
Inference in Sensor Networks:
Graphical Models and Particle Methods

Research supported in part by:

June, 2005 2644LIDS Publication #

Alexander T. Ihler

ODDR&E MURI: ARO Grant
DAAD19-00-0466; AFOSR Grant
F49620-00-0362; MIT Lincoln
Laboratory Program 2209-3023.

Inference in Sensor Networks:
Graphical Models and Particle Methods

by

Alexander T. Ihler

B.S., Electrical Engineering and Mathematics, Caltech, 1998

S.M., Electrical Engineering and Computer Science, MIT, 2000

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June, 2005

c© 2005 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

February 28, 2005

Certified by:
Alan S. Willsky

Edwin Sibley Webster Professor of Electrical Engineering
Thesis Supervisor

Certified by:
John W. Fisher III

Principal Research Scientist, CSAIL
Thesis Supervisor

Accepted by:
Arthur C. Smith

Professor of Electrical Engineering
Chair, Committee for Graduate Students

2

Inference in Sensor Networks:
Graphical Models and Particle Methods

by Alexander T. Ihler

Submitted to the Department of Electrical Engineering
and Computer Science on March 1, 2005

in Partial Fulfillment of the Requirements for the Degree
of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Sensor networks have quickly risen in importance over the last several years to become
an active field of research, full of difficult problems and applications. At the same
time, graphical models have shown themselves to be an extremely useful formalism for
describing the underlying statistical structure of problems for sensor networks. In part,
this is due to a number of efficient methods for solving inference problems defined on
graphical models, but even more important is the fact that many of these methods
(such as belief propagation) can be interpreted as a set of message passing operations,
for which it is not difficult to describe a simple, distributed architecture in which each
sensor performs local processing and fusion of information, and passes messages locally
among neighboring sensors.

At the same time, many of the tasks which are most important in sensor networks
are characterized by such features as complex uncertainty and nonlinear observation
processes. Particle filtering is one common technique for dealing with inference under
these conditions in certain types of sequential problems, such as tracking of mobile
objects. However, many sensor network applications do not have the necessary structure
to apply particle filtering, and even when they do there are subtleties which arise due
to the nature of a distributed inference process performed on a system with limited
resources (such as power, bandwidth, and so forth).

This thesis explores how the ideas of graphical models and sample–based represen-
tations of uncertainty such as are used in particle filtering can be applied to problems
defined for sensor networks, in which we must consider the impact of resource limita-
tions on our algorithms. In particular, we explore three related themes. We begin by
describing how sample–based representations can be applied to solve inference problems
defined on general graphical models. Limited communications, the primary restriction
in most practical sensor networks, means that the messages which are passed in the
inference process must be approximated in some way. Our second theme explores the
consequences of such message approximations, and leads to results with implications
both for distributed systems and the use of belief propagation more generally. This nat-
urally raises a third theme, investigating the optimal cost of representing sample–based
estimates of uncertainty so as to minimize the communications required. Our analysis
shows several interesting differences between this problem and traditional source cod-
ing methods. We also use the metrics for message errors to define lossy or approximate

4

encoders, and provide an example encoder capable of balancing communication costs
with a measure on inferential error.

Finally, we put all of these three themes to work to solve a difficult and important
task in sensor networks. The self-localization problem for sensors networks involves the
estimation of all sensor positions given a set of relative inter-sensor measurements in
the network. We describe this problem as a graphical model, illustrate the complex
uncertainties involved in the estimation process, and present a method of finding for
both estimates of the sensor positions and their remaining uncertainty using a sample–
based message passing algorithm. This method is capable of incorporating arbitrary
noise distributions, including outlier processes, and by applying our lossy encoding
algorithm can be used even when communications is relatively limited. We conclude
the thesis with a summary of the work and its contributions, and a description of some
of the many problems which remain open within the field.

Thesis Supervisors: Alan S. Willsky
Professor of Electrical Engineering and Computer Science

John W. Fisher III
Principal Research Scientist

Acknowledgments

Back where I come from, we have universities, seats of great
learning, where men go to become great thinkers. And when they
come out, they think deep thoughts and with no more brains than

you have. But they have one thing you haven’t got: a diploma.
The Wizard of Oz

It’s true hard work never killed anybody,
but I figure, why take the chance?

R. Reagan

If ever I imagined that this process would not comprise hard work, I’ve certainly since
been disabused of the notion. But in another sense, it is still difficult to think of these
past years as being work, as they were mostly comprised of thinking about problems
I’d have been glad to spend my time on anyway. Still, in order to finish I’ve needed to
rely on the assistance and support of a great many people around me, whom I would
gratefully like to acknowledge.

First and foremost among these, of course, are my advisors, Prof. Alan Willsky
and Dr. John Fisher. I cannot measure, much less describe, how much they both have
helped me through the years. Alan has been a constant, always quick to understand an
idea and fold it into a bigger picture. Meanwhile, John was always willing to brainstorm
and hear new ideas, no matter how premature or half-baked.

My thanks also go to Prof. Randy Moses of the Ohio State University without
whose collaboration Chapter 6 would not exist. Many thanks to the other members
of my thesis committee, Prof. Bill Freeman and Prof. Sanjeev Kulkarni, for all of their
advice and assistance throughout the process. MIT has been a wonderful place to work
and interact with researchers in many areas, and I’ve been grateful for the opportunity
to interact both with members of LIDS and CSAIL. I would particularly like to thank
Prof. Sanjoy Mitter, Prof. Lizhong Zheng, and Prof. Trevor Darrell for all their helpful
discussions.

However, the thing I am most grateful for at MIT has been my fellow students.
Thanks to the members of SSG, both past and present. First, Junmo Kim, with whom
I have shared an office almost since we both arrived, and will almost until we both
depart. Thanks to my grouplet, lately consisting of Lei Chen, Jason Williams, and
Emily Fox, as well as Dr. Müjdat Çetin, for letting me sound ideas off of them and
sharing their own. Thanks also to Pat Kreidl for our research discussions, as well as for
his culinary suggestions. Andrew Kim remains the only member of SSG I’ve managed

5

6 ACKNOWLEDGMENTS

to convert to karate; perhaps the resulting bruises can be considered karmic repayment
for his making me a sysadmin not long beforehand. And of course Erik Sudderth,
frequent collaborator and friend, whom I myself dragged into the sysadmin role but
has yet to revenge himself. Meanwhile, I’m counting on Dewey Tucker, Ayres Fan,
and Walter Sun to cut me in on some dizzyingly lucrative financial investment scheme.
Thanks also to Martin Wainwright for sharing his directness and world–view, along
with the proper way to perform an elbow–drop. And of course, Dmitry Malioutov for
sharing his life–lessons involving fast cars and arm–wrestling, and Jason Johnson, our
reigning arm–wrestling champ. In CSAIL, I would also like to thank Ali Rahimi, Bryan
Russell, Mike Siracusa, and Kinh Tieu for innumerable discussions, both on research
and otherwise.

Of course, even surrounded by all the bright fellows mentioned already, I would
still have been lost without the support of everyone behind the scenes. Petr Swedock,
who takes over the network administration and without whom I might never be able
to depart in good conscience. Many thanks to Praneetha Mukhatira, and before her
Laura Clarage and Taylore Kelly, without whose assistance the bureaucratic machinery
of MIT would long since have chewed me up and spit me out.

On a more personal level, I would like to thank my family for all their understanding
and support. My parents, Garret and Karin, who taught me how to do what I love,
how to succeed, and most importantly how to be myself. My sister Elisabeth, who told
me she would love me if I became a New Zealand sheep farmer (and presumably also
if I did not). Liisa, who helps our family take time to enjoy ourselves. Erich and Dee,
who have looked out for me in Boston and given me a home away from home. My cat
Widget, who has helped decorate both me and my belongings with his affection and
fur. And of course Michelle, who will always have my heart, for everything.

This work was supported in part by MIT Lincoln Laboratory under Lincoln Program
2209-3023, in part by ODDR&E MURI through ARO grant DAAD19-00-0466, and in
part by AFOSR grant F49620-00-0362.

Contents

Abstract 3

Acknowledgments 5

1 Introduction 11
1.1 General Tools . 11
1.2 Problems Addressed . 12
1.3 Thesis Organization . 12
1.4 Contributions . 15
1.5 Acknowledgements . 17

2 Background 19
2.1 Sensor Networks . 19
2.2 Information Theory . 21

2.2.1 Entropy . 21
2.2.2 Mutual Information . 22
2.2.3 Relative Entropy . 22

2.3 Nonparametric Density Estimation . 22
2.3.1 Kernel density estimates . 23
2.3.2 Estimating information-theoretic quantities 25
2.3.3 Implementation . 26

2.4 KD-Trees . 26
2.4.1 Notation . 27
2.4.2 Construction Methods . 28
2.4.3 Cached Statistics . 28
2.4.4 Efficient Computations . 29

2.5 Graphs and Graphical Models . 32
2.5.1 Undirected Graphs . 32
2.5.2 Undirected Graphical Models . 33

2.6 Belief Propagation . 35
2.6.1 Implementations of BP . 36

7

8 CONTENTS

2.6.2 Computation Trees . 37
2.7 Particle Filtering . 37

2.7.1 Particles and Importance Sampling 38
2.7.2 Graph Potentials . 39
2.7.3 Likelihood-weighted Particle Filtering 39
2.7.4 Sample Depletion . 40
2.7.5 Links to Kernel Density Estimation 41

3 Nonparametric Belief Propagation 43
3.1 Message Normalization . 44
3.2 Sample-Based Messages . 44
3.3 The message product operation . 46
3.4 The convolution operation . 47

3.4.1 The marginal influence function 47
3.4.2 Conditional sampling . 48
3.4.3 Bandwidth selection . 49

3.5 Analytic messages and potential functions 51
3.5.1 The message product operation 51
3.5.2 The convolution operation . 51

3.6 Belief sampling . 53
3.7 Discussion . 54
3.8 Products of Gaussian Mixtures . 55

3.8.1 Fine-scale methods . 56
3.8.2 Multi-scale methods . 59
3.8.3 Empirical Comparisons . 66

3.9 Experimental Demonstrations . 69
3.9.1 Gaussian Graphical Models . 69
3.9.2 Multi-Target Tracking . 70

4 Message Approximation 73
4.1 Message Approximations . 74
4.2 Overview of Chapter Results . 75
4.3 Dynamic Range Measure . 76

4.3.1 Motivation . 76
4.3.2 Additivity and Error Contraction 79

4.4 Applying Dynamic Range to Graphs with Cycles 81
4.4.1 Convergence of Loopy Belief Propagation 81
4.4.2 Distance of multiple fixed points 83
4.4.3 Path-counting . 84
4.4.4 Introducing intentional message errors and censoring 87
4.4.5 Stochastic Analysis . 89
4.4.6 Experiments . 90

4.5 KL-Divergence Measures . 90

CONTENTS 9

4.5.1 Local Observations and Parameterization 91
4.5.2 Approximations . 94
4.5.3 Steady-state errors . 95
4.5.4 Experiments . 96

4.6 Discussion . 96
4.7 Proof of Theorem 4.3.4 . 98
4.8 Properties of the Expected Divergence 100

4.8.1 Triangle Inequality . 100
4.8.2 Near-Additivity . 101
4.8.3 Contraction . 102
4.8.4 Graphs with Cycles . 103

5 Communications Cost of Particle–Based Representations 105
5.1 Introduction . 105
5.2 Problem overview . 106

5.2.1 Message Representation . 108
5.3 Lossless Transmission . 109

5.3.1 Optimal Communications . 109
5.3.2 Suboptimal Encoding . 112

5.4 Message Approximation . 115
5.4.1 Maximum Log–Error . 116
5.4.2 Kullback–Leibler Divergence . 117
5.4.3 Other Measures of Error . 118

5.5 KD-tree Codes . 118
5.5.1 KD-tree Gaussian Mixtures . 120
5.5.2 Encoding KD-tree Mixtures . 120
5.5.3 Choosing among admissible sets 125
5.5.4 KD-tree Approximation Bounds 126
5.5.5 Optimization Over Subsets . 128

5.6 Adaptive Resolution . 130
5.7 Experiments . 131

5.7.1 Single Message Approximation 131
5.7.2 Distributed Particle Filtering . 133
5.7.3 Non-Gaussian Field Estimation 137

5.8 Some Open Issues . 139
5.9 Conclusions . 140

6 Sensor Self-Localization 141
6.1 Self-localization of Sensor Networks . 142
6.2 Uncertainty in sensor location . 145
6.3 Uniqueness . 146

6.3.1 A sufficient condition for uniqueness 146
6.3.2 Probability of uniqueness . 148

10 CONTENTS

6.4 Graphical Models for Localization . 149
6.4.1 Graphical Models . 150
6.4.2 Belief Propagation . 152
6.4.3 Nonparametric Belief Propagation 154

6.5 Empirical Calibration Examples . 156
6.6 Modeling Non-Gaussian Measurement Noise 158
6.7 Parsimonious Sampling . 161
6.8 Incorporating communications constraints 163

6.8.1 Schedule and iterations . 164
6.8.2 Message approximation . 166

6.9 Discussion . 166

7 Conclusions and Future Directions 169
7.1 Summary and Contributions . 169
7.2 Suggestions and Future Research . 170

7.2.1 Communication costs in distributed inference 170
7.2.2 Graphical models and belief propagation 172
7.2.3 Nonparametric belief propagation 173
7.2.4 Other sensor network applications 173

Chapter 1

Introduction

W IRELESS sensor networks are becoming increasingly attractive for a wide vari-
ety of applications, from tracking and surveillance to environmental monitoring.

They require significantly less physical infrastructure than their wired counterparts and
can be deployed at substantially lower cost. In theory, wireless networking can be used
to create areas with ubiquitous sensing, for example to perform habitat or environ-
mental monitoring [63, 66], create “smart” or interactive rooms and buildings [53], and
provide surveillance of security–sensitive locations or regions of conflict [83].

However, wireless sensor networks also come fraught with a number of difficult
issues, many due to the inherent energy and bandwidth limitations of a battery-powered
wireless communications medium. In essence, ubiquitous sensing has the potential to
provide overwhelming and undesirable volumes of raw data, making the challenge one of
how to extract the relatively small amount of useful information from the network. The
process of extracting useful information, without communicating an unnecessarily large
volume of irrelevant data, often involves processing of the data locally at the sensors
within the network.

¥ 1.1 General Tools

The role of distributed processing of information for inference and estimation is one of
the central themes of this thesis. We analyze this issue for a subset of problems in which
we can bring to bear two basic modeling tools. The first is the popular formalism of
graphical models [60, 79]; we use graphical models to describe the statistical dependency
structure among the random variables of interest in our applications. Second, we use
nonparametric, sample–based estimates of uncertainty [3] to capture and represent the
complex distributions which can arise in these problems.

Graphical models and belief propagation (BP) have already generated some excite-
ment for their applicability to distributed inference problems in sensor networks [10, 16,
77]. Regardless of whether they aim to perform exact or merely approximate inference,
these methods begin by interpreting the structure of the problem’s underlying proba-
bility distribution as a graph. This enables the direct application of methods such as
belief propagation, in which the inference process can be described as a sequence of
message–passing operations between parts of the graph. By assigning the responsibil-

11

12 CHAPTER 1. INTRODUCTION

ity for the computations involved to various sensors within the network, one readily
obtains a simple, distributed algorithm for performing inference. Implementations of
these ideas have already been considered for discrete–state [16] and jointly Gaussian
models [77].

However, many real–world problems involve high–dimensional random variables
with complex uncertainty, for which neither Gaussian nor discrete–valued approxi-
mations may be suitable. In these cases inference using sample–based estimates of
uncertainty has become quite popular; particle filtering methods are widely used for
state estimation in nonlinear, non-Gaussian systems [3]. Particle filters have also been
applied in sensor networks to track the position of one or more objects (vehicles, people,
etc.) as they move within a given region [114]. However, the application of particle
filters is limited to simple, sequential estimation problems, corresponding to a relatively
small class of graphical models (those which have the basic structure of a Markov chain).

¥ 1.2 Problems Addressed

This thesis is framed in terms of a single primary focus problem, the usage of nonpara-
metric, sample–based representations for inference in distributed sensor networks. In
particular, we consider four specific sub-problems which comprise aspects of the larger
whole.

• Using sample–based representations in general graphical models

• Understanding the implications of approximations to the messages passed in belief
propagation

• Minimizing the cost of communications for sample–based representations of un-
certainty, or approximations to the same

• Applying the aforementioned elements to solve a specific application problem
(sensor self-localization)

Each chapter is devoted to one of these sub-problems, and is developed with an eye
toward the focus problem of inference in sensor networks. However, each chapter also
has implications which are much broader in scope, and after presenting the general
themes and layout of the thesis we revisit each aspect and describe some of the ways in
which they may be applicable to a wider class of problems and applications.

¥ 1.3 Thesis Organization

This thesis considers how both graphical models and sample–based representations
of uncertainty can be applied to solve difficult, distributed estimation problems. As
mentioned, sample–based representations have been applied to some inference problems
in sensor networks; however, many sensor network problems are best described using

Sec. 1.3. Thesis Organization 13

more general graphical models, in which inference has been limited to Gaussian and
discrete representations of uncertainty.

We extend these methods of inference by developing a nonparametric, sample–based
inference method which is applicable to general graphical models, as opposed to the
relatively simple graphical models to which particle filtering can be applied. In sensor
networks, distributed inference is performed by passing messages between sensors; in
order to consider the inherent cost in communicating these messages, we examine two
important issues—the effects of approximating these messages on the inference algo-
rithm, and the minimal size, in bits, of a representation of sample–based estimates of
uncertainty. Finally, we apply our results in these areas to an example application
in sensor networks. Thus, we can divide the body of the thesis into a background
chapter and four distinct but closely related problems, whose focus steadily narrows on
sample–based inference for sensor network applications. The chapters are organized as
follows.

Background. The background sections in Chapter 2 provide a host of relevant material
required by the rest of the thesis. Although our presentation of this material is by
necessity brief, it provides the tools which are required to understand the algorithms
and analysis presented in subsequent chapters, as well as references for the interested
reader. We begin with an overview of the applications and issues inherent in the use of
wireless sensor networks. We next describe some results from information theory, the
study of which is central to such relevant tasks as data compression and communications
in sensor networks. In this thesis, we are primarily concerned with estimation using
sample–based, nonparametric representations such as kernel density estimates, which
we introduce in Section 2.3. We also focus specifically on probabilistic descriptions and
inference algorithms defined on graphical models, including belief propagation (BP)
and particle filtering (Sections 2.5–2.7).

Nonparametric Belief Propagation. Chapter 3 presents the nonparametric belief
propagation (NBP) algorithm, developed in collaboration with Erik Sudderth [46, 93].
NBP can be regarded in either of two ways—as a generalization of particle filtering
which is able to be applied to a more general class of probability distributions defined
on graphical models, or as a stochastic, sample-based approximation to the belief prop-
agation algorithm. In essence, NBP works to combine several of the best qualities of
both techniques. Like BP, NBP allows us to take advantage of known statistical inde-
pendency structures beyond simple Markov chain structures, and like particle filtering,
NBP provides a computationally efficient representation for complex non-Gaussian un-
certainty about relatively high dimensional random variables.

The belief propagation algorithm has already proven to be useful for a number of
sensor network applications, because it can be expressed as a potentially distributed
message–passing algorithm [16]. NBP, too, is applicable to a wide variety of problems
in sensor networks, several of which we consider at various points in this thesis. Among

14 CHAPTER 1. INTRODUCTION

them are such tasks as distributed tracking via particle filters (Section 5.7.2), estimation
using non-Gaussian multi–scale models of spatially related phenomena (Section 5.7.3),
and self–localization of sensor nodes (Chapter 6).

Message Approximations in Belief Propagation. Chapter 4 examines the idea of
using approximate versions of the BP messages in more detail. There are several reasons
why message approximations may be important in sensor networks. First, sensors have
limited computational power; approximate messages such as those used in NBP or other
forms of approximate inference [6, 13] can provide a means of reducing computational
complexity. Approximation may become even more important when communications
costs are considered. If the random variables of a graphical model are assigned to
various nodes within a wireless sensor network, and belief propagation is performed
over the graphical model, we require certain BP messages to be communicated from
one sensor to the other, i.e., transmitted over the wireless channel. Approximations can
be used to reduce the cost of these transmissions.

However, such approximations to the correct BP messages can cause errors in each
subsequent stage of belief propagation, and in particular cause differences between the
final results found via BP with and without message approximations. Chapter 4 consid-
ers the twin problems of how approximation error may be measured for BP messages,
and how these approximations propagate to affect the estimates found via BP. As an
interesting additional consequence, this analysis also helps to characterize the behavior
and convergence properties of BP when no approximations are made.

Communication Cost of Particle Representations. If sample–based methods
such as particle filtering and nonparametric belief propagation are to be applied to
distributed inference in actual sensor networks, we also need to understand the cost
of communicating the messages involved. In particular, given a collection of particles
which represent a distribution, what is the cost of communicating that collection from
one sensor to another? Chapter 5 considers the fundamental cost of communicating
a sample–based estimate of a distribution, as well as several constructive methods for
encoding the samples. Lossy approximations are of particular interest, since we may
be able to obtain significant savings if we are willing to distort the form of the message
slightly. Our analysis of message approximations from the previous chapter gives us
the tools to understand the effects of lossy encoding of messages, and we describe an
algorithm for finding and encoding representations which efficiently balance the cost of
communications with any potential errors.

Sensor Network Self–Localization. Chapter 6 brings the analysis of all three pre-
vious chapters to bear on a single, canonical problem in sensor networks—that of self–
localization. At the base of most sensor network applications is the fundamental as-
sumption that each sensor has some idea of its own location in the world. However, the
utility of many sensor networks depends on being able to obtain this information in an

Sec. 1.4. Contributions 15

automatic fashion, without direct intervention by a user or expensive additional equip-
ment such as global positioning satellite (GPS) hardware. Often, there is information
readily available about the relative locations of the sensors, for example using wireless
signal strength or other measures to infer sensor distance, and this relative information
can be combined in the network to provide location estimates for each sensor. We
frame this problem as a statistical inference task defined on a graphical model, and
apply nonparametric belief propagation to find a solution, obtaining both estimates of
sensor locations and of their uncertainty. The specific inference task of localization pro-
vides a more complex problem on which we can demonstrate the utility of our analysis
from the previous chapters.

¥ 1.4 Contributions

Each of the problems described in the previous section, along with its chapter’s analysis,
has implications both for our focus problem (sample–based inference in sensor networks)
and for a more general understanding of approximate inference methods. We list some
of these contributions in the general order in which they appear in the thesis.

The nonparametric belief propagation method of Chapter 3 provides an algorithm
which can be used to solve many problems defined on sensor networks, including the
self–localization problem of Chapter 6. However, NBP is not restricted to sensor net-
works; it is a general–purpose method of performing approximate inference in graphical
models. In addition to its application to sensor networks as covered in detail in the
thesis, NBP has also been used to solve difficult problems in computer vision applica-
tions, for example estimating visual appearance models [93] and performing video-based
tracking [88, 89, 94]. We describe the general structure and important concepts underly-
ing NBP, and provide a detailed description of the algorithmic tools required to obtain
an efficient implementation of NBP for inference.

Chapter 4 considers the problem of approximate belief propagation more abstractly.
Perhaps the most important contribution of this chapter is to describe a novel framework
in which belief propagation and many approximate versions of BP can be analyzed. In
particular, this framework regards each iteration’s messages as approximations to a
fixed point of BP, with some quantifiable error; by analyzing the behavior of these
errors, we may draw conclusions about the BP messages themselves.

We introduce one particularly convenient measure of error between BP messages,
for which we are able to derive strong theoretical statements about the behavior of
BP, including convergence conditions and some properties of the BP fixed points. We
also obtain results which describe how BP behaves when messages or model parame-
ters are approximated, as might arise in quantized versions of BP. Broadly speaking,
this analysis is directly applicable to many uses of BP in sensor networks, in which
quantization and other simplified representations are key to being able to communicate
the messages in inference efficiently. Moreover, the implications of this chapter go well
beyond sensor networks. BP is widely applied in such diverse fields as communications,

16 CHAPTER 1. INTRODUCTION

machine learning, computer vision, and signal processing; it is safe to say that a bet-
ter understanding of the properties of BP, including its convergence and stability with
respect to approximations, benefit many of these areas.

We also considered a second, less strict measure of error between messages. While
we are unable to derive strong theoretical statements using this measure, we are able
to use it to find useful approximations. Furthermore, it is instructive to see why the
analysis becomes more difficult, and how at least some of these difficulties may be
circumvented.

Our analysis of communications costs and approximations for particle–based repre-
sentations (Chapter 5) has implications for many canonical sensor network applications,
for example performing distributed target tracking using particle filtering [61, 114].
Again, perhaps the most important contribution of this chapter is to define the problem
of communicating a sample–based density estimate. This opens the door to a number
of new and interesting problems.

We characterize the optimal size of an exact representation of the density estimate
under certain assumptions. As one consequence, we are able to show that this problem
behaves quite differently from most common source coding problems. We describe some
characteristics of “good” encoding methods and give a few constructive examples.

We also describe the problem of approximate representation of the density estimate,
arguing that it is important to apply measures of loss which have some theoretical
interpretation in terms of eventual inference error, for example those measures described
in Chapter 4. The ability to balance the cost of communications with some measure
of the resulting inference error represents a basic and extremely important element in
creating efficient yet useful implementations for sensor networks. Again, the example
approximation algorithm we describe by no means exhausts the possibilities, but instead
serves to highlight an area of research which deserves additional attention.

Finally, Chapter 6 describes how these elements may be combined to provide a
powerful set of tools for solving inference problems in sensor networks. By describing
this canonical problem in terms of a graphical model, we are able to characterize a
number of interesting properties of the problem, as well as gaining a sense of how
“local” the problem really is. NBP provides a novel method of solving the ensuing
optimization problem, and results not only in estimates of the sensor locations but
also estimates of our remaining uncertainty. It can be easily distributed at a relatively
low communications cost. In short, it not only illustrates how the preceding chapters’
analysis can be applied to problems in sensor networks, but also appears to provide a
powerful new solution to one of their fundamental tasks.

In summary, the work presented here forms a cohesive investigation of the central
problem of performing inference tasks in distributed networks of sensors using non-
parametric, particle–based representations of uncertainty. However, each part of the
whole has its own implications for general inference and estimation problems, whether
centralized or decentralized, and it is our hope that the results herein will prove useful
for many more problems than those we have explicitly addressed (some of which we

Sec. 1.5. Acknowledgements 17

outline explicitly in Chapter 7).

¥ 1.5 Acknowledgements

Much of the research in this thesis has also been submitted or published in the form
of conference and journal papers. Chapter 3, on the nonparametric belief propagation
algorithm, consists of research done jointly with Erik Sudderth and is derived from
the conference papers [46, 93]. The analysis of message errors and stability of Chap-
ter 4 is also described in [44]. Chapter 5, on the lossless and lossy communications
costs of particle–based representations of uncertainty, contains work derived from two
papers [43, 45]. Finally, Chapter 6 describes our work on the sensor self–localization
problem; this research was performed jointly with Prof. Randy Moses of The Ohio
State University, and is also documented in the publications [40–42].

18 CHAPTER 1. INTRODUCTION

Chapter 2

Background

IN this chapter, we provide a brief overview and introduction to the prior work rel-
evant to later parts of the thesis, and give specific references to works with more

in-depth coverage. We first describe sensor networks generally, some of their current
uses, and the typical issues involved. We then cover background in several basic ar-
eas: communications theory, nonparametric density estimation, efficient data structures
(specifically KD-trees), and graphical models and inference algorithms. These sections
provide the basic tools and notation used in the later parts of the thesis.

¥ 2.1 Sensor Networks

Sensor networks comprise a rapidly growing field of research with numerous applica-
tions for both military and civilian problems [29, 57]. Wireless ad-hoc sensor networks
are appealing for a number of reasons. The idea of pervasive sensing is compelling—
inexpensive sensors blanketing a region and reporting everything within. In such a
scenario, there might be thousands of sensors, consisting of many different sensing
modalities. In order to make such a scenario work, sensor networks must operate with
relatively little infrastructure and almost no direct user intervention or calibration.

These features enable sensor networks to be deployed quickly and cheaply, and can
be important in many types of environments, such as areas which are dangerous for
people, for example monitoring regions of conflict [83], or are simply difficult to access,
such as habitat or environmental monitoring applications [63, 66]. More mundane ap-
plications include problems in which it is simply too expensive to add or alter existing
infrastructure, for example the retrofitting of old buildings [58]. Sensing technology has
also progressed to the point where many useful sensors can be made extremely small,
allowing information to be gathered unobtrusively. Examples of the technological pro-
gression and size of practical sensor networks are shown in Figure 2.1.

Each sensor in the network is typically equipped with certain devices and abilities.
In particular, these elements usually include

Sensing: each sensor typically has some means of observing (and potentially interact-
ing with) the environment. Some examples of relatively low-cost sensors include
acoustic, seismic, or meteorological (temperature and pressure) measuring devices;
higher-cost sensing units for visual or infrared imaging are also possible.

19

20 CHAPTER 2. BACKGROUND

Figure 2.1. Various forms and development of the Berkeley “Mote” sensor; see e.g. [38]

Computation: each sensor has the means to perform some amount of local computa-
tion or data processing, from simple tasks such as data compression to complex
distributed algorithms for calibration, event detection, and inference.

Communications: sensors are generally equipped with some form of wireless com-
munications, enabling each sensor to exchange information with other sensors,
typically those located nearby. This communications network allows data to be
exported from the sensors, and can also be used to exchange relevant data locally
with other sensors, enabling each sensor to benefit from the others’ observations.

Power: each sensor is also equipped with a self-contained power supply of some kind.
For the same reasons which make low-infrastructure sensor networks appealing,
these power supplies are generally difficult to replace or recharge, and thus dictate
the total lifetime of each sensor.

The primary concern of a wireless sensor network is almost always power consump-
tion. In order to avoid a wired infrastructure, the sensors’ power supplies must be self-
contained. This power is slowly depleted by every action the sensor takes—observing
the environment, local data processing activity, or communicating with nearby sensors.
Unfortunately, battery technology has not progressed at the same rate as, for example,
the technology underlying fast computation. In a typical sensor, the required battery
size is many times that of the rest of the device [68], and is difficult to access for recharg-
ing or replacement. This makes power the driving factor behind sensor lifetime, and
thus utility.

Limitations on available power means that problems such as inference and estimation
in sensor networks must be carefully considered. In particular, communication typically
takes many times the amount of energy required for computation or sensing [68]. This
makes distributed algorithms and lossy forms of information transfer key issues for
successful operation of a sensor network. In Chapters 4 and 5, we examine the effects
of loss and approximation on inference algorithms, including for example distributed
tracking, and in Chapter 6 describe a distributed algorithm for one of the most basic
elements of constructing an ad-hoc sensor network, that of self-localization (automatic
estimation of the position of each sensor in the network).

Sec. 2.2. Information Theory 21

¥ 2.2 Information Theory

With their distributed nature and limited power supplies, sensor networks have com-
pelling reasons to consider the communications requirements inherent in their tasks.
Any study of communications, of course, must originate with information theory, which
describes measures of uncertainty and information (the reduction of uncertainty); these
quantities are directly related to the asymptotic performance of optimal communica-
tions. We stop short of describing constructive methods (algorithms) which approxi-
mate or achieve such performance; for a more in-depth coverage of information theory
and data compression, see e.g. [15, 28].

¥ 2.2.1 Entropy

Entropy provides a quantification of randomness for a variable. Let x be a random
variable taking on one of a discrete set of K values, with probability mass function
p(x). Shannon’s measure of entropy (in bits) is given by

H(p) = −E[log2 p(x)] = −
K∑

i=1

p(i) log2 p(i) (2.1)

Entropy quantifies the expected amount of information (and thus communication) re-
quired to describe the state of the random variable x, and for discrete-valued x is always
strictly non-negative, and zero only when x is in fact deterministic rather than random.
Source coding, or data compression, describes the process of finding an efficient repre-
sentation of any particular realization of random variables. Sometimes the underlying
distribution p(x) is known, and can be used to design an optimal encoder; in other
problems it must be estimated, or an encoder which is agnostic to the distribution
applied.

In particular, (2.1) is achieved by assigning each value of x a codeword (string of
bits) whose length is proportional to the negative log-probability of x. Examples of
constructive methods which achieve optimal performance in this manner include the
classic Huffman and arithmetic codes [28].

The differential entropy of a continuous random variable is a more subtle concept.
Let x be a continuous-valued random variable with probability distribution function
(pdf) p(x) which is non-zero on some finite interval, say [0, 2T). Define xd to be a
discrete-valued version of x with probability mass function pd(xd), where xd has been
discretized to bins of size 2−β. There are thus 2T+β possible discrete values for xd.
The entropy of the discrete random variable xd is given by H(pd), and is a function of
the discretization level β. Then, the differential entropy H(p) is defined by the limit of
increasing resolution

H(p) = lim
β→∞

H(pd)− β

22 CHAPTER 2. BACKGROUND

and this can be shown to be equivalent to the natural generalization of (2.1),

=
∫

p(x) log2 p(x).

The differential entropy essentially measures the amount of randomness in a “very fine”
discretization of the variable x, in a manner which can be decoupled from the actual
discrete resolution β.

¥ 2.2.2 Mutual Information

Observing one random variable often tells us something about a related variable. The
amount of randomness lost by observing one of two variables is a symmetric function,
termed mutual information (MI). It can be expressed in terms of entropy as

I(x; y) = H(x)−H(x|y) = H(x) + H(y)−H(x, y) (2.2)

Furthermore, a deterministic function of a random variable can only lose information;
this is the data processing inequality :

I(x; f(y)) ≤ I(x; y) ∀f(·) (2.3)

¥ 2.2.3 Relative Entropy

Relative entropy, also called the Kullback-Leibler (or simply KL) divergence, is one
measure of the similarity between two distributions. It is defined as

D(p‖q) =
∫

p(x) log
p(x)
q(x)

dx (2.4)

(with the integral replaced by a summation if x is discrete). The KL-divergence has
the nice property that it is zero if and only if the distributions p and q are equal. To
be precise, we mean that for all events A, the probability of A is equal under both
distributions:

∫
A p(x) dx =

∫
A q(x) dx. If x is a discrete-valued random variable, this

means that p(x) = q(x) for all values of x; if x is continuous it is possible for p(x) and
q(x) to differ on a set of measure zero. However, for practical purposes we may ignore
this subtlety.

¥ 2.3 Nonparametric Density Estimation

In many situations, we observe random processes for which we do not know, and would
like to estimate, the distribution from which the observations have been drawn. If we
also do not know the underlying form of the distribution a priori, nonparametric es-
timation methods are appealing, since they possess few underlying assumptions about
the density which could potentially be incorrect. Although a nonparametric estimate

Sec. 2.3. Nonparametric Density Estimation 23

generally converges more slowly than an estimate making use of a correct paramet-
ric form, the strength of nonparametric techniques lies in the fact that they can be
applied to a wide variety of problems without modification. One popular method of
nonparametric density estimation, used extensively in this thesis, is the kernel density
estimate.

¥ 2.3.1 Kernel density estimates

Kernel density estimation, or Parzen window density estimation, is a technique of
smoothing a set of observed samples into a reasonable continuous density estimate [76,
84, 90]. For interested readers, Silverman [90] provides a particularly detailed and useful
introduction to the subject. Other useful references include [50, 86, 103].

In kernel density estimation, a function K(·), called the kernel, is used to smooth
the effect of each data point onto a nearby region. For N i.i.d. samples {x1 . . . xN}, we
have the density estimate

p̂(x) =
1
N

∑

i

Kh (x− xi) (2.5)

where h denotes the kernel size, or bandwidth, and controls the smoothness of the
resulting density estimate.

The kernel function Kh(·) is generally assumed positive, symmetric, and chosen to
integrate to unity to yield a density estimate in (2.5). Perhaps the most common kernel
function is the spherically symmetric Gaussian kernel

Kh(x) = N (x; 0, hI) ∝ exp
(−‖x‖2/(2h)

)

where N (x; µ,Σ) denotes the Gaussian distribution with mean µ and covariance Σ

N (x;µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
(x− µ)T Σ−1(x− µ)

)
(2.6)

and d is the dimension of x and µ (in our notation, represented as column-vectors), and
|Σ| is the determinant of Σ. In this case, the bandwidth h controls the variance of the
Gaussian kernel.

Many other kernel shapes are possible; however, empirically and theoretically, kernel
shape appears to have very little effect on the quality of the resulting density estimate.
Thus, in this thesis we will always use the Gaussian kernel, though as we discuss shortly,
not necessarily a spherically symmetric one. The Gaussian kernel has a number of
advantages in later parts of the thesis, which we mention as they arise. For a full
discussion of the impact of various kernel choices, see [90].

A more crucial choice is the selection of the kernel size (or bandwidth) h. Let
us begin with a simple one-dimensional problem, and consider the more general case
subsequently. Figure 2.2 shows an example of the possible effects of over- and under-
smoothing by poor choice of bandwidth parameter. When the bandwidth is too large,
important features (such as the bimodality) are lost; however, if it is chosen to be too
small, the exact values of the data begin to unduly affect the density estimate.

24 CHAPTER 2. BACKGROUND

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

(a) (b) (c)

Figure 2.2. Kernel size choice affecting the density estimate: Large kernel sizes (a) produce over-
smoothed densities, while small sizes (c) make densities which are too data-dependent. An appropriate
middle ground is shown in (b).

In some cases the bandwidth can be chosen by hand, but it is often important
to be able to select a reasonable value for the bandwidth automatically. There are a
number of ways in which this can be done; we merely describe two which will be applied
in later parts of the thesis. The first method, called the rule of thumb, is a simple,
fast heuristic [86, 90]. Specifically, it assumes that the data samples are drawn from
a Gaussian distribution, and computes the optimal bandwidth for the kernel density
estimate as a function of the variance of the one-dimensional data by

hROT ≈ 1.05σ2 N−2/5 σ2 =
1
N

∑
(xi − µ)2 µ =

1
N

∑
xi.

The conventionally accepted wisdom is that this technique has a tendency to over-
smooth the distribution and thus prefers unimodal density estimates [90].

Another possibility is to choose the bandwidth in a maximum-likelihood framework.
Naively, one could maximize the average log-likelihood of (2.5) at the same points {xi}
used to construct the density estimate, giving

h∗ = arg max
h

1
N

∑

j

log

(
1
N

∑

i

Kh (xi − xj)

)
;

however, since the same points are used both for constructing the density estimate and
for estimating the likelihood, the optimal value h∗ will always be zero. A non-trivial
solution is given by the leave-one-out maximization

hLCV = arg max
h

1
N

∑

j

log

 1

N − 1

∑

i6=j

Kh (xi − xj)

 . (2.7)

We refer to this choice of bandwidth simply as likelihood cross-validation (LCV).
For higher dimensional distributions, kernel density estimation poses additional

problems. For Gaussian kernels, the bandwidth may be defined by a general covariance

Sec. 2.3. Nonparametric Density Estimation 25

matrix, but with the larger number of parameters an optimization over likelihood can
be very inefficient. Often, one restricts attention to diagonal-covariance bandwidths or
even to multiples of the identity (“spherical” or isotropic Gaussian kernels). Another
option is to select a bandwidth which is proportional to the standard deviation of the
overall data, and optimize over the remaining (scalar) degree of freedom. The general-
ization of the “rule of thumb” method to higher-dimensional distributions employed in
this thesis are given by [86]

hROT = Cd (Diag(Σ))N−2/(4+d) Σ =
1
N

∑
(xi − µ)(xi − µ)T µ =

1
N

∑
xi (2.8)

where Diag(Σ) is the diagonal part of Σ, and thus hROT is a vector which captures only
the variance in each dimension. This representation is selected for simple computational
efficiency; if a more general covariance structure is desired it can be obtained by initial
pre-processing (rotation) of the data [90]. The dimension–dependant constant Cd is
well–approximated by Cd ≈ 1 for all dimensions d and thus is often ignored. The
generalization of the likelihood cross-validation criteria is similar; we select hLCV by

hLCV = αLCV Diag(Σ) αLCV = arg max
α

1
N

∑

j

1
N − 1

∑

i6=j

N (xi; xj , α Diag(Σ)) .

(2.9)

with Σ defined as in (2.8).
In subsequent chapters, we use h to indicate the vector–valued kernel bandwidth of

a multi-dimensional Gaussian kernel. Specifically, this kernel is given by

Kh(x) = N (x ; 0, diag(h))

where diag(h) is the diagonal covariance matrix whose elements are specified by the
vector h.

¥ 2.3.2 Estimating information-theoretic quantities

Kernel density estimates provide one means of robustly estimating the quantities de-
scribed in Section 2.2 for continuous random variables. Although other methods cer-
tainly exist (for an overview, see [4]) it is sufficient for our purposes to cover a few
techniques of entropy estimation based on kernel methods.

One simple idea involves direct integration of p̂, calculating the exact entropy of the
estimated distribution:

Ĥ = −
∫

p̂(x) log p̂(x)dx (2.10)

However, this quickly becomes unwieldy as the number and dimension of the data
grow. More feasible methods involve re-substituting the data samples back into the

26 CHAPTER 2. BACKGROUND

kernel density estimate. This gives a stochastic approximation to the integral [1, 52]

Ĥ = − 1
N

∑

j

log p̂(xj)

= − 1
N

∑

j

log

(
1
N

∑

i

K

(
xj − xi

h

))
(2.11)

or, removing the evaluation datum from the density estimate gives a leave-one-out
estimate [4]

Ĥ = − 1
N

∑

j

log

 1

N − 1

∑

i6=j

K

(
xj − xi

h

)
 (2.12)

Mutual information can then be estimated via (2.2):

Î(x; y) = Ĥ(x) + Ĥ(y)− Ĥ(x, y) (2.13)

and KL-divergence as:

D̂(p||q) = Ĥ(x)− 1
N

∑

j

log q̂(xj) (2.14)

where q̂(x) is another density estimate, for example a kernel density estimate con-
structed using a different set of samples.

¥ 2.3.3 Implementation

The basic operations of kernel density estimation described in this section, along with
many of the algorithms described subsequently in this thesis, have been made available
as part of the Kernel Density Estimation (KDE) Toolbox for Matlab [47]. The code
and its documentation can be found at http://ssg.mit.edu/~ihler/code/.

¥ 2.4 KD-Trees

K-dimensional trees (KD-trees) are data structures for representing and manipulating
large sets of continuous-valued points. A KD-tree is a binary-tree structure which
divides up a collection of points into a hierarchy of subsets, and caches statistics of each
set which enable later computations to be performed more efficiently [5, 17, 71, 75].

Abstractly, a KD-tree stores two elements at each node of the tree. The first element
is a statistic, or collection of several statistics, representing a potentially large set of k-
dimensional points at each node (for example, their mean value). The second element of
a node describes some method of subdividing the set of points represented by that node
into two subsets which are then represented by nodes at the next level of the binary
tree. Typically, this subdivision takes the form of a k−1 dimensional hyperplane which

Sec. 2.4. KD-Trees 27

s

ss

s

1

L

P

R

D(s)

A(s)

D (s)L

Figure 2.3. KD-tree notation: a node s has parent node sP , left and right children sL, sR respectively,
ancestors A(s) (including the root node, 1), and leaf descendants DL(s).

splits the points into two disjoint collections of approximately equal size, one on each
side of the hyperplane. Perhaps the simplest method of subdividing the data is to select
between hyperplanes that are perpendicular to one of the k cardinal axes, choosing the
axis in some cyclic manner. Eventually, the data are subdivided so many times that
each finest-scale node stores a statistic computed from only a single point in the original
collection.

¥ 2.4.1 Notation

In order to describe KD-trees, the statistics which are cached, and a few of their many
uses, we first require some notation to discuss the overall data structure. Figure 2.3
provides a visual depiction of our notation. We label the root node (at the top of the
tree) by 1. For each node s in the tree except the root, we use sP to indicate its parent
node; assuming they exist, sL and sR indicate the left and right children respectively.
The set A(s) indicates the ancestors of node s—those nodes in the path between s and
1 (not including s itself). The descendants of s, D(s), are the nodes which are separated
from 1 by s, i.e., those below s in the tree. We will use the notation DL(s) to indicate
the subset of the descendants D(s) whose nodes are also leaf nodes, i.e., nodes that
have no left or right children.

Each node of the KD-tree is associated with a set of points in k-dimensional space,
with the complete set of points associated with the root node, and leaf nodes associated
with individual points. Because each of the leaf nodes is associated with only a single
point, we make no distinction between the points themselves and the leaf nodes of the
KD-tree. Similarly, we can consider the set of points associated with an internal node
s in the tree to be specified by its leaf descendants, DL(s).

It remains to be specified the two fundamental elements of the KD-tree. The first
is to specify precisely how the tree is constructed, which is to say how we choose the
k − 1 dimensional hyperplane which subdivides the data DL(s) at each node s into
DL(sL) and DL(sR), the collections summarized at the left- and right-hand children
of s, respectively. Then, given the structure of the KD-tree, the second element is to
specify exactly which statistics of the points, or equivalently leaf nodes DL(s), are to
be stored at each internal node s.

28 CHAPTER 2. BACKGROUND

¥ 2.4.2 Construction Methods

There are many ways to construct KD-trees, and the method employed may impact the
utility of the tree for subsequent computations; see, for example [71, 75]. However, it is
not our purpose to investigate the relative merits of these methods in this thesis, nor
do we assume that any particular method is used.

In our simulations and experiments for this thesis, we employ one of the simplest
construction algorithms, from [75]. This procedure works via a top-down set-splitting
procedure. Beginning with the root node s = 1, we compute the variance, along each
cardinal axis, of the points in DL(s). Selecting the cardinal axis with largest variance
to define our hyperplane, we split the collection of points into two parts at their median
value, associating the smaller values with sL and larger values with sR. If DL(s) contains
an odd number of points, we simply split according to some deterministic convention,
such as placing the extra point in the left-hand set. We may then repeat this procedure
by recursing on each subtree.

This procedure takes O(N log2 N) time, where N is the number of points stored in
the KD-tree. However, it is generally very fast, taking much less time than subsequent
operations on the KD-tree. The KD-tree can be thought of as creating a deterministic
ordering from any given set of data; computational complexity of O(N log2 N) is typical
for deterministic sorting algorithms [12].

¥ 2.4.3 Cached Statistics

What statistics are useful to store in a KD-tree is an issue that is highly dependent on
the precise application for which the KD-tree is intended. Since we will apply KD-tree
structures to represent kernel density estimates, we select a particular set of statistics
useful for that task. Specifically, we associate each leaf node of the KD-tree with a
point µi, weight wi, and bandwidth, represented by the vector hi whose elements are
the variance of the kernel in each dimension. Each internal node s of the KD-tree
describes statistics of the density estimate resulting from the sum of kernels stored
by its descendant leaf nodes DL(s), and these statistics can be used to enable fast
computations.

Three potentially useful statistics to store at each node s are

Weight ws ws = wsL + wsR

Mean µs wsµs = wsLµsL + wsRµsR

Bandwidth hs ws(hs + µ2
s) = wsL(hsL + µ2

sL
) + wsR(hsR + µ2

sR
).

where again, hs is a vector whose elements indicate the variance along each of the k
cardinal dimensions, and µ2

s indicates the element-wise product of µs with itself. Of
course, it is also possible to store more general estimates of covariance, instead of the
bandwidth vector we consider here. Given the structure of the KD-tree, these statistics
can be computed efficiently in a bottom-up fashion, from leaves to root. The statistics
themselves can be used to compute, at each node s, the Gaussian approximation to

Sec. 2.4. KD-Trees 29

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

(a) (b)

Figure 2.4. Two KD-tree representations of the same one-dimensional point set. (a) Each node
maintains a bounding box. (b) Each node maintains mean and bandwidth or variance statistics. (Note:
the finest scale, with the points only, is not shown.)

the kernel density estimate contained at the finest scale in DL(s) [see Figure 2.4(b)].
Another useful statistic to include is a bounding box which contains all the points µi in
DL(s); the box can be specified by a center and a range (one-half the box width) in each
cardinal direction. Again, given two bounding boxes for sL and sR, it is easy to find a
box center and range for s which contain both child nodes’ boxes [see Figure 2.4(a)].

¥ 2.4.4 Efficient Computations

The cached statistics at each node s are used to speed up numerous standard algorithms
and reduce the number of times the individual data need to be accessed. For example,
nearest-neighbor algorithms can make use of the bounding box statistics in order to rule
out large sets of samples without examining them directly; this leads to an O(log2 N)
nearest-neighbor algorithm [5]. The Expectation-Maximization algorithm for fitting
Gaussian mixture models can be sped up using the mean and variance statistics stored
at each node [70].

Bounding box statistics can also be used to speed up approximate evaluation of
kernel density estimates, using a dual-tree algorithm [32]. As it will become relevant in
Chapter 3, we describe this procedure in more detail.

