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ABSTRACT

A completely new approach to develop an automated program for rhythm ana-
lysis of electrocardiograms and vectorcardiograms using powerful statistical
techniques of sequential estimation and detection theory is studied. The
underlying cardiac rhythms are modeled as outputs of low-~order linear sto-
chastic dynamical systems. The relatively predictable persistent cardiac
rhythms are detected and classified by using a multiple model hypothesis
testing technique. Detection and classification of the relatively unpre-
dictable transient cardiac arrhythmias are performed using a generalized
likelihood ratio technique, Both the multiple model hypothesis testing
and the generalized likelihood ratio identification techniques are tested
extensively on a variety of actual data which includes normal sinus rhythm,
bigeminy, trigeminy, PVC, PAC, dropped beat, SA block, tachycardia burst,
multiple PVC, and slowing of heart rate. The results indicate that these
cardiac events can be identified with great accuracy.
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CHAPTER 1
INTRODUCTION

1.1 Principle of Electrocardiography

It has been known for many years that a measurable amount of
potential variations within the electrical field on the body surface
is associated with the electrical activity of the heart. As early as
1887, Ludwig and Waller {[1] experimented with the capillary electro-
scope and recorded this electromotive force from the precordium. In
1899, Wenckebach [2] employed the polygraph to make simple but precise
observations of the electrical events of atrial and ventricular acti-
vation. Einthoven's description [3], in 1903, of the string galvano-
meter for recording the potential variations, stimulated a sudden
increase in both clinical and experimental studies of electrocardio-
graphy. This type of galvanometer has remained one of the most
frequently used recording method because of its simplicity and porta-
bility, although other principles, such as the use of vacuum tube
amplification, have been applied. Recording the potential difference
between any two points on the body surface is accomplised by means of
electrode from which the current is conducted to the galvanometer of
the electrocardiograph via the lead wire, to be returned to the body
by way of a second lead wire and its electrode. 1In clinical practice
twelve leads are usually recorded routinely: (1) three bipolar
extremity leads (standard limb leads), (2) three unipolar extremity
leads, and (3) six unipolar precordial chest leads {4]. Using this
standard twelve-lead system, the resulting potential difference record

is called the Electrocardiogram (ECG).
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Biophysical models of the heart and factor analysis of surface
potentials have shown that the electrical effects on the surface of
the body can largely be accounted for by a single equivalent electrical
dipole free to rotate in three dimensions [5]-[7]. Under suitable
homogeneity assumptions, the components of this equivalent dipole can
be estimated by measuring three potential differences in perpendicular
directions on the surface of the body, or by resolving non-orthogonal
measurements. In practice, the Frank orthogonal lead system which
consists of seven leads resolved along mutually orthogonal axes [8],
is the most commonly used for this purpose. A record obtained by the

use of this lead system is called a Vectorcardiogram (VCG).

While many differences occur in various leads from the same
subject, and different persons yield distinctive curves, they all tend
to conform to a common pattern illustrated in Figure 1l.l1. The normal
electrocardiogram of a cardiac cycle consists of a series of waves
arbitrarily designated by Einthoven as the P wave, the QRS complex,

and the T wave. When the heart is at rest the electrocardiogram dis-

R

Q
s

Figure 1.1 Waves of the Llectrocardiogram
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plays a straight horizontal line, the so-called iso-electric line

or baseline. This baseline represents a constant direct current value
produced by the recording device. Alternating current developed
with myocardial activity is superimposed upon this baseline and is
recorded as upward (positive) or downward (negative) deflections. The
baseline may‘be shifted whenever there is movement of electrodes or a
sudden change in skin resistance. In such a case the electrocardio-
graphic signal is superimposed upon the baseline variations.

The P wave represents the depolarization wave of the auricular
musculature which spreads radially from the sinoauricular (SA) node to
the atrioventricular (AV) node. There is a delay in transmission of
the impulse at the AV node, represented on the electrocardiogram by
the P-R segment. The QRS complex is the depolarization of the ventri-
cular musculature. It consists, usually, of an initial downward deflec-
tion, the Q wave, an initial upward deflection, the R wave, and an
initial downward deflection after the R wave, the S wave. The T wave
represents the ventricular repolarization and follows the QRS complex
with a delay, the S-T segment, which represents, roughly, the duration
of the excited state of the ventricular musculature, or the interval
of time between completion of depolarization and the beginning of
repolarization of the ventricular musculature [9].

Under pathological conditions the electrocardiogram undergoes
some characteristic changes. The various resulting abnormalities
in the electrocardiogram may be divided into two groups:

(1) disturbances in the cardiac rhythm, and (2) changes in the elec-

trocardiographic waveform. Abnormalities in the electrocardiographic
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waveform are more or less related to the specific pathological process
and its location in the heart, and thus, can be used to describe the
state of the working muscle masses, The abnormalities in the order

of the heart bezt, known as cardiac arrhythmias, yields information
concerning the sites and rates of cardiac pacemakers and the impulse
propagation through the cardiac conduction system [2]. The electro-
cardiogram is the instrument "par excellence" in the diagnosis of the
following clinical conditions: myocardial infection, atrial and
ventricular hypertrophy, arrhythmias, pericarditis and systemic diseases
which affect the heart. A complete analysis of the electrocardiogram

should include both the rhythm analysis and the waveform analysis.

1.2 Computer-Aided Analysis of the Electrocardiogram

1.2.1 Background

Due to the high cost of labor, and the large amount of ECG/VCG
records to be analyzed, the time available to the interpreting cardio-
logist is too limited for taking a multitude of measurements., In
addition, due to the limited precision of hand measuring, which does
not exceed 0,05 mm, and lack of well-defined criteria for determining
the onset and end of waves especially in cases when waves are of low
amplitude and have gradual slope, cardiologists are known to differ
frequently in their measuring of electrocardiographic events. It is
difficult to correlate mentally large numbers of ECG/VCG parameters,
and extensive hand calculations for making use of efficient statistical
classification techniques are also too time-consuming to be practical.

Careful studies have been made to assess the human variability

in ECG interpretation. In one study, the results showed that in
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repeated observations of one ECG the same cardiologist did not agree
with his own diagnostic statements in 20% of the time, and different
cardiclogists did not agree with each other in nearly 25% of the
statements ([10]. Another study showed that 7 cardiologists completely
agreed in only 28 out of 100 ECG's[11].

The advent of modern computer techniques changed this situation
drastically. The unique ability of computers to perform a large number
of numerical computations in a very short period of time enables one
to apply a variety of mathematical operations for analyzing ECG/VCG
records. ECG/VCG analysis from its engineering aspect is also an
ideal field for automation, Some of the advantages of using computer-
aided analysis of ECG/VCG are given in the following:

(1} Short-~term and long-term cost saving.

(2) It become feasible and practical to obtain any
number of ECG/VCG measurements. For instance,
the slope of the wave at every point can be
easily computed. Whether the signals are
complex or simple, the measurements will be
remarkably precise compared to those obtained
manually.

(3) Best utilization of information already available
on the scalar or vector electrocardiograms is
obtained. Using high fidelity recording equip-
ment, the computer can store and repeat the
electrical signals of cardiogram; eliminating
noise, interference, and other confusing artifacts
which present difficulties in analysis.

(4) BApplication of complex statistical classification

procedures no longer represent a limiting factor

in ECG/VCG data evaluation.
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(5)

It is feasible to perform mass screening of
large population groups which is absolutely
necessary for the study and control of heart

diseases.

Although the computer-aided analysis of ECG/VCG is an

one, problems do exist:

(n

(2)

(3)

(4)

In contrast to the human interpreter who
possesses high pattern recognition capa-
bility, the computer finds this one of the
most difficult operations to perform.

The tremendous amount of variation that
occurs among subjects, which we would

like to classify into the same class,
makes it very difficult to invent prac-
tical rules that include all instances.
For a computer-aided ECG/VCG analysis pro-
gram, the instructions must be listed in
an orderly manner and followed precisely
during interpretation. In contrast to this
orderly, predetermined logical process,
the human interpreter has the opportunity
to review the record for any amount of
time limited only by his own needs. He
may review the data randomly, and even
correct his initial diagnosis subject to
further reviews.

It is very difficult for the computer to
identify the P waves, which have low am-
plitude and gradual slope, and thus may

be buried in noise or masked by ventricular
activity. This is also true of other

subtleties of the cardiogram.

-11~
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1.2.2 Historical Review

The concept of computerized analysis of the ECG/VCG is not new.
The requirements for practical clinical applications of such programs
include two parts: (1) analysis of cardiac rhythm, and (2) analysis of
the contour or waveform of the complexes. Starting in the late 1950's
there have been numerous efforts to automate the analysis of
ECG/VCG's, resulting in many computer-aided programs for ECG/VCG ana-
lysis being used and developed [12]1-[27]. Pattern recognition in
these programs are almost exclusively done using a heirarchical com-
puter logic structure, Much time is spent checking validity of the
data, correcting measurement errors, and extrapolating for missing

data. These tests are deterministic in that specific thresholds are

set for the various tests, rather than statistical, wherein probabi-
listic statements are given based on statistical models of the temporal
patterns. Thus, these schemes involve very complex logic structure
which are difficult to debug and to modify. Another drawback in using
the logic tree structure is the limitation of the rhythm analysis
program in their assignment of severity levels. For example, arbitrary
terms such as "severe", "mild", and "regular" are used. Thus, in

spite of the amount of work done on this problem, the problem of com-
puter~aided analysis of ECG/VCG is not yet completely solwved.

Recent comparative studies on the performance of the available
programs have indicated that the IBM program was the best overall {[28].
On an overall basis, the program had a detection rate of 94,.6% on a
total of 1150 waveforms tested. However, the rate of correct identi-
fication was lower than this detection rate, because some of the

arrhythmias detected by the program were assigned to "undetermined
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rhythm" by the final identification logic. The program performed

even worst on ventricular arrhythmias, for which the detection rate
was only 86%. In the reproducibility study, the results showed that
using two different digital representations of the same analog ECG
record, the output rhythm statements generated by this program did not
agree with each other about 10% of the time. It would appear that
available programs are too highly tuned in that some features used

for diagnosis actually contain more noise than information.

In more recent years, a variety of statistical analysis procedures
for ECG/VCC analysis were studied to improve the performance of de-
tection and classification for arrhythmias. Gersch, et al. [29], [30}
transformed a sequence of 100 or 200 R-R intervals into a three-symbol
{(namely, short, regular, and long R-R interval) Markov chain sequence,
The probability that the observed sequence was generated by each set
of prototype models characteristic of different arrhythmia classes,
was computed. That prototype corresponding to the largest probability
of generating the observed seguence was classified as the disorder,
The disorders considered were atrial fibrillation, PVC and PAC, bige-
miny, sinus tachycardia with occasional bigeminy , sinus tachycardia,
and ventricular tachycardia. Tests of this approach on patients with
atrial fibrillation (AF) and atrial fibrillation with occasional
PVC's (AFOCC) showed that 4 out of 15 AF records were misclassified
as AFOCC using 200 heart-beats. The performance was worst when using
100 heat-beats. Pipberger, et al. [31l] applied linear discriminat
function analysis to training and independent sets of three common
arrhythmias (namely, normal sinus rhythm, sinus rhythm plus premature

beats, and atrial fibrillation) using R~R interval information only.
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On an overall basis, this approach correctly classified 85% of the
records tested, The performance for the premature beat classification
was the worst, for which a correct identification rate of only 66%
was obtained.

All the above statistical analysis procedures for classification
have used fixed sample tests. Among the problems with a fixed sample
test is the possibility that if the sample size is too large then a
transient phenomenon may go undetected due to the large number of
normal beats used in the averagea' Tsui and Wong [32] studied the
feasibility of utilizing Wald's sequential probability test in cardiac
rhythm classification. It has provisions for controlling error rate
than sample size. The expected number of observations under pairwise
testing of three selected rhythm classes (atrial fibrillation, normal
sinus rhythm, and premature atrial and ventricular contractions) as a
function of error rate were shown. However, no test of this approach
on actual ECG data was given.

It is important to point out that, on an overall basis, arrhythmias
were the greatest source of program errors of the three programs
tested (IBM-1971, PHS-D, Mayo-1968) by Bailey, et al. [28]. The im-
portance of the identification of arrhythmias is further underlined
by the increasing recognition of the role of arrhythmias as a cause
of sudden death [33]. Further, the reproducibility results of
Bailey, et al. indicate that more robust computer algorithms are
needed, and the statistical results suggest that more powerful statis-
tical techniques should be used. These facts have provided much of
the motivation for the work of developing an automated detection and

classification program for rhythm analysis of ECG/VCG studied here.
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1.3 Methods of Approach

The problem of automated arrhythmia analysis is, simply put, the
problem of adequately reproducing the pattern recognition capabilities
of the cardiologist. This problem may be only partially solvable,
given the complexity of human pattern recognition capabilities and the
limitations of even the most advanced computers, It seems fair to
say that, given the exact timing of P waves and QRS complexes, together
with gross descriptions of these waveforms, that arrhythmia diagnosis
would be considerably simplified, since the electrophysiological me-
chanisms responsible for a large number of arrhythmia patterns have
been described satisfactorily [34). Theoretically at least, powerful
pattern recognition techniques could then be brought to bear on the
problem.

The techniques proposed in this research for arrhythmia detection
and classification explicitly take into account uyncertainties within
each arrhythmia class in a systematic manner by using the very powerful
statistical techniques of modern estimation and detection theory.

This approach differs significantly from previous approaches to
rhythm analysis in three ways; (1) the underlying rhythms are modeled
as outputs of linear stochastic dynamical systems (2) rhythm classifi-
cation will be done by hypothesis testing to find the most likely
operating system, (3) unpredicted disturbances will be detected using
a generalized likelihood ratio technique. Thus, the emphasis is on
statistical modeling and testing of the data.

This approach has several advantages. First, since beat-to-beat
variations are present and the wave intervals are never exactly regular,

uncertainty has to be accommodated in any rhythm analysis scheme.
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This can best be done by first obtaining detailed statistical infor-
mation from actual data, which is readily available and quite exten-
sive. Given a comprehensive statistical analysis of such data, it is
natural to attempt to use it in the best possible manner. This can be
done, for example, by trying to match the data to some dynamical model.
Thus, if extensive correlation data were available and diagnostically
significant, it would be feasible to construct dynamical models with
the identical correlation characteristics. One can then bring the
powerful techniques of sequential estimation and detection theory into
action.

Alternatively, since the temporal patterns of many types of
arrhythmias are known, a dynamical model may be subsumed for each
"dynamically different" class. The parameters of the models can then
be selected to best match the statistical characteristics of the model
to the observed data. This approach has been taken in the present
research and is covered in detail in subsequent chapters,

Of all of the data that can be obtained from an ECG or VCG, R-R
interval data is by far the easiest to obtain and the "cleanest" in
the sense of being almost error free. Such data possesses the
highest "signal-to-noise ratio" and thus provides the most reliable
information. On the other hand, data such as P-R and P-~P intervals
are inherently more noisy, as the detection of the smaller P waves
introduces more errors. Considering this point, we have adopted the
point of view that our first task is to understand fully the contenf
of the more accurate R-R interval data. That is, we wish to deter-
mine precisely what information concerning arrhythmias is contained

in R-R data and then to determine how to best extract this information
-16=~



from the R-R intervals.
Our work along this direction has several natural subdivisions:

(1) The Categorization of Arrhythmias - The determination of how

various types of arrhythmic behavior manifest themselves in the ob-
served signal. This involves the explicit determination of how various
arrhythmias affect R-R interval histories (we do not categorize

the effects of arrhythmias on other observable quantities, such as

P-R intervals, P-P intervals, shapes of QRS complexes, etc,; because,
for the purpose of this initial study we are mostly concerned with

the R-R data). (2) Statistical Analysis of Arrhythmic R-R data -

The purpose of this task is to obtain further and more quantitative
information about the manifestation of various arrhythmias. Certain
simple statistics related to the R-R data are computed, and these
statistics can be used either to identify certain arrhythmias or to
provide useful inputs in the design of more sophisticated mathematical

models. (3) Determination of Dynamic Models for the Generation of

R-R Interval Data for Different Arrhythmias - Based on the information

in (1) and (2), we can obtain relatively simple dynamic models that
generate R-R intervals with the desired statistical properties., The
purpose of this task is to construct models to which we can apply the
powerful tools of sequential estimation, detection, and hypothesis

testing. (4) The Development and Testing of Estimation, Detection,

and Hypothesis Testing Algorithms for Arrhythmia Detection Based on

R-R Data - We apply several signal processing technigques to the

mathematical models developed in (3).
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1.4 Synopsis of Following Chapters

In Chapter 2, an algorithm for fiducial point detection of the
ORS complex for the ECG/VCG record utilizing both slope and amplitude
information is present. The detection is done using a single lead
only. Results on experimental tests using actual data are presented.

The categorization of arrhythmias into different distinctive
classes is the subject of Chapter 3. This involves the determination
of how various types of arrhythmias manifest themselves in the observed
signal, and how various arrhythmias affect the R~R intervals. Further
and more quantitative information about the manifestation of various
arrhythmias is studied in Chapter 4, by performing statistical analysis
on the R-R intervals of different arrhythmia classes.

Based on the information obtained in Chapters 3 and 4, we deter-
mine the dynamical models for the generation of R-F interval data for
different arrhythmias in Chapter 5. The purpose of this task is to
construct models to which we can apply the powerful statistical
analysis tcols for detection and classification.

In Chapter 6, the multiple model hypothesis testing algorithm for
the detection and classification of persistent rhythms is discussed.
Numerical results obtained using actual data are presented. The
generalized likelihood ratio detector system for the detection and
classification of the transient rhythms is studied in Chapter 7. The
necessary GLR equations are derived in detail. Actual data are tested,
and the results are presented. Finally, some further discussion and
conclusions are given in Chapter 8, Several areas which need further

research are also pointed out, and discussed.
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All the data used in the tests were digitized at a rate of
250 samples per second, and were provided by USAF/SAM personnel.
The computer used to remove the baseline drifts, to locate fiducial
point for the QRS complex, and to perform the statistical analysis,
was a Nova 2 minicomputer. An IBM/360 computer was used for perform-

ing both the multiple model hypothesis and GLR detection tests.
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CHAPTER 2

DATA PREPROCESSING

Data preprocessing refers herein to the sequence of steps required
to obtain the R~R interval sequence from the digitized ECG/VCG record
being processed. The preprocessor may be conveniently divided into
two steps: (1) remove the low frequency baseline drifts, (2) detect
the fiducial points of QRS complexes. These are discussed separately

in the following sections.

2.1 Baseline Removal

A crucial step in the computer analysis of ECG/VCG's is the re-

. ﬁoval of low frequency baseline drifts, These disturbances can be
quite severe and, 1f not eliminated, can cause significant errors in
fiducial point detection and area computation of the QRS complex, which
will be used in arrhythmia detection and classification. The slow
varying baseline drift is caused by a combination of factors

including:

(1) DC bias of the ECG/VCG output amplifiers

{2) slow changes in temperature

{3) coding/decoding mismatch of the FM tape recording
(4) variations in tape speed during data digitization
(5) electrode polarization changes

(6) geometric changes of torso due to respiration of

patient

For the present purposes, the baseline will be defined as any
unwanted low frequency components of the measured cardiographic sig-

nals. Let the measured signal at time t, be m(i) and denote the

i
underlying cardiographic signal by v({(i). Then,
~20=



m{i) = v{(i) + b(i) (2.1)
where the baseline b(i) is an additive disturbance which includes both
physiological and non=-physiological effects. In order to remove this
disturbance b({(i) in the data preprocessing, we need to design a base-
line estimator, which will take the measured signal m(i) as input and
give an estimated baseline g(i) as output. Then we can get the under-
lying cardiographic signal (i) by subtracting the estimated baseline
B(i) from the measured signal m(i). The structure of this recursive

baseline removal process is illustrated in Figure 2.1.

Baseline Removal Filter

m(i)

. o ]
Baseline b (i) 2
Estimator

+

Figure 2.1 Recursive Baseline Removal Process

Several recursive baseline removal processes have been designed
and tried in [35], [36]. The results showed that an efficient data
preprocessor can best be realized by using a moving average non-causal
filter for baseline removal. It is further tested in [37] on
arrhythmic data. The experimental data indicate that very little dia-
gnostic information is lost. Since the problem of baseline removal
has been studied in detail in [35]-[37], no further discussion is given

here.
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2.2 Fiducial Point Detection for the QRS Complex

The high slope segments of the QRS complex relative to the re-
mainder of the waveform appear to be the most reliable indicator to
identify this complex. In order to have a well defined fiducial point
for the QRS complex, we use the maximum startup slope point or the
maximum slope point before the maximum amplitude of the R wave as the
fiducial point (see Figure 2.2). The maximum slope at the fiducial
point varies markedly from lead to lead. However, most of the QRS
complexes on a given lead have a higher slope at the fiducial point
than any part of the P and T waves in that lead. Accordingly, the
first step in detecting the fiducial point is to find the slope for
each lead which distinguishes P's and T's from QRS's.

Although this method is generally quite reliable, some problems
do exist. Occasionally a small number of aberrant QRS complexes are
present in a record. The maximum slope at the fiducial point on these
ORS complexes may be markedly lower than the maximum slope on the
complexes representing the dominant rhythm, and comparable to the high
slope parts of the T waves. In this case it is not possible to find a
slope which will distinguish all of the T waves from the QRS complexes.
In order to detect all the QRS complexes, we therefore have to set the
slope threshold at a very low value. Although we will be able to
detect all the QRS complexes by doing this, at the same time we will
also detect those T waves which have their maximum slopes greater than

the slope threshold. The easiest way to avoid this difficulty is to
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Figure 2.2 Fiducial Point Detection
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skip a selected number of data points after the fiducial point is de=~
tected., We choose the number of data points to be skipped to insure
skipping of the T wave, yet small enough so as not to miss any QRS
complexes.

