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ABSTRACT

The first part of this thesis investigates the optional
sampling theorem for submartingales ~exed by a partially
ordered time set. Although the optional sampling theorem
is true for martingales indexed by partially ordered time
under very general circumstances, the submartingale version
requires one to restrict the stopping times to a special
subclass of general stopping times. These special stopping
times, which we call reachable, are defined in terms of a
sequential stopping problem in the partially ordered time
set. We show that the optional sampling theorem is
generally true for submartingales and reachable stopping
times. Conversely, if the optional sampling theorem is
true for a given pair of stopping times and all submartingales,
then these stopping times must satisfy our reachibility con
dition. Thus, we are able to characterize the stopping times
which make the optional sampling theorem true for submartin
gales.

The second part of this thesis derives a generalization
of Ito's stochastic differentiation formula for a class of
multiparameter processes including the multiparameter Wiener
process. We develop simple stochastic differentiation rules
to obtain this formula, and we show that the formula is a
:Inatural consequence of the ordinary deterministic multipara
meter differentiation formula an:d the one-parameter Ito
stochastic differentiation formula. In the two-parameter
case our result agrees with those of Wong-Zakai and
Cairoli-Walsh. We then apply the formula to represent multi
parameter square integrable martingales which are measurable
with respect to the multiparameter Wiener process.

Thesis supervisor: Alan Willsky
Title: Associate Professor of Electrical Engineering
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INTRODUCTION

1. Background for Random Fields

A stochastic process is a collection of random

variables indexed by a single real or integer parameter.

That is, the parameter space is a subset of the real line

and one usually thinks of the parameter as a time. How

ever, in some applications it is more appropriate to

consider collections of random variables indexed by more

general parameter sets. Such a collection of random

variables with a general parameter set is called a

random field and sometimes, a stochastic process with

multidimensiontal time or equivalently, a multiparameter

stoc~ast~c process.

Random problems are common in the natural sciences,

particularly in those sciences which investigate continuum

phenomena for example, fluid mechanics and electro-

dynamics. However, although the problems are common,

treatment of these problems as multiparameter stochastic

phenomena is a relatively recent development. Considering

the extreme difficulty of such treatments, this late

development is not surprising. Indeed, at the present

time random field models generally fall into two extreme

categories: exact models which are intractable to
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calculation and computation, and computationally tractable

models which do not model realistic phenomena. It was

the goal of this thesis to define new models of random

fields which are general enough to cover some realistic

phenomena, yet which possess enough structure to give some

hope of computational results.

This thesis investigates two mathematical models for

such random fields. In Part I we study random fields

indexed by partially ordered sets and we develop martingale

and optional sampling theory for such partially-ordered

time processes. In Part II we study random fields indexed

by Rn which can be represented by stochastic integrals

over Rn . In section 2 of this introduction we discuss

the contents of the thesis in more detail. In the remainder

of the present section we briefly survey a range of random

field problems and a corresponding range of random field

mathematical models.

Perhaps the oldest and one of the most difficult

applications of stochastic methods to field problems is

in turbulence theory. Here the random fields are random

three dimensional velocity vectors parameterized by four

dimensional space-time. Taylor (1938) first modelled

the phenomenon of turbulence in fluid dynamics as a
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spatially stationary random field which may be described

by its spectral characteristics. Batchelor (1953) gives

a good discussion of this approach with emphasis on using

this model to understand the physical phenomenon of

turbulence. The recent encyclopedic treatment by Monin

and Yaglom (1971, 1975) provides a detailed treatment

of the mathematical basis of this statistical model for

turbulence as well as the physics. For a concise dis

cussion of the mathematical tools and techniques alone,

see Lumley (1970).

The statistical approach to turbulence is based on

Fourier and correlation analysis of the random velocity

field, and it uses the hydrodynamic equations to derive

relationships between the various correlation coefficients.

Unfortunately, the resulting set of equations is infinite

and they must be solved simultaneously to obtain anyone

correlation coefficient. Thus, in order to compute low

order correlation coefficients one must assume that the

correlation coefficients vanish or have a fixed form

above some order so that one can truncate the infinite

set of equations and obtain a finite set of equations

for the desired low order correlations. This problem

of truncating the infinite set of equations is known as

the closure problem and is discussed, for example, in
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Monin and Yaglom (1975).

Despite the extreme difficulty of obtaining compu

tational results from the statistical turbulence model,

this approach is widely taken in related sciences. For

example, Csanady (1973) uses some of the simpler results

in his study of turbulent diffusion of pollutants in the

atmosphere. Epstein (1969) also takes this general

approach for his study of the statistical treatment of

dynamic meteorology. A similar spectral model is popular

for large scale meteorological fields. See, for example,

Tatarskaya (1965) or more recently, Fraedrich and Bottiger

(1978) .

A problem related to the turbulence problem which

uses similar mathematical techniques is the problem of

wave propagation through random media. For example, one

might have electromagnetic waves passing through a medium

whose refractive index is represented as a random scalar

field -- see Dence and Spence (1973). Similarly, one has

sound waves propagating underwater (see Beseieris and

Kohler (1978» and seismic waves propagating through the

ground (see Cameron and Hannan (1978». In each of these

cases the practically important problem is to reconstruct

the most probable signal from the received wave which has

been distorted by the random medium. Frisch (1968) gives
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a more general, detailed discussion of these problems.

A different problem which also uses spectral techniques

isthe problem of describing anomalies in the earth's gra

vitational field. The problem is roughly similar to the

turbulence problem in that there is a basic spatially

stationary random field which must satisfy additional

equations (principally Laplace's equation in this case

rather than the Navier-Stokes equation of fluid dynamics).

Note that the random field in this case is naturally

parameterized by a sphere. Consequently, spherical

harmonic functions are used in the spectral analysis of

the global statistical properties. Cartesian spectral

analysis is possible for the spectral analysis of local

statistical properties. The paper by Nash and Jordan (1978)

surveys current results and provides an extensive biblio

graphy.

Spatially stationary random fields are also used

to describe phenomena for which there are no additional

mathematical relationships to satisfy. The principal

example is that of two dimensional image processing.

Here the problem is to describe the noise in the image

by a spatially stationary random field model and then

estimate the uncorrupted image in a statistically optimal

way. Rosenfeld and Kak (1976) provide an excellent survey
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of the general problem of digital image processing, dis

cussing both the statistical and nonstatistical methods.

Larrimore (1977) surveys the problem of statistical

inference for such problems. Note that the problem of

computer processing of images has inspired much work on

two-parameter recursive estimation techniques. We will

discuss this work later.

Problems similar to the image processing problem

occur for geology and hydrology. Again, spatially

stationary random fields are used to describe phenomena

for which there are no additional mathematical relation

ships known. The typical problem is to use a spatially

stationary random field model to describe statistically

a spatial pattern for which only a few measurements are

available. For example, Rhenals, Rodriguez and Schaake

(1974) use two parameter spatially stationary random

fields to describe rainfall patterns. The practical

problem here is to obtain a statistical estimate of rain

fall and run-off patterns from relatively few rain gauges.

A similar approach is taken in statistical geology, for

example, as discussed in Merriam (1970). Note that

Matheron (1965) has developed a correlation technique

called kriging which can be used to describe certain

nonstationary fields. The problem in geology is to
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estimate statistically mineral deposits in a given region

on the basis of very few measurements (mines, wells) or on

the basis of indirect measurements (surface topography,

faults). One uses observations to construct a probability

map of mineral deposits and then one explores the region

most likely to contain deposits. See Harbaugh, Doveton

and Davis (1977) for a survey of this approach to oil

exploration. Delfiner and Delhomme (1975) discuss the

general application of kriging to this problem. A specific

application of spectral techniques to real mineral exploration

in South Africa is discussed in Longshaw and Gilbertson

(1976) .

So far we have discussed mainly the spatially

stationary random field models. Indeed, these are the

most popular models and they possess a rich structure

determined by the geometric structure of the parameter

set. Generally speaking, the structure of the parameter

set determines what assumptions one can make about the

mutual dependence of the parameterized collection of

random variables which constitute the random field.

If the parameter set has a group of transformations

associated with it, it is possible to generalize the

concept of stationary time series to the so-called

second-order homogeneous random ·field. One does this by
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requiring the covariance function of the random field to

be invariant under the transformations of the parameters.

For example, a random field which is parameterized by

R3 and which has a covariance function invariant with

espect to rotations and translations in R3 is called

isotropic. The general group theoretic case is treated

by Yaglom (1961). An earlier treatment of the special

case of random fields parameterized by R2 is given by

Whittle (1954) who pays special attention to problems

of statistical inference for such homogeneous random

fields. The statistical problem for more general homo-

geneous random fields is discussed in Hannan (1965, 1967,

1969).

Homogeneous random field models suffer the serious

problem that few realistic phenomena are actually

homogeneous.

But while the stationary theory of random fields

has become well-established and richly developed, the

development of nonstationary theories of random fields

has lagged behind. Much of the difficulty stems from

the fact that the usual one-parameter theory of dynamic

processes depends heavily on the specific properties of

the real line. Particularly important is the ordering
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of the real line which permits its interpretation as a

time parameter for a dynamic process. Unfortunately,

for all practical purposes the total linear ordering of

the real line is unique to that parameter set. This

act severely complicates the attempt to model non

stationary random fields by drawing analogies with one

parameter processes. Nevertheless, some progress has

been made.

For example, mathematicians interested in statistical

mechanics models have generalized the notion of Markov

property to random fields. Kemeny, Snell and Knapp (1976)

give a brief introduction to the mathematical theory of

Markov random fields with a denumerable parameter set.

Spitzer (1971) and Preston (1974) introduce the Markov

random field in connection with the theoretical study

of phase transitions in statistical mechanics.

Bartlett (1975) has used nearest neighbor Markov

models to represent patterns of species distribution in

ecology.

Earlier, Levy (1956) generalized the concept of

Markov property to random fields with continuous parameter

space Rn . Wong (1971) gives a brief introduction to

this topic, and in his paper Wong (1969) gives covariance
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conditions for a homogeneous Markov field with parameter

space Rn . These covariance conditions are very restrictive

and indeed, they show that nontrivial homogeneous Markov

fields are possible only for certain dimensions n.

Kallianpur and Mandrekar (1974) obtain a wider class of

Markov fields by defining generalized random fields

analogous to generalized functions (see also Gelfand and

Vilenkin (1964».

By generalizing the order relations of the real

line, one can develop another model of nonstationary

random fields and this is the model we develop in this

thesis. Instead of assuming a total linear ordering of

the parameter set, one assumes only a partial ordering

of the parameter set. Chapter 1 of part I presents

the formal definition of partial order, but as an example,

the order relation between sets defined by set inclusion

is prototypical. With this partial order structure on

the parameter set it is possible to define naturally

martingale, stopping time, increasing process and

related concepts for random fields, and several authors

have done this. Bochner (1955) presented martingale

theory with a general partially ordered time set. In

this paper Bochner attempted to unite several ideas
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from the theory of stochastic processes under a

general theory of martingales indexed by a partially

ordered parameter set. In addition he stated (without

proof) the general version of the submartingale con

vergence theorem and the optional sampling theorem for

submartingales. Unfortunately, both results are not

generally true when the parameter set is not totally

linearly ordered. Krickeberg (1956) discussed fully

the convergence question when the parameter set is

partially ordered and directed (so that every two

parameters have a common upper bound in the parameter

set). Later Chow (1960) noted that the optional

sampling theorem for submartingales was generally false,

and he proved it true for martingales parameterized

by directed sets. Chow (1960) also considered conver

gence of these martingales. Recently, Kurtz (19??)

has proved the optional sampling theorem for

martingales indexed by a general partially ordered

parameter set with topological structure. In Part I

we discuss in detail the optional sampling theorem for

submartingales: this result is surprisingly different

from the martingale result.

Specific part.ially ordered parameter sets have
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received much more attention than the general case. The

most studied example is the parameter set Rn with a

coordinate-wise ordering. That is, if sand tare

vectors in Rn , one defines the order relation t < s

to mean that t. < S.
1 1

for each of the n coordinates

s. and t. of sand t, respectively. Such a par-
1 1

tially ordered parameter is known as multidimensional

time.

The additional structure of the multidimensional

time parameter set allows one to obtain more specific

results. For example, Cairoli (1970) has extended the

martingale inequalities of Doob (1953) to a class of

multiparameter martingales. Cairoli (1971) has also

extended the submartingale decomposition theorem but

the extension applies to a multiparameter process

called an S-process and not to multiparameter sub-

martingales. In Part I we present a counterexample

which shows that the general multiparameter submargin-

gale can not be decomposed as the ordinary one-parameter

submartingale.

Multidimensional time has also provided a con-

venient setting for extending the Wiener and Ito sto-

chastic integrals which are closely connected with the
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one-parameter martingale theory. Ito (1951) introduced

the multiple Wiener integral. In a series of recent

papers Wong and Zakai (1974, 1975a, 1975b) have extended

the one-parameter results of Ito (1961) to two-parameter

processes. Among other results, Wong and Zakai extended

the celebrated stochastic differentiation formula of

Ito to two-parameter processes and used it to represent

two-parameter martingales by means of stochastic

integrals over R2 and R2
x R2 . Cairoli and Walsh

(1975, 1977) present similar results and Yor (1975)

generalizes the representation theorem to n-parameter

martingales.

Multiparameter processes have also been applied in

information processing problems in recent years. See

Bose (1977) for a general survey of current work in

multiparameter system theory. For example, two-parameter

processes are widely used to model the filtering and

processing of noisy two-dimensional images. In this

problem it is particularly desirable to obtain efficient

computational procedures for processing large arrays

of data. In this regard much work has been done on

designing recursive algorithms for which the recursion

is defined with respect to the two-parameter partial
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order. We discuss this in more detail in Chapter 2 of

Part I. Larrimore (1977) gives a general survey of

the area. Woods (1976) and Woods and Radewan (1977)

discuss recursive estimators in the discrete parameter

case. Wong (1968, 1976, 1978) applies the stochastic

integration theory of Wong and Zakai (1974, 1975) to

obtain recursive algorithms for the continuous parameter

case.

2. Summary of Thesis

The following is a brief synopsis of the contents of

the chapters in this thesis.

Part I. The Opt~onal Sampling Theorem for Partially

Ordered Time Processes.

Chapter I

Partial order relations are formally defined and

then the partially ordered time stochastic process,

martingale, stopping time and other concepts are

defined. Multiparameter processes are introduced and

some basic examples, particularly the multiparameter

Wiener process, are presented and discussed.

We review Kurtz's (1977) results on optional

sampling for martingales and show the results do not
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generalize to submartingales. However, we do prove the

submartingale theorem for a class of two-parameter

submartingales and present a counterexample for a

similar class of three-parameter submartingales.

Chapter 2

Given an a priori distribution of a signal source

in space and time, a moving sensor must intercept the

radiating signal in minimum expected time. This

simple problem illustrates how the issues of causality

(of the information structure) and recursion (of the

computational solution) arise in the formulation and

solution of a partially ordered time problem. This

problem is generalized in Chapter 3.

Chapter 3

We extend the results of Chapter 2 to a general

olassof stopping problems with partially nested in

£ormation structure. After formulating the problem

precisely, we show how to solve it by means of a

dynamic programming equation. We find that many of the

usual one-parameter results still hold. For example,

the dynamic program has a unique optimal cost function

associated with it. This cost function can be computed
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by means of a backward recursive computation with respect

to the partial order relation on the time set.

Chapter 4

We define a new type of stopping time, called

reachable, which is included in the general class of

stopping times defined in Chapter 1. We show that the

optional sampling theorem is true for submartingales if

the stopping times are reachable. Conversely, using the

dynamic programming results of Chpater 3, we show that

if the optional sampling theorem is true for all sub

martingales given a fixed pair of stopping times,

then the stopping times must be reachable.

Chapter 5

We conclude Part I by discussing the significance

of the results for random field theory and by indicating

possible extensions and directions for further research.

Part II. Multiparameter Stochastic Calculus

Chapter 1. Introduction

We discuss briefly the background of the stochastic

calculus.
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Chapter 2. Definitions and Notation

We present the necessary definitions and notation

we need to develop the multiparameter stochastic calculus.

Chapter 3. Two-Parameter Stochastic Differentiation

We discuss the two-parameter stochastic differentia

tion formula and the various new types of stochastic

integrals required to interpret the formula. We compare

our integrals with the Wong-Zakai (1974) and Cairoli-Walsh

(1975) integrals, thus establishing the equivalence of

their formulas and our own. We also introduce a stochastic

partial differential operator that obeys very simple

differentiation rules and allows a simple formal derivation

of the stochastic differentiation formula. This stochastic

partial differentiation operator is the same as the

"stochastic partial" which appears in Cairoli-Walsh (1975).

Chapter 4. Multiparameter Stochastic Differentiation

This chapter discusses the n-parameter stochastic

differentiation formula and the n-parameter integrals

necessary to interpret it rigorously. Here we emphasize

the concept of a stochastic differential. This point of

view permits a simple formal derivation of the multi

parameter stochastic differentiation formula and
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emphasizes the multiparameter formula's close relation

to the deterministic formula and the one-parameter Ito

formula. The derivation up to this point is formal in

nature, as we utilize differentiation formulas and

differentials without rigorous proof of their

properties.

Chapter 5. Stochastic Measure and Stochastic Integral

This chapter contains the first rigorous results.

Here we define the concept of stochastic measure and its

corresponding integral in order to treat all types of

stochastic integrals together. At the same time we

ofer some geometric insight into the stochastic calculus.

Chapter 6. Mixed Integrals and Products of Stochastic

Measures

Here we define mixed stochastic-deterministic

integrals and the product of stochastic measures in

preparation for the main results in the next chapter.

Chapter 7. Product Differentiation Rule

We present the rigorous proof of the product

differentiation rule, which is the central technical

result of this second part. This justifies the formal
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manipulations of chapter 2 and chapter 3.

Chapter 8. Representation of Multiparameter Martingales

We first prove the multiparameter stochastic

differentiation formula for vector-valued processes.

Using this result we show that all Wiener functionals

with finite variance can be represented by multiparameter

stochastic integrals. From this it follows that all

square integrable multiparameter martingales can be

represented by multiparameter stochastic integrals.

Chapter 9. Conclusion

We conclude by discussing possible generalization

and extensions of the multiparameter stochastic

differentiation formula to more general types of

processes.



PART I: THE OPTIONAL SAMPLING. THEOREM FOR PARTIALLY ORDERED

TIME PROCESSES
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CHAPTER 1

OPTIONAL SAMPLING OF STOCHASTIC FIELDS

1. Introduction

It was recongized early by Bochner (1955) that it is

possible to extend the idea of stochastic process to pro-

cesses with time parameters taking values from a partially

*ordered set rather than the usual totally ordered para-

meter set such as the integers or the real numbers. With

respect to the partial ordering, there exists a natural

concept of submartingale, martingale and stopping time,

and one can formulate the corresponding optional sampling

theorem. Bochner (1955) stated the optional sampling

theorem for martingales and submartingales indexed by a

special kind of p.o. set called a directed set (see section 2

for definitions and notation). Unfortunately, Bochner

omitted the proof of these results and in fact the result

is false for submartingales in general (see the second

counterexample in section 3). Later Chow (1960) noted

that Bochner's result was not true for submartingales

*We will abbreviate "partially ordered" as "p.o." in
the sequel. Thus, we have "p.o. set" for "partially
ordered set" and "p.o. time" for "partially ordered
time."
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(the counterexample in section 3 is essentially the same

as Chow's counterexample), but Chow was still able to prove

the optional sampling theorem for martingales indexed by

directed sets. However, in his paper Chow assumed an

unnatural restriction on stopping times defined on p.o. time

sets. We will explain this restriction in section 2 when

we define stopping times on p.o. time sets. Recently

Kurtz (1977) has been able to prove the optional sampling

theorem for martingales indexed by directed sets using

the natural definition of stopping time which we also

assume. For the case of discrete valued stopping times,

the proof of Kurtz is similar to that of Chow, but without

the unnatural restriction on the stopping time that Chow

makes. In addition, Kurtz extends the optional sampling

theorem to the case of martingales indexed by a topological

lattice.

However, none of these proofs of the optional sampling

theorem for martingales indexed by directed sets extends

to the submartingale case. Indeed, as we mentioned earlier,

simple counterexamples show that the submartingale version

of the optional sampling theorem is generally false.

Nevertheless, we prove the optional sampling theorem for

two-parameter submartingales measurable with respect to

the two-parameter Wiener process defined in Park (1970).
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More generally, the result is proved true if the two-

parameter family of a-fields satisfies the conditional

independence hypothesis of Cairoli and Walsh (1975). A

simple counterexample shows that the optional sampling

theorem for two-parameter submartingales can be false if

this conditional independence hypothesis is not satisfied.

Moreover, the corresponding optional sampling theorem for

n-parameter submartingales can be false for n > 2, even

if one assumes the n-parameter analogy of the conditional

independence hypothesis.

This chapter is organized as follows. Section 2

presents basic definitions for p.o. time sets. Thus, we

define martingales, submartingales and stopping times with

respect to p.o. time, and we state what the optional sampling

theorem should be for p.o. time submartingales. Section 3

presents the simple proof of the optional sampling theorem

for martingales indexed by finite directed sets. We then

discuss why this proof doesn't work if the time set is not

directed or if martingales are replaced by submartingales.

In the case where the p.o. time set is not directed but

where the family of a-fields satisfies the conditional

independence hypothesis, we show that the optional sampling

theorem is still true for martingales.

In section 4 we assume that the time set is z2 and+
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that the probability structure satisfies the conditional

independence hypothesis stated in Cairoli and Walsh (1975).

With these assumptions we then prove the optional sampling

theorem for two-parameter submartingales when the stopping

times take finitely many values. We also present a counter-

example to show that analogous results do not hold for

the time set Rn when n > 2. Section 5 treats the case

when the stopping times take countably many values but are

not necessarily bounded in z~. This case requires a uniform

integrability type condition on the submartingale similar

to the condition for optional sampling on the time set

of integers. Section 6 extends the result of section 4

to stopping times which are bounded in R2 but may take

a continuum of values. In this case we must assume the

submartingales are "right continuous" in an appropriate

sense with respect to the partial ordering of R2 . Finally,

section 7 concludes the chapter by discussing the counter-

examples and the significance of the failure of the optional

sampling theorem for submartingales. This section indicates

how the negative results concerning the optional sampling

theorem for general p.o. times suggest a new approach to

optional sampling which we develop in the succeeding

chapters of part I.
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1.2 Definitions and Notation

Although we are most concerned with the time set R2 in

this chapter, for future use we will present the definitions

for more general partially ordered (p.o.) time sets. Recall

1first the definition of partially ordered set:

A partially ordered set (T,~) is a set T together

with a binary relation < defined on T and satisfying

the following properties for all r,s and t in T:

(2. I)

(2.2)

(2. 3)

t < t (reflexive property),

t < sand s < t imply s = t (anti symmetric property) ,

r < sand s < t imply r < t (transitive property).

What makes the partial order partial is the absence of the

fourth property,

(2.4) s < t or t < s V s, tsT.

If a partial order also obeys {2.4}, one says it is a total

order. Thus, for example, the usual ordering of the real

numbers or integers is total, but the ordering of sets

defined by set inclusion is only partial.

lsee, for example, Birkhoff and MacLane (1967).

2The same symbol ~ will denote all order relations,
including the usual order for integers or real numbers.
We will indicate what order relation < represents
whenever there is danger of confusion~
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A special kind of p.o. set which we will discuss in

section 1.3 is the directed set. A set (T'2) is directed

if (T'2) is partially ordered and if any two elements

of T have a common upper bound - i.e. for any r, s in T

there is a t in T such that r < t and s < t.

With this definition of p.o. set the notions of

increasing a-fields, martingales and stopping times for

partially ordered time sets are natural generalizations

of these concepts for the usual linear time sets. For

example, Bauer (1971) discusses the general case in his

text on probability theory when he defines martingales.

An early paper which takes this general viewpoint of

partially ordered time is Bochner (1955). For convenience,

the definitions are repeated here.

Let (T'2) be a partially ordered set and let

(p,n,F) be a probability space. A collection {F SET}s

of sub-a-fields of F is increasing if s < t in T

implies that F c: Ft. We will assume that each F con-s s

tains all the null events, that is, all subsets of zero

probability sets.

A random function X: T x n ~ R is adapted to the

increasing family {Fs : SET} if for each t in T, the

map w ~ X(t,w) is Ft-measurable. Keeping with the usual
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notation for processes, we will sometimes write X(t,w)

as Xt(w) and the random variable w + X(t,w) as Xt •

Note that for general parameter sets T the mapping

t + Xt is a random field as described in the general

introduction to this thesis, but one with the special

property that it is adapted to an increasing family of

a-fields.

A submartingale with respect to the increasing family

{F t : tET} of a-fields is a collection {M t : tET} of

real-valued random variables such that for each t in T

the random variable is Ft-measurable, the expectation

E(IMtl) is finite and for all s in T such that s ~ t,

(2.5) E (11 IF)t s

Similarly, a supermartingale is defined by reversin~ the

inequality in (2.5) and a martingale is defined by

replacing inequality with equality in (2.5).

As an example of a martingale we present Ito's normal

random measure. Suppose (X,B,m) is a measure space

and define T as the set

T = {E m (E) < 00, E E B},
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partially ordered by set inclusion. Ito (1951) constructed

a zero-mean, Gaussian family {SeE) E e: T} vli th the

property that for all E and E' in T

(2.6) E (S (E) S (E ' » = In (E n E')

The property (2.6) implies that for disjoint sets

{E
n

: n > I} in T such that U
n>l

E
n

belongs to T.

(2. 7) S(U E ) =
n>l n

a.s.

where the infinite sum is defined as a mean square limit.

Due to (2.7), one calls S a random measure.

If FE is the smallest a-field which makes S{E')

measurable for all E' in B for which E'C: E, then

{FE : E e: T} is an increasing family of a-fields with

respect to the set inclusion order on T. The normal random

measure S is a random function on T adapted to

{FE : E e: T} as is easily seen. Moreover, S is a

martingale. To see this note that if E'C: E for

E,E' in T, then S(E-E') and S{E') are independent

of each other and
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E ( S (E) I FE ,) = E (S (E-E ' ) +S (E ') IFE ' )

= E(S(E-E'» + S(E')

= S (E') •

An important example of a partially ordered time

martingale is the multiparameter Wiener process discussed

for example in Park (1970). Although they are particularly

concerned with stochastic integration, the papers by

Cairoli and Walsh (1975) and Wong and Zakai (1974) and

part II of this thesis also contain reference material

on the two-parameter Wiener process. One can derive the

multiparameter Wiener process from the normal random

measure presented above as follows.

Let T be the set of t in Rn with nonnegative

coordinates t .•
1.

Define the multiparameter order < on T

so that s < t for sand t in T if and only if

sl < t. (the order relation on R) for each coordinate,
- 1.

1 < i < n. For t in T let [O,t] denote the closed

rectangle in Rn defined as

Suppose X = Rn • B is the Borel a-field of Rn and
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nm is Lebesgue measure on R, and form the normal random

measure e on Rn and the corresponding a-field FE as

above. For each t in T, define

(2.8)

(2.9)

W
t

= S([O,t]),

Ft = F [0, t] ·

Then it is easy to see that {Wt : t E T} is a martingale

with respect to the a-fields {F t : t E T} and the multi

parameter partial order. Part II will treat the multi

parameter Wiener process on Rn in more detail and define

stochastic integrals with respect to it. We will see

there that all square integrable multiparameter martingales

with respect to the a-fields of (2.9) can be represented

as stochastic integrals.

Returning to the case of general p.o. time, let us

define stopping times. A stopping time T with respect

to the p.o. time set (T,~) and the corresponding increasing

family of a-fields {F t : t E T} is defined as aT-valued

function of the underlying probability space n such that

the set {w T(W) < t} is in Ft for each t in T.

This seems to be the natural extension of stopping times to

p.o. time sets and this definition is the one given by

several authors including Bochner (1955), Krickeberg (1956),
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Bauer (1971) and Kurtz (1977). Chow (1960), on the other

hand, imposes the extra condition that "{w : T{W) > t} is

in Ft as well as "{w : T(W) < t}. For one-parameter time

sets which are discrete, Chow's extra condition follows

from the first more natural condition that {w: T{W) < t}

is Ft-measurable. For general p.o. time sets this need not

be the case as figure 2.1 illustrates and as we now explain.

In either the one-parameter or p.o. time case, the set

{w : T{W) < t} is Ft-measurable for a stopping time T.

In the one-parameter case, however, T{W) I t is equivalent

to T{W) ~ t and thus, the set {w: T{W) > t} is the

complement of {w: T{W) < t} and must be Ft-measurable.

On the other hand, in the general p.o. time case (for

example, the two-parameter case of figure 2.1), the relation

T{W) I t need not imply the relation T{W) ~ t. Thus, in

the general p.o. time case the Ft-measurability of {T < t}

need not imply the Ft-measurability of {T > t}.

Kurtz (1977) showed that Chow's extra condition that

{T > t} s Ft is unnecessary to prove the optional sampling

theorem for martingales indexed by directed sets. This

extra condition is also insufficient to obtain the optional

sampling theorem for martingales indexed by non-directed

sets or by submartingales indexed by directed sets. Indeed,

the two counterexamples of section 1.3 both use stopping
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times which satisfy Chow's more restrictive definition.

Therefore, we do not use Chow's definition of stopping

time, but we restrict our attention to the first natural

definition.

If L is a stopping time, there is a corresponding

a-field denoted F
'[

defined as the collection of all

F-measurable sets A such that the set An {'[ < t} is

in Ft for each t in T.

The optional sampling theorem for general p.o. sets

essentially asserts that under appropriate conditions,

if '[ and a are stopping times on T such that a < '[,

and if {Mt t E T} is a submartingale (martingale) with

respect to {Ft

see in succeeding chapters, the distinction between the

martingale and submartingale versions of the optional

sampling theorem is crucial. Whereas the martingale version

is true in very general cases, the submartingale version is

true only in special cases - some of which we discuss in

this chapter and in chapter 4 (section 4.1).

In proving the optional sampling theorem for the

special time sets T = z2 or T = R2 we will assume that+ +
the a-fields {F t : t E T} obey the following conditional

independence hypothesis. Let SAt denote the point
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as illustrated in figure 2.2.

Conditional independence hypothesis:

For each sand t in the time set T, the a-fields

Fs and Ft are conditionally independent given the a-field

FsAt.

This is condition (F4), p. 113, in Cairoli and Walsh (1975).

Note that this condition is satisfied if {F t : t £ T} is

generated by the two-paraMeter Wien~r process, as it comes

from Ito's normal random measure. Indeed, if we let

A = [0, t] - [0, t,A s], B = [0, tAs], C = [0, s] - [0, tAs ]

as in figure 2.2, then the a-field Ft is generated by

FA and FB and the a-field Fs is generated by F
C

and F
B

• Moreover, F
B

= F
tAs

and all three a-fields

FA' FB , Fc are independent, since A, B, C are mutually

disjoint. It follows that qiven F (= FB) the twotAs

a-fields Ft and F must be conditionally independent.s

The conditional independence hypothesis generalizes

easily to processes on or Indeed, this hypothesis

makes sense for any p.o. set (T,~) such that for any two

elements t,s in T there is a greatest lower bound

tAs also in T. That is, r < t and r < s imply that



40

1\

:t

A

.s

tAs

B C

Figure 2.2



41

r < tAs.

In the case T = Zn or Rn , the conditional inde-
+ +

pendence hypothesis is true if the a-fields are generated

b th
. n

yen-parameter W~ener process on R+.

To complete this section we note the following

continuity condition that will be needed in the case

2 2T = R+. A process {Mt : t £ R+} is right continuous

if for all

all t in

w except for a set of probability zero, for

2
R+, we have

lim M (w) = Mt(W).
s+t s

t<s

1.3 Optional Sampling for Martingales and Counterexamples

Bochner (1955) originally stated the optional sampling

theorem for both martingales and submartingales indexed by

a directed set, but he omitted the proof of either case.

Although Bochner's theorem is true for martingales, as

Kurtz (1977) has recently shown, it is not generally true

for submartingales as we will show by counterexample in

this section. This failure of the optional samplinq for

submartingales has nothing to do with lack of uniform

integrability type conditions - the examples we present

have finite time sets and finite sample spaces so that
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such conditions are trivially satisfied. The failure

for submartingales is essentially due to the lack of a

total ordering of the p.o. time set.

In this section we present the optional sampling

theorem for martingales indexed by directed sets due to

*Kurtz (1977). Then we show by means of a very simple

counterexample that this result can be false if the p.o.

tirne set is not directed. l'Jext vIe present a simple

counterexample that ShO'VIS the subrnartingale version of

the optional sampling theorem can be false even if the

p.o. time set is directed. Finally, we show that the

martingale version of the optional sampling theorem is

true for finite p.o. time sets which are not directed if

the conditional independence hypothesis is true.

Theorem 3.1 (optional sampling for martingales, directed

time sets)

Suppose (T,~) is a finite directed p.o. set and

let a and T be stopping times with respect to the

increasing family of a-fields {F t : t E T} such that

a < T. If {Mt : t E T} is a martinqale with respect

*Kurtz (1977) considers infinite time sets with topoloqical
structure, but we confine ourselves to finite p.o. time
sets.
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to {Ft

Proof:

To prove E (rill Fa) = Ma ,"le must prove for each

A e: Fa that

(3.1)

where I A is the indicator function for the set A. Let

t l be the greatest element of T (which must exist

since T is finite and directed). He prove (3.1) by

proving that

(3.2) E (M • r )t l A

and then proving that

(3.3) E(M
t

.rA) = E(Ml·rA)·
1

Since for any s in T we must have s ~ t l , the

martingale property of {Mt
. t e: T} implies that.

(3.4) E (Mt IF) =
1 s

H •s

Note that by definition of F . fa' ~ .. then



A(\{a = s}
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is F -measurable. f1ul tiplying (3. 4) bys

IAIl{a=s} and taking expectations yields

Since clearly ~1· I (\ { } =s A cr=s

from (3.5) that

f4cr • I AI) {a=s}' we must have

Since T is finite, we may sum over all s in T to

obtain (3.2).

To prove (3.2) we used only the fact that a was

a stopping time and A 8 Fa. Thus, if we can show that

A 8 Fa implies A 8 F
T

we will also have (3.3) by the

same result by replacing a with T in (3.2). Suppose

A 8 Fa. To show A 8 F
T

we must show that

(3. 7)

for each t in T. Since we assume a ~ T, we have

that T < t implies (J < t. Thus, {a < t} C {T < t}

and
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(3.8) An {a < t}1' {". < t} = Afl {". < t}.

But since A e: Fa' ''\1e Must have A {\ {a .::. t} e: Ft

by definition of Fa. Moreover, {". .::. t} e: Ft since T

is a stopping time. Hence, the intersection

A (\ {a .::. t} () {". < t} is in Ft and (3.8) implies (3.7).

This shows that A e: Fa implies A e: F".. The result.

