized by an undirected graph GΓ = (Γ, EΓ), with
vertices Γ and edges EΓ, where vertices represent sites of the field and edges represent
interactions between sites. Only those pairs of sites such that Jγ,λ �= 0 are linked
by an edge {γ, λ} ∈ EΓ. We will further review graphical models and the Markov

2We let E{·} denote the expectation operator such that, for a continuous-valued random variable
x, E{f(x)} = ∫

p(x)f(x)dx where p(x) is the probability density function (pdf) of x.
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property in Section 2.1.
Another reason for considering the information parameterization is that it is well-

suited for incorporating local observations of the form yγ = Cγxγ + vγ, a linear
observation of the state xγ corrupted by additive Gaussian measurement noise vγ ∼
N (0, Rγ). Provided the measurement noise is independent from site to site, these
observations are readily absorbed into the information parameters by updating local
influences hγ ← hγ + C

′
γR

−1
γ yγ and interactions Jγ,γ ← Jγ,γ + C

′
γR

−1
γ Cγ. Note that

such local observations do not change the interaction structure of the field but only
update local influence and interaction parameters. Given this updated information
model, the inference problem then is to infer the conditional marginal distribution
xγ|y ∼ N (x̂γ(y), P̂ ), where y = (yγ,∀γ ∈ Γ) are the observations, x̂γ(y) = E{xγ|y}
is the conditional mean and P̂γ = E{(xγ − x̂γ(y))(xγ − x̂γ(y))′|y} is the conditional
covariance.3 This is essentially the same calculation as that discussed previously, only
the parameter values have changed. Hence, without any loss of generality, we may
omit explicit reference to the observations and focus on the fundamental problem
of inferring the marginal moments {(x̂γ, Pγ)|∀γ ∈ Γ} given the information model
x ∼ N−1(h, J). Several prototypical inference problems are graphically depicted in
Figure 1-1.

1.2 Motivation

In principle, computation of the marginals is straightforward. The full set of Gaus-
sian moment parameters is recovered from the information parameters by (x̂, P ) =
(J−1h, J−1). The marginal densities are then given by selecting the appropriate sub-
sets of marginal moments (x̂γ, Pγ) for each site γ. This “brute-force” inference for an
n-dimensional GMRF requires O(n3) computation with O(n2) memory storage.

A more economical approach exploits any sparse Markov structure of the field by
employing recursive inference methodologies such as in the multiscale modeling liter-
ature4 or by the junction tree approach (Dawid [39, 40], Lauritzen and Spiegelhalter
[89], Shenoy and Shafer [122]) reviewed in Section 2.3.2. Yet, even these approaches
suffer when the so-called tree-width w, the largest state-space dimension within a
tree-structured representation of the random field (see discussion and illustrations in
Section 2.3), is large, as these methods require O(w3) computations. For instance,
in image processing applications tree-widths of order n1/2 are common, requiring
O(n3/2) computation which does not scale linearly with the dimension of the field.
For many image processing applications such methods will prove impractical. For very
large problems, such as in oceanographic or meteorological modeling with n � 106

(Fieguth et al [52]), such exact methods are not feasible. The scalability of recursive
inference in higher dimensions is even less favorable. For instance, for GMRFs defined
on 3-D lattices, we may expect tree widths of order n2/3 so that analogous recursive

3We let E{·|y} denote the conditional expectation operator with respect to the conditional prob-
ability density p(x|y) = p(x, y)/p(y), i.e. E{f(x)|y} = ∫

f(x)p(x|y)dx.
4A recent article by Willsky [132] gives a perspective on this extensive body of work. Selected

aspects of the multiscale modeling approach are reviewed in Section 2.3.3.
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(a)

(b)

(c)

Figure 1-1: Graphical depiction of several prototypical inference problems involving
MRFs. Nodes (circles) indicate sites/states of the field, edges (lines) indicate inter-
actions between states (e.g., for GMRFs, where Jγ,λ �= 0), and boxes indicate noisy
observations of states. (a) depicts the hidden Markov model (HMM) scenario arising
in signal and speech processing, (b) depicts a 2-D MRF such as arises in image pro-
cessing applications, and (c) depicts a 3-D MRF (observations suppressed) such as
might occur in the modeling of, for instance: solids in physics; volumes of the ocean
or atmosphere in the earth sciences; or tissues in medical imaging (e.g; tomography,
MRI, ultrasound).
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methods then require O(n2) computation. Again, the recursive approach is more
favorable than the O(n3) brute-force calculation (not exploiting Markov structure),
but even the recursive approach quickly becomes intractable for larger fields and this
effect is more pronounced in higher spatial dimensions. Hence, the motivation for
developing scalable, near-optimal inference methods for GMRFs. This is the pri-
mary goal of the RCM approach. Furthermore, the basic RCM framework, developed
here for GMRFs, should prove applicable and appropriate for other classes of MRFs
where exact methods may be even more complex than for GMRFs. For instance, for
binary-state MRFs the complexity of exact recursive inference is O(2w).

1.3 Preview of RCM

In recent years, several methods for tractable inference of MRFs have arisen in the
graphical modeling literature which marry ideas of recursive inference with model-
ing notions such as approximation by information projection (minimizing Kullback-
Leibler divergence over a family of less complex graphical models, as we discuss further
in Chapter 2). These include projection filtering methods for nonlinear filtering in
Markov chains (Kulhavý [86]; Brigo [27]); Markov-blanket filtering methods for dy-
namic Bayesian networks (Boyen and Koller [22]; Murphy and Weiss [99]); the expec-
tation propagation framework (Minka [96]; Heskes and Zoeter [70]); and the junction
trees edge-removal method of Kjærulff [82, 83]. A fundamental theme common to
all of these methods is the idea of performing information projection of embedded
models to less complex families of models thereby easing the burden of subsequent
inference by (otherwise) exact methods.

The recursive cavity modeling (RCM) approach continues and extends this trend,
choosing a recursive divide-and-conquer approach to inference, inspired by the mul-
tiscale modeling and junction tree methods, while adopting information-theoretic
modeling principles to select compact yet faithful approximations for the “Markov
blanket models” arising in this context. RCM exploits the Markov structure of the
field to reduce computation by forming a tree-structured decomposition of the field.
This is given by recursively dissecting the field into disjoint subfields (see Figure 1-2).
The inference is then structured according to this hierarchical dissection of the field
employing a two-pass inference procedure involving an “upward” pass followed by a
“downward” pass. In this regard, RCM closely resembles inference procedures devel-
oped for tree-structured multiscale models (Luettgen et al [92]). However, to contain
the complexity of the inference computations, the RCM approach introduces model
thinning operations so as to develop compact models of the surfaces between subfields
which are then used to infer other subfields. As in earlier approaches of Taylor [126]
and Daniel [36], this is posed as “thinning” of a graphical model by pruning edges.
RCM, however, formalizes an information theoretic modeling perspective for model
thinning. That is we adopt the information representation of the GMRF (as an expo-
nential family) and then perform edge-pruning by information projection to selected
(nearby) lower-order families of graphical models. In the context of the upward pass,
this leads to the construction of “cavity models” providing thinned models for the

13



⇓

⇓

Figure 1-2: Illustration of nested dissection of 4×4 square-grid graphical model. The
first cut partitions the sites Γ into two disjoint subsets Γ1∪Γ2 = Γ. This may be viewed
as “cutting” the edges JΓ1,Γ2 producing two partial models (hΓ1 , JΓ1) and (hΓ2 , JΓ2).
Recursing this cutting procedure generates a tree-structured nested dissection of the
graphical model. Subsequent RCM inference procedures are recursively structured
according to this dissection procedure operating on the dissected parts of the graphical
model.
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(a)

⇓

(b)

Figure 1-3: Illustration of RCM inference approach: (a) An “upward” cavity modeling
procedure constructs cavity models from sub-cavity models. This entails joining
two cavity models along their common boundary by reinstating those elements of J
severed during nested dissection; marginalizing over states in the interior of the joined
cavity model; and pruning weak edges (interactions) by information projection. (b)
A “downward” blanket modeling procedure constructs blanket models from adjacent
cavity and super-blanket models. This is also implemented by a combination of
joining, marginilization, and edge removal.

surfaces of subfields. A corresponding “downward” pass then builds complimentary
“blanket models” for each subfield from the cavity models of adjacent subfields. Both
inference/modeling procedures are illustrated in Figure 1-3. The blanket models pro-
duced at the finest level of dissection then allow for inference of the site marginals.
Note that cavity models are constructed recursively from subcavity models and hence
the name of our method, recursive cavity modeling.

The model thinning procedure plays a central role in this approach to inference.
The technique developed here departs from earlier information projection methods for
approximate inference in several regards. Most notable, we do not impose a specific
type of model structure, such as “factored” or “tree-structured”, but rather adaptively
select model structure according to a model selection criterion inspired by Akaike and
Bayesian information criteria (reviewed in Section 2.2.5). This criterion balances the
competing objectives of model fidelity (measured by Kullback-Leibler divergence)
and model complexity (measured by model order, the number of independent model
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parameters) where a parameter setting, specifying the acceptable level of information
loss (KL-divergence) per removed model parameter, controls how strongly model
compactness is favored relative to model fidelity. This provides a principled basis
for inductively selecting “weak” interactions to prune from the model. A greedy
thinning procedure is developed to decrease this metric by incremental information
projections to selected lower-order families of models. We find that this naturally
leads to the development of “thin” (low tree-width) cavity and blanket models such
that the requisite information projections may be implemented in a tractable manner
employing recursive inference and iterative parameter fitting subroutines. A novel
adaptation of the iterative scaling method (reviewed in Section 2.2.4) is developed to
implement the parameter fitting subroutine.

1.4 Thesis Organization

For the convenience of the reader, a guide indicating the content of subsequent chap-
ters is provided below.

Chapter 2 – Background. This chapter provides a unified review of the relevant
literature so as to provide the necessary context for developing and understanding the
recursive cavity modeling approach. The main objectives, in addition to acknowledg-
ing important influences, are to (i) present the picture of the GMRF as a graphical
model, (ii) emphasize connections between information theory and modeling, and (iii)
provide an overview of some recursive inference techniques.

Chapter 3 – Model Thinning. Modeling notions play a central role in the RCM
inference approach. For this reason, Chapter 3 is devoted to the preliminary task of
developing the fundamental modeling ideas and methods which are later employed
for model thinning in the context of RCM. The main features of this model thin-
ning procedure are (i) a model selection metric inspired by the Akaike and Bayesian
information criteria; (ii) imposing model structure by information projections imple-
mented by a novel adaptation of the iterative scaling procedure; and (iii) a greedy,
inductive model thinning procedure which incrementally thins the graphical model
by information projections.

Chapter 4 – Recursive Cavity Modeling. This chapter details and discusses the
basic RCM inference procedure and also presents two iterative extensions of this basic
procedure. The model thinning approach of the previous chapter is employed as a
subroutine. Pseudo-code and illustrations are provided. Simulations are performed to
investigate the scalability and the reliability of the method with some very favorable
results.

Chapter 5 – Conclusion. The main ideas and methods of the RCM approach
are summarized. Since the approach shares many ideas in common with a variety

16



of significant methods, an outline of the original contributions made by this thesis
is provided. Distinctions between RCM and existing methods are emphasized indi-
cating where, in the authors view, RCM represents a significant improvement and/or
generalization over existing methods. Finally, this thesis really only begins to explore
a novel framework for tractable inference of MRFs. Hence, in closing, recommen-
dations for further research and development aimed at refining and extending this
framework are outlined.

17
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Chapter 2

Background

This chapter provides a broad overview of several topics pertaining to the descrip-
tion, identification and inference of MRFs from the perspective of graphical modeling.
Section 2.1 introduces graphical models, focusing on the formulation appropriate for
MRFs, and discusses the information parameterization of a GMRF from this per-
spective. In Section 2.2, we step back momentarily, reviewing general principles
for statistical model selection and parameter estimation deriving from information
theory. Such information-theoretic principles have come to play an increasingly im-
portant role in the graphical modeling literature, not only for the selection of model
order, structure and parameters; but also for the design and analysis of approximate
inference procedures. Section 2.3 then reviews recursive approaches to inference and
discusses several approximate inference methods combining recursive inference with
information theoretic modeling principles.

2.1 Graphical Models

This section introduces the description of Markov random fields as graphical models.
Graphical models are often regarded as a marriage of graph theory and probability
theory, as the language of graph theory plays a central role in the description of both
the statistical structure of these models and of the data structures and algorithms
employed to represent and process such models by digital computer. Basic graph
theoretic terminology and notation is developed in the first subsection. Subsequent
subsections then clarify the role graph theory plays both for describing the statistical
structure of Markov random fields and in providing parameterized representations of
the probability distribution of a MRF. Specificly, the information parameterization
of GMRFs is discussed in the last subsection.

2.1.1 Graphs and Hypergraphs

This subsection provides some basic definitions and notation adopted from graph
theory. The definitions for undirected graphs prove useful for specifying the so-called
Markov structure of the random field (Section 2.1.2). The more general definition of a
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hypergraph proves useful for describing the structure of the underlying interactions –
local potential functions employed to construct exponential families of Gibbs random
fields (Section 2.1.3). We first define hypergraphs and then define graphs as a subclass
of hypergraphs.

Hypergraphs. Let Γ be a finite set {γ1, γ2, . . . , γ|Γ|}. A hypergraph (Berge [15],
Lauritzen [88], Yeung et al [137]) based on Γ is a pair HΓ = (Γ,HΓ) where HΓ =
(Hi, i ∈ I) is a collection of nonempty subsets Hi ⊂ Γ. The elements γ ∈ Γ are called
the vertices and the subsets H ∈ HΓ are called hyperedges. We will consider only
simple hypergraphs where Hi �= Hj for all i �= j. Hence, the collection of hyperedges
HΓ forms a set. Several examples of hypergraphs are illustrated in Figure 2-1.

The following definitions are with respect to a given hypergraph HΓ and pertain
only to the vertices and hyperedges of HΓ. A vertex γ and hyperedge H are said
to be incident in HΓ when the hyperedge contains the vertex γ ∈ H. Two vertices
(hyperedges) are adjacent inHΓ when they are incident to a common hyperedge (ver-
tex). A chain in HΓ of length l is an alternating sequence of vertices and hyperedges
(γ0, H0, γ1, H1, . . . , Hl−1, γl) where the vertices (γk, k = 1, . . . , l) and the hyperedges
(Hk, k = 0, . . . , l − 1) are distinct and where γk, γk+1 ∈ Hk for k = 0, . . . , l − 1. A
cycle is a chain with length l > 1 and with γ0 = γl. If there is a chain beginning at
vertex γ0 = γ and ending at vertex γl = λ then these vertices are said to be connected.
This defines an equivalence relation γ ≡ λ, the equivalence classes of which are the
connected components ofHΓ. A hypergraph which has only one connected component
is said to be connected. A hypergraph which does not contain any cycles is acyclic.
Finally, we define the subhypergraph of HΓ induced by Λ ⊂ Γ as HΛ = (Λ,HΛ) where
HΛ = {H ∈ HΓ|H ⊂ Λ}.

Graphs. For our purposes it is convenient to consider only undirected graphs.1 A
graph is a hypergraph where all hyperedges are doublet sets as in Figure 2-1(a). Such
doublet hyperedges are called edges. We adopt the usual convention of depicting
graphs as in Figure 2-2(c) drawing lines between adjacent vertices to indicate edges.
Hence, a graph based on Γ is a pairGΓ = (Γ, EΓ) where EΓ is a collection of unordered
pairs of distinct vertices. Again, we consider only simple graphs such that the col-
lection of edges forms a set. The above definitions for hypergraphs then apply to
graphs without modification. A chain in a graph is also called a path. Paths may be
specified by a sequence of adjacent vertices (γ0, . . . , γl). We also state some additional
definitions which we apply only to graphs.

A subset Λ ⊂ Γ is complete in GΓ if every pair of vertices γ, λ ∈ Λ are adjacent
in GΓ. These are referred to as the cliques of the graph. A clique is maximal if it is
not a subset of some other clique. We denote by C(GΓ) the class of all cliques in EΓ
and by C∗(GΓ) the class of all maximal cliques.

We will say that a graph GΓ is the adjacency graph of a hypergraph HΓ, and
denote this by GΓ = adj HΓ, when the edges of the graph EΓ consist of all two-

1See Berge [15] for the definition of general directed graphs (specified by ordered pairs of vertices
called arcs).
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Figure 2-1: Diagrams of several hypergraphs based on Γ = {1, 2, 3, 4, 5}
with hyperedges HΓ respectively given by: (a) {{1, 2}, {2, 3}, {3, 4}, {4, 5}},
(b) {{1, 2}, {3, 4}, {4, 5}, {1, 2, 3}}, (c) {{5}, {1, 2}, {1, 3}, {2, 4}, {3, 4}}, (d)
{{1, 2}, {2, 4}, {3, 4}, {1, 3, 5}}. Vertices are indicated by circular nodes and hyper-
edges by dashed lines enclosing just the members of that hyperedge. It is sometimes
useful to require that isolated vertices, such as node 5 in (c), are enclosed by a
singleton hyperedge. Only hypergraph (a) qualifies as a graph. Hypergraphs (a),(b)
and (d) are connected, (c) has two connected components. Hypergraphs (a) and (b)
are acyclic.
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Figure 2-2: Illustration of graphical equivalence. All three diagrams (a)-(c) depict
graphically equivalent hypergraphs where (c) is the adjacency graph of (a) and (b)
(and of itself). Hypergraph (a) is the maximal clique hypergraph of graph (c).

22



element subsets {γ, λ} ⊂ Γ such that vertices γ and λ are adjacent in HΓ.

EΓ = {{γ, λ} ⊂ Γ | ∃H ∈ HΓ : {γ, λ} ⊂ H} (2.1)

Note that we always have GΓ = adj GΓ. Further, we will say that two hypergraphs
HΓ and H

′
Γ are graphically equivalent if adj HΓ = adj H

′
Γ. Note that this defines an

equivalence relation over the set of hypergraphs based on Γ. Moreover, the equiva-
lence classes of graphically equivalent hypergraphs are in one-to-one correspondence
with the set of all graphs based on Γ. Each graph GΓ represents a distinct class of
graphically equivalent hypergraphs determined by GΓ = adj HΓ. Also, we define
the clique hypergraph of graph GΓ as cliq GΓ = (Γ, C(GΓ)) such that the hyperedges
of the hypergraph are the cliques of the graph. The maximal clique hypergraph is
defined similarly as cliq∗ GΓ = (Γ, C∗(GΓ). Graphical equivalence and several of the
above definitions are illustrated in Figure 2-2.

Finally, the following definitions are used to discuss the adjacency structure of a
graph GΓ. The boundary ∂Λ of subset Λ ⊂ Γ is the set of vertices not in Λ which
are adjacent to some vertex in Λ. Also, the closure of Λ is defined Λ̄ = Λ ∪ ∂Λ. In
this notation we allow γ to also denote the singleton set {γ} (e.g., ∂γ = ∂{γ} and
γ̄ = {γ} ∪ ∂γ). These definitions may be extended to general hypergraphs, but it
is clear that the adjacency structure of a hypergraph HΓ is completely captured by
the adjacency graph GΓ = adj HΓ. Yet, while GΓ is determined by these adjacency
relations, the hypergraph HΓ is not.

2.1.2 Markov Random Fields

A random variable x is defined by a set X and a probability distribution p(x) on X .2
Given a function f : X → R, we define the expectation of f (with respect to p) by

Ep{f(x)} =
∫
X
p(x)f(x)dx (2.2)

where the integral is to be understood as a sum in the case that X is discrete (this
convention is adopted henceforth). Let (x, y) be a pair of random variables defined by
a probability distribution p(x, y) on a product set X × Y . The marginal distribution
of x is p(x) =

∫
Y p(x, y)dy (similarly for y). We say that x and y are independent

if p(x, y) = p(x)p(y) for all x, y. The conditional distribution of x given y is defined
as p(x|y) = p(x, y)/p(y) for each y such that p(y) > 0. It holds that x and y
are independent if and only if p(x|y) = p(x) for all y where p(y) > 0 and for all
x. Intuitively, observing y does not affect our knowledge of x. For a triplet of
random variables (x, y, z) we say that x and y are conditionally independent given
z if p(x, y|z) = p(x|z)p(y|z) for all z where p(z) > 0 and for all x, y. Equivalently,

2We will say that p is a probability distribution on X if either: (i) X is discrete (has countably
many elements) and p is a probability mass function (pmf), a non-negative function defined on X
normalized such that

∑
x∈X p(x) = 1; or (ii) X consists of a continuum of elements (e.g. X = R)

and p is a probability density function (pdf), a non-negative function defined on X normalized such
that

∫
X p(x)dx = 1.
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p(x|z, y) = p(x|z) for all x, y, z where p(z) > 0 and p(y|z) > 0. Intuitively, having
already observed z, then observing y does not affect our knowledge of x.

A random field is a collection of random variables xΓ = (xγ , γ ∈ Γ) defined by a
probability distribution p(xΓ) on a product set XΓ =

∏
γ∈ΓXγ. We will refer to an

element γ ∈ Γ as a site of the field and to a random variable xγ as the state of site
γ. Each Λ ⊂ Γ defines a subfield xΛ = (xγ , γ ∈ Λ) and associated state-space XΛ =∏
γ∈ΛXγ. We let \Λ denote the set complement of Λ in Γ, i.e. \Λ = {γ ∈ Γ|γ �∈ Λ}.
A Markov random field is a pair (xΓ,GΓ) satisfying the following property:

Definition 1 (Local Markov) A random field xΓ is locally Markov with respect to
graph GΓ if, for every site γ ∈ Γ, the states xγ and x\γ̄ are conditionally independent
given x∂γ.

A.A. Markov [94] introduced this idea into statistics to consider generalization of
the law of large numbers for dependent processes. It is sometimes useful to exploit
a stronger version of the Markov property. We say that, for a triplet (Λ1,Λ2, S) of
subsets of Γ and a graph GΓ, that S separates Λ1 and Λ2 in graph GΓ if every path
in GΓ containing vertices of both Λ1 and Λ2 must also contain some vertex of S.

Definition 2 (Global Markov) A random field xΓ is globally Markov with respect
to graph GΓ if, for every (Λ1,Λ2, S) as above, the states xΛ1 and xΛ2 are conditionally
independent given the state of the separator xS.

Both Markov properties are illustrated in Figure 2-3. These are closely related,
as shown by the following proposition.

Proposition 1 (Local/Global Near-Equivalence) If a random field xΓ is glob-
ally Markov with respect to GΓ then it is locally Markov. Conversely, if a (locally)
Markov random field (xΓ,GΓ) has non-vanishing probability distribution, p(xΓ) > 0
for all xΓ ∈ XΓ, then it is globally Markov.

Proof. That global Markov implies local Markov is immediate, just relate the
two definitions identifying (Λ1,Λ2, S) with (γ, \γ̄, ∂γ). The converse proof is not
so simple, resembling that of the Hammersley-Clifford theorem below. We instead
appeal to that theorem (see remarks following Proposition 2). �

The preceding discussion demonstrates the important role graphs play for describ-
ing the Markov structure (conditional independencies) of a random field. Now we
approach the issue of how to represent the probability distribution of such a Markov
random field. The central result in this area is the Hammersley-Clifford theorem
relating factorization of the probability distribution to Markov structure. We will
utilize the language of hypergraphs to state this relation precisely.

Definition 3 (Hypergraph Factorization) A probability distribution p(x) of a ran-
dom field (xγ, γ ∈ Γ) is said to factor with respect to a hypergraph HΓ based on Γ if
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xγ

x\γ̄

x∂γ

(a)

xS

xΛ2

xΛ1

(b)

Figure 2-3: Illustration of local and global Markov properties. (a) The local Markov
property insures that the state xγ of site γ (shown in black) is conditionally indepen-
dent of the state x\γ̄ of all sites not adjacent to γ (white) given the state x∂γ of all sites
adjacent to γ (grey). This means that p(xγ|x\γ) = p(xγ|x∂γ). (b) The stronger global
Markov property insures that, conditioned on the state of the separator xS (grey),
the states xΛ1 and xΛ2 of the separated subfields are conditionally independent. This
means that p(xΛ1 , xΛ2 |xS) = p(xΛ1|xS)p(xΛ2|xS).
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there exists a collection of non-negative functions (ψΛ : XΛ → R+,Λ ∈ HΓ) and a
finite constant Z(ψ) <∞ such that

p(xΓ) =
1

Z(ψ)

∏
Λ∈HΓ

ψΛ(xΛ) (2.3)

for all xΓ ∈ XΓ, in which case the normalizing constant Z(ψ) is given by

Z(ψ) =

∫
X

∏
Λ∈HΓ

ψΛ(xΛ)dxΓ (2.4)

The functions ψΛ(xΛ) are sometimes called compatibility functions (Wainwright [129]).

The following proposition states, in terms of hypergraphs, the theorem of Ham-
mersley and Clifford [68]. Several proofs follow Grimmet [66] employing the Möbius
inversion lemma (Mitter [97], Guyon [67], Lauritzen [88], Brémaud [25]).

Proposition 2 (Hammersley-Clifford) A random field xΓ which factors with re-
spect to hypergraph HΓ is globally Markov with respect to graph GΓ = adj HΓ. Con-
versely, a (locally) Markov random field (xΓ,GΓ) which has positive probability dis-
tribution p(xΓ) > 0 for all xΓ ∈ XΓ, factors with respect to hypergraph HΓ = cliq

∗ GΓ

(and, hence, is globally Markov).

Proof. That hypergraph factorization implies the global Markov property is
straight forward. Without any loss of generality, we consider just the case that
(Λ1,Λ2, S) partitions Γ. Let πi(xΛi

, xS) (i = 1, 2) denote the product of all factors
ψΛ(xΛ) which depend upon xΛi

. Let πS(xS) denote the product of all remaining factors
(which depend only upon xS but not xΛ1 or xΛ2). Then, p(xΓ) ∝ π(xΛ1 , xΛ2 , xS) ≡
π1(xΛ1 , xS)π2(xΛ2 , xS)πS(xS). The conditional distribution p(xΛ1|xS) is then given by

p(xΛ1|xS) =

∫
π(xΛ1 , x̃Λ2 , xS)dx̃Λ2∫ ∫
π(x̃Λ1 , x̃Λ2 , xS)dx̃Λ1dx̃Λ2

=
π1(xΛ1 , xS)∫
π1(x̃Λ1 , xS)dx̃Λ1

(2.5)

and similarly for p(xΛ2|xS). The conditional distribution p(xΛ1 , xΛ2 |xS) then factors
as shown below:

p(xΛ1 , xΛ2|xS) =
π(xΛ1 , xΛ2 , xS)∫ ∫

π(x̃Λ1 , x̃Λ2 , xS)dx̃Λ1dx̃Λ2

=

(
π1(xΛ1 , xS)∫
π1(x̃Λ1 , xS)dx̃Λ1

)(
π2(xΛ2 , xS)∫
π2(x̃Λ2 , xS)dx̃Λ2

)
= p(xΛ1|xS)p(xΛ2|xS) (2.6)

The converse is shown by construction employing the Möbius inversion lemma. We
examine this further when we discuss the Gibbs canonical potential in the next sub-
section. �
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x4 x3

x2x1
ψ1,2

ψ1,4

ψ3,4

ψ2,3

(a)

x4 x3

x2x1
ψ1,2,4

ψ2,3,4
(b)

Figure 2-4: Illustration of Hammersley-Clifford theorem for two MRFs each with four
sites Γ = {1, 2, 3, 4}. In each example, the MRF (xΓ,GΓ) is shown to the left and the
corresponding hypergraph factorization (HΓ, ψ) is shown to the right. (a) The Markov
structure implies that the probability distribution may be factored as a product of
pairwise compatibility functions p(x) ∝ ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ4,1(x4, x1).
(b) The Markov structure of the field implies p(x) may be factored as a product of
triplet-wise compatibility functions p(x) ∝ ψ1,2,4(x1, x2, x4)ψ2,3,4(x2, x3, x4).
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This theorem is illustrated in Figure 2-4. The converse is conservative in that
p(xΓ) might actually factor with respect to some hypergraph HΓ which is graphi-
cally equivalent to GΓ but has lower-order interactions than in the maximal clique
hypergraph cliq∗ GΓ. We will see this is the case for GMRFs. Note also that this
confirms the converse of Proposition 1 since a random field which is locally Markov
with respect to GΓ factors with respect to HΓ = cliq GΓ (by the above converse)
and hence is globally Markov with respect to GΓ = adj HΓ (by the first part of the
proposition).

2.1.3 Gibbs Random Fields

In this subsection we discuss representation of graphical models as Gibbs random
fields. Here, interaction potential functions take the place of the compatibility func-
tions discussed previously. The connection between these formalisms is shown and a
procedure for constructing potential specifications of Markov random fields is given.
In later sections we connect this discussion to exponential families by considering
parameterized families of Gibbs distributions and discuss representation of Gauss-
Markov random fields from this point of view.

Gibbs distributions are named in honor of american physicist J. Willard Gibbs
who, building upon the earlier work of Boltzmann [20], developed the formulation
of statistical mechanics based on these probability distributions [62]. This formu-
lation arises by considering the probability of states of a “partition” of a physical
system where the entire system has equiprobable distribution over joint states (as in
Boltzmann’s formulation) and where the system is large relative to the partition (the
so called “bulk limit”). This perspective is closely related to the maximum-entropy
property of exponential families (subject to certain moment constraints) which we
discuss later (Section 2.2.1). For an introduction to statistical mechanics, the reader
is referred to the text of Bowley and Sánchez [21].

Definition 4 (Gibbs Distribution) We say that xΓ is a Gibbs random field if it
has probability distribution pφ(xΓ) specified by a family HφΓ of subsets of Γ and a
collection of functions φ = (φΛ : XΛ → R,Λ ⊂ HφΓ) as

pφ(xΓ) =
1

Z(φ)
exp




∑
Λ∈Hφ

Γ

φΛ(xΛ)


 (2.7)

with Z(φ) a finite normalizing constant. This pφ(xΓ) is Gibbs distribution with po-
tential specification φ. The functions φΛ are interaction potentials. The normalizing
Z(φ) is the partition function depending upon any parameters of the potentials (which,
for the moment, we do not specify). We call HφΓ = (Γ,HφΓ) the interaction hypergraph
of the potential specification φ.

Observe that the Gibbs distribution then factors with respect to the interaction hy-
pergraph. Conversely, any positive probability distribution which factors with respect
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to hypergraph HΓ may be expressed as a Gibbs distribution with potential specifica-
tion φ such that HφΓ = HΓ. Hence, identifying compatibility functions ψΛ(xΛ) with
exponential factors exp{φ(xΛ)}, we may restate the Hammersley-Clifford theorem as
below.

Corollary 1 (Markov/Gibbs Near-Equivalence) If xΓ is a Gibbs random field
having potential specification φ, then xΓ is globally Markov with respect G

φ
Γ = adj H

φ
Γ.

Conversely, any (locally) Markov random field (xΓ,GΓ) with positive probability dis-
tribution, p(xΓ) > 0 for all xΓ ∈ XΓ, may be expressed as a Gibbs random field for
some potential specification φ with HφΓ = cliq GΓ.

The interpretation of potential functions is clarified by the following proposition
which shows how the set of “local” potentials, intersecting some subfield Λ ⊂ Γ,
determines the conditional distribution of that subfield given the state outside that
subfield (or, equivalently, the state on just the boundary of that subfield).

Proposition 3 (Conditional Distribution) For a Gibbs random field xΓ with po-
tential specification φ, the conditional distribution of subfield xΛ conditioned on x∂Λ
is given by

p(xΛ|x∂Λ) = 1

Z(x∂Λ)
exp




∑
H∈Hφ

Γ:Λ∩H �=∅

φH(xH)


 (2.8)

with normalizing function Z(x∂Λ) given by the integral of the exponent over XΛ. More-
over, the conditional distribution p(xΛ|x\Λ) only depends upon x\Λ through x∂Λ and
is given by p(xΛ|x\Λ) = p(xΛ|x∂Λ).

Proof. This is shown by computation of p(xΛ|x\Λ) as p(xΛ, x\Λ)/p(x\Λ) and can-
cellation of common factors in the numerator and denominator. Let HΛ ⊂ HφΓ denote
those hyperedges which intersect Λ and let H\Λ ⊂ HφΓ denote those hyperedges which
do not. Then,

p(xΛ|x\Λ) =
p(xΛ, x\Λ)∫
p(x̃Λ, x\Λ) dx̃Λ

=
exp{∑H φH(xΛ, x\Λ)}∫
exp{∑H φH(x̃Λ, x\Λ)}dx̃Λ

=
exp{∑H∈HΛ

φH(xΛ, x∂Λ)} exp{
∑
H∈H\Λ

φH(x\Λ)}(∫
exp{∑H∈HΛ

φH(x̃Λ, x∂Λ)}dx̃Λ
) (
exp{∑H∈H\Λ

φH(x\Λ)
)

=
exp{∑H∈HΛ

φH(xΛ, x∂Λ)}∫
exp{∑H∈HΛ

φH(x̃Λ, x∂Λ)}dx̃Λ (2.9)

By the Markov property, p(xΛ|x\Λ) = p(xΛ|x∂Λ) which completes the proof. �
In general, specification of the probability distribution p(xΓ) of a Markov ran-

dom field (xΓ,GΓ) does not uniquely determine the Gibbsian potential specification
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(HφΓ, φ). We may generate many distinct Gibbs potential specifications φ = (φΛ,Λ ∈
HΓ) depending on how we split the interactions of the field among the potential
functions. These distinct potential specifications correspond to different possible fac-
torizations of the probability distribution. To remove this degeneracy, it is convenient
to consider the following special choice of potential specification.

Canonical Potential Specification. We now give an explicit procedure for gen-
erating a potential specification (HφΓ, φ) from an arbitrary positive probability dis-
tribution p(xΓ) > 0. For a Markov random field (xΓ,GΓ), this procedure generates
a sparse potential specification such that adj HφΓ = GΓ. Furthermore, this choice
of potential specification satisfies a certain normalization property with respect to a
specified state x∗Γ ∈ XΓ and is the unique potential specification having this property.
Hence, requiring this normalization forces uniqueness into the representation. We call
this the canonical potential specification.

The canonical potentials are constructed relative to a specified state x∗Γ ∈ XΓ which
we call the ground state. Relative to the chosen ground state, define the collection of
functions U = (UΛ(xΛ),∀Λ ⊂ Γ) by

UΛ(xΛ) = log
p(xΛ, x

∗
\Λ)

p(x∗Γ)
(2.10)

where p(xΛ, x
∗
\Λ) is the value of the probability distribution p(xΓ) evaluated for the

state xΓ = (xΛ, x
∗
\Λ) ∈ XΓ. These functions UΛ(xΛ) measure the increase in log-

likelihood due to a local departure xΛ from the global ground state x∗Γ. Next, define
a second collection of functions V = (VΛ(xΛ),∀Λ ⊂ Γ) by

VΛ(xΛ) =
∑
Λ′⊂Λ

(−1)|Λ\Λ′|UΛ′(xΛ′) (2.11)

These functions VΛ may be viewed as “irreducible” versions of the functions UΛ where
lower-order dependencies are recursively removed. By the Möbius inversion lemma
(Möbius [98], Bazant [12, 13]), we may recover the collection U from the collection V
by

UΛ(xΛ) =
∑
Λ′⊂Λ

VΛ′(xΛ′). (2.12)

Noting that p(xΓ) = p(x
∗
Γ) exp{UΓ(xΓ)}, we have that

p(xΓ) =
1

Z
exp

{∑
Λ⊂Γ

VΛ(xΛ)

}
(2.13)

with Z−1 = p(x∗Γ) such that V gives a Gibbs potential specification for p(xΓ) relative
to the (apparently) complete hypergraph (where every subset of Γ is a hyperedge).
Yet, the utility of this construction lies in that, for Markov random fields, this rep-
resentation is actually sparse such that many of the potential functions in V are
zero.
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Proposition 4 (Sparsity of Canonical Potential) For a (locally) Markov ran-
dom field (xΓ,GΓ) with non-vanishing probability distribution, p(xΓ) > 0 for all
xΓ ∈ XΓ, the collection V = (VΛ(xΛ),Λ ⊂ Γ) is sparse such that, for any Λ which is
not a clique in GΓ the potential VΛ(xΛ) is identically zero for all xΛ.

Proof. See Brémaud [25] or Lauritzen [88]. �
Hence, we define the canonical potential specification φ from V by collecting all

non-zero potentials in V . This defines an interaction hypergraph HφΓ with hyperedges
obtained by collecting all subsets Λ ⊂ Γ where VΛ(xΛ) is non-zero for some xΛ ∈ XΛ.

HφΓ = {Λ ⊂ Γ|∃xΛ ∈ XΛ : VΛ(xΛ) �= 0} (2.14)

By Proposition 4, this hypergraph has the property that adj HφΓ = GΓ. Hence, this
procedure generates a sparse potential specification exposing any Markov structure
of the random field. Absorbing lower-order interactions into higher-order interac-
tions gives an equivalent specification with respect to the maximal clique hypergraph
cliq∗ GΓ thus proving the converse of the Hammersley-Clifford theorem.

Another remarkable feature of the canonical potential specification is that, for
the chosen ground state x∗Γ, it gives the unique potential specification satisfying the
following normalization property.

Proposition 5 (Normalization of Canonical Potential) Among all potential spec-
ifications for p(xΓ) of the form V = (VΛ,∀Λ ⊂ Γ), the canonical potential specification
is the only specification having the property that VΛ(xΛ) = 0 whenever (xΛ)γ = x

∗
γ for

some γ ∈ Λ.

Proof. See Brémaud [25]. �
That is, each potential function VΛ(xΛ) vanishes whenever the state of any site in

Λ is set to its ground state value. The following is a consequence of this normalization
property. We define the partial potential specification φΛ for each subfield Λ ⊂ Γ as
the collection of all interaction potentials defined within that subfield. That is,

φΛ = (φH , H ∈ HφΛ) (2.15)

where HφΛ = {H ∈ HφΓ|H ⊂ Λ} are the hyperedges of the subhypergraph HφΓ induced
by Λ. This partial model (HφΛ, φ

Λ), the embedded graphical model based on the
induced subhypergraph HφΛ and associated interaction potentials φ

Λ, specifies the
conditional distribution of subfield xΛ assuming ground-state boundary conditions.

p(xΛ|x∗∂Λ) ∝ exp{φΛ(xΛ)} ≡ exp
{∑

Λ′⊂Λ

φΛ′(xΛ′)

}
(2.16)

This follows from Proposition 3 and 5 where those interactions with sites not con-
tained in Λ vanish due to the normalization property. Conditioned on these boundary
conditions, the Markov structure of the subfield is then specified by GφΛ = adj HφΛ.
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This interpretation plays a role in the RCM approach which we discuss further in
Chapter 4.

We later construct the information parameterization for GMRFs from this per-
spective (Section 2.2.3). But first, we consider certain classes of parameterized Gibbs
distributions which form exponential families.

2.1.4 Exponential Families

Exponential families and certain geometric characterizations of these parameterized
families of probability distributions have been studied extensively by Chentsov [29],
Efron [47], Barndorff-Nielsen [7], Amari [3] and many others.

An exponential family consists of probability distributions, for a variable (or col-
lection of variables) x ∈ X , having the form

f(x; θ) = b(x) exp{θ · t(x)− ϕ(θ)} (2.17)

The family is based on a positive distribution function b(x) > 0, a collection of
statistics t(x) ∈ Rd and associated parameters θ ∈ Rd which scale the sensitivity to
each statistic. The normalization constant ϕ(θ) is given by

ϕ(θ) = log

∫
b(x) exp{θ · t(x)} dx (2.18)

and, viewed as a function of θ, is called the cumulant function. The set of all admissible
parameters Θ is defined by the effective domain of the cumulant function where
ϕ(θ) <∞.

Θ = {θ ∈ Rd|ϕ(θ) <∞} (2.19)

The exponential family F , for specified (X , b(·), t(·)), is defined as the set of all such
normalizable probability distributions.

F = {f(·; θ)|θ ∈ Θ} (2.20)

The family is said to be regular if the domain Θ contains an open subset of Rd.
This representation of the family is said to be minimal if the functions ((t0(x) =
1, t(x)),∀x ∈ X ) are linearly independent. Then, admissible parameters Θ are in one-
to-one correspondence with probability distributions F , and the number of statistics
(parameters) d is called the dimension of the family. To show that no two distinct
choices or parameters θ1 �= θ2 gives the same probability distribution, write the log-
likelihood ratio of two such probability distributions as

log
f(x; θ1)

f(x; θ2)
= )a · (1, t(x)) (2.21)

with )a = (ϕ(θ2) − ϕ(θ1), θ1 − θ2) �= 0. If the two probability distributions are iden-
tical then we must have that )a · (1, t(x)) = 0 for all x ∈ X . This contradicts the
presumed linear independence of the functions (1, t(·)). Hence, assuming minimal-

32



ity, the admissible parameters Θ gives a finite-dimensional coordinate system for the
exponential family of probability distributions F . The parameters θ are sometimes
called exponential coordinates. We now discuss some important properties of minimal
representations of regular exponential families.

Moments and Fisher Information. First, we discuss the moment-generating
property of the cumulant function. As is easily verified, differentiation of ϕ(θ) gives
the expected value of the statistics t(x).

∂ϕ(θ)

∂θi
= Eθ{ti(x)} (2.22)

These expectations η = Eθ{t(x)} are called the moments of the distribution. We
call η(Θ) ≡ {η ∈ Rd|∃θ ∈ Θ : Eθ{t(x)} = η} the achievable moments. Taking
second-order partial derivatives gives the covariance of the statistics:

∂2ϕ(θ)

∂θi∂θj
= Eθ{(ti(x)− ηi)(tj(x)− ηj)} (2.23)

Let G(θ) = (gi,j(θ)) denote the Hessian matrix obtained by collecting these second-
order partial derivatives. This is the curvature of ϕ(·) at the point θ. An equivalent
expression for G(θ) is

gi,j(θ) = Eθ

{
∂ log p(x; θ)

∂θi

∂ log p(x; θ)

∂θj

}
, (2.24)

This is the Fisher information associated with the parameterized family f(x; θ) which
plays a fundamental role in the theory of parameter estimation.3 Note also, since
first-order differentiation gives the moments, second-order differentiation gives the
sensitivity of moments to parameters:

gi,j(θ) =
∂ηi
∂θj
, (2.25)

Hence, G(θ) may also be interpreted as the Jacobian matrix ∂η/∂θ of the mapping
from parameters θ to moments η.

Since the curvature matrix is given by a positive semidefinite covariance matrix
(positive definite assuming minimal representation), this shows that the cumulant
function is a (strictly) convex function of θ over its effective domain Θ. That is, for
all θ1, θ2 ∈ Θ and λ ∈ [0, 1] we have

ϕ(λθ1 + (1− λ)θ2) ≤ λϕ(θ1) + (1− λ)ϕ(θ2)
3By the Cramer-Rao inequality, the (appropriately scaled) inverse Fisher information gives a lower

bound estimate for the uncertainty of parameter estimates based on a collection of independent
samples of x ∼ f(x; θ). Roughly speaking, the Fisher information characterizes the information
gained about θ per observation of x.
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epi ϕ (−η∗, 1)

ϕ(θ∗)

ϕ(θ)

H(η∗)

θ∗
θ

Figure 2-5: Illustration of geometric argument showing one-to-one correspondence
between parameters θ and moments η. Each η∗ ∈ η(Θ) corresponds to a unique
supporting hyperplane H(η∗) of the epigraph E = epi ϕ with normal vector (−η∗, 1).
These supporting hyperplanes are tangent to the epigraph satisfying the relation
η∗ = ∇ϕ(θ) with respect to any intersection point (θ, ϕ(θ)) ∈ H(η∗) ∩ E. Assuming
minimal representation, E is strictly convex such that each tangential supporting
hyperplane intersects E at just one point (θ∗, ϕ(θ∗)) = H(η∗) ∩ E. Hence, each
η∗ ∈ η(Θ) is generated by a unique choice of parameters θ∗ ∈ Θ.

For minimal representations, the convexity is strict such that, for θ1 �= θ2, equality
occurs only at the endpoints λ ∈ {0, 1}. Finally, we remark that the cumulant
function is essentially smooth. This means that ϕ(θ) is a continuous, smooth function
of θ over its effective domain Θ and is steep in that it diverges to infinity near the
boundary of Θ. This property, together with convexity, makes the cumulant function
very well-suited for convex analysis.

A crucial point is that, for minimal representations, the mapping from admissible
parameters Θ to achievable moments η(Θ) is in fact one-to-one. This is shown by
the following geometric argument illustrated in Figure 2-5. Consider the epigraph
of the function ϕ(θ), defined as epi ϕ = {(θ, h)|h ≥ ϕ(θ)} ⊂ Rd+1. We say that
a d-dimensional hyperplane H is a supporting hyperplane of E = epi ϕ if it inter-
sects E at some point while containing E in its upper closed half-space. Due to the
essential smoothness and convexity of ϕ(θ), the set of supporting hyperplanes H is
generated by {H(η), η ∈ η(Θ)} where H(η) is the unique supporting hyperplane of
E normal to (−η, 1). Furthermore, the set of supporting hyperplanes is precisely
the set of d-dimensional tangent hyperplanes {T (θ), θ ∈ Θ} where T (θ) is tangent
to E at the point (θ, ϕ(θ)) and, hence, normal to the vector (−∇ϕ(θ), 1). By the
moment-generating property, we have H(η) = T (θ) where η = ∇ϕ(θ). Assuming
strict convexity (minimal representation), each tangent hyperplane T (θ) intersects E
at just one point so that the mapping from admissible parameters Θ to supporting
hyperplanes H = {T (θ)} is one-to-one. Likewise, for the mapping from parame-
ters Θ to achievable moments η(Θ). Hence, the moments η are sometimes called
moment coordinates. The set of achievable moments η(Θ) provides an alternative
finite-dimensional coordinate system for the exponential family F . We indicate this
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parameterization of the exponential family by f ∗(x; η) ≡ f(x; θ(η)). Also, we let
G∗(η) = (g∗i,j(η)) denote the Fisher information,

g∗i,j(η) = Eη

{
∂ log f ∗(x; η)

∂ηi

∂ log f ∗(x; η)
∂ηj

}
, (2.26)

with respect to this moment parameterization f ∗(x; η) .