Another problem caused by using the low slope threshold is that
we will detect noise bursts which have slopes greater than the slope
threshold and which are not in the region skipped after the detection
of the fiducial point. Since these have amplitudes much lower than
the amplitudes at the fiducial points, we can thus reject them by re-
quiring that the fiducial point should also satisfy the condition that
the product of its amplitude and slope be greater than a positive
threshold. This condition will not only reject noise bursts, but also
insure that the fiducial points of the R waves detected are at the
points before the maximum amplitudes of the R waves, since we require

slope times amplitude to be positive.

2.3 Algorithm for Fiducial Point Detection

A program, RRFILE, has been developed based on the concept des-
c¢ribed above for detecting the fiducial points of the QRS complexes for
both the arrhythmic and non-arrhythmic data from which the low frequency
baseline shifts have been removed. A detailed description of the
algorithm is given in the following, and a flow chart of this program
is shown in Figures 2.3(a) and 2.3(b).

First, three data points are read into REM(1l), REM(2) and REM(3).
The slope of a best fit straight line owver these three points is
calculated as: REM(3) - REM(1l). The window REM moves forward by

dropping its trailing point REM(l)}, shifting REM(2) to REM(1l), etc.,
-24-
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Figure 2.3(a) Flow Chart for Program RRFILE
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Figure 2.3(b) Flow Chart for Program RRFILE
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and reading in a new data point as REM(3). The maximum absolute value
of the slope, TREM, over the first 500 data points in the input data
file is searched. The slope threshold, TRESH, is then set at a
certain percent PERC of the maximum absolute value of the slope TREM.
The value of PERC is an adjustable parameter.

Once the slope threshold is set for this record, we can start
searching for the fiducial points from the very beginning of this
input data file. When the absolute value of the slope TSUM is greater
than the slope threshold TRESH, the maximum slope is searched. This
maximum slope point is not the fiducial point of an R wave, unless the
product, STA, of its amplitude REM(3) and slope TSUM is greater than
a threshold XDX. The value of XDX is a design parameter.

Finally, we require ITIME, the point where a fiducial point is
detected, to be greater than 170 before we can declare that an R wave
has been detected. The reason for imposing this condition is due to
the fact that some records may start in the middle of a QRS complex;
in this case the fiducial point may be in error for this QRS complex.
A safe way to avoid this problem is to neglect the fiducial point
detected within the first 50 data points, which is greater than the
width of a QRS complex. 2All the input data files used in this program
must have their baseline shifts removed first. That is, the input to
the program RRFILE is the output data file from the baseline removal
filter BSLNFT, in which a moving window average is used to estimate the
baseline. The baseline at the midpoint of the overall window is
estimated as the average of all the data prints within this window.
Thus, at the start of a record no baseline estimates can be made for

the first 120 data points which are used to fill the window. Hence a
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value of zero is assigned to the first 120 output data points for the
baseline removal filter. Therefore, in order to avoid false detection
we neglect the fiducial point detected within the first 170 data
points in a record.

When a fiducial point is detected, a selected number of data
points IDPSK are not searched for R waves. This will not only skip
the high slope part of the T waves but also speed up the overall pro-

cessing. The value of IDPSK is a design parameter.

2.4 Experiments and Results

The algorithm for R wave detection RRFILE was tested for both
arrhythmic and non-arrhythmic data. A summary of all these data

files is given in Table 2.1.

Data file name. o Diagnosis

IN.S

IN.20 Normal Rhythm

IN,30
HUANPVCS Premature ventricular contractions
HARNETPVCS Premature ventricular contractions
SPOONPAC Premature atrial contractions
BLOOM Supraventricular arrhythmia
CUNATFIB Atrial fibrillation

Table 2.1 Summary of Data Files Used for Testing the
Fiducial Point Detector RRFILE
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The objective of this test was to determine whether the algorithm des-
cribed in Section 2.3 could detect all of the R waves and reject all

T waves and noises in each record for a proper choice of the parameters
PERC, XDX,and IDPSK, where PERC is the percentage of the maximum ab-
solute value of thé slope TREM over the first 500 data points for the
slope threshold TRESH, (TRESH=TREM*PERC), XDX is the slope times ampli-
tude threshold for REM(3)*TSUM, and IDPSK is the number of data points
skipped after a fiducial point is detected. We alsc wished to find

a set (or sets) of numbers for the parameters PERC, XDX and IDPSK which
are good in the sense that no R waves are missed in any of the data
files we have on hand (see Table 2.1). This will aid in our evaluating
the robustness of the detector with respect to these parameters.

The input data files to the R wave detector RRFILE were the third
lead of those in Table 2.1, from which the baseline shifts have been
removed, and the output data files were the R-R intervals detected
in each lead. A total of 1,000 sampling data points (250 data points
=1 second) in the third lead of all the arrhythmia data files both
before and after the baseline shifts have been removed are shown in
Figures 2.4 - 2.8). From these figures we can see that there are
aberrant R waves present in all these data files. Note also that the
filtered waveforms appear unaffected from a diagnostic viewpoint, All
these data files were tested individually at first for different values
of parameters. The R waves detected for each different set of para-
meters were then checked visually with the data files, which were dis-
played on the Tektronics 4010 digital display. Finally, a satisfactory
set of values for the parameters were found, which were good for all

the data files being tested. These are given in the following:
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PERC = 0.20
XDX = 3,000
IDPSK = 70

The results are given in Tables 2,2-2,9 for all the data files in
Table 2.1, The fourth and fifth columns give the fiducial point
detected and the intervals between the two consecutive fiducial points
{(or the so called R~R intervals), respectively. We also give the
slope and slopex amplitude at the fiducial point in column two and
three, respectively. The R-R interval data in column five is in the
output data file from program RRFILE, This R~R interval data file
will be used in subsequent chapters for arrhythmia analysis.

In this section we have developed a simple procedure for the
determination of fiducial points of the QRS complexes. Although good
performance was obtained for the data files tested, more data should
be tested to evaluate this fiducial point detector in a wide variety
of situations. These tests will either be used to adjust parameters

of the present detector, or suggest more robust detector designs,
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N AMP=S| OPE SLOPE R ReR
1 399222,00 486 343
2 142400,00 asy S24 181
3 289¢14,00 517 196 182
4 335369,00 524 893 187
5 410010,00 523 1084 188
6 392316,00 491 1266 185
7 251758,00 486 16446 184
8 383176,00 518 1629 183
9 318708,00 S28 1814 185
10 371700,00 514 2001 187
14 3p2670,00 566 2186 189S
te 179740,00 463 2366 189
13 420332,00 479 2549 183
14 384524 ,00 522 27138 186
15 240672,00 514 29214 186
16 167268,00 479 %104 189
17 254380,20 a7 3275 174
18 362604,00 509 3448 173
19 250332,00 534 624 176
20 289333,00 529 3804 180
21 314730,00 475 3980 176
22 I17762,00 451 4153 173
23 284400,00 s26 4330 177
24 387660,00 507 4Sge 176
2s 272847,00 sae 4683 177
26 187322,00 are 4854 174
R7 315792,00 474 5219 165
28 322848,020 524 5187 168
2% 356580,00 536 5357 170
30 227416,00 496 5533 176
3 375221,00 45¢ 5709 172
32 234720,00 493 5871 166
33 197358,00 48g €044 173
34 2927%4,00 54% 6218 174
35 2378710,00 513 6395 177
36 3971572,00 506 6567 172
37 338845,09 41y 6733 166
38 ¢83974,00 506 6903 170
39 355220,00 530 7273 172
42 324407,00 544 7248 173
44 363540,00 470 v42} 173
42 283745,00 483 7592 174
43 174523,00 461 7763 174

Table 2.2 Results from R Wave Detector for Data File IN.5
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N AMP* S| OPE SLOFE R ReR
1 638420,00 639 224

F] 601196,00 631 423 199
3 Teanie, 00 636 629 286
4 b24162,00 &3 834 225
5 625779,00 634 1028 194
6 618700,00 619 1226 198
7 658125,00 635 1434 295
8 642178,00 622 1634 233
9 635680,00 653 1828 194
10 646323,00 625 2o2e 194
11 600392,00 632 2ez2 230
1e 666357 ,00 633 2422 209
13 $83128,00 €30 2614 192
14 522886,00 629 2807 193
1S $72962,00 631 3006 199
16 656057,00 632 320e 196
17 607910,0¢ 629 3387 185
18 554226,00 63p 577 190
19 625443 ,00 645 3177 230
2e 6€38392,0¢ 655 3989 223
e 538248,00 b2 4176 §96
ee 500185,29 636 4378 222
23 b12315,0¢ 633 4586 208
24 605422,00 640 4790 204
es 6Q2147,00 s24 4989 199
26 $525820,00 626 9194 245
27 522110,00 635 5398 204
28 585972,00 6Uy 5593 19%
29 590187,00 636 57191 198
3 6R4144,00 64y 5997 226
3 685035,00 661 €204 287
32 $44208,00 638 64@5 291
35 6R9224,00 642 6613 208
34 548886,00 64p 6828 2158
35 593388,00 637 7038 210
36 578716,00 617 7239 231

Table 2.3 Results from R Wave Detector for Data File IN.20
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N AMP2SLOPE S| 0PE R RuR
1 575991 ,00 047 376
e bA165Q,00 606k ble 23s
3 5573118 ,00 619 854 ede
4 S57T9723,00 614 1093 239
5 595074%,00 652 1325 232
[ e6005%0,00 659 1548 223
4 Jo4n1e,00 594 1778 23e
8 461610,00 602 2ea9 23y
9 608854,00 637 2239 239
19 6TRp735,00 £80 464 2as
11 653016,00 bes 2692 228
ie 956665,00 587 2936 244
13 624193,040 6b24d 3185 49
14 562120,00 h62 3420 235
15 4735295,00 tdn 3655 3 ]
16 474e40,00 593 5899 244
17 616791,00 607 4142 243
18 664796 ,00 b4p 4373 2314
19 586440,00 663 4596 223
2@ 620732,00 632 4821 2ed
2t 5492855,00 625 50595 234
ee D7134€,00 611 5294 239
es 638420,00 663 5526 ese
24 S67120,00 629 5758 232
25 Ye7862,00 601 %998 24
26 544840,00 617 0235 a37
27 463246 ,00 632 6463 a3
28 653646 ,00 683 6680 215
29 592620,Q0 682 Y. 1Y 212
kY| 601620,00 614 7185 213
34 529440 ,00 S5% 7323 218
LY 6b7454,00 €57 7544 2al
53 042648 ,00 656 1171} el
Table 2.4 Results from R Wave Detector for Data File IN,30
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N AMP S| OPE SLOPE R Qwk
| 4961 7,00 Y3 196

P 3175a4,00 con $34 148
3 122696 ,00 219 424 9
4 3717640,00 211 637 215
5 3I5600,00 199 176 159
[ 98580, 00 289 Be7 93
7 58¢294,00 °Ls 1869 193
B 242718,00 189 1198 138
9 92112,uu 2n7 {285 817
19 50564 ,04 208 1497 212
119 36942 ,00 175 1635 154
12 112187 ,08 209 17¢5 98
13 H36494,00 coa 1915 192
14 2ATST .0 186 2452 137
15 {3540, 06 ene 2149 93
16 ba774,09 oM 2351 286
17 24628,00 182 2497 146
18 102567 ,00 233 2984 87
19 49395 ,00 19¢ 2799 215
en 19662 ,00 169 2935 146
el 93240 ,¢0 187 30028 93
27 35772, 00 20q 3218 190
FX] 2883k, 00 167 3362 144
24 94952, Q0 197 3449 8/
2s S4028,¢0 192 36n8 209
26 2N336,Q0 189 3792 134
27 #9250 ,00 169 3888 96
28 Y4298 ,00Q 194 4@93 2a5
29 2719502,00 196 4242 149
LY 1urry1e, 09 216 4330 88
31 63640 ,00 191 45139 245
se 0414,00 167 4666 134
53 1043992 ,00 enn 4766 124
34 595566,00 216 4933 16/
35 4au8e ,ne 198 SUSE 125
36 4972%,n9 209 518¢ 124
37 86673,00 173 59299 117
58 63168,002 194 5461 162
59 57515,00 176 5631 174
43 49720,p0 °ay 5819 114
41 42467,08 192 9964 199
42 97658,00 19% LY LR 87

Table 2.5 Results from R Wave Detector for Data File
HUANPVCS
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N AMPaSL OPE SLOPE R R=R
1 18792,00 116 2217

Q 14833,046 98 384 154
4 16791 ,00 116 533 152
i 12388,00 191 692 159
5 3276,00 45 798 106
6 15642 ,00 11% 1024 232
7 17255,00 110 1190 162
) 14175,00 120 1348 158
9 528¢,0¢ 108 1502 194
12 4312,00 57 1649 147
11 1829§,00 1014 1800 151
12 26924 i 126 1951 154
13 selie,nd 133 2145 154
14 28476,00 140 2257 152
i 34p75,00 158 2416 159
16 242%2,00 136 2581 165
17 58148,00 165 2744 163
18 29555 ,n4d 134 29@14 157
19 30722 ,00 152 3061 160
29 10595,00 65 3166 125
21 32492,04 135 3399 229
22 24918, 152 3559 15%
23 31255,20 142 3712 162
24 28320,090 150 3866 154
2% 21744,00 146 4@16 150
26 28896 ,00 150 4372 154
27 27132,00 144 4323 153
28R 27664,00Q 146 447 148
29 23%552,00 146 4624 153
3n 3132,00 38 4125 101
3 32562,00 138 4942 211
52 39222,400 141 5992 150
43 25864 ,04 135 9246 154
34 16566,00 133 5395 149
3y 32702 ,00 148 5549 $150
36 21156,00 147 5686 141
37 23544,00 128 58314 145
38 17776,00 107 5983 152
39 4968 ,00 65 6086 123
40 24696 ,00 126 6300 214
41 30226,09 136 6451 151
4 25338,00 147 6602 151
43 29348,00 116 6759 157

Table 2,6(a)

Results from R Wave Detector for Data
File HARNETPVCS
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N AMP* S OPE S|.OPE 1] R
44 13453,04 112 0911 19¢
45 25920,00 148 1068 157
46 32508, 00 132 1226 198
47 29%1ee,%49 139 7515 149
48 16920, 04 111 1537 162
49 24340 ,0v 123 71695 198
52 18928,0¢ 13 1360 165
91 222712 ,04 13p 8236 it1e
52 2n3sd,pa 149 8211 1715
533 22018,024¢ 140 8378 1e?
54 2a83@,09 136 8543 165

Table 2.6(b)

Results from R Wave Detector for Data
File HARNETPVCS
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N AMPxSLOPE SI.OPE R ReR
1 7T6744,09 211 21¢e

e 57330 ,00 esy 396 184
3 781592 ,00¢ 2c4 499 133
4 62900, 00 232 192 293
5 73486,00 ees 982 194
6 81636 ,00 2a2 1212 23
7 66132,00 219 1457 245
8 b1246,00 230 1696 239
9 63040 ,00 e 1936 249
12 43348,00 192 2147 211
it /13483 ,09 eyl e3ab 199
1e 81719,.,00 ce 2561 215
13 645008 ,04@ 234 2167 246
14 66946 ,00 ea7 2964 197
15 75621 ,00 et 3171 2a7
16 65520,00 238 3379 298
17 aad iz v 2e9 3582 cas
i8 73218 ,0¢ ¢4y 1808 cahb
19 84927 ,00 ede 4019 211
2 79758,09 22¢ 4236 217
21 63954 ,00 243 4458 2ae
ee 8l2u4,00 213 4661 ads
23 05824 ,00 eee 4794 133
24 12618,08 236 5270 ele
es 69888,04 232 5254 184
26 6ATSR, N0 e2e 54495 191
27 13925,00 22k S627 182
28 602990 ,0¢ 208 5802 175
29 85690,00 ees 5949 117
3 61840,00 ele 6174 255
34 72434 ,00 exr 6357 183
3e 51488,00 197 6538 181
33 510602 ,04 173 6735 197
54 56496,00 239 6949 214
35 T2420,89 248 7149 ¥}
36 hdg14,00 198 1336 187
57 6666 ,00 el2 1523 187
58 8549@,090 °3e 7629 126
33 674588,00 ede 7983 214
49 6l18e2,04 2Se 80278 175%
41 HIBRQ, 00 eid B29e 174

Table 2.7 Results from R Wave Detector for Data File

SPOONPAC
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N AMPRSLDOPE SLOPE R ReR
i 12136,00 128 171

? 950 46,00 229 334 163
3 90288 ,00 205 Spe 168
4 57@35,00 196 672 168
5 5542¢,00 206 835 165
b 38288,040 167 1203 168
7 R0, 00N 24y 1174 1714
) 86724, 207 1344 112
9 3620,09 65 1471 127
12 79050, 00 187 1087 216
11 61685,00 214 1854 167
1 11857 ,00 213 224 {7a
13 85140,00 220 21938 169
14 72581,04¢ 221 2357 {64
19 731486,00 173 2524 16/
16 871435,00 208 2692 168
17 79346 ,00 199 2868 176
18 92153,00 eie 3247 179
19 54522 ,00 197 3229 1718
en 366p2,00 191 34292 175
21 69640 ,00 199 358¢ 182
ee 74%8¢,0¢ 20y 37152 170
23 S58320,0@ el 3918 166
24 715647 ,00 eee 49289 17
es 41478,04 1847 4257 168
2h 84534 ,09 2ns 4427 17e
e7 64288 ,00 184 4596 169
28 n8442,040 ea? 4762 166
en 86112,00 299 4928 166
32 71526,048 rd L) 9495 167
5 29904, B0 197 5247 162
32 1A666,00 e3p 5449 lae
33 8714806,00 fe9 5594 171
54 174594,00 232 STk 174
i35 95494 ,048 95 5923 159
36 BU14B, 20 186 6128 aas
37 71940,00 235 63ue 174
38 1312%,00 95 6449 138
39 73617,00 eal bb34 194
4 281v0,08 18¢@ 6788 154
41 671868,00 19% 6944 156
42 7599¢,00 23 Tine 158
43 65330, 00 20s 72713 171

Table 2.8(a)

Results from R Wave Detector for Data

File BLOOM
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N AMPxSLOPE SLOPE R Rar
44 65564 ,00 202 7442 169
45 b862,04 748 71589 147
46 75164,00 e 78@¢2 24
47 59940 ,00 185 1975 173
48 4560,00 62 8097 122

Table 2.8 (b)

Y-

Results from R Wave Detector for Data
File BLOOM




N AMPXSLOPE SLOPE R ReaR
1 X3e28,00 162 235
2 414490,00 ent 336 101
3 42884,00 176 460 124
4 38478 ,00 167 559 99
S 20870,00 178 652 93
&6 22856 ,00 157 1402 88
7 2729¢,00 185 852 11e
8 30784,00 17% 969 117
9 37668,04 2u9 1098 129
12 6489 ,01 82 1219 12t
it 16020,00 125 1345 12h
12 2u169,00 165 1460 115
i3 39198,00 1838 1594 134
14 37697,00 172 1739 145
15 20440 ,00 153 1892 113
16 12969,00 134 1952 109
17 4Q764,29 09 208s 135
i8 29344,00 152 2178 93
19 3193%6,00 169 2314 136
r4' 17622,00 139 241 143
21 32809,00 196 2956 139
22 S216,00 100 2708 152
23 48944 ,00 1177 28pv 92
24 2983¢,00 199 2889 85
es 313142,00 149 2998 113
26 I6608,00 181 3985 87
21 36580,00 166 3177 3
28 19992,0¢ 118 3327 152
29 35133,00 206 3439 112
3a $481715,00 165 546 yat
31 S6980,00 eel Jode 96
32 14231,00 140 3735 93
33 41216,0¥ 158 3905 17e
24 35086,09 163 4425 120
55 32115,09 149 4134 129
36 S2052,08 179 4eel 89
37 49517 ,00 231 4343 120
38 531%50,00 178 4474 131
19 s4750,00 164 45814 1a7
4@ 43875,00 185 4675 94
41 44892 ,04 28 4768 93
de 39732,09 183 4856 88
43 47894,00 19¢ 5006 150

Table 2.9(a) Results from R Wave Detector for Data
File CUNATFIB
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N AMPuS| OPE SLOPE R ReaR
44 36224,00 174 5114 128
45 54299,00 194 5251 137
46 38440,00 214 5347 96
47 343520,00 176 5435 a8
48 25536 ,00 152 5535 120
49 47922,00 229 5626 91
50 19836,00 124 5730 124
514 . 5403k,00 176 5864 134
5@ 57510,90 183 5957 93
93 8307 ,00 123 6276 119
54 43245,a0 224 6176 120
5% 33374,20 170 6268 9¢
56 38870,00 235 6351 83
57 33396,00 157 6437 86
58 3344,00 78 6522 85
59 39249,00 161 6638 116
60 29304,00 163 6758 12u
61 21092,0¢ 143 6869 111
62 e5872,00 143 6994 125
65 53288,00 142 7296 122
64 35179,80 136 7212 116
65 44688,00 154 7308 96
66 34844, 143 7450 142
67 3479,0@ 80 7555 125
68 32315,00 176 1652 97
69 31970,0¢ 166 1764 112
72 68250,00 182 1852 86
71 29868,00 163 7938 88
12 31405,0¢ 154 Bp23 85
73 48504,00 200 8109 86
14 48620,00 172 8192 83
15 28900,00 194 8284 92
76 49319,pn@ 182 8371 87
71 34026,09 190 8459 88
78 23364,00 148 8552 93
79 34866 ,00 159 1Y% 115
42 33672,00 190 8755 88
By 32960¢,00 154 8845 90
82 31772,00 176 8984 139
83 24378,00 173 9897 113
84 5626,00 197 9249 112
85 41793,00 188 9288 79
86 27572,080 154 9367 79

Table 2.2 (b) Results from R Wave Detector for Data
File CUNATFIB
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N AMP*SLOPE SLOPE R ReR
87 57845,00 200 9484 117
B8 30429,0¢ 150 9597 115
89 54726,00 194 9687 9¢
90 32130,09 184 9780 93
94 21888,00 132 9881 104
92 29344,00 143 9964 83
93 40081 ,00 187 18074 110
94 42174,00 219 10159 8%
95 45510,00 23¢ 18238 19
96 52034,00 183 18355 117
97 38280,00 159 10444 49
98 35340, 00 1914 1us542 94

Table 2.9(c)

Results from R Wave Detector for Data
File CUNATFIB
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CHAPTER 3

CATEGORIZATION OF CARDIAC ARRHYTHMIAS

3.1 Introduction

The main goal of cardiac rhythm analysis is to classify ECG/VCG's
into various diagnostic categories or arrhythmic patterns, Cardiac
arrhythmias result from disturbances or alterations in the normal
mechanisms of cardiac activity. Such disturbances manifest themselves
as changes in the contours of the P waves and QRS complexes, absence
of the P or QRS complexes, or irregularity of the P-P, P-R, or R-~R
intervals. Therefore, a complete categorization of cardiac arrhythmias
must take all these characteristics into account. However, since only
the R-R interval data will be used in this study to test feasibility
of the proposed detection methods. Thus, in the following an attempt
is made to categorize cardiac arrhythmias based on the use of R-R
intervals only. Due to the fact that no P wave information is used
in this classification, all the arrhythmic patterns which have the
same R-R interval characteristics will be classified into the same
category. No QRS contour information is considered either; hence the
abnormality of the QRS complex is not of interest in this study.