(3.3) follows and the proof is complete. III

The proof of theorem 3.1 does not \'lork if the p.o.

time set T is not directed, nor does it work if the process

{Mt : t e: T} is assumed to be a submartingale and not a

martingale. If T is not directed, there is no greatest

element t l and clearly the proof we have qiven for the

theorem cannot be used. If T is directed, but

{Mt : t e: T} is only a submartinga1e, then we can only

prove the inequalities

(3.9)

and

(3.10)

E(M -I) ~ E(M~-IA)t 1 A v
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in place of (3.2) and (3.3). Unfortunately, this allows

us no deductions about the relationship of E(Mo·IA) and

E(H-r·IA)·

The following t\rlO counterexamples shovl that theorem 3.1

does not extend to general non-directed p.o. sets T nor to

submartingales {Mt : t E T}.

Example 1. (Martingale with non-directed time set)

Let T = {(O,O), (0,1), (I,D)} with the partial

ordering (0,0) ~ (0,1) and (0,0) < (1,0) as illustrated

in figure 3.1. Let n = {WI' w2 }, F = 2&1, and define

1P({w l }) = P({wZ}) =~. Then define F(O,O) = {~,O} and

let F(O,l) = F(l,O) = F. Define the martingale

{Mt : t E T} as follows:

H(O,O) (WI) = H(O,O) (w2 ) = 0,

N(l,O) (WI) = fl (0 ,1) (w2 ) = -1,

M(l,O) (w2 ) = M(O,l} (WI) = 1.

Define stopping times a and -r as follows:



M(O,l) (wI)

M(O ,1) (w 2 )

(0 ,1)

= 1

= -1
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(0,0)

M(O,O) = °

Figure 3.1

M(l,O) (wI)

M(l,O) (w 2 )

(1,0)

= -1

= 1
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Then it follows that a < L but

Example 2. (Submartingale with directed tiMe set, due to Chow)

Define T = {(O,O), (0,1), (1,0), (l,l)} with the

partial order relation (0,0) ~ (0,1), (0,0) ~ (1,0),

(0,1) ~ (1,1), (1,0) .=: (1,1) and (0,0) .=: (1,1) as sho\'ln

in figure 3.2. Define F, F(0,0)' F (0,1)' F (1,0)'

M(O,O)' 11(0,1)' H(l,O)' P, n, 0 and L as in example 1.

In addition, let F(l,l) = F and define M(l,l) as

It is clear that {Mt : t E T} is a subrnartinqale.

However, when Land 0 are defined as in example 1 'f.tle

have the same resul t E (H
T

IF0) = -1 and 1'~ = a··0 so

that E (M
T

IF0) t 11
0

even though 0 < L.

The reason that the optional sampling theorem fails

in these two examples is that the events occurrinq at the

two incomparable times (0,1) and (1,0) are dependent.

Indeed, the corresponding o-fields F(l,O) and F(O,l)

are equal in these examples. In the next result for

martingales we rule out this possibility by assuming



(0 ,1)

M(O,l) (wI) =

M(O,l) (w 2 ) =-1
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M(l,l) (wI) = 2

M(l,l) (w 2 ) = 2

(1,1)

(0 ,0)

M(O,O) = °

Figure 3.2

(1,0)

= -1

M(l,O) (w 2 ) = 1
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that F(I,O) and F(O,l) are conditionally independent

given F(O,O).

Theorem 3.2 (optional sampling for martingales, non-

directed sets with conditional independence

hypothesis)

Suppose that (T ,~) is a p.o. set with the property

that for each t and s in T there exists a greatest

lo,.qe r bound tA s. Let {Ft
. t £ T} be an increasing.

family of a-fields indexed by T and suppose that for

each t and s in T, the a-fields Ft and F ares

conditionally independent given F If {H t
. t £ T}sj\t· .

is a martingale \'li th respect to {Ft t £ T}, and if a

and

Proof:

are stopping times with a < T, then E ("'1 IF) = Ha •
T a

Essentially, we show that (T,~) may be imbedded in

a directed set (T*,s*), and that H can be extended

to T* so that the martingale property is preserved.

The result then follows from theorem 3.1.

Suppose 1 ~ T and define T* = T U {l}. Define

<* so that t <* 1 for all t in T* and so that for

t,s £ T we have t <* s if and only if t < s. Thus,

(T ,~) is imbedded in the directed set (T*,~*). Define

Fl as the a-field generated by {Ft
. t £ T} • Thus,.
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{F
t : t E: T*} is an increasing family of a-fields. Let

{tl , t 2 ' · · · t n } be the maximal elements of T with respect

to < • That is, the t. are elements such that there is
J.

no t in T with t. < t.
1.

Define the random variable Ml

by the formula

(3. 11) At. }.
1.

m

In ( 3 . 11), t. A ••• /\ t. denotes the greates t lower bound
J. l J.m

of {to , ... ,t. } which must exist because of our assumptions
1.

1
1.m

about T.

To show {Mt : t E: T*} is a martingale with respect

to {F t : t E: T*} it suffices to show that for each i

(3.12)

Then, if t E: T we must have t < t.
1.

for some i, and

because FtC: Ft. we would have from (3.12) that
1.

(3. 13)

To prove (3.12) we must first derive the fact that

for all t, s in T we have
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(3.14)

To see this let A be any F measurable set.
s

Then the

random functions I
A

and Mt are conditionally indeperident

given Ft ·I\S
Thus, we have

The martingale property tells us that E(MtIFtAS) = MtAS

since t~s ~ t. Moreover, since MtAS is FtAs-measurable,

we have that

(3.16)

Substituting (3.16) in (3.15) gives

(3.17)

and taking expectations in (3.17) yields

(3.18)

Since A £ F in (3.18) was arbitrary and sinces MtAs is

F -measurable because ~s < S, it follows from (3.18) that
s
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(3.14) is true.

Using the result (3.14) we can now prove (3.12) by

direct calculation using the formula (3.11) for MI. To

facilitate notation we show (3.12) in the case i = 1;

the other cases are exactly similar. First rewrite (3.11)

as follows:

(3.19)

n-l
+ I (-1) m-l { . I . Mt .

m=l 1<1.< .•. <1 <n 1
11 In-

t.
1 m

t. }
1 m+l

Conditioning (3.19) with respect to Ft and using (3.14)
1

gives

t. } ·
1 m+l

Noting that the terms in brackets in (3.20) vanish
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identically, we see that (3.12) is true. This completes

the proof of the theorem. III

To illustrate the theorem in a simple case, consider

the case when T is the two-parameter time set as shown

in figure 3.1:

T = {(1,0), (0,1), (O,O)}.

Then the random Ml is defined by (3.11) as

Ml = M(1 , 0) + M( 0 , 1) - M( 0 , 0) ·

Taking the conditional expectation of Ml with respect

to F(l,O) we obtain from (3.14) that

= M(l,O) + M(O,O) - M(O,O)

= M(l,O)·

Note that theorem 3.2 asserts that the martingale

version of optional sampling is true with the conditional

independence hypothesis because we can imbed the original

time set in a directed time set and apply theorem 3. 1.
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In the next section we see that the conditional independence

hypothesis implies that optional sampling is true for

submartingales when the parameter set is or

In the submartingale case, however, the results are much

more restricted than in the martingale case - even when

the conditional independence hypothesis is satisfied, the

optional sampling theorem can fail for three-parameter

submartingales as we show with a counterexample in the

next section.

1.4 Optional Sampling for Two-Parameter Submartingales:

Finite Valued Stopping Times

Theorem (Optional sampling)

Suppose that {f t : t E Z;} is an increasing family

of a-fields satisfying the conditional independence

hypothesis. Let a and T be stopping times taking

finitely many values in and such that a ~ T. If

{M
t

t E T} is a submartingale with respect to

t E T}, then M < E(M If ).a = T a

The proof of the theorem requires the following lemma

about stopping times defined on z;.

Le~~a

Suppose that {f
t

t E Z~} satisfies the conditional
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independence hypothesis and let T be a stopping time

'{F
t

2
(sl,s2)with respect to : t E: Z+l. For. each s =

in z2 there exist A
l and A

2 in F such that+ s s s

A
l f' A

2 = ~ A
l V A

2 = fJ, and alsos s 's s

A
l A {w s < T(W}} C {w (sl+1,s2) < T (W) }s =

and

A
2 fl {w s < T(W}} C {w (sl,s2+ l ) < T(W}}s =

The set S = {t : s < t} is divided into the sets

Sl = {t : (sl+1,s2) < t} and S2 = {t : (sl,s2+l }} as

illustrated in figure 4.1. The lemma says that if T E: S,

then one can determine whether T E: sl or T E: s2 on the

basis of information in F alone.s Thus, on the basis

of Fs alone we can pick a point t which is either

(sl+1,s2) or (sl,s2+1 ) such that s < t < T. In later

chapters we will generalize the property described by this

lemma, and in chapter 4 we will define a special class

of stopping times (called reachable stopping times) in

terms of this property.

Proof:

It suffices to prove the result for s = (O,O); the
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Figure 4.1
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other cases are exactly similar. The conditional inde-

pendence hypothesis implies that F and F are
(0, n) (m, O)

conditionally independent given F( 0, 0) for any m,n > o.=

Since {T = (O,n) } lies in F and {T = {m, O} }(0, n)

lies in F (m,O)' and since {T = {O,n}}n {T = em, O} } = ~

if m > a and n > 0, it follows that

(4.1) P{{T=(O,n}}IF(O,O})eP{{T={m,O)}IF(O,O}) = 0 a.s.

for all n,m > O.

Define two sets K1 and K2 in such that

=U
n>O

(O , n) } and K2 = U
m>O

(m, 0) } •

Adding up the equations (4.1) for all m,n > 0 gives

Define the set E to be {w: P{KlIF(O,O» > O}.

Since P{KlIF(O,O» is an F{O,O)-measurable function,

E must be an F (0,0) -measurable set. I t follows from {4. 2}

that for all w in E, except for a subset of probability

zero, P{K2IF(0,0» = O. Thus, one must have
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Furthermore, it is easy to see that

Hence, it must be true that both E n K2 and KI/E have

zero probability. Assuming, as we always do, that F(O,O)

contains all null events, then we see that N = En K2

and N' = KI/E are both in F(O,O). Define A~O,O) as
2 2

the set (E/N) \) N' and A(O,O) as the set n/A(O,O).

Since E, Nand N' are each in F(O,O)' both A~O,O)
2

and A (0,0)
1

A (0,0) and

are in

2
A(O,O)

F(O,O). Moreover, one can rewrite

in terms of E, KI and K2 as follows:

(4.3)

(4.4)

Recall how Kl and K2 were defined above. If W

2
lies in A(O,O)' then (4.3) tells us that either W £ KI

or W ~ K2 • In the former case, L(W) = (O,n) for some

n > 0, and thus, (0,1) ~ L(W) in this case. If W ~ K2

and in addition L(W) + (0,0), then L(W) + (m,O) for any
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m > 0 and m = O. Consequently, (0,1) < T(W) is true in

this case also and we have proved

2
A ( 0 I 0) f'\ {( 0, 0) < T} C { (0, 1) < T}.

A similar argument using (4.4) and switching the roles

of Kl and K
2

in the above argument, gives the other

result,

1
A(O,O) n {(O,O) < T} C {(l,O) < T}.

This completes the proof of the lemma.

Before proving the optional sampling theorem, let

us discuss the problems involved in extending the one-

parameter proof to the two-parameter situation. Suppose

that a and T are stopping times in z~ and a ~ T.

Let A be in Fa and let B = A rl {a=s} so that B

lies in F and s < T(W) for W in B. We want tos

prove that

(4.5) f M
B s

dP < f
B

M
T

dP.

To understand the two-parameter proof, first consider

the one-parameter case. For the moment suppose in (4.5)
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that s is in Z+ instead of Z~ and suppose that T

is a one-parameter stopping time in Z+. To prove (4.5)

in this case, rewrite the left hand side as

(4.6) f M
B s

dP=f. MBn {S=T} T
dP + fBn {s+l <

dP.

Since {s+l < T} lies in Fs ' the submartingale property

implies that

(4.7) f
B/\ {s+l <

M dP < f
T} s Bn{s+l <

M 1 dP ,
T} s+

and hence,

(4. 8) f M
B s

dP ~ f M
T

dP + f
- B () {S=T } B n {s+ I <

M 1 dP ·
T} s+

Proceeding by induction, one can then show that

(4.9) f M
B s

dP < f
Bf\ {s < T <

M
s+n} T

dP + f
B(\{s+n+l <

M dP
T} s+n+l

for all integers n ~ O. By letting n + 00 one obtains (4.5).

Unlike the one-parameter situation, (4.7) is not true

for two-parameters and thus, one cannot go from (4.6) to

(4.8) and by induction, to (4.9). The problem is that for

one-parameter stopping times if T ~ s then necessarily
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is always F -measurable,s

and thus, (4.7) follows. But for two-parameter times

if s ¥ T (assuming s ~ T to begin wi.th) then either

(sl,s2+l) ~ T or (s'1+1,s2) ~ T. Nei.ther· {(sl+1,s2) < T}

nor {(sl,s2+l) ~ T} is necessarily Fs ....measurable and

(4.7) is not generally true. The counterexample in section 3

is an example for which this happens.

However, if one assumes the conditional independence

hypothesis, then the preceding lemma allows one to replace

{(sl+1,s2) < T} by Al and { (sl,s2+1 ) ~ T} by A2
s s

in the two-parameter version of ( 4 • 7) • Since Al ands

A; are Fs-measurable, the argument can proceed.

Proof of the optional sampling theorem:---
Let B and s be fixed the same as in (4.5), which

equation we shall prove. For each t in z2 let It I+

denote the nonnegative integer t l +t2 . We now construct

sets Bt in F for each t for which s ~ t such that

the Bt have the following properties:

(4 . 11) Bt n Bt' = ¢ if It- s I = It' - s I and It ¥ t' I

where both s ~ t and s ~ t'



63

( 4. 12) B t C {t< T} for each t

(4.13) Bt is Ft-measurable

It-51 = n, s~t}

(4.15) IM
S

dP ~ I M dP + I f Mt dP
B B 11 { IT - s I~n } T It-s I=n B

- s~t t

where n ~ 0 in (4.14) and (4.15). Note that (4.15) is

the two-parameter version of (4.9). Once we have (4.14)

and (4.15), the optional sampling theorem is finished.

For then, since T takes only finitely many values, the

set {IT-sl > n} = ~ for some n sufficiently large.

Thus B = ¢ for all t such thatt It-sl = n. Likewise,

B is contained in {IT-sl ~ n}. Then equation (4.15)

becomes (4.5), which is the same as

I. MdP ~ I M dP.
Ai\{cr=s} cr - Af'\{cr=s} T

Since cr takes only finitely many values, there is no

problem summing over s in z~ and obtaining the answer

I M dP
A cr

< I
A

M dP
T
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To prove the existence of the sets {Bt : s ~ t},

proceed by induction on n = It-sl. To start, the set

Bs is defined as B (\ {s t- T}, which clearly satisfies

(4.10) through (4.15). This is the n=O step of the in-

duction. Suppose that we have found Bt for all t such

that It-sl < n and we want to find Br for r such that

Ir-sl = n+l. For each t such that s ~ t and It-sl = n

BI and B2 BI I anddefine the sets as = Bt () Att t t

B
2 2 If s i t but It-sl define= Bt " At· = n,t

BI 2 The Al and A2 are the appearing= Bt = ¢. sets ones
t t t

in the lemma and depend on the stopping time T. The sets

BI and B2 inherit the following properties from Al
t t t

and 2 BI 2 BI B2 - B . t (I,O) ~ T(W} forAt: B = ¢. + Wt t ' t t - t'

in BI and t (0, I) T (w) for in 2 BI and B2+ < W Bt ;t t t

belong to ft. In order to reduce the notation in the

proof let a denote (I,O) and let S denote (O,l)

2
in z+.

For each r such that s ~ rand Ir-sl = n+l define

Br as Br = (B;_a lJ B;_S)/{T=r}. Now check that these

Br satisfy (4.11) through (4.15).

Suppose s < r,r' and Ir-sl = Ir'-sl = n but r t- r'.

From the definition of Br and Br' it is easy to see

that BrC BI V B2 and B ,e B
I V 2 SinceB , S.r-a r-S r r'-a r -
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(3.11) is true iflt-sl = It'-sl = n,it follows that

Bi nBj = .~ if t -:f t' for i,j = .1 12. If t = t' ,
t t'

then 1 2 BIn B2
~ since Bl and 2

Bt n Bt , = = Bt , weret t t

constructed to be mutually disjoint. Let t,t' take

the values r-a , r-B, r'-a, r'-B we f£nd that

(B l U B2 ) n (B l V B2 ) = ¢ and hence,r-a r-B r'-a r'-B

Brn Br , =~. This proves (4.11) for the induction step.

= n and since

n+l, it must happen

2
B Q. It

r-I.J

for W in B. This
r

Since (4. 12) is true if It-sl

Ir-a-sl = Ir'-13-sl = n if Ir-sl =

that r < T (w) for W in Bl or
r-a

easily follows that r < T(W)

proves (4.12).

It is easy to see that

s ~ r, Ir-sl = n+l}.

We must now show the inclusion the other way to prove

equation (4.14). If w lies in B ('\ {I T-S I > n+l}

then w 1 i e s in B 1\ { I T - s I > n} a 1so. Since (4 • 14 )

is true for n,

It-sl = n, s < t}
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and hence, W lies in Bt for some t for which s < t

and It-sl = n. From (4.12) it follows that t < T (w) so

that either t+a. < T (w) or t+(3 < T (w) • However,

IT(W) - sl > n+l by assumption so that equality cannot

occur in either case -- that is, either t+a < T(W) or

1·t+B < T(W). Thus, either W is in Bt/{T = t+a.} or

2it is in Bt!{T = t+B} and hence W lies in either

Bt +a or Bt +S. Therefore,

B n {IT-S I > n+l} C U{Br s ~ r, Ir-sl = n+l}

and (4.14) is true for the induction step.

Finally, to show (4.15) note that if s < t and

It-sl = n, then

The last inequality is a consequence of the submartingale

property. Rewrite the last two integrals as
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= I M.dP + I Mt +" dP
1 . "T 1. a

Btn{T=t+aJ Bt/{T=t+a}

= I M dP + I Mt+£dP.
B~(\h=t+(3} T B~/h=t+(3} .

1 t+a} 1 n+l}The set Bt () {T = is the same as Btn{IT-sl =

B
2 n {T t+S} is 2 = n+l}.and likewise = Bt n {I T-S It

Putting these facts together one finds that

I Mt dP
B

t

M
T

n+l}

dP

or

+ I M + dP + J Mt+QdP
1 t a 2 ~

Bt/{T=t+a} Bt/{T=t+S}

~ Mt dP <
t

dP

+ 11 Mt+adP + 1
2

Mt+SdP.
Bt/{T=t+a} Bt/{T=t+S}

Adding the inequality over all t such that s ~ t and

It-sl = n gives



L J Mt dP
It-sl==n B
s ;; t t
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== J . M
'B(){ IT-S I>n}f') { IT-S I==n+l} T

+ . L. J ~ dP.
It-sl==n B
s ~ t t

dP

Since {IT-sl > n} {'\{IT-si == n+l} == {IT-sl == n+l} and

since (B n {IT-S I ~ n}) U (B n {IT-S 1== n+l} is equal

to B 1\ { IT-S I ~ n+l} we obtain (4.15) for n+l by

adding this last inequality to (4.15) for n. This

completes the induction argument for constructing Bt

for all t such that s ~ t, and the proof is finished.

QED

Although one can easily extend the conditional

independence hypothesis to Rn time sets and even to

more general p.o. time sets as described in section 1.2,

the optional sampling theorem is not true in these more

general sitatuions. The following example shows that

the result fails for three-parameter submartingales even

when conditional independence holds.

Example.

We construct an example for the time set T defined

as the Cartesian product {O,l} x {O,l} x {O,l}, a subset

3of Z+' namely the vertices of the unit cube. One could
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easily extend this .example to one on all of Z3 or to
+

zn for some n > 3. Let T be
+

the coordinate-wise ordering of

partial ordering we defined on

part~ally ordered with

z~ anal~gous to the

2
Z+.

Let with

for each i, and let F be the collection of all subsets

of Q. F(O,O) is taken to be {~,Q} and the other

a-fields are defined by their atoms.

F is generated by the sets
(1,0,0)

F is generated by(0,1,0)

F is generated by(0,0,1)

F is generated by(1,1,0)

F is generated by(1,0,1)
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F is generated by(0 , 1,1)

Finally, F (1,1,1) is the same as F.

One can think of these a-fields being. generated by

three independent random variables taki~g on the values

o or 1 with equal probability. Thus, define the

random variables a,B,y as follows:

a(wl ) = a(w2) = a(w 3 ) = a(w 4 ) = 0,

a (w S) = a(w 6) = a(w7 ) = a(w S) = 1,

B(wI) = B(w 2 ) = B(w S) = S (w 6) = 0,

S(w3) = B(w 4) = s(w7 ) = S (w S) = 1,

Y(wI) = y (w3) = yewS) = y(w7 ) = 0,

y (w 2 ) = y (w 4) = y(w 6 ) = y (w S) = 1.

Then F is generated by a, F is(1,0,0) (0,1,0)

generated by S, F is generated by y,(0,0,1)

F is generated by a and S, F is(1,1,0) (1,0,1)

generated by

and y, and

a and

F (1,1,1)

y, F(O,l,l) is generated by S

is generated by all three random
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variables. Since a, Band yare independent, it is

easy to checkthat{Ft : t E T} sat~sfies the con-

ditional independence hypothesis fo;r

Define M(l,I,I) (w 3 ) = M(l,l,l) (w6 ) = - 1 and

for i :f 3,6. Define M = at

t E T} is a

submartingale it suffices to show that E(M(l,l,l) 1Ft) ~ 0,

for t = (1,1,0), (1,0,1), (0,1,1). A simple calculation

shows that E(M(l,l,l) IF(l,l,O» is equal to 1 if

and it is equal to a if

The other conditional expectations are similar. Finally,

define 'l(w) = (1,1,0) if let 'l(w) = (1,0,1)

let 'l(w) = (1,1,1) if It is easy to

check that 'l is a stopping time on T. Let

a = ( a, a, 0), then

E(M'lIFa ) = = (-1).~ + (O).~ = M.
a

Note that the 3-parameter analogue of the lemma of

section 3 is not true in this example. Since F (0,0,0)

is {¢,Q} there cannot be three sets in F (0,0,0)

denoted
1 2 A3 which partition nA(O,O,O) , A(O,O,O) , (0,0,0)
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and such that

Al C { (1,0,0) < T},
(0,0,0)

A2 C { (0,1,0) < T},(0,0,0) =

A3 C { (0,0,1) < T}.(0,0,0)

This cannot occur because one of the sets

be n and none of the sets {t ~ T} is

Ai
(0,0,0)

n for

must

(0,0,0) < t. Thus, the optional sampling theorem is not

true even though the a-fields satisfy the conditional

3independence hypothesis for Z+.

1.5 Optional Sampling: Stopping Times in

Most of the work is already done since the construction

of the sets Bt in the previous theorem does not require

that a or T have finitely many values. However,

other conditions are necessary to make sure that (4.15)

converges to the result

as n -+ 00

J M
B s

dP < J M
B T

dP

Theorem (optional sampling for countable times)

Suppose {F t : t s Z~} satisfies the conditional
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independence hypothesis and suppose that a and Tare

2s topping times on Z+ "Ii th a ~ T. Suppose that

{M
t

t E Z:} is a submartingale with respect to

2
{F

t
t E Z+}. For each integer n ~ 0, define Mn

to be the random variable max {Ht : t E Z~, I t I = n}.

Assume that the following conditions hold:

( 5. I) E ( IHa I) < 00 and E ( Ir~T I) < 00,

(5.2) lim inf f M dP = O.
n + 00 {ITI > n} n

Proof:

Suppose that A is in Fa and s is in Z2 and
+

define B as the set A (\ {a=s}. As in the theorem for

finite stopping times, there a.re sets Bt for each t for

which s ~ t such that (4.10) through (4.15) are true.

In particular, (4.15) states that

f 1-1
B s

dP < f t1
B(\{IT-sl~n} T

dP + L f Ht dP
It-sl=n B
s ~ t t

for each integer n ~ O. The set {IT-sl~n}fl B

increases to B as n + 00. Since E(IMTI) is finite,
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dominated convergence implies that

(5.3) lim
n ~ 00

suppose that It-sl = nand s ~ t. Then It I = n + lsi

and by definition of Mn+lsl'

for all these t. Thus, it follows that

L J Mt dP
It-sl=n B
s~t t

To obtain tile right side, use (4.11) and (4.14). For all

W in B, it happens that s ~ T(W) so that we have

B 11 {IT-sl>n} = B 1\ {ITI>lsl+n}. Condition (5.2)

implies that for some subsequence n(k) of the positive

integers,

lim f 1M I dP = O.
k ~ 00 {ITI>n(k)} n(k)

Thus, if n' (k) = n(k) - lsi, it follows that

lim J MI I ' dP = O.
k ~ 00 B(1{ITI>lsl+n' (k)} s +n (k)
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The inequality in (4.15) is bounded above as follows:

f ~4 dP ~ f M dP + f 11 I I dP •
B s - Bn{IT-sl~n} T Bn{ITI>n+lsl} n+ s

If n approaches infinite through the subsequence n' (k) ,

then this inequality together with (5.3) implies the

result,

f H dP < f f1 dP
B s B T

or

f H dP.A" {T=S} T

Since E ( 1110 I) and E ( IHT I ) are finite, dominated

convergence allows one to add over all s in ..,2
LJ+ to

finish the proof. QED

Note that the conditions (5.1) and (5.2) are similar

to the usual one-parameter assumptions. In particular,

in the one-parameter case, if t = n, then

= Hax {H
s S £ Z~, Is I=n }

and condition (5.2) is

lim inf f Mt dP = O.
t-+-oo {T>t}
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1.6 2Optional Sampling: Stopping Times in R+

One proceeds more or less as for R~ -- that is,

by assuming right continuity and taking limits of

stopping times taking a finite number of values. We

consider here only the continuous version of section 4.

Similarly, the continuous version of section 5 would

follow from the discrete version in section 5 after

assuming condition (5.1) and condition (5.2) for all

positive real numbers n.

2
Theorem (optional sampling for R+>

""'I

Suppose that {F t : t E: R:} satisfies the conditional

independence hypothesis. Let 0 and T be stopping times

continuous submartingale with

for some
')

on R~ vii th

2tM t : t E: R+}

If

and E ( I1,1 I>
T

in

and E ( 11-1
0

I)

> M •= 0

is a right

2
respect to {F t : t E: R+}

are finite, then E(MTIFo )

Proof:

The proof follows the one-parameter case closely.

Let Ma be defined as max {Ht,a} for all a in Rt

and all t in 2 For any t in
2 define [t]+R+. R+ n

and [t]~ as

[t]+ min {q2-n 2 t q2-n }= q E: Z+, <n
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and

[t]- {q2-n + -n t} •= max q E: Zn' q2 <n =

The minimum and maximum are taken with respect to the

partial ordering of 2 and it is not hard to thatR+, see

both exist in this If then +
[t]~.case. s < t, [s] n <

=

Also, + [s] + for all in R
2 and for all[s]n+l < s s= n +'

and in 2 + 0T= and only if [t]-.t R+, [s] n < t 1_,- S <
= n

Let T (w) = [T(W)]+
n n

and = [a(w)]+
n and

assume without loss of generality that to is in

that + for all For eachso [to]n = to n. n, a < Tn ~ to'n =
and for all W as n -+ 00, both a (w) and Tn (W)n

decrease monotonically to a (w) and T (w) respectively.

Furthermore, and T
n

are stopping times. To

see this, note that

{an < s} = {[a]~ < s} = {a < [s]~} £ F[s]- C Fs •
n

Next, note that {Ma . t £ R2 } is a submartingale witht . +

{F
t

2 is Frespect to . t £ R+} • If A in and s < t,. s =
then

f M
a

dP =
A s

a dP + f
Antr4s~a}

H
s dP.
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Since A 1"\ {M
S

> a} lies in Fs' we have

< J. . M~ dP.
All {M >a}

s= '

Since it is also clear that

J a dP
AA {M <a}

s

it follows that

< J . M
a

dP
An {M <a} t

s

f M
a

dP <
A s

f M~ dP.
A

Applying the optional sampling theorem of section 4

to an and T n' we have that for A in Fa'

also in F (since (J < a ), and hence,a n
n

(6.1 ) J Ma dP < f Ma dP.
(J = TA n A n

A is

To obtain the desired result, one takes the limit in

(6.1) as n ~ 00, but in order to do this, one must

first show that

integrable.

are uniformly

Let T be the class of all stopping times p

. 2
with respect to {Ft : t s R+} such that p ~ to and
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p takes finitely many values. We show for each real a
,a '

that {M
p

: p £~} is uniformlyint~grable. If' {Mt } is

is a submartingale, ,then so is {Mt -a}. Since M~ is

just a + max' {Mt -a, O}, it suffices to show that

P £ T} is uniformly integrable for a = o.{Ma
p

let denote the maximum of Mt and o. Since

As usual,

{M+ 2}t : t £ R+ is a submartingale, the optional sampling

theorem for finite stopping times ass'erts that for all

p in T and all A in F ,
p

f M+ dP < f
A P A

If A = {M > c} for a real number c, then the following
p

inequality results:

Thus, we have

f +
{M >

P

M
c} p

dP

lim (sup {p ({M+ > c} ) P £ T} ) = 0
c-+-oo p

and since Mt and hence, M+ is integrable,
0 to

lim (sup {f M+ dP : p £ T}) = 0;
c-+-oo {M;>C} to
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It follows that

lim
c -+ 00

(sup {f M+ dP
{M >c} P

P

P E Tl) = 0

and hence,

sequently,

P € T} is uniformly :inte.grable. Con

p € T} will be uniform,ly integrable

for any real number a.

Because t -+ Mt , and hence t -+M~ is r~ght

continuous, and since crn+a and Tn+T, it ~s clear

that

lim Ma
= M

a
a.s.

-+ cr an 00 n

and

lim Ma
= Ma a.s.

-+ Tn Tn 00

The uniform integrability allows one to conclude from

this fact and (6.1) that

f Ma
dP < f Ma dPcr = T

A A

for all A in F and all a in R. Noting that Macr

and M are integrable and using dominated convergenceT

as a -+ -00, one obtains the result



J M dP
A cr

< f M
A T
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dP.

QED

Section 7. Significance of the failure of the optional

sampling theorem

We have shown by simple counterexamples that the

optional sampling theorem is not true generally for p.o.

time sets. However, in the special case of two-parameter

submartingales which have a special underlying probability

structure (e.g. such as that generated by the two-parameter

Wiener process), the theorem is true. Nevertheless, the

optional sampling theorem breaks down when the number of

parameters increases to three, despite the assumption of

conditional independence.

The failure of the optional sampling theorem indicates

that the stopping time and submartingale theory of p.o. time

sets is radically different from the one-parameter theory.

For example, the failure of the optional sampling theorem

implies the lack of a Doob decompositionl of submartingales

indexed by p.o. time. Suppose that Xt = Mt + At where

Mt is a martingale and At is an increasing process in

lSee Doob (1953) for the discrete time theorem, or
Meyer (1966) for the continuous time case.
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s < t in the p.o. time

setj that is, suppose Xt has a Doob decomposition.

Then, assuming that the p.o. time se't 'is directed, we

see that Kurtz's results imply that E (M IF ) = M for,T cr cr

for stoppi~g times T and cr such 'that cr < T.

It is clear that A > A almost surely, ;and hence,T - cr

E(ATIF cr ) > A • Thus, E(xTIF cr ) > Xcr ' and the optional- cr -
sampling theorem is true for Xt if Xt has a Doob

decomposition. Consequently, if the optional sampling

theorem is not true for a submartingale xt,then Xt

cannot have a Doob decomposition.

The remaining chapters approach the problem of

extending the optional sampling theorem by restricting

the class of stopping times. The motivation for this

particular restriction of the class of stopping times

comes from two different directions:

(1) it is possible to restrict stopping times so

that the lenuna of section 1.4 is true for more general

p.o. time sets;

(2) for a class of stopping problems for processes

evolving on p.o. sets, it is more "realistic" to consider

a restricted class of stopping times.

We define the new class of stopping times (called

reachable) in terms of a decision Eunction which we will
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define generally in section 3.2. As we show in chapter 3,

our decision function is the same as Haggstrom'·s (1966)

control variable when the p.o. timese-tis a special

kind of p.o. set called a tree. In chapter 4 we formally

define reachable stopping times and we show that the sub-

martingale version of the optional sampli!lg theorem is

true for this class of stopping times. We also discover

that in the case of two-parameter a-fields satisfying

the conditional independence hypothesis, all stopping

times are reachable. Thus, the general result of

chapter 4 contains the result of section 1.4 as a

special case. Finally, we show that in a certain sense

reachable stopping times are the only stopping times that

satisfy the submartingale version of the optional sampling

theorem. Namely, we show that if L,O are fixed stopping

times with respect to {F t : t £ T} and such that L ~ 0,

then E (M IF) > M for all submartingales {Mt t £ T}
L a - a

with respect to {F t : t £ T} if and only if L is

reachable.
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CHAPTER 2

SIGNAL INTERCEPTION EXAMPLE

2.1 Introduction

In this chapter and the succeed.ing ones, chapters 3

and 4, we are going to approach the optional sampling

theorem from a different standpoint than in chapter 1.

Instead of considering arbitrary stopping t~mesand a-fields

with a special structure, we are goi~g to consider arbi-

trary increasing families of a-fields and a special class

of stopping times. We will call these stopping times

reachable and define them formally in chapter 4. More-

over, we will show there that the optional sampling theorem

is true for all submartingales if the stopping times are

reachable, and conversely, if the optional sampling theorem

is true for all subrnartingales for some fixed stopping

*times, then these stopping times must be reachable.

To motivate the definition of reachable stopping

time presented in chapter 4, we use the present chapter

and chapter 3 to introduce a large class of stopping

problems for sequential processes evolving in p.o. sets.

In this chapter we consider only a simple example of the

*See chapter 4 generally and section 4.5 in particular
for the precise statement.
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general class of stopping problems in order to indicate

how the p.o. se·t fr·amework can model physical constraints

imposed on a problem. The nextcha.pter will consider

the general classofs.topping problems and it will indicate

how many different problems fit into the. :gerieral framework.

In the course of developing the general class of

stopping problems, we will also sh6w how the p.o. set

formulation gives meaning to the multiparameter generali

zation of causality, recursive computation and dynamic

programming. For one-parameter systems the concept of

casuality, or nonanticipation as it is also called, is

a powerful one. In solving optimization problems it

permits the use of Bellman's (1957) dynamic programming;

in calculation it often permits efficient recursive com

putation. For multiparameter systems there is generally

no concept of causality, nor are methods of dynamic

programming and recursive computation generally applicable

in multiparameter problems. However, in this chapter and

the next we find that the class of stopping problems

considered naturally defines a generalization of the

one-parameter concepts of causality, recursive computation

and dynamic programming to the multiparameter case (in

fact, to the case of p.o. parameter systems).