Suppose that we wish to compute the kernel density estimate

p(yj) =
∑

i

wiK(xi − yj) (2.15)

for two sets of N points {xi} and {yj} with
∑

i wi = 1, up to some fractional error
tolerance ε. In other words, we wish for the true p(yj) and our estimate p̂(yj) to differ
by at most ε · p(yj) for each point yj . We begin by forming each collection of points
{xi} and {yj} into KD-trees, and creating bounding box statistics for each internal

30 CHAPTER 2. BACKGROUND

node of both trees. Then, beginning with the topmost node of each KD-tree, we follow
a recursive divide-and-conquer strategy.

Given a node s in the tree containing the {xi} (the “source” tree) and another
node t in the tree containing the {yj} (the “target” tree), we may consider a simple
approximation scheme. Using the bounding boxes stored at s and t, we can easily
compute the minimum and maximum distances Dmin and Dmax between any point in
DL(s) and DL(t); these distances are depicted in Figure 2.5. Define the kernel function
evaluated at these distances by Kmin = K(Dmax) and Kmax = K(Dmin). We may
then evaluate the error caused by approximating every term in an entire block of the
summation using a constant:

K(xi − yj) ≈ Cst ∀i ∈ DL(s), ∀j ∈ DL(t).

Taking Cst = (Kmax + Kmin)/2, we have that the error in this simple approximation is
at most ∆st = (Kmax −Kmin)/2.

If this approximation is deemed sufficiently accurate (a point we return to momen-
tarily), we may simply approximate all interactions between DL(s) and DL(t) using
this constant, i.e., since

∑

i∈DL(s)

wiK(xi − yj) ≈

 ∑

i∈DL(s)

wi

Cst ∀j ∈ DL(t),

and the statistic ws =
∑

i∈DL(s) wi is also cached at node s, we can add wsCst to our
estimate p̂(yj) for each j ∈ DL(t), and not consider the individual points xi stored
below node s.

If Cst is not sufficiently accurate, we may instead consider performing the same type
of approximation for each of the four interactions defined by nodes s and t’s children:
sL and tL, sL and tR, sR and tL, and sR and tR. This entire procedure is then repeated
in a recursive fashion. Since each child’s bounding box is strictly smaller than its
parent’s box, recursing on the child nodes results in a more accurate approximation.
For tolerance ε = 0, we will eventually reach the leaf nodes and compute each term
K(xi − yj) exactly; for ε > 0 we expect that the approximation at some earlier node
should be sufficiently accurate, and we can avoid computing many of the terms in the
sum.

The required level of accuracy ε p(yj) for a given set of locations {yj} depends on
the unknown quantity p(yj); however, it may be bounded in the following manner. At
all times, we keep track of a lower bound p−(yj) on p(yj), constructed simultaneously
with our approximation p̂(yj). Each time an approximation is deemed acceptable, in
addition to adding ws Cst to our estimate p̂(yj), we also add the value ws Kmin to
our lower bound p−(yj). This procedure is guaranteed to provide a lower bound on
p(yj) because wsKmin is itself a lower bound on the partial sum’s true contribution.
The lower bound p−(yj) can can then be used to assess the required precision for any

Sec. 2.4. KD-Trees 31

x xx x x x xx

D
minD

max

oooo oo oo

Figure 2.5. Two KD-tree representations may be combined to efficiently bound the maximum (Dmax)
and minimum (Dmin) pairwise distances between subsets of the summarized points (bold) using the
statistics stored in each tree.

DualTree(s, t)

1. Use the bounding boxes stored at s and t to compute

(a) Kmax ≥ maxi∈DL(s),j∈DL(t) Kσi(xi − yj)

(b) Kmin ≤ mini∈DL(s),j∈DL(t) Kσi(xi − yj)

2. If ∆st = 1
2 (Kmax −Kmin) ≤ ε · p−(yj) for all j ∈ DL(t), approximate the sum over

DL(s) for all of DL(t):

(a) Cst = 1
2 (Kmax + Kmin)

(b) For all j ∈ DL(t), p̂(yj) = p̂(yj) + ws Cst

(c) For all j ∈ DL(t), p−(yj) = p−(yj) + ws Kmin

3. Otherwise, refine both trees by calling the procedure recursively on all four subtree
pairs:

(a) DualTree(sL, tL)

(b) DualTree(sL, tR)

(c) DualTree(sR, tL)

(d) DualTree(sR, tR)

Figure 2.6. Recursive dual-tree algorithm for approximately evaluating a kernel density estimate p(y)
represented by a KD–tree. The values p−(yj) denote running lower bounds on each p(yj), while the
p̂(yj) denote our current estimates. Initialize p−(yj) = p̂(yj) = 0 for all j.

subsequent approximation, by ensuring that every approximation satisfies

∆st =
1
2
(Kmax −Kmin) ≤ ε p−(yj) ≤ ε p(yj)

for each j ∈ DL(t). Then, the error due to using wsCst is less than wsε p(yj), and since∑
i wi = 1, the total error from all such approximations is less than our tolerance level

εp(yj). The complete algorithm is described in Figure 2.6. Additional computational
tricks can be used to avoid direct, sequential comparison to the lower bounds p−(yj)
for each j ∈ DL(t).

While published proofs of the computation time [32] appear to be flawed, experimen-
tally this procedure appears to take only O(N log N) or even O(N) time to evaluate

32 CHAPTER 2. BACKGROUND

the (nominally) N2 interactions to some fixed tolerance level ε. It is comparable in
many ways to other low-rank approximation methods such as the fast Gauss trans-
form [33, 35, 92].

¥ 2.5 Graphs and Graphical Models

Graphical models provide a rich framework for describing structure in problems of in-
ference and learning. The graph formalism specifies conditional independence relations
between variables, allowing exact or approximate global inference using only local com-
putations. This is essential in sensor network applications, where global consolidation
and fusion of the sensors’ observations may be intractable. We provide a brief intro-
duction to undirected graphs and their uses in modeling the structure of probability
distributions.

¥ 2.5.1 Undirected Graphs

Graph theory has deep roots in mathematics, originating with Euler’s solution to the
Königsberg bridge problem in the mid-eighteenth century [36]. Though much of this
prior work is not directly pertinent to the use of graphs for statistical modeling, we
require a few basic definitions in order to discuss the concepts.

A graph G consists of a set of vertices (or nodes) V = {vs} and edges E = {(vs, vt)}
between them; undirected graphs have the property that (vs, vt) ∈ E ⇒ (vt, vs) ∈ E . We
focus our discussion on undirected graphs. The vertices vs and vt are said to be adjacent
if there is an edge connecting them, i.e., (vs, vt) ∈ E , and the set of nodes adjacent to vs

are called its neighbors, and denoted by Γ(s). The degree of vs is the number of incident
edges; if a graph has no self-connecting edges (vs, vs), which is always the case for the
statistical graphs considered in this thesis, this equals the neighborhood size |Γ(s)|.

When every pair of nodes in a set C ⊆ V is connected by an edge, C is called
fully-connected. Sets of nodes which are fully-connected are called cliques, and a clique
is called maximal when no other node may be added such that the set remains a clique,
i.e. , 6 ∃C ′ ⊆ V : C ⊂ C ′ and C ′ a clique.

It is also useful to discuss interconnections between more distant vertices. A walk
is a series of nodes vi1 , vi2 , . . . , vik , each of which is adjacent to the next. A path is a
special kind of walk which has no repeated vertices (m 6= n ⇒ vim 6= vin); if there exists
a path between every pair of nodes, G is called connected. A cycle is a walk which
begins and ends with the same vertex (vi1 = vik) but has no other repeated vertices,
thus forming a single loop.

Finally, a graph with no cycles is called a tree, or tree-structured. The concept of
a tree is useful since for a connected tree-structured graph, the path between any two
nodes is unique. In many problems, including inference over models defined on a graph,
this structure can be used to derive particularly efficient or provably optimal solutions.
A chain or chain-structured graph is a connected tree in which each node has at most
two neighbors, and thus can be drawn in a linear fashion.

Sec. 2.5. Graphs and Graphical Models 33

x1

x2

x3

x4

x5

x8

x9

x6
x7

A B C A B C

x1x2x3[] x4x5][x8x9x6x7][

(a) (b)

Figure 2.7. Graph separation and grouping variables: (a) shows the set B separating A from C,
implying p(xA, xC |xB) = p(xA|xB)p(xC |xB). This relation is also visible in the graph created by
grouping variables within the same sets (b), though some of the detailed structure has been lost.

¥ 2.5.2 Undirected Graphical Models

A graphical model associates a random variable xs with each vertex vs. The structural
properties of the graph describe the statistical relationships among the associated vari-
ables. Specifically, the graph encodes the Markov properties of the random variables
through graph separation. For a more complete discussion of graphical models, see [60].

Let B be a set of vertices {vs}, and define xB to be the set of random variables
associated with those vertices: xB = {xs : vs ∈ B}. If every path connecting any two
nodes vt, vu passes through the set B, B is said to separate the nodes vt and vu, and
the probability density function of the variables xt, xu conditioned on the separating
set xB factors as:

p(xt, xu|xB) = p(xt|xB)p(xu|xB) (2.16)

This relation generalizes to sets, as well. Figure 2.7(a) shows the nodes of a graph
partitioned into three sets, such that p(xA, xC |xB) = p(xA|xB)p(xC |xB). A particularly
well-known instance of this is a temporal Markov chain, where the variables {xi} are
ordered according to a discrete time index i, and the edge set E = {(vi, vi+1)}. This
gives (2.16) the interpretation of decoupling the state at future and past times given its
present value: p(xi, xk|xj) = p(xi|xj)p(xk|xj) for i < j < k.

For any set of random variables X, there may be many ways to describe their con-
ditional independence with a graph structure. For example, if we define new random
variables X̄ by grouping elements of X, a graph which describes the independence rela-
tions of X̄ also tells us something about the independence relations of X. Figure 2.7(b)
shows an example of this, where variables from the graph in Figure 2.7(a) are grouped
according to the sets A,B, C. Variables are sometimes grouped such that they obey the
Markov properties of a graph with a particular kind of structure, for instance a chain or
tree—a tree-structured graph created in this manner is known as a junction tree [60].
However, by grouping variables some of the structure present in the original graph is
lost; e.g. from Figure 2.7(b) it is no longer obvious that p(x5|x1 . . . x9) = p(x5|x3, x8).
Additionally, the difficulty of performing inference can be increased considerably by the
resulting higher-dimensional variables associated with the new vertices.

The Hammersley-Clifford theorem [11] gives us a convenient way of relating the
independence structure specified by a graph to the distribution of the random variables

34 CHAPTER 2. BACKGROUND

xs. It says that a distribution p(x) > 0 may be written as

p(x) =
1
Z

∏

cliques C

ψC(xC) (2.17)

for some choice of positive functions ψC , called the clique potentials (sometimes called
compatibility functions), and Z a normalization constant.

When the density (2.17) can be written using only sets of size≤ 2 (including, but not
limited to tree-structured graphs), it becomes possible to associate the clique potentials
with either a node (|C| = 1) or an edge (|C| = 2). In fact, any graph may be converted
to one with only pairwise clique potentials by variable augmentation in a manner similar
to creating a junction tree. In order to simplify our discussion of inference methods,
we assume that the distributions in question may be expressed using only pairwise and
single-node potentials. This permits us to denote the clique potential between xs and
xt by ψst(xs, xt), and the local potential at xs by ψ(xs):

p(x) =
∏

(s,t)∈E
ψst(xs, xt)

∏
s

ψs(xs); (2.18)

Up to this point, we have not implied that any of the random variables are observed;
however, the typical scenario is that the distribution of interest is actually the posterior
distribution p(x|y), where y is a set of variables for which we have observed values.

Let us assume that our observed random variables y take the form of a collection of
observations (a) ys of individual node variables xs, corrupted by uncertainty indepen-
dent of x and other components of y, and (b) yts of pairs of variables xs and xt, again
corrupted by independent uncertainty, where s and t are connected by an edge. In this
case, no additional statistical dependencies are introduced between the unobserved, or
hidden, variables xs by conditioning on the y, and the conditional distribution p(x|y)
has the same form (2.18), where the potentials are themselves functions of the observed
variables, i.e.,

p(x|y) =
∏

(s,t)∈E
ψst(xs, xt, yst)

∏
s

ψs(xs, ys). (2.19)

It is worth noting the special case that arises when there are no observations which
couple two variables xs and xt and we may write y = {ys}, giving

p(x|y) =
∏

(s,t)∈E
ψst(xs, xt)

∏
s

ψs(xs, ys). (2.20)

In this situation we say that the observations ys are local to their associated hidden
variables xs.

Sec. 2.6. Belief Propagation 35

u

u

u

t s

1

2

3

1 1

1 1 1 1

2
2

2

2

3
3

3

4
4

4

3 4

(a) (b)

Figure 2.8. (a) BP propagates information from t and its neighbors ui is to s by a simple
message-passing procedure; this procedure is exact on a tree, but approximate in graphs with
cycles. (b) For a graph with cycles, one may show an equivalence between n iterations of loopy
BP and the depth-n computation tree (shown here for n = 3 and rooted at node 1; example
from [95]).

¥ 2.6 Belief Propagation

In this thesis, we are primarily concerned with a specific inference goal—the problem
of computing the posterior marginal distributions

p(xs|y) =
∫

x\xs

p(x|y) dx

for each xs. These distributions can be used to calculate estimates of the xs given all
observations y which are optimal with respect to any of a number of criteria, as well as
the uncertainty associated with such an estimate.

Exact inference on tree-structured graphs can be described succinctly by the equa-
tions of the belief propagation (BP) algorithm [79]. When specialized to particular
problems, BP is equivalent to other algorithms for exact inference, for example Kalman
filtering / RTS smoothing on Gaussian time-series and the forward-backward algorithm
on discrete hidden Markov models.

The goal of belief propagation, also called the sum-product algorithm, is to compute
the marginal distribution p(xt) at each node t. BP takes the form of a message-passing
algorithm between nodes, the most common form of which is as a parallel update algo-
rithm, where each node calculates outgoing messages to its neighbors simultaneously.
Each iteration can be expressed in terms of an update to the outgoing message at itera-
tion i from each node t to each neighbor s in terms of the previous iteration’s incoming
messages from t’s neighbors Γt, not including s itself [see Figure 2.8(a)],

mi
ts(xs) ∝

∫
ψts(xt, xs)ψt(xt)

∏

u∈Γt\s
mi−1

ut (xt)dxt. (2.21)

In certain special cases involving continuous-valued variables, not every message is
guaranteed to be finitely integrable. However, if a message mts is finitely integrable,

36 CHAPTER 2. BACKGROUND

we follow the convention that it is normalized so as to integrate to unity. For discrete-
valued random variables, of course, the integral is replaced by a summation. At any
iteration, one may calculate the belief at node t by

M i
t (xt) ∝ ψt(xt)

∏

u∈Γt

mi
ut(xt). (2.22)

It is also useful to define the partial belief by the product of all incoming messages
except that from a single neighbor,

M i
ts(xt) ∝ ψt(xt)

∏

u∈Γt\s
mi

ut(xt). (2.23)

When possible, we also normalize the belief Mt and partial belief Mts so as to integrate
to one.

For tree-structured graphical models, belief propagation can be used to perform
exact marginalization efficiently. Specifically, the iteration (2.21) converges in a finite
number of iterations (at most the length of the longest path in the graph), after which
the belief (2.22) equals the correct marginal p(xt). However, as observed by [79], one
may also apply belief propagation to arbitrary graphical models by following the same
local message passing rules at each node and ignoring the presence of cycles in the
graph; this procedure is typically referred to as “loopy” BP.

For loopy BP, the sequence of messages defined by (2.21) is not guaranteed to con-
verge to a fixed point after any number of iterations. Under relatively mild conditions,
one may guarantee the existence of fixed points [112]. However, they may not be unique,
nor do the fixed points correspond to the true marginal distributions p(xt)). In practice
however the procedure often arrives at a reasonable set of approximations to the correct
marginal distributions [99, 106, 111].

¥ 2.6.1 Implementations of BP

As described, the operations of BP consist of taking the point-wise product of collections
of messages as in (2.22), and the convolution with a pairwise potential function as given
in (2.21). Performing these operations analytically for general, continuous messages and
potential functions is intractable. However, there exist special cases for which efficient,
exact methods can be derived. These include discrete-valued random variables (in which
each xs takes on one of a finite set of values), and jointly Gaussian distributions.

In the case of discrete-valued random variables, the belief Mt(xt) takes the form
of a vector of probabilities, corresponding to an estimate of the discrete probability
mass function for xt. Since xs and xt are both discrete-valued variables, the potential
function ψst may be written as a matrix, and the convolution (2.21) as a matrix-vector
product [79]. When the variables are all jointly Gaussian, it can be shown that the
messages also have a quadratic form similar to a Gaussian distribution, and have a
finite parameterization as a mean vector and covariance matrix [107].

Sec. 2.7. Particle Filtering 37

¥ 2.6.2 Computation Trees

It is sometimes convenient to think of loopy BP in terms of its computation tree [95, 104].
It can be shown that the effect of n iterations of loopy BP at any particular node s is
equivalent to exact inference on a tree-structured “unrolling” of the graph from s. A
small graph, and its associated 4-level computation tree rooted at node 1, are shown in
Figure 2.8(b).

The computation tree with depth n consists of all length-n paths emanating from s
in the original graph which do not immediately backtrack (though they may eventually
repeat nodes).1 We draw the computation tree as consisting of a number of levels,
corresponding to each node in the tree’s distance from the root, with the root node at
level 0 and the leaf nodes at level n. Each level may contain multiple replicas of each
node, and thus there are potentially many replicas of each node in the graph. The root
node s has replicas of all neighbors Γs in the original graph as children, while all other
nodes have replicas of all neighbors except their parent node as children.

Each edge in the computation tree corresponds to both an edge in the original
graph and an iteration in the BP message-passing algorithm. Specifically, assume an
equivalent initialization of both the loopy graph and computation tree—i.e., the initial
messages m0

ut in the loopy graph are taken as inputs to the leaf nodes. Then, the upward
messages from level n to level n − 1 match the messages m1

ut in the first iteration of
loopy BP, and more generally, a upward message mi

ut on the computation tree which
originates from a node u on level n− i+1 to its parent node t on level n− i is identical
to the message from node u to node t in the ith iteration of loopy BP (out of n total
iterations) on the original graph. Thus, the incoming messages to the root node (level
0) correspond to the messages in the nth iteration of loopy BP.

¥ 2.7 Particle Filtering

Let us now consider inference in the special case of a Markov chain with local obser-
vations {yt}, so that each yt is independent of all other variables when conditioned on
the value of its associated hidden variable xt. Since on a Markov chain the nodes {vt}
may be sequentially ordered, we will label the neighbors of node vt by vt−1 and vt+1.

Particle filters [3, 19, 31, 49] provide a stochastic method of approximating the BP
update equation (2.21) for the forward pass (vt−1 → vt → vt+1) on Markov chains
involving general continuous distributions. The goal of particle filtering is thus to
estimate the posterior marginal distributions p(xt|yt, yt−1, . . . , y1) for each t.

In particular, these distributions are not assumed to have any closed, parametric
form. Because of this, uncertainty at each node vt is represented nonparametrically by
a collection of weighted particles, which serve as independent samples drawn from the
distribution p(xt|{ys : s ≤ t}) in a manner that we make precise soon. The basic idea
behind particle filtering is to approximate the posterior distributions sequentially, by

1Thus in Figure 2.8(b), the computation tree includes the sequence 1− 2− 4− 1, but not the se-
quence 1− 2− 4− 2.

38 CHAPTER 2. BACKGROUND

first creating a set of weighted samples which represent the distribution p(x1|y1), then
using these samples to construct a new set of weighted samples which represents the
distribution p(x2|y2, y1), and iterating this procedure to estimate each of the desired
posterior marginal distributions in turn.

¥ 2.7.1 Particles and Importance Sampling

We begin by considering what it means to “represent” a distribution using a collection
of weighted samples. Let p(x) be some arbitrary distribution, and suppose that we
are able to draw a set of N i.i.d. samples {xi

p} from p(x). We may approximate the
expectation of an arbitrary function f(x) over the distribution p using the following
Monte Carlo estimate, ∫

f(x)p(x) dx ≈ 1
N

∑

i

f(xi
p). (2.24)

We can thus use the samples {xi
p} to create an unbiased estimator of any number of

useful statistics of the distribution p(x), for example its mean, variance, or higher-
order moments. In this sense, the samples {xi

p} can be thought of as representing the
distribution p(x).

However, it may be computationally difficult to obtain a collection of i.i.d. samples
from p(x) directly, for example when p(x) is not specified in a convenient, closed para-
metric form. One way to address these situations is instead to create a collection of
weighted samples which serve the same purpose, through a method called importance
sampling [19, 65].

Suppose that, although it is computationally difficult to draw samples directly from
p(x), we are able to evaluate p(x) easily up to a normalization constant. Let us define a
proposal distribution q(x), for which both sampling and evaluation are computationally
feasible. We will assume that q(x) is absolutely continuous with respect to p(x), which
means that if q(x̄) = 0 for some x̄, then p(x̄) = 0 as well. Given a collection of N i.i.d.
samples {xi

q} drawn from the proposal distribution q(x), we can compute the relative
likelihood of having drawn each sample xi

q from p(x) versus q(x) and assign it as a
relative weight for that sample,

wi ∝ p(xi
q)

q(xi
q)

,

and normalize the wi so that
∑

i w
i = 1. Notice that, if p(x) = q(x), the wi are all

equal to 1
N . Also, note that to compute the {wi} we do not need to be able to evaluate

either distribution p(x) or q(x) individually, but instead only need to evaluate their
ratio p(x)/q(x) up to some proportionality constant.

This weighted collection of samples {wi, xi
q} may now be though of as representing

p(x) in a manner similar to before. Specifically, the expectation over p(x) of an arbitrary
function f(x) may be estimated using

∫
f(x)p(x) dx ≈

∑

i

wif(xi
q). (2.25)

Sec. 2.7. Particle Filtering 39

The assumption of absolute continuity ensures that for every state x with non-zero
probability in p(x), we also have a non-zero probability of drawing x using the proposal
q(x). The selection of a “good” proposal distribution is often application dependent,
for example depending on the function f(·), and is an area of open research. In particle
filtering, the typical goal is to obtain samples which represent p(x) well enough to be
reasonably effective for a large class of functions f(·); importance sampling in particle
filtering is thus most effective when the discrepancies between q(x) and p(x) are small.

Instead of a collection of weighted samples {wi, xi
q}, it is sometimes desirable to

create a collection of “unweighted”, or all equal-weight, samples which also represent
p(x) in the manner described. Given our collection of weighted samples, we can generate
a collection of representative equal-weight samples using a simple resampling procedure.
Define p̄(i) to be the discrete distribution which assigns weight wi to state i, with
i ∈ {1 . . . N}. Then, we can create a new collection of samples {xj

p} as follows. For each
j ∈ {1 . . . N}, we draw a label l from the discrete distribution, l ∼ p̄(i), then assign
xj

p = xl
q. The resulting collection of equally weighted particles { 1

N , xj
p} also represents

p(x). Because there is the possibility that the new samples {xj
p} may repeat values, we

say that this procedure draws samples from the {xi
q} by weight with replacement.

¥ 2.7.2 Graph Potentials

We now return to the problem of particle filtering. It is first helpful to select a particu-
lar, concrete choice for the pairwise and single-node potential functions ψ. A convenient
parameterization is given by the (forward) conditional distributions and likelihood func-
tions

ψ(xt, xt+1) = p(xt+1|xt) ∀t
ψ(xt, yt) ∝ p(yt|xt) ∀t > 1

(2.26)

and ψ(x1, y1) = p(x1|y1). The “forward” beliefs and BP messages then have the nice
interpretation that

Mt,t+1(xt) = p(xt|yt, yt−1, . . . , y1) (2.27)
mt,t+1(xt+1) = p(xt+1|yt, yt−1, . . . , y1). (2.28)

In particle filtering, we choose to represent each message using a collection of samples
drawn from the distribution in (2.27) or (2.28) corresponding to that message. In par-
ticular, since the posterior distribution at each time t is not in general readily available
in a convenient, closed form, we will use the collection of samples created to represent
the distribution at t−1, along with the conditional distribution and likelihood function
given in (2.26), to create a new collection of samples at time t via importance sampling.

¥ 2.7.3 Likelihood-weighted Particle Filtering

The most basic form of particle filtering [3] begins by drawing samples from the prior
distribution xj

1 ∼ p(x1), for which we assume that direct sampling can be done effi-
ciently. Then, to obtain a collection of weighted samples which represents the posterior

40 CHAPTER 2. BACKGROUND

p(x1|y1), we simply weight each sample by

wj
1 ∝

p(xj
1|y1)

p(xj
1)

∝ p(y1|xj
1),

the likelihood of the observation y1 given the state xj
1. Using this collection of particles,

we can obtain samples which represent the distribution p(x2|y1) by propagating each
particle xj

1 through the transition probability distribution p(x2|x1), i.e., sampling from
the transition probability distribution conditioned on x1 taking on the value xj

1,

xj
2 ∼ p(x2|xj

1).

Then, the collection of particles {wj
1, x

j
2} represents the distribution p(x2|y1). By iterat-

ing this procedure, we can obtain particle representations of each message and forward
belief in the Markov chain.

Let us put this recursive iteration in terms of the messages mt,t+1 and beliefs Mt,t+1.
Given a collection of weighted samples {wj

t , x
j
t} from the forward belief Mt,t+1 at time t,

we create a collection of weighted samples {wj
t , x

j
t+1} which represent mt,t+1 by sampling

from the conditional
xj

t+1 ∼ p(xt+1|xj
t) (2.29)

for each particle j. The new information due to the observation yt+1 is then incorporated
by weighting the samples by their likelihood,

wj
t+1 ∝ wj

t p(yt+1|xj
t+1). (2.30)

At every step, the weights are normalized so that
∑

j wj
t = 1.

¥ 2.7.4 Sample Depletion

The procedure outlined in Section 2.7.3 does not always work as well as might be
desired. One common issue that can arise is sample depletion. The samples are said to
be depleted when one, or a few, of the weights wj

t are much larger than the rest. This
means that any sample-based estimate such as (2.25) will be unduly dominated by the
influence of a few of the particles.

One way to avoid sample depletion is to perform the resampling procedure described
in Section 2.7.1 occasionally, since after resampling each of the N new particles has equal
weight. Resampling itself does not result in a more diverse collection of particles, since
it can only draw values which were in the original collection of samples; resampling on
a depleted sample set is likely to result in many copies of identically-valued particles.
However, when multiple copies of the same particle at node t are propagated through
the forward dynamics (2.29), they will in general result in different values, and thus
add sample diversity in the collection at node t + 1.

Sometimes, when the forward dynamics are close to being deterministic, we may
wish to add artificial diversity into the collection of samples. One way of doing so

Sec. 2.7. Particle Filtering 41

is to simply add a small amount of random noise to each of the samples after each
resampling operation. This is known as regularized particle filtering. Although this
type of regularization has the undesirable effect that estimates of the form (2.25) are
no longer unbiased, it has been known to improve performance in many applications.

¥ 2.7.5 Links to Kernel Density Estimation

Kernel density estimates also use samples to represent and estimate arbitrary distribu-
tions; see Section 2.3.1. The operations of particle filtering can also be though of in
terms of kernel density estimates. Traditional particle filtering corresponds to selecting
a “density estimate” p̂(xt|yt, . . . , y1) defined by

p̂(xt|yt, . . . , y1) =
∑

j

wj
t δ(xt − xj

t),

where δ is the Dirac delta-function. The procedure of resampling with replacement
described previously is then equivalent to drawing N samples independently from the
density estimate p̂. Regularized particle filtering, in which a small amount of noise is
added during this procedure, can be thought of as instead drawing N samples indepen-
dently from the (generalized) kernel density estimate

p̂(xt|yt, . . . , y1) =
∑

j

wj
t K(xt − xj

t),

where the kernel K(·) is defined by the distribution of the noise added to each particle
after resampling.

42 CHAPTER 2. BACKGROUND

Chapter 3

Nonparametric Belief Propagation

MUCH of this thesis is concerned with the problem of computing exact or approx-
imate posterior marginal distributions for a set of random variables, a problem

addressed by the belief propagation (BP) algorithm as described in Section 2.6. When
the variables under consideration are either jointly Gaussian or when each takes on a
finite (and relatively small) number of discrete values, the BP operations (2.21)–(2.22)
can be solved efficiently. However, in many problems the objects of interest are most
naturally expressed as continuous–valued variables and possess non-linear relationships
and non-Gaussian uncertainty. In these cases, Gaussian approximations may be un-
acceptable, and discretization of the state space may result in undesirable artifacts if
the discretization is too coarse, or computational difficulty due to the large state space
otherwise.

In filtering problems defined on Markov chains, the particle filtering methods de-
scribed in Section 2.7 make use of sample-based representations to construct Monte
Carlo approximations to the required integrals efficiently [3, 19, 31, 49]. In this chap-
ter, we describe how the sample-based representations used in particle filtering may be
extended to approximate the operations of belief propagation. The resulting nonpara-
metric belief propagation (NBP) algorithm retains both the ability of particle filtering
to capture arbitrary continuous distributions, and the applicability of belief propagation
to inference problems on general graphical model structures.

We begin by justifying our choice of Gaussian mixture distributions, or more specif-
ically Gaussian–kernel density estimates, to represent the sample–based message ap-
proximations used in NBP. To simplify the presentation, we initially assume that all
quantities in the graphical model are represented by Gaussian mixtures, and discuss in
Sections 3.3–3.4 how the operations required by NBP may be performed in this case.
We then relax this assumption in Section 3.5. We mention one useful modification to
the NBP algorithm in Section 3.6, and provide a brief recap and summary of NBP
in Section 3.7. An important sub-problem in NBP is the efficient drawing of samples
from products of several Gaussian mixture distributions; we consider this problem in

This chapter is based on the conference papers [46, 93], and represents work performed in collabo-
ration with Erik Sudderth.

43

44 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

some depth in Section 3.8. Finally, we give a few experimental examples of the NBP
algorithm in Section 3.9.

¥ 3.1 Message Normalization

A sample-based representation is typically only meaningful when the BP message mts is
finitely integrable. In standard particle filtering, the graphical model is parameterized in
such a way that the (forward) messages at each time step are the posterior distributions.
However, in general BP has no such guarantees; in fact, the BP messages are more
typically likelihood functions mts(xs) ∝ p(yts|xs) [101]. This is due to the fact that the
inclusion of the prior p(xs) in more than one of the incoming messages complicates the
fusion step, making it no longer a simple product operation. Thus, the BP messages
are not necessarily finitely integrable, for example when xs and yts are independent and
xs is not confined to a finite range. To guarantee that every message is, in fact, finitely
integrable, and thus can be normalized to integrate to unity (normalizable), we assume
for the moment that the potentials of our graphical model satisfy

∫
ψst(xs, xt = x̄) dxs < ∞ ∀(s, t) ∈ E

∫
ψs(xs, ys = ȳ) dxs < ∞ ∀s ∈ V

(3.1)

for any values of x̄ and ȳ. A simple induction argument then shows that all messages are
normalizable. Intuitively, the conditions (3.1) require each potential to be “informative”
about the neighboring variables, so that observing the value of one random variable
constrains the likely locations of the other. In most applications, this assumption is
easily satisfied by constraining all variables to a (possibly large) bounded range. We
will also relax these conditions in Section 3.5.

¥ 3.2 Sample-Based Messages

Recall the form of the BP message update equation

mi+1
ts (xs) ∝

∫
ψts(xt, xs)ψt(xt)

∏

u∈Γt\s
mi

ut(xt)dxt (3.2)

and belief (or estimated marginal)

M i
t (xt) ∝ ψt(xt)

∏

u∈Γt

mi
ut(xt) (3.3)

from Section 2.6. A direct application of the sample- (or particle-) based messages such
as are used in standard particle filtering, i.e., messages of the form

m̂ut(xt) =
∑

j

wj
utδ(xt − xj

ut) (3.4)

Sec. 3.2. Sample-Based Messages 45

where the {wj
ut, x

j
ut} are weighted samples drawn from the continuous BP message

mut(xt), immediately encounters difficulty, as the product of the incoming messages
may not be well-defined. Assuming the true continuous BP messages are smooth, any
two incoming messages m̂ut, m̂st to node t of the form (3.4) are virtually guaranteed
(i.e., with probability one) to have no samples which are exactly the same, and thus
their product will be everywhere zero.

To avoid this dilemma, we use the samples {wj
ut, x

j
ut} to define a smooth and strictly

positive function m̂ut(xt). While we eventually consider more general message approx-
imation forms, we begin by examining one straightforward and intuitive method of
enforcing these conditions, namely to smooth the function (3.4) by convolving it with
some strictly positive function K(x). Our message approximations thus have the form
of kernel density estimates (Section 2.3, [76, 90]); this representation is reminiscent of
that used in regularized particle filtering [3]. We focus solely on the Gaussian kernel

Kh(x) = N (x ; 0, diag(h))

since it has a number of desirable properties. First, it has infinite support (i.e., is strictly
positive), ensuring that the product of two Gaussian mixtures will always be normaliz-
able. Secondly, it is self-reproducing: the product of two Gaussian distributions has a
simple closed form, which is also a Gaussian distribution. As will be seen in Section 3.8,
this fact contributes to the tractability of many of the necessary computations.1

Of course, there is an inherent degree of freedom in the selection of the smoothing
parameter (or bandwidth) h. As a basic rule, one may always simply apply any of the
automatic bandwidth estimation methods described in Section 2.3.1 to select h given
a collection of samples. Alternatively, however, there are also a number of interesting,
more sophisticated possibilities for selecting h by taking into account the potential
function ψst, which we discuss in more detail in Section 3.4.3.

The BP update equation (3.2) can be decomposed into two operations, a message
product operation

M i
ts(xt) ∝ ψt(xt)

∏

u∈Γt\s
mi

ut(xt) (3.5)

and a convolution operation

mi+1
ts (xs) ∝

∫
ψts(xt, xs)M i

ts(xt)dxt. (3.6)

We examine each of these operations in turn. We begin by assuming that all these
functions, i.e., the messages mut and potential functions ψt and ψts, are represented by
Gaussian mixtures. This assumption serves to simplify the development of the NBP
algorithm; we discuss the relaxation of this assumption in Section 3.5.

1Thrun et al [96] deal with the same problem of ill-defined message products by applying a different
strictly positive density estimation technique, called a density tree. However, as we discuss in Section 3.8,
our kernel-based estimate leads to a number of efficient algorithms for approximating the involved
message products, only one of which (Section 3.8.1) is also applicable to density trees.

46 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

X

X

Figure 3.1. Although the product of d = 3 mixtures of N = 4 Gaussian components each (left)
produces a Gaussian mixture of Nd = 64 components (right), the resulting distribution itself (dashed)
rarely appears as complex as its sheer number of components would suggest, and may often be well-
approximated using far fewer components.

¥ 3.3 The message product operation

Using smooth and positive sample-based message approximations2 of the form

mut(xt) =
∑

j

wj
ut Khi(xt − xj

ut) (3.7)

the message product is guaranteed to be well-defined and normalizable. Moreover,
the fact that K(·) is chosen to be Gaussian means that a message product operation
which multiplies d Gaussian mixtures, each containing N components, will produce
another Gaussian mixture with Nd components. In principle, this means that the BP
message update operation (3.2) could be performed exactly. In practice, however, the
exponential growth of the number of mixture components forces approximations to be
made.

In particular, we would like to approximate the Nd-component mixture using some
smaller number of Gaussian components. Often, the functional shape of the message
product is relatively simple, indicating that it should be possible to approximate the
message product function accurately using only, say, N components. For an anecdotal
example, see the product of messages depicted in Figure 3.1.

If the Nd-component mixture could be efficiently constructed and manipulated, we
could apply any of a number of direct approximation methods to reduce the complexity
of the Gaussian mixture [2, 30]. However, for most values of N and d, dealing explicitly
with the full Nd-component mixture is generally computationally infeasible. Another
possibility is to approximate the product successively, factor by factor, so that we
compute the product of two messages m1(x) · m2(x), approximate the product using
some simpler description, then multiply this approximation by m3(x), and so on [23].
However, this is often sensitive to the order in which the product is taken, and can thus
lead to considerable error in the final product estimate.

2Although technically the Gaussian-sum based messages are some approximation m̂(x) of the true,
continuous message function m(x), we abuse notation slightly by making no distinction between the
two, also using m(x) to refer to the sample-based message estimates.

Sec. 3.4. The convolution operation 47

NBP does something considerably simpler. We assume that N is chosen to be
sufficiently large so that a kernel density estimate made up of N independent samples
from the product distribution can be used to represent it accurately. As we shall see
in Section 3.8, this sampling operation may be considerably easier to perform than the
direct exponential enumeration. Given a collection of weighted samples, we may simply
select the bandwidth parameters Hj

ts, or parameter if all the kernel bandwidths are
constrained to be equal for all j, using any automatic method such as those described
in Section 2.3 to construct a Gaussian mixture approximation to the message product

Mts(xs) =
∑

j

W j
tsKHj

ts
(xs −Xj

ts),

and can construct a similar approximation to the belief Mt(xt). Here we have extended
our use of capitalization to differentiate between messages and message products, using
{wj

ts, x
j
ut, h

j
ts to indicate the jth weight, sample value, and bandwith in the represen-

tation of the message mut(xt) and the capitalized variables {W j
ts,H

j
ts, X

j
ts} to indicate

the same quantities in the representation of the message product Mts. As discussed in
Section 2.3, for computational reasons it is common to select the bandwidth parameters
Hj

ts or hj
ts to be diagonal matrices.

¥ 3.4 The convolution operation

The second operation required for belief propagation is the convolution

mi+1
ts (xs) ∝

∫
ψts(xt, xs)M i

ts(xt)dxt.

In order to approximate the convolution operation via sampling, we require the decom-
position of the pairwise potential function ψst which separates its marginal influence
on xt from the conditional relationship it defines between xs and xt.

¥ 3.4.1 The marginal influence function

In standard particle filtering, the graphical model may be parameterized in such a way
that the pairwise potential ψts is the conditional distribution p(xs|xt), in which case
samples {wj

ts, x
j
ts} which represent mts are easy to generate given a collection of samples

{W j
ts, X

j
ts} from Mts by drawing at random xj

ts ∼ p(xs|Xj
ts) and taking wj

ts = W j
ts for

each j. However, in more general graphical models, the pairwise potentials are often not
expressed in such a conditional form, making the situation somewhat more complicated.
As mentioned previously, we have assumed that the pairwise potential ψst(xs, xt) is
informative, in the sense that for any given value of xt it is finitely integrable in the
variable xs. However, this does not mean that ψst has no influence on the likely states of
the variable xt. The conditional distribution is by definition agnostic about the possible
states of the conditioned variable, i.e.,

∫
p(xs|xt) dxs = 1 ∀xt.

48 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

A general potential function, however, may not have this property. To quantify this
difference, we define the marginal influence function ζ(xt) by

ζts(xt) =
∫

ψst(xs, xt) dxs (3.8)

The NBP algorithm accounts for this marginal influence by incorporating ζ(xt) into the
product operation described in Section 3.3, i.e., drawing samples from the product

ζts(xt)M i
ts(xt) ∝ ζts(xt)ψt(xt)

∏

u∈Γt\s
mi

ut(xt) (3.9)

rather than (3.5).
The marginal influence function ζ(xt) may, of course, be difficult to compute for

arbitrarily defined potential functions ψst; but there are many cases in which it is rela-
tively simple. If, as we have initially assumed, ψst is specified via a Gaussian mixture,
for example a kernel density estimate, the marginalization (3.8) is easily accomplished
and simply acts to add another Gaussian mixture to the product operation. Another
common case is that in which the pairwise potential ψst depends only on the differ-
ence between its arguments, so that (with a slight abuse of notation) we may write
ψst(xs, xt) = ψst(xs − xt). In this case it is easy to show that ζ(xt) must be constant,
since ∫ ∞

−∞
ψst(xs − xt) dxs =

∫ ∞

−∞
ψst(x) dx where x = xs − xt

and thus can be ignored.

¥ 3.4.2 Conditional sampling

Given that the marginal influence of the pairwise potential ψst has been properly ac-
counted for, the samples {W j

ts, X
j
ts} which represent the message product ζtsMts given

by (3.9) can be used to provide a stochastic approximation to the integration (3.6).
We construct particles to represent mts by sampling from the distributions defined
by conditioning the pairwise potential ψst on each of the samples Xj

ts, i.e., for each
j ∈ {1 . . . N}, drawing one sample xj

ts according to

xj
ts ∼ f(xs|Xj

ts) ∝ ψst(xs, X
j
ts). (3.10)

Taking wj
ts = W j

ts gives a collection of weighted samples {wj
ts, x

j
ts} which represents

the message mts(xs). Just as described for particle filtering in Section 2.7.4, after a
number of iterations of NBP the weights wj

ts can become severely non-uniform, leading
to undesirable dominance of one or a few samples in the message approximation. This
sample depletion can be combatted in the same way used in particle filtering, by first
resampling the collection {W j

ts, X
j
ts}, i.e., selecting each sample Xj

ts with probability
W j

ts. This resampling procedure produces a collection of N equally probable samples
from the product ζtsMts in (3.9), some of which may have identical values; we then rely
on the diffusion effect of the conditional sampling operation (3.10) to provide sample
diversity.

Sec. 3.4. The convolution operation 49

¥ 3.4.3 Bandwidth selection

Given a collection of samples {wj
ts, x

j
ts} from the message mts, it remains to determine

the bandwidth or bandwidths hj
ts. As with the message product, we could simply

elect to use any of a number of automatic bandwidth selection methods such as those
described in Section 2.3. However, these methods can often be improved upon by using
information about the form of ψst.

Let us begin with a simple example. Suppose that the pairwise potential ψst(xs, xt)
in (3.10) is Gaussian, so that

ψ(xs, xt) = N
([

xs

xt

]
;
[
µs

µt

]
,

[
Λss Λst

Λts Λtt

])

Then, the marginal influence function ζts(xt) is Gaussian, ζts(xt) = N
(
Xj

ts;µt, Λtt

)
,

and is easily incorporated into the product of messages (3.9). If this product is repre-
sented as a Gaussian mixture,

ζts(xs)Mts(xs) =
∑

i

W j
tsKHj

ts
(xs −Xj

ts),

the convolution 3.6 has a simple closed form, namely

mts(xs) ∝
∑

j

W j
tsN

(
xs;µ

j
s|t, Λs|t + Hj

ts

)
(3.11)

where the conditional quantities are given by

µj
s|t = µs + Λst (Λtt)

−1 (Xj
ts − µt)

Λs|t = Λss + Λst (Λtt)
−1 Λts.

Notice that the form of (3.11) is precisely that of a kernel density estimate, with weight
wj

ts = W j
ts, bandwidth hj

ts = Λs|t + Hj
ts, and kernel centers xj

ts = µj
s|t. Applying this

choice of parameters, we can avoid the issue of bandwidth selection for the message mts

entirely.
Furthermore, when Λs|t is much greater than Hj

ts, the bandwidth hj
ts selected for

the particles of mts can be approximated by Λs|t. Applying this approximation, we
no longer require the bandwidth Hj

ts, either. We could thus avoid selecting the band-
width for the message product Mts, as well, avoiding both the complexity of deciding
how to choose these bandwidths and computational overhead of computing them. Un-
fortunately, without determining the value of Hj

ts, we cannot determine whether this
approximation is appropriate. There is thus some danger in blindly using Λs|t as the
smoothing parameter, without ever estimating Hj

ts from our samples. However, since
most automatically selected bandwidths Hj

ts are decreasing functions of the number
of particles N , the approximation typically works well when the value of N has been
chosen to be sufficiently large.

50 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

If the potential ψst(xs, xt) in (3.10) is described by a mixture of Gaussian compo-
nents, i.e.,

ψst(xs, xt) =
K∑

k=1

V k
stN

([
xs

xt

]
;
[
µk

s

µk
t

]
,

[
Λk

ss Λk
st

Λk
ts Λk

tt

])

and the message product ζts(xs)Mts(xs) is again represented by a Gaussian mixture
with N components, then the convolution 3.6 also has a relatively simple closed form
as a Gaussian mixture [48]. Unfortunately, the number of components in the resulting
message mts is then K ·N , rather than only N , as desired.

There are a number of ways we can go about reducing the number of components
back to only N . Typically, many of these components have small relative weight; thus
it is usually sufficient to preserve only a few of them. The difficulty, then, is which N
components to select.

One alternative is to construct the KN mixture components explicitly, and then cre-
ate a new collection of only N components by including each component with probabil-
ity proportional to its weight. For example, if we select components with replacement,
we have a procedure much like the resampling process in particle filtering, in which
we allow multiple copies of the same component to be included if drawn more than
once in the sampling process. If this replication is not desirable, we can draw samples
without replacement—beginning with the collection of all KN components, each time
a component is selected by our sampling process, we remove it from the collection and
renormalize the weights of the remaining components, thus ensuring that each compo-
nent is drawn only once. The components which are drawn are assigned their original
weight in the new collection, and normalized so that their sum is equal to unity.

At times, we may not wish to compute and store all KN components explicitly. As
a reasonable and efficient approximation, we could alternatively select only one of the
K components to use for each incoming sample Xj

ts. For example, conditioned on the
value of Xj

ts, we may compute the relative weights of each of the K mixture components,
and sample from them randomly with probability proportional to their weight. This
procedure typically works well when ψ is a kernel density estimate, and very few of the
K components have non-negligible weight given Xj

ts.
Another possibility is to reduce the size of our collection of particles first. If we draw

N
K particles from the collection Xj

ts with probability proportional to W j
ts, we may then

exactly convolve the particles with the K–component Gaussian mixture, producing N
components in the final kernel density estimate of mts. This works well when N is very
large and K is much less than N , so that the smaller collection of N

K particles remains
a good approximation to the message product Mts.

All of the methods described result in a collection of Gaussian mixture components,
each of which has an associated analytically determined bandwidth. Thus we have
again, in some sense, sidestepped the issue of bandwidth selection. However, we must
be careful if we decide to apply this choice of bandwidth blindly, since it is analytically
correct only when all KN components are included, and is not necessarily the best

Sec. 3.5. Analytic messages and potential functions 51

choice when only N of the components are retained. Nevertheless, use of the analytically
determined bandwidth often results in a relatively good message approximation, since
most of the discarded components have very low weight, and thus have little impact in
the overall density estimate.

In practice, each of the described methods has situations for which it works well.
When the pairwise potentials are specified by kernel density estimates with K ≈ N , such
as in [93], the first or second methods, i.e., constructing all KN components explicitly
or selecting one of the K components for each Xj

ts work quite well. For very small
mixtures of Gaussians, Sigal et al. [88, 89] found it effective to use the third method,
i.e., use all K mixtures but only a few of the N original samples. For many problems,
of course, the potentials are expressed either analytically or as a single Gaussian (as
in the tracking problem of Sudderth et al. [94] and the localization of Chapter 6), in
which case the issue of subsampling does not arise.

¥ 3.5 Analytic messages and potential functions

When not all potential functions and messages are Gaussian mixtures, we can apply a
slightly modified version of the previously described procedure. Again, we describe the
modifications in terms of the two operations, the product of incoming messages and the
convolution with the pairwise potential ψst.

¥ 3.5.1 The message product operation

The inclusion of messages which are not Gaussian mixtures to the message product
operation can be performed using importance sampling [19]. Let us assume that the
form of the messages mut are either Gaussian mixtures, or are of some analytic form
which we are able to evaluate efficiently.

We first define the mixture product to be the product of those messages which are
Gaussian mixtures. We may draw a collection of samples from this mixture product,
using any of the methods we describe in Section 3.8. These samples are then weighted
by evaluating the product of the remaining, analytically–specified messages at each
sample location, and normalizing the resulting weights. This is quite similar to the
way importance sampling is used in particle filters, described in Section 2.7.1. Using
importance sampling to account for the effect of analytic messages typically works well
so long as the analytic messages are smooth and vary relatively slowly over the set of
sample locations.

¥ 3.5.2 The convolution operation

When the pairwise potential functions ψts are not Gaussian mixtures, we may still be
able to perform the convolution operation in a manner similar to that described in
Section 3.4. For a pairwise potential ψts available in an analytic form, it may become
more difficult to compute the marginal influence function ζts, and to draw samples
from the induced conditional distribution f(xs|Xj

ts) ∝ ψst(xs, X
j
ts). However, if these

52 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

two operations can be accomplished, we can construct the message mts in precisely the
same way as before—construct samples {W j

ts, X
j
ts} which represent the product ζtsMts,

then stochastically propagate them through the pairwise relationship, giving

wj
ts = W j

ts xj
ts ∼ f(xs|Xj

ts) ∝ ψst(xs, X
j
ts).