All the arrhythmic patterns are first divided into two distinct
families: (1) persistent rhythms, (2) transient events. In each
family, further classification into various classes are made, based
on the clearly identifiable R~R interval patterns. We have attempted
to devise a set of classes that include most arrhythmias. These
classes will form the basis for our statistical analysis and detection

schemes,
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3.2 Persistent Rhythms

All the cardiac arrhythmias which have a persistent rhythmic
pattern belong to this family. Four classes are further identified
in this family.

(1) small Variation

This is the category for R-R intervals which exhibit small but
random deviations from the mean value of the R~R intervals and its
R~R interval pattern is shown in Figure 3.,1. Here only the QRS com-

plexes, which are represented by impulses, are shown.

Figure 3.1 R-R Interval Pattern for Small Variation

This class includes:
(a) normal sinus rhythm (60-100 beats/min)
(b) sinus tachycardia (>100 beats/min)

(¢} sinus bradycardia (<60 beats/min).

The rate used to distinguish between these three cases is based
on the mean value of the R-R interval. Note that 2:1 SA block may be
indistinguishable from sinus bradycardia here,

(2) Large Variation

This class is characterized by a large but random variation in
the R-R interval sequence from the mean value. This class contains,
among others:

(a) sinus arrhythmia

(b) atrial fibrillation
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The R~R interval pattern for large variations, is shown in

Figure 3.2,

Figure 3.2 R-R Interval Pattern for Large Variation

(3) Bigeminy

This class is characterized by R~R intervals which are alterna-
tely long and short as shown in Figure 3.3. The causes for this
cardiac arrhythmia are:

(a) a premature contraction following every normal

contraction (coupling)

(b) the presence of an AV block of every third

auricular impulse,

I N N S

long-short

Figure 3.3 R-R Interval Pattern for Bigeminy

(4) Trigeminy

This class is characterized by R-R interval sequence which takes
one of the following patterns: normal-short-~long, normal-long-short,
short-short-long or long-long-short. The causes for these patterns
are due to the’following cardiac disturbances:

(a} a premature contraction that reqularly follows

every two normal heart beats

(b) two consecutive premature contractions following

a normal heart beat

~50-



(¢) a complete AV block of every fourth impulse.

The four possible patterns in this class are show in Figure 3.4,

| | | ]

normal-short-long

L l ||

normal-long-short

I I N SR B R B

short-short=long

i | | | |

long-long-~short

Figure 3.4 R-R Interval Patterns for Trigeminy

3.3 Transient Events

All the cardiac arrhythmias which do not have a persistent
pattern shall be included in this family. The occurances of the
cardiac arrhythmias in this family are totally unpredictable.

Several classes are also identified in the following.
(1) Rhythm Jump

This class is characterized by a sudden change of the heart rate,

which occurs in the case of onset of bradycardia or tachycardia. The

R-R interval patterns are shown in Figure 3.5.

onset of tachycardia
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onset of bradycardia

Figure 3.5 R-~R Interval Patterns for Rhythm Jump

(2) Non-Compensatory Beat

This class is characterized by intermittent premature QRS com=
plexes in which there is incomplete compensation of the R-R interval
subsequent to the premature beat or by dropped QRS complexes in which
a much longer than normal R-R interval results. The patterns are
shown in Figure 3.6. This class includes:

(a) sinus arrest (persistent loss of impulses)

(b) sA block

(¢) atrial prematures

l | | | |

premature

block

Figure 3.6 R-R Interval Patterns for Non-Compensatory
Beats

(3) Compensatory Beat

This clasé of arrhythmias is characterized by intermittent pre-
mature QRS complexes in which complete compensation of the R-R inter-
val is achieved subsequent to the premature beat. Thus, thelinterval
between the QRS complex preceeding the premature and the post-premature

ORS complex is equal to two normal R-R intervals. The associated
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R-R interval pattern is shown in Figure 3.7.

- 2% 2%

Figure 3.7 R=-R Interval Pattern for Compensatory Beat

This class includes:
(a) AV nodal prematures

(b) wventricular prematures

(4) Double Non-Compensatory Beat

This arrhythmia class is characterized by one of the following
patterns: (1) an underlying uniform R~R interval upon which is
superposed intermittent extra or ectopic beats called interpolated
beats (these extra beats do not interfere with the normal ventricular
rhythm); (2) a double premature, or (3) two consecutive dropped beats.

The patterns are shown in Figure 3.8,

o T - X TS

N N N N B

interpolated beat

L] |

double premature

AN A NN IS N N

double block

Figure 3.8 R-R Interval Patterns for Double Non-Compensatory
Beat
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Tt shauld be emphasized that the choice of classes made here
reflects significantly different structural characteristics of the
R-R interval pattern only and does not include either P-R or R~-P inter-
vals, or the equally important P-P intervals.

There is another important class of arrythmias which can be
detected without resorting to detection of P waves, This is the im-
portant class in which there is an unusually large amount of high~
frequency energy. This class includes fibrillation and flutter and it
appears that detection can be accomplished by use of digital high pass
filters. It should be pointed out that the classes described in this
chapter are used to form the basis for our detection and classification
techniques. There may be other classes which are not considered here.

Any further classes can be handled in a similar manner.
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CHAPTER 4

STATISTICAL ANALYSIS OF R-R INTERVAL DATA ¢

4.1 Introduction

In this chapter we will discuss some statistical tests for the
analysis of R-R interval data. The motivation for this statistical
analysis of the R-R interval data is to determine the statistical
characteristics of each different arrhythmia class that we wish to
detect and identify. These statistical characteristics could possibly
be used by themselves in performing the detection and classification
of the arrhythmias, or they could be used as important information in
the development of more detailed dynamical models of R~R interval be-
havior. Having such mathematical models, we could design more sophis-
ticated statistical detection and identification algorithms for per-
forming the automatic rhythm analysis (several such techniques are
discussed in Chapters 6 and 7). A detailed description of each sta-
tistical tests we wish to perform on the R~R interval data is given
first in Section 4.2. The formula needed to perform the tests are also
derived. Finally, a wide variety of actual data are tested, and the

results are given in Section 4.3.

4,2, Analysis

4,2.1 Histogram, Sample Mean and Sample Variance

Assume that we are given a sequence of R-R intervals:
v(1), v(2),00a,v(k), .. y(n), where y(k) is the kth R-R interval and n
is the total number of R-R intervals in the ECG/VCG record which we

would like to analyze. The onset of the ventricular activity is random
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in the sense that even for a regular normal rhythm the R~R intervals
are not exactly the same; rather they have small random deviations

from their mean value. Therefore, the given R~-R interval sequence,
y(i), i=1l,...,n, should be treated as a discrete random process.
However, if we do not care about the order in which these R-R intervals
are given, y(i), i=l,...,n, can then be considered as samples of a ran-
dom variable ¥, All the possible samples form the sample space of this
random variable, and the probability that Y will assume a particular
value lying in this sample space is given by the frequency function or
the probability density function. Hence a random variable is completely
specified by giving its sample space and frequency function. In our
case, the random variable ¥ is the R-R interval, which can only take
positive integer values (because our digitized approach quantize the
intervals), therefore the sample space is the set of all positive integers.
From this statistical standpoint, the different arrhythmia classes are
then characterized by different frequency functions only, because their
underlying sample spaces are all identical. Therefore if we can find
the frequency functions associated with each arrhythmia classes, then
the problem of detection and classification of arrhythmias would be
simplified considerably. Although an analytical form of the frequency
function is usually hard to get, we can graphically display this func-
tion by generating a histogram of the R-~R intervals in the record. For
different arrhythmia classes the associated R-R interval histogram
patterns would hopefully be quite different; hence by examining the R-R
interval histogram pattern we obtain useful classification information.

One would also like to know some of the simple statistical
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parameters associated with the frequency functions, as these few numbers
often provide useful information and are far more easily dealt with
than an entire histogram. The most obvious statistic one would like to
get is the sample mean, ms, over all the R-R intervals contained in a
record. The mean thus gives the average value of the R-R intervals one

would expect to see and is computed as

n

_ 1 .

T Z y (1) (4.1)
i=1

Such a piece of information can be useful in detecting tachycardia, or
bradycardia.

In many cases, the information in the sample mean is not sufficient
to distinguish all the arrhythmia patterns we wish to identify. For
example, a regular normal rhythm may have the same mean R-R interval as
a bigeminy, even though their R-R interval patterns are very different
(one is very regular and the other has frequency function with two
peaks). Therefore, one would like to have a measure of the variation
of the R~R intervals away from the mean value. One such measure is pro-
vided by the sample variance over all the R~-R intervals contained in
the record,

The sample variance oz is the mean~squared value of the R-R inter-
vals about the sample mean, and Os is the r.m.s. deviation or standard

deviation; thus,

n
! _ 2
g = = z:[y(l)—ms] (4.2)
i=1
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The reason for using (n-1) instead of n for the average in Equation
(4.2) is we want an unbiased measure of the variance [38]}. From
Equation (4.2) we see that a large variance means that the data may
vary widely from the mean value, and a small variance means that the
sample mean is a pretty good estimate of the data. Thus, by computing
the sample variance, we can distinguish, for example, a bigeminy or

sinus arrhythmia from a normal rhythm which has regular R-R intervals,

4.2.2 Running Mean and Running Variance

Thus far we have introduced the statistical concepts of R-R inter-
val histogram, sample mean, and sample variance by considering that the
given R-R intervals, y(i), i=1,2,...,n, are samples of a random variable
Y. These simple statistical concepts provide us with some very important
information for use in the detection and classification of the cardiac
arrhythmias. However, due to the fact that we have not considered the
order in which these R-=R intervals occur we will not be able to distin=-
quish, for example, a sudden rhythm jump from a bigeminal rhythm, or a
gradually slowing normal rhythm from a sinus arrhythmia. Therefore,
other statistical concepts are necessary that in some sense take into
account the sequential variations of the given R-R interval sequence.

In other words, we are also interested in knowing the values of some of
the simple statistical parameters at each instant of time k. In prin-
ciple, one might wish to compute the mean and variance at each time k,
k=1,...,n; however this is not possible, since we only have one sample
at each time. One alternative might be to use the running mean, m(k),

which is given by:
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k
m(k) = = z :y(i) k=1,...,n (4.3)
k 4
i=1

In the case when k=n, Equation (4.3) reduces to Equation (4.l1), thus we

have
m{n) =m (4.4)
S

It is more efficient for computing to put Equation (4.3) into a

recursive form. Rewriting Equation (4.3) in the following form

k-1

v(i) + v(k) k=1l,...,n (4.5)
1=1

m(k)

[
bl L

and using Equation (4.3) for k=k-1, Equation (4.5) becomes

m(k) = = [(k=-1)m(k-1)+y (k)] k=1l,...,n (4.6)

bl

Equation (4.6) thus gives us the desired recursive form for computing
the running means. The running mean m(k) gives the mean value of the
R-R intervals up to time k; hence if the running mean m(k) begins to
change markedly, one might be able to detect the onset of tachycardia
or the presence of some other arrhythmic activity.

The variance of the R-R intervals at each time k, Oz(k), is given

as

e

1
k-1 4=

P = D @ - m01> ke=2,....n (4.7)

where m(k) is computed from Equation (4.6). For k=n, Equation (4.7)
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is just Equation (4.2); thus,

o (n) = oz (4.8)

. . 2 .
One would also like to write the running variance, ¢ (k), in a

recursive form. Expanding the square in Equation (4.7), we have

k
(k) = ;{-f—l 2 :[yz(i) - 2y(iim(k) - m2 ()] K=2,...,n (4.9)
i=1
or
k k
5% (k) = o D2 - 2 ovim®) + kel | k=2,...,m  (4.10)
i=1 i=1

Upon using Equation (4.3), Equation (4.10) becomes

k

ol (k) = x D030 - kP | k=2,....m (4.11)
i=]

Equation (4.11) is still not in a recursive form, because of the first

term in the bracket; therefore we define a new quantity as follows
k
1 2.
R (k) = = :E:Y (i) (4.12)
0 k ]
i=1

Where Ro(k) is another statistical quantity, the mean-squared value.
Equation (4.11) can then be rewritten in the following form, by

substituting Equation (4.12) in Equation (4.11):

2 k 2
o (k) = E:I'[ Ro(k) -m (kﬂ (4.13)
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with k=2,...,n. The mean-squared value, Ro(k), can be computed using

the following recursive equation

[-1) R (k-1) + v (k) ] (4.14)

bl Ll

Ro(k) =

Therefore, using Equation (4.13) we can compute the running
variance recursively, where Ro(k) and m(k) are given by Equations (4.6)

and (4.14), respectively.

4,2.3 Sliding Window Mean, Variance, and Outlier Test

One problem with the computation of the running mean and running
variance at each time k over all the k R-R intervals is that they are
very slow in responding to a change in R-R interval behavior. By
examiningEquations (4.6) and {(4.7) we can see that as k gets larger,
the new piece of R-R interval y(k) is weighted by a small factor 1/k
and 1/k-1 for computation of running mean and running variance, res-
pectively. Therefore a sudden change of the R-R interval behavior at
large k will not change the running mean and running variance by much,
and thus we might not be able to detect this change. This is not
surprising, since the running mean m(k) and variance Oz(k) are
statistics based on the assumption that the first k intervals have
similar probabilistic properties.

In order to overcome this problem, we can compute a sliding window
mean and variance, i.e., at any instant of time k, we only use the last
% R-R intervals, and % is the sliding window width. This is equivalent
to assuming that the R-R intervals are slowly varying (quasi-stationary)

in a statistical sense. Thus, the equation for computing the mean can
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be written as:
k
1
m(k) = ¥ :E: y(i)  k=L,2+1,...,n (4.15)
i=k~2+1

Again, rewriting Equation (4.15) in a recursive form, we have

m(k) = m(k-1) + %-[y(k)~y(k-2)] k=2,%41,...,n (4.16)

where m(k) for k<f is computed using Equation (4.6). The equation

for computing the sliding window variance of width % is

k

) = - D Iy()-m(k)1? k=R, 841,...,n (4.17)

Sty Y

, . 2
In order to get a recursive relation for 0 (k), we define

k

R_ (k)
0 i=k=2+1

which can be rewritten as:

2
L2 Y (4.18)

1 2 2
Ro(k) = Ro(k-l) + E-[y (k)-y (k-2)] (4.19)

Substituting Equation (4.18) into Equation (4.17), we have

?0) = 2 RGO =~ o001 k=f,+1,...n (4.20)

-1

Where Ro(k) and m(k) are computed from Equations (4.19) and (4,16),

respectively .«
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From Equations (4.16) and (4.17) we can see that all the R-R
interval data are weighted with the same factors 1/% and 1/%~1 for
sliding mean and variance, respectively. These factors are not changed
with the time k, and therefore, these statistical parameters will res-
pond to behavior of the R-R interval sequence that is not constant over
the entire time sequence of interest, and the instant at which this
erratic behavior happens will be more easily detected.

At this point we would like to discuss another statistical test
that is useful for detecting the transient events in an R=-R interval
sequence. From Chapter 3, we see that all the transient arrhythmia
classes are characterized by either a longer or shorter R-R interval
(relative to the preceding pattern), or a combination of both. Therefore
a satisfactory test should detect both the magnitude and sign of the
change of the aberrant R-R interval. A simple statistical test which
will perform this task is an outlier test, which is an effective test
for distinguishing a piece of data from a particular ensemble, which is
specified by some statistical parameters.

In our case, we wish to detect the ectopic event on top of an
underlying normal sinus rhythm; hence, the ensemble is formed by all
the R~-R intervals of this underlying normal rhythm. For an ectopic
event, we would expect that the R-R interval is very different from
the ensemble which contains the usual R~R intervals and is characterized
by the running mean m(k) and standard deviation O(k). Therefore, an

outlier test on a new R-R interval y(k+l) is given as:

y(k+l) - m(k) A
o (k) -0 (4.21)
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for o > € : declare an ectopic event with a longer R-R

interval

o < -g : declare an ectopic event with a shorter R-R

interval

where € is a positive valued threshold that represents how many
standard deviations of variation we are willing to tolerate before
declaring an.interval to be an outlier. The guantities m(k) and
o(k) in Equation (4.21) are computed according to Equations (4.6)
and (4.13), respectively, for the case that ld|§.€. However, in the
case that [al> € we will exclude this new R-R interval y(k+l) from
the computations of m(k) and o(k).

By using this simple outlier test one could in principle detect
the various transient rhythms described in Chapter 3., For examnle, an
o < =g follows by an o > € is the indictive of a compensatory beat,
and two consecutive o > € might be classified as a double non-compen—

satory event.

4,2.4 Correlation Functions and Scatter Diagram

All the statistical tests described sc far do not tell us anything
about the sequential nature of the pattern of the R-R intervals.
(although those just described in Section 4.2.3 do deal time variations.)
In other words, if the given R-R interval sequence has a periodic
pattern, one will not be able to identify it using the previously in-
troduced statistical tests. However a test to identify a periodic R-R
interval pattern in arrhythmia analysis is very important, since two

of the arrhythmic classes we wish to detect and identify - bigeminy
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and trigeminy - are of this nature. For a bigeminal rhythm, the R-R
interval sequential pattern is: 1long, short, long, short, etc., thus

we have

vy (i) = y(i+2) i=1,2,... (4.22)

(where = is used to indicate "to within small random variations"), which
is a periodic function of period two. Similarly for a trigeminal rhythm

of a period of three, we have
y{(i) = y(i+3) i=1,2,... (4.23)

An available statistical test which could be used to aid in detec-
ting these periodic patterns is the sample correlation. For a given
sequence of data points, y(i), i=l,...,nh, the correlation function
RT(k) is defined as follows:

k-1

_12..
RT(k) = 5T & v(i)y (i+1) k>T (4,24)

which is the average over data points up to time k of the correlation
between data points T time units apart. These numbers are computed in

general for several values of T. For 1=0, Equation (4.24) becomes

k
1 E 2
Ro(k) =% & y (i) (4.25)

which is identical to the mean-squared value defined earlier in Section
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4.2.2, Equation (4.24) can be rewritten recursively as

1
R (k) = E:?-[(k—l-T)RT(k—l) + yk-T)y(k)]  k>T (4.26)

A possible method of utilizing these correlation functions to
detect a periodic function is illustrated by an example. Suppose we
are given a bigeminal R-R interval sequence y(i), i=1,...,n, which has
a pattern of long, short, long, short, etc. 1In the ideal case we have

the equality

y(i) = y{(i+2) i=1,2,...,n=-2 (4.27)

or, upon rewriting Equation (4.27) out explicitly:

y (1) y(3) Y(5) caeienee (4.28)

1]

1
It

y(2) y(4) Y(6) ciieacnn (4.29)

and y(1) > y(2).

The sample correlation functions are then computed for different values

of T using Equation (4.24) for k=n:

n
R (n) = = > vy for T=0
n F)
i=1
F n-1 ]
R, (n) = —=— y i)y (i+1) for T=1 (4.30)
1 n-1 :
-n—2 ]
R2(n) = ;%5 v{i)y(i+2) for T=2
i=1 ]
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Using Equations (4.27) through (4.29), and assuming that n is even,

Equation (4.30) can be reduced to:

_1ln 2 n 2 _11.2 2
Ro(n) —;[E-y (1) +5y (2)] =3 [Y (1) + vy (2)]
Rl(n) = ;l—}-_-]-_-[(n—l)y(l)y(m] = y(1)y(2)
(4.31)
1 |n-2 2 n-2 2 12 2
R2(n) —;3 [-—2— y (1) +T v (2)] =3 [y (1) + v (2)}
1 -
R3(n) = ;:5-[(n—3)y(l)y(2)] = yv(1)y(2)
which implies
Ro(n) = Rz(n) = R4(n) = e (4.32)
and
Rl(n) = R3(n) = Rs(n) = ... (4,33)

Note that since a squared quantity is alway greater or equal to zero,

we have

[y - y1% >0 (4.34)

or,

2R 4yl 2 y @y (@) (4.35)

where the equality holds for y(1) = y(2) (where all of the beats are

of the same length). Hence from Equation (4.31), we have
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Ry(n) > Rl(n) (4.36)

The relations given by Equations (4.32), (4.33) and (4.36) are thus the
condition for a bigeminal rhythm.
From these relations, we can devise simple tests for bigeminy.

For example, as we have seen bigeminy is characterized by

Ro(n) Rz(n) (4,.37)

and we may have a rule that we declare an R-R interval sequence to be

bigeminy if

Rz(n)

v

(l—e)RO(n) (4.38)

where € is a small positive number. One could, of course, consider more
complex tests - involving R4, RO' etc., but these will entail more and
more calculations on-line. In addition, from Equation (4.30) we see
that RT(n) has only n-T terms in it. Thus, the higher order correla-

tions, such as R

4’ are more apt to have large errors due to small sample

sizes. In any event, the main point of this example is to illustrate
that the correlation function contains extremely useful diagnostic infor-
mation concerning the sequential correlation of a string of R-R
intervals.