We briefly summarize the contents of chapter 2.
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In words, the simple example considered is the following.

A transmitter (the signal source) is located at an unknown

position represented by ~. It begins transmitting at

an unknown time represented by 8. From this time on

the transmitter radiates its signal continuously in all

directions and the signal travels at a constant speed

denoted by c. A mobile receiver starts from a known

location in space at a given starting time and travels

with speed at most c. If the prior joint distribution

of ~ and 8 is known, how should the receiver travel

to intercept the signal in the least expected amount of

time?

Section 2 formulates this example (the signal

interception problem) in precise mathematical terms.

Section 3 derives the dynamic programming equation and

discusses its solution for a given terminal condition.

This section also introduces the idea of computing the

solution of the dynamic programming equation in a "multi

parameter recursive" manner. Section 4 discusses the

solution of the dynamic program for the specific case

of one spatial dimension. The solution is also carried

out for a specific numerical example. Finally, in

section 4 we conclude and indicate how this simple example

fits into the general p.o. set framework presented in

chapter 3.
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2.2 Mathematical Formulation of the Signal Interception

Problem

In order to avoid technical complications which tend

to be obscure the essence of the problem, let us assume

that the time variable takes as values only multiples

of a fixed positive time unit denoted o. In chapter 5,

which concludes part I, we will discuss the mathematical

difficulties of using continuous time and we will suggest

specific directions for further research on this problem.

Mathematically, ~ and e are random variables

defined with respect to an underlying probability space

(p,n,F). The random variable ~ takes its values in

Rn and e takes its values in oZ, the set of integer

multiples of the positive real number o. The problem

is to find the Rn-valued random velocity process V

such that:

(1) the Euclidean norm of V(t,w) satisfies the

inequality

Ilv(t,w)11 < c TIt, Vw E: n;

(2) if the receiver starts from the spatial location

Xo in Rn at time to in oZ, the Rn-valued random

trajectory X defined by
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t
X(t,w) = X o + L V(s,w)eo

s=tO+1

for all t in oZ for which t > to' must intercept

the signal in the least expected amount of time. In

order to complete the mathematical formulation of the

problem we must define explicitly what it means to

intercept the signal. This is easy enough to do, and

the condition that X(t,w) has intercepted the signal

by time t is that the following inequalities hold:

8(w) .::. t,

Ilx(t,w)-~(w)11 < clt-8(w)l·

We will discuss what this means shortly, but before we

do, there is another specification for this problem

that we must make. Beside the constraint on its norm,

the velocity process V must satisfy the following

causality constraint: at each point of the space-time

trajectory of the receiver, the velocity can depend only

on the past information available to the receiver.

Conventionally, one could specify an increasing family

of a-fields, {Ft : to .::. t}, such that Ft represents

the past information up to time t. Then the causality
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requirement for V would say that V{t,·) is Ft-measurable

for each t. However, the present problem is far from

conventional in this respect. There is no past information,

Ft , depending only on the time t. The most important

aspect of the signal interception problem is that the

finite signal speed defines a past for each point in

space-time. Moreover, the past is different for different

points in space as well as time. It is this dependence

of the past on both space and time together that distin

guishes this problem from a conventional stochastic

optimal control or stopping problem.

To make the notion of past precise, let (x,t)

denote a space-time point with spatial coordinate x

in Rn and temporal coordinate t in R. We say that

the space-time point (y,s) is before (x,t) and

write (y,s) < (x,t) if the following two inequalities

hold:

(2.1) s 2. t,

I Ix-y I I < c It- s I ·

In the theory of special relativity (where c is then

the speed of light) this is precisely the condition

that determines when a signal can travel {at a speed at
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most the speed of light) from the space-time point (y,s)

to the space-time point (x,t). -The set K (x, t) of

all space-time points before (x,t) constitutes the

past of (x,t). Likewise, the + of allset K (x,t)

space-time points (y, s) such that (x,t) is before

(y,s) constitutes the future of (x,t). In the theory

of relativity K-(x,t) and K+(x,t) are called the

backward and forward light cones, respectively. Indeed,

they are circular cones in Rn x R with a common axis

parallel to the time-axis. For one spatial dimension

the sets K (x,t) and +K (x, t) are pictured in

figure 2.1. It is important to note that in the space-

time case the past and future do not inlcude all of

space-time -- there are points (y,s) which are in

neither K (x,t) +nor K (x,t). In the language of

p.o. sets, this means that the space-time order relation

defines a partial order but not a total order .

In terms of the space-time order ~, the condition

that the trajectory X(e,w) intercepts the signal at

time t is just that

(2.2) (~(w),8(w» < (X(t,w),t).

Thus, what we mean by "signal interception" is that the
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Figure 2.1

slope -c
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receiver at space-time point (X(t,w) ,t) will receive

a signal which was sent from spatial location sew)

at some time after, 8(w) and has reached the spatial

location X(t,w) by time t. To illustrate the situation,

figure 2.2 shows an example for one spatial dimension

when sand 8 are fixed numbers. The trajectory

pictured is the minimum time trajectory from (xo,tO)

in this case. It is clear in this trivial deterministic

case that it is optimal to choose V to be the constant

equal to

s-xo
c -

II s-xOII

if x o +s and anything such that I Ivi I < c if

xo = s.

In the stochastic problem when sand 8 are

random variables, the past information of the space-time

point (x,t) is a a-field F(x,t). In this problem

the only information allowed the receiver comes from

knowing whether or not the receiver has intercepted the

signal from (s,8). Thus, the appropriate F(x,t) is

is the smallest a-field containing all the probabilistic

events that the signal was intercepted in the space-time

region K-(x,t) -- that is, F (x,t) is the smallest
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a-field containing the sets {w: (~(w) ,0(w» .2. (y,s)}

for all space-time points (y,s) which are before (x,t).

Note that the family {F(x,t)} is increasing in the sense

that F C F if (y, s) < (x, t) • Chapter 3 will(y,s) - (x,t) -
treat such properties in more generality and detail; for

the present problem we do not need to say more about the

a-fields F(x,t).

Now we can formulate the causality constraint on V

precisely. To do this it is best to consider the velocity

as a random vector field (x,t,w) ~ V(x,t,w) over space-

time. Thus, the random trajectory corresponding to V

will be the solution X of the random difference equation

(2.3) X(t+<S,w) = X(t,w) + V(x(t,w) ,t,w)·o

with the initial condition X(to'w) = x O• The norm

constraint on V is the same as before, namely,

(2.4) IIV(x,t,w) II < c

for all x, t and w. The causality constraint requires

that V(x,t,·) is F(x,t)-measurable for each (x,t) in

space-time. This means that the receiver, having arrived

at the space-time point (x,t), must calculate its new
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velocity V(x,t,w) only on the basis of information

available at the point (x,t) -- namely, the past information

F(x,t) of the space-time point (x,t).

Let C(xo,tO) denote the set of all receiver

trajectories which are unique solutions of (2.3) for

some causally constrained velocity field satisfying (2.4).

That is, C(xo,tO) is the class of admissable trajectories

for the problem. For such a trajectory X define the

interception time as

(2.5) T(X,W) = inf {t (~(w) ,G(w» < (X(t,w) ,t)}

or +00 if the infimum is taken over an er'lpty set. If

E(·) is the expectation operation associated with the

probability space (p,~,F) then our task is to find an

optimal trajectory X* in C(xo,tO)' or better, a

corresponding velocity field V* that gives x* via

(2.3), such that

(2.6) E(T(X*» ~ E(T(X»

for all trajectories X in C(xo,to). In (2.6) we have

have suppressed the w dependence of T(X*) and T(X)

as usual in denoting random variables.
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This completes the mathematical formulation of the

signal interception problem. The precise for~mulation

presented in this section will help clarify the qeneralization

to p.o. sets presented in chapter 3.

1.3 Dynamic Programming Equation

Despite tile severely mathematical formulation of the

problem in the previous section, the actual solution

presented in tllis section will follow easily from some

simple heuristic arguments. Moreover, these arguments

will help clarify the interception problem. In the more

general case presented in chapter 3 a fully rigorous

mathematical derivation is necessary, but in the present

relatively simple problem the rigorous derivation obscures

the simplici ty of the solution. Therefore, vle leave a

detailed mathematical development until chapter 3, and

in that chapter we will indicate how the results of this

section fit into the general mathematical framework.

This section determines the solution of the inter

ception problem by means of conventional dynamic program

ming. However, this dynamic program is notable in that

it is better interpreted as an unconventional multi

parameter recursive equation than as the usual one

parameter recursive dynamic programming equation. We
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briefly discuss the rnultiparameter recursion at the end

of this chapter but leave the detailed discussion to the

next chapter. In this section we also establish the

dynamic programming equation and discuss the existence

and uniqueness of solutions to that equation. Note

that in this section all time variables, usually denoted

by t, will take values in QZ unless otherwise stated.

Before deriving the dynamic programming equation we

must define some new notation in addition to that of

section 2.2. Let p(x,t) denote the probability dis-

tribution

p(x,t) = P({w (s(w),S(w» < (x,t)}).

That is, p is the prior distribution of (s,S) which

completely describes the statistics of the problem. For

future application let us define q(x,t) as

q(x,t) = I - p(x,t).

Our equation will have a simpler appearance in terms of q.

Next define T(X,t) as the least expected amount 2f~
until interception, given~ the receiver starts at

s:eatial location x at time-- t and has ~ intercepted
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~ signal there. Now let us derive the dynamic programming

equation for T.

Let Pl{x,t,v) denote the probability that the

signal will be intercepted in the next unit 0 of time

if the receiver uses velocity v and the signal is not

yet intercepted at (x,t). Let ql{x,t,v) = l-Pl{x,t,v),

the probability of interception not occurring in the next

unit of time when the receiver uses velocity v and has

not yet intercepted the signal. Then if the receiver

uses velocity v at space-time point (x,t), the least

expected amount of time until interception is

Note that (x+vo,t+o) will be the next space-time

location of the receiver if it uses velocity v at

(x,t). Thus, T{X+V·O,t+o) is the least expected time

until interception from (x+vo,t+o) if no interception

has occurred before (x+vo,t+o). Since T{X,t) is the

least expected time until interception starting from (x,t),

it must be the infimum of the expression (3.l) taken over

permissable values of v. That is, T{X,t) is given as
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(3.2) T (x, t) =

inf {o·PI (x,t,V)+[T(X+vo,t+o)+o] ·ql (x,t,v): Ilvll~c}.

Finally, let us write PI and ql in terms of p. By

definition, Pl(x,t,v) is given by

PI(x,t,v) = P({(~,G) < (x+o·v,t+o)}I{(~,e) I (xot)})

or in other words,

(3.3) _ P({ (~,G) < (x+ov,t+o), (~,8) i (x,t)})
Pl(x,t,v) - P({(t,8) l (x,t) })

The probability P({(~,8) ~(x,t)}) is simply

I - Pl(x,t,v) or ql(x,t,v). The numerator is the

is the probability that the random space-time variable

(~,G) is contained in the backward cone K-(x+ov,t+o)

but not contained in the backward cone K-(x,t).

Figure 3.1 illustrates the situation. Since I Ivl I < c,

the cone K-(x,t) is contained in K-(x+ov,t+o) and

the numerator of (3.3) is the probability that (t,e)

lies between the two cones, that is, in the set
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space
x

(x+ov, t+o)

(slope v)

,

t

Figure 3.1

t+o time t

p ({ (~,e) < (x+ov,t+o), (~,e) t. (x,t)}) is probability

(~,e) lies in the shaded region.
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Noting that p(x,t) is the probability that (~,G) lies

in K (x,t) and p(x+ov,t+o) is the probability that

(s,O) lies in K (x+ov,t+o), one sees that the numerator

is p(x+ov,t+o) - p(x,t) and thus, Pl(x,t,v) is given by

PI (x,t,v) = p(x+ov,t+o) - p(x,t)
1 - p (x, t)

or, in terms of q,

PI (x,t,v) = q(x,t) - q(x+ov,t+o)
q (x, t)

Likewise, ql(x,t,v) is given by

ql (x,t,v) = q(x+ov,t+o)
q (x, t)

Substituting these expressions in equation (3.2) yields

the dynamic programming equation for T, namely

(3.4) T(X,t) = inf {T(X+ov,t+O)q(x+~(~~~» Ilvll < c} + o.

Note that if q(x,t) = 0, then (s,O) ~ (x,t) almost surely

and one may set T(X,t) = 0, since the interception has

already occurred.

Before studying equation (3.4) further, let us
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transform it to a more convenient form. Define now the

new function ~ for each (x,t) as

(3.5) ~(x,t) = q(X,t)T(X,t).

Since q is assumed given, we can obtain ~ from T if T

is known or T from ~ if ~ is known (using the fact

that T(X,t) = 0 when q(x,t) = 0 when necessary). For

the function W equation (3.4) becomes

(3.6) 1J(x,t) = inf {llJ(x+ov,t+o) : Ilvll < c} + oq{x,t).

We note in passing that a slight alteration of (3.6)

will account for additional velocity constraints. For

example, suppose S(x,t) is a subset of Rn for each

(x,t), which represents the. possible choices of velocity

at (x,t). As long as I Ivl I ~ c for all v in S(x,t),

the derivation of (3.6) remains the same and the only

difference is that (3.6) becomes

(3.7) llJ{x,t) = inf {llJ(x+ov,t+o) V E S{x,t)} + o·q(x,t).

Suppose that T

interception problem.

and hence, ~ exists for the

That is, suppose that the least
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expected time until interception from (x,t) exists for

each (x,t). For example, a sufficient condition for T

to exist is the following: for each (x,t) in space-time

assume that there exists an admissable trajectory X in

C(x,t), which was defined in section 2.2, and a real

number r > t such that

(~(w) ,0(w» < (X(r,w) ,r)

for almost all w such that .(i; (w) ,e(w» t. (x,t).

In this case T(X,t) will exist and 0 ~ T(X,t) < r-t.

Thus, ~ exists and it must necessarily satisfy

equation (3.6). ~IDreover, if we know ~, then we can

determine an optimal velocity control from (3.6). To do

this, assume that for each (x,t) there is a va with

Ilvoll ~c and such that

(3.8) ~(x+6va,t+o) = inf {\lJ(x+ov,t+o) : Ilvll < c}.

For each (x,t) let VO(x,t) be one choice of va that

satisfies equation (3.8). Then VO(x,t) is the velocity

to use to minimize the expected time to interception from

(x,t) if no interception has occurred before (x,t).

Thus, an optimal velocity control for the problem is then
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V*, defined as

(3.9) V*(x,t,w) = VO(x,t)

if (~(w),0(w» I (x,t), and

V*(x,t,w) = 0

if (~(w) ,0(w» ~ (x,t). The optimal trajectory X* in

C(xo,tO) corresponding to V* is the solution of the

finite difference equation,

(3.10) X*(t+o,w) = oV*(X(t,w),t,w) + X*(t,w)

for t ~ to with the initial condition

Note that the optimal velocity control

x*(to'w) = xO·

V* is not

necessarily unique. Indeed, several different controls

may each yield the minimum expected time.

Having derived an optimal velocity V* from ~, we

now show how to obtain W from the dynamic programming

equation. If W exists for the problem and if the dynamic

programming equation (3.6) has a unique solution, then W

must be that unique solution. Although the problem may
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have several optimal velocity controls, we now show that

the equation (3.6) has one and only one solution ~ if

certain terminal conditions are specified, and we show

that the solution can be found by computing backv'Tards

from the terminal conditions. First we do this in terms

of conventional one-parameter dynamic programming, and

then we show how the dynamic program can be interpreted

as a multi-parameter dynamic program. In the multi

parameter interpretation one must understand the expressions

"backwards" and "terminal" in terms of the space-time order <

as we will explain.

Suppose that the function x ~ ~(x,t) (denoted

w(·,t» was given for the time t = t l • Given W(·,t),

equation (3.6) determines ~(·,t-s). Thus, starting from

W(·,tl ), one can recursively compute the functions ~(·,t)

for all t such that t < t l • Remember that the unit of

time is <5 so that both t l and t are inteqer multiples

of 6. Thus, it is clear that the solution 1JJ (x, t) is

determined uniquely for all x in Rn and all times t

such as that t ~ t l , if ~(·,tl) is given as a terminal

condition. So far we are viewing (3.6) as an ordinary

recursive equation in the one parameter t with the

one-parameter terminal condition 1.lJ(.,tl ). However, it
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is useful to reconsider (3.6) as a multiparameter recursive

equation with the space-t:ime parameter (x, t). The

interpretation of (3.6) as a multiparameter recursion

(or multiparameter dynamic program) stems from the fact

that for a given (y,s) in space-time, x(y,s) does

not depend on W(x,s+o) for all x but just those x

such that x = y + o·v for some v with Ilvll < c.-
In particular, the computation of W at (y, s) depends

only on the value of VJ at (x, t) such that (y, s) # (x, t) •

If we only require to find l/J(y,s) for (y,s) in some

bounded region A, vIe only need to knOv-l l/J (x ,t) for (x, t)

in some other bounded region D, and not for infinitely

many spatial coordinates x. Conversely, if we are given

the value of W at each (x/t) in a bounded region B

of space-time, then the dynamic programming equation (3.6)

determines the value of ~ at all (y,s) in a largest

region A and at no other points. Note that A is also

bounded. At this point it may be helpful to refer to the

figures 3.2 and 3.3 which illustrate the sets B and the

corresponding sets A in two different cases of B for one

spatial dimension. Let us make this relationship between

B and A more explicit.

Suppose that the restriction of the function l/J to B,

denoted wlB, is given. Let B = Bo and for each integer
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n > I let B be the set of (y,s) such thatn

(y+ov,s+o) lies in Bn-l for all v such that

Ilvll < c. Then from (3. 6) , as remarked above, 'lJIBn-
depends just on ~IBn_l. Thus, given 'lJIB to start with,

one can determine uniquely ~IA, where A = lJ Bn • Note
n>l

that A is the largest region in space-time for which one

can determine the value of ~ starting from just ~IB.

Note also that if B is bounded, then so is A and also,

B n = ~ for all n larger than some finite nO.

The values of $ given on a region B, namely $IB,

is called a terminal condition for the dynamic program --

it is the multiparameter generalization of the terminal

condition $(·,tl ), but B can contain space-time points

at different times. Physically, B is a region in

space-time at which we know the minimum expected time to

go to interception, and hence, at which we know wlB.
In the next section we demonstrate how to determine the

terminal condition in the case of one spatial dimension.

Starting from a given terminal condition, one calculates

backward with respect to the space-time order relation using

the dynamic programming equation (3.6). Hence, we call this

method of computation a multiparameter backward recursion.

The following section investigates the multiparameter
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recursion in more detail for the case of one spatial

dimension, and by means of a particular example it

illustrates more clearly the idea of a terminal set and

a multiparameter backward recursion with respect to the

space-time order relation. Chapter 3 generalizes these

ideas to p.o. sets and shows that tile dynamic program has

a unique solution given a terminal condition.

2.4 Solution of Dynamic Programming Equation for One

Spatial Dimension

In order to clarify further the nature of the rnulti-

parameter recursive equation (3.6) and to indicate the

effectiveness of such a multiparameter recursion, this

section investigates equation (3.6) for the case of one

spatial dimension and solves a specific example in this

case. For simplicity assume that c = 1 and 0 = 1, and

allow the velocity to take only the values, +1, 0, -1.

This last restriction makes the spatial variable discrete

as well as the time variable. Thus, tile parameter space

is z2 = Z x Z instead of R x Z, and it is natural to

assume that (xo,tO)' the initial location of the

receiver, lies in z2 and that the random variable

(s,0) takes its values in z2.

To guarantee the existence of solutions of (3.6)



let us assume that

point (xl,tl ) in

means that

III

q(Xl,t l ) = 0 for some space-time

z2. By definition of q this

or in other words, (~,e) ~ (xl,tl ) almost surely.

physically, this means that the signal will be sure to

reach the spatial position Xl by time t l • Thus, if

a receiver starts at the space-time point (xo,tO) it

can be sure to intercept the signal by moving at maximum

speed to the spatial position Xl and waiting until

time t l • Using this policy, the receiver is guaranteed

that its time of interception is no greater than

to + Itl-tol + IXl-xol. Consequently, the least expected

time T(Xo,t
O

) to interception from (xo,tO) must

exist and

It follows that $(xo,tO) = q(XO,tO)T(XO,tO) exists, and

the function $ must satisfy (3.6) as we showed in the

previous section.
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Having shown the exis tence of l/J, vIe now show hov!

to calculate a terminal condition for this l/J, which one

can then use with equation {3.6} to calculate the function ~

everywhere. The terminal set B we shall use is the set

defined by

(4.1)

Actually, we find the terminal condition first for the

larger set B' = {(y, s) : (y , s) f. (xl I t 1 ) }. The sets B

and B' are illustrated by figure 4.1 and 4.2 respectively.

Note that B C B'.

To calculate the correct values of l/J in the region B'

we show that q(x,t} and ~(X,t) only depend on one

parameter and thus, we are able to calculate them with

a simple one-parameter recursion. In the region BI,

defined as the set of points (x,t) such that

t+x > t 1+xl , the functions q and l/J depend only on

t-x. Likewise, in the region BII , defined as the set

of (x,t) such that t-x ~ t 1-x1 , these functions, depend

only on t+x. Figure 4.3 illustrates the sets B
I

and BII ;

the set B' is the union BI V BII •

Intuitively, Br and Brr are space-time regions
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in which it is always an optimal policy for the receiver

to head toward xl at maximum speed. In BI one uses

the velocity v = -1, in BII one uses the velocity

v = +1, and in the intersection DI " BII one can use

any velocity since the signal has already been inter

cepted in that region. Using these optimal control

velocities in the dynamic progra~ing equation (3.6),

we obtain the recursive relation

(4.2) ~(x,t) = ~(x-l,t+l) + q(x,t)

for (x,t) in region BI , and the relation

(4.3) ~(x,t) = ~(x+l,t+l) + q{x,t)

for (x,t) in BII • In the intersection BI (\ BII we

must have ~ = O. To turn these equations into one-parameter

recursive equations, we must show that q(x,t) = q(x',t')

when t-x = t'-x' for (x,t) and (x',t') in BI or

when t+x = t'+x' for (x, t) and (x',t') in BII •

Suppose that (x, t) and (x' , t' ) are in BI and

t-x = t ,-x' • ~'1i thout loss of generality, suppose that

x'+t' _> x+t, and hence, (x,t) < (x' t') as illustrated- ,
in figure 4.3. Then q(x,t)-q{x' ,t') is the probability
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that (s,0) ~ (x',t') and (s,G) I (x,t). The region

{ (y , s ) : (y , s ) ~ (x', t ' ), (y , s ) t. (x, t)} is illus t rated

in figure 4.3; note that it is contained in Br and hence

in B'. We have assumed q(xl,tl ) = 0 so that

p ({ (i;, 0) e: B'}) = o. rt follows that

p ( { ( i; , e) < (x', t ' ), (s,e) I (x, t) }} and hence that

q(x,t)-q(x' ,t') = O. Thus, q(x,t} depends only on t-x

when (x, t) lies in Br • Similarly, q (x, t) depends

only on t+x \'1hen (x, t) lies in Brr • Note that for

(x, t) in Br ,", Brr \'le have q (x, t) = o.

Let qr(t-x) = q(x,t) for (x,t) in Br and let

qrr(t+x) = q(x,t) in Brr • Then one can rewrite the

equations (4.2) and (4.3) as

(4.4) w(x,t} = W(x-l,t+l) + qr(t-x)

for (x,t) in Br , and

(4.5) w(x,t) = W(x+l,t+l) + qrr(t+x)

for (x,t) in Brr • Equations (4.4) and (4.5) can be

used to compute W recursively in reqions Br and

given that W = 0 in the intersection B (\ B •
r rI

Wr and ,Wrr are given by the recursive equations
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for r < t l - xl + 1, and

for r ~ t l + xl + 1, together with the terminal conditions

~I(tl-xl) = ~I(tl-xl+l) = 0 and ~II(tl+xl) =

~II(tl+Xl+l) = 0, then it is not hard to see that

~(X,t) = ~I(t-x) and W(x,t) = WII(t+x) satisfy the

equations (4.4) and (4.5). Clearly, (4.4) and (4. 5)

determine ~ uniquely in regions Dr and B rI given

that W = 0 in the intersection. Thus, ~le can determine

~ uniquely in the region B' via the one-paraoeter

equations (4.6) and (4.7). In this ~Tay vIe have determined

the terminal condition for the dynamic program.

Instead of considering the terminal condition on

the infinite set B' or even the infinite set B defined

by (4.1), let us consider the terminal condition on the

following finite subsets of B. Define the sets B asm,n
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for all nonnegative integers m and n. The set B7,l0

is illustrated in figure 4.4. To calculate the values

w(y,s) for (y,s) in Bm,n one must use (4.6) to

calculate m steps backward from r = t l - xl and one must

use (4.7) to calculate n steps backward from r = t l + xl.

From the terminal condition wlB one can use (3.6)m,n

and calculate W(x,t) for all (x,t) such that

(4.9)

Let Am,n denote the set of (x, t) described by (4.9)

(figure 4.4 shows the set

vIi th the aid 0 f the sets Am,n

correspondinq to B ).- m,n

and B it is possiblem,n

now to describe the two-para~meter recursive calculation

of lP (x, t) for (x I t) such that (x ,t) < (xl I t l ) •

Having already calculated wlB above from (4.6)m,n

and (4.7), one may calculate ~IAm n by computing
I

wIB;,n' wIB;,n l ••• , ~IB:,n sequentially from

equation (3.6) such that A = B
l V B

2 ••• V B
N

,m,n m,n m,n m,n

as discussed in section 2.3 and illustrated in figure 3.3.

However, another option is available once tp 11\-In,n is
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computed. (Refer to figure 4.5 in the following dis-

cussion.) Suppose one next wishes to calculate

'''IA +1 · Then first use ¢IB in equation (4.6)
~ m ,n m,n

to find lJJlB +1 · Note that to do this requiresm ,n

using the one-parameter recursion (4.6) only once,

using only one value of W(x,t) for (x, t) in

B - B Next, the calculation of wlA -Am,n m-2,n· m+l,n m,n

from '''IB and
~ m+l,n requires only the one value

of lJJIBm+l,n' namely

¢IAm,n

~IB +1 -B , and them ,n m,n m values

of lJJlA ,namely wlA -Am,n m,n m-1,n· This calculation

has the new result

andfrom

¢IA +1 ·m ,n

wIAm,n+l

times. Putting ,ItIA -A
~ m+l,n m,n

previously calculated wlA , onem,n

In a similar fashion,

one can calculate

togehter with the

requires using m

using (4.7) and (3.6). Thus, in calculating W(x,t)

for (x,t) < (xl,tl ) one is free to choose the sequence

(mv,nv ) for positive integers v, and calculate

from wlA n successively for each v.
mv- 1 ' v-I

The sequence {(mv,nv ) : v > 1} is arbitrary except that

(m1 ,n l ) = (1,1), and for each v either
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"• 0 0 0 0 0 ><x1,t1 )

/• 0 0 0 0 0 /
0 0 0 0 ./ •

/
0 0 / • n=8

/
~ •

/
/

/
/

/

time

Figure 4.5
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Figure 4.6 illustrates one such choice of sequence and

the successive calculation of ~. The freedom to choose

how to carry out the recursive calculation is one major

characteristic of multiparameter recursive calculations.

The space-time order relation defines a precedence

relation for the computation of W in the sense described

by Chan {1976}. That is, to compute W at the point

{x,t} one must first compute ~ at the points {y,s}

for which 1{x,t} ~ {y,s}. Thus, if {x, t} and {y, s}

are two space-time points, and if {x,t} ~ {y,s}, then

it is necessary to compute W{y,s} before computing

W{x,t}. If neither (x,t) ~ {y,s} nor {x,t} ~ {y ,s} ,

then ~{x,t} and W{y,s} can be computed simultaneously

or in parallel. This precedence relation in computation

and parallelism in computation is a general property of

the more general problem described in chapter 3. Note

that one advantage of a multiparameter point of view is

that we may use the multiparameter structure to construct

efficient algorithms.

After this lengthy discussion of the general calcu-

lation of W from (3.6) in the case of one spatial

lMore exactly, at the points {y,s} for which s = t+l,
and for which y = x+l,x,x-l.
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dimension, let us finish by illustrating the calculation

with a specific example. In addition to the assumptions

made at the beginning of the chapter, assume that q(u,v)

is given by

(4.10)

and that q(x,t) is given in terms of q as

(4. 11) - t - x + 10
q(x,t) = q( 20 t + x - 10)

20

for (x,t) lying in the square defined by

(4.12) -10 < t - x < 10

10 < t + x < 30

Note that q(10,20) = O. See figure 4.7 for the tabulation

of q(x,t). In figure 4.8 we have tabluated the values of

VJ(x,t) in the region defined by (4.12). The set B20 ,-20

is denoted by points marked "x" in figure 4.8; the

remaining points form the set A_ 20 ,-20. Finally, in

figure 4.9 we have drawn the optimal velocity vector field

that one obtains from solving (3.8) as described in
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t-x=-lO

t+x=lO

x=O

x=O,t=lO

.8276

.539 9

.2 9 57

t+x=30

'\

t-x=10

t

t=O

Tabulation of q(x,t)

Figure 4.7
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Figure 4.8
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section 2.3. In addition, figure 4.9 shows some optimal

trajectories from points within the region described by

(4.12). The least expected time to interception appears

beside each trajectory.

2.5 Conclusion to chapter 2

In this chapter we have seen how the signal inter

ception problem, formulated originally as a one-parameter

problem, can also be interpreted naturally as a two-parameter

problem. Instead of specially distinguishing the time

variable from the spatial variable, we treated both together

as a two dimensional parameter, space-time. The success

of this two-parameter treatment depends on the structure

of the original problem -- in particular, the original

problem must be able to fit into a partial order framework.

In the next chapter we will describe this particular frame

work in more detail and generality, but for now let us

note that the p.o. formulation has two basic requirements:

(l) one must be able to formulate the problem as a

sequential~opping problem for sequential processes

monotonically increasing in a p.o. set (e.g., this is

automatically true for any trajectory in space-time which

travels slower than the speed of the signal);
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(2) one must be able to express the information

available for decision-making as an increasing family of

a-fields indexed by the p.o. set (e.g., this is automatically

true in space-time if one assumes that information cannot

propagate faster than the given signal speed c).

In the next chapter we show that many different

problems can be formulated according to (1). Likewise,

the requirement (2) is reasonable for many problems, and

we discuss what it means intuitively in chapter 3. Note

that (2) defines exactly what Ho and Chu (1972) call a

partially nested information structure in their study

of team decision problems. We discuss their work in the

next chapter.

Given the abstract partial order structure, we find

that many of the features of the signal interception

problem remain true in the general case. Specifically,

there is a general version of the dynamic program (3.6)

which can be solved uniquely given a terminal condition

similar to the multiparameter terminal condition described

in section 2.3. The solution is computed by backward

recursion with respect to the partial order relation and

we find that the partial order defines a precedence relation

for computation at comparable points (comparable points

with respect to the partial order) and that incomparable
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points can be computed in parallel just as for the

space-time example of this chapter.

On the other hand, the solution of section 2.4 does

not extend to general p.o. structures. Indeed, we are

not able to compute the terminal condition in the signal

interception problem if the spatial dimension is greater

than 1. The reason for this is the peculiar structure

of the space-time partial order relation. For one spatial

dimension, the space-time order is equivalent to a

coordinate-wise partial order defined on a subset of R2

as one can see by rotating the time and space axis 450
•

For n spatial dimensions where n > 1 the space-time

order is not equivalent to a coordinate-wise ordering of

Rn+l indeed, for n > 1 the partially ordered space

time is not even a lattice (as it would have to be if it

were order isomorphic to the coordinate-wise ordering of

Rn + l ).

Although the solution of section 2.4 does not

generalize to higher dimensional space-time problems, this

solution does have an extension to problems which have the

p.o. structure of coordinate-wise ordering of Rn . However,

we will not discuss this generalization any further.

Many researchers have found the special structure of the
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coordinate-wise ordering of Rn attractive for defining

and studying multiparameter systems. Much of this work

has centered around the particular case n = 2 with the

goal of developing efficient algorithms for processing

images. For example, Woods and Radewan (1977) discuss

some computationally efficient extensions of Kalman

filtering, a one-parameter recursive estimation algorithm,

to two-parameter random fields. Other work has been done

on extending concepts from time series analysis (e.g.

autoregressive moving average models) to recursive

two-parameter random fields. See Larrimore (1977) for

a general discussion.

For a general survey of work in multiparameter

systems see Bose (1977). Willsky (1976) gives a general

survey of recent work in two-parameter recursive systems

for which recursion is defined in terms of the

coordinate-wise ordering of R
2

•
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CHAPTER 3

STOPPING PROBLEMS WITH PARTIALLY NESTED INFOPMATION

Section 3.1. Introduction

The signal interception problem of chapter 2 can be

generalized greatly in terms of stochastic processes

indexed by p.o. sets and adapted to a family of a-fields

increasing with respect to the p.o. relation on the index

*set. This chapter presents such a generalization:

stopping problems~ partially nested information struc

ture. In terms of the p.o. set terminology of section 1.2

the abstract stopping problem is to choose an increasing

trajectory in a p. o. set in such a vTay that it minimizes

a terminal cost exacted at the last point of the trajectory.

tV-hat distinguishes this problem from conventional stopping

problems is the causality constraint discussed in

section 2.2, generalized to p.o. sets. In the general

case this constraint requires that decisions made at a

point of the trajectory depend on the information available

at that point. What is novel is that the information

varies from point to point in a particular way compatible

with the structure of the partially ordered set.

*Refer to chapter 1, section 1.2 for the pertinent
definitions.
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Specifically, the available information is represented

by an increasing family of a-fields indexed by the p.o.

set. Ho and Chu (1972) have coined the term partially

nested information to describe this situation and we adhere

to their terminology.

To avoid technical complications in the formulation

of the stopping problem with partially nested information

we consider only p. o. time sets \",hich are discrete and

bounded as we now explain.

A p.o. set (T,.::.) is discrete i.f it is countable and

if the set {s . r < s < t} is finite for each r and t. -
in T. The p.o. set (T,~) is discrete and bounded above

(or just discrete bounded) if the set {s . t < s} is.
fini te for each t in T.

A time t in T is called a terminal time if there

is no s in T such that t < s. In other words, the

terminal times are the maximal upper bounds 'vi th respect

to the partial order. If (T,.::.) is discrete bounded then

for each s in T there is a terminal time t such that

s < t. This property of discrete bounded time sets leads

to the following useful induction principle.

Induction Principle for discrete bounded time sets

Suppos.that (T,.::.) is a discrete bounded partially
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ordered set and suppose that pet) is a logical

proposition for each t in T. Further suppose that

(1) pet) is true for all terminal times t in T;

(2) if pes) is true for all s in T such that

t < s, then pet) is also true.