The message mts can then be represented as a kernel density estimate using the weighted
samples {wj

ts, x
j
ts}.

In doing so, we have assumed that ψst(xs, X
j
ts) is finitely integrable, as we described

in Section 3.1. However, by employing a similar analysis to that given for Gaussian
mixtures in Section 3.4.3, it turns out that we can represent the outgoing messages mts

even for some potential functions which are not finitely integrable.
Take, for example, the potential function

ψst(xs, xt) ∝ 1− (2π)D/2|Λ|1/2N (xs; xt, Λ) (3.12)

where D is the dimension of xs, |Λ| is the determinant of Λ, and the variables xs and
xt are not restricted to a bounded domain. This and other, similar potential functions
arise naturally in the localization problem considered in Chapter 6. However, the po-
tential (3.12) does not satisfy the normalization requirement (3.1), since ψst approaches
unity as xs and xt grow far apart. Intuitively, information about xt constrains xs only
in the sense that they are required to be far apart, which is not a very informative
statement about xs.

However, we may still use samples which indicate the uncertainty about xt given
its other incoming messages to construct a sample-based message from node t to node
s. Since (3.12) is a function of the difference xs − xt, its marginal influence function
ζts is constant and can be neglected. Now, suppose that the message product Mts is
represented by the samples {W j

ts, X
j
ts,H

j
ts}. Then, as when the potential function is

Gaussian, the convolution can be computed in closed form, giving

mts(xs) = 1− (2π)D/2|Λ|1/2
∑

j

W j
tsN

(
xs; X

j
ts,Λ + Hj

ts

)
(3.13)

Although this message is not a Gaussian mixture, mts is both smooth and strictly
positive, and thus satisfies all the requirements to be included in the message product
operation described in Section 3.3. Moreover, it is relatively easy to evaluate for any
value of xs, and thus can be included in the message product using importance sampling
as described in Section 3.5.1.

When Λ is much greater than Hj
ts, we can approximate this message in a manner

similar to that employed in Section 3.4.3, using the simpler form

mts(xs) = 1− (2π)D/2|Λ|1/2
∑

j

W j
tsN

(
xs; X

j
ts,Λ

)
. (3.14)

Sec. 3.6. Belief sampling 53

We may further generalize this approximation to cases in which the function is neither
a Gaussian mixture nor does it have the form of a Gaussian mixture. For example, we
could approximate a more generic potential function ψst(xs − xt) by

mts(xs) =
∑

j

W j
ts ψst(xs −Xj

ts), (3.15)

and assuming ψst is easy to evaluate, incorporate it into message products via impor-
tance sampling as described. This approximation assumes implicitly that the “spread”
of ψst, or the amount of smoothness that it imparts, is large compared to the bandwidth
Hj

ts, so that the convolution of ψst with the Gaussian centered at Xj
ts is approximately

equal to ψst(xs −Xj
ts).

¥ 3.6 Belief sampling

It has been suggested by a number of authors [48, 56] that it is possible to improve the
performance of stochastic approximations to the BP messages3 by “focusing” samples
using the estimated marginal distributions; we examine some of the merits of this tech-
nique ourselves in experiments described in Section 6.7. In essence, the approximation
follows from writing an equivalent form for the BP update equation,

mi+1
ts (xs) ∝

∫
ψts(xt, xs)ψt(xt)

∏

u∈Γt\s
mi

ut(xt)dxt

∝
∫

ψts(xt, xs)
M i

t (xt)
mi

st(xt)
dxt

where M i
t is the belief, defined by (3.3). If the messages are computed exactly, this

manner of rewriting the definition does not change the messages themselves. However,
if the messages are approximated using samples, it suggests a different procedure for
drawing those samples from that which we described in Section 3.3. Specifically, we may
instead draw samples from the belief M i

t (xt), and then modify their relative weights so
as to represent the product of messages M i

ts(xt). For example, we may use a simple
importance weighting procedure, weighting each sample Xj

t by 1/mi
st(X

j
t). We refer to

this procedure as belief sampling.
In terms of NBP, belief sampling has a number of clear advantages. First of all, it

can have a computational advantage—it is often easier to draw N samples from Mt(xt),
which is a product of d incoming messages, than to draw N samples from each of the
d combinations of d− 1 incoming messages. A naive, direct sampling procedure might
suggest otherwise, requiring O(Nd) operations for the former, which is considerably
more than the O(dNd−1) operations required by the latter for most practical values

3The method described by Isard [48] is similar to NBP and was developed contemporaneously; the
method of Koller et al. [56] describes the concept of stochastic approximations in general but applies it
specifically to inference over discrete–valued random variables.

54 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

of d and N . However, a deeper exploration of sampling procedures for products of
Gaussian mixtures, which we consider in Section 3.8, reveals that the cost of drawing
N samples is typically more like O(dN) or O(dN2) for the former, and O(d2N) or
O(d2N2) for the latter. Even when the number of neighbors d is moderate (a two–
dimensional nearest-neighbor grid has d = 4) the savings involved can be non-trivial.

Another advantage is an improvement in communications costs when NBP messages
must be transmitted from one sensor, performing inference for node t, to others per-
forming inference for each of the neighbors of t. We explore the cost of communicating
the particle–based representations involved in Chapter 5. However, if the same samples
are used for all outgoing messages from a node, it turns out that one may communicate
all outgoing messages simultaneously by transmitting the estimated marginal M i

t (xt).
Each neighbor u ∈ Γt then uses its own, previously computed belief M i−1

u (xu), along
with the pairwise potential ψut shared with node t, to compute the incoming message
mtu(xu) from node t. This means that d communications, one to each of the neigh-
bors of t, may be performed for the cost of only a single transmission. Again, this
can be a considerable improvement, especially in wireless sensor networks, in which
communications (energy and bandwidth) often comprise the most precious resource.

What is less clear is whether or not belief sampling is also statistically helpful. In
Section 6.7 we explore this empirically, showing that when the number of particles N is
small, the bias inherent in belief sampling can combine with random errors to degrade
performance, and can produce worse message estimates than the corresponding N–
sample messages computed without belief sampling. When sufficiently many particles
are used, however, belief sampling improves the quality of the estimated messages by
using early, rough estimates to refine the placement of particles in later messages. It
is difficult to say definitively how well and at what values of N belief sampling works,
or whether its advantages uniformly outweigh its possible drawbacks. Exploring the
relative merits of belief sampling, and considering whether there exist better variants
of the belief sampling procedure than the one we have described here, comprise two
interesting areas of future research.

¥ 3.7 Discussion

Let us recap briefly with a simple comparison between the methodology behind NBP
and that common in particle filtering. NBP first requires that we use a class of sample–
based approximations to the BP messages which give strictly positive and smooth func-
tions, rather than representing the messages as collections of delta–functions as is com-
monly done in particle filtering. We do so by using a kernel density estimate for each
message, similar to the messages used in “regularized” particle filtering; this serves to
ensure that the product of multiple messages will never be everywhere zero and thus
will always be normalizable.

The only other fundamental requirement of NBP is that we possess some means of
generating particles which represent the product of incoming messages, possibly incor-

Sec. 3.8. Products of Gaussian Mixtures 55

porating the marginal influence function ζ if non-constant, as given in (3.9). Just as
in particle filtering, this is accomplished using importance sampling—we assume that
there is some subset of messages, specifically those represented as Gaussian mixtures,
from whose product we may generate samples with relative ease. We use this “ mix-
ture product” as a proposal distribution, drawing samples from the product of all the
Gaussian mixtures, and then weighting by the influence of the remaining messages to
obtain a collection of weighted samples from the full product.

Our description thus far has begged the question of how, precisely, we generate
samples from the product of a collection of Gaussian mixtures. This is in itself a
difficult task, and we devote the next section to exploring several possible methods for
drawing these samples, both exactly and approximately.

As a final note, however, just as with particle filtering it is sometimes possible to
apply additional domain knowledge to improve the quality of a proposal distribution.
In other words, if anything is known about the messages and potentials which are
not Gaussian mixtures, we may be able to improve our proposal distributions by in-
corporating this information explicitly. However, formulating such domain knowledge
and successfully incorporating it into the proposal distribution is a highly application–
dependent process, and thus we do not explore this possibility further here.

¥ 3.8 Products of Gaussian Mixtures

In general, the most computationally difficult part of the NBP algorithm is the pro-
cedure for drawing samples from the product of several Gaussian mixtures. In this
section, we describe several sampling procedures, including two multi-scale algorithms.
We then provide a brief empirical comparison of the methods, suggesting which tech-
niques may be most appropriate under various circumstances. For interested readers,
Matlab code to perform all the described sampling methods is available as part of the
KDE Toolbox [47].

Specifically, let {p1(x), . . . , pd(x)} denote a set of d mixtures of N Gaussian densities,
where

pi(x) =
∑

li∈Li

wliN (x ; µli ,Σi) (3.16)

Here, li indexes the set Li, which contains an (abstract) label for each of the N mixture
components in the “input” Gaussian mixture pi(x). As usual, the weights wli are
normalized to sum to unity (for each mixture i). For notational simplicity, we assume
that all mixtures are of equal size N , and that the covariances Σi are uniform within each
mixture, although the algorithms which follow may be readily extended to problems
where this is not the case. In practice with NBP, the covariances Σi are generally taken
to be diagonal and specified by a bandwidth vector hi, but this is not required for the
algorithms in this section. Our goal is to draw samples from the Nd component mixture
density p(x) ∝ ∏d

i=1 pi(x) efficiently; we assume that N samples are to be drawn.
We may divide the sampling algorithms we describe into two broad categories:

56 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

fine-scale and multi-scale. We use the term fine-scale to describe methods which do
not attempt to use agglomerative statistics in order to guide the sampling process, in
contrast to the multi-scale methods of Section 3.8.2.

¥ 3.8.1 Fine-scale methods

We begin by describing a procedure for direct, exact sampling from the product of
Gaussian mixtures. Although this procedure is in general too costly computationally to
be of practical use, it serves to establish the notation used in the subsequent sampling
algorithms. We then consider generic approaches to importance sampling, and two
methods based on Gibbs sampling.

For the fine-scale methods described in this section, we can simply label the N
components of the ith mixture as {1i, . . . Ni}, though it will be convenient to use a
slightly different labeling convention based on the KD-tree structure for the multi-scale
methods in Section 3.8.2. When it is unambiguous, we sometimes abuse notation by
writing e.g. li = 1 to indicate li = 1i. In other words, since the variable li always refers
to labels in the ith mixture, li = 1 indicates the first label in the ith mixture.

Direct sampling

Sampling from the product density can be decomposed into two steps: first, randomly
select one of the product density’s Nd components, then draw a sample from the corre-
sponding Gaussian. Let each product density component be labeled as L = [l1, . . . , ld],
where li labels one of the N components of pi(x). For our discussion of sampling from
products of Gaussian mixtures, we use the convention that lowercase letters such as li
label components in an input mixture density, while capital letters L = [l1, . . . , ld] label
the corresponding product mixture components, i.e., the set L1× . . .×Ld. The relative
weight of component L is given by

wL =
∏d

i=1 wliN (x ; µli , Σi)
N (x ; µL,ΣL)

Σ−1
L =

d∑

i=1

Σ−1
i Σ−1

L µL =
d∑

i=1

Σ−1
i µli (3.17)

where µL, ΣL are the mean and covariance of product component L. The weight wL is a
constant, and does not actually depend on the value of x; evaluating the formula at the
mean of the denominator, x = µL, may be numerically convenient. To form the product
density, these weights are normalized by the weight partition function Z =

∑
L wL.

Determining Z exactly takes O(Nd) time, and given this constant we can draw
N samples from the distribution in O(Nd) time and O(N) storage. This is done by
drawing and sorting N uniform random variables {uj} on the interval [0, 1], and then
computing the cumulative distribution P (L) of p(L) = wL/Z to determine which, if
any, samples are drawn from each label L. For each sample uj which falls between
P (L − 1) and P (L), we draw a sample xj from the Gaussian distribution determined
by the parameters µL and ΣL. This algorithmic procedure, also listed in Figure 3.2,
results in N samples {xj} drawn from the product distribution.

Sec. 3.8. Products of Gaussian Mixtures 57

Direct sampling:

1. For each label L = [l1, . . . , ld], li ∈ {1 . . . N}, compute wL according to (3.17) and
sum: Z = Z + wL.

2. Draw and sort N values R uniformly between [0, 1).

3. Assign C=0; for each label L = [l1, . . . , ld],

(a) Compute cL = wL

Z

(b) For each element of R between C and C + cL, draw a sample xj from the
product of Gaussians identified by the labels l1, . . . , ld.

(c) Accumulate: C = C + cL

Figure 3.2. Direct sampling from products of Gaussian mixtures; requires O(Nd) time and O(N)
storage.

Importance Sampling

Importance sampling, also described in more detail in Section 2.7.1, is a Monte Carlo
method for approximately sampling from an intractable distribution p(x), using a pro-
posal distribution q(x) for which sampling is feasible [19, 65]. Here we describe how
importance sampling may be used to obtain samples representing the product of d
Gaussian mixtures.

Assume that both p(x) and q(x) may be evaluated up to a normalization constant; to
draw N samples from p(x), an importance sampler draws kN ≥ N samples xj ∼ q(x),
and assigns a weight to the jth sample given by wj ∝ p(xj)/q(xj). The weights are
then normalized by their sum, Z =

∑
j wj , and N samples are drawn with replacement

from the discrete distribution p̄(xj) = wj/Z, meaning that the value xj is selected with
probability wj/Z, with the possibility that the same value xj will be drawn multiple
times.

Although there are a limitless number of possible proposal distributions to choose
from, for the products of Gaussian mixtures considered here we limit ourselves to the
following two possibilities. The first, which we refer to as mixture importance sampling,
draws each sample by randomly selecting one of the d input mixtures, and sampling
from its N components. Alternatively, this procedure is equivalent to drawing a sample
from the mixture average

q(x) =
1
d

∑

i

pi(x).

The importance weight for each sample is then given by

w =
∏

i pi(x)∑
i pi(x)

.

This approach is similar to the method used to combine density trees in [96]. Another
alternative is to approximate each input mixture pi(x) by a single Gaussian density

58 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Importance sampling:

1. Define the proposal distribution q(x) by:

(a) q(x) = 1
d

∑
i pi(x) (Mixture I.S.)

(b) q(x) =
∏

iN (x; E[pi(x)],Var[pi(x)]) (Gaussian I.S.)

2. Draw kN (where k > 1) samples xj from q(x), and weight by wj =
Q

i pi(xj)

q(xj)

3. Resample from the {xj} proportionally to their weight {wj} N times (with replace-
ment)

Figure 3.3. Two possible methods of importance sampling from a product of Gaussian mixtures;
either requires O(dkN) time and storage.

1

Msg 1

Msg 2
- -

Msg 3

l1 =?, l2 = 1, l3 = 4 l1 = 4, l2 =?, l3 = 4 l1 = 4, l2 = 3, l3 =?

�

?
.

.

.

��
�

�	
�

@
@I

l1 = 3, l2 = 2, l3 = 4

Figure 3.4. Top row: Sequential Gibbs sampler for a product of 3 Gaussian mixtures, with 4 com-
ponents each. New indices are sampled according to weights (arrows) determined by the two fixed
components (solid). The Gibbs sampler cycles through the different messages, drawing a new mixture
label for one message conditioned on the currently labeled Gaussians in the other messages. Bottom
row: After κs iterations through all the messages, the final labeled Gaussians for each message (right,
solid) are multiplied together to identify one (left, solid) of the 43 components (left, thin) of the product
density (left, dashed).

qi(x), and choose q(x) ∝ ∏
i qi(x). We call this latter procedure Gaussian importance

sampling. Pseudocode for both procedures appears in Figure 3.3.

Gibbs Sampling

Sampling from Gaussian mixture products is difficult precisely because the joint dis-
tribution over product density labels, as defined by (3.17), is complicated. However,

Sec. 3.8. Products of Gaussian Mixtures 59

conditioned on the labels of all but one mixture, we can compute the conditional distri-
bution over the remaining label and draw a sample in only O(N) operations. Since it is
tractable to determine the conditional distribution of each mixture label given the value
of the other mixture labels, we may apply a Gibbs sampler [26] to draw asymptotically
unbiased samples from the product density. At each iteration, the labels {lk}k 6=j for
d−1 of the input mixtures are fixed, and the jth label is sampled from the corresponding
conditional density. The newly chosen lj is then fixed, and another label is updated.
This procedure continues for a fixed number of iterations κs; more iterations lead to
more accurate samples, but require greater computational cost. Following the final it-
eration, a single sample is drawn from the product mixture component identified by the
final labels. This iterative procedure is illustrated in Figure 3.4. Since each iteration of
the Gibbs sampler requires O(dN) operations and we apply κs iterations to draw each
sample, to draw N approximate4 samples from the product density, the Gibbs sampler
requires O(dκsN

2) operations.
Although formal verification of the Gibbs sampler’s convergence is difficult, our

empirical results indicate that accurate Gibbs sampling typically requires far fewer
computations than direct sampling. Note that NBP uses the Gibbs sampling method
differently from classic simulated annealing algorithms [26]. In simulated annealing, the
Gibbs sampler updates a single Markov chain whose state is the value of all nodes in the
graph, and thus has dimension proportional to the size of the graph. In contrast, the
Gibbs sampling methods described here are local, with each Gibbs sampler involving
only a few nodes.

The previously described sequential Gibbs sampler defines an iteration over the la-
bels of the input mixtures. Another possibility uses the fact that, given a data point x̄ in
the product density space, the d input mixture labels are conditionally independent [39].
Thus, one can also define a parallel Gibbs sampler which alternates between sampling
a data point conditioned on the current input mixture labels, and parallel sampling
of the mixture labels given the current data point, as illustrated in Figure 3.5. The
number of iterations κp to continue the parallel Gibbs sampling process is once again
a parameter of the algorithm. Since drawing the sample x̄ can be done in constant
time, and sampling from the d labels independently conditioned on x̄ requires O(dN)
operations, the complexity of the parallel Gibbs sampler is also O(dκpN

2). Pseudocode
outlining both Gibbs sampling algorithms is listed in Figure 3.6.

¥ 3.8.2 Multi-scale methods

Multi-scale methods of sampling use the statistics of subsets of the data to focus com-
putational effort more effectively. In order to cache and apply these statistics efficiently,
we make use of KD (“k-dimensional”) tree data structures [5, 17, 71, 75]; KD-trees are
described in detail in Section 2.4.

Each Gaussian mixture distribution pi(x) is formed into a KD-tree, and within
4The samples are only approximately from the product distribution, due to the fact that κs iterations

may be insufficient to reach the steady-state distribution.

60 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

1

Msg 1
X

Msg 2
-

X

-

Msg 3
X

l1 = 1, l2 = 1, l3 = 4 Draw sample x̄ given labels Sample labels given x̄

�

?
.

.

.

��
�

�	
�

@
@I

l1 = 3, l2 = 2, l3 = 4

Figure 3.5. Top Row: Parallel Gibbs sampler for a product of 3 Gaussian mixtures, with 4 components
each. Given a label for each input density selecting one component from each, a sample x̄ (whose
location s indicated by the “X”) is drawn from their product; conditioned on the sampled value, one
then computes the conditional distribution over labels independently for each distribution. Bottom row:
After κp iterations, one again obtains a final set of labels identifying one component in the product and
draws a sample from this component.

each KD-tree, each node si is associated with a collection of the leaf node labels DL(si)
located below si in the KD-tree. Each node si also stores statistics which summarize the
Gaussian mixtures indicated by the labels in DL(si). In this section we employ the two
types of KD-trees described in Section 2.4. The first type caches mean and covariance
information at each node to construct a set of multi-scale Gaussian approximations, as
shown in Figure 3.7(b). We use these Gaussian approximations to define a multi-scale
version of the Gibbs samplers described previously. The second type of KD-tree caches
bounding box information, shown in Figure 3.7(a); using these statistics, along with
branch and bound techniques common in the KD-tree literature, we are able to draw
approximate samples efficiently using an “ε-exact” sampler.

Because our components are now elements of a KD-tree structure, it is convenient to
have the label sets Li reflect this tree structure. In particular, we use the numbering of
the nodes within the KD-tree, so that 1i refers to the root node of the ith KD-tree, and
so forth; note that for N > 1, the root node 1i is not one of the original components,
and thus not a member of the set Li. In fact, in the KD-tree notation of Section 2.4,
the sets Li are precisely the sets of leaf labels for the ith KD-tree, so that Li = DL(1i).

Multi-scale Gibbs Sampling

Although the pair of fine–scale Gibbs samplers discussed previously are often effective,
they sometimes require a very large number of iterations to produce accurate samples.

Sec. 3.8. Products of Gaussian Mixtures 61

Gibbs sampling: For each sample required,

1. Choose initial values for the labels l1, . . . , ld, e.g. independently by weight.

2. Iterate κ times:

Sequential:

For each mixture i,

i. Fix the value of all labels except li and compute wL using (3.17) for each
possible value li ∈ [1 : N].

ii. Sample a new value for li proportionally to the weights wL

Parallel:

Draw a value x̄ from the distribution
∏

iN (x ; µli , Σi)

For each mixture i, sample li giving li ∈ [1 : N] weight N (x̄ ; µli , Σi)

3. Draw the sample x ∼ ∏
iN (x ; µli , Σi)

Figure 3.6. Two Gibbs sampling procedures for drawing samples from the product of d Gaussian
mixtures; either requires O(dκN2) time and O(dN) storage.

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

(a) (b)

Figure 3.7. Two KD-tree representations of the same one-dimensional point set (finest scale not
shown). (a) Each node s maintains a bounding box surrounding the means of all components associated
with the node; the label sets indicating which of the original mixture components are summarized by
each node s are also shown in braces. (b) Each node s maintains mean and variance statistics for its
associated mixture components, giving rise to a collection of Gaussian approximations at each scale.

The most difficult densities are those for which there are several widely separated modes,
each of which is associated with disjoint subsets of the input mixture labels. In this
case, conditioned on a set of labels corresponding to one mode, it is very unlikely that
a label or data point corresponding to a different mode will be sampled, leading to slow
mixing between these modes, and thus may require many iterations to obtain accurate
samples.

Similar problems have been observed with Gibbs samplers on Markov random
fields [26]. In these cases, convergence can often be accelerated by constructing a

62 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

series of “coarser–scale” approximate models in which the Gibbs sampler can move be-
tween modes more easily [62]. The primary challenge in developing these algorithms
is to determine procedures for constructing accurate coarse–scale approximations. For
Gaussian mixture products, KD-trees provide a simple, intuitive, and easily constructed
set of coarser–scale models.

As in Figure 3.7(b), each node si of the ith KD-tree stores two statistics, the mean
µsi and a covariance Σsi , which are used to represent the Gaussian sum defined by the
leaf nodes located below s in the tree. Let qi,si(x) = N (x; µsi , Σsi) be the Gaussian dis-
tribution defined by these parameters. Beginning at the same coarse scale for all input
mixtures, indicated by depth k = 1 (the children of the root node), we perform stan-
dard Gibbs sampling (either parallel or sequential) on that scale’s summary Gaussian
components as though we were drawing a sample from the product

qk(x) =
d∏

i=1

 ∑

si : depth(si)=k

qi,si(x)

After some number of iterations κk of Gibbs sampling, we draw a data sample x̄ from the
Gaussian defined by our current labels, so that x̄ is sampled approximately from qk(x).
We then condition on the value of x̄ as in the parallel Gibbs sampler of Section 3.8.1
to sample from the labels at the next finest scale, k + 1. Repeating this process, we
eventually arrive at the finest scale and obtain a data sample. To simplify the number
of parameters in the algorithm, we typically choose the number of iterations κk to be
equal for all depths k.

Intuitively, by gradually moving from coarse to fine scales, multi-scale sampling
can better explore all of the product density’s important modes. As the number of
sampling iterations approaches infinity, multi-scale samplers have the same asymptotic
properties as standard Gibbs samplers. Unfortunately, there is no guarantee that multi-
scale sampling will improve performance. However, our simulation results indicate that
it is usually very effective (see Section 3.8.3).

ε-Exact sampling

In this section, we use KD-trees to compute an efficient approximation to the partition
function Z, in a manner similar to the dual tree evaluation algorithm of Gray and
Moore [32] described in some detail in Section 2.4. This leads to an ε-exact sampler
for which a label L = [l1, . . . , ld] in the product density, with true probability pL, is
guaranteed to be sampled with some probability p̂L ∈ [pL − ε, pL + ε].

If we again let si denote a node of the ith KD-tree, we can define the label set
li = DL(si) to be the indices of the Gaussian mixture components associated with si,
i.e., those nodes of the KD-tree which are (leaf) descendants of node si. Then, a set
of labels in the product density can be written as L = l1×· · ·× ld. This label set is
implicitly a function of the nodes s = [s1, . . . , sd] in each KD-tree.

The approximate sampling procedure follows a similar structure to the exact sampler

Sec. 3.8. Products of Gaussian Mixtures 63

described in Section 3.8.1, but uses branch and bound approximations much like those
applied in the dual–tree algorithm of Section 2.4. First we give a high–level sketch
of the algorithm, providing the details of each part subsequently. Given a KD-tree
representation of each input density which caches bounding box statistics, as illustrated
in Figure 3.7(a), we use a multi–tree recursion to find sets of labels L which have nearly
identical weight, i.e., for which we may use a single constant to approximate the weight
wL for each label L in the set L. These sets, the approximate weights ŵL, and their
totals ŵL =

∑
L∈L ŵL are used to efficiently approximate the weight partition function

as Ẑ =
∑

ŵL. We can then draw samples efficiently by first determining from which
set L each sample originates (using a procedure similar to that of exact sampling), then
determining a label L ∈ L within that set. We proceed to describe each of these steps
in greater detail.

Approximate Evaluation of the Weight Partition Function, Z =
∑

wL. We first
note that the weight computation (3.17) can be rewritten using terms which involve
only pairs of distributions (i, j), as

wL = CΣ ·
(d∏

j=1

wlj

) ·
∏

i

∏

j>i

N (
µli ; µlj , Σ(i,j)

)
where Σ(i,j) = ΣiΣ−1

L Σj (3.18)

where CΣ is a constant5 which depends only on the covariances {Σi}; when these
covariances are uniform within each mixture pi, as we have assumed, this constant can
be ignored. The equation (3.18) may be divided into two parts: a weight contribution∏d

i=1 wli , and a distance contribution, denoted KL, which is expressed in terms of the
pairwise distances between component means. For a particular collection of nodes s in
the KD-trees, we use the bounding boxes stored at each si to compute upper and lower
bounds on each of the pairwise distance terms for a collection of labels L = l1×· · ·×ld.
The product of the upper (lower) pairwise bounds is itself an upper (lower) bound on
the total distance contribution for any label L within the set L; denote these bounds
by K+

L and K−
L , respectively.6

By using the mean K∗
L = 1

2

(
K+

L + K−
L

)
to approximate KL, we incur a maximum

error 1
2

(
K+

L −K−
L

)
for any label L ∈ L. Let δ be a small tolerance parameter, whose

relationship to ε we quantify shortly. If the error |K∗
L −KL| is less than Zδ, which we

ensure by comparing to a running lower bound Zmin on Z, we treat it as constant over
the set L and approximate the contribution to Z by a sum of the approximate weights

5Specifically, it is the ratio of normalization constants, so that

CΣ ∝ |ΣL|
Y

i

Y
j>i

|Σ(i,j)|/
Y

i

|Σi|.

6We could also use multipole methods such as the fast Gauss transform [34, 35, 92] to efficiently
compute alternate, potentially tighter bounds on the pairwise values.

64 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

ŵL, namely

∑

L∈L
wL ≈

∑

L∈L
ŵL = K∗

L

∑

L∈L

(∏

i

wli

)
= K∗

L

∏

i

∑

li∈li
wli

 . (3.19)

This quantity can be easily calculated using cached statistics of the weight contained in
each set. If the error is larger than Zδ, our approximation is not sufficiently accurate.
The approximation is a function of the KD-tree nodes s = [s1, . . . , sd] and the bounding
boxes stored by each node; it can be made more accurate by using smaller bounding
boxes, which brings the upper and lower bounds closer together. We therefore refine at
least one of the label sets, by splitting one of the nodes si into its left and right children.
We use a simple heuristic to make this choice, first finding the pair of trees with the
largest discrepancy between upper and lower pairwise bounds and then, of these two,
dividing the tree with the larger bounding box. It is possible that some other selection
method, if able to select label sets with approximately constant weight more rapidly,
might perform better; the existence of an optimal refinement strategy remains an open
question. However, in practice the described heuristic appears to perform well. The
full procedure is summarized in the pseudocode in Figure 3.8. Note that all of the
quantities required by this algorithm may be stored within the KD-trees, avoiding the
need for any direct searches over the sets li. At the algorithm’s termination, the total
error in our estimate of the partition function is bounded by

|Z − Ẑ| ≤
∑

L

|wL − ŵL| ≤
∑

L

1
2

(
K+

L −K−
L

)∏
wli ≤ Zδ

∑

L

∏
wli ≤ Zδ (3.20)

where the last inequality follows because each input mixture’s weights are normalized.
This guarantees that our estimate Ẑ is within a fractional tolerance δ of its true value.

Approximate Sampling from the Cumulative Distribution: We now show how our
partition function estimate Ẑ may be used for approximate sampling, and relate the
tolerance δ to an ε-tolerance on sample probability. To perform approximate sampling,
we repeat the process of approximating the weights wL with ŵL, while following a
procedure similar to the exact sampler. We draw N uniform random variables uj , and
sort them in ascending order. We then create the cumulative distribution of the sets of
labels L (in the order these sets were originally identified when computing Ẑ), giving
each set weight wL/Ẑ, and locate each of the samples uj in this cumulative distribution.
This determines which set of labels L = l1×· · ·×ld is associated with each sample uj .

Now, given that uj came from the set of labels L, it remains to select an individual
label L ∈ L. Since each label L ∈ L within this block has an approximately equal
distance contribution KL ≈ K∗

L, we can select one of the labels L ∈ L by independently
sampling a label li within each set li proportionally to the weight wli , for each input
density i.

This procedure is shown in Figure 3.9. Note that, to be consistent about when
approximations are made and thus produce weights ŵL which still sum to Ẑ, we repeat

Sec. 3.8. Products of Gaussian Mixtures 65

MultiTree([s1, . . . , sd])

1. Denote the fine-scale label sets li = DL(si) for each mixture i

2. For each pair of distributions (i, j > i), use their bounding boxes to compute

(a) K
(i,j)
max ≥ maxli∈li,lj∈lj N

(
xli − xlj ; 0, Σ(i,j)

)

(b) K
(i,j)
min ≤ minli∈li,lj∈lj N

(
xli − xlj ; 0, Σ(i,j)

)

3. Find K+
L =

∏
(i,j>i) K

(i,j)
max and K−

L =
∏

(i,j>i) K
(i,j)
min

4. If 1
2

(
K+

L −K−
L

) ≤ Zminδ, approximate this combination of label sets:

(a) ŵL = 1
2

(
K+

L + K−
L

)
(
∏

wli), where wli =
∑

li∈li
wli is cached by the KD-trees

(b) Zmin = Zmin + K−
L (

∏
wli)

(c) Ẑ = Ẑ + ŵL

5. Otherwise, refine one of the label sets:

(a) Find arg max(i,j) K
(i,j)
max/K

(i,j)
min such that range(si) ≥ range(sj).

(b) Call recursively:
i. MultiTree([s1, . . . , Nearer(Left(si), Right(si), sj), . . . , sd])
ii. MultiTree([s1, . . . , Farther(Left(si), Right(si), sj), . . . , sd])

where Nearer(Farther) returns the nearer (farther) of the first two arguments to the
third.

Figure 3.8. Recursive multi-tree algorithm for approximately evaluating the partition function Z of
the product of d Gaussian mixture densities represented by KD–trees. Zmin denotes a running lower
bound on the partition function, while Ẑ is the current estimate. Initialize Zmin = Ẑ = 0.

Given the final partition function estimate Ẑ, repeat the algorithm in Figure 3.8 with the
following modifications:

4.(c) If ĉ ≤ Ẑuj < ĉ + ŵL for any j, draw L ∈ L by sampling li ∈ li independently for
each mixture i with weight wli/wli

4.(d) ĉ = ĉ + ŵL

Figure 3.9. Recursive multi-tree algorithm for approximate sampling. ĉ denotes the cumulative sum
of weights ŵL. Initialize by sorting N uniform [0, 1] samples {uj}, and set Zmin = ĉ = 0.

the procedure for computing Ẑ exactly, including recomputing the running lower bound
Zmin. This algorithm is guaranteed to sample each label L with probability p̂L ∈
[pL − ε, pL + ε], where

|p̂L − pL| =
∣∣∣∣
ŵL

Ẑ
− wL

Z

∣∣∣∣ ≤
2δ

1− δ

.= ε (3.21)

66 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

We can show (3.21) using the following argument. Using our accuracy bound on ŵL we
have

∣∣∣∣
wL

Z
− ŵL

Z

∣∣∣∣ =
|KL −K∗

L|
Z

∏
wli

≤ δ(
∏

wli)

≤ δ.

Furthermore, we can show that
∣∣∣∣
ŵL

Z
− ŵL

Ẑ

∣∣∣∣ =
ŵL

Z

∣∣∣∣∣1−
1

Ẑ/Z

∣∣∣∣∣

≤ ŵL

Z

∣∣∣∣1−
1

1− δ

∣∣∣∣

since |Ẑ − Z| ≤ δZ ⇒ Ẑ
Z ∈ [1− δ, 1 + δ]. Then by simple algebra,

=
ŵL

Z

δ

1− δ

≤ 1 + δ

1− δ
δ

Thus, the estimated probability of choosing label L has at most error
∣∣∣∣
wL

Z
− ŵL

Ẑ

∣∣∣∣ ≤
∣∣∣∣
wL

Z
− ŵL

Z

∣∣∣∣ +
∣∣∣∣
ŵL

Z
− ŵL

Ẑ

∣∣∣∣

≤ 2δ

1− δ

which matches our definition of ε in (3.21).

¥ 3.8.3 Empirical Comparisons

In order to gain some intuition about which methods of drawing samples from the
product distribution may be more or less appropriate under various conditions, we
provide some experimental evidence comparing their performance. To be precise, we
perform a Monte Carlo analysis to evaluate the quality of a set of N samples drawn from
each method described in Sections 3.8.1–3.8.2 as a function of the required computation
time. Sample quality is measured by constructing a kernel density estimate using the
samples and computing the Kullback-Leibler (KL) divergence from the true product
distribution.

Unfortunately, evaluating this KL-divergence is not easy; in general it requires either
a discretized estimate of the product distribution or a large number of exact samples.
The latter are difficult to provide in general, since as discussed, exact sampling is

Sec. 3.8. Products of Gaussian Mixtures 67

computationally expensive for large N . A discretized estimate, on the other hand,
is only tractable for low–dimensional problems. In order to construct examples with
reasonably large values of N , we consider several synthetic one–dimensional example
products, for which a direct, discretized evaluation is feasible.

To this end, we create d one–dimensional distributions expressed as the sum of
N = 100 equal–weight, equal–bandwidth Gaussian kernels. The three examples we
consider are shown in Figure 3.10(a-c), which have d = 3, 5, and 2 Gaussian mixtures,
respectively. For each sampling method to be evaluated, we then draw N samples from
the product of these distributions, estimate a kernel bandwidth using the likelihood
cross-validation method described in Section 2.3.1, and evaluate the KL-divergence
between the true product and its sampled estimate. Note that we are comparing the
true, Nd component Gaussian mixture with a kernel density estimate constructed by
drawing N samples; thus, even a density estimate constructed using N exact samples
will have some nonzero divergence on average. This average divergence provides a lower
bound on the achievable error for comparison. We show the input mixtures, product
mixtures, and average performance versus time over 250 Monte Carlo trials for three
different scenarios in Figure 3.10.

Exact sampling is extremely slow; except for the example with d = 2, shown in
Figure 3.10(c), the time required was too far beyond the scale of the other methods
to be shown on the same plot. In these cases, corresponding to Figures 3.10(a-b), we
simply show a horizontal line indicating the average KL-divergence of a kernel density
estimate constructed using N exact samples, toward which all our approximate sampling
methods approach asymptotically as the available computational resources increase. We
list the time required to draw such a set of N samples using exact sampling in each
figure caption.

Figure 3.10 illustrates a few important points. The first is that for relatively small
numbers of input mixtures, such as the product of three mixtures in Figure 3.10(a), the
ε-exact method of Section 3.8.2 performs very well. Its theoretical guarantees allow a
relatively principled choice of parameter settings, and it shows significant computational
gains over exact sampling (0.05 seconds versus 2.75 seconds).

However, for larger numbers of input mixtures such as the product of five densities
Figure 3.10(b), ε-exact is simply too slow. Although it is still much faster than exact
sampling (requiring less than one minute as compared to 7.6 hours), only with very large
settings of ε, and thus very poor approximation quality, do we manage to draw samples
within the same time scale required by the Gibbs-based methods (0.3 seconds). In our
experiments, both multi-scale Gibbs sampling methods out–perform their single–scale
counterparts. This difference in performance can be attributed to the bimodal nature
of the product density. In addition, we see that sequential Gibbs sampling is more
accurate than parallel Gibbs sampling.

Notably, in the first two examples [Figures 3.10(a)-(b)], mixture importance sam-
pling (IS) described in Section 3.8.1 is nearly as accurate as the best multi-scale meth-
ods, although Gaussian IS seems ineffective. However, in cases where the regions of the

68 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

(a) Input Mixtures

Product Mixture
0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

(b) Input Mixtures

Product Mixture
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

(c) Input Mixtures

Product Mixture
0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

Figure 3.10. Comparison of average sampling accuracy versus computation time for different algo-
rithms (see text). (a) Product of 3 mixtures (exact requires 2.75 sec). (b) Product of 5 mixtures (exact
requires 7.6 hours). (c) Product of 2 mixtures (exact requires 0.02 sec). Computation times were
measured on a Pentium III 800MHz workstation.

Sec. 3.9. Experimental Demonstrations 69

state space with high probability in the product density have relatively low probability
in each of the input densities [i.e., the input densities have little overlap with one an-
other, as in Figure 3.10(c)], mixture IS performs very poorly. In contrast, multi-scale
samplers perform very well in such situations, because they can discard large numbers
of low weight product density kernels. These types of situations plague importance
sampling methods in general, and are more likely to arise and cause problems in high
dimensional problems [65].

¥ 3.9 Experimental Demonstrations

In this section, we apply NBP to a few relatively simple inference problems as a demon-
stration of its utility. We first use a jointly Gaussian problem to provide a simple
validation of NBP’s ability to approximate the correct continuous BP messages with-
out prior knowledge of the distribution’s parametric form, by comparing NBP to an
exact implementation of BP specialized to Gaussian problems. We then apply NBP
to a target tracking problem, in which the individual targets are constrained not to
approach too closely to one another, illustrating one of the ways in which NBP can be
used to augment traditional particle filtering approaches to improve robustness without
significantly impacting efficiency.

¥ 3.9.1 Gaussian Graphical Models

Gaussian graphical models provide one of the few continuous distributions for which the
BP algorithm may be implemented exactly [107]. For this reason, Gaussian models may
be used to test the accuracy of the nonparametric approximations made by NBP. Note
that we cannot hope for NBP to outperform algorithms, like Gaussian BP, designed to
take advantage of the linear structure underlying Gaussian problems. Instead, our goal
is to verify NBP’s performance in a situation where exact comparisons are possible.

We examine NBP’s performance on a 5×5 nearest–neighbor grid as in Figure 3.11(a),
with randomly chosen inhomogeneous potentials. Qualitatively similar results have also
been observed in experiments on tree–structured and chain–structured graphs. Each
potential is thus specified by the parameters of a Gaussian distribution; however, in the
interest of generality we do not use the analytic message convolution form described
in Section 3.4.3, as this is applicable only to Gaussian potentials. Instead, we use the
more general NBP procedure, drawing samples from the conditional defined by ψts

and selecting the bandwidth automatically; in particular we use the likelihood cross-
validation method described in Section 2.3.1.

For each node t ∈ V, Gaussian BP converges to a steady–state estimate of the
marginal mean µt and variance σ2

t after about 10 iterations. To evaluate NBP, we
performed 10 iterations of the NBP message updates using several different particle set
sizes N ∈ [10, 800]. We then found the mean µ̂t and variance σ̂2

t of the approximate
marginal distributions obtained via NBP. For each tested particle set size, the NBP
comparison was repeated 50 times.

70 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

10
1

10
2

10
3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

Graph Mean (µ̃t) Variance (σ̃2
t)

Figure 3.11. NBP performance on a 5× 5 grid with Gaussian potentials. Plots show the mean (solid)
and standard deviation (dashed) of the normalized error measures of equation (3.22), for different
particle set sizes M .

Using the data from each NBP trial, we computed the error in the mean and variance
estimates, normalized to represent the relative error in each estimate (as compared to
exact Gaussian BP),

µ̃t =
µ̂t − µt

σt
σ̃2

t =
σ̂2

t − σ2
t√

2σ2
t

. (3.22)

Figure 3.11 shows the mean and standard deviation of these error statistics, across
all nodes and trials, for different particle set sizes N . The NBP algorithm always
provides unbiased estimates of the mean statistics, and the variance of the error in
means decreases fairly rapidly. The estimates of the variance statistics, however, are
positively biased, due to the inherent smoothing of kernel–based density estimates. This
bias decreases as more particles are used, and the (automatically chosen) kernel size
becomes smaller.

¥ 3.9.2 Multi-Target Tracking

A classic filtering application is the task of estimating the location of a moving object
(the “target”), along with its uncertainty, given a dynamic model and sequence of
observations. Particle filtering is frequently brought to bear on this problem when
either the dynamics or observation process is nonlinear or non-Gaussian, leading to
non-Gaussian posterior distributions. However, even for linear, Gaussian dynamics and
observations, the presence of multiple, interacting targets can present difficulties, and
lead to non-Gaussian (for example, multi-modal) estimates of uncertainty.

We consider the problem of tracking multiple, indistinguishable moving objects using
sample-based (particle filter-like) representations. Computationally speaking, it is much
simpler to represent the state of each target using separate, independently evolving
Markov chains. This is due to the fact that the number of particles required to model
a distribution adequately is approximately exponential in the dimension [90]. Thus for

Sec. 3.9. Experimental Demonstrations 71

(a) (b) (c)

Figure 3.12. Three possible graphical models for multi-target tracking: (a) multiple, independent
Markov chains, (b) a single Markov chain defined on the joint state space of all targets, and (c) multiple
chains coupled by pairwise interactions at each time step.

m targets, if each is represented by a d-dimensional state variable whose uncertainty
can be approximated accurately using N samples, it requires only mN samples to
represent the targets independently, but approximately Nm samples to represent the
joint uncertainty.

However, treating each target independently often fails. When two targets are
in close proximity, with nothing to distinguish between them, independent tracking
of each target has the potential to result in both trackers following the same target,
typically whichever one happens to have higher likelihood under the dynamics and
observation noise models. This effect is generally avoided by imposing a data association
condition, that a given observation (or portion of the observation, for example in video-
based tracking) be assigned to one and only one target, resulting in a highly non-
linear and non-Gaussian relationship [64]. In order to capture this interaction exactly,
it is typically necessary to model the joint state of all targets collectively. Seeking
representational simplicity, many multi-target tracking applications construct locality–
based approximations, in which targets which are sufficiently far from one another
are treated independently, under the assumption that these targets are unlikely to be
assigned the same observations [61].

We apply a different constraint in order to avoid degeneracy in the target tracks.
Instead of constraining the association of observations, we simply enforce a condition
that no two targets are allowed to occupy the same region of space. This can be ex-
pressed as a simple potential function between each pair of targets; we use the repulsive
potential given by (3.12). Then the uncertainty in each target position can be modeled
independently, and the interaction between targets captured using NBP on the resulting
loopy graph, depicted in Figure 3.12.

Figure 3.13 shows a simulation of a multi-target tracking problem, in which five tar-
gets are to be tracked using either five independent Markov chains as in Figure 3.12(a),
or five Markov chains coupled by repulsive pairwise potentials and estimated using NBP
as in Figure 3.12(c). The solid lines indicate the true path of each target up to the cur-
rent time, and the state estimate of each tracker is indicated by a cluster of sample
locations. As can be seen, the independent Markov chains quickly suffer from track
degeneracy as several targets pass through the same region; by t = 34 it has lost track

72 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

In
d
ep

en
d
en

t

t = 1 t = 12 t = 18

C
ou

p
le

d
In

d
ep

en
d
en

t

t = 22 t = 27 t = 34

C
ou

p
le

d

Figure 3.13. Using NBP for multi-target tracking. At time t = 1, the estimated uncertainty (dots)
corresponds closely to the true position of each of the five targets, whose paths over time are indicated by
lines. However, as several targets pass close by to one another at t = 12, the independent tracker (upper
row) begins to lose track of some targets, and follows only the “best”, losing one target completely by
t = 18. As targets continue to move near one another, more tracks are lost until by t = 34 only two
remain correctly localized.

of all but two targets. The NBP-based tracker, on the other hand, is able to maintain
accurate estimates of the location of each target and its uncertainty.

Chapter 4

Message Approximation

SENSOR networks are by their nature subject to constraints which can often prevent
exact inference from being feasible. In particular, communications constraints pre-

vent the network from aggregating all observations at a single, central location, making
a distributed implementation of exact or approximate inference algorithms a necessity.
For the task of estimating the local posterior marginal distributions at each sensor,
belief propagation (BP) provides an efficient and potentially distributed approach. One
part of the appeal of BP lies in its optimality for tree-structured graphical models
(models which contain no loops); however, its is also widely applied to graphical mod-
els with cycles (“loopy” BP). In these cases belief propagation may not converge, and if
it does its solution is approximate; however in practice these approximations are often
good. Recently, some additional justifications for loopy belief propagation have been
developed, including a handful of convergence results for graphs with cycles [37, 95, 105].

The approximate nature of loopy belief propagation is often a more than accept-
able price for performing efficient inference; in fact, it is sometimes desirable to make
additional approximations. There may be a number of reasons for this—for example,
when exact message representation is computationally intractable, the messages may
be approximated stochastically [56] or deterministically by discarding low-likelihood
states [13]. For belief propagation involving continuous, non-Gaussian potentials, some
form of approximation is required to obtain a finite parameterization for the mes-
sages [48, 69, 93]. Additionally, simplification of complex graphical models through edge
removal, quantization of the potential functions, or other forms of distributional approx-
imation may be considered in this framework. Finally, one may wish to approximate
the messages and reduce their representation size for another reason—to decrease the
communications required for distributed inference applications. In distributed message
passing, one may approximate the transmitted message to reduce its representational
cost (see Chapter 5), or discard it entirely if it is deemed “sufficiently similar” to the
previously sent version [10]. Through such means one may significantly reduce the
amount of communications required.

Given that message approximation may be desirable, we would like to know what
effect the errors introduced have on our overall solution. In order to characterize the
approximation effects in graphs with cycles, we analyze the deviation from the solution
given by “exact” loopy belief propagation (not, as is typically considered, the deviation

73

74 CHAPTER 4. MESSAGE APPROXIMATION

of loopy BP from the true marginal distributions). As a byproduct of this analysis, we
also obtain some results on the convergence of loopy belief propagation.

We apply the formulation of loopy belief propagation as described in Section 2.6,
for pairwise graphical models using a parallel update schedule, and we describe the
notion of approximate messages in Section 4.1. Section 4.3 then examines the conse-
quences of measuring a message error by its dynamic range. In particular, we explain
the utility of this measure and its behavior with respect to the operations of belief prop-
agation. This allows us to derive conditions for the convergence of traditional loopy
belief propagation, and bounds on the distance between any pair of BP fixed points
(Sections 4.4.1-4.4.2), and these results are easily extended to many approximate forms
of BP (Section 4.4.3). If the errors introduced are independent (a typical assumption
in, for example, quantization analysis [28, 109]), tighter estimates of the resulting error
can be obtained (Section 4.4.5).

It is also instructive to examine other measures of message error, in particular ones
which emphasize more average-case (as opposed to pointwise or worst-case) differences.
To this end, we consider a KL-divergence based measure in Section 4.5. While the
analysis of the KL-divergence measure is considerably more difficult and does not lead
to strict guarantees, it serves to give some intuition into the behavior of perturbed BP
under an average-case difference measure.

¥ 4.1 Message Approximations

Let us consider the concept of approximate BP messages. We begin by assuming that
the “true” messages mts(xs) are some fixed point of BP, so that mi

ts = mi+1
ts . We may

ask what happens when these messages are perturbed by some (perhaps small) error
function ets(xs). Although there are certainly other possibilities, the fact that BP mes-
sages are combined by taking their product makes it natural to consider multiplicative
message deviations (or additive in the log-domain):

m̂i
ts(xs) = mts(xs)ei

ts(xs)

To facilitate our analysis, we split the message update operation (2.21) into two
parts. In the first, we focus on the message products

M̂ i
ts(xt) ∝ ψt(xt)

∏

u∈Γt\s
m̂i

ut(xt) M̂ i
t (xt) ∝ ψt(xt)

∏

u∈Γt

m̂i
ut(xt) (4.1)

where the proportionality constant is chosen to normalize M̂ . The second operation,
then, is the message convolution

m̂i+1
ts (xs) ∝

∫
ψts(xs, xt)M̂ i

ts(xt)dxt (4.2)

where again M̂ is a normalized message or product of messages.