Another mechanism which could also be used to detect a cardiac
rhythm which has some periodicity is considered here. From Equations
(4.22) and (4.23), we see that the R-R intervals of a rhythmic pattern

which has a periodicity of two have the following relations:
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i
I
I

y (1) y{(3) v (5) ceene

(4.39)

1
Il
i

v (2) v{4) v (6) cnanse

and for the R-R intervals of a periodic pattern of period three, we

have

y(1) = y(4) = y(7) = .....
y(2) = y(5) = y(8) = ..... (4.40)
y(3) = y(6) =y(® = .....

This motivates the computation of statistics for every gth beat, i.e.,
the original R-R interval sequence y(i), i=1,2,..., is broken up into

q strings

v{(1l), y(a+l), v(2g+l), «....

v(2), v(g+2), y(2q+2), .....

. (4.41)

vi(g), v2CaQ), v(3Q), eecececen

and then compute the statistics of these strings. Note that Equation
(4.41) reduces to Egquation (4.39) for g=2, and to Equation (4.40) for
g=3. For a periodic pattern of periodicity g, the mean of the overall
pattern would differ markedlly from the means computed based on the gq
substrings, and the variance of the overall would be much larger than the
variances of the g substrings. 1In this way, one could detect a pattern
that has some periodicity.

In Section 4.2.2 we have introduced a simple method to display the

R-R interval data graphically by using an R-R interval histogram. The
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histogram gives us useful information for use in the detection of dif-
ferent cardiac arrhythmias, but it yields no information as to the
sequence of occurrance of various size intervals. Another available
graphical method which will display the correlations between the adja-
cent intervals is the scatter diagram. A scatter diagram is a plot of
points, which have the adjacent intervals as their coordinates, on a
two-dimensional space. This graphical technique will provide us with
more diagnostic information. For instance, since the R-R interval his-
togram does not display the sequence of occurrance of the R-R intervals,
a bigeminal rhythm may not be distinguishable from a sudden rhythm jump.
However, their scatter diagrams will be markedlly different due to the
fact that the sequences of occurrance of the R-R intervals for these two
rhythms are not the same., Therefore a bigeminy and a sudden rhythm

jump will be easily identified by using a scatter diagram, Identifica-
tion of different arrhythmia classes using scatter diagrams will be

demonstrated in the next section.

4.3 Experiments and Results

A program RRARAN was written to perform the R~R interval statistical
analysis described in Section 4.2, A wide variety of both persistent
and transient rhythm data was tested. In addition to the data files
given in Table 2.1, we have also run tests for the data files listed in
Table 4.1. As before the R waves were found using the R wave detector

RRFILE described in Chapter 2.
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Data File Name Diagnosis
#503 Atrial premature contractions
#476 Graduate Slowing of heart rate
#463 Second degree AV block of the
Wenckebach type
#492-1 Atrial premature contraction

Table 4.1 A Summary of Part of the Data Files Used in
the R-R Interval Statistical Analysis
In order to study the characteristics of each different arrhythmia
class, all the data files given in Tables 2.1 and 4.1 are reclassified
into different arrhythmic classes according to the categorization con-

cept described in Chapter 3. This categorization is given in Table 4.2,

Arrhythmia Category

Data File Names

Small Variation
Large Variation
Trigeminy

Bigeminy

IN.5, IN.20, IN.30
CUNATFIB

(1)
HUANPVCS, HUANTRI

#503

Compensatory Beat
Rhythm Jump
Non-Compensatory Beat

Double
Non-Compensatory Beat

HARNETPVCS, SPOONPAC, BLOOM
IN.5+30(2), #476(3)
#463

#492-1

Table 4.2 Categorization of the Date Files Given in Tables 2.1

and 4.1
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Notes:

(1)

(2)

(3)

A study of the R-R intervals of data file HUANPVCS in Table 2.5
shows that the trigeminal pattern persists only over the first

31 R-R intervals. Thus, in order to study the statistical charac-
teristics of a trigeminal pattern, we creat a new pure trigeminal
data file HUANTRI using the first 31 R-R intervals in data file
HUANPVCS.

Since none of the data files given in Tables 2.1 and 4.lhas a rhythm
jump pattern as we described in Chapter 3, a pattern of this type
was created artificially by adding data file IN.30 which has a
slower heart rate to data file IN.5 which has a faster heart rate.
This new data file is denoted by IN,5+30.

We do not have an exactly matched category for data file #476,
which exhibits a gradually slowing heart rate. For the present

study, we classify it in the rhythm jump category.

All the data files were studied in the order given in Table 4.2.

First an R-R interval histogram for each of the data files was gene-

rated. For all the date files except #476 and #463, the range of

the R-R intervals covered were from O to 300 sampling points (250

sampling points = 1 second). With 10 sampling points in each bin, the

whole range was divided into 30 bins. There was an extra bin, which

gave all the R-R intervals which exceeded 300. Therefore, this histo-

gram shows 31 bins altogether. For data files #476 and #463, since

there were many R-R intervals exceeding 300, the R~R interval range

covered was changed to the range of 60 to 400 sampling points. The

resulting histograms are shown in Figures 4.1 - 4.14. A two-dimensional
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R-R interval scatter diagram was generated next for all the data files
with the nth R-R interval as the abscissa, and (n+l)st R-R interval

as the ordinate. The range covered by both coordinates was from O to
400 sampling points. These scatter diagrams are shown in Figures
4,15 - 4,28,

Next, the running mean, running variance and deviation (&)
défined in Equation (4.21) were computed and are given in Tables 4.3 -
4,16, The results of sliding window statistics using a window width
of five are given in Tables 4.17 - 4,29, Next the statistics of every
gth R-R intervals were computed for g=1,...,5, and the results are
given in Tables 4.30 - 4,42, Finally ten correlation functions,
T=0,1,...,2 in Equation (4.24), were computed, and the associated
normalized correlation functions were alsoc calculated. The results
are given in Tables 4.43 - 4,55, From these results, we can make the

following observations:

(1) R-R Interval Histogram

The R-R interval histograms have very small r.m.s. (root mean
square) deviations for the non-arrhythmic data (see Fiqures 4.1 - 4.3)
compared with those of the arrhythmic data (Figures 4.4 - 4.14).

For the fourteen data files studied, the r.m.s. deviations for the
non-arrhythmic data varied from 6.2 to 9.3, while those for the arrhy-
thmic data varied from 16.7 to 71.2. There is a clear separation
between the arrhythmic and non-arrhythmic data for these fourteen data
files, but if we put too much emphasis on these r.m.s. deviations we
may be misled. An example will demonstrate this point, Suppose in
our data file all the R-R intervals are almost the same, with very
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small r.m.s. deviation, except for one R~R interval, which is due to
the presence of an aberrant R wave, say an atrial premature beat. 1In
this case, since there is only one premature beat, the r.m.s. deviation
of those regular R-R intervals will not be changed by much. This
implies that even for a single arrhythmic beat the r.m.s. deviation
over all the data would be small. Therefore, while it is safe to say
that if the r.m.s. deviation of a record is greater than a given
threshold, the record contains arrhythmic data, a small r.m.s. devia-
tion does not necessarily imply that the data is non—arrhythmic.

The range over which the R-R intervals vary is small for non-
arrhythmic data. It only covers 3 to 4 bins, while the arrhythmic
data will cover at least ten bins (see Figures 4.4 - 4.14). Therefore,
it seems reasonable to say that if the range of R-R intervals in the
histogram is greater than 5 or 6 bins, this data is arrhythmic,

The R-R interval histogram tells us more than just whether the
data is arrhythmic or non-arrhythmic; it also indicates to some extent
what type of arrhythmia is in the record. Figure 4.4 clearly shows
the large R-R interval variations about its mean value which is the
indicative of a sinus arrhythmia or atrial fibrillation. Note that
the histogram measures frequency of occurrance of various size intervals
but yields no information as to their sequence. Thus for those arrhy-
thmias that are characterized by a particular sequencing of events,
the histogram can not be used to make a definite diagnosis. Of
course the histogram can give indications of the presence of such
arrhythmias.

Consider Figure 4.5, where the short R-R intervals correspond
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to premature beats, and the long ones to the compensatory beats.
However the trigeminal rhythm pattern is not so obviously identified
in this histogram. This is due to the fact that the trigeminal pat-
tern in HUANPVCS persists only over the first 31 R-R intervals; thus
the non-trigeminal part of the data clouds the pattern. A trigeminal
pattern is clearly evident for HUANTRI (Figure 4.6) by the three
clearly separated R-R interval clusters representing the premature
beats, normal intervals, and compensatory beats. Figure 4.7 clearly
shows that a bigeminal rhythm may be present in data file #503.
Figure 4.8 shows clearly the premature ventricular contractions with
the short intervals and long compensatory intervals., Figure 4.9 and
4,10 are similar to Figure 4.8, with the regular R~R intervals cen-
tered in the histogram and a group of short premature beats and
group of long compensatory beats around it.

A sudden rhythm jump of data file IN.5+30 manifests itself in the
histogram (Figure 4.11); however, this is indistinguishable from a
bigeminal rhythm (Figure 4.7). This again indicates the limited use-
fulness of the histogram. Graduate slowing in Figure 4.12 shows the
R-R intervals cover a large range, which is from 160 to 340 sampling
points for data file #476. The non-compensatory beats are all clearly
identified from the R-R interval histograms (Figures 4.13 and 4.14),
however a double non-compensatory is indistinguishable from a non-

compensatory beat.

(2) scatter Diagram

Scatter diagrams display the correlations between two consecutive

R~R intervals. If all the R-R intervals are reqular with small random
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variations, then all the points in the scatter diagram should be
confined to a small region and its distribution should be circular
because of the randomness. Figures 4.15 - 4,17 show that the points
in the scatter diagrams are confined in a rather small region, but
they are elliptically distributed roughly along the diagonal line x=y, 2
rather than a circle. This implies that the R-R intervals are some-
what serially correlated for normal rhythms. The scatter diagrams
for the arrhythmic data spread over a large region compared with those
of the non-arrhythmic data.

The random variations of the R-R intervals for atrial fibrillation
are shown clearly for CUNATFIB in Figure 4.18. For HUANPVCS (Figure
4,19), a triangular shaped distribution is shown with many points in
three outlying clusters roughly forming the triangle. This pattern
is more obvious for HUANTRI (Figure 4.20). This is indicative of
trigeminy and is of diagnostic use, since the scatter diagram does
reflect the sequencing of the R-R intervals. Two clusters which are
symmetric about the diagonal line x=y are observed for #503 in Figure
4.21. This is suggestive of bigeminy. In Figure 4.22, the compensa-
tory beats are obvious, with the underlying regular R-~R intervals
close to the center of the triangle and the premature and compensatory
beats at the vertices of the triangle. Every time there is a premature
beat the point will move down from the center, The next point, with
the short premature beat followed by a long compensatory beat, will
move up and to the left. After the long compensatory beat, the R-R
interval is back to normal again, and the point will move to the right
of the center first and then back to the center. The distributions
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of Figures 4.23 and 4.24 are similar to that of Figure 4.22, except
that in Figure 4.23 the triangle is bigger and the variations of the
points in each group are larger, and in Fiqure 4.24 the points in the
vertices have relatively large variations.

A rhythm jump is characterized by two clustersalong the diagonal
line x=y, and a single point which has its coordinates approximately
equal to the mean values of the two clusters as shown in Figure 4.25.
Using a scatter diagram, a bigeminal rhythm (Figure 4.21) is clearly
distinguishable from a rhythm jump. In Figure 4.26 a gradually
slowing heart rate has all its points near the diagonal line x=y., This
shows a strong serially correlation in the R-R intervals for graduate
slowing rhythm. In Figure 4.27 the non-compensatory beats are
cbvious, with the underlying normal R-R intervals confined to a small
region which is located on the diagonal x=y line. Every time
there is a dropped (premature) beat, the point will move up (down) first
from the normal R~R interval cluster. The next point, with the heart
rate back to normal again, will move to the right (left) of the center
cluster, and then back to the center. However, for a double non-com-
pensatory beat an extra point is shown along the diagonal line x=y
for data file #492~1 in Fiqure 4.28, representing the two consecutive

shorter intervals.

(3) Deviation (o)

It appears that monitoring the deviation (o) provides a very
simple way of detecting an ectopic change in the R-R intervals. In
table 4.7, the deviations clearly show a rhythm pattern of period

three. For instance, at N=3, 0=2.92, a longer interval (213) is
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detected, at N=5, o= =-1.06, a shorter interval (91) is detected, and
at N=6, 0=1.17, a longer interval (193) is again'detected. In table
4,9, a bigeminal pattern is shown by the changing of signs of the
deviations. 1In Tables 4,10 - 4,12, the compensatory beats are iden-~
tified by a large negative deviation followed by a large positive
one. For instance, in Table 4.10 for N=19,20, the deviations are
~2,37 and 3.02, respectively, which is indictive of a compensatory
beat. More compensatory beats are detected at N=29,38 in Table 4.10,
’at N=22,28,37 in Table 4.11, and at N=8,34,37 and 44 in Table 4.12.
Other ectopic events are detected by monitoring o (see Tables 4,13 =
4.16); Therefore, it is clear that a study of the behavior of these
deviations will provide useful information in the design of an
arrhythmia detection and classification system. Note however that
this algorithm cannot detect ectopic beats prior to the third beat,
since it has no basis for computing a running variance until two
intervals have been processed (see Table 4.11 for an example of a

missed premature beat at N=2).

(4) Sliding Window Statistics

As we discussed in Section 4.2, the advantage of using sliding
window is to get a faster response to a sudden change in R-R interval
behavior. This is clearly shown in Tables 4.17 - 4.29 by the dramatic
changes in the variances of the R-R intervals compared to those

computed using overall R-R interval data.

(5) statistics of Every gth Beat

In Tables 4.30 - 4,42, the normal rhythms are indicated by

approximately the same mean values and same (small) variances. On
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the other hand, for CUNATFIB we observed approximately the same but
larger variances, which are given in Table 4.33, As indicated

earlier, HUANPVCS and #503 are indicative of trigeminy and bigeminy,
respectively. These are clearly shown by the statistics in Tables

4,34 - 4,36, For example, in Table 4.34 we see that we obtain markedly
smaller variances for the "every 3rd beat" calculations. This is
clearly indicative of trigeminy. Since this algorithm is designed
particularly to detect R-R interval sequences which have a certain
period, Tables 4.37 - 4.42 do not suggest any detection and classifi-

cation information for these periodic patterns.

(6) Correlation Function

The periodic pattern of HUANPVCS is clearly reflected in the
correlation function in Tables 4.47 and 4.48, which peak strongly at
=0,3,6, and 9. For #503, the correlation function in Table 4.49
peaks strongly at 1=0,2,4,6,8, which suggests a periodic function of
period two, Note also that the correlation function falls off very
slowly for normal rhythms (Tables 4.43 - 4.45) and somewhat faster
for the slightly less correlated rhythms (such as in Tables 4,46 and
4.51). Note that the correlation function is an average statistic.
Thus, transient events are often masked in this statistic. As an
example, consider the jump between two normal rhythms as shown in
Table 4.53. Since the only temporal deviation is at the one point at
which the rhythm shifts, the correlation function is dominated by the
remaining regular pattern.

In this chapter we have described and tested a variety of sta-

tistical tests for the analysis of R=R interval data. These tests
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provide both qualitative and quantitative information that will be
useful in the design of an overall detection system. However, as we
have seen each of the tests has its limitations, and the output of
the tests is not particularly amenable to simple decision rules. 1In
the next chapters, with the aid of the knowledge gained from these
tests, we will put together two compact and systematic techniques

for the detection and classification of arrhythmias.
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Figure 4.16 R~R Interval Scatter Diagram for Data File IN.20,
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Figure 4.17 R-R Interval Scatter Diagram for Data File IN,30,
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Figure 4.18 R-=R Interval Scatter Diagram for Data File
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Figure 4.19 R-R Interval Scatter Diagram for Data File HUANPVCS.
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Figure 4.20 R~R Interval Scatter Diagram for Data File
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Figure 4.21 R-R Interval Scatter Diagram for Data File #503.
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Figure 4.22 R-~R Interval Scatter Diagram for Data File
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Figure 4.23 R-R Interval Scatter Diagram for Data File
SPOONPAC.

400,

350, —

300. 1

(N+1) ST R-R INTERVAL

I | I ] | | |
S0. 100, 1S0. 200. 250. 300. 350. u00.

(N}l TH R-R INTERVAL

Figure 4.24 R-R Interval Scatter Diagram for Data File BLOOM.
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Figure 4.25 R~R Interval Scatter Diagram for Data File IN.5+30,
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Figure 4.26 R-R Interval Scatter Diagram for Data File #476,
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Figure 4.27 R-R Interval Scatter Diagram for Data File #463,
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Figure 4.28 R-R Interval Scatter Diagram for Data File #492-1.
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N ReR RUNNING RUNNING RUNNING NDEVIATION
INTER ME AN RMS DEV VARTANCE (o)
{ 181 181,00
2 13 181,5%u Vel DeS59
3 187 185,33 3,21 18,33 7,18
4 188 184,5%8 3,51 12433 1449
5 145 184,60 3.85 94349 D14
) 132 185,853 3,31 12,97 -],51
7 183 183,71 3,04 9,24 wdae5
o] 185 165,88 7?85 B.12 d,42
9 187 184,28 ?.Bb Be19 1,12
12 18% 184,30 Pell 7,34 d,27
11 184 185,91 £.88 8429 =199
12 183 183,85 2.76 74862 widy 52
14 186 184,14 fahbd 7,46 d.,74
o 184 183,87 el To69 =1,96
) 174 183,25 .04 13,27 3,96
17 173 182,65 4,31 18,62 -2.81
18 176 18,28 4,47 19,98 -1,94
19 189 182,16 4,37 19,44 =451
22 176 131,85 4,48 2hNA3 1,414
a1 173 181,45 44,11 22,715 -1,948
2e 177 181,25 4,75 22457 w953
23 176 181,04 dy,17 2ee T2 =1,10
24 1r 180,88 4,74 2el.de “d 84
es 1714 180,44 5,93 29,33 =2,08
26 169 179,85 S,79 33,49 3,87
a8 176 179,07 he2b 39,19 =1,54
2% 176 178,97 hall 38.14 B 49
53 172 176,713 h,20 38,41 -1,13%
31 isnb 178,3¢2 beS1 42436 2,19
52 175 178,16 bya4?7 41488 D B2
33 174 178,038 I } 41,08 =A.64
54 177 178,00 byll 59,838 »lelb
LA 172 177,83 b330 39,714 -4,95
35 164 177,59 6,52 42,48 -1,88
57 1719 177,39 baD4 42.8¢ “1,15
8 172 177,186 651 42,42 0,81
59 173 177,085 b,46 41,74 =04
44 173 176,95 6,41 41,08 =2,63
4t 171 176,80 o ua 49,91 -0,93
42 17 176,67 ba38 40,72 -d,91

Table 4.3 Running Statistics of Data File IN.S5.
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N Wk RUNNING RUMNING RIUNNING NEVIATION
INTER ME AN KMS LEV VARTANCE (q)

| 199 199,00

2 A6 2he,Hhn he95 4454

s 225 Pl 358 X719 14,33 de1
4 134 21 0y ‘-,614 51,55 =C .47
5 198 2k, ai 5,13 25,398 =04
Y 23 éal 1 4,488 23.74 Vel
/4 eas Al u4 4,50 gile29 LY
K 194 2AY,H 4,95 24,29 2 YLt
] 194 1‘39.7(’ 5,‘,’19 ,25’9"4 =-1.32
14 EF % 199,80 4,84 25,07 d,04
1 2ad 199,82 4,56 .16 U,hd
1 9 194,17 4,92 23,94 -l 12
15 193 198,69 4,99 24,490 -],26
14 199 198,71 4,80 23,042 Aa06
1> 196 198,93 a,617 21.8% 8,97
th 1389 197,69 4,64 31,84 -, 30
1 194 197,24 .77 $35.32 -], 36
19 2N 197,68 5,63 51468 1.98
A 196 197,64¢ 5,49 $0,16 -, 50
el r 197,81 B .44 29,57 D Hl
2e PANK 136,217 s, 74 32,99 1.87
) 2Nh 198,92 575 32.81 .80
24 199 198,54 R.61 31442 D018
) 2nn 198,84 Bebd 31.7h 1,15
’h and 199,04 5,62 51.5% Nee
27 139 196,85 h,.56 in,% I'PEA!
o8 19K 198, ke 5,46 29,82 edolH
°9 Pk {99,/ 5,92 3d.59 1,3¢
54 Al 199,35 5.6¢ 8159 1,44
41 TR 199,39 5.9% 30eb1 Bed4
42 fA8 199,66 He09 31492 {56
58 21h E‘!{.‘(‘.‘P b1/ $B,00 2412
34 A1 AV, 41 £ .51 $9.77 1.6
9 2t e, 458 bo2} 38,64 Navi9

Table 4,4 Running Statistics of Data File IN,20.
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RUNNING

N Rak RUNNING RUNNING DEVIATION
INTER MEAN KMS DEV VARIANCE (a)

1 236 236,00

£ a4 239,29 u,24 18,@9

5 239 239,80 3,00 8,99 2,00
a 232 237,25 4,27 18,25 2,33
9 ées 234,40 7,37 54,30 =35,54
6 ey 233,67 6,85 46,68 LY 1]
/ 231 233,29 6,32 39,92 -0,39
8 234 232,87 5,96 35,55 D2
9 225 £3e, 00 6,16 38,80 =1,52
14 2eh 231,60 5,95 55,37 0,09
11 244 232,73 6,77 45,81 2,08
ie 249 234,18 7,98 63,72 2ed
13 235 234,15 7.69 58,47 d,11
14 235 234,21 7,35 54,02 2,11
15 244 234,87 1,52 36,55 1,33
16 243 235,37 7.54 56,92 1,08
18 223 234,44 7.71 59,44 »1,64
19 ees 233,95 7.80 60,82 =1.22
eé esd 233,95 7,59 57,63 B.00
et 239 234,19 7,48 55,96 Q.67
2 23e 234,09 7.32 93,53 ~0,29
23 232 234,00 7.16 51,28 =429
P4 2na 234,25 Te11 50,96 d,84
25 es? 234,36 6,98 48,75 2,39
2h 23a 234,19 6,89 47,535 =d.62
el 215 233,48 7,10 59,32 2,78
28 212 ele,11 8,58 73462 2,79
32 214 251,57 9,38 88,05 1,53
51 22! 231,23 9,42 88,73 1,13
3e 221 231,09 9,39 Bo,42 -l 45