Then pet) is true for all t in T.

Proof

Call s an immediate successor of t and write

s <. t if s < t and there is no r such that s < r < t,

Let TO denote the set of all terminal times in T and

define Tn+l as the set of all immediate successors of

Tn. That is,

for n > O. If T is discrete bounded then for every s-
in T there is a terminal time t such that s < t.

Moreover, the set {r . s < r < t} is finite; say it has.
n members. Then it is not hard to see that s belongs

Thus, T = U {T : n > O} if Tis dis crete
n -

and bounded.

Let Pn be the proposition that pet) for all t
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in Tn. Then (1) implies that Po is true, and (2) implies

that Pn + l is true if Pn is true. According to the

ordinary principle of mathematical induction, it follows

that Pn is true for all n > O. Consequently, pet)

is true for all t in T. III

Note that this inductive principle is a formalization

of the multiparameter backward recursion described in

sections 2.3 and 2.4.

As an example of discrete bounded time sets, consider

the multiparameter ordering of z2 the Cartesian product,
Z x Z of the integers z. The set 7J2 is discrete but

not bounded. The set {(x,y) : (x,y) E:

is discrete bounded, but the set {(x,y)

2
Z , (x,y) ~ (l,l)}

: (x,y) E: Z
2

, x < I}

is discrete but not bounded. Another set ,..,hich is discrete

bounded is 2{ (x,y) : (x, y) E: Z , x+y ~ I}. These sets

are illustrated in figures 1.1, 1.2 and 1.3 respectively.

The Case of unbounded (but discrete) time sets may

be treated by adding a few reasonable assumptions to the

stopping problem as we note in the concluding section 3.5.

The case of nondiscrete (i.e. continuous parameter) time

is more difficult and unsolved at the present time. In

the concluding chapter 5 of part I we discuss the problems

involved in the continuous case.
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(1,1)
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{(x,y): (x,y) < (1,1)}
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•

•
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Figure 1.1
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•

•

(0,0)

•

(1 ,0)

{ (x, y): x < 1 } discrete, but not bounded)

Figure 1.2
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(0 ,0)

• •

•

•

(o,l)

•

(1,0)

{(x,y): x + y < 1}

Figure 1.3

discrete bounded )
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After presenting the general abstract stopping problem

with partially nested information in section 3.2, we

discuss the intuitive meaning behind the various assumptions

made in the abstract formulation in order to indicate

what physical problems might fit into the framework of

the general stopping problem. In this context we discuss

the analogy between our stopping problem and an optimal

control problem. Moreover, we note the~ control

aspects of the stopping problem regarded as a dual control

problem in the sense of Fel'dbaum (1960). To clarify the

special information structure of our stopping problem

we discuss the partially nested information structure

defined by Ho and Chu (1972) in their study of team

decision proble~s.

Next in section 3.2 we define a general space-time

partial order relation and show how the signal interception

problem of chapter 2 fi ts into the general frarnet-lork of

the stopping problem with partially nested information.

This discussion of the space-time interception problem

helps illustrate the special structure of the stopping

problem. Although many examples fit into the general

framework, some simple examples do not. As we discuss,

simple sequential decision problems without perfect



141

memory do not satisfy the basic assumption of partially

nested information. Witsenhausen (1968, 1971) has

considered such counterexamples and the general difficulty

presented by such "nonclassical" information structures

as for example, imperfect memory.

After discussing the space-time interception problem,

we present a quite different problem concerning the

optimal exploration for oil or mineral resources. This

problem fits easily into the general framework when the

p.o. relation is defined as set inclusion on subsets of

the region to be explored.

In section 3.3 we present the dynaMic programming

solution of the stopping problem with partially nested

information. This dynamic program is the generalization

of (2.3.6) to the p.o. set case. Although Bertele and

Brioschi (1972) have considered nonserial dynamic

programming -- dynamic progranwing in cases for which the

"time" is not linearly ordered or serial, they do not

consider the particular nonserial case of partially

ordered time. The assumption of p.o. time and partially

nested information creates a backward recursive structure

which Bertele and Brioschi do not have in the cases they

consider. Backward recursion is best described in terms

of the induction principle for p.o. sets we presented above.
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Starting from terminal times, one solves the dynamic

programming equation by working backward with respect to

the partial order. The backward recursive structure of

the dynamic program for our problem facilitates efficient

computation by indicating clearly what computations must

precede others and what computations may be done in

parallel. In our problem the p.o. relation on the time

coincides with the precedence relation for computation

as described by Chan (1976).

The proof of the necessity that the optimal cost

function satisfies the dynamic program equation

(Theorem 3.1) is very similar to the serial dynamic

programming case as described in Bellman (1957) for

example. The properties of the serial dynamic program

generally hold for the p.o. dynamic program. Thus, we

have a necessary and sufficient characterization of the

optimal decision functions in terms of the dynamic program

for the optimal cost (Corollary 3.2). Although there may

be several different optimal decision functions which

solve one stopping problem, for given terruinal conditions

there is only one optimal cost function which solves the

dynamic program equation (Theorem 3.3). To complete

section 3.3 we solve a general version of the signal

interception problem of chapter 2 using the general
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dynamic program.

In section 3.4 we discuss the work of Haggstrom (1966).

He developed the stopping problem with partially nested

infor~mation structure in the special case when the p.o.

*time set is a tree. We briefly describe Haggstrom's

work and then discuss its relation to our own. Finally,

in section 3.5 we conclude this chapter and discuss

possible extensions.

3.2 Stopping probleM with partially nested information

structure

Let us formally define the stopping problem with

partially nested information structure before discussing

its intuitive meaning. To avoid technical complications

which are not essential to the basic development of our

stopping problem, we assume that the partially ordered

time set (T,~) is discrete bounded. In the conclusion

of part I we discuss the significance of the discrete

bounded hypothesis and indicate how one might extend the

theory to more general time sets, particularly to discrete

unbounded time sets and time sets like Rn which have a

topological structure.

*See section 3.4 for a precise definition.
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Assun~ that {F t : t ~ T} is an increasing family

of a-fields with respect to the underlying probability

space (p,n,F) and the partially ordered set (T,~).

We call T the~~ and {F t : t ~ T} the information

structure for the problem.

A cost function or terminal cost c is a mapping

from T x n into the extended real numbers R* = R V {+oo}

such that for each t in T the random variable w ~ c(t,w}

is Ft-measurable. He often suppress the w in

and let c(t) denote the random variable w ~

We want to express expectations like E(c(t})

c(t,w)

c(t,w}.

and yet

allow for c(t) to take the value +00. Therefore, let

us assume that the negative part of c(t} is absolutely

integrable. That is,

(2.13) E(lc(t) I-lc(t)<o) < 00

for each t in T. As always, lA denotes the indicator

function of the subset A of n. With (2.13) we may

always interpret E(c(t» as an element of R*.

A constraint set is a collection {Ct : t £ T} of

random functions mapping n into subsets of ~ such that

for each t in T we have
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(2.14) for all w, t, S E Ct(w) implies t < s,

(2.15) for all w, Ct(w) ~ ~,

(2.16) for each subset C of T the set {w: Ct(w) = C}

is Ft-measurable.

Corresponding to {Ct : t E T} is the class D

of admissable decision functions which is the set of all

maps ¢ from T x n into T such that

(2.17) for all t in T and w in Q, $(t,w) E Ct{w),

(2.l8) for all t and s in T, {w : $(t,w) < s} is

Ft-measurable.

To state the stopping problem requires a preliminary

definition. For ¢ in D define ¢O as ¢O(t,w) = t

for all t and w. Then define $n+l in terms of ¢n

as ¢n+l{t,w) = ¢(¢n+l(t,w) ,w). Properties (2.17) and

(2.14) imply that t < ¢(t,w) for all t and w. Thus,

the sequence {¢n(t,w) : n > O} is entirely contained in

n n+l{s : t < s} and clearly, ¢ (t,w) ~ ¢ (t,w) for each

n > O. Since T is discrete bounded, the set {s : t < s}

and hence also {¢n(t,w) : n > O} is finite. It follows

n+l nthat we must have ¢ (t,w) = $ (t,w) for some n

depending only on t. If k ~ n, it is clear from the
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definition of ¢k that ¢k{t,W) = ¢n(t,w) for all k > n.

Thus, we have for each t and w that {¢n(t,w) n > O}

possesses a well-defined limit which we denote
00

¢ (t,w).
00

To denote the random function w -+ ¢ (t,w) \'le \-Till
00

suppress the wand write ¢ (t). In section 4.1 of the

next chapter we will see that the random function
00

¢ (t)

is a stopping time on the p.o. set T in the sense of
00

section 1.2. In fact, the function ¢ (t) has more

structure than a general stopping time -- for example,

the optional sampling theorem is true for this particular

stopping time, as we also show in section 4.1. Indeed,

in chapter 4 we define the class of reachable stoppinq times

as those stopping times which can be written as
00

¢ (t)

for some decision function ¢. Remarkably, we find that

all stopping times defined for the two-parameter p.o. set

with the probability structure discussed in chapter I a~e

reachable in this sense. Returning to the present chapter,

we can now define the general stopping problem with partially

nested information structure.

The stopping problem for ~ partially nested

information structure {Ft : t E T} is to find for a

given initial~ 0 in T an optimal decision function

¢* in D such that
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(2.19)

for all ¢ in D.

The assumptions we have made about c, T and D

guarantee that c(~oo(t») is integrable for each t in T

and ¢ in D, although the integral may be +00. To see

this n ) denote n Ne definedlet c (t, c(¢ (t,w) ,w).

¢n+l(t,w) n but it should be clear that= ¢(¢ (t,w) ,w),

n n n+l n
~ ¢ ( ¢ ( t, w) , w) = ¢ ( ¢ (t, w) , w). Thus, c ( t , w) = c (¢ (t, w) , w)

°for n > 0, where c is just c. For n > ° we can

n+lexpress c as

(2.20) Cn+l(t,w) = \ n( )1L c s,w ¢(t,w)=s.
t<s

Note that (2.18) implies that l¢(t,w)=s is Ft-measurable

and hence, F-measurable for each t and s. In addition,

the discrete boundedness of T implies that the sum over s

in (2.20) is a finite sum. Thus, if cn(t) is F-measurable

and if the negative part of cn(t) is absolutely integrable

for each t in T, then the same holds true for c n+l

Since cO(t) = c(t) is F-measurable and has an absolutely

integrable negative part, (2.20) implies this is true of

nc for all n > 0.
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For each t in T there is an integer n > 0

such that ~oo(t) = ~n(t). In that case, c(~oo(t» = cn(t)
00

and one sees that c(~ (t» is F-measurable and the
00

negative part of c(~ (t» is absolutely integrable.

Thus, the expectation and conditional expectations of
00

c(~ (t» are well-defined, although perhaps infinite.

Having defined mathematically the stopping problem

with partially nested information structure, let us now

explain the intuitive content of this definition.

To begin with, we examine the problem as a discrete

time optimal control problem. For the sake of comparison,

consider the following conventional discrete time optimal

control problem. The integer variable n plays the role

o ~ n ~ N. Suppose that

maps RP x R
q into RP •

in RP the optimal

control problem is to find a mapping y from RP into

Rq such that c(x(N» is minimum when

(2.21)

(2.22)

x(n+l) = f(x(n),u(n»,

x(O) = x 0'

o < n < N-l

(2.23) u(n) = y(x(n», 0 < n < N-l
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The values u(n) are called controls and y is the

control~. The function f represents the dynamical

system and c is the terminal cost Thus, the problem

is to steer the deterministic process {x(n) : 0 ~ n ~ N}

by means of the control law y so as to minimize the

terminal cost of the process, c(x(N». If one neglects

for a moment the probabilistic aspects of the stopping

problem, one sees that the stopping problem is just such

an optimal control problem. Indeed, the function ¢

serves as the control law steering the process {ten)

which is defined by

in D

: 0 < n}

(2.24)

(2.25)

(2.26)

t(n+l) = u(n)

teO) = G

u(n) = ¢(t(n».

We have suppressed the w-dependence in writing ten) and

¢(t(n» to emphasize the similarity to (2.21), (2.22) and

(2.23). The initial time e corresponds to Xo in (2.22).

The decision function ¢ corresponds to the function

x + y(x) mapping the state space RP into the control

space Rq • Note that instead of requiring the process

{ten) : 0 < n} to obey some particular dynamical relation

as {x(n) : 0 < n < N} obeys (2.21), we have required that
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~ belong to the set D of admissable decision functions

satisfying properties (2.17) and (2.18). The choice of

a particular constraint set {Ct : t E T} corresponds

to the choice of a particular dynamic relation (2.2l).

As an example of the correspondence between the

stopping problem and the optimal control problem, consider

the one-parameter stopping time problem with T being

{O,1,2, ••• n}. In the usual formulation of the one-parameter

stopping time problem, one looks for a stopping time T

on T such that the expected terminal cost E (c (T) ) is

minimized. By defining ~ so that

(2.27) ~(t,w) = t

= t+l

if T (w) < t

if T(W) > t,

one sees that the usual one-parameter stopping time

problem can be formulated in the optimal control problem

framework. The function ~ in (2.27) is a control law

that steers the times t(n), defined as in (2.24), (2.26)

to the optimum final time T. Note that ~ has the right

measurability property (2.18) -- if T is a stopping time

with respect to {Ft : t E T}, then W ~ ~(t,w) is

Ft-measurable for each t. Thus, the one-parameter stopping

time problem is a stopping problem with partially nested
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information as we have defined it. Note also that
00

T(W) = ¢ (O,W).

The interpretation of the stopping problem as an

optimal control problem is essential. For the case of

one-paranleter time the control interpretation is

equivalent to the original stopping time problem. For

general partially ordered time sets the optimal control

interpretation is not equivalent to the usual stopping

time interpretation for general stopping times on p.o.

sets as defined in section 1.2. The reason for this non-

equivalence is closely related to the failure of the

optional sampling theorem for general stopping times

defined on p.o. sets. In section 4.1 of the next chapter

we investigate this problem further. He find that if vle

restrict ourselves to the class of reachable f;topping times,

briefly mentioned earlier in this section, then the problem

of minimizing the expectation E(C(T)) for reachable

stopping times T such that e ~ T, is equivalent to the

stopping problem with partially nested information that

we have defined in this section. If we try to minimize

E(C(T)) with respect to all stopping times T defined on

a p.o. set, then we find that the problem is much more

difficult (e.g. we lose the dynamic programming solution).

Moreover, it is possible that a general stopping time will
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yield a smaller expected terminal cost than any reachable

stopping time, or equivalently, than any decision function.

A simple example of tilis is presented in section 4.1.

In the latter half of this section we argue that in many

circumstances the decision function formulation is the

natural formulation for some optimization probleMs, and

that in these cases one would not want to allow general

stopping times on p.o. sets but only reachable stopping

times which corresponded to decision functions. In the

conclusion of part I in chapter 5 we discuss problems

in which the more general stopping time formulation is

desirable and for which decision functions and reachable

stopping times are not sufficient.

Having shown how the stopping problem is like the

optimal control problem, we must now show how it is

different.

The difference arises in the particular probabilistic

structure of the problem. Consider the optimal control

problem set forth in (2.21), (2.22), (2.23) and the

stopping problem set forth in (2.24), (2.25), (2.26).

In both problems let us refer to the variables n as

the stage so that we can talk about the n-th stage of

either problem and avoid confusing partially ordered
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time in the stopping problem with ordinaD' linear time

in the optimal control problem. In the conventional

stochastic optimal control problem one introduces an

increasing family of a-fields {F : 0 < n} indexed by
n

the stage, so that Fn represents the information

available for the control decision at the n-th stage of

the problem. That is, one requires that the control

u(n), now a random variable, be F -measurable for each
n

stage n. In our stopping problem, on the other hand,

the information does not depend on the stage n but

rather the position ten) at stage n. In other words,

the information available for the control decision at

stage n is the a-field Ft(n). We will show in chapter 4

that t (n) defined by (2.24), (2.25), (2.26) in our

stopping problem is a stopping time, and in fact, a

reachable stopping time for any decision function ~ £ D

in (2.26). Horeover, Ft (n) is defined in terms of the

stopping time ten) and the a-fields {F t : t £ T} as

in section 2.2. One might think to let the increasing

a-fields {Ft(n) 0 < n} in the optimal stopping problem

correspond to {Fn 0 < n} in the optimal control problem,

but there is an important distinction. The a-fields

{Ft(n) : 0 < n} depend on the decision function ~

whereas the a-fields {F : 0 < n} are independent of
n -
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the control law y. Another way of saying this is the

the following: . goi~g from stage n to n+l in the

optimal control problem, the new information at stage n+l

does not depend on what we do at stage ni but in the

stopping problem, the ·new information at stage n+l does

depend on where in T we decide to go.

Although the stopping problem differs from the con

ventional optimal stochastic control problem with regard

to information structure, it is similar to the so-called

dual control problems introduced by Fel'dbaum (1960).

The dual control problem is an optimal stochastic control

problem in which the information available at stage n

depends on the control decisions taken up to stage n.

In this problem the control plays the dual role of

optimally regulating the controlled process on the one

hand, and obtaining information on the other. Often,

the two roles conflict so that new information is bought

at the expense of optimal control and conversely.

As we saw above, in the stopping problem at stage n

information depends on the position t(n) in Ti and

this position is a function of the control decision

represented by ¢ in (2.24). Thus, the stopping problems

are a subclass of dual control problems.
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Although the information structure for the stopping

problem is more complex than for the conventional optimal

stochastic control problem, this information structure

has special structure induced by the partially ordered

time set. We now discuss this special structure, the

so-called partially nested information structure.

Ho and Chu (1972) introduced the term pa'r:tially

nes·tedi·nfo·rmation·s·tructure to define a class of solvable

team decision problems. The team decision problem,

described in Radner (1962) or Marschak and Radner (1972)

for example, is to minimize an expected cost which depends

on the decisions of several decision makers who do not

necessarily have the same information on which to base

their decisions. By having different information for

different decision makers, the team problem is more

challenging than the ordinary optimization problem, but

by having only a single cost to optimize, it is less

*difficult than a game problem. To facilitate the

solution of their team decision problem, Ho and Chu

assume a particular relationship between decision makers

or agents as they are called and the information of each

agent. Suppose A is a finite set of agents. Between

*Game in the sense of the von Neumann - Morgenstern
(1944) theory.
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each agent there is a precedence relation denoted

i{j for i and j in A and interpreted to mean

that the decision of i affects th~information of j.

Ho and Chu assume that '{ has three properties:

(1) i{i never occurs for i in Ai ,(2) if i{j

then one does not have j{i; (3 ) if i { j and j {k ,

then i{k. It is clear that these properties are very

close to those properties of the partially ordered set

in (2. 1), (2. 2) and (2.3). In fact, if one defines

i 2 j as the relation "i{j or i=jU then (A,.2.) is

a partially ordered set as defined in section 2.1.

Having established a precedence relation for the

set of agents, Ho and Chu next assign a a-field F . ,
J..

the information set, to each agent i. The team problem

has a partially nested information st'ructure if i{j

implies F. c: F. for each agent i and j. Thus,
J.. J

a partially nested information structure is equivalent

to saying that the a-fields {F. : i £ A} are increasing
J..

with respect to the partial order defined by the pre-

cedence relation. Intuitively, the information structure

is partially nested if each agent i has the information

of all those agents j whose decisions may affect the

information of i.
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The specific partially nested information structure

and even the existence of such a str.uc.turedepends on

the problem at hand. In concluding..this, section, we

present two examples 'of problems whi.ch natural:ly require

the partially nested information struc.ture,. We first

reconsider the space~time problem of chapter one and

indicate how that problem fits into the..generalframe-·

work presented in this section.

A more general, space-time order rel:ation(is possible

for sets T which 'are finite subsets of X'X R for which

(X,d) is a metric space with distanoefunction d. For

x, y in X and t, s in R onegene'ralizes. (1. 1) so

that (y f 5) < (x ,t) if

(2. 28) s <. t,

d (x,y): < It-s I ·

Such a generalization can model s~gnals propagating

through an inhomogeneous medium for .which d(x,y) is

the least time for a signal to travel be'tween 'two points

x and y in the medium. For example',' consider light

travelling in a medi'urn whose index ofrefracti.on varies

in space but not in ,time.
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Associated with the partially ordered space-time

(X x R,~) is an increasing family {F(x,t)} of a-fields

which naturally represent the information restrictions in

a space-time problem. Intuitively, one can understand

this as follows. Assume that (1) information can be sent

from a space point x to another space point y in a

minimum amount of time d(x,y) > 0, and (2) received

information is not forgotten. The a-field F(x,t)

represents all information available at space point x

up to time t. Thus, it includes information from all

signals that arrive at x at times before t (since

there is no forgetting). If (x,t) < (y,s), then a

signal sent from x at time t will arrive at y at

time t + d(x,y) which is before s. In this signal

we send all the information available at x up to time t

so that it becomes available to y up to time s. This

last assertion is the intuitive statement of the mathe-

matical relation F c: F Thus, the increasing(x,t) (y,s)·

property of the a-fields follows from

(1) the speed limit on sending information

and (2) the perfect memory of the receiver.

The requirement of perfect memory may seem unimportant

but it is an essential assumption without which the

increasing property of the a-fields may fail. This
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happens even in the simple case when (T,~) is totally

ordered. For example, let T be the integers and suppose

that {xt : t £ T} is a stochastic process. Define Ft

to be the smallest a-field for which Xt,Xt-l, ... ,Xt-n

are measurable. The fixed finite integer n represents

a finite memory capacity. The extreme case n = 0 is the

memoryless situation, and the infinite case n = 00

b~presents perfect memory. For finite memories it is

clear that in general one can have Ft ~Ft+l.

Witsenhausen (1968, 1971) has discussed such counter

examples and the general difficulty presented by non

classical information structures in stochastic optimal

control problems. Classical information structures

are those represented by sequentially ordered, increasing

families of a-fields -- the perfect memory situation

mentioned above. Thus, the partially ordered, but still

increasing families of a-fields, assumed by Ho and Chu

(1972) and by our stopping problem are examples of

nonclassical information structures. However, this

class of nonclassical information structure (that is,

partially nested information structures) is simpler

to handle than say, the nonclassical structure

represented by finite memory, which is not partially

nested. Recently, nonclassical information considerations
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have become important in systems theory, particularly in

the context of decentralized control. The decentralized

control problem is essentially a team problem in which

the agents must act with only local information of the

state of the entire system. Thus, the information

restrictions on the problem are as important as the

dynamic equations and the optimality criterion. In

chapter 5 we will use the example of decentralized control

problems to illuminate the difference between reachable

stopping times and general stopping times on p.o. sets.

Returning to the space-time example, we note how

the interception problem of chapter 2 fits into the

general framework of the present section. We have already

seen how the information structure is partially nested in

the space-time example. Note that for the interception

problem the information was particularly simple: at

space-time point (x,t) one knows only whether or not

(~(w),8(w» ~ (u,s) for some (y,s) such that

(y,s) .::. (s,t).

One has a choice in setting up the cost function

and the constraint set. For example, one choice is to

define the cost function c as c«x,t),w) = t for all t

and w. This choice of c gives expected time as the
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optimization criterion in (2.19), but it does not give

the expected time of interception unless we make a further

restriction. The natural restriction is to define the

constraint set {Ct : t s T} so that C(x,t) (w) includes

(x, t) if and only if (~(w),8 (w» < (x,t).

Thus, one defines

={(y,.s): (x,t)::.(y,s)} .if_(~(w) ,8(w»~(x,t)

(2.29) C (x, t) (w)

={ (y,s): (x,t)«y,s)} if (~(w) ,8(w) ),t(x,t)

for each (x,t) and w.

Alternatively, one may define the cost c so that

(2.30) c «x,t) ,w) = t if (~(w) ,8 (w» < (x,t)

and c«x,t),w) = +00 if (~(w),8(w»,t (x,t).

By assigning infinite cost to the decision to stop before

interception, we achieve the same result as in defining

C(x,t) by (2.29). With the cost (2.30), we can define

the constraint C(x,t) more simply as

C(x,t) (w) = {(y,s) (x,t) < (y,s)}
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for all (x,t) and w.

The set of all decision functions D for the

interception problem correspond to the admissable vector

fields V{x,t,w) described in section 2.2. The decision

function ~ corresponding to a given V is defined by

(2.31) ~(x,t,w) = (x + V(x,t,w)·o, t+o)

if (~(w»,8(w» t (x,t), and by

~ (x,t,w) = (x,t)

if (~(w),8(w» < (x,t).

The first relation in (2.31) comes from (2.2.3) in

section 2.2. The properties (2.17), (2.14) that ~ must

satisfy are together equivalent to the norm constraint

on V in (2.2.4) -- that is, the magnitude of the

velocity is less than or equal to the speed of signal

propagation. Likewise, the measurability restriction

(2.18) on ~ is equivalent to the causality constraint

on V discussed in section 2.2.

Before proceeding to the next example let us discuss
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further the norm constraint on the velocity V, or more

generally, the condition that the decision functions are

increasing -- that is, t ~ ¢(t) a.s. for any decision

function ¢ and for any p.o. time t. This condition

is implied by the original assumption (2.14) on the

constraint sets. This increasing property of the decision

functions is necessary to preserve the nested structure

of the information as we now explain. If some decision

function were not increasing, it might be possible to

communicate information by means of this decision function

from a time a to a time b where a f. b and where the

information a-field Fa is not contained in Fb • Con

sider the space-time interception problem as a specific

example. Suppose a = (xl,tl ) and

a f. b as illustrated in figure 2.1.

this means that Ixl - x 2 1 > cltl-t21

b = (x2 ,t2 ) and

Since t l < t 2 ,

where c is the

maximum signal speed. A decision function ¢ which

yields b = ¢(a) implies a moving interceptor that can

travel faster than the signal speed c: that is,

V(xl,tl ) > c. By travelling faster than the signal

speed, the interceptor can signal additional information

to the space-time point b which is not contained in

Fb as indicated in figure 2.1. If we tried to over

come this difficulty by defining a new information set
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Fb which included the information signalled to b by

the interceptor, we would find that Fb now depends on

the trajectory of the interceptor up to the space-time

point b as well as on the point b. For example, in

the case of one space dimension, the extra information

at b would depend on whether the "faster-than-light"

interceptor came from the direction left or right of x 2

(compare figures 2.1 and 2.2). The dependence of the

information a-fields on the trajectory of the decision

function destroys the partially nested structure and

creates a much more difficult problem.

To summarize the above remarks, note that the

requirement that the decision functions are monotonically

increasing functions in the p.o. time set ensures that

the information a-fields {F t : t s T} (which depend

only on points in T) include any possible information

signalled by a decision function. Sandell and Athans

(1975) have discussed the importance of considering the

"real" information (messages) and the information con

veyed by decisions or controls (protocol) together as

one in the control of a communication network. Our

signal interception problem is a special example of the

class of problems that Sandell and Athans call relativistic

stochastic control problems.
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x

t

If a i b and if an interceptor can travel from a

to b, then b can obtain information not in its own

past ( shaded region ) from the interceptor.

Figure 2.1
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past of b

Figure 2.2

future of a

t
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To conclude this section we discuss a quite different

problem (optimal oil exploration) which fits naturally

into the p.o. time framework of our stopping problem

with partially nested information.

Recently much work has been done in applying

probabilistic methods to the problem of oil and mineral

exploration. Harbaugh (1977) surveys various techniques

in practice and theory today and gives an extensive

bibliography of recent work.

The basic problem of oil exploration is to plan the

exploration to maximize the expected amount of oil dis

covered -- or more appropriately, as Harbaugh (1977)

discusses, to maximize some expected utility function.

The utility can take account not only of such things as

cost of exploration and profit of success, but also more

subtle factors such as the cost of risking capital in the

exploration venture. We may formulate the general problem

as a stopping problem on the p.o. set of subsets of a

region of a plane. The terminal cost will be the above

mentioned utility; and we seek to compute a decision

function that essentially tells us where to drill next.

To formulate the problem as a stopping problem on

a p.o. set, let us assume that the plane region is
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discretized into a finite set of points X. For each

subset S C X associate the cost

(2.32) c(S,w) = I c(x,w)
XES

where c(x,w) is the cost (negative utility) of drilling

at location X when situation w holds (w is the

probability space variable). The problem is to choose

an optimal S in X to minimize the expected cost

c(S,w). But since the problem as we have stated it is

probabilistic, we must further state what information

is available for choosing the subset S.

Before any exploration is done, there may possibly

be some prior information about the distribution of oil

in X. The a-field f¢ denotes this information where

~ denotes the empty subset of X. Let f S represent

the information available after exploration of the

locations in S, together with the prior information.

Today this information is represented typically by a

computer-generated contour map of expected oil finds (or

expected utility) in a region under exploration. See

Harbaugh (1977) for a length¥discussion of this "automatic

surface contouring." Mathematically, given as input the

information from exploring locations in S, the algorithm
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generates the conditional expectation E(c(x) IF
s

) in

the form of contour lines (lines of constant expected

utility or cost). Thus, summing over any new region A

one can obtain the conditional expectation of the cost of

drilling at locations in A:

(2.33) L E(c(x)IFS )·
xsA

In the next section we will find that these conditional

expectations are sufficient to compute an optimal decision

function ~ which subsets of X into subsets of X and

gives the optimal next region to drill, or the order to

stop drilling, given information from previous drillings.

The partially ordered time set T for the stopping

problem is a collection of subregions of X partially

ordered by set inclusion. By choosing T advantageously,

one can introduce additional restrictions into the

problem. For example, one can include only connected

subregions in T, thus requiring all new drilling to be

contiguous to previously exploration regions. Likewise,

restricting the constraints {Ct : t s T} can also add

new features to the problem. For example, the condition

that ~(s,w) = S if c(S,w) > L for ~ in D implies

that one stop drilling if the cost of exploration at any

'-
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stage ever exceeds a preset limit L. One can model this

restriction by letting the constraint Cs(w) be is}

when C(S,w) ~ L.

In terms of the stopping problem with partially

nested information the exploration problem is to find an

optimal decision function w* in D such that

(2.34)

for all W in D. Then one successively explores the

I 2
increasing region W*(¢,w), W*(¢,w),

00

final region W*(¢,w) is reached.

until the

To conclude the example and the section, we remark

that certain control problems can be formulated as optimal

stopping problems with partially nested information. As

an example, suppose that in the oil exploration problem

the value of c at x in X depends not only on x

but also on the amount of effort u(x) spent drilling

at x. For definiteness assume that u(x) takesvalues

in the finite set E. Thus, (2.32) is replaced by '-

(2.35) c(S,us,w) = I
XES

c(x,u(x),w)
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where Us denotes a function from S into E. The

problem now is to choose a region S to explore and the

effort Us to spend exploring s. We may formulate

the problem in terms of the optimal stopping problem by

defining a new partial order as follows. If A and B

are subregions of X, and uA and vB are functions

from A and B respectively into E, then define

(A,uA) ~ (B,vB) to mean that

(2.35) AC B,

We choose for the partially ordered time set T a collection

of pairs (S , us) with the partial order < defined by

(2.35) • As a simple first choice for the a-fields

F (S, us) , we assume that F = F
s

so that the(s,us )

information depends only on the region explored and not

on the effort of exploration. In this case it is easy

to check that the a-fields

with respect to <.

are partially nested

With this basic structure one can formulate the new

control problem as a stopping problem. If ~* is an

optimal decision function for the new problem, then
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00

W*«¢,u¢),w) gives the subregion in X and also the

effort to spend exploring that subregion in order to

minimize the expected cost defined by (2.35).

3.3 The Optimal Stopping Problem and Dynamic Programming

for Partially Ordered Time Sets

In this section we solve the optimal stopping problem

with partially nested information by means of a dynamic

programming equation, the generalization of (2.3.6) in

section 2.3. We discover that one ¢* satisfies (2.19)

for all initial times e in T and we show how to

characterize ¢* in terms of the solution of the dynamic

program. Next we prove that the optimal cost for the

dynamic program has a unique solution although the optimal

decision function ¢* is not unique. Finally, in order

to illustrate the abstract results, we present the inter-

ception problem and show how the equation (2.3.6)

corresponds to the more general dynamic program we

derive here.

Assume the same restrictions for the problem as

mentioned in the beginning of section 3.2. In par-

ticular, (T,~) is discrete bounded. Define TI*(t) as
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(3.1) 7T*(t) = ess inf {E(c(<poo(t» 1Ft) <p E: D}

where essinf is the essential infimum. Thus, 7T*(t)

is an Ft-measurable random variable such that

(3.2) <p E: D,

and such that for every other random variable 7T*(t)'

satisfying (3.2) we also have 7T*(t) ~ 7T*(t) I almost

surely. Snell (1952) notes that the essential supremum

Qfa collection of random variables always exists, and

of course, the same is true for the essential infimum.

Theorem 3.1 (dynamic programming)

For each t and s such that t < s, define

p(s,t) so that

Let p(t,t) be defined as

(3.4) p(t,t) = c(t)

for all t in T.
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If TI* is the function defined in (3.1), then

for each t in T, it satisfies the dynamic programming

equation

(3.5) TI*(t) = min {p(s,t)

almost surely. Note that TI*(t), p(s,t) and C
t

all

may depend on w.

Furthermore, there is an optimal decision function

¢* in D such that for each t in T one has

(3.6)

Proof

We first construct ¢* and then prove (3.5) and

(3.6) by means of induction on the discrete bounded set T.

Let pet) be defined by

p{t,w) = min {p(s,t,w) : s E Ct(w)}.

Let us show pet) is Ft-measurable. Note that each

p(s,t) in (3.3) is Ft-measurable.

We may write pet) as

(3.7) pet) = L min {p(s,t)
C
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where C ranges over the subsets of T. The assumption

that T is discrete bounded and the restriction (2.14)

on Ct imply that the range of Ct is finite and hence

the sum in (3.7) is finite. Moreover, (2.16) implies

that Ic =C is Ft-measurable. Since we need only
t

consider finite subsets C in the sum, the minimum

min {p(s,t) : SEC} is also Ft-measurable. It follows

from (3.7) that pet) is Ft-measurable.

It is possible to choose disjoint sets A(s,t,C)

in Ft for each t in T, C C {r : t < r} and s

in C such that

(3.8) U {A(s,t,C) s, C, SEC} = n

(3.9) p(t,w) = p(s,t,~) if Ct(w) = c, SEC

and w E A(s,t,C).

For example, one way to do this is to enumerate C as

and define A(s.,t,C)
1

for 1 < i < n as

A (s . , t , C) = {w: p (t) = P (s . , t) , P (t) < P (s . , t), 1~j <i ; Ct (w) = C} .
11]

Define the function ~* T x n + T so that for all t
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in T, and all finite subsets C in the range Ct(n),

(3.10) ¢*(t,w) = s

when w lies in A(s,t,C).

It is not hard to see that ¢* satisfies (2.17) and

(2.18), and hence, ¢* lies in D.