Convex Duality. Convex duality plays a central role in the geometric analysis
of exponential families. In Fenchel duality (Fenchel [49, 50], Rockafellar [114, 115],
Bertsekas et al [17]), the convex conjugate function of ϕ(θ) is defined as:

ϕ∗(β) = sup
θ∈Θ
{β · θ − ϕ(θ)} (2.27)

For, essentially smooth and convex ϕ(θ), Fenchel duality reduces to Legendre duality
(Rockafellar [114], Bauschke and Borwein [11], Bauschke et al [10]). Consider mini-
mizing f(θ) = ϕ(θ)−β ·θ (a “tilted” version of the cumulant function) with respect to
θ ∈ Θ. This is a strictly convex, essentially smooth function such that if there exists
any local minimum θ∗ ∈ Θ then this is also the (unique) global minimum. Setting the
gradient to zero, ∇f(θ) = η(θ) − β = 0, gives the necessary and sufficient condition
Eθ∗{t(x)} = β for θ∗ to be the global minimum. Hence, for β ∈ η(Θ), there exists a
unique local minimum (this being the global minimum) θ∗ and β then gives the cor-
responding moments η∗ = Eθ∗{t(x)}. We may write the convex conjugate function
for η ∈ η(Θ) as

ϕ∗(η) = η · θ − ϕ(θ) (2.28)

where θ and η are dually-coupled by the condition Eθ{t(x)} = η. This is known
as the Legendre transform (Rockafellar [114]). It may also be shown that ϕ∗ is an
essentially smooth, strictly convex function with effective domain η(Θ). When ϕ(θ)
is strictly convex, so is ϕ∗(η). This pair of functions (ϕ, ϕ∗) satisfy a variety of useful
duality relations which we summarize.

First, the previously discussed bijective coordinate transformation between expo-
nential coordinates θ and moment coordinates η may now be characterized by the
following dual differential relations:

∂ϕ(θ)

∂θi
= ηi (2.29)

∂ϕ∗(η)
∂ηi

= θi (2.30)

This shows that the cumulant function ϕ(θ) and the convex conjugate function ϕ∗(η)
are dually related by a “slope transform” as illustrated in Figure 2-6. The first
relation is just the moment-generating property of the cumulant function. The second
relation shows that exponential coordinates are recovered from moment coordinates
by evaluating the gradient of ϕ∗(η) at those moment coordinates.
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y∗

−f(x∗)

g(y)

x∗

y

x∗

−g(y∗)

f(x)

y∗

x

Figure 2-6: Depiction of Legendre transform between a dual pair of convex-conjugate
functions. This example depicts the functions f(x) = (x− 1)− log x (for x > 0) and
g(y) = − log(1 − y) (for y < 1) but is not drawn to scale. Coordinates (x∗, y∗) are
dually-coupled, such that x∗ = argminx{xy∗ − f(x)} (y∗ = argminy{x∗y − g(y)}),
if and only if x∗ = g′(y∗) (y∗ = f ′(x∗)). Then, f(x∗) + g(y∗) = x∗y∗ such that the
zero-intercepts of tangents gives minus the value of the conjugate function.

Second, the curvature of the two functions ϕ(θ) and ϕ∗(η) are related by the dual
relations

∂2ϕ(θ)

∂θi∂θj
= gi,j(θ) (2.31)

∂2ϕ∗(η)
∂ηi∂jηj

= g∗i,j(η) (2.32)

where G∗(η) = G−1(θ) for dually-coupled exponential/moment coordinates (θ, η).
That is, the curvature of ϕ∗(η) is the Fisher information in the moment parameter-
ization of the family which is inversely related to the curvature (Fisher information)
within the exponential parameterization. Also, we have that G∗(η) = ∂θ/∂η, the
Jacobian matrix of the inverse transform taking moment coordinates back to expo-
nential coordinates. For minimal representations, this shows that the curvature G∗(η)
is also positive definite for all η ∈ η(Θ). Hence, ϕ∗(η) is shown to be strictly convex
over its domain η(Θ).

Due to the convexity of ϕ∗(η), we may write ϕ(θ) = θ·η−ϕ∗(η), viewing this as the
Legendre transform of ϕ∗(η) which recovers the original function ϕ(θ). Equivalently,

ϕ(θ) = sup
β∈η(Θ)

{β · θ − ϕ∗(β)} (2.33)

showing the duality between ϕ(θ) and ϕ∗(η). We later see, in Section 2.2.1, that
ϕ∗(η) may be interpreted as a measure of the information content of the probability
distribution f ∗(·; η) relative to the base distribution b(x).
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Exponential Family Graphical Models. As in Della Pietra et al [106], we ap-
proach graphical modeling by considering parameterized families of Gibbs distribu-
tions which form exponential families. This is accomplished by restricting the inter-
action potentials of the Gibbs distributions to have the form φΛ(xΛ; θΛ) = θΛ · tΛ(xΛ)
based on a set of local state statistics tΛ(xΛ) and associated exponential parameters
θΛ which scale the sensitivity to each statistic. Collecting these local statistics for all
interaction potentials gives a global vector statistic t(x) = (tΛ(xΛ),Λ ∈ HφΓ). Like-
wise, we collect parameters θ = (θΛ,Λ ∈ HφΓ) such that θ · t(x) =

∑
Λ θΛ · tΛ(xΛ).

The (parameterized) Gibbs distribution then has the form of an exponential model
p(x) ∝ exp{θ · t(x)} (with base distribution b(x) = 1 for all x).

We also define the collections of statistics tΛ(xΛ) = (tΛ′(xΛ′),Λ′ ⊂ Λ), exponential
parameters θΛ = (θΛ′ ,Λ′ ⊂ Λ) and moment parameters ηΛ = (ηΛ′ ,Λ′ ⊂ Λ). These are
obtained by collecting all statistics (parameters) defined on Λ or any subset of Λ. Note
that (θΛ, tΛ) specifies the partial potential specification φΛ(xΛ) = exp{θΛ · tΛ(xΛ)}.
Also, we say that the family F is marginalizable when, for all p ∈ F and all cliques of
the adjacency graph Λ ∈ C(GφΓ), the marginal distribution p(xΛ) =

∫
p(xΓ)dx\Λ has

the form of an exponential distribution based on tΛ(xΛ). That is p(xΛ) ∝ exp{βΛ ·
tΛ(xΛ)} for some choice of parameters βΛ depending upon p. Then, ηΛ = Eθ{tΛ(xΛ)}
are the marginal moment coordinates uniquely specifying the marginal distribution
p(xΛ).

Two fundamental problems of graphical modeling may be stated in terms coordi-
nate transforms within the exponential family. We consider the inference problem as
calculation of the moments η∗ = Eθ∗{t(x)} given the parameters θ∗ ∈ Θ. We consider
the modeling problem as the inverse problem of recovering the parameters θ∗ given
the moments η∗ ∈ η(Θ). In light of convex duality, both problems are endowed with
the following dual variational interpretations.

(Inference) η∗ = argmin
η
{ϕ∗(η)− θ∗ · η} (2.34)

(Modeling) θ∗ = argmin
θ
{ϕ(θ)− θ · η∗} (2.35)

These are both convex programming problems, minimizing a strictly convex function
over a convex set, and each has a unique solution. We shall see that the modeling
problem arises in the context of maximum-likelihood parameter estimation (Section
2.2.2). Also, in the context of information geometry, these variational problems cor-
respond to dual notions of information projection (Section 2.2.3). Finally, we remark
that calculation of the moments η is often considered as interchangeable with compu-
tation of the marginal distributions (p(xΛ),Λ ∈ HφΓ). This is because we may either
determine each marginal p(xΛ) from ηΛ (independently solving the modeling prob-
lem within each marginal exponential family) or we may determine ηΛ from p(xΛ)
(inference in the marginal families).

Marginalizable exponential families of graphical models play a central role in the
graphical modeling literature. We discuss this further both in the context of iterative
modeling methods (Section 2.2.4) and recursive inference methods (Section 2.3).
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2.1.5 Gauss-Markov Random Fields

A Gauss-Markov random field (GMRF) is a MRF (xΓ,GΓ) where the state x ∈
Rn (suppressing the Γ subscript for notational brevity) is normally distributed x ∼
N (x̂, P ) having probability distribution

p(x) =
1√

det 2πP
exp

{
−1
2
(x− x̂)′P−1(x− x̂)

}
(2.36)

This Gaussian distribution satisfies the expectation relations Ep{x} = x̂ and Ep{(x−
x̂)(x− x̂)′} = P . Thus, the moment parameters (x̂, P ) specify the mean vector x̂ and
the covariance matrix P of the random variable x. The covariance is a symmetric
positive semidefinite matrix. We say that the GMRF is regular if the covariance
is also positive definite. The marginal distributions of a Gaussian distribution are
also Gaussian. Hence, the marginal distribution p(xΛ) of the state xΛ of subfield
Λ ⊂ Γ is determined by the marginal moments (x̂Λ, PΛ) (the appropriate subvector
and submatrix of the global mean x̂ and covariance P ).

The information parameterization x ∼ N−1(h, J) is defined by:

h = P−1x̂ (2.37)

J = P−1 (2.38)

For regular GMRFs, the moment parameters may be recovered from the informa-
tion parameters by (x̂, P ) = (J−1h, J−1). The information form of the Gaussian
distribution is given by

p(x) = exp

{
−1
2
x′Jx+ h′x− ϕ(h, J)

}
(2.39)

where

ϕ(h, J) =
1

2

{
h′J−1h− log det J + n log 2π} (2.40)

This may be viewed as an exponential distribution with statistics t(x) = (x, xx′),
parameters θ = (h,−J/2), moments η = (x̂, P + x̂x̂′) and cumulant function ϕ(θ) =
ϕ(h, J). The marginal distributions xΛ ∼ N (x̂Λ, PΛ) may also be represented in this
information form xΛ ∼ N−1(ĥΛ, ĴΛ) with marginal information parameters (ĥΛ, ĴΛ) =
((PΛ)

−1x̂Λ, (PΛ)
−1). Applying the matrix inversion lemma, marginal information pa-

rameters (ĥΛ, ĴΛ) are related to global information parameters (h, J) by

ĥΛ = hΛ − JΛ,\Λ(J\Λ)−1h\Λ (2.41)

ĴΛ = JΛ − JΛ,\Λ(J\Λ)−1J\Λ,Λ (2.42)

We shall see that this provides a fundamental basis for recursive inference in GMRFs.
As is well known from the literature, the inverse covariance matrix J reflects the
Markov structure of the field through its sparsity pattern (Speed & Kiiveri[124],
Lauritzen[88]). We demonstrate this in the course of the following development.
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Gibbsian Description. We now show the connection between the information
form of the Gaussian distribution and the canonical potentials of a GMRF. We do so
by deriving the canonical potentials for a GMRF working from the information form
of the density. Here, we choose the zero ground state x∗Γ = 0. Then the functions
UΛ(xΛ) (2.10) are given by

UΛ(xΛ) = −1
2
x′ΛJΛxΛ + h

′
ΛxΛ (2.43)

Now we calculate the canonical potentials VΛ(xΛ) (2.11). For Λ = {γ}, we have the
singleton canonical potentials Vγ(xγ) = Uγ(xγ):

V{γ}(xγ) = −1
2
x′γJγxγ + h

′
γxγ (2.44)

For Λ = {γ, λ} we have the pairwise canonical potentials:

V{γ,λ}(xγ, xλ) = U{γ,λ}(xγ, xλ)− Uγ(xγ)− Uλ(xλ)
= −x′γJγ,λxλ (2.45)

for all {γ, λ} ⊂ Γ such that Jγ,λ �= 0.
All higher order potentials must vanish. This may be seen from the normalization

property of the canonical potential as follows. The functions UΛ, and hence VΛ as
well, consist entirely of linear and quadratic terms in the the variables xγ for all γ ∈ Λ.
Hence, VΛ must have the form:

VΛ(xΛ) =
∑
γ∈Λ

Aγxγ +
∑
γ,λ∈Λ

x′γBγ,λxλ (2.46)

For |Λ| > 1, setting all states except xγ to zero shows that we must have Aγ = 0 in
order for the normalization to hold. Likewise for |Λ| > 2, setting all variables except
xγ and xλ to zero shows that Bγ,λ = 0. Hence, |Λ| > 2 implies VΛ(xΛ) = 0 such that
all interactions in the (sparse) canonical potential φ are either singleton effects or
pairwise interactions among the sites of the field. This then provides for the following
result.

Proposition 6 (Sparsity of J-matrix) Let xΓ ∼ N−1(h, J) be a regular Gaussian
random field. Then, xΓ is Markov with respect to GΓ = (Γ, EΓ) with edges EΓ =
{{γ, λ} ⊂ Γ|Jγ,λ �= 0}. Conversely, if xΓ is Markov with respect to some graph
GΓ = (Γ, EΓ) then Jγ,λ = 0 for all {γ, λ} �∈ EΓ.

Proof. The first part of the theorem follows from the Proposition 2, since GΓ is
defined so as to insure that p(xΓ) factors with respect to GΓ and is hence Markov
with respect to GΓ = adj GΓ. The converse follows from sparsity of the canonical
potentials (Proposition 4), φΛ(xΛ) is zero for all xΛ whenever Λ is not a clique in
GΓ. As shown above, φγ,λ(xγ, xλ) = −xγJγ,λxλ so that for {γ, λ} �∈ EΓ we must have
Jγ,λ = 0. �
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A more generic statement of the above result is given by the following corollary.
This may be regarded as a stronger version of the Hammersley-Clifford theorem spe-
cific to Gaussian random fields.

Corollary 2 (Gauss-Markov Equivalence) A regular Gaussian random field xΓ
is Markov with respect to GΓ = (Γ, EΓ) if and only if it has probability distribution
which factors with respect to HΓ = (Γ, EΓ ∪ {{γ}|γ ∈ Γ}}.

Remark. Note that the hypergraph HΓ is just the graph GΓ but augmented
with singleton hyperedges (this is just a formality to accommodate those singleton
potentials φ{γ} in the case of isolated vertices, otherwise singleton potentials can be
absorbed into pairwise potentials). The corollary is stronger than the converse of
Hammersley-Clifford which, in general, only insures factorization with respect to the
clique hypergraph HΓ = cliq GΓ. The specialization occurs because interactions
among sites for Gaussian random fields are fundamentally pairwise.

Thus, the information parameterization (h, J) of the GMRF provides a natu-
ral graphical model (GΓ, φ) of the GMRF. The graphical structure of the field GΓ,
showing both the Markov structure and the interaction structure of the field, is deter-
mined by the non-zero off-diagonal entries of the matrix J . The Gibbsian canonical
potential specification φ is based on the non-zero entries of h (which specify linear
singleton effects) and J (where diagonal entries specify quadratic singleton effects and
off-diagonal entries specify pairwise interactions). This interpretation of the informa-
tion parameterization is illustrated in Figure 2-7 for a simple GMRF with only three
sites.

In view of this Gibbsian interpretation of (h, J), conditional distributions of sub-
fields (conditioned on the state on the boundary) are given by local potentials specified
by the appropriate subset of information parameters. According to Proposition 3, to
calculate the conditional probability distribution p(xΛ|x∂Λ) we collect all potentials
which depend upon the state of any site in Λ. This gives

p(xΛ|x∂Λ) ∝ exp{−1
2
x′ΛJΛxΛ + h

′
ΛxΛ − x′∂ΛJ∂Λ,ΛxΛ}

∝ exp{−1
2
x′ΛJΛxΛ + hΛ|∂Λ(x∂Λ)

′xΛ} (2.47)

where hΛ|∂Λ(x∂Λ) ≡ hΛ−JΛ,∂Λx∂Λ are the updated singleton effects after conditioning
on the state of the boundary x∂Λ. This is seen to be a Gaussian distribution xΛ|x∂Λ ∼
N−1(hΛ|∂Λ(x∂Λ), JΛ) with conditional mean x̂Λ|∂Λ ≡ E{xΛ|x∂Λ} = J−1

Λ ĥΛ(x∂Λ) and
conditional covariance PΛ|∂Λ ≡ E{(xΛ − x̂Λ|∂Λ)(xΛ − x̂Λ|∂Λ)′|x∂Λ} = J−1

Λ . Note that
only the conditional mean depends upon the state of the boundary, the conditional
covariance J−1

Λ is constant with respect to x∂Λ. Also, the partial potential specifica-
tion φΛ, parameterized by (hΛ, JΛ), gives the conditional distribution of the subfield
assuming zero boundary conditions.

p(xΛ|0) ∝ expφΛ(xΛ) = exp{−1
2
x′ΛJΛxΛ + h

′
ΛxΛ} (2.48)
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2
x′2J2,2x2 + h′2x2

φ3(x3) = −1

2
x′3J3,3x3 + h′3x3

φ1,2(x1, x2) = −x′1J1,2x2
φ2,3(x2, x3) = −x′2J2,3x3
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 h1
h2
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 , J =


 J1,1 J1,2 0

J ′1,2 J2,2 J2,3
0 J ′2,3 J3,3




(c)

Figure 2-7: Illustration of a simple 3-site GMRF: (a) Markov structure impos-
ing conditional independency p(x1, x3|x2) = p(x1|x2)p(x3|x2), (b) Gibbsian poten-
tial specification p(x) ∝ exp

∑
Λ φΛ(xΛ), and (c) information representation p(x) ∝

exp{−1
2
x′Jx+h′x}. The probability distribution respects the Markov structure shown

in (a) if and only if the interaction matrix respects the sparsity constraints shown in
(c).
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This is to be expected in view of the interpretation of (h, J) as the canonical potentials
constructed relative to zero ground state x∗ = 0.

Exponential Family Description. As our final task of the section, we describe
the information parameterization (h, J) of a GMRF (xΓ,GΓ) as a minimal represen-
tation of a regular exponential family. This follows very naturally from the canonical
potentials derived previously based on the non-zero entries of (h, J). Without any
loss of generality, we consider the case where all states xγ are scalar-valued.

4

Each singleton potential φγ(xγ) = −1
2
Jγx

2
γ + hγxγ may be expressed as φγ(xγ) =

θγ · tγ(xγ) with statistics and parameters defined as

tγ(xγ) = (xγ, x
2
γ) (2.49)

θγ = (hγ,−Jγ/2) (2.50)

for all γ ∈ Γ. Each pairwise potential φγ,λ(xγ, xλ) = −Jγ,λxγxλ, defined for all edges
{γ, λ} ∈ EΓ, may be expressed as φγ,λ(xγ, xλ) = θγ,λtγ,λ(xγ, xλ) with statistics and
parameters defined by

tγ,λ(xγ, xλ) = xγxλ (2.51)

θγ,λ = −Jγ,λ (2.52)

for all {γ, λ} ∈ GΓ. Then, let t(x) and θ denote the collection all such statistics and
parameters such that θ · t(x) = −1

2
x′Jx+ h′x. The information form of the Gaussian

distribution is then given by the exponential distribution p(x) = exp{θ · t(x)− ϕ(θ)}
with cumulant function ϕ(θ) = ϕ(h, J) as in (2.40). The cumulant function ϕ(h, J)
is finite provided the interaction matrix J is positive definite (the GMRF is regular).
This condition determines the space of admissible parameters Θ and a corresponding
exponential family F of normalizable probability distributions. The dimension of the
family (number of linearly independent statistics) is d = 2|Γ|+|EΓ|. The dual moment
parameters η = Ep{t(x)} are given by

ηγ = (x̂γ, Pγ + x̂
2
γ), ∀γ ∈ Γ (2.53)

ηγ,λ = Pγ,λ + x̂γx̂λ, ∀{γ, λ} ∈ EΓ (2.54)

Note, these moments η directly specify a subset of the Gaussian moment parameters
(x̂, P ). The unspecified off-diagonal entries of P , corresponding to the zeros of J ,
are determined by the condition that the distribution is Markov with respect to GΓ.
In principle, these remaining elements could be determined by maximum-entropy
completion (see Frakt [55] and Tucker [128]).

This exponential family provides a minimal representation of the family of all
regular Gaussian random fields xΓ which are Markov with respect to GΓ. This iden-
tification is useful insofar as we may then apply methods of information geometry for

4Otherwise, for states xγ ∈ Rnγ with nγ > 1, replace site γ by nγ sites, each having scalar-valued
states, and couple these sites by pairwise interactions according to the non-zero entries of the nγ×nγ

submatrix Jγ .
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Gaussian random fields. Selected aspects of the information geometry of exponential
families are discussed in the next section. We also remark that the preceding informa-
tion description of GMRFs, as exponential families of graphical models based on GΓ,
is marginalizable in the sense that the marginal distributions for any clique Λ ∈ C(GΓ)
is contained in the exponential family FΛ = {p(xΛ) ∝ exp{−1

2
x′ΛĴΛxΛ + ĥΛ · xΛ}}

based on statistics tΛ(xΛ) = (xΛ, xΛx
′
Λ). This has important implications both for

modeling and inference in GMRFs.

2.2 Information Theory and Modeling

Among the key concepts of information theory are the related concepts of entropy,
relative entropy (Kullback-Leibler divergence) and mutual information. A rigorous,
systematic treatment of these information measures was provided by Shannon [121]
in his development of an information-based theory of communication. The notion of
entropy had previously played a fundamental role in thermodynamics and statistical
mechanics as developed by physicists such as Boltzmann and Gibbs [20, 62]. This
is closely related to recent applications of information theory for statistical modeling
and approximate inference. We will review selected aspects of information theory and
statistical modeling from this perspective.

2.2.1 Maximum-Entropy Principle

A key principle of statistical modeling introduced by physicists and generalized by
statisticians is the maximum-entropy principle (Good [64], Jaynes [75], Cover and
Thomas [31]). Given a probability model p for the outcome x of some random ex-
periment, the entropy h[p] is a real-valued measure of the randomness or uncertainty
associated to that probability model.

Definition 5 (Entropy) The entropy of probability distribution p on X is

h[p] = Ep

{
log

1

p(x)

}

= −
∫
X
p(x) log p(x) dx (2.55)

The maximum-entropy principle then simply asserts that among those probability
models p consistent with whatever knowledge we have concerning the outcome x, we
should adopt that probability model having maximum entropy h[p]. Intuitively, we
should assume as little as possible about the process while still capturing what is
known about the process. For instance, in the case that x is restricted to assuming
only a finite number of values x1, x2, . . . , xN (with no other prior knowledge given)
the maximum-entropy principle requires that our model p(x) assigns equal probabil-
ity to each of these possible outcomes. This is the form that the maximum-entropy
principle assumes in Boltzmann’s formulation of statistical mechanics. Gibbs’ formu-
lation is related to the following result relating maximum-entropy subject to moment
constraints to exponential families.
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Proposition 7 (Maximum-Entropy Principle, Good [64]) Let P denote the set
of probability distributions on X which satisfy expectation constraints

∫
X p(x)t(x)dx =

η for η ∈ Rd and t : X → Rd. Suppose that P contains a probability distribution p∗

of the form
p∗(x) = exp{θ · t(x)− ϕ(θ)} (2.56)

where θ ∈ Rd and ϕ(θ) = log ∫
X exp{θ · t(x)}dx <∞. Then, for all p ∈ P,

h[p] ≤ h[p∗] = ϕ(θ)− θ · η (2.57)

where equality occurs if and only if p = p∗. Hence, p∗ is the maximum-entropy
distribution in P.

Proof. We illustrate the main idea by the method of Lagrange multipliers, we
write the Lagrangian as a function of p as

L[p] = h[p] + θ0

∫
p(x)dx+

∑
k

θk

∫
p(x)tk(x)dx

=

∫
{−p(x) log p(x) + θ0p(x) +

∑
k

θkp(x)tk(x)} dx (2.58)

where the θk parameters are Lagrange multipliers associated to moment constraints
and θ0 is the Lagrange multiplier associated with the normalization constraint

∫
p(x)dx =

1. The perturbation δL due to an infinitesimal variation δp is given by differentiating
the integrand of L with respect to p(x) and integrating with respect to the variation
δp = δp(x)dx.

δL =

∫
{−(1 + log p(x)) + θ0 +

∑
k

θktk(x)} δp (2.59)

Stationarity of L[p] with respect to arbitrary variations δp is forced by setting the
integrand of δL to zero. Solving for p then gives the stationary distribution

p∗(x) = exp{θ · t(x)− ϕ(θ)} (2.60)

where we have set ϕ(θ) = θ0−1. The normalization condition gives ϕ(θ) = log
∫
exp{θ·

t(x)}dx. The remaining multipliers θ are determined by the moment constraints. Fi-
nally, evaluation of the objective function h[p] for this stationary distribution gives
h[p] = −Ep{θ · t(x)−ϕ(θ)} = −{θ · η−ϕ(θ)}. That this stationary distribution is in
fact the global maximizer follows from the strict concavity of the entropy h[p] in the
probability distribution p(·)5 and linearity of the constraints. �

This shows that an exponential model p(x) ∝ exp{θ · t(x)} (based on b(x) = 1)
with moment parameters η is the maximum-entropy probability distribution satisfying
moment constraints Ep{t(x)} = η and that the exponential parameters θ may be
interpreted as Lagrange multipliers associated to those moment constraints. Also,
the convex-conjugate of the cumulant function ϕ∗(η) = η · θ − ϕ(θ) is the negative

5See Cover and Thomas [31] for a simple concavity proof.
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entropy ϕ∗(η) = −h[p].
Kullback [84] suggested a generalized principle for model selection based on the

quantity introduced by Kullback and Leibler [85] as the mean information for dis-
crimination6 between two probability distributions p and q defined below.

Definition 6 (Kullback-Leibler Divergence) Let p and q be probability distribu-
tions on X . The Kullback-Leibler (KL) divergence of probability distribution p relative
to q is

D(p‖q) = Ep

{
log

p(x)

q(x)

}

=

∫
X
p(x) log

p(x)

q(x)
dx (2.61)

It can be shown by Jensen’s inequality that D(p‖q) ≥ 0 with equality if and only if
p(x) = q(x) for essentially all x [31]. Hence, KL-divergence is considered as a measure
of contrast between the two distributions. From the hypothesis-testing perspective
emphasized by Kullback [84], log p(x)/q(x) measures the information provided by a
specific observation x favoring the hypothesis ‘x ∼ p’ over the hypothesis ‘x ∼ q’. The
mean information for discrimination is then just the expected information gained in
favor of ‘x ∼ p’ over ‘x ∼ q’ per observation when in fact x ∼ p. This provides
the basis for the fundamental role KL-divergence plays as an error exponent in the
asymptotic equipartition theorem (AEP), Shannon’s communication theory [121], the
method of types, and large-deviation theory [41] (e.g. Sanov’s theorem). The text
by Cover and Thomas [31] introduces this material and provides historical notes and
references.

Kullback’s principle, which may be considered as a minimum-discrimination prin-
ciple, asserts that given a reference model q(x) and some additional knowledge of the
random outcome x, we should then adopt as our refined model that p(x) which is
consistent with our new knowledge of x but otherwise minimizes the KL-divergence
D(p‖q). We write this minimum principle as

p∗ = argmin
p∈P

D(p‖q) (2.62)

where P is the set of all probability distributions consistent with our knowledge of
x. Intuitively, it should be made as difficult as possible to discriminate q from p
given sample paths drawn from p. This then provides a perspective for the family of
exponential models based on a normalized probability distribution q.

Proposition 8 (Minimum-Discrimination Theorem, Kullback [84]) Let P de-
note the set of probability distributions on X which satisfy expectation constraints

6But previously considered from a different perspective by Jeffreys. Jeffreys’ goal was to construct
an invariant measure of entropy. Several researchers consider KL as a generalization of the notion
of entropy. Hence, KL is sometimes referred to as relative entropy.
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Ep{t(x)} = η for t : X → Rd and η ∈ Rd. Suppose that P contains a probability
distribution p∗ given by

p∗(x) = q(x) exp{θ · t(x)− ϕ(θ)} (2.63)

where q is a positive (non-vanishing) probability distribution on X , θ ∈ Rd and ϕ(θ) =
log

∫
X q(x) exp{θ · t(x)}dx <∞. Then, for all p ∈ P,

D(p‖q) ≥ D(p∗‖q) = ϕ(θ)− θ · η (2.64)

where equality occurs if and only if p = p∗. Hence, p∗ is the minimum-discrimination
distribution in P relative to q.

Proof. This is a generalization of the maximum-entropy principle. The same
variational argument as before applies but with an additional −p(x) log q(x) term so
that solving for the stationary distribution of D(p‖q), subject to constraints, gives
p(x) ∝ q(x) exp{θ · t(x)}. This is the global minimum of D(p‖q) due to the strict
convexity of KL in the distribution p(·) (see Cover and Thomas [31] for the convexity
proof). �

This shows that an exponential model p(x) = q(x) exp{θ · t(x)− ϕ(θ)} (based on
a normalized distribution b(x) = q(x)) with moment parameters η is the minimum-
discrimination probability distribution relative to q satisfying the moment constraints
Ep{t(x)} = η and that the exponential parameters θ are Lagrange multipliers as-
sociated to those moment constraints. Also, the convex-conjugate of the cumulant
function ϕ∗(η) = θ·η−ϕ(θ) gives the KL-divergence relative to q, i.e. ϕ∗(η) = D(p‖q).

Note that when q(x) is also an exponential model of the form q(x) ∝ exp{θ · t(x)}
then so is p(x). In this case, the model p(x) above is also a maximum-entropy model
but subject to a new set of moment constraints. In particular, consider the case
where the original model q(x) is the maximum-entropy model associated with a set of
moment constraints Et1(x) = η1 and we then impose an augmented set of constraints
(containing these original constraints as a subset) Et2(x) = η2. In this case, the
entropy is decreased by h[q] − h[p] = D(p‖q). If we regard the negative entropy
as the information content of the model, then we see that this information is very
naturally increased by imposing additional moment constraints and the amount of
this increase is given by the KL-divergence of the updated model relative to the prior
model. This shows the connection between minimum-discrimination and maximum-
entropy. Often, as in Della Pietra et al [106], minimum-discrimination is also referred
to as a “maximum-entropy” method.

2.2.2 Duality with Maximum-Likelihood

Fisher [53, 54] introduced themaximum-likelihood principle for model selection among
a parameterized family of models from data. For exponential families, it is well known
that maximum-likelihood is dual to minimum-discrimination/maximum-entropy as
we discuss below (Della Pietra et al [106], Jordan [77]).
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Maximum-Likelihood Principle. The typical situation is as follows. Let x de-
note the outcome of some random experiment with unknown probability distribu-
tion p(x). We observe this distribution through a collection of independent samples
xN = (x1, . . . ., xN) each with distribution p. We then wish to select a model to best
approximate p(x) among a parameterized family of candidates Q = (q(x; θ), θ ∈ Θ).
The maximum-likelihood principle advises that we select the model which maximizes
the likelihood of the data q(xN ; θ) =

∏
i q(xi; θ) (equivalently, the log-likelihood

log q(xN ; θ) =
∑
i log q(xi; θ)). This gives the maximum-likelihood estimate θ̂ML of

the parameters θ.

θ̂ML = argmax
θ∈Θ

{
N∑
i=1

log q(xi; θ)

}
(2.65)

This also may be phrased in terms of information theory. Define the empirical
distribution p̃ of data xN as a scaled sum of Dirac δ-functions placed at the observed
samples.

p̃(x) =
1

N

N∑
i=1

δ(x− xi) (2.66)

This is defined such that expectations with respect to the empirical distribution gives
sample averages.

Ep̃{f(x)} = 1

N

N∑
i=1

f(xi) (2.67)

Essentially, q(xN ; θ) ∝ exp{−ND(p̃‖q)} such that the maximum-likelihood principle
may be viewed as minimization of the KL-divergenceD(p̃‖q) overQ. Denoting q̂ML =
q(·; θ̂ML) we write

q̂ML = argmin
q∈Q

D(p̃‖q) (2.68)

Note that the sense of KL-divergence is reversed in comparison to the minimum-
discrimination principle (2.62). Also, the minimum-discrimination principle imposes
expectation constraints while maximum-likelihood is over a parameterized family.
However, in exponential families, maximum-likelihood and minimum-discrimination
are dual problems. We state this in the following general form.

Proposition 9 (Minimum-Discrimination/Maximum-Likelihood Duality)
Let Q denote the exponential family based on (X , t(·), b(·)). Let P denote the family
of all probability distributions (not necessarily exponential) satisfying moment con-
straints Ep{t(x)} = η. Suppose that there exists a probability distribution r = P ∩Q.
Then, r is both the minimum-discrimination distribution in P for any q ∈ Q,

r = argmin
p∈P

D(p‖q), (2.69)
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and the maximum-likelihood distribution in Q for any p ∈ P,

r = argmin
q∈Q

D(p‖q). (2.70)

Moreover, either condition uniquely determines r such that P ∩Q = {r}.

Proof. By hypothesis, r, q ∈ Q such that r(x)/q(x) ∝ exp{β · t(x)} where
β = θ(r) − θ(q). Hence, by Kullback’s minimum discrimination theorem, r(x) ∝
q(x) exp{β · t(x)} is the minimum-discrimination distribution relative to q subject
to moment constraints E{t(x)} = η which proves the first part of the proposition.
Now, by hypothesis r ∈ Q so we may write r(x) = b(x) exp{θ(r) · t(x) − ϕ(θ(r))}
where ϕ(θ) =

∫
b(x) exp{θ · t(x)}dx. This minimizes D(p‖q) = −h[p]−Ep{log q(x)},

a strictly convex function of q(·), over q ∈ Q if and only if the gradient in θ(q) van-
ishes at θ(r). A simple calculation shows that this occurs if and only if r and p give
the same moments, i.e. Er{t(x)} = Ep{t(x)}. By hypothesis r, p ∈ P so that this
condition is satisfied and r is the maximum-likelihood distribution in Q for p. �

2.2.3 Information Geometry and Projection

We now consider the so-called information geometry of parameterized families of prob-
ability distributions with respect to the Fisher information metric. This framework
provides a unifying perspective combining elements of information theory, differential
geometry, convex duality and optimization theory. Many researchers have contributed
to the development of this picture including Fisher [53], Rao [109], Chentsov [29, 28],
Csiszár [34], Efron [46, 47], Barndorff-Nielsen [7], and Amari [3, 4]. The monograph
of Amari and Nagaoka [5] is recommended for a systematic overview of the field and
also for historical notes and references. Exponential families have played a central
role in this development and will be our main concern. However, the dual differential-
geometric framework of Amari applies more generally. We shall see that the duality
between maximum-likelihood and minimum-discrimination carries over to informa-
tion geometry and is then endowed with a very intuitive geometric interpretation.

General Statistical Manifolds. Consider a parameterized family of probability
distributions F = {pξ(x)|ξ ∈ Ξ} on X with parameter space Ξ ⊂ Rd. That is, each
ξ ∈ Ξ specifies a probability distribution pξ(x) on X . Suppose that the following
conditions hold:

1. For each ξ ∈ Ξ, the probability distribution pξ is positive (non-vanishing) on
X .

2. The mapping ξ → pξ is sufficiently smooth such that p(·; ξ) has partial deriva-
tives of all orders (including mixed derivatives) with respect to ξ at every point
in Ξ.

3. The parameterization is non-degenerate such that distinct parameters specify
distinct probability distributions.
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4. The parameter set Ξ is a simply-connected, open subset of Rd.
We then say that F is a statistical manifold of dimension d with coordinates Ξ.
We let ξ(p) denote the (unique) coordinates of p ∈ F . We also say that G ⊂ F is a
submanifold of F if G is a statistical manifold smoothly embedded in F . Submanifolds
are typically specified in one of two ways:

1. Parametric Submanifold. The submanifold G is explicitly specified by an injec-
tive map σ : T → Ξ where T ⊂ Rs is a simply-connected, open subset of Rs
(s < d).

G = {p ∈ F|∃t ∈ T : σ(t) = ξ(p)} (2.71)

For σ sufficiently smooth, this defines a submanifold of dimension s with coor-
dinate system T .

2. Implicit Submanifold. The submanifold G is specified as the subset of F satisfy-
ing constraints ρ(ξ) = 0 where ρ = (ρi : Ξ→ R, i = 1, . . . ,m) is a collection of
m < d sufficiently smooth functions with linearly independent gradient vectors
{∇ρi} at each point in Ξ.

G = {p ∈ F|ρ(ξ(p)) = 0} (2.72)

Provided the constraints are consistent, such that ρ(ξ) = 0 for some ξ ∈ Ξ, this
defines a submanifold of dimension s = d−m. In this case, a coordinate system
for the submanifold need not be explicitly specified.

We let ξ(G) ≡ {ξ(p)|p ∈ G} denote the image of submanifold G in ξ-coordinates.
We now consider how to construct an invariant Riemannian metric on the statisti-

cal manifold F based on the Fisher information matrix of the parameterized family. In
this construction, we consider two complementary viewpoints, where F is represented
either as a set of probability distributions or as a set of log-probability distributions,
and then construct a Riemannian metric as the inner product between tangents of
these respective representations. This metric is related to KL-divergence and Fisher
information and is invariant for sufficiently smooth reparameterization of the family.

M-Representation. First, consider representation of F as a set of probability
distributions F (m) = {pξ ≡ (p(x; ξ), x ∈ X )|ξ ∈ Ξ} ⊂ RX where pξ denotes a point
in function space RX = {f : X → R}. We call this the m-representation of F .7

At each point pξ ∈ F, we define an m-tangent for each parameter differential
∆ ∈ Rd by

tξ(∆) = lim
λ↓0

{
pξ+λ∆ − pξ

λ

}
(2.73)

This defines the m-tangent space

Tξ(F) = {tξ(∆)|∆ ∈ Rd} (2.74)

7This terminology is adopted because mixture families, given by F (m) = {p(x; ξ) = (1 −∑
i ξi)p0(x) +

∑
i ξipi(x)|ξi > 0,

∑
i ξi < 1} where {pi} are non-vanishing probability distributions

on X , are flat submanifolds of RX (Amari and Nagaoka, [5]).
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T∗
ξ(F)Tξ(F)

tξ(∆) =
∂
∂λ
pξ+λ∆

t∗ξ(∆) =
∂
∂λ
logpξ+λ∆

F (e) = {log pξ} ⊂ RX

p∗
ξ = logpξpξ

ξ

F (m) = {pξ} ⊂ RX

∆

Ξ(F) ⊂ Rd

Figure 2-8: Illustration depicting relationship between parameter differentials ∆ ∈ Rd
(top center), m-tangents tξ(∆) ∈ Tξ(F) (bottom left), and e-tangents t∗ξ(∆) ∈ T∗

ξ(F)
(bottom right).

at each point pξ ∈ F (m). For each i = 1, . . . , d we define a basis vector by

tξ,i = ∂ipξ (2.75)

where ∂i ≡ ∂
∂ξi
denotes partial differentiation with respect to the i-th parameter. We

may express an arbitrary m-tangent tξ(∆) as a linear combination of these d basis
vectors.

tξ(∆) =
∑
i

∆itξ,i (2.76)

This shows that, for each ξ ∈ Ξ, the m-tangent space Tξ(F) is a d-dimensional vector
space spanned by the basis vectors (tξ,i, i = 1, · · · , d).

E-Representation. In an analogous manner, we may also consider represen-
tation of F as a set of log-probability distributions F (e) = {p∗

ξ ≡ (log p(x, ξ), x ∈
X ), ξ ∈ Ξ}. We call this the e-representation of F .8

At each point p∗
ξ ∈ F (e), we define an e-tangent for each coordinate differential

∆ ∈ Rd by
t∗ξ(∆) = lim

λ↓0

{
p∗
ξ+λ∆ − p∗

ξ

λ

}
(2.77)

This defines the e-tangent space

T∗
ξ(F) = {t∗ξ(∆)|∆ ∈ Rd} (2.78)

8This terminology is adopted because exponential families, in a denormalized representation
F̃ (e) = {log λp(x; ξ) = ∑

i ξiti(x) + log λ|ξ ∈ Ξ, λ > 0}, are flat submanifolds of RX (Amari and
Nagaoka, [5]).
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at each point p∗
ξ ∈ F (e). We again define a collection of basis vectors by

t∗ξ,i = ∂ip
∗
ξ (2.79)

for i = 1, . . . , d. Arbitrary e-tangents may then be expressed as liner combinations of
these basis vectors.

t∗ξ(∆) =
∑
i

∆it
∗
ξ,i (2.80)

Hence, T∗
ξ(F) is a d-dimensional vector space spanned by the basis (t∗ξ,i, i = 1, . . . , d).

We consider these two complementary representations so as to illuminate the
geometric interpretation of the Fisher information metric (Amari and Nagaoka, [5])
which may be constructed as follows.

Fisher Information Metric. Given any two points in function space f ,g ∈
RX , let f · g denote the usual inner-product of two functions:

f · g =
∫
X
f(x)g(x)dx (2.81)

based on this inner-product of functions and the preceding definitions of m-tangent
and e-tangent, let the Fisher information metric be defined by the bilinear form:

〈∆1,∆2〉ξ = t∗ξ(∆1) · tξ(∆2) (2.82)

for all ξ ∈ Ξ and ∆1,∆2 ∈ Rd. This is the inner-product (in function space) of
the e-tangent t∗ξ(∆1) with the m-tangent tξ(∆2). This metric is closely related to

KL-divergence. For all ξ ∈ Ξ and ∆ ∈ Rd, it holds that:
∂D(pξ‖pξ+λ∆)

∂λ
=
1

2
〈∆,∆〉ξ (2.83)

To show the connection with Fisher information, we write

〈∆1,∆2〉ξ =

(∑
i

∆1,it
∗
ξ,i

)
·
(∑

j

∆2,jtξ,j

)
(2.84)

=
∑
i,j

∆1,i∆2,jt
∗
ξ,i · tξ,j

= ∆′
1G(ξ)∆2 (2.85)

where G(ξ) is the d × d matrix with ij-th element gi,j(ξ) = t∗ξ,i · tξ,j. A simple
calculation shows that

gi,j(ξ) = Eξ{∂i log p(x; ξ)∂j log p(x; ξ)} (2.86)

This G(ξ) is the Fisher information of the parameterized family p(x; ξ). For each ξ ∈
Ξ, this is the covariance matrix of the random vector v = (∂i log p(x; ξ), i = 1, . . . , d)
and, hence, is a symmetric, positive-definite matrix. This also shows that, for each
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ξ ∈ Ξ, 〈·, ·〉ξ defines an inner-product9 on Rd. This defines a Riemannian metric
on Ξ. Moreover, this Fisher information metric is invariant with respect to smooth
reparameterization of the statistical manifold.10

Based on the Fisher information metric, we say that two parameter differentials
∆1,∆2 ∈ Rd are I-orthogonal at ξ ∈ Ξ if

〈∆1,∆2〉ξ ≡ t∗ξ(∆1) · tξ(∆2) = 0 (2.87)

That is, if the e-tangent and m-tangent of the respective parameter differentials are
orthogonal in function space. Accordingly, we say that two submanifolds G1,G2 ⊂ F
are I-orthogonal at pξ ∈ G1 ∩ G2 when 〈∆1,∆2〉ξ = 0 for all ∆1 and ∆2 respectively
tangent to ξ(G1) and ξ(G2) at the point ξ in parameter space Ξ.

Information Geometry of Exponential Families. With these ideas in mind, we
now turn our attention back towards exponential families. The information geometry
of exponential families enjoys some special properties arising due to the Legendre du-
ality between the exponential and moment parameterizations of this family (discussed
previously in Section 2.1.4).

Recall that an exponential family F = {pθ(x) = b(x) exp{θ · t(x) − ϕ(θ)}} is
dually parameterized by moment coordinates η = Eθ{t(x)}. Exponential and moment
coordinates are related by the bijective coordinate transform:

η = ∇ϕ(θ) ⇔ θ = ∇ϕ∗(η) (2.88)

where ϕ(θ) is the cumulant function, ϕ∗(η) is the negative entropy function, and these
are convex conjugate functions satisfying the Legendre relation

ϕ(θ) + ϕ∗(η) = θ · η (2.89)

for any dually-coupled pair (θ, η) satisfying (2.88). The parameter space of F in
exponential and moment coordinates is respectively given by the effective domains
of these cumulant and negative entropy functions; θ(F) = dom ϕ ≡ {θ|ϕ(θ) < ∞}
and η(F) = dom ϕ∗ ≡ {η|ϕ∗(η) <∞}. Again, let G(θ) and G∗(η) denote the Fisher
information in these respective parameterizations of the family. These two symmetric
positive definite matrices are also the Hessian curvature matrices respectively of the
cumulant and entropy functions. Then, by virtue of (2.88), these are also the Jacobian
matrices of coordinate transforms, G(θ) = ∂η

∂θ
and G∗(η) = ∂θ

∂η
, and are therefore

9That is, a symmetric, bilinear form having the property that 〈∆,∆〉 ≥ 0 for all ∆ ∈ Rd and
〈∆,∆〉 = 0 if and only if ∆ = 0.

10To be precise, consider a second parameterization F = {p(x; ξ∗)|ξ∗ ∈ Ξ∗} related to the the
original ξ-parameterization by a diffeomorphism σ : Ξ → Ξ∗, a sufficiently smooth, differentiable,
bijective map. We may apparently define a second Fisher information metric in this reparameterized
family by 〈∆∗

1,∆
∗
2〉∗ξ∗ ≡ (∆∗

1)
′G∗(ξ∗)∆∗

2 where G∗(ξ∗) is the Fisher information of the ξ∗ parameter-
ization. Yet, for commensurate differentials ∆∗ = Σ(ξ)∆, related by the invertible Jacobian matrix
Σ(ξ) ≡ (∂σi(ξ)

∂ξj
), these metrics are actually equivalent. That is, 〈∆1,∆2〉ξ = 〈∆∗

1,∆
∗
2〉∗σ(ξ) for all

ξ ∈ Ξ and ∆1,∆2 ∈ Rd.
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inversely related G−1(θ) = G∗(η) for any dually-coupled coordinate pair (θ, η).
These dual parameterizations give (equivalent) representations for the Fisher in-

formation metric:

〈∆θ1,∆θ2〉θ = ∆θ′1G(θ)∆θ2 (2.90)

〈∆η1,∆η2〉η = ∆η′1G
∗(η)∆η2 (2.91)

That is, for commensurate differentials ∆η1 = G(θ)∆θ1 and ∆η2 = G(θ)∆θ2, these
are equal satisfying

〈∆θ1,∆θ2〉θ = 〈∆η1,∆η2〉η = ∆η1 ·∆θ2 (2.92)

Compare this form of the Fisher information metric, as an inner product between
differentials in dual parameter spaces, to our original definition (2.82), as an inner
product (in function space) between tangents of the e- and m-representations of a
statistical manifold. It appears that the dual exponential/moment parameterizations
closely parallels the e- and m-representations of the family in function space.