Table 4.5 Running Statistics of Data File IN.30.
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N NHewR RUNNING RUNNING RUUNNING DEVIATION
INTER MEAN RMS DRV VARTANCE (o)

1} 1214 12y ,6w

o4 104 11e,5%¢ 1h,26 And 99

5 99 198, pe 13,89 198,20 ~d g B4
4 93 124,25 13,64 184,92 w] ¥
5 AR 121,04 13,84 141,94 -1.19
b 11¢ 1A, RS 13,17 173,37 e l9
! 117 144,86 13,16 173.14 1,48
A 129 147,87 t4,n8 €et.2l 1,485%
9 121 149,53 14,59 éle,. s VBB
1 126 111,020 14,73 216,89 1.14
11 115 111,%6 14,08 196,66 Be2?
12 134 113,25 14,88 221.438 1.01
15 145 115,69 16,75 288,95/ 2eld
14 1153 115,54 16,11 259,494 4y lh
15 120 114,47 16,08 296,98 =i} e 96
16 133 11h,.62 16,17 2bi,32 1.16
17 973 114,29 16,59 elS, 19 -l 49
18 136 115,54 16,68 eB5,99 143518
19 123 114,84 16,66 erl,al B4
2A 139 116,05 17,49 292.45 1445
el 152 117,76 18,41 338,99 2elid
e;f 92 11b059 18,’9 353;@2 -1.““’
es Y {15,022 19,54 580,36 -l b8
24 113 115.1¢ 19,08 564,04 ~de11
el 87 114,00 19,51 389.512 -].47
b 32 113,19 19,59 384,91 -ly13
e/ 194 114,52 Y 419,41 1,88
2R 112 114.43 Pr v 4dd a1 wdole
29 147 114,37 19,79 391 .494 -, 47
32 96 118,57 19,75 389,08 1497
31 93 112,94 19,74 589,176 1,04
se 11y 114,69 21,89 479,06 2489
33 129 114,85 21,596 40d,.94 daldl
54 129 114,68 21,26 491 4B/ -dee]
i5 89 1135.94 21,39 457 .49 1,21
£3-) 120 114,11 /.14 445,34 da28
51 1351 114,57 2,99 443,11 VeHB
18 1417 114,37 er,ld 430,31 -, 38
59 34 113,85 ev.13 429,h “ie98
42 33 115,32 erale 429,47 -]l
41 38 112,71 26 484 454.3%6 vl 22
42 150 115,60 P1.57 456,88 1,79

Table 4.6(a)
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N ReR RUNNING RUNNING RUNNING NDEVIATION
INTER ME AN RMS DEV VARIANCE (o)
44 137 114,00 21,19 448,91 1,11
45 96 113,60 21,12 445,92 ~d,85
41 122 112,77 21,07 444410 -, 61
48 91 112,31 21,88 444,49 il W3
52 134 112,58 20491 457,31 1,85
52 119 112,33 20,70 428,42 2,33
53 199 112,09 20,57 423,09 Y
54 92 111,72 20496 422,57 =0,98
55 83 111,20 20,73 429,71 -1,40
56 Ré 110,75 2,81 433,24 »1,22
57 85 110,39 20,91 437,14 “1,24
58 116 110,49 20,74 430,084 Be27
59 {29 110,56 -1 424,16 Y )
60 111 110,57 20,42 416,99 voue
) 125 110,80 eRy33 413,45 RT3
be 122 110,66 20,20 437,92 wd 43
63 116 112,75 2e,05 421,80 be26
64 96 112,52 19,97 398,82 0,74
65 142 111,00 20,19 487,83 1,58
bé 125 118,91 20,05 492,13 LT
67 37 110,78 19,97 398,89 3,69
68 112 116,72 19,82 392,99 D26
69 86 112,36 19,94 396,05 1,25
12 Y 110,04 19,94 397,48 ~1e12
le 86 199,36 2n,07 4,78 =1,18
[ a3 129,00 en,17 426,179 -1,31
74 92 138,77 eNn,13 445,038 ~d,84
15 a7 188,48 en.13 405,86 -1,08
& 93 198,01 20,09 423,64 -2,75
78 115 128,19 19,98 399,01 4435
19 88 147,85 19,98 399,02 -1,81
80 30 107,63 19,95 397,96 -2,89
81 139 148,01 20,13 495,13 1,57
B2 113 128,017 eR,ul 400,44 9,25
83 112 188,12 19,89 395,72 0,20
85 19 197,44 €015 406,03 m)y44
86 117 121,55 20,06 402,33 2,47

Table 4.6(b)
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N ReR RUNNING RUNNING RUANANING DEVIATION
INTER ME AN RMS DEV VARIANCE ()
87 113 13271,861 19,95 597,97 b,27
1) 9A 147,41 19,9¢ 396,98 i), B8
89 93 127,25 19,87 394,77 -2,1?
92 121 187,18 19,717 392,75 ~,31
92 114 126,95 19,71 388,64 elb
93 a5 146,71 19,74 389,59 1,11
94 19 126,41 19,84 £93,56 -l Ui
95 117 126,55 19.76 398,54 493
96 a9 146,34 19,74 389,74 e 89
37 9H 146,26 19,65 386,29 ~h,d2

Table 4.6({c)
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Y ReR RUNNING RUNNING RUNNING NEVIATION
INTER ME AN RMS DBV VARIANCE (o)
1 133 138,024
2 30 114,09 33,94 115¢,492
L] 213 147,00 61,99 3343 ,20 2,92
4 139 145,04 Sa.77 2578 ,22 »Aeld
5 91 134,20 Spal7 2516,74 1,06
b 193 144,00 S¢,.089 23589,60 117
! 138 143,14 46,51 21635,14 =Ae.1¢
8 37 136,12 47,41 2248,12 =l,21
9 212 144,56 51,06 266,17 lebid
19 138 143,99 48,18 2521,43 ~0413
11 99 139,00 48,51 2553,39 1,12
12 192 143,25 48,54 2350,49 1,09
13 137 142,77 46,51 2162,485 “-3,13
14 93 159,21 db b2 175,41 -l,27
15 2ab 143,617 48,12 2519,5% 1,43
16 {46 143,81 dh 49 2161 ,59 V,9u%
17 87 140,47 471,08 ea2ib, 2/ =1,22
18 215 144,61 48,93 23%94,49 1.58
19 136 144,18 471,64 2263,36 -A,18
29 93 141,64 4l,72 €276,99 =-1.07
21 194 143,9¢ 47,69 eat4,69 1,01
2e 144 143,91 46454 2166,39 Ned®
23 87 141,43 47,22 2208,71 “l.22
24 2729 144,25 47,99 23082,99 1,44
2% 134 143,84 471,02 e2ti,in L Y-S
26 96 142,04 471.02 2214,12 -1.22
27 eas 144,33 47 .67 a272,e6? 1,34
28 149 144,50 46,79 2189,39 B.09
29 88 142,59 47,13 2221,19 ~1.2]
50 2nS 144,63 47,69 2274459 1,33
31 131 144,19 46,99 2234 ,76 -} e29
52 129 142,81 46,85 2194,67 0,94
53 167 143,55 46,38 145,81 A5
34 125 143,00 45,171 2288,97 =, 40
35 124 1ue, 46 45,14 2037 ,84 -3, 42
in 117 141,75 44,69 1397,61% ~J .56
37 162 142,39 44,20 1953,21% Deds
38 1702 143,008 43,854 1922,64% Neb3
39 174 143,82 43,53 1894,68 B,71
44 159 144,24 43,85 1851 ,846 d.3%
41 R7 142,84 43,42 §88459,47 -1,.,3%
Table 4.7 Running Statistics of Data File HUANPVCS.
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N ReR RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS OEv VARIANCE (o)
1 1358 138,00
2 94 114,84 33,94 1152,49
3 213 147,080 61,99 38438,44 2,92
4 139 145,00 Sp,77 2578 ,29 “,13
5 91 134,20 S¢417 2516,/2 1,26
6 193 144,00 5¢,89 2589 ,62 1,17
7 138 143,14 46,51 2163,14 el
8 8t 136,12 47,41 2248 ,12 “1,21
9 212 144,56 81,06 2bidb, ! 160
i1 99 139,00 48,51 e355,39 =1,1¢
12 194 143,25 48,54 556,19 1,45
13 137 142,717 46,51 216d,85 0413
14 93 139,21 46,62 2173,41 -)laia?
15 22k 143,61 48,12 23135,53% 1.43
16 146 143,84 4k, 49 2161,%0 Bes
17 37 149,47 471,28 a216,27 1,22
18 219 144,61 48,958 2594,49 1.94
19 136 ta44,10 47,649 2265, 56 D18
23 33 141,60 4t1,7¢ 226,59 1.0l
el 199 145,99 47,69 2214469 1,01
2¢ 144 143,91 46,54 dibb, §9 7.1
23 87 141,43 47 ,4¢ 208,714 1,22
24 229 144,259 47,99 2302,99 1.44
as 134 143,84 47,42 2211,15 ol Y-S
26 96 lde,.ny 47,42 221,72 =14 2c
27 ens 144,33 47 .67 22Td, b7 1.34
ey 149 144,54 46,19 2189, 41 Ued9
29 28 142,55 47,13 2221,19 1,21
3a 225 1dd,63 47 4,69 274,59 1,33
LB 13} 144,19 46,95 2eb4, 16 2,29

Table 4.8 Running Statistics of Data File HUANTRI.
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N ReR RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DV VARIANCE (o)

1 133 185,00

2 261 197,040 90,51 8192,929

3 128 114,00 75,59 5683,00 =N, T8
4 275 199,25 19,6¢ 538,32 1434
5 152 185,80 75,22 5658,74 -, 84
6 gl4 cun, 59 76,31 5825,51 1.17
7 133 194,86 The19 5905,81 -3,88
) 266 2B, 25 713,64 5423,3%6 1.01
9 13¢ 192,61 712,59 5263,44 -A,93
14 °h3 199,70 71,92 5172,89 B.97
11 1217 195,09 Ti.67 5136,08 =1.91
12 - 291 edl,ed 13,95 5468,29 1.57
14 135% 196,00 73,28 5374,66 “3,92
14 292 2ue, 86 T4,94 5619,81 1,31
15 136 198,40 74,29 5912,67 -9,89
16 281 243,586 T4,.64 5571,548 111
17 139 199,76 73,95 5468,57 @ B8
18 21t 2U48 b 74,98 5478,29 1.4
1% 133 201,32 13,75 5439,65% D498
2ea PR 2Ru, 40 14,97 5486,97 1.11
el 134 201,25 73,81 5448,63 ~3.99
22 215 2Ru, 32 73,65 5424,91 Be37
23 138 21,45 73,21 5369,15 -3,9@
24 276 24,54 73,26 5367,39 1,92
25 129 2a1,5¢ 73,29 S3711,99 -1,23
26 264 2d3,92 72,89 5301,2/ 2,85
21 151 eatl.2e 72,80 530,08 -] .84
28 es’ 203,21 72,21 Sg14,349 Al TT
29 144 2AN,83 72.07 51935,84 -,95
s 2hQ 2ue, 87 71,89 91%9,5%@ .85
31 fed 24ve, e 71,89 5168,82 1,18
§2 216 242,69 71.98 5181,05% 1,05
53 129 2NV, 45 72,40 51835,68 -]ee
54 274 2pe,74 72,13 52035,46 1,98
%5 136 20N, 8% 71,96 5117.64 0,93
36 269 ene, e 71,82 5158,82 B,9%
LY 158 240,97 71,62 5128,75% -4.9@
8 kb 2ag, 68 71,42 5121,42 @,91
39 141 2.1l 71,17 Sue4,72 )86

Table 4.9 Running Statistics of Data File #503.
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RUNNING

RUUNNING

N KRR RUMNING NDEVIATION
INTEKR ME AN RMS OBV VARIANCE (o)
1 154 194,080
2 152 153,09 1,41 e, 39
3 189 195,60 Z,61 13,24 4,24
4 126 142,75 24,68 68,92 13,59
3 230 160,20 44,49 1979,2@ 3,94
) 162 16,5 19,80 19835,98 d,04
/ 154 16,14 36,354 1326,81 A, b
3 194 199,37 33,72 11360,84 “Nall
3 14 156,00 31,81 1811,75 -0g 817
14 151 157,50 30,87 904,23 “B,e2
" 191 156,73 fR,.O49 817,449 -, 21
12 154 196,54 er .27 145,72 ~hed9
15 152 196,15 2ba14 n83,31 A1 7
14 159 156,36 25.15% 631,38 Bae11
19 1695 196,93 24,51 991,21 h.34
1§} 1538 157,381 23,54 554,19 We29
V7 197 157,09 22,19 919,41 -,a1
13 169 157,44 2e,le 489,33 Vel
14 125 196G .68 2U,64 606,89 2,37
A e 158,40 29,117 851,10 3.02
A 1589% 158,24 R, 44 899,14 =N, 12
22 162 128,41 21,17 171,23 Bals
c3 154 198,22 2Y,15 137,01 %16
24 159 197,87 2k, 606 107,19 =0 ,350
29 154 197,72 oh L Uib 678,89 -B.15
eh 153 197,54 2555 652,58 “f,18
28 153 157,04 24 ,.b6 6d8,11 ~hatl
39 217 157,17 28,26 798,44 2,35
st 154 196,94 27 .81 175,47 “D,25
¥t 154 156,84 27,36 148,719 “0.11
58 149 156,61 26,97 721,25 “B,29
44 152 156,41 26,58 Tub,34 0,24
44y 141 195,917 26,32 692,50 58
1) 145 155,67 26,70 676,25 ~0,42
37 192 199,57 25,64 687,65 A, 14
38 173 194,18 2h,.,69 112,64 205
39 214 155,72 e8,03 789,58 2,24
4. 151 135,46 el .08 166,008 ~he17
41 151 195,49 e7.34 147,36 -Ba.17
42 157 195,82 27,80 127,28 b.06
4% 152 155,44 26,69 112,141 -R,13

Table 4.10(a)

Running Statistics
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N RwR RUNNING RUNNINDG RUNNING DEVIATION
INTER ME AN kM8 DEV VARIANCE (o)
44 197 155,40 2ho 37 695,98 A, 00
49 154 155,53 2b,08 679,94 Bed9
4t 149 195,39 25,84 b, 78 -@e25
4f ihe 155,55 25,54 652,23 Ca.2h
4 h 1548 159,58 #5.21 h38,44 2499
40 1695 159,78 25,04 626,99 Wel?
51 176 1he,18 24,95 b22, 356 2.81
£y 175 156,55 24,84 616,84 2,75
32 167 196,75 Ph,b3 hib 87 Y
93 165 156,91 42 596,48 2,53

Table 4.,10(b)

Running Statistics of Data File HARNETPVCS,
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RUNNING

RUNNING

~ K- R RUNNTINDG DEVIATION
TNTER flE AN KMS QEV VAR[ANCE (o)

i 154 164,dd

2 147% 145,546 57,28 3280 ,54

) 2933 193,3% 95,34 9494,35 cab1
4 194 19¢,59 77,87 663,00 “0.03
5 ER¥! A, 0y hG, 49 4824 ,59¢ DB
6 R entHi 64,81 4epy, 3y Db
7 P34 21e.ad 6,35 642,81 h,49
3 24 215,54 56,74 3219,11 A 4b
3 21 2l>,08u S%,10 2419,549 0,0t
14 134 213,44 B . 32 2531,483% =, 38
11 21h 213,55 47,14 eard a6 n.a93
2 2k 21,92 45,917 2dT6,43 .16
14 i97 2ll,.69 B4,85 1922,939 -A,1H
14 el 211,36 deain 1776,5% =letl
15 2A8 €11,13 404,65 1698,42 =D, 8
16 PR 2ivi,be 3y, 5¢ 1544 .32 “del¥
I 2Rk f11.5% 38,23 1461 ,489 B,59
14 211 211,54 37,49 1375,92 -0, 31
13 217 211,79 6,07 1501 ,486 et
2 2ne 12,30 35.148 1237,82 d,R8
21 LK 211,80 34,35 11848,02 -ii,26
ey 133 2o, 21 47,56 1486,51 2,30
2% 276 cil,2e 39,27 1941 .99 ) .81
24 1R4 210,08 38,81 1h95,84 =069
29 131 £49,%¢ In, 18 1457 ,63% -,49
25 182 ead, 21 37,79 1428,85 “-A,72
27 179 Al , 4 37,60 1414,12 Y
oA 117 NS Be 4y 04 1651,.,27 .59
24 25%h 219,59 41,02 1682,61 1.26
5 133 P4 B3 4p,he 1641,68 -2.5%
51 181 chf, e 4¢,06 1609,19 .99
32 197 2V3,B4d 39,45 1554,97 18
59 ard 2Rd 15 3R.85 1509,49 Wa2b
54 ean 24,038 IR, 27 1464,26 LI PR
$n 187 283,54 37,81 1429,46 P4y
50 187 243,08 371,37 1396,23 ~d, 44
s 126 At ub 40,15 i612,22 “2.b0
33 T4 2 . 349 41.56 1714,36 1,83%
LE] 175 2Ul 69 41,89 1685,14 “A,66
4o 174 91,00 A .16 1661,12 ol -X4

Table 4.11 FRunning Statistics of Data File SPOONPAC.
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N R=R RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEY VARIANCE (o)

1 163 163,04

2 1548 165,54 3,54 12+5¢

3 168 166,33 2,89 8,33 8,71
4 165 feb,00 245 6,00 3,46
5 168 166,40 230 5431 4,82
) 174 167,17 fe19 Tell e,0e
7 1792 167,57 2,76 Toeb2 1,02
8 127 162,50 14,517 212429 14,70
9 216 168,44 22,44 503,17 .67
12 167 168,30 21,17 448,01 wd,06
114 179 168,45 er.09 403,47 b,08
12 169 168,50 19,19 306,81 b,83
13 1s4 168,15 14,38 537,82 L Y-
14 167 168,07 17,66 511,92 wd, 06
15 168 168,07 17,02 289,64 3,00
16 176 168,56 16,56 2ld,26 D.47
17 179 169,18 16,23 ehi,53 Beb3
18 178 169,617 15,489 252,35 ve4
19 175 169,95 15,49 239,85 Dy 34
29 182 170,55 15,31 234,47 D78
el 172 176,52 14,92 2de, 15 -d,44
2e 166 17¢,3¢ 14,64 15,12 0,30
23 171 176,39 14,26 203,42 0,85
24 168 170,25 13,96 194,82 “A,16
29 179 170,24 13,66 186,68 =dade
. 169 170,19 13,39 179,28 «3,09
el 166 i7a,04d 13,15 173,04 0,31
28 166 169,89 12,93 167,21 wd,31
29 167 169,79 12,71 161,53 wdele
LY ] 162 169,53 12,57 157,98 =ly61
%1 162 169,29 12,43 154,54 ), 6
32 174 169,34 12,23 149,65 Veld
33 174 169,44 12,67 145,63 d,38
34 159 169,18 1Pa42 144,445 -B,87
35 225 11,20 13,50 176,85 2,98
36 174 170,31 13,12 172,21} .29
37 138 169,43 13,99 195,64 2,46
38 194 17e,m8 14,36 26,24 1.76
39 154 169,67 14,40 €iT .42 =1,12
49 156 169,33 14,38 26 717 B e 95
41 1958 169,05 14,31 24,74 YA
42 174 169,14 14,14 199,83 2,14
43 169 169,09 13,97 195,07 -y, 08

Table 4.12(a)

Running Statistics
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N R=R RUNNING RUNNING RUNNING NEVIATION
INTER MEAN RMS NEV VARIANCE (o)

44 147 168,59 14,20 2l .60 “1.98

45 213 169,58 19,52 240,87 $,13%

4h 173 169,69 15,36 255,78 V.22

47 122 168,64 16,74 278,97 35,18

Table 4.12(b)

Running Statistics of Data File BLOOM.
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N R=R RUNNING RUNNING RUNNING NEVIATION
INTER ME AN RMS DEV VARIANCE (a)

1 181 181,00

2 182 181,50 B, 71 2,50

3 187 183,33 1,21 18,33 71,78
4 ig8 184,54 3,51 12,33 1,49
5 185 184,60 3,49 9,34 .14
r 183 183,71 1,04 g4 =,R%
8 185 183,88 2.85 8,12 Belie2
9 187 184,22 2,86 B,19 1.14
10 185 184,30 2o 11 7,34 Bel?
i1 1849 183,91 ?.88 8,29 1,59
12 183 183,83 2.76 7,6@ -D,32
13 186 184,00 2,71 7¢53 0,79
14 186 184,14 2,66 7,86 Bala
15 182 183,87 2,17 1,69 -1.56
16 174 183,25 3,64 15,27 ~3,56
17 173 182,65 4,31 18,62 2,81
i3 174 182,28 4qa47 19,98 -1,54
19 180 182,16 4,37 19,14 0,51
20 176 181,85 4,48 20,03 “l,41
21 173 181,43 ATl 22,75 -1,98
22 177 181,25 6,15 22,57 -0,93
2s 176 181,04 4,717 R, 12 =1.10
24 171 180,83 4,14 22,42 -0,84
2h 171 188,44 5,83 23,33 -2 A8
26 165 179,85 5,19 35,49 -3,07
e7 168 179,41 6,11 37,39 -c,83
28 174 179,07 by2b 39,19 ] .54
29 176 178,97 botl 36,10 0,49
L1 172 178,73 byl 38,41 =1.13
31 166 178,32 Heo1 42,36 g A9
34 177 178,00 be31 39,88 -a,16
36 166 177,50 bede 42,48 =1,88
37 172 177,30 6,54 42,82 -1015
318 172 177,16 6,51 42,42 0.81
39 173 177,05 6,06 41,74 “d,64
40 173 176,95 bedl 41,08 “0,63
41 171 176,81 6,40 44,91 -3,93
42 171 176,67 6438 40,72 -2,91
43 236 176,05 11,03 121,61 9,30