Sec. 4.2. Overview of Chapter Results 75

We use the convention that lowercase quantities (mts, ets, . . .) refer to messages and
message errors, while uppercase ones (Mts, Ets,Mt, . . .) refer to their products—at node
t, the product of all incoming messages and the local potential is denoted Mt(xt), its
approximation M̂t(xt) = Mt(xt)Et(xt), with similar definitions for Mts, M̂ts, and Ets.

¥ 4.2 Overview of Chapter Results

To orient the reader, we lay out the order and general results which are obtained in
this chapter. We begin in Section 4.3 by examining a dynamic range measure d (e) of
the variability of a message error e(x) (or more generally of any function) and show
how this measure behaves with respect to the BP belief and message update equations.
Specifically, we show in Section 4.3.2 that the measure log d (e) is sub-additive with
respect to the product operation (4.1), and contractive with respect to the convolution
operation (4.2).

Applying these results to traditional belief propagation results in a new sufficient
condition for BP convergence (Section 4.4.1), specifically

max
s,t

∑

u∈Γt\s

d (ψut)
2 − 1

d (ψut)
2 + 1

< 1; (4.3)

and this condition may be further improved in many cases. The condition (4.3) can be
shown to be slightly stronger than the sufficient condition given in [95], and empirically
appears to be stronger than that of [37]. More importantly, however, the method in
which it is derived allows us to generalize to many other situations:

1. Using the same methodology, we may demonstrate that any two BP fixed points
must be within a ball of a calculable diameter; the condition (4.3) is equivalent
to this diameter being zero (Section 4.4.2).

2. Both the diameter of the bounding ball and the convergence criterion (4.3) are eas-
ily improved for graphical models with irregular geometry or potential strengths,
leading to better conditions on graphs which are more “tree-like” (Section 4.4.3).

3. The same analysis may also be applied to the case of quantized or otherwise
approximated messages and models (potential functions), yielding bounds on the
resulting error (Section 4.4.4).

4. If we regard the message errors as a stochastic process, a similar analysis with
a few additional, intuitive assumptions gives alternate, tighter estimates (though
not necessarily bounds) of performance (Section 4.4.5).

Finally, in Section 4.5 we perform the same analysis for a less strict measure of
message error (i.e. disagreement between a message m(x) and its approximation m̂(x)),
namely the Kullback-Leibler divergence. This analysis shows that, while failing to

76 CHAPTER 4. MESSAGE APPROXIMATION

m(x)

m̂(x) }
}

0

log d (e)
αmin

log m/m̂

(a) (b)

Figure 4.1. (a) A message m(x) and an example approximation m̂(x); (b) their log-ratio
log m(x)/m̂(x), and the error measure log d (e).

provide strict bounds in several key ways, one is still able to obtain some intuition into
the behavior of approximate message passing under an average-case difference measure.

In the next few sections, we first describe the dynamic range measure and discuss
some of its salient properties (Section 4.3). We then apply these properties to analyze
the behavior of loopy belief propagation (Section 4.4). Almost all proofs are given in an
in-line fashion, as they frequently serve to give intuition into the method and meaning
of each result.

¥ 4.3 Dynamic Range Measure

In order to discuss the effects and propagation of errors, we first require a measure of
the difference between two messages. In this section, we examine the following measure
on ets(xs): let d (ets) denote the function’s dynamic range1, specifically

d (ets) = sup
a,b

(ets(a)/ets(b))
1
2 (4.4)

Then, we have that mts ≡ m̂ts (i.e., the pointwise equality condition mts(x) = m̂ts(x)
for all x) if and only if log d (ets) = 0. Figure 4.1 shows an example of m(x) and m̂(x)
along with their associated error e(x); log d (e) is shown as 1

2 supa,b log e(a)/e(b).

¥ 4.3.1 Motivation

We begin with a brief motivation for this choice of error measure. It has a number of
desirable features; for example, it is directly related to the pointwise log error between
the two distributions.

Lemma 4.3.1. The dynamic range measure (4.4) may be equivalently defined by

log d (ets) = inf
α

sup
x
| log αmts(x)− log m̂ts(x)| = inf

α
sup

x
| log α− log ets(x)|

1This measure has also been independently investigated to provide a stability analysis for the max-
product algorithm in Bayes’ nets (acyclic, directed graphical models) [9]. While similar in some ways,
the analysis for acyclic graphs is considerably simpler; loopy graphs require demonstrating a rate of
contraction, which we show is possible for the sum-product algorithm (Theorem 4.3.4).

Sec. 4.3. Dynamic Range Measure 77

Proof. The minimum is given by log α = 1
2(supa log ets(a)+infb log ets(b)), and thus the

right-hand side is equal to 1
2(supa log ets(a)−infb log ets(b)), or 1

2(supa,b log ets(a)/ets(b)),
which by definition is log d (ets).

The scalar α serves the purpose of “zero-centering” the function log ets(x) and mak-
ing the measure invariant to simple rescaling. This invariance reflects the fact that
the scale factor for BP messages is essentially arbitrary, defining a class of equivalent
messages. Although the scale factor cannot be completely ignored, it takes on the role
of a nuisance parameter. The inclusion of α in the definition of Lemma 4.3.1 acts
to select particular elements of the equivalence classes (with respect to rescaling) be-
tween which to measure distance—specifically, choosing the closest such messages in a
log-error sense. The log-error, dynamic range, and the minimizing α are depicted in
Figure 4.1.

Lemma 4.3.1 allows the dynamic range measure to be related directly to an ap-
proximation error in the log-domain when both messages are normalized to integrate
to unity, using the following theorem:

Theorem 4.3.1. The dynamic range measure can be used to bound the approximation
error in the log-domain,

|log mts(x)− log m̂ts(x)| ≤ 2 log d (ets) ∀x.

Proof. We first consider the magnitude of log α:

∀x,

∣∣∣∣log
αmts(x)
m̂ts(x)

∣∣∣∣ ≤ log d (ets)

⇒ 1
d (ets)

≤ αmts(x)
m̂ts(x)

≤ d (ets)

⇒
∫

m̂ts(x)dx
1

d (ets)
≤ α

∫
mts(x)dx ≤

∫
m̂ts(x)dx d (ets)

and since the messages are normalized, | log α| ≤ log d (ets). Then by the triangle
inequality,

|log mts(x)− log m̂ts(x)| ≤ |log αmts(x)− log m̂ts(x)|+ |log α| ≤ 2 log d (ets) .

In this light, our analysis of message approximation (Section 4.4.4) may be equiv-
alently regarded as a statement about the required quantization level for an accurate
implementation of loopy belief propagation. Interestingly, it may also be related to a
floating-point precision on mts(x).

Lemma 4.3.2. Let m̂ts(x) be an F -bit mantissa floating-point approximation to mts(x).
Then, log d (ets) ≤ 2−F +O(2−2F).

78 CHAPTER 4. MESSAGE APPROXIMATION

Proof. For an F -bit mantissa, we have |mts(x) − m̂ts(x)| < 2−F · 2blog2 mts(x)c ≤ 2−F ·
mts(x). Then, using the Taylor expansion of log

[
1 + (m̂

m − 1)
] ≈ (m̂

m − 1) we have that

log d (ets) ≤ sup
x

∣∣∣∣log
m̂ts(x)
mts(x)

∣∣∣∣

≤ sup
x

m̂ts(x)−mts(x)
mts(x)

+O
((

sup
x

m̂ts(x)−mts(x)
mts(x)

)2
)

≤ 2−F +O (
2−2F

)

Thus our measure of error is, to first order, similar to the typical measure of precision
in floating-point implementations of belief propagation on microprocessors. We may also
relate d (e) to other measures of interest, such as the Kullback-Leibler (KL) divergence:

Lemma 4.3.3. The KL-divergence satisfies the inequality D(mts‖m̂ts) ≤ 2 log d (ets)

Proof. By Theorem 4.3.1, we have

D(mts‖m̂ts) =
∫

mts(x) log
mts(x)
m̂ts(x)

dx ≤
∫

mts(x) (2 log d (ets)) dx = 2 log d (ets)

Finally, a bound on the dynamic range or the absolute log-error can also be used to
develop confidence intervals for the maximum and median of the distribution.

Lemma 4.3.4. Let m̂(x) be an approximation of m(x) with log d (m̂/m) ≤ ε, so that

m̂+(x) = exp(2ε)m̂(x) m̂−(x) = exp(−2ε)m̂(x)

are upper and lower pointwise bounds on m(x), respectively. Then we have a confidence
region on the maximum of m(x) given by

arg max
x

m(x) ∈ {x : m̂+(x) ≥ max
y

m̂−(y)}

and an upper bound µ on the median of m(x), i.e. ,
∫ µ

−∞
m(x) ≥

∫ ∞

µ
m(x) where

∫ µ

−∞
m̂−(x) =

∫ ∞

µ
m̂+(x)

with a similar lower bound.

Proof. The definitions of m̂+ and m̂− follow from Theorem 4.3.1. Given these bounds,
the maximum value of m(x) must be larger than the maximum value of m̂−(x), and
this is only possible at locations x for which m̂+(x) is also greater than the maximum
of m̂−. Similarly, the left integral of m(x) (−∞ to µ) must be larger than the integral
of m̂−(x), while the right integral (µ to ∞) must be smaller than for m̂+(x). Thus the
median of m(x) must be less than µ.

These bounds and confidence intervals are illustrated in Figure 4.2: given the ap-
proximate message m̂ (solid black), a bound on the error yields m̂+(x) and m̂−(x)
(dotted lines), which yield confidence regions on the maximum and median values of
m(x).

Sec. 4.3. Dynamic Range Measure 79

Area = A
Area = A

Conf. Region on Maximum (Right boundary of) Conf. Region on Median
(a) (b)

Figure 4.2. Using the error measure (4.4) to find confidence regions on maximum and median locations
of a distribution. The distribution estimate m̂(x) is shown in solid black, with | log m(x)/m̂(x)| ≤ 1

4

bounds shown as dotted lines. Then, the maximum value of m(x) must lie above the shaded region,
and the median value is less than the dashed vertical line; a similar computation gives a lower bound.

¥ 4.3.2 Additivity and Error Contraction

We now turn to the properties of our dynamic range measure with respect to the
operations of belief propagation. First, we consider the error resulting from taking the
product (4.1) of a number of incoming approximate messages.

Theorem 4.3.2. The log of the dynamic range measure is sub-additive:

log d
(
Ei

ts

) ≤
∑

u∈Γt\s
log d

(
ei
ut

)
log d

(
Ei

t

) ≤
∑

u∈Γt

log d
(
ei
ut

)

Proof. We show the left-hand sub-additivity statement; the right follows from a similar
argument. By definition, we have

log d
(
Ei

ts

)
= log d

(
M̂ i

ts/M
i
ts

)
=

1
2

log sup
a,b

∏
ei
ut(a)/

∏
ei
ut(b)

Increasing the number of degrees of freedom gives

≤ 1
2

log
∏

sup
au,bu

ei
ut(au)/ei

ut(bu) =
∑

log d
(
ei
ut(x)

)

Theorem 4.3.2 allows us to bound the error resulting from a combination of the
incoming approximations from two different neighbors of the node t. It is also important
that log d (e) satisfy the triangle inequality, so that the application of two successive
approximations results in an error which is bounded by the sum of their respective
errors.

Theorem 4.3.3. The log of the dynamic range measure satisfies the triangle inequality:

log d (e1e2) ≤ log d (e1) + log d (e2)

Proof. This follows from the same argument as Theorem 4.3.2.

80 CHAPTER 4. MESSAGE APPROXIMATION

We may also derive a minimum rate of contraction occurring with the convolution
operation (4.2). We characterize the strength of the potential ψts by extending the
definition of the dynamic range measure:

d (ψts)
2 = sup

a,b,c,d

ψts(a, b)
ψts(c, d)

(4.5)

When this quantity is finite, it represents a minimum rate of mixing for the potential,
and thus causes a contraction on the error. This fact is exhibited in the following
theorem:

Theorem 4.3.4. When d (ψts) is finite, the dynamic range measure satisfies a rate of
contraction:

d
(
ei+1
ts

) ≤ d (ψts)
2 d

(
Ei

ts

)
+ 1

d (ψts)
2 + d

(
Ei

ts

) . (4.6)

Proof. See Appendix 4.7.

Two limits are of interest. First, if we examine the limit as the potential strength
d (ψ) grows, we see that the error cannot increase due to convolution with the pairwise
potential ψ. Similarly, if the potential strength is finite, the outgoing error cannot be
arbitrarily large (independent of the size of the incoming error).

Corollary 4.3.1. The outgoing message error d (ets) is bounded by

d
(
ei+1
ts

) ≤ d
(
Ei

ts

)
d

(
ei+1
ts

) ≤ d (ψts)
2

Proof. Let d (ψts) or d
(
Ei

ts

)
tend to infinity in Theorem 4.3.4.

The contractive bound (4.6) is shown in Figure 4.3, along with the two simpler
bounds of Corollary 4.3.1, shown as straight lines. Moreover, we may evaluate the
asymptotic behavior by considering the derivative

∂

∂d (E)
d (ψ)2 d (E) + 1
d (E) + d (ψ)2

∣∣∣∣∣
d(E)→1

=
d (ψ)2 − 1
d (ψ)2 + 1

= tanh(log d (ψ))

The limits of this bound are quite intuitive: for log d (ψ) = 0 (independence of xt and
xs), this derivative is zero; increasing the error in incoming messages mi

ut has no effect
on the error in mi+1

ts . For d (ψ) → ∞, the derivative approaches unity, indicating that
for very large d (ψ) (strong potentials) the propagated error can be nearly unchanged.

We may apply these bounds to investigate the behavior of BP in graphs with cycles.
We begin by examining loopy belief propagation with exact messages, using the previous
results to derive a new sufficient condition for BP convergence to a unique fixed point.
When this condition is not satisfied, we instead obtain a bound on the relative distances
between any two fixed points of the loopy BP equations. This allows us to consider
the effect of introducing additional errors into the messages passed at each iteration,
showing sufficient conditions for this operation to converge, and a bound on the resulting
error from exact loopy BP.

Sec. 4.4. Applying Dynamic Range to Graphs with Cycles 81

log d(ψ)2 d(E)+1

d(ψ)2+d(E)

log d (E)

log d (ψ)2

lo
g

d
(e

)
→

log d (E) →

Figure 4.3. Three bounds on the error output d (e) as a function of the error on the product of
incoming messages d (E).

¥ 4.4 Applying Dynamic Range to Graphs with Cycles

In this section, we apply the framework developed in Section 4.3, along with the com-
putation tree formalism of [95], to derive results on the behavior of traditional belief
propagation (in which messages and potentials are represented exactly). We then use
the same methodology to analyze the behavior of loopy BP for quantized or otherwise
approximated messages and potential functions.

¥ 4.4.1 Convergence of Loopy Belief Propagation

The work of [95] showed that the convergence and fixed points of loopy BP may be
considered in terms of a Gibbs measure on the graph’s computation tree. In particular,
this led to the result that loopy BP is guaranteed to converge if the graph satisfies
Dobrushin’s condition [27]. Dobrushin’s condition is a global measure, and difficult
to verify; given in [95] is the easier to check sufficient condition (often called Simon’s
condition),

Theorem 4.4.1 (Simon’s condition). Loopy belief propagation is guaranteed to con-
verge if

max
t

∑

u∈Γt

log d (ψut) < 1 (4.7)

where d (ψ) is defined as in (4.5).

Proof. See [95].

Using the previous section’s analysis, we obtain the following, stronger condition,
and (after the proof) show analytically how the two are related.

82 CHAPTER 4. MESSAGE APPROXIMATION

Theorem 4.4.2 (BP convergence). Loopy belief propagation is guaranteed to con-
verge if

max
(s,t)∈E

∑

u∈Γt\s

d (ψut)
2 − 1

d (ψut)
2 + 1

< 1 (4.8)

Proof. By induction. Let the “true” messages mts be any fixed point of BP, and
consider the incoming error observed by a node t at level n − 1 of the computation
tree (corresponding to the first iteration of BP), and having parent node s. Sup-
pose that the total incoming error log d

(
E1

ts

)
is bounded above by some constant

log ε1 for all (t, s) ∈ E . Note that this is trivially true (for any n) for the constant
log ε1 = maxt

∑
u∈Γt

log d (ψut)
2, since the error on any message mut is bounded above

by d (ψut)
2.

Now, assume that log d
(
Ei

ut

) ≤ log εi for all (u, t) ∈ E . Theorem 4.3.4 bounds the
maximum log-error log d

(
Ei+1

ts

)
at any replica of node t with parent s, where s is on

level n− i of the tree (which corresponds to the ith iteration of loopy BP) by

log d
(
Ei+1

ts

) ≤ gts(log εi) = Gts(εi) =
∑

u∈Γt\s
log

d (ψut)
2 εi + 1

d (ψut)
2 + εi

(4.9)

We observe a contraction of the error between iterations i and i+1 if the bound gts(log εi)
is smaller than log εi for every (t, s) ∈ E , and asymptotically achieve log εi → 0 if this
is the case for any value of εi > 1.

Defining z = log ε, we may equivalently show gts(z) < z for all z > 0. This can
be guaranteed by the conditions gts(0) = 0, g′ts(0) < 1, and g′′ts(z) ≤ 0 for each t, s.
The first is easy to verify, as is the last (term by term) using the identity g′′ts(z) =
ε2G′′

ts(ε) + εG′
ts(ε); the second (g′ts(0) < 1) can be rewritten to give the convergence

condition (4.8).

We may relate Theorem 4.4.2 to Simon’s condition by expanding the set Γt \ s to
the larger set Γt, and observing that log x ≥ x2−1

x2+1
for all x ≥ 1 with equality as x → 1.

Doing so, we see that Simon’s condition is sufficient to guarantee Theorem 4.4.2, but
that Theorem 4.4.2 may be true (implying convergence) when Simon’s condition is
not satisfied. The improvement over Simon’s condition becomes negligible for highly-
connected systems with weak potentials, but can be significant for graphs with low
connectivity. For example, if the graph consists of a single loop then each node t has
at most two neighbors. In this case, the contraction (4.9) tells us that the outgoing
message in either direction is always as close or closer to the BP fixed point than the
incoming message. Thus we easily obtain the result of [105], that (for finite-strength
potentials) BP always converges to a unique fixed point on graphs containing a single
loop. Simon’s condition, on the other hand, is too loose to demonstrate this fact. The
form of the condition in Theorem 4.4.2 is also similar to a result shown for binary spin
models; see [27] for details.

Sec. 4.4. Applying Dynamic Range to Graphs with Cycles 83

We provide a more empirical comparison between our condition, Simon’s condition,
and the recent work of [37] shortly. Similarly to [37], we shall see that it is possible
to use the graph geometry to improve our bound (Section 4.4.3); but perhaps more
importantly (and in contrast to both other methods), when the condition is not satisfied,
we still obtain useful information about the relationship between any pair of fixed points
(Section 4.4.2), allowing its extension to quantized or otherwise distorted versions of
belief propagation (Section 4.4.4).

¥ 4.4.2 Distance of multiple fixed points

Theorem 4.4.2 may be extended to provide not only a sufficient condition for a unique
BP fixed point, but an upper bound on distance between the beliefs generated by
successive BP updates and any BP fixed point. Specifically, the proof of Theorem 4.4.2
relied on demonstrating a bound log εi on the distance from some arbitrarily chosen
fixed point {Mt} at iteration i. When this bound decreases to zero, we may conclude
that only one fixed point exists. However, even should it decrease only to some positive
constant, it still provides information about the distance between any iteration’s belief
and the fixed point. Moreover, applying this bound to another, different fixed point
{M̃t} tells us that all fixed points of loopy BP must lie within a sphere of a given
diameter (as measured by log d

(
Mt/M̃t

)
). These statements are made precise in the

following two theorems:

Theorem 4.4.3 (BP distance bound). Let {Mt} be any fixed point of loopy BP.
Then, after n > 1 iterations of loopy BP resulting in beliefs {M̂n

t }, for any node t and
for all x

log d
(
Mt/M̂n

t

)
≤

∑

u∈Γt

log
d (ψut)

2 εn−1 + 1
d (ψut)

2 + εn−1

where εi is given by ε1 = maxs,t d (ψst)
2 and

log εi+1 = max
(s,t)∈E

∑

u∈Γt\s
log

d (ψut)
2 εi + 1

d (ψut)
2 + εi

Proof. The result follows directly from the proof of Theorem 4.4.2.

We may thus infer a distance bound between any two BP fixed points:

Theorem 4.4.4 (Fixed-point distance bound). Let {Mt}, {M̃t} be the beliefs of
any two fixed points of loopy BP. Then, for any node t and for all x

| log Mt(x)/M̃t(x)| ≤ 2 log d
(
Mt/M̃t

)
≤ 2

∑

u∈Γt

log
d (ψut)

2 ε + 1
d (ψut)

2 + ε
(4.10)

84 CHAPTER 4. MESSAGE APPROXIMATION

where ε is the largest value satisfying

log ε = max
(s,t)∈E

Gts(ε) = max
(s,t)∈E

∑

u∈Γt\s
log

d (ψut)
2 ε + 1

d (ψut)
2 + ε

(4.11)

Proof. The inequality | log Mt(x)/M̃t(x)| ≤ 2 log d
(
Mt/M̃t

)
follows directly from The-

orem 4.3.1. The rest follows from Theorem 4.4.3—taking the “approximate” messages
to be any other fixed point of loopy BP, we see that the error cannot decrease over
any number of iterations. However, by the same argument given in Theorem 4.4.2,
g′′ts(z) < 0, and for z sufficiently large, gts(z) < z. Thus (4.11) has at most one solution
greater than unity, and εi+1 < εi for all i with εi → ε as i →∞. Letting the number of
iterations i → ∞, we see that the message “errors” log d

(
Mts/M̃ts

)
must be at most

ε, and thus the difference in Mt (the belief of the root node of the computation tree)
must satisfy (4.10).

Thus, if the value of log ε is small (the sufficient condition of Theorem 4.4.2 is nearly
satisfied) then although we cannot guarantee convergence to a unique fixed point, we
can still make a strong statement: that the set of fixed points are all mutually close (in
a log-error sense), and reside within a ball of diameter described by (4.10). Moreover,
even though it is possible that loopy BP does not converge, and thus even after infinite
time the messages may not correspond to any fixed point of the BP equations, we are
guaranteed by Theorem 4.4.3 that the resulting belief estimates will asymptotically
approach the same bounding ball (achieving distance at most (4.10) from all fixed
points).

¥ 4.4.3 Path-counting

If we are willing to put a bit more effort into our bound-computation, we may be
able to improve it further, since the bounds derived using computation trees are very
much “worst-case” bounds. In particular, the proof of Theorem 4.4.2 assumes that,
as a message error propagates through the graph, repeated convolution with only the
strongest set of potentials is possible. But often even if the worst potentials are quite
strong, every cycle which contains them may also contain several weaker potentials.
Using an iterative algorithm much like belief propagation itself, we may obtain a more
globally aware estimate of how errors can propagate through the graph.

Theorem 4.4.5 (Non-uniform distance bound). Let {Mt} be any fixed point belief
of loopy BP. Then, after n ≥ 1 iterations of loopy BP resulting in beliefs {M̂n

t }, for
any node t and for all x

| log Mt(x)/M̂n
t (x)| ≤ 2 log d

(
Mt/M̂n

t

)
≤ 2

∑

u∈Γt

log υn
ut

Sec. 4.4. Applying Dynamic Range to Graphs with Cycles 85

where υi
ut is defined by the iteration

log υi+1
ts = log

d (ψts)
2 εi

ts + 1
d (ψts)

2 + εi
ts

log εi
ts =

∑

u∈Γt\s
log υi

ut (4.12)

with initial condition υ1
ut = d (ψut)

2.

Proof. Again we consider the error log d
(
Ei

ts

)
incoming to node t with parent s, where t

is at level n−i+1 of the computation tree. Using the same arguments as Theorem 4.4.2
it is easy to show by induction that the error products log d

(
Ei

ts

)
are bounded above

by εi
ts, and the individual message errors log d

(
ei
ts

)
are bounded above by υi

ts, and .
Then, by additivity we obtain the stated bound on d (En

t) at the root node.

The iteration defined in Theorem 4.4.5 can also be interpreted as a (scalar) message-
passing procedure, or may be performed offline. As before, if this procedure results in
log εts → 0 for all (t, s) ∈ E we are guaranteed that there is a unique fixed point for
loopy BP; if not, we again obtain a bound on the distance between any two fixed-point
beliefs. When the graph is perfectly symmetric (every node has identical neighbors
and potential strengths), this yields the same bound as Theorem 4.4.3; however, if the
potential strengths are inhomogeneous Theorem 4.4.5 provides a strictly better bound
on loopy BP convergence and errors.

This situation is illustrated in Figure 4.4—we specify two different graphical models
defined on a 5 × 5 grid in terms of their potential strengths log d (ψ)2, and compute
bounds on the dynamic range d

(
Mt/M̃t

)
of any two fixed point beliefs Mt, M̃t for each

model. (Note that, while potential strength does not completely specify the graphical
model, it is sufficient for all the bounds considered here.) One grid (a) has equal-
strength potentials log d (ψ)2 = ω, while the other has many weaker potentials (ω/2).
The worst-case bounds are the same (since both have a node with four strong neighbors),
shown as the solid curve in (c). However, the dashed curves show the estimate of (4.12),
which improves only slightly for the strongly coupled graph (a) but considerably for the
weaker graph (b). All three bounds give considerably more information than Simon’s
condition (dotted vertical line).

Having shown how our bound may be improved for irregular graph geometry, we
may now compare our bounds to two other known uniqueness conditions [37, 95]. First,
for certain special cases such as graphs with binary-valued state and pairwise potentials,
Simon’s condition can be further strengthened by a factor of two [27, 37]. Thus for these
special cases, Simon’s condition may give more information than the one presented
here. Additionally, the recent work of [37] takes a very different approach to uniqueness
based on analysis of the minima of the Bethe free energy, which directly correspond
to stable fixed points of BP [112]. This leads to an alternate sufficient condition for
uniqueness. As observed in [37] it is unclear whether a unique fixed point necessarily
implies convergence of loopy BP. In contrast, our approach gives a sufficient condition

86 CHAPTER 4. MESSAGE APPROXIMATION

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10
Simple bound, grids (a) and (b)
Nonuniform bound, grid (a)
Nonuniform bound, grid (b)
Simons condition

lo
g

d
(E

t
)
→

ω →
(a) (b) (c)

Figure 4.4. (a-b) Two small (5× 5) grids. In (a), the potentials are all of equal strength (log d (ψ)2 =
ω), while in (b) several potentials (thin lines) are weaker (log d (ψ)2 = .5ω). The methods described
may be used to compute bounds (c) on the distance d (Et) between any two fixed point beliefs as a
function of potential strength ω.

Method (a) (b) (c)
Simon’s condition, [95] .56 .56 .56
(Improved for binary) .62 .62 .62
Heskes’ condition, [37] .55 .58 .65
This work .59 .69 .76
Empirical .67 .79 .88

(a) (b) (c) ηcrit

Figure 4.5. Comparison of various BP uniqueness bounds. For binary potentials parameterized by
η, we find the predicted ηcrit at which a fixed point of loopy BP can no longer be guaranteed to be
unique. For these simple problems, the ηcrit at which the trivial (correct) solution becomes unstable
may be found empirically. Examples and empirical values of ηcrit from [37].

for the convergence of BP to a unique solution, which implies uniqueness of the fixed
point.

Showing an analytic relation between all three approaches does not appear straight-
forward; to give some intuition, we show the three example binary graphs compared
in [37], whose structures are shown in Figure 4.5(a-c) and whose potentials are param-
eterized by a scalar η > .5, namely

ψ =
[

η 1− η
1− η η

]

(so that d (ψ)2 = η
1−η). The trivial solution Mt = [.5; .5] is always a fixed point, but

may not be stable; the precise ηcrit at which this fixed point becomes unstable (implying
the existence of other, stable fixed points) can be found empirically for each case [37];
the same values may also be found algebraically by imposing symmetry requirements
on the messages [112]. This value may then be compared to the uniqueness bounds
of [95], its strengthened version for binary potentials, the bound of [37], and this work;
these are shown in Figure 4.5.

While the strengthened version of Simon’s condition exceeds the performance of
our condition for the perfectly symmetric case of Figure 4.5(a), as the problem becomes
more asymmetric (and tree-like), methods which account for the graph structure begin

Sec. 4.4. Applying Dynamic Range to Graphs with Cycles 87

to perform better. Notice that our bound is always better than the unstrengthened
(typical) version of Simon’s condition, though for the perfectly symmetric graph the
margin is not large (and decreases further with increased connectivity, for example a
cubic lattice). Additionally, in all three examples our method appears to outperform
that of [37], though without analytic comparison it is unclear whether this is always
the case. None of the sufficient conditions manage to approach the empirical ηcrit and
are thus clearly not necessary conditions for convergence.

On this last point, however, our method also allows the bounds to be generalized
to situations in which we are not interested in true uniqueness of the fixed point,
but rather only equivalence of all fixed points up to some numerical precision. For
example, we may find the ηcrit below which all pairs of fixed points {Mt}, {M̃t} satisfy
log d

(
Mt/M̃t

)
< 10−3, obtaining the values {.65, .76, .85} for the grids in Figure 4.5(a),

(b), and (c), respectively.

¥ 4.4.4 Introducing intentional message errors and censoring

As discussed in the introduction, we may wish to introduce or allow additional errors in
our messages at each stage, in order to improve the computational or communication
efficiency of the algorithm. This may be the result of an actual distortion imposed
on the message (perhaps to decrease its complexity, for example quantization), or the
result of censoring the message update (reusing the message from the previous itera-
tion) when the two are sufficiently similar. Errors may also arise from quantization or
other approximation of the potential functions. Such additional errors may be easily
incorporated into our framework.

Theorem 4.4.6. If at every iteration of loopy BP, each message is further approximated
in such a way as to guarantee that the additional distortion has maximum dynamic
range at most δ, then for any fixed point beliefs {Mt}, after n ≥ 1 iterations of loopy
BP resulting in beliefs {M̂n

t } we have

log d
(
Mt/M̂n

t

)
≤

∑

u∈Γt

log υn
ut

where υi
ut is defined by the iteration

log υi+1
ts = log

d (ψts)
2 εi

ts + 1
d (ψts)

2 + εi
ts

+ log δ log εi
ts =

∑

u∈Γt\s
log υi

ut

with initial condition υ1
ut = δ d (ψut)

2.

Proof. Using the same logic as Theorems 4.4.3 and 4.4.5, apply additivity of the log
dynamic range measure to the additional distortion log δ introduced to each message.

88 CHAPTER 4. MESSAGE APPROXIMATION

As with Theorem 4.4.5, a simpler bound can also be derived (similar to Theo-
rem 4.4.3). Either gives a bound on the maximum total distortion from any true fixed
point which will be incurred by quantized or censored belief propagation. Note that
(except on tree-structured graphs) this does not bound the error from the true marginal
distributions, only from the loopy BP fixed points.

It is also possible to interpret the additional error as arising from an approximation
to the correct single-node and pairwise potentials ψt, ψts.

Theorem 4.4.7. Suppose that {Mt} are a fixed point of loopy BP on a graph defined by
potentials ψts and ψt, and let {M̂n

t } be the beliefs of n iterations of loopy BP performed
on a graph with potentials ψ̂ts and ψ̂t, where d

(
ψ̂ts/ψts

)
≤ δ1 and d

(
ψ̂t/ψt

)
≤ δ2.

Then,
log d

(
Mt/M̂n

t

)
≤

∑

u∈Γt

log υn
ut + log δ2

where υi
ut is defined by the iteration

log υi+1
ts = log

d (ψts)
2 εi

ts + 1
d (ψts)

2 + εi
ts

+ log δ1 log εi
ts = log δ2 +

∑

u∈Γt\s
log υi

ut

with initial condition υ1
ut = δ1 d (ψut)

2.

Proof. We first extend the contraction result given in Appendix 4.7 by applying the
inequality

∫
ψ(xt, a) ψ̂(xt,a)

ψ(xt,a)M(xt)E(xt)dxt

∫
ψ(xt, b)

ψ̂(xt,b)
ψ(xt,b)

M(xt)E(xt)dxt

≤
∫

ψ(xt, a)M(xt)E(xt)dxt∫
ψ(xt, b)M(xt)E(xt)dxt

· d
(
ψ̂/ψ

)2

Then, proceeding similarly to Theorem 4.4.6 yields the definition of υi
ts, and including

the additional errors log δ2 in each message product (resulting from the product with
ψ̂t rather than ψt) gives the definition of εi

ts.

Incorrect models ψ̂ may arise when the exact graph potentials have been estimated
or quantized; Theorem 4.4.7 gives us the means to interpret the (worst-case) overall
effects of using an approximate model. As an example, let us again consider the model
depicted in Figure 4.5(b). Suppose that we are given quantized versions of the pairwise
potentials, ψ̂, specified by the value (rounded to two decimal places) η = .65. Then,
the true potential ψ has η ∈ .65± .005, and thus is within δ1 ≈ 1.022 = (.35)(.655)

(.345)(.65) of the

known approximation ψ̂. Applying the recursion of Theorem 4.4.7 allows us to conclude
that the solution obtained using the approximate model ψ̂ and true model ψ are within
log d (e) ≤ .36, or alternatively that the beliefs found using the approximate model are
correct to within a multiplicative factor of about 1.43. The same ψ̂, with η assumed
correct to three decimal places, gives a bound log d (e) ≤ .04, or multiplicative factor of
1.04.

Sec. 4.4. Applying Dynamic Range to Graphs with Cycles 89

¥ 4.4.5 Stochastic Analysis

Unfortunately, the bounds given by Theorem 4.4.7 are often pessimistic compared to
actual performance. We may use a similar analysis, coupled with the assumption of
uncorrelated message errors, to obtain a more realistic estimate (though no longer a
strict bound) on the resulting error.

Proposition 4.4.1. Suppose that the errors log ets are random and uncorrelated, so
that at each iteration i, for s 6= u and any x, E

[
log ei

st(x) · log ei
ut(x)

]
= 0, and that at

each iteration of loopy BP, the additional error (in the log domain) imposed on each
message is uncorrelated with variance at most (log δ)2. Then,

E
[(

log d
(
Ei

t

))2
]
≤

∑

u∈Γt

(
σi

ut

)2 (4.13)

where σ1
ts = log d (ψts)

2 and

(
σi+1

ts

)2
=

(
log

d (ψts)
2 λi

ts + 1
d (ψts)

2 + λi
ts

)2

+ (log δ)2
(
log λi

ts

)2 =
∑

u∈Γt\s

(
σi

ut

)2

Proof. Let us define the (nuisance) scale factor αi
ts = arg minα supx | log αei

ts(x)| for
each error ei

ts, and let ζi
ts(x) = log αi

tse
i
ts(x). Now, we model the error function ζi

ts(x)
(for each x) as a random variable with mean zero, and bound the standard deviation
of ζi

ts(x) by σi
ts at each iteration i; under the assumption that the errors in any two

incoming messages are uncorrelated, we may assert additivity of their variances. Thus
the variance of

∑
Γt\s ζi

ut(x) is bounded by (log λi
ts)

2. The contraction of Theorem 4.3.4
is a non-linear relationship; we estimate its effect on the error variance using a sim-
ple sigma-point quadrature (“unscented”) approximation [54], in which the standard
deviation σi+1

ts is estimated by applying Theorem 4.3.4’s nonlinear contraction to the
standard deviation of the error on the incoming product (log λi

ts).

The assumption of uncorrelated errors is clearly questionable, since propagation
around loops may couple the incoming message errors. However, similar assumptions
have yielded useful analysis of quantization effects in assessing the behavior and stability
of digital filters [109]. It is often the case that empirically, such systems behave similarly
to the predictions made by assuming uncorrelated errors. Indeed, we shall see that in
our simulations, the assumption of uncorrelated errors provides a good estimate of
performance.

Given the bound (4.13) on the variance of log d (E), we may apply a Chebyshev-
like argument to provide probabilistic guarantees on the magnitude of errors log d (E)
observed in practice. In our experiments (Section 4.4.6), the 2σ distance was almost
always larger than the observed error. The probabilistic bound derived using (4.13) is
typically much smaller than the bound of Theorem 4.4.6 due to the strictly sub-additive
relationship between the standard deviations. However, the underlying assumption of

90 CHAPTER 4. MESSAGE APPROXIMATION

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

Strict bound
Stochastic estimate
Positive corr. potentials
Mixed corr. potentials

δ →

m
ax

lo
g

d
(E

t)

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

δ →

m
ax

lo
g

d
(E

t)

(a) log d (ψ)2 = .25 (b) log d (ψ)2 = 1

Figure 4.6. Maximum belief errors incurred as a function of the quantization error. The scatterplot
indicates the maximum error measured in the graph for each of 200 Monte Carlo runs; this is strictly
bounded above by Theorem 4.4.6, solid, and bounded with high probability (assuming uncorrelated
errors) by Proposition 4.4.1, dashed.

.

uncorrelated errors makes the estimate obtained using (4.13) unsuitable for deriving
strict convergence guarantees.

¥ 4.4.6 Experiments

We demonstrate the dynamic range error bounds for quantized messages with a set of
Monte Carlo trials. In particular, for each trial we construct a binary-valued 5× 5 grid
with uniform potential strengths, which are either (1) all positively correlated, or (2)
randomly chosen to be positively or negatively correlated (equally likely); we also assign
random single-node potentials to each variable xs. We then run a quantized version
of BP, rounding each log-message to discrete values separated by 2 log δ (ensuring that
the newly introduced error satisifies d (e) ≤ δ). Figure 4.6 shows the maximum belief
error in each of 100 trials of this procedure for various values of δ.

Also shown are two performance estimators—the bound on belief error developed in
Section 4.4.4, and the 2σ estimate computed assuming uncorrelated message errors as in
Section 4.4.5. As can be seen, the stochastic estimate is a much tighter, more accurate
assessment of error, but it does not possess the same strong theoretical guarantees. Since
(as observed for digital filtering applications [109]) the errors introduced by quantization
are typically close to independent, the assumptions underlying the stochastic estimate
are reasonable, and empirically we observe that the estimate and actual errors behave
similarly.

¥ 4.5 KL-Divergence Measures

Although the dynamic range measure introduced in Section 4.3 leads to a number of
strong guarantees, its performance criterion may be unnecessarily (and undesirably)
strict. Specifically, it provides a pointwise guarantee, that m and m̂ are close for every

Sec. 4.5. KL-Divergence Measures 91

possible state x. For continuous-valued states, this is an extremely difficult criterion
to meet—for instance, it requires that the messages’ tails match almost exactly. In
contrast, typical measures of the difference between two distributions operate by an
average (mean squared error or mean absolute error) or weighted average (Kullback-
Leibler divergence) evaluation. To address this, let us consider applying a measure such
as the Kullback-Leibler (KL) divergence,

D(p‖p̂) =
∫

p(x) log
p(x)
p̂(x)

dx

The pointwise guarantees of Section 4.3 are necessary to bound performance even
in the case of “unlikely” events. More specifically, the tails of a message approximation
can become important if two parts of the graph strongly disagree, in which case the tails
of each message are the only overlap of significant likelihood. One way to discount this
possibility is to consider the graph potentials themselves (in particular, the single node
potentials ψt) as a realization of random variables which “typically” agree, then apply
a probabilistic measure to estimate the typical performance. From this viewpoint, since
a strong disagreement between parts of the graph is unlikely we will be able to relax
our error measure in the message tails.

Unfortunately, many of the properties which we relied on for analysis of the dynamic
range measure do not strictly hold for a KL-divergence measure of error, resulting in
an approximation, rather than a bound, on performance. In Appendix 4.8, we give a
detailed analysis of each property, showing the ways in which each aspect can break
down and discussing the reasonability of simple approximations. In this section, we
apply these approximations to develop a KL-divergence based estimate of error.

¥ 4.5.1 Local Observations and Parameterization

To make this notion concrete, let us consider a graphical model in which the single-node
potential functions are specified in terms of a set of observation variables y = {yt};
in this section we will examine the average (expected) behavior of BP over multiple
realizations of the observation variables y. We further assume that both the prior
p(x) and likelihood p(y|x) exhibit conditional independence structure, expressed as a
graphical model. Specifically, we assume throughout this section that the observation
likelihood factors as

p(y|x) =
∏

t

p(yt|xt) (4.14)

in other words, that each observation variable yt is local to (conditionally independent
given) one of the xt. As for the prior model p(x), for the moment we confine our
attention to tree-structured distributions, for which one may write [100]

p(x) =
∏

(s,t)∈E

p(xs, xt)
p(xs)p(xt)

∏
s

p(xs) (4.15)

92 CHAPTER 4. MESSAGE APPROXIMATION

The expressions (4.14)-(4.15) give rise to a convenient parameterization of the joint
distribution, expressed as

p(x,y) ∝
∏

(s,t)∈E
ψst(xs, xt)

∏
s

ψx
s (xs)ψy

s (xs) (4.16)

where

ψst(xs, xt) =
p(xs, xt)

p(xs)p(xt)
and ψx

s (xs) = p(xs) , ψy
s (xs) = p(ys|xs). (4.17)

Our goal is to compute the posterior marginal distributions p(xs|y) at each node s;
for the tree-structured distribution (4.16) this can be performed exactly and efficiently
by BP. As discussed in the previous section, we treat the {yt} as random variables;
thus almost all quantities in this graph are themselves random variables (as they are
dependent on the yt), so that the single node observation potentials ψy

s (xs), messages
mst(xt), etc. are random functions of their argument xs. The potentials due to the
prior (ψst and ψx

s), however, are not random variables as they do not depend on any of
the observations yt.

For models of the form (4.16)-(4.17), the (unique) BP message fixed point consists of
normalized versions of the likelihood functions mts(xs) ∝ p(yts|xs), where yts denotes
the set of all observations {yu} such that t separates u from s. In this section it
is also convenient to perform a prior-weighted normalization of the messages mts, so
that

∫
p(xs)mts(xs) = 1 (as opposed to

∫
mts(xs) = 1 as assumed previously); we

again assume this prior-weighted normalization is always possible (this is trivially the
case for discrete-valued states x). Then, for a tree-structured graph, the prior-weight
normalized fixed-point message from t to s is precisely

mts(xs) = p(yts|xs)/p(yts) (4.18)

and the products of incoming messages to t, as defined in Section 4.1, are equal to

Mts(xt) = p(xt|yts) Mt(xt) = p(xt|y).

We may now apply a posterior-weighted log-error measure, defined by

D(mut‖m̂ut) =
∫

p(xt|y) log
mut(xt)
m̂ut(xt)

dxt; (4.19)

and may relate (4.19) to the Kullback-Leibler divergence.

Lemma 4.5.1. On a tree-structured graph, the error measure D(Mt, M̂t) is equivalent
to the KL-divergence of the true and estimated posterior distributions at node t:

D(Mt‖M̂t) = D(p(xt|y)‖p̂(xt|y))

Sec. 4.5. KL-Divergence Measures 93

Proof. This follows directly from the definitions of D, and the fact that on a tree, the
unique fixed point has beliefs Mt(xt) = p(xt|y).

Again, the error D(mut‖m̂ut) is a function of the observations y, both explicitly
through the term p(xt|y) and implicitly through the message mut(xt), and is thus
also a random variable. Although the definition of D(mut‖m̂ut) involves the global
observation y and thus cannot be calculated at node u without additional (non-local)
information, we will primarily be interested in the expected value of these errors over
many realizations y, which is a function only of the distribution. Specifically, we can
see that in expectation over the data y, it is simply

E [D(mut‖m̂ut)] = E
[∫

p(xt)mut(xt) log
mut(xt)
m̂ut(xt)

dxt

]
. (4.20)

One nice consequence of the choice of potential functions (4.17) is the locality of prior
information. Specifically, if no observations y are available, and only prior information
is present, the BP messages are trivially constant (mut(x) = 1 ∀x). This ensures that
any message approximations affect only the data likelihood, and not the prior p(xt); this
is similar to the motivation of [77], in which an additional message-passing procedure
is used to create this parameterization.

Finally, two special cases are of note. First, if xs is discrete-valued and the prior
distribution p(xs) constant (uniform), the expected message distortion with prior-
normalized messages, E[D(m‖m̂)], and the KL-divergence of traditionally normalized
messages behave equivalently, i.e.,

E [D(mts‖m̂ts)] = E
[
D

(
mts∫
mts

∥∥ m̂ts∫
m̂ts

)]

where we have abused the notation of KL-divergence slightly to apply it to the nor-
malized likelihood mts/

∫
mts. This interpretation leads to the same message-censoring

criterion used in [10].
Secondly, when the state xs is a discrete-valued random variable taking on one of

M possible values, a straightforward uniform quantization of the value of p(xs)m(xs)
results in a bound on the divergence (4.20). Specifically, we have the following lemma:

Lemma 4.5.2. For an M -ary discrete variable x, the quantization

p(x)m(x) → {ε, 3ε, . . . , 1− ε}
results in an expected divergence bounded by

E [D(m(x)‖m̂(x))] ≤ (2 log 2 + M)Mε +O(M3ε2)

Proof. Define µ(x) = p(x)m(x), and µ̄(x) ∈ {ε, 3ε, . . . , 1 − ε} (for each x) to be its
quantized value. Then, the prior-normalized approximation m̂(x) satisfies

p(x)m̂(x) = µ̄(x) /
∑

x

µ̄(x) = µ̄(x)/C

94 CHAPTER 4. MESSAGE APPROXIMATION

where C ∈ [1−Mε, 1 + Mε]. The expected divergence

E [D(m(x)‖m̂(x))] =
∑

x

p(x)m(x) log
m(x)
m̂(x)

≤
∑

x

µ(x) log
µ(x)
µ̄(x)

+
∑

x

| log C|

The first sum is at its maximum for µ(x) = 2ε and µ̄(x) = ε, which results in the value∑
x(2 log 2)ε. Applying the Taylor expansion of the log, the second sum

∑ | log C| is
bounded above by M2ε +O(M3ε2).

Thus, for example, for uniform quantization of a message with binary-valued state
x, fidelity up to two significant digits (ε = .005) results in an error D which, on average,
is less than .034.

We now state the approximations which will take the place of the fundamental
properties used in the preceding sections, specifically versions of the triangle inequality,
sub-additivity, and contraction. Although these properties do not hold in general,
in practice useful estimates are obtained by making approximations corresponding to
each property and following the same development used in the preceding sections. (In
fact, experimentally these estimates still appear quite conservative.) A more detailed
analysis of each property, along with justification for the approximation applied, is given
in Appendix 4.8.

¥ 4.5.2 Approximations

Three properties of the dynamic range described in Section 4.3 are important in the error
analysis of Section 4.4—(1) a form of the triangle inequality, enabling the accumulation
of errors in successive approximations to be bounded by the sum of the individual
errors, (2) a form of sub-additivity, enabling the accumulation of errors in the message
product operation to be bounded by the sum of incoming errors, and (3) a rate of
contraction due to convolution with each pairwise potential. We assume the following
three properties for the expected error; see Appendix 4.8 for a more detailed discussion.

Approximation 4.5.1 (Triangle Inequality). For a true BP fixed-point message
mut and two approximations m̂ut, m̃ut, we assume

D(mut‖m̃ut) ≤ D(mut‖m̂ut) +D(m̂ut‖m̃ut) (4.21)

Comment. This is not strictly true for arbitrary m̂, m̃, since the KL-divergence (and
thus D) does not satisfy the triangle inequality.

Approximation 4.5.2 (Sub-additivity). For true BP fixed-point messages {mut}
and approximations {m̂ut}, we assume

D(Mts‖M̂ts) ≤
∑

u∈Γt\s
D(mut‖m̂ut) (4.22)

Sec. 4.5. KL-Divergence Measures 95

Approximation 4.5.3 (Contraction). For a true BP fixed-point message product
Mts and approximation M̂ts, we assume

D(mts‖m̂ts) ≤ (1− γts)D(Mts‖M̂ts) (4.23)

where

γts = min
a,b

∫
min [ρ(xs, xt = a) , ρ(xs, xt = b)] dxs ρ(xs, xt) =

ψts(xs, xt)ψx
s (xs)∫

ψts(xs, xt)ψx
s (xs)dxs

Comment. For tree-structured graphical models with the parametrization described
by (4.16)-(4.17), ρ(xs, xt) = p(xs|xt), and γts corresponds to the rate of contraction
described by [6].