To explore this connection a bit further, consider the e-tangent/m-tangent basis
vectors in both exponential and moment coordinates:

tθ,i =
∂

∂θi
pθ ⇔ t∗θ,i =

∂

∂θi
logpθ (2.93)

tη,i =
∂

∂ηi
pη ⇔ t∗η,i =

∂

∂ηi
logpη (2.94)

Each parameterization provides distinct bases for both the e- and m-tangent spaces.
For instance, the two bases (tθ,i, i = 1, . . . , d) and (tη,i, i = 1, . . . , d) each span Tp(F).
Recalling the role Fisher information plays as the Jacobian matrix of the coordinate
transform, then the chain-rule for partial differentiation yields the following invertible
transformation law between bases;

tθ,i =
∑
j

gij(θ)tη,j (2.95)

tη,i =
∑
j

g∗ij(η)tθ,j (2.96)

The same transformation law holds if we replace m-tangents by e-tangents in these
two expressions. What is especially interesting about these dual bases is the following
biorthogonality principle (Chentsov [29], Efron [47], Amari and Nagaoka [5]):

t∗θ,i · tη,j = δi,j (2.97)

where δi,j is the Kronecker delta.
11 This fundamental result points the way towards

a more global characterization of information geometry in exponential families which
we explore for the remainder of the section.

11The Kronecker delta δi,j is one whenever i = j and is zero otherwise.
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E-Flat and M-Flat Submanifolds. In exponential families, we will be es-
pecially concerned with two special types of submanifolds. In order to define these
precisely, we first introduce some basic terminology. For G ⊂ Rd, we define the set

aff G = {u+ λ(v − u)|u, v ∈ G, λ ∈ R}. (2.98)

We say that G is affine if G = aff G. We say that G is an affine restriction of U ⊂ Rd
if G = U ∩ aff G (equivalently, if there exists affine H such that H ∩ U = G). The
set H = aff G is the smallest affine superset of G.

We consider two types of flat submanifolds within an exponential family:

• E-flat Submanifold. We say that G ⊂ F is an e-flat submanifold of F if θ(G) is
an affine restriction of θ(F). Intuitively, the submanifold is flat in exponential
coordinates. The dimension of an e-flat submanifold equals the dimension of
the hyperplane aff θ(G). A one-dimensional e-flat submanifold, a line segment
in exponential coordinates, is also called an e-geodesic.

• M-flat Submanifold. We say that G ⊂ F is an m-flat submanifold of F if η(G)
is an affine restriction of η(F). Intuitively, the submanifold is flat in moment
coordinates. The dimension of an m-flat submanifold equals the dimension of
the hyperplane aff η(G). A one-dimensional m-flat submanifold, a line segment
in moment coordinates, is also called an m-geodesic.

E-flat submanifolds (of exponential families) enjoy the special status that these are
themselves exponential families (which, in general, does not hold for m-flat submani-
folds). M-flat submanifolds correspond to imposing linear expectation constraints on
the exponential family.

Henceforth, we adopt the convention of letting H denote an e-flat submanifold,
and letting H′ denote an m-flat submanifold. Given such a pair of respectively e-
flat/m-flat submanifolds, let us say that these are biorthogonal submanifolds if the
image of the e-flat submanifold (in exponential coordinates) is perpendicular to the
image of the m-flat submanifold (in moment coordinates). That is, if it holds that

(η(p1)− η(p2))′(θ(q1)− θ(q2)) = 0 (2.99)

for all q1, q2 ∈ H and p1, p2 ∈ H′. Furthermore, let us say that a pair of biorthogonal
submanifolds H,H′ ⊂ F are complementary if the respective dimensions of these
submanifolds, s and s′, are nonzero and s+ s′ = d, the dimension of the family F .

We now indicate the relation between this global definition of biorthogonality to
our previous local definition of I-orthogonality with respect to the Fisher information
metric. Suppose that H and H′ are respectively e-flat and m-flat and have a common
probability distribution r ∈ H∩H′. Then,H andH′ are biorthogonal if an only if they
are I-orthogonal at r. This is a consequence of the biorthogonality of the exponential
and moment coordinate systems (2.97). We shall see that biorthogonal submanifolds
intersect at at most one point. That is, if r ∈ H∩H′ thenH∩H′ = {r}. Furthermore,
complementary biorthogonal submanifolds intersect at exactly one point. That is,
there exist r ∈ H ∩ H′ and, moreover, it is unique, i.e. H ∩ H′ = {r}. This is

54



analogous to the fact that, in Euclidean geometry, two complementary perpendicular
hyperplanes must intersect at exactly one point. We will show these results in the
course of the following development. We approach this by considering the structure
of KL-divergence in exponential families.

Properties of KL-Divergence in Exponential Families. The information
geometry of exponential families is endowed with global structure which we now
elucidate. As a point of departure, we consider KL-divergence as the canonical di-
vergence (Amari and Nagaoka, [5]) induced by the convex-conjugate pair of functions
(ϕ(θ), ϕ∗(η)) defined as

K(η, θ) = ϕ∗(η) + ϕ(θ)− η · θ (2.100)

for all η ∈ dom ϕ∗ and θ ∈ dom ϕ. This is a convex bifunction (Rockafellar [114]) as
it is both convex in η (with θ held fixed) and convex in θ (with η held fixed). For an
exponential family with cumulant function ϕ(θ) (negative entropy function ϕ∗(η)) this
is precisely the KL-divergence D(p‖q) = Ep{log q(x)} between distributions p, q ∈ F
with η(p) = η and θ(q) = θ, i.e. D(p‖q) = K(η(p), θ(q)) for all p, q ∈ F .

Two related expressions for the KL-divergence are obtained by using the Legendre
transform to specify both arguments in the same coordinate system. Let (θ, η) and
(θ∗, η∗) each be a dually-coupled coordinate pair. We rewrite K(η∗, θ), applying the
Legendre transform ϕ∗(η∗) = η∗ · θ∗ − ϕ(θ∗), to obtain:

K(η∗, θ) = B(θ; θ∗) ≡ ϕ(θ)− {ϕ(θ∗) + η∗ · (θ − θ∗)} (2.101)

Here, we may view η∗ as a function of θ∗, i.e. η∗ = ∇ϕ(θ∗). The function B(θ; θ∗) is
the Bregman distance (Bregman [24]) based on the convex function ϕ(θ). This may
be written as B(θ; θ∗) = ϕ(θ)− ϕ̄(θ; θ∗) where ϕ̄(θ; θ∗) = ϕ(θ∗) +∇ϕ(θ∗) · (θ − θ∗) is
the linear underestimate of ϕ(θ) based on the supporting hyperplane tangent to epi ϕ
at θ∗. The corresponding geometric interpretation of KL-divergence, as the difference
between a convex function ϕ(θ) and a supporting hyperplane, is illustrated in Figure
2-9.

Since the cumulant function is an essentially smooth, strictly convex function12

this Bregman distance function then has some very useful properties:

1. For each θ∗ ∈ dom ϕ, the function b∗(θ) = B(θ; θ∗) is itself an essentially
smooth, strictly convex function with effective domain dom b∗ = dom ϕ.

2. For all θ, θ∗ ∈ dom ϕ we have B(θ; θ∗) ≥ 0. Moreover, B(θ; θ∗) = 0 if and only
if θ = θ∗.

3. For each θ∗ ∈ dom ϕ, the level sets Lδ = {θ ∈ dom ϕ|b∗(θ) ≤ δ} are compact
(closed and bounded), convex subsets of Rd.

12That is, ϕ(θ) is both smooth and strictly convex over it’s effective domain dom ϕ = {θ|ϕ(θ) <
∞} and is also steep such that ϕ(θ)→∞ for any sequence {θk} ⊂ dom ϕ which converges to a limit
point not contained in dom ϕ.
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ϕ(θ)

θ0 θ

ϕ̄(θ; θ0)

B(θ; θ0)

(a)

B(θ2; θ0)
B(θ1; θ0)

B(θ2; θ1)

∆ · (θ2 − θ1)

θ2θ1θ0

ϕ(θ)

(b)

Figure 2-9: Illustration of Bregman distance and triangular relation. (a) Shows
Bregman distance interpretation of KL-divergence in exponential coordinates, i.e.
D(p‖q) = B(θ(q); θ(p)) where B(θ; θ0) = ϕ(θ)− ϕ̄(θ; θ0) is the difference between the
convex function ϕ(θ) and the linear underestimate ϕ̄(θ; θ0) = ϕ(θ0)+∇ϕ(θ0) ·(θ−θ0).
(b) Shows geometric interpretation of the “triangular relation” satisfied by the
Bregman distance, B(θ2; θ0) = B(θ1; θ0) + B(θ2; θ1) + ∆ · (θ2 − θ1) where ∆ =
∇ϕ(θ1)−∇ϕ(θ0) = η1 − η0.
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These results follow naturally from the geometric interpretation of the Bregman dis-
tance. In particular, the compactness of the level sets in (3) follows by showing that
B(θ(k); θ∗)→∞ for any sequence {θ(k)} in dom ϕ such that either: (i) θ(k) converges
to a limit point not contained in dom ϕ, or (ii) ‖θ(k)‖ → ∞. Then, (i) and (ii)
respectively show that the level sets are closed and bounded (and hence compact).

We may also derive an expression for the KL-divergence in terms of the moment
coordinates of both arguments. Employing the Legendre transform ϕ(θ∗) = θ∗ · η∗ −
ϕ∗(η∗), we obtain

K(η, θ∗) = B∗(η; η∗) ≡ ϕ∗(η)− {ϕ∗(η) + θ∗ · (η − η∗)} (2.102)

This is the Bregman distance B∗(η; η∗) based on the convex function ϕ∗(η). This has
a similar geometric interpretation as B(θ; θ∗) and satisfies an analogous set of “dual”
properties (obtained by reversing the sense of the KL-divergence and exchanging the
roles played by exponential and moment coordinates).

We summarize this discussion as follows:

• E-Balls. We define the e-ball about p ∈ F of radius δ ≥ 0 as Lδ(p) = {q ∈
F|D(p‖q) ≤ δ}. The image of an e-ball in exponential coordinates is a convex,
compact subset of dom ϕ. Also, L0(p) = {p} and L∞(p) ≡ ∪δ>0Lδ(p) = dom ϕ.

• M-Balls. We define the m-ball about q ∈ F of radius δ as L∗
δ(q) = {p ∈

F|D(p‖q) ≤ δ}. The image of an m-ball in moment coordinates is a convex,
compact subset of dom ϕ∗. Also, L∗

0(q) = {q} and L∗
∞(q) ≡ ∪δ>0L∗

δ(q) =
dom ϕ∗.

This tells us quite a bit about the topology of KL-divergence in exponential fam-
ilies. We will appeal to these properties to show the existence of certain informa-
tion projections momentarily. But first, we present some very intuitive results for
KL-divergence in exponential families which bear a close resemblance to analogous
principles of Euclidean geometry.

Proposition 10 (Triangular Relation, Chentsov [29]) Let p, q, r ∈ F , an expo-
nential family with dual coordinate systems (θ, η). Then,

D(p‖q) = D(p‖r) +D(r‖q) + (η(p)− η(r)) · (θ(r)− θ(q)) (2.103)

Proof. This follows from the Bregman distance interpretation of KL. From (2.101),
a simple calculation gives:

D(p‖q)−D(p‖r)−D(r‖q) = {ϕ(q)− ϕ(p)− η(p) · (θ(q)− θ(p))}
−{ϕ(r)− ϕ(p)− η(p) · (θ(r)− θ(p))}
−{ϕ(q)− ϕ(r)− η(r) · (θ(q)− θ(r))}

= (η(p)− η(r)) · (θ(r)− θ(q))

which proves the result. This has an intuitive geometric interpretation illustrated in
Figure 2-9(b). �
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This recalls the following triangle identity of Euclidean geometry for three points
p, q, r ∈ Rn,

1

2
||p− q||2 = 1

2
‖p− r‖2 + 1

2
‖r − q‖2 + (p− r) · (r − q), (2.104)

with KL-divergence playing an analogous role as half the squared distance.
For intersecting submanifolds H,H′ ⊂ F , which are respectively e-flat and m-flat,

this gives the so-called “Pythagorean law” of information geometry characterizing
I-orthogonality of such e-flat/m-flat submanifolds.

Proposition 11 (Pythagorean Relation) Let H and H′ be respectively e-flat and
m-flat submanifolds of F having a common probability distribution r. Then H and
H′ are I-orthogonal at r (and, hence, biorthogonal) if and only if it holds that

D(p‖q) = D(p‖r) +D(r‖q) (2.105)

for all p ∈ H′ and q ∈ H. Moreover, if this condition holds, then H ∩H′ = {r}.

Proof. Due to the biorthogonality of exponential and moment coordinates, the
e-flat submanifold H and the m-flat submanifold H′ are I-orthogonal at r if and only
if (η(p)−η(r)) · (θ(q)−θ(r)) = 0 for all p ∈ H′ and q ∈ H. Assuming I-orthogonality,
the Triangular relation then reduces to the Pythagorean relation. Conversely, if the
Pythagorean relation holds for all p ∈ H′ and q ∈ H, then by the Triangular relation
we must have (η(p) − η(r)) · (θ(q) − θ(r)) = 0 for all p ∈ H′ and q ∈ H so that
I-orthogonality also holds. To show uniqueness, suppose that r1, r2 ∈ H∩H′. Then,
by the result just shown, D(r1‖r1) = D(r1‖r2) +D(r2‖r1) = 0 such that D(r1‖r2) =
−D(r2‖r1). By positivity D(p‖q) ≥ 0, such that D(r1‖r2) = D(r2‖r1) = 0 which
occurs only when r1 = r2. Hence H ∩ H′ cannot contain two distinct probability
distributions and H ∩H′ = {r}. �

This recalls the Pythagorean law for right triangles in Euclidean geometry. This
viewpoint naturally leads to considering the following dual notions of “projection” in
information geometry.

Information Projection. We now consider two related minimization problems
of information geometry. Here, one seeks to minimize the KL-divergence D(p‖q)
with respect to q (alternatively p) over an e-flat (respectively m-flat) submanifold.
Both of these “information projections” are shown to have unique solutions which
may be characterized in terms of either I-orthogonality or the Pythagorean relation.
These projections are related to maximum-likelihood and minimum-discrimination
and satisfy a corresponding duality principle.

Proposition 12 (M-Projection) Let H �= ∅ be an e-flat submanifold of an expo-
nential family F and let p be a given probability distribution in F . Then, there exists
a probability distribution q∗ ∈ H satisfying the following (equivalent) conditions:

(i) D(p‖q∗) = infq∈HD(p‖q)
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(ii) ∀q ∈ H : (η(p)− η(q∗)) · (θ(q)− θ(q∗)) = 0
(iii) ∀q ∈ H : D(p‖q) = D(p‖q∗) +D(q∗‖q)
Moreover, any one of these conditions uniquely determines q∗. We call this q∗ =
argminq∈HD(p‖q) the m-projection of p to H.13

Proof. The crux of the proof lies in showing that the infimum in (i) is actually ob-
tained by some q∗ ∈ H. The follows from the compactness of e-balls. By assumption,
there exists some q0 ∈ H. Fix q0 and set δ = D(p‖q0). Define D ≡ Lδ(p) ∩ H,
the “disc” of all distributions q in the e-flat submanifold H with KL-divergence
D(p‖q) ≤ δ. In exponential coordinates, this disc is a compact subset of a hyperplane.
Hence, the infimum of D(p‖q) (a convex function of θ(q)) over D is obtained by some
point q∗ ∈ D, i.e. D(p‖q∗) = infq∈DD(p‖q). Finally, since any point q ∈ H \ D has
D(p‖q) > D(p‖q0) ≥ D(p‖q∗), this q∗ actually achieves the infimum of D(p‖q) over
all of H. Hence, there exists q∗ ∈ H such that (i) holds as claimed. Moreover, since
D(p‖q) is strictly convex in θ(q), this q∗ is unique.

Next, computing the gradient of D(p‖q) with respect to θ(q) (with p held fixed)
yields

∂D(p‖q)
∂θ(q)

= η(q)− η(p) (2.106)

so that, in order for q∗ ∈ H to be a stationary point of D(p‖q) over H, (ii) must hold,
i.e. (i) ⇒ (ii). Conversely, since D(p‖q) is strictly convex in θ(q), the stationarity
condition (ii) actually shows q∗ to be the (unique) global minimizer.

Finally, let H′ be the m-geodesic connecting p and q∗. Assuming (ii), H and H′

are shown to be I-orthogonal at q∗. Hence, the Pythagorean relation (iii) holds, i.e.
(ii)⇒ (iii). Conversely, assuming (iii), Proposition 11 then asserts that H and H′ are
I-orthogonal at r so that (ii) holds. �

M-projection may be considered as finding the maximum-likelihood probability
distribution with respect to p over the exponential family determined by the e-flat
submanifold H.

Proposition 13 (E-Projection) Let H′ �= ∅ be an m-flat submanifold of an expo-
nential family F and let q be a given probability distribution in F . Then, there exists
a probability distribution p∗ ∈ H′ satisfying the following (equivalent) conditions:

(i) D(p∗‖q) = infp∈H′ D(p‖q)
(ii) ∀p ∈ H′ : (η(p)− η(p∗)) · (θ(q)− θ(p∗)) = 0
(iii) ∀p ∈ H′ : D(p‖q) = D(p‖p∗) +D(p∗‖q)

13Note that, although we are projecting to an e-flat submanifold, we follow Amari’s convention of
calling this m-projection because we may view the projection as following the m-geodesic containing
p which is biorthogonal to the e-flat submanifold. This is called reverse I-projection by Csiszár.
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Moreover, any one of these conditions uniquely determines p∗. We call this p∗ =
argminp∈H′ D(p||q) the e-projection of q to H′.14

Proof. The proof is a “dual” version of the argument given in Proposition 12 (just
reverse the sense of KL-divergence and exchange the role played by exponential and
moment coordinates). �

E-projection may be considered as finding the minimum-discrimination probability
distribution with respect to q subject to linear moment constraints imposed by the m-
flat submanifold H′. That is, for some matrix A ∈ Rm×d and vector b ∈ Rm (m < s),
where A is rank m and s = d − m is the dimension of the m-flat submanifold, we
may express the m-flat submanifold as H′ = {p ∈ F|Aη(p) − b = 0}. This may
be seen as imposing expectation constraints Ep{t̃(x)} = b with respect to statistics
t̃(x) = At(x). Then, by Kullback’s minimum discrimination theorem (Proposition 8,
Kullback [84]), the e-projection is given by

p∗(x) ∝ q(x) exp{λ · t̃(x)} (2.107)

where λ ∈ Rm is a vector of Lagrange multipliers chosen so as to satisfy the mo-
ment constraints Eλ{t̃(x)} = b. The e-projection is then specified in exponential
coordinates by θ(p∗) = θ(q) + A′λ.15

The geometric interpretation of these two I-projections is illustrated in Figure
2-10. The maximum-likelihood/minimum-discrimination duality between these in-
formation projections is shown by the following proposition:

Proposition 14 (Duality of I-Projections) Let H,H′ ⊂ F be complementary
biorthogonal submanifolds. Then, there exists r ∈ H ∩ H′ and this is both the m-
projection to H for any p ∈ H′,

r = argmin
q∈H

D(p||q) (2.108)

and the e-projection to H′ for any q ∈ H,

r = argmin
p∈H′

D(p||q) (2.109)

Moreover, either condition uniquely determines r such that H ∩H′ = {r}.

Proof. The complementary biorthogonal submanifolds H,H′ correspond to hy-
perplanes E,M ⊂ Rd, given by E = aff θ(H) and M = aff η(H′). These are
orthogonal complements of one another such that any vector orthogonal to E is par-
allel to M . Pick an arbitrary point p ∈ H′ and let r be the m-projection of p to

14Note that, although we are projecting to an m-flat submanifold, we follow Amari’s convention of
calling this e-projection because we may view the projection as following the e-geodesic containing
p which is biorthogonal to the m-flat submanifold. This is called I-projection by Csiszár.

15This shows that the e-projection is located within an m-dimensional e-flat submanifold H =
{p ∈ F|∃λ ∈ Rm : θ(p) = θ(q) + A′λ}. This is the complementary biorthogonal submanifold to H′

containing p.
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Figure 2-10: Illustration of dual I-projections in both exponential coordinates θ (left)
and moment coordinates η = Eθ{t(x)} (right): (a) m-projection of p to the e-flat sub-
manifold H, (b) e-projection of q to the m-flat submanifold H′. Note that H is flat in
exponential coordinates while H′ is flat in moment coordinates. These are biorthog-
onal submanifolds since H drawn in exponential coordinates is perpendicular to H′

drawn in moment coordinates. Given (p,H), the m-projection q∗ is determined by
tracing the straight line in moment coordinates biorthogonal to H. Given (q,H′), the
e-projection p∗ is determined by tracing the straight line in exponential coordinates
biorthogonal to H′. These are dual problems and both give the same solution, i.e.
p∗ = q∗.
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H. By Proposition 12(ii), ∆η = η(r) − η(p) is orthogonal to E (parallel to M).
Hence, η(r) = η(p) + ∆η ∈ M . Since θ(H′) = M ∩ θ(F), this shows the existence of
r ∈ H ∩H′.

Then, by Proposition 11, H ∩ H′ = {r} and the Pythagorean relation holds:
D(p‖q) = D(p‖r) + D(r‖q) for all p ∈ H′ and q ∈ H. Then, by the positivity of
KL-divergence, D(p‖q) ≥ D(p‖r) for all q ∈ H so that r is the m-projection of p ∈ H′

to H. Likewise, D(p‖q) ≥ D(r‖q) for all p ∈ H′ so that r is the e-projection of q ∈ H
to H′. �

As a consequence of this duality, we may perform m-projection by a dual e-
projection. For instance, if we wish to obtain the m-projection of a given p ∈ F to
an e-flat submanifold H, this is also given by the e-projection of an arbitrary q ∈ H
to the complementary biorthogonal m-flat submanifold H′ containing p. This may
be desirable as iterative scaling algorithms are available for performing e-projection
in exponential family graphical models. We discuss these algorithms momentarily
but first wish to clarify the relevance of m-projection for maximum-likelihood model
thinning.

Model Thinning. Our main interest in information projections is for thinning
of graphical models. Suppose we have a graphical model specified by an exponential
family of Gibbs distributions F = {p(x; θ) ∝ exp∑

φΛ(xΛ; θΛ)} with linearly param-
eterized potential specification φ = (φΛ(xΛ; θΛ) = θΛ · tΛ(xΛ),Λ ∈ HφΓ) as discussed
in Section 2.1. This potential specification gives a hypergraph HφΓ describing the
structure of interactions determining the Markov structure GφΓ = adj H

φ
Γ.

A natural approach to model reduction then is to consider omitting some of the
sufficient statistics t(x) from the model by forcing the corresponding exponential
parameters to zero. This gives an embedded family of exponential family models
based on a reduced set of sufficient statistics. Pruning the associated hyperedges
from HφΓ then gives a “thinned” adjacency graph GΓ so that this may be considered
as thinning of a graphical model.

From the perspective of information geometry, this embedded family is regarded
as an e-flat submanifold H ⊂ F . Given an initial model p ∈ F , we then wish to
select q ∈ H to best approximate p. The maximum-likelihood principle advises that
we select q so as to maximize the expected log-likelihood of samples drawn from q.
Equivalently, this may be posed as minimizing the KL-divergence D(p‖q) over q ∈ H
which is precisely the m-projection problem posed earlier. In view of duality, we may
also pose this as e-projection.

Let us partition the statistics as t(x) = (tH(x), t′H(x)) where tH(x) are the suffi-
cient statistics of the embedded family and t′H(x) are those statistics to be neglected.
Accordingly, partition the exponential coordinates θ = (θH, θ′H) and the moment co-
ordinates η = (ηH, η′H). The e-flat submanifold H may be specified by restriction of
the exponential coordinates as:

H = {q ∈ F | θ′H(q) = 0} (2.110)

For any p ∈ F we may define an m-flat submanifold H′(p) by restriction of moment
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coordinates:
H′(p) = {r ∈ F | ηH(r) = ηH(p)} (2.111)

These are complementary biorthogonal submanifolds since for arbitrary p ∈ H′, q ∈ H
and r ∈ H ∩H′ we have:

(η(p)− η(r)) · (θ(r)− θ(q)) = (ηH(p)− ηH(r)) · (θH(r)− θH(q))
+(η′H(p)− η′H(r)) · (θ′H(r)− θ′H(q))

= (ηH(p)− ηH(p)) · (θH(r)− θH(q))
+(η′H(p)− η′H(r)) · (0− 0)

= 0 (2.112)

Also, in this context, minimum-discrimination reduces to maximum-entropy. This is
shown in that, for p, p̃ ∈ H′ and q ∈ H, we have:

D(p̃‖q)−D(p‖q) = (ϕ∗(p̃)− ϕ∗(p)) + (η(p̃)− η(p)) · θ(q)
= (ϕ∗(p̃)− ϕ∗(p)) + (ηH(p)− ηH(p)) · θH(q)
= ϕ∗(p̃)− ϕ∗(p) (2.113)

Hence, maximizing h[p̃] = −ϕ∗(p̃) over p̃ ∈ H′ also minimizes D(p̃‖q) over p̃ ∈
H′ for any fixed q ∈ H. These observations provide for the following proposition
summarizing the pertinent information geometry of model thinning:

Proposition 15 (Model Thinning) Let H �= ∅ be an embedded e-flat submanifold
of an exponential family F as in (2.110). Let H′ be the complementary biorthogonal
m-flat submanifold containing p ∈ F as in (2.111). Then there exists a probability
distribution r ∈ H ∩H′ satisfying the following (equivalent) conditions:

(i) r = argminq∈HD(p‖q)
(ii) r = argmaxp̃∈H′ h[p̃]

(iii) θ′H(r) = 0 ∧ ηH(r) = ηH(p)

Moreover, H ∩ H′ = {r} and this r is uniquely determined by any one of these
conditions. Also, D(p‖r) = h[r]− h[p].

Proof. This follows from the preceding discussion and Proposition 14. Also,
D(p‖r) = D(p‖q)−D(r‖q) = ϕ∗(p)− ϕ∗(r) = h[r]− h[p]. �

This gives dual perspectives for model thinning: (i) maximum-likelihood over H
(m-projection), (ii) maximum-entropy overH′ (e-projection). Necessary and sufficient
conditions are provided by (iii) which may be regarded as either;

1. Moment matching. Find r ∈ H solving ηH(r) = ηH(p).

2. Parameter annihilation. Find r ∈ H′ solving θ′H(r) = 0.
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While these are equivalent insofar as they give the same solution, they suggest differ-
ent approaches to model thinning. In the next section, we discuss a moment matching
approach based on iterative e-projections. We also remark that model thinning may
be performed inductively by successive m-projection to embedded families:

Proposition 16 (Inductive M-Projection, Amari [4]) Let {Hk} be a sequence
of embedded e-flat submanifolds of F such that H0 ≡ F ⊃ H1 ⊃ . . . ⊃ HK. For
probability distribution p ∈ F define p̂(k) = argminq∈Hk

D(p||q) the m-projection of p
to Hk. Then, for k = 1, . . . , K we have

p̂(k) = arg min
q∈Hk

D(p̂(k−1)‖q) (2.114)

so that m-projection may be performed inductively. Also, the cumulative KL-divergence
is additive:

D(p||p̂(K)) =
K∑
k=1

D(p̂(k−1)‖p̂(k)) (2.115)

Proof. The result follows by inductive application of Propositions 11 and 12. �
Hence, we may perform optimal (maximum-likelihood) model thinning by incre-

mentally releasing moment constraints (reducing graphical structure) and maximizing
entropy. This may be viewed as a selective “forgetting” algorithm which, in a sense,
is the inverse of the iterative scaling techniques (usually employed for model identifi-
cation) we discuss next.

2.2.4 Iterative Scaling and Covariance Selection

Csiszár [34] formalized the iterative scaling (IS) procedure for evaluating the e-
projection of a probability distribution q ∈ F to an m-flat submanifold H′.

p∗ = argmin
p∈H′

D(p‖q) (2.116)

This procedure consists of alternating e-projections to a collection of m-flat subman-
ifolds {H′

i}i∈I with intersection ∩i∈IH′
i = H′. Let (i(k) ∈ I, k = 1, 2, 3, . . .) be a

sequence of indices drawn from I such that each index is included infinitely often.
Then, the IS procedure generates a sequence of probability distributions given by
alternating e-projections

q(k+1) = arg min
p∈H′

i(k+1)

D(p||q(k)) (2.117)

where the sequence is initialized by q(0) = q. As shown by Csiszár, this sequence of
e-projections asymptotically converges to the desired p∗ ∈ H′ with the KL-divergence
D(p∗‖q(k)) monotonically decreasing to zero. This idea is illustrated in Figure 2-
11. We also remark that this IS procedure is a special case of Bregman’s relaxation
method [24]. See Bauschke and Borwein [11] for discussion of the method of random
Bregman projections.

64



H′
1

η(Θ)

p

p∗

H′
2

H′
1

p

p∗

Θ

H′
2

Figure 2-11: Illustration of iterative scaling procedure for finding the point p∗ in
the intersection of a set of m-flat submanifolds nearest to the starting point p in
KL-divergence D(p∗‖p). The procedure generates a sequence of e-projections to indi-
vidual submanifolds approaching the desired p∗. Often, as in this example, the m-flat
submanifolds are chosen so that the intersection uniquely determines the point p∗

consistent with the linear moment constraints collectively imposed by these m-flat
submanifolds. In that case, the starting point p may be chosen arbitrarily.

In order for this procedure to be of practical use, we must choose the submanifolds
{H′

i} such that the alternating e-projections are given by a tractable calculation.
Next, we consider such a case in the context of graphical models.

Iterative Proportional Fitting. The iterative proportional fitting (IPF) proce-
dure of Ireland and Kullback [71] is an iterative procedure for adjusting the parameters
of a graphical model to give prescribed marginal distributions. Consider a graphical
model based on a graph GΓ with probability distribution p(xΓ) ∝

∏
Λ∈C(GΓ)

ψΛ(xΛ).

IPF adjusts the compatibility functions ψΛ(xΛ) to give a prescribed set of (consis-
tent) marginal distributions (p∗(xΛ),Λ ∈ C) specified over some subset of the cliques
C ⊂ C(GΓ). If these selected cliques C contain the maximal cliques of the graph
C∗(GΓ), then IPF solves for the maximum entropy distribution subject to those
marginal constraints. More generally, if we only impose marginal constraints on a
subset of the maximal cliques, then IPF may be seen as solving for the e-projection
(minimizing KL-divergence) of the given graphical model to the subfamily of graphical
models on GΓ consistent with these prescribed marginal distributions.

IPF operates by iterating over the selected cliques Λ ∈ C and updating the asso-
ciated compatibility function ψΛ(xΛ) by the ratio of the desired marginal p

∗(xΛ) to
the actual marginal p(xΛ).

ψ̂Λ(xΛ) = ψΛ(xΛ)× p
∗(xΛ)
p(xΛ)

(2.118)

Upon replacing ψΛ by ψ̂Λ, this gives an updated graphical model with probability
distribution p̂(xΓ) such that

∫
p̂(xΓ)dx\Λ = p∗(xΛ). Iterating this update procedure
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over cliques in C gives a sequence of graphical models on GΓ with marginal distribu-
tions approaching the prescribed marginals. Note that, at each step, computation of
the marginal distribution of the selected clique is required. In exponential families,
this IPF procedure may be seen as a special case of the iterative scaling procedure
(Jordan [77]) as we now discuss.

Consider an exponential family F of graphical models based on statistics t(x) =
(tΛ(xΛ),Λ ∈ HΓ) defined relative to hypergraphHΓ. The family F is Markov with re-
spect to graph GΓ = adj HΓ. Recall the exponential family modeling problem, where
we wish to determine the exponential coordinates θ∗ ∈ Θ which give a prescribed
set of moment coordinates η∗ ∈ η(Θ). That is, we wish to solve Eθ{t(x)} = η∗ for
the unique16 solution in Θ. The variational formulation (2.35) may be regarded as
m-projection to the exponential family F . Dually, this may be posed as e-projection
of any q ∈ F to the family H′ = {p|Ep{t(x)} = η∗}. In any case, the solution is
given by p∗ ∈ F ∩ H′, the unique member of the exponential family with moment
coordinates η∗. We may perform the e-projection by iterative scaling as follows. For
each hyperedge Λ of HΓ (a clique in GΓ), define an associated m-flat submanifold by

H′
Λ = {p|Ep{tΛ(xΛ)} = (η∗)Λ} (2.119)

which imposes just the moments constraints (η∗)Λ defined within subfield Λ.17 The
intersection of these submanifolds, taken over all hyperedges of HΓ, is precisely H′.
Given any initial starting point q(0) = f(·; θ(0)) ∈ F , alternating e-projections to these
m-flat submanifolds gives a sequence of probability distributions q(k) = f(·; θ(k)) ∈ F
which asymptotically converges to the desired p∗ with moment coordinates η∗. Thus,
the sequence θ(k) converges to the desired θ∗ such that Eθ∗{t(x)} = η∗.

Each of the requisite alternating e-projections is performed as follows. By Kull-
back’s minimum-discrimination theorem (Proposition 8), the IS update for hyperedge
Λ (e-projection to H′

Λ) corresponds to multiplication by an exponential factor based
on just the statistics tΛ(xΛ).

q(k+1)(x) ∝ q(k)(x) exp{δθΛ · tΛ(xΛ)} (2.120)

This shows that each e-projection stays within the exponential family F and that
just the exponential parameters θΛ are updated by e-projection to H′

Λ,

(θ(k+1))Λ = (θ(k))Λ + δθΛ (2.121)

In general, the parameter update δθΛ is determined by the condition Eθ(k+1){tΛ(xΛ)} =
(η∗)Λ and some method must be given to solve this nonlinear system of equations.
If the exponential family F of graphical models is marginalizable,18 this IS update

16Assuming minimal representation of the exponential family in terms of linearly independent
statistics. Otherwise, η∗ might specify a degenerate manifold in Θ satisfying Eθ{t(x)} = η∗ and we
wish to determine some point in this degenerate manifold.

17We could also perform iterative scaling with respect to just the maximal hyperedges of HΓ (not
a subset of some other hyperedge) or, alternatively, the maximal cliques of GΓ.

18Such that the marginal distributions p(xΛ) on hyperedges Λ ∈ HΓ are exponential distributions
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is equivalent to iterative proportional fitting. Then, the moment coordinates (η∗)Λ

uniquely determine the marginal distribution p∗(xΛ) ∝ exp{β∗
Λ · tΛ(xΛ)} satisfying

Eβ∗Λ{tΛ(xΛ)} = (η∗)Λ. Given these marginal distributions p∗(xΛ), the IS update
above simplifies to the earlier IPF update. This is shown by integrating both sides of
(2.120) over X\Λ which gives

p∗(xΛ) ∝ q(k)(xΛ) exp{δθΛ · tΛ(xΛ)} (2.122)

such that the exponential update factor is proportional to the IPF update p∗(xΛ)/q(k)(xΛ).
This shows the connection between iterative scaling and iterative proportional fitting
in exponential families. The parameter update may then by calculated as

δθΛ = β∗
Λ − β(k)Λ (2.123)

where β∗
Λ and β

(k)
Λ are respectively the marginal exponential coordinates of p∗(xΛ) and

q(k)(xΛ). Hence, inference is required to compute the marginal distribution q
(k)(xΛ).

The main disadvantage of IPF is that many iterations over the collection of m-flat
submanifolds may be required before an acceptable level of convergence is achieved.
Each such e-projection requires a global inference operation to calculate the current
marginal distribution q(k)(xΛ) of the subfield being updated. Several modifications
(discussed next) of this IS/IPF approach have been developed which attempt to
reduce the number of requisite global inference operations by updating all parameters
of the model at each iteration.

Generalized Iterative Scaling. Darroch and Radcliff [38] developed the general-
ized iterative scaling (GIS) procedure to accelerate the convergence of IS by perform-
ing updates “in parallel”. This is related to IPF by the update formula:

q(k)(x) ∝ q(k−1)(x)×
∏
Λ∈C

(
p∗(xΛ)
q(xΛ)

)cΛ
(2.124)

where the coefficients (cΛ,Λ ∈ C) are positive and sum to one. In exponential coor-
dinates, this gives GIS updates which are convex combinations of IS updates,

δθ =
∑
Λ∈C

cΛδθ
Λ (2.125)

where the IS updates δθΛ are zero-padded in taking the sum. In view of the strict
convexity of the KL-divergence D(p||q) in the exponential coordinates of q, we see
that the KL-divergence is monotonically decreased by these GIS updates. See Csiszár
for convergence analysis from the perspective of information geometry [35].

We also mention the improved iterative scaling (IIS) procedure of Della Pietra
et al [106]. This is similar to GIS but where the convexity constraint is relaxed.
This may be viewed as adding a positive “gain” parameter scaling the coefficients cΛ.

based on statistics tΛ(xΛ).
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Optimizing this gain parameter to minimize a certain tractable convex upper-bound
of the KL-divergence then gives a simple optimality condition which may be solved
efficiently by a one-parameter search. This is shown to converge by analysis similar
to that as for the expectation-maximization algorithm.

Application for Covariance Selection. We now consider iterative scaling for
Gaussian graphical models (GMRFs). Dempster [43] introduced the fundamental
covariance selection problem. Here, one considers a Gaussian random vector of known
mean but unknown covariance. Observing that this may be viewed as an exponential
family parameterized by the inverse covariance, Dempster proposes estimation of the
covariance while positing some zero elements of the inverse covariance matrix. It is
interesting to note that Dempster’s motivation for this approach was purely from the
perspective of parameter reduction rather than any assumption of Markov structure:

“Two main currents of thought underlie the covariance fitting tech-
nique...The first is the principle of parsimony in parametric model fitting,
which suggests that parameters should be introduced sparingly and only
when the data indicate they are required.” (Dempster [43])

It was shown by Speed and Kiiveri [124] that these zeros in the inverse covariance
matrix describe conditional independencies (such as we have seen by Proposition 6).
Once the zero-pattern has been specified, maximum-likelihood reduces to adjusting
the (nonzero) exponential parameters to give the prescribed marginals. Dempster
proposed two iterative approaches. One approach fixes parameters to zero while
iteratively adjusting moments, the other fixes moments while iteratively driving pa-
rameters to zero. Speed and Kiiveri define corresponding cyclic methods interpreted
as alternating information projections. One of these is iterative scaling as we now
discuss. Here, we specify iterative scaling updates for the information parameteri-
zation of the GMRF. This is a minor extension of the covariance selection problem
obtained by viewing the information form of the Gaussian density as an exponential
family with unknown means as well as unknown covariance.

Consider the family of regular GMRFs (xΓ,GΓ). Recall that this may be rep-
resented as an exponential family F with information parameters (h, J) where J
is structured to respect the conditional independencies imposed by GΓ. Suppose
that we wish to impose a collection of (consistent) marginal moment constraints
(x̂∗Λ, P

∗
Λ) for Λ ∈ HΓ ⊂ C(GΓ). Within the Gaussian family, this is equivalent

to imposing Gaussian marginal distributions xΛ ∼ N (x̂∗Λ, P ∗
Λ). In the exponential

family description, this is equivalent to specifying subsets of moment coordinates
(η∗)Λ = (x̂∗Λ, P

∗
Λ + x̂

∗
Λ(x̂

∗
Λ)

′). If HΓ covers GΓ
19, then these constraints collectively

specify the moment coordinates η∗ of some distribution p∗ ∈ F . We may then de-
termine the exponential coordinates θ∗ = (h∗,−1

2
J∗) of p∗ by iterative scaling. The

marginal information parameters, defined as (ĥΛ, ĴΛ) = (P
−1
Λ x̂Λ, P

−1
Λ ), correspond to

19Such that each vertex γ ∈ Γ and each edge {γ, λ} ∈ EΓ of GΓ = (Γ, EΓ) is contained in some
Λ ∈ HΓ. For instance, HΓ = C∗(GΓ) or HΓ = EΓ ∪ {{γ}|γ ∈ Γ} both satisfy this condition.
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marginal exponential parameters βΛ = (ĥΛ,−1
2
ĴΛ). Hence, the IS parameter update,

given by (2.121) and (2.123), may be seen as updating the information parameters
(hΛ, JΛ) according to

h
(k+1)
Λ = h

(k)
Λ + (ĥ∗Λ − ĥ(k)Λ ) (2.126)

J
(k+1)
Λ = J

(k)
Λ + (Ĵ∗

Λ − Ĵ (k)Λ ) (2.127)

where (ĥ∗Λ, Ĵ
∗
Λ) = ((P

∗
Λ)

−1x̂∗Λ, (P
∗
Λ)

−1) and (ĥ
(k)
Λ , Ĵ

(k)
Λ ) = ((P

(k)
Λ )−1x̂

(k)
Λ , (P

(k)
Λ )−1). Note

that this requires computation of the current marginal moments (x̂
(k)
Λ , P

(k)
Λ ). Equiv-

alently, this may be viewed as iterative proportional fitting.

q(k+1)(x) ∝ q(k)(x)× p∗(xΛ)
q(k)(xΛ)

∝ q(k)(x)× exp{−1
2
x′ΛĴ

∗
ΛxΛ + ĥ

∗
Λ · xΛ}

exp{−1
2
x′ΛĴ

(k)
Λ xΛ + ĥ

(k)
Λ · xΛ}

∝ q(k)(x) exp{−1
2
x′Λ(Ĵ

∗
Λ − Ĵ (k)Λ )xΛ + (ĥ

∗
Λ − ĥ(k)Λ ) · xΛ} (2.128)

After the update we have that (x̂
(k+1)
Λ , P

(k+1)
Λ ) = (x̂∗Λ, P

∗
Λ). The corresponding GIS

updates are convex combinations of these IPF updates,

h(k+1) = h(k) +
∑
Λ∈C

cΛ(ĥ
∗
Λ − ĥ(k)Λ ) (2.129)

J (k+1) = J (k) +
∑
Λ∈C

cΛ(Ĵ
∗
Λ − Ĵ (k)Λ ) (2.130)

where it is understood that the local updates are zero-padded in evaluating the sum.
The (appropriately scaled) IIS updates are given similarly. Note that the Gaussian
IS update formula (2.126-2.127), and hence the GIS/IIS update as well, respect the
sparsity constraints imposed on J by the graph GΓ such that these updates stay
within the family F of GMRFs on GΓ.

2.2.5 Extensions of Maximum-Likelihood

In this last subsection we consider extensions of maximum-likelihood for selecting an
approximate model from among a collection of variable-order parameterized families.
This is related to Dempster’s motivation for considering thinned covariance selection
models. We mainly focus upon the perspective of Akaike.

Akaike’s Information Criterion. Akaike [1, 2] developed a generalization of max-
imum likelihood parameter estimation which addresses the issue of order estimation.
Akaike’s information criterion (AIC) is also based on the KL-divergence but is more
general than maximum-likelihood in that it accounts for variable-order models. As
in Section 2.2.2, we observe a set xN = (x1, . . . , xN) of independent, identically dis-

69



tributed samples from the (unknown) true generative distribution g(x) which we wish
to model. But now we must select our working model of g from among a set of can-
didate families of parameterized models of variable order.

Let {fk(x; θk)} denote this set of families indexed by k where θk indicates the
parameters of the k-th family. Also, let rk denote the order of each family which is
just the number of parameters θk. The idea behind the AIC is to specify a model
selection metric which minimizes an approximately unbiased estimate of the expected
KL-divergence E{D(g||fk(·; θ̂kML(xN)))}, based upon the data xN , where θ̂kML(xN) is
the maximum likelihood parameter estimate of the k-th family. This generalizes the
notion of m-projection performed by maximum likelihood parameter estimation by
selecting how rich a family of models to use so as to minimize this estimate of the
modeling error. Intuitively, higher-order families of models are richer and could in
principle better approximate g(x) but embedded lower-order families of models have
fewer parameters to estimate and are less prone to estimation error.

Akaike’s argument is based on several asymptotic approximations. See Pawitan
[103] for a concise derivation. The resulting criterion then selects the family of models
which maximizes the following model metric.

−1
2
AIC = log fk(x

N ; θ̂k(xN))− rk (2.131)

Thus we see that the AIC is equivalent to maximum likelihood except that a penalty
is assessed to more complex (higher-order) models thus addressing the problem of
over-fitting of the data.

Thus the AIC approach indicates a fundamental connection between the informa-
tion theoretic notion of maximum-entropy modeling and selecting the “best” model
among a class of order restricted models. In the case of exponential models this
corresponds to choosing as few sufficient statistics as possible while still providing a
faithful model. For GMRFs this may be posed as limiting the number of pairwise
interactions between sites within the field by setting selected off-diagonal elements of
the inverse covariance matrix to zero.

Related Criteria. It should also be remarked that several other model-selection
criteria have since been developed which lead to similar conclusions as in the AIC
and also have connections to information theory. This includes the Bayesian informa-
tion criterion (BIC) developed by Schwarz [120] and the minimum description length
principle (MDL) developed by Rissanen [111, 112, 113]. The BIC is developed from
the Bayesian inference philosophy where one introduces a prior distribution over the
space of candidate models and then chooses the model which maximizes the condi-
tional probability of the model given the data. The BIC, however, does not actually
depend upon the choice of prior as it corresponds to a 2nd order asymptotic expan-
sion of this posterior model probability which proves to be independent of the prior
model distribution under certain conditions. The BIC differs from the AIC in that
it introduces a factor of 1

2
logN , where N is the number of samples, in front of the

model order such that (for large N) it favors lower-order models than in the AIC. The
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BIC, however, is shown to be asymptotically optimal in the Bayesian sense. Rissanen
developed the related MDL criterion from a coding perspective as MDL selects the
model which minimizes the joint description length of both the data and the model
(the minimum number of bits required to encode both the model and the data). By
Shannon’s coding theorem, this is closely related to the KL-minimization underlying
the AIC since the KL-divergence between the true distribution and the model used to
encode the data gives the expected penalty in the description length of each sample-
path of the data. Minimizing the description length of the model then generalizes
Akaike’s notion of model complexity which may be regarded as a naive estimate of
the model description length. The AIC, however, provides sufficient motivation for
our present purpose.

This concludes the theoretical discussion concerning the intersection of informa-
tion theory and statistical modeling. We now turn our attention towards inference.