Suppose that t is a terminal time of T. Then

from (2.14) and (2.15) it follows that Ct(w) = it} for

all w. Thus, the right hand side of (3.5) is

p(t,t) = c(t). Likewise, (2.17) implies that ¢(t,w) = t

for all in D. From the definition of
00

¢ it is clear
00

that ¢ (t,w) = t also. Consequently, (3.1) gives

TI*(t) = E(C(t) 1ft) = c(t) since we assume c(t) is

ft-measurable. Thus, (3.5) is true for all terminal
00

times in T. Since ¢ (t, w) = t for all ¢ in D

when t is a terminal time and since ¢* defined by

(3.10) is in D, it follows from (3. 1) that ¢*

satisfies (3.6) for all terminal times t.

Having shown that (3.5) is true and that ¢*

satisfies (3.6) for all terminal times, we now prove

the inductive step. Suppose that (3.5) is true for

all t such that r < t and suppose that ¢* defined
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satisfies (3.6) at
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in (3.10) satisfies (3.6) for all

We show that (3.5) is true and ¢*

t = r.

For r < t, the inductive hypothesis for (3.6) implies

that

(3.11)

From the definition (3.3) and from (3.11) we have for

r < t that

Since r < t implies F
r

Ft , we see that

(3.12)

for r < t.

The relation (3.12) allows us to show that

(3.13)

as follows. From the definition (3.10) of ¢* it
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follows that ¢*(r) = t for w in A(tir,C) for all t

in C and all C in C (Q).
r

00 00

= ¢*(¢*(r» = ¢*(t) for

Consequently,

w in A(t,r,C). Thus,

we have

00

I I
00

(3.14) c(¢*(r}) = c(¢*(t)}lA(t,r,C)'
C tsC

where C ranges in Cr (Q) •

00

If r is in C, then ¢*(r) = r for w in

A(r,r,C} and thus,

= p(r,r)elA(r,r,c}·

In this case we have

(3.15) E(c(¢:(r»lA(r,r,c)IFr ) = p{r,r}lA(r,r,C).

Since A{t,r,C) is fr-measurable for each t and

C, it is clear from (3.12) that

{3.16}
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for t in C such that t ~r.

Taling the conditional expectation of (3.14) with

respect to Fr and applying (3.15), (3.16) yields

(3.17) I I p(t,r)lA(t,r,C)·
c tEC

The construction in (3.9) implies that p(t,r) = per)

for w in A(t,r,C), and hence (3.17) becomes

(3.18) p (r) I I 1
C tEC A(t,r,C)·

Since A(t,r,C) are disjoint and satisfy (3.8), the

right side of (3.18) is per) and we have the desired

result (3.13).

Note that (3.11) asserts that the right side of

(3.5) and the right side of (3.6) are equal for t = r

with ~* as in (3.10). If we can demonstrate that

(3.5) is true for t = r, then (3.6) will follow and the

theorem will be proved. Thus, we now show TI*(r) = p(r).

Recalling the definition of TI*(r) from (3.1) and

the expression for per) in (3.13), we see that

TI*(r) ~ per). Thus, to show TI*(r) = p(r) it suffices

to prove TI*(r) ~ per).
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Let ~ be any member of D and let

B(t,r,C) = {w ~(r,w) = t, Ct(w) = C} for all t in

C and C in Cr(Q). The B(t,r,C) are disjoint sets

in F and
r

(3.19) {B(t,r,C) t,C,t s C} = Q

Clearly, the B(t,r,C) play the same role for ¢ that

he A(t,r,C) play for ¢*. Thus, we can show that

(3.20)
00 00

c (lJJ (r» = L L c (¢ (t) ) lB (t , r , C)
C tsC

in the same way that we showed (3.14).

The definition (3.1) implies that

for all t.

Conditioning (3.21) with respect to

the definition (3.3) gives

F and using
r

(3.22)



181

for t such that r < t. Since the sets B(t,r,C) are

Fr-measurable, we may multiply (3.22) by the indicator

function 1B(t,r,C)
to obtain

(3.23) E (c (<p 00 (t) ) IB (t , r , C) IFr) > p (t , r) IB (t , r , C) ,

if t E: C and t :f r. If r E: C, then by definition
00

<p(r) = r on B(r,r,C) and so <p (r) = r on B(r,r,C) .
00

Thus, it follows that c(q> (r»lB(r,r,C) = c (r) • lB (r , r , C) ·

Definition (3.4) gives c(r) = p(r,r) and hence,

( 3 . 24 ) E (c (<p 00 (r) ) lB (r , r , C) IFr) = p (r , r) • lB (r , r , C) ·

Thus, (3.23) is true for all t in C.

By definition of per) it is clear that

p(t,r) ~ per) for all t in Cr(w). Thus, p(t,r) > per)

for all t in C if w lies in B(t,r,C). Thus,

(3.23) and (3.24) imply that

(3.25) E (c (<p 00 (t) ) IB (t , r , C) IFr) > p (r) lB (t , r , C)

for all t in C. Adding (3.25) over all t and C

such that t E: C, and using (3.19) and (3.20) gives the

result,
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E(c(¢oo(r»lf r ) > per).

In (3.26) the decision function ¢ is arbitrary.

Taking the essential infimum of (3.26) over ¢ in 0

gives the desired result TI*(r) ~ per).

This completes the proof of the inductive step and

the proof is now complete. III

The following corollary follows easily from the

theorem, and it completely characterizes the optimal

decision functions ¢* which satisfy (2.39).

Corol~ary3.2 (optimal decision functions)

If ¢* is a member of 0 such that for each t

in T and w in Q we have

(3.27) p(¢*(t,w),t) = min {p(s,t,w)

where p is defined as in theorem 3.1 then ¢* satisfies

(3.6) of theorem 3.1 for all t in T.

Conversely, if ¢* is an optimal decision function

satisfying (3.6) for all t, then <P* must satisfy

(3.27) for all t.
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Proof

The first part of the corollary follows from the

proof of theorem 3.1. The only properties of ¢* we

used in the proof of the theorem were that ¢* belonged

to D and that

p(s,r) = min {p(t,r) t E: C}

statement (3.27).

and Cr(W) = C. This is exactly the

We prove the converse as follows. If t < s, then

by definition (3.3) of p(s,t) we have

(3.28)

Since (3.6) is assumed true, conditioning with respect

to Ft gives

(3.29)

On the other hand, if ~*(t) = t,
00

then ¢*(t) = t and

by definition (3.4) of p(t,t) we have
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Noting that the events {¢*(t) = t} and {¢*(t) ~ t} =

{t < ¢*(t)} are Ft-measurable, we put (3.29) and (3.30)

together to obtain

(3.31)

It is not hard to see that

(3.31) becomes

(3.32)

Applying (3.6) to the right side of (3.32) and using the

dynamic programming equation (3.5) gives the result

(3.27). III

The next theoretical result of this section is a

uniqueness theorem for the dynamic programming equation.

Theorem 3.3 (uniqueness for dynamic programming)

Suppose that TIl and TI 2 are F-measurable random

extended real-valued functions on T, and suppose that

for i = 1,2 and each t in T we have that
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(3.33)

for all s such that t < s,

(3.34)

(3. 35)

Pi (t,t) = c(t)

TI. (t) = min {p. (s, t)
1. 1.

Then for each t in T, 7f l (t) = TIZ(t) alMost surely.

Proof

We use an induction argument as we did in proving

theorem 3.1. Suppose t is a terminal time of FTI then..L ,

Ct (w) = {t} for all w, and (3.35) and (3.34) imply

TI. (t) = c (t) for i = 1,Z. Thus, TI 1 (t) = TI Z (t) for
1.

all terminal times t.

Now suppose TIl{s) = 7f Z (s) for all s such that

t < s. Then from (3.33) it is clear that

Pl{s,t) = PZ{s,t) for all s such that t < s. Since

(3.34) implies Pl(t,t) = c{t) = PZ(t,t), we see that

Pl{s,t) = P2(s,t) for all s such that t < s. In

particular, for all s in Ct(w) and hence, (3.32)

implies TIl{t) = 7f 2 (t). This completes the proof. III
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Cost-to-go formulation

conventional dynamic programs are often formulated

in terms of the so-called cost-to-go. In our formulation

the cost-to-go using decision function ~ and starting

at time t would be

(3.36)
00

c(~ (t» - c(t).

v~e may formulate the dynamic programming solution of

the optimal stopping time in terms of the optimal cost-to-go,

A*(t), starting from t, which is defined as

(3.37) ~ £ n}.

We assume that c(t) < +00 so that the subtraction of

c(t) is always unambiguous. Thus, we have

Theorem 3.4 (cost-to-go formulation of dynamic programming)

For each t and s such that t < s, define ~(s,t)

so that

(3.38)

Let ~(t,t) be defined as
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187

for all t in T.

If A*

for each t

equation

is the function defined in (3.37), then

in T, it satisfies the dynamic programming

(3.40)

almost surely.

Furthermore, there is an optimal decision function

$* in D such that for each t in T one has

(3. 41)

It is clear that Corollary 3.2 and Theorem 3.3 have

corresponding versions for Theorem 3.4. It should be

clear that Theorems 3.1 and 3.4 are connected by the

relations

(3.42)

(3.43) p(s,t) - c(t) = ~(s,t).
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Moreover, an optimal decision function ¢* for one

problem is an optimal decision function for the other

problem also.

In some cases the cost-to-go formulation in

Theorem 3.4 may be easier to work with than the original

formulation in Theorem 3.1. In particular, this depends

on whether one can express E(c(s) - c(t) 1Ft) in a

convenient form. For example, in the treasure hunt

problem for the cost c defined by (2.32) we have for

ACB that

c(B) - c(A) = L c(x)
xe:B-A

Thus, knowing E(c(x) I fA) for each x not in A gives

E(c(B) - c(A) IfA) for all subregions B containing A.

Example: signal interception problem

To help clarify the abstract results of this section

we solve the interception problem using theorem 3.1.

First we formulate a slightly more general version of

the signal interception problem of chapter 2.

Let (T,~) be a discrete bounded time set with a

single ter~minal time t l • Suppose that w ~ T(W) is a
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T-valued random function whose statistics are completely

determined by the prior distribution q(t) defined as

q(t) = P(T I t) for each t in T.

For each t in T define Ft as the smallest

a-field containing {T = s} for each s such that

s < t. It is not hard to see that Ft is generated by

the irreducible disjoint sets (atoms)

{T = s} for s < t and

Let c(t) be a deterministic finite real-valued

cost function such that c(s) ~ c(t) for s < t.

Then the interception problem is to find a decision

function ¢ shich minimizes E(C(¢oo(t» 1Ft) subject
00

to the interception constraint T < ¢ (t).

To formulate this interception problem in terms of

a constraint set, let Ct be an Ft-measurable constraint

set which satisfies (2.14), (2.15), (2.16) and also has

the following two properties:

(3.44)

(3.45)

W E: {T < t},

If D is the class of admissable decision functions
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corresponding to the constraint sets {Ct : t € T}, then

(3.44) and (3.45) force t < ¢(t,w) when L(w) I t

for all ep in D, and they allovT the decision t = ¢ (t,w)

when T(W) < t. Thus, the decision to stop is possible

if and only if interception has occurred -- if and only

if L < t. Note that we require T to have a single

terminal time so that the terminal constraint Ct ,
1

which must be {tl} from (2.14) and (2.15), would be

consistent wi th the interception constraint L «))) ~ t l •

Having formulated the interception problem as an

optimal stopping problem with partially nested information,

we see from Theorem 3.1 that the solution satisfies the

dynamic program (3.5). Let us now find TI* in terms

of the prior distribution q.

Since TI*(t) is Ft-measurable and since {T I t}

is an atom of Ft we can write TI*(t) as

(3. 46)

where f(t) is a deterministic real function of t to

be determined. Since c(t) ~ c(s) for all s such

that t < s it follows that
ex:>

c(t) ~c(¢ (t» for all

in D. If L(w) ~ t, then t € Ct(w) and we may
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choose ~ so that ¢(t,w) = t. Thus, for T(W) ~ t

we have from (3.1) that 7f * (t) = c (t). Hence, 1T * (t)

has a particularly simple form, namely

(3.47)

Thus, we need to know only f(t) to determine 1T*(t).

For T I t, and t < s, the conditional expectation

E(c(s)1 < + f(s)l~~ IT I t)
T S ~rs-- -

The conditional probability p(TlsITlt) is

P (.Tls, TIt) P (TtS)

$= =
P (TIt) P (Ttt)

q t

for t < s. Thus, we find that E (1T * (5) 1Ft) or, in

our earlier notation, p (s , t) is given by

(3.48) p(s,t) = c(s) + (f(s) - c(S»~~~l.

Since {T I t} is an atom of Ft , and since C
t
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satisfies (2.16), there is at most a single set C in

T such that Ct (w) = C when L (w) t.. t. Let Ct denote

this set when P ({ L t. t}) > o. Using Ct with (3.46)

we find that for L(W) l- t we have

using the dynamic program (3.5) and the expression (3.47)

when L(W) I- t we obtain the following equation for f:

(3.50) f(t) = min {c(s) + f(S)-C(S»~~~~ : s £ Ct }

when q(t) > 0, and

f(t) = c(t)

when q(t) = O.

Noting that t t Ct when q(t) > 0, we find that (3.50)

gives a deterministic dynamic program to calculate f(t)

recursively backwards from the terminal time t l •

In terms of the function wet) defined as

wet) = q(t) (f(t)-c{t» the dynamic program (3.50)

becomes
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ljJ (t) = min {ljJ (s ) + q (t) (c (s) - c (t» : S E: Ct }

when q(t) > 0, and

ljJ(t) = 0

when q(t) = O.

Equation (3.51) is the exact general version of (2.3.6)

in section 2.3. The functions $ are the same in both

cases. In terms of (x,t) space-time coordinates

(3.51) should read

(3.52) lJJ(x,t) = min {lJl(y,s)+q(x,t) (t-s) : (y,s) E: C(x,t)}.

Since C(x,t) = iCy,s) : s = t+o, y = x+ov,lvl ~ c}, one

sees that t - s = 0 and (3.52) becomes exactly (2.3.6).

The optimal decision functions for the interception

problem are easily obtained from (3.50) or (3.51). If

~* is an optimal decision function then one can show

(3.53) ~*(t,w) = t

~* (t,w) = cp* (t)

if

if

T (w) < t

T(W) I t
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where ~* : T ~ T is a deterministic function such that

l*(t) E ~t and s = l*(t) minimizes

(3.54) w(s) + q(t)c(s)

for s in Ct and q(t) > O. In the space-time signal

interception problem the expression (3.54) becomes

(3.55) l~(X+Ov,t+O) + q(x,t) (t+o)

It is clear that minimizing (3.55) for v such that

Ivl ~ c is the same as minimizing W(x+ov,t+o). Thus,

we obtain the same optimal decision function as given

in section 2.3 in equations (2.3.8) and (2.3.9).
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Section 3.4. Conclusions

In this chapter we have defined the class of stopping

problems with partially nested information. Using the

concept of partially ordered time we were able to

generalize the two-parameter signal interception problem

of chapter 2. The general stopping problem with partially

nested information includes all one-parameter stopping

time problems and allows one to formulate many new stopping

problems such as the space-time interception problem or

the oil exploration problem discussed in section 3.2.

The optimal control aspects of the general optimal

stopping problem are significant as we have remarked in

section 2.2. It is the control formulation of the

stopping problem in terms of decision functions (the

controls), rather than the stopping time formulation,

that permits a reasonable solution of the general stopping

problem.

We solved the stopping problem by means of a partially

ordered time dynamic program in section 3.3. Two

characteristic of the stopping problem make the dynamic

program solution possible: (1) the control formulation

of the problem in terms of decision functions as we

discussed above; and (2) the partially nested information
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structure of the problem. The partially nested information

structure, originally defined by Ho and Chu (1972), derives

from causality relations in a particular problem. The

partially nested structure depends on (I) an antisymmetric

and transitive precedence relation between cause

(effecting agent) and effect (affected agent) and (2) the

affected agent's perfect knowledge or memory of all things

affecting it. This information structure may arise in

problems as diverse as the space-time problem or the oil

exploration problem. As we noted in section 3.2 it is

important to include the signaling effect of the control

decisions of agents in the total information structure.

Thus, for the signal interception problem it is important

that the interceptor speed is not greater than the signal

speed.

The partially ordered dynamic program we obtain is

nonserial in the sense of the nonserial dynamic programming

of Bertele and Brioschi (1972), but the p.o. dynamic

program possesses much more structure than any of the

cases considered by Bertele and Brioschi and hence, we

have been able to exploit this structure to advantage

in a way not considered by these authors. To be specific

the dynamic program of theorem 3.1 is backward recursive

with respect to the partial order. Starting from the
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terminal times, one solves the dynamic program by

working backward with respect to the partial order. To

solve the dynamic at a time t in the partially ordered

set, one only need to know the solution at times s such

that t < s. If t l and t 2 are incomparable times

(neither t l ~ t 2 nor t 2 < t l ) , then one need not solve

the dynamic program first at t l and then at t
2

, or

first at t 2 and then at t l . That is, one may solve

the program at t l and t 2 simultaneously if t l and

t 2 are incomparable. Thus, the partially ordered

structure of the time set allows one to solve in parallel

at distinct incomparable times. In the terminology of

Chan (1976), the partial order relation on the time set

is also the precedence relation for computing the optimal

cost solution of the dynamic program.

Finally, let us discuss how to generalize the

stopping problem for time sets which are not discrete

bounded. In particular, we want to consider discrete

time sets which are not bounded and time sets like Rn

which are not discrete but have a topological structure.

In addition to extending the results of this chapter

for more general time sets, it may be possible to extend

the results for cases where decisions are made continuously

rather than sequentially (i.e., the decision trajectories
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are continuous trajectories). We will consider the

sequential case here and defer discussion of the continuous

case until chapter 5.

The extension of the results to bounded (i.e. compact)

continuous time sets is a problem of mathematical technique

and does not add substantially new content to the problem.

Note that we are not intending to let the stage n be

continuous but only to let the time set T be continuous

(i.e., the decisions where to go in T are made sequentially).

Indeed, a topological structure on T is not necessary

so much as a measure structure compatible with the partial

order on T. Instead of (2.16) and (2.18) we require that

the constraint sets and the decisions functions are

measurable with respect to the measure structure on T.

The cost function must be jointly measurable with respect

to T and with respect to the a-fields {Ft : t £ T}.

That is, the restriction ot the cost to {s: s < t} x n

should be jointly measurable when {s: s < t} takes the

measure structure of T and n takes the measure structure

of Ft. We may say that C is progressively measurable

in analogy to the case of one-parameter time (see

Dellacherie (1973».

Together with the measurability conditions, one

requires finally some condition either on the constraint
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sets or on the cost function to ensure that the decision

to stop occurs after a finite number of stages. More

over, given a fixed initial point in the time set, the

number of decisions (or stages) until stopping must be

uniformly bounded from above. For example, stopping is

guaranteed if T is a bounded subset of space-time and

the constraint sets C are -such that(x,t)

C(x,t) C fey,s) t + 0 < s}

where 0 is a fixed positive number.

with these conditions, the results of section 3.2

are probed much as for the case of discrete bounded time.

One minor difference is that the minimum in (3.5) is now

an infimum. Thus, the optimal cost will still exist and

satisfy the dynamic program equation (3.5), but there

may be no optimal decision function unless the infimum

in (3.5) is a minimum. Nevertheless, we may find

decision functions which obtain expected cost arbitrarily

close to the optimum --- these are the so-called

s-minimizing solutions of Snell (1952).

The extension to discrete but unbounded time sets

is more difficult than the previous extension to bounded,
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nondiscrete time sets but the extension is still

manageable. The essential new difficulty is that the

sequence {¢n(t) n > I} does not have to stop for an

unbounded time set unless we further restrict the cost

function or the constraint set. In this case, unlike the

first case considered above, we want to require that the

decision to stop occurs after a finite number of stages,

but we do not want to require that this number is uniformly

bounded. One reasonable condition that guarantees that

the optimal decision to stop occurs after a finite number

of stages is to assume that the cost function increases

to +00 as the p.o. time t increases. In this case

one still obtains Theorem 3.1 (that the optimal cost

satisfies the dynamic program) but there is no terminal

set from whicy to solve for the optimal cost by working

bakcwards recursively, because the time set is unbounded.

In some cases it may be possible to reduce the problem

with unbounded time set to an equivalent problem with a

bounded time set. For example, this is what was done

with the space-time interception problem in chapter 2.

Let us note that this difficulty with unbounded time sets

is also a difficulty with one-parameter time problems

and is not a special problem with multi-parameter dynamic

programming.
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CHAPTER 4

REACHABLE STOPPING TIMES AND

THE OPTIONAL SAMPLING THEOREM

1. Introduction

In this chapter we will tie together the results of

chapter 2 and 3 on the stopping problem with partially

nested informa.tion with the results of chapter 1 on

optional sampling. In section 2 we define a special

class of stopping times in terms of the decision functions

introduced in chapter 3. Specifically, we define a

reachable stopping time, and we define the weaker concept

that a stopping time T is reachable from a stopping time a.

It is not hard to show that if T is a reachable stopping

time, then it is reachable from every stopping time a

such that a < T. with this definition of reachable

stopping time, we note that all one-parameter stopping

times are reachable. Moreover, in the two-parameter case

considered in chapter 1 all stopping times are reachable.

Also, the control variable of Haggstrom (1966) discussed

in chapter 3 is a reachable stopping time. The counter

examples in chapter 1 illustrate stopping times which are

not reachable. This fact follows from the optional

sampling theorem we prove in section 3. We show that if
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T and a are stopping times on a finite time set and

if T is reachable from a, then the optional sampling

theorem is true with T and a for any submartingale

on T. Since the stopping times defined in the counter

examples of chapter I do not satisfy the optional sampling

theorem for a particular submartingale, then these

stopping times cannot be reachable. Note that the optional

sampling theorem for reachable stopping times includes

the result of section 1.4 as a special case since all the

two-parameter stopping times in 1.4 are reachable as we

will see. In section 4 we show how the stopping problem

with partially nested information can be stated in terms

of reachable stopping times although we find this

formulation less convenient than the decision function

formulation of chapter 3. Finally, in section 5 we apply

the dynamic programming results of section 3.3 to prove

a converse of the optional sampling theorem. That is, we

show that if T and a are fixed stopping times on a

finite p.o. time set T with a < T, and if the optional

sampling theorem is true with T and a for all sub

martingales, then T must be reachable from a. Thus,

reachable stopping times are the only stopping times which

make the optional sampling theorem generally true for

submartingales.
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2. Reachable Stopping Times

We define reachable stopping times in terms of the

decision functions of chapter 3, but we do not require

the constraint sets Ct mentioned there. That is,

one may assume that the set of constraints for the

decision functions in this chapter are the weakest

possible constraints, namely those defined by

(2.1) t < s} W E: n.

Thus, ¢ is a decision function if ¢, maps T x n into

T and if both

(2.2)

and

t < ¢(t,w) t E: T, W E: 51

(2.3) {w ¢ (t,w) < s} E: Ft t, s E: T.

As before, we will often suppress the wand simply write

¢(t) for the function w + ¢(t,w) mapping n into T.

Having thus reviewed decision functions, we now define

reachable stopping times.

set (T,~), the a-fields

space are fixed.

Let us assume that the p.o. time

{F t : t E: T} and the probability
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Definition 1.

Suppose T and cr

T is reachable from cr

function ¢ such that

are two stopping times. We say

if there exists a decision

(2.4) vw s n.

In particular, note that cr < T.

Definition 2.

A stopping time T is said to be reachable if there

exists a decision function ~ such that for all t

(2.5) v w s {t < T}

It is not hard to see that if T is reachable and

if cr < T, then T is reachable from cr. For (2.5)

mplies that T(W) = ~oo(s,w) for W s {s = cr} whence

follows (2.4).

All one-parameter stopping times are reachable in

the sense of definition 2. The decision function ~

corresponding to a one-parameter time T was defined

previously in (3.2.27) of section 3.2 as
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= t+l
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if T (w) < t,

if T(W) i t.

We also find that the two-parameter stopping times defined

in chapter 1 are reachable. We show this in the following

theorem.

Theorem 2.1 (two-parameter stopping times are reachable)

Suppose that is an increasing family

of a-fields which satisfy the conditional independence

hypothesis (defined in section 1.2). Let T be a stopping

time taking finitely many values in

reachable.

Then T is

Proof: The proof follows simply from the lemma of

Define the random functionsection 1.4.

as follows in terms of the sets

lemma:

and

<D(t,w) = (tl +l,t2 ) 'rIw € Al _ {T=t}
t

(2.7) <P(t,w) (tl ,t2+l) \lw 2 . {T=t}= € At

<P(t,w) = (t l , t
2

) V w € {T=t}

where t = (tl ,t2 )· The sets Al and A2 were
t t
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constructed so that and

Ft. Thus, (2.7) defines a decis~on functionI 2
At' At E:

2on z+.

that

In addition, the sets and are such

Al f\ {w t < T (w)} C {w (t l +l,t
2

) < T(W)},t

(2. 8)

2 t < T (w) } C {w < T{W)}.At /'\ {w (tl ,t
2

+1)

From this, it follows that for W such that t ~ T{W)

nwe must have ~ (t,w) ~ T{W) for each n > O. Moreover,

we have equality ~n(t,w) = T{W) if and only if

~n{t,w) = ~n+l{t,w). Since T takes only finitely many

values in z~, we must have ~n{t) = ~n+l{t) for some
00

finite n if t < T. Hence, ~ (t,w) exists and is

with theandThe existence of sets

equal to T{W) when t ~ T{W). III

Al
t

property (2.8) is equivalent to the stopping time T being

reachable. This fact extends to more general cases and

offers some added insight into the definition of reachable

stopping times.

Suppose that T is a finite set. For t in T,

an immediate successor of t is an element s E: T such
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that t < s and such that there is no r E: T such that

t < r < s. We denote. this relationship by t <- s.

Suppose that T is a stopping time on T, and suppose

for each t E: T and each s such that t <- s there is

a set AS E: f t
such thatt

(2.9) A~ n {w t < T (w)} C {w s < T(W)}.

In addition suppose that AS "As' = J{j if t <- s, t <- s't t

and s t- s ' , and suppose that U AS = Q. Then as in
t<-s t

Theorem 4.1 we can show T is reachable. The decision

function ~ is defined as in (2.7) so that:

~(t,W) = s

(2. 10)

~(t,W) = t 'V W E: {T=t}.

s, t <- s

Note that this result implies that Haggstrom's (1966)

control variables are reachable stopping times. As we

discussed in chapter 3, a control variable T is a

stopping time on the tree time set of finite sequences
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(2.11)

for all sequences t in the tree and all t n+l • Noting

tlatthe sequences t t n+l are precisely the immediate

successors of t (see figure 2.1), we see that the sets

t t +1
At n can be defined in terms of {T ~ t t n+l }. In

Haggstrom's problem it is clear that the reachability of

T means precisely that if one knows T stops beyond the

nth node (so that tlt2t3 ..• tn~T), then one can decide

which branch T takes from t n on the basis of F
t

n

alone. Thus, if
t t n +l

W E At ' one chooses the branch to

To see an example of a stopping time which is not

reachable, consider the stopping time T in examples 1

and 2 of section 1.3. In these examples F(O,O) was

the trivial a-field and contained no information about

which branch the stopping time

1
That is, the sets A(O,O) and

T takes from (0,0).

2
A(O,O) are not in F(O,O).

In the next section we show that if a stopping time T is

reachable from a, then the optional sampling theorem with

T and a is true for all submartingales. This result

then shows that in examples 1 and 2 of section 1.3 and in

the example of section 1.4, the stopping time T is not

reachable from a (and of course, T is not reachable) •
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3. Optional pamp1ing for Reachable Stopping Times

The optional sampli~g result of section 1.3 is

contained in the more general result which we now prove.

We limit ourselves to p.o. time sets which are finite and

afterwards indicate how to extend the results to more

general time sets.

Theorem. 3.1 (optional sampling for reachable stopping times)

Suppose that· {Ft : t E T} is an increasing family

of a-fields indexed by the finite p.o. set (T,~). Let

T and a be stopping times with respect to {F
t

: t E T}

and suppose that T is reachable from a. Then for any

submartinga1e {Mt : t E T} with respect to {F
t

: t E T}

we have Ma ~ E{MTIFa ).

Proof: Suppose that ~ is a decision function such that
00

T = ~ (a). Essentially, we show that the T-valued random

functions ~n{a) are stopping times on T for integers

n > O. We then show that the one-parameter process

{M : n > O} is a submartingale with respect to the
ct>n{a)

increasing family of a-fields {F n > O} and
ct>n{<J)

obtain the conclusion:

Since ~n{cr) is defined so that
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n n-l
<p (a (w) ,w) =.cf> (cf> (a (w) ,w) ,w),

it suffices to show that <p(a) is a stopping time when

ever a is a stopping time in order to show all cf>n(a)

are stopping times. Since cf> is a decision function,

a < <p(a) a.s. for any random function cr. Thus, we have

{<p (a) < t} = {cf> (a) < t} {a < t}

for any t, and we may write {cf>(a) < t} as

(3.1) {<p(a) < t} = V {<p(s) < t} n{a = s}.
s<t

If cr is a stopping time, then {a = s} is Fs-measurable

and hence, also Ft-measurable. It follows that

{cf>(a) 2 t} is ft-measurable for all t and <p(a) is

a stopping time.

Thus, the a-fields are well-defined since

{<Pn(cr)} are stopping times. Moreover, since

<pn(a) < cf>n+l(a), it is easy to see that {F n > O}
<Pn(cr)

is an increasing one-parameter family of a-fields. To show

that {M : n > O} is a submartingale with respect to
cf>n(a)

n > O} it suffices to show that
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(3.2)

for an arbitrary stopping time a. Note that Fa and the

conditional expectation E(eIF) are defined so that
a

E(eIF )I =E (e IF) I . This fact allows us toa a=s s a=s

rewrite E(M¢(a) IFa ) as follows.

(3.3)

where the summation is taken aver the finite set T. We

may write M¢(s) as

(3.4)

where again the summation is taken over the finite set

oft such that t > s. Since ¢ is a decision function,

the random variable I¢(s)=t is Fs-measurable. Thus,

we have

(3.5)

Since {Mt : t € T} is a submartingale and since

t > s we have E(MtIF ) > M .s - s Using this inequality
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in (3.5), we obtain

(3.6)

Since <j)(s) ~ s (because <j) is a decision function),

we have I I~(s)=t =1 in (3.6) and we obtain
t>s 't'

(3.7) > M .s

Substituting (3.7) into (3.3) yields

(3.8)

which is clearly the desired result (3.2).

To finish the proof we note that

(3.9)

for all n ~ 0, and since T is finite we must have

<j)n(cr) = <poo(cr) = T for n sufficiently large. This

completes the proof. III

Extending this result to infinite time sets T

requires additional hypotheses on the submartingale
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{Mt : t E T} and the stopping times cr and T. For

example, even if T is assumed to be discrete, bounded

it is possible for cr and T to take infinitely many

values. Nevertheless, on the set· {w : cr(w) = s} the

stopping time T can take only a finite number of values

since T is discrete and bounded and s < T(W) for W

inthis set. If we assume that E (I M I)
T

are finite, then the proof of theorem 3.1 goes through

with very little change. For fixed s we can use essentially

the same argument to show that

(3.l0) E{M IF)I > M -I , for n > O.n s cr=s - s cr=sep (s)

Since T is discrete and bounded, we must have
n

ep (s) = T

on the set {cr=s} for some finite n sufficiently large.

Thus, from (3.10) we obtain

(3.11)

using the fact that T is countable and that E(IMTI),

E(IMcrl) are finite, we can sum (3.11) over s in T to

obtain the desired result.

The case of discrete, unbounded time requires more

complicated hypotheses. If we assume that E(IM I) < 00

epn(cr)
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for each n ~ 0, then the argument of theorem 3.1 can be

used to show that {M : n > a} is a submartingale
<Pn(cr)

{F a}.
00

with respect to n > Since <p (cr) = T
<p

n
(a)

we know that for each w there is an integer n > 0

such that <poo{a{w),w) = <pn{a{w),w), but in general there

will be no single n unformly valid for all w. How-

even, we can define a one-parameter stopping time N as

follows: let N(w) be the smallest integer n such that

n 00
<p {a{w} ,w} = <p {a{w},w}. Equivalently, N(w) is the

n+l nsmallest integer n such that <p (a(w) ,w) = <p {a(w),w}

and for this reason, N is a one-parameter stopping time

with respect to the increasing family of a-fields

. {F : n > a}. The optional sampling theorem for
<Pn{cr)

T and a will be true if

(3.l2) > M .
a

A sufficient condition that (3.l2) is true can be obtained

from the one-parameter theory presented in Doob {l953},

for example. Thus, we have:

Theorem 3.2

Suppose that {T,~} is a discrete p.o. set and let
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T and cr be stopping times with respect to the increasing

family of cr-fields "{Ft : t £ T}. Suppose that" {M
t

: t E T}

is a submartingale with respect to . {F
t

: t E T}. Further

more, suppose that the following conditions are satisfied:

(3. 13) T is reachable from cr.

(3.14) E(IM I) < 00

<1>n(cr)
n > 0, E ( IM I) < 00

- T

(3.15) lim inf E(M -I
n + 00 <1>n(cr) {N>n}

Then E(M IF ) > M •
T cr cr

Proof:

Conditions (3.14) and (3.15) are sufficient conditions

to show E(~IFo) ~ MO where {M : n > O}
n -

is the one-

parameter submartingale defined M = M with respectn <1>n(cr)

to the family {F : n > O} defined F = F and Nn - n
<p
n (cr)

is the one-parameter stopping time defined above. III

It is unclear at present how to simplify these

conditions in (3.14) and (3.15) to more direct conditions

on cr, T, <1> and· {Mt : t E T}. Moreover, since several

decision functions may ¥ield the same stopping time T,

it would be preferable to have conditions directly in



217

terms of 0, T and ·{M
t

: t E: T} without mention of a

particular decision function <j>. For the two-parameter

case in section 1.5 we were able to state such conditions

in (1 • 5 . 1) and (1 . 5 . 2) •

An extension to a continuous, compact p.o. time set T

requires hypotheses to enable one to obtain the continuous

parameter reachable stopping time T as a limit of discrete,

bounded reachable stopping times Tn so that the sequence

{Tn} decreases monotonically to T with respect to the

partial order on T. If {Mt : t E: T} is also assumed

right continuous with respect to the partial order, then

we may prove the bounded, continuous time case as the

limit of the finite case in theorem 3.1. This is what

we did in the case in section 1.6. However, in

that case we required no elaborate definition of continuous

parameter reachable stopping times asa limit of discrete

parameter reachable stopping times, but rather we deduced

that each continuous parameter stopping time was the limit

of a decreasing sequence of discrete stopping times. How-

ever, in that case each stopping time was automatically

reachable and we did not require an elaborate definition

of reachable stopping time in terms of decision functions.

