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Abstract

Graphical models provide a powerful formalism for statistical signal processing. Due to
their sophisticated modeling capabilities, they have found applications in a variety of fields
such as computer vision, image processing, and distributed sensor networks. In this the-
sis we study two central signal processing problems involving Gaussian graphical models,
namely modeling and estimation. The modeling problem involves learning a sparse graphi-
cal model approximation to a specified distribution. The estimation problem in turn exploits
this graph structure to solve high-dimensional estimation problems very efficiently.

We propose a new approach for learning a thin graphical model approximation to a
specified multivariate probability distribution (e.g., the empirical distribution from sample
data). The selection of sparse graph structure arises naturally in our approach through the
solution of a convex optimization problem, which differentiates our procedure from stan-
dard combinatorial methods. In our approach, we seek the maximum entropy relaxation
(MER) within an exponential family, which maximizes entropy subject to constraints that
marginal distributions on small subsets of variables are close to the prescribed marginals in
relative entropy. We also present a primal-dual interior point method that is scalable and
tractable provided the level of relaxation is sufficient to obtain a thin graph. A crucial ele-
ment of this algorithm is that we exploit sparsity of the Fisher information matrix in models
defined on chordal graphs. The merits of this approach are investigated by recovering the
graphical structure of some simple graphical models from sample data.

Next, we present a general class of algorithms for estimation in Gaussian graphical
models with arbitrary structure. These algorithms involve a sequence of inference prob-
lems on tractable subgraphs over subsets of variables. This framework includes parallel
iterations such as Embedded Trees, serial iterations such as block Gauss-Seidel, and hybrid
versions of these iterations. We also discuss a method that uses local memory at each node
to overcome temporary communication failures that may arise in distributed sensor net-
work applications. We analyze these algorithms based on the recently developed walk-sum
interpretation of Gaussian inference. We describe the walks “computed” by the algorithms
usingwalk-sum diagrams, and show that for non-stationary iterations based on a very large
and flexible set of sequences of subgraphs, convergence is achieved in walk-summable
models. Consequently, we are free to choose spanning trees and subsets of variables adap-
tively at each iteration. This leads to efficient methods for optimizing the next iteration
step to achieve maximum reduction in error. Simulation results demonstrate that these non-
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stationary algorithms provide a significant speedup in convergence over traditional one-tree
and two-tree iterations.

Thesis Supervisor: Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering
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Chapter 1

Introduction

Statistical signal processing plays an important role in a variety of applications includ-
ing medical imaging [55], speech processing [17], financial data analysis [19], image and
video processing [44, 83], and wireless communications [64]. Analyzing and processing
signals based on their stochastic properties involves several important problems such as
generatingsignal samples from a random ensemble,modelingthe probabilistic behavior of
signals based on empirically obtained statistics, andprocessingnoise-corrupted signals to
extract useful information. This thesis deals with the second and third problems using the
framework of graph-structured probabilistic models, also known as graphical models.

Graphical modelsprovide a powerful formalism for statistical signal processing. They
offer a convenient representation for joint probability distributions and convey the Markov
structure in a large number of random variables compactly. A graphical model [47, 53]
is a collection of variables defined with respect to a graph; each vertex of the graph is
associated with a random variable and the edge structure specifies the conditional indepen-
dence (Markov) properties among the variables. An important feature of graphical models
is that they can be used to succinctly specify global distributions over a large collection of
variables in terms of local interactions, each involving only a small subset of variables.

Due to their sophisticated modeling capabilities, graphical models (also known as Markov
random fields or MRFs) have found applications in a variety of fields including distributed
processing using sensor networks [21], image processing [34, 83, 84], computer vision [75],
statistical physics [61], and coding theory [58]. Our focus is on the important class of Gaus-
sian graphical models, also known as Gauss-Markov random fields (GMRFs), which have
been widely used to model natural phenomena in many large-scale applications [30, 67].

The modeling problem for graphical models essentially reduces to learning the graph
(Markov) structure of a set of variables given an empirical distribution on those variables.
Exploiting this graph structure is also critical in order to efficiently solve the Gaussian es-
timation problem of denoising a signal corrupted by additive noise. Due to the widespread
use of normally distributed random variables as both prior and noise models, both the Gaus-
sian modeling and estimation problems are of great importance. Solving these problems
efficiently forms the focus of this thesis.

Both the modeling and estimation problems can be efficiently solved for tree-structured
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graphical models (i.e., graphs with no cycles, also called treewidth-1 graphs1). Finding
the best tree-structured approximation (in the sense of Kullback-Leibler divergence) to
a specified empirical distribution can be solved using a suitable maximum spanning tree
formulation [16]. For the estimation problem in tree-structured MRFs, Belief Propagation
(BP) [62] provides an efficient linear complexity algorithm to compute exact estimates.
However, tree-structured Gaussian processes possess limited modeling capabilities, leading
to blocky artifacts in the resulting covariance approximations [74]. In order to model a
richer class of statistical dependencies among variables, one often requires loopy graphical
models.

The situation is more complicated for both modeling and inference when the graphical
models involved contain cycles. Indeed, the general graphical model selection problem
of finding the best treewidth-k graphical model approximation to a specified distribution
is NP-hard fork > 1 [49]. For the Gaussian estimation problem, computing the Bayes
least-squares estimate is equivalent to solving a linear system of equations specified in
terms of the information-form parameters of the conditional distribution. Due to its cubic
computational complexity in the number of variables, direct matrix inversion to solve the
Gaussian estimation problem is intractable in many applications in which the number of
variables is very large (e.g., in oceanography problems [30] the number of variables may
be on the order of106).

In this thesis, we describe tractable methods to solve both these problems when the
graphical models involved contain cycles.

1.1 Contributions

1.1.1 Learning Markov Structure using Maximum Entropy Relax-
ation

The problem of learning the Markov structure of a probability distribution has been ex-
tensively studied from the point of view of solving a combinatorial optimization problem
[5, 16, 26, 49, 51, 59]. Given a distributionp∗ (for example, an empirical distribution ob-
tained from data samples), one searches over a collection of graphs in order to identify
a simple graph that still provides a good approximation top∗ in the sense of Kullback-
Leibler divergence. In essence, this involves projecting the distribution to each candidate
graph (minimizing information divergence) and picking the closest one. Previous work
has focussed on this problem for families of triangulated graphical models with bounded
treewidth. In order to solve this problem using a polynomial-time algorithm, several ap-
proximate algorithms have been studied [49, 59]. These algorithms restrict the search space
to subgraphs of agiventreewidth-k graph rather than searching over all possible treewidth-
k graphs. Another restriction with these methods [16, 49, 59] is that they focus on chordal
graphs due to the fact the projection onto a chordal graph has a simple solution. In any
case, only heuristic methods are permitted because the general graphical model selection
problem is NP-hard.

1All the technical terminology used in this thesis is explained in detail in Chapter 2.

12



We propose a novel approach to solve the graphical model selection problem using a
convex program as opposed to a combinatorial approach. Our formulation is motivated
by the maximum entropy (ME) principle [20, 42]. The ME principle states that subject
to linear constraints on a set of statistics, the entropy-maximizing distribution amongall
distributions lies in the exponential family based on those statistics used to define the con-
straints. Loosely, this suggests that entropy, when used as maximizing objective function,
implicitly favors Markov models that possess as few conditional dependencies as possible
while still satisfying the constraints. Proceeding with this point of view, we propose a max-
imum entropy relaxation (MER) problem in which linear constraints on marginal moments
are replaced by a set of nonlinear, convex constraints that enforce closeness to the marginal
moments ofp∗ in the sense of information divergence. Roughly speaking, we expect that
whenp∗ is close to a family of Markov models defined on some graph, the MER prob-
lem will automatically “thin” the model, i.e., the relaxed probability distribution will be
Markov on that graph. Hence, the MER problem automatically checks to see if there are
any nearby lower-order Markov families without explicitly projecting onto a collection of
candidate graphs. Thus, the formulation is not restricted in any manner to “search” only
over subgraphs of a specified graph.

To solve the MER problem, we develop a scalable algorithm that exploits sparse com-
putations on chordal graphs. This algorithm actually solves a sequence of MER problems
based on subsets of the constraints. At each step of the procedure, we add more active
constraints (the ones which have the largest constraint violation) until all the constraints
that were omitted are found to be inactive. Each MER sub-problem may be formulated
with respect to a chordal graph which supports the current constraint set. We solve these
sub-problems using a primal-dual interior point method that exploits sparsity of the Fisher
information matrix over chordal graphs. Very importantly, this incremental approach to so-
lution of MER still finds the global MER solution in the complete model, but in a manner
which exploits sparsity of the MER solution. We emphasize here that while our approach
takes advantage of efficient computations with respect to chordal graphs, the solution to the
MER problem can still be a non-chordal graph.

While our focus in this thesis is on the Gaussian model selection problem, our frame-
work applies equally well to the case of discrete MRFs. Simulation results show that the
underlying graph structure is recovered with few spurious or missing edges even with a
moderate number of samples.

1.1.2 Estimation Algorithms based on Tractable Subgraphs: A Walk-
Sum Analysis

Considerable effort has been and still is being put into developing estimation algorithms
for graphs with cycles, including a variety of methods that employ the idea of performing
inference computations on tractable subgraphs [68, 79]. The recently proposed Embed-
ded Trees (ET) iteration [73, 74] is one such approach that solves a sequence of inference
problems on trees or, more generally, tractable subgraphs. If ET converges, it yields the
correct conditional estimates, thus providing an effective inference algorithm for graphs
with essentially arbitrary structure.
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For the case ofstationaryET iterations — in which the same tree or tractable subgraph
is used at each iteration — necessary and sufficient conditions for convergence are provided
in [73, 74]. However, experimental results in [73] provide compelling evidence that much
faster convergence can often be obtained by changing the embedded subgraph that is used
from one iteration to the next. The work in [73] provided very limited analysis for such
non-stationaryiterations, thus leaving open the problem of providing easily computable
broadly applicable conditions that guarantee convergence.

In related work that builds on [74], Delouille et al. [24] describe a stationary block
Gauss-Jacobi iteration for solving the Gaussian estimation problem with the added con-
straint that messages between variables connected by an edge in the graph may occasion-
ally be “dropped”. The local blocks (subgraphs) are assumed to be small in size. Such
a framework provides a simple model for estimation in distributed sensor networks where
communication links between nodes may occasionally fail. The proposed solution involves
the use of memory at each node to remember past messages from neighboring nodes. The
values in this local memory are used if there is a breakdown in communication to prevent
the iteration from diverging. However, the analysis in [24] is also restricted to the case of
stationary iterations, in that the same partitioning of the graph into local subgraphs is used
at every iteration.

Finally, we note that ET iterations fall under the class ofparallel update algorithms,
in that every variable must be updated in an iteration before one can proceed to the next
iteration. However,serial schemes involving updates over subsets of variables also offer
tractable methods for solving large linear systems [38, 76]. An important example in this
class of algorithms is block Gauss-Seidel (GS) in which each iteration involves updating a
small subset of variables.

In this thesis, we analyze non-stationary iterations based on an arbitrary sequence of
embedded trees or tractable subgraphs. We present a general class of algorithms that in-
cludes the non-stationary ET and block GS iterations, and provide a general and very easily
tested condition that guarantees convergence for any of these algorithms. Our framework
allows for hybrid non-stationary algorithms that combine aspects of both block GS and ET.
We also consider the problem of failing links and describe a method that uses local memory
at each node to address this problem in general non-stationary parallel and serial iterations.

Our analysis is based on a recently introduced framework for interpreting and analyz-
ing inference in GMRFs based on sums over walks in graphs [56]. We describewalk-sum
diagramsthat provide an intuitive interpretation of the estimates computed by each of the
algorithms after every iteration. A walk-sum diagram is a graph that corresponds to the
walks “accumulated” after each iteration. As developed in [56] walk-summability is an
easily tested condition which, as we will show, yields a simple necessary and sufficient
condition for the convergence of the algorithms. As there are broad classes of models (in-
cluding attractive, diagonally-dominant, and so-called pairwise-normalizable models) that
are walk-summable, our analysis shows that our algorithms provide a convergent, compu-
tationally attractive method for inference.

The walk-sum analysis and convergence results show that non-stationary iterations of
our algorithms based on a very large and flexible set of sequences of subgraphs or subsets
of variables converge in walk-summable models. Consequently, we are free to use any
sequence of trees in the ET algorithm or any sequence of subsets of variables in the block
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GS iteration, and still achieve convergence in walk-summable models. We exploit this
flexibility by choosing trees or subsets of variables adaptively to minimize the error at iter-
ationn based on the residual error at iterationn− 1. To make these choices optimally, we
formulate combinatorial optimization problems that maximize certain re-weighted walk-
sums. We describe efficient methods to solve relaxed versions of these problems. For the
case of choosing the “next best” tree, our method reduces to solving a maximum-spanning
tree problem. Simulation results indicate that our algorithms for choosing trees and sub-
sets of variables adaptively provide a significant speedup in convergence over traditional
approaches involving a single subgraph or alternating between two subgraphs.

Our walk-sum analysis also shows that local memory at each node can be used to
achieve convergence for any of the above algorithms when communication failures oc-
cur in distributed sensor networks. Our protocol differs from the description in [24], and
as opposed to that work, allows for non-stationary updates. Also, our walk-sum diagrams
provide a simple, intuitive representation for the propagation of information with each iter-
ation.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides a brief but self-contained
background on graphical models, exponential families, and walk-sums. In Chapter 3, we
discuss the MER formulation to learn the Markov structure in a collection of variables.
Chapter 4 describes a rich class of algorithms for Gaussian estimation, and analyzes the
convergence of these algorithms in walk-summable models. In both Chapter 3 and Chap-
ter 4, simulation results are included to demonstrate the effectiveness of our methods. We
conclude with a brief discussion and mention possible future research directions resulting
from this thesis. The appendices provide additional details and proofs.

The research and results presented in Chapter 3 and Chapter 4 have been submitted
previously as a conference paper [45] and a journal article [14] respectively.
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Chapter 2

Background

This chapter provides a brief but self-contained background about the various technical
aspects of this thesis. We begin by presenting some basics from graph theory and graph-
ical models, before moving on to exponential family distributions, and concluding with
the walk-sum interpretation of Gaussian estimation. In each section, we provide a list of
references for readers who are interested in learning more about these topics.

2.1 Graph theory

We present some basic concepts from graph theory that will be useful throughout this thesis.
For more details, we refer the reader to [9, 27, 46].

A graph G = (V, E) consists of a set ofverticesor nodesV and associatededges
E ⊂

(
V
2

)
that link vertices together. Here,

(
V
2

)
represents the set of all unordered pairs of

vertices. Anedgebetween nodess andt is denoted by{s, t}. Thedegreeof a vertex is
the number of edges incident to it. Two vertices are said to beneighborsif there is an edge
between them.

A subgraphS of G = (V, E) is any graph whose vertex set isV ′ ⊆ V , and whose edge
setE ′ is a subsetE ′ ⊆ E(V ′) where

E(V ′) , {{s, t} | {s, t} ∈ E , s, t ∈ V ′} .

A subgraph is said to bespanningif V ′ = V . An induced subgraphS(V ′) is a subgraph
with verticesV ′ and edgesE ′ = E(V ′). A supergraphH of G is any graph whose vertex
setV ′ is a supersetV ′ ⊇ V , and whose edge setE ′ is a supersetE ′ ⊇ E .

A path u0 · · ·uk between two verticesu0 anduk in G is a sequence of distinct ver-
tices{ui}ki=0 such that there exists an edge between each successive pair of vertices, i.e.,
{ui, ui+1} ∈ E for i = 0, . . . , k − 1. A subsetS ⊂ V is said toseparatesubsetsA,B ⊂ V
if every path inG between any vertex inA and any vertex inB passes through a vertex in
S.

A graph is said to beconnectedif there exists a path between every pair of vertices. A
cliqueis a fully connected subgraph, i.e., a subgraph in which each vertex is linked to every
other vertex by an edge. A clique ismaximalif it is not contained as a proper subgraph of
any other clique.
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A cycleis the concatenation of a pathu0 · · ·uk with the vertexu0 such that{uk, u0} ∈
E . A tree is a connected graph that contains no cycles. The number of edges in a tree-
structured graph is one less than the number of vertices. Aforestis a graph, not necessarily
connected, that contains no cycles. Trees and forests form an important class of graphs and
play a central role in the estimation algorithms discussed in this thesis.

Chordal graphs and Junction trees We now describe the class of chordal graphs, and
the junction tree representation for such graphs. These concepts are critical to the develop-
ment of efficient algorithms to solve the maximum-entropy relaxation problem for model
selection.

A graph is said to bechordalor triangulatedif every cycle of length greater than three
in the graph contains an edge between non-neighboring vertices in the cycle. A special
representation for a chordal graph can be specified in terms of the maximal cliques of the
graph.

Definition 2.1 LetC be the set of maximal cliques in a connected graphG. A junction tree
representation ofG is a tree, with the nodes being the elements ofC, which satisfies the
following running intersectionproperty: For every pair of nodes (cliques)Ci andCj in the
junction tree, every node (clique) in the unique path betweenCi andCj containsCi ∩ Cj.

As the following theorem proves, valid junction trees can only be defined for chordal
graphs.

Theorem 2.1 A graph is chordal if and only if it has a junction tree representation.

Proof: See [46].
In general, a chordal graph may have multiple junction tree representations. However,

there is a certain uniqueness about these representations. Each edge{Ci, Cj} in the junction
tree is labeled by the intersection of the cliquesCi ∩Cj. The running intersection property
ensures that this intersection is non-empty. These edge intersections are calledseparators,
and there are|C| − 1 separators.

Theorem 2.2 For a chordal graphG, the setS of separators, with multiplicity, is the same
for any junction tree representation.

Proof: See [43].
Thus, without loss of generality, we can refer tothe junction tree representation of a

chordal graph.
The treewidthof a chordal graph is one less than the cardinality of the largest clique

in the junction tree representation. A graphG is said to bethin if the smallest chordal
supergraph ofG (i.e., one with the least number of extra edges) has small treewidth.

The reason that chordal graphs and junction tree representations are important is that
one can make strong, precise statements about the factorization of probability distribu-
tions defined over chordal graphs based on local marginal distributions on the cliques and
separators in the junction tree representation. This leads to analytical formulas for the com-
putation of the entropy and other quantities of distributions defined on chordal graphs. We
discuss these points in the later sections of this chapter and in Chapter 3 of this thesis.
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Figure 2-1: Illustration of Markov condition: The variablesxA are independent ofxB

conditioned on the variablesxS because the subset of variablesS separatesA andB.

2.2 Graphical models

2.2.1 Definition and Markovianity

A graphical model[46, 47, 53] is a collection of random variables indexed by the vertices
of a graphG = (V, E); each vertexs ∈ V corresponds to a random variablexs, and where
for anyA ⊂ V , xA = {xs|s ∈ A}. The models that we consider in this thesis are defined
with respect to undirected graphs; we note that models defined on directed graphs can be
converted to models on undirected graphs with some loss in structure [62].