2.3 Recursive Inference

In this section we consider recursive approaches to inference (both exact and ap-
proximate) appropriate for MRFs. The fundamental inference problem we address is
evaluation (or approximation) of the marginal distributions of a graphical model. We
have described very general families of graphical models given by exponential families
of Gibbs distributions. These give representation of the probability distribution p(xΓ)
of a random field xΓ in terms of local interaction potentials φ(xΛ; θΛ) = θΛ · tΛ(xΛ).
The structure of these interactions describes a hypergraph HφΓ which determines the
Markov structure of the random field by the associated adjacency graphGφΓ = adj H

φ
Γ.

Given such a graphical model, we then wish to evaluate the marginal distributions

p(xΛ) =

∫
X\Λ
p(xΛ)dx\Λ (2.132)

for selected subfields specified by Λ ⊂ Γ. Often, we wish to evaluate these marginal
distributions “in parallel” for a collection of subfields C = {Λi ⊂ Γ|i ∈ I}. These
might be chosen as just the sites of the field with C = {{γ}|γ ∈ Γ}. In this case,
inference may be regarded as evaluating the m-projection of p(xΓ) to the family of
“fully factored” distributions (corresponding to completely disconnected graphical
models having only singleton interaction potentials). This m-projection is nothing
but the product of marginals distributions, p̂(xΓ) =

∏
γ∈Γ p(xγ). Alternatively, we

may choose these subfields C to be the hyperedges HφΓ of the graphical model. This is
desirable, for instance, when we wish to calculate the moment coordinates η = Eθt(x)
of an exponential family model for specified exponential coordinates θ. The moment
parameters may then be evaluated by ηΛ =

∫
p(xΛ)tΛ(xΛ)dxΛ for all Λ ∈ HφΓ.

Recursive inference procedures are best illustrated in the simple case of acyclic
graphical models. These are discussed in Section 2.3.1. Later sections show how these
inference procedures have been extended for inference in MRFs defined on graphs with
cycles. Two approaches, junction trees (Section 2.3.2) and multiscale models (Section
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2.3.3), are discussed. Both rely upon the idea of grouping sites of the random field
so as to provide an equivalent Markov tree description (to be discussed).

2.3.1 Markov Trees

We first focus on recursive inference techniques for acyclic graphical models. In
this subsection, we focus mainly on the picture developed by Pearl [105], but also
briefly touch upon some variational extensions of this method (Yedidia et al [136],
Wainwright [129], Minka [96]). In later subsections (Sections 2.3.2 and 2.3.3), we
discuss structured versions of this approach appropriate for more general MRFs and
also show the connection to Kalman filtering (Section 2.3.3).

We say that a graph GΓ = (Γ, EΓ) is a tree if it is connected and acyclic. Several
examples of trees are illustrated in Figure 2-12. Trees are singly-connected since every
pair of vertices γ, λ ∈ Γ are connected by exactly one path. In trees, we say that
a vertex γ ∈ Γ is a leaf if it is adjacent to exactly one other vertex. A chain is a
tree where every vertex is adjacent to at most two other vertices such as in Figure
2-12(a). More generally, we say that a graph is a forest when the subgraphs induced
by the connected components of the graph are trees. This describes the most general
situation for an acyclic graph.

A Markov tree is a Markov random field (xΓ,GΓ) where the graph GΓ is a tree.
This is a Markov chain if GΓ is also a chain. Recursive inference techniques were
first developed in the context of Markov chains. Yet, we focus on recursive inference
techniques for Markov trees as these apply for Markov chains as well. The more
general situation of a forest is treated by applying the following inference procedures
for each connected component.

Decimation. By the Hammersley-Clifford theorem, the probability distribution for
a Markov tree (xΓ,GΓ) may be factored into the form

p(xΓ) ∝
∏
γ∈Γ
ψ(xγ)

∏
{γ,λ}∈EΓ

ψ(xγ, xλ) (2.133)

in terms of singleton compatibility functions ψγ at each site γ ∈ Γ and pairwise
compatibility functions ψγ,λ between adjacent sites. Given such a graphical model,
we may calculate the marginal distribution p(xγ0) of some arbitrary site γ0 ∈ Γ by the
following decimation procedure (Jaakkola [74]). Pick any leaf λ �= γ0 and eliminate
λ from the graphical model by marginalizing (integrating or summing) over the state
xλ yielding a graphical model for p(xΓ\λ). Let π(λ) denote the site adjacent to leaf
λ in GΓ. Elimination deletes the vertex λ and the edge {λ, π(λ)} from the graph,
along with associated compatibility functions ψλ and ψπ(λ),λ, and replaces ψπ(λ) by
the following updated compatibility function

ψ̂(xπ(λ)) = ψ(xπ(λ))×
∫
Xλ

ψ(xπ(λ), xλ)ψ(xλ)dxλ (2.134)
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(a)

(b)

(c)

Figure 2-12: Diagrams of several connected acyclic graphs (trees). Graph (a) is also
a chain. Note that these are singly-connected such that every pair of vertices has a
unique path connecting them. Deleting any non-leaf vertex (and its associated edges)
separates the graph into two or more connected components.
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In exponential family graphical models, compatibility functions correspond to expo-
nents of the form:

ψ(xγ) = exp{θγ · tγ(xγ)} (2.135)

ψ(xγ, xλ) = exp{θ{γ,λ} · t{γ,λ}(xγ, xλ)} (2.136)

Hence, if the family is marginalizable, then the elimination step must reduce to the
update formula θ̂π(λ) = θπ(λ) +∆θπ(λ) where ∆θπ(λ) is determined by

exp{∆θπ(λ) · tπ(λ)(xπ(λ))} ∝
∫
Xλ

ψ(xπ(λ), xλ)ψ(xλ)dxλ (2.137)

For instance, in the information representation of GMRFs, this update formula is
given by

ĥπ(λ) = hπ(λ) − Jπ(λ),λJ−1
λ hλ (2.138)

Ĵπ(λ) = Jπ(λ) − Jπ(λ),λJ−1
λ Jλ,π(λ) (2.139)

In any case, once λ is eliminated, the resulting graphical model describes a Markov
tree (xΓ\λ,GΓ\λ) where GΓ\λ = (Γ \ λ, EΓ \ {λ, π(λ)}) is the subtree of GΓ induced
by Γ \ λ. Hence, we may iterate this leaf elimination procedure with respect to the
modified graphical model until just site γ0 remains thereby computing the marginal
distribution p(xγ0). In a similar manner, the probability distribution p(xγ1 , xγ2) for a
pair of adjacent sites {γ1, γ2} ∈ EΓ is computed by eliminating all sites except γ1 and
γ2.

Two-Pass Belief Propagation on Trees. The decimation approach may also be
reformulated as a message passing procedure on GΓ. Such message passing inference
procedures are generally referred to as belief propagation (Pearl [105]).

Let us say that γ0 is the root of the tree, π(λ) is the parent of λ, and Λ(γ) =
{λ|π(λ) = γ} are the children of γ. Then the decimation procedure may be viewed
as an “upward” message passing procedure where messages are passed from children
to parents towards the root. This procedure begins with leaves passing messages to
their parents.

µλ→π(λ)(xπ(λ)) =
∫
Xλ

ψ(xπ(λ), xλ)ψ(xλ)dxλ (2.140)

In marginalizable exponential families, this message correspond to the parameter
update ∆θπ(λ) (an information parameter update in GMRFs). The upward message
passing proceeds once a non-leaf γ has received messages from all of its children.
Then, γ passes a message to its parent incorporating information from each of its
children.

µγ→π(γ)(xπ(γ)) =
∫
Xγ

ψ(xπ(γ), xλ)


ψ(xλ)

∏
λ∈Λ(γ)

µλ→γ(xγ)


 dxγ (2.141)
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ψπ(λ)

ψλ

ψλ,π(λ)

γ0

ψ̂π(λ)

γ0

Figure 2-13: Illustration of tree decimation to compute marginal distribution p(γ0).
A leaf λ is selected for elimination (top). This elimination step marginalizes over
xλ which just replaces ψπ(λ)ψπ(λ),λψλ by ψ̂π(λ) = ψπ(λ)

∫
ψπ(λ),λψλdxλ (bottom). This

elimination step is iterated until only site γ0 remains.

Once γ0 has received messages from all of its children, the marginal distribution is
calculated as p(xγ0) ∝ ψ(xγ0)

∏
λ∈Λ(γ0) µλ→γ0(xγ0).

The advantage of this message passing formulation is that we may define a com-
plementary “downward” procedure which reuses the upward messages to efficiently
calculate the marginal distribution at every site of the Markov tree. This procedure
begins with the root γ0 passing a message down to each of its children γ ∈ Λ(γ0)
which incorporates information from the other children.

µγ0→γ(xγ) =
∫
Xγ0

ψ(xγ, xγ0)


ψ(xγ0)

∏
λ∈Λ(γ0)\γ

µλ→(xγ0)


 dxγ0 (2.142)

As each site γ receives a message from its parent, the downward message-passing
continues by passing a message to each child of γ incorporating information from the
parent and other children of γ.

µγ→λ(xλ) =
∫
Xγ

ψ(xλ, xγ)


ψ(xγ)µπ(γ)→γ(xγ)

∏
λ′∈Λ(γ)\λ

µλ′→γ(xγ)


 dxγ (2.143)

Message passing terminates once every leaf has received a message from its parent.
Fuse-Predict Description of Messages. Note that each message passing step, in

both the upward and downward procedures, has the following “sum-product” struc-
ture consisting of two-steps: First, information is fused at a given site γ by multi-
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γ0

µλ→π(λ)

λ

π(λ)

γ0

µπ(λ)→λ

Figure 2-14: Illustration of two-pass belief propagation. First, an upward message-
passing procedure (top) propagates messages from parent to child towards the root.
Each non-leaf must wait until it receives messages from all of its children before
sending a message to its parent. Second, a downward message-passing procedure
(bottom) propagates messages from parent to child until the leaves are reached.

plication of ψγ by the product of messages from all but one of the sites adjacent to
γ.

ψ̂\λ(xγ) = ψ(xγ)
∏

λ′∈∂γ\λ
µλ′→γ(xγ) (2.144)

Second, this fused information is predicted towards the remaining adjacent site where
prediction involves multiplication by the pairwise compatibility function and integra-
tion (summation) over xγ.

µγ→λ(xλ) =
∫
Xγ

ψ(xλ, xγ)ψ̂\λ(xγ)dxγ (2.145)

In marginalizable exponential families, where messages µλ→γ(xγ) correspond to pa-
rameter updates ∆θλ→γ, the fusion step sums parameter updates

θ̂\λγ = θγ +
∑

λ′∈∂γ\λ
∆θλ′→γ (2.146)

and the prediction step calculates ∆θγ→λ such that

exp{∆θγ→λ · tλ(xλ)} ∝
∫
Xγ

ψ(xλ, xγ) exp{θ̂\λγ · tγ(xγ)}dxγ. (2.147)
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Marginal Computations. Once any given site γ has received messages from all
adjacent sites, the marginal distribution may be calculated as

p(xγ) ∝ ψγ(xγ)
∏
λ∈∂γ

µλ→γ(xγ) (2.148)

In exponential families, the marginal distribution p(xγ) ∝ exp{βγ · tγ(xγ)} is given by
summing parameter updates from all adjacent sites.

βγ = θγ +
∑
λ∈∂γ

∆θλ→γ (2.149)

The marginal distribution of a pair of adjacent sites Λ = {γ1, γ2} ∈ EΓ is given by

p(xΛ) ∝ ψ(xγ1)ψ(xγ2)ψ(xΛ)
∏

λ1∈∂γ1\γ2
µλ1→γ1(xγ1)

∏
λ2∈∂γ2\γ1

µλ2→γ2(xγ2) (2.150)

and by a similar calculation (adding parameters) in exponential families.
This two-pass message passing procedure was originally developed by Pearl for

finite-state Markov trees [105]. Essentially, this is just a recursively structured ver-
sion of the decimation procedure where stored messages (computed by elimination of
subtrees) allows all marginals to be computed in parallel without redundant compu-
tation.

Belief-Propagation as Refactorization. A slightly modified description of belief
propagation may be viewed as refactoring the graphical model (2.133), into the form

p(xΓ) =
∏
γ∈Γ
p(xγ)

∏
{γ,λ}∈EΓ

p(xγ, xλ)

p(xγ)p(xλ)
(2.151)

This is accomplished by the same two-pass message passing procedure as before except
that the compatibility functions are now adjusted in the course of the procedure as
follows. Whenever a message is passed, from λ to γ, the message µλ→γ is absorbed
into ψγ ← ψγ×µλ→γ and the inverse message is absorbed into ψγ,λ ← ψγ,λ/µλ→γ (such
that the product of compatibility functions is preserved). In this approach, once a site
has received messages form all but one of the adjacent sites, it predicts its updated
compatibility function (which now contains the appropriate product of messages).
Hence, upward messages are the same as before. Likewise, in the downward pass,
when we predict from the parent γ back down to λ, the extra factor µλ→γ in ψγ
cancels with the inverse factor in ψγ,λ so that the downward messages are also the
same as before.

Message passing terminates once each site has received messages from all adjacent
sites. Then, each ψγ contains a message from each of the adjacent sites such that
ψγ(xγ) ∝ p(xγ). Furthermore, each ψλ,γ has been divided by µλ→γµγ→λ such that
the product of updated compatibility functions ψγ,λψγψλ gives, after cancellation,

p(xγ, xλ) as in (2.150). Hence, ψ(xλ, xγ) ∝ p(xγ ,xλ)

p(xγ)p(xλ)
. This shows, after normaliza-
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tion, that the probability distribution p(xΓ) of any Markov tree may be factored as
in (2.151). Thus, belief propagation may be viewed as a refactorization procedure
for manipulating an arbitrary factorization into this canonical form where marginal
distributions are specified locally. Also, this version of belief propagation is more
compact in that the computation is performed “in place” requiring storage of just the
compatibility functions.

Variational Methods. We also mention some approximate inference methods de-
riving from belief propagation on trees. The most well known of these methods is
loopy belief propagation (Yedidia et al [136]). The simplest version of this approach is
essentially a “parallel” version of belief propagation but extended to operate in loopy
graphical models. This procedure is initiated by each vertex γ of the graphical model
sending a message µ

(0)
γ→λ(xλ) to each of the adjacent vertices λ ∈ ∂γ.

µ
(0)
γ→λ(xλ) =

∫
ψ(xλ, xγ)ψ(xγ)dxγ (2.152)

Then, on later iterations, we employ the same message-passing structure as in belief
propagation on trees. That is, each vertex fuses messages from all but one of it’s
neighbors with the local compatibility function and then predicts this information to
that neighbor by passing the message:

µ
(k+1)
γ→λ (xλ) =

∫
ψ(xλ, xγ)


ψ(xγ)

∏
λ′∈∂γ\λ

µ
(k)
λ′→γ(xγ)


 dxγ (2.153)

At any step of this iteration, we may compute a pseudo-marginal p̃(k)(xγ) for each
vertex γ by fusing the local compatibility function ψ(xγ) with messages from all
adjacent vertices λ ∈ ∂γ,

p̃(k)(xγ) =
1

Z(k)
ψ(xγ)

∏
λ∈∂γ

µ
(k)
λ→γ(xγ) (2.154)

where Z(k) is just the normalization constant. In trees, this iteration is equivalent
to two-pass belief propagation such that, after a finite number of iterations, these
pseudo-marginals agree with the true marginal distributions. However, it must be
emphasized that, in loopy graphs, the interpretation of this method as performing
decimation (i.e. marginalization) no longer holds. In general, the loopy approach
is not even guaranteed to converge to a fixed point. Even when the method does
converge to a fixed point, the pseudo-marginals computed by the method need not
agree with the actual marginal distributions.

Nevertheless, loopy belief propagation often does converge to a fixed point and, in
some cases, gives very good approximation of the marginal distributions. Based on
ideas from mean field theory, Yedidia introduced a variational interpretation of loopy
belief propagation as attempting to minimize the Bethe free energy over a family
of structured approximations of the graphical model [135]. Essentially, this may be
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understood as minimizing a tractable approximation of KL-divergence.20 Heskes has
shown that any local minimum of this Bethe free energy is a stable fixed point of loopy
belief propagation [69]. Also, Weiss and Freeman [131] have shown that, in Gaussian
models, stable fixed points of loopy belief propagation are correct insofar as the means
of the pseudomarginals then agree with the means of the true marginal distributions
(but covariances need not agree). In related work, Wainwright [129] has developed a
refactorization formulation of loopy belief propagation and, based on this viewpoint,
developed a variant of belief propagation which performs two-pass belief propagation
on embedded trees. We should also remark that a variety of other variational methods
have been developed with the aim of either: (i) incorporating higher order structure
into the approach so as to improve the quality of approximation (Yedidia et al [136],
Kappen and Wiegerinck [80]), or (ii) guaranteeing convergence to a local minimum
of the Bethe free energy (Yuille [139]).

Finally, we remark that Minka has developed an extension of the loopy belief
propagation method for non-marginalizable exponential families [96, 95]. Essentially,
his method may be seen as performing m-projection back to the exponential family
after each prediction step which reduces to a local moment matching procedure.
Hence, Minka’s method is called expectation propagation. Minka has also shown that
expectation propagation has a similar variational interpretation as in loopy belief
propagation. We point out that expectation propagation also provides a tractable,
iterative alternative to exact belief propagation in non-marginalizable exponential
families of Markov trees. This non-loopy version of expectation propagation (for
trees) is actually closely related to the recursive cavity modeling approach developed
in this thesis. However, we develop a structured approach applicable for more general
MRFs. Also, in RCM, we develop an adaptive model thinning approach to select
which statistics should be included in our exponential family model so as to allow
accurate approximations.

2.3.2 Junction Trees

We now consider a recursive inference approach for general MRFs (xΓ,GΓ), where
GΓ is a “loopy” graph (i.e., there exists cycles in the graph). The main idea is
that we may apply the preceding recursive inference methods (belief propagation on
trees) to infer marginal distributions of a MRF provided we first convert the MRF
into an equivalent Markov tree. This may be accomplished by clustering sites of the
MRF, corresponding to separators of the field, and by appeal to the global Markov
property. An example illustrating this approach is shown in Figure 2-15. We first
discuss this general idea and then show how this leads to the idea of junction trees,
and the associated inference procedures, which are prevalent in the graphical modeling
literature (Shenoy and Shafer [122], Dawid [40], Jordan [77]). The idea of converting
a MRF into a Markov tree has also been developed (in parallel with the junction
tree perspective favored in the graphical model literature) in the multiscale modeling

20However, unlike the e-projection and m-projection problems minimizing KL-divergence, the
Bethe free energy is not, in general, convex and may have many local minima.
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literature. This author’s view of inference in MRFs, and of the role of junction trees,
has been especially influenced by this latter perspective (Taylor and Willsky [127],
Luettgen et al [92], Daniel [36]). We later consider the role Markov trees play in those
methods (Section 2.3.3).

Describing Markov Random Fields as Markov Trees. Suppose that we can
partition Γ into K + 1 disjoint subfields P = (S,Λ1, . . . ,ΛK) where S separates
Λi and Λj for all i, j.

21 Then, by the global Markov property, (xS, xΛ1 , . . . , xΛK
)

forms a Markov tree based on vertices P with edges ({S,Λk}, k = 1, . . . , K). This
initialization step is illustrated in Figure 2-15(a).

This decomposition procedure may be iterated on subfields to recursively decom-
pose the field as a Markov tree. For instance, suppose that we can further partition
Λi into Ki + 1 disjoint subsets (S

′,Λi,1, . . . ,Λi,Ki
) where S ′ separates Λi,j and Λi,k in

subgraph GΛi
for all j �= k. Then, Si ≡ S ′∪∂Λi likewise decomposes Γ into Ki+1 dis-

joint components (Λi,0 ≡ Γ\Λ̄i,Λi,1, . . .Λi,Ki
) separated by Si. Note that Si augments

S ′ with ∂Λi ⊂ S so as to separate the subfields Λi,k from Λi,0. Then, as illustrated in
Figure 2-15(b), we may replace leaf node Λi in our Markov tree representation by a
new subtree with Ki + 1 nodes {Si,Λi,1, . . . ,Λi,Ki

} where the root Si takes the place
of Λi in our Markov tree but we now have Ki new leaf nodes Λi,j each linked to Si.

In this manner we may recursively decompose the field, “growing” a corresponding
Markov tree, until the subfields corresponding to leaves of the tree are sufficiently
small so as to be tractable by direct (non-recursive) inference methods. This gives a
tree TS = (S, ES), based on a collection S of subsets of Γ (the separators and leaves
in the preceding decomposition), such that the random field (xΛ,Λ ∈ ES) is Markov
with respect TS . For instance, in our example, this gives the Markov tree depicted
in Figure 2-15(c).

Hence, we may now employ the previously discussed two-pass belief propagation
procedure, with some minor modifications22, to perform inference on the Markov
tree thereby inferring marginal distributions of the original MRF. The computational
structure of this inference is clarified by considering how decimation on the Markov
tree relates to variable elimination in the MRF. We illustrate this approach in Figure
2-16. We let π(S) denote both the parent of node S in the Markov tree and the
corresponding subfield of the MRF. Eliminating a node S ∈ S of the Markov tree
corresponds to elimination of a subfield Λ = S \ π(S) ⊂ Γ of the MRF, that is
integration of p(xΓ) over XΛ. With respect to subfield Λ, the graphical model of the
MRF may be factored into the form

p(xΓ) ∝ ψ\Λ(x\Λ)ψ∂Λ,Λ(x∂Λ, xΛ)ψΛ(xΛ) (2.155)

21Such that any path connecting Λi and Λj must pass through S.
22To accommodate the fact that, in the Markov tree description of the field, we have allowed

some states of the MRF to be duplicated at adjacent nodes of the tree. This requires that when a
message is predicted from nodes α to β in the tree, we only perform integration (summation) over
those states at α which are not duplicates of states at β.
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xΛ2,1

xS2

xS2
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(c)

Figure 2-15: Illustration showing decomposition of MRF on a loopy graph (left) as a
Markov tree (right).
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xS

(a)

xS
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xS1

xΛ2,2
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xS2

xΛ2,1xΛ1,2
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Figure 2-16: Illustration of variable elimination procedure (decimation of the Markov
tree) for calculation of p(xΛ1,1): (a) after elimination of Λ2,1 and Λ2,2, (b) after elim-
ination of S2 \ S, (c) after elimination of S \ S1, Λ1,2 and S1 \ ∂Λ1,1. Elimination of
∂Λ1,1 will then yield p(xΛ1,1).
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Figure 2-17: Illustration showing triangulated graphical model. Edges are added to
the original graph (left) producing a chordal graph (right). These extra “fill” edges
reflect the additional degrees of freedom we are allowing in adopting the Markov
tree description of the MRF. That is, the family of MRFs on this chordal graph is
precisely the family of MRFs which also respect the Markov tree. In a parametric
representation of the graphical model, these extra degrees of freedom are required in
order to implement consistent belief propagation on the Markov tree.

Hence, elimination of subfield Λ corresponds to the computation

p(x\Λ) =

∫
XΛ

p(xΓ)dxΛ (2.156)

∝ ψ\Λ(x\Λ)µΛ→∂Λ(x∂Λ) (2.157)

where

µΛ→∂Λ(x∂Λ) =
∫
XΛ

ψ∂Λ,Λ(x∂Λ, xΛ)ψΛ(xΛ)dxΛ. (2.158)

In general, this message will couple all sites in the Markov blanket ∂Λ of the eliminated
subfield Λ. For instance, in GMRFs this corresponds to the calculation

ĥ∂Λ = h∂Λ − J∂Λ,ΛJ−1
Λ hΛ (2.159)

Ĵ∂Λ = J∂Λ − J∂Λ,ΛJ−1
Λ JΛ,∂Λ (2.160)

which (typically) will cause the interaction matrix Ĵ∂Λ to become a full (non-sparse)
matrix.

Iterating this procedure to solve for the marginal distribution of a single node of
the tree, such as illustrated in Figure 2-16, tends to have the affect of “filling out”
the MRF by coupling sites within each subfield corresponding to a node or edge of
the Markov tree. In this regard, inference on the Markov tree (by either decimation
or belief propagation) need not respect the Markov structure of the original MRF.
Alternatively, we could instead first introduce the necessary interactions into our
model and then perform belief propagation with respect to this augmented model.
This is where junction trees enter the picture.
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x∂Λ2,1

x∂Λ2,2x∂Λ1,2

x∂Λ1,1

xS

xS2xS1

Figure 2-18: Illustration of one possible junction tree representation JC =
(C, EC) for the MRF depicted in Figure 2-15. The junction tree is based on
cliques C = {Λ̄1,1, Λ̄1,2, S1, S2, Λ̄2,1, Λ̄2,2} (shown as circular nodes) in a triangu-
lated version of the interaction graph GΓ. These are linked by edges EC =
{{S1, S2}, {S1, Λ̄1,1}, {S1, Λ̄1,2}, {S2, Λ̄2,1}, {S2, Λ̄2,2}}. Also, each edge corresponds to
a separator S = {∂Λ1,1, ∂Λ1,2, S, ∂Λ2,1, ∂Λ2,2} (shown as square nodes “splitting” each
edge).

Relation between Markov Trees and Junction Trees. Essentially, the junction
tree representation of a MRF is a Markov tree built upon a triangulated represen-
tation of the MRF. Such a representation may be constructed as follows. First, the
interaction graph GΓ, describing the Markov structure of the MRF, is triangulated.
This means that we add edges to the graph until the graph becomes chordal. That is,
every cycle of length four or greater has a chord (an edge not contained in the cycle
linking two vertices of the cycle). For instance, the graph shown on the right in Figure
2-17 is chordal. The representation of the graphical model is likewise augmented to
include additional interactions (as appropriate for the family under consideration) to
accommodate any MRF which respects this triangulated graph. This corresponds to
relaxing some of the conditional independencies satisfied by the given model.

Next, a Markov tree is constructed with respect to this triangulated graph. For-
mally, this is specified by a junction tree. This is a clique tree JC = (C, EC), an acyclic
graph based on a collection of cliques C covering the triangulated graph, which also
satisfies the so-called running intersection property. That is, for all Λ1,Λ2 ∈ C, the
intersection Λ1 ∩ Λ2 is contained in every clique Λ along the (unique) path connect-
ing Λ1 and Λ2 in the junction tree. It is known that such a junction tree exists
for any chordal graph (see Jordan [77]). Then, JC describes a Markov tree with
states (xΛ,Λ ∈ C). Hence, we may implement belief propagation with respect to this
junction tree representation of the MRF and this may be posed as passing messages
between overlapping cliques in the triangulated representation of the MRF. Com-
putation of the marginal distributions (p(xΛ),Λ ∈ C) then provides for subsequent
computation of the marginal distributions for each site (p(xγ), γ ∈ Γ) and each pair
of adjacent sites (p(xγ, xλ), {γ, λ} ∈ EΓ) in the original MRF. For instance, the MRF
depicted in Figure 2-15 may be represented by the junction tree shown in Figure 2-18
once we have triangulated the interaction graph as shown in Figure 2-17.

To relate this to our earlier discussion, it is helpful to note that the junction tree
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representation has redundancy built into the state description. For instance, if GΓ

is itself a tree (and hence chordal), then a junction tree JC is constructed by taking
the vertices of the junction tree C to be the edges of the Markov tree GΓ and then
linking those vertices in the junction tree which are adjacent edges in the Markov tree.
Similarly, for each edge of the junction tree {Λ1,Λ2} ∈ EC we may define a separator
S = Λ1 ∩ Λ2 and this is also a separator of the MRF corresponding to some non-leaf
node of the Markov tree. More generally, given any description of a MRF (xΓ,GΓ)
as a Markov tree (xΛ,Λ ∈ S) on TS , we may construct a corresponding junction
tree representation of that MRF as follows. For every subfield Λ ⊂ Γ corresponding
either to a node or edge of the Markov tree, we add edges to GΓ such that Λ is
completely connected. Then, the Markov tree TS = (S, ES) determines a junction
tree JC = (C, EC) for GΓ based on the edges of TS . In this manner, we may convert
any Markov tree representation of the MRF into a junction tree representation.

Due to the redundancy of states in junction trees, some specialization of belief
propagation on junction trees is warranted. In general, given a junction tree represen-
tation of the MRF we may “split” each edge {Λ1,Λ2} into two edges ({Λ1, S}, {Λ2, S})
and a separator node S = Λ1 ∩ Λ2 while preserving the Markov property (see Figure
2-18). Hence, by Hammersley-Clifford, we may factor the probability distribution
with respect to the junction tree as

p(xΓ) ∝
∏
C∈C φ(xC)∏
S∈S φ(xS)

(2.161)

where S is the set of separators (corresponding to edges) of the junction tree. This
is the representation most often considered in the graphical modeling literature. In
this representation, belief propagation may again be posed as “refactorization” where
passing a message from cliques A to B, via the separator S = A ∩ B, may be refor-
mulated as

φB(xB) ← φB(xB)×
∫
φA(xA)dxA\B
φS(xS)

(2.162)

φS(xS) ←
∫
φA(xA)dxA\B (2.163)

Performing a two-pass message passing procedure then refactors this representation
into the form

p(xΓ) =

∏
C∈C p(xC)∏
S∈S p(xS)

(2.164)

thus calculating the requisite marginal distributions on the junction tree. This is the
usual form of belief propagation discussed for junction trees (Dawid [40], Lauritzen
[88], Cowell [33, 32], Jordan [77]).

Hence, in principle at least, belief propagation for Markov trees may be extended
(in various ways) to perform exact inference in MRFs. Yet, the need to triangulate the
graphical model in order to implement consistent belief propagation in MRFs exposes
the potential intractability of the method. Mainly, when the graphical structure of the
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MRF is such that any Markov tree (junction tree) representation must have some tree
nodes corresponding to large subfields (cliques) in the MRF, then the computational
complexity of this approach may become computationally infeasible. In such cases,
there is need to develop tractable approximate inference procedures. We discuss some
work along these lines in the remainder of the chapter. This is also the intent of the
RCM approach discussed in Chapter 4.

2.3.3 Multiscale Models

In this subsection we review the basic multiscale modeling approach introduced in
[14], [9] and [8]; and further developed in [30], [91], [92], [93], [72], and [55]. A
recent survey article by Willsky [132] provides a unified perspective of this field. The
basic paradigm here is to provide a tractable model for a multi-dimensional signal by
providing a sequence of “coarse-scale” descriptions of the signal and modeling this
multiscale description of the signal by a tree-structured MRF (see Figure 2-19). The
levels of the tree are thought of as corresponding to coarse-scale representations of the
signal of interest at various levels of resolution. The signal of interest corresponds to
the fine-scale process which is represented by the states at the leaf nodes of the tree.
The state-space associated to the internal levels of the tree then provide progressively
coarser descriptions of the process.

MAR Models. The majority of this literature has been aimed at linear problems
where the process is Gaussian or where we are constrained to perform linear least-
squares estimation of some arbitrary process based on just the first and second-order
statistics of that process. These linear systems may be formulated as multiscale
autoregressive (MAR) models. The state at the root node γ0 is then modeled as
normally distributed with specified mean and covariance xγ0 ∼ N (x̂γ0 , Pγ0). The
statistics of the rest of the process are then determined by linear dynamics recursing
down the tree. For each node γ beneath the root node γ0, the state of that node xγ
is modeled as being a linear functional of the state xπ(γ) of the parent node π(γ) (the
node immediately “above” γ at the next coarser scale in the tree) but corrupted by
additive Gaussian driving noise wγ ∼ N (0, Qγ).

xγ = Aγxπ(γ) + wγ (2.165)

The various driving noise terms {wγ} are taken as mutually independent and also
independent of the state at the root node xγ0 . This defines a Markov tree (xΓ,TΓ)
with Gaussian probability distribution which factors on the tree as

p(xΓ) = p(xγ)
∏

γ∈Γ\γ0
p(xγ|xπ(γ)) (2.166)

in terms of the Gaussian distribution at the root node

p(xγ0) =
1√

det 2πPγ0
exp{−1

2
(xγ0 − x̂γ0)′P−1

γ0
(xγ0 − x̂γ0)} (2.167)

86



γ0

Λ(γ)λ

π(λ) γ

Γ(γ)

(coarse-scale representation)

(fine-scale representation)

Figure 2-19: Depiction of multiscale model for a 1-D signal. A causal Markov tree
(left) provides a scale recursive coarse-to-fine causal model of the signal (right).

and conditional Gaussian distributions on the edges of the tree

p(xγ|xπ(γ)) = 1√
det 2πQγ

exp{−1
2
(xγ − Aγxπ(γ))′Q−1

γ (xγ − Aγxπ(γ))} (2.168)

This may be viewed as a graphical model with compatibility functions ψ(xγ0) = p(xγ0)
and (ψ(xγ, xπ(γ)) = p(xγ|xπ(γ)), γ ∈ Γ \ γ0). This is an example of a causal graphical
model.

We may also incorporate measurements into this graphical model. Consider mea-
surements in the form of linear functionals of the state at each node γ corrupted by
additive Gaussian measurement noise vγ ∼ N (0, Rγ).

yγ = Cγxγ + vγ (2.169)

The various measurement noise terms {vγ} are taken to be mutually independent
and also independent of both the driving noise and the state at the root node. The
conditional probability distribution p(xΓ|yΓ) ∝ p(yΓ|xΓ)p(xΓ) also factors on the tree
as

p(xΓ|yΓ) ∝ p(xγ0)
∏
γ∈Γ
p(yγ|xγ)

∏
γ∈Γ\γ0

p(xγ|xπ(γ)) (2.170)

where

p(yγ|xγ) = 1√
det 2πRγ

exp{−1
2
(yγ − Cγxγ)′R−1

γ (yγ − Cγxγ)} (2.171)

This may be viewed as a graphical model with compatibility functions ψ(xγ0) =
p(yγ0|xγ0)p(xγ0), (ψ(xγ) = p(yγ|xγ), γ ∈ Γ \ γ0), and (ψ(xγ, xπ(γ)) = p(xγ|xπ(γ)), γ ∈
Γ \ γ0).

We may calculate the conditional distributions at each node of the tree by two-
pass belief propagation. With respect to this causal specification, this may be im-
plemented by a two-pass recursive filtering and smoothing algorithm which general-
izes the Kalman filter and Rauch-Tung-Striebel Smoother for 1D time-series models
[78, 79, 110, 58]. The upward pass of this procedure calculates likelihood functions
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ψ̂(xγ) = p(yΓ(γ)|xγ) where Γ(γ) denotes the set of all nodes in the subtree rooted at
γ (Figure 2-19). The downward pass propagates messages µπ(γ)→γ(xγ) = p(xγ|y\Γ(γ)),
the conditional distribution of xγ given all observations not on the subtree rooted

at node γ. Fusing this downward message with ψ̂(xγ) gives the desired conditional
distribution p(xγ|yΓ) conditioned on all measurements.

Relation to Information Form of BP. We now relate this causal inference ap-
proach to the corresponding information form. The probability distribution of xΓ is
Gaussian and may be put into the information form p(xΓ) ∝ exp{−1

2
xΓJxΓ + h

′xΓ}
where the information parameters (h, J) are calculated from the parameters of the
MAR model as follows. The parameters h are given by hγ0 = P

−1
γ0
x̂γ0 at the root node

and are zero elsewhere. The diagonal blocks of J are given by

Jγ,γ = Q
−1
γ +

∑
λ∈Λ(γ)

A′
λQ

−1
λ Aλ (2.172)

where Qγ0 = Pγ0 and Λ(γ) are the children of γ (Figure 2-19). The off-diagonal blocks
Jγ,π(γ) = J

′
π(γ),γ are given by

Jγ,π(γ) = −2A′
γQ

−1
γ (2.173)

for all γ �= γ0. The remaining entries of J are zero so as to respect the conditional
independencies dictated by TΓ. Thus, it is straight-forward to convert from the causal
model to the (directionless) information form. However, recovering the causal model
given the information model is not so simple. Essentially, this would require that we
infer the marginal distributions under the information model (a global calculation) in
order to calculate p(xγ0) at the root and p(xγ|xπ(γ)) = p(xγ, xπ(γ))/p(xπ(γ)) at every
other node.

The conditional distribution p(xΓ|yΓ) may also be expressed in the information
form p(xΓ|yγ) ∝ exp{−1

2
x′ΓĴxΓ + ĥ

′(yΓ)xΓ} where

ĥγ(yΓ) = hγ + C
′
γR

−1
γ yγ (2.174)

Ĵγ,γ = Jγ,γ + C
′
γR

−1
γ Cγ (2.175)

and Ĵγ,λ = Jγ,λ for all γ �= λ. In this manner, we may incorporate measure-
ments into the information representation. This gives a graphical model with com-
patibility functions (ψ(xγ) = exp{−1

2
x′γ Ĵγxγ + ĥ

′
γxγ}, γ ∈ Γ) and (ψ(xγ, xλ) =

exp{−x′γ Ĵγ,λxλ}, {γ, λ} ∈ EΓ). These have the interpretation

ψ(xγ) ∝ p(yγ|xγ , x∂γ = 0) (2.176)

ψ(xγ, xλ) ∝ p(y{γ,λ}|x{γ,λ}, x∂{γ,λ} = 0)
p(yγ|xγ , x∂γ = 0)p(yλ|xλ, x∂λ = 0) (2.177)

which differs from the interpretation of compatibility functions in the causal model.
Consequently, the representation, calculation and interpretation of messages and in-
termediate beliefs arising in belief propagation likewise differ. For instance, the

88



upward pass of belief propagation (in the information form) calculates ψ̂(xγ) ∝
p(yΓ(γ)|xγ , xπ(γ) = 0). The downward messages may be interpreted as µπ(γ)→γ(xγ) ∝
p(y\Γ(γ)|xγ, xΛ(γ) = 0). Yet, fusing these again gives the conditional marginals p(xγ|yΓ).

Hence, while these two approaches closely parallel one another and ultimately give
the same results, these are nevertheless distinct versions of belief propagation where
the messages and intermediate beliefs computed under the two methods cannot be
related until after we have gathered all available evidence (messages) at a given node.

“Cutset” Construction of Markov Trees. For the purpose of this discussion,
the main aspect of the multiscale modeling approach (relevant to RCM) is the man-
ner in which exact tree models may be constructed for multidimensional GMRFs.
This technique, developed by Luettgen for image processing applications (Luettgen
[91], Luettgen et al [92], Luettgen and Willsky [93]), entails recursively partitioning
the Markov random field into quadrants forming a quad-tree structured hierarchical
decomposition of the field. This approach is illustrated in Figure 2-20. By defining
states at the coarse scales of the Markov tree as the joint state on separator sets
between partitions (given by the surfaces of those adjacent partitions) one is able
to then construct a causal tree-structured realization of the underlying MRF which
is regarded as residing at the finest scale of the tree model. This is closely related
to our previous discussion, in Section 2.3.1, where we also decomposed the MRF by
recursive specification of separators. Yet, Luettgen’s recursive partitioning approach
has the effect of assuring that each site of the MRF is reproduced at a leaf node in
the Markov tree representation (this is important for the state-reduction method to
be discussed). This partitioning approach is also used in our RCM approach and
is discussed further in Chapter 4. The computation of the associated MAR model
parameters given specification of an arbitrary MRF in terms of local interactions is
a nontrivial inference problem. This may be posed as belief propagation in the in-
formation representation of the Markov tree to yield a causal representation of the
Markov tree.

The main disadvantage of employing this type of exact realization approach is that
it yields large state dimensions at coarse scales of the tree. Then, performing belief
propagation with respect to this Markov tree may become computationally infeasible.
For instance, given a N = W ×W 2D nearest-neighbor GMRF, the state dimension
at the root node is order W and the associated complexity of exact inference on this
tree model is order W 3 or N3/2 which does not scale linearly with the number of sites
N of the field.

Reduced-State Cutset Approximations. In order to provide a tractable infer-
ence approach, much work has been performed to develop approximate realization
techniques which attempt to construct good approximations to a given fine-scale pro-
cess by carefully designing the state-space of coarse-scale nodes to do the best job
possible of decorrelating disjoint partitions subject to dimension constraints on the
state space of these hidden nodes. The general idea is illustrated in Figure 2-21.

This has included the work of Irving and Frakt concerning the realization of Gaus-
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(a)

(b)

(c)

Figure 2-20: Illustration of multiscale quadtree model for a 12 × 12 MRF. (a) The
root node specifies the state on a “cross-hair” cutset of the MRF. (b) The four nodes
at the second level of the quadtree correspond to four partitions of the MRF. Each
specifies the state of the surface of the corresponding partition as well as on a cutset
within the partition. (c) The sixteen leaf nodes each correspond to a 3× 3 subfield.
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Figure 2-21: Illustration of idea underlying state-reduction approximations.

sian processes given specification of the covariance structure of the fine-scale process.
Irving employs methods based on information theory and canonical correlations (Irv-
ing [72], Irving and Willsky [73]) while Frakt employs the estimation theoretic notion
of predictive efficiency (Frakt [55], Frakt and Willsky [57]). Frakt has also extended
his techniques to allow for partial covariance specifications based on the maximum
entropy principle (Frakt [55], Frakt et al [56]). Currently, Tucker [128] is working to
extend these techniques to the data-driven case.

One problem which has become apparent in image-processing applications in re-
gards to such state-reduced approximate models is the so-called phenomena of “blocky
artifacts.” The fact remains that a state-reduced multiscale model does not store suf-
ficient information at coarse scale states to fully render the subordinate processes
conditionally independent. This leads to degradation in the quality of estimates
along those quadrantal boundaries associated with the quad-tree decomposition of
the field. These irregularities can become more apparent at coarser scales as the
inadequate state-dimension becomes more problematic.

The occurrence of these artifacts is a primary consideration motivating the RCM
approach. An important distinction is that RCM performs approximate inference
with respect to an exact model instead of performing exact inference with respect to
an approximate model. This is achieved by combining the inference and modeling
procedures. As we shall see, RCM does not impose restrictions on the state-dimension
of these “cutset” states but rather imposes restrictions upon the complexity of the
inferred information models associated with those decorrelating states. This is seem-
ingly a less heavy-handed type of approximation and hopefully will avoid the problem
of blocky artifacts perhaps leading to an overall reduction in estimation error at com-
parable levels of computation.
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Domain Decomposition. Also arising in the multiscale modeling literature are
certain domain decomposition approaches (Taylor and Willsky [127], Taylor [126],
Daniel [36]) for estimation and filtering of 2D linear systems which are perhaps more
closely related to RCM than those techniques based on reduced-state MAR models.
These methods are closely related to the nested dissection algorithm [61] and other
domain decomposition techniques employed in the solution of sparse linear systems
such as arise in the numerical solution of multidimensional partial differential equa-
tions. The methods of both Taylor and Daniel begin by recursively decomposing the
field precisely as in Luettgen’s approach (Figure 2-20). We focus on Taylor’s approach
which more closely resembles RCM in that it takes a model based view of the local
processing performed within each subfield.

Taylor considers two-dimensional linear systems specified as a nearest neighbor
model (NNM). This describes a collection of random variables (xΓ, yΓ) arranged on a
2D square grid Γ = {(i, j)|i = 1, . . . , N, j = 1, . . . ,M)} with interactions given by a
system of noisy constraints and measurements

xi,j = N(i,j)xi,j+1 + S(i,j)xi,j−1 + E(i,j)xi+1,j +W(i,j)xi−1,j + wi,j (2.178)

yi,j = C(i,j)xi,j + vi,j (2.179)

together with some appropriate set of boundary conditions23 where vi,j ∼ N (0, R(i,j))
is measurement noise, independent from site to site, and where the driving noise
w ∼ N (0, Q) has a sparse covariance matrix designed so as to insure that the pro-
cess is Markov with respect to the graph defined by the neighborhoods ∂(i, j) =
{(i, j + 1), (i, j − 1), (i + 1, j), (i − 1, j)} (Woods [133, 134]). Consider the problem
of computing the conditional marginal distributions p(xγ|yΓ) at each site γ given the
measurements yΓ. This may be posed in the information form as we have discussed
previously. Taylor considers a more general approach calculating the minimum-norm
least-squares estimate x̂Γ(yΓ) minimizing

l(xΓ) = (yΓ − CxΓ)′R−1(yΓ − CxΓ) + x′Γ(I −K)′Q−1(I −K)xΓ (2.180)

= xΓ(C
′R−1C + (I −K)′Q−1(I −K))xΓ + const (2.181)

This is interpreted as maximum-likelihood estimation, since l(xΓ) = −2 log p(yΓ;xΓ)
viewing xΓ as (non-random) parameters of the model. This more general formulation
is well-posed even when neither the covariance nor the inverse covariance of xΓ is
well-defined. We give a high-level description of Taylor’s approach.

The basic strategy again involves a two-pass procedure following the tree-structured
decomposition of the field as shown in Figure 2-20. The upward pass begins within
the smallest squares subfields corresponding to leaves of the tree. Within each sub-
field, a causal Markov chain description of the interior of the field is adopted where
the states of the Markov chain correspond to a sequence of square “rings” beginning
at the center of the subfield and advancing radially outwards towards the surface of
the subfield. This Markov chain is implicitly conditioned on zero state outside of that

23Along the edges of the grid, we may either (i) neglect contributions from sites outside the grid,
(ii) introduce periodic boundary conditions, or (iii) explicitly specify state values along the boundary.
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subfield. Taylor constructs this Markov chain from just the local NNM parameters
defined within that subfield. His approach specifies the dynamics of this Markov chain
in the form of a separable two-point boundary value descriptor system which general-
izes the autoregressive type dynamics we discussed previously for MAR models. In
the upward pass, an outwards filtering step is performed with respect to this Markov
chain producing a description of the statistics at the surface of the field conditioned
on all data within that subfield (and also conditioned on zero state outside of that
subfield). The upward pass then proceeds up the tree by merging adjacent subfields
and performing a similar outwards filtering step along the common boundary of the
two subfields (which is a separator of the conditional subfield assuming zero state
outside of the merged subfield). A complimentary downward pass then reverses this
processing by performing an inwards smoothing operation with respect to each of
these Markov chains recursing down the tree. Once the leaves of the tree are reached,
this yields the desired state estimates and corresponding error covariances at each
site of the field.

This processing very closely parallels a corresponding variable elimination ap-
proach within the information representation of the field (when this is well-defined).
In particular, Taylor’s interpretation of the outwards and inwards message passing as
respectively calculating the zero-input response and zero-state response of his (linear)
maximum-likelihood estimator corresponds precisely to the interpretation of messages
in the information form of belief propagation as being conditioned upon zero bound-
ary conditions either outside or inside each subfield.