Table 4.13(a)

Running Statistics of Data File IN.5+30,

-116-




N ReR RUNNING RUNNING RUNNING NEVIATIUN
INTER MEAN RMS DEV VARLANCE (o)
44 fu2 179,50 14,55 211,12 Y.84
45 239 130,82 16,99 289,61 4,09
46 232 181,95 18,34 330,20 $,0%
47 223 182,81 19,14 364,76 2,24
48 232 183,79 ep,u8 403,31 2ol
49 231 184,176 20 .99 444,48 2,35
54 230 185,66 21.74 472,42 Ealh
51 FEL) 186,43 22,21 493,31 1,81
52 228 187,253 22,14 516,89 1.87
53 244 188,30 23,858 967,15 Y
54 249 189,43 25.21 beh,29 2,99
3% 239 130,29 2% .52 651,449 1.82
96 239 191,85 25.99 673,39 1.7%
a7 244 191,94 ghab9 712,47 a0l
58 24 192,46 27,29 144,88 1,91
59 231 195,514 27.51 156,64 1,4
Y FERS 194,00 27 .54 1568, %54 1o/
A1 22h 194,51 27,59 Tal,.41 l1al3
6e 254 199,15 271,8¢ PTd,14 14438
b3 239 1959, 84 2B,19 792,17 1,54
A4 232 196,41 PR, OH 40 e 1,08
abh 232 196,94 2B, 41 BAT , 0% 1.86
bb 240 197,61 F Y 822,69 1e5¢
67 231 198,19 2B ,.87 BS3, 8 1,37
CY) 23 198,66 2H,L91 B39,481 fe1u
69 215 198,90 28,16 827,38 0,81
14 212 199,189 28,60 Bi7,89 hydn
B 213 199,24 P&!,‘M 808,34 Vek9
e 2148 199,54 28,33 802, 58 Gebn
13 221 199,84 28,24 797,5% Velb
14 er7 24v,eu 2R,22 196,56 A,96

Table 4,13 (b)

Running Statistics of Data File IN.5+30,
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N H=R RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARJIANCE (o)
1 17 171,04
2 18d 175,50 bedb 44,59
3 174 175,09 4,58 21,29 -he24
4 179 175,04 3,74 14,99 Q.29
5 186 117,20 5,89 34,79 2,94
6 292 181,35 11,41 130,27 4,21
7 2A3 184,45 13,895 175,62 1,99
8 16 188,357 16,59 275,12 2,38
9 233 193,33 21,49 460,09 2,69
14 254 199,60 f8434 Bus, 39 2,92
i1 she 28,91 4r,94 1676,28 3.61
12 299 216,42 46,91 220d, 29 2.20
13 523 edlhe 53,1717 2894,75 2,27
14 333 232,36 59,22 3347,48 2,82
15 557 259,35 63,14 5986,94 1e77

Table 4.14 Running Statistics of Data File #476,

-118-




N R=R RUNNING RUNNING RUNNING NEVIATION
INTER MEAN RMS DEV VARLIANCE ()

| 211 211,20

2 192 eul,5u 13,44 180,59

5 en3 aune e 9,94 91,94 At
4 344 231,54 71,43 5101,67 14,89
] 197 229,44 64,45 4154, 34 =N e97
b 190 222,85 59,89 3582,148 “Bebt
7 198 219,29 55,44 3013,25 D41
) 324 232,817 64,17 4111,5% 1,96
4 213 258,67 bty 54 3b41,49 “he31
12 229 e28,5u 57 .34 328583 -1
11 366 e4l,ov 68,57 4674,19 2,40
12 215 238,83 65,62 435,69 -Je 38
15 219 236,54 63,357 41,27 -, 45

Table 4.15 Running Statistics of Data File #463,
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N R -k RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEV VARIANCE (o)

1 247 247,00

Fed e3a ehe o be36 48,50

3 114 198,33 Th 63 5872,33 20,82

4 137 185,00 69,68 4855,33 =, 8

5 244 195,20 bb,22 H385,10 P,88

b 258 248,67 64,54 4169,87 o5

7 239 213,29 be,2a7 3477,92 o823

) 54 218,37 59,42 3531,12 Ve85

Table 4.16 Running Statistics of Data File #492-1.
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N R=R RUNNING KUNNING RUNNING DEVIATION
INTEK MEAN RMS DEV VARIANCE (%)
5 185 134,60 3,45 9,39

6 154 184 4@ 3,36 11,49 «].51
7 1838 184, 8u 1,21 14,39 LY
3 189 184,20 .95 8,1 Weled
9 187 184,00 2,64 6,99 2e9%
12 185 | 184,90 2,64 6,99 D58
1t 1R3¢ 184,04 2L.h4 b 499 =1.51
12 183 184,00 2.64 6,99 -,38
15 186 184,29 2,17 Fofid 2,18
14 186 184,00 2,55 6,49 BebS
15 184 183,00 .00 84,99 1,57
16 174 181,84 5,02 25,19 -5,09
1/ 173 179,80 6,26 39,19 1«75
18 176 171,89 S.351 28,19 vd,b61
19 184 176,60 3,28 14,79 Vel
24 i76 175,84 2.68 7,19 =g 18
el 173 115,69 2,488 8,29 -1,04
ee 177 176,49 2eo1 6,29 Q.49
23 176 176,40 2491 6,29 “B.1b
24 177 175,89 1.64 2,69 b,24
25 171 174,50 .08 7,19 2,93
27 148 171 ,4¢ g,13 26,359 =-1.,09
28 17d 170,24 4,44 19,79 =A.27
/9 176 172,09 4,486 16,49 1,34
LP) 172 17¢.2¢ 4,15 17,24 B,49
LB 1At t72,44 3,85 14,89 {01
s 173 171,44 3,71 15,69 V.68
44 174 11e,84 3,717 14,19 I
44 1717 t7e,44 a,04 16,30 1.217
45 172 172,40 4,04 16,30 -2,09
35 166 1/7¢,4u 4,04 16,39 1,59
37 179 171,86 4,15 17,22 -0,99
38 172 173,4¥ 3,97 15,84 B,045
59 175 170,60 2,19 1,82 Y
4 173 17v,By - 8,79 D,86
41 174 171,84 1,54 1,79 7 I 1%
42 1714 172,06 1,00 1,0 =dsb}
Table 4.17 Statistics of Sliding Window Width 5 for Data File IN.5.
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N RwR RUNNING RUNNING RUNNING OEVIATION
INTER ME AN RMS DEV VARIANCE (o)

5 198 20,40 5003 29,30

6 enn 2dl,64 5032 28,130 P9}
7 2p3 el ,pu 4,85 25,51 Delb
8 194 198,80 5,87 259,71 -1,44
9 194 198,80 5,07 25,71 -2,95
12 244 199,26 S.@7 25,171 h,24
1 ¥ 1% 198,20 “e03 16,21 B,16
ie 19¢ 1"baa\a 3.7“ 14.”1 1,54
1 199 196,80 3,96 15,714 De.8¢
15 196 196,00 3,94 12,51 =0,e9
16 185 193,00 S.24 27,514 =3.11
i8 290 194,00 he3b 49,51 1,37
19 203 194, 80 0033 58,71 1,41
22 196 194,80 7,55 58,171 Q.16
21 fge 198,24 5431 ed, 21 N,98
ée 228 201,89 4,348 19,21 1,85
23 204 20dcd, 60 4,34 18,81 @,50
24 199 2d1,8¢ 4,60 21,21 ~U.,83
2% 205 243,60 3.5 11,30 Vab9
26 3L 204,20 3,24 19,51 B,12
el 195 241,40 4,28 18,31 2,78
28 1948 2R, 29 4,21 17,71 =079
29 206 2dl,60 4,89 23,31 1,38
32 ep’? eve, e 5,25 27,52 1.12
3 ea1 201,40 5,13 26,32 -0.19
32 208 204,00 4,50 18,52 1,29
35 215 2T, au 5,03 29,32 2.06
54 219 226,20 5,87 25,72 0,52
35 2l ear,eu 6,04 36,51 =].42

Table 4.18 Statistics of Sliding Window Width 5 for Data File IN.20.
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N ReR RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (o)

3 223 234,40 7.37 54,30

6 230 23%,20 7,93 56,78 ~d.,60
’ 231 231,00 5,70 32,50 -2,29
8 234 229,29 3,56 1,179 =418
9 e2s 227,80 3,96 12,74 1,18
12 228,80 2439 9,78 D08
i1 231,60 T30 53,34 he3?
ie 235,20 1p,62 112,69 238
13 23n 236,20 10,23 124,69 ~d,02
14 3 238,20 8,29 68,69 =N,
15 241,40 6,19 38,29 D10
16 241,20 610 37,19 8,26
18 235,20 B,73 16,19 2,59
19 e33,24 9,86 97,19 1417
24 231,29 7,99 65,19 A,48
21 e3¢, 49 6,54 42,19 h,98
22 e3d,6u 6,58 43,30 b,24
e3 232 252,42 5,03 25,29 Vel
24 235,40 3,89 14,19 1491
25 236 ,p0 3,81 14,49 dy42
26 234,249 4,15 17,2¢ 1458
-4 230,89 9,68 93,69 «4,63
28 226,88 12,12 161,69 =1,94
29 221,40 11,37 129,29 1,29
32 217,60 T30 55,29 .32
33 215,84 3,78 15,69 Qed?
s 218,24 £,14 37,714 3,45

Table 4.19 Statistics of Sliding Window Width 5 for Data File IN.30,
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N ReR RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEV VARIANCE (o)

5 A8 121,00 13,84 191,54

) 112 193,20 14,69 215,74 Be79
7 117 121,80 12,36 152,70 2.94
8 129 127,80 17,05 298, 14 2.20
9 121 113,49 15,59 240,39 D77
12 126 121,04 6,82 46,49 2.81
11 115 121,60 5,92 34,79 =,88
12 134 125,0¢ Te3l 53,49 Y
13 145 | 128,20 11,69 136,69 2,753
14 113 126,60 | 13,35 178,30 “1,30
15 128 121,40 17,92 5e1,30 1,99
16 133 125,20 18,12 | 328,50 3,65
17 93 116,890 21.9} 484,29 w177
18 136 115,00 19,22 367,50 A,88
19 123 113,04 19,99 399,54 Q.62
ed 139 12v,80 é1,22 454,29 1,32
21 152 te4,60 | 25,26 638,29 1,47
22 92 124,40 25458 654,29 )29
23 89 114,20 29,64 878,69 w1.54
24 113 116,20 29,03 842,69 D, 04
25 87 105,80 28,12 190,70 -1,01
26 9¢ 93,80 11,17 124,70 -2,49
el 154 125.40 27450 745,29 5,93
28 112 110,80 24,81 615,69 V.24
29 127 109,60 24,83 616,29 .2, 15
32 96 111,40 | 23,04 538,79 «2,55
31 93 111,60 22,83 521,29 -0,80
32 {72 115,60 31,39 985,29 2,456
33 120 117,20 31,36 983,69 0.14
34 129 117:60 31,21 97“.39 wd . 2b
35 89 116,20 32459 1959,69 »d,92
36 120 121,60 29,87 892,29 a,12
37 131 113,80 15,98 252,69 2,31
18 1a7 111,24@ 15,69 246,19 4,43
39 94 108,20 17,54 307,69 “le10
42 93 149,00 16491 212,49 “Aq87
41 LY 192,60 17,36 301,29 .1,27
42 150 196,40 25,36 643,29 2.13
43 108 106,60 25,37 643,79 8,06

Table 4.20(a) Statistics of Sliding Window Width 5 for Data File
CUNATFIB,
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N RaR RUNNING RUNNING RUNNING PNEVIATION
INTER MEANM RMS DEV vARITANCE (o)
a4 137 115,29 27,25 742,69 1,24
46 R H 115,80 26,617 711,19 -1,24
47 129 125,84 18,87 356,19 - e99
48 91 142,40 19,88 399,29 “dy 78
49 104 95,802 6,50 42,19 A,08
52 134 103,44 18,30 334,748 9.88
51 93 104,40 17,35 301,28 «,57
52 119 108,20 18,21 331,648 VeRd
53 126 116,090 16,45 274,48 wid 45
54 9¢ 107 .69 18,51 533,28 -],39
35 83 97,40 13,59 134,248 -1,34
36 A6 96,80 14,44 2Rl .48 .84
57 8% 89,20 691 47,68 ~Wa76
94 116 92,40 13,01 185,23 5.88
59 iei 98,00 18,54 550,48 24038
LY} 11 123,60 16,83 283,28 Y71
61 129 111,49 15,63 244,217 1.217
b2 192 114,80 B,B1 7/,68 Y Y
63 11k 114,89 B,81 77,68 .14
b4 96 110,00 11,42 154,48 -2.13
69 142 {16,2¢ 18,39 338,18 2,84
hb 125 11€,2¥ ta,17 334,18 -3
68 112 110,40 18,82 354,28 Ge04
69 8k 148,40 21,13 446,248 1,39
72 58 97,60 11,06 122,29 “id 97
71 85 93,60 11,33 128,29 1,14
1¢ Bé 91,40 11,57 {35,778 =3.,h7
73 B% 8h,60 1 .81 5,29 .13
14 9¢ Be, B0 3,42 11,69 3,53
15 B? 36,60 3,36 11,29 Dea6
16 88 81,20 3.27 14,69 Nalde
1 33 B8,60 4,44 16,29 1,77
18 115 94,00 1147 131,49 6,54
79 88 94,20 11.86 144,69 “Bebt
84 99 G4,80 11,48 131,69 =)e3%
81 139 124%,00 21,87 478,48 3.85
82 113 149,00 2m .94 438,48 ¥e37
43 112 148,40 e, 71 431,29 2,14
24 79 1716 ,6¢ 23,22 539,29 al.42
85 19 104,49 25,59 654,78 “1,19
LY 117 190,06 19,26 374,99 8,49

Table 4.20(b)

Statistics of $liding Window Width 5 for Data File

CUNATFIB.
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N RaR RUNNING RUNNING RUNNING NEYIATION
INTER ME AN RMS DEV VARIANCE (>
A7 113 100,00 19,26 372,99 Q&7
89 93 38,44 16,49 258,78 “@,14
94 121 jue,8u 11,92 14é,19 Belb
91 83 96,00 11,49 131,99 1,66
92 112 95,49 10,41 108,29 1e22
93 8% 94 ,4¢ 11,26 126,179 =1,02
94 19 91,60 13,26 175,79 =1,37
95 117 94,88 17,38 302419 1,92
96 89 96,00 16,59 275,99 1,33
97 98 93,60C 14,79 218,179 .12

Table 4.20{(c)
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Statistics of Sliding Window Width 5 for Data File
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N KR RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (o)

5 91 134,20 Spel7 2516,70

6 193 145,20 56,82 3226,20 1417
7 138 154,80 48,60 2362,20 “0413
8 a7 129,60 43,25 1874,80 -1,39
9 212 144,20 57,27 3279,74 1,91
12 138 153,64 49,71 2471, 58 -, 11
11 90 135,00 50,64 2564 ,20 -1,28
12 199 143,40 56,88 3234,81 1e13
13 137 153,40 48,22 2324 .81 0,11
14 93 129,60 47,87 1678, 51 -1,25
15 206 145,20 53,67 2880,79 1,87
16 146 154,46 44,93 2018,32 B,05
17 ar 133,80 48,03 2306,71 1,50
18 215 149,44 60,40 3648,30 1,89
19 136 158,00 52,97 2805,59¢ -2,22
22 93 155,40 51,45 2647,30 -1,23
21 190 144,20 57,16 3267,70 1,06
22 1644 155,60 47,63 2287, 54 - 3,09
3 87 130,00 41,98 1762,52 -1.43
24 209 144,60 55,24 3447430 1,88
25 1354 152,80 48,23 2529,19 8,19
26 96 154,00 48,42 2344,50 1,18
21 205 146,20 58,26 12385,70 1,47
28 149 158,64 48,24 2327,51 2,05
29 88 156,40 46,917 2206, 31 -1,46
) 225 148,60 56,57 3200, 31 1,50
31 131 155,66 Sp,25 2524,81 -d,51
32 1290 134,60 4e,2e 2136,31 -1,11
$3 167 138,20 48,28 2330,71 2,70
34 125 145,60 47,94 1675,.81 “p, 21
35 124 129,40 24,13 582,51 -0,53
36 117 126,60 24,10 610,31 -2,51
$7 162 139,00 23,55 554,51 1.43
38 172 139,60 24,46 594,31 1,32
39 174 149,41 26,85 120,81 1,41
42 159 156,44 22,85 521,31 4,36
41 87 159,40 35,95 1292, 31 ~%,04

Table 4,21 Statistics ofSliding Window Width 5 for Data File
HUANPVCS.
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N R=R RUNNING RUNNING RUNNING NDEVIATION
INTER ME AN RMS§ DEV VARIANCE (o)

5 91 134,20 Sp.17 2516,70

& 193 145,29 S6,8¢ 322e,20 117
7 138 154,80 48,60 2362,20 “d, 13
8 a7 129,60 43,25 18708,80 -1,39
9 212 144,29 57.27 3279,74 1,91
12 134 193,64 49,71 2471,38 -Ny11
11 94 133,00 Sa.64 2364,00 wlo 28
1e 192 143,40 56,88 3234,81 1,13
13 137 153,40 48 ,2¢ 2324,81 LIS R!
14 93 129,60 4p,.87 1670, 314 1,25
13 236 143,20 53,67 884,73 1,87
16 146 154,40 44,93 18, 54 b,a%
17 a7 135,80 48,03 es306,171 =1,50
148 215 149,44 67,48 3648 ,30 169
19 136 156,00 52,97 2805 ,59¢ ~da2e
22 93 135,40 51,445 2647,32 -1,23
el 194 144,20 57.16 3267,10 1.06
22 144 155,60 47,83 2287,30 ~by,00
23 a7 130,04 41,98 1762,50 =1,43
24 229 144,60 55,20 3247,30 1.88
29 134 152,80 4R,23 2325,72 ~A,a19
26 96 134,04 48,.4¢2 2344,54 -1,18
a7 225 146,20 SB,.e6 3393,714 1,47
28 149 158,640 48,24 es21,31 2.2%
29 38 134,40 46,97 2206, 351 =y.46
32 225 148,60 56,27 3204, 31 1.5
L3} 131 195,6¢ 5P .29 2524 ,81 0,31

Table 4.22 Statistics of Sliding Window Width 5 for Data File

HUANTRI.
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N ReR RUNNING RUNNING RUNNING NEVIATION
INTER ME AN RMS DEV VARIANCE (o)
5 132 185,80 715,22 5654, I

-] 274 2id,0u T6,89 5912,9%¢ 1.17
7 133 188,40 18,62 6181, 32 1,25
8 2eh 2i6,0Q0 76,31 “AR22,5¢ de99
9 132 187,48 15,46 5695,8¢ -1 41k
14 263 215,60 74,14 24917 ,35@ 1.06
11 127 184,24 713,355 5379,10 -1.17
12 291 215,84 79,55 321,10 1446
14 133 189,24 Bp,19 692/ ,2¢ -1 .04
14 292 221,20 84,09 771,20 1,27
15 136 195,89 87,42 1642,78 o1.91
16 281 2eb,bd 84,19 7488, 53 n,97
17 139 196,20 82,99 6d14,869 =124
18 211 225,00 Bg,u/ 6411,49 0,98
19 135 193,20 18,3%1 6141,19 1415
22 LT 22e ,4i 78,492 6223,82 1.13
21 134 195, p0 19,02 6243%,49 1,12
22 P13 19,80 18,85 6el16,69 1,41
e’ 134 192,00 18,14 6105,90 wl, a4
24 2T1h c2k . 6¥ 771,31 59976,179 1 L8
29 129 190,00 17,21 5961 ,49 “1.18
°h X ) 2l6,00 75,51 ST21,49 WNeI6
el 131 187,60 715,41 5687 ,¢29 “1,13
) 257 211,44 74,62 55648,29 Ae92
29 134 183,00 To,81 S914,48 1,34
LY] ghe 2a9,6m T2,44 4961 ,28 1.12
LY 124 181,60 71,23 5273,28 -1,27
32 ele e, 60 14,99 56029,78 1,33
33 129 185,08 76,92 5916,98 -1,049
4 278 13,80 19,959 £6392,18 1,21
35 136 188,60 8p .81 63534,78 3497
36 269 el7,eu 171.84 6452,28 Doy
37 138 199,00 76,36 S831,48 -1,02
$8 266 217,48 13,53 5426,79 129
39 141 190,04 Ta, 718 2489,48 -1.,24
Table 4.23 Statistics of Sliding Window Width 5 for Data File #503.
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N ReR RUNNING RUNNING RUNNING NEVIATION
INTER ME AN RM§ DEV VARIANCE (&)