¥ 4.5.3 Steady-state errors

Applying these approximations to graphs with cycles, and following the same devel-
opment used for constructing the strict bounds of Section 4.4, we find the following
estimates of steady-state error. Note that, other than those outlined in the previous
section (and described in Appendix 4.8), this development involves no additional ap-
proximations.

Approximation 4.5.4. After n ≥ 1 iterations of loopy BP subject to additional errors
at each iteration of magnitude (measured by D) bounded above by some constant δ, with
initial messages {m0

tu} satisfying D(mtu‖m0
tu) less than some constant C, results in

an expected KL-divergence between a true BP fixed point {Mt} and the approximation
{M̂n

t } bounded by

Ey

[
D(Mt‖M̂n

t)
]

= Ey

[
D(Mt‖M̂n

t)
]
≤

∑

u∈Γt

((1− γut)εn−1
ut + δ)

where ε0ts = C and
εi
ts =

∑

u∈Γt\s
((1− γut)εi−1

ut + δ)

Comment. The argument proceeds similarly to that of Theorem 4.4.6. Let εi
ts bound

the quantity D(Mts‖M̂i
ts) at each iteration i, and apply Approximations 4.5.1-4.5.3.

We refer to the estimate described in Approximation 4.5.4 as a “bound-approximation”,
in order to differentiate it from the stochastic error estimate presented next.

Just as a stochastic analysis of message error gave a tighter estimate for the pointwise
difference measure, we may obtain an alternate Chebyshev-like “bound” by assuming
that the message perturbations are uncorrelated (already an assumption of the KL
additivity analysis) and that we require only an estimate which exceeds the expected
error with high probability.

96 CHAPTER 4. MESSAGE APPROXIMATION

Approximation 4.5.5. Under the same assumptions as Approximation 4.5.4, but de-
scribing the error in terms of its variance and assuming that these errors are uncorre-
lated gives the estimate

E
[
D(Mt‖M̂n

t)2
]
≤

∑

u∈Γt

(σn−1
ut)2

where (σ0
ts)

2 = C and

(σi
ts)

2 =
∑

u∈Γt\s
((1− γut)σi−1

ut)2 + δ2

Comment. The argument proceeds similarly to Proposition 4.4.1, by induction on the
claim that (σi

ut)
2 bounds the variance at each iteration i. This again applies Theo-

rem 4.8.3 ignoring any effects due to loops, as well as the assumption that the message
errors are uncorrelated (implying additivity of the variances of each incoming message).
As in Section 4.4.5, we take the 2σ value as our performance estimate.

¥ 4.5.4 Experiments

Once again, we demonstrate the utility of these two estimates on the same uniform
grids used in Section 4.4.6. Specifically, we generate 200 example realizations of a 5× 5
binary grid and its observation potentials (100 with strictly attractive potentials and
100 with mixed potentials), and compare a quantized version of loopy BP with the
solution obtained by exact loopy BP, as a function of KL-divergence bound δ incurred
by the quantization level ε (see Lemma 4.5.1).

Figure 4.7(a) shows the maximum KL-divergence from the correct fixed point re-
sulting in each Monte Carlo trial for a grid with relatively weak potentials (in which
loopy BP is analytically guaranteed to converge). As can be seen, both the bound
(solid) and stochastic estimate (dashed) still provide conservative estimates of the ex-
pected error. In Figure 4.7(b) we repeat the same analysis but with stronger pairwise
potentials (for which convergence is not guaranteed but occurs in practice). In this
case, the bound-based estimate of KL-divergence is trivially infinite—its linear rate of
contraction is insufficient to overcome the accumulation rate. However, the greater
sub-additivity in the stochastic estimate leads to the non-trivial curve shown (dashed),
which still provides a reasonable (and still conservative) estimate of the performance in
practice.

¥ 4.6 Discussion

We have described a framework for the analysis of belief propagation stemming from the
view that the message at each iteration is some noisy or erroneous version of some true
BP fixed point. By measuring and bounding the error at each iteration, we may analyze
the behavior of various forms of BP and test for convergence to the ideal fixed-point
messages, or bound the total error from any such fixed point.

Sec. 4.6. Discussion 97

10
3

10
 2

10
 1

10
 4

10
 3

10
 2

10
 1

10
0

10
1

Expectation bound

Stochastic estimate

Positive corr. potentials

Mixed corr. potentials

δ →

av
g

D
(M

t‖M̂
t)

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

δ →

av
g

D
(M

t‖M̂
t)

(a) log d (ψ)2 = .25 (b) log d (ψ)2 = 1

Figure 4.7. KL-divergence of the beliefs as a function of the added message error δ. The scatterplots
indicates the average error measured in the graph for each of 200 Monte Carlo runs, along with the
expected divergence bound (solid) and 2σ stochastic estimate (dashed). For stronger potentials, the
upper bound may be trivially infinite; in this example the stochastic estimate still gives a reasonable
gauge of performance.

.

In order to do so, we introduced a measure of the pointwise dynamic range, which
represents a strong condition on the agreement between two messages; after showing
its utility for common inference tasks such as MAP estimation and its transference to
other common measures of error, we showed that under this measure the influence of
message errors is both sub-additive and measurably contractive. These facts led to
conditions under which traditional belief propagation may be shown to converge to a
unique fixed point, and more generally a bound on the distance between any two fixed
points. Furthermore, it enabled analysis of quantized, stochastic, or other approximate
forms of belief propagation, yielding conditions under which they may be guaranteed
to converge to some unique region, as well as bounds on the ensuing error over exact
BP. If we further assume that the message perturbations are uncorrelated, we obtain
an alternate, tighter estimate of the resulting error.

The second measure considered an average case error similar to the Kullback-Liebler
divergence, in expectation over the possible realizations of observations within the
graph. While this gives no guarantees about any particular realization, the differ-
ence measure itself is able to be much less strict (allowing poor approximations in the
distribution tails, for example). Analysis of this case is substantially more difficult and
leads to approximations rather than guarantees, but explains some of the observed sim-
ilarities in behavior among the two forms of perturbed BP. Simulations indicate that
these estimates remain sufficiently accurate to be useful in practice.

Further analysis of the propagation of message errors has the potential to give an
improved understanding of when and why BP converges (or fails to converge), and
potentially also the role of the message schedule in determining the performance. Addi-
tionally, there are many other possible measures of the deviation between two messages,
any of which may be able to provide an alternative set of bounds and estimates on per-

98 CHAPTER 4. MESSAGE APPROXIMATION

formance of BP using either exact or approximate messages.

¥ 4.7 Proof of Theorem 4.3.4

Because all quantities in this section refer to the pair (t, s), we suppress the subscripts.
The error measure d (e) is given by

d (e)2 = d (m̂/m)2 = max
a,b

∫
ψ(xt, a)M(xt)E(xt)dxt∫

ψ(xt, a)M(xt)dxt
·

∫
ψ(xt, b)M(xt)dxt∫

ψ(xt, b)M(xt)E(xt)dxt
(4.24)

subject to a few constraints: positivity of the messages and potential functions, normal-
ization of the message product M , and the definitions of d (E) and d (ψ). In order to
analyze the maximum possible value of d (e) for any functions ψ, M , and E, we make
repeated use of the following property:

Lemma 4.7.1. For f1, f2, g1, g2 all positive,

f1 + f2

g1 + g2
≤ max

[
f1

g1
,

f2

g2

]

Proof. Assume without loss of generality that f1/g1 ≥ f2/g2. Then we have f1/g1 ≥
f2/g2 ⇒ f1g2 ≥ f2g1 ⇒ f1g1 + f1g2 ≥ f1g1 + f2g1 ⇒ f1

g1
≥ f1+f2

g1+g2
.

This fact, extended to more general sums, may be applied directly to (4.24) to
prove Corollary 4.3.1. However, a more careful application leads to the result of Theo-
rem 4.3.4. The following lemma will assist us:

Lemma 4.7.2. The maximum of d (e) with respect to ψ(xt, a), ψ(xt, b), and E(xt) is
attained at some extremum of their feasible function space. Specifically,

ψ(x, a) = 1 + (d (ψ)2 − 1)χA(x) E(x) = 1 + (d (E)2 − 1)χE(x)

ψ(x, b) = 1 + (d (ψ)2 − 1)χB(x)

where χA, χB, and χE are indicator functions taking on only values 0 and 1.

Proof. We simply show the result for ψ(x, a); the proofs for ψ(x, b) and E(x) are similar.
First, observe that without loss of generality we may scale ψ(x, a) so that its minimum
value is 1. Now consider a convex combination of any two possible functions: let
ψ(xt, a) = α1ψ1(xt, a) + α2ψ2(xt, a) with α1 ≥ 0, α2 ≥ 0, and α1 + α2 = 1. Then,
applying Lemma 4.7.1 to the left-hand term of (4.24) we have

α1

∫
ψ1(xt, a)M(xt)E(xt)dxt + α2

∫
ψ2(xt, a)M(xt)E(xt)dxt

α1

∫
ψ1(xt, a)M(xt)dxt + α2

∫
ψ2(xt, a)M(xt)dxt

≤ max
[∫

ψ1(xt, a)M(xt)E(xt)dxt∫
ψ1(xt, a)M(xt)dxt

,

∫
ψ2(xt, a)M(xt)E(xt)dxt∫

ψ2(xt, a)M(xt)dxt

]
(4.25)

Sec. 4.7. Proof of Theorem 4.3.4 99

Thus, d (e) is maximized by taking whichever of ψ1, ψ2 results in the largest value—an
extremum. It remains only to describe the form of such a function extremum. Any
potential ψ(x, a) may be considered to be the convex combination of functions of the
form

(
d (ψ)2 − 1

)
χ(x) + 1, where χ takes on values {0, 1}. This can be seen by the

construction

ψ(x, a) =
∫ 1

0

(
d (ψ)2 − 1

)
χy

m(x, a) + 1 dy

where

χy
m(x, a) =

{
1 ψ(x, a) ≥ 1 + (d (ψ)2 − 1) y

0 otherwise.

Thus, the maximum value of d (e) will be attained by a potential equal to one of these
functions.

Applying Lemma 4.7.2, we define the shorthand

MA =
∫

M(x)χA(x) MB =
∫

M(x)χB(x) ME =
∫

M(x)χE(x)

MAE =
∫

M(x)χA(x)χE(x) MBE =
∫

M(x)χB(x)χE(x)

α = d (ψ)2 − 1 β = d (E)2 − 1

giving

d (e)2 ≤ max
M

1 + αMA + βME + αβMAE

1 + αMB + βME + αβMBE
· 1 + αMB

1 + αMA

Using the same argument outlined by Equation 4.25, one may argue that the scalars
MAE , MBE , MA, and MB must also be extremum of their constraint sets. Noticing
that MAE should be large and MBE small, we may summarize the constraints by

0 ≤ MA, MB, ME ≤ 1 MAE ≤ min[MA, ME]
MBE ≥ max[0, ME − (1−MB)]

(where the last constraint arises from the fact that ME + MB −MBE ≤ 1). We then
consider each possible case: MA ≤ ME , MA ≥ ME , . . . In each case, we find that the
maximum is found at the extrema MAE = MA = ME and ME = 1−MB. This gives

d (e)2 ≤ max
M

1 + (α + β + αβ)ME

1 + α + (β − α)ME
· 1 + α− αME

1 + αME

The maximum with respect to ME (whose optimum is not an extreme point) is given by
taking the derivative and setting it to zero. This procedure gives a quadratic equation;

100 CHAPTER 4. MESSAGE APPROXIMATION

solving and selecting the positive solution gives ME = 1
β (
√

β + 1−1). Finally, plugging
in, simplifying, and taking the square root yields

d (e) ≤ d (ψ)2 d (E) + 1
d (ψ)2 + d (E)

¥ 4.8 Properties of the Expected Divergence

We begin by examining the properties of the expected divergence (4.20) on tree–struct-
ured graphical models parameterized by (4.16)–(4.17); we discuss the application of
these results to graphs with cycles in Appendix 4.8.4. Recall that, for tree-structured
models described by (4.16)–(4.17), the prior-weight normalized messages of the (unique)
fixed point are equivalent to

mut(xt) = p(yut|xt)/p(yut).

and that the message products are given by

Mts(xt) = p(xt|yts)Mt(xt) = p(xt|y)

Furthermore, let us define the approximate messages m̂ut(x) in terms of some approxi-
mate likelihood function, i.e.,

m̂ut(x) = p̂(yut|xt)/p̂(yut) where p̂(yut) =
∫

p̂(yut|xt)p(xt)dxt.

We may then examine each of the three properties in turn: the triangle inequality,
additivity, and contraction.

¥ 4.8.1 Triangle Inequality

Kullback-Leibler divergence is not a true distance, and in general, it does not satisfy
the triangle inequality. However, the following generalization does hold:

Theorem 4.8.1. For a tree-structured graphical model parameterized as in (4.16)–
(4.17), and given the true BP message mut(xt) and two approximate messages m̂ut(xt),
m̃ut(xt), suppose that mut(xt) ≤ cutm̂ut(xt) ∀xt. Then,

D(mut‖m̃ut) ≤ D(mut‖m̂ut) + cutD(m̂ut‖m̃ut)

and furthermore, if m̂ut(xt) ≤ c∗utm̃ut(xt) ∀xt, then mut(xt) ≤ cutc
∗
utm̃ut(xt) ∀xt.

Comment. Since m, m̂ are prior-weight normalized (
∫

p(x)m(x) =
∫

p(x)m̂(x) = 1),
for a strictly positive prior p(x) we see that cut ≥ 1, with equality if and only if
mut(x) = m̂ut(x) ∀x. However, this is often quite conservative and Approximation 4.5.1
(cut = 1) is sufficient to estimate the resulting error. Moreover, we shall see that the
constants {cut} are also affected by the product operation, described next.

Sec. 4.8. Properties of the Expected Divergence 101

¥ 4.8.2 Near-Additivity

For BP fixed-point messages {mut(xt)}, approximated by the messages {m̂ut(xt)}, the
resulting error is not quite guaranteed to be sub-additive, but is almost so.

Theorem 4.8.2. The expected error E[D(Mt‖M̂t)] between the true and approximate
beliefs is nearly sub-additive; specifically,

E
[
D(Mt‖M̂t)

]
≤

∑

u∈Γt

E [D(mut‖m̂ut)] +
(
Î− I

)
(4.26)

where I = E

[
log p(y)/

∏

u∈Γt

p(yut)

]
and Î = E

[
log p̂(y)/

∏

u∈Γt

p̂(yut)

]

Moreover, if mut(xt) ≤ cutm̂ut(xt) for all xt and for each u ∈ Γt, then

Mt(xt) ≤
∏

u∈Γt

cutC
∗
t M̂t(xt) C∗

t =
p̂(y)∏

u∈Γt
p̂(yut)

∏
u∈Γt

p(yut)
p(y)

(4.27)

Proof. By definition we have

E[D(Mt‖M̂t)] = E

[∫
p(xt,y) log

Mt(xt)
M̂t(xt)

dxt

]

= E
[∫

p(xt|y) log
p(xt)
p(xt)

p(y|xt)
p̂(y|xt)

p̂(y)
p(y)

dxt

]

Using the Markov property of (4.16) to factor p(y|xt), we have

= E

[∫
p(xt|y)

∑

u∈Γt

log
p(yut|xt)
p̂(yut|xt)

+ p(xt|y) log
p̂(y)
p(y)

dxt

]

and, applying the identity mut(xt) = p(yut|xt)/p(yut) gives

=
∑

u∈Γt

E
[∫

p(xt|y) log
mut(xt)
m̂ut(xt)

]
+ E

[
log

p̂(y)∏
u p̂(yut)

∏
u p(yut)
p(y)

]
dxt

=
∑

u∈Γt

E [D(mut‖m̂ut)] + (̂I− I)

where Î, I are as defined. Here, I is the mutual information (the divergence from
independence) of the variables {yut}u∈Γt . Equation (4.27) follows from a similar argu-
ment.

102 CHAPTER 4. MESSAGE APPROXIMATION

Unfortunately, it is not the case that the quantity Î − I must necessarily be less
than or equal to zero. To see how it may be positive, consider the following example.
Let x = [xa, xb] be a two-dimensional binary random variable, and let ya and yb be
observations of the specified dimension of x. Then, if ya and yb are independent (I = 0),
the true messages ma(x) and mb(x) have a regular structure; in particular, ma and mb

have the forms [p1p2p1p2] and [p3p3p4p4] for some p1, . . . , p4. However, we have placed
no such requirements on the message errors m̂/m; they have the potentially arbitrary
forms ea = [e1e2e3e4], etc.. If either message error ea, eb does not have the same
structure as ma,mb respectively (even if they are random and independent), then Î will
in general not be zero. This creates the appearance of information between ya and yb,
and the KL-divergence will not be strictly sub-additive.

However, this is not a typical situation. One may argue that in most problems
of interest, the information I between observations is non-zero, and the types of mes-
sage perturbations (particularly random errors, such as appear in stochastic versions of
BP [48, 56, 93]) tend to degrade this information on average. Thus, is is reasonable to
assume that Î ≤ I.

A similar quantity defines the multiplicative constant C∗
t in (4.27). When C∗

t ≤ 1,
it acts to reduce the constant which bounds Mt by M̂t; if this occurs “typically”, it
lends additional support for Approximation (4.5.1). Moreover, if E[C∗

t] ≤ 1, then by
Jensen’s inequality, we have Î− I ≤ 0, ensuring sub-additivity as well.

¥ 4.8.3 Contraction

Analysis of the contraction of expected KL-divergence is also non-trivial; however, the
work of [6] has already considered this problem in some depth for the specific case of
directed Markov chains (in which additivity issues do not arise) and projection-based
approximations (for which KL-divergence does satisfy a form of the triangle inequality).
We may directly apply their findings to construct Approximation 4.5.3.

Theorem 4.8.3. On a tree-structured graphical model parameterized as in (4.16)-
(4.17), the error measure D(M, M̂) satisfies the inequality

E [D(mts‖m̂ts)] ≤ (1− γts) E
[
D(Mts‖M̂ts)

]

γts = min
a,b

∫
min [p(xs|xt = a) , p(xs|xt = b)] dxs

Proof. For a detailed development, see [6]; we merely sketch the proof here. First, note
that

E [D(mts‖m̂ts)] = E
[∫

p(xs|y) log
p(yts|xs)
p(yts)

p̂(yts)
p̂(yts|xs)

]

= E
[∫

p(xs|yts) log
p(xs|yts)
p̂(xs|yts)

]

= E [D(p(xs|yts)‖p̂(xs|yts))]

Sec. 4.8. Properties of the Expected Divergence 103

(which is the quantity considered in [6]), and that p(xs|yts) =
∫

p(xs|xt)p(xt|yts)dxt.
By constructing two valid conditional distributions f1(xs|xt), f2(xs|xt) such that f1 has
the form f1(xs|xt) = f1(xs) (independence of xs, xt), and

p(xs|xt) = γtsf1(xs|xt) + (1− γtsf2(xs|xt)

one may use the convexity of KL-divergence to show

D(p(xs|yts)‖p̂(xs|yts)) ≤ γtsD(f1 ∗ p(xt|yts)‖f1 ∗ p̂(xt|yts))+
(1− γts)D(f2 ∗ p(xt|yts)‖f2 ∗ p̂(xt|yts))

where “∗” denotes convolution, i.e., f1 ∗ p(xt|yts) =
∫

f1(xs|xt)p(xt|yts)dxt. Since
the conditional f1 induces independence between xs and xt, the first divergence term
is zero, and since f2 is a valid conditional distribution, the second divergence is less
than D(p(xt|yts)‖p̂(xt|yts)) (see [15]). Thus we have a minimum rate of contraction of
(1− γts).

It is worth noting that Theorem 4.8.3 gives a linear contraction rate. While this
makes for simpler recurrence relations than the nonlinear contraction found in Sec-
tion 4.3.2, it has the disadvantage that, if the rate of error addition exceeds the rate
of contraction it may result in a trivial (infinite) bound. Theorem 4.8.3 is the best
contraction rate currently known for arbitrary conditional distributions, although cer-
tain special cases (such as binary-valued random variables) appear to admit stronger
contractions.

¥ 4.8.4 Graphs with Cycles

The analysis and discussion of each property (Appendices 4.8.1- 4.8.3) also relied on
assuming a tree-structured graphical model, and using the direct relationship between
messages and likelihood functions for the parameterization (4.16)-(4.17). However, for
BP on general graphs, this parameterization is not valid.

One way to generalize this choice is given by the re-parameterization around some
fixed point of loopy BP on the graphical model of the prior. If the original potentials
ψ̃st, ψ̃

x
s specify the prior distribution (c.f. (4.17)),

p(x) ∝
∏

(s,t)∈E
ψ̃st(xs, xt)

∏
s

ψ̃x
s (xs) (4.28)

then given a BP fixed point {M̃st, M̃s} of (4.28), we may choose a new parameterization
of the same prior ψst, ψ

x
s given by

ψst(xs, xt) =
M̃st(xs)M̃ts(xt)ψ̃st(xs, xt)

M̃s(xs)M̃t(xt)
and ψx

s (xs) = M̃s(xs) (4.29)

104 CHAPTER 4. MESSAGE APPROXIMATION

This parameterization ensures that uninformative messages (mut(xt) = 1 ∀xt) com-
prise a fixed point for the graphical model of p(x) as described by the new potentials
{ψst, ψs}. For a tree-structured graphical model, this recovers the parameterization
given by (4.17).

However, the messages of loopy BP are no longer precisely equal to the likelihood
functions m(x) = p(y|x)/p(y), and thus the expectation applied in Theorem 4.8.2 is
no longer consistent with the messages themselves. Additionally, the additivity and
contraction statements were developed under the assumption that the observed data y
along different branches of the tree are conditionally independent ; in graphs with cycles,
this is not the case. In the computation tree formalism, instead of being conditionally
independent, the observations y actually repeat throughout the tree.

However, the assumption of independence is precisely the same assumption applied
by loopy belief propagation itself to perform tractable approximate inference. Thus,
for problems in which loopy BP is well-behaved and results in answers similar to the
true posterior distributions, we may expect our estimates of belief error to be similarly
incorrect but near to the true divergence.

In short, all three properties required for a strict analysis of the propagation of
errors in BP fail, in one sense or another, for graphs with cycles. However, for many
situations of practical interest, they are quite close to the real average-case behavior.
Thus we may expect that our approximations give rise to reasonable estimates of the
total error incurred by approximate loopy BP, an intuition which appears to be borne
out in our simulations (Section 4.5.4).

Chapter 5

Communications Cost of
Particle–Based Representations

WE next consider the inherent cost of communicating sample–based representa-
tions of distributions, such as arise in distributed implementations of particle

filtering (Section 2.7) or nonparametric belief propagation (Chapter 3). In particular,
we first examine the cost of optimal lossless encoding to transmit a collection of par-
ticles exactly, and describe some of the necessary characteristics of good suboptimal
encoders. Then, applying the analysis of message error effects from Chapter 4, we
consider the problem of lossy message encoding. In particular, we describe a method
of jointly optimizing over a class of Gaussian mixture models defined on a KD-tree to
efficiently trade off between communications cost and several measures of error. We
finish with a few simulations which provide examples of the role and performance of
lossy encoding for applications in sensor networks.

¥ 5.1 Introduction

One of the reasons wireless sensor networks have become so attractive is that they re-
quire little or no physical infrastructure, enabling a network to be constructed quickly
and inexpensively. However, limited battery life poses a serious difficulty, making ef-
ficient use of their finite energy resources one of the most important requirements for
a wireless sensor network. The high energy cost of communications, relative to the
tasks of computation and sensing, makes it desirable to minimize or limit the required
inter-sensor communication in the network.

Unfortunately, reducing communications is often in direct conflict with the primary
goal of a sensor network—to accumulate and fuse information from the collection of
sensors—by restricting the amount of information which can be broadcast or relayed
from each sensor node. To some degree, power may be conserved through intelligent
routing of messages or data selection [51, 114]; however, it is also possible to trade off
the fidelity of the information with its communications cost. This is particularly true
for potentially redundant representations—for example, messages created by fine-grain
discretization or consisting of large collections of samples. This latter compromise falls
into the general category of lossy source coding—that the data may be represented

105

106 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

approximately to fit within some communications budget [28]. However, lossy data
compression is generally examined from the perspective of minimizing reconstruction
error on the data; in contrast, balancing communications with inferential utility (our
ability to use the data in subsequent tasks) is comparatively unexplored [25, 97].

In this chapter, we explore the tradeoffs between communication cost and error when
the data to be communicated is represented in the form of a distribution or likelihood
function. Specifically, we use the analysis of the previous chapter to provide measures
of loss which capture not only the distortion on the message itself, but also its impact
in terms of the amount of error caused in subsequent inference steps. The tradeoff be-
tween these loss measures and communications cost has many similarities to standard
density approximation methods. For example, employing a naive characterization of
communication cost (number of components in a Gaussian mixture, for example) may
lead to a number of common density fitting optimizations, including vector quantiza-
tion for source coding [28] and “reduced-set” density estimation [30], among others.
However, when communication resources are dear, a more careful examination of both
error measures and communication cost is warranted.

We begin by outlining the details of our problem framework in Section 5.2. Sec-
tion 5.3 examines the cost of optimal, lossless encoding of particle– or kernel–based
messages, and discusses some necessary features of any good encoder for such messages.
In Section 5.4 we describe the role of error measures, such as described in Chapter 4,
in lossy encoding of distributions and likelihood functions. Section 5.5 introduces a
particular encoding method based on KD-trees which can be applied to both lossless
and lossy encoding, and describes an efficient algorithm for balancing the encoding cost
with any of the loss measures covered in Section 5.4. Section 5.6 discusses the choice
of the resolution parameter β, which we assume fixed in previous sections, and Sec-
tion 5.7 gives several examples and applications. We conclude with Sections 5.8–5.9,
which describe some of the problems which remain open in communications for iterative
message–passing algorithms and summarize the contributions of the chapter.

¥ 5.2 Problem overview

We frame our analysis by first describing a generic inference problem defined on a small
graphical model. Suppose that we have three sensors S1, S2, and S3, each of which
observes a local random variable y1, y2, y3, respectively. Each sensor Sk uses yk to infer
about a local hidden state variable (denoted xk). Our goal is for S1 to encode and trans-
mit to S2 its information about y1 so as to assist in computing the posterior marginal
p(x2|y1, y2, y3). A secondary goal is to allow this information to be passed onward from
S2 to S3 to assist in computing the posterior marginal of x3, as well. A graphical model
which captures the distribution of the {xk, yk} is shown in Figure 5.1. We apply a
graphical model based description of the problem in order to frame the global infer-
ence task in terms of only local information and messages. Local sensing, distributed
in-network processing, and limited bandwidth combined with finite energy resources

Sec. 5.2. Problem overview 107

x1 x2 x3

y3y2y1

S1 S2
S3

Figure 5.1. A simple yet sufficiently general graphical model description for the transmission problem.
A sensor S1 wishes to send its information y1 to S2, who will use it to perform inference on x2 (or pass
it on to S3).

necessitate a compromise between communication costs and information content.
As in the rest of this thesis, we are concerned with calculating the posterior marginal

distributions p(xk|y). Since our example graph is tree-structured, the task of marginal-
ization may be accomplished using the belief propagation (BP) algorithm (Section 2.6).
In regard to Figure 5.1, we analyze the computation of the posterior distribution of x2:

p(x2|y) ∝ p(x2)p(y1|x2)p(y2|x2)p(y3|x2).

while minimizing communications from S1, momentarily ignoring the inference tasks of
the other sensors. This situation arises, for example, if S2 were responsible for fusing
information or communicating it to an outside user. More symmetric problems, for
example when S2 is also interested in communicating its information to S1, may be
thought of as a generalization of the communication task considered here.

The simple formulation just described can also be easily extended to larger tree–
structured graphs, in which case y1 represents all information separated from sensor
S2 by S1. Tree structured graphical models have already found application in sensor
networks [77]. While certain problems on sensor networks may be described by loopy
(non-tree structured) graphical models (for example, the localization problem described
in Chapter 6), inference in these situations, and thus the communications/error tradeoff,
is considerably more complex and remains a subject of ongoing research. In particular,
the error contraction statements described in Chapter 4 are often insufficient to give
guarantees about the propagation of errors in inference problems for continuous-valued
random variables on loopy graphical models, making it difficult to assess the effects of
lossy encoding. Thus for simplicity, in this chapter we concentrate solely on analysis of
the communications/error tradeoff in tree-structured graphs.

Describing the inference between the xk in terms of the messages passed in BP, we
assume that the message m12 transmitted from S1 to S2 is a function, and specifically
may be either of the local posteriors p(x2|y1), p(x1|y1) or likelihoods p(y1|x2), p(y1|x1).
We also assume that both S1 and S2 share the prior model p(x1, x2), in which case
all four functions may be considered essentially equivalent, since given any of these
functions (and similar information from S3), it is straightforward for S2 to calculate
p(x2|y) using Bayes’ rule. For concreteness, let us assume that m12 ∝ p(y1|x2), and as
is typical normalize each message (function) to integrate to unity for numerical stability.

Although both the transmitter S1 and receiver S2 share the joint relationship of

108 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

their hidden variables p(x1, x2), we assume that the transmitting sensor, S1, does not
know the global statistical model. In other words, S1 does not know the statistics
p(y2|x2) of S2’s observation, or the statistics p(x3, y3|x2) relating S3’s observation and
state to S2. In order to consider lossless encoding (Section 5.3) we shall assume some
global knowledge at the receiver, S2, but relax this assumption in later sections. We
further assume that the communication from transmitter S1 to receiver S2 is open–loop,
i.e., that S2 provides no feedback or other information to assist S1 in the encoding and
communication process.

A primary assumption of sending a distribution message rather than the raw data is
that the size of S1’s observation y1 is larger than the representation size of the likelihood
function p(y1|x2) (parameterized by x2). This may be the case for a number of reasons—
the observations yk may be high-dimensional (e.g., high-resolution imagery), or may be
a large set of accumulated data (e.g., an entire observation history). The optimal size of
a data representation is a statement about the total amount of randomness present, as
measured in bits; thus our assumption that p(y1|x2) has a smaller representation than
y1 is essentially a statement that some of the uncertainty in y1 is not relevant to x2,
and that we may reduce costs by being selective about the parts of y1 communicated.
Of course, practically speaking, this tradeoff also involves our ability to encode either
the raw observation y1 or the function p(y1|x2) efficiently. The former has been much
considered in the source coding literature [28]; here we concentrate on the latter.

¥ 5.2.1 Message Representation

There are many possible representations for the inter-sensor messages; common forms
include Gaussian distributions, discrete vectors (perhaps resulting from discretization
of some complex continuous function), and sample sets. We focus specifically on the
latter form. In particular, we assume that each message is described using a kernel
density estimate (Section 2.3)

m(x) =
∑

i

wi Khi(x− µi) Khi(x− µi) = N (x ; µi,diag(hi)) (5.1)

where the kernel function K is a Gaussian distribution. The bandwidth of K is specified
a vector hi of the same dimension as µi and x; the elements of hi determine the diagonal
covariance matrix diag(hi) of the Gaussian kernel. While the assumption of a diagonal
covariance matrix, and thus vector–valued rather than matrix–valued bandwidth pa-
rameter hi, is not strictly necessary, it is computationally convenient (Section 2.3.1),
and furthermore serves to simplify much of the subsequent discussion of distributions
over the quantities µi and hi.

Gaussian sum–based messages are common in a number of applications. For ex-
ample, they represent a generalization of the distribution estimates in particle filtering
algorithms [3, 19] (in which hi = 0 for all i) and more recently appear in stochastic ap-
proximations to belief propagation on general graphical models, such as nonparametric
belief propagation (Chapter 3) and the Pampas algorithm [48].

Sec. 5.3. Lossless Transmission 109

¥ 5.3 Lossless Transmission

We begin by examining lossless encoding of a kernel density estimate m(x). This means
that we would like to transmit an exact copy of the parameters {wi, µi, hi} from one
sensor, S1, to another, S2. However, the values of these parameters are continuous,
real–valued random variables. Let us therefore instead assume that the parameters
{wi, µi, hi} stored at sensor S1 have already been quantized to some “very fine” dis-
cretization level β, over which we have no control. For example, β might be determined
by the resolution, in bits, of sensor S1’s data processing hardware. Lossless encod-
ing means that we transmit the parameters {wi, µi, hi} up to the specified, arbitrary
resolution β without error.

In this section we also assume that the message m(x) from S1 to S2 is a simple
kernel density estimate as given by (5.1), in which all weights are equal, wi = 1

N for all
i, and the samples µi are i.i.d. and distributed according to some p(µ). In Section 5.3.1,
to consider the minimal possible cost of communications, we shall assume p(µ) known
at both sender S1 and receiver S2. However, this assumption is unrealistic for most
situations, and we then discuss some ways in which it can be relaxed in Section 5.3.2.
Furthermore, let us assume that the bandwidth hi has the same value, h, for all i,
and that this bandwidth is known at the receiver. The latter requirement can be
achieved in any number of ways—the value of h may be deterministically fixed, it may
be transmitted separately and its cost neglected for the purpose of our analysis, or it
could be chosen automatically from the data {µi} in the same manner at both sender
and receiver. Finally, the total number of samples, N , is also assumed known at the
receiver.

The main consequence of these assumptions is that we may analyze the asymptotic
costs involved with the transmission of the collection of i.i.d. samples {µi}. In particu-
lar, we show that the cost of transmitting the set {µi} is much smaller than the cost of
transmitting the sequence [µ1, . . . , µN], i.e., that the invariance of our density estimate
to reordering of the {µi} can lead to significant communication savings.

¥ 5.3.1 Optimal Communications

Information theory tells us that the minimum cost of transmitting large volumes of
continuous–valued data can be expressed in terms of the data’s differential entropy
H. We examine the implications of this statement first for the sequence of parameters
[µ1, . . . , µN], and then for the set of parameters {µi}.

Sequence Cost

As discussed in Section 2.2, a sequence of N random variables µN = [µ1, . . . , µN] can
be sent up to some “high” resolution β, in bits, with expected cost Nβ +H(p(µN)). Of
course, for small values of N and β, quantization effects and other factors may influence
the actual performance of a source coding scheme [28]. However, for simplicity we focus
here on the ideal case.

110 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

In particular, this cost is achieved by encoding the symbol µi by assigning each pos-
sible value of µi a codeword whose length is proportional to the negative log–probability
of µi taking on that value, conditioned on all the information which has been sent so
far. Thus, the cost of transmitting the sequence can be decomposed into

β − log2 p(µ1) + β − log2 p(µ2|µ1) + . . . + β − log2 p(µN |µN−1, . . . , µ1),

which, in expectation over the µi, is Nβ + H(p(µN)). Since the µi are i.i.d. random
variables, the conditional distributions simplify, giving

β − log2 p(µ1) + . . . + β − log2 p(µN) = N (β + H(p(µ1))) ,

or N times the expected cost of sending any one of the µi individually.

Set Cost

The problem of communicating a kernel density estimate as in (5.1) is actually consid-
erably simpler—we require only the transmission of the set of samples {µ1, . . . , µN}.
In particular, the ordering of the data comprises an additional source of uncertainty
which we do not require to be transmitted1. We can calculate the maximal improvement
which may be achieved by analyzing the entropy of the reordered samples.

Let us assume that the resolution β is sufficiently fine that no two samples fall within
the same bin (so that all the µi differ by more than 2−β). We again denote the complete
i.i.d. sample sequence by µN = [µ1, . . . , µN] and its distribution by p(µN). We can then
label the resulting samples, which have been deterministically re-ordered (for example,
sorted) given the values of the µi, by the symbol µs

N = [µ(1), . . . , µ(N)] and denote the
distribution of the full, sorted data by ρ(µN). Throughout this chapter, we will adhere
to the convention of using the symbol ρ for distributions of deterministically ordered
quantities such as the µ(i).

It is easy to show [82] that for any deterministic sorting procedure,

ρ(µN) =

{
N ! p(µN) µN “in order”
0 otherwise.

(5.2)

Essentially, this is because there are N ! = N · (N − 1) · · · 1 possible values of µN

(corresponding to N ! possible orderings) which map to the same value of µs
N . Thus,

the entropy of µs
N is given by

H(ρ(µN)) = −
∫

ρ(µN) log2 ρ(µN)

= −
∫

ρ(µN) log2 p(µN)− log2 N !

1Interestingly, reordering has also been applied to certain sequence coding applications; for example,
a reversible reordering procedure is used in the Burrows–Wheeler transform [7] for (discrete–alphabet)
source coding to help capture redundancy in non–i.i.d. sequences.

Sec. 5.3. Lossless Transmission 111

and applying (5.2) along with the same counting argument to the integral, we have

H(ρ(µN)) = H(p(µN))− log2 N ! (5.3)

indicating savings up to log N ! bits over the cost of sending the sequence naively. Note
however that this is no longer accurate if we allow multiple, equal–value (up to the res-
olution β) samples, since this would result in fewer than N ! possible distinct orderings.

Order Statistics

Equation (5.2) is a classic result from the analysis of order statistics, defined to be
the ascending sorted values for a set of one–dimensional (1-D) random variables. Order
statistics provide a natural and well–studied deterministic order in 1-D. We have chosen
our notation for the deterministically ordered sequence µ(i) to be consistent with order
statistics; however, the previous analysis does not require any particular method of
ordering, and is general to samples of arbitrary dimension.

For 1-D distributions, we have the convenient fact that the optimal conditional
distributions ρ(µ(i)|µ(i−1), . . . , µ(1)) based on an ascending sort are first-order Markov,
so that they can be written

ρ(µ(i)|µ(i−1), . . . , µ(1)) = ρ(µ(i)|µ(i−1)).

Moreover, these distributions can be computed numerically from the distribution p(µ)
using standard order statistic results [82], via

p+
i (µ) ∝

{
0 µ < µ(i)

p(µ) µ ≥ µ(i)

P+
i (µ) =

∫ µ

µ(i)

p+
i (µ̄) dµ̄

ρ(µ(i+1)|µ(i)) ∝
(
1− P+

i (µ(i+1))
)N−i−1

p+
i (µ(i+1))

where the various proportionality constants are chosen to normalize each distribution.
An example illustrating how the sorted samples may be sent using relatively few bits

is shown in Figure 5.2. Here, we show five samples distributed uniformly on the interval
[0, 1), drawn as arrows. Also shown is the uniform distribution p(µ) from which they are
drawn, shown as the horizontal dotted line; this distribution is optimal for encoding the
original, unsorted ordering of the samples. The conditional distributions ρ(µ(i)|µ(i−1))
for each i, representing the optimal distributions for encoding each sorted sample given
those already transmitted, are shown as the dashed lines. Each sorted random variable
µ(i) has much lower entropy than is indicated by p(µ); this difference translates directly
into lower transmission costs for the sample set.

112 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4 Optimal Conditional Order Statistics

ρ(µ(1))
¤
¤
¤
¤²

ρ(µ(2)|µ(1))

?

Figure 5.2. Deterministic ordering reduces the entropy of the sample set. Optimal encoding of 1-D
samples can be accomplished via the conditional distributions of the order statistics ρ(µ(i)|µ(i−1)), if
known.

¥ 5.3.2 Suboptimal Encoding

It is difficult to implement the optimal encoding process for a set of i.i.d. samples {µi}
in arbitrary dimension for a number of reasons. First of all, the distribution p(µ) from
which the samples are drawn is typically not known at the receiver; it may not even be
known at the transmitter. Furthermore, even if p(µ) is known, the optimal encoding
distributions ρ(µ(i)|µ(i−1), . . . , µ(1)) can become complicated and unwieldy to compute
for each sample i. It is therefore desirable to approximate the optimal encoding distribu-
tion in some manner; any approximate distribution ρ̂(·) implicitly defines an encoder by
assigning each value of µ a symbol whose length is proportional to the log–probability
ρ̂(µ). When p(µ) is known at both sensors, approximations ρ̂(·) to the optimal ρ(·)
can be used to provide computational efficiency. Perhaps more importantly however,
when p(µ) is not known at the receiver, approximating the optimal encoding distribu-
tions with a simple parametric description of ρ̂(·) allows the transmitter to encode the
samples in a suboptimal but efficient manner, by first describing the parameters of the
encoder itself, then describing the sample values.

Stationary and Non-stationary Codes

One important aspect to consider is that the optimal distributions ρ(µ(i)) are non-
stationary, i.e., the marginal distribution of the sorted variables µ(i) are different for
each i. It turns out that this non-stationarity is key to obtaining significant savings
due to reordering. Strict–sense stationary encoding distributions, i.e., encoding dis-
tributions for which the marginal ρ̂(µ(i+1), . . . , µ(i+k)) is the same for all i, for any
value of k, can only achieve encoding cost Nβ + H(p(µN)), rather than the optimal
Nβ + H(ρ(µN)).

Let us consider a small example, which illustrates a special case of the more general
result. Suppose that we have only two samples µ1, µ2, each of which take on one of the

Sec. 5.3. Lossless Transmission 113

two values {0, 1}, with probability p1 and 1− p1, respectively. Let 0 < p1 < 1, so that
the µi are not deterministic. We write these probability mass functions as

p(µ1) = [p(µ1 = 0), p(µ1 = 1)] = [p1, 1− p1] p(µ2) = [p1, 1− p1]

Sorting µ1, µ2 to obtain the random variables µ(1) ≤ µ(2) we have that

ρ(µ(1)) = [ρ1 , 1− ρ1] = [p2
1 + 2p1(1− p1) , (1− p1)2] (5.4)

ρ(µ(2)|µ(1)) =

{
[p2

1/ρ1 , 2p1(1− p1)/ρ1] for µ(1) = 0
[0 , 1] for µ(1) = 1

(5.5)

and marginalizing, we obtain

ρ(µ(2)) = [ρ2 , 1− ρ2] = [p2
1 , (1− p1)2 + 2p1(1− p1)]

Since 2p1(1 − p1) > 0, the marginal distributions ρ(µ(1)) and ρ(µ(2)) are not equal, or
in other words, the optimal encoding distributions are non-stationary.

Suppose that we attempt to approximate the optimal distributions (5.4)–(5.5) using
a stationary encoding distribution, i.e., one for which ρ1 = ρ2. Such a distribution is
parameterized by

ρ̂(µ(1)) = [q1, 1− q1] ρ̂(µ(2)|µ(1)) =

{
[q2, 1− q2] for µ(1) = 0
[q3, 1− q3] for µ(1) = 1

(5.6)

with q1, q2, and q3 all in the interval [0, 1]; the condition of stationarity requires that
the marginal distribution of µ(2) match that of µ(1), i.e.,

q1q2 + (1− q1)q3 = q1 ⇒ q3 =
q1

1− q1
(1− q2)

making q3 a deterministic function of q1 and q2. We can select q1 and q2 so as to
minimize the expected cost of transmission, which is given by

(p2
1 + 2p1(1− p1)) log2 q1 + (1− p1)2 log2(1− q1)+

p2
1 log2 q2 + 2p1(1− p1) log2(1− q2) + (1− p1)2 log2(1− q3).

Optimizing this over q1 and q2, we find that the best possible stationary distribution
for encoding the sorted random variables µ(1), µ(2) is given by q1 = q2 = q3 = p1, the
same distribution as should be used for the unsorted, independent variables µ1, µ2.

This result should not be surprising, since the information about the µ(i) can be
thought of in two pieces—one piece, the distribution p(µ), is identical for all samples
and thus stationary in nature, while the second, the fact that the samples are ordered
increasingly in i, is a purely non-stationary piece of information. By selecting an en-
coding distribution which is strict–sense stationary, we remain able to take advantage

114 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

of the first piece of information, but lose the latter entirely. Intuitively, the reduced
transmission cost of the ordered samples is a result of the distribution of µ(i) changing
in a predictable way, based not only on the value of previous data but also on i itself.

An inductive argument on both the size N of the sample set and the number of dis-
crete bins can be applied to demonstrate that the best strict–sense stationary encoding
distribution for the µ(i) is in fact the distribution of the unsorted samples, p(µ). Thus,
no stationary encoding distribution is able to gain any advantage from the reduced
entropy of the sorted samples.

With this fact in mind, it behooves us to select a non-stationary encoding pro-
cess. Unfortunately, this means that most traditional source coding techniques, which
are typically based around the assumption of stationary processes, are unable to de-
rive significant advantage from the lower entropy of a set. Furthermore, the encoder
should be chosen so that the predictive distributions change in a manner consistent
with whatever deterministic order is selected. Thus we cannot simply sort the samples
and apply any arbitrary encoder; we must select source coding methods which are in a
sense well–matched to both the idea and method of sorting samples.

Linear Predictive Encoding

One possible method of constructing a non-stationary code is to assume that the con-
ditional distribution of the µ(i), given some fixed number k of previous samples, is
stationary, in other words, to select ρ̂(µ(i)|µ(i−1), . . . , µ(i−k)) to be constant for all i.
In this section we focus particularly on the simplest case, in which k = 1. Of course,
the optimal (in 1-D, order statistic) distributions ρ(·) are not conditionally stationary,
either; they depend on the value of i and the total number of samples N . However,
conditional stationarity provides a simple parameterization of ρ̂ which can result in a
non-stationary encoding distribution.

Linear predictive coding [28] is one commonly used representation based on condi-
tionally stationary processes. A trivial example of a linear predictive code is a random
walk with Gaussian noise; however, as we shall see even this simple model can be quite
powerful as a predictive encoder of sample sets. For the moment, we focus solely on
1-D distributions and ascending sample order. We consider constructive methods of
encoding collections of samples from higher–dimensional distributions in Section 5.5.

Let us compare the performance obtained using two possible suboptimal encoding
methods based on the conditional distributions of random walks. Again, we suppose
that the true distribution p(µ) is uniform on the interval [0, 1). We consider two random
walk distributions; the first is a traditional random walk with Gaussian noise,

ρ̂(µ(i)|µ(i−1)) = N (µ(i); µ(i−1), λ
2). (5.7)

Sending the samples in increasing order and encoding according to (5.7) can obtain
performance not far from the optimal encoder. To be concrete, we choose λ2 equal to
the variance of p(µ) divided by N , e.g. for uniform p(µ) we take λ2 = 1

12N .

Sec. 5.4. Message Approximation 115

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4 Positive Random Walk

ρ̂(µ(1))
¤
¤
¤¤²

ρ̂(µ(2)|µ(1))

?

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8
Communications Savings

Number of samples

S
a

vi
n

g
s
p
e
r

sa
m
p
le

 (
b

its
)

Optimal performance

Random Walk

Positive RW

(a) (b)

Figure 5.3. (a) Using a positive–only random walk distribution ρ̂ to encode a set of deterministi-
cally ordered samples; the optimal encoding distributions ρ are shown in Figure 5.2. (b) Simplified,
suboptimal encoders ρ̂ can be described more succinctly than ρ, but result in a slight reduction of the
per–symbol communications savings over encoding according to the distribution p(µ) of the unsorted
samples.

Our second random walk distribution is a simple variant of this encoding procedure,
obtained by noting that µ(i) ≥ µ(i−1) and using only the positive half of the random
walk. This gives

ρ̂(µ(i)|µ(i−1)) =

{
2N (µ(i) ; µ(i−1), λ

2) µ(i) ≥ µ(i−1)

0 otherwise.
(5.8)

Figure 5.3(a) shows the conditional distributions given by (5.8) for five samples, and
can be compared to the optimal encoding distributions ρ shown in Figure 5.2.

Furthermore, we may measure the performance of any suboptimal encoding algo-
rithm by examining the per–sample savings (in bits) achieved over encoding according
to the unsorted distribution p(µ) as a function of the total number of samples N . Opti-
mal encoding results in per–sample savings of 1

N log2 N !, while for any stationary code
the savings are, on average, zero. Figure 5.3(b) shows curves indicating the per–sample
savings, in bits, of three encoders: the optimal encoder ρ(·), the zero–mean random
walk given by (5.7), and the positive–only random walk given by (5.8). Although the
random walk distributions (5.7)–(5.8) are suboptimal, they come quite close to the
optimal performance.

¥ 5.4 Message Approximation

Let us now turn our attention to lossy encoding. Typically, source coding problems
are examined from the perspective of minimizing a reconstruction error on the original
data. However, for inference problems we do not need to reconstruct the original data
y, but instead merely wish to minimize the impact of mistakes on our final distribution

116 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

estimates. Thus, the “correct” error measure to use with respect to any transmitted
message depends on the desired measure of error for the estimated posterior distribution.
Ideally, we desire local rules which, when followed at all sensors, lead to global bounds
or estimates on the error at each sensor.

¥ 5.4.1 Maximum Log–Error

One possible measure which has these properties is the maximum log–error

∆(m, m̂) = max
x
|log m(x) / m̂(x)| , (5.9)

which is closely related to the the similar “dynamic range” measure described in detail
in Chapter 4:

d(m, m̂) = max
x

min
α
|α + log m(x) / m̂(x)| .