As Taylor discusses, the complexity of his approach is dominated by the cost of
the filtering/smoothing calculations associated with the outer boundary of the largest
domain. This is fundamentally related to the problem of “fill” in the corresponding
variable elimination approach which is also most costly at the largest separator of the
field. Taylor considers suboptimal filtering and smoothing procedures to adjust the
computational complexity of his method by truncating either the covariance or the
inverse covariance matrices propagated in his method. This models the outer-most
“ring” in his radial filtering approach as either a 1D periodic autoregressive or moving
average model going around the boundary. The approximation is imposed by simply
setting unwanted elements of the matrix, outside some specified bandwidth w, to zero
so as to only retain interactions between the w nearest neighbors to a given site in
the boundary. This allows a lower-order Markov chain to be constructed at the next
level up in the tree thus reducing the computational complexity of his method.

Daniel’s [36] approach has similar structure as in Taylors method, but is posed as
performing a partial LU decomposition of the inverse covariance J in a tree structured
manner which exploits the sparsity of J (precisely as in nested dissection). This
then supports solution of Jx̂ = h by a two-pass estimation procedure which first
solves Ly = h and then solves Ux̂ = y. His method also introduces a thinning
operation which yields a more tractable albeit approximate decomposition of J . Yet,
the interpretation of this thinning step is less clear, from a modeling point of view,
than in Taylor’s method.

As we will see in Chapter 4, RCM is also a domain decomposition approach which
aims to provide tractable inference by reducing the complexity of the intermediate
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cutset models arising in domain decomposition. RCM differs from Taylor’s approach
in that all processing is done in the information representation of the GMRF (local
conditional subfields are never converted into a causal representation) and we em-
ploy the variable elimination approach to inference throughout. RCM also adopts
thinned Markov models of the surfaces of subfields corresponding to Taylor’s periodic
autoregressive models going around the boundary of each subfield. An important
distinction, however, is that RCM employs the machinery of information geometry
to give a principled approach for selecting such approximations (both the Markov
structure and the parameters of the model). Also, we will give iterative procedures
to refine these approximations. Finally, the general RCM framework should prove
applicable for far more general families of MRFs than just GMRFs.
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Chapter 3

Model Thinning

This chapter focuses on the fundamental model thinning problem. The techniques
developed here are derived from the information geometric perspective for model se-
lection among exponential families of Gibbs random fields as discussed in the previous
chapter. These methods lie at the heart of the recursive cavity modeling approach
for tractable inference of graphical models to be discussed in Chapter 4.

The model thinning problem (introduced in Section 2.2.3) is now summarized.
We are given a graphical model specified by a set of interaction potentials φ =
(φΛ(xΛ; θΛ) = θΛ · tΛ(xΛ),Λ ∈ HφΛ) relative to a hypergraph HφΓ = (Γ,HφΓ). This
describes a MRF (xΓ,G

φ
Γ) with probability distribution p(xΓ) ∝ exp{

∑
θΛ · tΛ(xΛ)}

and with Markov structure determined by the adjacency graph GφΓ = adj HφΓ. We
also assume that the graphical model is tractable by exact inference methods such
that it is feasible to calculate the moment parameters η = Eθ{t(xΓ)}. For instance,
the graphical model is either sufficiently small such that simple brute-force inference
methods apply or has sufficiently low tree-width such that efficient recursive inference
methods apply (for instance, by decomposing the graphical model as a Markov chain
or tree with low state dimensions).1

Our objective is to determine a thinned graphical model which provides a more
compact yet faithful approximation of the original. We pose this as thinning of an
exponential family model by neglecting some of the statistics t(xΓ) (forcing the associ-
ated exponential parameters θ to zero). This may be seen as pruning hyperedges from
HφΓ or as pruning edges from G

φ
Γ so as to give a thinned graphical model. The model

thinning problem then has two components: (i) selection of which statistics to omit
from the model (thereby selecting an embedded exponential family and correspond-
ing Markov structure), and (ii) adjustment of the remaining (non-zero) exponential
parameters. Subject to the choice of (i), the optimal (maximum-likelihood) choice of
exponential parameters is given by m-projection of the given graphical model to the
selected exponential family of graphical models.

The model thinning procedures developed here are based on an information crite-
rion inspired by the Akaike information criterion (AIC) for model selection from data
[1, 2]. This criterion balances the competing objectives of model fidelity (measured by

1In Chapter 4, where we consider intractable models, these assumptions are met as we then only
consider model thinning for tractable subfields.
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KL-divergence) and model complexity (measured by model order). We discuss this
further in Section 3.1. Over a given exponential family, minimization of this criterion
reduces to the m-projection problem. In Section 3.2, we discuss our approach to
m-projection based on a novel adaptation of the iterative scaling technique inspired
by the cluster variation method for approximate inference (Kappen and Wiegerinck
[80]) and also Minka’s method of m-projection to trees (Minka [96]). In Section 3.3,
we then specify model thinning procedures which incrementally prune statistics from
the exponential family by inductive m-projection (such as in Proposition 16). We say
that this approach is inductive because later decisions as to which statistics ought to
be neglected are based on observing the effect of earlier m-projections.

3.1 Information Criterion

This section introduces the information criterion we employ for model thinning. Let
µ denote a given graphical model we wish to thin and let ν denote a thinned version
of µ which we wish to assess as a possible substitute for µ. We wish to select ν to
provide a compact yet faithful approximation of µ. We require that the candidate ν
remain faithful to the original µ in the sense of having low KL-divergence D(µ‖ν) =
Eµ log µ(x)/ν(x) where µ(x) and ν(x) denote the probability distributions of x under
the two models. We require that the candidate ν is compact in the sense of having
low model-order K(ν), i.e. the number of independent model parameters. These
competing objectives are balanced against one another by the cost function

V (µ; ν) = D(µ‖ν)− δ(K(µ)−K(ν)) (3.1)

where δ > 0 is an adjustable parameter controlling how strongly we favor compact-
ness over fidelity. The first term D(µ‖ν) ≥ 0 measures the modeling error incurred
by replacing µ by ν. The second term reduces this modeling error by an amount
proportional to the order reduction ∆K = K(µ) − K(ν) resulting from the substi-
tution. This is the number of statistics in the model µ which are neglected in the
model ν by forcing the corresponding parameters to zero. The parameter δ > 0 scales
the order reduction relative to the modeling error and hence indicates the amount of
modeling error we are prepared to accept per removed model parameter. This gives
the adjusted modeling error which we wish to minimize by our choice of ν. Larger
values of δ favor more compact models allowing substitutions which incur greater
modeling error. Note also that V (µ;µ) = 0 so that model thinning is recommended
only if V (µ; ν) < 0 indicating a reduction of the adjusted modeling error favoring the
substitution of ν for µ.

Inductive Decomposition. We also remark that the adjusted modeling error
V (µ; ν) inherits the “Pythagorean” decomposition of the KL-divergence it is based
on. Consider a sequence of embedded exponential families H0 = F ⊃ H1 ⊃ . . . ⊃ HK
with µ ∈ F and set µ̂(k) = argminν∈Hk

D(µ‖ν). Then, the adjusted modeling error
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decomposes as

V (µ; µ̂(K)) =
K∑
k=1

V (µ̂(k−1); µ̂(k)) (3.2)

where the incremental error adjustments may be evaluated as

V (µ̂(k); µ̂(k+1)) = (h(µ̂(k+1))− h(µ̂(k)))− δ(K(µ̂(k))−K(µ̂(k+1))) (3.3)

This suggests that we approach model thinning by incremental m-projections to lower-
order exponential families. Each m-projection attempts to select the “next” embed-
ded family so as to reduce V . The inductive thinning continues so long as we can
identify further projections to lower-order families with V < 0. Thus, δ gives an upper
bound threshold on the allowed information loss (under m-projection) per removed
model parameter.

In the next section, we develop our technique for m-projection to a selected em-
bedded exponential family. In Section 3.3, we specify an inductive procedure for
selection of embedded families employing m-projection as a subroutine.

3.2 Information Projection

In this section we develop our m-projection procedure. Here, we are given a graphical
model µ ∈ F where F corresponds to the exponential family of (normalizable) Gibbs
distributions with interaction potentials (φΛ(xΛ; θΛ) = θΛ · tΛ(xΛ),∀Λ ∈ HφΓ). We
specify an embedded exponential family H ⊆ F based on a reduced set of statistics
tH(xΓ) ⊆ t(xΓ) with corresponding exponential parameters θH and moment param-
eters ηH. Those statistics of the family F being omitted are denoted t′H(x) with
exponential and moment parameters denoted similarly. The embedded exponential
family H is an e-flat submanifold of F specified by:

H = {ν ∈ F | θ′H(ν) = 0} (3.4)

We then wish to evaluate the m-projection of µ to this e-flat submanifold.

µ̂ = argmin
ν∈H

D(µ‖ν) (3.5)

By Proposition 12, this minimization problem has a unique minimizer ν ∈ H char-
acterized by the necessary and sufficient condition that ηH(ν) = ηH(µ). We denote
these desired moments by η∗H ≡ ηH(µ) which are obtained by inference of the given
model µ. This m-projection is dual to a corresponding class of e-projections. We
define the m-flat submanifold H′ as the family of models in F satisfying the moment
constraints η∗H.

H′ = {µ′ ∈ F | ηH(µ′) = η∗H} (3.6)
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Then, by Proposition 14, for any ν ∈ H the e-projection of ν to the m-flat submanifold
H′,

ν̂ = arg min
µ∈H′

D(µ‖ν), (3.7)

is also the m-projection of (any) µ ∈ H′ to the e-flat submanifold H, i.e. ν̂ = µ̂.
This is due to the fact that the e-flat submanifold H and the m-flat submanifold H′

are I-orthogonal submanifolds intersecting at ν̂ = µ̂. This duality is useful as we
may then apply iterative scaling techniques (for e-projection) to calculate the desired
m-projection. The fundamental idea is illustrated in Figure 3-1 and detailed in the
following discussion.

3.2.1 Moment Matching

We now describe how iterative scaling may be performed to calculate the m-projection
of µ to the e-flat submanifold H, a hyperplane in exponential coordinates specified
by θ′H = 0 (see top panel of Figure 3-1). Here, we specify the approach using the
iterative proportional fitting (IPF) procedure, discussed previously in Section 2.2.4,
to perform moment matching.2

First, inference is performed with respect to the model µ to calculate the moments
η∗H = ηH(µ). This calculation is performed using exact recursive inference techniques
such as described in Section 2.3. This determines the m-flat submanifold H′ indicated
by a straight solid line in moment coordinates in our illustration (see lower panel of
Figure 3-1). Once these moments η∗H are known, the original model µ is no longer
required and may be discarded.3 In principle, this inference calculation actually gives
the m-projection µ̂ which is uniquely specified (in H) by the moment coordinates
ηH(µ̂) = η∗H. However, what we desire is the explicit computation of the corresponding
exponential coordinates θ∗H ≡ θH(µ̂).

To recover θ∗H from η∗H, we may employ iterative proportional fitting within the
embedded exponential family H. To do so, we must first specify the exponential
coordinates of some initial guess ν̂(0) ∈ H. Ideally, this should be chosen so that
ν̂(0) is near the sought after m-projection µ̂. A variety of initialization methods
might be recommended for different contexts.4 However, in the context of model
thinning, the submanifold H is itself presumably chosen to be near the given model
µ so that the parameters θ′H(µ) are small. In this case it may be reasonable simply
to set θH(ν̂(0)) = θH(µ) (but θ′H(ν̂

(0)) = 0) which gives a nearby point in exponential
coordinates to θ(µ). This is the initialization method shown in our illustration (see

2Later, in Section 3.2.2, we specify our own accelerated version of iterative scaling which we call
loopy iterative scaling (LIS). We then use LIS in place of IPF for m-projection.

3In a computer implementation of this procedure we may overwrite µ so that m-projection is
performed “in place” by modification of the given model. We need only store those active moment
characteristics of the model corresponding to statistics of the thinned family.

4One general and robust method is to m-project to an even lower-order embedded exponential
family of H which has simple structure allowing the m-projection to be calculated directly. For in-
stance, we could m-project to the family of fully-factored distributions (fully-disconnected graphical
models). The m-projection is then given by the product of marginal distributions. We could also
m-project to families of Markov chains or trees using Minka’s m-projection method [96].
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Exponential
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ν̂(2)

ν̂(1)

ν̂(0)

η′H

ηH

θH

H = {ν|θ′H(ν) = 0}

H′θ′H

H

H′ = {µ′|ηH(µ′) = ηH(µ)}

ν̂(2)
ν̂(1)

ν̂(0)

Θ

µ̂

µ

µ̂

µ
η(Θ)

Figure 3-1: M-Projection by moment matching depicted in both exponential coordi-
nates (top) and moment coordinates (bottom). Given µ, we wish to minimize D(µ‖ν)
over ν ∈ H (solve for the m-projection of µ to the e-flat submanifold H). This is
given by the intersection H ∩ H′ = {µ̂} where H′ is the I-orthogonal m-geodesic
containing µ. To obtain θ(µ̂), we first provide an initial guess ν̂(0) ∈ H. This seeds a
moment-matching procedure which solves for ν ∈ H such that ηH(ν) = ηH(µ). The
method shown is the IPF version of iterative scaling which generates a sequence of
alternating e-projections ν̂(k) to the two m-flat submanifolds (shown at bottom) with
intersection H′. Each m-flat submanifold satisfies a subset of the moments we are
trying to match. Hence, the sequence ν̂(k) converges to the e-projection ν̂ of ν̂(0) to
H′. Since each e-projection stays in H the e-projection ν̂ is also the m-projection of
µ to H, i.e. ν̂ = µ̂. Note, to obtain a good approximation for µ in H it is not strictly
necessary that we match moments exactly. Rather, we may terminate iterative scaling
once ν̂(k) is within some KL-divergence from each of the m-flat submanifolds.
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top panel of Figure 3-1). In any case, once an initial guess ν̂(0) is given, we may then
e-project this initial starting point to H′ by iterative scaling as described in Section
2.2.4. As illustrated in Figure 3-1, this generates a sequence ν̂(k) of e-projections
(solid straight lines in top figure), each imposing a subset of the active moment
constraints. This sequence converges to ν̂, the e-projection of ν̂(0) to H′ satisfying
all active moment constraints η∗H. In view of duality, this also gives µ̂, the desired
m-projection of µ to H. Finally, we remark that µ̂ is also the maximum entropy
model subject to active moment constraints. That is, µ̂ = argmaxµ∈H′ h[µ].

We now specify this general moment matching procedure for the information form
of the GMRF. Here, the graphical model µ corresponds to the information model
xΓ ∼ N−1(h, J). This is Markov with respect to the adjacency graph GΓ = (Γ, EΓ)
having edges {γ, λ} ∈ EΓ for all γ, λ ∈ Γ such that Jγ,λ �= 0 (see Proposition 6). We
then consider F as the family of GMRFs which are Markov with respect GΓ such
that Jγ,λ = 0 for all {γ, λ} �∈ EΓ. We may pose model thinning as m-projection to
the subfamily H which are Markov with respect to an embedded graph G′

Γ = (Γ, E ′
Γ)

(such that E ′
Γ ⊆ EΓ) imposing further sparsity upon the interaction matrix J . As was

shown in Section 2.1.5, the information parameters (h, J) correspond to exponential
parameters θ in the description of the Gaussian density as an exponential family.
Hence, imposing Markov structure by setting off-diagonal entries of J to zero also
corresponds to selection of an embedded exponential family based on a reduced set
of statistics.

We specify the following procedure to evaluate the m-projection to the embedded
exponential family by iterative proportional fitting. This moment-matching procedure
is structured according to a collection of cliques C ⊆ C(G′

Γ) which cover the thinned
interaction graph G′

Γ = (Γ, E ′
Γ), so that each vertex γ ∈ Γ and each edge {γ, λ} ∈ E ′

Γ

is contained in some Λ ∈ C.
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M-Projection/Moment-Matching in GMRFs:

• Input. Graphical model µ = (h, J), graph G′
Γ = (Γ, E ′

Γ), cliques C ⊆ C(G′
Γ)

covering G′
Γ, moment-matching tolerance ε > 0.

• Inference. Calculate η∗Λ = (x̂Λ, PΛ) for all Λ ∈ C. Let (ĥ∗Λ, Ĵ∗
Λ) = (P

−1
Λ x̂Λ, P

−1
Λ ).

• Initialization. Set Jγ,λ = 0 for all {γ, λ} �∈ E ′
Γ.

• Iterative Scaling. Until convergence, do the following:
– Inference. Calculate ηΛ = (x̂Λ, PΛ) for all Λ ∈ C. Let (ĥΛ, ĴΛ) =
(P−1

Λ x̂Λ, P
−1
Λ ).

– Test for convergence. Calculate dΛ = D(η
∗
Λ‖ηΛ), the KL-divergence be-

tween Gaussian distributions with moments η∗Λ and ηΛ, for Λ ∈ C and set
d̂ = maxΛ dΛ. If d̂ < ε, then terminate iterative scaling loop.

– IPF Update. Pick Λ ∈ C, set hΛ ← hΛ+(ĥ
∗
Λ−ĥΛ) and JΛ ← JΛ+(Ĵ

∗
Λ−ĴΛ).

• Output. Thinned model µ̂ = (h, J) giving m-projection of input µ to family of
GMRFs H Markov w.r.t. G′

Γ.

We also remark that alternative iterative scaling procedures (such as generalized
iterative scaling [38] and improved iterative scaling [106] discussed in Section 2.2.4)
may be used in place of IPF to possibly accelerate convergence. The advantage of
such alternatives is that for every execution of the IS loop (each requiring a global
inference computation), all parameters of the model are updated (whereas in IPF, only
one clique is updated per inference computation). We also offer our own alternative
to IPF described next.

3.2.2 Loopy Iterative Scaling

We now develop our modeling approach which may be seen as a hybrid method com-
bining iterative scaling techniques for loopy graphs (discussed in the previous section)
with exact methods for m-projection to families of Markov trees (such as proposed
by Minka [96]). Essentially, we extend the method for m-projection to Markov trees
to yield an iterative refinement procedure in loopy graphs. We relate this approach
to the Bethe and Kikuchi approximations (to be discussed) employed in some varia-
tional inference methods such as loopy belief propagation (Yedidia [135], Yedidia et al
[136]), tree reparameterization (Wainwright [129]) and the cluster variation method
(Kappen and Wiegerinck [80]).5 We develop an iterative refinement procedure, in-
spired by but distinct from Bethe and Kikuchi approximation, which we call loopy

5However, we must emphasize that our goal here is modeling rather than inference. Consequently,
we consider these Bethe and Kikuchi approximations in somewhat of a different light than the reader
may be accustomed to.
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iterative scaling (LIS). This modeling approach may be considered as the modeling
analog of the loopy belief propagation inference approach.

We first define what we mean by Bethe and Kikuchi approximation (in the context
of modeling), and then develop our iterative refinement procedure, based on a gen-
eralized notion of Kikuchi approximation which we call the relative Kikuchi approx-
imation. The leads to an iterative modeling procedure which then closely resembles
iterative scaling methods such as discussed in the preceding section.

Bethe Approximation. We define the Bethe approximation6 for a probability dis-
tribution µ(xΓ) as a graphical model constructed from a collection of singleton and
pairwise marginal distributions of µ on the vertices and edges of a graphGΓ = (Γ, EΓ).
Given the marginal distributions (µΛ(xΛ),Λ ∈ {{γ}|γ ∈ Γ}∪EΓ)7, let the probability
distribution µBethe be defined by

µBethe(xΓ) =
1

Z

∏
γ∈Γ
ψBethe(xγ)

∏
{γ,λ}∈EΓ

ψBethe(xγ , xλ) (3.8)

with compatibility functions:

ψBethe(xγ) = µ(xγ) (3.9)

ψBethe(xγ , xλ) =
µ(xγ, xλ)

µ(xγ)µ(xλ)
(3.10)

and where Z is the normalization constant. Note that this is a Gibbs distribution
µBethe =

1
Z
exp

∑
Λ φBethe(xΛ) with interaction potentials defined as

φBethe(xγ) = log µ(xγ) (3.11)

φBethe(xγ, xλ) = log µ(xγ, xλ)− φBethe(xγ)− φBethe(xλ) (3.12)

for each site γ ∈ Γ and each edge {γ, λ} ∈ EΓ. This probability distribution factors
with respect to the graph GΓ so that (xΓ ∼ µBethe,GΓ) defines a MRF. This defines
the Bethe approximation and gives an explicit recursive procedure for constructing
this approximation from the specified marginals.

Now let us consider why µBethe might be considered a reasonable approximation for
µ within the family F(GΓ) of pairwise MRFs defined onGΓ.

8 Recall that, ultimately,

6See also discussion and references in Yedidia [135].
7Note that, in the context of modeling, we presume these marginal distributions are given which is

the reverse situation to inference where we wish to calculate (or somehow estimate) these marginals
from a given graphical model. In the context of model thinning, which is our real interest here, these
marginals must be computed by recursive inference of the model µ(x).

8That is, the family of Gibbs random fields which factor according to the hypergraph HΓ =
(Γ, EΓ ∪ {{γ}|γ ∈ Γ}) so that all potentials are either singleton effects or pairwise interactions.
This family is Markov with respect to GΓ but may not contain every MRF on GΓ because of the
restriction to pairwise interactions.
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our goal is to determine the m-projection of µ to this family.

µ̂ = arg min
ν∈F(GΓ)

D(µ‖ν) (3.13)

This m-projection is also the maximum-entropy distribution with marginal distri-
butions µ(xγ) for each site γ ∈ Γ and µ(xγ, xλ) for each edge {γ, λ} ∈ EΓ. The
maximum-entropy distribution lies in the family F(GΓ) and is uniquely determined
within that family by those singleton and edgewise marginal distributions. That is, if
we can find ν ∈ F(GΓ) such that ν(xγ) = µ(xγ) for all γ ∈ Γ and ν(xγ, xλ) = µ(xγ, xλ)
for all {γ, λ} ∈ EΓ then we have found the m-projection, i.e. ν = µ̂.

In Trees, Bethe Approximation = M-Projection. To motivate this per-
spective, suppose that the graph GΓ is in fact a tree. Then, the Bethe approximation
corresponds precisely to the canonical factorization sought in the “refactorization”
view of belief propagation where local potentials are directly related to local marginal
distributions.9 Then, in tree graphs GΓ, the singleton and edgewise marginal distri-
butions of the Bethe approximation agree exactly with those of µ.10 Hence, Bethe
approximation actually gives an exact method for m-projection to families of Markov
trees.11

In General, Bethe Approximation �= M-Projection. More generally, in
loopy graphs GΓ, the marginals of the Bethe approximation will not exactly agree
with those of µ. Indeed, this is unfortunately the case even if µ actually is itself
a member of the family F(GΓ). Nevertheless, if the “loopiness” of the model is
nearly negligible, so that any additional interactions induced by variable elimination
are weak, then we expect the marginals of the Bethe approximation to agree ap-
proximately with those of µ. This is shown in that the Bethe approximation is a
fixed point of both loopy belief propagation and tree reparameterization where the
“pseudo-marginals” computed under these loopy inference methods match the true
marginals of µ (Wainwright [129]). In this regard, the Bethe approximation µBethe
based on GΓ may be understood as an approximation for the desired m-projection µ̂.

However, it is still our objective to develop an iterative extension of this Bethe
approximation which will allow us to find the desired m-projection in loopy graphs (at
least to a desired level of precision). But first, before we develop this iterative method,
we consider a more general form of Bethe approximation which allows higher-order
marginal distributions (involving more than two sites of the field) to be incorporated

9This “refactorization” viewpoint was reviewed in Section 2.3 and is a guiding principle in tree
reparameterization (Wainwright [129]) but also arises in analysis of junction tree inference procedures
(Shenoy and Shafer [122], Dawid [40]).

10This occurs because, in the decimation approach to inference, eliminating any leaf node of the
tree produces a message identical to one. That is,

∫
ψBethe(xγ , xλ)ψBethe(xλ)dxλ =

∫
µ(xλ|xγ)dxλ =

1 so that the potential ψγ is not modified by elimination of vertex λ. Repeating this leaf-
elimination procedure until only a single site γ ∈ Γ remains shows that µBethe(xγ) = ψBethe(xγ) =
µ(xγ). Similarly, eliminating all but two adjacent sites {γ, λ} ∈ EΓ shows that µBethe(xγ , xλ) =
ψBethe(xγ , xλ)ψBethe(xγ)ψBethe(xλ) = µ(xγ , xλ).

11This method for m-projection to families of Markov trees is equivalent to the method proposed
by Minka [96] although he considers a causal (directed) factorization on the Markov tree rather than
the symmetric Bethe approximation discussed here.
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into the approximation in a consistent manner. We interpret these approximations
as truncated versions of an exact representation of µ obtained by a Möbius inversion
procedure to be discussed.12

As a preliminary to this discussion, let us say that a hypergraph HΓ = (Γ,HΓ)
is intersection complete if intersections of hyperedges are also hyperedges. That is,
for every pair of hyperedges Λ1,Λ2 ∈ HΓ the intersection Λ1,2 = Λ1 ∩Λ2 is contained
in the collection HΓ. Also, we will say that HΓ is a hypertree if it is the clique
hypergraph of some chordal graph. The maximal hyperedges of a hypertree may be
linked together so as to form a junction tree, an acyclic clique graph satisfying the
running-intersection property (Section 2.3.2).

Kikuchi Approximation. We define theKikuchi approximation13 for a probability
distribution µ(xΓ) as a graphical model constructed from the marginal distributions of
µ on the hyperedges of an intersection complete hypergraphHΓ = (Γ,HΓ). Given the
marginal distributions (µΛ(xΛ),Λ ∈ HΓ), let the probability distribution µKikuchi(xΓ)
be defined by

µKikuchi(xΓ) =
1

Z

∏
Λ∈HΓ

ψKikuchi(xΛ) (3.14)

with compatibility functions defined by

ψKikuchi(xΛ) =
µ(xΛ)∏

Λ′�Λ ψKikuchi(xΛ′)
(3.15)

for each Λ ∈ HΓ and with normalization constant Z. That is, for minimal hyperedges
(not a superset of another hyperedge) we set ψKikuchi(xΛ) to the marginal µ(xΛ) but for
non-minimal hyperedges (a proper superset of another hyperedge) we set ψKikuchi(xΛ)
to µ(xΛ) divided by the product of all lower-order compatibility functions defined
within Λ. Note that this is a Gibbs distribution µKikuchi(xΓ) =

1
Z
exp

∑
Λ φKikuchi(xΛ)

with interaction potentials recursively defined by

φKikuchi(xΛ) = log µ(xΛ)−
∑
Λ′�Λ

φKikuchi(xΛ′) (3.16)

for each Λ ∈ HΓ. The probability distribution µKikuchi factors with respect to the
hypergraph HΓ so that xΓ ∼ µKikuchi is Markov with respect to the interaction graph
GΓ = adj HΓ. This defines the Kikuchi approximation and also gives an explicit
recursive procedure for constructing the approximation. We also note that Bethe
approximation is a special case of Kikuchi approximation.

Now, let us consider why this might be considered as a good approximation for
the m-projection of µ to the family of graphical models F(HΓ) with interaction hy-
pergraph HΓ. The desired m-projection minimizes the KL-divergence D(µ‖ν) over

12The author credits this interpretation of Kikuchi approximations to Martin Wainwright (based
on informal discussions).

13See also discussion and references in Yedidia [135].
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ν ∈ F(HΓ) and is the maximum-entropy distribution with marginal distributions
(µ(xΛ),Λ ∈ HΓ).

Again, there are some special cases where the Kikuchi approximation is equivalent
to m-projection. In particular, if the hypergraph HΓ is a hypertree then, by a similar
argument as given for tree-structured Bethe approximations, the marginal distribu-
tions of the Kikuchi approximation will exactly agree with the desired marginals and
the Kikuchi approximation is equivalent to m-projection. However, we would also
like to develop m-projection techniques for more general circumstances in which HΓ

is not a hypertree. Then, the Kikuchi approximation is, at best, an approximation for
the m-projection (the marginal distributions of the Kikuchi approximation need not
exactly agree with the desired marginal distributions, even when µ is a member of the
family F(HΓ)).

14 Hence, we would like to develop an iterative extension of Kikuchi
approximation which will allow us to find the desired m-projection. As a guide for
developing our iterative refinement procedure, we consider the following alternative
interpretation for how Kikuchi approximations are constructed.

Alternative Interpretation of Kikuchi Approximations. The Kikuchi
approximation may also be understood as a truncated Möbius inversion of µ(x) based
on the log-marginals of µ. To see this, consider the collection of functions defined by

UΛ(xΛ) = log µ(xΛ) (3.17)

for each Λ ⊆ Γ. Based on these functions, we may construct a potential specification
for µ with potentials defined by

VΛ(xΛ) =
∑
Λ′⊆Λ

(−1)|Λ\Λ′|UΛ′ (3.18)

for each Λ ⊆ Γ. By the Möbius inversion lemma, UΛ =
∑

Λ′⊆Λ VΛ′ . This shows that
VΛ = UΛ −

∑
Λ′�Λ VΛ′ which is analogous to the recursive definition of the Kikuchi

potentials φKikuchi given in (3.16). Also, UΓ = log µ =
∑

Λ⊆Γ VΛ so that we obtain
an exact representation for µ as a Gibbs distribution with potential specification
V = (VΛ(xΛ),Λ ⊆ Γ).

µ(xΓ) = exp
∑
Λ⊆Γ

V (xΛ) (3.19)

However, computing VΛ for every Λ ⊆ Γ is intractable and does not (in general) give
a sparse graphical model (i.e. higher-order potentials do not necessarily vanish). But
suppose that most of the variation in U(xΓ) = log µ(xΓ) is nevertheless captured by
the lower-order interactions in V . Then, we might consider approximation of µ by

14Although, in a sense, we might expect the marginals of the Kikuchi approximation to at least
approximately agree with the desired marginals. We suggest this because the Kikuchi approximation
is a fixed point of certain generalized versions of loopy belief propagation structured according to
the hypergraph HΓ. For instance, if we consider any embedded hypertree of HΓ, a subset of the
hyperedges which form a hypertree, and then run belief propagation on just this embedded hypertree,
then the pseudo-marginals produced by this inference are precisely the desired marginal distributions.
Then, insofar as such approximate inference methods are accurate, then the Kikuchi approximation
should provide a good approximation for the m-projection.
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truncation of the potential specification V and normalizing the resulting approxima-
tion for µ. This is the basic idea underlying Kikuchi approximations. Note also that
the Bethe approximation is a special case of Kikuchi approximation. To be precise,
the Bethe approximation based on graph GΓ is equivalent to the Kikuchi approxima-
tion based on hyperedges HΓ = EΓ ∪ {{γ}|γ ∈ Γ}. Hence, the Bethe approximation
may also be understood as a truncated Möbius inversion representation of µ.

We should also remark that the Kikuchi approximation may be specified in an
equivalent non-recursive form (Kappen and Wiegerinck [80]) expressed directly in
terms of the marginal distributions (µ(xΛ),Λ ∈ HΓ):

µKikuchi(xΛ) =
1

Z

∏
Λ∈HΓ

µcΛ(xΛ) (3.20)

=
1

Z
exp

{ ∑
Λ∈HΓ

cΛ log µ(xΛ)

}
(3.21)

The coefficients (cΛ,Λ ∈ HΓ) have integer values and may be computed recursively
as follows. If Λ is a maximal hyperedge (not a proper subset of another hyperedge),
then cΛ = 1. Otherwise, compute cΛ recursively so as to satisfy the condition∑

Λ⊇Λ′
cΛ = 1 (3.22)

for each (non-maximal) hyperedge Λ′ ∈ HΓ. That is, once cΛ is known for every
hyperedge Λ such that Λ � Λ′, we may compute cΛ′ by the formula:

cΛ′ = 1−
∑
Λ�Λ′

cΛ. (3.23)

This recursion then inductively determines all coefficients (cΛ,Λ ∈ HΓ) specifying the
Kikuchi approximation. Note that these coefficients are determined by the structure
of the hypergraph HΓ and may be precomputed independent of µ. For instance, in
the Bethe approximation, where HΓ = EΓ ∪ {{γ}|γ ∈ Γ}, we have c{γ,λ} = 1 for each
edge {γ, λ} ∈ EΓ and cγ = 1− deg γ for each site γ.15

Based on these considerations, we now develop a generalized form of Kikuchi
approximation which leads to an iterative refinement procedure for the computation
of m-projections.

Relative Kikuchi Approximation. We define the relative Kikuchi approximation
for a probability distribution µ(x) constructed from a probability distribution ν(x)
and an intersection complete hypergraph HΓ as follows. Given ν(x) and the marginal

15Recall that deg γ denotes the degree of vertex γ, the number of vertices adjacent to γ in
GΓ = adj HΓ.
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distributions (µ(xΛ),Λ ∈ HΓ), we construct the relative Kikuchi approximation by

ν̂(xΓ) =
1

Z
ν(x) exp

{ ∑
Λ∈HΓ

∆φ(xΓ)

}
(3.24)

with relative potentials

∆φ(xΛ) = log
µ(xΛ)

ν(xΛ)
−

∑
Λ′�Λ

∆φ(xΛ′). (3.25)

defined for each hyperedge Λ ⊂ HΓ and with normalization constant Z. The idea
here is that relative Kikuchi approximation is a procedure for updating (i.e. refining)
an available approximation ν with the intent of adjusting the marginals of the initial
approximation ν so as to better agree with the desired marginals as in µ.

Interpretation. This may also be understood as a truncated Möbius inversion
representation of µ but constructed relative to ν. To see this, consider the collection
of functions defined by

UΛ(xΛ) = log
µ(xΛ)

ν(xΛ)
(3.26)

for each Λ ⊆ Γ. Based on these functions, define a second collection of functions
given by

VΛ(xΛ) =
∑
Λ′⊆Λ

(−1)|Λ\Λ′|UΛ′(xΛ′) (3.27)

Then, by the Möbius inversion lemma, we obtain an exact representation for µ relative
to ν.

µ(xΓ) = ν(xΓ) exp
∑
Λ⊆Γ

VΛ(xΛ) (3.28)

However, this is intractable since we have defined relative potentials VΛ for every Λ ⊆
Γ. But let us conjecture that most of the variation in U(xΓ) = log µ(xγ)− log ν(xγ)
is captured by lower-order potentials of the collection V = (VΛ,Λ ⊆ Γ). Then, we
might consider approximation of µ by truncation of the potential specification V and
normalization of the resulting approximation for µ. This is the idea underlying the
proposed class of relative Kikuchi approximations.

The relative Kikuchi approximation can also be written in a non-recursive form
as

ν̂(xΓ) =
1

Z
ν(x) exp

{ ∑
Λ∈HΓ

cΛ log
µ(xΛ)

ν(xΛ)

}
(3.29)

where the coefficients cΛ are again determined by HΓ as described previously for the
Kikuchi approximation. It is then apparent that

ν̂(xΓ) ∝ ν(xΓ)× µKikuchi(xΓ)
νKikuchi(xΓ)

(3.30)
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which has the form of a structured IPF update. This may be viewed as “fusing”
local IPF updates (i.e. the factor arising in the update formula of the IPF modeling
procedure discussed in the previous section) according to the combination rule:

ν̂(xΓ) ∝ ν(xΓ)×
∏
Λ∈HΓ

(
µ(xΛ)

ν(xΛ)

)cΛ
(3.31)

This may be interpreted as first updating each maximal hyperedge Λ by the IPF
update µ(xΛ)/ν(xΛ). But then, whenever IPF updates overlap, having intersection
Λ′, we divide (or multiply) by the local IPF update µ(xΛ′)/ν(xΛ′) an appropriate
number of times cΛ′ so as to correct for any overcounted (undercounted) subfields.
Continuing this correction procedure until all hyperedges have been accounted for
then reconstructs the relative Kikuchi approximation.

Viewing this relative Kikuchi approximation ν̂ as refining ν to give an improved
approximation for µ, this suggests the following iterative refinement procedure which
is apparently closely related to iterative scaling techniques.

Iterative Refinement. Finally, we specify an iterative procedure to calculate the
m-projection of µ(xΓ) to the family of MRFs which respect the graph GΓ. Let
HΓ = (Γ,HΓ) be an intersection complete hypergraph such that (i) adj HΓ = GΓ and
(ii) C∗(GΓ) ⊂ HΓ. Condition (i) insures that the family F(HΓ) respects the graph
GΓ. Condition (ii) is necessary to insure that the family F(HΓ) contains all Gibbs
random fields which respect GΓ.

16 Calculate the coefficients (cΛ,Λ ∈ HΓ). Also,
perform recursive inference for the model µ(xΓ) computing the collection of marginal
distributions (µ(xΛ),Λ ∈ HΓ). Now, we would like to determine µ̂ ∈ F(HΓ) satisfying
the marginal constraints µ̂(xΛ) = µ(xΛ) for all Λ ∈ HΓ. Based on the idea of relative
Kikuchi approximation, we propose the following procedure for solving these marginal
constraints within the family F(HΓ).

Suppose that we have some initial guess ν̂(0) ∈ F(HΓ) for an approximation of µ.
This could be initialized in a variety of ways. For instance, we could set this to the
product of marginal distributions:

ν̂(0)(xΓ) =
∏
γ∈Γ
µ(xγ) (3.32)

More generally, we could initialize ν̂(0) to any Kikuchi approximation which respects
the graph GΓ. Also, when thinning exponential families, we could initialize ν̂

(0) by
setting some exponential parameters of µ to zero so as to respect the graph GΓ.

In any case, given this starting point ν̂(0), we then generate a sequence of relative
Kikuchi approximations where each approximation is constructed from the preceding

16However, if the desired m-projection is known to lie in a lower-order family (e.g. the family of
pairwise MRFs) then this latter condition could probably be relaxed. Yet, it may still be desirable to
keep these higher-order hyperedges in order to allow more accurate Kikuchi approximation possibly
improving the stability and convergence properties of the following procedure.
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approximation and attempts to provide an improved approximation for µ:

ν̂(k+1)(xΓ) =
1

Z(k)
ν̂(k) exp

{ ∑
Λ∈HΓ

cΛ log
µ(xΛ)

ν̂(k)(xΛ)

}
(3.33)

Each relative Kikuchi approximation is structured according to the hypergraph HΓ

and requires computation of the collection of marginal distributions (ν̂(k)(xΛ),Λ ∈
HΓ) of the preceding iterate. Since this iteration is seeded by ν̂

(0) ∈ F(HΓ) and
each relative Kikuchi update also factors with respect to HΓ, by induction, all later
iterates remain in this family and are hence Markov with respect to GΓ. We call this
iterative refinement procedure loopy iterative scaling (LIS).

Note the striking resemblance between our LIS approach and related iterative
scaling methods based on e-projections. Essentially, our approach is analogous to
iterative scaling but where we replace e-projections by relative Kikuchi approxima-
tions. The intent of relative Kikuchi approximations is the same as for e-projection
in the iterative scaling approach – to impose marginal constraints. Also, the Kikuchi
update formula for ν̂(k+1) actually has the same form as an e-projection imposing
marginal constraints, i.e. an exponential model based on the distribution ν̂(k) and
statistics t(k+1)(xΛ) = log µ(xΛ)− log ν̂(k)(xΛ) where the coefficients cΛ are interpreted
as exponential parameters. This might point the way to some further refinements of
our method. Finally, we remark on the possibility of employing a different hyper-
graph at each iteration of the refinement procedure. That is, rather than specifying
one hypergraph which both respects and covers the graph GΓ we might instead spec-
ify a collection of hypergraphs which individually respect and collectively cover the
graphGΓ. Then, by iterating over these hypergraphs and performing relative Kikuchi
approximations structured according to each hypergraph, we obtain a more general
update scheme which includes both the proposed LIS method and extant iterative
scaling methods. For instance, the IPF technique is recovered by selecting hyper-
graphs to correspond to individual cliques of GΓ. This also suggests further novel
possibilities such as performing relative Kikuchi updates based on embedded trees.
This, apparently, would correspond to the modeling analog of tree reparameterization
(Wainwright [129]). However, we focus on just the single-hypergraph LIS approach
in this thesis.

In closing, we specify an implementation of this LIS approach for the information
form of GMRFs:
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Loopy Iterative Scaling for GMRFs:

• Input. Graphical model ν = (h, J), hypergraph HΓ, coefficients (cΛ,Λ ∈ HΓ),
tolerance ε, prescribed moments η∗Λ = (x̂

∗
Λ, P

∗
Λ) for all Λ ∈ HΓ.

• Initialization. Let (ĥ∗Λ, Ĵ∗
Λ) = ((P

∗
Λ)

−1x̂∗Λ, (P
∗
Λ)

−1) for all Λ ∈ HΓ.

• Loop. Until convergence, do the following.
– Inference. Calculate ηΛ = (x̂Λ, PΛ) for all Λ ∈ HΓ. Let (ĥΛ, ĴΛ) =
(P−1

Λ x̂Λ, P
−1
Λ ).

– Test for convergence. Let dΛ = D(η∗Λ‖ηΛ) and d̂ = maxΛ dΛ. If d̂ < ε,
then terminate iterative scaling loop.

– Update. Set h← h+
∑

Λ∈HΓ
cΛ(ĥ

∗
Λ− ĥΛ) and J ← J+

∑
Λ∈HΓ

cΛ(Ĵ
∗
Λ− ĴΛ)

(zero pad local updates in taking the sum).

• Output. modified (h, J) giving e-projection of input model to m-flat subman-
ifold specified by prescribed moments (η∗Λ,Λ ∈ HΓ).

This loopy iterative scaling procedure may be used in place of IPF in the moment-
matching approach to m-projection. Experiments performed in Section 3.4 indicate
the utility of this method. In the next section, we develop our incremental model
thinning procedure where LIS may be used for the m-projection subroutine. We also
remark that some possible extensions of this m-projection method and also some
other promising alternatives are discussed as recommendations for further research in
Chapter 5.

3.3 Model Selection

In this section we develop our approach to model thinning. As in the previous section,
we are again given a graphical model µ which we wish to approximate by a more
compact yet faithful model ν. But now we are free to select which statistics of
the model µ are retained and which are neglected. Selection of the statistics tH(x)
corresponds to selection of an exponential family H containing ν. This may also
be posed as selection of the graphical structure of the model ν. We employ the
information criterion V (µ; ν) both to guide our selection ofH and to determine ν ∈ H.
Subject to ν ∈ H, minimization of V (µ; ν) reduces to the m-projection problem
addressed in the previous section. We now consider selection of the family H so as
to (approximately) minimize V (µ;H) ≡ minν∈H V (µ; ν).

3.3.1 Inductive Approach

We now consider an inductive approach for selection of the embedded family H ⊆ F .
This is a double-loop procedure where the outer-loop selects a sequence of nested
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exponential families and the inner-loop performs m-projection to each selected family
by iterative moment matching. We denote the sequence of m-projections produced
in the outer loop by µ̂(k) where k = 0, 1, 2, . . . is a counter incremented in the outer
loop. For iteration k of the outer loop, the inner loop generates a sequence ν̂(k,i) of
models converging towards µ̂(k+1).

This procedure is initialized by (H0, µ̂
(0)) ≡ (F , µ), where µ ∈ F is the model we

wish to thin, and then generates a sequence (Hk, µ̂(k)) of nested exponential families
H0 ⊃ H1 ⊃ . . . ⊃ Hk and associated m-projections µ̂(k) ≡ argminν∈Hk

D(µ‖ν).
The outer-loop attempts to select the next embedded exponential family Hk+1 which
comes nearest to the preceding m-projection µ̂(k). The inner-loop then calculates
the m-projection of µ̂(k) to Hk+1 employing previously discussed iterative moment-
matching procedures. For instance, the IPF method illustrated previously in Figure
3-1 could be used. However, we prefer our LIS approach which provides an accelerated
approach to moment matching. By Proposition 16, this µ̂(k) is also the m-projection of
µ to Hk. The advantage of this inductive approach is that the iterate µ̂(k) is available
to help select the next embedded family Hk+1. This thinning procedure continues
until we can no longer identify an embedded family Hk+1 such that V (µ̂(k);Hk+1) < 0
so that the cumulative information criterion V (µ; µ̂k+1) is decreased by m-projection
to Hk+1. This is equivalent to requiring that D(µ̂(k)||µ̂(k+1)) = h[µ̂(k+1))] − h[µ̂(k)] <
δ(K(Hk) − K(Hk+1)), or that the information loss per removed model parameter
does not exceed the threshold δ. This may be seen as a greedy suboptimal procedure
for selection of H to (approximately) minimize V (µ;H). This general approach is
outlined below.

Inductive Model Thinning:

• Input. Model µ ∈ F , information threshold δ, moment-matching tolerance ε
(much smaller than δ).

• Outer Loop. Set k = 0, (µ̂(0),H0) = (µ,F). Do the following until termination
is indicated.

– Select Embedded Family. Select Hk+1 ⊆ Hk so as to (at least approxi-
mately) minimize D(µ̂(k)‖Hk+1). If D(µ̂(k)‖Hk+1)/(K(Hk)−K(Hk+1)) >
δ then terminate thinning. Else, calculate moment coordinates η∗k+1 of
µ̂(k) in Hk+1.

– Inner Loop. Initialize guess ν(k,0) ∈ Hk+1 and then perform itera-
tive moment-matching within family Hk+1 generating sequence ν̂(k,i) ap-
proaching µ̂(k+1). Terminate moment-matching, setting µ̂(k+1) = ν̂(k,i),
when marginal distributions of ν̂(k,i) agree with those specified by η∗k+1 to
within tolerance ε.

– Repeat. Set k ← k + 1 and continue thinning.

• Output. Thinned model µ̂(k) ∈ Hk.

This approach to model thinning is essentially the inverse of the model building
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procedures of Pietra et al [106] and of Bach and Jordan [6]. While those two ap-
proaches employ e-projections to introduce additional statistics into the model (max-
imizing the information gain), we instead take the reverse approach of inductively
deleting statistics by m-projections (minimizing the information loss).

Graphical Formulation. To implement this approach for exponential family graph-
ical models, we consider selection of embedded exponential familiesHk+1 ⊆ Hk within
the framework of thinning the associated adjacency graph. LetH

(k)
Γ denote the hyper-

graph describing the interaction structure of the family Hk. The associated adjacency
graph G

(k)
Γ = adj H

(k)
Γ gives the Markov structure of the family Hk. We consider em-

bedded exponential families specified by deletion of hyperedges from this interaction
hypergraph. In the case of families where all interactions are pairwise (such as for
GMRFs) this is equivalent to pruning edges from the adjacency graph thus imposing
further Markov restrictions upon the family. We will focus on this latter viewpoint for
GMRFs, but recommend the former strategy (pruning hyperedges) more generally.