Definition 2.2 A distributionp(xV ) is Markov with respect to a graphG = (V, E) if for
any subsetsA,B ⊂ V that are separated by someS ⊂ V , the subset of variablesxA is
conditionally independent ofxB givenxS, i.e. p(xA, xB|xS) = p(xA|xS) · p(xB|xS).

In this manner, graphical models generalize the concept of Markov chains, and are thus
also referred to asMarkov random fields(MRFs). Figure 2-1 provides a simple example.
Any distributionp defined with respect to the graph in the figure must satisfy the condition
thatp(xA, xB|xS) = p(xA|xS) · p(xB|xS). Note that this is only one of several conditional
independence relations (implied by the graph structure) thatp must satisfy in order to be
Markov with respect the graph.

A distribution being Markov with respect to a graph implies that it can be decomposed
into local functions in a very particular way. The following fundamental theorem precisely
relates these two notions of Markovianity and local factorization.

Theorem 2.3 Hammersley-Clifford [53]:Let p(xV ) > 0 be a strictly positive distribution
that is Markov with respect to graphG = (V, E). Then,

p(xV ) =
∏
s∈V

ψs(xs)
∏
E∈E

ψE(xE), (2.1)

where eachψE(xE) is a local function that depends only on the variablesxE, and each
ψs(xs) depends only on variablexs. Conversely, ifp(xV ) is any distribution that factorizes
according to (2.1), thenp(xV ) is Markov with respect toG.
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The functionsψs(xs) andψE(xE) in (2.1) are called potential functions. This theorem
illustrates an important feature of graphical models: Global probability distributions in-
volving a very large number of variables can be defined in a consistent manner using only
local functions that summarize interactions among small subsets of variables.

Junction-tree factorization For distributions defined on chordal graphs, the global dis-
tribution can be factored in terms of local marginal distributions [46].

Theorem 2.4 Let p(xV ) be a distribution that is Markov with respect to a chordal graph
G = (V, E). Let C andS be the cliques and separators respectively in the junction-tree
representation ofG. Then,

p(xV ) =

∏
C∈C p(xC)∏
S∈S p(xS)

, (2.2)

where eachp(xC) is a marginal distribution over the subset of variablesC, and eachp(xS)
is a marginal distribution over the subsetS.

This decomposition into marginal distribution functions plays an important role in the
solution of the maximum entropy relaxation framework for model selection presented in
Chapter 3.

2.2.2 Gaussian graphical models

We consider Gaussian graphical models, also known as Gauss-Markov random fields (GM-
RFs),{xs|s ∈ V } parameterized by a mean vectorµ and a symmetric, positive-definite
covariance matrixP (denoted byP � 0): xV ∼ N (µ, P ) [53, 71]. Eachxs is assumed (for
simplicity) to be a scalar variable. Thus, the distribution is specified as follows:

p(xV ) =
1

(2π · detP )
|V |
2

exp

{
−1

2
(xV − µ)P−1(xV − µ)T

}
, (2.3)

wheredetP denotes the determinant of the matrixP [40].
An alternate natural parameterization for GMRFs is specified in terms of theinforma-

tion matrixJ = P−1 andpotential vectorh = P−1µ, and is denoted byxV ∼ N−1(h, J):

p(xV ) ∝ exp

{
−1

2
xT

V JxV + hTxV

}
. (2.4)

This parameterization is known as theinformation formrepresentation. The importance
of this alternate representation is two-fold. First, Gaussian priors in many applications are
specified in the information form, such as the thin-membrane and thin-plate models used
in image processing [83]. Second, the specialization of the Hammersley-Clifford theorem
(Theorem 2.3) to the case of Gaussian graphical models provides an explicit connection
between the sparsity ofJ and the graph with respect to which the distribution is Markov.

Theorem 2.5 Let xV ∼ N−1(h, J) be a collection of Gaussian random variables, with
joint distribution p(xV ) defined according to (2.4). Let this distribution be Markov with
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Figure 2-2: Gauss-Markov random field sparsity example: The graph on the left serves as
the underlying model. The matrix on the right represents the sparsity pattern of the infor-
mation matrixJ of the corresponding distribution with solid squares representing non-zero
entries and empty squares representing zero entries. The nodes2 and3 are not connected
by an edge; hence, the corresponding entries in theJ matrix are zero.

respect to graphG = (V, E). Then,Js,t 6= 0 if and only if the edge{s, t} ∈ E for every pair
of verticess, t ∈ V .

Proof: See [71].
The example in Figure 2-2 provides a simple illustration of this theorem.
Interpreted in a different manner, the elements of the information matrixJ are also

related to so-calledpartial correlation coefficients. The partial correlation coefficientρt,s

is the correlation coefficient of variablesxt andxs conditioned on knowledge of all the
other variables [53]:

ρt,s ,
cov(xt;xs|x\t,s)√

var(xt|x\t,s)var(xs|x\t,s)
= − Jt,s√

Jt,tJs,s

. (2.5)

Hence,Jt,s = 0 implies thatxt andxs are conditionally independent given all the other
variablesx\t,s.

2.3 Exponential families

We describe an important class of probability distributions known as exponential families
[15]. These families possess a very rich and elegant geometric structure, and the associated
tools that exploit this structure fall in the area of information geometry [3, 22]. Exponential
families have played a significant role in the development of new lines of research in the
graphical models community [80].

2.3.1 Definition

Let X be either a continuous or discrete sample space. We consider parametric families of
probability distributions with supportX|V | defined by

pθ(x) = exp{θTφ(x)− Φ(θ)}, (2.6)
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whereφ : X|V | → Rd are thesufficient statistics, θ are theexponential parameters, and
Φ(θ) = log

∫
exp(θTφ(x))dx is thecumulant generating function1(also known as thelog-

partition function). The family is defined by the setΘ ⊂ Rd of all normalizableθ:

Θ ,
{
θ ∈ Rd : Φ(θ) <∞

}
The connection to graphical models is established by the fact that the statisticsφ(x) are

usually features over small subsets of variables, for exampleφ(x) =
{
xsxt : {s, t} ∈

(
V
2

)}
.

More precisely, the exponential family distributions that we consider are related to so-
called Gibbs distributions [35] in that the statisticsφ are functions over the edgesE and the
verticesV . Thus, by virtue of the exponential, the focus shifts from a product of local edge-
wise potentials as in (2.1) to a linear combination of features over edges. This leads directly
to a specialization of the Hammersley-Clifford theorem that relates the Markovianity of a
distributionpθ to the sparsity of the corresponding exponential parameterθ.

Theorem 2.6 LetxV be some collection of variables, and let

φ(x) = {φs(xs) : s ∈ V }
⋃{

φE(xE) : E ∈
(
V

2

)}
be some set of statistics such that eachφE(xE) andφs(xs) depend only on the correspond-
ing subsets of variablesxE andxs respectively. Then,pθ(x) is Markov with respect to the
graphG = (V, E) for someE ⊂

(
V
2

)
if and only if the collection of exponential parameters{

θE : E ∈
(

V
2

)
\E
}

is zero.

The statisticsφ areminimal if they are linearly independent. We note here that linearly
dependent statistics have also played a role in recent work [78, 79]. An exponential family
is said to beregular if Θ is a non-empty open set inRd. Our focus here is onmarginal-
izable exponential families, in which the marginal distributionp(xS) =

∫
xV \S

pθ(x)dx

for S ⊂ V is also an exponential family distribution based on the subset of statistics
φS̄(xS) , {φS′(xS′) : S ′ ⊆ S} with support insideS. Letting ζ be the exponential pa-
rameter ofp(xS), we have thatp(xS) = pζ(xS) ∝ exp{ζTφS̄(xS)}. Note thatζ 6= θS̄ in
general, whereθS̄ is defined analogous toφS̄.

2.3.2 Log-partition function and moment parameterization

The log-partition functionΦ(θ) possesses a number of important properties [3, 80]. We
begin with the following theorem, which justifies the use of the term cumulant-generating
function forΦ(θ).

Theorem 2.7 Let {φα(x)} be a collection of statistics, and letθ = {θα} be the corre-
sponding exponential parameters of an exponential family of distributions. The derivatives

1Since the focus of this thesis is on continuous Gaussian models, we use integrals. These must be replaced
by sums for discrete models.
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of the log-partition functionΦ(θ) can be computed as follows:

∂Φ(θ)

∂θα

= Epθ
{φα(x)}

∂2Φ(θ)

∂θα∂θβ

= Epθ
[(φα(x)− Epθ

{φα(x)})(φβ(x)− Epθ
{φβ(x)})] .

The second derivative corresponds to the entryEpθ

{
−∂2 log pθ(x)

∂θα∂θβ

}
of the Fisher information

matrix with respect to the exponential parametersθ.

Proof: See [3].
The Fisher information matrix [69] with respect to theθ parameters is positive-definite

for a minimal set of statistics. In other words, the Hessian ofΦ(θ) is positive-definite.

Corollary 2.1 Let {φα(x)} be a collection of minimal statistics, and letθ = {θα} be the
corresponding exponential parameters of an exponential family of distributions. Then, the
log-partition functionΦ(θ) is strictly convex.

The convexity of the log-partition function plays a critical role in the development of
an alternate parameterization for exponential family distributions. This is achieved through
the following Legendre transformation [65]:

Ψ(η) = sup
θ
{ηT θ − Φ(θ)}. (2.7)

The vectorη has the same dimension asθ. By definition [65], we have thatΨ(η) is also a
strictly convex function ofη.

In this maximization, one can differentiate the right-hand-side and check that the opti-
mal θ∗, if it exists2, is the exponential parameter such that:

Epθ∗ {φ(x)} = η. (2.8)

The vectorη specifies themoment parameterizationof the exponential family. Not every
η ∈ Rd can be realized as the expectation of the statisticsφ with respect to some parameter
θ ∈ Θ. Thus, we have the following definition for the set of realizable moment parameters:

M =
{
η ∈ Rd : ∃θ ∈ Θ such that Epθ

{φ(x)} = η
}
. (2.9)

Let pθ(x) be an exponential family distribution with moment parametersEpθ
{φ(x)} =

η in a marginalizable exponential family. One can check that the moments of the marginal
distributionpζ(xS) ∝ exp{ζTφS̄(xS)} of subsetS are determined by the corresponding
subset of momentsηS̄ , {ηS′ : S ′ ⊆ S} with support insideS.

For exponential families with minimal statisticsφ there exists a bijective mapΛ : Θ→
M that converts exponential parameters to moment parameters:

Λ(θ) = Epθ
{φ(x)} . (2.10)

2If there exists no finite optimalθ∗, the value ofΨ(η) is taken to be∞.
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Thus, the optimalθ in (2.7) is given byΛ−1(η). Since the mapΛ is bijective, eachη ∈ M
uniquely specifies a distribution parameterized by the exponential parameterθ = Λ−1(η).

Due to the convexity ofΨ(η) with respect toη, the Legendre transformation can also
be applied toΨ(η) to recoverΦ(θ) for exponential families with minimal statistics:

Φ(θ) = sup
η
{θTη −Ψ(η)}, (2.11)

with the optimal value, if it exists, being attained whenη = Λ(θ). Analogous to Theo-
rem 2.7, we have the following result for the derivatives ofΨ(η).

Theorem 2.8 Let {φα(x)} be a collection of minimal statistics, and letθ = {θα} be the
corresponding exponential parameters of an exponential family of distributions. The first
derivative of the dual functionΨ(η) of the log-partition functionΦ(θ) can be computed as
follows:

∂Ψ(η)

∂ηα

= Λ−1(η)α.

The second derivative∂
2Ψ(η)

∂ηα∂ηβ
corresponds to the(α, β) entry of the Fisher information

matrix with respect to the moment parametersη.

To simplify notation, we refer to the moment parameter corresponding to an exponential
parameterθ by η(θ), and the exponential parameter corresponding to a moment parameter
η by θ(η). LettingG(θ) andG∗(η) denote the Fisher information matrices with respect to
the exponential and moment parameterizations, we have that [3]

G∗(η) = G(θ(η))−1. (2.12)

Interpretation of Ψ(η) Evaluating the functionΨ(η), we have that

Ψ(η) = Ψ(η(θ)) = η(θ)T θ − Φ(θ)

=

∫
pθ(x)

[
φ(x)T θ − Φ(θ)

]
dx

= Epθ
{log pθ(x)} .

Hence,Ψ(η) is the negative entropy [20] of the distribution parameterized byθ(η). This
interpretation, along with the maximum entropy principle discussed in the next section,
plays an important role in the development of the maximum-entropy formulation for model
selection in Chapter 3.

2.3.3 Gaussian models as exponential families

The exponential family representation of this model isp(x) ∝ exp{−1
2
xTJx+hTx} based

on theinformation formparametersJ = P−1 andh = P−1µ (Section 2.2.2). Defining
sufficient statisticsφ as

φ(x) =

((
x2

s

xs

)
,∀s ∈ V

)
∪
(
xsxt,∀{s, t} ∈

(
V

2

))
(2.13)
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we obtainθ and η parameters that are respectively given by elements of the(J, h) and
(P, µ) representations:

θ =

((
−1

2
Js,s

hs

)
,∀s
)
∪ (−Js,t,∀{s, t}) (2.14)

η =

((
Ps,s

µs

)
,∀s
)
∪ (Ps,t,∀{s, t}) (2.15)

Converting between the moment and exponential parameters is equivalent to converting
betweenP andJ (and betweenµ andh; but the critical transformation is betweenP and
J). This can be achieved by matrix inversion, which, in general, is anO(|V |3) computa-
tion. Note, also, that marginalization is simplest in the moment parameterization since the
marginal density for a subset of variablesE is determined by the corresponding subset of
the moment parameters (a principle submatrix ofP ).

2.4 Information geometry of exponential families

In this section, we discuss a kind of projection onto sub-manifolds of exponential family
distributions. In order to define projections, we begin by describing an appropriate notion
of “distance”.

2.4.1 Kullback-Leibler divergence

The Kullback-Leibler(KL) divergence between two distributionsp1 andp2 [20] is given
by:

D(p1||p2) =

∫
p1(x) log

p1(x)

p2(x)
dx.

It is a non-negative measure of the contrast between distributionsp1 andp2, and is zero if
and only ifp1(x) = p2(x) (a.e.).

For exponential family distributions the KL divergence possesses a special form. Let
pη1 andpθ2 be distributions parameterized by moment and exponential parameters respec-
tively. Then, the KL divergenceD(pη1||pθ2) is given by

D(pη1||pθ2) = Ψ(η1) + Φ(θ2)− 〈η1, θ2〉,

where the functionsΨ andΦ are as defined in Section 2.3. We abuse notation slightly by
referring toD(pη1||pθ2) by D(η1||θ2), with the implicit understanding that the divergence
is with respect to the distributionspη1 andpθ2.

Keeping the second argument fixed, KL divergence is a convex function with respect to
the moment parameters in the first argument:

D(η||η∗) = Ψ(η) + Φ(θ(η∗))− 〈η, θ(η∗)〉.

The convexity follows from the fact thatΨ(η) is convex with respect toη and〈η, θ(η∗)〉 is
simply a linear function ofη. Note here that while the divergence is between two distribu-
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tions parameterized byη andη∗, the convexity is with respect toη in the first argument, i.e.,
D(η||η∗) is convex when viewed as a function ofη in the first argument with the second
argument fixed. A related point is thatD(η||η∗) is also theBregman distance[11] induced
by the functionΨ(η):

D(η||η∗) = Ψ(η)−Ψ(η∗)− 〈η − η∗, θ(η∗)〉.

A similar analysis can be carried out with respect to the exponential parameters, and
by switching the order of the arguments inD(·||·). With the first argument fixed, KL
divergence is a convex function with respect to the exponential parameters in the second
argument:

D(θ∗||θ) = Ψ(η(θ∗)) + Φ(θ)− 〈η(θ∗), θ〉.

Again, the convexity follows from the fact thatΦ(θ) is convex with respect toθ and
〈η(θ∗), θ〉 is simply a linear function ofθ. A Bregman distance interpretation can also be
provided in this case, withD(θ∗||θ) being the Bregman distance induced by the function
Φ(θ):

D(θ∗||θ) = Φ(θ)− Φ(θ∗)− 〈η(θ∗), θ − θ∗〉.

2.4.2 I-projections in exponential families

An e-flat manifoldis a sub-manifold of probability distributions defined by an affine sub-
space of exponential parameters. An important example of an e-flat manifold is the set of
distributions that are Markov with respect to a graphG = (V, E):

Θ(G) = {pθ(x) : θE = 0 for E /∈ E} .

One can define m-flat manifolds in an analogous manner as the set of distributions that are
defined by an affine subspace of moment parameters.

An information projection, or I-projection, of a distribution parameterized byθ∗ onto
an e-flat manifoldMe is defined as the closest point topθ∗ in Me in the sense of KL
divergence:

arg min
pθ∈Me

D(pθ∗||pθ).

Abusing notation slightly by denoting the elements ofMe as exponential parameters rather
than the distributions represented by these parameters, the above problem becomes:

arg min
θ∈Me

D(θ∗||θ).

We have from the previous section that KL divergence is a convex function with respect to
exponential parameters in the second argument when the first argument is fixed. Further,
an e-flat manifold is a convex set of exponential parameters (because it is defined by an
affine set of exponential parameters). Thus, the above formulation is a convex optimization
problem with a unique global minimizer [10].

A particular Pythagorean identity holds for I-projections onto e-flat manifolds.

Theorem 2.9 Letpθ∗ represent some distribution with I-projectionpθ′ into an e-flat mani-
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foldMe. Then, for anypθ ∈Me, we have that:

D(pθ∗||pθ) = D(pθ∗||pθ′) +D(pθ′||pθ).

An I-projection onto an m-flat manifold, and the associated Pythagorean identity, can be
developed in an analogous manner (with a switching of the arguments in KL divergence).

2.4.3 Maximum entropy principle and duality to I-projection

We begin by stating the abstract maximum entropy principle with respect to general dis-
tributions before specializing with respect to exponential family distributions. Letφ be a
set of features, and letH(p) = −Ep{log p(x)} denote the entropy of distributionp [20].
Consider the followingmaximum-entropyproblem:

arg maxp H(p)

s.t. Ep{φ(x)} = α∗.

Theorem 2.10 Maximum-entropy principle: The solution to the above maximum-entropy
problem, if it exists, has the following form:

p(x) ∝ exp{λTφ(x)}.

Proof: See [20] for an elementary proof. Also see [42].
Thus, the maximum-entropy principle states that subject to linear constraints on a set

of statistics, the entropy-maximizing distribution amongall distributions lies in the expo-
nential family based on those statistics used to define the constraints.