For normalized messages m, m̂, the two are related by the inequalities

d(m, m̂) ≤ ∆(m, m̂) ≤ 2d(m, m̂)

which makes it possible both to control d(m, m̂) through the easier to evaluate quantity
∆(m, m̂), and bound its influence using the analysis of Chapter 4.

Unfortunately, the measure ∆(·) is a very strict requirement for distribution agree-
ment. Its implication for continuous distributions is that both distributions must have
nearly identical tail behavior. In portions of the state space where m(x) is very small,
we see that m̂(x) must stay within some constant factor of m(x) in order to have
bounded error ∆, and thus the rate at which m(x) and m̂(x) approach zero must at
some point become identical.

For a pair of Gaussian mixture distributions, this behavior can be ensured by any
of several means. If the mixture components which determine the tail behavior can
be identified (for example the left– and right–most components in a one–dimensional
distribution) they may be preserved to high precision. This is particularly easy if a
single mixture component determines the tail behavior of the overall distribution; for
example, one very broad (possibly low weight) component which dominates the rest of
the distribution in very low likelihood regions. Such components are sometimes added
to model outlier processes [42, 48], and may be either deterministically added at the
receiver or transmitted with high precision.2

Computationally, evaluating the error ∆(·) between two Gaussian mixtures is also
non-trivial, but may be performed either by discretization and direct evaluation in
relatively low (1–2) dimensions, or via gradient search. Although gradient search can
be susceptible to local maxima, the form of (5.9) as the ratio of Gaussian mixtures
leads one to expect that the global maximum may be found with relative ease by local

2A similar solution involves the addition of a small but non-zero constant to the distribution estimate
(or imposition of a threshold away from zero), essentially modeling the inclusion of a small uniform
(rather than Gaussian) outlier component.

Sec. 5.4. Message Approximation 117

optimization from each of the mixture centers, using a procedure similar to that outlined
in [8] for mode–finding in Gaussian mixtures. Thus, evaluating ∆(m, m̂), where m and
m̂ are both Gaussian mixtures with N or fewer components, requires O(N) operations.
A reasonable estimate of ∆(m, m̂) when m is a kernel density estimate and m̂ consists
of a single Gaussian (a task which becomes important in the next section) is given by
simply evaluating the log–ratio at each kernel center and taking the maximum absolute
value, as

∆̂(m, m̂) = max
i
|log m(µi)/m̂(µi)| ,

where the µi are the kernel centers of m(x); this estimate also requires O(N) work, and
in practice tends to be much faster than finding the modes of ∆ using gradient ascent.

¥ 5.4.2 Kullback–Leibler Divergence

We may also consider another common measure of error between two distribution–based
messages, the Kullback–Leibler (KL) divergence

D(m(x) ‖ m̂(x)) =
∫

m(x) log m(x) / m̂(x) dx. (5.10)

Compared to the maximum log–error, the KL-divergence tends to be a much more
forgiving measure of error between two messages m(x) and m̂(x). Intuitively, while
the maximum log–error focuses on the largest deviation between the log–messages, the
KL-divergence weights that deviation by the importance assigned to that portion of
the state by the message m(x). This emphasizes errors which occur in regions of the
state space currently thought to have high probability. The reduced emphasis on low–
probability regions means that strict matching of tail behavior, such as described in
Section 5.4.1, is no longer required.

We can estimate the KL-divergence between a kernel density estimate m(x) and a
general Gaussian mixture m̂(x) fairly easily, using the plug–in methods described in
Section 2.3.2. Specifically, we use

D̂(m‖m̂) =
∑

i

wi log m(µi)/m̂(µi)

where {wi, µi} are the weights and kernel centers of m(x). This estimate is again O(N),
where N is the number of kernels in m(x).

If the messages m(x) communicated between sensors are chosen to be posterior
distributions, e.g., p(x2|y1), then the KL-divergence between messages (5.10) is in many
ways similar to the posterior–weighted log–error discussed in Chapter 4. In Chapter 4,
we used this error measure to describe the expected or average behavior of the KL-
divergence over many realizations of the observed random variables y. In this chapter,
we consider what can be done to control the tradeoff between the communications cost
and error given a single realization of y. However, there may be situations in which we
may, in fact, be interested in the average behavior of a system. For example, consider

118 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

a sensor network which regularly takes measurements to infer some characteristic of
the environment, say once per day. Each day, then, provides a new realization y, and
we may be interested in minimizing our average energy use and average inference error
over many days, rather than the energy required or error obtained for any particular
day’s measurements.

In prolonged, repetitive inference problems such as these, there are two aspects to
controlling the average behavior of errors, as measured by the expected KL-divergence
of Chapter 4. First, each new realization of observations y forces us to balance the
KL-divergence (5.10) with the communications cost required for inference using those
particular observations. Second, in addition to the tradeoff given a particular y, there
is also a resource allocation problem—how to assign resources between various real-
izations (in our example, from day to day) so as to control the average behavior of
both communications cost and inferential error. The second half of this problem is
left for future research; here we concentrate only on the former problem, in which we
have a single, fixed set of observations y and assume that we have a predetermined
set of resources available, expressed either as a maximum communications cost or as a
maximum allowable error.

¥ 5.4.3 Other Measures of Error

There exist many other measures of error between distributions which are commonly
applied in density approximation literature. While a link between applying these mea-
sures of error to BP messages and estimating the level of error in subsequent distri-
bution estimates and inference tasks has yet to be established, their popularity makes
it worthwhile to consider whether methods of lossy encoding may be developed which
incorporate these other measures instead. We mention two measures explicitly, the L1

or absolute integrated error,

L1(m, m̂) =
∫
|m(x)− m̂(x)| dx (5.11)

and the L2 or integrated squared error,

L2(m, m̂) =
∫

(m(x)− m̂(x))2 dx. (5.12)

We shall see that the optimization procedures developed for lossy encoding in Section 5.5
can be easily modified to accommodate both of these error measures, as well.

¥ 5.5 KD-tree Codes

In many data compression applications, multi–scale descriptions have proven extremely
useful [55, 87]. Multi–scale descriptions first capture broad, large scale phenomena,
then encode a series of “refinements” which capture further details. In general, the
multi–scale description is hand selected (for example wavelet decompositions, Fourier

Sec. 5.5. KD-tree Codes 119

coefficients, etc.), and the refinement information forms a tree–like structure which can
then be easily optimized and truncated to trade off representation size with reconstruc-
tion quality.

Similarly, we can create an encoder by adopting a particular multi–scale description
of the kernel density estimate, the KD-tree (Section 2.4). We use the KD-tree for three
separate but related purposes. We first use the KD-tree to provide a class of approxi-
mations to the original message m(x). We then apply the same tree structure to define
an encoder for any particular member of this class. The KD-tree provides both a deter-
ministic ordering, similar to the sorting process in 1-D but applicable to distributions in
arbitrary dimension, and a convenient choice for the encoding distributions ρ̂(·). Third,
we apply the KD-tree structure to efficiently select one of the approximations m̂(x) in
order to balance the resulting communication cost and message error.

We begin by constructing a KD-tree structure for our kernel density estimate m(x) in
the manner described in Section 2.4, creating Gaussian approximations to the portions
of m(x) at each level of the KD-tree. To remind the reader, this means that the
sufficient statistics stored at each node s in the KD-tree are the mean and variance in
each dimension of the Gaussian sum defined by the node’s children, along with a weight
ws representing the total weight contained in the subtree (i.e., for an equal weight kernel
density estimate, the number of leaf nodes stored below node s, divided by the total
number of leaf nodes in the KD-tree). These statistics are easily computed recursively
for each node s:

ws = wsL + wsR

µs =
wsL

ws
µsL +

wsR

ws
µsR

hs =
wsL

ws
(hsL + µ2

sL
) +

wsR

ws
(hsR + µ2

sR
)− µ2

s

(5.13)

where the square of a vector µ is computed element-wise. As mentioned in Section 2.4,
there are many methods of constructing KD-trees, any of which may be applied here.
In practice, we use the simple procedure described in Section 2.4, dividing the data into
equal or nearly equal sets along a cardinal axis chosen according to the covariance of the
data. We assume that the weights of the original kernel density estimate (5.1) are all
equal, i.e., wi = 1/N . This fact, along with our choice of construction method, means
that the weights ws within the KD-tree are deterministic given the total number of
kernels N , and thus it is sufficient to represent only the means and bandwidths within
the KD-tree.

In the following sections, we describe how the Gaussian statistics of the KD-tree can
be used to define a class of approximations m̂(x) to the original message m(x). We then
consider the communication cost inherent in transmitting any particular member of this
class of approximations, by describing one possible constructive encoding algorithm.
Finally, we turn to the problem of efficiently selecting a member of this class which has
both low communications cost and low error.

120 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

¥ 5.5.1 KD-tree Gaussian Mixtures

KD-trees are typically applied to perform locality–based computations rapidly on large
sets of continuous–valued points. For example, KD-trees have been applied to improve
the speed of EM for learning mixture models [70]. In this section, we describe how to
use the same KD-tree structure instead to define a class of Gaussian–mixture approxi-
mations to the message m(x).

In particular, each node s of the KD-tree describes a Gaussian approximation m̂s(x)
to the normalized sum of Gaussian kernels ms(x) stored by its associated leaves, i.e.,

ms(x) =
∑

l∈DL(s)

wl

ws
N (x ; µl, diag(hl)) m̂s(x) = N (x ; µs,diag(hs)) (5.14)

where again the set DL(s) indicates the leaf nodes descended from node s. We can use
these Gaussian components to define a class of Gaussian mixture models, parameterized
as follows. Define an admissible density set S to be any set of nodes in the KD-tree
such that, for every node s ∈ S, S contains neither descendants nor ancestors of s, and
for every leaf node l, either l or some ancestor of l is contained in S. The Gaussian
sum defined by any such S, namely

m̂S(x) =
∑

s∈S

wsm̂s(x) =
∑

s∈S

ws N (x ; µs, diag(hs))

yields an approximation to the original kernel density estimate

m(x) =
∑

s∈S

wsms(x) =
∑

leaves l

wl N (x ; µl, diag(hl))

of varying degrees of coarseness depending on the selection of nodes in S. For example,
when S consists of only the root node, i.e. S = {1}, this gives a Gaussian approxi-
mation to m(x); when S = {2, 3}, we have a two-component approximation, and so
forth. A simple one–dimensional example KD-tree, along with several Gaussian sum
approximations parameterized by different choices of S, are shown in Figure 5.4. The
admissibility conditions essentially require that each leaf node be represented by one
and only one Gaussian mixture element.

Suppose that we elect to approximate our message m(x) using the Gaussian mixture
m̂S(x), for some S. Clearly, smaller sets S translate into lower communication costs for
the approximation m̂S(x). On the other hand, smaller sets S also have the property
that they approximate the density m(x) more coarsely, and are thus likely to have
increased error. Let us first consider how, given a particular set S, the density estimate
m̂S(x) may be encoded efficiently, after which we will consider the process of selecting
the set S.

¥ 5.5.2 Encoding KD-tree Mixtures

Suppose that we are given the KD-tree representation of a kernel density estimate m(x)
with parameters {wi, µi, hi}, with wi = 1/N , and we would like to encode the Gaussian

Sec. 5.5. KD-tree Codes 121

x xx x x x xx

x xx x x x xx

x xx x xx x x

x xx x xx x x

1

2

4 5

3

6 7

8 9 10 11 12 13 14 15

S = {1}

S = {2, 6, 7}

S = {4, 10, 11, 6, 7}

Figure 5.4. A one–dimensional KD-tree representing a mixture of 8 Gaussian kernels, and caching
means and variances at each level resulting in a hierarchy of Gaussian approximations; the nodes have
been labeled by the numbers 1 . . . 15 for the discussion in the text. These Gaussian components can be
used to define a class of Gaussian mixture approximations parameterized by the set S; several choices
of S and the resulting approximations are shown.

mixture approximation m̂S(x), parameterized by some particular choice of admissible
set S. Both m(x) and the set S are unknown at the receiver. When S is taken to be the
collection of all leaf nodes in the KD-tree, this is a generalization of the lossless encoding
problem discussed in Section 5.3; when S consists of some smaller set, communicating
m̂S(x) represents a lossy encoding of the original message m(x).

The KD-tree can be used to establish a partial ordering on the elements of the set
S (e.g., left–to–right order in the binary tree structure). Moreover, since each parent
node within the KD-tree is constructed deterministically from its children, there is no
more randomness in the parameters of the nodes of S and their ancestors together (the
entire KD-tree in or above the set S) than there is in the parameters of S alone. In
other words, since the ancestors of each node in S can be deterministically constructed
using the statistics stored at the nodes of S, an optimal representation of both S and
its ancestors should cost no more than the optimal representation of just the statistics
in S. By sending the finest scale information of interest (S), the coarser scales are
effectively free.

On the other hand, we prefer to send the approximations in a coarse–to–fine manner,
i.e., transmitting the statistics stored at the root node, then the “refinement” informa-
tion necessary to reconstruct the statistics stored at its children, and so forth. The
refinement of a node s consists of the information necessary to reconstruct the statistics
of the children of s, given the statistics at s itself. In particular, we describe how the
statistics of s provide information and constraints on the possible values of its children’s
statistics. This leads to a general procedure for encoding m̂S(x) for any fixed choice of
an admissible set S.

With regard to the original message m(x), we have again assumed that the weights
wi are all equal, but relax the assumption that hi is the same for all i. The encoder
we describe is sufficiently general to deal with nonuniform hi, though we also describe

122 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

how an agreement between transmitter and receiver to choose equal valued hi can
sometimes be used to reduce the KD-tree representation cost. As mentioned previously,
the assumption of uniform weights wi, along with our choice of KD-tree construction
algorithm, means that the weights ws at each node of the KD-tree are predetermined
given the total number of samples N , and thus it suffices to represent the means and
bandwidths at each node.

There are two inputs to our encoding process. The first is a KD-tree created in the
manner described in Section 2.4 and with the statistics given by (5.13) stored at each
internal node s. At the finest scale these statistics are the stored values of the original
parameters {wi, µi, hi} of the kernel density estimate m(x). At any internal node s, the
statistics provide a Gaussian approximation m̂s(x), with parameters µs and hs, to the
kernels stored below s in the KD-tree. The second input is any admissible set S in the
KD-tree, as defined in the previous section.

To encode the KD-tree representation of m̂S(x), we first represent the root node.
As we assume that, initially, no information about the distribution p(µ) is available to
the receiver, we simply represent µ1 and h1 using a direct fixed–point representation.
We also transmit a single bit indicating whether or not the root node is in the set S.
If it is, we are done, since the only admissible set containing the root node is the root
node itself; if not, we must describe the refinement information necessary to reconstruct
each of its two children.

Now, suppose that we have transmitted the statistics of a particular node s, meaning
that the receiver is able to decode the coarse, single Gaussian approximation m̂s(x) =
N (x ; µs, diag(hs)) representing the subtree rooted at node s, along with a bit indicating
whether s ∈ S. If s ∈ S, we have no need for the statistics stored below s, and can
stop; otherwise, we need to transmit more information about the subtree below s. We
use the distribution m̂s(x) as a form of prior information to encode the parameters of
the left and right children sL and sR of s. To refine the KD-tree description at node s,
the receiver must be able to recover the mean vectors µsL , µsR and bandwidth vectors
hsL , hsR stored at the children of node s. The recursive relationship (5.13) yields two
equations with four unknowns; thus it is sufficient3 to transmit µsR and hsR , then
recover the left–hand values by algebra. In other words, by encoding either child of s
we have implicitly encoded the other. We again represent whether each of the nodes
sL and sR is in the set S, which is done using one bit each.

The exact sequence in which to visit the nodes of the KD-tree is arbitrary, so long
as it is deterministic. Perhaps the most intuitive refinement sequence is to follow a
breadth–first order, e.g., refine both sL and sR, then refine each of their four children,
and so forth until reaching the set S.

We have chosen to indicate which nodes are in S, i.e., have no further refinement
information in the representation, using one bit per node, or 2|S| − 1 bits total. While
it is possible that this information can be represented in some more compact form, this

3With a slight caveat: due to the averaging process, given µs, µsR to precision β, µsL is computed
to precision β − 1; thus we may require an additional bit of information for µsL , and similarly for hsL .

Sec. 5.5. KD-tree Codes 123

(b)

(a)

(c)

ρ̂(µsR)

ps

psL psR

Figure 5.5. Transmitting a KD-tree in top-down fashion. (a) Given the mean µs and bandwidth hs of
a coarse–scale estimate, (b) we encode the right–hand mixture component according to (5.15)–(5.16);
the encoding distribution ρ̂(µsR) is shown as solid, while the transmitted value of µsR is indicated
by the arrow. (c) Having decoded the right–hand component, the receiver may simply solve for the
left–hand component using (5.13).

provides a very reasonable approximation since of the total 2|S| − 1 nodes in or above
S, just over half are in S.

To provide a complete encoder requires making one further design choice, speci-
fying precisely how the the right– (or left–) hand mean and covariance statistics are
encoded. Clearly, the summarization statistics from the parent node µs, hs can be
used to construct an encoding distribution known at both sender and receiver. These
summarization statistics also provide ordering information about the children—for ex-
ample, in 1-D, the right child is always greater than the left child. In higher dimensions
this ordered relationship holds for one of the cardinal dimensions (which dimension can
be determined from the parent node’s statistics). For example, a simple choice for 1-D
samples reminiscent of Section 5.3.2’s random walk encoder is given by

ρ̂(µsR |µs, hs) =

{
2N (µsR ; µs,diag(hs)) µsR ≥ µs

0 otherwise
(5.15)

ρ̂(hsR |hs, µs, µsR) = N
(
hsR ; ĥsR , diag(ĥsR/2)

)
(5.16)

where
ĥsR = hs + µ2

s −
wsR

ws
µ2

sR
− wsL

ws
µ2

sL
.

This encoder is depicted in Figure 5.5.
This procedure generalizes easily to densities in arbitrary dimension; the KD-tree

provides a natural ordering of the points, just as the sorted order did in one dimension.
Positivity requirements such as appear in (5.15), if present, are only included for the
dimension along which the data has been split at each level, since this is the only dimen-
sion in which the KD-tree provides ordering information. Otherwise, equation (5.15)
may remain the same, with summations and squaring operations performed element-
wise. Were we to elect to store general, non-diagonal covariance matrices at each node
in our KD-tree instead of the bandwidth vectors hs, we could apply a similar algorithm;

124 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

however, the required encoding distribution for the covariance statistics would become
considerably more complex.

The algorithm just described does not require that the bandwidths hi be equal for
each leaf node i. However, it is quite common that the bandwidths are uniform. If
this fact is known at the receiver, and (as assumed in Section 5.3) the value of this
bandwidth is also known, we should be able to encode the message more efficiently. We
can easily incorporate this information in two ways.

First, if S has elements which are leaf nodes of the tree, we can improve the cost of
refining those nodes’ parents. This is simply a consequence of the deterministic rela-
tionships dictated by (5.13). For example, consider the process of refining a particular
node s when both children of s are leaf nodes. In this case, the process of determining
µsR and µsL , with hsR = hsL = h known, involves solving two equations with only two
unknowns and is thus essentially free.

Another improvement can be made to the encoder of the mean value, (5.15). The
value µs is the mean of a set of kernel centers µi at the finest scale; but the bandwidth hs

stored at s is the variance of those kernel centers, increased by the bandwidth hi of the
kernels at the finest scale. Thus, if the finest–scale bandwidths are uniform with known
value h, their influence can be subtracted off to provide a more accurate characterization
of the variance of the means µ, and thus a better encoder of their values. For example,
instead of using (5.15) to encode µsR we may instead define h̄s = hs − h and use

ρ̂(µsR |µs, hs) =

{
2N (

µsR ; µs,diag(h̄s)
)

µsR ≥ µs

0 otherwise.
(5.17)

where again, the positivity constraint is used for only one of the dimensions of µ, with
the others being encoded according to, say, a typical Gaussian distribution.

Given a KD-tree representation for the N -component kernel density estimate m(x),
we may pre-compute the communications cost of all N−1 potential refinement actions,
i.e., the cost of encoding the child nodes of each parent node, and store these costs within
the KD-tree as well. It is then easy to determine the communications cost associated
with transmitting any particular admissible density set S for the tree–structure, by
simply summing the costs stored by the ancestors of S, plus the cost of transmitting
the root node. Equivalently, we can define the cost of the root node to be B(1), and
the cost B(s) for any node s to be one–half the cost of its parent plus one–half the cost
of refining its parent. Then, the cost of transmitting the set S is simply the sum over
the values of B(s) for each element s ∈ S.

The KD-tree based encoder described here is, of course, only one possible code
choice; there may exist many other, equally good methods of encoding the density esti-
mate. Further investigation of methods for encoding kernel density estimates remains
an open area of research.

Sec. 5.5. KD-tree Codes 125

x xx x x x xx

x xx x x x xx

x xx x x x xx

S = {2, 6, 7}

S = {4, 5, 6, 7}

S = {4, 10, 11, 6, 7}

Figure 5.6. A sequence of approximations S for the KD-tree in Figure 5.4. The majority of the error
in the approximation S = {2, 6, 7} comes from node 2, but refining node 2 does not necessarily lead to
an immediate reduction of error; the approximation S = {4, 5, 6, 7} may actually be worse. However,
further refinement, e.g., to S = {4, 10, 11, 6, 7}, eventually improves the error.

¥ 5.5.3 Choosing among admissible sets

We now have a class of potential message approximations, parameterized by a choice
of an admissible set S of nodes on the KD-tree. Furthermore, given a particular set
S, we have both a means of encoding the estimate m̂S(x) and the means of efficiently
computing the cost, in bits, of its description. We now consider the problem of selecting
the set S to balance the cost of communications and approximation error.

Choosing a good set S is certainly difficult; we begin by considering the task some-
what abstractly. Suppose that our goal is to obtain a “small” set S which has approxi-
mation error smaller than some constant ε. One sensible way to find S is to begin with
the smallest possible set, namely the root node, then successively refine the density
estimate by increasing the size of S, until m̂S(x) is deemed sufficiently accurate.

If the current set S does not yet give an acceptable approximation, one way to refine
the density estimate is to select and refine some node s in S, i.e., replace s with its two
children sL and sR. In order for the new set to remain admissible, both children sL and
sR must be included and the parent, s, excluded.

This procedure leaves two issues undecided—first, determining when the density
estimate associated with S is sufficiently accurate, and second, selecting the node s ∈ S
to be refined at each stage. Unfortunately, the second issue is quite complicated. First,
there is a communications cost associated with refinement which may not be identical
for each node in S. Secondly, the error between m(x) and m̂S(x) is a complex function
of the set S. Let us consider this latter point.

Replacing a particular node s with its children sL and sR may not reduce our overall
error significantly; in fact, it may even increase the error. Yet this substitution of s
with its children may be a necessary step in order to arrive eventually at a sufficiently
accurate estimate. In other words, we may need to refine certain nodes even though the
estimate does not show any immediate improvement. Let us consider an example—in

126 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

Figure 5.6 we show a sequence of refinements using the KD-tree from Figure 5.4, which
represents a (tri-modal) message m(x). The set S1 = {2, 6, 7} gives a reasonable, but
not excellent, tri-modal approximation m̂S1(x). Most of the error is clearly attributable
to the approximation at node 2, which summarizes the leftmost four samples. However,
refining node 2 to obtain S2 = {4, 5, 6, 7} actually appears to result in a worse approx-
imation; for example, it has an extra mode. In order to improve significantly over S1,
we must further refine S2 to obtain S3 = {4, 10, 11, 6, 7}.

This example illustrates a fundamental weakness of a greedy, “largest improvement”
approach—such an approach would never refine node 2, yet this is exactly what needs
to be done to improve the error significantly. We elected to refine node 2 not because
the subsequent approximation was considerably better, but rather because the approx-
imation at node 2 did not accurately fit the points stored below it. This can be made
precise in the following way.

Suppose that we could somehow attribute the error between m(x) and m̂S(x) to the
individual nodes s ∈ S. Then, instead of selecting the member of S resulting in the
greatest immediate improvement, we could instead select the member of S most in need
of improvement. While this is still a “greedy” approach, it does not suffer from the
same kind of failure just described. It turns out that we may construct an upper bound
on the error between m(x) and m̂S(x) which has precisely this quality—it decomposes
into parts, which measure error attributable to each of the nodes s ∈ S.

¥ 5.5.4 KD-tree Approximation Bounds

Given a message m(x), and a Gaussian mixture approximation m̂S(x) parameterized
by the admissible subset S, it is relatively straightforward to estimate the error between
m(x) and m̂S(x) under any of the measures discussed in Section 5.4. As outlined in
that section, this typically requires O(N) operations, where N is the number of kernels
in the message m(x).

However, as outlined in the previous section, it may be useful to construct an as-
sessment of the error between m(x) and m̂S(x) which informs us about which of the
elements s̄ ∈ S is most culpable for the current level of error. In particular, for any
admissible density set S, with KD-tree Gaussian mixture approximation m̂S(x) to the
true kernel density estimate m(x), we construct an upper bound on the error between
m̂S(x) and m(x) which is computed only in terms of the individual elements s ∈ S,
by measuring the error between their single–Gaussian approximations m̂s(x) and the
portion of the density summarized by s, i.e., ms(x), as given in (5.14). This allows us
to determine if the sub-tree below node s has already been approximated “sufficiently
well” by the statistics at s, or whether we need to refine the approximation further,
eventually improving the quality of our approximate density estimate in that sub-region.

These bounds are also relatively fast to compute. Each of the error measures de-
scribed below require O(Ns) operations to estimate the error between ms(x) and m̂s(x),
where Ns is the number of leaf nodes below s in the tree. Thus, to pre-compute the error
bound contribution of every node in the tree takes a total of O(N +2 · N

2 +4 · N
4 + . . .) =

Sec. 5.5. KD-tree Codes 127

O(N log2 N) operations, and given these values it is trivial to compute an upper bound
on the error for any particular set S.

The exact nature of the bound used to decompose error along the KD-tree structure
depends on which error measure we select to evaluate the difference between m̂S(x) and
m(x). We proceed to create bounds for use with each of the error measures considered
in Section 5.4.

Maximum Log–Error

For the maximum log–error ∆(m, m̂S) we may use the inequality shown as Lemma 4.7.1
in Section 4.7. This result gives

∆ (m(x), m̂S(x)) = ∆

(∑

s∈S

wsms ,
∑

s∈S

wsm̂s

)
≤ max

s∈S
∆(ms(x) , m̂s(x)),

or equivalently, that the error between m(x) and the Gaussian mixture m̂S(x) is
bounded above by the maximum error incurred by any of the single–Gaussian ap-
proximations at each node s ∈ S.

As mentioned in Section 5.4, for the error as measured by ∆ to be finite, we require
exact agreement between the tails of m(x) and m̂S(x); this same concern applies to the
elements of the error bound ∆(ms(x) , m̂s(x)). We described several methods which
can be applied to make (5.9) finite for a given Gaussian mixture, for example addition of
a single broad component, flat threshold, or preservation of tail–dominant components.
Whichever method is selected, it should also be applied to the approximation at each
node s, ensuring that ms(x) and m̂s(x) also have finite error. This is easily done
by adding the same common modes to each subset approximation, i.e., if m(x) =∑

s∈S wsms(x) and we include an outlier component m0(x), we assign m0 to each node
s in S in proportion to the weight ws, so that

m(x) + m0(x) =
∑

s∈S

ws (ms(x) + m0(x)) ,

and do the same for the approximations stored at each node, e.g.,

m̂S(x) + m0(x) =
∑

s∈S

ws (m̂s(x) + m0(x)) .

This practice ensures that each node s matches its associated collection of kernels ms(x)
sufficiently well to yield a finite error bound.

Kullback–Leibler Divergence

The KL-divergence D(m‖m̂S) may be bounded using well-known convexity results [15].
Specifically, we have

D (m(x) ‖m̂S(x)) = D

(∑

s∈S

wsms

∥∥∥
∑

s∈S

wsm̂s

)
≤

∑

s∈S

wsD(ms(x) ‖ m̂s(x)),

128 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

or equivalently, that the error between m(x) and m̂S(x) is bounded by the weighted
sum of errors incurred by each of the single–Gaussian approximations stored at the
nodes in S.

Since the KL-divergence is less strict than the maximum log–error, it is unnecessary
to ensure that the tails of each approximation m̂s(x) match those of ms(x). However,
if an outlier component m0(x) is present in the original message m(x), it may still be
reasonable to assign m0(x) to each node in proportion to that node’s weight, in the
same way discussed for the maximum log–error.

Other Error Measures

Several other error measures may also be optimized using the same methods which we
use for the maximum log–error and KL-divergence. All that is required is to specify a
tree–structured bound which can be used to separate the contributions of errors from
each node s ∈ S to the error in the overall approximation mS(x). This can be done
relatively easily for both the L1 and L2 error measures.

The L1 error L1(p, q) =
∫ |p(x)−q(x)| dx satisfies a simple convex inequality similar

to that of the KL-divergence, specifically,

L1 (m(x) , m̂S(x)) = L1

(∑

s∈S

wsms ,
∑

s∈S

wsm̂s

)
≤

∑

s∈S

wsL1(ms , m̂s).

Bounding the L2 error, L2(p, q) =
∫ |p(x)−q(x)|2 dx, is slightly more complex. However,

we may use the fact that (a− b)2 ≥ 0 ⇒ a2 + b2 ≥ 2ab to show that

(a1 − b1 + a2 − b2)2 = (a1 − b1)2 + (a2 − b2)2 + 2(a1 − b1)(a2 − b2)

≤ 2(a1 − b1)2 + 2(a2 − b2)2

Applying this inequality recursively to each node until we reach the elements of S gives
the bound

L2 (m(x) , m̂S(x)) = L2

(∑

s∈S

wsms ,
∑

s∈S

wsm̂s

)
≤

∑

s∈S

2depth(s) w2
s L2(ms , m̂s).

Here, the function depth(s) indicates the depth of node s in the KD-tree, i.e., the
number of edges between s and the root node, so that the root has depth zero, its
children depth one, and so forth.

¥ 5.5.5 Optimization Over Subsets

We now return to the problem of selecting the admissible set S which parameterizes our
choice of approximate message m̂S(x). Given a KD-tree representation of the message
m(x), where m(x) is a kernel density estimate with N components, we pre-compute
the cost of communicating each refinement action (Section 5.5.2) and the component of

Sec. 5.5. KD-tree Codes 129

the error bound (Section 5.5.4) at each node of the KD-tree. These computations take
O(N) and O(N log2 N) operations, respectively.

We then select the set S as follows. Suppose that we have some function f(B, E)
which represents the “cost” of selecting a representation requiring B bits and with error
E, making precise the tradeoff between bits and error. We assume that the cost f(B, E)
is increasing in both B and E. We use S̄ to indicate a temporary set variable; beginning
with S̄ = {1}, we compute the communications cost B(S̄) of S̄ and an assessment of the
error E(S̄) associated with using S̄ (which we return to momentarily), giving the total
cost f(B(S̄), E(S̄)). We then choose the element s̄ ∈ S̄ which has largest contribution
to the error bound for S̄, as described in Section 5.5.4. Replacing s̄ with its children
s̄L, s̄R in the set S̄, we repeat the procedure, until finally S̄ consists of only the leaf
nodes. To define our approximation m̂S(x) we take S to be the set S̄ which had the best
combined cost f(B(S̄), E(S̄)). This is easily found by initializing the procedure with
S = S̄ = {1} and taking S = S̄ whenever f(B(S̄), E(S̄)) is less than f(B(S), E(S)).

The only aspect remaining to be specified is the assessment of error ES̄ for a given
set S̄. Estimating the actual error between m(x) and m̂S̄(x) directly is feasible, and
requiresO(N) operations per estimate. Then, the optimization procedure just described
requires O(N2) operations in total.

However, this cost can be reduced significantly if we are willing to substitute the
actual error between m(x) and m̂S̄ with the upper bound on the error given in Sec-
tion 5.5.4. In this case the entire procedure requires at most O(N log2 N) operations,
the cost of computing the upper bound. For N = 1000, the computational improve-
ment is over two orders of magnitude, and experimentally has only a slight impact on
the approximation obtained, since the bound appears relatively tight when the error is
small. Thus, in practice we typically elect to use the bound, rather than recompute the
error for each set S̄. Pseudocode for the optimization procedure is given in Figure 5.7.

Empirically, the optimization procedure is often faster than this might suggest. If
we have a maximum acceptable communications cost Bmax, so that we can never select
a set with greater communications cost, we can stop the iterative refinement procedure
as soon as S̄ exceeds this cost. This means that the procedure stops at some maximum
number of components, or alternatively at some maximum depth in the KD-tree, which
is a function of only Bmax and independent of N . Thus for large N and relatively small
communications budgets Bmax, the algorithm requires only O(N) operations total.
Similar behavior is observed when minimizing communications such that the error is
less than some value value Emax; intuitively, we can think of this procedure as similarly
refining to a maximum number of components (or depth in the KD-tree), where the
number of components is determined by the complexity of the underlying distribution
and the error tolerance Emax, rather than a maximum communications cost.

The optimization scheme we have described here is a greedy method, in which we
select the node whose contribution to the error is highest to be improved at each step.
However, it is interesting to note that, if we measure the error ES for a set S using the
upper bound of Section 5.5.4 on the maximum log–error, the same procedure results

130 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

Construct KD-tree representation of m(x) and initialize S = S̄ = {1}.
Compute node 1’s communications B(1), and error E(1).
While total communications B(S̄) =

∑
s∈S̄ B(s) ≤ Bmax,

• Find s̄ = arg maxs∈S̄ E(s).

• Exclude s̄ and include its children: S̄ = S̄ \ s̄ ∪ s̄L ∪ s̄R

• For left and right child nodes s̄L, s̄R, compute

– Error E(s̄L), E(s̄R) associated with each node

– Communications B(s̄L) = B(s̄R) = 1
2 (B(s̄)+ cost of refining node s̄)

• Assess the total error E(S̄), by direct evaluation or using the upper bounds of Sec-
tion 5.5.4.

• If the cost f(B(S̄), E(S̄)) < f(B(S), E(S)), set S = S̄.

Return m̂S , the density associated with the set S.

Figure 5.7. Greedy algorithm for approximating a kernel density estimate m(x) subject to maximum
communications Bmax, with cost function f(B, E) describing the relative importance of communication
costs B and errors E, by optimizing over Gaussian mixtures defined by a KD-tree.

in an exact optimization. This is because, for the maximum log–error ∆, our bound is
dominated by the maximum error over any of the nodes s ∈ S, i.e., the node we select
for refinement. If we did not refine this node, we would never improve the error bound.
Choosing any other node to refine only increases the communications B; since f(·) is
increasing in both B and E, this can only result in a greater cost. Thus, under these
conditions, the same greedy procedure is guaranteed to select the best possible set S.

¥ 5.6 Adaptive Resolution

In the analysis up to this point, we have assumed a fixed, known resolution β for
all means and bandwidths. However, when encoding relatively smooth portions of
a distribution, for example components which have large bandwidths, it is far less
important to transmit the parameter values to a high precision. Slightly varying the
mean of a wide Gaussian, for instance, has very little overall effect. Ideally, we would
like to reduce communications by not sending the superfluous bits.

We may entertain a number of possible modifications to the KD-tree encoder of
Section 5.5. While a fully adaptive bit resolution, with separate resolution requirements
for each mean and covariance value, is very flexible, specifying the resolution for each
value may add enough overhead to negate or even overwhelm any benefit we might
obtain. A more conservative option is to determine a single bit resolution β which
is sufficiently high for all variables; once specified, our problem reverts to the same
situation discussed previously. However, the joint optimization over the resolution β
and the selection of components S may be somewhat complicated. At worst case,

Sec. 5.7. Experiments 131

of course, we may simply perform the optimization of Section 5.5 for each possible
resolution β, and select the best combination.

An adaptive or floating–point resolution may be particularly appropriate for the
bandwidths hi, since for a hierarchical representation the initial, coarse–scale approxi-
mations and final, fine–scale components have very different requirements. In particular,
if we elect to use the same fixed–point resolution at all scales of the tree, we must be
careful to select a sufficiently fine resolution to accurately represent the smallest values
of the hi. This is because the effect of rounding the bandwidth hi to zero is essen-
tially catastrophic for any of the error measures considered, as it creates an ill–defined
Gaussian mixture. If a minimal value of hi is known, we could elect to quantize log2 hi,
rather than hi itself, to avoid some of these difficulties. If floating–point or logarithmic
representations for hi cannot be used, another possibility is to round small bandwidth
values upward by convention.

¥ 5.7 Experiments

This section describes a few example applications of KD-tree based density approxima-
tion and the tradeoff between error and communications. First, we show the process
of approximation on a single message, then examine the performance in two example
multi-sensor systems: a distributed particle filtering application, and estimation of a
spatially dependent non-Gaussian random process.

¥ 5.7.1 Single Message Approximation

We begin by taking a fixed kernel density estimate and showing the sequence of ap-
proximations which are made as communication constraints are relaxed. The original
kernel density estimate is made up of 100 samples, and we transmit all parameters up
to β = 16 bits of resolution; thus the most naive approach to lossless encoding, direct
representation, requires 1600 bits. Figure 5.8 shows the first eight Gaussian sums in
the sequence of approximations (dashed) to the original density (solid) made by our
KD-tree splitting algorithm. Communications cost and max–log error are listed for
each approximation. In this case, the sequence of refinements to optimize the max–log
error and KL-divergence was exactly the same up to 15 components; for simplicity of
presentation we have not listed the numerical values of the KL-divergence or its bound.

We also show the sequence of improvements in our error bound (and in the actual
resulting error) as a function of the number of bits required for transmission. Fig-
ure 5.9(a) shows the rate at which the resulting max–log error (solid) and its bound
(dashed) decline as communications increase; Figure 5.9(b) shows the same trend for
the KL-divergence measure. It is clear that beyond a certain communications level, we
gain very little for any additional expenditure of energy.

Finally, we can also consider changing and optimizing over the resolution β of the
quantization. However, there are several issues with doing so. As discussed, if β is
chosen too small we require special precautions when representing the bandwidth. Also,

132 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

32.0 bits; Err 3.2258 (3.2258) 135.5 bits; Err 0.2092 (1.6996)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

58.7 bits; Err 2.3839 (2.9798) 160.8 bits; Err 0.0495 (0.1086)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

84.7 bits; Err 0.8921 (2.6529) 183.8 bits; Err 0.0494 (0.0901)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

110.5 bits; Err 0.4563 (2.3482) 206.1 bits; Err 0.0227 (0.0539)

Figure 5.8. Sequence of KD-tree based approximations (dashed) to a 100–kernel density estimate
(solid) of decreasing error and increasing communications cost (with β = 16 bits). Listed are the
transmit cost in bits, and the actual error and tree–decomposed bound on ∆.

0 200 400 600 800 1000 1200
0

1

2

3

Error vs. Communications Cost

Bits required

E
rr

o
r
(
M

a
x
 L

o
g
)

Error Bound

Actual Error

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3
Error vs. Communications Cost

Bits required

E
rr

o
r
(K
L
d

iv
e

rg
e

n
c
e
) Error Bound

Actual Error

(a) (b)

Figure 5.9. Comparing transmitted density error (both the tree–structured bound and actual error)
versus total communications cost (in bits) for both (a) max–log error and (b) KL-divergence. In both
cases, very few bits are required to transmit most of the density’s information.

Sec. 5.7. Experiments 133

the two optimizations, over β and the retained mixture components S, are coupled. For
example when measuring error using the maximum log–error measure, if β is decreased
to only 8 bits, we improve performance at moderate error levels—sending 6 Gaussians
costs about 62 bits, with error bound of 2.23 and actual error of .330. We may compare
this performance to the similar communications cost of 2 Gaussians totalling 59 bits,
with error bounds 2.98 and actual error 2.38 at β = 16 bits. However, at some point
the quantization error begins to dominate—i.e., for β = 8 bits, sending more than 6
Gaussian components never improved the resulting maximum log–error.

¥ 5.7.2 Distributed Particle Filtering

Particle filtering is often used for single– or multi–target tracking involving highly non-
Gaussian observation likelihoods and potentially non-linear dynamics. When sensors
are myopic, i.e., only observe objects which are nearby to their own location, and
constrained by a limited power budget, it is typical to perform the operations of particle
filtering at some sensor which is nearby to the object itself. Using a local representation
removes the need to export data from the network and thus reduces the distance over
which sensor observations must be communicated [114]. The sensor in charge of data
fusion has been called the “leader” node [113]. At each time t, the leader node and
potentially a few other sensors collect observations, for example measurements of the
range of the object of interest. These measurements are then transmitted to the leader,
who uses them to update the current estimate of the posterior distribution.

Because the object is moving, however, the most appropriate leader node is also
a function of time. Therefore, at each time t, the leader also uses its estimate of the
posterior distribution to select a new leader node at time t + 1. The old leader may, of
course, select itself as the new leader; but if not, it must also communicate the current
model of the posterior distribution to the new leader. This procedure is depicted in
Figure 5.10(a). If the distribution is estimated using a nonparametric representation,
the naive cost of this communication can be hundreds or even thousands of times larger
than any single measurement communication.

There are any number of possible protocols for selecting when, and to which sensor,
the leader should transfer control; for one example, see [114]. Another related issue is
the decision of which sensors should collect and transmit measurements to the leader at
each time step. However, we shall treat both of these questions as fixed aspects of the
leadership protocol, and focus only on minimizing the communications cost inherent
in any given strategy. Since the leadership sequence is assumed to be fixed, we may
also ignore the distance–dependent aspect of communications cost, i.e., the fact that
transmitting information to a nearby sensor is often cheaper than the same transmission
to a distant sensor, and concentrate on applying the preceding sections’ analysis to
minimize the representation size as measured in bits. We assume that the selected
leader changes at each time step; as depicted in Figure 5.10(b), this can be assumed
without any loss of generality by simply grouping all measurements associated with
each leader.

134 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

s1 s2

s3

s4

}

s1

}

s2

}

s3

}

s4

...

}

s1

}

s2

}

s3
}

s4

...

(a) (b)

Figure 5.10. (a) Repeated transfer of “leadership”, along with the model of state uncertainty, while
tracking in an ad-hoc sensor network. (b) Markov chain representation of the sequential state estimation
problem; without loss of generality we may assume that the model is transmitted at each time step.

An important aspect which differentiates this problem from typical lossy data com-
pression tasks is that the approximated data is being used at the next time step to
construct a new density estimate, and that we are interested in minimizing not only
the error in the transmitted density, but also its effect on subsequent estimates. In
other words, we are interested not only in the error introduced in the distribution to
reduce communications cost (which is directly calculable by the sender), but also and
perhaps more importantly the error that this difference induces in the updated poste-
rior estimates at each subsequent time step. The error measures of Chapter 4 come
with theoretical assessments, in the form of bounds and estimates, on the subsequent
inference errors which can result from a sequence of approximation steps; by controlling
these measures of error we can obtain meaningful statements about the level of error
in future inference.

We examine the tradeoff between communications and error experimentally for this
problem by considering a simple two–dimensional particle filtering application. We
simulate an object moving in two dimensions, with dynamics

xt = xt−1 + v0[cos θt; sin θt] + ωt (5.18)

where ωt is Gaussian and θt uniform:

ωt ∼ N (ω ; 0, σ2
ωI) θt ∼ U

[
−π

4
,
π

4

]
(5.19)

At each time step t a single sensor (the leader) updates the estimated distribution using
a range measurement from its location st:

yt = ‖xt − st‖+ dt dt ∼ N(d; 0, σ2
d) (5.20)

The leader node is changed after each update (i.e., at each time step), and the updated
distribution estimate communicated to a new sensor. In these experiments, the distri-
bution p(xt|yt, . . . , y1) at each time step t is typically unimodal but non-Gaussian. Since

Sec. 5.7. Experiments 135

at each time step t, the leader node must communicate its particle–based distribution
estimate to another sensor, we may compare methods of compressing the messages.

We first create an estimate of the true posterior distributions at each time step by
performing particle filtering using N = 1000 samples. At each step, this particle filter
sends all N samples exactly, under no communications constraints. We refer to these
posterior distributions as “exact”, although they are technically estimates. In order to
determine what level of accuracy we can expect from these estimates, we perform the
same filtering process several times using multiple initializations (i.e., different random
number seeds); by computing the error between the resulting density estimates we
obtain an estimate of the level of error which is attributable to our choice of a finite
value of N . This estimate indicates a lower bound on the error which is achievable by
any of the three particle filters we compare to the “exact” filter, each of which use lossy
approximations to the distributions at each communication step.

Each of these three approximate particle filters works in the same basic manner. At
each time t, a message representing p(xt|yt−1, . . . , y1) is compressed by the leader node
at time t−1 and communicated to the leader at time t. Because it has been compressed,
this message is in general not a collection of N particles, but rather some smaller mixture
of Gaussian components. The leader at time t re-creates a collection of N particles
by drawing i.i.d. samples from the message, and weights these samples according to
the likelihood information given by the observation yt. The node then samples from
this collection N times with replacement to obtain N equally–weighted particles, and
propagates these particles through the forward dynamics p(xt+1|xt). This procedure
results in a particle representation of p(xt+1|yt, . . . , y1), which is then compressed and
communicated to the leader at time t + 1 in the same manner. We consider three
possible methods of message approximation, each parameterized by the total number
of bits B required per message.

Subsampling—one way to approximate the N–particle density estimate m(x) is to
draw some Ks < N particles from the distribution m(x), and transmit those Ks particles
exactly. We use an optimistic estimate of the cost of this transmission, by taking the
minimum possible expected cost of sending the sample set (i.e., Ks H(p)− log2 Ks!, as
detailed in Section 5.3). The number of particles, Ks, is selected so that this minimum
expected cost is less than B bits.

Expectation–Maximization (EM)—the EM algorithm [2] is a common method of
fitting Gaussian mixture models to a collection of samples. Given a collection of equal–
weight particles {xj

t} and a kernel bandwidth ht which specify m(x), and the number
of desired mixture components KEM in m̂(x), an iterative update procedure is used to
determine the means, weights, and covariances of each component of m̂(x). However,
since efficient encoding of such a mixture model is an open question, we simply choose
the number of components KEM to require fewer than B bits in a naive, direct fixed–
point representation. For consistency with the rest of the Gaussian mixtures used in
this chapter, we require that the covariance of each mixture component be diagonal,
and represent it using a bandwidth parameter hi.

136 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

Given the number of components KEM , and an initial value of their means µi,
weights wi, and kernel bandwidths hi for i ∈ {1 . . . KEM}, we update the parameters
{µi, wi, hi} by first finding the relative probability that each sample xj

t was generated
by each of the KEM components, i.e.,

vij ∝ wiN
(
xj

t ; µi,diag(hi)
)

with
∑

i vij = 1, then updating the parameters of the KEM components by taking their
maximum likelihood estimates given these relative probabilities, i.e.,

wi =
∑

j

vij µi =
1
wi

∑

j

vijx
j
t

hi =
1
wi

∑

j

vij diag
(
(xj

t − µi)(x
j
t − µi)T

)
+ ht

where ht is the bandwidth of m(x). Repeating this procedure, we eventually converge
to a locally optimal estimate of the mixture parameters {µi, wi, hi}. This procedure
can be regarded as acting to minimize the KL-divergence between the original kernel
density estimate and our Gaussian mixture approximation.

KD-tree optimization—we also compare to the KD-tree optimization methods de-
scribed in Section 5.5. To obtain a fair comparison to EM, we use the algorithm
described in Section 5.5.5 to minimize the KL-divergence between our original density
estimate and the approximation, subject to the communications cost (as defined by the
encoder of Section 5.5.2) being less than B bits.

In all cases, the parameters of the Gaussian mixtures are communicated up to
resolution β = 16 bits. We compare the resulting posterior distributions at each time
step to the “exact” posteriors obtained by our original particle filter. In Figure 5.11
we plot the resulting average KL-divergence of the estimated posteriors obtained using
approximate messages from those obtained using our “exact” particle filter over 500
Monte Carlo trials, for all three approximation methods and B ∈ {200, 1000} bits.
Also shown is the lower bound which estimates the amount of error attributable to our
choice of a finite N . For a given bit budget, smart approximation of the distribution
(using either EM or KD-tree based methods) performs considerably better than simple
subsampling. The KD-tree based method performs the best; given a bit budget of 1000
bits its performance is nearly indistinguishable, on average, from the lower bound.

The EM–based approximation also does well, though not quite as well as the KD-
tree method. This is likely due to two factors: first, being less constrained, EM may
be more prone to finding local maxima while fitting; second, the KD-tree’s additional
constraints are used to define an efficient encoding procedure, so that for a given bit
budget B the KD-tree typically allows more mixture components to be used than the
naive encoding of the mixture model found via EM. Perhaps given a more efficient
encoder of arbitrary Gaussian mixtures, the performance of EM would be similarly
improved; this is one important direction for further research.