Hence, we specify an embedded graphG
(k+1)
Γ = (Γ, E (k+1)Γ ) such that E (k+1)Γ ⊆ E (k)Γ .

This is viewed as pruning or cutting the edges K = E (k)Γ \ E (k+1)Γ . This specifies an
embedded exponential family Hk+1 ⊆ Hk based on those statistics of family Hk which
only couple sites which are adjacent in G

(k+1)
Γ (neglecting any statistics associated

with pruned edges). We let θK denote the exponential parameters scaling those ne-
glected statistics. The embedded family is then specified as an e-flat submanifold
Hk+1 = {ν ∈ Hk|θK(ν) = 0}. Equivalently, this is the submanifold of Hk which is
Markov with respect to G

(k+1)
Γ . For the information representation (h, J) of GMRFs,

this corresponds to setting to zero those off-diagonal entries of the interaction matrix
J corresponding to pruned edges. That is, we set Jγ,λ = 0 for all {γ, λ} ∈ K. Under
this edge-pruning approach to model thinning, we would like to predict which edges
of the graphical model µ̂(k) may be pruned while keeping D(µ̂(k)‖µ̂(k+1)) as small as
possible.

3.3.2 Lower-Bound Estimate of Information Loss

Here we develop a lower bound estimate of the information loss due to pruning one
edge from a graphical model by m-projection. Mutual information, conditional mu-
tual information and conditional KL-divergence play a role here and are now defined.

Definition 7 The mutual information between two random variables x and y with
probability distribution p(x, y) is defined as

Ip(x; y) = Ep

{
log

p(x, y)

p(x)p(y)

}
(3.34)

where p(x) and p(y) are marginal distributions of p(x, y).

This is just the KL-divergence D(p(x, y)‖q(x, y)) of the factored approximation
q(x, y) = p(x)p(y) relative to the true p(x, y). This indicates the following variational
interpretation of mutual information.
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Lemma 1 (Mutual Information) Let p(x, y) be the probability distribution for ran-
dom variables x and y. Let Qx⊥y be the family of all factored probability distributions
with respect to x and y.

Qx⊥y = {q(x, y) = q(x)q(y)} (3.35)

Then, the minimum KL-divergence D(p‖q) over q ∈ Qx⊥y is the mutual information
Ip(x; y).

Ip(x; y) = min
q∈Qx⊥y

D(p‖q) (3.36)

Furthermore, the minimum is uniquely obtained by q(x, y) = p(x)p(y) where p(x) and
p(y) are the marginals of p.

Proof. A simple computation, for q ∈ Qx⊥y, decomposes the KL-divergence as:

D(p‖q) = Ep

{
log

p(x, y)

q(x, y)

}
(3.37)

= Ep

{
log

p(x, y)

q(x)q(y)

}
(3.38)

= Ep

{
log

p(x, y)

p(x)p(y)
+ log

p(x)p(y)

q(x)q(y)

}
(3.39)

= Ep

{
log

p(x, y)

p(x)p(y)
+ log

p(x)

q(x)
+ log

p(y)

q(y)

}
(3.40)

= Ip(x; y) +D(p(x)‖q(x)) +D(p(y)‖q(y)) (3.41)

≥ Ip(x; y) (3.42)

The inequality follows from the non-negativity of KL-divergence. Equality occurs if
and only if both p(x) = q(x) and p(y) = q(y) so that q(x, y) = p(x)p(y). �

The family Qx⊥y corresponds to the hypothesis that x and y are independent.
This suggests that mutual information might play a useful role in characterizing the
KL-divergence induced under m-projections imposing Markov structure (conditional
independencies). This idea is refined by considering the following averaged version of
mutual information.

Definition 8 The conditional mutual information (CMI) Ip(x; y|z) between x and y
given z under probability distribution p is defined as

Ip(x; y|z) = Ep
{
log

p(x, y|z)
p(x|z)p(y|z)

}
(3.43)

where p(x, y|z), p(x|z) and p(y|z) are conditional distributions of p(x, y, z).

This should be distinguished from the specific conditional mutual information as
a function of z (the mutual information under the conditional distribution p(x, y|z)
for a specific value of z). If we denote this latter quantity by I(z) = Ip(x; y|z) then
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Ip(x; y|z) =
∫
p(z)I(z)dz. Note that the specific CMI is a KL-divergence but CMI is

not. However, CMI is related to the following averaged version of KL-divergence:

Definition 9 The conditional Kullback-Leibler divergence (CKL) is defined as

D(p(x; y|z)‖q(x; y|z)) = Ep
{
log

p(x, y|z)
q(x, y|z)

}
(3.44)

where p(x, y|z) and q(x, y|z) are conditional probability distributions and the expecta-
tion is with respect to p(x, y, z) = p(x, y|z)p(z).
This should be distinguished from the specific CKL-divergence,

D(p(x, y|z = z)‖q(x, y|z = z)) = Ep
{
log

p(x, y|z)
p(x|z)p(y|z)

}
.

This is the KL-divergence between p(x, y|z) and q(x, y|z) evaluated as a function of z.
Denoting this function by d(z) = D(p(x, y|z)‖q(x, y|z)), we haveD(p(x, y|z)‖q(x, y|z)) =∫
p(z)d(z)dz.
CMI is just the CKL-divergence,

Ip(x; y|z) = D(p(x; y|z)‖q(x; y|z)) (3.45)

where q(x, y|z) = p(x|z)p(y|z). We now give the following lemma extending the
variational interpretation of mutual information:

Lemma 2 (Conditional Mutual Information) Let p(x, y, z) be the probability dis-
tribution for random variables x, y and z. Let Qx⊥y|z be the family of probability
distributions on (x, y, z) defined as:

Qx⊥y|z = {q(x, y, z) = q(x|z)q(y|z)q(z)} (3.46)

Then, the minimum KL-divergence D(p‖q) over q ∈ Qx⊥y|z is the conditional mutual
information Ip(x; y|z).

Ip(x; y|z) = min
q∈Qx⊥y|z

D(p‖q) (3.47)

Furthermore, the minimum is uniquely obtained by q(x, y, z) = p(x|z)p(y|z)p(z).
Proof. We decompose the KL-divergence D(p‖q) for q ∈ Qx⊥y|z as:

D(p‖q) = Ep

{
log

p(x, y, z)

q(x, y, z)

}
(3.48)

= Ep

{
log

p(x, y|z)p(z)
q(x|z)q(y|z)q(z)

}
(3.49)

= Ep

{
log

p(x, y|z)
p(x|z)p(y|z) + log

p(x|z)
q(x|z) + log

p(y|z)
q(y|z) + log

p(z)

q(z)

}
(3.50)

= Ip(x; y|z) +D(p(x|z)‖q(x|z))
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+D(p(y|z)‖q(y|z)) +D(p(z)‖q(z)) (3.51)

≥ Ip(x; y|z) (3.52)

The inequality follows from non-negativity of KL and CKL (which is an expected
KL-divergence). Equality occurs if and only if q(x|z) = p(x|z), q(y|z) = p(y|z) and
q(z) = p(z) such that q(x, y, z) = p(x|z)p(y|z)p(z).�

The family Qx⊥y|z corresponds to the hypothesis that x and y are conditionally
independent given z. The KL-divergence induced by imposing this conditional in-
dependency upon an arbitrary model p (by m-projection) is the conditional mutual
information between x and y assuming z under model p. This is closely related to
our problem of pruning an edge from a graphical model by m-projection. We show
this by the following proposition.

Proposition 17 (Lower-bound for Edge-Pruning) Let F be an exponential fam-
ily of graphical models which are Markov with respect to GΓ = (Γ, EΓ). Let H\{γ,λ} ⊆
F be the embedded exponential family which is Markov w.r.t. the embedded graph
G′

Γ = (Γ, E ′
Γ = EΓ \ {γ, λ}) with edge {γ, λ} ∈ EΓ removed. Then, for µ ∈ F , the

minimum KL-divergence D(µ‖ν) over ν ∈ H\{γ,λ} is bounded below by the conditional
mutual information between states xγ and xλ given the state of the boundary x∂{γ,λ}.

Iµ(xγ; xλ|x∂{γ,λ}) ≤ min
ν∈H\{γ,λ}

D(µ‖ν) (3.53)

Furthermore, the lower bound is met with equality when Λ = {γ, λ} ∪ ∂{γ, λ} is a
clique in GΓ.

Proof. Let H = H\{γ,λ} and Q = Qxγ⊥xλ|x∂{γ,λ} . The family H imposes a set
of conditional independencies (one for each edge not contained in EΓ) and, hence,
corresponds to a restriction of Q imposing just the single conditional independency
associated with the pruned edge. Then,

H ⊆ Q ⇒ min
ν∈H

D(µ‖ν) ≥ min
ν∈Q

D(µ‖ν) (3.54)

By Lemma 2, the right hand side equals Iµ(xγ ; xλ|x∂{γ,λ}) which proves (3.53). When
Λ is a clique, H doesn’t impose any stronger Markov restriction than Q such that
equality occurs. �

In general, computation of the CMI I(xγ , xλ|x∂{γ,λ}) requires inference of the
marginal distribution of the neighborhood Λ. Provided the model µ has low tree-
width, this should provide a tractable approach for estimating the importance of
each edge of µ.

For GMRFs, this computation is greatly simplified since the specific CMI I(x; y|z =
z) actually does not vary with z so that the (averaged) CMI may be evaluated as
I(x; y|z = 0). Recalling that the partial potential specification φΛ = (hΛ, JΛ) of the
information representation gives the conditional distribution p(xΛ|0) we see that the
CMI between xγ and xλ given x∂{γ,λ} = 0 is determined by the local specification
φ{γ,λ} = (hγ,λ, Jγ,λ).
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Let Λ = {γ, λ} and set (x̂Λ|0, PΛ|0) ≡ (J−1
Λ hΛ, J

−1
Λ ). This gives the conditional dis-

tribution assuming zero boundary conditions (xΛ|x∂Λ = 0) ∼ N (x̂Λ|0, PΛ|0). Partition-
ing PΛ|0 as ((PΛ|0)γ,γ(PΛ|0)γ,λ; (PΛ|0)λ,γ(PΛ|0)λ,λ), the mutual information I(xγ;xλ|0)
associated with this conditional distribution is computed from the conditional covari-
ance PΛ|0 (see Cover and Thomas [31]) as

I(xγ ; xλ|0) = −1
2
log

(
1− det (PΛ|0)γ,λ√

det (PΛ|0)γ,γ det (PΛ|0)λ,λ

)
(3.55)

This may be computed from the partial canonical correlations {ρi} between xγ and xλ
under the conditional covariance PΛ|0. These are given by the singular values of the
matrix (PΛ|0)

−1/2
γ,γ (PΛ|0)γ,λ(PΛ|0)

−1/2
λ,λ . The mutual information may then be computed

by

I(xγ ; xλ|0) = −1
2

∑
i

log(1− ρ2i ) (3.56)

Also, as shown in Sudderth [125], these coefficients may be computed directly from

JΛ (omitting the inverse) as the singular values of the matrix −J−1/2
γ,γ Jγ,λJ

−1/2
λ,λ .

In practice we find that this lower-bound estimate given by CMI comes quite close
to the actual KL-divergence incurred by m-projection even when the neighborhood
of the pruned edge is not complete (which would force equality). We might expect
this since µ ∈ F already satisfies all other Markov restrictions imposed by H such
that the m-projection to H differs little from the m-projection to Q imposing just
xγ ⊥ xλ|x∂{γ,λ}. Furthermore, when pruning multiple “weak” edges (where the CMI
is small for each edge), we find that the sum of CMI values associated to each edge
gives a good estimate of the KL-divergence incurred by pruning all edges via a single
m-projection. We expect this by the Pythagorean decomposition and by conjecturing
that pruning weak edges should not substantially modify the parameters of other
edges such that the other CMI values remain reasonably stable under the incremental
m-projection approach.

Based on these observations we propose the following approach for pruning edges
from a graphical model.

3.3.3 Batch Edge-Pruning Procedure

We now specify a “batch” algorithm for pruning edges from a graphical model.
This is an incremental thinning procedure implemented by a sequence of nested m-
projections. This generates a sequence of graphical models µ̂(k) with progressively
thinned interaction graphs G

(k)
Γ = (Γ, E (k)Γ ).

At step k, the CMI values associated with each edge E ∈ E (k)Γ of the graphi-
cal model are evaluated to estimate the KL-divergence which would be incurred by
pruning just that edge from the model. We estimate the relative importance of each
edge by δE = IE/KE, the CMI IE normalized by KE, the number of model param-
eters/statistics removed by pruning edge E. The N weakest edges K = {Ek}Nk=1
(having the lowest δE values) are then selected for removal where N = |K| is made
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as large as possible while still satisfying

δK ≡
∑
E∈K IE∑
E∈KKE

<

(
1 + log |K|

|K|
)
δ (3.57)

Note that
∑
IE estimates the KL-divergence incurred by pruning all edges simultane-

ously and
∑
KE is the total order reduction. Hence, δK estimates the KL-divergence

per removed model parameter which is compared to the precision parameter δ of
our information criterion V (µ̂(k); µ̂(k+1)). In making this comparison we scale δ by
(1+ logN)/N in order to force the batch pruning procedure to be more conservative
when pruning many edges at once.17 This set of edges is then pruned from the graph-
ical model by m-projection of µ̂(k) to the family H(k+1) ⊆ F which is Markov with
respect to G

(k+1)
Γ = (Γ, E (k+1)Γ ) where E (k+1)Γ = E (k)Γ \ K. This procedure terminates

when δE > δ for all remaining edges.
We find that this leads to a procedure which, at first, prunes large batches of very

weak edges (where δE is much smaller than the precision parameter δ). The size of
the “batches” selected on later iterations rapidly decreases until only near-threshold
edges remain. These are then pruned one at a time by always selecting the next
weakest edge. This allows the effect of pruning weaker edges (by m-projection) to
be observed before deciding whether stronger edges (with δE near δ) are negligible
and should also be removed. Note that each m-projection adjusts the remaining
parameters so that the CMI values IE and apparent strengths δE of remaining edges
are also adjusted. Hence, some edges with δE initially less than δ might actually be
retained if earlier m-projections reinforce those interactions. Likewise, some edges
with δE initially greater than δ might eventually be pruned if earlier m-projections
weaken those interactions. We outline this thinning procedure below.

17This strategy for selecting the batch size, arrived at by trial and error, is somewhat arbitrary
but seems to work well over a variety of test cases.
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Batch Edge Pruning:

• Input. graphical model µ, family F containing µ, interaction graphGΓ, thresh-
old δ, tolerance ε.

• Induction Loop. Set k = 0, H(0) = F , µ̂(0) = µ and G
(0)
Γ = GΓ. Do the

following until termination is indicated in selection step:

– Evaluate Lower-Bounds. For each edge E = {γ, λ} ∈ E (k)Γ , calculate
IE = Iµ̂(k)(xγ ; xλ; x∂E) (in general this requires inference of µ̂

(k), but not
for GMRFs).

– Select Weak Edges. Select maximal subset K ⊆ E (k)Γ s.t. δK =∑
IE/

∑
KE < δ(1 + log |K|)/|K|. If |K| = 0, terminate induction loop.

– Thin Interaction Graph. Set E (k+1)Γ = E (k)Γ \ K and G
(k+1)
Γ = (Γ, E (k+1)Γ ).

Let H(k+1) ⊆ H(k) denote subfamily Markov w.r.t. G
(k+1)
Γ .

– M-Project. Set µ̂(k+1) = argminν∈H(k+1) D(µ̂(k)‖ν) evaluated by loopy
iterative scaling version of moment-matching procedure with convergence
tolerance ε.

– Iterate. Set k ← k + 1 and repeat induction loop.

• Output. Thinned graphical model µ̂(k) ∈ H(k) Markov w.r.t. G
(k)
Γ .

3.4 Simulations

In this section we perform simulations to demonstrate previously discussed methods
for moment matching (Section 3.2) and model thinning (Section 3.3) in Gauss-Markov
random fields. We first describe four Gaussian test cases which are the basis for sub-
sequent experiments. Then we demonstrate the moment matching approach (Section
3.2) for m-projection to a specified family of thinned GMRFs (specified by a thinned
interaction graph) and compare the performance of the standard IPF method (Sec-
tion 3.2.1) to our LIS method (Section 3.2.2). Next, we look at the more general
model thinning approach (Section 3.3) where we also select the graphical structure
of the thinned model so as to (approximately) minimize our information criterion
(Section 3.1) for a specified value of the precision parameter δ. Finally, we introduce
the idea of cavity modeling (to be developed further in Chapter 4) and show how
our modeling thinning technique, in combination with variable elimination, provides
a robust approach to cavity modeling.

3.4.1 Test Cases

We now describe our test cases. To perform controlled model thinning experiments,
we construct examples which are “full” Gaussian distributions (where the information
matrix J = P−1 has many non-zero entries) yet are nevertheless near a lower-order
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family of GMRFs (such that many entries of the information matrix are near zero).
Then, it is natural to consider approximation of the given Gaussian distribution by
a lower-order GMRF (by forcing selected entries of the information matrix to zero).

Towards this end, we first posit a generative model which, in fact, does have a
sparse information matrix. Then we corrupt this model to produce our test case
as follows. First, we perform Monte-Carlo simulation to generate a collection of in-
dependent samples of this generative model. That is, we simulate N independent,
identically distributed samples x1, . . . , xN ∼ g where g is the generative model. Cal-
culation of the sample mean and covariance

x̃ =
1

N

N∑
k=1

xk (3.58)

P̃ =
1

N

N∑
k=1

(xk − x̃)(xk − x̃)′ (3.59)

then provides our test model x ∼ N (x̃, P̃ ) which we attempt to thin in later experi-
ments.18 This test model may be regarded as a noisy version of the generative model.
For large sample size N , the test model will be near the generative model with high
probability. Yet, due to the finite sample size, the test model will tend to exhibit
spurious interactions and will not respect the Markov structure of the underlying
generative model. That is, the information matrix of the test model P̃−1 will not
be sparse but many elements of this matrix will be near zero. This test model then
provides a natural candidate for model thinning19.

In each of the following four test cases, we specify a generative model which is a
zero-mean GMRF having some desired interaction graph with uniform interactions on
all edges of the graph. We only consider GMRFs with scalar-valued states. For each
generative model, a corresponding test model has been recorded based on N = 1000
samples of the generative model. Illustrations of each test model are provided. To
indicate the relative strength of interactions in the test model we display the (fully
connected) interaction graph but where the apparent intensity of each edge {γ, λ} is
set according to the partial correlation coefficient20

ργ,λ ≡ cov(xγ , xλ|x∂{γ,λ})√
var(xγ|x∂{γ,λ})var(xλ|x∂{γ,λ})

(3.60)

18In fact, this test model is the maximum-likelihood distribution in the full Gaussian family (not
imposing any conditional independencies) based on the randomly generated samples x1, . . . , xN .
This may also be regarded as the m-projection of the empirical distribution p∗(x) = 1

N

∑
k δ(x−xk)

to the full Gaussian family.
19In this scenario, model thinning by m-projection to lower-order families of GMRFs also corre-

sponds to maximum-likelihood estimation within the lower-order family.
20The partial correlation coefficient is also related to the conditional mutual information Iγ,λ ≡

I(xγ ; xλ|x∂{γ,λ}) (3.43,3.56). For a GMRF with scalar-valued states at each site, the conditional
mutual information is Iγ,λ = − 1

2 log(1−ρ2
γ,λ) so that the square of the partial correlation coefficient

is given by ρ2
γ,λ = 1− exp{−2Iγ,λ}.
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= − Jγ,λ√
Jγ,γJλ,λ

(3.61)

which has absolute value less than one. We scale the apparent intensity of each edge
in proportion to

√|ργ,λ| such that weak interactions, with ργ,λ near zero, appear to
fade into the background (the square-root is introduced to adjust the contrast of this
edge-rendering approach such that weaker edges are still apparent).

Test Case 1. This test case was generated by a GMRF with 16 sites arranged on a
circle, as shown in Figure 3-2 (top left), with interactions between nearest neighbors
on the circle. That is, each site is coupled to two other sites, one to either side
of that site. The information matrix of the generative model has ones along the
main diagonal, −0.4 along the diagonals corresponding to adjacent sites and zeros
elsewhere. The (non-zero) partial correlation coefficients in the generative model are
ρ = 0.4. A randomly generated test case based on this generative model has been
recorded and is shown in Figure 3-2. Embedded among spurious interactions, the
Markov structure of the underlying generative model is still apparent (top right).
The sample mean and covariance specifying the test model are also shown (bottom
left and bottom right).

Test Case 2. This test case was also generated by a GMRF with 16 sites arranged
on a circle but where we now let each site interact with four neighbors, two to either
side of the site as shown in Figure 3-3 (top left). The information matrix of the gener-
ative model has ones along the main diagonal, −0.2 at those locations corresponding
to interactions, and zeros elsewhere. The (non-zero) partial correlation coefficients
in the generative model are ρ = 0.2. The interactions, mean and covariance of the
randomly generated test model are shown in Figure 3-3. Note that, in this case it
is more difficult to pick out the true Markov structure of the underlying generative
model.

Test Case 3. This test case was generated by a GMRF with 25 sites arranged on a
5× 5 2D grid, as shown in Figure 3-4 (top left), with horizontal and vertical interac-
tions between nearest neighbors in the grid. The information matrix of the generative
model has ones along the main diagonal, −0.2 at those locations corresponding to in-
teractions, and zeros elsewhere. The (non-zero) partial correlation coefficients in the
generative model are ρ = 0.2. The interactions, mean and covariance of the randomly
generated test model are also shown in Figure 3-4.

Test Case 4. This test case was also generated by a 5 × 5 GMRF but where, in
addition to horizontal and vertical interactions, we also have diagonal interactions
as shown in Figure 3-5 (top left). The information matrix matrix has ones along
the main diagonal, −0.15 at those locations corresponding to interactions, and zeros
elsewhere. The (non-zero) partial correlation coefficients in the generative model are
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Figure 3-2: Test Case 1: the interaction graph of the underlying generative model (top
left), the (fully-connected) interaction graph of the sample-averaged test model (top
right), the sample means (bottom left), and the sample covariance (bottom right).
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Figure 3-3: Test Case 2: the interaction graph of the underlying generative model (top
left), the (fully-connected) interaction graph of the sample-averaged test model (top
right), the sample means (bottom left), and the sample covariance (bottom right).
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Figure 3-4: Test Case 3: the interaction graph of the underlying generative model (top
left), the (fully-connected) interaction graph of the sample-averaged test model (top
right), the sample means (bottom left), and the sample covariance (bottom right).
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Figure 3-5: Test Case 4: the interaction graph of the underlying generative model (top
left), the (fully-connected) interaction graph of the sample-averaged test model (top
right), the sample means (bottom left), and the sample covariance (bottom right).
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ρ = 0.15. The interactions, mean and covariance of the randomly generated test
model are shown in Figure 3-5.

Note that, due to sampling noise, all test models have randomly varying means
and non-stationary covariance structure.

3.4.2 Moment Matching Experiments

We now demonstrate the moment-matching approach to m-projection and compare
the performance of our LIS moment-matching procedure to that of the standard
IPF moment-matching procedure.21 In all four of our test cases, a natural problem
to consider is m-projection of the given test model to the family of GMRFs which
respect the interaction graph of the underlying generative distribution.

In Section 3.2.1 we considered how m-projection to an exponential family may be
posed as moment matching and gave a procedure for m-projection to families of GM-
RFs employing the IPF moment-matching technique. Recall that in IPF we match
moments by iterating over the cliques of the thinned graphical model updating local
clique parameters so as to match moments on that clique. While only a local subset
of parameters are updated at each iteration, a global inference calculation is neverthe-
less required in order to calculate this update. In Section 3.2.2 we presented our LIS
moment matching approach, a more aggressive alternative to IPF. This approach also
performs a global inference calculation, but then updates all parameters simultane-
ously at each iteration. Essentially, this is accomplished by summing the IPF updates.
But when cliques overlap we “correct” for this by subtracting off (or adding) the ap-
propriately scaled IPF update on the intersection such that each clique is “counted”
just once. However, with our more aggressive approach, we can no longer formally
guarantee convergence of the method and some empirical investigation is warranted.
Also, this allows comparison to the standard IPF method.

We now show the result of applying both methods, IPF and our LIS method,
to perform the indicated m-projection in each of our four test cases. In the IPF
approach, we iterate over just the maximal cliques of the interaction graph. In Test
Case 1 and 3, these are just the edges of the graph. In Test Case 2 and 4, each
maximal clique contains 3 sites. In the LIS approach, we construct our updates with
respect to maximal cliques but also must consider intersections of maximal cliques,
intersections of intersections and so forth. Hence, in all of our examples, this means
that the LIS approach calculates IPF updates for all cliques of the graph (not just the
maximal cliques) and fuses these updates in the manner described in Section 3.2.2.

In both approaches, we measure the discrepancy between the current moments
(of the graphical model being adjusted) and the desired values of these moments
(taken from the test model) as follows. For each maximal clique Λ, we calculate the
(normalized) marginal KL-divergence dΛ = D(p∗(xΛ)‖p(xΛ))/KΛ where KΛ is the
number of model parameters associated with clique Λ, p(xΛ) is the current marginal

21We initially intended to also compare with the GIS technique, but actually found that conver-
gence of IPF was more rapid than in GIS in all four of our test cases. Hence, only IPF is shown
here. We have not implemented the IIS technique but should like to also make this comparison in
the future.
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Figure 3-6: Plots showing convergence of iterative moment matching procedures.
Both standard IPF (iterative proportional fitting) and our LIS (loopy iterative scaling)
are shown. LIS is based on either the Bethe approach (Test Case 1 and 3) or the
Kikuchi approach (Test Case 2 and 4).

distribution of the thinned model and p∗(xΛ) is the marginal distribution of the test
model. We then take d̂ = maxΛ dΛ as our measure of discrepancy. In the IPF
approach, the clique with the largest dΛ value is updated at each iteration. In both
approaches, moment matching continues until all dΛ values are less than a specified
tolerance22 ε = 10−28. In Figure 3-1 we show the convergence of both methods in
all four test cases by plotting the maximum (normalized) marginal KL-divergence d̂
after each iteration of either IPF or LIS.

Note that, in all four test cases, the LIS method not only converges, but converges
much more quickly (requiring fewer iterations) than the IPF method. In fact, roughly
speaking, one iteration of LIS appears to give a comparable error reduction as one

22This matches moments nearly to machine precision. In practice, such a small tolerance is
probably of no benefit. Larger tolerances of 10−6 − 10−12 would probably suffice.
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entire pass of iterative proportional fitting (by a “pass” we mean however many
iterations of IPF that are required to visit each maximal clique). Yet the computation
per iteration of both methods is comparable23. We also note that the convergence of
LIS appears to be linear in our semi-log plots, so that the maximum marginal KL-
divergence vanishes exponentially. The rate at which errors dissipate depends upon
the example.

To explain the excellent performance of LIS, we suggest the following interpreta-
tion. In Test Case 1, we note that the interaction graph has the form of a single “long
loop” such that the “loopy” character of this model is perhaps negligible. Hence,
performing one iteration of loopy belief propagation, which is exact after only one
iteration in non-loopy graphs (trees and chains), is almost exact for such long loops
and converges very quickly in this case. A similar interpretation holds for Test Case
2. In this example, there are actually many shorter loops which presumably are not
negligible. However, by clustering maximal cliques in the Kikuchi approach, these
shorter loops are then embedded within those clusters where LIS computes exact IPF
updates. The only “loopiness” not explicitly captured in this computation is again
the global “long loop” structure of the interaction graph. Hence, the Kikuchi LIS
updates are very nearly exact and again give rapid convergence. We are surprised,
however, to find that LIS still seems to do quite well even in Test Case 3 and 4.24

Since these examples both have many shorter loops which are not embedded in max-
imal cliques, it is less clear that we should expect this good performance. At this
time, we cannot adequetly explain the good performance of LIS in such cases and
think that further analysis is warranted.

We remark that, in all the experiments we have performed thus far (in addition to
the examples given here), we have found that, so long as LIS is performed with respect
to the maximal cliques (as in these experiments), the LIS approach appears to be
stable and converges quickly. This is the case even when the approach is seeded with
the fully factored approximation where all interactions are initially neglected. It is also
possible to perform the edge-based Bethe approach even when the graphical model has
higher-order cliques than edges (such as in Test Case 2 and 4). However, we cannot
recommend this latter approach as we find that convergence is typically slower and
sometimes, when there exist strongly-coupled higher-order cliques, the method may
actually become unstable. Hence, we recommend that LIS always be performed with
respect to maximal cliques (although weakly-coupled maximal cliques could perhaps
be excluded without ill effect). This, however, limits the applicability of the method to
graphical models where the maximal cliques are small. Yet, this is not really so great
a restriction as these are precisely the types of graphical models we wish to consider
in the context of model thinning. Besides, the requisite moment calculation already
restricts the class of tractable models to those having thin interaction graphs (where
the interaction graph can be triangulated while keeping maximal cliques small). In
these cases at least, LIS appears to provide a tractable and reliable approach to
moment matching.

23The computation per iteration in LIS is roughly twice that of IPF in these test cases.
24Although, the rate of convergence is somewhat slower in Test Case 3.
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Figure 3-7: Model thinning in Test Case 1. Starting from the fully-connected test
model (shown at top-right in Figure 3-2), our batch edge-pruning procedure thins
the model in two steps. The first m-projection (left) prunes the majority of weak
interactions in the model, the second m-projection (right) prunes all but the “true”
interactions present in the generative model (top-left Figure 3-2). Further edge-
pruning m-projections with information loss less than δ are not possible.

3.4.3 Model Thinning Experiments

We now turn our attention to the more general model thinning approach where we
adaptively select the graphical structure of the thinned model (rather than presuppos-
ing some interaction graph as we did in the preceding moment matching experiments).

In these experiments, we first convert all four test models into the information
form (h, J) = (P̃−1x̃, P̃−1). We then perform the model thinning procedure, described
in Section 3.3, to incrementally thin this (initially fully connected) graphical model
by a series of m-projections to a sequence of nested families of GMRFs. Each m-
projection is performed using the LIS moment-matching technique (but IPF could be
used instead). Lower-order families of GMRFs are specified by selecting a set of edges,
corresponding to weak interactions, to prune from the graphical model. Deleting
these edges from the graphical model by m-projection corresponds to releasing a set
of moment constraints and maximizing entropy subject to a reduced set of moment
constraints. This m-projection is actually performed by moment matching within
the lower-order family of GMRFs which are Markov with respect to the thinned
interaction graph. This moment matching procedure is seeded simply by setting to
zero those entries of the information matrix corresponding to pruned edges. This
however, perturbs the remaining moments of the model which are then enforced by
iterative moment matching.

We demonstrate this model thinning approach in our four test cases by displaying
the interaction graphs of each m-projection to a lower order family. Since edges are
selected for pruning based on the conditional mutual information, Iγ,λ = −1

2
log(1−

ρ2γ,λ), we again indicate the strength of interaction by rendering edges with apparent
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Figure 3-8: Model thinning in Test Case 2. Starting from the fully-connected test
model (top-right in Figure 3-3), our batch edge-pruning procedure again thins the
model in two steps. The first m-projection prunes the majority of weak interactions
in the model, the second m-projection prunes all but the “true” interactions present
in the generative model (top-left Figure 3-3).

intensity proportional to
√|ργ,λ|. The sequence of thinned models (m-projections) are

shown in Figures 3-7, 3-8, 3-9, and 3-10. Thinning in all four test cases is performed
for precision parameter δ = 0.05 and moment matching tolerance ε = 10−10. Also
shown, for each m-projection, is the KL-divergence D(µ‖µ̂(k)) of the thinned model
µ̂(k) relative to the original test model µ (also shown, in parentheses, is the KL-
divergence D(g‖µ̂(k)) of the thinned model relative to the generative model).

Note that, in three out four of our test cases, the actual graphical structure of the
generative distribution is recovered. In Test Case 4, one edge present in the generative
model was omitted in the final thinned model. This is, of course, a function of the test
case and such close correspondence need not always occur.25 We have also observed
that, during the moment matching procedure, the “intensity” of spurious interactions
tend to fade while the strength of true interactions are reinforced. This suggests the
advantage of our incremental approach to edge pruning over the simpler approach
where all edges to be pruned are selected by a single initial threshold comparison.
It is also interesting to note that while the KL-divergence of the thinned model
relative to the test model is increasing (as it must), the KL-divergence relative to the
generative model is actually decreasing. We should expect to see this trend in view
of the connection to the AIC which favors lower-order models in order to reduce the
expected KL-divergence relative to the generative model by virtue of having fewer

25In particular, decreasing N in these experiments makes it more difficult to distinguish “true”
interactions (present in the generative model) from spurious interactions (arising due to the finite
sample size). Then, model thinning is more apt to produce an interaction graph differing from
that of the generative distribution (either missing some true interactions or including some spurious
interactions).
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Figure 3-9: Model thinning in Test Case 3. Starting from the fully-connected test
model (top-right Figure 3-4), six m-projections were required to thin the model. Note
that earlier m-projections prune larger batches of very weak interactions and later m-
projections prune smaller batches of more significant interactions. We again recover
the interaction graph of the generative model (top-left Figure 3-4).
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Figure 3-10: Model thinning in Test Case 4. Starting from the fully-connected test-
model (top-right Figure 3-5), six m-projections were required to thin the model. In
this case, we almost recover that same interaction graph as in the generative model
(top-left Figure 3-5) but there is one “mistake” in that a single edge present in the
generative model is missing in the thinned model.
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parameters to estimate. This shows the advantage of some model thinning in the
presence of model uncertainty (that is when the available test model is not exact but
rather is a noisy observation of the unknown generative model). This effect is most
pronounced when the generative model does in fact have sparse Markov structure.
Yet, as we will see in the following subsection, model thinning can also prove beneficial
in this regard even when the generative model is actually fully connected but where
many of the these interactions are weak.

3.4.4 Prelude to Cavity Modeling

In this final experiment, we introduce a preliminary notion of cavity modeling and
show how our model thinning technique proves useful in this context. Consider the
5 × 5 GMRF we constructed for Test Case 3. Suppose, rather then attempting to
design a thinned approximation for the entire 5 × 5 field, we only wish to select a
thinned model for the surface of this 5×5 GMRF (for the moment, let us just consider
the surface to consist of those 16 site in the outer most “square” going around the
perimeter of the grid). We call such an approximation a cavity model to suggest
that we are approximating the cavity left after removing those vertices in the interior
(not in the surface). We may construct such a cavity model by combining model
thinning and variable elimination in various ways. We perform several experiments
which indicate the robustness and flexibility of this approach.

First, for the sake of comparison, let us perform variable elimination with respect
to the generative model. This procedure is shown in Figure 3-11. Let us call this the
truth cavity model. Note that the fill edges arising in variable elimination produces
a fully-connected cavity model. Yet, many of those fill edges correspond to weak in-
teractions having partial correlation coefficients (and conditional mutual information
values) near zero. This suggests we might do nearly as well with a thinned cavity
model for the surface of this GMRF. Let us consider two paths for constructing such
a thinned cavity model starting from our (noisy) test model displayed previously in
Figure 3-4. In the following, all model thinning is performed adaptively with precision
parameter δ = 0.005 and moment-matching tolerance ε = 10−12.

Eliminate-Thin. In the first approach, we perform variable elimination of the (fully
connected) test model as shown in Figure 3-12. Because the test model is fully con-
nected, we eliminate all nodes at once which requires significantly more computation
than in the incremental variable elimination approach shown for the sparse generative
model. Let us call this the test cavity model. Next, we thin this test cavity model
producing the eliminate-thin test model also shown in Figure 3-12.

First note that variable elimination reduces the KL-divergence relative to the
generative model. That is, the KL-divergence of the test cavity model (relative to
the truth cavity model) is smaller than the KL-divergence of the original test model
(relative to the generative model).26 Second, observe that while the KL-divergence

26In fact, this is always the case due to the chain rule for KL-divergence, D(p(x, y)‖q(x, y)) =
D(p(x|y)‖q(x|y)) +D(p(y)‖q(y)), so that D(p(y)‖q(y)) ≤ D(p(x, y)‖q(x, y)). That is, marginaliza-
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Figure 3-11: Variable elimination of generative model (top left) produces the fully
connected true cavity model (bottom right).

133



1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

4.5

5

Test Model, (KL = 0.179894)

1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.5

2

2.5

3

3.5

4

4.5

5

Eliminate, (KL = 0.0828817)

1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.5

2

2.5

3

3.5

4

4.5

5

Thin, KL = 0.0763946 (0.0309067)

Figure 3-12: Variable elimination of the test model (top) produces the fully connected
test cavity model (middle). Model thinning then yields the thinned test cavity model
(bottom). At bottom, the KL-divergence of the thinned test cavity model relative
to the (fully connected) test cavity model is shown. KL-divergences relative to the
generative model are also shown in parentheses in all three figures.
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incurred by thinning is significant (comparable to the KL-divergence of the test cavity
model relative to the truth cavity model), the actual KL-divergence from the truth
cavity model is again actually decreased by model thinning. This is the case even
though the truth cavity model is fully connected. This may seem surprising, but
we might expect to see this trend in view of the Akaike interpretation of our model
thinning metric (as attempting to minimize the expected KL-divergence from the
unknown generative model by projection to nearby lower-order families). These two
effects together speak favorably for the robustness of our method when the given test
model itself contains some noise or modeling errors. The main disadvantage of this
approach is the expense of variable elimination and also of inference for the fully
connected test cavity model (required by moment matching). This lead us to the
question of whether an additional model thinning step could be introduced without
ill effect, while at the same time reducing overall computational load. The following
experiment explores this idea.

Thin-Eliminate-Thin. As a second approach for obtaining a thinned cavity model,
let us consider what happens if we first thin the (full) test model and then repeat the
above eliminate-and-thin procedure. That is, we start with the thinned test model
obtained as in the model thinning experiments of the previous section. Then, we
perform variable elimination of this thinned test model producing the thin-eliminate
test model. This closely resembles variable elimination of the generative model and
requires less computation then variable elimination in the full test model. Finally,
we thin the thin-eliminate cavity model producing the thin-eliminate-thin test model.
This procedure is illustrated in Figure 3-13.

Again, variable elimination reduces the actual KL-divergence relative to the gen-
erative model. In this case, however, the model thinning step does actually increase
the KL-divergence relative to the generative model, but this increase is not very large
(less than the KL-divergence of the preceding thin-eliminate test model relative to
the truth cavity model). This occurs because the thinned test model is such a good
fit to the actual generative model in this example.

Note also that the final KL-divergences of both methods, eliminate-thin and thin-
eliminate-thin, relative to the truth cavity model are the same (0.031). In fact, the
KL-divergence of the thin-eliminate-thin model relative to the eliminate-thin model is
only about 9.14×10−13 (near the moment matching tolerance ε = 10−12 used in these
experiments). This is no accident. Since both variable elimination and model thinning
preserve moments of the model, these two approaches would actually have given
exactly the same cavity model were our moment matching procedure exact. This holds
more generally as long as both methods select the same set of final statistics (edges)
for the thinned cavity model and none of these correspond to statistics (edges) which
were thinned from the model at some point and then later reintroduced by variable
elimination. In this regard, it seems that we may introduce as many intermediate
model thinning steps as we like (to control the computational complexity of variable
elimination) and this has little or no effect on the final cavity model.

tion reduces the KL-divergence between the generative model p and the test model q.
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Figure 3-13: We begin with the thinned test model (top) duplicated from a pre-
vious model-thinning experiment (bottom right Figure 3-9). Variable elimination
produces the fully connected thin-eliminate test model (middle). Further model thin-
ning yields the thin-eliminate-thin test model (bottom). Respectively, the indicated
KL-divergences are relative to the: test model (generative model), test cavity model
(truth cavity model), thin-eliminate truth model (truth cavity model).
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Finally, we note that we have also performed model thinning for the truth cavity
model and found this produces a thin-eliminate truth model having the same “square”
interaction graph as in our two test cavity models and has KL-divergence of 0.007
relative to the (fully connected) truth cavity model. In comparison, our test cavity
models both have KL-divergence 0.031 from the (fully connected) truth cavity model
(about five times larger than the minimal achievable KL-divergence for this graphical
structure). Hence, in this test case at least, our test cavity models appear to come
reasonably close to giving as good a thinned approximation as possible even though
these are constructed from the noisy test model. Also, the KL-divergence of both test
cavity models relative to the thin-eliminate truth model is 0.024 which is less than
the KL-divergence 0.031 relative to the truth cavity model. It seems that performing
model thinning for both test and truth models tends to reduce KL-divergence much
as in variable elimination.

There are several lessons to be learned from these experiments. First, variable
elimination always reduces KL-divergence such that differences between our test
model and the true (unknown) generative model are reduced by variable elimination.
Second, while model thinning increases the KL-divergence relative to the test model,
the actual KL-divergence (relative to the unknown generative distribution) is often
decreased (or increases only slightly in comparison to the observed KL-divergence).
This effect is even more pronounced if we also thin the generative model. While this
need not always occur, this seems to be a result of our information criterion which
attempts to choose the model order (number of edges) so as to minimize the expected
KL-divergence from the (uncertain) generative model. Finally, we may employ any
combination of variable elimination and model thinning and we tend to obtain es-
sentially the same cavity model. For all of these reasons, it would appear that the
method of combining variable elimination with adaptive model thinning provides a
robust approach to cavity modeling.

This, fundamentally, is the idea underlying the recursive cavity modeling ap-
proach developed in the following chapter. However, our model thinning procedure
requires an inference subroutine to calculate those moments being matched during
each m-projection. This means that optimal model thinning is only tractable when
inference is tractable. Hence, some method is needed to “bootstrap” our cavity mod-
eling approach for such intractable graphical models. In the following chapter, we
discuss a recursive approach to cavity modeling which employs a recursive “divide-
and-conquer” method for constructing cavity models in otherwise intractable mod-
els. This, in turn, supports a tractable approach to approximate inference which we
demonstrate for GMRFs.
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Chapter 4

Recursive Cavity Modeling

This chapter presents the recursive cavity modeling (RCM) approach for tractable in-
ference of GMRFs. The method combines the information-projection model thinning
procedures of the previous chapter with a global divide-and-conquer recursive infer-
ence scheme such as in multiscale modeling or the junction tree approach. The main
idea is to employ model thinning to select compact yet faithful graphical models for
the “Markov blankets” arising in the variable elimination approach to inference. In
view of the information-projection interpretation of the model thinning procedure, we
expect this approach to give very reliable inference of marginal distributions. Some
experiments are given at the end of the chapter which appear to support this expec-
tation. While we focus mainly on Gaussian MRFs, the basic framework outlined here
should apply more generally.

The first section details the basic two-pass RCM approach and discusses the in-
terpretation of information projections in this context. The main procedures are
outlined and diagrams are also given to illustrate these procedures and to provide
some intuition about the role “Markov blanket” models play in this approach to in-
ference. Section 4.2 then discusses two iterative extensions intended to refine the
approximations made during two-pass RCM. Section 4.3 presents some simulations
to motivate and clarify these methods and to examine the performance of RCM both
in terms of reliability of inference and scalability of computation.

4.1 Two-Pass RCM

This section describes the two-pass RCM approach for approximate inference of the
marginal distributions of a Gauss-Markov random field (GMRF). The input for this
procedure is a graphical model for the GMRF in the information form x ∼ N−1(h, J)
as discussed in Section 2.1.5. This is represented by a hypergraph HφΓ = (Γ,HφΓ)
based on the sites of the field Γ. The hyperedges HφΓ indicate interaction potentials
φΛ(xΛ) for Λ ∈ HφΓ. For GMRFs, all interactions are either singleton (involving just
one site)

φγ(xγ) = −1
2
x′γJγxγ + h

′
γxγ (4.1)
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or pairwise (involving two sites)

φ{γ,λ}(xγ, xλ) = −xγJγ,λxλ. (4.2)

The Markov structure of the field is then specified by the pairwise interactions as
GφΓ = adj H

φ
Γ.

As shown in Section 2.1.5, these are the canonical potentials (Section 2.1.3) relative
to the zero ground-state x∗ = 0. The conditional distribution p(xΛ|x∂Λ = 0) of
each subfield Λ ⊂ Γ assuming zero boundary conditions is then given by p(xΛ|0) ∝
expφΛ(xΛ) where φ

Λ is the partial potential

φΛ(xΛ) = −1
2
x′ΛJΛxΛ + h

′
ΛxΛ (4.3)

obtained by summing all potentials defined within that subfield. These conditional
subfield models play a fundamental role in the RCM inference method. These are
also GMRFs with respect to the subgraph GφΛ = adj HφΛ induced by Λ.

1 Hence,
these conditional subfield models (assuming zero boundary conditions) are naturally
regarded as embedded graphical models within the graphical representation of the
entire GMRF.

Given our graphical model we then wish to estimate the marginal distributions
p(xγ) for all γ ∈ Γ.2 The following inference procedure produces approximations of
the marginal information parameters xγ ∼ N−1(ĥγ, Ĵγ) from which the marginal mo-

ments may be approximated by (x̂γ, Pγ) = (Ĵ
−1
γ ĥγ, Ĵ

−1
γ ). These marginal information

parameters would be given by exact calculation as:

ĥγ = hγ − Jγ,\γJ−1
\γ h\γ (4.4)

Ĵγ = Jγ − Jγ,\γJ−1
\γ J\γ,γ (4.5)

However, this approach becomes intractable for large GMRFs. More efficient re-
cursive methods, based on Markov trees (Section 2.3), are available but even these
recursive methods become intractable when large state-dimensions (corresponding to
large separators in GφΓ) are required to construct such a Markov tree. Hence, RCM
performs these calculations both recursively (to exploit the Markov structure of the
field) and approximately (to give a tractable method when exact recursive methods
do not). Approximations are introduced by our model thinning method so as to con-
trol the computational complexity of the recursive inference approach. This may be
seen as a thinned variable elimination approach where conditional information pro-
jections (assuming zero boundary conditions) are introduced to select compact yet

1Recall, from Section 2.1.1, that Hφ
Λ, the subhypergraph of Hφ

Γ induced by Λ, is comprised of all
hyperedges contained in Λ. For canonical specifications, the conditional interaction graph adj Hφ

Λ is
also the subgraph Gφ

Λ of Gφ
Γ ≡ adj Hφ

Γ induced by Λ.
2Extension of the following inference procedure to also calculate the pairwise marginal distribu-

tions p(xγ , xλ) for {γ, λ} ∈ Hφ
Γ is straight-forward but is omitted to simplify presentation. This

extension may prove useful to support tractable (albeit approximate) model identification based on
RCM.
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faithful “Markov blanket models” by pruning many of the fill edges arising in variable
elimination. In the sequel, these Markov blanket models are called either “cavity” or
“blanket” models depending upon the context.