We will not pursue the continuous parameter case any

further.
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4. Reachable Stopping Times and the Stopping Problem with

Partially Nes:ted Tnfo:rmation

From Definition 1 of the previous section it should

be clear that if <I> is a decision function, then <l>oo(t)

is a stopping time which is reachable'from the constant

stopping time t. Thus, we could reformulate the stopping

problem with partially nested information of section 3.2

in (3.2.19) in terms of reachable stopping times as

follows: for a given initial time e in T choose a

stopping time L* reachable from e such that

(4.1)

for all stopping times L reachable from e. In section 3.2

we formulated the stopping problem with constraint sets

{Ct : t s T}, and it is also possible to introduce con

straints in the reachable stopping time formulation. Let

Re be the set of all stopping times reachable from e

and such that for L E: Re we have L(W) = t only if

t E: Ct(w). Then the constrained stopping problem is to

find L* in Re such that (4.1) is true for all L in Re ·

As we saw in chapter 3, Haggstrom (1966) formulated

an optimal stopping problem on trees in terms of a control
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variable which corresponds closely to our decision functions

when the p.o. time set is a tree. We also saw in section 4.2

that control variables are reachable stopping times. Thus,

one may consider Haggstrom's stoppi!1g problem in terms of

the reachable stopping time formulation as well as the

decision function formulation. Indeed, for p.o. time

sets which are trees there is little distinction between decision

functions and reachable stopping times. The reason for

this is that in the case of trees, a reachable stopping

time T is actually a sequence T1T 2T 3 .•. which uniquely

defines the decision function which reaches T. Intuitively,

one may thing of T as a random function assigning a

branch of the tree to each W in the sample space Q.

This branch indicates the sequence of decisions which must

be made to reach T. Thus, in figure 4.1 if

T{W) = t l t 2 ..• t n then the decision function ~

corresponding to T makes the assignments ~(ti'w) = t i +l

for 1 < i < n-l and ~{tn'w) = tn.

For general partially ordered time sets the relation

ship between decision functions and reachable stopping

times is not as close as in the case of trees. A

stopping time T which is reachable from cr may be

reachable via different decision functions ~. For example,



220

Figure 4.1
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suppose T is the two-parameter time set

{(O,O), (0,1), (1,0), (l,l)} discussed in example 2

of section 1.3 and illustrated in figure 4.2. Define

butfrom(1,1)

<PI «0,0» = (0,1), <PI ( (0,1» = (1,1) ,<PI «1,0» = (I,D)

and <PI «1,1» = (1,1) i define <1>2 «0,0» = (1,0),

<1>2 ( (1, 0» = (1,1), <1>2 ( (1, 1» = (0,1). Then

<I>~«O,O» = <1>;«0,0) = (1,1) but clearly

Both decision functions reach

<PI reaches (1,1) by going through (1,0) and <1>2

reaches (1,1) by going through (0,1).

Note also that more than one reachable stopping time

may correspond to the same decision function. In the

example above we have that <I>~«l,O» = (1,1), but

~~«l,O» = (1,0). Thus, <PI defines the constant stopping

time (1,1) reachable from (0,0) and the different

stopping time (I,D) reachable from (1,0).

Although it is possible to formulate the stopping

problem with partially nested information in terms of

reachable stopping times, it seems more advantageous

to use the decision function formulation. The most important

advantage is that the decision function formulation leads

directly to the dynamic program equation which allows
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(1,1)

(0 ,0)

Figure 4.2
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recursive computation of the optimal cost and an optimal

decision function for the stopping problem. Moreover,

except in the one-parameter and special two-parameter cases,

reachable stopping times must be defined in terms of

decision functions. We will discuss these points again

in chapter 5.

5. Converse of the Optimal Sampling Theorem

In this section we apply the dynamic programming

theorem 3.3.1 to show that, at least for finite time

sets, reachable stopping times are the only stopping

times which satisfy the optimal sampling theorem for

arbitrary submartingales.

Theorem 5.1

Suppose that T and a are stopping times on the

discrete, bounded p.o. set (T,~) with respect to the

increasing family of a-fields {Ft : t E T} such that

a < T. Suppose that for any submartingale {Mt t E T}

with respect to {Ft : t E T} we have that Ma < E(MTIFa ).

Then T must be reachable from a.

Proof:

Consider the following stopping problem on T with

the partially nested information structure· {F
t

: t s T}.
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Define the cost C as

(5.1)

Thus, C{t) is ft-measurable and C(t) =0 if and only

if T = t, otherwise C(t) = 1. Define constraint sets

{Ct t E T} such that

(5.2) C = {st t < s}.

Since T is discrete, bounded, there exists a unique

optimal cost function ~* such that

(5.3) n*(t) = min {p(s,t) t < s}

where (s,t) = E(n*(s) 1ft) for t < sand p(t,t) = c(t).

In particular, we see that

(5.4)

for all s such that t ~ s, so that {n*(t) : t E T}

is a submartingale with respect to {ft : t E T}. By

definition, n*(t) is given by
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'IT* (t) = ess inf {E (C (4)00 (t» 1Ft) <P £ D}

where D is the set of admissable decision functions for

this problem. From (5.5) it should be clear that 'IT*(T) = 0

(use the decision function <P(t) ~ t). M6reover, it should

be clear that 'IT*(t) ~ 0 for all t and hence 'IT * (a) > o.

By assumption, the optional sampli!19 theio"rem with

T and a is satisfied for all.submartingales on T

with respect to {ft : t £: T}. Thus, we have

(5.6) 'IT * (a) < E('IT*(T) If )a

and it follows that n*(cr) = O.

Because the time set T is discrete and bounded, we

can calculate an optimal decision function 4>* corresponding

to 'IT * by dynamic programming so that

(5.7)

for all t in T. It follows that·

(5.8) Tr*(a) = E(C(<p:(a) ) If )a

and since 'IT * (a) = 0 and since C > 0 we must have (a.s.)
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C(~*(cr») =0. But this means that T =~:(cr) and thus,

T is reachable from a with the decision function $*. III

Theorems3.l and 5.1 provide a complete characterization

of the stopping times for which the submartingale version

of the optiona_l sampling theorem is true. That is, all

such stopping times are reachable (or more precisely, the

optional sampling theorem is true for stopping times

T > a if and only if T is reachable from 0). It

may happen that for some martingale {Mt : t E T} we have

(5.9) E (M IF) > M
T a a

even though T is not reachable from a. We noted this

fact in the conclusion of chapter 1 (section 1.7). For

example, if T is a directed set and the submartingale

{M
t

: t E T} has a Doob decomposition as noted in

section 1.7, then (5.9) is true for all stopping times,

reachable or not. However, if T is not reachable from a,

then Theorem 5.1 implies that for some submartingale

{Mt : t E T} the relation (5.9) will be false.
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CHARTER 5

CONCLUSIONS

Part I of this thesis has consisted of an ex

tensive investigation of the optional sampling theorem

for submartingales indexed by a partially ordered index

set. We started this investigation in chapter I by

studying the particular case of two-parameter time sets.

There we discovered that when the a-fields satisfy a

conditional independence hypothesis (as, for example,

do the a-fields generated by the two-parameter Wiener

process), then the optional sampling theorem is true

for all stopping times and all submartingales (assuming

uniform integrability conditions where necessary).

Unfortunately, this result depended crucially on the

particular parameter set and probability structure.

Changing either the parameter set (e.g., letting T be

a three-parameter time set) or the probability structure

(i.e. not assuming conditional independence of the

a-fields) allowed us to construct simple counterexamples

to the optional sampling theorem.

After studying the optional sampling theorem for

two-parameter processes we digressed in chapter 2 to

study a simple stopping problem (the signal interception

problem) for two-parameter processes. For one-parameter
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processes there is a close relationship between the

optional sampling theorem and stopping problems, as

Snell (1952) first investigated. Thus, our digression

to study stopping problems for two-parameter processes

was in fact an indirect attack on the optional

sampling theorem.

In chapter 3 we extended the two-parameter example

to cases with more general partially ordered time sets.

Here we found that the general stopping problem with

partially nested information allows one to formulate

naturally a wide variety of stopping problems which

are difficult or impossible to formulate in the con

ventional one-parameter framework. We then showed that

one can extend the dynamic programming solution of the

one-parameter stopping problem to the more general case

of partially ordered time. The resulting dynamic program

is backward recursive with respect to the partial order,

and this recursive property enables one to use the

full structure of the partially ordered time set to

calculate the solution to the stopping problem in an

efficient manner. Note that the results of chapter 3

extend the work of Haggstrom (1966).

In chapter 4 we returned to consider the optional

sampling theorem for general partially ordered time sets.
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Here we defined the concept of a reachable stopping time,

based on the concept of decision function introduced in

chapter 3 to define the stopping problem with partially

nested information. We showed that the optional sampling

theorem is true for submartingales if the stopping times

are reachable. We also showed that the two-parameter

stopping times considered in chapter 1 are reachable.

Finally, we showed that if 0 and T are stopping times

such that 0 < T and

(1) E(M If ) > M
T 0 - 0

for all submartingales {Mt }, then T must be reachable

from 0. The proof of this result was a simple corollary

of the dynamic programming result of chapter 3. Thus,

in chapter 4 we obtained a complete characterization of

the stopping times 0, T which allow (1) to be true for

all submartingales {Mt }. We have also found that the

optional sampling is intimately associated with sequential

stopping problems namely, reachable stopping times

are defined by sequential decision functions as

described in chapter 3. Thus, in a sense the optional

sampling theorem for partially ordered time sets is

necessarily a one-parameter result. That is, the optional
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sampling theorem is true for general submartingales if

and only if the stopping times are reachable and hence,

if and only if the theorem can be reduced to its

one-parameter version.

In the remainder of this chapter we will discuss

the possibility of extending these results on optional

sampling and stopping problems to continuous parameter

time sets. In the context of the stopping problem with

partially nested information this means that we are going

to consider cases where decisions are made continuously

rather than sequentially (i.e., the decision trajectories

are continuous trajectories). In the context of the

optional sampling theorem this means we are going to con

sider cases where a stopping time T can have a con

tinuum of values in its range T(Q).

Although the generalization of these results to

the continuous parameter case described above is diffi

cult, it seems worthwhile, particularly for study stopping

problems with partially nested information. Let us

briefly explain why this should be true.

To extend the results of chapter 3 to the case

where decisions are made continuously, one must make

sense of differential equations of the form



(2)
dT
ds = <P(T(S»
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where <p is a decision function and s + T(S) is a

continuous trajectory of stopping times. In (2) we

assume that the time set is some linear space such as

Rn . In order that the path s + T(S) should incrase

we must assume that the components of <p are all

nonnegative.

For a given stopping problem the optimal cost function

will satisfy a differential equation version of the dynamic

programming equation. To see what such an equation will

look like, consider equation (2.3.6) in chapter 2, namely

(3) ~(x,t) = inf {~(x+ov,t+o) I\vll < e} + oq(x,t)

where v,x lie in Rn and t lies in Rl . Recall

that the parameter set was Rn +l and the partial order

relation was the space-time ordering. Assuming that ~

is continuously differentiable in x and t and

assuming that we ~an interchange the infimum and limit

(0 + 0) operations, we obtain

(4) 0 = inf {<~~,v> + ~~ \ Iv I I < c} + q (x, t)



232

from (3) by letting 8 + O. Note that we can solve the

infimum problem in (4) and obtain the partial differential

equation

(5) 0 = c·1 I~~I I + ~t + q{x,t)

for w.
The reason for studying the continuous parameter

stopping problem is that there is a better chance of

obtaining exact solutions to a wide class of problems

if we can formulate the problem as a differential

equation as in (5). Moreover, there seems a better

chance of finding asymptotic approximations of (5) than

of the discrete version (3).

Now let us turn our attention to the possibility of

extending reachable stopping times and the optional

sampling theorem to continuous parameter stopping times.

Note that we were able to do this in a special two

parameter case in chapter 1. However, this special case

doesn't offer much help in the general case. In the

special case of chapter 1 the optional sampling theorem

was true for all continuous parameter stopping times.

Hence, there was no difficulty of defining reachable
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stopping times in the continuous parameter case. In

general, however, not all continuous parameter stopping

times will be reachable (i.e., will satisfy the optional

sampling theorem) and we must somehow distinguish

reachable, continuous parameter stopping times. The

most natural approach is to say a stopping time T is

reachable if it is the limit

(6) T = lim T(S)
s~oo

where T(S) satisfies a differential equation (2) for

some decision function. This approach is feasible in

Rn and other linear spaces, but it obviously fails if

we cannot define differential equations in the partially

ordered~ime set. For example, how would one define (2)

incase the time set were the collection of all closed,

convex sets in R2? The alternative approach is to

define a continuous parameter reachable stopping time as

the limit of discrete parameter reachable stopping times.

This approach will obviously work for general continuous

parameter time sets, but the definition of reachable

stopping time is rather crude and unwieldy. The continuous

parameter reachable stopping time T depends on a sequence

of discrete parameter stopping times {T }, or equivalently
n
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on the corresponding decision functions {¢ }.
n

It would

seem more elegant to define reachability of T in terms

of a single decision function ¢, but this may be

impossible.

The results of chapter 4 on the converse of the

optional sampling theorem offer another approach that

seems very effective. Instead of defining reachability

first and then proving the optional sampling theorem,

let us define reachability in terms of the optional

sampling result (1) for submartingales. That is, define

T to be reachable from cr if (1) is true for all

submartingales {Mt }. This definition of reachability

is just as easy to make for continuous parameter T, cr

as for discrete parameter T, cr. Having defined

reachability in this way, the next step is to see if T

can be characterized in terms of a single decision

function or a sequence of decision functions (i.e., as

the limit of the corresponding stopping times). The best

strategy in this investigation seems to be to follow the

derivation of theorem 4.5.1, the converse of the optional

sampling theorem. Using the discrete parameter dyanmic

programming results of chapter 3, we can investigate

solutions of the stopping problem with the cost~ftinction c

defined by
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(7)

where T is the continuous parameter stopping time we

are studying. It seems reasonable that an s-optimal

solution of this stopping problem will be an

approximation to T and that Ts + T as s + o.

The previous discussion has been carried out only

at the heuristic level and all the conjectures discussed

will require rigorous proof. In conclusion, let us note

that Kurtz (1978) has investigated a class of continuous

parameter stopping times which satisfy a differential

equation of the form (1). Kurtz (1978) investigated

these multiparameter stopping times while studying

processes X(t) (here t s Rl ) of the form

(8) X(t) = X(o) +
N

I
i=l

t
a.W. (J 8. (X(s»ds)

1 1 0 1

where W.
1

are independent Wiener processes. The i-th

component of the stopping times T(t) is given by

( 9) T. (t)
1

t
= J Si(X(s»ds

o

Note that Ti represents a random time change for the



Wiener process W.•
1
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We conjecture that the stopping

time T defined by (9) will be reachable in our sense

and hence, that the optional sampling theorem for

submartingales is true for these stopping times. Note

that Kurtz (1978) used the martingale version of theorem

which he had proved earlier in Kurtz (1977).



PART II: MULTIPARAMETER STOCHASTIC CALCULUS
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CHAPTER 1

INTRODUCTION TO MULTIPARAMETER

STOCHASTIC DIFFERENTIATION FORMULA

Over the past few years increasing interest has

developed in the study of random fields, that is, random

"processes" with multiparameter "time" parameters. Several

authors have discussed the multiparameter Wiener process

and the closely related multiparameter generalization of

Ito's stochastic integral. However, when extending Ito's

stochastic differentiation formula to the multiparameter

case, Wong and Zakai {l974, 1975} and Cairoli and Walsh

{l975} discovered that the two-dimensional formula

required a new type of stochastic integral and mixed

stochastic-deterministic integrals different from the

Ito-type multidimensional integral defined by Ito"{l95l}.

In this part of the thesis we shed new light on the

Wong-Zakai and Cairoli-Walsh results by showing that the

stochastic differentiation formula is a natural consequence

of the ordinary deterministic differentiation formula in

several parameters and the one-parameter Ito stochastic

differentiation formula. A brief description of the

contents and organization of this part follows.
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In chapter 2 we present some background material for

multiparameter processes. Chapter 3 then discusses the

two parameter formula and the various new types of

integrals required to interpret the formula. We compare

the integrals with the Wong-Zakai and Cairoli-Walsh

integrals, thus establishing the equivalence of their

formulas and our own. We also introduce a stochastic

partial differential operator that obeys very simple

differentiation rules and allows a simple formal derivation

of the stochastic differentiation formula. This stochastic

partial differentiation operator is the same as

Cairoli-Walsh's stochastic partial. Chapter 4 discusses

the n-parameter stochastic differentiation formula and

the n-parameter integrals necessary to interpret it

rigorously. Here we emphasize the concept of a stochastic

differential. This point of view permits a simple formal

derivation of the multiparameter stochastic differentiation

formula and emphasizes the multiparameter formula's close

relation to the deterministic formula and the one-parameter

Ito formula. The derivation up to this point is formal in

nature, as we utilize differentiation formulas and

differentials without rigorous proof of their properties.

In the next three chapters we rigorously interpret the
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differential formulas of chapters 3 and 4 in terms of

stochastic integrals and stochastic measures. In

chapter 5 we define the concept of a stochastic measure

and its integral so that we can treat all types of

stochastic integrals together. Chapter 6 defines mixed

integrals and products of stochastic measures.

Chatper 7 presents the rigorous proof of the product

differentiation rule, which is the central technical re

sults of this paper. In chapter 8 we apply the multi

parameter differentiation formula to represent multi

parameter square integrable martingales by mul~iparameter

stochastic integrals. Finally, in chapter 9 we conclude

with a discussion of possible extensions of our results.

The appendices to part II contain some proofs and technical

details for chapters 3 through 7.
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CHAPTER 2

PRELIMINARY BACKGROUND AND NOTATION

2.1 Introduction

Before proceeding to the main results of this paper

it is first necessary to present some background material

concerning multiparameter stochastic process, or random

fields. Several authors have developed this material

which has become fairly standard. The references given

in this section are by no means exhaustive and we refer

the reader to the introduction to this thesis for a more

complete discussion. Cairoli and Walsh (1975) give a

detailed discussion of the basic material and provide a

detailed bibliography. Cairoli (1970, 1971) discusses

multiparameter martingales in detail. Ito (1951) and

McKean (1963) present the basic material on multiparameter

Wiener processes and integrals. See also McKean's (1963)

bibliography.

This paper treats multiparameter stochastic processes

for which the parameter belongs to the unit cube [O,l]n

in Rn • We use I, II' 1 2 , and so on to denote such unit

cubes; the index serves only to distinguish different

cubes and not to indicate dimensionalty- In section 2.2

we define the important concept of a partial ordering of
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n[0,1) • This allows us to generalize the notion of an

increasing family of a-fields, adapted process and

martingale to multi-parameter processes. In 2.3 we

introduce the Gaussian random measure and the corresponding

multiparameter Wiener process. section 2.4 defines

partitions and partition processes of [O,l)n and

2.5 uses these definitions to construct the Ito-type

stochastic integral from a Gaussian random measure.

The reader may also refer to chapter 1 of part I for

some of these basic definitions.

2.2 Partial Order

We write x < y for x and y in I if x. < y .•
1. - 1.

With this notion of partial order we can define an in-

creasing family of a-fields parameterized on I. Denoting

the basic probability space by (p,n,F) , we say that

{F IzsI} is an increasing family of a-fields if F isz z

a sub a-field of F for each z in I and if F F
zl z2

whenever zl < z2. We assume that (p,n,F) is complete

and F contains all P-negligible sets of F.
o

For an increasing family {F IzsI} of a-fields, a
z

function ¢ mapping n x I into R is adapted to

{FzlzsI} if ¢z is Fz-measurable for each z in I.
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He say ep is a measurable process if it is FxB-measurable

as a mapping from nXI into R. The a-field B is the

usual family of Borel sets of I. ~\Te often write ep as

epz to emphasize its dependence on the parameter z. Given

the framework developed to this point, it is natural to

define a martingale ep as a measurable adapted process

such that

(2.1)

for each and

<P z1

in I

ta.s.

such that z.,.
""

See

Cairoli (1974,1975) and part I, chapter 1 for further

material on multiparameter oartingales.

2.3 Gaussian Random Measure and Multiparameter Wiener

Process

Following Cairoli and Walsh (1975), we call ¢ a

Gaussian random measure if ¢ assigns a zero mean Gaussian

random variable, ¢(A), with variance meA) to each Borel

set A in I (here m is Lebesgue measure). Further-

more, if A and B are disjoint Borel sets, then ¢ (A)

+~le suppress "a. s." (almost surely) in the rest of the
paper, but it is always understood in equations of
random variables.
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and ~(B) are independent random variables and

Let [O,z] denote the set of all ~ in I such that

~ < z, and define Fz as the smallest a-field such that

<P (A) is F -measurable for all A included in [O,z].z

Then {F \Z£I} is an increasing family of a-fields and
z

we can naturally associate a martingale with the measure

<P and this increasing family of a-fields. Thus, define

vI asz

W
z

= <P([O,z]).

It is easy to check that ~7
z is a martingale with respect

to {F \ zEI}.
Z

In the one-dimensional case is, in

fact, the standard Wiener process. Thus, v7 is calledz

the multiparameter Wiener process in the higher dimensional

cases. Keeping the analogy with the one parameter case,

we can define a stochastic integral in terms of the

multiparameter Wiener process just as one defines the

Ito stochastic integral for the one-parameter Wiener

process. First, however, we must define a partition of

the cube I and a partition process.
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2.4 Partitions and Partition Processes

A set, P, of real numbers is a partition of the

interval, [0,1] , if P is a finite subset of [0,1] and

if P contains the real numbers 0 and 1. A partition

of a higher dimensional cube, [O,l]n, is a subset, P,

of [O,l]n which is the Cartesian product of partitions,

PI' P2 , ••• ,Pn ' of the interval [0,1]. That is,

If P is a partition of [0,1] and Z is in P but

Z ~ 1, then + denotes the smallest element of P whichZ

is strictly greater than Z.
t If z = 1, then define

+ 1. If P is a partition of [O,l]n and is inZ = Z

P, define + coordinate-wise. That is, P is productZ a

of one-dimensional partitions,

define the m-th coordinate of

PI' P2 , ••• ,Pn , and we

+ +z as z "rhere zm m

is the m-th coordinate of z and zm+ is defined with

respect to P as above.m For example, a partition of

[0,1]2 is a rectangular lattice of points, and figure 5.1

of chapter 5 illustrates the relation between z and +z •

write x« y for x and y in I

+wong-zakai (1974) use the z+ notation.

if x. < y .
.1. .1.
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for each coordinate and define

+ t= (z,z ]

for each z in P. Note that ozn oz' = <P if z and

z' are in P and z #- Zi also note that I = U oz.
ze:P

Sometimes we use the notation

any partition; in those cases

+z without referring to

z+ just denotes an arbitrary

point of I such that z < +z •

Define the norm, Ipl, of a partition P as

Ipi = max I Iz+-zi I,
ze:P

where I Ix I I = max Ix. I
~

for each x in I.

A multiparameter process <p on I is a partition

process with respect to the increasing faMily {Fzlze:Il

if there is a partition P of I such that

(2.2)

where <P z is Fz-measurable for each z in P and

tcairoli-walsh (1975) denote oz by (z,z+] in [4].
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E{¢ 2} is finite for each Z in P. When a partition
Z

process satisfies (2.2), we say it is defined on P.

Thus, if P' is a partition of I and P':> P, then a

partition process defined on P is also defined on P'.

processes on nXI.

He write L 2(n x!)
pp for the space of all partition

Similarly, let L
2 (n x I,1) denotea

the space of all measurable processes ¢ adapted to

{F IzEI} such that
z

(2.3)

The measure ~ is a Borel measure on I. Using typical

measure theory arguments, one can easily show that

L 2(n x I)
pp is a dense linear subspace of 2I..I ([2XI,Q,).

a

2.5 Ito-type Stochastic Integral

\1ith this concept of partition and partition process

we can easily define an Ito-type stochastic integral on I.

Choose the increasing family {FzlzEI} of a-fields

generated by the Gaussian random measure,~. Suppose ¢

is a partition process with respect to this increasing

family and suppose ¢ is defined on the partition P.

Then
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(2.4)

defines a linear mapping from L 2(nxI) into L2 (n),
pp

the space of random variables with finite variance. For

each in L 2(n xI)
pp ~t!e have that

(2.5)

and thus, the Mapping defined by (2.4) has a unique

continuous extension which is defined on all of L2 (n x I,m).a

In addition, this extension satisfies (2.5) for all ¢

taken in 2L (QxI,m).a In the case that I = [ 0 , I], this

integral is the Ito stochastic integral, and thus, we often

call it the Ito-type multiparameter stochastic integral

to distinguish it from other types of stochastic integrals

defined ~ater.

The multiparameter Ito-type integral generates

martingales just as in the one-parameter case. Define

a process M on I by

(2.6)

for each z in I and a fixed in 2
L (nxI,m).z

•

Then
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M is a martingale with respect to the a-fields generated

by the Gaussian random measure, ¢.

We could also define a Gaussian random measure for

which m is an arbitrary finite Borel measure instead of

Lebesgue measure as in section 2.3. We could then con-

struct an Ito-type integral from this measure in

exactly the same way as we have done, and this integral

would also define a martingale as in (2.6). To distinguish

between this more general Gaussian random measure and the

measure defined in 2.3, we call the latter the standard

Gaussian random measure. In this paper we are particularly

interested in the Gaussian random measure defined

00

where p £ L (I) and ~ is the standard Gaussian random

measure on I. One can find further details and references

about the multiparameter Wiener process and its integral

in Cairoli (1971), Ito (1951) and McKean (1963).t

fIn the literature J ~z~(dz) is usually denoted

f ~zdWz or f ~zW(dz).
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CHAPTER 3

TWO-PARAMETER STOCHASTIC DIFFERENTIAL FORMULA

3.1 Introduction

In this chapter we introduce the two-parameter stochastic

differential formula. In section 3.2 we review the one-

parameter differential formula and apply it to the multi-

parameter process defined in chapter 2. In section 3.3 we

present the stochastic partial differential operator and its

*differentiation rules. This allows a simple formal deriva-

tion of the two-parameter stochastic differentiation formula.

Section 3.4 discusses the various stochastic, mixed and deter-

ministic integrals on the plane that are needed to define the

stochastic differentiation formula. We correlate these

integrals with those of Wong-Zakai (1974, 1975) and

Cairoli-Walsh (1975, 1977) and thus, show the equivalence

of their differentiation formulas with our own.

3. 2 One-Pa,rame·ter Stochastic Differentiation Formula

Suppose Mt is a continuous, square integrable one

parameter martingale. Let f(u,t) be a real-valued function

of t and u in R with continuous partial derivatives up

to second order. Then Kunita and Watanabe (1967) have shown

that f(Mt,t) satisfies the following differentiation formula.

*The differentiation rules are proved rigorously in chapter 7.
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(3.1)
T

= f f (M ,T)dM
S u T

T
+ f [ft(M ,T) + 2lf (M ,T)Vt(T)]dT

S T UU T

In (3.1) f u ' f uu and f t denote partial derivatives of

f and Vt is the partial derivatives of Vet) = <M,M>t'

*the increasing process associated with the martingale Mt .

The first integral in (3.1) is a stochastic integral,

defined so that

(3.2) L ¢ (M + - M )
TSP T T T

if ¢ is a partition process defined on a partition P of

[S,T]. Thus, the stochastic integral in (3.1) is an Ito-type

stochastic integral as in section 2.5. The second integral

in (3.1) is an ordinary Lebesgue integral.

How should one generalize (3.1) to the multiparameter

case? First of all, we limit our consideration to multi-

parameter martingales of the form

*See Kunita and Watanabe (1967) or Meyer (1968) for
definition of the increasing process of a martingale.
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(3.3)

where 1
0

is the standard Gaussian random measure on [O,l]n

and p is in
00 n t

L ([ 0, 1] , m) • In chapter 9 we discuss the

extension of these results to more general martingales and

multiparameter processes. Associated with M , is the
Z

deterministic increasing process

(3.4) v (z) = f
[0, z]

2
p(~) d~.

Note that the one-parameter process

is a continuous square integrable martingale with increasing

process zi + V(zl,z2, ... ,zn). Thus, we may use (3.1) to

write (in the case i = 1)

(3.5) f(MT ,T,z2'···'z )-f(MS ,s,z2'···'z),z2, ..• ,zn n ,z2, .• ·,zn n

T
= f f (M ,T,z2, ... ,z)8 M

S u T, z 2 ' · • · , zn n ZIT, Z2 ' · · · , zn

T
+ f [f (M , T , z 2 ' ••• , z ) +.!.f (M )

S zl T,z2,···,zn n 2 uu T,z2,···,zn

v (T,z2' ••. 'z )]dT.
zl n

tHere m is the Lebesgue measue on [O,l]n. Refer to section 2.5
for the definition of the Guassian random measure and
integral (3.3).



253

In this formula, the stochastic integral must agree with

(3. 2) . That is,

and[8, T]is partition ofP <1> zl,z2,···,zn

is a partition process defined on P. It is more convenient

where

to write (3.5) in differential form, and then we can write

the general i case as easily as the special i = 1 case.

Thus, we have that

1( 3 • 7) a. f (M , z) = f (M , z) a.M + [f. (M , z) + -2 f (M, z) v. (z) ] d z. ,
~ z u z ~ z ~ z uu z ~ ~

where for notational convenience we have used the subscript i

instead of z. to indicate partial differentiation and the
~

stochastic differentials a M. The differential expressionz.
~

(3.7) is basically a one-parameter result. We are seeking,

however, a truly n-parameter stochastic differentiation

formula that expresses f (M , z)z as an n-dimensional integral

and not a one dimensional integral as in (3.6).

3.3 Differentiation Rules and the Two-.p.araroeter Formula

If we can represent the process <1> as an integral,
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I 1JJ~~ (d~) ,
[0, z]

then for any rectangle (zl,z2) = (x l ,x2 ]x(YI'Y2] in

[0,1]2 we have

(3.8)

Thus, we are motivated to look for an integral representation

F is a differentiable function, and

where

z -+ M
z

is the two-

tparameter process defined in section 3.2. If (3.8) holds

we want to say that

= 1JJ <p(dz)z

in some sense. If z -+ M were a deterministic differentiablez

function, we could write

(3.9)

The point of this work is to make sense of expressions like

(3.9) in the stochastic case. We now introduce the

twong-zakai (.974) also sought a representation of the process
F(M ) in terms of the double difference

z
F(M ) - F(M ) - F(M y) + F(M ).

x 2 'Y2 xI 'Y2 x 2 ' I xI'Yl
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stochastic partial differential operator di and present

differentiation rules for applying it (these rules are

proved in chapter 7). At the same time we use these

rules to derive the stochastic differentiation formula

for the two-parameter case. Note that the stochastic

partial differential operator agrees with the stochastic

partial defined in Cairoli and Walsh (1975).

Rule 1: Ito differentiation rule.

First, d. must operate on a process of the form
~

z + f(Mz'Z) according to the Ito formula (3.7). Thus,

for example, we must have

and

Rule 2: Product differentiation rule.

Second, d. must obey the product differentiation
~

rule of ordinary calculus when operating on the product of

two differentials or the product of a process and a
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differential. For example, this rule means that

and

Rule 3: Deterministic differentials and linearity.

We also require that d. acts like the deterministic
1.

when it operates on deterministicoperator d ( • )-"I-- dz .oz. 1.
1.

differentials. Thus, d 2 (dz l ) = O. Finally, we assume that

the operator d. is linear.
1.

Thus, the stochastic partial

differential operator corresponds closely to the deterministic

partial differential operator. The Ito one-parameter rule

cornpl;etelyaccounts ~or the difference between the stochastic

and deterministic oEerators.

From these rules the two--parameter stochastic

differentiation formula follows:

(3.10) F' (M ) d 2 d1M + F" (M ) d 2M d 1Mz z z z z
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The deterministic differentiation formula corresponds to

setting V identically equal to zero in (3.l0). The terms

which depend on V are the so-called correction terms

needed for the stochastic case.

Generally speaking, the differential equations we

write always involve mixed differentials - we never take

a derivative twice with respect to the same varaible. Thus,

in (3.l0) we have only the differentials d2dl Mz ' d2Mz dl Mz

and 02Mzdzl' but not d2 d2Mz or dlMzolMz . Therefore,

we can always obtain the integral equation corresponding

to a stochastic differential equation by integrating with

respect to the differentiated variables in the original

differential equation. For example, the integral version

of (3.l0) is

(3.ll)
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wher.e all integrables are taken over the rectangle

2[0,1] .

3. 4 Two Diroe;~s,i:ona:l'Int:egrals

We need to define five types of integrals over the

2square [0,1]. Let us refer to these integrals as

stochastic integrals, mixed stochastic-deterministic

integrals and deterministic integrals as follows. The

stochastic integrals are written

(3.12)

and

(3.13)

The mixed integrals are written

(3.14)

and

(3. 15)

The deterministic integral is

(3.16)

In this section we consider these integrals briefly, stating
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their main properties but leaving details and proofs for

chapters 5, 6 and 7. We define the stochastic integrals

of (3.12) and (3.13) by means of forward-differences just

as (3.6) is defined by the forward difference,

* Define the forward

difference operators ~.
1

as follows. Suppose z -+ F
z

is a real-valued function of z in [O,l]n and suppose

Pi is a partition of [0,12. Then define the forward

difference operator, ~i' with respect to Pi by

*for all T in P.. Thus, ~.F is defined as long as
1 1 Z

z. ,
1

the i th coordinate of z, is in P .•
1

Now let us consider the stochastic integral (3.12).

For a partition process ~ defined on a partition

P=P
l

x P
2

of [0,1]2, define

(3.18)

where ~l and ~2 are defined with respect to PI and

P2 respectively. It is easy to see that

= J p (~) q>0 (d~)
oz

for z in P, and hence, (3.18)

*See section 2.4 for the definition of T+ where T is in P.•
1
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defines the Ito-type integral of section 2.5. That is,

(3.19)

for all in 2 2
L (nx [ 0 , 1] , m) •

a

The second integral (3.13) is a new type of integral

and is more difficult to define. For a partition process ¢

defined on a partition P=P
l

x P2 of [0,1]2, define

(3.20)

The right side of (3.20) depends on the partition P as

well as the partition process ¢, and it will differ for the

same ¢ if we choose different partitions P. However, we

prove in chapter 6 that if ¢ is a partition process defined

on the partitions pn of [0,1]2 for each natural number n

and if Ipnl -->... 0-r as n -+ 00, then

converges in L2 (n). The limit depends only on the partition

process ¢ and not on the sequence of partitions. Denote

the limit by I ¢d
2

Md l M. Then, as we prove in section 6,

¢ -+ f ¢d 2Md l M is a continuous linear mapping which extends

2 2to all of L (nx[O,l] ,m). Note that there is only onea

integral corresponding to dl d2M and d
2

dl M, that is,
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Similarly, we have that

Thus, the differentials dl d2M and d2 dl M, and d
2

Md
l

M

and d l Md 2M are respectively equal.