Sec. 5.7. Experiments 137

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Time (# transmissions)

K
L
d

iv
e

rg
e

n
ce

Lower bound on error
KDtree, 200 bits/msg
EM, 200 bits/msg
Subsample, 200 bits/msg
KDtree, 1000 bits/msg
EM, 1000 bits/msg
Subsample, 1000 bits/msg

(a) (b)

Figure 5.11. Particle filtering example. (a) One sample path {xt}, along with the samples used to
estimate the posterior distribution at times t = 2, 5, 8. (b) Average KL-divergence at each time step for
approximate message–passing. Careful approximations (EM and KD-tree) perform much better than
subsampling; the KD-tree approximations (solid) perform best, and compare favorably with the lower
bound estimated under unconstrained communications (black).

As a final point, we could instead have optimized our KD-tree structure to minimize
the maximum–log error, or any of the other measures discussed. While the maximum
log–error has better theoretical guarantees, in practice it appears to be a less accurate
gauge of average–case behavior, perhaps due to its more conservative nature. For the
experiment above, a maximum–log optimized KD-tree also performed much better than
the subsampling approach, and was still comparable to optimal performance at 1000
bits, but at low bit rates (B = 200 bits) was outperformed on average by the EM–
trained mixture model and the KD-tree optimized for KL-divergence.

¥ 5.7.3 Non-Gaussian Field Estimation

We next consider another use of sensor networks—to fuse a collection of spatially sep-
arated observations. Suppose that we have a collection of sensors, arranged in an 8× 8
regular grid. Each sensor i obtains an observation about a two–dimensional random
variable, denoted xi, which is known to vary slowly in space but possesses a few sharp
transitions.

We employ a multi-resolution quad-tree model to capture the interactions between
the xi. Similar models have been used with considerable success for efficient estimation
of Gaussian fields [110]. To be precise, we associate each of the xi to the finest scale
(leaf) node of a quad-tree which corresponds, in spatial arrangement, to sensor i. Each
non-leaf node of the tree is also associated with a random variable; we use γ1xi to
indicate the random variable associated with the parent node of node i, γ2xi to be the
parent of that node, and so forth. For notational consistency we define γ0xi = xi.

To capture local smoothness with the possibility of sharp transitions, we model the

138 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

(a) (b) (c)

Figure 5.12. Example two–dimensional non-Gaussian field. (a) True state at each of the 64 sensors,
indicated by vectors. (b) Mean of the individual observation likelihoods at each sensor. (c) Maximum
of each posterior distribution, estimated using NBP.

interactions between variables by a simple mixture of Gaussians:

ψ(γaxi|γa−1xi) = ψ(γa−1xi|γaxi)

= .9N (γaxi − γa−1xi; 0, σ2
aI) + .1N (γaxi − γa−1xi; 0, I); (5.21)

where the variance σ2
a controls the desired smoothness of the field, and depends on

the scale a within the quad-tree; we select σ1 = .05, σ2 = .1, and σ3 = .2. The
smaller, high–variance mode allows for the possibility of sharp disagreements between
neighboring xi in the finest–scale grid.

We choose to represent the two–dimensional likelihood messages p(yi|xi) as sample–
based density estimates, performing fusion of the messages by sampling from their
products using nonparametric belief propagation (NBP) as described in Chapter 3.
In the quad-tree structure, optimal inference can be performed via a simple two–pass
sequence: first, messages are passed upward from the leaf nodes to the root and fused
at each level, then the fused results are sent back downwards to the leaves. An example
of the true underlying state of each xi along with the mean value of each individual
likelihood p(yi|xi) and the estimate computed using NBP for comparison are shown in
Figure 5.12. For the NBP estimate shown we have allocated 1000 bits per message, the
maximum representation size we consider in this problem.

We impose the statistical quad-tree structure shown in Figure 5.13(a) onto the phys-
ical sensor and communications structure by associating each of the “virtual” parent
nodes to the same sensor as one of its four children. Thus, at each level in the upward
sweep, three nodes transmit, and thus may wish to approximate, their messages to
the parent; in the downward sweep, the parent node transmits to the other children.
This can be done using a single message, by simultaneously broadcasting its belief to
all neighboring nodes (as described in Section 3.6). The upward sweep of the message
transmission schedule is depicted in Figure 5.13(b). After the message–passing process
concludes, most sensors have sent only one message, while a few (about 1

4) have sent
two.

We may compare the quality of the fusion results as a function of the number of bits

Sec. 5.8. Some Open Issues 139

100 200 300 400 500 600 700 800
0

0.4

0.8

1.2

K
L
d
iv
e
rg
e
n
c
e

Bits per message

(a) (b) (c)

Figure 5.13. Quad-tree structure for inference in a sensor network. (a) An example (4× 4) quad-tree
structure. (b) Allocating the nodes in the quad-tree to sensors; responsibility for each parent node is
assumed by one of the children. Arrows indicate the upward message sweep, from leaf nodes to root.
(c) Error, in terms of KL-divergence, of the solution as a function of the allowed number of bits per
message.

allocated to each message, applying the KD-tree based approximation of Section 5.5.
Figure 5.13(c) shows the resulting KL-divergence between estimated and true posterior
distributions as a function of the number of bits, averaged over 500 Monte Carlo trials.
As with the particle filtering example, reasonably good results are obtained even for
relatively small messages (less than 1000 bits required to represent messages over a
two–dimensional state space).

¥ 5.8 Some Open Issues

There are a number of open problems in which we have not managed to address in this
chapter. Perhaps chief among them is the issue of iterative methods of communica-
tions in message–passing algorithms for inference. In many sequential message–passing
algorithms, we may have already passed a representation of some of the available infor-
mation and wish to determine whether and how best to update that information so as
to aid in the overall goals of inference. This type of scenario may arise in belief propa-
gation on graphs with loops, and even in tree–structured graphs where it is desirable to
have sensor nodes make time–critical decisions. In these cases, each node may begin by
sending its local information to its neighbors, then refining and updating this message
with more transmissions as it receives additional information from neighboring sensors.

For iterative, multi-transmission problems, there exist several additional means of
reducing communications. By censoring, or opting not to send, certain messages which
are “sufficiently close” to their previously transmitted versions, we may be able to
reduce the network’s required communications considerably [10]. Furthermore, even if
the next message transmission is not censored, its previous version provides a type of
prior for the samples representing the updated message. Using this prior, however,
requires some idea of how (and how much) messages change from iteration to iteration,
a difficult and potentially application–dependent question.

Non-local statistics can also be used to lower the communications cost. If the trans-
mitter and receiver share additional sources of information, including, for example,
access to the full joint distribution represented by the graphical model, they may be

140 CHAPTER 5. COMMUNICATIONS COST OF PARTICLE–BASED REPRESENTATIONS

able to use this knowledge to compress the message still further [91]. Feedback from the
receiver also provides a potential source of savings. Iterative message–passing meth-
ods can make use of simple feedback in their evaluation of error and the impact of
approximations. For example, in stochastic message approximation, received messages
can be used to focus sampling [48, 56]; we provide an experimental analysis of a similar
approach in the next chapter (see Section 6.7).

¥ 5.9 Conclusions

Power–limited wireless sensor networks must be able to perform inference in a commu-
nications–constrained environment. We consider an important subset of this general
task, that of inference on continuous–valued random variables using sample–based rep-
resentations, the most common example of which is particle filtering. We discuss the
cost of transmitting such representations, both exactly and approximately.

For exact (lossless) communications, we showed that the representation’s invariance
to reordering can be used to reduce the required communications cost, and that to
do so we must take advantage of predictable non-stationarity in the distribution of
the deterministically ordered samples. We also described a simple sub-optimal linear
predictive encoder for one–dimensional samples which provided some of these benefits.

To treat more general problems, including approximate (lossy) representations, we
applied the KD-tree data structure to the tasks of both encoding and density approxi-
mation, demonstrating how communications cost may be efficiently balanced with errors
in inference. We then showed several examples demonstrating lossy encoding for dis-
tributed inference, including a distributed implementation of particle filtering and a
multi-resolution model for estimating a non-Gaussian random field.

Many important questions remain open for future research, however. It may be
possible to improve the way the resolution β of the samples is selected. Additionally,
feedback and iterative transmission of updated messages provide important sources of
information which we have not exploited. Lastly, and perhaps most importantly, we
have only described a few examples of possible encoding methods. We can expect that
further investigation may result in additional, perhaps substantially improved schemes
for communicating sample–based distributions and their approximations.

Chapter 6

Sensor Self-Localization

IN this chapter, we focus on a particular task inherent to sensor networks, bringing
the results of the previous chapters to bear on the problem of self-localization for

an ad-hoc deployment of wireless sensor nodes. Sensor localization, i.e., obtaining esti-
mates of each sensor’s position as well as accurately representing the uncertainty of that
estimate, is a critical step for effective application of large sensor networks to almost all
subsequent tasks. Manual calibration1 of each sensor may be impractical or even im-
possible, and equipping every sensor with a GPS receiver or equivalent technology may
be cost prohibitive. Consequently, methods of self-localization are desirable; we can
exploit relative information, perhaps obtained from received signal strength measure-
ments via the wireless communication or from measuring time delay between sensors,
along with a limited amount of global reference information as might be available to a
small subset of sensors, to estimate a location and its uncertainty for each sensor in the
network. In the wireless sensor network context, the process of localization is further
complicated by the need to minimize inter-sensor communication in order to preserve
energy resources.

We present a localization method in which each sensor has available noisy measure-
ments of its distance to several neighboring sensors. In the special case that the noise
on distance observations is well modeled by a Gaussian distribution, localization may
be formulated as a nonlinear least-squares optimization problem. In [73] it was shown
that a relative calibration solution which approached the Cramer-Rao bound could be
obtained using an iterative, non-linear least-squares optimization approach.

In contrast, we reformulate sensor localization as an inference problem defined on
a graphical model. This allows us to apply nonparametric belief propagation (NBP;
Chapter 3) to obtain an approximate solution. This approach has several advantages—it
exploits the local nature of the problem, in the sense that a given sensor’s location esti-
mate depends primarily on information about nearby sensors. It also naturally allows
for a distributed estimation procedure. Furthermore, it is not restricted to Gaussian
measurement models, which may be overly restrictive for real–world systems. Finally,
it produces both an estimate of the sensor locations and a representation of the location

1Within the context of this chapter, we use the term localization interchangeably with the more
general term calibration in sensor networks.

141

142 CHAPTER 6. SENSOR SELF-LOCALIZATION

uncertainties. The last point is notable for random sensor deployments, in which multi-
modal uncertainty in sensor locations is a frequent occurrence. Furthermore, estimation
of the uncertainty in sensor positions, whether multi-modal or not, provides guidance
for expending additional resources in order to obtain better, more refined solutions.

In the subsequent sections, we describe the sensor localization problem in more de-
tail and relate it to inference in graphical models. In Sections 6.1–6.2, we formalize the
problem and discuss the types of uncertainty which occur in localization. As we show,
sensor localization can often have multiple solutions with equal or nearly–equal quality,
indicating that the problem, in these cases, is fundamentally ill–posed. In Section 6.3 we
examine an idealized version of the localization problem in order to characterize when
the task is likely to be well–posed. Section 6.4 re-formulates the localization problem as
a graphical model, and presents a solution based on the NBP algorithm of Chapter 3.
We show several empirical examples demonstrating the ability of NBP to solve difficult
distributed localization problems. We also include three modifications which can im-
prove NBP’s performance in practical applications: Section 6.6 shows how NBP may be
augmented to include an outlier model in the measurement process, and demonstrates
its improved robustness to non-Gaussian measurement errors; Section 6.7 presents an
alternative sampling procedure which may improve the performance of NBP in systems
with limited computational resources; and Section 6.8 uses the results of Chapter 5
to consider the communication costs inherent in a distributed implementation of NBP,
and provides simulations to demonstrate the inherent tradeoff between communication
and estimate quality in localization.

¥ 6.1 Self-localization of Sensor Networks

We begin by describing a statistical framework for the sensor network self-localization
problem, similar but more general than that given in [72]. We restrict our attention
to cases in which individual sensors obtain noisy distance measurements of a (usually
nearby) subset of the other sensors in the network. This type of problem includes, for
example, scenarios in which each sensor is equipped with either a wireless or acoustic
transceiver and inter-sensor distances are estimated by measuring the received signal
strength or time delay of arrival between sensor locations. Typically, this measurement
procedure can be accomplished using a broadcast transmission (acoustic or wireless)
from each sensor as all other sensors listen [72, 108].

While the framework we describe is not the most general framework possible, it
is sufficiently flexible to be extended to more complex scenarios. For instance, our
method may be easily modified to fit cases in which sources are not co-located with
a cooperating sensor, to incorporate direction-of-arrival information (which also neces-
sitates estimation of the orientation of each sensor) [72], or to perform simultaneous
estimation of other sensor characteristics such as transmitter power [108].

Let us assume that we have K sensors scattered in a planar region, and denote the
two-dimensional location of sensor t by xt. The sensor t obtains a noisy measurement

Sec. 6.1. Self-localization of Sensor Networks 143

dtu of its distance from sensor u with some probability Po(xt, xu):

dtu = ‖xt − xu‖+ νtu νtu ∼ pν(xt, xu) (6.1)

We use the binary random variable otu to indicate whether this observation is available,
i.e. otu = 1 if dtu is observed, and otu = 0 otherwise. Finally, each sensor t has some
prior distribution, denoted pt(xt). For many of the sensors, the prior pt(xt) may be an
uninformative one. Then, the joint distribution is given by

p(x1, . . . , xK , {otu}, {dtu}) =
∏

(t,u)

p(otu|xt, xu)
∏

(t,u):otu=1

p(dtu|xt, xu)
∏

t

pt(xt) (6.2)

The typical goal of sensor localization is to estimate the maximum a posteriori (MAP)
sensor locations xt given a set of observations {dtu}. Of course, there is a distinction
between the individual MAP estimates of each xt versus the MAP estimate of all {xt}
jointly. For this work, it is convenient to select the former. In a system of binary–
valued random variables, selecting the individual ML estimates would correspond to
minimizing the average number of errors, as opposed to minimizing an “all-or-nothing”
probability of error, which corresponds to the joint ML estimate.

Technically, the measured distances dut and dtu may be different, and it is even
possible to have out 6= otu (indicating that only one of the sensors u and t can observe
the other). However, for the purposes of our development it is convenient to assume
that both sensors obtain the same, single observation, i.e., that dut = dtu and out = otu.
We include remarks on differences which arise in the more general case, and how we
may deal with these differences.2

Additionally, the amount of prior location information may be almost nonexistent.
In this case, we may wish to solve for a relative sensor geometry, as opposed to estimat-
ing the sensor locations with respect to some absolute frame of reference [73]. Given
only the relative measurements {otu, dtu}, the sensor locations xt may only be solved up
to an unknown rotation, translation, and negation (mirror image) of the entire network.
We avoid ambiguities in the relative calibration case by assuming priors which enforce
known conditions for three sensors (denoted s1, s2, s3):

1. Translation: s1 has known location (taken to be the origin: x1 = [0; 0])

2. Rotation: s2 is in a known direction from s1 (x2 = [0; a] for some a > 0)

3. Negation: s3 has known sign (x3 = [b; c] for some b, c with b > 0).

Typically s1, s2, and s3 are taken to be spatially close to each other in the network.
When our goal is absolute calibration (calibration with respect to a known coordinate

2When dtu and dut are independent observations of the distance, and there is some possibility that
out 6= otu, we are first required to symmetrize the observations, i.e., exchange information between any
two sensors which observe either dtu or dut, so that both sensors know the values of all four random
variables. This process of exchanging and symmetrizing information may involve multi-hop message
routing or other communication protocols which are beyond the scope of this thesis.

144 CHAPTER 6. SENSOR SELF-LOCALIZATION

reference), we simply assume that the prior distributions pt(xt) contain sufficient infor-
mation to resolve this ambiguity. The sensors with significant prior information (or s1,
s2, and s3 for relative calibration) are referred to as anchor nodes.

In general finding the MAP sensor locations is a complex nonlinear optimization
problem. If the uncertainties pν , pt described previously are Gaussian and the proba-
bility of observing a distance Po(xu, xt) is assumed constant (i.e., not a function of xu

and xt), maximum likelihood joint estimation of the sensor locations {xt} reduces to
a nonlinear least-squares optimization [72]. In the case that we observe distance mea-
surements between all pairs of sensors (i.e., Po(·) ≡ 1), this optimization problem also
corresponds to a well studied distortion criterion (known as the “stress” criterion) in
multidimensional scaling problems [98]. However, for large-scale sensor networks, it is
reasonable to assume that only a subset of pairwise distances will be available, primar-
ily between sensors which are located within the same region. One model, proposed
by [73], assumes that the probability of detecting nearby sensors falls off exponentially
with squared distance, so that

Po(xt, xu) = exp
(
−1

2
‖xt − xu‖2/R2

)
. (6.3)

We use (6.3) in our example simulations, though alternative forms are equally simple to
incorporate into our framework. This flexibility leaves open the possibility of estimating
the probability of detection Po from training data, if available; experiments to estimate
these probabilities have already been performed for certain models of wireless sensors
and measurement methods [108].

A large number of methods have been previously proposed to estimate sensor lo-
cations [18, 59, 78, 81, 85, 108]. An exhaustive categorization of all the methods which
have been applied to localization is beyond the scope of this chapter; here we briefly
describe only a few. For better or worse, many of these methods eschew a statistical
interpretation of the sensor localization task in favor of algorithmic or computational
simplicity. Some examples include using the distances which have been observed in
the network to approximate the distances between each pair of sensors which did not
measure their distance, and then estimating the positions by applying classical multidi-
mensional scaling [98], multi-lateration [85], or other techniques [59]. Other approaches
search for sensor locations which satisfy rigid convex distance constraints [18]. Yet an-
other method heuristically minimizes the rank of the matrix of squared distances, while
preserving the fidelity of the distances which have been observed [22].

However, these algorithms often lack a direct statistical interpretation, and as one
consequence rarely provide an estimate of the remaining uncertainty in each sensor
location. Iterative least-squares methods [72, 78, 81, 85] do have a straightforward sta-
tistical interpretation, but assume a Gaussian model for all uncertainty, which may be
questionable in practice. As we discuss in Section 6.2, non-Gaussian uncertainty is a
common occurrence in sensor localization problems. Often, since the posterior uncer-
tainty is not Gaussian and in general has no convenient closed form, the Cramer-Rao

Sec. 6.2. Uncertainty in sensor location 145

(a) (b) (c)

Figure 6.1. Example sensor network. (a) Sensor locations are indicated by symbols and distance
measurements by connecting lines. Calibration is performed relative to the three sensors drawn as
circles. (b) Marginal uncertainties for the two remaining sensors (one bimodal, the other crescent-
shaped), indicating that their estimated positions may not be reliable. (c) Estimates of the same
marginal distributions using NBP.

bound is used to characterize the residual uncertainty given a set of measurements.
However, the Cramer-Rao bound may be an overly optimistic characterization of the
actual uncertainty in sensor location, particularly if the true posterior distribution is
multi-modal. Estimating which, if any, sensor positions are unreliable is an impor-
tant task when parts of the network are under-determined. Simulations in Section 6.3
suggest that under-determined networks of sensors may be surprisingly common. Fur-
thermore, Gaussian noise models may be inadequate for real-world noise, which often
possesses some fraction of highly erroneous (outlier) measurements.

In this chapter we pose the sensor localization problem as an inference task defined
on a graphical model, and propose an approximate solution making use of the non-
parametric belief propagation (NBP) algorithm. NBP allows us to apply the general,
flexible statistical formulation described above, and can capture the complex uncertain-
ties which occur in localization of sensor networks, described next.

¥ 6.2 Uncertainty in sensor location

The sensor localization problem as described in the previous section involves the opti-
mization of a complex nonlinear likelihood function (6.2). However, it is often desirable
to also have some measure of confidence in the estimated locations. Even for Gaus-
sian measurement noise ν, the nonlinear relationship of inter-sensor distances to sensor
positions results in highly non-Gaussian uncertainty of the sensor location estimates.

For sufficiently small networks it is possible to use Gibbs sampling [26] to obtain
samples from the joint distribution of the sensor locations. In Figure 6.1(a), we show an
example network with five sensors. Calibration is performed relative to measurements
from the three sensors marked by open circles, with the remaining two sensors marked
by filled diamonds. A line is shown connecting each pair of sensors which obtain a dis-
tance measurement. Contour plots of the marginal distributions for the two remaining
sensors are given in Figure 6.1(b); these sensors do not have sufficient information to
be well-localized, and in particular have highly non-Gaussian, multi-modal uncertainty,

146 CHAPTER 6. SENSOR SELF-LOCALIZATION

suggesting the utility of a nonparametric representation. Although we defer the details
of the NBP-based solution to localization until Section 6.4.3, for comparison an estimate
of the same marginal uncertainties performed using NBP is displayed in Figure 6.1(c).

¥ 6.3 Uniqueness

The example network in Figure 6.1 is suggestive of the fact that the residual sensor
uncertainty may be multi-modal. In fact, there may be more than one set of estimated
locations which fit the relative measurements equally well, i.e., the problem may not
have a unique solution [72]. It is useful to know how often this type of situation occurs
in practice. To address this question, we examine an idealized situation in which the
existence of a uniquely determined solution is more readily quantified. Let us take K
sensors which are distributed at random (in a spatially uniform manner) within a planar
circle of radius R0, and let

Po(xt, xu) =

{
1 for ‖xt − xu‖ ≤ R1

0 otherwise
(6.4)

so that sensors t and u obtain a measurement of their distance dtu if and only if dtu ≤ R1.
We consider the problem of relative calibration, and thus assume that no prior location
information is available to any sensor so that for all t, pt(xt) is uninformative. We
further assume that the uncertainty due to noise νtu present in each measurement
dtu is negligibly small. An example of sensors distributed in this manner is given in
Figure 6.2(a).

As previously discussed, without prior knowledge of the absolute location of sensors
in the network this problem can only be solved up to an unknown rotation, translation,
and negation [74]. Therefore, we assume a minimal set of known values; in the negligible-
noise case and assuming these sensors are mutually co-observing this is equivalent to
assuming known locations for three sensors. Without loss of generality, we take x1 =
[0; 0], x2 = [0; d12], and x3 = [b; c], where

b =
√

d2
13 − c2 c =

d2
12 + d2

13 − d2
23

2d12

¥ 6.3.1 A sufficient condition for uniqueness

We now derive a sufficient condition for all sensors to be localizable, i.e., to have a
uniquely determined relative location given the measurements. Some subtleties arise if
any sensors are perfectly co-linear; however, under our model for sensor dispersal this
occurs with probability zero and we proceed to describe conditions which are sufficient
for uniqueness with probability one. This same sufficient condition (called a trilateration
graph) has also recently been investigated by Eren et al. [21].

Let S be the set of nodes which are localizable (with probability one), and let
“∼” denote the binary, symmetric relation of observing an inter-sensor distance. It is

Sec. 6.3. Uniqueness 147

R

R

1

0

*

*

*

*

*

*

D

D

B

A

C

E

R1

R1

2

1

(a) (b)

Figure 6.2. (a) K sensors distributed uniformly within radius R0, each sensor seeing its neighbors
within radius R1. (b) The two potential locations of sensor D (denoted D1 and D2) given distance
measurements from sensors A and B is resolved by the lack of observation at sensor C, while sensor E
has no additional information about the position of D.

straightforward to show that

sA, sB, sC ∈ S and sD ∼ sA, sD ∼ sB, sD ∼ sC ⇒ sD ∈ S (6.5)

We then define S recursively as the minimal set which satisfies (6.5) with {s1, s2, s3} ⊆
S; all sensor locations are uniquely determined if |S| = K. In practice we may evaluate
this condition by initializing S = {s1, s2, s3} and iteratively adding to S all nodes with
at least three neighbors in S. This condition also has the nice property that it is
computable using only the binary observation variables otu, and never requires us to
calculate the estimated position xt of any sensor.

While this condition is sufficient to determine all sensor locations uniquely, it is not
necessary. A useful source of information which is not used in (6.5) arises from the lack
of distance measurement between two sensors.

Let us define a pair of nodes s and t to be “1-step” neighbors of one another if they
observe their pairwise distance dst. We then define the “2-step” neighbors of s to be all
nodes t such that we do not observe dst, but do observe both dsu and dut for some node
u. We can follow the same pattern to define the “3-step” neighbors, and so forth. In
our visual depictions of sensor networks up to this point, we have drawn a line between
pairs of nodes which are 1-step neighbors; for example, in Figure 6.2(b), nodes A and
C are 1-step neighbors.

Our first sufficient condition for a unique solution of sensor locations consisted
solely of using 1-step information—a sensor was guaranteed to be localizable (in the
set S) if three of its 1-step neighbors were in S, as in (6.5). However, 2-step and other
neighbors also have information useful in localizing the sensors. Specifically, the lack
of measurement dtu between sensors t and u (so that otu = 0) implies ‖xt − xu‖ > R1.
Thus, to draw a parallel to (6.5), two sensors sA ∼ sD, sB ∼ sD and a third sC 6∼ sD

may be able to localize sD, or may not, depending on the precise locations of the sensors
involved.

148 CHAPTER 6. SENSOR SELF-LOCALIZATION

An example of each case is shown in Figure 6.2(b); given the positions of sensors A
and B, sensor C, which is a 2-step neighbor of sensor D, is able to resolve the location of
D. However, the combination of sensors A and B with sensor E (also a 2-step neighbor
of D) is not able to resolve the location of D.

This yields a second sufficient condition to (6.5), specifically that sD ∈ S if it has
two 1-step neighbors in S and either a third 1-step neighbor or another node which
precludes one of the two possible locations for sD, as sensor C did in Figure 6.2(b).
Note that this condition requires us to actually solve for the position of each sensor
when it is included in the set S; we cannot use only the connectivity information otu.
Again, if the resulting set S has |S| = K, the locations are uniquely determined with
probability one. We investigate the behavior of both these sufficient conditions.

¥ 6.3.2 Probability of uniqueness

The existence of a unique solution to our idealized problem may now be addressed, in
terms of how often a collection of sensors generated in the manner described satisfies
either of the given sufficient conditions (using only 1-step neighbor information, or
information from all other sensors) as a function of the parameters K and R1

R0
. We use

Monte Carlo trials to investigate the frequency with which the conditions are true. In
doing so, we note a number of interesting observations—first, that almost all information
useful for localizing sensor st is in the 1- and 2-step neighbors of st; and second, that in
order to have high probability that a random network is uniquely determined, we require
a surprisingly high average connectivity (i.e., the average number of 1-step neighbors
required is significantly greater than its minimum possible value).

The probability of a random graph having a unique solution as a function of R1
R0

is
shown in Figure 6.3 for several values of K. The solid lines indicate the probability
when all sensors contribute information, i.e., we also utilize information between sensors
which do not obtain a distance measurement (the second sufficient condition discussed
in Section 6.3.1). The dashed lines, on the other hand, illustrate the comparative loss
in performance when only the information from sensors which are 1-step neighbors is
used. Both follow the same trend in the number of sensors K, and demonstrate a kind
of “threshold” behavior in which the probability of uniqueness changes rapidly from
zero to one. This threshold behavior is also predicted by the asymptotic analysis of
random graphs presented in [21].

Notably, most of the information for computing a sensor position is local to the
sensor. From Figure 6.3, we see that a substantial portion of the information, though
not all, is already captured by the 1-step neighbors; using more distant sensors (2-step
and beyond) reduced the radius R1 required to achieve a given probability of uniqueness
by about 10%. Furthermore, in 500 Monte Carlo trials at each setting of K and R1

R0
,

every network which was uniquely determined given all the observed data was also
uniquely determined using only the 1- and 2-step neighbors. This equivalence cannot
be guaranteed theoretically; it is possible to construct examples in which it is not the
case. However, they are equivalent with very high probability, which indicates that the

Sec. 6.4. Graphical Models for Localization 149

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
Prob. graph is well-posed

F
ra
ct

io
n

 W
e

ll-
p

o
se

d

R1/R0

K=15 all sensors
 1-step only
K=30 all sensors
 1-step only
K=50 all sensors
 1-step only

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1
Prob. graph is well-posed

F
ra
c
ti
o
n

 W
e

ll-
p
o

s
e
d

average # of observed neighbors

K=15 all sensors
 1-step only
K=30 all sensors
 1-step only

K=50 all sensors
 1-step only

(a) (b)

Figure 6.3. Probability of satisfying the uniqueness condition for various K, as a function of (a)
R1/R0; (b) Expected number of 1-step neighbors given R1/R0 and K. Solid lines use information from
all sensors (equivalent to using only 2-step neighbors); the dashed lines use only the 1-step neighbor
constraints.

important information for sensor localization is local, and this locality of information
plays an important part of creating a distributed algorithm for localization.

It is also interesting to note the relationship between how frequently we obtain a
unique solution and the average number of neighboring sensors which observe a distance.
Clearly a minimal value is three (or two, with the possibility that a sensor which does
not observe its distance may assist); but we find that the average is quite high—10
or more for even relatively small networks. This high average connectivity is also
predicted by the theoretical results of [21], and is indicative of the fact that the minimum
connectivity is the driving factor in uniqueness. The implication of this statement is
that in practical networks, there may be a number of under-determined sensors, and
suggests that having an estimate of the uncertainty associated with each sensor position
may be of great importance.

The nonparametric methods studied in this thesis are appealing for characterizing
highly non-Gaussian uncertainties. Particle-based representations are able to provide
reasonable approximations of many distributions which would otherwise be difficult
to express in closed form. To apply the nonparametric belief propagation algorithm
of Chapter 3 to the problem of sensor localization first requires that we describe the
statistical model of sensor locations and observations and its associated optimization
problem within the framework of graphical models.

¥ 6.4 Graphical Models for Localization

Graphical models, described in Section 2.5, provide one means of characterizing the
factorization of a probability distribution. Expressing the distribution over sensor lo-
cations as a graphical model allows us in principle to apply any of number of simple,
general algorithms for exact or approximate inference [79, 101, 112]. Of these, the belief
propagation (BP) algorithm described in Section 2.6 is perhaps the best-known. In

150 CHAPTER 6. SENSOR SELF-LOCALIZATION

practice, however, we shall see that for the localization problem the typical, discrete
implementation of BP has an unacceptably high computational cost. However, using a
particle-based approximation to BP such as nonparametric belief propagation (NBP)
results in a more tractable algorithm.

¥ 6.4.1 Graphical Models

Recall from Section 2.5 that a graphical model associates each variable xt with a vertex
(or node) vt in a graph, and describes the conditional independence relations among the
xt via graph connectivity. The relationship between the graph and joint distribution
may be quantified in terms of potential functions ψ which are defined over each of the
graph’s cliques,

p(x1, . . . , xK) ∝
∏

cliques C

ψC({xi : i ∈ C}) (6.6)

Taking xt to be the location of sensor t, we may immediately define potential func-
tions which express the joint distribution (6.2), or equivalently (up to a normalization
constant) the posterior distribution p(x1, . . . , xK |{out, dut}), in the form (6.6). Notably,
this only requires functions defined over variables associated with single nodes and pairs
of nodes. Take

ψt(xt) = pt(xt) (6.7)

to be the single-node potential at each node vt, and define the pairwise potential between
nodes vt and vu as

ψtu(xt, xu)=

{
Po(xt, xu) pν(dtu − ‖xt − xu‖) if otu = 1
1− Po(xt, xu) otherwise

(6.8)

We make no distinction between ψtu and ψut, only one of which3 appears in the prod-
uct (6.6). The joint posterior likelihood of the xt is then

p(x1, . . . , xK |{otu, dtu}) ∝
∏

t

ψt(xt)
∏
t,u

ψtu(xt, xu) (6.9)

Notice also that for non-constant Po every sensor t has some information about the
location of each sensor u, i.e., there is some information contained in the fact that two

3The definition of ψ is slightly more complicated for asymmetric measurements, since to obtain a
self-consistent undirected graphical model we require both t and u to know and agree on ψtu = ψut,
which will thus involve all four quantities otu, out, dtu, dut, so that

ψtu(xt, xu)=

8>>><>>>:
P 2

o (xt, xu) pν(dtu − ‖xt − xu‖) pν(dut − ‖xt − xu‖) if otu = out = 1

(1− Po(xt, xu))Po(xt, xu) pν(dtu − ‖xt − xu‖) if otu = 1, out = 0

(1− Po(xt, xu))Po(xt, xu) pν(dut − ‖xt − xu‖) if otu = 0, out = 1

(1− Po(xt, xu))2 if otu = out = 0

Sec. 6.4. Graphical Models for Localization 151

sensors do not observe a distance between them, namely that they should prefer to be
far from each other. However, uncertainty in the measurement process such as physical
barriers, multipath, and interference result in the fact that sometimes, nearby sensors
may still not observe each other. The model of observing a distance Po provides a prob-
abilistic description of the measurement process, modeling otu as a random variable,
and these kinds of situations can be accounted for using even simple models in which
the probability Po is never exactly one. The overall effect of incorporating the model
Po and its influence on the positions of sensors which do not share a distance mea-
surement is similar to, but less strict than, that achieved by approximating unobserved
distances by shortest paths4 [85], and to the non-convex constraints mentioned (though
not actually used) in [18]. Probabilistic constraints have the additional benefit of being
less vulnerable to the distortion effects caused by shortest–path methods and observed
by [85] when the sensor configuration is not entirely convex.

Unfortunately, fully connected graphs are very difficult for most inference algo-
rithms, and thus it behooves us to approximate the exact model in (6.9). Let us define
the observed edges to be those edges for which we have observed dtu (and thus otu = 1);
the unobserved edges refer to all other edges in the graphical model. Given the set of
observations otu within the network, we can construct approximate graphical models
on which inference is more tractable. We construct a sequence of such approximations,
using notation derived from the 1-step and 2-step neighbors discussed in Section 6.3.

Suppose that we create an approximate graphical model which has been constructed
by including only the observed edges in the original graph; we call this the “1-step”
graph. The “2-step” graph, then, is created by also including an edge between each
2-step neighbor, i.e., including the edge between t and u if we observe dtv and dvu for
some sensor v, but not dtu; these edges we call the “2-step” edges. We can also extend
these definitions to “3-step” graphs, and so forth. Building these approximate graphical
models is, of course, an adaptive process, in the sense that the definition of the “k-step”
graph is determined by the observations {otu} in the network.

From the experiments described in Section 6.3 it appears that there is little loss in
information when we discard the interactions between nodes which are far apart, in the
sense that they are k-step neighbors for a high value of k. Those experiments indicated
that most of the necessary information for localization is present in the 1-step graph,
and almost all information is present in the 2-step graph. Note also that the 1-step
graph exactly represents the distribution (6.2) if Po is a constant, i.e., is not a function
of xt and xu, since in this case the unobserved edges offer no additional information
about sensor location.

There is also a convenient relationship between the statistical and communications
graph in localization. Specifically, since the observations are obtained via acoustic

4Specifically, one may “approximate” the distance between two nodes t, s which do not observe a
distance dts by taking the sum of the distances along the shortest path between t and s along edges
which have observed distances. This often causes distortion in the final location estimates, due to its
inherent over-estimation of the distance between t and s.

152 CHAPTER 6. SENSOR SELF-LOCALIZATION

or wireless exchange, distance measurements are only obtained for sensor pairs which
have some form of communications link. Thus, messages along observed edges may
be communicated directly, while messages along unobserved edges may require some
form of multi-hop forwarding protocol, with 2-step edges requiring at most 2 hops, and
so forth. Technically, of course, the time-varying nature of these wireless or acoustic
links means that communications may not be entirely reliable. However, we ignore
this subtlety and assume that, over the short period of time in which localization is
performed, the communications graph is static.

¥ 6.4.2 Belief Propagation

Having defined a graphical model for sensor localization, we can now estimate the sensor
locations by applying the belief propagation (BP) algorithm, described in Section 2.6. In
particular, each sensor t is responsible for performing the computations associated with
node vt in the graph and computing its “belief”, or estimated marginal distribution of
the sensor location xt. The form of BP as an iterative, local message passing algorithm
makes this procedure trivial to distribute among the wireless sensor nodes [16].

By applying BP to sensor localization, we can estimate the posterior marginal distri-
butions p(xt|{ouv}, {duv}) of each sensor location variable xt. Alternatively, we might
like to find the joint MAP configuration of sensor locations. While there exists an
algorithm, called the max-product or belief revision algorithm [79], for estimating the
joint MAP configuration of a discrete-valued graphical model, this technique is compu-
tationally difficult to apply to high-dimensional, continuous-valued graphical models.
However, determining a likely configuration with the MAP location of each posterior
marginal, as estimated via BP, is a common practice in graphical models [24]. In fact,
investigation of the performance of both max- and sum-product algorithms in iterative
decoding schemes have shown that the latter may even be preferable in some situa-
tions [104]. Thus, we apply BP to estimate each sensor’s posterior marginal, and use
the maximum of this marginal and its associated uncertainty to characterize sensor
placements.

To remind the reader, we repeat the equations for BP; for more detail see Section 2.6.
In integral form, each node vt computes its belief about xt, an estimate of the posterior
marginal distribution of xt, at iteration i by taking a product of its local potential ψt

with the messages from its set of neighbors Γt,

M i
t (xt) ∝ ψt(xt)

∏

u∈Γt

mi
ut(xt) (6.10)

The messages mtu from node vt to node vu are computed in a similar fashion, by

mi
tu(xu) ∝

∫
ψtu(xt, xu)ψt(xt)

∏

v∈Γt\u
mi−1

vt (xt) dxt

∝
∫

ψtu(xt, xu)
M i−1

t (xt)
mi−1

ut (xt)
dxt. (6.11)

Sec. 6.4. Graphical Models for Localization 153

Sensor Self-Localization with BP
Initialization:

• Each sensor obtains local information pt(xt), if available.

• Obtain distance estimates:

– Broadcast sensor id & listen for other sensor broadcasts

– Estimate distance dtu for any received sensor IDs

– Communicate with observed neighbors to symmetrize distance estimates

• Initialize mut ≡ 1 and M0
t = pt for all u, t.

Belief Propagation: for each sensor t

• Broadcast M i
t (xt) to neighbors; listen for neighbors’ broadcasts

• Compute mi+1
ut from mi

tu and M i
t (xu) using (6.11)

• Compute new marginal estimate M i+1
t (xt) via (6.10)

• Repeat until sufficiently converged (see Section 6.8)

Figure 6.4. Belief propagation for sensor self-localization.

One appealing consequence of using a message–passing inference method and as-
signing each vertex of the graph to a sensor in the network is that computation is
naturally distributed among the sensors. Each node vt, embodied by sensor t, performs
computations using information sent by its neighbors, and disseminates the results, as
described in the pseudocode in Figure 6.4. This process is repeated until some conver-
gence criterion is met, after which each sensor is left with an estimate of its location
and uncertainty.

The pseudocode in Figure 6.4 uses the idea of “belief sampling”, described in Sec-
tion 3.6. This expresses the message update (6.11) in terms of a ratio of the belief at the
previous iteration, M i−1

t , and the incoming message mi−1
ut . When the BP messages and

beliefs are computed exactly, the two definitions in (6.11) are identical. However, when
they are approximated, it may be to some advantage to use one form over the other; in
Section 6.7 we describe how the information in M i−1

t can be used to improve estimation
in some cases. Perhaps more importantly, expressing the message update in terms of
the ratio (6.11) has a significant communication benefit, in that all messages from t
to its neighbors Γt may be communicated simultaneously via a broadcast step. The
message mi

tu from sensor t to each neighbor u ∈ Γt is a function of the belief M i−1
t (xt),

the previous iteration’s message from u to t, and the compatibility ψtu, which depends
only on the observed distance between t and u. Since the latter two quantities (mi−1

ut

and ψtu) are also known at sensor u, sensor t may simply communicate its belief M i
t (xt)

to all its neighbors, and allow each neighbor u to deduce the rest.

154 CHAPTER 6. SENSOR SELF-LOCALIZATION

¥ 6.4.3 Nonparametric Belief Propagation

As described in Section 2.6, the BP update and belief equations (6.10)–(6.11) are easily
computed in closed form for discrete or Gaussian likelihood functions; unfortunately
neither discrete nor Gaussian BP is well-suited to localization. For discrete BP, this
is because even the two–dimensional space in which the xt reside is too large to ac-
commodate an efficient discretized estimate—in general, to obtain acceptable spatial
resolution for the sensors the discrete state space must be made too large for BP to
be computationally feasible. The presence of nonlinear relationships and potentially
highly non-Gaussian uncertainties in sensor localization makes Gaussian BP undesir-
able as well. However, using particle-based representations via nonparametric belief
propagation, enables the application of BP to inference in sensor networks. Chapter 3
presented the general theory and methods behind NBP; in this chapter we describe
more precisely how that material can be applied to the sensor localization problem.

In NBP, each message is represented using either a sample-based density estimate
(as a mixture of Gaussians) or as an analytic function. Both types are necessary for the
sensor localization problem. Messages along observed edges are represented by samples,
while messages along unobserved edges must be represented as analytic functions since
their potentials have the form 1−Po(xt, xu), which is typically not normalizable. Most
reasonable models have the characteristic that Po tends to 0, and thus 1 − Po to 1,
as the distance ‖xt − xu‖ becomes large; thus, messages along unobserved edges are
poorly approximated by any finite set of samples. The belief and message update
equations (6.10)–(6.11) are performed using stochastic approximations, in two stages:
first, drawing samples from the belief M i

t (xt), then using these samples to approximate
each outgoing message mi

tu. We discuss each of these steps in turn, and summarize the
procedure with pseudocode in Figure 6.5.

Given N weighted samples {W j
t , Xj

t } from the belief M i
t (xt) obtained at iteration i,

computing a Gaussian mixture estimate of the outgoing BP message from t to u is rela-
tively simple. We first consider the case of observed edges. The distance measurement
dtu provides information about how far sensor u is from sensor t, but no information
about its relative direction. To draw a sample from the state xu of sensor u given
the sample Xj

t representing the position of sensor t, we simply select a direction θ at
random, uniformly in the interval [0, 2π). We then shift Xj

t in the direction of θ by
an amount which represents our information about the distance between xu and xt,
i.e., the observed distance dtu plus a sample realization of the noise ν on the distance
measurement. This gives

xj
tu = Xj

t + (dtu + νj)[sin(θj); cos(θj)] θj ∼ U [0, 2π) νj ∼ pν . (6.12)

where U [0, 2π) indicates the uniform distribution on the interval from zero to 2π. The
samples are then weighted by the remainder of (6.11), wj

tu = W j
t · Po(x

j
tu)/mut(X

j
t),

and we assign a single bandwidth vector htu to all samples to construct a kernel density
estimate.5 There are a number of possible techniques for choosing the bandwidth htu.

5If out = otu = 1 but dut 6= dtu, the potential ψtu involves both distance measurements and may

Sec. 6.4. Graphical Models for Localization 155

The simplest is to apply the rule of thumb estimate [90] described in Section 2.3, given
by computing the (weighted) variance of the samples

htu = N− 1
3 Var[{xj

tu}] = N− 1
3

∑

j,k

wk
tuwj

tu(xk
tu − x̄)(xj

tu − x̄)T (6.13)

where x̄ is the mean, x̄ =
∑

j wj
tuxj

tu.
A small modification to this procedure can be used to improve the approximation

when N is sufficiently large and the uncertainty added by pν is Gaussian or nearly
Gaussian. In these cases, instead of drawing samples νj from pν and using their ran-
domness to model the uncertainty in the distance dtu, we can model this uncertainty
explicitly. To be precise, an excellent approximation to the message can be obtained by
taking the mean value of the noise, i.e., νj = 0 for all j, and using the variance of the
Gaussian uncertainty pν as the bandwidth, so that the vector htu = [σ2

ν ; σ
2
ν]. This is a

simple variation on the procedure described in Section 3.4.3; however, as noted in that
section, N and σν must be sufficiently large so as not to result in an undersmoothed
representation.

As stated previously, messages along unobserved edges are represented using an
analytic function. Using the probability of detection Po and samples from the belief
M i−1

t at xt, an estimate of the outgoing message to u is given by

mi
tu(xu) = 1−

∑

j

wj
tuPo(xu −Xj

t) wj
tu ∝ 1/mi−1

ut (Xj
t) (6.14)

which is easily evaluated for any analytic model of Po; in our simulations, we use the
form (6.3). See Section 3.5 for a more complete discussion of analytic potentials and
messages in NBP.

To estimate the belief M i
t = ψt

∏
mi

ut, we draw samples from the product of several
Gaussian mixture and analytic messages using the methods described in Chapter 3.
Specifically, in this chapter we make use of the mixture importance sampling method
described in detail in Section 3.8.1. We give a brief algorithmic review here.

Denote the set of neighbors of t having observed edges to t by Γo
t . In order to draw

N samples, we create a collection of k ·N weighted samples (where k ≥ 1 is a parameter
of the sampling algorithm) by drawing kN

|Γo
t | samples from each message mut with u ∈ Γo

t

and assigning each sample a weight equal to the ratio
∏

v∈Γt
mvt/

∑
v∈Γo

t
mvt. We then

draw N values independently from this collection with probability proportional to their
weight, i.e., resampling with replacement, yielding equal-weight samples drawn from the
product of all incoming messages. Computationally, this requiresO(k |Γt|N) operations
per marginal estimate.

be more difficult to draw samples from ψ. For identical Gaussian observation noise pν at each sensor,
we can simply average the two distance measurements at both sensors, and adjust the variance of the
model’s likelihood function to account for the fact that we have averaged two independent observations
of the true distance. If pν is non-Gaussian the procedure is slightly more difficult, but we can instead
draw some samples according to each of p(xu|xt, dtu) and p(xu|xt, dut) and weight by the influence of
the other observation.

156 CHAPTER 6. SENSOR SELF-LOCALIZATION

Compute NBP messages:
Given N weighted samples {W j

t , Xj
t } from the belief M i

t (xt), construct an approximation
to mi+1

tu (xu) for each neighbor u ∈ Γt:

• If otu = 1 (we observe inter-sensor distance dtu), approximate with a Gaussian
mixture:

– Draw random values for θj ∼ U [0, 2π) and νj ∼ pν

– Means: xj
tu = Xj

t + (dtu + νj)[sin(θj); cos(θj)]

– Weights: wj
tu = Po(x

j
tu) W j

t /mi
ut(X

j
t)

– Bandwidth: htu = N− 1
3 ·Var[{xj

tu}]
• Otherwise, use the analytic function:

– mi+1
tu (xu) = 1−∑

j wj
tuPo(xu −Xj

t)

– wj
tu ∝ 1/mi

ut(X
j
t)

Compute NBP marginals:
Given several Gaussian mixture messages mi

ut = {xj
ut, w

j
ut, hut}, u ∈ Γo

t , compute samples
from M i

t (xt):

• For each observed neighbor u ∈ Γo
t ,

– Draw kN
|Γo

t | samples {Xj
t } from each message mi

ut

– Weight by W j
t =

∏
v∈Γt

mi
vt(X

j
t)/

∑
v∈Γo

t
mi

vt(X
j
t)

• From these kN locations, re-sample by weight (with replacement) N times to produce
N equal-weight samples.

Figure 6.5. Using NBP to compute messages and marginals for sensor localization.

¥ 6.5 Empirical Calibration Examples

We show two example sensor networks to demonstrate NBP’s utility. All the networks
in this section have been generated by placing K sensors at random with spatially
uniform probability in an L×L area, and letting each sensor observe its distance from
another sensor (corrupted by Gaussian noise with variance σ2

ν) with probability given
by (6.3). We investigate the relative calibration problem, in which the sensors are given
no absolute location information; the anchor nodes are indicated by open circles. These
simulations used N = 200 particles and underwent three iterations of the sequential
message schedule described in Section 6.8; each iteration took less than 1 second per
node on a P4 workstation.

The first example, shown in Figure 6.6(a), consists of a small graph of 10 sensors
which was generated using R/L = .2 and noise σν/L = .02; in this graph the average
measured distance was about .33L, and each sensor observed an average of 5 neighbors.
One sensor (the bottommost) has significant multi-modal location uncertainty, due to

Sec. 6.5. Empirical Calibration Examples 157

(a) 1-step graph (b) 2-step graph

(c) MAP estimate (d) 1-step NBP estimates

(e) 1-step NBP marginal (f) 2-step NBP estimates

Figure 6.6. (a) A small (10-sensor) graph with edges denoting observed pairwise distances; (b) the
same network with 2-step edges indicating the lack of a distance measurement also shown. Calibration
is performed relative to the sensors drawn as open circles. (c) A centralized estimate of the MAP
solution shows generally similar errors (lines) to (d), NBP’s approximate (marginal maximum) solution.
However, NBP’s estimate of uncertainty (e) for the poorly-resolved sensor displays a clear bi-modality.
Adding 2-step potentials (f) results in a reduction of the spurious mode and an improved estimate of
location.

the fact that it is involved in only two distance measurements. The true, joint MAP
configuration is shown in Figure 6.6(c), and the 1-step NBP estimate (NBP performed
on the 1-step approximate graphical model) is shown in Figure 6.6(d). Comparison
of the error residuals would indicate that NBP has significantly larger error on the
sensor in question than the true MAP. However, this is mitigated by the fact that

158 CHAPTER 6. SENSOR SELF-LOCALIZATION

NBP has a representation of the marginal uncertainty, shown in Figure 6.6(e), which
accurately captures the bi-modality of the sensor location and which could be used
to determine that the location estimate is questionable. Additionally, exact MAP uses
more information than 1-step NBP. We approximate this information by including some
of the unobserved edges (2-step NBP). The result is shown in Figure 6.6(f); the error
residuals are now comparable to the exact MAP estimate.