9 ein 162,20 44,49 1979,29

6 162 161,80 44,35 1967,22 ettt
7 158 163,00 44,10 1945,20 -, K
8 154 {62,009 44,27 1962,00 420
12 151 154,44 5,86 34,58 “heS7
i1 151 152,20 4,909 16,70 ,58
12 154 151,40 2,88 8,30 Bgd4d
13 15¢ 151,00 2495 6,58 Nedl
14 159 153,40 3,36 11,39 3,14
15 169 156,20 5,81 35,10 3,45
16 163 {58,640 8,99 31,30 117
17 157 199,24 5,12 26,202 0,29
18 1612 160,84 31,19 13,22 Ayl
19 125 158,04 25,34 642,22 wl7ed?
2% 229 162,80 44,86 1941,20 3,12
21 195 161,20 44,290 1953,24 -P,18
e 162 162,20 44,138 1947,179 2,02
e’ 154 161,00 44,29 1961,%0 0,19
24 159 170,04 33,26 1196,5¢ “Ne2%9
es 154 155,00 TR 1. 19,342 N 48
eb 153 154,60 4,49 19,80 wf,lUb
el 148 {51,89 2.68 7,20 -1,48
28 153 151,60 2e51 6,30 B,459
29 121 141,812 22,93 h25,14 -20,16
LY 217 194,40 41,28 1725,84 3,28
3 154 153,89 41,32 {rar, 72 0,11
32 154 155,00 41,28 1697,5@ h,00
53 149 154,20 41,29 1704,70 »Ae1h
34 150 164,00 29,69 881,358 -N,10
35 1414 148,84¢ 4,76 22,1d Q.17
36 145 147,89 4,917 24,12 N, B0
57 152 147,40 4,39 19,30 4,85
39 2i4 131,00 40,03 {022,49 .76
42 151 153,00 319,65 1572,49 -, AU
41 1514 154,20 39,44 1555,69 ML
42 157 159,2¢ 39,44 1555,19 Va7
43 152 165,00 27,59 150,49 -, B8

Table 4.24(a)

Statistics of Sliding Window Width 5 for Data File

HARNETPVCS.
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N RmR RUNNING RUNNING RUNNING NEVIATION
INTER MEAN KMS DEYV VARIANCE ()
44 {157 193,60 3,13 9,79 Vel
45 158 155,00 3,24 19,59 1,41
46 149 154,60 3,91 15,29 -l 85
47 162 195,60 5,13 26,29 1,89
48 158 156,80 6,76 22,14 N7
49 165 158,44 fodid 56,29 1.72
32 176 162,00 §.87 97,49 2.92
51 175 167,20 7,98 635,69 1,32
52 167 §68,20 7,46 39,69 -},0%

Table 4.24(b)

Statistics of Sliding Window Width 5 for Data File

HARNETPVCS.
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N R=R RUNNING RUNNING RUNNING NEVIATION
INTER MEAN RMS QEV VARIANCE (o)

5 230 220,00 69,49 4828,59

6 245 2ye, 20 T1.31 SA84,170 Veb3
7 239 239,40 36,86 1358, 30 2,38
8 249 228,80 ee.35 499,71 o2
12 199 26,80 en,4a7 419,29 2,54
11 215 22u,8u 18,96 326,29¢ =0,58
12 226 214,20 15,61 243,71 -7,82
13 197 €% ,,6Y Tob1 98,81 1,10
14 eal ens, 80 Telb 51,21 dett
15 238 ed6,60 6,43 41,351 BedS
16 23 244,29 4,44 19,71 =4456
17 226 248,29 11,85 117,171 4,91
18 211 eil,eu 8,86 78,54 0,26
19 217 213,00 8,86 78,51 Y
24 222 215,80 9,09 Be, 11 1e002
21 223 215,8u 9,29 82,71 vl,41
ee 133 197,24 36,58 1338,21 -9.14
e3 276 21@,2¢ 51.3¢ eni3l, 11 2,15
24 184 2di3, bl 92,352 27137,5%1) “Be51
25 191 197 ,4du 51,42 2644,31 -}, 24
26 182 193,2¢ 51,11 2ers, 71 Y
27 175 el bu 41,98 1762,351 0,33
28 117 169,80 In,6 9a3,71¢ -, ,@e
29 259 184,00 49,19 2416,42 2a83
32 183 142,44 49,29 2400,82 ), 02
31 181 182,20 49,20 241,22 w3,03
32 197 186,60 49,18 2418,82 D300
33 214 206,00 3¢, 01 929,22 .56
34 224 195,00 13,51 182,52 “@,28
35 187 195,80 {2.72 1ei,72 -N,59
36 187 197,00 11,106 124,52 =d,69
37 126 178,8v dp,20 1/84,7¢2 “8,15
38 274 19@,8v 99,64 35846,72 Ceb
393 175 185,8¢ 59,72 I566,72 =, 26
42 174 183,24 99,94 3592,72 i, 2d

Table 4.25 Statistics of Sliding Window Width 5 for Data File
SPOONFACS.
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N KeR RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEYV VARIANCE (o)

5 168 166,40 2,30 530

) 171 168,00 .12 4,52 2,02
4 172 168,40 2,30 9,80 .94
A 127 160,20 18,70 349,70 -17,99
3 216 17¢,44 31,50 992,30 2,98
12 167 110,20 51.0e 993,79 wh,11
11 174 17é,84 31,52 993,59 -, A4
12 169 169,84 31.52 993,69 ~H,08
13 164 117,2¢ 21,81 415,69 0,18
14 167 167,40 2,36 3,32 -0y 47
15 168 167,60 2,50 5,49 Peeh
16 176 168,84 4,44 19,73 3465
17 179 170,84 6,358 49,78 2430
;) 173 175,64 5,68 32,30 1,13
19 175 175,20 4,32 18,74 2,29
22 182 118,00 2474 1,50 1,57
214 174 176,80 4,595 29,69 =249
ee 166 174,20 6,34 44,29 2,37
23 174 172,89 6,06 36,69 *B,58
24 168 171,40 be23 38,79 0,79
23 179 169,00 200 3,99 mlac2
2h 169 1608,8¢ 1.92 3,69 7,02
27 166 168,80 1,92 3,69 1 .46
28 166 167,84 1,78 3,19 “l,46
29 167 167,60 1,81 3,28 3,45
32 162 166,00 2.59% 6,49 3,09
32 i1t 165,60 3,78 14,29 2.bb
33 174 167,24 5,36 28,68 eece
34 159 165,60 6,00 42,29 “l,5%
L] 225 174,20 18,29 334,68 L,06
i6 174 176,60 17,%4 294,248 .01
38 194 174,00 o6 .84 124,49 V.98
9 154 118,26 27,62 Toe,99 3,75
42 156 164,20 21,43 459,19 LY
“41 154 lav,gu eR,59 423,99 “h.24
42 174 166,60 16,7¢ 278,18 Ba55
43 169 161,69 7.85 61,28 Veld

Table 4.26(a)
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N ReR RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEV VARIANCE (o)

44 147 §68,20 9,88 97,68 «1,87

4s 243 171,60 25,06 627,79 9,34

46 173 174,60 23,89 57Q,79 2,06

41 122 164,80 33,75 1139,19 2,20

Table 4.26(b)

Statistics of Sliding Window Width 5 for Data File BLOOM.,
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N RwR RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (o)

5 185 184,60 3,95 9,50

6 180 184,40 3.36 11,350 -1,91]
7 183 184,60 3,21 14, 59 T
A 185 184,00 2495 8,178 U W=
9 187 184,00 2404 H,99 @, 95
12 185 184,04 2404 64,99 U,38
11 18¢ 184,00 2,64 6,99 -1,51
12 183 184,00 2,64 5,99 “0438
13 186 184,20 2,717 71,72 Q.76
14 186 184,00 2,55 6,49 A,65
15 180 185,00 3,00 8,99 le57
19 18y 176,60 3,28 14,79 Vigdt
24 i76 175,80 ca68 7419 -D,18
21 173 175,60 c.88 8,29 -] .04
el 177 176,44 2,91 6,29 D,ea9
23 176 176,40 2491 6,29 i, 1k
24 117 175,84 1 .64 2,69 de24
4] 165 173,726 “,21 el.19 =3,.65%
el 1648 171,40 9413 26,37 -1,0¢
28 170 176,20 4,44 19,74 ~d.217
29 176 17,00 4,496 18,49 1,31
32 112 176,20 4415 17,29 B,49
31 166 172,40 3,85 14,82 -1,01
32 173 171,40 1. 71 135,84 V,68
33 174 17¢,2¢ .71 14,19 Q.72
34 177 172,49 4,04 16,34 1.27
35 17¢ 1/¢,4v 4,04 16,39 -9
36 156 l’e.a‘(’ Q,W“ lb..id '1.89
57 114 171,84 4,19 17,24 -0, 59
38 172 171,44 3,97 15,484 BeS
39 173 1748,6¥ 2,19 /.88 Bedid
42 173 170,80 2,99 8,70 0,86
41 171 171,80 1,302 1,79 n,08
43 2364 184,80 28,64 824,29 63,97

Table 4.27(a)

Statistics of Sliding Window Width 5 for Data File IN.5+30,
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N R=R RUNNING RUNNING RUNNING NDEVIATIUN
INTER MEAN RMS DEV VARIANCE (o)
44 242 198,60 36,95 1365,34 2,0y
45 239 214,84 37,31 1391,70 1.09
46 23z 224,80 29,86 891,59 V.54
47 223 234,49 1437 54,359 »0,03
48 237 235,20 7,53 56,70 i, 60
49 231 es1,0¢ S.70 32,50 ~e29
52 239 229,29 3,96 12,79 0,18
514 228 227 ,Re 31,56 12,74¢ 1,18
5¢2 2PB 28,80 2.39 3,72 Q.06
h$ c44 231,60 7430 53,30 6,37
54 249 235,2@ 10,62 112,69 2,38
55 23S 236,2v 10,23 104,69 - 02
56 235 238, a0 8,49 b8 ,69 =h,12
57 244 241,49 bel9 38,29 Belu
58 243 ed41,2¢ 6,10 37,19 0,26
59 2314 237,60 5,64 31,80 "l,67
69 223 235,20 8,73 76,19 ~2,59
LB 229 233,20 9,86 97,19 wi,17
62 234 231,20 7495 63,19 2,08
63 239 230,40 beS4 42,79 0,98
64 232 250, 6y 6,08 43,32 d,24
65 232 232,40 5,23 29,29 3,21
66 240 23nh, 44 31,85 14,179 1,51
67 - 231 236,00 3,81 14,49 D42
68 e3a 234,20 4,15 17,20 w],58
69 215 230,80 9,68 935,69 w463
12 212 226,80 12.,7¢ 161,09 wl,94
71 213 221,40 11,37 129,29 ~1,09
12 e18 217,60 7,30 535,29 0,30
13 221 215,80 3,70 15,69 Bl
T4 ee? 218,20 beld 37,74 3,03

Table 4.,27(b) Statistics of Sliding Window Width 5 for Data File IN,5+30.
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N R=R RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS DEV VARIANCE (o)
5 186 177,20 5,89 34,70
6 222 143,44 11,44 130,81 4,21
7 225 188,00 14,05 197,52 1,71
8 216 196,40 16,21 256,51 1,99
9 233 278,00 17,96 308,51 2.29
12 256 22¢,00 22,17 518,51 2,73
11 3p2 242,00 38,97 1518,51 3,51
12 299 261,24 38,60 1489,72 1,46
13 3123 282,60 36,90 1361,42 1.60
14 533 302,60 29,69 881443 1,37
15 537 318,84 17,50 306,41 1,16

Table 4.28 Statistics of Sliding Window Width 5 for Data File #476.
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N ReR RUNNING FUNNING RUNNING DEVIATIUN
INTER ME AN RMS DEV VAR[ANCE (o)

5 197 229,49¢ 64,45 4154,302

5 194 225,20 66,60 4435,78 =A,h1
7 198 26,40 65,94 4343,30 -A,414
8 328 251,40 17,50 6205,84 1.54
9 213 225,209 58,08 3572,73% -@,5¢
19 229 e27,6¢ S6,85 3232,34 ~",28
1 366 262,89 18,22 6118,69 2,43
1e 215 2hb,2¢ 15,00 5625,74 =B,b1
13 229 242,40 69,14 4780,85 wd, 76

Table 4,29 Statistics of Sliding Window Width 5 for Data File #463,




sROUF" | sampLE SAMPLE SAMPLE
q NUMBER ME AN RMS DEV VARIANCE
1 1 176,67 6,38 40,71
) 176,76 6,44 41,49
5 2 176,57 6,48 41,96
) 177,21 6,83 46,65
3 2 116,57 6,24 38,88
3 176,21 6,51 42,54
) 177,00 6,51 42,49
4 2 176,64 6,39 4085
3 176,50 6,70 44,94
4 176,54 6,92 47,83
1 112,89 6,41 41,11
s 2 175,56 5,88 34,53
3 178,25 6,73 45, 36
4 182,52 5,73 32.86
5 176,15 5,85 34,21

Table 4.30 Statistics of Every gqth R-R Interval for Data File IN.5

* For g=k, the R-R interval sequence is broken up into k substrings
{see Equation (4.41)). Each of these substrings is indicated by
the "Group number",
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GROUP SAMPLE SAMPLE - SAMPLE
4 NUMBER ME AN RMS DEV VAR ANCE
L 1 YPIY 6,21 38,64
. 1 200,56 5,82 33,91
2 200,29 6,78 45,97
1 199,92 6,89 41,54
5 2 200,50 5,42 29,31
3 200,91 6,79 46,09
1 200,22 To74 59,94
. 2 204,33 3,91 15,25
3 200,89 3,44 11,86
4 195,7% 6,56 4s,al
1 199,43 6,70 44,95
. 2 208,29 7,76 60,24
s 211,29 7.57 57,24
4 200,71 5,99 35,91
5 200,43 4,28 1R, 28

Table 4.31 Statistics of Every gth R-R Interval for Data File IN.20.
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GROUP SAMPLE SAMPLE SAMP|E
q NUMBER ME AN RMS DEV VAK]ANCE
1 1 231,99 9,3¢ 846,41
1 232,62 9,51 98,52
2 4 231,56 9,36 87,64
i 250,18 4,49 Ie,1o
3 P 31,00 B,50 12,24
5 232,20 11.61 154,89
4 1 e?9,87 8,98 19,27
é 229,15 1,27 52,19
k) 251,37 102,65 113,41
4 233.37 11.29 127,41
c 232,45 14,83 117,28
3 228,54 V.69 93,94
4 feBo 53 9,50 9,21
5 es,e’ 9,54 91,786
Table 4,32 Statistics of Every gth R-R Interval for Data File IN.30.
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q GROYP SAMPLE SAMPLE SAmMPLE
NUMBER MEAN RMS DEV VARIANCE
1 1 1vh 26 19,65 386,30
1 105,84 19,22 369,51

2 e 18,73 19,98 399,31
3 1 141,82 17,22 296,99
2 108,74 20,44 417,79

3 108,31 22,99 44p, 42

[d 128,29 17,40 302,91

3 101,96 15,96 b4, 14

4 109,17 22,64 912,67

i 135,22 29,40 416,117

5 e 113,85 23,45 549,71
3 108,47 17,32 300,24

4 121,20 19,85 232, 44

S 12,42 19,83 393,24

Table 4.33 Statistics of Every gth R=R Interval for Data File

CUNATFIB,
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q GROUP SAMPLE SAMPLE SAMPLE
NUMBER ME AN RMS DEV VARTANCE

1 ] 142,88 43,42 1885 36
5 1 142,71 id,86 2uil, 31
2 142,94 43,42 185,94

3 1 141,14 13,15 125,26
2 98,19 £2,65 913,14

3 19¢,04 27,44 131,53

4 i 155,73 44,12 1946, 82
2 146,92 47,11 2e19,21

3 150,42 46,73 2187, 35

4 158,92 40,65 1652,717

1 132,00 39,73 15378,54

5 e 139,54 44,94 219,44
3 153,12 49,15 241m,12

4 147,00 47,61 2266,29

5 145,75 44,30 1962,21%

Table 4.34 Statistics of Every gth R-R Interval for Data File

HUANPVCS.
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GROYP SAMPLE SAMPLE SAMPLE

4 NUMBER ME AN RMS DEV VARIANCE
1 1 144,19 46,95 2204,76
t 142,69 48,20 2323,43

2 2 145,82 47,22 2229,74
1 139,09 5,28 27,89

3 2 90,29 3,08 9,51
3 203,80 9,48 89,95

1 154,62 46,93 2202,27

4 2 146,75 52,04 2708,59
3 150,75 51,26 2627,93

4 144,71 45,17 206,24

1 140,57 49,5% 1643 ,99

5 2 142,33 49,03 2404 27
3 148,00 57,26 3255,60

4 146417 54,12 2929,36

5 144,50 91,20 2621,90

Table 4.35 Statistics of Every gqth R-R Interval for Data File

HUANTRI.
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GROUP SAMPLE SAMPLE SAMPLE

a NUMBER  MEAN RMS DEV VARIANCE
1 1 201,18 11417 5064,72
1 133,00 4,29 18,42

2 2 212,19 9,74 94,92
3 1 196,15 72,60 Sere, 14
2 218,69 12,16 5206,13

3 198,46 13,93 | 5464,94

! 133,30 3,27 10,68

2 271,00 9,76 95,35

4 3 132,72 5,29 28,01
4 274,78 9,89 97,92

1 200,75 76,38 $834,21

5 2 205,25 75,31 5671,64
3 199,25 72,15 520621

4 207,62 77,86 661,98

5 191,48 12,89 5313,29

Table 4.36 - Statistics of Every gth R-R Interval for Data File #503
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BROUP SAMPLE SAMFLE SAMPLE

NUMBER ME AN RMS DEV VARTIANCE
1 196,91 24,42 596,48
1 156,44 24,56 683,26
2 157,38 24,75 612,81
1 149,67 16,99 288,59
2 158,28 31,98 1822,69
s 163,12 21,05 443,24
{ 156,43 26,11 681,65
2 157,77 24,36 593,53
3 156,46 23,85 568,61
4 157,22 26,15 682,83
1 155,27 8,45 71,02
2 156,64 5,46 29,85
3 150,82 16,50 212,117
4 145,40 34,34 1178,93
5 177,29 34,63 1199,51

HARNETPVCS.
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q GRUOUP SAMPLE SAMPLE SAMPLE
NUMBER MEAN RMS DEV VARIANCE

1 1 201,00 40,76 lb61,18
| 209,45 4p, 22 1617 8e

9 4 192,85 40,65 1652,85%
3 i 180,79 37,57 1411,41
e 216,46 45,28 249,94

3 evT, 31 32,26 1840 ,94¢

4 1 ey, 39,55 1964, 46
2 193,70 49,20 2420, 68

3 216,62 41,56 1727,64@

] 192,28 32,64 1¥65,34

1 200,09 21,97 482,57

5 2 173,12 53,22 283,84
3 eetl,15 56,76 §eae, 2!

4 2u4,87 R4, T 6blu,74

-] 199,25 19,49 579,93

Table 4.38 Statistics of Every gqth R-R Interval for Data File

SPOONPAC,
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o GROUP SAMPLE SAMPLE SAMPLE
NUMBER MEAN RMS DEV VARIANCE
1 1 168,64 16,70 278,98
{ 170,00 20,03 401,22
2 2 167,22 12,64 159,72
3 1 164,94 9,01 81,13
2 166,56 21,12 446,13
3 174,82 17,04 290,46
1 173,33 21,73 472,24
4 2 170,42 8,91 79,35
3 166,67 18,50 342,42
4 163,73 15,44 238,42

! 168,62 5,78 335,38

5 2 162,00 17,66 312,00
3 167,89 17,76 315,36

4 168,67 19,62 384,75

5 176,78 19,63 345,20

Table 4.39 Statistics of Every gth R-R Interval for Data File BLOOM.
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GROUP SAMPLE SAMPLE SAMPLE

4 NUMBER MEAN RMS DEV VARIANCE
1 1 200,29 28,22 796,58
2 1 200,05 28,15 792,61
2 200,35 28,68 822,62

3 i 200,52 27,85 175,42
2 200,52 28,49 811,51

3 199,54 29,52 871,65

4 { 199,89 28,78 828,44
2 200,53 30,01 991,59

3 200,22 28,34 821,24

4 200,17 28,08 788,38

1 195,07 29,09 846,21

5 2 197,62 28,87 833,25
3 204,62 39,03 991,97

4 204,73 28,03 185,78

5 198,93 27,58 760,84

Table 4.40 Statistics of Every gth R~R Interval for Data File

IN.5+30.
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GROUP SAMRLE SAMPLE SAMPE
q NUMBER ME AN RMS DEV VARIANCE
5 1 241,412 69,26 4797,55
2 237,29 68,80 3696,5/
t
3 1 225,60 64,15 4115,80
é 243,49 £9,87 4881 ,80Q
3 249,02 67,70 4583 ,5¢2
4 1 228,25 68,47 4687,58
'S 42,15 68,11 4639 ,548
3 254,00 77,88 6064,67
4 230,02 63,17 3991 ,08
1 225,02 68,46 4687,24
5 2 227,33 63,12 3984, 34
3 237,67 76,83 5942, 33
4 247,09 19,92 6588, Q0
5 259,67 15,57 5714,31

Table 4.41 Statistics of Every gth R-R Interval for Data File #476.
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GROUP SAMPLE SAMPLE SAMPLE

a NUMBER ME AN RMS DEV VAKIANCE
1 | 256,54 63,37 4015,2/
1 228,14 b1.11 $134,14

) 2 246,33 1a, 30 4941, 817
3 1 254,20 61459 3793, 70
2 278,15 89,43 7996,92

3 205,25 11,44 130,92

4 1 207,50 7,19 51,67
2 197,20 10,44 109,99

3 295,67 95,58 9136,30

4 295,67 10,382 4944,27

5 1 255,67 96,13 924,36
2 201,67 11,93 142,33

3 246,67 70,50 4972,33

4 278,59 92,63 8580,50

5 203,02 8,49 72,00

Table 4.42 Statistics of Every gth R=R Interval for Data File #463,
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NORMAL I2ED

T CORRELATION CORRELATION
FUNCTION FUNCTION

2 0,131253%E 7 0,100000E 1
1 P,131219E 7 0,99973%
e B,131179E 7 0,999436E @
3 D,131162E 7 0,999305¢E p
4 D,131168E 7 2,99935QE ¢
5 ,151178E 7 0,999429E p
6 0,131151E 7 0,999221t
7 0,131112E 7 9,998927E @
8 2.131100E 7 0,998829E ¢
9 @,131187€ 7 0,998889