The basic procedure consists of three stages: (i) nested dissection of the graphical
model producing a dissection tree, (ii) a cavity modeling procedure which is described
as an upward recursion with respect to the dissection tree, and (iii) a blanket mod-
eling procedure which is described as a downward recursion on the dissection tree.
The inference/modeling procedures (ii) and (iii) employ the model thinning methods
of Chapter 3 as a subroutine. These model thinning steps, requiring exact infer-
ence of embedded graphical models corresponding to conditional subfield models, are
tractable insofar as RCM generates tractable cavity and blanket models.

4.1.1 Nested Dissection

The first step of RCM is to dissect the GMRF. We specify a simple method for
performing spatial dissection, essentially as in Luettgen’s approach [91], but empha-
size that our subsequent RCM inference procedures could also be applied for other
dissection methods.

Here, we assume that the sites of the field Γ are naturally associated to spatial
locations (z(γ) ∈ Rs, γ ∈ Γ), where s is the dimension of the space in which sites are
located3, and that the interactions of the field are mainly between nearby sites. The
field is then recursively partitioned by spatial dissection as indicated in Figure 4-1.
This dissection procedure begins by partitioning the set of all sites Λ0 = Γ into two
disjoint subsets Λ1,Λ2 ⊂ Λ0 such that Λ0 = Λ1 ∪ Λ2 and Λ1 ∩ Λ2 = ∅. We will call
these partitions dissection cells . These dissection cells are then themselves recursively
partitioned into subcells.

The partitioning at each level of dissection is determined by alternating bisection
of the spatial coordinates. This is accomplished by forming s lists of the sites of the
field for k = 1, . . . , s where list k is sorted by the k-th spatial coordinate zk. Spatial
dissection is then accomplished by iterating over the coordinates k = 1, . . . , s and
splitting the k-th list at the median value. The sites of the field and the s sorted
coordinate lists are partitioned accordingly. This spatial dissection is performed re-
cursively until the field has been divided into subfields which are sufficiently small
so as to be tractable by exact inference methods (for instance, subfields consisting
of just one site). This procedure is most readily implemented for sites arranged on
regular grids and then has O(|Γ|) complexity.4

We encode the nested structure of this dissection procedure as a tree data struc-
ture. Here, we favor a directed tree specification given by a pair T = (N ,A) where
N is the set of nodes and A is the set of arcs . An arc (α, β) ∈ A is an ordered pair
of nodes α, β ∈ N . The arc “points” from node α to node β. We also say that α is
the child of β (or equivalently that β is the parent of α). A tree is singly-connected

3All examples shown are for planar GMRFs (s=2), but our RCM method could also be applied
for multidimensional GMRFs (for instance, for GMRFs arrayed in 3D).

4More generally, for irregular arrangements of sites, we must explicitly sort each list of sites, once
for each spatial coordinate, requiring O(s|Γ| log |Γ|) computation.
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Figure 4-1: Illustration of nested dissection of an 8×8 square-grid graphical model.
The dissection precedes top to bottom where the dissection cells are shown to the left
and the corresponding nodes of the dissection tree are shown to the right. At each
level of dissection, the darkened nodes indicate the cells being split and the shaded
nodes indicate subcells. The RCM inference procedure is structured according to this
dissection tree.
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so that no two nodes may be linked together by two distinct sequences of arcs. A
node with no parents is called a root . A node with no children is called a leaf . For a
non-leaf node α ∈ N , we let αi denote the i-th child of α (imposing some arbitrary
ordering of the children). The trees that we consider have only one root and are
connected so that any node of the tree may be reached from the root.

To encode the nested dissection of the field as a directed tree we let the nodes of
the tree represent the cells generated by the dissection procedure. For node α ∈ N ,
we denote the associated dissection cell by Λα ⊂ Γ. The arcs then indicate the nested
structure of the dissection. For instance, if a dissection cell Λα is partitioned into
subcells Λα1 and Λα2 then we include the arcs (α, α1) and (α, α2) in A. The root of
the tree α0 corresponds to the set of all sites Λ(α0) = Γ. The leaf nodes of the tree
correspond to the smallest dissection cells at the last level of dissection. We call this
the dissection tree.

The subsequent RCM inference procedures are structured according to this dis-
section tree. We make use of the following terminology defined relative to the graph
GφΓ describing the Markov structure of the field. The blanket of cell α is defined
as Λbα = ∂Λα. The surface of cell α is Λ

s
α = ∂{Γ \ Λα}. The interior of cell α is

Λiα = Λα \ Λsα. These are illustrated in Figure 4-2.

4.1.2 Cavity Modeling

Next, a recursive upward pass is executed with respect to the dissection tree. The aim
of the upward pass is to construct a cavity model for each dissection cell. The cavity
model at node α of the dissection tree is intended as a compact yet faithful graphical
model for the surface of the dissection cell Λsα ⊂ Γ sufficient (or nearly so) for inference
outside of the cell. We denote this graphical model by µ̃sα. A recursive procedure for
constructing cavity models is outlined below. The main idea is to construct cavity
models from subcavity models (cavity models of subcells). The main subroutines are
(a) variable elimination, (b) model thinning and (c) rejoining the (thinned) parts of
the graphical model (reversing the dissection procedure).

Cavity Model Initialization. Cavity modeling begins at the leaves of the dissec-
tion tree. For each leaf α, we construct a cavity model for the corresponding dissection
cell Λα as follows. First, the partial model of the subfield xΛα is extracted. This is
a graphical model µα consisting of the subhypergraph of H

φ
Γ induced by Λα ⊂ Γ and

the associated interaction potentials φΛα . In GMRFs, this is given by the subset of
the information parameters (hΛα , JΛα). This partial model specifies the conditional
distribution of the subfield assuming ground-state boundary conditions (set to zero in
our information representation of GMRFs) outside of the dissection cell. The cavity
model µ̃sα is then constructed from the partial model µα in two steps: (i) variable
elimination and (ii) model thinning. This initialization procedure is illustrated in
Figure 4-3.
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(a)

(b)

(c)

Figure 4-2: Diagrams illustrating the (a) blanket Λb, (b) surface Λs and (c) interior
Λi of the subfield Λ enclosed by the dashed line.
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(a)

(b)

(c)

Figure 4-3: Diagrams illustrating initialization of RCM cavity modeling: (a) condi-
tional subfield model assuming zero boundary conditions (shown in bold) (b) interior
nodes eliminated producing many interactions between sites in the surface of subfield
(shown in grey) (c) result of model thinning procedure to prune weak interactions
yielding desired “cavity model”.
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(1) Variable Elimination. First, we perform variable elimination for all sites
in the interior of the cell (not in the surface). For Gaussian MRFs, this variable
elimination corresponds to calculation of µ̂sα = (helimΛs , JelimΛs ) from µα = (hΛ, JΛ) as
follows:

helimΛs = hΛs − JΛs,ΛiJ−1
Λi hΛi (4.6)

JelimΛs = JΛs − JΛs,ΛiJ−1
Λi JΛi,Λs (4.7)

We remark that this variable elimination may also be performed recursively by elim-
inating the sites sequentially one at a time. Depending upon the sparsity of the
graphical model and the elimination order, this may reduce computation. In any
case, variable elimination removes sites from the interior of the cell but creates ad-
ditional interactions between sites in the surface of the cell. In our initialization of
cavity models, elimination typically produces a fully-connected cavity model such as
shown in Figure 4-3(b). The production of these additional fill edges is the main
source of intractability of exact recursive inference methods.

(2) Model Thinning. Next, RCM performs model thinning so as to provide a
tractable inference approach. This consists of the inductive thinning procedure de-
scribed in Chapter 3 which adaptively prunes selected weak interactions from the
graphical model by information projections. An AIC-like principle is employed to
select the final embedded graphical model where our precision parameter δ controls
the trade-off between the complexity and the accuracy of our thinned models.

During initialization, we apply this model thinning procedure for the (fully con-
nected) cavity models µ̂α = (h

elim
Λs , JelimΛs ) produced by variable elimination. Hence, the

information projections performed by our model thinning subroutine are conditioned
on zero boundary conditions. This allows for the m-projection to be performed in
a tractable manner as inference is required only for embedded graphical models cor-
responding to conditional subfields. Applying model thinning for µ̂α = (helimΛs , JelimΛs )
gives our thinned cavity model µ̃sα = (hthinΛs , J thinΛs ) with thinned interaction graph
Gthin

Λs
α
= (Λsα, E thinΛs

α
). Such a thinned cavity model is illustrated in Figure 4-3(c).

We will not review all of the details of our model thinning approach here, but do
wish to remind the reader of some key points. First, the model thinning m-projection
imposes the constraint that the cavity model is Markov with respect to Gthin

Λs
α
, or that

J thinΛs
α
is sparse such that (J thinΛs

α
)γ,λ = 0 for all pruned edges {γ, λ} �∈ E thinΛs

α
. Second,

the m-projection of µ̂α to this family of thinned graphical models, so as to minimize
the KL-divergence D(µ̂α‖µ̃α) subject to those sparsity constraints, is determined by
moment matching. That is we match conditional means (assuming xΛb

α
= 0) such

that
(J thinΛs )−1hthinΛs = (JelimΛs )−1helimΛs (4.8)

and match a selected subset of conditional covariances such that

(J thinΛs )−1
γ,λ = (J

elim
Λs )−1

γ,λ (4.9)
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along the diagonal γ = λ and for all edges {γ, λ} ∈ E thinΛs
α
retained by our thinned cavity

model. Together, these moment and sparsity conditions uniquely determine µ̃α =
(hthinΛs , J thinΛs ). Finally, we recall that this also has the interpretation of maximizing
entropy subject to just the moment constraints where the minimal KL-divergence
is given by the entropy gain (information loss) D(µ̂α‖µ̃α) = h[µ̃α] − h[µ̂α]. In this
regard, RCM may be understood as a “forgetful” inference procedure where only a
subset of the moment characteristics are preserved during model thinning and we
otherwise assume as little as possible about the cavity model. Our selection of which
edges to prune essentially corresponds to selecting which moments constraints can be
relaxed without too significantly perturbing the model (keeping the information loss
per removed model parameter less than δ).

Region Merging. The cavity modeling procedure then proceeds up the dissection
tree by merging cavity models of subcells as in Figure 4-4. Given two cavity models
µ̃sα1

and µ̃sα2
for subcells α1 and α2 of cell α, we approximate the cavity model µ̃

s
α as

follows. First, the two subcavity models are joined by merging the potentials from
both graphical models and also reinstating those interaction potentials between the
subfields previously severed during the dissection procedure. This gives a graphical
model for the conditional distribution of the subfield Λsα1,α2

≡ Λsα1
∪ Λsα2

assuming
xΛb

α
= 0.
For GMRFs, this corresponds to coupling two cavity models

xΛs
α1

∼ N−1(hthinΛs
α1
, J thinΛs

α1
) (4.10)

xΛs
α2

∼ N−1(hthinΛs
α2
, J thinΛs

α2
)

with interactions

φ(xΛs
α1
, xΛs

α2
) = −1

2
x′Λs

α1
KxΛs

α2

where K ≡ JΛs
α1
,Λs

α2
are just those interactions between these subfields which were

severed during the dissection procedure. This produces the joined cavity model µjoinα ,

xΛs
α1,α2

∼ N−1(hjoinΛs
α1,α2

, J joinΛs
α1,α2

)

with information parameters

hjoinΛs
α1,α2

=

(
hthinΛs

α1

hthinΛs
α2

)
(4.11)

J joinΛs
α1,α2

=

(
J thinΛs

α1
K

K ′ J thinΛs
α2

)
(4.12)

This initializes our cavity model at non-leaf nodes of the dissection tree.
Again, variable elimination is required to eliminate sites in the interior Λiα. These

are sites Λsα1,α2
\Λsα that are in the surface of one of the subcells α1 or α2 but are not in

the surface of cell α. This produces µ̂α = (h
elim
Λs

α
, JelimΛs

α
) having additional interactions
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(a) (b)

(c) (d)

Figure 4-4: Illustration of recursive method for constructing cavity models from sub-
cavity models: (a) initialized by cavity models of subcells, (b) subcavity models are
joined reinstating severed potentials, (c) latent variables (in the interior) are removed
by variable elimination producing some additional interactions (but this does not
cause the cavity model to become fully connected), (d) model thinning selects a com-
pact yet faithful embedded graphical model, inductively pruning weak interactions
from the model by information projection. This gives the cavity model which may in
turn be used to construct larger cavity models.
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due to fill but where many of these interactions tend to be “weak” interactions between
distant sites on opposite sides of the “cavity” left by elimination. We would like to
prune many of these weak interactions from our cavity model. Note that, due to earlier
thinning of the subcavity models, the amount of fill is limited so that elimination
does not produce an (intractable) fully-connected graphical model. Hence, recursive
inference is tractable so that further model thinning is also tractable. Model thinning
then gives our thinned cavity model µ̃sα = (hthinΛs

α
, J thinΛs

α
) at node α of the dissection

tree. Thus, we have our tractable “bootstrap” method for constructing cavity models
for larger dissection cells from cavity models of subcells.

Upward Cavity-Modeling Pass. This gives a recursive upward pass with respect
to the dissection tree which begins at the leaves of the tree and then works up the
tree building cavity models from subcavity models. The action of this upward pass
may be viewed as reversing the dissection procedure but substituting thinned cavity
models for subfields.

We define the following subroutines:

• µΛ = Extract(Λ): form the partial model µΛ based on the induced subhyper-
graph HφΛ and associated potentials φ

Λ.

• µ1,2 = Join(µ1,µ2): join two partial models µ1 and µ2 by reinstating the poten-
tials between them severed during the dissection procedure.

• µ̂Λ = Elim(µ,Λ): perform variable elimination of µ eliminating all sites except
those in Λ so as to produce a graphical model µ̂Λ for just the sites Λ.

• µ̃ = Thin(µ): thin the graphical model µ using the inductive information pro-
jection techniques of Chapter 3.

With these subroutines, we specify the upward cavity modeling procedure as follows:
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RCMUpwardPass(α)
if (α is a leaf node)

Extracts partial subfield model.
µα = Extract(Λα)
Eliminate interior and thin.
µ̂sα = Elim(µα,Λ

s
α)

µ̃sα = Thin(µ̂
s
α)

else
Recurse on subtrees.
µ̃sα1
=RCMUpwardPass(α1)

µ̃sα2
=RCMUpwardPass(α2)

Join subcavity models along internal cut.
µs+α = Join(µ̃sα1

, µ̃sα2
)

Eliminate and thin cavity model.
µ̂sα = Elim(µ

s+
α , Λ

s
α)

µ̃sα = Thin(µ̂
s
α)

end
save µ̃sα Store copy for reuse during downward pass.
return µ̃sα

end

This procedure is invoked at the root node α0 of the dissection tree, but processing
begins at the leaves of the tree and propagates cavity models up the tree. A cavity
model is stored at each node of the tree in preparation for the following downward
procedure.

4.1.3 Blanket Modeling

Finally, a complementary recursive downward procedure is executed with respect to
the dissection tree producing marginal models at the leaf nodes of the dissection tree.
The downward pass operates by constructing blanket models for each dissection cell.
The blanket model µ̃bα is intended as a compact yet faithful graphical model for the
blanket Λbα of the subfield sufficient (or nearly so) for inference inside the subfield. The
blanket models at the leaves of the dissection tree are then used to infer the desired
marginal distributions. The main idea is to construct blanket models recursively
from an adjacent cavity model (constructed by the preceeding upward pass) and an
enclosing blanket model (the blanket model of the parent cell). This idea is illustrated
in Figure 4-5.

In contrast to cavity models, blanket models for each subfield are constructed from
the exterior of that subfield. Also, information projections of the model thinning
procedure assume zero state inside the subfield. Essentially, blanket models are just
cavity models for the complement of each subfield. Applying this method recursively
results in the following recursive downward procedure with respect to the dissection
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(a) (b)

(c) (d)

Figure 4-5: Illustration of procedure for constructing blanket models: (a) initialized
by adjacent cavity model and enclosing blanket model, (b) models are joined reinstat-
ing severed potentials, (c) latent variables (not in the blanket) removed by variable
elimination producing additional interactions, (d) model thinning selects a compact
yet faithful embedded graphical model, inductively pruning weak interactions from
the model by information projection. This gives the blanket model for the enclosed
subfield which may now be inferred either directly or recursively.
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tree.

Downward Blanket-Modeling Pass. This procedure uses the same subroutines
as the earlier upward pass and operates on similar principles.

RCMDownwardPass(α, µ̃bα) Takes blanket model as input.
if (α is a leaf node)

Output marginal model.
µα = Extract(Λα)
µ+bα = Join(µα, µ̃

b
α)

µ̂α = Elim(µ
+b
α ,Λα)

save µ̂α
else

Restore cavity models.
load µ̃sα1

, µ̃sα2

Initialize blanket models.
µb+α1

= Join(µ̃bα, µ̃
s
α2
)

µb+α2
= Join(µ̃bα, µ̃

s
α1
)

Eliminate and thin.
µ̂bα1

= Elim(µb+α1
,Λbα1

)
µ̂bα2

= Elim(µb+α2
,Λbα2

)
µ̃bα1

= Thin(µ̂bα1
)

µ̃bα2
= Thin(µ̂bα2

)
Recurse on subtrees.
RCMDownwardPass(α1, µ̃

b
α1
)

RCMDownwardPass(α2, µ̃
b
α2
)

end
end

This blanket-modeling downward procedure is invoked at the root node α0 of the dis-
section tree (with an “empty” blanket model at the root node) and propagates blanket
models down the tree. The recursion terminates at the leaves of the tree where the
blanket models are joined with conditional subfield models to provide marginal mod-
els for those smallest dissection cells. Inference of marginal distributions at individual
sites (or between adjacent sites) is then straight-forward by exact inference methods.

This completes specification of the two-pass RCM inference procedure. We illus-
trate this two-pass procedure in Figures 4-6 and 4-7 for our (fictitouos) 8×8 example
with dissection tree as shown previously in Figure 4-1. Finally, we wish to point out
that, if we were to omit the model thinning steps in both the upward and downward
pass, then our approach reduces to a recursive variable elimination approach for exact
computation of the marginal distributions of the GMRF. This latter exact approach,
however, will become intractable for many larger GMRFs due to the construction of
fully-connected cavity and blanket models throughout the computation.
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Figure 4-6: Illustration of RCM upward pass (showing cavity models at every level
of dissection). This is a recursive procedure defined on the dissection tree (Figure
4-1) for building cavity models at each node of the dissection tree. Cavity models for
larger dissection cells are built from cavity models of subcells.

In the next section we present two iterative extensions of this approach which
attempt to refine the approximations we have introduced into our inference procedure.
Later, in Section 4.3, we demonstrate RCM in some simulated examples.

4.2 Iterative RCM

In this section we give some extensions of the basic RCM inference framework de-
scribed in the previous section. We describe two iterative methods based on the
two-pass RCM procedure. The first, iterative renormalization, uses two-pass RCM as
a subroutine but adjusts the potential specification between iterations. The second, it-
erative remodeling, modifies the two-pass algorithm to exploit previously constructed
cavity and blanket models while selecting refined cavity and blanket models on later
iterations.
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Figure 4-7: Illustration of RCM downward pass (tracing just one path down the
dissection tree). This is a recursive procedure defined on the dissection tree (Figure
4-1) for building blanket models at each node of the dissection tree. Blanket models
are built form adjacenct cavity models and enclosing blanket models. At the leaves
of the dissection tree, marginal models are built by joining subfields with blanket
models and eliminating sites in the blanket.
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4.2.1 Renormalization

In this subsection we describe an iterative version of the RCM procedure which we call
iterative renormalization. We give an implementation of this procedure for GMRFs
which employs the two-pass implementation described previously as a subroutine.
This Gaussian implementation is also identified as performing a Richardson iteration
(Young [138], Kelley [81], Sudderth [125]) with RCM playing the role of a precondi-
tioner.

Fundamentally, the accuracy of two-pass RCM hinges on the accuracy of the cavity
and blanket models we select. In order to be able to select these models, by tractable
m-projections, we have thus far found it necessary to condition on zero state along the
boundary of the subfield being approximated. This then allows the m-projection to be
carried out entirely in terms of local computations involving just our thinned graphical
models. The fundamental idea of renormalization is to allow ourselves instead to select
some estimate of the state along the boundary while carrying out the model thinning
operation. In the context of Gibbs random fields, specified by canonical potentials
relative to the so-called ground state x∗ of the potential specification (Section 2.1.3),
we interpret this as renormalization as we now explain.

As discussed in Section 4.1, the model thinning m-projections performed in two-
pass RCM implicitly assume ground-state boundary conditions (set to zero in the case
of the information representation of GMRFs). This occurs as we only consider partial
models, conditional subfield models specified on induced subgraphs of the graphical
model, in isolation of the rest of the graphical model. That is, the “conditioning” is
really implicit in our choice of potential specification. Hence, in the cavity-modeling
phase of the procedure, we are really conditioning on zero boundary conditions (out-
side of the dissection cell) while selecting our thinned cavity model. Likewise, in the
blanket-modeling phase, we are conditioning on zero boundary conditions (inside the
dissection cell) while selecting thinned approximations for the blanket. Hence, the ap-
proximations introduced by RCM depend upon the choice of ground state (previously
always set to zero) implicit in our potential specification. This then begs the question
if we might obtain more accurate cavity and blanket models, thereby improving the
accuracy of inferred marginal distributions, by appropriate choice of the ground state.
Recalling the normalization property of the canonical potential (relative to a given
ground state), we call this change of ground state renormalization.

We first give a general outline for iterative renormalization (in MRFs) and then
specify an implementation of this approach appropriate for GMRFs. In the general
formulation, we indicate that either the means or the modes of the (approximate)
marginal distributions provide a basis for renormalization (in GMRFs these are iden-
tical).5

5Note that, in finite-state MRFs, the mode renormalization method may be preferable since the
means are typically not elements of the state space.
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Iterative Renormalization:

• Input. Graphical model µ based on canonical potential specifications relative
to an arbitrary ground state x∗ (for instance, the zero ground-state x∗ = 0
where applicable).

• Loop. Initialize k = 0, µ(0) = µ and x̂(0) = x∗. Do the following until termina-
tion is indicated:

– RCM Inference. Run two-pass RCM for graphical model µ(k) giving ap-
proximate marginal distributions (µ(k)(xγ),∀γ ∈ Γ). Note that the model
thinning m-projections in RCM assume boundary conditions specified by
x̂(k).

– State Estimation. Generate state estimate x̂(k+1) either by

x̂(k+1)γ = Eµ(k){xγ}

for mean-renormalization, or by

x̂(k+1)γ = arg max
xγ∈Xγ

µ(k)(xγ)

for mode-renormalization. If x̂(k+1) = x̂(k) (to within some tolerance),
then terminate loop.

– Renormalization. Construct canonical potential specification φ(k+1) rela-
tive to ground state x∗ = x̂(k+1) giving a “renormalized” graphical model
µ(k+1).

– Iterate. Set k ← k + 1 and repeat.

• Output. State estimate x̂(k), renormalized model µ(k) (with correspondingly
refined approximation of cavity, blanket and marginal models).

We illustrate this idea in the context of GMRFs where it has an especially simple
form. Relative to an arbitrary choice of ground state x∗, we find that the canonical
potentials for a GMRF x ∼ N−1(h, J) with interaction graph GΓ = (Γ, EΓ) are given
by the singleton potential functions

φ∗γ(xγ) = −
1

2
(xγ − x∗γ)′Jγ(xγ − x∗γ) + (h− Jx∗)′γ(xγ − x∗γ) (4.13)

for all γ ∈ Γ, and the pairwise interaction potentials

φ∗γ,λ(xγ , xλ) = −(xγ − x∗γ)′Jγ,λ(xλ − x∗λ) (4.14)

for all {γ, λ} ∈ EΓ. It is apparent that these interaction potentials satisfy the nor-
malization property such that φ∗γ(x

∗
γ) = 0, φ∗γ,λ(x

∗
γ, xλ) = 0 and φ∗γ,λ(xγ, x

∗
λ) = 0.
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Setting
h∗ = h− Jx∗ (4.15)

gives an exponential family with linear and quadratic statistics in x − x∗ and expo-
nential parameters (h∗, J).

p(x) ∝ exp{−1
2
(x− x∗)′J(x− x∗) + h∗ · (x− x∗)} (4.16)

Note that this reduces to the usual (h, J) information parameterization when x∗ = 0.
On the other hand, setting x∗ = E{x} gives h∗ = 0 (indicating that the linear
moment constraints are inactive) corresponding to the mean-centered covariance se-
lection model (parameterized by just the non-zero entries of the inverse covariance J).
Hence, for GMRFs, iterative renormalization may be viewed as an attempt to itera-
tively transition from the (h, J) to the (0, J) representation by adjusting the ground
state x∗ (implicit in our choice of potential specification) from x∗ = 0 to x∗ = E{x}.

Collecting all interaction potentials associated with subfield Λ (and summing
these) gives the partial potential function:

φ∗(xΛ) = −1
2
(xΛ − x∗Λ)′JΛ(xΛ − x∗Λ) + h∗Λ · (xΛ − x∗Λ) (4.17)

This (renormalized) partial potential now specifies the conditional distribution

p(xΛ|x∗∂Λ) ∝ expφ∗(xΛ)

of subfield xΛ assuming ground-state boundary conditions x∂Λ = x
∗
∂Λ. Hence, perform-

ing RCM with respect to this “renormalized” information parameterization implies
that the model-thinning m-projections now assume non-zero boundary conditions as
specified in x∗.

Rather then specifying a new version of Gaussian RCM for this new (h∗, J) pa-
rameterization relative to x∗, we may instead “shift” the inference procedure as fol-
lows. Let y = x − x∗ such that y ∼ N−1(h∗, J). Then run the usual RCM infer-
ence procedure with information model (h∗, J) producing the estimate ŷ(RCM) (the
RCM approximation for the expectation ŷ = E{y}). Then calculate the estimate
x̂(RCM) = ŷ(RCM) + x∗ (the “renormalized” RCM approximation for the expectation
x̂ = E{x}). Then reset the ground state x∗ = x̂(RCM) to seed the next iteration. This
gives the following iterative procedure:
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Gaussian Iterative Renormalization:

• Input. Graphical model µ = (h, J), tolerance τ .
• Loop. Initialize k = 0, h(0) = h and x̂(0) = 0. Do the following until termina-
tion is indicated:

– RCM Inference. ∆x̂(k) = RCM(h(k), J) ≈ J−1h(k).

– Update State Estimate. x̂(k+1) = x̂(k) +∆x̂(k).

– Renormalization. Set h(k+1) = h(k) − J∆x̂(k) (equivalently, set h(k+1) =
h(0) − Jx̂(k+1)). Set k ← k + 1.

– Stopping Condition. If ||∆x̂(k)|| < τ , terminate loop. (alternatively, if
||h(k)||/||h(0)|| < τ , then terminate). Otherwise, repeat loop.

• Output. State estimate x̂(k) ≈ Eµ{x} (renormalized model (h(k), J) with h(k) ≈
0).

This may be viewed as performing a Richardson iteration for solving the sparse
linear system Jx̂ = h for x̂ given (h, J) where the RCM procedure takes the place of
multiplication by an inverse preconditioner matrix M−1 (a tractable linear operator
approximating multiplication by J−1). This iteration may be written as

x̂(k+1) = (I −M−1J)x̂(k) +M−1h (4.18)

= x̂(k) +M−1(h− Jx̂(k))
= x̂(k) +M−1h(k)

which is equivalent to renormalization if we identify RCM as the preconditioner,
defining M such that M−1h(k) ≡ RCM(h(k), J).

At first glance, it may not be apparent that the estimate x̂(RCM), obtained by
running two-pass RCM with inputs (h, J), is actually linear in h. In fact, it is
only linear insofar as our moment matching subroutine (employed during each of
the model thinning m-projections) is precise.6 Then, moment matching may be seen

as computing h
(thin)
Λ = J

(thin)
Λ x̂Λ where x̂Λ = J

−1
Λ hΛ are the inferred means, of some

cavity/blanket model (hΛ, JΛ) being thinned, and J
(thin)
Λ is the thinned information

matrix (the computation of which is independent of hΛ). Hence, in each m-projection,

h
(thin)
Λ ≈ J (thin)Λ J−1

Λ hΛ which is (approximately) linear in hΛ (at least upto our moment
matching tolerance). Consequently, the global computation of x̂(RCM) = RCM(h, J)
is likewise linear in h. Note also, in adjusting the input h we do not change the inverse
covariance structure of any of our cavity/blanket/marginal models. Hence, Gaussian
iterative renormalization only refines the RCM estimates of the mean parameters.

6We could force this by setting our moment-matching tolerance to zero, which would force the
iterative moment matching subroutine to continue until all moments are matched to machine preci-
sion.
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The RCM estimates of marginal covariances remain fixed throughout the iteration.7

It is known that the this iteration will converge to the mean if and only the spectral
radius8 of (I −M−1J) is less than one. Moreover, the spectral radius characterizes
the asymptotic rate of convergence. In view of our use of m-projections to give
a hierarchical, tractable, near-optimal model of the inverse covariance structure of
the GMRF, we expect RCM to give a very efficient preconditioner in this regard
(some examples in Section 4.3 seem to support this intuition). We also remark the
possibility of using Gaussian RCM as a preconditioner for solving arbitrary sparse
positive-definite linear systems (not necessarily conceived of as GMRFs), perhaps by
accelerated Krylov subspace methods such as the conjugate gradient method [63].
This suggests a much broader range of potential applications for RCM not limited to
inference in GMRFs [104, 48, 81, 16]. Also, our renormalization view of this iteration
(in GMRFs) suggests a more general approach applicable for other (non-Gaussian)
families of MRFs where approximate inference methods, such as two-pass RCM, might
be improved upon by iterative adjustment of the ground state implicit in our choice
of potential specifications.

We postpone giving examples of this approach to Section 4.3 where we show
that this iterative renormalization version of Gaussian RCM has the advantage that
the marginal mean parameters x̂ (as estimated by RCM) converge to the true means.
This iterative approach, however, does not refine the estimated covariance of marginal
distributions. This is the related iterative method described next.

4.2.2 Remodeling

This section presents an alternative iterative extension of the RCM approach. The
methods discussed thus far provide tractable m-projections by conditioning on some
guess for the state along the boundary of a subfield while performing model thinning
operations with respect to that subfield. Here, we consider a less heavy-handed type of
approximation. Rather then assuming a specific guess for the state of the boundary,
we assume a tractable model for the boundary which captures our knowledge of
the state while retaining the essential uncertainty of the state. These models are
naturally provided by the cavity and blanket models already constructed by our two-
pass RCM approach. Here, we show how the model thinning m-projections performed
by RCM may be modified so as to exploit these previously constructed cavity and
blanket models while selecting refined cavity and blanket models. This results in a

7This also indicates that Gaussian RCM could be accelerated by implementing an “on-line”
version of the means computation, so as to reuse stored copies of the information matrices of all
cavity/blanket models computed earlier in an “off-line” computation based on two-pass RCM ran
with zero input, h = 0. Then, later iterations may employ the “on-line” computation, replacing
each m-projection step (hΛ, JΛ) → (h(thin)

Λ , J
(thin)
Λ ) by a simpler calculation: (i) solve JΛx̂Λ = hΛ

for x̂ either by recursive inference methods or by employing standard iterative methods (perhaps
accelerated using a local preconditioner also computed off-line) and (ii) calculate h(thin)

Λ = J
(thin)
Λ x̂Λ.

8The spectral radius of an n × n matrix A is defined as the maximum absolute value of the
eigenvalues of A. Equivalently, this may be defined as ρ(A) = maxv∈Rn

||Av||
||v|| (v �= 0) where

||v|| = √
v′v is the Euclidean norm.
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modified model thinning step in both the upward and downward passes of our two-
pass inference procedure. Applying the modified two-pass procedure repeatedly then
gives an iterative method we call iterative remodeling.

Cavity Remodeling. Let us first reconsider the upward cavity-modeling pass of
RCM. Recall that the intent of each cavity model is to provide approximation for
the surface of a subfield for the sake of inference outside that subfield. That is, the
cavity model gives a simplified model for the interactions within a subfield which is
adopted while inferring other parts of the field. Hence, we should take into account
the interaction of the subfield with the rest of the field while selecting our approxi-
mation for that subfield. A tractable approach is to make use of any existing blanket
model for the subfield, together with the known interactions between the surface and
the blanket, while selecting our refined cavity model approximation. This idea is
illustrated in Figure 4-8. We refer to this figure in the following discussion.

We now describe how the available blanket model can be exploited while thinning
the cavity model. Consider the situation shown in Figure 4-8(a). As before, we have
some initial cavity model µ̂sα for the surface Λ

s
α of dissection cell Λα at node α of the

dissection tree. This model was produced by variable elimination, either in the cavity
initialization step (Figure 4-3(b)) or the region merging step (Figure 4-4(c)), and has
some fill edges we would like to prune. In the remodeling approach, we first join this
cavity model µ̂sα with a previously constructed (thin) blanket model µ̃

b
α reinstating

interactions ψ between these. This gives a joined model

µs,bα (xΛs
α
, xΛb

α
) ∝ µ̂sα(xΛs

α
)µ̃bα(xΛb

α
)ψ(xΛs

α
, xΛb

α
) (4.19)

for both the surface and the blanket of the subfield such as shown in Figure 4-8(b).
For instance, in GMRFs, joining µ̂sα = (helimΛs

α
, JelimΛs

α
) and µ̃bα = (hthin

Λb
α
, J thin

Λb
α
) gives

µs,bα = (hjoin, J join) with information parameters

hjoin =

(
helimΛs

α

hthin
Λb

α

)
(4.20)

J join =

(
JelimΛs

α
K

K ′ J thin
Λb

α

)
(4.21)

with reinstated interactions K ≡ JΛs
α,Λ

b
α
.

Now we thin this joined model to remove weak interactions from the cavity model.
However, since the blanket model is only acting as a “stand-in” for the rest of the
(intractable) graphical model, we still only perform moment matching within the
cavity. This means that only the parameters of the cavity model are adjusted, but
these are adjusted so as to preserve moments computed under the joined model.
Hence, the only influence the blanket model has is in the calculation of moments
inside the cavity. The model thinning step insures that these moments are the same
before and after pruning edges from the model. This gives our thinned cavity model
µ̃sα as illustrated in Figure 4-8(c).
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(a)

(b)

(c)

(d)

Figure 4-8: Illustration of model thinning in upward cavity-remodeling pass. A previ-
ously constructed blanket model is joined with our cavity model while thinning edges
in the cavity model. That is, all moment calculations are performed with the blanket
model attached but only the parameters of the cavity model are adjusted during mo-
ment matching. Once thinning is complete, the cavity model is extracted and may
then be used to infer other parts of the field. Essentially, the intent of this approach
is to get from (a) to (d) while incurring minimal KL-divergence. The blanket model
functions as a tractable substitute for the exterior field while selecting a favorable
cavity model.
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In GMRFs, this means that we solve for the thinned joint model (hthin, J thin)
which satisfies the following conditions:

1. The blanket and surface-to-blanket interactions are held fixed.

hthinΛb = hjoin
Λb (4.22)

J thinΛb = J join
Λb (4.23)

J thinΛs,Λb = J join
Λs,Λb (4.24)

2. The cavity model is thinned so as to respect a thinned interaction graphGthin
Λs =

(Λs, E thinΛs ). That is, we require
J thinγ,λ = 0 (4.25)

for all γ, λ ∈ Λs where {γ, λ} is not an edge of Gthin
Λs , {γ, λ} �∈ E thinΛs .

3. The moments of the thinned cavity model are held fixed. That is we match the
mean parameters

((J thin)−1hthin)Λs = ((J join)−1hjoin)Λs (4.26)

and match the covariance parameters

(J thin)−1
γ,λ = (J

join)−1
γ,λ (4.27)

for all γ, λ ∈ Λs where either γ = λ or {γ, λ} is an edge ofGthin
Λs , {γ, λ} ∈ E thinΛs .9

Together, these conditions uniquely determine the thinned cavity model µ̃sα spec-
ified by the information parameters (hthinΛs , J thinΛs ). This corresponds to performing
m-projection to the e-flat submanifold specified by conditions (1) and (2). We solve
for this m-projection by performing our LIS moment-matching technique within this
exponential family until the moment constraints (3) are met.10 This also gives the
maximum-entropy distribution subject to just (1) and (3).

Note that, once the model thinning step is completed, the blanket model is
“deleted”, only the thinned cavity model for the surface of the cell is retained. This,
in turn, is used to infer other parts of the field such as suggested in Figure 4-8(d).
Essentially, in going from (a) to (d), we only employ the blanket model as a tempo-
rary tractable substitute for the rest of the field in order to guide our selection of a
thinned cavity model.

Blanket Remodeling. Likewise, in the downward blanket-modeling pass of RCM,
we design each blanket model to yield a simplified model of the interactions outside

9Note that we do not condition on any state of the blanket in the remodeling approach. The mo-
ments preserved during model thinning actually correspond (approximately) to the actual moments
calculated under the full graphical model.

10This actually is a very minor modification of the moment matching procedure used in the initial
cavity modeling procedure. The only additional complexity is in the moments calculation which
requires inference of the joined model of both the surface and the blanket.
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of a given subfield for the sake of performing tractable inference inside that subfield.
Hence, in selecting our thinned approximation for the blanket model, we should take
into account the interaction with that subfield. A tractable approach is to make use
of any existing cavity model for the subfield, together with the known interactions
between the surface and blanket of the subfield, while selecting our refined blanket
model approximation. This idea is illustrated in Figure 4-9.

The model thinning operation in the downward blanket-remodeling pass is modi-
fied in a similar manner as in the upward cavity-remodeling pass but where the roles
of the cavity and blanket models are reversed. In Figure 4-9(a), we have an initial
blanket model we would like to thin. While selecting a thinned model of the blanket,
we substitute a previously constructed cavity model for the enclosed subfield as shown
in Figure 4-9(b). This joined cavity-blanket model is then thinned while holding the
parameters of the cavity model fixed, only adjusting the parameters of the blanket
so as to hold fixed the corresponding moment characteristics. This yields a thinned
blanket-cavity model such as shown in Figure 4-9(c). Finally, the original subfield
may be substituted in place of the cavity model so that our thinned blanket model
supports inference of the enclosed subfield such as indicated in Figure 4-9(d).

This completes specification of our remodeling version of two-pass RCM. Iterating
this two-pass remodeling approach then gives an iterative version of RCM where we
might hope that the method converges to a stable set of cavity/blanket models giving
improved approximations of the marginal models provided by RCM. We examine this
further in some simulated examples given at the end of the next section.

4.3 Simulations

In this section we demonstrate the RCM approach to inference in GMRFs for some
simulated image processing examples. This both clarifies and motivates the methods
developed in this thesis and also shows that RCM can provide a tractable yet near-
optimal inference approach. We first specify a prior image model and pose three
image restoration problems based on noisy, partial observations of random images
distributed according to this prior model. We then show the results of applying the
basic two-pass version of RCM for three such simulated examples. Some diagrams are
given to show the thinned structure of the cavity and blanket models developed during
this procedure. The quality of the estimated pixel values (conditional means) and
uncertainties (square-roots of conditional variances) are compared to the exact values
computed by recursive inference methods.11 Next, we examine the performance of
the iterative renormalization method and show that this iteratively refines the quality
of the mean estimates to machine precision. The estimated uncertainties, however,
are not refined by this procedure. Finally, we look at the performance of the iterative
remodeling approach which has the advantage that both the mean estimates and the

11Here, for the sake of verification, we look at an image processing example which is sufficiently
small to allow exact recursive inference. Exact calculations are performed by running RCM without
any model thinning (δ = 0) which is much slower than in the thinned version of the algorithm but
still much faster than the “brute-force” calculation (x̂, P ) = (J−1h, J−1).
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(a) (b)

(c) (d)

Figure 4-9: Illustration of model thinning in downward blanket-remodeling pass. A
previously constructed cavity model is joined with our blanket model for the purpose
of thinning edges in the blanket model. That is, all moment calculations are performed
with the cavity model attached but only parameters of the blanket model are adjusted
during moment matching. Once thinning is complete, the blanket model is extracted
and may then be used to infer the enclosed subfield. Essentially, the intent of this
approach is to get from (a) to (d) while incurring minimal KL-divergence. The cavity
model functions as a tractable substitute for the enclosed subfield while selecting a
favorable blanket model.
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uncertainty estimates are refined.

Prior Image Model. First, we specify our prior image model. In these examples,
we consider a 64 × 64 image with real-valued scalar pixels. We model our image as
being a sample of a GMRF xΓ with sites Γ = {(i, j)|i = 1, . . . , 64, j = 1, . . . , 64}
arranged on a 2-D square grid. We assume nearest-neighbor interactions such that
xΓ is Markov with respect to the graph GΓ = (Γ, EΓ) with edge set EΓ comprised of
vertical edges {(i, j), (i, j+1)} and horizontal edges {(i, j), (i+1, j)} linking adjacent
vertices in the grid. Our prior image model has zero-mean and sparse information ma-
trix (inverse covariance) J = P−1 designed to respect the conditional independencies
imposed by GΓ. We construct J as a sum of pairwise interactions

JE =

(
1.0 −0.99
−0.99 1.0

)
(4.28)

for each edge E = {γ, λ} ∈ EΓ. That is,

Jγ,λ =
∑
E∈EΓ

(JE)γ,λ (4.29)

where (JE)γ,γ = (JE)λ,λ = 1.0, (JE)γ,λ = (JE)γ,λ = −0.99, and is otherwise zero.
Hence, J has diagonal values of 4.0 (at sites corresponding to interior nodes of the
grid), 3.0 (along the edges of the grid), and 2.0 (at the corners of the grid); and
has off-diagonal values of either -0.99 (at locations corresponding to edges) or zero
(between non-adjacent sites). In this GMRF, the partial correlation coefficients be-
tween interior sites are ρ = 0.2475.12. This gives a symmetric, positive-definite matrix
with reciprocal condition number ≈ 0.004 (this is the ratio between the smallest and
largest eigenvalues of J such that small values indicate a nearly singular matrix). We
design our model in this way in order to yield a GMRF with positive, nearly-uniform
interactions where the strength of interactions are made about as strong as possible
while still giving a non-singular information matrix.

All examples are based on a randomly generated sample of our prior image model.
We simulate a sample of this image model by the following method due to Rue
[119]. First, an ordering is adopted for the the sites Γ so as to give a low bandwidth
representation of the information matrix.13 Next, the Cholesky factorization of J
is computed. This gives a sparse, low bandwidth, upper triangular matrix R such
that J = R′R. Then, we simulate a vector of 64 independent, identically distributed
standard Gaussian deviates w = (wk, k = 1, . . . , 64

2) such that w ∼ N (0, I). Finally,
we solve Rx = w employing standard iterative methods.14 This gives a zero-mean
Gaussian random vector with covariance E{xx′} = R−1E{ww′}(R′)−1 = R−1(R′)−1 =

12The partial correlation coefficients are somewhat larger at the edges and corners of the grid (i.e.,
ρ = 0.29, 0.33, 0.40).

13We used the symmetric reverse Cuthill-McKee permutation, computed by the Matlab subroutine
symrcm.

14We used the generalized minimum-residual method available as a Matlab subroutine gmres.
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(R′R)−1 = J−1 as desired. A sample image generated in this fashion is shown at top-
left in Figure 4-10. We use this same sample image in all three of the following image
restoration examples.

Three Image Restoration Examples. We now pose three image-restoration
problems based on the preceding prior image model. In each of our three exam-
ples, we generate a noisy measurement of the state of some site γ according to the
measurement model,

yγ = xγ + vγ (4.30)

where the measurement noise is generated according to the zero-mean Gaussian dis-
tribution vγ ∼ N (0, σ2) with standard deviation σ. We then consider the following
image restoration problems:

1. All Pixels Observed. First, we consider the case where we have noisy observa-
tions of every pixel in the image. In this case, we set σ = 1.0 such that there is
a significant level of noise relative to the variance in the prior image model. A
set of measurements simulated in this way is shown at top-right in Figure 4-10.

2. Sparse Observations. Second, we consider the case where we have a high rate
of “data drop-out” such that only a fraction of the pixels in the image are
observed. We model the occurrence of observations as being independent at
each pixel and occurring with probability 0.05 such that about five percent
of the pixels are observed. In this case, we set σ = 0.1 so that these sparse
observations are more accurate than in the preceding fully-observed case. A set
of measurements simulated in this way is shown at bottom-left in Figure 4-10.

3. Boundary Observations. Lastly, we consider the case where we have noisy mea-
surements only along the boundary of the image. That is, we have observations
at just those site along the edges of the grid. In this case we consider near-
perfect observations with σ = 0.01. A set of measurements simulated in this
way are shown at bottom-right in Figure 4-10.

In all three examples we simulate noisy observations of the same underlying image (the
previously simulated sample of our prior image model) but the measurement noise is
independently simulated in each case. We then wish to calculate, in each example,
the conditional marginal distribution p(xγ|y) of the state at each pixel xγ conditioned
on all available observations y. This is a Gaussian distribution xγ|y ∼ N (x̂γ(y), σ̂2γ)
specified by the conditional mean x̂γ(y) = E{xγ|y} and the conditional variance
σ̂2γ = E{(xγ − x̂γ(y))2}. This may also be posed as marginalization of the conditional
distribution p(xΓ|y) ∝ exp{−1

2
x′ΓĴxΓ−ĥ′xΓ} where ĥ is specified by the measurements

ĥγ =

{
yγ/σ

2, γ observed.
0, γ not observed.