We now specialize the above formulation to exponential family distributions. Letη be
the moment parameters of an exponential family, and letηV andηE represent the subset
of moments corresponding to the verticesV and a set of edgesE respectively on which
constraints are specified:

arg maxη∈M H(η)

s.t. ηE{φ(x)} = η∗E , ηV = η∗V .

Here,H(η) refers to the entropyH(pη). The maximum-entropy principle states that the
entropy-maximizing distribution, if it exists, is Markov with respect to the graphG =
(V, E). Note that the constraint space is restricted to exponential family distributions rather
than all distributions. However, as can be easily seen from the maximum-entropy principle,
this doesn’t affect the solution to the problem. The above optimization is over a convex set
of moment parameters (indeed, an affine set), and the objective function is concave with
respect toη becauseH(η) = −Ψ(η). Thus, the maximum-entropy problem parameterized
with respect to moment parameters is a convex optimization program [10].

The maximum-entropy relaxation formulation in Chapter 3 introduces a relaxation of
the equality moment constraints, leading to an effective framework for model selection.
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Duality with I-projection Let Θ(G) represent an e-flat manifold consisting of distribu-
tions that are Markov with respect to graphG = (V, E). Let η∗ be a distribution whose I-
projection ontoΘ(G) is the distribution parameterized byθ′. Next, consider the maximum-
entropy problem with constraintsηV = η∗V andηE = η∗E . Let the entropy maximizing
distribution be given byη′. Then, the pair(θ′, η′) are Legendre dual pairs, i.e.,η′ = Λ(θ′).

This duality provides an interesting perspective about I-projections onto e-flat mani-
folds. Consider an alternative representation forη∗ specified in terms of themixed coordi-
nates(η∗V , η

∗
E , θ(η

∗)Ec), whereEc represents the complement of the setE . With respect to
these mixed coordinates, the I-projection ontoΘ(G) can be viewed as a Euclidean projec-
tion with the resulting mixed coordinates being(η∗V , η

∗
E , 0).

2.5 Modeling and estimation in graphical models

In this section, we describe the modeling and estimation problems in graphical models. We
discuss efficient algorithms to solve these problems in trees. For the general estimation
problem in graphs with cycles, these tree-based algorithms provide the building block for
the efficient algorithms discussed in Chapter 4.

2.5.1 Modeling

Model selectionin graphical models is the problem of learning graph (Markov) structure
given empirical statictics. In the context of exponential families, the problem is one of
converting a specified set of empirical momentsη∗ to a θ ∈ F, whereF represents a
collection of tractable distributions. IfF is the collection of tree-structured distributions
(i.e., treewidth-1 graphical models), the modeling problem can be solved efficiently using
a maximum spanning tree formulation proposed by Chow and Liu [16]. IfF is chosen
to be the collection of treewidth-k distributions fork > 1, the problem becomes NP-hard
[49]. The maximum-entropy relaxation framework proposed in Chapter 3 is an alternative
formulation, with roughly the same intent, for which a tractable solution exists.

In the rest of this section, we briefly describe the Chow-Liu algorithm. LetF = {p(x) :
p(x) Markov on some tree}. Given some empirical distributionp∗, the model selection
problem reduces to:

arg min
p∈F

D(p∗||p). (2.16)

This problem involves both a variational aspect (the best approximation for a given tree),
and a combinatorial aspect (the best tree). Lettingp∗(xS) denote the marginal distribution
of variable subsetS, we compute the weights between every pair of variabless, t ∈ V as
follows:

ws,t = D (p∗(xs, xt)||p∗(xs)p
∗(xt)) .

The weights correspond to the mutual information between variablesxs andxt. Chow
and Liu show that finding the maximum spanning tree with these edge weights solves the
problem (2.16).

28



2.5.2 Estimation

In many applications one is provided with noisy observationsy of a hidden statex, and
the goal is toestimatex from y [69]. Taking the Bayesian point of view, this reduces to
computing the mean, or in general the marginals, of the conditional distributionpx|y. From
the point of view of exponential families, estimation, also referred to asinference, reduces
to computing all or a subset of the momentsη corresponding to the exponential parameters
θ of the conditional distribution. We assume that this conditional distribution is provided
in advance, and our discussion is with respect to the graphical structure of the conditional
distribution.

Estimation in trees The estimation problem can be solved with linear complexity in
tree-structured graphical models using the Belief Propagation (BP) algorithm [62]. BP is a
generalization of the recursive forwards-backwards algorithms originally developed for the
special case of inference in Markov chains [48]. BP has an interpretation as a “message-
passing” algorithm in that messages are passed locally between variables along the edges
of the tree, thus providing an efficient method to compute exact estimates in a distributed
manner. We refer the reader to a several publications that provide detailed derivations and
new interpretations of BP [79], and only provide a brief summary of a particular parallel
form of the algorithm here.

The BP messages are passed between each pair of variables connected by an edge, and
can be computed as follows:

m
(n)
t→s(xs) ∝

∑
x′t

ψst(xs, x
′
t)ψt(x

′
t)

∏
u∈N(t)\s

m
(n−1)
u→t (x′t),

whereN(t) refers to the neighbors oft. These messages can also be computed in a serial
manner, so that a message is sent along an edge in each direction only once. For example,
some arbitrary nodes ∈ V can be assigned as the “root” node, and messages can be passed
in an up-down sweep from leaves (degree-1 nodes) to the root and back to the leaves. For
tree-structured graphs, the BP messages converge in a finite number of iterations propor-
tional to the diameter of the graph (length of the longest path) [62]. The (approximate)
marginals at each iteration can be computed as follows:

p(n)(xs) ∝ ψs(xs)
∏

t∈N(s)

m
(n)
t→s(xs).

When the messages converge in tree-structured models, these marginals are exact [62]. For
a nodes, each of its neighborst ∈ N(s) corresponds to the root of a subtree. The messages
from eacht ∈ N(s) to s can be interpreted as the summary of the information in the subtree
rooted att.

In tree-structured Gaussian graphical models withx|y ∼ N−1(h, J), we obtain the
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following parametric BP updates [56, 63]:

J
(n)
t\s = Jt,t +

∑
u∈N(t)\s

∆J
(n−1)
u→t ; h

(n)
t\s = ht +

∑
u∈N(t)\s

∆h
(n−1)
u→t

∆J
(n)
t→s = −Js,tJ

(n)
t\s

−1
Jt,s ; ∆h

(n)
t→s = −Js,tJ

(n)
t\s

−1
h

(n)
t\s

J (n)
s,s = Js,s +

∑
t∈N(s)

∆J
(n)
t→s ; h(n)

s = hs +
∑

t∈N(s)

∆h
(n)
t→s.

At iterationn, the estimates for the mean and variance at nodes are computed asµ(n)
s =

J
(n)
s,s

−1
h

(n)
s andP (n)

s,s = J
(n)
s,s

−1
.

Estimation in graphs containing cycles For graphs with loops, a natural strategy is to
cluster subsets of nodes in the graph to create a cycle-free graph with “super-nodes”. This
can be accomplished in a consistent manner by constructing a junction tree of the chordal
supergraph of the given graphical model before propagating BP-like updates throughout the
junction tree to provide exact marginals on the cliques [46]. This junction-tree algorithm is
effective only for graphs with thin junction trees, because the algorithm involves an exact
inference step within each clique.

Another approach that provides approximate marginals and has been applied with some
success is the loopy belief propagation algorithm [81]. This algorithm essentially uses the
same local updates as in the BP algorithm for trees presented previously.

A variety of other methods for estimation in graphs containing cycles have been devel-
oped based on performing a sequence of computations on tractable subgraphs (i.e., sub-
graphs on which exact estimation is efficient) [68, 74, 79]. We discuss some of these meth-
ods and present a rich class of algorithms that exploit tractable subgraph computations in
Chapter 4.

2.6 Walk-sum interpretation of Gaussian estimation

Let the conditional distribution of a Gaussian graphical model be parameterized in the
information form asx|y ∼ N−1(h, J). We note thatJ is a symmetric positive-definite
matrix. The posterior mean can be computed as the solution to the following linear system:

Jx̂ = h. (2.17)

For the discussion in this section, we assume that the matrixJ defined onG = (V, E)
has been normalized to have unit diagonal entries. For example, ifD is a diagonal matrix
containing the diagonal entries ofJ , then the matrixD− 1

2JD− 1
2 contains re-scaled entries

of J at off-diagonal locations and1’s along the diagonal. Such a re-scaling does not affect
the convergence results of the algorithms in Chapter 4 (see the chapter for more details).
However, re-scaled matrices are useful in order to provide simple characterizations of walk-
sums.
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2.6.1 Walk-summable Gaussian graphical models

We begin by interpreting Gaussian estimation as the computation of walk-sums inG. Let
R = I−J . The off-diagonal elements ofR are precisely the partial correlation coefficients
from (2.5), and have the same sparsity structure as that ofJ (and consequently the same
structure asG). Let these off-diagonal entries be the edge weights inG, i.e. Rt,s is the
weight of the edge{t, s}. A walk in G is defined to be a sequence of verticesw = {wi}`i=0

such that{wi, wi+1} ∈ E for eachi = 0, . . . , `− 1. Thus, there is no restriction on a walk
crossing the same node or traversing the same edge multiple times. Theweightof the walk
φ(w) is defined:

φ(w) ,
`−1∏
i=0

Rwi,wi+1
.

Note that the partial-correlation matrixR is essentially a matrix of edge weights. Inter-
preted differently, one can also view each element ofR as the weight of the length-1 walk

between two vertices. In general,
(
R`
)

t,s
is then the walk-sumφ(s

`→ t) over the (finite)
set of all length-̀ walks froms to t [56], where thewalk-sumover a finite set is the sum of
the weights of the walks in the set. Based on this point of view, we can interpret estimation
in Gaussian models from equation (4.1) in terms of walk-sums:

Pt,s =
(
(I −R)−1

)
t,s

=
∞∑

`=0

(
R`
)

t,s
=

∞∑
`=0

φ(s
`→ t). (2.18)

Thus, the covariance between variablesxt andxs is the length-ordered sum over all walks
from s to t. This, however, is a very specific instance of an inference algorithm that con-
verges if the spectral radius condition%(R) < 1 is satisfied (so that the matrix geometric
series converges). Other inference algorithms, however, may compute walks indifferent
orders. In order to analyze the convergence of general inference algorithms that submit to
a walk-sum interpretation, a stronger condition was developed in [56] as follows. Given
a countable set of walksW, thewalk-sumoverW is the unordered sum of the individual
weights of the walks contained inW:

φ(W) ,
∑
w∈W

φ(w).

In order for this sum to be well-defined, we consider the following class of Gaussian graph-
ical models.

Definition 2.3 A Gaussian graphical model defined onG = (V, E) is said to bewalk-
summableif the absolute walk-sums over the set of all walks between every pair of vertices
in G are well-defined. That is, for every pairs, t ∈ V ,

φ̄(s→ t) ,
∑

w∈W(s→t)

|φ(w)| <∞.
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Here,φ̄ denotes absolute walk-sums over a set of walks.W(s → t) corresponds to the set
of all walks3 beginning at vertexs and ending at the vertext in G. Section 2.6.2 lists some
easily tested equivalent and sufficient conditions for walk-summability. Based on the ab-
solute convergence condition, walk-summability implies that walk-sums over a countable
set of walks can be computed inany orderand that the unordered walk-sumφ(s → t) is
well-defined [36, 66]. Therefore, in walk-summable models, the covariances and means
can be interpreted as follows:

Pt,s = φ(s→ t), (2.19)

µt =
∑
s∈V

Pt,shs =
∑
s∈V

hsφ(s→ t), (2.20)

where (2.18) is used in the first equation, and (2.19) in the second. In words, the covariance
between variablesxs andxt is the walk-sum over the set of all walks froms to t, and the
mean of variablext is the walk-sum over all walks ending att with each walk being re-
weighted by the potential value at the starting node.

The goal in walk-sum analysis is to interpret an inference algorithm as the computation
of walk-sums inG. If the analysis shows that the walks being computed by an inference
algorithm are the same as those required for the computation of the means and covari-
ances above, then the correctness of the algorithm can be concluded directly for walk-
summable models. This conclusion can be reached regardless of the order in which the
algorithm computes the walks due to the fact that walk-sums can be computed inanyorder
in walk-summable models. Thus, the walk-sum formalism allows for very strong yet intu-
itive statements about the convergence of inference algorithms that submit to a walk-sum
interpretation.

2.6.2 Conditions for walk-summability and Walk-sum algebra

Very importantly, there are easily testable necessary and sufficient conditions for walk-
summability. LetR̄ denote the matrix of the absolute values of the elements ofR. Then,
walk-summability is equivalent to either [56]

• %(R̄) < 1, or

• I − R̄ � 0.

From the second condition, one can draw a connection to H-matrices in the linear alge-
bra literature [41, 76]. Specifically, walk-summable information matrices are symmetric,
positive-definite H-matrices.

Walk-summability of a model is sufficient but not necessary for the validity of the model
(positive-definite information/covariance). Many classes of models are walk-summable
[56]:

1. Diagonally-dominant models, i.e. for eachs ∈ V ,
∑

t6=s |Js,t| < Js,s.

3We denote walk-sets byW but generally drop this notation when referring to the walk-sum overW, i.e.
the walk-sum of the setW(∼) is denoted byφ(∼).
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2. Valid non-frustrated models, i.e. every cycle has an even number of negative edge
weights andI − R � 0. Special cases include valid attractive models and tree-
structured models.

3. Pairwise normalizablemodels, i.e. there exists a diagonal matrixD � 0 and a
collection of matrices{Je � 0|(Je)s,t = 0 if (s, t) 6= e, e ∈ E} such thatJ =
D +

∑
e∈E Je.

An example of a commonly encountered walk-summable model in statistical image pro-
cessing is the thin-membrane prior [29, 83]. Further, linear systems involving sparse diag-
onally dominant matrices are also a common feature in finite element approximations of
elliptical partial differential equations [72].

We now describe some operations that can be performed on walk-sets, and the corre-
sponding walk-sum formulas. These relations are valid in walk-summable models [56]:

• Let {Un}∞n=1 be a countable collection of mutually disjoint walk-sets. From the sum-
partition theorem for absolutely summable series [36], we have thatφ(∪∞n=1Un) =∑∞

n=1 φ(Un). Further, let{Un}∞n=1 be a countable collection of walk-sets whereUn ⊆
Un+1. We have thatφ(∪∞n=1Un) = limn→∞ φ(Un).

• Let u = u0u1 · · ·uend andv = vstartv1 · · · v`(v) be walks such thatuend = vstart. The
concatenation of the walks is defined to beu · v , u0u1 · · ·uendv1 · · · v`(v). Now
consider a walk-setU with all walks ending at vertexuend and a walk-setV with all
walks starting atvstart = uend. The concatenation of the walk-setsU ,V is defined:

U ⊗ V , {u · v | u ∈ U , v ∈ V}.

If every walkw ∈ U ⊗ V can be decomposed uniquely intou ∈ U andv ∈ V so that
w = u · v, thenU ⊗ V is said to beuniquely decomposableinto the setsU ,V. For
such uniquely decomposable walk-sets,φ(U ⊗ V) = φ(U)φ(V).

Finally, the following notational convention is employed in this thesis. We use wild-
card symbols (∗ and•) to denote a union over all vertices inG. For example, given a
collection of walk-setsW(s), we interpretW(∗) as

⋃
s∈V W(s). Further, the walk-sum

over the setW(∗) is definedφ(W(∗)) ,
∑

s∈V φ(W(s)). In addition to edges being
assigned weights, vertices can also be assigned weights (for example, the potential vector
h). A re-weighted walk-sum of a walkw = w0 · · ·w` with vertex weight vectorh is then
defined to beφ(h;w) , hw0φ(w). Based on this notation, the mean of variablext from
(2.20) can be re-written as

µt = φ(h; ∗ → t). (2.21)

2.7 Algorithms for convex optimization

We conclude the background chapter by describing an abstract framework for convex op-
timization problems, and specifying a basic primal-dual interior point algorithm to solve
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these problems. This discussion is relevant to understanding and solving the maximum-
entropy formulation for model selection presented in Chapter 3. As with the previous
sections, our presentation is brief. For more details, we refer the reader to the vast and rich
literature on convex optimization [8, 10, 65]. This section follows the style of presentation
in [10].

2.7.1 General convex optimization problems, duality, and optimality
conditions

Let fi be convex functions fori = 0, . . . ,m, and lethj be affine functions forj = 1, . . . , p.
Consider the followingconvex optimizationproblem:

(P) arg min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.

Our maximum-entropy formulation in Chapter 3 is expressed in terms ofmaximizingacon-
cavefunction, subject to convex constraints. We will also refer to such problems as convex
optimization problems. Convex optimization problems possess the interesting property
that any locally optimal solution is also globally optimal. Thus, if a solution to the prob-
lem exists, it is unique. Given such an optimization problem, theLagrangianis defined as
follows:

L(x, λ, ν) = f0(x) +
∑

i

λifi(x) +
∑

j

νjhj(x).

The vectorsλ andν are known as thedual variables. TheLagrange dualfunction is then
the solution to the following optimization problem:

g(λ, ν) = inf
x
L(x, λ, ν),

where the domain of minimization is the intersection of the domains of the functionsfi and
hj. Thedual problemis defined as a maximization involvingg(λ, ν):

(D) arg max
λ,ν

g(λ, ν)

s.t. λi ≥ 0, i = 1, . . . ,m.

We will refer to the constraints in this problem using the shorthand notationλ � 0. The
dual problem is also convex (in fact, even if the original problem(P) is not convex).

The problem(P) is also known as the primal problem. Letp∗ be the optimal value of
(P). One can check thatg(λ, ν) ≤ p∗ for anyλ � 0 and anyν. Therefore, the dual problem
(D) can be viewed as optimizing over all the lower bounds in order to find the tightest one.
Let d∗ be the optimal value of(D). We then have the following inequality, known asweak
duality:

p∗ ≥ d∗.
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The non-negative differencep∗ − d∗ is theduality gap. Strong dualityis said to hold when
p∗ = d∗, i.e. when there is no duality gap. Slater’s constraint qualifications provide a simple
condition for checking that there is no duality gap in a convex optimization problem:

∃x′ s.t. fi(x
′) < 0, for i = 1, . . . ,m, and

hj(x
′) = 0, for j = 1, . . . , p.

These conditions state that there exists anx′ such that the equality constraints are satisfied,
and the inequality constraints are satisfiedstrictly.

Optimality conditions Suppose that Slater’s condition holds for a convex optimization
problem. The valuesx∗ and(λ∗, ν∗) are the optimal values for the primal and dual vari-
ables respectively, if and only if they satisfy the following Karush-Kuhn-Tucker (KKT)
conditions [50, 52]:

fi(x
∗) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m (2.22)

∇f0(x
∗) +

∑
i

λ∗i∇fi(x
∗) +

∑
j

ν∗j∇hj(x
∗) = 0. (2.23)

The fourth condition (2.22) is known ascomplementary slackness. The set{i : λ∗i = 0}
consists of the indices corresponding toinactiveconstraints.