Wong and Zakai (1974, 1976) define a multiple Wiener

integral

(3.21)

where ~ and ~I
2both range over the plane square [0,1] .

In their differentiation formula, W~,~I has the form

W~ ~I = ¢~V~I where ~V~I is the least upper bound

(with respect to the partial order <, of ~ and ~I in

2[0,1]). After developing precisely the stochastic

integrals in chapters 5, 6 and 7 we prove in appendix B

that

(3.22)

Cairoli and Walsh (1975) define the same multiple Wiener

integral but the also show that
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where J w is a measure corresponding to dl Wd 2W. The

product measure d
l

Wd 2W is the same there as it is in

this paper. See chapter 6 for a general discussion of

such product measures and see appendix B for further

discussion of the Cairoli-Walsh integral and their

differentiation formula.

The stochastic integrals have some interesting

properties which we present now but whose proof we defer

until chapters 5 and 6. With V defined as in (3.4),

one has that

(3.23)

(3.24)

The stochastic integrals have a martingale property

similar to that described for the Ito-type integral in

chapter 2.* Thus, we have for ¢ in L2 (nX[O,1]2,m) thata

the process N defined by either

*See Wong-Zakai (1974, 1976) and Cairoli-Walsh (l975) and
chapter 5.



263

(3.25)

or

(3.26)

is a martingale on [0,1]2. Finally, the two stochastic

integrals on [0,1]2 are orthogonal in the sense that

(3.27)

for every and ljJ in 2 2 tLa(nx[O,l] ,m).

The mixed stochastic-deterministic integrals are

defined as double integrals.

we prove later that

If is in 2 2La(nx[O,l] ,m),

is almost-surely Lebesgue integrable. Thus, we define

(3.14) as

(3.28) = f{J ¢ dIM }da.T,a T,a

Then we can prove the inequality

t see Wong and Zakai (1974) and Cairoli and Walsh (1975).
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(3.29)

The other mixed integral (3.15) is defined similarly and

satisfies an inequality analogous to (3.29).

This definition of mixed integral completely agrees

with Cairoli and Walsh's definition of mixed integral.

Wong and Zakai, however, employ mixed multiple integrals,

written

and

However, these mixed integrals are equivalent to ours if

~~,~I = ~~V~I' and we prove in appendix B that

and

on

The deterministic integral is the Lebesgue integral

[0,1]2, and it satisfies
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(3.30)

for all in
2 2

La(nx[O,I] ,m).

Appendix B presents the Cairoli-Walsh and Wong-Zakai

integrals in more detail, giving the precise definition

of these integrals and proving their equivalence to the

integrals defined in this paper. Once it is proved that

the integrals are equivalent, it follows immediately

that the differentiation formulas are also equivalent.

We present the Wong-Zakai and Cairoli-Walsh differentiation

formulas in appendix B also.
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CHAPTER 4

MULTIPARAMETER INTEGRALS AND DIFFERENTIAL FORMULAS

4.1 Introduction

For three or more parameters the stochastic differential

formula is too long to write down easily, but we can still

apply the same differentiation rules of section 3.3 to

calculate the stochastic differentiation formulas in the

general multiparameter cases. In section 4.2 we introduce

a notational scheme for denoting the various multiparameter

differentials and their integrals. Section 4.3 states

some properties of these integrals and section 4.4 describes

how to interpret stochastic differential equations in terms

of stochastic integral equations. In section 4.5 we state

the main results of this paper, the general differentiation

rules. We prove these results in the following chapters

(5,6,7).

4. 2 Multiparameter Di·fferentialsand Integrals

Let z + M be the multiparameter process on [O,l]nz

defined in (3.3). The general stochastic differential

of M will have the form

(d. d .••• d. M}e(dJ·1d . ••• d. M}e(d
k

d
k

••• d
k

M)
~1 ~ 2 ~p J 2 J q 1 2 r
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t{1,2, •.• ,n} • Since the order

of differentiation does not matter, as we show later, we

can write

where S = {i l ,i2 , ... ,ip }. Similarly, the order of the

factors dSM does not matter and we can compactly write

the general differential as

where A = {Sl'S2, ... ,Sk} and Sl'S2' ... 'Sk are mutually

disjoint subsets of {1,2, .•• ,n}. Let LJA denote

k
~ S .. If S is a subset of {1,2, ... ,n} and
. 1 J.J.=

(l)A)I\S = ¢, then we write the mixed differential

= dAM dz. dz ...• dz.
11. z J. l J. 2 J.q

•

where S = {il ,i2 , ..• ,iq }. Whenever we write the

differential dAMdzS' we assume that (U A) f\ S = ¢.

For each differential dAMzdzs there corresponds

+We only take mixed derivatives as noted in section 3.3 .
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an integral which we write

The integration is carried out over the variables

[0,1] for i in (VA)VS.

4. 3 Properties of Hi:gher Dimensional Integrals

z. in
1.

First let us give a rough definition of the higher

dimensional stochastic integrals in terms of forward

difference operators. Define the finite difference

operator in the same way as Thus, if b..
1.

is

the forward difference operator with respect to partition P.
1.

of [0,1] (see sections 2.4 and 3.4), then define

b. Ms z

for S = {il,i2 ... ip}~· {1,2 •.. n}. Similarly, if

A = {Sl,S2 •.. Sk} and Sl'S2 ... Sk are mutually disjoint

subsets of {1,2, ••. ,n}, then

• b.s M •
k z

Suppose P = PI x P2 x ••• x Pn is a partition of [O,l]n



269

and ¢ is a partition process defined on P. Then define

(4.1)

As IPI + 0, this expression tends to a limit in mean

square. We define the stochastic integral f ¢aAM to be

this limit. Note that f ¢aAM is a process over the

undifferentiated variables, i.e. those variables not

integrated.

As in the two dimensional case, we have

(4.2)

where V is defined in (3.4) and is in 2 nLa(Qx[O,l] ,m).

The higher dimensional integrals also have the martingale

and orthogonality properties of the plane integrals in

2 nchapter 3. If ¢ is in LaCQ, [0,1] ,m) and

A = {1,2, ..• ,n}, then

(4. 3)

defines a martingale on
n[0,1] .

Suppose and ljJ are in 2 nLa(nx[O,l] ,m) and

•
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(4.4)

That is, different stochastic integrals are orthogonal.

We define the mixed stochastic-deterministic integrals

in the same way as in chapter 3. Suppose S is a subset

of {1,2, .•. ,n} disjoint from A. Then f ~~dAM~ is

almost surely integrable with respect to dzs and we

define the mixed integral by

(4.5)

For all ~ in L2 we have the inequalitya

4.4 Stochastic Differential Equations

We wish to interpret equations of the form

(4.7)

where for each

We assume that

v = I, 2, ••• , N , (lJA
v

)U Sv =

S (\ ( VAOV SO) = ~ and that

SV(VAO)VS O·

VA nS = ~v v
for each v = 0,l,2, ... ,N. The precise interpretation of

(4.7) in terms of an integral equation is notationally
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complex, but the basic idea is simple. We define the

differential equation so that if we integrate it over any

rectangle, the resulting integral equation will be true.

Let

Let S = {i l ,i2 , ••. ,iq } and

P. be a partition of [0,1]
J.

( UA0 ) LJ So = {iq+ 1 ' .. • , i q+p} •

for i = 1,2, ... ,q+p.

Then we interpret (4.7) so that for all zsPlx ... xPq and

for all zspq+lx ... xPq+p the following integral equation

is true.

(4. 8) =

We assume on the left side of (4.8) that ~. = z., for
l j ]

1 ~ j ~ q, and that ~s operates with respect to

PlxP2x .•. xPq. The integration over OZ or 8z x oz in

(4.8) indicates that~. ranges over
J..

]

{z.,z.+] for 1 < g < q and over (z.,a.+] for q+l < q+p
J J - - J J

in the integration.

4.5 Different,iation Rules for Higher Dimensions

In chapter 7 we prove two theorems that generalize

the differential rules of Section 3.3. We state these

theorems now.

•

Theorem 4.1 If are mutually disjoint
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subsets of {1,2, ... ,n} and i ¢ Sl U S2\) ..• V Sq'

then

(4.9)
q

I
j=l

Theorem 4.2 If

then

d . f = ¢ d. M + lJJ dz. and i ¢ U AU S,
1 Z Z 1 Z 1

where di(dAM} is interpreted as in the right side of (4.9).

Note that (4.9) and (4.10) agree with the ordinary

deterministic rule for differentiating products. By

applying Ito's one dimensional rule to Theorem 4.2 we

obtain stochastic differentiation formulas as follows.

Suppose f(u,z} has continuous partial derivatives in u

and z up to second order where u is in [0,1] and z is in

[0,1] n. Then for i ¢ VA VS, Ito's rule and Theorem 4.2

imply that

(4.ll) = f (M ,z}d.MdAMdzsu z 1

•

+ [f. (m , z ) + 12f (M, z ) V. (z) ] dAMd z Sd z .
1 Z uu Z 1 1
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One can derive the n-dimensional stochastic differentiation

formula by using (4.11) to write the mixed partial derivative

in terms of the differentials dAMdzs .

Note that for n = 3 there are 5 pure stochastic

differentials and 9 mixed stochastic differentials. Thus,

including the one deterministic differential there are

15 differentials. For n = 4 there are 52 differentials

and for n = 5 there are 203 differentials. Consequently,

even for three dimensions the stochastic differentiation

formula is too cumbersome to write easily, and the formulas

grow even longer for dimensions higher than three.
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CHAPTER 5

STOCHASTIC MEASURES AND THEIR INTEGRALS

5.1 Introduction

In this section we present stochastic integrals from

a general and abstract point of view. This abstraction

is necessary in order to prove the assertions of chapter 4

for all the various stochastic integrals. Hopefully, it

makes the stochastic integrals of chapter 4 easier to

understand by emphasizing properties common to all sto

chastic integrals. The geometric interpretation of sto

chastic integrals in terms of measures will also make it

easier to visualize the properties of stochastic integrals.

We include several figures for the two-dimensional case to

aid in this visualization.

In section 5.2 we define the stochastic measure and

discuss its relation to the stochastic differentials of

chapter 4. Section 5.3 shows that each stochastic measure

generates a stochastic integral that obeys the martingale

property of 4.2. We also discuss the converse problem of

constructing stochastic measures from stochastic integrals

with the martingale property. In 5.4 we define orthogonal

stochastic measures and prove that their integrals are also

orthogonal. This section prepares for a later proof of

(4.4) in section 6.4.
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Define ~ to be a stochastic measure on the unit

cube I in Rn if the following conditions are true.

(1) Let A denote the class of all finite unions of

rectangles of the form +(z,z ) in I. Then for each A

in A, ~(A) is a real-valued random variable of (p,n,F).

Furthermore, ~(A) has-,'zero mean and a finite variance

satisfying

(5.1) E{~(A)2} < Q,(A)

where Q, is a finite, nonnegative Borel measure on I.

(2) If AI' A2' ••• '~ are mutually disjoint elements

of A, then

N
~( V

i=l
A.
~

=
N
L ~ (A. ) •

. 1 ~
~=

(3) For all z and +z in I such that + +z < Z , ~«z,z )}

is F +-measurable and independent of F. Furthermore, ifz z

Z >1 z, then

•

(5.2)

Here

E{<l>«z,Z+)} IF_} = O.
z

{ F } is some prespecified increasing family of
z zsI
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a-fields as in chapter 2.

Conditions (1) and (2) of the definition are clear.

+Equation (5.2) says that ~«z,z]) and Fare
z

uncorrelated. That is, if W is an F -measurable
z

bounded random variable, then E{W~{(Z,z+])} = O. Note

that z >1 z is equivalent to [O,z] +(z , z ] ::I o. The

latter statement has a clear geometrical interpretation

as shown in figure 5.1.

Define the a-field F. as Fz (i) , where z (i) is
l.,Z

the element of I with all coordinates equal to 1 except

for the .th coordinate which is the the .th
l. same as l.

coordinate of z. nFor each z in I = [0,1] there are n such

a-fields. From figure 5.1 it should be clear that requiring

(5.2) is equivalent to requiring

(5.3)

for each

E{~«Z,Z+]) IF. } = 0
l.,Z

i = 1,2, ... ,n.

•

The Gaussian random measure of chapter 2 is a

stochastic measure as defined here, but the notion of

stochastic measure is much broader. For example, each

stochastic integral of 4.2 defines a stochastic measure ~A

as follows. If A = {1,2, ..• ,n}, define the measure ~A as
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-
Z

z+

(z,z+)

Z

(1,1)

z (i)

(0,0)
I = [0,1]2

Figure 5.1
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(5.4)

The stochastic measure ~A is a Gaussian random measure

in only case, namely in the case

In the other cases ~A does not have the independent

increment character of a Gaussian random measure. That

is, for the Gaussian random measure ~A' we have that
o

+
~A «z,z]) is actually independent of f in (5.2),

o z

but for the other ~A we do not have independence (although

(5.2) is still true).

Our approach to stochastic integration will be to

construct a stochastic measure first and then construct a

stochastic integral from that. Thus, in chapter 6 we first

define stochastic measure ~A and then define J¢dAM

as the integral of ~A. In preparation for this develop

ment, we now prove that each stochastic measure defines a

unique integral.

5. 3 Stochas,ticIntegrals of Stochastic Measures

Theorem I

Suppose ~ is a stochastic measure on I as defined
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in Definition 5.1. Then for each ¢ in

is a random variable f¢~~(d~) of L
2

(Q)

following are true.

2La(nxI,£) there

such that the

(1) The mapping

mapping from L~

¢ + f¢~~(d~) is a continuous linear

2to L en), and we have

(5.5)

(2) +If z and z are in I and ¢o is Fz-measurable random

variable, then

(3) For each Borel set A

+= ¢O~«z,z ]).

I, define m(A) by

Then m is a finite, nonnegative Borel measure on I.

Furthermore, we have for all 2¢e:L- thata

(5.6)

•

(4) For each in
2

L, we have
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E{f</>~<p(d~)} = o.

For each z in I, we have

(5.7)

and the process M, defined by

(5.8)

is a martingale on I.

Note that equation (5.6) is the general form of (4.2)

and (4) is the martingale property of (4.3)

Proof of Theorem 1 .
.- -

The idea of the proof is simple. Prove everything

for </> in L2 and extend to La
2 by taking limits.pp

For a partition process </> with respect to the

partition P of I, define

(5.9) I
zsF

</> <P(oz).z

The right side of (5.9) depends only on </> and not on the

particular partition P. Thus, </> + f</>~<P(d~) is a well

defined linear mapping.
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For any partition on I, if zl -:/-.zZ' and zl and z2

are in P, then either [O,Z~] 8z1 = .~ or [o,z~] 8z 2 = ~

(see figure 5.2). Since ~ is F -measurable for each Z\j-'z Z

in P, (5.2) implies that

unless zl = z2. Hence we find that

(5. 10) L E{~~}E{~(8z)2}.
ZEP

The inequality (5.5) follows immediately from (5.10) and

the inequality (5.1) of Definition 5.1. We then extend

the integral to L~ in the usual way, preserving (5.5).

Property (2) is obvious from the definition of the

stochastic integral.

To show m defined in (3) is additive we need to

show

(5.11)

whenever A and B are disjoint Borel sets in I. This is

certainly true if A and B are in A, and the general case

follows by taking limits. Using (5.11) and the continuity
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z+
1

oZI

zl

- --- - - - - z+
2

oZ2

z2 I

I
I
I
I

(1,1)

=

Figure 5.2
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and additivity of the stochastic integral, we can easily

show

00 00

m (U An) = n_Ilm(An)
n=l

for disjoint Borel sets An in I. Furthermore, from (5.10)

we see that (5.6) is true for ¢ in L~p' and it remains

true for limits of partition processes. Thus, (5.6) is

true for all of L~, and (3) is proved.

Note that (4) is true for a partition process of

the form,

where is F -measurable and
zl

That is, we

first have

(5.12) E{¢ q)«Zl,z+l]) IF } =
zl Z

+
~ < ~ •

is a rectangle ofA.
1.

where each

for ~ and ~+ in I and

A.
1.

A., of sets
1.

the form

This follows from the fact that we can write the set

+ +{zl,zl] - {(zl,zl] (\ [O,z]) as a finite disjoint union,

N

V
i=l
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(see figure 5.3). Thus, additivity of ~ implies

+ N
= ~ ( (z l' z 1] n [0, z]) + L ~ (A. ) •

. 1 1.1.=

From condition (3) of Definition 5.1 we deduce that

E{¢ ~(A.}!f} = 0
zl 1. z

for each i = 1, ... ,N, and

E{¢ ~«zl,z+l]n[O,z])If } =
zl z

This proves (5.l2). The right side of (5.l2) is just

J¢~x[O,Z] (~}~(d~) so that (5.7) is true for processes

of this form. The extension to all L2 and then to L2
pp a

is clear. This concludes the proof of (4) and the

theorem. III

Although we have treated only stochastic measures over

the unit cube in Rn , it is straightforward to extend the

definition and theorem to stochastic measures over all

of Rn . We can also relax our assumption that ~ is a

finite measure and assume only that it is a nonnegative

Borel measure.

We digress at this point in order to show that one
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z+
1

-- ~- -~ -+-r
(zl,zl)

{'\ (O,z) I
I
I

zl I
I
I
I

(0 ,0)

Figure 5.3

(1,1)
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can construct a stochastic measure from any mapping

¢ -+ J(¢) satisfying the general properties of a stochastic

integral. Thus, we see in what sense the definition of

stochastic measure given in 5.2 is necessary.

Suppose J is a continuous linear mappi~g from

L 2
(QXI, Q,) to L

2
(Q) and suppose J also has the followinga

properties.

(i) For all ¢ in

+z < z, then

(ii) If is an F -measurable random variable andz

(iii) The process M defined by

is a martingale on I for each choice of ¢ in L2 . Thus,a

J has the same properties (1), (2) and (4) as the

stochastic integral in Theorem 5.1. If we define ~ by
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then ~ has all but one property of a stochastic measure.

Conditions (I) and (2) of Definition 5.1 follow from

(i) and the linearity of J. Property (iii) implies (5.2)

in condition (3) of Definition 5.1. However, the other

part of (3) is not necessarily true. It is true that

J{x{ +]) is F + -measurable (this follows from (iii»,z,z z

but it is not necessarily true that J{x{ +])z,z is

independent of F •z We need this independence condition,

however, only to prove

2 + 2 2 + 2
E{<PO~{{z,z ]) } = E(<PO)E{~{{Z,z ]) }

and thus, prove (5.6) in Theorem 5.1. Since J satisfies

(i) above, we know

2 + 2 2 +
E{<PO~{{z,z]) } '::'E{<PO},Q,{{z,z ]).

This inequality is sufficient, together with the other

properties above, to define a stochastic integral,

f<P~~(d~), from~. Thus, we can define a stochastic

integral, without the independence assumption, but then

we do not have (5.6).
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Condition (ii) guarantees that the integral J induces

a measure ~ which in turn gives back J. That is,

The following result generalizes the concept of

orthogonal stochastic integrals as discussed in sections

3.4 and 4.3.

Definition 2

Two stochastic measures, ~ and ~, are orthogonal if

for each z and z+ in I with z < z+ we have

2
Likewise if J is a stochastic integral on La(nxI'£l) and

2
K is a stochastic integral on La (nxI'£2)' then J and K

are orthogonal if

E{J(<j»K(~)} = 0

2 2
for all <j>SLa(nxI, £1) and ~sLa (nxI, £2). With this definition

we have the following easy theorem.
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Theorem 2

If two stochastic measures are orthogonal, then their

corresponding stochastic integrals are orthogonal .
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CHAPTER 6

PARAMETERIZED STOCHASTIC MEASURES AND THEIR PRODUCTS

6.1 Introduction

The purpose of this chapter is to define the stochastic

measures ~A in (5.4) and thus, to define properly the

stochastic integrals introduced in chapter 4. In the

process of defining ~A we give a rigorous meaning to

products of the form

introduced in section 4.2. This will be important in

chapter 7 when we study derivatives of such products and

derive the differentiation product rule. Before proceeding

with the definition of parameterized stochastic measures,

let us agree to denote the stochastic measure ~ by the

expression ~(dz) as well as~. This differential notation

corresponds to the notation for the stochastic integral,

namely J¢~~(d~}, but it also makes clear on what parameter

space ~ is defined. A similar notation will be useful

sometimes in denoting parameterized measures and their

products.

In 6.2 we define the parameterized stochastic measure
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and discuss some of its properties. In particular, we

construct a mixed stochastic-deterministic integral from

it. We also discuss examples of parameterized stochastic

measures relevant to the purpose of justifying chapter 4.

Section 6.3 defines the very important concept of the

product of two or more parameterized stochastic measures.

After proving some necessary general theorems about such

products we turn in section 6.4 to constructing all the

stochastic and mixed integrals of chapter 4. Finally,

we verify the statements of section 4.3.

6.2 Definition of Parameterized Stochastic Measures and

Mixed Integrals

Definition 1

Let II and 1 2 be two unit hypercubes. Then

~(dzl,z2) is a stochastic measure on II' parameterized

on 1 2 , if the following conditions are true.

(1) Variance condition. Let A denote the set of all

+finite unions of rectangles of the form (zl,zl ] in II.

Then for A in A, ~(A,z2) is a real-valued random variable

of (p,n,F). Furthermore, ~(A,z2) has zero mean and a finite

variance satisfying

t

(6.1)
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for all z2 in 1 2 . Here Sl, is a finite, nonnegative Borel

measure on II.

(2) Addi:t-ivi:i:,Y' ~co;nd:i,tion. If Al ,A2 , ..• ,~ are mutually

disjoint elements of A, then

=

(3) Meaf?urabil:i t.Y' condition. Let {F } be anZ zsI l xI 2

increasing family of a-fields. We will write F
Z

where Z = (zl,z2) and zl is in II and z2 is in 1 2 • For

all zl and zl+ in II such that zl < z~, ~«zl,Z~],z2) is

F + -measurable and independent of F - for all 22 in
zl ,z2 zl,z2

Furthermore, if zl >1 zl' then

(6.2) E{~«Zl,Z2+],Z2}IF- -} = 0
zl,z2

(4) Continuity condition. Let O(s) be a nonnegative,

nondecreasing function of s > 0 such that O(s} + 0 as

s + O. Define the norm I I z2 1 I on 1 2 by
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i

I z2 ·1,1
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where is the .th coordinate of in 1 2 . For anyz2 . 1 Z2,1

Zl and zl+ in II with zl < zl+ and for any z2 and z2+

in 1 2 with z2 < z2+' we assume that the following

inequality is true.

(6.3)

For each z2 in 1 2 , ~(dzl,z2) is a stochastic measure

on II with respect to the increasing family {F } I
zl,z2 zIt: 1

of a-fields. Thus, if ¢ is an adapted and measurable

process on II 1 2 with respect to {F} I I' and if
Z Zt: IX 2

(6.4)

then Theorem 5.1 defines the stochastic integral

(6.5)

At this point it is very easy to define a mixed stochastic-

deterministic integral.
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where m is the Lebesgue measure on 1 2 . Then (6.5) is

almost surely integrable with respect to m and we define

the mixed integral by

(6.6)

To see this note that except for an m-negligible set in 1 2 ,

and hence, we know that the stochastic integral,

exists for almost all (with respect to m) z2. Thus, the

integral

(6.7)

is well-defined, although it may be infinite. But in

fact, it is finite as the following argument shows. From

Schwarz's inequality in L2
(Q) and from Theorem 5.1 it

follows that
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for almost all ~2 (with respect to m). Hence we have

and from Fubini's theorem it follows that (6.7) is almost

surely finite. Thus, the right hand side of (6.6) is a

well-defined element of L2 (Q). From the fact that

m(I 2 ) = 1 we deduce that

Taking expectations of both sides and using (5.5) of

Theorem 5.1 shows that (6.6) defines an element of L2
(Q)

satisfying the following mean square inequality.

(6. 8)

For the purposes of chapters 3 and 4 we are concerned

with parameterized measures that come from stochastic

measures in the following way. Suppose ~(dzl,z2)

is a stochastic measure on II' parameterized on 1
2

, and

let ~(dzlxdz2) be a stochastic measure on II x 1 2 . For
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+ +each zl and zl in II with zl < zl and for each z2 in 1 2 ,

we assume that

1In figure 6.1 we draw the situation for II = [0,1] = 1 2 .

+The parameterized measure ~«zl,zl] ,z2) is the ~-measure

of the shaded region. Note that the independence condition

in (3) of definition 6.1 has the following geometrical

interpretation in terms of figure 6.1. The rectangles

[O,zl] x [0,z2] and (zl,Z1] x [0,z2] are disjoint,

+and ~«zl,zl] x [0,z2]) is independent of F
zl,z2

For example, this happens when ~ is a Gaussian random

measure.

Define the stochastic measure, n
~A ' on [0,1] by

°

where ~O

n[0,1] , and

is the standard Gaussian random measure in

(see 2. 5 and 3. 1) .

Then ~A is also a Guassian random measure with

°variance
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...--------- --, (1,1)

(0 ,0)

Figure 6.1

z+
1
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corresponds to M
Z

given by

Suppose II is the space of parameters corresponding to

S = {il ,i2 , .•. ,ik } and 1 2 is the space of remaining para

meters in [O,l]n. Then define ips by

where and + +
and z2 is inzl zl are on II' zl < zl 1

2
.

Here we identify II x 1
2 with [O,l]n in the obvious way,

and for n we write ~ = (~l'~2) with in~e:[O,l] ~l II

and ~2 in 1 2 . Thus, ipS corresponds to the differential

and this allows us to interpret the differential 3SM

rigorously in terms of the parameterized stochastic measure

To show this defines a parameterized stochastic measure,

we must verify the four conditions of Definition 6.1. The

additivity condition (2) is obvious. The measurability

conditions (3) follow easily from the independent increment

nature of the Gaussian random measure ~A. That is, for all
o
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zs[O,l]n and A [O,l]n such that [O,z) A =¢, we know

that <I>A (A) and F are independent. This fact gives
o z

us all of condition (3). The only conditions left to verify

are (1) and (4). In (1) define ~ by

where ml is the Lebesgue measure on II and I Ipl 1
00

is the
00 n

L sup norm of p on [0,1] . With this choice of ~, (G.l) is

clearly satisfied. Define O(s) = (n-k)s and verify that

and

where m2 is the Lebesgue measure on I 2 . It is easy to

check that
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+ \' I + +m2 ([O,z2 ]-[O,z2]) < ~ z2,i- z 2,i l < (n-k) Ilz 2- z 2 11·
~

Thus, we have (6.3) of definition 6.3.

Finally note that

where V is defined as in (3.4). Thus, it follows that

(6.9)

6.3 Products of Parameterized Measures

Now that we have defined parameterized measures ~s

corresponding to the stochastic partial differentials dSM,

we can define the other measures ~A' corresponding to dAMl

as products of parameterized measures ~s. We first construct

products of two parameterized measures and then extend these

results to products of more than two measures.

t The operators ~s and dS are defined in 4.2 and 4.3. Of

course, dSV is a well-defined deterministic differential.
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Defi:nition -2

Suppose P = PlxP2 is a partition of IlxI2 such

that PI is a partition of II and P2 is a partition

of 1 2 • Let ¢ be a partition process defined on P. Then

define

or, more compactly,

to be the sum

Theorem 1

Let ¢ be a partition process defined on a partition

Po of IIxl 2 and hence, on any partition P:> PO. Let

~1(dzl,z2) be a stochastic measure on II' parameterized

on 1 2 , and let <1>2(dz 2 ,zl) be a stochastic measure on 1 2 ,

parameterized on II- Assume ~l and <1>2 are defined with

respect to the Borel measures .Q,l on II and .Q,2 on 1 2

respectively_ Then, if P and P' are partitions of
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I 1 xl 2 wi th p') P0 and P ';' PO' the following inequali ties

are true.

(6.10)

There is a function O(s) of s > 0 such that O(s) + 0 as

E: + 0 and

The proof of the theorem is a straightforward but

lengthy application of the definition of parameterized

measure and the details are left to appendix A.

If Ipnl + 0 and pn ~pO, then from Theorem 1 we

know that for the partition process defined on

is a Cauchy sequence in L2 (n) and hence, converges to a

unique element of L2 (Q), which we denote as

(6.12)
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The random variable (6.12) is independent of the partition pO

on which ¢ is defined, it is a linear mapping of ¢, and by

taking limits in (6.10) we find that

(6.13)

Thus, we can extend (6.12) to a continuous linear mapping of

2
La(QxIlxI2'~1 0 ~2) satisfying (6.13). In fact, this mapping

is the stochastic integral of a stochastic measure as the

following theorem shows.

Theorem 2

Let ¢1*~2 be defined by

(6.l4)

for all Borel sets AC I 1 xI 2 where the integral in (6.l4)

is the mean-square extension of (6.12). Then ¢1*~2 is a

stochastic measure on I l xI 2 with respect to the Borel

measure ~l 0 ~2' and the stochastic integral of ¢1*~2

agrees with (6.l2).

For example, in Theorem 2 let ¢l = ¢Sl and °2 = ¢s2

where SI" S2 = ¢ and Sl \) S2 = {1,2, ... ,n}. Then

¢A = ¢1*¢2 for A = {Sl,S2}· It is clear from Definition 2
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that ~1*~2 = ~2*~1 so ~A is independent of the order

of Sl and S2 in A. It is not difficult to show that

(6. 15) = as V(Z)d S V(z).
1 2

proof of Theorem 2 and (6.15)

For it is easy to see that for

each partition P on which is defined, we have that

is F + +-measurable, independent of
z1 ' z2

and uncorrelated with

(Zl'Z2) >1 (z1,z2). Thus, condition (3) of Definition 5.1

is satisfied. This condition remains true in the limit

IPI + O. Thus, we see immediately that

defines a stochastic measure. If ¢O

random variable, then

fXA(~)~l*~2(d~)

is an F -measurable
zl,z2

Thus, as remarked at the end of 5.3, the integral in (6.14)

agrees with the stochastic integral defined by the stochastic
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As in (6.9), we have that

and

As shown in the proof of Theorem 1 in appendix A,

=

Using these last three expressions and passing to the limit

Ipl + 0 gives the result (6.15). III

To construct the other measures ~A we need to define

products when but

8
1

V 8
2

C {l,2, ..• ,n}.
"I

That is, when still

has some free parameters. The following theorem gives the

necessary result.

Theorem 3
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~meterized on 1 2x1 3 , and let ~2(dz2,zl,z3) be a stochastic

measure on 1 2 , parameterized on 1 l X1 3 . Then

~l(dzl,z2,z3)~2(dz2,zl,z3) is a stochastic measure on

Proof of Theorem 3

Note that for fixed z3 we can use Theorem 2 to show

that ~l(dzl,z2,z3)~2(dz2,zl,z3) is a stochastic measure

on 1lx12 with respect to the increasing family

{F IZlE1l,Z2EI2}. Thus, we only need to confirm
zl,z2,z3

the measurability condition (3) and the continuity

condition (4) in Definition 1.

From the construction of Definition 2, Theorem 1,

and Theorem 2 it is clear that

measuribility conditions in (3) because

and these conditions hold true in the mean-square limit as

IPI + O. The continuity condition follows from the equation

+ +
~l(ozl,z2,z3)~2(oZ2,zl,z3) - ~l(ozl,z2,z3)~2(oz2,zl,z3)

+ +
= [~l(ozl,z2,z3) - ~1(ozl,z2,z3)]~2(oz2,zl,z3)

++ ~1(ozl,z2,z3) [~2(oz2,zl,z3) - ~2(oz2,zl,z3)]·
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The mean-square of each of the two terms on the right-hand-side

is bounded by

Applying the triangle inequality shows that the mean-square

of the left-hand-side has the same bound. It is easy to

extend this bound to a bound for

and then to extend this bound to a bound for the limit as

IFI -+ 0, namely

This completes the proof. III

Theorem 3 allows us to define arbitrary products of

parameterized measures, but there are several ways to con-

struct a product of three or more measures. The associative

law of products in the next theorem shows that all these

constructions lead to the same result.

Theorem 4

Let ~l' ~2 and ~3 be parameterized stochastic measures
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on IlxI2xI3. Then the following associative law holds

true.

(6. 16)

Proof of Theorem 4

The idea of the proof is to show both sides of (6.16)

are approximated by the same expression and that, in the

limit, the approximation is exact and (6.16) is true.

Define

where ¢ is a partition process defined on the partition P

f ¢(<p *<p )*<p =
P 123

From Theorem 1 we know that
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where

A simple calculation using the measurability condition (3)

of Definition 1 for ~l' ~2 and ~3 shows that

Thus, as IFI + 0 we have the result

where convergence is in L
2

(Q). Since f ¢ ~l*~2*~3 is
F

symmetric in ~l' ~2' ~3' it must also converge to

f¢ ~l*(~2*~3) and thus, (6.16) must be true. III

'In fact, it is easy to see that for every multiple

product, ~l*~2*... *~q' of parameterized stochastic measures,

~., we have
].
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where ¢ is a partition process and P is always a refinement

of the partition on which ¢ is defined. The convergence

occurs in L2
{Q) and the mean-square difference for any P

is at most I I¢I 12o{IPI).

Note that if ~i = ~s.' then
~

J ¢
P

= f
P

where the right-hand-side is defined as in 4.3.

6. 4 Discussion of Measures and Inbe9rals for 4.3

Theorem 4 allows us to define all the measures, ~A' for

any A where VA C {I, 2 , ... , n} as in 4. 2. If

VA = {1,2, ••• ,n}, then ~A is a stochastic measure on

[O,l]n and it is easy to demonstrate

(6.17)

{see (6.15).) If UA C-{1,2, ..• ,n}, we may use the earlier
~

results of the section to define mixed stochastic-deterministic

integrals

which correspond to the differentials dAMzdsz where
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sf' VA = ¢. (See 4.2). From the inequality (6.8) we

obtain

Note that we can also define parameterized mixed integrals

If ¢ is a partition process with respect to P and

if as in 4.3 we have

L ¢ I::.AM ,
zsP z z

then as IPI + 0,

in mean square. This allows us to prove very simply that

CPA
1

but

and are orthogonal if

Suppose that P

are not equal,

nis a partition of [0,1] .

Then it is easy to show that
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for all z, z' in P and all partition processes ¢ and ~

defined on P. The argument uses the measurability condi-

tions (3) of Definition I and is straightforward. It

follows that

E { (f ¢ dAM) (f ljJ dAM)} = 0
PIP 2

and thus, by letting Ipi + 0, we see that

for all partition processes.

2to all ¢ and ~ in L (nxI,m).a

orthogonal measures.