(4.31)

166



−2

−1

0

1

2

3

Random Image Sample

10 20 30 40 50 60

10

20

30

40

50

60 −4

−3

−2

−1

0

1

2

3

4

Measurements

10 20 30 40 50 60

10

20

30

40

50

60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Measurements

10 20 30 40 50 60

10

20

30

40

50

60 −2

−1

0

1

2

3

Measurements

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4-10: Three simulated image restoration problems. First, we simulate a sample
of our prior image model (top left). Then, we simulate three noisy and/or partially
observed versions of this image either having: noisy measurements (σ = 1.0) of each
pixel (top right); sparse measurements (σ = 0.1) for a randomly selected subset of
pixels (bottom left), or just measurements (σ = 0.01) of those “boundary” pixels
going around the perimeter of the image (bottom right). The measurement noise is
independent in each of these three simulations. Given any one of the observation
images we should like to estimate (restore) the underlying sample image and also
estimate the pixel-by-pixel uncertainty in our restoration.
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and where Ĵ has diagonal elements given by

Ĵγ,γ =

{
Jγ,γ + 1/σ

2 γ observed.
Jγ,γ, γ not observed.

(4.32)

and off-diagonal elements given by Ĵγ,λ = Jγ,λ for all γ �= λ. We may also use RCM
in place of an exact marginalization procedure.

Two-Pass “Block” RCM. We now discuss how we use the RCM inference pro-
cedure to perform image restoration (e.g., estimation of the underlying image from
the available observations) in these examples. We have actually found it somewhat
beneficial to perform a “block” version of RCM for GMRFs with scalar-valued states.
This means that we first convert the original 64 × 64 GMRF (having scalar-valued
states at each site) into an equivalent 16 × 16 GMRF (having 16-D vector-valued
states corresponding to 4× 4 subfields of the original GMRF). We then run RCM for
this latter GMRF having 16-D states at each site which produces a marginal model
for each 4×4 patch of the image (corresponding to a site in the “blocked” GMRF). It
is then straight-forward to calculate the single-pixel distributions within each of the
4× 4 marginal models yielding the desired estimates of the means x̂γ and associated
uncertainties σ̂γ for every pixel γ ∈ Γ of the original 64× 64 image.

Cavity and Blanket Models. We have executed this blocked version of RCM for
each of our three examples with precision parameter δ = 10−4 controlling the com-
plexity of the cavity and blanket models developed during the procedure and with
moment matching tolerance ε = 10−12 controlling the precision of our iterative mo-
ment matching subroutines. We show selected “snapshots” of this procedure for the
fully-observed example in Figure 4-11 (the other examples are similar). In all of these
“blocked” examples, the choice of precision parameter δ = 10−4 leads to the selec-
tion of mostly singly-connected chains and loops going around the boundary of each
subregion (but sometimes adds an extra edge at the “corners” of these subregions).

However, in this blocked version of RCM, each node actually represents a 4 × 4
patch of the image. Hence, the cavity and blanket models shown are actually rather
more complex than they appear. Each node represents a fully-parameterized 4 × 4
Gaussian subfield (represented by a 16-D influence vector and 16 × 16 symmetric
information matrix) and each edge actually represents 162 interactions between the
coupled 4×4 subfields. Hence, in the moment-matching subroutines, iterative scaling
adjusts all of these parameters to preserve a corresponding set of moments including
cross-covariances between every pair of pixels contained in either the same 4 × 4
block or in adjacent 4 × 4 blocks. Note also that, in this blocked approach, RCM
essentially treats the Markov blanket of a given subfield as the “fat” boundary of
that subfield of width 4 (i.e., all pixels within 4 steps of that subfield in the original
64×64 model). Essentially, our cavity and blanket models are actually augmented by
three extra layers of latent variables. Hence, the cavity and blanket models shown,
while having rather simple graphical structure, actually represent very rich, precisely
refined models for these “fat” Markov blankets.
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Figure 4-11: Selected snapshots of Two-Pass RCM in 16 × 16 blocked GMRF (each
node represents a 4 × 4 patch of the image). We display 8 frames from the upward
pass followed by 7 frames from the downward pass. This shows how RCM propagates
information from the lower-left corner to the upper-right corner.
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Choice of Block Size. Of course, selection and inference of such rich families of
cavity/blanket comes at a heavy computational expense which limits how large a
block size we can use. While the actual number of “block” computations15 is reduced
(roughly by a factor of 42 = 16), each such operation now requires roughly 43 = 64
floating point calculations. Hence, one might expect 4 × 4 blocking to increase run-
time by about a factor of 4. Paradoxically, we actually find that a moderate amount
of blocking actually tends to reduce the execution time of RCM. Apparently, this is
due to the vector pipelining effect which allows a “pipelined” sequence of floating-
point calculations, performed sequentially without interruption on data stored in
contiguous memory, to execute in an accelerated manner.16 Hence, the cost of any
“extra” floating point calculations arising due to blocking is not nearly as onerous
as one might initially expect. We should also remark that this effect is probably
exaggerated due to our Matlab implementation of RCM.17 Hence, perhaps smaller
block sizes would be preferable in a more efficient compiled version of RCM but we
would still expect some blocking to prove beneficial. In any case, once we have made
the block size large enough to saturate these effects, further increase of block size is
not warranted and will only slow down our RCM approach. For instance, in these
examples, the 4 × 4 block size apparently saturates these effects. Indeed, switching
to 8× 8 blocks increases the run-time of RCM by about a factor 43 = 64.

Computational Complexity. Based on the observation that, in these image pro-
cessing examples, RCM constructs very thin graphical models for cavity and blanket
models, coming close to either a Markov chain (for those dissection cells along the
boundary of the image) or a “long loop” (for those dissection cells embedded in the
interior of the image), let us give a “back of the envelope” estimate of the computa-
tional complexity of RCM as a function of the dimension N = W ×W of the image
(N is the number of pixels in a W ×W image).18 For simplicity, let us consider im-
ages where W = 2k (for k = 1, 2, . . .) and estimate the computational complexity of

15For instance, elimination of a 4 × 4 block in the thinning and inference subroutines or the
computation and accrual of an IPF update for a 4 × 4 block (or pair of adjacent blocks) in the
moment-matching subroutine.

16Modern digital processors are adept at optimizing such pipelined calculations by breaking down
the floating point operation (flop) into a sequence of Nflop ≈ 16 suboperations each implemented by a
separate unit on the microchip. For a single flop, these suboperations must be performed sequentially
(requiring Nflop cycles per flop). Yet, these suboperations may be performed in parallel for a
pipelined sequence of flops (requiring an average of 1/Nflop cycles per pipelined flop). Essentially,
this means that N2

flop pipelined flops require about the same amount number of cycles as Nflop non-
pipelined flops. This is the motivation for the use of block representations of sparse matrices and the
associated “block” versions of matrix computation algorithms often employed in iterative methods
(see Golub and Van Loan [63]).

17Essentially, blocking allows efficient compiled subroutines to do most of the work placing less
burden on higher-level control mechanisms of RCM executed by the Matlab interpreter. As the
Matlab interpreter is notoriously slower than compiled C code, this displacement of computation
towards lower-level compiled subroutines can also significantly reduce execution times.

18The effect of vector-pipelining, however, is neglected in this analysis. Essentially, an appropriate
amount of blocking can at best reduce execution time by a factor of 1/Nflop where Nflop indicates
the degree to which floating point computations can be done in parallel.
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RCM for such images assuming such thin chain-like and loop-like cavity and blanket
models.

The brunt of the computation occurs in the iterative moment matching subroutine
used to calculate our m-projections (and associated moment calculations). Each
iteration of our LIS technique calls an inference subroutine for the cavity or blanket
model being calculated, computes a set of local IPF updates, and fuses these IPF
updates to yield the LIS update for the parameters of the graphical model. Assuming
maximal cliques in all of our cavity and blanket models stay below some specified size,
each of these steps is linear in the size of the cavity or blanket model (the total number
of nodes in the cavity or blanket model).19 So let us assume that each iteration of
moment matching requires O(α(δ)s) computations where s is the size of the cavity or
blanket model and α(δ) indicates the dependence of the scaling factor on our choice
of δ parameter. For GMRFs, we estimate α(δ) ∼ O(m3(δ)) where m(δ) is the state
dimension of maximal cliques in our cavity and blanket models. This maximal clique
size will grow as δ becomes small. Very roughly, we estimate that m(δ) ∼ O(log δ−1)
as δ approaches zero.20

In the case of singly-connected Markov chains, our LIS method actually is exact
after just one iteration. In the case of loopy graphs, several iterations are usually
required to obtain a given tolerance. Hence, let us simply suppose that a constant
number c(ε) of iterations always suffices to match moments to tolerance ε. Since, in
loopy graphs, LIS seems to gain significant digits linearly in the number of iterations
(see experiments in Chapter 3), the author roughly estimates that c(ε) ∼ O(log ε−1)
as ε approaches zero. Hence, we estimate that O(c(ε)m3(δ)s) ≈ O(log ε−1 log3 δ−1s)
computations are required to calculate a cavity or blanket model with s nodes.

Under these assumptions, we conclude that the total computation of RCM per-
formed at each level of dissection (for fixed δ, ε) is linear in the number of “surface”
nodes produced by dissection. Roughly speaking, the total number of surface nodes
doubles at each level of dissection, with O(W ) surface nodes at the first level of
dissection and O(N) surfaces nodes at the last level of dissection. Hence, we esti-
mate that the total computation is proportional to N +N/2 +N/4 + · · · +N/W <
N(1 + 1/2 + 1/4 + · · ·) = 2N . That is, most of the computation is performed at or
near the finest level of dissection and the total computation is bounded above by an
O(N) function.

Hence, we arrive at our estimate O(c(ε)m3(δ)N) ≈ O(log ε−1 log3 δ−1N) of the
computational complexity of RCM for a square image with N pixels. This indicates
a scalable approach to inference which is linear in the number of pixels N in the
image. This also shows that doubling the moment matching precision (replacing
ε= 1 by ε2) will approximately double run-times. However, we expect that likewise
doubling the precision of our model selection criterion (replacing δ = 1 by δ2) will

19This requires that we implement the inference subroutine in an appropriate recursive manner
to take advantage of the thin structure of these cavity and blanket models.

20This estimate is based on the observation that doubling the precision of RCM (replacing δ by
δ2) appears to typically have the effect of doubling the “range” of interactions retained in our model
thinning procedures. In the context of these 2-D image processing examples, this has the effect of
doubling the size of maximal clique in our essentially 1-D boundary models.
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increase run-times approximately by a factor of eight.21 Hence, this does limit how
small we can make δ (thereby limiting the accuracy we can achieve with RCM) while
still giving a tractable inference procedure (with a small amount of computation per
node). Nevertheless, we shall see in our examples that we can achieve some very
accurate results while still keeping the computation per node at a reasonable level.

Accuracy. The results of performing this Block-RCM procedure for each of our
three examples are shown in Figures 4-12, 4-13 and 4-14 respectively. In each case,
we show the actual image (a random sample of our prior image model), the available

noisy/partial observations, the estimated conditional means x̂
(RCM)
γ (y), and the esti-

mated conditional uncertainties σ̂
(RCM)
γ . We have also computed the exact conditional

means x̂γ(y) and uncertainties σ̂γ for the sake of comparison. The deviation of the
RCM estimates from these optimal values are displayed as relative errors (normalized
by the actual uncertainty).

re1γ =
x̂
(RCM)
γ (y)− x̂γ(y)

σ̂γ
(4.33)

re2γ =
σ̂
(RCM)
γ − σ̂γ

σ̂γ
(4.34)

=

(
σ̂
(RCM)
γ

σ̂γ

)
− 1 (4.35)

These are also displayed as images for each of our three examples.
In all three examples our RCM state estimates agree with the optimal state es-

timates to at least three or four digits. The uncertainty estimates appear to be
somewhat more precise agreeing with the exact values to at least four or five dig-
its. It is also interesting to note that RCM consistently underestimates uncertainties.
This is not too surprising since all inferences in RCM are based on approximate cav-
ity and blanket models which are selected by conditional m-projections (conditioned
on zero boundary conditions). Since conditioning decreases uncertainty, we might
expect any inferences made with these cavity and blanket models might tend to make
overconfident predictions leading to underestimates of the final uncertainty in each
state estimate.

Blocky Artifacts. It is apparent that the relative errors in our estimates tend to
be largest near the boundaries and corners of our smallest dissection cells. This is
to be expected since the inference calculations performed within each dissection cell
are otherwise exact except for the use of an approximate blanket model. Typically,
errors due to a misleading blanket model are most apparent at the surface of the

21Actually, in order for δ to be indicative of accuracy, we presumably should keep ε < δ (for
instance, by setting ε = δ × 10−8) so that the cost of δ-precision RCM is actually O(log4 δ−1N) as
δ approaches zero. Then, doubling the precision of RCM actually increases run-time by about a
factor of 16.
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cell. However, we point out that these “blocky artifacts” are nevertheless sufficiently
small so as not to be apparent in the restored images and associated images of the
uncertainty. In fact, visually comparing the RCM estimates (and uncertainties) to the
optimal estimates (and uncertainties), the author could not visually discern the differ-
ences between these images. This is in contrast to seemingly comparable methods in
the state-reduced multiscale modeling approach (see examples given in Luettgen [91],
Irving [72] and Frakt [55]). Also, the author wishes to emphasize that the severity of
our blocky artifacts do not seem to be a function of which “cut” we are near. For in-
stance, the errors near the coarsest cut, where the field is first cut into two halves, do
not appear to be any more substantial than those at the finest level of dissection. We
think this shows the advantage of our thinned Markov-blanket approach over those
state-reduced multiscale modeling methods (see discussion in Section 2.3.3).

It should also be remarked that we could make the relative errors gradually van-
ish by decreasing the δ parameters in these experiments (at the expense of additional
computation). For instance, setting δ = 10−8 produces state and uncertainty esti-
mates accurate to around 9 or 10 digits. Yet, decreasing δ in this way causes the
cavity and blanket models developed by the method to gradually become more fully
connected22 so that the computational advantage of thinning is gradually lost.23 As
an alternative approach for improving accuracy (without decreasing δ), we consider
our two iterative refinement procedures in the remainder of the section.

Iterative Renormalization. In this section we show the result of applying the
iterative renormalization technique to improve the state estimates produced by RCM.

Recall that this corresponds to performing a Richardson iteration with RCM play-
ing the role of a preconditioner. This is initialized by running RCM for our graphical
model (h, J) and setting x̂(0) = x̂(RCM). This inference is then iterated generating a
sequence of improved image estimates x̂(k) for k = 1, 2, 3, . . . by rerunning RCM with
inputs (h(k), J) where h(k) = h − Jx̂(k−1) is the residual error image of the previous
iterate. This produces a correction term ∆x̂(k) which is added to our image estimate
x̂(k) = x̂(k−1) +∆x̂(k) seeding the next iteration.

Here, we again perform RCM with parameters (δ = 10−4, ε = 10−12) as in the
previous experiments. In each example, we have performed 12 iterations of iterative
renormalization. In Figure 4-15, we show the convergence in all three examples by
plotting the relative residual error,

e(k) =
‖h− Jx̂(k)‖

‖h‖ , (4.36)

which indicates how close we have come to solving Jx̂ = h. Note that all three

22For instance, in our 4 × 4 blocked examples, setting δ = 10−8 tends to produce cavity and
blanket model where each block is coupled to the two nearest blocks in the boundary on either side
of that block producing richer models which require more computation in the inference and moment
matching subroutines.

23Nevertheless, in much larger fields, we could still allow a substantial amount of fill while keeping
computation well below that of the exact version of the algorithm.
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examples converge to a relative residual error of about 10−16, indicating convergence
to the machine’s relative floating point accuracy.24 Moreover, after the 2nd iteration,
the convergence seems to be linear in our logarithmic plots indicating exponential
decay of the residual error until machine precision is reached. Each iteration reduces
the relative residual error by about three orders of magnitude (a factor of 1000) giving
very rapid convergence.

In Figures 4-16, 4-17 and 4-18, we also show images of the relative state estimation
errors and of the residual error images h(k) of selected iterates (in these figures, the
first pair of images is the result of two-pass RCM shown for comparison). Note that
both error images are reduced during the iteration approaching machine precision.

Iterative Remodeling. In this final set of experiments, we consider the iterative
remodeling procedure for improving both the state estimates and the uncertainty
estimates produced by RCM.

Recall that, in this approach, we modify the RCM procedure to take advantage
of the blanket and cavity models calculated on previous iterations of RCM while
calculating new cavity and blanket models. We illustrate this procedure for the
upward and downward passes of the remodeling procedure in Figures 4-19 and 4-20.
The upward pass proceeds as before except that the cavity model thinning step is
modified to take advantage of the blanket model from the preceding downward pass.
This means that, while thinning, we join the cavity model with the blanket model so
that that the moments preserved during m-projection are those computed assuming
the blanket model (rather than assuming zero boundary conditions as in two-pass
RCM or estimating the state of the boundary as in renormalization). Note, however,
that we still only match moments within the cavity. This may be interpreted as
approximating a global m-projection where the calculated moments now approximate
the true moments (such as would be given by global inference of the entire GMRF
were this feasible) but we still only refine parameters within the cavity model to
match a corresponding set of locally-defined moments. Once moment matching is
complete, the blanket model is deleted yielding our new cavity model and the upward
pass continues. Likewise, in the downward remodeling pass, we exploit the previously
constructed cavity model (from the preceding upward pass) while thinning the new
blanket model. Alternating these upward and downward remodeling passes gives an
iterative method. We should like to see if this iteration converges to a stable set
of cavity and blanket models and if this yields improved estimates of the pixel-level
marginal distributions.

We have executed this iterative remodeling procedure, performing 6 iterations
with parameters fixed at (δ = 10−4, ε = 10−12), for all three of our image restoration
examples. The result of these iterations are shown in Figures 4-21, 4-22, 4-23 and
4-24. We show the errors in the estimated means and uncertainties relative to the
correct means and uncertainties (computed previously by exact recursive inference).
In all three examples, the method appears to reach a stable point after 2-4 iterations.

24About 2.2 × 10−16. This is the distance from 1.0 to the next largest number which can be
represented exactly by the machines finite-precision floating point number system.
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Both the estimated means and uncertainties are improved as shown by the decrease
in relative errors with most of the improvement occurring on the first iteration. The
improvement in the estimated means is much more substantial than the improvement
in the estimated uncertainties. The estimated means are improved by about 5-7 orders
of magnitude. However, unlike the iterative renormalization method, the estimated
means do not converge to machine precision. The improvement in the estimated
uncertainties is moderate in the fully and sparsely observed examples (the largest
errors are reduced by about 15%) but more substantial in the example with just
boundary observations (the largest error are reduced by about an order of magnitude).

175



−2

−1

0

1

2

3

Random Image Sample

10 20 30 40 50 60

10

20

30

40

50

60 −4

−3

−2

−1

0

1

2

3

4

Measurements

10 20 30 40 50 60

10

20

30

40

50

60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

State Estimates

10 20 30 40 50 60

10

20

30

40

50

60
0.52

0.54

0.56

0.58

0.6

0.62

0.64

Uncertainty of Estimates

10 20 30 40 50 60

10

20

30

40

50

60

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Relative Error in Estimates

10 20 30 40 50 60

10

20

30

40

50

60 −3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3Relative Error in Uncertainties

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4-12: Fully-observed image restoration example. A sample of our GMRF
image model is shown (top left). based on this sample, we simulated a set of noisy
measurements of each pixel in the sample image (top right). Given these observations,
we then estimate the image using our RCM inference technique. This yields the
restored image (middle left) and associated pixel-by-pixel uncertainties (middle right).
Finally, at bottom, we compare these RCM estimates of the pixel means (bottom left)
and uncertainties (bottom right) to the optimal values.
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Figure 4-13: Sparsely-observed image restoration example. A sample of our GMRF
image model is shown (top left). based on this sample, we simulated a set of noisy
measurements of a randomly selected subset of pixels (top right). Given these ob-
servations, we then estimate the original image using our RCM inference technique.
This yields the restored image (middle left) and associated pixel-by-pixel uncertain-
ties (middle right). Finally, at bottom, we compare these RCM estimates of the pixel
means (bottom left) and uncertainties (bottom right) to the optimal values.
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Figure 4-14: Boundary-observed image restoration example. A sample of our GMRF
image model is shown (top left). Based on this sample, we simulated a set of noisy
measurements of just those pixels going around the perimeter of the image (top
right). Given these observations, we then estimate the original image using our RCM
inference technique. This yields the restored image (middle left) and associated pixel-
by-pixel uncertainties (middle right). Finally, at bottom, we compare these RCM
estimates of the pixel means (bottom left) and uncertainties (bottom right) to the
optimal values. 178
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Figure 4-15: Convergence of iterative renormalization in the relative residual error for
each of our three image restoration examples: fully-observed (top), sparsely-observed
(middle) and boundary-observed (bottom).
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Figure 4-16: Iterative renormalization in fully-observed image restoration example.
Errors arising in iterative renormalization approach with noisy measurements at every
pixel. The residual errors (left column) and relative state estimation errors (right
column) after 2 iterations (top row), 4 iterations (2nd row), 8 iterations (3rd row),
and 12 iterations (bottom row). 180
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Figure 4-17: Iterative renormalization in sparsely-observed image restoration exam-
ple. The residual errors (left column) and relative state estimation errors (right
column) after 2 iterations (top row), 4 iterations (2nd row), 8 iterations (3rd row),
and 12 iterations (bottom row).
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Figure 4-18: Iterative renormalization in boundary-observed image restoration ex-
ample. The residual errors (left column) and relative state estimation errors (right
column) after 2 iterations (top row), 4 iterations (2nd row), 8 iterations (3rd row),
and 12 iterations (bottom row).
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Figure 4-19: Selected snapshots of upward pass of iterative remodeling in 16 × 16
blocked GMRF (each node corresponds to 4× 4 patch of the image). This shows the
construction of two cavity models.
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Figure 4-20: Selected snapshots of downward pass of iterative remodeling in 16× 16
blocked GMRF (each node corresponds to 4 × 4 patch of the image). This shows
construction of two blanket models and inference of a subfield from enclosing blanket
model.
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Figure 4-21: Iterative remodeling in the fully-observed image restoration example.
Images of the relative mean-state estimation errors (left column) and relative uncer-
tainty estimation errors (right column) arising in our iterative remodeling approach.
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Figure 4-22: Iterative remodeling in sparsely-observed image restoration example.
Images of the relative mean-state estimation errors (left column) and relative uncer-
tainty estimation errors (right column) arising in our iterative remodeling approach.
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Figure 4-23: Iterative remodeling in the boundary-observed image restoration exam-
ple (continued in Figure 4-24). Images of the relative mean-state estimation errors
(left column) and relative uncertainty estimation errors (right column) arising in our
iterative remodeling approach after 1 and 2 iterations (middle and bottom rows).
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Figure 4-24: Iterative remodeling in the boundary-observed image restoration exam-
ple (continued from Figure 4-23). Images of the relative mean-state estimation errors
(left column) and relative uncertainty estimation errors (right column) arising in our
iterative remodeling approach after 3, 4 and 5 iterations (top, middle and bottom
rows).
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Chapter 5

Conclusion

This thesis has presented a general framework, recursive cavity modeling, for tractable
approximate computation of the marginal distributions of Markov random fields and
has detailed implementation of this method for Gauss-Markov random fields in par-
ticular.

In the next section we give a summary of our approach and identify the original
contributions of the thesis. In Section 5.2, we outline some promising directions for
further research and development.

5.1 Contributions

First, the main ideas underlying the approach are summarized:

• Nested dissection gives a tree-structured decomposition of the graphical model.
This entails recursively partitioning the sites of the field into smaller and smaller
subfields called dissection cells. The nested structure of this dissection proce-
dure is recorded as a dissection tree where the root of the tree corresponds to
the entire field and the leaves correspond to the smallest (final) dissection cells.

• Recursive inference methods are adopted to provide a two-pass tree-structured
(non-loopy) message-passing inference procedure structured according to the
dissection tree:

– An upward pass recursively builds cavity models for each dissection cell,
a compact yet faithful graphical model for the surface of each cell suffi-
cient (or nearly so) for inference outside that cell. Each cavity model is
constructed from cavity models of subcells.

– A downward pass recursively builds complementary blanket models for each
dissection cell, a compact graphical model for the blanket of each cell
sufficient (or nearly so) for inference inside that cell. Each blanket model
is constructed from an adjacent cavity model and an enclosing blanket
model.
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Blanket models for the smallest dissection cells (at the leaves of the tree) then
support approximation of the marginal models for each subfield.

• Model thinning of cavity and blanket models is introduced to provide tractable
yet near-optimal inference. Some key features of our model thinning technique
are emphasized:

– M-Projection. We thin cavity and blanket models by m-projection to lower-
order exponential families (minimizing KL-divergence) thereby pruning se-
lected weak interactions from the model. This also gives the maximum-
entropy model subject to a correspondingly reduced set of moment con-
straints so that RCM may be viewed as a “forgetful” inference approach
where only a subset of the moment characteristics are preserved through
the computation.

– Moment Matching. The necessary m-projections are evaluated by moment
matching within the lower-order exponential family using our loopy iter-
ative scaling (LIS) moment-matching technique. This is loosely based on
iterative scaling (e-projection) techniques such as iterative proportional
fitting (IPF). Our approach, however, is more aggressive in that we fuse
IPF updates for all maximal cliques (in the thinned cavity/blanket model),
in a manner which attempts to correct for “overcounted” intersections, so
as to obtain more rapid convergence to the desired moments.

– Model Selection. An AIC-like information criterion, balancing model com-
pactness against model fidelity, is adopted to guide our selection of thinned
cavity and blanket models in a principled manner. We use an inductive
approach to model selection which allows the effect of pruning weaker in-
teractions to be determined before deciding what other interactions might
also be pruned. Model thinning continues until we can no longer identify
m-projections to lower-order families while keeping the information loss per
removed parameter less than the precision parameter δ of our information
criterion.

Hence, our inference approach is really as much about modeling as inference
and relies heavily on ideas borrowed from information geometric modeling tech-
niques for the selection of compact yet faithful cavity and blanket models.

• Iterative extensions of this approach allow refinement of the approximations
introduced by RCM giving improved approximation of marginal distributions.
Having shown that the model-thinning m-projections performed in RCM are
performed relative to certain “ground-state” boundary conditions (implicit in
our choice of potential specifications), we have proposed two iterative extensions
of RCM performing modified m-projections so as to refine these approximations.

– Renormalization. In the first approach, we use two-pass RCM to gener-
ate a state estimate and then “renormalize” the potential specification,
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resetting the ground state to this estimate. Then, subsequent RCM ap-
proximations are conditioned on the estimate of the state on the boundary
of each subfield being approximated. In GMRFs, this reduces to a Richard-
son iteration with RCM playing the role of a preconditioner. The means
of our approximate marginal models then converge to the true means.

– Remodeling. In this approach, rather than conditioning on some state
estimate while thinning, we instead incorporate a previously constructed
thinned model of the boundary (one of our cavity or blanket models).
Then, the m-projections performed by RCM correspond (at least approx-
imately) to global (unconditional) m-projections where we thin a cavity
model by matching moments computed under the joint cavity-blanket
model. We find that, in GMRFs, this can improve the covariance esti-
mates of marginal distributions. The means are also improved but, while
the improvement is substantial, these do not converge to machine precision
as in the renormalization approach.

The main innovative aspect of this approach is the manner in which RCM marries
recursive inference with adaptive model thinning techniques. While some related
methods have been developed along these lines, RCM offers a much more general and
ambitious approach in this regard. We point out the following distinctive features of
RCM distinguishing our approach from these other methods:

• The model thinning technique used in RCM offers an alternative perspective for
controlling the computational complexity of recursive inference in comparison
to those multiscale modeling techniques based on (approximate) state-reduced
Markov trees (Luettgen [91], Irving [72], Frakt [55]). We find, in the simulations
of Chapter 4, that our model thinning technique enables a scalable approach for
inference in 2-D MRFs with negligible “blocky artifacts” such as have plagued
many multiscale modeling methods.

• In contrast to other linear domain-decomposition methods (in GMRFs), such
as the methods of Taylor [126] and Daniel [36], RCM selects optimal approx-
imations of the thinned boundary models arising in our approach, employing
the machinery of information geometry to minimize the KL-divergence intro-
duced by our approximations. That is, those parameters not pruned by our
method are optimized in an effort to minimize any ill-effects of thinning. Also,
we adaptively select which parameters to prune so as to keep this KL-divergence
small.

• In a sense, RCM generalizes various projection filtering approaches for Markov
chains (Kullhavý [86], Brigo et al [27], Heskes and Zoeter [70]) for more general
(loopy) Markov random fields. The main idea RCM introduces in this regard,
is that of performing model thinning by tractable m-projections based on a col-
lection of local interaction potentials. By considering canonical potential spec-
ifications, we are able to interpret this as a conditional m-projection relative to
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“ground-state” boundary conditions for the subfield being thinned. Thus, these
local m-projections are well-posed and have a well-understood interpretation.

• In comparison to some related Markov-blanket filtering methods for MRFs
(Boyen and Koller [22], Murphy and Weiss [99], Minka [95]), RCM is more
general in several regards:

1. RCM considers representation of the MRF as a Markov tree rather than
as a Markov chain. Where other approaches propagate a “frontier model”
back and forth across the MRF, our hierarchical approach instead recur-
sively builds cavity and blanket models. Hence, RCM introduces a new
“region merging” step into the Markov-blanket filtering approach (borrow-
ing this idea from multiscale modeling methods) where thinned models of
subfields are combined in a tractable manner to obtain a thinned model for
larger subfields. This replaces a “frontier propagation” step in the related
Markov-chain approach.

2. We do not impose a priori structure constraints on our cavity and blanket
models. For instance, these other approaches assume either: completely
disconnected frontier models (Murphy and Weiss), partially disconnected
frontier models consisting of a set of smaller, fully-connected components
(Boyen and Koller), or singly-connected frontier models (Minka). None
of these constraints are placed on our analogous cavity and blanket mod-
els. Rather, we employ adaptive model-thinning techniques which tend to
produce low tree-width models (which we may convert to Markov tree rep-
resentations while still keeping state dimensions small) thereby supporting
tractable computation.

• In contrast to Minka’s general expectation propagation (EP) framework [96, 95],
which also generalizes the projection filtering approach, RCM offers a more
methodical, structured approach in two regards:

1. All message passing in RCM parallels an exact (non-loopy) recursive infer-
ence procedure. This is in contrast to Minka’s general EP framework which
allows arbitrary “message passing protocols” including “loopy” propaga-
tion schemes. Our approach closely follows an exact inference procedure
so as to assure that, by making the precision δ of our inference sufficiently
small, we can improve the accuracy of our method so as to approach that
of exact inference.

2. Minka also suggests “structured” versions of EP, where additional inter-
actions are included in the model (in addition to those present in the
original MRF) so as to allow his method to come closer to exact infer-
ence. Yet, as Minka points out, a systematic approach for selecting these
additional interactions and subsequent message-passing protocol is lack-
ing. In this regard, RCM may be seen as a more structured form of EP.
Our hybrid variable-elimination/model-thinning approach adaptively de-
termines which interactions are added to the graphical model in the course
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of the inference so as to (hopefully) remain near the corresponding exact
inference.

• Finally, we remark that RCM may be understood as essentially a thinned
junction-tree approach. In comparison to the junction-tree thinning procedure
of Kjærulff [82, 83], RCM offers a more tractable approach in that we never con-
sider the fully-triangulated representation in the first place. Rather, we infer
what additional interactions should be added to the model by analysis in our
thinned models of subfields. On the other hand, our method of thinning cavity
and blanket models is rather similar to Kjærullf’s global method for thinning
a junction tree. In RCM, however, we do not restrict ourselves to triangu-
lated Markov-blanket models and hence may prune any weak interaction of the
model regardless of whether or not this corresponds to a “removable” edge in
Kjærullf’s approach.

Also, our approach to model thinning is itself innovative in several regards. The
work-horse of our model thinning approach is our LIS moment-matching subroutine
used to calculate all m-projections required in RCM. In singly-connected Markov
chains or trees, this actually reduces to an exact (non-iterative) m-projection tech-
nique suggested by Minka for m-projection to Markov trees [96]. But in loopy-graphs,
LIS gives an iterative procedure which appears to consistently outperform the iter-
ative proportional fitting technique and to converge linearly so that KL-divergences
from the desired marginal distributions vanish exponentially quickly. Moreover, this
technique seems especially appropriate for matching moments in “long loops” such
as often occur in RCM1. In addition to this moment matching technique, our induc-
tive approach to model selection, based on an AIC-like information criterion with
precision parameter δ, seems a very natural approach to model thinning which is
motivated from the perspective of information geometry (Amari [4]). While other
edge-pruning approaches to model thinning have been developed (Brand [23], Smith
and Whittaker [123]), apparently none follow this information geometric perspective.
However, there are some related approaches for building graphical model by adding
features to a graphical model be a sequence of e-projections (Della Pietra et al [106],
Bach and Jordan [6]). Essentially, our (m-projection) model thinning method is dual
to these (e-projection) model building methods.

In short, the author believes that the RCM approach – by unifying, formalizing and
building upon ideas drawn from these various earlier efforts – represents a significant
step towards the elusive goal of obtaining reliable, scalable inference for far more
general families of MRFs than have previously been considered tractable. Embedding
adaptive modeling algorithms within a recursive inference framework appears to give
a powerful and flexible approach to tractable yet near-optimal inference. Also, the
author hopes that the “cavity modeling” picture developed here, together with the
emphasis on information geometry, provides a helpful, intuitive way of thinking about
recursive inference and approximation techniques more generally. Yet, much work

1See comments on Test Case 1 and 2 in Section 3.4
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remains to realize the full potential of this approach and to understand and more
precisely characterize the reliability of the method.

5.2 Recommendations

In this section, recommendations for further research and development are given. The
aim of these recommendations is to analyze, refine, and extend the RCM framework
introduced in this thesis.

Model Thinning. As is probably apparent at this point, the ideas underlying the
RCM approach to inference are really as much about modeling as inference. The
tractability of this inference approach relies heavily on modeling ideas for the se-
lection of compact (and hence tractable) cavity and blanket models to provide a
tractable basis for inference of very large MRFs. In Chapter 3, we outlined one possi-
ble approach for implementing the model selection subroutine of the RCM inference
procedure. Yet, there are many possible variations of our approach which may be
adopted without substantially modifying the basic structure and interpretation of
RCM. We briefly consider some promising alternatives.

• Moment-Relaxation Approach to M-projection. Currently, we solve for the m-
projection to an exponential family by moment matching within that family.
This requires that we generate an initial guess for the m-projection to seed
the moment-matching subroutine. These model-thinning m-projections also
have the interpretation of releasing some moment constraints (corresponding to
pruned interactions) and maximizing entropy. This suggests that perhaps other
m-projection techniques might be recommended where we instead gradually re-
lax moment constraints (maximizing entropy) so as to trace the I-orthogonal
m-geodesic connecting the given model to the desired m-projection. This pre-
sumably would take the form of a double-loop algorithm where the outer loop
gradually relaxes moments (maximizing entropy) while the inner-loop maintains
active moment constraints (so as to stay near the m-geodesic). This may prove
to be a more economical approach, requiring less overall computation, since we
avoid large steps away from the m-geodesic which might substantially perturb
those moments we are trying to hold fixed during thinning.

• Feature-Induction Approach to Model Selection. Alternatively, it may also be
possible to abandon the m-projection approach all together, and instead use the
dual e-projection approach for building cavity/blanket models such as in some
related modeling techniques (Della Pietra et al [106], Bach and Jordan [6]). The
advantage of this approach would be to avoid the variable elimination steps in
RCM and also to consider only very thin cavity/blanket models since we “build
up” to the final thinned model rather then “thin down” from a more complex
model. The challenge here, of course, is how to select what interactions to add
to the cavity/blanket model.
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• Latent-Variable Markov-Blanket Models. Finally, we note that the philosophy
of RCM described thus far only considers cavity/blanket models based on just
those sites of the graphical model which are in the surface of the subfield being
approximated. We suspect that the accuracy of the cavity/blanket models
might be substantially improved (while staying within low-order, thin families
of graphical models) by also allowing some latent variables to be included inside
of each cavity model (or outside of each blanket model). In the context of RCM,
these latent variables might play a useful role for (approximately) capturing in
an aggregate manner much of the statistical influence of the eliminated subfield
which would otherwise be lost in the model thinning step. The challenge here
is how to select and refine such latent-variable models.

Generalization of RCM. We now give recommendation for further research and
development focusing on extending the basic RCM framework. While we have only
detailed implementation of RCM for GMRFs, the main ideas should apply for much
more general families of MRFs. We briefly indicate some especially interesting possi-
bilities.

• Nonlinear Interactions. Our Gaussian implementation of RCM could perhaps
be extended to treat more general MRFs, also having continuous-valued states,
but where the interaction potentials are specified by nonlinear functions (rather
than just the linear and quadratic interactions present in GMRFs). We could
perform approximate inference in such MRFs by adaptively “linearizing” the
MRF, fitting linear and quadratic statistics to the actual nonlinear statistics in
the vicinity of some state estimate. Essentially, this would correspond to gen-
eralization of the extended Kalman filter and related smoothing methods (de-
veloped for Markov chains) to more general (loopy, undirected, non-Gaussian)
MRFs.

• Finite-State MRFs. RCM could also be readily developed for finite-state MRFs,
where each site of the random field has a (small) finite number of states. These
may also be described as exponential families but with a discrete state-space
and (in general) require higher-order interactions (involving more than two sites
of the field). Inference in finite-state MRFs is more challenging than in GM-
RFs because variable elimination introduces higher-order interactions (even if
the original model has only pairwise interactions). The model-thinning tech-
niques employed by RCM seem well-suited for controlling the computational
complexity of inference for these models as well. For instance, we could m-
project intractable cavity/blanket models to families of more tractable models
represented by sparse, lower-order interactions (letting our information criterion
decide which interactions to keep).

• Compound Gaussian MRFs. More generally still, we could consider hybrid-state
MRFs, having sites with both discrete and continuous state components. These
may also be described as exponential families. If the interaction potentials be-
tween continuous states are restricted to linear and quadratic statistics, such
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models are then conditionally Gaussian so that, conditioning on any discrete-
state configuration of the system, the continuous-states are Gaussian distributed
(e.g. Lauritzen [88]). In addition to possibly having higher-order interactions,
inference in such models is further complicated by the fact that variable elimi-
nation produces an exponential number of Gaussian modes in the blanket of an
eliminated subfield (one mode for each discrete joint-state configuration of the
combined blanket and subfield). Here again, RCM’s model thinning approach
might play a useful role for thinning such models so as to control the computa-
tional complexity of inference while attempting to remain nearly optimal.

Stability and Reliability of RCM. The author has attempted to motivate the
RCM approach to inference from the perspective of information geometry by em-
phasizing the local optimality (m-projection interpretation) of each of our modeling
thinning steps and also by indicating the maximum-entropy interpretation of these
model-thinning steps (essentially, RCM as a forgetful approach to inference regu-
larized by the maximum-entropy principle). However, we would like to make more
concrete claims as to the reliability of this apparently greedy inference procedure.
Essentially, this corresponds to analyzing the stability of the projection filtering ap-
proach in the context of Markov trees. That is, we would like to show that keeping
the incurred KL-divergence small in each of our approximation steps insures that
the cumulative KL-divergence in each of our cavity/blanket models remains small
relative to the corresponding exact models (constructed without any thinning). The
work of Boyen and Koller [22] provides some promising results indicating stability of
projection filtering in causal Markov chain models. But there seems to be much room
for further analysis in the context of noncausal, tree-structured inference procedures.
Ultimately, we would like to be able to provide estimates of and/or upper-bounds on
the KL-divergence in each of the marginal models produced by RCM.

RCM for Model Identification. The utility of RCM for practical applications
might be greatly enhanced by the development of corresponding model identification
techniques. For instance, in image processing applications we would like to be able
to fit 2-D MRF models to data characteristic of the image we wish to model. In the
case of exponential family graphical models, maximum-likelihood parameter estima-
tion from a collection of independent, fully-observed samples of the process reduces
to moment matching. That is, we may employ iterative scaling techniques, such as
IPF or our LIS approach, so as to iteratively adjust the parameters of the family until
the characteristic moments of the model match the corresponding empirical moments
of the data. Unfortunately, these moment matching techniques require an inference
subroutine for computation of the moments of the model being adjusted. For many
MRFs, inference is intractable so that optimal maximum-likelihood model identi-
fication is likewise intractable. This suggests that we instead consider suboptimal
model identification where we use RCM in place of an exact moment calculation. By
combining RCM with iterative scaling techniques (for instance our LIS variant), we
should then be able to estimate the maximum-likelihood model in moment coordi-
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nates at a level accuracy dictated by the precision of the RCM moments calculation.
Many more sophisticated modeling techniques, such as the expectation-maximization
(EM) algorithm for maximum-likelihood parameter estimation in partially-observed
MRFs (Dempster et al [42]), also require inference as a subroutine. Hence, the range
of applicability of these methods could likewise be extended with the aid of RCM.
This very simple idea indicates the enabling role RCM might play in extending the
range of applications to which model-based methods might be applied. For instance,
we would like to consider even more complex models appropriate for more general
2-D and 3-D random fields (not limited to nearest-neighbor MRFs) by introducing
higher-order interactions and/or latent variables to model more complex, global in-
teractions of the field. Potentially, this could lead to generalization of the multiscale
modeling technique, previously restricted to quad-tree models, to also incorporate
multigrid/multipole methods (Briggs [26], Rokhlin [116], Greengard and Rokhlin [65],
Fieguth [51]).

As these ideas show, the realm of potential applications for the general RCM
framework is much broader then has been explored by this thesis. The basic idea
of developing a hierarchical representation of the probability distribution of a MRF,
where interactions between subfields are approximated by thinned graphical models
for the surfaces of subfields, appears to supply a powerful and flexible framework for
near-optimal computation in many MRFs which previously would have been dismissed
as intractable.
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[98] A.F. Möbius. Uber eine besondere art von umkehrung der reihen. Journal fur die Reine und
Angewandte Mathematik, 9, 1832.

[99] K. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in DBNs.
Technical report, Computer Science Department, UC Berkeley, 2000.

[100] M. Opper and D. Saad, editors. Advanced Mean Field Methods: Theory and Practice. Neural
Information Processing Series. MIT Press, 2001.

[101] G. Parisi. Statistical field theory. Addison-Wesley, 1988.

[102] E. Parzen, K. Tanabe, and G. Kitagawa, editors. Selected Papers of Hirotuga Akaike. Springer
Series in Statistics. Springer-Verlag, 1998.

[103] Y. Pawitan. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford
University Press, 2001.

[104] D.W. Peaceman and H.H. Rachford, Jr. The numerical solution of parabolic and elliptic
differential equations. Journal of the SIAM, 3(1):28–41, March 1955.

[105] J. Pearl. Probabilistic inference in intelligent systems. Morgan Kaufmann, 1988.

[106] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):28–41, March 1997.

[107] C. Preston. Random Fields. Springer-Verlag, 1974.

[108] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–286, February 1989.

203



[109] C.R. Rao. Information and accuracy attainable in the estimation of statistical parameters.
Bulletin of the Culcutta Mathematical Society, 37:81–91, 1945.

[110] H. Rauch, F. Tung, and C. Striebel. Maximum likelihood estimates of linear dynamic systems.
AIAA Journal, 3(8):1445–1450, August 1965.

[111] J. Rissanen. A universal prior for integers and estimation by minimum description length.
Annals of Statistics, 11(2):416–431, June 1983.

[112] J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14(3):1080–1100,
September 1986.

[113] J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society (Series B),
49(3):223–239, 1987.

[114] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[115] R.T. Rockafellar. Conjugate Duality and Optimization. SIAM, 1974.

[116] V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of
Computational Physics, 60:187–207, 1983.

[117] S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Compu-
tation, 11:305–345, 1999.

[118] Y.A. Rozanov. Gaussian random fields with given conditional distributions. Thoery of Prob-
ability and its Applications, 12:381–391, 1967.

[119] H. Rue. Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical
Society, Series B, 63(2):325–338, 2001.

[120] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

[121] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[122] P.P. Shenoy and G.R. Shafer. Axioms for probability and belief-function propagation. In
Uncertainty in artificial intelligence IV, pages 169–198. North-Holland, Amsterdam, 1990.

[123] P. Smith and J. Whittaker. Edge exclusion tests for graphical models. In Jordan [76], pages
555–574.

[124] T.P. Speed and H.T. Kiiveri. Gaussian Markov distributions over finite graphs. The Annals
of Statistics, 14(1):138–150, March 1986.

[125] E. Sudderth. Multiscale modeling and estimation using graphs with loops. Master’s thesis,
Laboratory for Information and Decision Systems, MIT, February 2002.

[126] D. Taylor. Parallel Estimation of One and Two Dimensional Systems. PhD thesis, Laboratory
for Information and Decision Systems, MIT, February 1992. LIDS-TH-2092.

[127] D. Taylor and A.S. Willsky. Parallel smoothing algorithms for causal and acausal systems.
Technical Report LIDS-P-2027, Laboratory for Information and Decision Systems, MIT,
March 1991.

[128] D.S. Tucker. Multiresolution Modeling from Data and Partial Specifications. PhD thesis,
Laboratory for Information and Decision Systems, MIT, in preparation 2003.

[129] M.J. Wainwright. Stochastic processes on graphs with cycles: geometric and variational ap-
proaches. PhD thesis, Dept. of Electrical Engineering and Computer Science, MIT, January
2002.

[130] R.B. Washburn, W.W. Irving, J.K. Johnson, D.S. Avtgis, J.W. Wissinger, R.R. Tenney, and
A.S. Willsky. Multiresolution image compression and image fusion algorithms. Technical
report, Alphatech, Inc., February 1996.

204



[131] Y. Weiss and W.T. Freeman. Correctness of belief propagation in Gaussian graphical models
of arbitrary topology. Neural Computation, 13:2173–2200, 2001.

[132] A.S. Willsky. Multiresolution Markov models for signal and image processing. Proceedings of
the IEEE, 90(8):1396–1458, August 2002.

[133] J.W. Woods. Two-dimensional discrete Markov random fields. IEEE Transactions on Infor-
mation Theory, 18(2):232–240, March 1972.

[134] J.W. Woods. Markov image modeling. IEEE Transactions on Automatic Control, 23(5):846–
850, October 1978.

[135] J.S. Yedidia. An idiosyncratic journey beyond mean field thoery. In Opper and Saad [100],
pages 21–36.

[136] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. In Neural Infor-
mation Processing Systems 13, pages 689–695. MIT Press, 2001.

[137] R.W. Yeung, T.T. Lee, and Z. Ye. Information-theoretic characterizations of conditional
mutual independence and Markov random fields. IEEE Transactions on Information Theory,
48(7):1996–2011, July 2002.

[138] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.

[139] A. Yuille. A double-loop algorithm to minimize the Bethe and Kikuchi free energies. Neural
Computation, 2001.

205