2.7.2 Primal-dual interior point methods

Interior-point methods form an important class of algorithms to solve optimization prob-
lems. They are distinguished by the fact that they arrive at the solution by traversing
through the interior of the feasible set (the set of points that satisfy the constraints), rather
than following the boundary of the feasible set (see for example the simplex method [23]).
Note that Slater’s constraint qualifications must hold for interior-point methods to be appli-
cable. Thus, we assume for the rest of this section that Slater’s condition is satisfied.

Primal-dual algorithms form an important class of interior-point methods, and can often
achieve super-linear convergence performance. Here, we describe a basic version of the
algorithm, the details of which can be found in [10]. For a more advanced treatment of
these algorithms, we refer the reader to [85]. We will focus here on convex optimization
problems consisting only of convex, inequality constraints, because the maximum-entropy
framework in Chapter 3 does not contain any equality constraints.

A primal-dual algorithm is so called because it jointly computes both the primal op-
timal variablesx∗ and the dual optimal variablesλ∗. We describe some notation before
proceeding with the specification of the algorithm. Letf(x) = [f1(x), . . . , fm(x)]T be a
vector of the constraint functions evaluated at a pointx, and let the Jacobian off(x) be
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defined:
Df(x) =

[
∇f1(x)

T , . . . ,∇fm(x)T
]T
.

Thedual residualis defined as follows:

rdual = ∇f0(x) +Df(x)Tλ,

and thecentral residualas:

(rcent)i = −λifi(x)−
1

t
, i = 1, . . . ,m,

wheret > 0 is a parameter that controls how close the algorithm is to convergence through
the ratiom

t
(this ratio is also called thesurrogate duality gap). These residual parameters

are used to couple the primal and dual variables, so that they can be jointly optimized.
The input to the primal-dual algorithm is a strictly feasiblex, i.e. f(x) ≺ 0, dual

variablesλ � 0, and someµ > 1, εfeas > 0 andε > 0 (see details to follow for choosing
these parameters). The following are the main steps in the primal-dual algorithm:

1. Sett = µm
−f(x)T λ

.

2. Compute the residualsrdual and rcent. Compute asearch direction(∆xpd,∆λpd).
The primal search direction is the solution to the linear system:

Mpd ·∆xpd = −

(
∇f0(x) +

1

t

∑
i

∇fi(x)

−fi(x)

)
,

where the matrixMpd is specified as

Mpd = ∇2f0(x) +
∑

i

λi∇2fi(x) +
∑

i

λi

−fi(x)
∇fi(x)∇fi(x)

T .

The dual search direction is then computed as:

∆λpd = −diag(f(x))−1diag(λ)Df(x)∆xpd + diag(f(x))rcent,

wherediag(v) denotes a diagonal matrix with the entries of the vectorv along the
diagonal.

3. Given the search directions, the next task is to determine thelengthof the step to be
taken in these directions. This one-dimensional search procedure is known asline-
search. Let rjoint(x, λ) = [rcent(x, λ) rdual(x, λ)]T denote the joint residual vector.
Let xnew = x+ s∆xpd andλnew = λ+ s∆λpd denote the updated values ofx andλ
if a step of lengths were to be taken along the search directions. Given a parameter
α (see details below), the largests < 1 must be found such that

‖rjoint(xnew, λnew)‖ ≤ (1− αs) ‖rjoint(x, λ)‖ ,
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After such ans is found, we updatex andλ as:

x ← x+ s∆xpd

λ ← λ+ s∆λpd.

4. If ‖rdual‖ ≤ εfeas and−f(x)Tλ ≤ ε, then STOP. Otherwise, go back to step1.

The parameterµ is chosen to be around10, and the line-search parameterα is chosen to be
in the range0.01 to 0.1. The tolerancesε andεfeas can be used to specify the accuracy to
which a solution is desired, and can be chosen to be around10−8.

Step2 in the primal-dual algorithm is the most computationally intensive among the
four steps. The dimension of the matrixMpd can be large in applications involving many
variables. In Chapter 3, we exploit the sparsity structure of this matrix in order to solve the
linear system efficiently.

37



38



Chapter 3

Modeling using Maximum Entropy
Relaxation

In this chapter, we propose a novel framework for learning the Markov structure in a col-
lection of variables given an empirical distribution. Our approach can also be viewed as
a technique to construct tractable graphical model approximations to intractable distribu-
tions. The method is based on the maximum-entropy principle, which implicity favors
sparse graphical models (see Section 2.4.3). Our formulation is based on a relaxation of the
equality moment constraints in the classical maximum-entropy problem. We replace these
linear equality constraints by a collection of non-linear convex constraints, each based on
the marginal information divergence between a subset of variables.

Several methods have recently appeared [6, 54, 77] using`1-penalized information pro-
jections, where aǹ1-norm on model parameters is used to favor sparse graphs. It is known
that these methods are dual to the maximum-entropy method using`∞ moment constraints
[28], which is similar to our approach. However, the constraints in our formulation are
expressed, perhaps more naturally, in terms of relative entropy. As a result, an interesting
feature of our framework is that the optimal distribution isinvariant to reparameterization
of the exponential family. We emphasize this point later in this chapter when we formally
discuss our method.

We begin by providing a detailed description of our framework, and discuss some of
its salient features in Section 3.1. In Section 3.2, we develop a primal-dual interior point
algorithm to solve this problem by exploiting tractable calculations on chordal graphs. We
demonstrate the effectiveness of our approach in learning the Markov structure of simple
models from data through simulation results in Section 3.3. We conclude with a brief sum-
mary in Section 4.5. Much of our discussion in Section 3.1 and Section 3.2 is for general
exponential family distributions. Where relevant, we provide specific details pertaining to
the case of Gaussian models. The simulation results in Section 3.3 focus exclusively on
Gaussian model selection.
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3.1 Maximum Entropy Relaxation

3.1.1 Exponential Family Formulation

LetF be a marginalizable exponential family (see Section 2.3) with statisticsφ and moment
parametersη ∈M. Letp∗ be a given probability distribution with corresponding moments
η∗ , Ep∗{φ(x)}. We would like to identify a lower-order Markov approximation ofp∗

defined on some sparse graph (to be determined) that still provides a reasonably faithful
approximation of the givenp∗.

We propose to address this problem by solution of the followingMaximum Entropy
Relaxation(MER) problem:

(MER)

arg max H(η)
s.t. η ∈M

DE(ηĒ||η∗Ē) ≤ δE, ∀E ∈ E
Dv(ηv||η∗v) ≤ δv, ∀v ∈ V

whereH is the entropy in the complete family,DE andDv are the marginal divergences
onE ∈ E andv ∈ V respectively, the edge setE serves to specify the constraint set, and
δ = {δE, E ∈ E}∪{δv, v ∈ V } are a specified set of tolerances on marginal divergences. In
this problem,ηĒ is the subset of all the moment parameters that have support inside edge
E, i.e., η ¯{i,j} = {ηi, ηj, ηij}. Note that we restrict our attention to pairwise edges in the
edge-setE , which suffices for Gaussian models; however, this restriction can be removed
to include higher-order interactions between subsets of variables (for example in discrete
models).

The entropyH(η) is a strictly concave function ofη, because the statisticsφ are minimal
(see Section 2.3).M is a convex subset ofRd, and each marginal divergenceDE(ηĒ||η∗Ē)
(orDv(ηv||η∗v)) is a convex function ofηĒ (or ηv) for any fixed valued ofη∗

Ē
(or η∗v). Hence,

this is a convex optimization problem. Thus, if the maximum entropy is obtained by some
η̃ ∈ M, it is the unique solution of the MER problem. Further, forδ > 0 the problem is
strictly feasible in that the inequality constraints can be satisfied strictly. This implies that
Slater’s condition is satisfied (see Section 2.7). Therefore, we are free to apply the vari-
ous analysis tools such as complementary slackness and the Karush-Kuhn-Tucker (KKT)
conditions described in Section 2.7.1, and the primal-dual interior-point algorithm of Sec-
tion 2.7.2.

Invariance with respect to reparameterization In the formulation of the MER problem,
the subset of moment parametersηĒ corresponding to edgeE are exactly the moment pa-
rameters of the marginal distribution on edgeE. This is because the underlying exponential
family is marginalizable (see Section 2.3.2). Thus, the MER problem could alternatively
be written in a more general form as follows:

arg max H(p)
s.t. p ∈ F

DE(pE||p∗E) ≤ δE, ∀E ∈ E
Dv(pv||p∗v) ≤ δv, ∀v ∈ V
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where the only constraint onp is that it must belong to the exponential familyF. Note
here that we assume that the target distributionp∗ is also an element of the full exponen-
tial family. Hence, our MER formulation possesses an intrinsic quality of being invariant
to reparameterization of the exponential family. The rest of this chapter, however, is fo-
cused on analyzing and developing tractable solutions to the MER problem in terms of the
moment parametersη.

3.1.2 Markovianity of MER solution

We have not imposed any Markov constraints on the solution of the MER problem. The
set of edgesE serves to summarize the constraint set, and may very well correspond to the
fully connected graph, i.e.,E =

(
V
2

)
. However, we have the following result concerning

the Markovianity of the MER distributioñη. The constraint on edgeE ∈ E is said to
be active if DE(η̃Ē||η∗Ē) = δE. Let Eactive denote the collection of active edges, and let
Gactive = (V, Eactive) denote the graph formed by the active edges.

Theorem 3.1 Model-Thinning Effect: The solution of the MER problem (if it exists) is
Markov with respect to the graphG = (V, E) that specify the constraints. Moreover, and
very importantly, it is also Markov on the sub-graphGactive = (V, Eactive) defined by just
the active edge constraints.

Proof: The KKT conditions assert that there exist Lagrange multipliersλ ≥ 0 such that

∇H(η̃)−
∑
E∈E

λE · ∇η̃DE(η̃Ē||η∗Ē)−
∑
v∈V

λv · ∇η̃Dv(η̃v||η∗v) = 0 (3.1)

Moreover, by complementary slackness,λE = 0 for the inactive edge constraints. Hence,
using∇H(η̃) = −Λ−1(η̃), ∇η̃DE(η̃Ē||η∗Ē) = Λ−1

E (η̃Ē) − Λ−1
E (η∗

Ē
), and∇η̃Dv(η̃v||η∗v) =

Λ−1
v (η̃v)− Λ−1

v (η∗v), we have

Λ−1(η̃) +
∑

E∈Gactive

λE · (Λ−1
E (η̃Ē)−Λ−1

E (η∗Ē)) +
∑
v∈V

λv · (Λ−1
v (η̃v)−Λ−1

v (η∗v)) = 0. (3.2)

Note that strictly speaking, the transformationsΛ−1
E andΛ−1

v operate on lower-dimensional
vectors of moments than the full moment vectorη̃; in order for the left-hand-side to be
meaningful, the terms in the second and third sums are appropriately zero-padded, and we
abuse notation by only referring to the lower-dimensional transformationsΛ−1

E andΛ−1
v

without explicitly mentioning the zero-padding.
Examining (3.2),̃θE , (Λ−1(η̃))E = 0 if E is not an edge ofGactive, which implies that

the corresponding MER probability distributioñη is Markov onGactive. SinceGactive is a
subgraph ofG, we also have that̃η is Markov onG. �

Fundamentally, this is the mechanism that allows us to learn graph structure by solving
a convex optimization problem. When edge constraints are inactive in the final solution of
MER, the model is automatically “thinned”.
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3.2 Algorithms for Solving MER

We discuss the key steps in developing a tractable algorithm to solve the MER problem.
Section 3.2.1 describes the efficient computation of entropy, its gradient, and its Hessian in
thin chordal graphs. These computations form the basis for finding the primal-dual search
direction. As with the previous section, most of this section is relevant for general expo-
nential families. However, we mention specific formulas and the associated computational
complexity for Gaussian models.

3.2.1 Computations on Thin Chordal Graphs

From Section 2.2.1, we have that distributions that are Markov on a chordal graphG can be
factored as

p(x) =

∏
C∈C p(xC)∏
S∈S p(xS)

, (3.3)

whereC is the set of maximal cliques andS is the collection of edge-wise separatorsCi∩Cj

defined by the edges{Ci, Cj} of any junction tree of the graph. We remind the reader that
a chordal graph is said to bethin if it has small maximal cliques.

Using (3.3), entropy can be expressed in terms of marginal entropies on the cliques and
separators of a junction tree of the graph. The marginalizability of the exponential family
F plays a key role here. In particular, letηG correspond to the subset of moment parameters
of the chordal graphG = (V, E), i.e.,ηG = {ηv : v ∈ V } ∪ {ηE : E ∈ E}. LetC ⊂ V be
some clique of the graphG, so that we can represent the clique as the graph(C,

(
C
2

)
). Since

F is marginalizable, the moment parameters corresponding to the marginal distribution of
variablesC are precisely thesubsetof the moment parameters1 of ηG corresponding to
nodes and edges in(C,

(
C
2

)
), i.e.,ηC̄ = ηC ∪ η(C

2)
.

Based on the factorization (3.3) and using the notation introduced, we have that:

HG(ηG) =
∑
C∈C

HC(ηC̄)−
∑
S∈S

HS(ηS̄). (3.4)

We clarify here that when the specified set of moment parametersηC̄ correspond to the
fully connected graph of the variables at nodes in thesetC, the resulting entropy is simply
denotedHC ; however, if the moment parametersηG correspond to anygraphG, then the as-
sociated entropy is denoted byHG. We use similar notation for other functions throughout
the rest of this chapter. The gradient of negative-entropy with respect to the moment pa-
rameters are the corresponding exponential parameters (see Section 2.3.2). Differentiating
both sides of (3.4) with respect to moment parameters, we have that

Λ−1
G (ηG) =

∑
C∈C

Λ−1
C (ηC̄)−

∑
S∈S

Λ−1
S (ηS̄), (3.5)

whereΛ−1(η) = θ(η) is the mapping from moment parameters to the associated expo-

1These relations hold even for non-chordal graphs, but our focus here is on computations with respect to
cliques in chordal graphs because we want to exploit the structure of the factorization (3.3).
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nential parameters. In this equation, the mappings in each sum on the right-hand-side are
between variables that have lower dimension thanηG. Hence, each term in each sum on
the right-hand-side must be appropriately zero-padded (zeroes at all locations not corre-
sponding to the subgraph(C,

(
C
2

)
) or (S,

(
S
2

)
)) so that the equation is consistent. Next, we

have from the discussion in Section 2.3.2 that the Hessian of negative-entropy is the Fisher
information with respect to the moment parameterization. Thus, differentiating both sides
of (3.5) to compute the JacobianDΛ−1(η) (or the Hessian−∇2H(η)), we have

G∗
G(ηG) =

∑
C∈C

G∗
C(ηC̄)−

∑
S∈S

G∗
S(ηS̄). (3.6)

Implicit again in (3.6) is the padding of the terms on the right with zeroes at appropriate
locations. A key point here is that the Fisher information issparsefor thin chordal graphs,
because each term in each sum of the right-hand-side of (3.6) has small support (as the
maximal cliques are small). The sparsity of the Fisher information matrix is important later
when we use sparse matrix computations to efficiently compute search directions in each
step of the primal-dual interior-point method.

In order to perform these calculations, we need to be able to computeHC , Λ−1
C and

G∗
C for fully-connected subsets of nodesC ⊂ V . We provide explicit formulas for these

computations in Gaussian models. These calculations are tractable for small subsets, thus
enabling efficient computation of (3.4), (3.5), and (3.6) for thin chordal graphs.

Computations in Gaussian models In Gaussian models2, letting P (η) denote the co-
variance matrix of a set of moment parametersη (see Section 2.3), one obtains [3, 20]:

H(η) = 1
2
(log detP (η) + |V | · log 2πe).

In the complete Gaussian model, the entries ofG∗(η) are given by

G∗
st,uv(η) = Js,uJt,v + Js,vJt,u,

G∗
st,u(η) = Js,uJt,u,

G∗
s,t(η) = 1

2
J2

s,t,

with J = P (η)−1 (see Appendix B for derivations). We use these formulas to compute each
term in the sums on the right-hand-sides of equations (3.4-3.6). The computation of (3.4-
3.5) isO(|V |w3) in a Gaussian model, wherew is the maximum clique size. Computing
the sparse matrix (3.6) isO(|V |w4).

Difficulty in computations for non-chordal graphs The entropy function can only be
computed explicitly for a set of moment parametersη corresponding to the fully connected
graph, i.e. one including parameters corresponding to all vertices and all pairs of vertices.
Computation of entropy given a subset of the moment parametersηG corresponding to a

2Since the mean vector does not play a critical role in the model identification problem, we assume
throughout this chapter that the models are zero-mean.
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chordal graphG is then possible by decomposingHG(ηG) in terms of local entropy com-
putations on cliques and separators (3.4), each of which is an explicit entropy computation
on a set of moment parameters corresponding to a fully connected subgraph. However,
computingHG′(ηG′) for a non-chordal graphG ′ involves solving a variational problem to
compute themaximum-entropy completionto a chordal supergraph. More precisely, letG
be a chordal supergraph of the non-chordal graphG ′, and letηG\G′ be the set of moment
parameters associated with the edges that are present inG but not inG ′. Then,HG′(ηG′) is
the optimal value of the following maximum-entropy problem:

arg max
η̂G

HG(η̂G)

s.t. η̂G′ = ηG′ ,

whereη̂G = [η̂G′ η̂G\G′ ]. Evaluating the objective function in this optimization problem is
based on the formula (3.4) for computing entropy in a chordal graph. From the duality of
the maximum-entropy principle to I-projections onto e-flat manifolds (see Section 2.4.3),
one can check that the exponential parameters underlying the solution to this maximum-
entropy completion problem will be zero for the edges inG but not inG ′ (i.e. the extra fill
edges used to obtain a chordal supergraph).

3.2.2 Incremental Approach

We describe an algorithm to solve the MER problem. As with the last section, much of
our discussion is relevant for MER problems involving any marginalizable exponential
family. The MER problem is formulated with respect to the complete exponential family
(not assuming any Markov structure in advance). For problems of even moderate size,
direct solution of MER in the complete model can become intractable due to the high
dimension of the parameter vectorη. However, based on the model-thinning property, we
conclude that if the solution is actually sparse, it should not be necessary to solve MER in
the complete parameterization. Hence, we propose the following algorithm to adaptively
identify the subset of active constraints and a corresponding lower-order Markov family
containing the MER solution:

1. Setk = 0. Start with the disconnected graphG(0) = (V, ∅) including only node
constraints.

2. Find a chordal supergraphG(k)
c of G(k) [7, 13, 70]. Solve the reduced MER sub-

problem with respect to the moments corresponding to the chordal graphG(k)
c , i.e.