The result extends immediately

That is, ip A and ip A are
I 2

The results of this section allow us to interpret

rigorously the sotchastic differential equations in terms

of their corresponding integral equations as in 4.4. Each

stochastic differential dAM corresponds to a stochastic

measure or a parameterized stochastic measure depending on

whether \)A = {1,2, ... ,n} or VA Co {I, 2 , ..• , } . Like
~

wise, each differential dAMdsz corresponds to a mixed

integral or a parameterized integral (one with free

variables in it) depending on whether UA US = {1,2, .•. ,n}

or VA US C {1,2, ... ,n}. In the next section we prove
~

Theorem I and 2 of 4.4.
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CHAPTER 7

DIFFERENTIATION OF PRODUCTS

This section completes the technical results necessary

to prove the product differentiation rules in theorems 4.1

and 4.2. Theorems 7.1 and 7.2 in this section are the

precise versions of theorems 4.1 and 4.2 in terms of

parameterized stochastic measures and integrals. As such,

these two theorems are the main results of this paper;

with them (and with Ito's one-parameter stochastic

differentiation formula) one can derive stochastic

differentiation formulas for any number of parameters.

Suppose ¢(dz l ,t,z2) is a stochastic measure on II'

parameterized on [0,1] x 1 2 and suppose 'l'(dz l
xdt,z2) is

a stochastic measure on II x [0, t] , parameterized on 1 2 ·

Assume ~ and '1' are related by the equation

(7. 1)

for Borel sets A in II' t in [0,1] and z2 in 1 2 . We write

(7.2)

whenever (7.1) is true. Note that if dsat~ exists, then

so does atds~ and the two measures are equal. Also note
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that we never take two derivatives with respect to the

same variable. Only mixed derivatives are nefined. The

following theorem, corresponding to Theorem 4.1 of 4.5,

proves that the derivative of a product of stochastic

measures satisfies the ordinary calculus product

differentiation rule.

Theorem 1

Suppose ¢1(dzl ,t,z2,z3) is a stochastic measure

on II' parameterized on [0,1] x 1 2 x 1 3 , and

¢2(dz 2 ,t,zl,z3) is a stochastic measure on 1
2

, para~eterized

on [0,1] x II x I 3 • As in (7.1) sl~pose that

and

Then "Vole have

(7.3)
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In terms of the convention of (7.2) we can write (7.3) in

a more suggestive form, namely,

(7.4)

Proof of Theorem 1.

In this proof we omit the z3 parameter since that

more general case offers no new difficulty in the proof

and only complicates the notation. Suppose ¢ is a

partition process on I1xI2 and let P = Pl xP2 be a

partition of I l xI 2 on which ¢ is defined. Let Po

be a partition of [0,1]. Then we can write

Thus, we have
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+ L ¢ZI,Z2 X[O,t] (T)~I(ozlxOT,z2)~2(oz2xOT,zl)·
zl£Pl,z2£P2

T£PO

using the condition (3) of Definition 6.1, we can show

that the last term on the right has a mean square bounded by

and hence, this term vanishes as IpxPo' ~ O. The other

terms converge to the desired result,

This completes the proof. III

Theorem 7.1 here gives us Theorem 4.1. If

s C {1,2, ••• ,n} and i£{1,2, ••• ,n} but i¢S, then it is
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clear that

A simple induction argument applied to Theorem 7.1 gives

(4.9), which now has a rigorous interpretation in terms of

stochastic measures.

The next theorem justifies the statements in

Theorem 4.2 by proving a differentiation rule for products

of processes and measures. We introduce a useful convention

for denoting the partial differential of a process. Note

that this convention agrees with the interpretation of

stochastic differential equations in 4.4.

Let f be an adapted, measurable process ont,z

[O,l]xI such that

(7.5) f t,z = J
[0, t]

<P ~(d-r,z) +-r,z I
[O,z]

W d-r-r,z

where we assume that ~ is a stochastic measure on [0,1],

parameterized on I, and that the integrals in (7.5) are

well-defined according to §6. Then we will write

(7 • 6) a ft t,z = ¢t ~(dt,z) + Wt dt., z , z
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We can now present the main result of this paper, the product

differentiation rule.

Theorem 2

Suppose ~(dzl,z2,t,z3) is a parameterized stochastic

measure and suppose that

Suppose f
zl,z2,t,z3

and suppose that

is an adapted, measurable process

We assume <P and 1/1
2are in appropriate La spaces so that

all integrals are well-defined. Then we have the following

equation.

(7.7) J f~ ~ t ~(di;·,i;2,t,z3)di;2
[0 ] [0 ] ~1'~2' ,z3 1,zl x ,z2
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In terms of the convention of (7.2) and (7.6) we can

write (7.7) in compact differential form as follows.

(7.8) dt(f t ~(dzl,z2,t,z3)dz2)
zl,z2' ,z3

+ f t dt(~(dzl,z2,t,z3»dz3
zl,z2' ,z3

Proof of Theorem 2.

We prove Theorem 2 in the special case t=l, [O,zl]=I

and where there is no z2 or z3 dependence. There is no

loss in generality and we gain an advantage in notational

clarity. The mixed stochastic - deterministic integral

was defined in such a way that we can prove (7.7) without

the integration over d~2 and then integrate both sides

with respect to d~2 to obtain the generalized equation (7.7).

Thus, we must prove

(7.9) f f~,l~(d~,l)

= f ¢e ~(dT,~)~(d~,T) + f We ~(d~,T)dT
IX[O,l] s,T Ix[O,l] s,T

+ f f e e(d~xdT)
IX[O,l] s,T
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where we assume

(7.10)

and

t
= f

o

(7.11) ~(d~,t) = e(d~x[O,t]

Let Po be a partition of [0,1]. Then using (7.10)

and (7.11) we can rewrite the left-side of (7.9) as follows.

(7.12) f f~ l~(d~,l) =
I S'

+ 2 fIf~ t8(d~xot) + 2 fI[f~ t+ -f~ t]e(d~xot)
tEPo s, tEPo s, s,

We show that as IPol ~ 0 the first three terms on the

right-side of (7.12) converge to the three terms on the

right-hand-side of (7.9), and the last term in (7.12)

converges to zero.

Consider d~~8(d~xot) as a stochastic measure over I.

Then it is clear that e(d~xot) and e(d~xot') are

orthogonal for t~tl in PO. It follows immediately that
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where 2 is a Borel measure on ! and M is Lebesgue

measure on [0,1]. From (7.10) we have

2+ f E{W~ }dT.at S'~

Thus, substituting this bound into (7.13), we obtain

(7.14)

2We assume that ~ is in La (QX!x[0,1],202 0 ) and that ~ is in

L2 (QX!x[0,1],20m) so that (7.14) converges to zero as
a

IPol+O. The Borel measure 20 on [0,1] corresponds to the

parameterized stochastic measure ~.

Now let us show that
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If we let

then (7.15) is equivalent to

f f~ G(d~xdT).
IX[O,l] 1"T

Hence, it suffices to show

(7.16)
P 2

f E { (f- f 0) } Q, (d ~) m (dT) -+-0
IX[O,l]

as IPol-+-o. From (7.10) we have

for t' in ot. Thus, (7.16) is bounded above by

From Theorem 6.1 it is easy to deduce that
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(7.1 7)

where h is a partition process on PXPo' and where

II h 11
2 = f E {h

2
}~ (d~~;) ~o (d1") •

Ix[O,l]

If Po is a partition of [0,1] and P is a partition

of I, then

= l f {f (~c -h t)¢(d1",s)}~(ds,t)
P t P .J:z.J:t \.;>,1" Z,

ZE , E 0 u U

+ l f h z ,t(¢(6t,s) - ~(ct,z»~(ds,t).

ZEP,tEPo cz

It is a simple matter to check that

and, from the continuity condition (6.3) for ¢,
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Combining these results gives us

By letting h -+ <p and Ipxp 0 I -+ 0 \'le obtain

Finally, we need to show

(7.18) = f ~ ~(d~,T)d~.
IX[O,l]

As above, let h be a partition process defined on PxPO.

~ f {f ~~ dT}~(d~,t) - f h ~(d~,T)dT
tePo I at ,T IX[O,l]

= ~ f {f
teP0 I at

+ ~
teP0' zeP

h f (~(oz,T)-~(az,t»dT.
z,t at
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Noting that L m{at) =m( [0,1]) = 1 ~1e obtain the
tEPa

following results from the convexity of
2x -+- x •

(7.l9)

(7.20)

Taking expectations in (7.l9) and (7.20) gives us

\'I1here

In particular, we have that

Note that

\1' ( az , 1: ) - \1' ( 0z , t) = e{azx (t, 1:] ) •

using this relation and the measurability conditions on e
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from Definition 5.1, we find that

(7.22) E{ ( L
ZEP ,tEP0

h f ('l'(aZ,T) - 'l'(az,t) )dT) 2}
z,t at

< L
ZEP,tEPo

t h 2 } f (T-t)dT £(az)
z,t at

We have already shown in (6.8) of 6.2 that

From (7.21), (7.22), (7.23) we conclude that

E{(f ~'l'(d~,T}dT -
IX[O,ll

from which (7.l8) follows inmediately. Thus, the proof

is complete. III

To prove Theorem 4.2 take 'l' = ~A in (7.7), where ~A

is defined as in 5.2, 6.2 and especially 6.4. Then take

dZ2 = dsz, and take ~(dT'~1'~2,z3) in (7.7) to be the

parameterized measure ~{i}(dzi,zl,••• ,zi_l,zi+l, ••• zn}
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generated from the Gaussian random measure as in 6.2.

The integral equation corresponding to the differential

equation (4.10) is precisely (7.7) with the above

choices of ~,~, and so on.
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CHPATER 8

REPRESENTATION OF MULTIPARAJffiTER SQUARE INTEGRABLE

MARTINGALES BY MULTIPARAMETER STOCHASTIC INTEGRALS

8.1 Introduction

Suppose that W is the p-parameter Wiener process

on [O,l]P and that {F z : z E [O,l]P} is the increasin~

family of a-fields generated by W. Let F = V Fz • Then
z

we can apply the multiparameter stochastic differentiation

formula developed in previous chapters to show that every

F-measurable random variable X with finite variance

has a unique (a.s.) representation

(1.1)

where the sum ranges over the collection of stochastic

differentials dAW of W defined in chapter 4. The

~A are square integrable multiparameter processes adapted

to {Fz } and c is a constant, namely c = E{X}.

In particular, if M is a square integrable martingale

with respect to {F z }, then from (1.1) we can show that M

has a unique (a.s.) representation in terms of the orthogonal

stochastic integrals generated by the Wiener process, namely,
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(1.2) M = c +z

To derive these results we must first extend the

mUltiparameter stochastic differentiation rule to cover

the case of vector valued martingales. This extension

is very simple and we carry it out in section 2. Using

this result we apply an argument of Wong and Zakai (1974)

to prove the representation (1.1) in section 3. The

martingale representation follows very easily as vle show

at the end of section 3.

8.2 Multi-parameter, multidimensional stochastic

differentiation formula

If z + Mz is a p-parameter, n-dimensional martingale

generated by n Gaussian random measures, then the stochastic

differentiation formula for z + f (H , z)
z

follows from

the one-parameter differentiation rule and the rules

for differentiating products of stochastic differentials

given in previous chapters.

If X maps elements of :R P into random variables

with values in :m n , then say that X is a p-parameter,

n-dimensional stochastic process. Thus, a multidimensional,

multiparameter process is a p-parameter, n-dimensional

process for which p and n are both at least 2. In

this section (and those following) we strive to maintain
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this distinction between parameter and dimension.

Suppose that ~l' ~2' ••• '~n' are Gaussian random

measures defined on the same family of sigma-fields,

{F z }' and on the same parameter space, [O,l]P.

Define the n-dimensional, p-parameter martingale

generated by these measures as follows:

Let H be the vector (HI ,112 , ••• ,r~) vlhere each

coordinate is given by M (z) = ~ «o,z]).
11 11

If

we fix our attention on one parameter, say the i-th,

and keep all the other parameters constant, then as

functions of this one para~meter, zi' the M
11

are

one-parameter martingales with respect to the obvious

subfamily of {F }.
z These one-parameter martingales

are square integrable and continuous so that the results

of Kunita and Watanabe [2] apply. Thus, denote

<H ,M > = E{~l1 «O,z]) <Pv «O,z])} by V
11V

for each
11 v

11, v = 1,2, ••• ,n. Suppose that f . Rn x RP "* R is a.
function with continuous partial derivatives up to

second order in the Rn variables and to first order

in the RP variables, then

z.n ~

af a.H(2.1) l\.f(~:1 ,z) = I f~ z
11=1 0

aU
11

~ 11

z. 2 z.
I n ]. ].

~l;.+ L f a f a v + fZ
11,v=l 0 aU 11 auv i 11V 0 . ].

].
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In this formula all the parameters except the i-th are

held constant. The forward difference operator acts

only on the i-th parameter and takes the difference between

o and z .• The integrals in (2.1) are integrating only
~

over the i-th parameter. The stochastic inteqrals are

defined in the obvious way.

To obtain the multi-parameter differentiation formula,

apply (2.1) repeatedly for i = 1,2, ••• ,p and use the

rule for differentiating stochastic products presented

in chapter 4.7. For example, the differential version

of (2.1) for i = 1 is

(2.2)

where we now abbreviate partial derivatives with respect

to u
ll

by the Greek subscript 11, that is af
f ll = au-.

11

Note that u
ll

is one of the Rn variables of f;

similarly z. denotes one of the RP variables of f.
~

Derivatives with respect to z. are denoted by the
~

Roman subscript, i, that is f. af= az:-.~
].

The two-parameter formula is found by takin0 the

a2 differential of (3.1), giving
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n n
d

2
d l f = L f d2dl M + L f dIM d2M

ll=l II II ll,v=l 1l,V II v

n 1 n
+ L (fA,ldz l + 2" L f d V ) d M

A=l ll,v=l 11,V,A 1 11V 2 A-

n 1 n
+ L (f A,2dz 2 + "2 L f Ad 2V )dlMAA-=l ll,v=l 1l,V, 11 'V

n
+ fl,2dzldz2 + -2

1 L f d d V
ll,v=l 1l,'V 2 1 11,'V

1 n
+"2 L

ll,v=l
f d V dz1l,v,2 1 llV 2

f dz d V
ll,v,l 1 2 llV

n

+ ~ L
1l,V,p,A=1

f d V d V1l,'V,p,A 1 llV 2 Ap

The general multi-parameter, multi-dimensional differentiation

formula is obtained in the same way. The product differentials

denoted dl M
ll

d2Mv are defined as stochastic product measures

in chapter 4,7. The differential formula (2.3) represents

a stochastic integral formula which is derived from (2.1)

by means of the product differentiation rule proved in

chapter 7.
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8.3 Representation of Multiparameter martingales

Suppose that W is the p=parameter Wiener process on

[O,l]P and that {F }
z is the family of a-fields generated

by W. Given the multi-dimensional, multi-parameter

stochastic differentiation formula, it is easy to show

that every Fl = VF z measurable random variable X with

finite variance has a unique representation,

(3.1 )

where {dAW} is the (finite) collection of stochastic

differentials of W, ¢A are square integrable processes

adapted to {F },
z

and c is a constant, namely c = E{X}.

In particular, if M is a square integrable martingale

with respect to {F }
z

then M has a unique representation

in terms of the orthogonal martingales generated by the

Wiener process, namely,

(3.2) Mz

The proof of the representation (3.1) parallels Wong

and Zakai's (1974) proof in the two-parameter case. We

sketch the proof in this section.
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Let M (z ) = J x [0 a ] (~) W(d ~ ) for 11 = 1, 2 , . . . , n
11 [O,z]' 11

and let Suppose satisfies

(3.3) = 0

for each k = 1,2, ... ,p. Then the stochastic differentials

of f(M ,z) have no mixed terms and
z

(3.4)

where ~k(dz) are the stochastic differentials generated

2by Ml , M2 , ... ,Mn and ~k are La-processes. It is easy

to see that

= x[O ]a ...• a. w,,a 1.
1

1.
11 r

and thus, each differential ~k can be written

for some b k in [O,l]P

of the Wiener process W.

and some differential, aA W,
k

For example, it is true that
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Thus, if f satisfies (3.3), then it has the representation

(3.5)

where ~A = A IA X[O,bk]~k·
k

then (3.5) becomes

If we take z = 1 in

(3.6) f (W , • • • , W ,1) =
a l an -

Given a polynomial of W ,W , ••• ,W we can choose
a l a 2 an

f so that f (W , ... , W ,1) is that given polynomial.a a-1 n

As in Wong-Zakai (1974) , take all f of the form

together with all the partial derivatives of f with

respect to a, and all linear combinations of the partial
II

derivatives. These f all satisfy (3.3), and they include

all polynomials in when z = 1 and a. = o.

The polynomials of for n = 1,2, ... ,
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are dense in the space of

random variables which have finite variance and are

f l measurable. One way to show this is to approximate
n

all the elementary functions IT X t (W ) by
11=1 (s11' 11] all

Hermite polynomials in much the same way as Cameron and

Martin (1947) in their representation of one-parameter

Wiener functionals.

Since all polynomials are represented as stochastic

integrals, the set of all stochastic integrals is dense

in In fact these two spaces coincide. For

suppose that for X in it is true that

(3.7) lim [c
m + L J ~AdAW] = x.

m+oo A

Then we can show that mc + c and <pm + <p
A A as m + 00.

The stochastic integrals (and the constant c) are mutually

orthogonal as shown in chapters 4,5 and

(3.8)

where V(z) = zlz2 ... zp' defines an L
2

norm for the space

of finite vectors {<PA,c} where each <P A is a square

integrable process adapted to {F z }. This space is
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complete and (3.7), (3.8) imply that the sequence

{~~,cm} is a Cauchy sequence, and therefore, that there

are {~A'c} in the same space such that

lim ~m = ~A ,Am-+oo

lim cm = c ,
m-+oo

c + I f ~AdAw = x.
A

Since implies that ~ = aA for each A

and all (z,w) expect for a set of measure 0, the

representation is unique.
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CHAPTER 9

CONCLUSIONS

Part II derives a stochastic differentiation formula

for n-parameter processes of the form z -+ f(M ,z)z where

z -+ Mz is an n-parameter process given by

= J p(~)~O(d~)
[0, z]

for p in Loo([O,l]n) and for ~O' the standard Gaussian

random measure on [O,l]n. The differentiation formula

results from taking mixed stochastic partial derivatives

of the process z -+ f(Mz'Z). Although the rigorous

definition and proofs are lengthy (5,6,7), the differentiation

rules are simply those stated in section 3.3. When

differentiating the product of two differentials or the

product of a process and a differential, one uses the

ordinary product differentiation rules of deterministic

calculus. The ordinary product differentiation rule

doesn't hold for the product of two processes, but it

does hold if one factor is a differential.

When differentiating a process, one uses the one-

parameter Ito differentiation formula. Thus, the multi-

parameter stochastic differentiation formula is the same

as the deterministic formul_a,. except for one-parameter
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stochastic corrections. For example, the general two-

dimensional stochastic differentiation formula is

= f (M ,z)d l d2M + f (M ,Z)dlM d2Mu Z Z uu Z Z Z

+ (f l(M ,z) + 2
1

f (M ,z)Vl (z»dz l d2Mu, Z uuu Z Z

1+ (f 2(M ,z) + -2 f (M ,z)V2 (z»d l M dZ 2u, z uuu z z

The corresponding two-dimensional deterministic differentiation

formula results from setting V identically equal to zero,

giving

f (M ,z)d l d2M + f (M ,Z)dlM d2Mu Z Z uu Z Z Z

We interpret the stochastic differential equations

in terms of their corresponding integral equations. The

stochastic integrals necessary for this interpretation

are the natural forward-difference integrals corresponding
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to the differentials 3 12M, 3 1 MB2M, and so on. These

integrals have nice mean-square, orthogonality and martingale

properties. In addition, the multiparameter stochastic

integrals provide an integral representation of multi-

parameter square integrable martingales in chapter 8 just

as one-parameter square integrable martingales can be

represented by one-parameter Ito stochastic integrals.

Note, however, that in the multiparameter case, more than

one type of stochastic integral is necessary.

Thus, the results of part II show that the multi-

parameter stochastic differentiation formula is a natural

extension of the one-parameter stochastic calculus. How-

ever, there remains much to do. Certain immediate ex-

tensions of the present result are necessary in order

to give multi-dimensional stochastic calculus the full

power of the one-dimensional calculus.

must permit a wider class of processes,

those defined by

Basically, one

z -+- M , than
z

for
00 n

p E: L ([0,1] ). Since the stochastic calculus is

essentially a mean-square calculus, one should be able

to allow for p E: L2 ([O,1]n). The present difficulty
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is defining integrals f~alMd2M in this case. In a

more ambitious extension, one should allow p to be an

2 h'L -stoc~astlc process.a

to have the form

Along the same lines, allow M

where the

N
I f ~. c ~. (d~)

i=l [O,z] liS 1

~. are orthogonal stochastic measures on
1

(such as the ~A measures of chapter 6 and the

2L -processes.a

~.
1

are

Cairoli-Walsh (1975) and Wong-Zakai (1974,1975) study

*more general classes of multi-parameter martingales .

Hopefully, for some braod class of continuous multi-

parameter martingales M, one could define integrals

f~ala2M, f~alMa2M, and so on, and extend the present

results in much the same way that Kunita and Watanabe

(1967) extend Ito's basic result. An extension of this

paper to cases for which M is a jump process is more

difficult since the definition of product measure in

chapter 6 depends crucially on the mean-square continuity

condition of Definition 6.1. Preliminary investigations

indicate that the results of part II can be extended to

*i.e., strong martingales, weak martingales, and

i-martingales (i=1,2).
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multiparameter martingales which are strong martingales

in the sense of Cairoli and Walsh (1975). A martingale

M is a strong martingale if for every z, z+ S [O,l]P

such that +z < z we have

where 6 denotes the difference operator

6 = 6{1,2, ... ,p}

and where FS denotes the a-fieldz

In the two-parameter case, FS is the a-field generated
z

by F~ for all ~ in the set illustrated in figure 9.1.

Cairoli and Walsh define a weak martingale M so

that

E(6M IF ) = 0z z

where 6 is the difference operator defined above for
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Figure 9.1
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+z > z and {Fz } is the increasing family of a-fields

for the problem. Note that F ~ FS
•z z Generally speaking,

all strong martingales are martingales (defined as in

chapter 2), and all martingales are weak martingales.

The converse relationships, however, are generally not

true: in general a weak martingale is not a martingale

and in general a martingale is not a strong martingale.

The extension of our differentiation formula to the case

of weak martingales is more difficult than the extension

to the case of strong martingales and indeed, an extension

may not be possible. Nevertheless, if an extension is

impossible, it should be possible to prove that for some

weak martingales M and for some differentiable function f

one cannot represent the multiparameter process

by stochastic integrals over the parameter space

That is, one cannot represent f(Mz ) as

z -+ f (M )
z

[O,l]P.

f(M ) =z

N
L f cp. t"q,. (dt;)

i=l [O,z] l,s 1

where cp.
1

2are L -processes and q,.a 1
are stochastic

measures. Note that Wong and Zakai (1975) have proved

that

over

f(M
Z

) can be represented by stochastic integrals

[0,1]2 and [0,1]4 in the case p = 2. In the

general case, this result would extend to a representation

of f(Mz ) using integrals over [O,l]k
p

for
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k = 1,2, ..• p. Although it is more convenient to use

stochastic integrals defined over [O,I]P, it may be that

integrals over [O,I]P alone are not able to represent

all point functions of p-parameter processes such as

The extensions listed so far are technical generali-

zations of the mathematics, but other generalizations are

needed to understand the significance of the theory for

physical models. One can define increasing families of

a-fields with respect to many different partial order

relations. For a wide class of such partial orderings

it is possible to define stochastic measure and integrals

as in §5 and §6. If a smooth curvilinear coordinate system

induces the partial ordering, it is not hard to derive

a stochastic differentiation formula with respect to this

coordinate system. For the purposes of modelling physical

random fields it is important to understand the relation-

ships between these different partial orderings and

coordinate systems. Since there is no natural ordering

of multi-dimensional space as there is for one-dimensional

time, one must select a partial ordering for each random

field model. t A general theory of multi-dimensional

tEquivalently, there is no natural notion of causality for
multi-dimensional fields as there is for one-dimensional
processes.
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stochastic processes that indicates the significance of

the partial ordering for the physical model would

appreciably aid understanding of random field models,

and this should be the goal of future work on multi

dimensional stochastic calculus.
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APPENDIX A: Proof of Theorem 6.1

Suppose P = PlxP2 is a partition of IlxI2 and

¢ is a partition process defined on P. Consider two

and If

then either zl+ 1'> , ,
>1' t Suppose thezl or zl+ zl •

former is true and let avb be the last upper bound of

a and b wi th respect to the order relation <, Then

it + • >1' • + •is easy to see zl vZl zl· Let zl = zl v zl'

then from the measurability condition of Definition 6.1

is uncorrelated with F
zl' z2

for any z2 in

+ .+
z2 = z2 v z2

1 2*. In particular, choose

so that <1>z' Z ' ep. ., 4>1 (ozl,z2) ,
l' 2 zl' z2

are all F -measurable
zl,z2

and so that, thus, we have

The other cases are the same, and (A.l) is true whenever

f See the proof of Theorem 5.1 and the accompanying fiqure (5.2).

*See remarks on correlation and condition (3), (5.2) and (5.3)
of Definition 5.1. The same remarks apply to parameterized
stochastic measures. Also see figure (A.l).
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zl # zi or z2 # zi. using the independence condition

in (3) of definition 6.1, we obtain the following

expression for the left-hand-side of (A.l).

(A.2)

Here we have denoted the Kronecker delta-function by 0Z,Z'.

The inequality (6.10) follows immediately from (A.2) and

bounds of the type (6.1) for ~l and ~2.

To prove (6.11), first let pI,:) P where P and pI

are partitions of IlxI2 and ~ is defined on both of

these partitions. Also, let P = PlxP2 and pI = PixPi.
The difference

can be rewritten as the sum

(A.3) l {~ z2¢1(OZl,z2)¢2(oz2,Zl)
zl EPI zl'

z2 EP2

l ¢1(ozi,zi)¢2(ozi,zi)}·
ziEozln Pi

ziEOZ2f'Pi
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(1,1)

(0 ,0)

Figure A.I

z+ Zl
I I

Zl+
1
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since pi p.

Since pi is a refinement of P, we have the relation,

CZ I
1

for each zl in PI' and a similar relation for each z2

in P2 • Using the additivity of 4>1 and 4>2 as

stochastic measures, we can rewrite (A.3) as

(A.4) I ~z I {4>l(czi,z2}4>2(czi,zl}-~l(czi,z2)~2(czi·zi)}·
zlEP l l'Z2 ziEczll\Pi

z2 EP2 ziECz2()Pi

We again use the measurability conditions as for (A.l) to

show that distinct terms belo~7 are uncorrelated.

Using the independence condition, we can show that the

mean square of (A.3) is

(A.5) L E{~z z2} L
(zl,z2)~P l' 2 ziEczl,ziEcz2

(zi,zi)EP'
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where

Note that there is only one z1 in PI such that zie:ozlf\Pi

and only one z2 in P2 such that zie:oz 2 nPi. Fix zi and

zi and define tile random variables, A, B, C, D, as

follows. t

A = q,l (ozi,z2)

B = q,l(ozi,zi) - <1>1(ozi,z2)

C = 4>2(ozi,zi) - <P 2 (ozi,zl)

D = <I>2(oz2,zl)

Thus, we have

(A.6) ~z' z' = -AC - BC - ED.
l' 2

The independence condition of (3) in Definition 6.1 implies

that A is independent of D and C, and B is independent

TFigure A.2 may help visualize the argument at this point
in the proof.
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Figure A.2
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Thus, we have from (A.6) that
2

E{ l/J , z'}
z1' 2

is given by

Use the continuity condition (4) of Definition 6.1 to

estimate (A.?) as follows. From the variance condition (6.1)

we have

and

From the continuity condition (6.3), we have

and
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Using Schwarz's inequality on the terms E{AB} and E{CD}

in (A. 7) , we derive the following upper bound for .(A.7)

and hence, for E{W 2 }zi,zi

(A.8)

The inequality (6.11) follows from (A.5) and (A.8) in

the case P' P• For general P' and P we take P "e;c!> that, P:":> P '. and

P" ,) P. Apply (6.11) for the pairs P, P" and pi, P"

and use the triangle inequality to obtain (6.11) for

P, P'. III
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APPENDIX B: Stochastic Integrals and Differentiation

Formulas of v7ong-Zakai and Cairol'i-ll\lalsh

Wong-Zakai

Wong and Zakai (1975) define three types of stochastic

integrals in the plane in addition to the Ito-type integral

described in 2.5. We now show these integrals correspond

to the ones defined in this paper.

is an F -measurable random variablezl vz 2

with finite variance. Let oZl and oZ2 be rectangles

in [0,1]2 such that

xoz (l;)Xoz (l;') = 0
1 2

unless sAs'. The relation l;As' is true if l;l .::. s'

and l;2 ~ si· Similarly, I(sAs') is the function of s

and s' which 1 or 0 depending on whether or not

l; As ' • Define a process l/Js,s' on [0,1]2 X [0,1]2 by

= l/Jxoz (l;) Xo z (s')
1 2

for all l; and s'

define integrals of

in 2[0,1] • Then Wong and Zakai (1975)

[0,1]2 X [0,1]2 as follows.
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(B.l)

(B.2)

(B.3)

In equations (B.l), (B.2), and (B.3), W(.) denotes the

standard Gaussian random measure on [0,1]2, and m(.)

denotes the Legesque measure on [0,1]2. Using linearity

and mean-square continuity, one extends the definitions

to define integrals of processes ~~,~. such that

(B. 4)

(B.5)

and

~~,~. is F~,~.-measurable,

(B.6) ~~,~. = 0 unless ~A~·.

For processes $~,~' that satisfy (B.4) and (B.5) one

can define the integral of ~~,~. to be the same as the

integral of I(~A~·)~~,~'. Note that each integral isa

continuous linear mapping with respect to the norm defined

by (B.5).
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We must evaluate these integrals for processes

~~,~. which are given by

where is in 2 2L (QX[O,l] ,m).
a First we prove the

follo~ling lemma.

LEr-1MA:

Suppose ~ is the partition process defined by

~~ =

where P is a partition of

as

2[ 0 , l] • Then de fine ~ (~ , ~ " P)

~(~,~. ,P) (~) (~')

= Z~P ~zX[O,x]xoy Xox x [O,y]

where we always understand that z = (x,y) and

OZ = ox x oy for all z in P. Then the following

inequality is true.
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Proof of lenuna

Note that

(~)

= X[O,x]xoy
(~I) + X (~) (~I)

Xox X [O,y] [0 ,x] xoy Xox x oy

(~) (~') (~) (~')

Xox x oy Xox x [O,y] + Xox x oy Xox x oy •

It is easy to calculate that since P is a partition, we

must have that

(~) (t;')] 2
( L <Pz[XOZ(t;vt;l) - X[O,x]xoy XOXX[O,y])

zt:P

L 2 (t;) ( t; I )

+
(t;) ( t; I )

= <P z [X[O,x]xoy Xoxxoy Xoxxoy Xoxx[O,y]zt:P

The inequality (B.?) follows immediately from taking

expectation and integral of this equation. III

From (B.l) we see that

L
zt:P

<P W([O,x]xoy)W(oxx[O,y])z

and thus, we see that
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(B.8)

By using (B.7) and taking Ipi -+ 0 in' (B.8) we find that

(B.9)

for all partition processes ¢. It is a simple matter to

extend the result (B.9) to all processes ¢ in

2 2
L (nx[O,I] ,m).a

(b.lO) L
ze;P

$ xoyW(ox X[O,y])z

where we have abused our notation slightly by allowing

+oy to denote the length as well as the set oy = (y,y ].

Let ¢(~,P) denote the partition process defined by

It is simple to check that

Using the inequality (7.22) of §7 for h = ¢ and

~(dx,y) = W(dx X[O,y]), we obtain
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o(lpl>.

Taking the limit Ipl ~ 0 gives

Let v(~) = ~1~2' then from (B.11) we have that

and thus, we have that

(B .13)

similarly, from (B.3) one can deduce that

(B.14)

Finally, it is a simple calculation to show that

(B.lS)

where both integrals are Lebesgue integrals.
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Thus, we see that the integrals defined by Wong and

Zakai in [3] agree with the integrals defined in this

paper. Therefore, the Wong-Zakai differentiation formula

given below is equivalent to (3.11). (Wong-Zakai

differentiation formula for wiener process W)

feW )z = f(O) + f f' (W~)dW~ + f f" (W~)d~
[O,z] [O,z]

+ f f'" (W~v )dW~dW~, + ~ f f'" (W~v~.)d~dW~.
[O,z]X[O,z] ~I [O,z]x[O,z]

+ 1 f fl" (W ,)dW d~'
~ [O,z]X[O,z] ~v~ ~

+ 1 f f' • I , (W • ) I (~As • ) d~d~ •
'4 [0, z] x [0, z] ~v~

By a similar argument one can show that (3.11) is

equivalent to the Wong-Zakai formula in the more general

case of the process M is defined as in (3.3).

Cairoli-Walsh

Cairoli-{qalsh (1975) prove a stochastic Green's formula
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and then apply it to prove a two dimensional version of

*Ito's formula, namely

(B. 16) f (W )z = f(O) + J f' (W)dW + f f" (W)dJ
[O,z] [O,z]

- 12 J [F' '(W) + uvf' , , '(W)]dudv - 1:. f f' , (W) (udv-vdu) .
[O,z] 2 2 [O,z]

The first integral corresponds to our d
1

d2W integral, that

is, the Ito-type stochastic integral. Cairoli and Walsh

derive the integrals in terms of the multiple Wiener

integral as in Wong-Zakai (1974,1975, 1976). Thus, it

corresponds to our dl Wd 2W integral. In fact, Cairoli and

Walsh also show that dJ is a measure corresponding to the

product, dl Wd 2W, which has the same meaning as in this

**work The remaining integrals in (B.16) are (almost

surely) Lebesgue integrals, the last one being a line

integral over the boundary of the rectangle [O,z].

Although (B.16) does not resemble (3.11), we can show

(3.11) is equivalent to another equation of [4] which is

equivalent to (B.16). Thus, in a preceding step of their

argument Cairoli and Walsh present the following equation

equivalent to (B.16).

*This is (6.22), p. 155 of Cairoli and Walsh (1975).

**See page 147, §6 of Cairoli-Walsh (1975).
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363

= f(O) + f fl (W)dW
[O,z]

z2 zl
+ f fll (W)dJ + f [f ufl II (W )d W ]dv

[0 ] 0 0 2 uv U uv, z

z2
+ 1 f tfll (W )du

2 0 ut

The mixed integral is the same as our dlW dv integral,
uv

and by applying Itols formula to the last integral one

obtains

tf I I (W ) du
ut

Vfll I (W )d W }du
uv 2 uv

z2 zl
+ f f [lfll (W ) + I fll II (W )uv]dudv.o 0 2 uV 4 uv

Substituting this expression back into (B.17), one sees

that (B.17) is equivalent to (3.11) and hence, (3.11) is

equivalent to (B.16).

* (B.17) is equation (6.20), p. 154 in Cairoli-Walsh (1975).
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