While the previous example illustrates some important details of the NBP approach,
our primary interest is in automatic calibration of moderate- to large-scale sensor net-
works with sparse connectivity. We examine a graph of a network with 100 sensors
generated with R/L = .08 (giving an average of about 9 observed neighbors) and
σν/L = .005, shown in Figure 6.7. For problems of this size, computing the true MAP
locations is considerably more difficult. The iterative nonlinear minimization of [73]
converges slowly and is highly dependent on initialization. As a benchmark to illus-
trate the best possible performance, an idealized estimate in which we initialize using
the true locations is shown in Figure 6.7(c). In practice, we cannot expect to perform
this well; starting from a more realistic value (initialization given by classical MDS [98])
finds the alternate local minimum shown in Figure 6.7(d). The 1-step and 2-step NBP
solutions are shown in Figure 6.7(e)-(f). Errors due to multi-modal uncertainty similar
to those discussed in the previous 10–sensor example arise for a few sensors in the 1-step
case. Examination of the 2-step solution shows that the errors are comparable to the
nonlinear least-squares estimate with an idealized initialization.

In the 2-step examples above, we have included all 2-step edges, but this is often
not required. The sensors which require this additional information are typically those
with too few observed neighbors, often those sensors located near the edge of the sensor
field. We could achieve similar results by including only 2-step edges which are incident
on a node with fewer than, for example, four observed edges.

¥ 6.6 Modeling Non-Gaussian Measurement Noise

In an NBP–based solution to sensor localization, it is straightforward to change the form
of the noise distribution pν so long as sampling remains tractable. This may be used
to accommodate alternative noise models for the distance measurements, for example
the log-normal model of [78] which might arise when distance between sensor pairs is
estimated using the received signal strength, or models which have been learned from
data [108].

Although this fact can also be used to model the presence of a broad outlier process,
the form of NBP’s messages as Gaussian mixtures provides a more elegant solution. We
augment the Gaussian mixtures in each message by a single, high-variance Gaussian to
approximate an outlier process in the uncertainty about dtu, in a manner similar to [48].
To be precise, we add an extra particle to each outgoing message along an observed
edge, centered at the mean of the other particles and with weight and variance chosen
to model the expected outliers, e.g., weight equal to the probability of an outlier and

Sec. 6.6. Modeling Non-Gaussian Measurement Noise 159

S
en

so
r

N
et

w
or

k
s

(a) Observed edges only (b) 2-step edges added

N
on

li
n
.

L
ea

st
-S

q
u
ar

es

(c) Ideal initialization (d) MDS initialization

N
B

P
es

ti
m

at
es

(e) 1-step NBP (f) 2-step NBP

Figure 6.7. Large (100-node) example sensor network. (a-b) 1- and 2-step edges. Even in a cen-
tralized solution we can at best hope for (c) the local minimum closest to the true locations; a more
realistic initialization (d) yields higher errors. NBP (e-f) provides similar or better estimates, along
with uncertainty, and is easily distributed. Calibration is performed relative to the three sensors shown
as open circles.

standard deviation sufficiently large to cover the expected support of Po. Since outlier
samples by definition occur rarely, good estimates of the tail regions of the noise may
take many samples. Direct approximation of the outlier process requires fewer particles
to adequately represent the message, and thus is more computationally efficient.

Figure 6.8(a) shows the same small (10 sensor) 1-step network examined in Fig-
ure 6.6 but with several additional distance measurements; the complete set of distance
measurements are indicated by lines. We also introduce a single outlier measurement,

160 CHAPTER 6. SENSOR SELF-LOCALIZATION

(a) (b)

(c) (d)

Figure 6.8. (a) A small (10-sensor) graph and the observable pairwise distances; calibration is per-
formed relative to the location of the sensors shown in green. One distance (shown as dashed) is highly
erroneous, due to a measurement outlier. (b) The MAP estimate of location, discarding the erroneous
measurement. (c) A nonlinear least-squares estimate of location is highly distorted by the outlier; (d)
NBP is robust to the error by inclusion of a measurement outlier process in the model.

shown as the dashed line. We again perform calibration relative to the three sensors
shown as circles. If we possessed an oracle which allowed us to detect and discard the
erroneous measurement, the optimal sensor locations can be found using an iterative
nonlinear least-squares optimization [73]; the residual errors after this procedure (for
a single noise realization) are shown in Figure 6.8(b). However, with the outlier mea-
surement present, the same procedure results in a large distortion in the estimates of
some sensor locations, as shown in Figure 6.8(c). NBP, by virtue of the measurement
outlier process discussed in Section 6.4.3, remains robust to this error and produces the
near-optimal estimate shown in Figure 6.8(d).

In order to provide a measure of the robustness of NBP in the presence of non-
Gaussian (outlier) distance measurements, we perform Monte Carlo trials, keeping the
same sensor locations and connectivity used in Figure 6.8(a) but introducing different
sets of observation noise and outlier measurements. In each trial, each distance mea-
surement is replaced with probability .05 by a value drawn uniformly in [0, L]. As there
are 37 measurements in the network, on average approximately two outlier measure-
ments are observed in each trial. We then measure the number of times each sensor’s
estimated location is within distance r of its true location, as a function of r/L. We

Sec. 6.7. Parsimonious Sampling 161

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

r/L

P
r(

 e
rr

o
r

<
 r

)
NBP, σ=.002 L
Nonlin LS, σ=.002 L
NBP, σ=.02 L
Nonlin LS, σ=.02 L

Figure 6.9. Monte Carlo localization trials on the sensor network in Figure 6.8(a). We measure the
probability of a sensor’s estimated location being within a radius r of its true location (normalized by
the region size L), with noise σν = .02L and .002L for both NBP and nonlinear least-squares, indicating
NBP’s superior performance in the presence of outlier measurements.

repeat the same experiments for two noise levels, σν/L = .02 and σν/L = .002. The
curves are shown in Figure 6.9 for both NBP and nonlinear least-squares estimation.
As can be seen, NBP provides an estimate which is more often “nearby” to the true
sensor location, indicating its increased robustness to the outlier noise; this becomes
even more prominent as σν becomes small and the outlier process begins to dominate
the total noise variance. Both methods asymptote around 90%, indicating the proba-
bility that the outlier process completely overwhelms the information at one or more
nodes.

However, Figure 6.9 understates the advantages of NBP for this scenario. NBP
also provides an estimate of the uncertainty in sensor position; trials resulting in large
errors also display highly uncertain (often bimodal) estimates for the sensor locations
in question, as in Figure 6.1. Thus, in addition to providing a more robust estimate of
sensor location, NBP also provides a measure of the reliability of each estimate.

¥ 6.7 Parsimonious Sampling

We may also apply techniques from importance sampling [3, 19] in order to improve
the small-sample performance of NBP, which may play an important part in reducing
its computational burden. In the algorithm of Figure 6.5, the outgoing messages are
computed via an importance sampling procedure to estimate (6.11). In particular,
samples are drawn from an approximation to (6.11), the proposal distribution, and
then re-weighted so as to asymptotically represent the target distribution (6.11).

As outlined in Section 2.7.1, so long as the proposal distribution f is absolutely
continuous with respect to the target distribution g (meaning g(x) > 0 ⇒ f(x) > 0), we
are guaranteed that, for a sufficiently large sample size N we can obtain samples which

162 CHAPTER 6. SENSOR SELF-LOCALIZATION

are representative of g by drawing samples from f and weighting by g/f . However,
the sample size N is limited by computational power, and as is well-known in particle
filtering the low-sample performance of any such approximation is strongly influenced
by the quality of the proposal distribution [3, 19]. Typically, one takes f to be as close
as possible to g while remaining tractable for sampling. We accomplished this for (6.11)
by drawing samples from the belief (6.10), weighting by the remaining terms of (6.11),
and moving the particles in a direction θ by the observed distance dtu plus noise, where
θ was chosen at random and uniformly on [0, 2π) since we do not have any information
about the direction from sensor t to u.

However, in the context of belief propagation, the goal is to accurately estimate the
product Mu =

∏
s msu in the regions of the state space in which it has significant prob-

ability mass. Thus, a good proposal distribution is one which allows us to accurately
estimate the portions of the message mtu which overlap these regions of the state space,
i.e., the regions mtu has in common with the other incoming messages. In other words,
we would like to use our limited representative power to accurately model the parts of
each message which overlap with non-negligible regions of the messages from u’s other
neighbors, and any additional knowledge of Mu(xu) may be used to focus samples in
the correct regions [56].

One alternative proposal distribution involves utilizing previous iterations’ infor-
mation to determine the angular direction to each of the neighboring sensors. Rather
than estimating a ring-like distribution at each iteration (most of which is ignored as
it does not overlap with any other rings), successive estimates are improved by esti-
mating smaller and smaller arcs located in the region of interest. A simple procedure
implementing this idea is given in Figure 6.10. In particular, we use samples from the
marginal distributions computed at the previous iteration to form a density estimate
pθ of the relative direction θ, draw samples from pθ, and weight them by 1

pθ
so as to

cancel the asymptotic effect of drawing samples from pθ rather than uniformly. The pro-
cess requires estimating a density which is 2π-periodic; this is accomplished by sample
replication [90].

We first demonstrate the potential improvement on a small example of only four
sensors. Figures 6.11(a)–(b) show example messages from three sensors to a fourth,
with N = 30 particles. Using the additional angular information results in the samples
being clustered in the same region of the state space in which the product has significant
probability mass, effectively similar to having used a larger value of N . To compare
both methods’ performance, we first construct the marginal estimate using a large-N
approximation (N = 1000), and compare (in terms of KL-divergence) to the results
of running NBP with fewer samples (10 ≤ N ≤ 100) using both naive sampling, i.e.,
drawing θ ∼ U [0, 2π), and the angular proposal distribution as described in Figure 6.10.
The results are shown in Figure 6.11(c); as expected, we find that the angular proposal
distribution concentrates more samples in the region of interest, reducing the estimate’s
KL-divergence.

As noted in [56], however, by re-using previous iterations’ information we run the

Sec. 6.8. Incorporating communications constraints 163

Using previous iterations’ angular information:
Perform NBP as described in Figure 6.5, but at iteration n > 1, replace θj ∼ U [0, 2π) by:

• Draw samples X̃j
t ∼ M i−1

t (xt), X̃j
u ∼ M i−1

u (xu)

• Construct a kernel density estimate pθ using θ̃j = arctan(X̃j
u − X̃j

t) (θ̃ ∈ [−π, π])

– To approximate 2π-periodicity, construct pθ using samples at θ̃j +{2π, 0,−2π}
• Draw θj ∼ pθ, θ ∈ [−π, π]

• Calculate wj
tu in a manner similar to that of Figure 6.5, but using importance re-

weighting to cancel the influence of pθ:

– wj
tu = Po(xj

tu) W j
t

mi−1
ut (Xj

t)

1
pθ(θj)

Figure 6.10. Using an alternative angular proposal distribution for NBP. The previous iteration’s
marginals may be used to estimate their relative angle, and better focus samples on the important
regions of the state space. The estimate is made asymptotically equivalent to that described in Figure 6.5
by importance weighting.

risk of biasing our results. The results of a more realistic situation are shown in Fig-
ure 6.11(d)—performing the same comparison for a relative calibration of the 10-node
sensor network shown in Figure 6.6(b) reveals the possibility of biased estimates. When
the number of particles is sufficiently large (N ≥ 100), we observe the same improve-
ment as seen in the 4-node case. However, for very few particles (N = 25), we see
that it is possible for our angular proposal distribution to reinforce incorrect estimates,
ultimately worsening performance.

¥ 6.8 Incorporating communications constraints

Communications constraints are extremely important for battery-powered, wireless sen-
sor networks; communication is one of the primary factors determining sensor lifetime.
There are a number of factors which influence the communications cost of a distributed
implementation of NBP. These include

1. Resolution, β, of all fixed- (or floating-) point values.

2. Number of iterations performed

3. Schedule—the order in which sensors transmit

4. Approximation—the fidelity to which the marginal estimates are communicated
between sensors

All these aspects are, of course, interrelated, and also influence the quality of any solu-
tion obtained; often their effects are difficult to separate. Note that the number of par-
ticles N used for estimating each message and marginal influences only computational

164 CHAPTER 6. SENSOR SELF-LOCALIZATION

(a) (b)

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of samples (M)

K
L
 d
iv

e
rg

e
n
ce

Naive message proposal
Improved angle estimate

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of samples

A
v
e
ra
g
e
 K
L
d
iv

e
rg

e
n
c
e

Naive message proposal
Improved angular estimate

(c) (d)

Figure 6.11. By using an alternate proposal distribution during NBP’s message construction step,
we may greatly improve the fidelity of the messages. (a) Naive (uniform) sampling in angle produces
ring-shaped messages; however, (b) using previous iterations’ information we may preferentially draw
samples from the useful regions. Monte Carlo trials (c) show the improvement in terms of average K-L
divergence of the sensor’s estimated marginal (from an estimate performed with N = 1000 samples) as
a function of the number of samples N used. (d) In a larger (10-node) network, we begin to observe
the effects of bias: for sufficiently large N performance improves, but for small N we may become
overconfident in a poor estimate.

complexity, not communications cost, since we may use approximate representations
(Chapter 5) to ensure a fixed communications cost. The following experiments used
N = 200 samples per message and marginal estimate, with k = 5 times oversampling
in the product computation.

In the following sections, we consider the effects of changing the number of iterations,
the message–passing schedule, and the communications cost (and degree of approxima-
tion) of the messages. We leave the resolution fixed, choosing its value to be sufficiently
high to avoid quantization artifacts; for example, taking β = 16 bits is typically more
than sufficient.

¥ 6.8.1 Schedule and iterations

The message schedule can have a strong influence on the behavior of BP, affecting the
number of iterations until convergence and even potentially the quality of the converged
solution [67]. We consider two possible BP message schedules, and analyze performance
on the 10-node graph shown in Figure 6.6(b). Because we are primarily concerned
with the inter-sensor communications required, we enforce a maximum total number of

Sec. 6.8. Incorporating communications constraints 165

1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of messages (per sensor)

A
ve

ra
g

e
 e

st
im

a
te

 e
rr

o
r

Parallel update schedule
Sequential update schedule

1 2 3 4 5
0.18

0.2

0.22

0.24

0.26

Number of components

A
ve

ra
ge

 K
L−

di
ve

rg
en

ce

(a) (b)

Figure 6.12. Analyzing the communications cost of NBP. (a) The number of iterations required may
depend on the message schedule, but is typically very few (1-3). (b) The transmitted marginal estimates
may be compressed by fitting a small Gaussian mixture distribution; a few (1-3) components is usually
sufficient.

messages per sensor, rather than the actual number of iterations.
The first BP schedule is a “sequential” schedule, in which each sensor takes turns

transmitting its message to all its neighbors. We determine the order of transmission
by beginning with the anchor nodes, and moving outward in sequence based on the
shortest observed distance to any anchor. This has similarities to schedules based on
spanning trees [100], though since each sensor is transmitting to all neighbors it is
not a tree-structured message ordering. For this schedule, one iteration corresponds to
one message from each sensor. Strictly speaking, this ordering is only available given
global information (the observed distances in the network), but in practice the schedule
appears to be robust to small reorderings and thus local or randomized approximations
to the sequential schedule could be substituted. Here, however, we will ignore this
subtlety.

The second BP schedule we consider is a “parallel” schedule, in which a set of
sensors transmit to their neighbors simultaneously. Since initially, large numbers of
sensors have no information about their location, we restrict the participating nodes to
be those whose belief is well-localized, as determined by some threshold on the entropy
of the belief M i

t (xt). To provide a fair comparison with the sequential schedule, we
limit the number of iterations by allowing each sensor to transmit only a fixed number
of messages, terminating when no more sensors are allowed to communicate.

Figure 6.12(a) compares the two schedules’ performance over 100 Monte Carlo trials,
measured by mean error in the location estimates and as a function of the number
of message transmissions allowed by each schedule. As can be seen, both schedules
produce reasonably similar results, and neither requires more than a few iterations
(inter-sensor communications) to converge. Empirically, we find that the sequential
schedule performs slightly better on average.

Faulty communications, i.e., nodes’ failure to receive some messages, may also be

166 CHAPTER 6. SENSOR SELF-LOCALIZATION

considered in terms of small deletions in the BP message schedule. While the exact
effect of these changes is difficult to quantify, it is typically not catastrophic to the
algorithm.

¥ 6.8.2 Message approximation

We may also reduce the communications by approximating each marginal estimate
using a relatively small mixture of Gaussians before transmission, rather than com-
municating the complete set of N particles. Having considered this problem closely
in Chapter 5, we make use of the Kullback-Liebler based KD-tree approximation de-
scribed in that chapter. As we described, the KD-tree method has the advantage of
being relatively computationally efficient; however, more traditional methods such as
Expectation-Maximization [2] could also be employed. Note that locally, each node
still maintains a sample-based density estimate (allowing tests for multimodality, etc.)
regardless of how coarsely the messages to its neighbors are approximated.

In order to observe the behavior of NBP with message approximations in a prob-
lem with multimodal uncertainty, we performed 100 Monte Carlo trials of NBP with
measurement outliers as in Section 6.6, but approximated each message by a fixed
number of mixture components before transmitting. We apply the sequential sched-
ule described in the previous section. Figure 6.12(b) shows the resulting errors in the
estimated marginal, as measured by KL-divergence from a solution obtained by exact
message-passing with 1000 particles, and plotted as a function of the number of re-
tained components. Single Gaussian, and thus unimodal, approximations to the beliefs
resulted in a slight loss in performance, while two-component estimates, which have
some potential to represent bimodalities, proved better at capturing the uncertainty.
As a benchmark, representing each two-dimensional Gaussian component costs at most
4β bits, so that a two-component mixture at β = 16 is less than 128 bits per message.

¥ 6.9 Discussion

In this chapter, we proposed a novel approach to sensor localization, applying a graphi-
cal model framework and using the nonparametric message–passing algorithm of Chap-
ter 3 to solve the ensuing inference problem. The methodology has a number of advan-
tages. First, it is easily distributed, exploiting local computation and communications
between nearby sensors and potentially reducing the amount of communications re-
quired. Second, it computes and makes use of estimates of the uncertainty, which
may subsequently be used to determine the reliability of each sensor’s location esti-
mate. The estimates easily accommodate complex, multi-modal uncertainty. Third, it
is straightforward to incorporate additional sources of information, such as a model of
the probability of obtaining a distance measurement between sensor pairs. Lastly, in
contrast to other methods, it is easily extensible to non-Gaussian noise models, which
may be used to model and increase robustness to measurement outliers. In empirical
simulations, NBP’s performance is comparable to the centralized MAP estimate, while

Sec. 6.9. Discussion 167

additionally producing useful measures of the uncertainties in the resulting estimates.
We have also shown how modifications to the NBP algorithm can result in improved

performance. The NBP framework easily accommodates an outlier process model, in-
creasing the method’s robustness to a few large errors in distance measurements for
little to no computation and communication overhead. Also, carefully chosen proposal
distributions can result in improved small–sample performance, reducing the computa-
tional costs associated with calibration. Finally, appropriate message schedules require
very few message transmissions, and reduced–complexity representations may be ap-
plied to lessen the cost of each message transmission with little or no impact on the
final solution.

There remain many open directions within sensor localization for future research.
First, other message–passing inference algorithms, for example the max–product al-
gorithm, might improve localization performance if adapted to high–dimensional non-
Gaussian problems. Also, alternative graphical model representations may bear inves-
tigating; it may be possible to retain fewer edges, or improve the accuracy of BP by
clustering nodes, i.e., grouping tightly connected variables, performing optimal inference
within these groups, and passing messages between groups [112]. Given its promising
performance and many possible avenues of improvement, NBP appears to provide a
useful tool for estimating unknown sensor locations in large ad-hoc networks.

168 CHAPTER 6. SENSOR SELF-LOCALIZATION

Chapter 7

Conclusions and Future Directions

THIS chapter begins with a high-level summary of the major themes and contri-
butions of the thesis. However, there remain a plethora of open questions which

have either been raised by, or simply remain unaddressed by, our work. Accordingly,
we describe some of these open areas for future research and some suggestions for how
progress might be made on these difficult problems.

¥ 7.1 Summary and Contributions

Graphical models and belief propagation have already received some attention for their
applicability to problems arising in sensor networks. In particular, tree–structured and
loopy graphical models have been applied to perform inference over systems defined
using discrete and jointly Gaussian random variables [16, 77]. Additionally, the dis-
tributed particle filtering methods common in tracking are an example of applying
sample–based representations to a simple chain–structured graphical model. In this
thesis we worked to combine and extend these ideas, as well as consider some of the
important yet unexplored aspects of distributing the inference process within a sensor
network.

At a high level, the exploration of nonparametric, sample–based inference techniques
for sensor networks provided by this thesis has several major contributions.

• To extend particle filtering methods to general graphical models

• To provide an improved understanding of the behavior of approximations in belief
propagation, and of belief propagation in general

• To expose and explore some of the issues underlying the communication of sample–
based representations

• To describe how graphical models and sample–based estimates of uncertainty are
applicable to a number of tasks in sensor networks

The first of these aspects was dealt with in Chapter 3, in which we described both
the general structure and theory behind the NBP algorithm as well as the tools required
for an efficient implementation, in particular the process of drawing samples from the

169

170 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

product of several messages. The second topic formed the core of Chapter 4, in which
we provided a stability analysis of belief propagation. This analysis provides both a
basis for understanding the consequences of the approximations which are a necessary
part of any distributed and communication constrained implementation of belief prop-
agation. Interestingly, it also provided insight into the behavior and properties of belief
propagation more generally.

Chapter 5 considered the problem of communication constraints and sample–based
representations in more detail. This is a problem which has received surprisingly little
attention so far, and has a number of intriguing aspects. We described a minimum
representation size for a collection of samples under certain conditions and attempted
to give some insight into the most important elements of encoding methods for sample
sets. More generally, we considered lossy or approximate encoding, and provided one
example encoding method based on the KD-tree data structure which was capable of
both lossy and lossless encoding.

In each chapter, we considered some relatively small example problems to illustrate
the elements developed in that chapter. In Chapter 6 we provided a more in-depth
analysis of one particular example problem. Putting our results from the first three
themes together, we described an NBP-based solution to the self-localization problem,
which is a particularly important task in sensor networks. We showed how the problem
itself can be framed as a graphical model with cycles, with nonlinear and non-Gaussian
elements. By applying NBP we showed that the sensor locations can be estimated
quite well, and moreover we observed little degradation of performance even under
communication constraints by applying the aforementioned lossy encoding method.

¥ 7.2 Suggestions and Future Research

In addition to the contributions described, this thesis also raises a number of open ques-
tions which bear further investigation. We describe several of these open problems in
the subsequent sections, and provide some suggestions for how they might be addressed.

¥ 7.2.1 Communication costs in distributed inference

One of the primary contributions of Chapter 5 was the introduction of the problem
of finding efficient representations and minimizing communication for sample–based
estimates of uncertainty. This problem opens a plethora of questions having to do with
how efficiently these distributions may be represented under various circumstances.

For example, with regard to the lossless representation and encoding of a sample
set, we described the optimal representation cost when the distribution from which
the samples are drawn is known at both sender and receiver. It is interesting to ask
whether it is possible (or whether it is provably impossible) to create adaptive methods
which always approach the optimal performance without requiring prior knowledge
of the source distribution. In traditional source coding such methods are known as
“universal” encoders [28]. Of course, the total cost is a function of both the number of

Sec. 7.2. Suggestions and Future Research 171

samples N and the desired resolution β; for fixed β, the average cost per sample will
always eventually decrease toward zero. Thus, it may be more appropriate to ask either
how this cost behaves when β is also increased (i.e., as a function of N), or perhaps
what the relationship is between the minimal and observed total representational cost
(as opposed to the average).

Lossy encoding is equally interesting to consider. We presented one method of en-
coding approximations to sample–based distribution estimates, but many others are
certainly possible. Further work along these lines may be able to provide novel en-
coders which are more efficient (produce smaller representations) than the method we
described. In particular, it would be helpful to understand the fundamental cost of
representing or encoding of general distribution estimates, such as those obtained via
EM or other approximation methods.

Finally, we raised a number of open questions in Chapter 5 relating to the issues of
message encoding and approximation in iterative message passing algorithms. When
several approximations to the same message, perhaps resulting from versions of that
message created using incomplete information, are sent from one sensor S1 to another
S2 over a period of time, the previous versions of each message provide information
useful for encoding the next approximation. However, it remains unclear how that
information can be used effectively. Perhaps a similar analysis to the stability work in
Chapter 4 can be used to analyze BP when the changes in messages from iteration to
iteration are restricted in some simple form.

Another aspect which must arise in iterative algorithms is due to the potential
for feedback. When information is sent back from S2 to S1, it may be possible to
further improve the encoding process. This feedback may be motivated purely by
improving the representation of S1’s message, or may stem from S2 communicating
related information, for example an inference message from S2 to S1.

It may also be possible to exploit more global knowledge of the joint statistical
model. However, finding constructive methods of encoding in these cases can be dif-
ficult even in traditional source coding problems [20, 80, 91]; it is unclear whether the
problem becomes easier or harder by taking the viewpoint of transmitting messages
which directly represent likelihood functions or posterior versions of probability distri-
butions.

Finally, although we have confined our questioning in this area to sample–based
estimates of uncertainty, many of the same questions can be asked for messages which
consist of distributions or likelihoods defined over a discrete state space. Lossless and
lossy encoding of these messages is still of major importance for distributed inference
and estimation, yet remains relatively unexplored. It may be possible to use similar
ideas to those described in Chapter 5 to obtain significant reduction in the communi-
cations cost of, say, discrete belief propagation in sensor networks, particularly in the
relatively common case that the discrete state space results from a quantization of some
continuous–valued random variable.

172 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

¥ 7.2.2 Graphical models and belief propagation

In addition to the questions of how best to represent and communicate messages in
distributed inference, we have also raised a number of questions relating to graphical
models and the belief propagation algorithm itself. In particular, Chapter 4 contributes
significantly to our understanding of belief propagation, and the process of approxima-
tions in BP messages.

One immediate question which arises from our viewpoint of “errors” in BP messages
is how a controlled level of error in the BP messages can be exploited in order to reduce
the required computational effort. Nonparametric belief propagation, for example, can
be interpreted as an efficient implementation making use of approximate messages, but
we currently have no way of measuring how close or far these sample–based messages are
from the correct (exactly computed) message, which in even the most mild problems
considered in this thesis consists of a mixture of an exponentially large number of
Gaussian components. It may be easier to find an interpretation for, or principled
modification of, some other form of efficient approximate BP, for example adaptive
methods of reducing state dimension [13, 14].

Another open issue is the local stability of BP fixed points, as opposed to the global
stability implied by our analysis. When there are multiple BP fixed points, our current
analysis is unable to tell us the answers to such questions as how many fixed points
there are, or how many of these are stable. Perhaps given a particular fixed point, it
may be possible to use a similar analysis of error propagation to demonstrate a region of
local stability. More hypothetically, understanding the local stability properties of BP
might enable us to infer how many stable fixed points are possible for a given graphical
model.

There is an interesting gap between our analysis of when loopy BP converges, and the
more commonly asked question of how well it performs, i.e., how closely the fixed point
obtained via loopy BP matches the correct marginal distributions. BP is, of course,
exact on tree–structured graphs, for which convergence is trivially guaranteed, and the
conventional understanding of BP is that it does well on “tree–like” graphs, with long,
weak cycles. Thus, one might conjecture that the performance of BP is closely related
to its convergence behavior. Perhaps the convexity bounds of Wainwright [102] or other
results on the quality of BP might be combined with our error analysis, or examined
in the special case of graphs with guaranteed convergence properties, to obtain a more
precise statement relating the two qualities.

If there is a link between BP convergence and the quality of BP’s marginal estimates,
the convergence criterion and fixed point properties described in Chapter 4 may be
useful in many other ways. For example, our convergence criterion could be used to
assess how appropriate a given graphical model might be, given that we intend to use
BP to perform approximate inference on that model. For example, we might be able to
use our criterion to select from among many possible graph structures, for example to
find turbo or LDPC codes [24] which are likely to have good performance. Alternatively,
we may be able to use our convergence criterion to inform algorithms for finding graph

Sec. 7.2. Suggestions and Future Research 173

structure and parameter selection in machine learning problems, limiting a search to
graphical models which are known to lead to good behavior of BP.

¥ 7.2.3 Nonparametric belief propagation

Nonparametric belief propagation provides one way of performing approximate infer-
ence over complex distributions defined on general graphical models. NBP is applicable
to a wide variety of otherwise difficult problems, particularly those involving relatively
high–dimensional continuous–valued random variables. In order to make this infer-
ence algorithm even more useful, there are a number of questions which bear further
investigation.

For example, in this thesis we have often applied the technique of “belief sampling” in
order to reduce computation and use fewer messages in the inter-sensor communication
process. However, there remain many open issues with belief sampling. As we discussed
in Section 6.7, the selection of the proposal distribution can have a significant impact.
Finding ways to select good proposal distributions, perhaps adaptively, is an important
sub-problem. Furthermore, given a set of samples from the belief Mt, we used a simple
reweighting technique to represent samples from the product Mts. This may not be
the best way to accurately represent Mts; we should consider whether and how this
approximation can be improved. Being able to represent the messages and message
products using relatively few samples is extremely important, in part to reduce the
communications required, but also to decrease the computational overhead of NBP.

This leads to another important question—whether it is possible to automatically
determine an appropriate number of samples N to represent each message. It is im-
portant that N be small enough to enable computations to be performed efficiently;
however, if N is too small, the approximate messages are not accurate and do not lead
to good marginal estimates. If we could detect the complexity of the distribution some-
how, we might be able to determine whether a particular value of N was sufficiently
large.

A related question is whether it is possible to estimate the relative error in our
message approximations. Even for a given value of N , each message computation
involves an approximation, in which a product distribution of Nd Gaussian mixtures is
approximated by only N samples. If we could estimate the level of errors introduced in
each of these steps, we might be able to determine how closely the solutions obtained
by NBP approximate the ideal, continuous BP estimates.

If some or all of these questions could be answered, the approximations made by
NBP could be understood in a more principled manner, particularly when the number
of samples N is very small. This could both assist in justifying NBP’s application to,
and improving its performance on, many difficult estimation problems.

¥ 7.2.4 Other sensor network applications

Finally, in this thesis, we considered the sensor localization problem in some depth, as
well as somewhat simplified versions of several other sensor network applications such

174 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

as tracking mobile objects (Sections 3.9.2 and 5.7.2) and estimating spatial random
processes (Section 5.7.3). Many of these problems could benefit from a closer, more
detailed examination using the results of the thesis.

For example, distributed tracking of multiple moving objects is one of the most com-
mon applications for sensor networks. Considering how more sophisticated graphical
models may be applied to capture the temporal dynamics of and statistical relationships
between multiple targets is one important open problem. Distributing the computa-
tional effort while limiting the required communications overhead is equally important.
While much work has gone into thinking about certain aspects of these problems, such as
distributing the representations of objects which operate independently [61] and select-
ing what sensors are responsible for storing and updating the representations [113, 114],
these problems are not independent of the cost of communicating the representations
and should be considered with these costs in mind.

More generally, object tracking is also a localization problem, and may even be
considered jointly with the process of estimating sensor locations. Sensors may also
wish to calibrate themselves in other ways, by estimating additional variables which
have impact on the sensing process (for example, antenna or microphone gain or the
level of ambient noise or interference). We should be able to frame these additional
problems as graphical models, develop relatively sparse, local approximations suitable
for performing distributed estimation, and perhaps solve them efficiently using NBP as
well.

Bibliography

[1] Ibrahim A. Ahmad and Pi-Erh Lin. A nonparametric estimation of the entropy for
absolutely continuous distributions. IEEE Transactions on Information Theory,
22(3):372–375, May 1976.

[2] M. Aitkin and D. B. Rubin. Estimation and hypothesis testing in finite mixture
models. Journal of Royal Statistical Society, Series B, 47(1):67–75, 1985.

[3] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-Gaussian bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174–188, February 2002.

[4] J. Beirlant, E. J. Dudewicz, L. Györfi, and E. C. van der Meulen. Nonparamet-
ric entropy estimation: An overview. International Journal of Math. Stat. Sci.,
6(1):17–39, June 1997.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, September 1975.

[6] Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic
processes. In Uncertainty in Artificial Intelligence, pages 33–42, 1998.

[7] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, Califor-
nia, 1994.

[8] M. A. Carreira-Perpinan. Mode-finding for mixtures of gaussian distributions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1318–
1323, 2000.

[9] Hei Chan and Adnan Darwiche. A distance measure for bounding probabilistic
belief change. International Journal of Approximate Reasoning, 38(2):149–174,
Feb 2005.

[10] L. Chen, M. Wainwright, M. Cetin, and A. Willsky. Data association based on
optimization in graphical models with application to sensor networks. Submitted
to Mathematical and Computer Modeling, 2004.

175

176 BIBLIOGRAPHY

[11] P. Clifford. Markov random fields in statistics. In G. R. Grimmett and D. J. A.
Welsh, editors, Disorder in Physical Systems, pages 19–32. Oxford University
Press, Oxford, 1990.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 1990.

[13] J. M. Coughlan and S. J. Ferreira. Finding deformable shapes using loopy belief
propagation. In European Conference on Computer Vision 7, May 2002.

[14] J. M. Coughlan and H. Shen. Shape matching with belief propagation: Using
dynamic quantization to accomodate occlusion and clutter. In CVPR Workshop
on Generative Model Based Vision, 2004.

[15] T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons,
New York, 1991.

[16] Christopher Crick and Avi Pfeffer. Loopy belief propagation as a basis for commu-
nication in sensor networks. In Uncertainty in Artificial Intelligence 18, August
2003.

[17] K. Deng and A. W. Moore. Multiresolution instance-based learning. In Interna-
tional Joint Conference on Artificial Intelligence, 1995.

[18] L. Doherty, L. El Ghaoui, and K. S. J. Pister. Convex position estimation in
wireless sensor networks. In Infocom, Apr 2001.

[19] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York, 2001.

[20] Stark Draper. Universal incremental slepian–wolf coding. In Allerton Conf. on
Comm., Control, and Computing, October 2004.

[21] T. Eren, D. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O. Ander-
son, and P. N. Belhumeur. Rigidity, computation, and randomization in network
localization. In International Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 2673–2684, March 2004.

[22] M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristic for matrix rank minimization
with applications to Hankel and Euclidean distance matrices. In Proceedings,
American Control Conference, 2003.

[23] W. T. Freeman and E. C. Pasztor. Markov networks for low–level vision. Technical
Report 99-08, MERL, February 1999.

[24] B. Frey, R Koetter, G. Forney, F. Kschischang, R. McEliece, and D. Spiel-
man (Eds.). Special issue on codes and graphs and iterative algorithms. IEEE
Transactions on Information Theory, 47(2), February 2001.

BIBLIOGRAPHY 177

[25] M. Gastpar and M. Vetterli. Source-channel communication in sensor networks.
In L. Guibas and F. Zhao, editors, Information Processing in Sensor Networks.
Springer-Verlag, 2003.

[26] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741, November 1984.

[27] Hans-Otto Georgii. Gibbs measures and phase transitions. Studies in Mathemat-
ics. de Gruyter, Berlin / New York, 1988.

[28] A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer,
Boston, 1991.

[29] H. Gharavi and S. Kumar. Special issue on sensor networks and applications.
Proceedings of the IEEE, 91(8):1151–1153, August 2003.

[30] Mark Girolami and Chao He. Probability density estimation from optimally con-
densed data samples. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 25(10):1253–1264, October 2003.

[31] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian bayesian state estimation. IEE Proceedings on Radar
and Signal Processing, 140:107–113, 1993.

[32] A. G. Gray and A. W. Moore. Very fast multivariate kernel density estimation
via computational geometry. In Joint Stat. Meeting, 2003.

[33] L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in three
dimensions. In C. Greengard (Eds.) C. Anderson, editor, Vortex Methods, volume
1360 of Lecture Notes in Mathematics, pages 121–? Springer-Verlag, Berlin, 1988.

[34] L. Greengard and J. Strain. The fast Gauss transform. SIAM J. Sci Stat Comput,
12(1):79–94, 1991.

[35] L. Greengard and X. Sun. A new version of the fast Gauss transform. Documenta
Mathematica, Extra Volume ICM(III):575–584, 1998.

[36] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–530,
May 1988.

[37] T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural
Computation, 16(11):2379–2413, 2004.

[38] Jason L. Hill and David E. Culler. MICA: A wireless platform for deeply embed-
ded networks. IEEE Micro, 22(6):12–24, Nov–Dec 2002.

178 BIBLIOGRAPHY

[39] G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Technical Report 2000-004, Gatsby Computational Neuroscience Unit, 2000.

[40] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky. Nonparametric belief
propagation for self-calibration in sensor networks. In Information Processing in
Sensor Networks, 2004.

[41] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky. Nonparametric belief
propagation for sensor self-calibration. In International Conference on Acoustics,
Speech, and Signal Processing, 2004.

[42] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky. Nonparametric belief
propagation for self-calibration in sensor networks. Submitted to IEEE Journal
on Selected Areas in Communications, 2004.

[43] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Communication-constrained
inference. Technical Report 2601, MIT, Laboratory for Information and Decision
Systems, 2004.

[44] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message errors in belief prop-
agation. Technical Report 2602, MIT, Laboratory for Information and Decision
Systems, 2004.

[45] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Particle filtering under commu-
nication constraints. In Submitted toInformation Processing in Sensor Networks,
2005.

[46] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky. Efficient multiscale
sampling from products of Gaussian mixtures. In Neural Information Processing
Systems 17, 2003.

[47] Alexander Ihler. Kernel density estimation toolbox for matlab.

[48] M. Isard. PAMPAS: Real–valued graphical models for computer vision. In IEEE
Computer Vision and Pattern Recognition, 2003.

[49] M. Isard and A. Blake. Condensation – conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[50] Julian Alan Izenman. Recent developments in nonparametric density estimation.
Journal of the American Statistical Association, 86(413):205–224, March 1991.

[51] Neha Jain, M. Dilip Kutty, and Dharma P. Agrawal. Energy aware multipath
routing for uniform resource utilization in sensor networks. In Information Pro-
cessing in Sensor Networks, pages 473–487, April 2003.

[52] Harry Joe. Estimation of entropy and other functionals of a multivariate density.
Annals of the Institute of Statistical Mathematics, 41(4):683–697, 1989.

BIBLIOGRAPHY 179

[53] V. M. Bove Jr. and J. Mallett. Collaborative knowledge building by smart sensors.
BT Technology Journal, 22(4):45–51, 2004.

[54] S. Julier and J. Uhlmann. A general method for approximating nonlinear trans-
formations of probability distributions. Technical report, RRG, Dept. of Eng.
Science, Univ. of Oxford, 1996.

[55] John C. Kieffer. A tutorial on hierarchical lossless data compression. In Modelling
Uncertainty, volume 46 of Internat. Ser. Oper. Res. Management Sci., pages 711–
733. Kluwer, Boston, MA, 2002.

[56] D. Koller, U. Lerner, and D. Angelov. A general algorithm for approximate
inference and its application to hybrid Bayes nets. In Uncertainty in Artificial
Intelligence 15, pages 324–333, 1999.

[57] S. Kumar, F. Zhao, and D. Shepherd. Collaborative signal and information pro-
cessing in microsensor networks. IEEE Signal Processing Magazine, 19(2):13–14,
March 2002.

[58] N. Kurata, B. F. Spencer Jr., M. Ruiz-Sandoval, Y. Miyamoto, and Y. Sako. A
study on building risk monitoring using wireless sensor network MICA mote. In
International Conference on Structural Health Monitoring and Intelligent Infras-
tructure (SHMII), 2003.

[59] Koen Langendoen and Niels Reijers. Distributed localization in wireless sen-
sor networks: a quantitative comparison. Computer Networks, 43(4):499–518,
November 2003.

[60] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.

[61] J. J. Liu, J. Liu, M. Chu, J. E. Reich, and F. Zhao. Distributed state repre-
sentation for tracking problems in sensor networks. In Information Processing in
Sensor Networks, pages 234–242, 2004.

[62] J. S. Liu and C. Sabatti. Generalised Gibbs sampler and multigrid Monte Carlo
for Bayesian computation. Biometrika, 87(2):353–369, 2000.

[63] Jessica D. Lundquist, Daniel R. Cayan, and Michael D. Dettinger. Meteorology
and hydrology in yosemite national park: A sensor network application. In F. Zhao
and L. Guibas, editors, Information Processing in Sensor Networks, pages 518–
528. Springer-Verlag, 2003.

[64] J. MacCormick and A. Blake. Probabilistic exclusion and partitioned sampling for
multiple object tracking. International Journal of Computer Vision, 39(1):57–71,
2000.

180 BIBLIOGRAPHY

[65] David MacKay. Introduction to monte carlo methods. In M. I. Jordan, editor,
Learning in Graphical Models. MIT Press, 1999.

[66] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John
Anderson. Wireless sensor networks for habitat monitoring. In C. S. Raghavendra
and Krishna M. Sivalingam, editors, International Workshop on Wireless Sensor
Networks and Applications (WSNA), Atlanta, GA, USA, 2002. ACM.

[67] Y. Mao and A. Banihashemi. Decoding low-density parity check codes with prob-
abilistic scheduling. IEEE Communications Letters, 5(10):414–416, October 2001.

[68] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and A. Chan-
drakasan. Energy-centric enabling technologies for wireless sensor networks. IEEE
Wireless Communications Magazine, 9(4):28–39, August 2002.

[69] T. Minka. Expecatation propagation for approximate bayesian inference. In
Uncertainty in Artificial Intelligence, 2001.

[70] Andrew Moore. Very fast em-based mixture model clustering using multireso-
lution kd-trees. In Neural Information Processing Systems 11, pages 543–549,
1999.

[71] Andrew Moore. The anchors hierarchy: Using the triangle inequality to survive
high-dimensional data. In Uncertainty in Artificial Intelligence 12, pages 397–405.
AAAI Press, 2000.

[72] R. Moses, D. Krishnamurthy, and R. Patterson. Self-localization for wireless
networks. Eurasip Journal on Applied Signal Processing, 2003.

[73] R. Moses and R. Patterson. Self-calibration of sensor networks. In SPIE vol.
4743: Unattended Ground Sensor Technologies and Applications IV, 2002.

[74] R. Moses, R. Patterson, and W. Garber. Self localization of acoustic sensor
networks. In Military Sensing Symposia (MSS) Specialty Group on Battlefield
Acoustic and Seismic Sensing, Magnetic and Electric Field Sensors, 2002.

[75] Stephen M. Omohundro. Five balltree construction algorithms. Technical Report
TR-89-063, ICSI, U.C. Berkeley, 1989.

[76] E. Parzen. On estimation of a probability density function and mode. Annals of
Mathematical Statistics, 33:1065–1076, 1962.

[77] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in distributed
systems. In Uncertainty in Artificial Intelligence 20, 2004.

[78] Neal Patwari and Alfred Hero. Relative location estimation in wireless sensor net-
works. IEEE Transactions on Signal Processing, 51(8):2137–2148, August 2003.

BIBLIOGRAPHY 181

[79] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San
Mateo, 1988.

[80] S. S. Pradhan and K. Ramchandran. Distributed source coding using syndromes
(discus): Design and construction. IEEE Transactions on Information Theory,
49:626–643, March 2003.

[81] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free distributed
localization in sensor networks. Technical Report 892, MIT LCS, 2003.

[82] R. H. Randles and D. A. Wolfe. Introduction to the Theory of Nonparametric
Statistics. Wiley, New York, 1979.

[83] Matthew Ridley, Eric Nettleton, Ali Göktogan, Graham Brooker, Salah
Sukkarieh, and Hugh F. Durrant-Whyte. Decentralised ground target tracking
with heterogeneous sensing nodes on multiple uavs. In F. Zhao and L. Guibas,
editors, Information Processing in Sensor Networks, pages 545–565. Springer-
Verlag, 2003.

[84] Murray Rosenblatt. Remarks on some nonparametric estimates of a density func-
tion. Annals of Mathematical Statistics, 27(3):832–837, September 1956.

[85] Andreas Savvides, Heemin Park, and Mani B. Srivastava. The bits and flops
of the n-hop multilateration primitive for node localization problems. In ACM
Workshop on Wireless Sensor Networks and Applications, pages 112 – 121. ACM,
2003.

[86] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualiza-
tion. John Wiley & Sons, 1992.

[87] J. M. Shapiro. Embedded image-coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41(12):3445–3462, 1993.

[88] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Tracking loose-limbed
people. In IEEE Computer Vision and Pattern Recognition, 2004.

[89] L. Sigal, M. Isard, B. H. Sigelman, and M. J. Black. Attractive people: Assem-
bling loose-limbed models using non-parametric belief propagation. In Neural
Information Processing Systems 16, 2003.

[90] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, New York, 1986.

[91] D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE
Transactions on Information Theory, 19:471–480, July 1973.

[92] J. Strain. The fast Gauss transform with variable scales. SIAM Journal on
Scientific and Statistical Computing, 12(5):1131–1139, 1991.

182 BIBLIOGRAPHY

[93] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric
belief propagation. In IEEE Computer Vision and Pattern Recognition, 2003.

[94] E. B. Sudderth, M. I. Mandel, W. T. Freeman, and A. S. Willsky. Distributed
occlusion reasoning for tracking with nonparametric belief propagation. In Neural
Information Processing Systems, 2004.

[95] S. Tatikonda and M. Jordan. Loopy belief propagation and gibbs measures. In
Uncertainty in Artificial Intelligence, 2002.

[96] S. Thrun, J. Langford, and D. Fox. Monte Carlo HMMs. In International Con-
ference on Machine Learning, pages 415–424, 1999.

[97] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In
Allerton Conference on Communication, Control and Computing, pages 368–377,
1999.

[98] M. W. Trosset. The formulation and solution of multidimensional scaling prob-
lems. Technical Report TR93-55, Rice University, 1993.

[99] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree–based reparameterization
for approximate inference on loopy graphs. In Neural Information Processing
Systems 14. MIT Press, 2002.

[100] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree–based reparameter-
ization analysis of sum–product and its generalizations. IEEE Transactions on
Information Theory, 49(5), May 2003.

[101] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,
and variational inference. Technical Report 629, UC Berkeley Dept. of Statistics,
September 2003.

[102] Martin J. Wainwright. Stochastic processes on graphs with cycles: geometric and
variational approaches. PhD thesis, MIT, 2002.

[103] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, 1995.

[104] Y. Weiss. Belief propagation and revision in networks with loops. Technical
Report 1616, MIT AI Lab, 1997.

[105] Y. Weiss. Correctness of local probability propagation in graphical models with
loops. Neural Computation, 12(1), 2000.

[106] Y. Weiss and W. T. Freeman. On the optimality of solutions of the Max–Product
Belief–Propagation algorithm in arbitrary graphs. IEEE Transactions on Infor-
mation Theory, 47(2):736–744, February 2001.

BIBLIOGRAPHY 183

[107] Yair Weiss and William T. Freeman. Correctness of belief propagation in gaussian
graphical models of arbitrary topology. Neural Computation, 13(10):2173–2200,
2001.

[108] K. Whitehouse. The design of calamari: an ad-hoc localization system for sensor
networks. Master’s thesis, U. C. Berkeley, 2002.

[109] A. Willsky. Relationships between digital signal processing and control and esti-
mation theory. Proceedings of the IEEE, 66(9):996–1017, September 1978.

[110] A. Willsky. Multiresolution markov models for signal and image processing. Pro-
ceedings of the IEEE, 90(8):1396–1458, August 2002.

[111] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and
its generalizations. In International Joint Conference on Artificial Intelligence,
August 2001.

[112] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approxima-
tions and generalized belief propagation algorithms. Technical Report 2004-040,
MERL, May 2004.

[113] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative signal and infor-
mation processing: An information-directed approach. Proceedings of the IEEE,
91(8):1199–1209, August 2003.

[114] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration
for tracking applications. IEEE Signal Processing Magazine, 19(2):61–72, March
2002.

	Abstract
	Acknowledgements
	ToC
	Introduction
	Background
	NBP
	Approximation
	Communications
	Localization
	Future Directions
	Bibliography