ηG(k)
c

. Only include the node and edge constraints based onG(k) = (V, E (k)). The
reduced problem can be formulated as follows:

arg max HG(k)
C

(ηG(k)
c

)

s.t. ηG(k)
c
∈MG(k)

c

DE(ηĒ||η∗Ē) ≤ δE, ∀E ∈ E (k)

Dv(ηv||η∗v) ≤ δv, ∀v ∈ V,
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whereMG(k)
c

corresponds to the set of realizable moment parameters based on the

e-flat manifold of distributions that are Markov onG(k)
c . This reduced problem can

be solved using the primal-dual method described in the following section.

3. The solution in the previous step only provides the moment parameters correspond-
ing to the chordal graphG(k)

c . One could then compute the maximum-entropy com-
pletion to obtain the full set of moment parameters. This can be achieved efficiently
in the Gaussian case usingO(|V |2w3) computations [31], wherew is the treewidth
of G(k)

c . Denote the resulting solution of the full set of moment parameters byη̃
(k)

V̄
.

Evaluate the constraint violationsgE = DE((η̃
(k)

V̄
)Ē||η∗Ē)− δE for all E ∈ E \ E (k).

4. If gE < 0 for all E ∈ E \ E (k), STOP. Then,̃η = η̃
(k)

V̄
is the MER solution.

5. Otherwise, buildG(k+1) by adding edges toG(k) corresponding to theK largest,
positive constraint violations (if there are less thanK such edges, add just the edges
corresponding to violated constraints). Setk ← k + 1 and go back to step 2.

We emphasize two important features of this incremental approach:

• Provided we continue adding violated constraints until all the remaining constraints
are satisfied, the final graphG(k) containsG̃ (the graph with respect to which the
global MER solution is Markov), and̃η(k)

V̄
is therefore theoptimal solution of the

original MER problem in the complete family. Unlike greedy methods used in com-
binatorial approaches, our method is distinguished by the fact that the solution ob-
tained is optimal with respect to our global MER criterion.

• Although we embed the problem in a chordal graph, we still only impose constraints
overG(k), and hence, by the model thinning property, this embedding does not alter
the MER solution with respect toG(k). In other words, adding fill edges to obtain
a chordal super-graphG(k)

c does not spoil the Markov structure of the MER solution
with respect toG(k). Therefore, the MER solution could, in general, be Markov with
respect to a non-chordal graph.

Suppose that the solution to the global MER problem has low treewidth. It is likely then
that each of the graphsG(k) also have low treewidth (i.e. their chordal supergraphsG(k)

c

have low treewidth), because only those features that are most strongly violated are added
at each step. Experimental results in Section 3.3 confirm that such behavior is typically
the case. It is this mechanism that makes our approach tractable and scalable, because the
computations in steps2 and3 can be performed efficiently when the treewidth ofG(k) is
small. In Chapter 5, we propose an extension of our approach to handle cases where the
MER solution has an intractable graph (i.e. high treewidth).

3.2.3 Primal-Dual Method on Thin Chordal Graphs

We turn our focus to efficiently solving the reduced MER sub-problem in step2 of the
incremental approach described in the previous section, provided the constraint graphG(k)
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is sufficiently sparse. By embedding the optimization problem in a Markov family based on
a chordal graph, we are able to compute entropy and its derivatives in an efficient manner
using the formulas in Section 3.2.1. As discussed in that section, computingh(ηG) for a
non-chordalgraphG is difficult. Hence, the chordal graph embedding method is a critical
element in our approach to maximum entropy modeling.

For notational simplicity in this section only, we denoteηG(k)
c

, the variable in the op-

timization problem at stepk, by η(k) with the understanding thatη(k) only contains the
parameters corresponding to the nodes and edges of the chordal graphG(k)

c . As described
in Section 2.7.2, the key step in the primal-dual algorithm is the computation of the primal-
dual search direction by solving a linear system (step2 of the algorithm). This linear system
specialized to the specific MER problem at hand can be restated as follows:

Mpd ·∆η(k) = r, (3.7)

where

Mpd = G∗
G(k)

c
(η(k)) +

∑
v∈V

λv

(
G∗

v(η
(k)
v ) + 1

av
bvb

T
v

)
+
∑

E∈E(k)

λE

(
G∗

E(η
(k)

Ē
) + 1

aE
bEb

T
E

)
,

(3.8)
and

r = −Λ−1

G(k)
c

(η(k))− 1

t

∑
v∈V

1

av

bv +
∑

E∈E(k)

1

aE

bE

 , (3.9)

with av = δv − Dv(η
(k)
v ||η∗v), aE = δE − DE(η

(k)

Ē
||η∗

Ē
), bv = Λ−1

v (η
(k)
v ) − Λ−1

v (η∗v), and

bE = Λ−1
E (η

(k)

Ē
) − Λ−1

E (η∗
Ē
). The vectorsbv andbE, and the matricesG∗

v, G∗
E, bvbTv and

bEb
T
E are low-dimensional; as usual, each term in each of the sums on the right-hand-sides

of (3.8) and (3.9) is appropriately zero-padded so that the equations are consistent.
The matrixG∗

G(k)
c

in (3.8) is sparse, inheriting the sparse structure of the chordal graph

G(k)
c through (3.6). Furthermore, each additional term in (3.8) also has support nested

inside the support ofG∗
G(k)

c

. This is because each element of the vertex setV and of the

edge setE (k) belongs to at least one of the maximal cliques of the chordal graphG(k)
c

(the decomposition in (3.6) includes a sum of local Fisher information matrices over the
maximal cliques). Hence, the fill-pattern ofMpd is the same as forG∗

G(k)
c

.

Using the sparse structure ofMpd, we can compute∆η(k) = M−1
pd r efficiently. One

approach is based on sparse Cholesky factorization [38, 76], where the matrixMpd is fac-
torized asMpd = AAT with A being lower-triangular. This factorization can be performed
tractably by exploiting the sparsity ofMpd. Solving the linear systemAAT ∆η(k) = r is
then extremely efficient and can be done in two stages using back-substitution [76]; first
solve the systemAx = r and then the systemAT ∆η(k) = x. This approach requires
O(|V | · w6) in the Gaussian model. The primal-dual method also requires computation of
Λ−1

G(k)
c

(η(k)) in equation (3.9), which is given by a tractable computation (3.5). Although

we solve only for the subset of moment parametersη̃(k), it is straight-forward to obtain
θ̃G(k)

c
, Λ−1

G(k)
c

(η̃(k)), again by (3.5).
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Figure 3-1: Graphs of the MER solution for various values ofγ in the Gaussian model.

3.3 Simulation Results

In this section, we describe the results of simulations that demonstrate the effectiveness
of the MER framework in learning the Markov structure of Gaussian models from sample
data. The tolerance parameters used in the MER problem are set in proportion to the
number of parameters needed to specify the marginal distribution as follows:

δE = γ ·
(
|E|+

(
|E|
2

))
= 3γ (3.10)

δv = γ. (3.11)

Here,γ > 0 is an overall regularization parameter which controls the trade-off between
complexity and accuracy in the resulting MER solution. Our motivation for settingδv and
δE is based on the parametric complexity or, in other words, the number of free parameters
in v andE respectively. Similar principles have been developed in the literature on model-
order selection (see for example [2]).

In addition, we note that for large sample size the expectation ofD(η||η∗), whereη
are the actual moments andη∗ are empirical, is approximately equal to the number of
parameters divided by the number of samplesNs [2]. This suggests that a natural choice
for γ in (3.10-3.11) may beγ ∼ 1

Ns
, or a function that decays slower such asγ ∼ log(Ns)

Ns
.

In the following examples, we explore the effect of varyingγ.
We describe two sets of experiments. Both simulations are based on400 samples of

test models. In the first experiment, we generate samples from a16-node cyclic Gaussian
model, where the nodes are arranged in a circle and each node is connected to nodes that
are one or two steps away on the circle. The node weights areJv,v = −2θv = 1.0 for
every nodev, and the edge weights areJu,v = −θuv = −0.1875 for each edge{u, v}.
Fig. 3-1 shows the MER solution graphs for various values ofγ. Notice that as the value of
γ decreases, the effect of the relaxation is smaller and more edges are included in the MER
solution. Forγ = 0.0625 the correct underlying graph structure is recovered.

The second experiment involves a10× 10 nearest-neighbor grid-structured model with
the node weights beingJv,v = −2θv = 1.0 for every nodev, and the edge weights being
Ju,v = −θuv = −0.24 for each edge{u, v}. Again, 400 samples were generated based
on this model and the MER problem is solved for a fixed value ofγ = 0.08. The initial
MER problem is solved on the completely disconnected graph with only the100 node
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Figure 3-2: Illustration of the incremental approach for identifying the set of active con-
straints in the MER problem by solving a sequence of sub-problems defined on sub-graphs
of the final solution (far right). Here, dim(G) and dim(Gc) are the number of nodes plus
the number of edges of the constraint graphG and its chordal super-graphGc. The number
of constraints is equal to dim(G), and the dimension ofηGc in each MER sub-problem is
dim(Gc).

constraints. At each successive step (of the incremental procedure of Section 3.2.2), the
50 most violated edge constraints (that are not previously included) are added. Fig. 3-2
demonstrates this incremental approach. The graphs shown correspond to the graphs of the
MER solutions of each step of the incremental method, except the first step in which case
the graph would be completely disconnected (because only node constraints are imposed
in the first step). The dimension (number of node plus edge parameters) of the constraint
graphsG(k), and the associated chordal supergraphsG(k)

c are shown. After just5 steps
of the incremental approach, the algorithm terminates (all remaining edge constraints that
are not included are satisfied) and the underlying graph structure is recovered with only
a few spurious or missing edges. We also note that solving the MER problem directly in
the complete family (corresponding to the complete graph) without using the incremental
approach would be computationally prohibitive because the resulting Fisher information is
a 10, 000 × 10, 000 full matrix (equivalently, the matrixMpd in (3.8) is also a10, 000 ×
10, 000 full matrix). Yet, our incremental approach, using a sequence of thin graphs, solves
the MER problem exactly in a few minutes by adaptively identifying the worst violated
constraints at each step and including very few “extra” constraints.

3.4 Discussion

We have presented a convex optimization approach for learning the graph structure of a
collection of random variables from sample data. The formulation is also useful for con-
structing a tractable graphical model approximation to a specified intractable probability
distribution. This method differs from previous approaches that addressed this problem
primarily from the point of view of solving a combinatorial optimization problem. Our
framework is based on the sparsity-favoring characteristic of entropy (i.e., models with
sparse exponential parameters are favored) that is implicit in the maximum entropy princi-
ple. We also exploit sparse, tractable computations of the entropy function and its deriva-
tives on thin chordal graphs in order to solve the MER problem using a scalable primal-dual
interior point method. We have demonstrated the effectiveness of our approach with simu-
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lation results for the Gaussian model. Our method is also suitable for the graphical model
selection problem involving discrete variables, by virtue of the abstract formulation with
respect to marginalizable exponential families. In Chapter 5, we discuss possible future
research directions resulting from the ideas developed in this chapter.
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Chapter 4

Efficient Estimation using Tractable
Subgraphs: A Walk-Sum Analysis

Letting the conditional distribution of a Gaussian graphical model be parameterized in the
information form asx|y ∼ N−1(h, J), the posterior mean can be computed as the solution
to the following linear system:

Jx̂ = h. (4.1)

In this chapter, we describe a general class of algorithms to solve this linear system. All
these algorithms have the common feature that they solve a sequence of estimation prob-
lems on trees or, more generally, tractable subgraphs. We refer to the trees and subgraphs
on which inference is performed at each iteration aspreconditioners, following the termi-
nology used in the linear algebra literature.

We analyze these algorithms based on the walk-sum interpretation of Gaussian infer-
ence discussed in Section 2.6. The overall template for analyzing our inference algorithms
is simple. First, we show that the algorithms submit to a walk-sum interpretation. Next,
we show that the walk-sets computed by these algorithms are nested, i.e.Wn ⊆ Wn+1,
whereWn is the set of walks computed at iterationn. Finally, we show that every walk
required for the computation of the mean (2.20) is contained inWn for somen. While each
step in this procedure is non-trivial, combined together they allow us to conclude that the
algorithms converge in walk-summable models.

One of the conditions for walk-summability in Section 2.6 shows that walk-summable
models are equivalent to models for which the information matrix is an H-matrix [41, 76].
Several methods for finding good preconditioners for such matrices have been explored
in the linear algebra literature, but these have been restricted to either cycling through a
fixed set of preconditioners [12] or to so-called “multi-splitting” algorithms [32, 39]. These
results do not address the problem of convergence of non-stationary iterations using arbi-
trary (non-cyclic) sequences of subgraphs. The analysis of such algorithms along with the
development of methods to pick a good sequence of preconditioners are the main novel
contributions of this chapter, and the recently developed concept of walk-sums is critical to
our analysis.

Section 4.1 describes all the algorithms that we analyze in this chapter, while Sec-
tion 4.2 contains the analysis and walk-sum diagrams that provide interpretations of the
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algorithms in terms of walk-sum computations. In Section 4.3, we use the walk-sum in-
terpretation of Section 4.2 to show that these algorithms converge in walk-summable mod-
els. Section 4.4 presents techniques for choosing tree-based preconditioners and subsets of
variables adaptively for the Embedded Trees (ET) and block Gauss-Seidel (GS) iterations
respectively, and demonstrates the effectiveness of these methods through simulation. We
conclude with a brief summary in Section 4.5. Appendix A provides additional details and
proofs. All our algorithms and analysis in this chapter are specified for normalized models
(see Section 2.6 for details), although these can be easily extended to the un-normalized
case. Appendix A also contains a section that discusses these generalizations.

4.1 Non-Stationary Embedded Subgraph Algorithms

In this section, we describe a framework for the computation of the conditional mean esti-
mates in order to solve the Gaussian estimation problem. We present three algorithms that
become successively more complex in nature. We begin with the parallel ET algorithm
originally presented in [73, 74]. Next, we describe a serial update scheme that involves
processing only a subset of the variables at each iteration. Finally, we discuss a generaliza-
tion to these non-stationary algorithms that is tolerant to temporary communication failure
by using local memory at each node to remember past messages from neighboring nodes.
A similar memory-based approach was used in [24] for the special case of stationary it-
erations. The key theme underlying all these algorithms is that they are based on solving
a sequence of inference problems on tractable subgraphs involving all or a subset of the
variables. Convergent iterations that compute means can also be used to compute exact
error variances [74]. Hence, we restrict ourselves to analyzing iterations that compute the
conditional mean.

4.1.1 Non-Stationary Parallel Updates: Embedded Trees Algorithm

LetS be some subgraph of the graphG. The stationary ET algorithm is derived by splitting
the matrixJ = JS − KS , whereJS is known as thepreconditionerandKS is known as
thecutting matrix. Each edge inG is either an element ofS or E\S. Accordingly, every
non-zero off-diagonal entry ofJ is either an element ofJS or of −KS . The diagonal
entries ofJ are part ofJS . Hence, the matrixKS is symmetric, zero along the diagonal,
and contains non-zero entries only in those locations that correspond to edges not included
in the subgraph generated by the splitting. Cutting matrices may have non-zero diagonal
entries in general, but we only consider zero-diagonal cutting matrices in this chapter. The
splitting ofJ according toS transforms (4.1) toJS x̂ = KS x̂+h, which suggests a recursive
method for solving the original linear system:

JS x̂
(n) = KS x̂

(n−1) + h. (4.2)

If J−1
S exists then a necessary and sufficient condition for the iterates{x̂(n)}∞n=0 to converge

to J−1h for any initial guesŝx(0) is that%(J−1
S KS) < 1 [74]. ET iterations can be very

effective if applyingJ−1
S to a vector is efficient, e.g. ifS corresponds to a tree or, in
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general, any tractable subgraph.
A non-stationary ET iteration is obtained by lettingJ = JSn−KSn, where the matrices

JSn correspond to some embedded tree or subgraphSn in G and can vary in an arbitrary
manner withn. This leads to the following ET iteration:

JSnx̂
(n) = KSnx̂

(n−1) + h. (4.3)

Our walk-sum analysis proves the convergence of non-stationary ET iterations based on
any sequence of subgraphs{Sn}∞n=1 in walk-summable models. Every step of the above
algorithm is tractable if applyingJ−1

Sn
to a vector can be performed efficiently. Indeed, an

important degree of freedom in the above algorithm is the choice ofSn at each stage so as
to speed up convergence, while keeping the computation at every iteration tractable. We
discuss some approaches to addressing this issue in Section 4.4.

4.1.2 Non-Stationary Serial Updates of Subsets of Variables

We begin by describing the block GS iteration [38, 76]. For eachn = 1, 2, . . . , letVn ⊆ V
be some subset ofV . The variablesxVn = {xs : s ∈ Vn} are updated at iterationn. The
remaining variables do not change from iterationn − 1 to n. Let J (n) = [J ]Vn be the
|Vn| × |Vn|-dimensional principal sub-matrix corresponding to the variablesVn. The block
GS update at iterationn is as follows:

x̂
(n)
Vn

= J (n)−1
(
RVn,V c

n
x̂

(n−1)
V c

n
+ hVn

)
, (4.4)

x̂
(n)
V c

n
= x̂

(n−1)
V c

n
. (4.5)

Here,V c
n refers to the complement of the vertex setVn. In equation (4.4),RVn,V c

n
refers to

the sub-matrix of edge weights of edges from the verticesV c
n toVn. Every step of the above

algorithm is tractable as long as applyingJ (n)−1
to a vector can be performed efficiently.

We now present a general serial iteration that incorporates an element of the ET al-
gorithm of Section 4.1.1. This update scheme involves a single ET iteration within the
induced subgraph of the update variablesVn. We split the edgesE(Vn) in the induced sub-
graph ofVn into a tractable setEn and a set of cut edgesE(Vn)\En. Such a splitting leads
to a tractable subgraphSn = (Vn, En) of the induced subgraph ofVn. That is, the matrix
J (n) is split asJ (n) = JSn −KSn. This matrix splitting is defined analogous to the splitting
in Section 4.1.1. The modified conditional mean update at iterationn is as follows:

x̂
(n)
Vn

= J−1
Sn

(
KSn x̂

(n−1)
Vn

+RVn,V c
n
x̂

(n−1)
V c

n
+ hVn

)
, (4.6)

x̂
(n)
V c

n
= x̂

(n−1)
V c

n
. (4.7)

Every step of this algorithm is tractable as long as applyingJ−1
Sn

to a vector can be per-
formed efficiently.

The preceding algorithm is a generalization of both the block GS update (4.4)−(4.5)
and the non-stationary ET algorithm (4.3), thus allowing for a unified analysis framework.
Specifically, by lettingEn = E(Vn) for all n above, we obtain the block GS algorithm. On
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the other hand, by lettingVn = V for all n, we recover the ET algorithm. This hybrid
approach also offers a tractable and flexible method for inference in large-scale estimation
problems, because it possesses all the benefits of the ET and block GS iterations.

We note that in general application there is one potential complication with both the se-
rial and the parallel iterations presented so far. Specifically, for an arbitrary graphical model
with positive-definite information matrixJ , the corresponding information sub-matrixJSn

for some choices of subgraphsSn may not be valid, i.e. may have negative eigenvalues1.
Importantly, this problemneverarises for walk-summable models, and thus we are free
to use any sequence of embedded subgraphs for our iterations and be guaranteed that the
computations make sense probabilistically.

Lemma 4.1 Let J be a walk-summable model, letṼ ⊆ V , and letJS be the|Ṽ | × |Ṽ |-
dimensional information matrix corresponding to the distribution over some subgraphS
of the induced subgraphE(Ṽ ). Then,JS is walk-summable, andJS � 0.

Proof: For every pair of verticess, t ∈ Ṽ , it is clear that the walks betweens andt in S
are a subset of the walks between these vertices inG, i.e.W(s

S−→ t) ⊆ W(s→ t). Hence,

φ̄(s
S−→ t) ≤ φ̄(s→ t) <∞, becauseJ is walk-summable. Thus, the model specified by

JS is walk-summable. This allows us to conclude thatJS � 0 because walk-summability
implies validity of a model.�

4.1.3 Distributed Interpretation of (4.6)−(4.7) and Communication Fail-
ure

We first re-interpret the equations (4.6)−(4.7) as local message-passing steps between
nodes followed by inference within the subgraphSn. At iteration n, let κn denote the
set ofdirectededges inE(Vn)\En and fromV c

n to Vn:

κn , {(s, t) | {s, t} ∈ E(Vn)\En or s ∈ V c
n , t ∈ Vn}. (4.8)

The edge setκn corresponds to the non-zero elements of the matricesKSn andRVn,V c
n

in equation (4.6). Edges inκn are used to communicate information about the values at
iterationn− 1 to neighboring nodes for processing at iterationn.

For eacht ∈ Vn, the messageM(s→ t) = Rt,s x̂
(n−1)
s is sent at iterationn from s to t

using the links inκn. LetMn(t) denote the summary of all the messages received at node
t at iterationn:

Mn(t) =
∑

{s|(s,t)∈κn}

M(s→ t) =
∑

{s|(s,t)∈κn}

Rt,s x̂
(n−1)
s . (4.9)

Thus, eacht ∈ Vn fusesall the information received about the previous iteration and com-
bines this with its local potential valueht to form a modified potential vector that is then

1For example, consider a5-cycle with each edge having a partial correlation of−0.6. This model is valid
(but not walk-summable) with the correspondingJ having a minimum eigenvalue of0.0292. A spanning tree
modelJS obtained by removing one of the edges in the cycle, however, is invalid with a minimum eigenvalue
of −0.0392.
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used for inference within the subgraphSn:

x̂
(n)
Vn

= J−1
Sn

(Mn(Vn) + hVn), (4.10)

whereMn(Vn) denotes the entire vector of fused messagesMn(t) for t ∈ Vn. An interesting
aspect of these message-passing operations is that they arelocal and only nodes that are
neighbors inG may participate in any communication. If the subgraphSn is tree-structured,
the inference step (4.10) can also be performed efficiently in a distributed manner using
only local BP messages [62].

We now present an algorithm that is tolerant to temporary link failure by using local
memory at each nodet to store the most recent messageM(s→ t) received att from s. If
the link (s, t) fails at some future iteration the stored message can be used in place of the
new expected message. In order for the overall memory-based protocol to be consistent,
we also introduce an additional post-inference message-passing step at each iteration. To
make the above points precise, we specify a memory protocol that the network must follow;
we assume that each node in the network has sufficient memory to store the most-recent
messages received from its neighbors. First,Sn must not contain any failed links; every
link {s, t} ∈ E(Vn) that fails at iterationn must be a part of the cut-set2: (s, t), (t, s) ∈ κn.
Therefore, the linksEn that are used for the inference step (4.10) must be active at iteration
n. Second, in order for nodes to synchronize after each iteration, they must perform a post-
inference message-passing step.After the inference step (4.10) at iterationn, the variables
in Vn must update their neighborsin the subgraphSn. That is, for eacht ∈ Vn, a message
must be received post-inference from everys such that{s, t} ∈ En:

M(s→ t) = Rt,s x̂
(n)
s . (4.11)

This operation is possible since the edge{s, t} is assumed to active. Apart from these
two rules, all other aspects of the algorithm presented previously remain the same. Note
that every new message received overwrites the existing stored message, and only the most
recent message received is stored in memory.

Thus, link failure affects only equation (4.9) in our iterative procedure. Suppose that a
message to be received att ∈ Vn from nodes is unavailable due to communication failure.
The messageM(s→ t) from memory can be used instead in the fusion formula (4.9). Let
rn(s→ t) denote the iteration count of the most recent information at nodet about variable
s at the information fusion step (4.9) at iterationn. In general,rn(s → t) ≤ n − 1, with
equality if t ∈ Vn and(s, t) ∈ κn is active. With this notation, we can re-write the fusion
equation (4.9):

Mn(t) =
∑

{s|(s,t)∈κn}

M(s→ t) =
∑

{s|(s,t)∈κn}

Rt,s x̂
rn(s→t)
s . (4.12)

2One way to ensure this is to selectSn to explicitly avoid the failed links. See Section 4.4.2 for more
details.
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4.2 Walk-sum interpretation and Walk-sum diagrams

In this section, we analyze each iteration of the algorithms of Section 4.1 as the computa-
tion of walk-sums inG. Our analysis is presented for the most general algorithm involving
failing links, since the parallel and serial non-stationary updates without failing links are
special cases. For each of these algorithms, we then present walk-sum diagrams that pro-
vide intuitive, graphical interpretations of the walks being computed. Examples that we
discuss include classic methods such as Gauss-Jacobi (GJ) and GS, and iterations involv-
ing general subgraphs. Throughout this section, we assume that the initial guessx̂(0) = 0,
and we initializeM(s → t) = 0 andr1(s → t) = 0 for each directed edge(s, t) ∈ E . In
Section 4.3, we prove the convergence of our algorithms for any initial guessx̂(0).

4.2.1 Walk-sum interpretation

For every pair of verticess, t ∈ V , we define a recursive sequence of walk-sets. We then
show that these walk-sets are exactly the walks being computed by the iterative procedure
in Section 4.1.3:

Wn(s→ t) = Wrn(∗→•)(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s

Sn−→ t),

s ∈ V, t ∈ Vn, (4.13)

Wn(s→ t) = Wn−1(s→ t), s ∈ V, t ∈ V c
n , (4.14)

with
W0(s→ t) = ∅, s, t ∈ V. (4.15)

The notation in these equations is defined in Section 2.6.2.Wrn(∗→•)(s → ∗) denotes the

walks computed up to iterationrn(∗ → •). W(∗ κn(1)−→ •) corresponds to a length-1 walk

(called ahop) across a directed edge inκn. Finally,W(• Sn−→ t) denotes walks withinSn

that end att. Thus, the first RHS term in (4.13) is the set of previously computed walks that

hop across an edge inκn, and then propagate withinSn. W(s
Sn−→ t) is the set of walks

that live entirely withinSn. To simplify notation, we defineφn(s → t) , φ(Wn(s → t)).
We now relate the walk-setsWn(s→ t) to the estimatêx(n)

t at iterationn.

Proposition 4.1 At iterationn = 0, 1, . . . , with x̂(0) = 0, the estimate for nodet ∈ V is
given by:

x̂
(n)
t =

∑
s∈V

hsφn(s→ t) = φn(h; ∗ → t), (4.16)

where the walk-sum is over the walk-sets defined by (4.13−4.15), andx̂(n)
t is computed

using (4.10,4.12).

This proposition, proven in Appendix A, states that each of our algorithms has a precise
walk-sum interpretation. A consequence of this statement is that no walk is over-counted,
i.e., each walk inWn submits to a unique decomposition with respect to the construc-
tion process (4.13−4.15) (see proof for details), and appears exactly once in the sum at
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each iteration. As discussed in Section 4.3 (Propositions 4.3 and 4.4), the iterative process
does even more; the walk-sets at successive iterations are nested and, under an appropriate
condition, are “complete” so that convergence is guaranteed for walk-summable models.
Showing and understanding all these properties are greatly facilitated by the introduction
of a visual representation of how each of our algorithms computes walks, and that is the
subject of the next subsection.

4.2.2 Walk-sum diagrams

In the rest of this section, we present a graphical interpretation of our algorithms, and of
the walk-setsWn (4.13−4.15) that are central to Proposition 4.1 (which in turn is the key
to our convergence analysis in Section 4.3). This interpretation provides a clearer picture
of memory usage and information flow at each iteration. Specifically, for each algorithm
we construct a sequence of graphsG(n) such that a particular set of walks in these graphs
correspondsexactlyto the setsWn (4.13−4.15) computed by the sequence of iteratesx̂(n).
The graphsG(n) are calledwalk-sum diagrams. Recall thatSn corresponds to the subgraph
used at iterationn, generally using some of the values computed from a preceding iteration.
The graphG(n) captures all of these preceding computations leading up to and including
the computations at iterationn.

As a result,G(n) has very specific structure for each algorithm. It consists of a number of
levels— within each level we capture the subgraph used at the corresponding iteration, and
the final leveln corresponds to the results at the end of iterationn. Although some variables
may not be updated at each iteration, the values of those variables are preserved for use in
subsequent iterations; thus, each level ofG(n) includes all the nodes inV . The update
variables at any iteration (i.e., the nodes inSn) are represented as solid circles, and the non-
update ones as open circles. All edges in eachSn — edges ofG included in this subgraph
— are included in that level of the diagram. As inG, these are undirected edges, as our
algorithms perform inference on this subgraph. However, this inference update uses some
values from preceding iterations (4.10,4.12); hence, we use directed edges (corresponding
to κn) from nodes at preceding levels. The directed nature of these edges is critical as
they capture the one-directional flow of computations from iteration to iteration, while
the undirected edges within each level capture the inference computation (4.10) at each
iteration. At the end of iterationn, only the values at leveln are of interest. Therefore, the
set of walks (re-weighted byh) in G(n) that begin at any solid node at any level, and end at
any node at the last level are of importance, where walks can only move in the direction of
directed edges between levels, but in any direction along the undirected edges within each
level.

Later in this section we provide a general procedure for constructing walk-sum dia-
grams for our most general algorithms, but we begin by illustrating these diagrams and
the points made in the preceding paragraph using a simple3-node, fully connected graph
(with variables denotedx1, x2, x3). We look at two of the simplest iterative algorithms in
the classes we have described, namely the classic GJ and GS iterations [38, 76]. Figure 4-1
shows the walk-sum diagrams for these algorithms.

In the GJ algorithm each variable is updated at each iteration using the values from the
preceding iteration of every other variable (this corresponds to a stationary ET algorithm
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Figure 4-1: (Left) Gauss-Jacobi walk-sum diagramsG(n) for n = 1, 2, 3. (Right) Gauss-
Seidel walk-sum diagramsG(n) for n = 1, 2, 3, 4.

(7) with the subgraphSn being the fully disconnected graph of all the nodesV ). Thus each
level on the left in Figure 4-1 is fully disconnected, with solid nodes for all variables and
directed edges from each node at the preceding level to every other node at the next level.
This provides a simple way of seeing both how walks are extended from one level to the
next and, more subtly, how walks captured at one iteration are also captured at subsequent
iterations. For example, the walk12 in G(2) is captured by the directed edge that begins at
node1 at level1 and proceeds to node2 at level2 (the final level ofG(2)). However, this
walk in G(3) is captured by the walk that begins at node1 at level2 and proceeds to node2
at level3 in G(3).

The GS algorithm is a serial iteration that updates one variable at a time, cyclically,
so that after|V | iterations each variable is updated exactly once. On the right-hand side
of Figure 4-1, only one node at each level is solid, using values of the other nodes from
the preceding level. For non-update variables at any iteration, a weight-1 directed edge is
included from the same node at the preceding level. For example, sincex2 is updated at
level 2, we have open circles for nodes1 and3 at that level and weight-1 directed edges
from their copies at level1. Weight-1 edges do not affect the weight of any walk. Hence,
at level4 we still capture the walk12 from level2 (from node1 at level1 to node2 at level
2); the walk is extended to node2 at levels3 and4 with weight-1 directed edges.

For general graphs, the walk-sum diagramG(n) of one of our algorithms is constructed
as follows:

1. Forn = 1, create a new copy of eacht ∈ V using solid circles for update variables
and open circles for non-update variables; label theset(1). Draw the subgraphS1

using the solid nodes and undirected edges weighted by the partial correlation coef-
ficient of each edge.G(1) is the same asS1 with the exception thatG(1) also contains
non-update variables denoted by open circles.

2. GivenG(n−1), create a new copy of eacht ∈ V using solid circles for update variables
and open circles otherwise; label theset(n). DrawSn using the update variables with
undirected edges. Draw adirectededge from the variableurn(u→v) in G(n−1) (since
rn(u → v) ≤ n − 1) to v(n) for each(u, v) ∈ κn. If there are no failed links,
rn(u→ v) = n− 1. Both these undirected and directed edges are weighted by their
respective partial correlation coefficients. Draw a directed edge to each non-update
variablet(n) from the correspondingt(n−1) with unit edge weight.
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Figure 4-2: (Left) Non-stationary ET: subgraphs and walk-sum diagram. (Right) Hybrid
serial updates: subgraphs and walk-sum diagram.

A levelk in a walk-sum diagram refers to thek’th replica of the variables.
Rules for walks in G(n): Walks must respect the orientation of each edge, i.e., walks

can cross an undirected edge in either direction, but can only cross directed edges in one
direction. In addition, walks can only start at the update variablesVk for each levelk ≤ n.
Interpreted in this manner, walks inG(n) re-weighted byh and ending at one of the variables
t(k) are exactly the walks computed in̂x(k)

t .

Proposition 4.2 LetG(n) be a walk-sum diagram constructed and interpreted according to
the preceding rules. For anyt ∈ V andk ≤ n,

x̂
(k)
t = φ(h; ∗ G(n)

−→ t(k)). (4.17)

Proof: Based on the preceding discussion, one can check the equivalence of the walks
computed by the walk-sum diagrams with the walk-sets (4.13−4.15). Proposition 4.1 then
yields (4.17).�

The following sections describe walk-sum diagrams for the various algorithms pre-
sented in Section 4.1.

4.2.3 Non-Stationary Parallel Updates

We describe walk-sum diagrams for the parallel ET algorithm of Section 4.1.1. Here,
Vn = V for all n. Since there is no link failurern(∗ → •) = n − 1. Hence, the walk-sum
formulas (4.13−4.14) reduce to

Wn(s→ t) =Wn−1(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s

Sn−→ t), s, t ∈ V.
(4.18)

The stationary GJ iteration discussed previously falls in this class. The left-hand side of
Figure 4-2 shows the treesS1,S2,S3, and the corresponding first three levels of the walk-
sum diagrams for a more general non-stationary ET iteration. This example illustrates how
walks are “collected” in walk-sum diagrams at each iteration. First, walks can proceed
along undirected edges within each level, and from one level to the next along directed
edges (capturing cut edges). Second, the walks relevant at each iteration must end at that
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Figure 4-3: Non-stationary updates with failing links: Subgraphs used along with failed
edges at each iteration (left) and walk-sum diagramG(4) (right).

level. For example, the walk13231 is captured at iteration1 as it is present in the undirected
edges at level1. At iteration2, however, we are interested in walks ending at level2. The
walk 13231 is still captured, but in a different manner — through the walk1323 at level1,
followed by the hop31 along the directed edge from node3 at level1 to node1 at level2.
At iteration3, this walk is captured first by the hop from node1 at level1 to node3 at level
2, then by the hop32 at level2, followed by the hop from node2 at level2 to node3 at
level3, and finally by the hop31 at level3.

4.2.4 Non-Stationary Serial Updates

We describe similar walk-sum diagrams for the serial update scheme of Section 4.1.2. Since
there is no link failure,rn(∗ → •) = n − 1. The recursive walk-set update (4.13) can be
specialized as follows:

Wn(s→ t) =Wn−1(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)
⋃
W(s

Sn−→ t), s ∈ V, t ∈ Vn.

(4.19)
While (4.18) is a specialization to iterations with parallel updates, (4.19) is relevant for
serial updates. The GS iteration discussed in Section 4.2.2 falls in this class, as do more
general serial updates described in Section 4.1.2 in which we update a subset of variables
Vn based on a subgraph of the induced graph ofVn. The right-hand side of Figure 4-2
illustrates an example for our3-node model. We show the subgraphsSn used in the first
four stages of the algorithm and the corresponding4-level walk-sum diagram. Note that at
iteration2 we update variablesx2 andx3 without taking into account the edge connecting
them. Indeed, the updates at the first four iterations of this example include block GS, a
hybrid of ET and block GS, parallel ET, and GS, respectively.

4.2.5 Failing links

We now discuss the general non-stationary update scheme of Section 4.1.3 involving fail-
ing links. The recursive walk-set computation equations for this iteration are given by
(4.13−4.15). Figure 4-3 shows the subgraph and the edges inκn that fail at each iteration,
and the corresponding4-level walk-sum diagram. We elaborate on the computation and
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propagation of information at each iteration. At iteration1, inference is performed using
subgraphS1, followed by nodes1 and2 passing a message to each other according to the
post-inference message-passing rule (4.11). At iteration2 only x3 is updated. As no links
fail, node3 gets information from nodes1 and2 at level1. At iteration3, the link (2, 1)
fails. But node1 has information aboutx2 at level1 (due to the post-inference message
passing step from iteration1). This information is used from the local memory at node1
in (4.12), and is represented by the arrow from node2 at level1 to node1 at level3. At
iteration4, the links(1, 3) and(3, 1) fail. Similar reasoning as in iteration3 applies to the
arrows drawn across multiple levels from node1 to node3, and from node3 to node1.
Further, post-inference message-passing at this iteration only takes place between nodes1
and2 because the only edge inS4 is {1, 2}.

4.3 Convergence Analysis

We now show that all the algorithms of Section 4.1 converge in walk-summable models.
As in Section 4.2.1, we focus on the most general non-stationary algorithm with failing
links of Section 4.1.3. We begin by showing thatx̂(n) converges to the correct means when
x̂(0) = 0. Next, we use this result to show that we can achieve convergence to the correct
means for any initial guesŝx(0).

The proof thatφn(h; ∗ → t) → (J−1h)t asn → ∞ relies on the fact thatWn(s → t)
eventually contains every element of the setW(s → t) of all the walks inG from s to t, a
condition we refer to ascompleteness. Showing this begins with the following proposition
proved in Appendix A.

Proposition 4.3 (Nesting) The walk-sets defined in equations (4.13−4.15) are nested, i.e.
for every pair of verticess, t ∈ V ,Wn−1(s→ t) ⊆ Wn(s→ t) for eachn.

This statement is easily seen for a stationary ET algorithm because the walk-sum dia-
gramG(n) from levels2 ton is a replica ofG(n−1) (for example, the GJ diagram in Figure 4-
1). However, the proposition is less clear for non-stationary iterations. The discussion in
Section 4.2.3 illustrates this point; the paths that a walk traverses change drastically de-
pending on the level in the walk-sum diagram at which the walk ends. Nonetheless, as
shown in Appendix A, the structure of the estimation algorithms that we consider ensures
that whenever a walk is not explicitly captured in the same form it appeared in the preced-
ing iteration, it is recovered through a different path in the subsequent walk-sum diagram
(no walks are lost).

Completeness relies on both nesting and the following additional condition.

Definition 4.1 Let (u, v) be any directed edge inG. For eachn, let κactive
n ⊆ κn denote

the set of directed active edges (links that do not fail) inκn at iterationn. The edge(u, v)
is said to beupdated infinitely often3 if for everyN ≥ 0, there exists anm > N such that
(u, v) ∈ Em ∪ κactive

m .

3If G contains a singleton node, then this node must be updated at least once.
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If there is no link failure, this definition reduces to including each vertex inV in the
update setVn infinitely often. For parallel non-stationary ET iterations (Section 4.1.1), this
property is satisfied forany sequence of subgraphs. Note that there are cases in which
inference algorithms may not have to traverse each edge infinitely often. For instance,
suppose thatG can be decomposed into subgraphsG1 andG2 that are connected by a single
edge, withG2 having small size so that we can perform exact computations. For example,
G2 could be a leaf node (i.e., have degree one). We can eliminate the variables inG2,
propagate information “into”G1 along the single connecting edge, perform inference within
G1, and then back-substitute. Hence, the single connecting edge is traversed only finitely
often. In this case the hard part of the overall inference procedure is on the reduced graph
with leaves and small, dangling subgraphs eliminated, and we focus on inference problems
on such graphs. Thus, we assume that each vertex inG has degree at least two and study
algorithms that traverse each edge infinitely often.

Proposition 4.4 (Completeness) Let w = s · · · t be an arbitrary walk froms to t in G.
If every edge inG is updated infinitely often (in both directions), then there exists anN
such thatw ∈ Wn(s → t) for all n ≥ N , where the walk-setWn(s → t) is defined in
(4.13−4.15).

The proof of this proposition appears in Appendix A. We can now state and prove the
following.

Theorem 4.1 If every edge in the graphG is updated infinitely often (in both directions),
thenφn(h; ∗ → t) → (J−1h)t asn → ∞ in walk-summable models, withφn(s → t) as
defined in Section 4.2.1.

Proof: One can check thatWn(s → t) ⊆ W(s → t),∀n. This is because equations
(4.13−4.15) only use edges from the original graphG. We have from Proposition 4.4 that
every walk froms to t in G is eventually contained inWn(s → t). Thus,∪∞n=0Wn(s →
t) = W(s → t). Given these arguments and the nesting of the walk-setsWn(s → t) from
Proposition 4.3, we can appeal to the results in Section 2.6.2 to conclude thatφn(h; ∗ →
t)→ (J−1h)t asn→∞. �

Theorem 4.1 shows that̂x(n)
t → (J−1h)t for x̂(0) = 0. The following result, proven in

Appendix A, shows that in walk-summable models convergence is achieved for any choice
of initial condition4.

Theorem 4.2 If every edge is updated infinitely often, thenx̂(n) computed according to
(4.10,4.12) converges to the correct means in walk-summable models for any initial guess
x̂(0).

This result shows that walk-summability is asufficientcondition for all our algorithms
— non-stationary ET, serial updates, memory-based updates — to converge for a very large
and flexible set of sequences of tractable subgraphs or subsets of variables (ones that update

4Note that in this case the messages must be initialized asM(s → t) = Rt,s x̂
(0)
s for each directed edge

(s, t) ∈ E .
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each edge infinitely often) on which to perform successive updates. The following result,
proven in Appendix A, shows that walk-summability is alsonecessaryfor this complete
flexibility. Thus, while any of our algorithmsmayconverge for some sequence of subsets
of variables and tractable subgraphs, for a non-walk-summable model there is at least one
sequence of updates for which the algorithms diverge.

Theorem 4.3 For any non-walk-summable model, there exists at least one sequence of
iterative steps that is ill-posed, or for whicĥx(n), computed according to (4.10,4.12), di-
verges.

4.4 Adaptive Iterations and Experimental Results

In this section we address two topics. The first is taking advantage of the great flexibility
in choosing successive iterative steps by developing techniques that adaptively optimize
the on-line choice of the next tree or subset of variables to use in order to reduce the error
as quickly as possible. The second is providing experimental results that demonstrate the
convergence behavior of these adaptive algorithms.

4.4.1 Choosing trees and subsets of variables adaptively

At iterationn, let theerror bee(n) = x̂− x̂(n) and theresidual errorbeh(n) = h− J x̂(n).
Note that it is tractable to compute the residual error at each iteration.

Trees

We describe an efficient algorithm to choose spanning trees adaptively to use as precondi-
tioners in the ET algorithm of Section 4.1.1. We have the following relationship between
the error at iterationn and the residual error at iterationn− 1:

e(n) = (J−1 − J−1
Sn

) h(n−1).

Based on this relationship, we have the walk-sum interpretatione
(n)
s = φ(h(n−1); ∗ G\Sn−→ s),

and consequently the following bound on the`1 norm ofe(n):

‖e(n)‖`1 =
∑
s∈V

∣∣∣φ(h(n−1); ∗ G\Sn−→ s)
∣∣∣

≤ φ̄(|h(n−1)|;G\Sn)

= φ̄(|h(n−1)|;G)− φ̄(|h(n−1)|;Sn), (4.20)

whereG\Sn denotes walks inG that must traverse edges not inSn, |h(n−1)| refers to the
entry-wise absolute value vector ofh(n−1), φ̄(|h(n−1)|;G) refers to the re-weighted absolute
walk-sum over all walks inG, andφ̄(|h(n−1)|;Sn) refers to the re-weighted absolute walk-
sum over all walks inSn. The above inequality becomes an equality for attractive models
with a non-negative potential vectorh. Minimizing the errore(n) reduces to choosingSn to
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maximizeφ̄(|h(n−1)|;Sn). Hence, if we maximize among all trees, we have the following
maximum walk-sum treeproblem:

arg maxSn a tree φ̄(|h(n−1)|;Sn). (4.21)

Rather than solving this combinatorially complex problem, we instead solve a problem that
minimizes a looser upper bound than (4.20). Specifically, consider any edge{u, v} ∈ E
and all of the walksS(u, v) = (uv, vu, uvu, vuv, uvuv, vuvu, . . . ) that live solely on this
single edge. It is not difficult to show that

wu,v , φ̄(|h(n−1)|;S(u, v))

= (|h(n−1)
u |+ |h(n−1)

v |)
∞∑

`=1

|Ru,v|`

= (|h(n−1)
u |+ |h(n−1)

v |) |Ru,v|
1− |Ru,v|

. (4.22)

This weight provides a measure of the error-reduction capacity of edge{u, v} by itself at
iterationn. This leads directly to choosing themaximum spanning tree[18] by solving

arg maxSn a tree

∑
{u,v}∈Sn

wu,v. (4.23)

For any treeSn the set of walks captured in the sum in (4.23) is a subset of all the walks
in Sn, so that solving (4.23) provides a lower bound on (4.21) and thus a looser upper
bound than (4.20). For sparse graphical models with|E| = O(|V |), each iteration using
this technique requiresO(|V | log |V |) computations [18].

Subsets of variables

We present an algorithm to choose the next best subset ofk variables for the block GS
algorithm of Section 4.1.2. The error at iterationn can be written as follows:

e
(n)
Vn

= x̂Vn − x̂
(n)
Vn

= J (n)−1
RVn,V c

n
[J−1 h(n−1)]V c

n
,

e
(n)
V c

n
= x̂V c

n
− x̂(n)

V c
n

= e
(n−1)
V c

n
= [J−1 h(n−1)]V c

n
.

As with (4.20), we have the following upper bound that is tight for attractive models with
non-negativeh:

‖e(n)‖`1 = ‖e(n)
Vn
‖`1 + ‖e(n)

V c
n
‖`1

≤
[
φ̄(|h(n−1)|; ∗ G−→ Vn)− φ̄(|h(n−1)|;Vn

E(Vn)−→ Vn)
]

+ φ̄(|h(n−1)|; ∗ G−→ V c
n )

= φ̄(|h(n−1)|;G) − φ̄(|h(n−1)|;Vn
E(Vn)−→ Vn), (4.24)
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whereE(Vn) refers to the edges in the induced subgraph ofVn. Minimizing this upper
bound reduces to solving the followingmaximum walk-sum blockproblem:

arg max|Vn|≤k φ̄(|h(n−1)|;Vn
E(Vn)−→ Vn). (4.25)

As with the maximum walk-sum tree problem, finding the optimal such block directly is
combinatorially complex. Therefore, we consider the following relaxed maximum walk-
sum block problem based on single-edge walks:

arg max|Vn|≤k φ̄(|h(n−1)|;Vn
1e−→ Vn), (4.26)

where
1e−→ denotes the restriction that walks can traverse at most one edge. The walks in

(4.26) are a subset of the walks in (4.25). Thus, solving (4.26) provides a lower bound on
(4.25), hence minimizing a looser upper bound on the error than (4.24).

Solving (4.26) is also combinatorially complex; therefore, we use a greedy method for
an approximate solution:

1. SetVn = ∅. Assuming that the goal is to solve the problem fork = 1, compute node
weights

wu = |h(n−1)
u |,

based on the walks captured by (4.26) if nodeu were to be included inVn.

2. Find the maximum weight nodeu∗ from V \Vn, and setVn ← Vn ∪ u∗.

3. If |Vn| = k, stop. Otherwise, update each neighborv ∈ V \Vn of u∗ and go to step2:

wv ← wv +
(
|h(n−1)

u∗ |+ |h(n−1)
v |

) |Ru∗,v|
1− |Ru∗,v|

.

This update captures the extra walks in (4.26) ifv were to be added toVn.

Step3 is the greedy aspect of the algorithm as it updates weights by computing the extra
walks that would be captured in (4.26) if nodev were added toVn, with the assumption
that the nodes already inVn remain unchanged. Note that only the weights of the neighbors
of u∗ are updated in step3; thus, there is a bias towards choosing a connected block. In
choosing successive blocks in this way, we collect walks adaptively without explicit regard
for the objective of updating each node infinitely often. However, our method is biased
towards choosing variables that have not been updated for a few iterations as the residual
error of such variables becomes larger relative to the other variables. Indeed, empirical
evidence confirms this behavior with all the simulations leading to convergent iterations.
For sparse graphical models with|E| = O(|V |) andk bounded, each iteration using this
technique requiresO(log |V |) computations using an efficient sort data structure.
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Figure 4-4: (Left) Convergence results for a randomly generated15 x 15 nearest-neighbor
grid-structured model. (Right) Average number of iterations required for the normalized
residual to reduce by a factor of10−10 over100 randomly generated models.

Experimental Illustration

We test the preceding two adaptive algorithms on randomly generated15 x 15 nearest-
neighbor grid models with5 %(R̄) = 0.99, and withx̂(0) = 0. The blocks used in block GS
were of sizek = 5. We compare these adaptive methods to standard non-adaptive one-tree
and two-tree ET iterations [73]. Figure 4-4 shows the performance of these algorithms.

The plot shows the relative decrease in the normalized residual error
‖h(n)‖`2

‖h(0)‖`2

versus the

number of iterations. The table shows the average number of iterations required for these
algorithms to reduce the normalized residual error below10−10. The average was com-
puted based on the performance on100 randomly generated models. All these models are
poorly conditioned because they are barely walk-summable. The number of iterations for
block GS is sub-sampled by a factor of|V |

k
= 45 to provide a fair comparison of the algo-

rithms. The one-tree ET method uses a spanning tree obtained by removing all the vertical
edges except the middle column. The two-tree method alternates between this tree and its
rotation (obtained by removing all the horizontal edges except the middle row). Figure 4-5
shows the trees computed by our adaptive algorithm in the first four iterations for the same
randomly generated15 x 15 example used to generate the plot in Figure 4-4.

Both the adaptive ET and block GS algorithms provide far faster convergence compared
to the one-tree and two-tree iterations, thus providing a computationally attractive method
for estimation in the broad class of walk-summable models.

4.4.2 Dealing with Communication Failure: Experimental Illustra-
tion

To illustrate our adaptive methods in the context of communication failure, we consider
a simple model for a distributed sensor network in which links (edges) fail independently
with failure probabilityα, and each failed link remains inactive for a certain number of
iterations given by a geometric random variable with mean1

β
. At each iteration, we find

5The grid edge weights are chosen uniformly at random from[−1, 1]. The matrixR is then scaled so that
%(R̄) = 0.99. The potential vectorh is chosen to be the all-ones vector.
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Figure 4-5: Trees chosen at the first four iterations for the same randomly generated15 x 15
used in Figure 4-4.

Figure 4-6: Convergence of memory-based algorithm on same randomly generated15 x 15
used in Figure 4-4: Varyingα with β = 0.3 (left) and varyingβ with α = 0.3 (right).

the best spanning tree (or forest) among the active links using the approach described in
Section 4.4.1. The maximum spanning tree problem can be solved in a distributed man-
ner using the algorithms presented in [4, 33]. Figure 4-6 shows the convergence of our
memory-based algorithm from Section 4.1.3 on the same randomly generated15 x 15 grid
model used to generate the plot in Figure 4-4 (again, withx̂(0) = 0). The different curves
are obtained by varyingα andβ. As expected, the first plot shows that our algorithm
is slower to converge as the failure probabilityα increases, while the second plot shows
that convergence is faster asβ is increased (which decreases the average inactive time).
These results show that our adaptive algorithms provide a scalable, flexible, and convergent
method for the estimation problem in a distributed setting with communication failure.

4.5 Discussion

We have described and analyzed a rich set of algorithms for estimation in Gaussian graph-
ical models with arbitrary structure. These algorithms are iterative in nature and involve
a sequence of inference problems on tractable subgraphs over subsets of variables. Our
framework includes parallel iterations such as ET, in which inference is performed on a
tractable subgraph of the whole graph at each iteration, and serial iterations such as block
GS, in which the induced subgraph of a small subset of variables is directly inverted at each
iteration. We also describe hybrid versions of these algorithms that involve inference on a
subgraph of a subset of variables. In addition, we discuss a method that uses local memory
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at each node to overcome temporary communication failures that may arise in distributed
sensor networks. We analyze these algorithms based on the recently introduced walk-sum
interpretation of Gaussian inference. A salient feature in our analysis is the development of
walk-sum diagrams, which provide an intuitive graphical comparison between the various
algorithms. This walk-sum analysis allows us to conclude that for the large class of walk-
summable models, our algorithms converge for essentially any sequence of subgraphs and
subsets of variables used. We then describe how this flexibility can be exploited by formu-
lating efficient algorithms that choose spanning trees and subsets of variables adaptively at
each iteration. These algorithms are used in the ET and block GS algorithms respectively
to demonstrate that significantly faster convergence can be obtained using these methods
over traditional one-tree and two-tree ET iterations.
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Chapter 5

Conclusion

5.1 Contributions

In this thesis we have studied two central signal processing problems involving Gaussian
graphical models, namely modeling and estimation. The modeling problem involves learn-
ing a sparse graphical model approximation to a specified distribution. The estimation
problem in turn exploits this graph structure to solve high-dimensional estimation prob-
lems very efficiently.

Our approach to modeling is based on a convex optimization formulation that maxi-
mizes entropy within an exponential family subject to relaxed marginal divergence con-
straints on small subsets of variables. From the maximum entropy principle, the selection
of a sparse graphical model structure arises naturally as a result of solving this problem. We
develop a primal-dual interior-point algorithm to solve the optimization problem. A key in-
gredient that makes this algorithm efficient is the sparsity of the Fisher information matrix
in models defined on chordal graphs. In problems involving many variables, we solve a
sequence of tractable sub-problems by adaptively identifying and including only the most
important constraints (those that are most violated) at each step. Simulation results demon-
strate the effectiveness of our approach in learning the Markov structure of some simple
models from data.

For the estimation problem, we make explicit use of the graph structure of a model
to find the conditional means at each node. Computing these means is efficient if the
underlying graph is tractable (such as a tree-structured model). We solve a sequence of
estimation problems on such tractable subgraphs to compute the means in an intractable
graph. We present a rich class of algorithms that includes the parallel Embedded Trees
iteration, the serial block Gauss-Seidel iteration, and hybrid versions of these iterations. In
addition, we also consider the case in which links between nodes may occasionally fail;
such a framework provides a simple model for communication failure in distributed sensor
networks. Our analysis is based on the recently introduced concept of walk-sum interpre-
tation of inference in Gaussian graphical models. We describe the walks “computed” by
the algorithms using walk-sum diagrams, and show that convergence can be achieved in
walk-summable models for non-stationary iterations based on a very large and flexible set
of sequences of subgraphs. Consequently, we are free to choose spanning trees and subsets
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of variables adaptively at each iteration. This leads to efficient methods for optimizing the
next iteration step to achieve maximum reduction in error. Simulation results demonstrate
that these non-stationary algorithms provide a significant speedup in convergence over tra-
ditional one-tree and two-tree iterations.

5.2 Open research questions

A variety of interesting questions arise from the results presented in this thesis. We discuss
some of these here.

5.2.1 Asymptotic analysis of MER

As the number of samples provided increases, one would expect that the MER problem
accurately identifies the underlying graph structure of the true model. In order to achieve
this, the tolerances must go to zero at an appropriate rate as the number samples grows
to infinity. Computing these tolerance decay rates based on results in the large-deviations
literature [20, 25] is an important question in order to achieve asymptotic consistency in the
MER problem.

The MER problem provides not just an estimate of structure, but also an estimate of
the parameters of the (unknown) model. These parameters can be used as an estimate
of the truedistribution based on the given samples. Understanding the generalization er-
ror performance of MER in this context, and comparing it to the performance of naive
maximum-likelihood estimation of the distribution could be useful in providing theoretical
guarantees about the performance of MER.

5.2.2 MER with inconsistent observations

In some applications, observations may be provided over subsets of variables separately,
rather than over the entire collection of variables jointly. For this reason, the empirical
marginal statistics on overlapping subsets of variables may be inconsistent. Solving the
MER problem in this context would require the right set of tolerance parameters for each
marginal constraint. In addition to the above issue, one may not have direct access to mea-
surements of variables, but to those of linear combinations of the variables. These linear
functionals can correspond to local averages over subsets of variables (e.g. wavelet coeffi-
cients [57]). Therefore, the divergence constraints in the MER problem will be with respect
to features (given by linear functionals) of the moment vectors rather than the moment vec-
tors directly. Understanding what the appropriate choice of the tolerance parameters should
be and studying other aspects of this problem may prove useful for multiscale modeling of
regular grid-structured graphical models.

5.2.3 Inference and analysis in non-Gaussian models

The fundamental principle of solving a sequence of tractable inference problems on sub-
graphs has also been exploited for non-Gaussian inference problems (e.g. [79]). Extending
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our analysis techniques to better understand such methods is of clear interest. In recent
work, the concept of self-avoiding walks has played a central role in providing new insight
about inference in discrete models [82]. Algebraic techniques from graph theory [37] may
also be useful in further extensions of our analysis to the non-Gaussian case.

5.2.4 Adaptive choice of subgraphs

The adaptive tree and block selection procedures presented in Chapter 4 are greedy in the
sense that they only choose the “next-best” subgraph with a view to minimizing the er-
ror at the next iteration. Adaptively choosing theK next-best subgraphsjointly with the
goal of achieving the greatest reduction in errorafter K iteration remains an interesting
open problem. Finding such sets of subgraphs jointly may prove to be computationally
prohibitive using brute force techniques, but methods from the theory of matroids and sub-
modular functions may provide both practically feasible algorithms as well as theoretical
performance guarantees [60].
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Appendix A

Proofs for Chapter 4

A.1 Dealing with un-normalized models

Consider an information matrixJ = D−M (whereD is the diagonal part ofJ) that is not
normalized, i.e.D 6= I. The weight of a walkw = {wi}`i=0 can be re-defined as follows:

ψ(w) =

∏`−1
i=0 Mwi,wi+1∏`

i=0Dwi,wi

=

∏`−1
i=0

√
Dwi,wi

Rwi,wi+1

√
Dwi+1,wi+1∏`

i=0Dwi,wi

=
φ(w)√

Dw0,w0Dw`,w`

,

whereψ(w) is the weight ofw with respect to the un-normalized model, andφ(w) is the
weight ofw in the corresponding normalized model. We can then define walk-summability
in terms of the absolute convergence of the un-normalized walk-sumψ̄(s → t) over all
walks froms to t (for each pair of verticess, t ∈ V ). A necessary and sufficient condition

for this un-normalized notion of walk-summability is%
(
D− 1

2 M D− 1
2

)
< 1, which is

equivalent to the original condition%(R̄) < 1 in the corresponding normalized model. Un-
normalized versions of the algorithms in Section 4.1 can be constructed by replacing every
occurrence of the partial correlation matrixR by the un-normalized off-diagonal matrixM .
The rest of our analysis and convergence results remain unchanged because we deal with
abstract walk-sets. (Note that in the proof of Proposition 4.1, every occurrence ofR must
be changed toM .) Alternatively, given an un-normalized model, one can first normalize
the model (Jnorm ← D− 1

2 Junnorm D− 1
2 ), then apply the algorithms of Section 4.1, and

finally “de-normalize” the resulting estimate (x̂(n)
unnorm ← D

1
2 x̂

(n)
norm). Such a procedure

would provide the same estimate as the direct application of the un-normalized versions of
the algorithms in Section 4.1 as outlined above.

A.2 Proof of Proposition 4.1

Remarks: Before proceeding with the proof of the proposition, we make some observa-
tions about the walk-setsWn(s → t) that will prove useful for the other proofs as well.
For t ∈ Vn, notice that since the set of edges contained inEn (in subgraphSn) andκn are

disjoint, the walk-setsW(s
Sn−→ t) andWrn(∗→•)(s → ∗) ⊗W(∗ κn(1)−→ •) ⊗W(• Sn−→ t)
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are disjoint. Therefore, from Section 2.6.2,

φn(s→ t) = φ(s
Sn−→ t) + φ

(
Wrn(∗→•)(s→ ∗)⊗W(∗ κn(1)−→ •)⊗W(• Sn−→ t)

)
= φ(s

Sn−→ t)

+φ

( ⋃
u,v∈V

Wrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v

Sn−→ t)

)
. (A.1)

Every walkw ∈ Wrn(u→v)(s → u) ⊗ W(u
κn(1)−→ v) ⊗ W(v

Sn−→ t) can bedecomposed

uniquelyasw = wa · wb · wc, wherewa ∈ Wrn(u→v)(s → u), wb ∈ W(u
κn(1)−→ v), and

wc ∈ W(v
Sn−→ t). The unique decomposition property is a consequence ofEn andκn being

disjoint, and the walk inκn being restricted to a length-1 hop. This property also implies

thatWrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v

Sn−→ t) andWrn(u′→v′)(s→ u′)⊗W(u′
κn(1)−→

v′) ⊗ W(v′
Sn−→ t) are disjoint if(u, v) 6= (u′, v′). Based on these two observations, we

have from Section 2.6.2 that

φ

( ⋃
u,v∈V

Wrn(u→v)(s→ u)⊗W(u
κn(1)−→ v)⊗W(v

Sn−→ t)

)

=
∑

u,v∈V

φ
(
Wrn(u→v)(s→ u)⊗W(u

κn(1)−→ v)⊗W(v
Sn−→ t)

)
=

∑
u,v∈V

φrn(u→v)(s→ u) φ(u
κn(1)−→ v) φ(v

Sn−→ t). (A.2)

Proof of proposition: We provide an inductive proof. From (4.15),φ0(s → t) = 0.
Thus,

φ0(h; ∗ → t) =
∑
s∈V

hs φ0(s→ t) = 0 = x̂
(0)
t ,

which is consistent with the proposition because we assume that our initial guess is0 at
each node.

Assume that̂x(n′)
t = φn′(h; ∗ → t), for 0 ≤ n′ ≤ n − 1, as the inductive hypothesis.

For t ∈ V c
n ,

x̂
(n)
t = x̂

(n−1)
t = φn−1(h; ∗ → t) = φn(h; ∗ → t),

where the first equality is from (4.7), the second from the inductive hypothesis, and the
third from (4.14). Hence, we can focus on nodes inVn. For t ∈ Vn, (A.1−A.2) can be
re-written as:

φn(s→ t) = φ(s
Sn−→ t) +

∑
(u,v)∈κn

φrn(u→v)(s→ u) φ(u
κn(1)−→ v) φ(v

Sn−→ t), (A.3)
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becauseφ(u
κn(1)−→ v) = 0 if (u, v) /∈ κn. From (A.1−A.3) we have that:

φn(h; ∗ → t) =
∑
s∈V

hs

φ(s
Sn−→ t) +

∑
(u,v)∈κn

φrn(u→v)(s→ u)φ(u
κn(1)−→ v)φ(v

Sn−→ t)


=

∑
s∈V

hs

(J−1
Sn

)t,s +
∑

(u,v)∈κn

φrn(u→v)(s→ u) Rv,u (J−1
Sn

)t,v

 ,

where we have used the walk-sum interpretation ofJ−1
Sn

andκn. Simplifying further, we
have that

φn(h; ∗ → t) =
(
J−1
Sn

hVn

)
t
+

∑
(u,v)∈κn

φrn(u→v)(h; ∗ → u) Rv,u (J−1
Sn

)t,v

=
(
J−1
Sn

hVn

)
t
+

∑
(u,v)∈κn

x̂rn(u→v)
u Rv,u (J−1

Sn
)t,v. (A.4)

The last equality is from the inductive hypothesis because0 ≤ rn(u→ v) ≤ n− 1. Next,
we have that

φn(h; ∗ → t) =
(
J−1
Sn

hVn

)
t
+
∑
v∈Vn

(J−1
Sn

)t,v

∑
{u|(u,v)∈κn}

Rv,u x̂
rn(u→v)
u

=
(
J−1
Sn

hVn

)
t
+
∑
v∈Vn

(J−1
Sn

)t,v Mn(v)

= x̂
(n)
t ,

where the second equality is from (4.12), and the third from (4.10).�

A.3 Proof of Proposition 4.3

We prove the following lemma that will be useful later for the proof of the proposition.

Lemma A.1 Letw = wstart · · · p · q · · ·wend be an arbitrary walk inWn(wstart → wend),
and let w̃ = wstart · · · p be a leadingsub-walk ofw. There exists akn ≤ n with w̃ ∈
Wkn(wstart → p) so that at least one of the following conditions is true:kn = n and the
edge(p, q) ∈ En, or kn ≤ rn(p→ q).

Proof: The base case is vacuously true becauseW0(wstart → wend) = ∅. For the
inductive hypothesis, assume that the statement is true for0 ≤ n′ ≤ n−1. This can be used
to prove the statement ifwend ∈ V c

n . Assume thatw ∈ Wn(wstart → wend) with wend ∈ Vn.

From the remarks in Section A.2 of this appendix, eitherw ∈ W(wstart
Sn−→ wend), or

w ∈ Wrn(u→v)(wstart → u) ⊗ W(u
κn(1)−→ v) ⊗ W(v

Sn−→ wend) for some unique pair of

verticesu, v ∈ V with rn(u → v) ≤ n− 1. If w ∈ W(wstart
Sn−→ wend), thenkn = n and

(p, q) ∈ En.
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If w ∈ Wrn(u→v)(wstart → u)⊗W(u
κn(1)−→ v)⊗W(v

Sn−→ wend), then from the remarks
in Section A.2 of this appendix,w can be uniquely decomposed asw = wa · wb · wc with

wa ∈ Wrn(u→v)(wstart → u), wb = uv ∈ W(u
κn(1)−→ v), andwc ∈ W(v

Sn−→ wend).
Suppose the trailing partp · · ·wend is a sub-walk ofwc, or is equal towc. We can uniquely

decomposẽw aswa ·wb · (v · · · p) ∈ Wrn(u→v)(wstart → u)⊗W(u
κn(1)−→ v)⊗W(v

Sn−→ p).

This shows thatkn = n. Also, (p, q) ∈ En becausewc ∈ W(v
Sn−→ wend).

Supposep · · ·wend is not a sub-walk ofwc; then eitherw̃ = wa or w̃ must be a leading
sub-walk ofwa. If w̃ = wa, then(p, q) = (u, v) andkn = rn(p → q). If w̃ is a leading
sub-walk ofwa, we can use the inductive hypothesis (becausern(u→ v) ≤ n−1) to obtain
akn = krn(u→v) ≤ rn(u→ v) < n. If kn = krn(u→v) = rn(u→ v), then(p, q) ∈ Ern(u→v)

and one can check thatrn(p → q) ≥ kn (because a post-inference message is passed on
edge(p, q) at iterationrn(u → v) = kn). Otherwise,kn = krn(u→v) ≤ rrn(u→v)(p → q) ≤
rn(p→ q). �

Proof of proposition: We provide an inductive proof. Let any two verticess, t ∈ V
be given. The base caseW0(s → t) ⊆ W1(s → t) clearly follows from the fact that
W0(s → t) = ∅ from (4.13). For the inductive hypothesis, assume thatWn′−1(s →
t) ⊆ Wn′(s → t) for 0 ≤ n′ ≤ n − 1. If t ∈ V c

n , the proposition follows because
Wn(s → t) = Wn−1(s → t) from (4.14). So we can restrict ourselves to the case that
t ∈ Vn. Let somew ∈ Wn−1(s→ t) be given.

First, we check ifw ∈ W(s
Sn−→ t). If this is the case, then we are done. If not,

w can be uniquely decomposed asw = wa · wb · wc, wherewb ∈ W(p
κn(1)−→ q), and

wc ∈ W(q
Sn−→ t) for somep, q ∈ V . We must show thatwa ∈ Wrn(p→q)(s → p). But

wa is a leading sub-walk ofw. We have from Lemma A.1 that, with respect to the walk-set
Wn−1(s→ t), there exists akn−1 ≤ n− 1 such thatwa ∈ Wkn−1(s→ p). If kn−1 = n− 1,
then(p, q) ∈ En−1 andrn(p→ q) = n− 1 (due to post-inference message (4.11)). Hence,
wa ∈ Wkn−1(s → p) = Wrn(p→q)(s → p). If kn−1 < n − 1, thenkn−1 ≤ rn−1(p → q)
from Lemma A.1. Butkn−1 ≤ rn−1(p → q) ≤ rn(p → q) ≤ n − 1 and we can apply
the inductive hypothesis to show the relationWkn−1(s → p) ⊆ Wrn(p→q)(s → p). Thus,
wa ∈ Wkn−1(s→ p) ⊆ Wrn(p→q)(s→ p). �

A.4 Proof of Proposition 4.4

Let w = s · · ·u · t. We provide an inductive proof with respect to the length ofw. If
every edge is updated infinitely often, it is clear that every node is updated infinitely often.
Therefore, the leading length-0 part(s) is computed whens is first updated at some iteration
k. By the nesting of the walk-setsWn from proposition 4.3, we have that(s) ∈ Wk′(s →
s) for all k′ ≥ k. Now assume (as the inductive hypothesis) that the leading sub-walk
s · · ·u including all but the last stepu · t of w is contained inWN(s → u) for someN
(≥ k). Given the infinitely-often update property, there exists anm > N such that the edge

(u, t) ∈ Em∪κactive
m . If (u, t) ∈ κactive

m , thenw ∈ Wm−1(s→ u)⊗W(u
κm(1)−→ t)⊗W(t

Sm−→
t) ∈ Wm(s→ t). This can be concluded from (4.13) and becauses · · ·u ∈ Wm−1(s→ u)
by the nesting argument (m − 1 ≥ N ) of Proposition 4.3. Again applying the nesting
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argument, we can prove the proposition because we now have thatw ∈ Wn(s→ t) for all
n ≥ m. We can use a similar argument to conclude thatw ∈ Wn(s→ t) for all n ≥ m, if
(u, t) ∈ Em. �

A.5 Proof of Theorem 4.2

From Theorem 4.1 and Proposition 4.1, we can conclude thatx̂(n) converges toJ−1h
element-wise asn → ∞ for x̂(0) = 0. Assume that̂x(0) 6= 0. Consider a shifted lin-
ear systemJŷ = h̃, whereh̃ = h− Jx̂(0). If we solve this system using the same sequence
of operations (subgraphs and failed links) that were used to obtain the iteratesx̂(n), and with
ŷ(0) = 0, thenŷ(n) converges to the correct solutionJ−1h − x̂(0) of the systemJŷ = h̃.
We will show that̂y(n) = x̂(n) − x̂(0), which would allow us to conclude thatx̂(n) → J−1h
element-wise asn → ∞ for any x̂(0). We prove this final step inductively. The base case
is clear becausêy(0) = 0. Assume as the inductive hypothesis thatŷ(n′) = x̂(n′) − x̂(0) for
0 ≤ n′ ≤ n − 1. From this, one can check thatŷ(n)

V c
n

= x̂
(n)
V c

n
− x̂(0)

V c
n
. For t ∈ Vn, we have

from (4.10,4.12) that:

ŷ
(n)
t = (J−1

Sn
· h̃Vn)t +

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · ŷrn(u→v)
u


= (J−1

Sn
· hVn)t +

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · x̂rn(u→v)
u


−
(
J−1
Sn
· (Jx̂(0))Vn

)
t
−

 ∑
(u,v)∈κn

(J−1
Sn

)t,v ·Rv,u · x̂(0)
u


= x̂

(n)
t −

(
J−1
Sn
· (JVn,V c

n
· x̂(0)

V c
n

+ JVn,Vn · x̂
(0)
Vn

+KSn · x̂
(0)
Vn

+RVn,V c
n
· x̂(0)

V c
n
)
)

t

= x̂
(n)
t − x̂

(0)
t .

The second equality follows from the inductive hypothesis, and the last two from simple
algebra.�

A.6 Proof of Theorem 4.3

Before proving the converse, we have the following lemma that is proved in [1].

Lemma A.2 SupposeJ is a symmetric positive-definite matrix, andJ = JS −KS is some
splitting withKS symmetric andJS non-singular. Then,%(J−1

S KS) < 1 if and only if
J + 2KS � 0.

Proof of converse: Assume thatJ = I − R is valid but non-walk-summable. There-
fore,R must contain some negative partial correlation coefficients (since all valid attractive
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models, i.e. those containing only non-negative partial correlation coefficients, are walk-
summable; see Section 2.6.2). LetR = R+ + R− with R+ containing the positive coeffi-
cients andR− containing the negative coefficients (including the negative sign). Consider
a stationary ET iteration (4.2) based on the cutting the negative edges so thatJS = I −R+

andKS = R−. If JS is singular, then the iteration is ill-posed. Otherwise, the iteration
converges if and only if%(J−1

S KS) < 1 [38, 76]. From Lemma A.2, we need to check the
validity of J + 2KS :

J + 2KS = I −R + 2R− = I − R̄.

But I − R̄ � 0 if and only if the model is walk-summable (from Section 2.6.2). Thus, this
stationary iteration, if well-posed, does not converge in non-walk-summable models.�
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Appendix B

Fisher information in Gaussian models

In this section, we provide a brief derivation of the Fisher information matrix with respect
to the moment parametersη in the complete Gaussian model, i.e. a model with moments
specified for all verticesV and all pairs of vertices

(
V
2

)
.

The entropy of a collection of normally distributed variables with covarianceP is given
by

H(P ) = 1
2
(log detP + |V | · log 2πe).

The gradient ofH(P ) with respect toP is [10]

∇PH(P )(4P ) = 1
2
trace(P−14P ).

Further, the Hessian ofH(P ) with respect toP is [10]

∇2
PH(P )(4P,4Q) = −1

2
trace(P−14PP−14Q). (B.1)

Based on this Hessian formula we can derive the Fisher information in Gaussian models
with respect to the moment parametersη.

First, we recall from Section 2.3.2 that the Hessian of entropy with respect to the mo-
ment parameters is the negative Fisher information matrix with respect to moment param-
eterization:

∇2
ηH(η) = −G∗(η), (B.2)

whereH(η) refers to entropy parameterized by themoment parametersη rather than the
covariance matrixP . Second, the relation betweenη andP (η) is as follows:

P (η) =
∑
s∈V

ηsese
T
s +

∑
{s,t}∈(V

2)

ηst(ese
T
t + ete

T
s ), (B.3)

wherees ∈ R|V | is the vector with a1 corresponding to the location of vertexs and zero
everywhere else. Hence,ese

T
s andese

T
t + ete

T
s can be viewed as “basis” vectors that are

used to construct a covariance matrix given “weights”ηs andηst.
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From (B.1−B.3), the elementG∗(η)st,uv of the Fisher information matrix is given by:

G∗(η)st,uv = 1
2
trace

[
P (η)−1(ese

T
t + ete

T
s )P (η)−1(eue

T
v + eve

T
u )
]

= Js,uJt,v + Js,vJt,u,

whereJ = P (η)−1. Using similar calculations, we have thatG∗(η)st,u = Js,uJt,u and
G∗(η)s,t = 1

2
J2

s,t.
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