Table 4.43 Correlation Functions for Data File IN.5

NORMALIZED
- CORRELATION CORRELAT]ION

FUNCTION FUNCTION
] D,140734E 17 Q.102000E
1 Del40665E 7 0,999531E ¢
2 D.140600E 7 2.999067t @
: D,140643E 7 V999374 o
4 D,140676E 7 P,999607E @
] D,140605E 7 Re99910QE ¢
6 P,140558E 7 0,99B769E ¢
7 2,140644E 7 0,999168E @
8 D,140647E 7 ©,999401E
9 2,140987E 7 P,998972E @

Table 4.44 Correlation Functions for Data File

IN, 20,
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NORMAL 1 ZED
T CORRELATION CORRELATION

FUNCTION FUNCTLION
@ d178164E 7 Wa100802E ¢
i 2,171077¢E ! ¥,999%¢5% ¢
2 D1 7A946E 7 D,998742 ¢
3 el 7TUB91E / V,9984248F ¢
4 D.170883 W,998400c ¢
9 BWellvBaTE 7 “,998161t ¢
b A 17A0718E ! ©,997761t ¢
4 D,170718%E 7 £,9978¢2t @
8 Ne1TVBYRE !/ V,998461 ¢
9 De1TR99TE 7 ©,999841t ¢

Table 4.45 Correlation Functions for Data File IN.30

NORMALIZED
CORRELATION COKRELATION

T FUNCTION FUNCTION
@ Dya115228E ! g,100282E
| A,114095¢ 7 Na972330VE
2 d,109811E 7 V,9698235E
3 D,109708E 7 ,968914 p
4 B, 109580E 7 W, 96778 ¢
5 B,110299E 7 0,974134 ¢
b 2,1100088E 7 R,9715962E ¢
4 @.,109458 7 B,966701t
] 2,189922L 7 W,97089% @
3 Bea109890E 1 Ne96TIBTUE ¢

Table 4,46 Correlation Functions for Data File

CUNATFIB.
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NORMALIZED
. CORRELATION CORRELATION

FUNCTION FUNCTION
@ B,911S37E & 0,100000E |
1 P,883674E © 0,8B1669E ¢
2 0,B806T47E & 0,865040L @
3 0,889520E & @,979846E @
4 2,804125E & 0,882163L @
5 R,B11316E & 0,890052t @
S 0,888813E ¢ 0,975ATRE @
1 P 812154E & 0, 890972E
8 0.811228E & ©,889956E @
9 2,881890E & 0,967475E p

Table 4.47 Correlation Functions for Data File

HUANPVCS
NORMALIZED
. CORRELATION CORRELATION
FUNCTION FUNCTION
) 2,710688E o 2,100009E 1
1 M,611490E 6 0,860419E ¢
2 P,616511E 6 2,867484E ¢
3 D,697S5T9E 6 ©,981554E @
4 @,623659E & ©,877542E ¢
5 2,614075E 6 9,8648STE @
6 D,698736E b V,971925E p
! 2,630B71E b 0.887692t p
8 2,616431E b 08673728 p
9 D,678404E & 0,9545736 @

Table 4.48 Correlation Punctions for Data File

HUANTRI.
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NOKMALIZED
T CORRELATION CORRELATION

FUNCTTION FUNCTIUN
A Da176970E 7 hy10220¢L 1
i D,139941E 7 W, 188502t ¢
c de175252¢ 1 UWe990292 @
3 da1412060E / NeT98216L ¢
4 Ve1735232E { C.97887/8L p
S B,14314RE 7 V.BYBBBLE ¢
o] A,17122%E G,9671%348L ¢
i/ D,145199E { V.B204BYIE ¢
8 2,169283¢ 7 ?.9596561
9 A 1472378 7 W,831984L v

Table 4.49 Correlation Functions for Data File #503

NORMALIZED
CORRELAT]ION CORRELATION
E FUNCTION FUNCTIOM

A Na133584¢k ! C.,lu229e 1
3 B,12921 3¢ { B.9607279t -
e B.130753E 7 N,9/88UBE p
$ U, 1304058 7 W,978201Lk
) Ae13u263E 1 VWa9195143
" A1 8505571 7 V917338
f A,1304062E 0,9766d6  pn
! dy 150439k { C.970464k
) W,150398E [4 W,9781d6t ¢
9 A,1350806E ! 0GL.97S92v4F ¢

Table 4.50 Correlation Functions fc: Data File

HARNETPVCS.
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NORMAL IZED
T CORKELATION CORRELATION

FUNCTION FUNCTION
) P,168082E 7 2,100000E 1
1 0 159831E 7 0,950910E o
2 @y 162566E 7 0,967181t 2
3 2,162240E 7 0,965242E @
4 0,160987E 7 0,957790E @
5 0,162667E 7 @,967783E ¢
6 2,161573E 7 0,961272E ¢
! D,160943E 7 2,957525E @
8 D 16Q84TE 7 0,956957E @
9 0,162688E 7 2,967907E @

Table 4.51 Correlation Functions for Data File

SPOONPAC.
NOKRMALIZED
T CORRELATION CORRELATION
FUNCTION FUNCTION
) D,134946E 7 0,100000E |
1 2,133297€ 7 ©,987786k @
2 P,133441E 7 0, 968630E ¢
3 Q,13594pE 7 0,992SSUE ¢
4 0,135580E 1 ©,989878E ¢
5 B,1335549€ 7 0,989647E
6 B, 153542E 7 0,989596E ¢
7 ¢,1359528 7 0,992636E @
8 2,133773E 7 2,991304E ¢
9 B, 133268E 7 0,98TS68E ¢

Table 4.52 Correlation Functions for Data File BLOOM.
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NORMALIZED
. CORRELATION CORRELATION

FUNCTION FUNCTION
2 3,322415E 7 #,100200E
1 2,341988€ 1 0,99858KE ¢
2 ?,5215158 1 0.997423E ¢
3 W,$81215E 7 0,99603SE ¢
4 @,521061E 1 0,995521E @
5 Do SUYBIRE 7 ¥,994985 @
b 2,300566E 1 0,993886E @
’ 2,3202028 7 ¥,9926083E g
8 8,299977L 7 0,991989E @
) 2,299R32E 1/ 0,991459t @

Table 4.53 Correlation Functions for Data File IN,5+30

NORMAL LZED
- CORRELATLION CORRELATION

FUNCTION FUNCT1ON
2 P.91502UE & 2.,1002008
y B BIYNIBE 6 0.,982592E
2 U.,BB3U3QE b ¢,965471k @
3 Q,Bb6NISE b 0,9464389E @
4 2, 850695E b 0,929696E ¢
5 0,B35008E & W,912953k ¢
b P.B2BRRR2E b ¢,905156 @
/ B.3240/2E b 2,900601E @
8 P,824012E & V.960bGIE ¢
9 0.B2BPRCE & 0,9U5136k

Table 4.54 Correlation Functions for Data File #476.
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NORMALIZED
. CORKELATION CORRELATION

FUNCTION FUNCTION
) @, T79539E 6 2,100000E
| @, T15681E 6 0,922817E @
2 B TL1164E & ©,916993E @
3 By TS4Q1SE 6 2,946457E @
4 B,730161E 6 D,941488E p
5 Do T14299E 6 R,921035E p
6 @,7354723E 6 @,94T7370E @
7 B,734723E & 0,947370E o
8 B,714299E 6 0,921035E n
9 U 730161E 6 0. 9414B8E ¢

Table 4.55 Correlation Functions for Data File #463.
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CHAPTER 5

DYNAMICAL MODELLING OF CARDIAC RHYTHMS BASED
ON THEIR R-R INTERVAL CHARACTERISTICS

5.1 Introduction

In Chapter 4 we have demonstrated that we could detect and identify
different arrhythmia classes by their statistical characteristics,
which are expressed in terms of some simple statistical parameters.
However, a completely automated computer algorithm for rhythm analysis
of ECG/VCG's using these statistics would be quite complex. The reason
for this is the fact that in order to detect and identify positively
the presence of a certain rhythm pattern, we need to perform several
threshold tests. For instance, some tests for identifing a bigeminal
rhythm would be: (1) sample variance greater than a preset threshold,
(2) sample variance of every other R-R intervals less than a preset
threshold, and (3) the difference of the two sample means of every other
R-R intervals greater than a preset threshold. Thus for each
arrhythmia class we wish to detect, we need to set up some necessary
threshold tests just for the purpose of detecting this particular
rhythm. Therefore the final structure of the algorithm is formed by
putting all the threshold tests needed to detect and identify all the
arrhythmia classes together, and since all these tests are of threshold
type, the final detection logic is deterministic. In other words, an
ECG/VCG record will be classified into a particular rhythm pattern based
solely on certain threshold tests, and this decision structure does not
take into account the margins by which the thresholds passed or failed.

What would be preferable would be a decision rule that
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(1) contains a minimum number of threshold tests, since
it is extremely difficult to modify and analyze decision
rules that contain numerous (and extraneous) logical
branches

(2) is based on statistics that somehow reflect and quantify
our confidence in our decision - i.e. We would like to
use quantities such as the probability or likelihood that
a certain decision is the correct one. In this case one
will have a much more rational basis for the setting of

thresholds.

There is a more sophisticated statistical method for the detection
and identification of the arrhythmias, as we will see in Chapters 6
and 7. The final structure of the algorithm using this approach is
extremely unified and the decision tests are done statistically rather
than deterministically. However, in order to utilize this powerful
statistical method, we need to develop mathematical models for each
of the rhythm patterns we wish to detect. The models developed in this
chapter are based upon the categorization concepts described in
Chapter 3, and the dynamical descriptions defined in a qualitative
manner in Chapter 4. (As we will see, the statistical analysis of the
preceding chapter provides a method for choosing certain parameters
in these mathematical models). 1In the rest of this chapter we will
discuss the modelling concept and the mathematical models for both the

persistent and transient rhythms described in Chapter 3.

5.2 Dynamical Models for Persistent Rhythms

For this class of rhythms, our conceptual picture for the models
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is illustrated in Fiqure 5.1.

v(k)

Underlying +
k k
Pattern x (k) y (k)

Generator + \Z} o

Figure 5.1 Conceptual Diagram of the Dynamical Model
for Persistent Rhythms

Here we imagine that an underlying pattern generator generates a se-
quence of R-R intervals, x(k), k=1,2,..., according to a particular
ideal pattern. This ideal R~R interval sequence is what we called
"nominal R=-R interval sequence" or "state sequence” which is different
from the actually observed R-R interval sequence, yv{k), k=1,2,... .
The actual R-R interval, y(k), is the nominal R-R interval x(k) cor-
rupted by an additive noise v(k), which comes from two sources. The
first of these is the unavoidable errors in computing the R-R intervals,
caused by inaccuracies in locating the fiducial points of the QRS
complexes, In addition, as we have discussed in Chapter 4, even for a
regular normal rhythm the R-R intervals are not exactly the same;
rather there are normal variations about the ideal underlying rhythmic
pattern. Thus, a second source of noise is included to represent
these normal variations.

Using this conceptual picture, a persistent rhythm class can then

be modelled mathematically by using two discrete<~time relations. The
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first equation describes the mechanism in which the ideal underlying
rhythm pattern is generated and is called the process equation, which
describes the state of a system at every instant of time. The second
equation, which is called the observation equation, gives the relation
between the actually observed data and the state of the system. 1In
our case, the actually observed R-R interval is given by the state plus
an additive noise term. In the following we will describe the mathe-
matical models of this form for the persistent rhythm classes discussed
in Chapter 3.

(1) Dynamical Model for Small Variation

For this class of rhythm, the given R~R interval sequence,
y(k), k=1,2,..., has only small, random variations about its mean
value. Thus, we can model this class of rhythms by an ideal pattern
consisting of exactly equal R-R intervals, generated by an underlying
pattern generator, and an additive noise, which represents the small
variation, is then added to the nominal R~R interval and gives the
actually observed R-R interval data.

Therefore the mathematical model for this class of rhythms is

given as:

x (k)

x(k-1) (5.1)

v (k)

x (k) + v(k) , {5.2)

where Equation (5.1) is the process egquation which describes an ideal
state sequence consists of exactly equal states, x(k), k=1,2,..., and
the actually obhserved data is given by the observation equation,

Equation (5.2), which is the sum of the state and a noise term v(k).
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Here the initial state x(0) is thought of as a random variable with
given mean m(0) and covariance P(0). The noise v{(k) is assumed to be

unbiased and uncorrelated with itself, thus we have

Elv(k)]=0 (5.3)

E[v(k)v(j)]=R56kj (5.4)

where Rs is the noise variance for the small variation rhythm and
ij is the Kronecker delta, 5kj=0 if k#3j and 1 if k=j. 1In addition

we assume that the noise at any time k is independent of the underlying

rhythm state, thus

Elvik)x(j)1=0 (5.5)
We also assume that all random variables have Gaussian probability
density functions.

The guantities P(0), m(0), and RS are free parameters to be
determined from the statistical tests of Chapter 4. It is not true
that we will determine these for each patient individually from the
statistical tests, Rather, we will use these tests on a number of

records to determine reasonable values in general (the role of these

parameters will become clearer in Chapters 6 and 7).

{(2) Dynamical Model for Large Variation

For this class of rhythms the observed R-R intervals have large va=-
riations about the mean value. Therefore, we can model this class of
rhythms using the same model we used for the small variation rhythm, and
increase the noise variance of v to account for the larger variations in

this c¢lass. The mathematical model is then identical to Equations (5.1)
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and (5.2) and is rewritten here for convenience

x{k)

x (k-1) (5.6)

x (k) + v(k) (5.7)

L]

vy (k)

Here the observation noise v(k) has variance Rl’ which is greater

than RS, or

ElvkIv(i)] = Rlskj R2>Rs (5.8)

(3) Dynamical Model for Bigeminy

For a bigeminal rhythm, the observed R-R intervals oscillate
between two different R-R interval sizes, i.e., the R-R interval
sequence has a pattern of short, long, short, long, etc. Thus we
need a mathematical relation which will generate an ideal underlying
pattern of this form, and the variations observed in the R-R intervals
will again be modelled as additive noise. A second order model which

describes this rhythm pattern is

o 1

x(k) = x{k-1) (5.9)
1 O

v{k) = [1 0lx(k) + v(k) (5.10)

where x(k) is the nominal R-R interval and is a two-dimensional vector

xl(k)

x(k) = xz(k) (5.11)
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The initial state x(0) is a two-dimensional random vector with given
mean m(0) and covariance P(0), and the noise {v(k)} is again a white

Gaussian sequence with the following statistics
Efv(k)}1=0 (5.12)
ElvIv(i}] = Rbékj (5.13)

Again, P(0), m(0), and Rb are free parameters to be determined by
some statistical means.
Assuming that we are given the initial state,

xl(O)

x(0) = (5.14)

x2(0)

then the state sequence given by the process equation, Equation (5.9),

is

xz(O) xl(O) XZ(O)
x(1) . x(2) x(3) . (5.15)
xl(O) x2(0) xl(O)
The observation equation, Equation (5.10), then gives
y(l) = x2(0) + v(1)
(5.16)
v(2) = xl(O) + v(2)
y(3) = x2(0) + v(3)
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which is an alternation between xl(O) and x2(0), and the correct
model for a bigeminal rhythm.

(4) Dynamical Model for Trigeminy

In this case we have an R-R interval sequence which has a period
of three; hence we need a process equation which can generate such

a pattern. A model which describes this class of rhythms is

x (k) x (k~1) (5.17)

1}
o = O
= © O
o O

y (k) [1 001 x(k) + v(k) (5.18)

where x(k) is a three dimensional vector
xl(k)

x(k) = xz(k) (5.19)

x3(k)

|
and the noise process is again a white Gaussian sequence with

statistics

E{v(k)1=0 (5.20)

Elv(k)v(3)] = Rtskj (5.21)

It is easily seen that this model is appropriate for the trigeminal

rhythm we wish to model.

-166-



5.3 Dynamical Models for Transient Rhythms

In order to model the transient rhythm classes we use again a
conceptual picture for the models as we did in the case of persistent
rhythms, A transient rhythm can always be viewed dynamically as an
abrupt change, additively superimposed upon an underlying small
variational rhythm. Using this concept, we can then model the transient
rhythms by imagining that a noise free ideal underlying pattern,
which includes the abrupt changes is generated first, and the actually
observed R-R interval sequence {y(k)} is then obtained by superimposing
a noise sequence vy } upon the underlying nominal R-R interval

pattern. This conceptual picture is illustrated in Figure 5.2.

Underlying Pattern Generator v(k)

. |

| Transient I +

| B z | x(k) y (k)
vent z -

| Generator uy off [ N\

l I

| unit | |

I activate (k=1) delay |

| at time 6 xx= |

]

Figure 5.2 Conceptual Diagram of the Dynamical Model for
Transient Rhythms

Here the underlying pattern generator is driven by a randomly activated
transient event generator, which generates one of the four abrupt R=-R
interval changes described in Chapter 3 at activating time 6. For

k<8, the unit delayed feedback loop will generate an R-R interval

sequence, x{k), k=1,...6-1, which are all exactly equal. However for
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k>0, the underlying nominal R-R interval is given as the sum of the
outputs from the transient even generator and the unit delayed feed-
back. Using this conceptual diagram, we will describe the mathematical

models for the transient rhythm classes in the following.

(1) Dynamical Model for Rhythm Jump
In this class of rhythm, there is a sudden change of the size

of the R-R intervals. The model for this is

x (k)

x (k=1) + vGe K (5.22)

r

x (k) + v(k) (5.23)

v (k)

where V is an unknown jump in the normal R~R interval, and © is the
unknown time at which this jump occurs. Here Ge X is the Kronecker
’

delta defined earlier, The nominal R=R interval pattern given by

Equation (5.22) is

x(1) = x(0)

x(2) = x(0)

x(68-1) = x(0) (5.24)
x(B6) = x(0) + v

x(6+1) = x(0) + Vv

Note that for V>0 there is a sudden jump to a slower heart rate, and

for v<0 a sudden jump to a faster heart rate; thus the model given by
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Equations (5.22) and (5.23) describes both the onset tachycardia and
bradycardia,

(2) Dynamical Model for Non—-Compensatory Beat

For this class of ectopic events, there is either a shortened or
lengthened R-R interval, followed by a return to the regular pattern.

Thus a mathematical model which describes this pattern is

x (k)

x(k-1) + VI8 1 = 8y \ ] (5.25)

y k) = x(k) + v(k) (5.26)

Equation (5.25) gives the following state sequence:

x{1) = x(0)
x(2) = x(0)
x(6-1) = x(0) (5.27)

x(0) =x(0) + v

x(B+1) = x(0)

°

which has a non-compensatory beat at time 6.

(3) Dynamical Model for Compensatory Beat

In this case, there is either a shortened or lengthened R-R
interval, followed by a compensatory pause, such that the sum of these
two successive R~R intervals equals twice the regular R-R interval.
The model for this is
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x (k)

x(k=1) + V[Ge,k - Zse,k—l + 66,k-2] (5.28)

y{k) x (k) + v(k) (5.29)

The sequence of the states given by Equation (5.28) is

x(1) = x(0)

il

x(2) x(0)

x(6-1) = x(0)

x(6) = x(0) + Vv

»®
[e>]
+
=
It

x(0) - Vv

»
<D
¥
8N
il

x(0)

(4) Dynamical Model for Double Non-Compensatory Beat

For this case, we are seeking a model which is characterized by
two successive lengthened or shortened R~R intervals. The model for

this is

x(e-1) + VI8 | = 8y ] (5.31)

x(k) + v(k) (5.32)

x(k)

y (k)

The nominal R-R interval sequence from Equation (5.31) has the

following pattern
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x(1)

il
b
(@]

x(2)

I
»
o

x(6-1) = x(0) (5.33)
x(B) = x(0) + Vv
x(0+1) = x(0) + Vv
x(6+2) = x(0)
which is precisely the model we need. Note also that if v = -x(0)/2,

Equation (5.33) gives the state sequence for an interpolated beat.
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CHAPTER 6

DETECTION AND CLASSIFICATION OF PERSISTENT RHYTHMS

6.1 The Multiple Model Hypothesis Testing Technique

In Chapter 5, we have developed dynamical models for several per-
sistent arrhythmia classes, namely, small variation, large variation,
bigeminy and trigeminy. All the dynamical models for these arrhythmia
classes can be considered as special cases of a more general discrete

dynamical system of the following form:

x (k) O (k,k=1)x(k=1) + TI'(k)W(k) (6.1)

y{k) = H(k)x(k) + v(k) (6.2)

n . . s ‘s
where x(k) € R 1is the state, with initial condition x(0) being a

Gaussian random variable with mean

E[x(0)] = x(0) (6.3)

and covariance
E[(x(0)-%(0)) (x(0)-%x(0))T] = P(0) (6.4)

and the driving noise, w(k), is an m-dimensional white Gaussian

sequence with statistics
Elw(k)]=0 (6.5)

E[w(k)wT(j)]=Q(k)6kj (6.6)
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v(k) ¢ ®F is the observation, and {v(k)}is a p-dimensional white

Gaussian measurement noise sequence with statistics

Elv(k)]1=0 (6.7)

E[v(k)vT(j)]=R(k)6kj (6.8)

Purthermore, x(0), w(k), and v(j) are mutually independent, i.e.,

Elw(k)v: (§)]1=0 (6.9)
T

Elw(k)x (0)1=0 (6.10)
T

Elv(k)x" (0)1=0 (6.11)

Referring to Equations (6.1) through (6.11), the dynamical
models for the persistent rhythms are specified by ¢,l,H,0, and R.
Since no driving noise is included in the state equation of the dy-~
namical models, Q is set equal to zero for all these four persistent
rhythm classes. The other parameters for different classes are

given as

(1) small variation

o(k,k-1)=1 H(k)=1

R(K) =R (6.12)
S
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(2)

(3)

(4)

large variation

¢(k,k~-1)=1 H(k)=1
R(k) = Rl(>Rs)
bigeminy
1
d(k,k-1) = H(k) = [1 0]
1 O
R{k) = R
trigeminy
sk,x-1) = | 0 21 H(K) =
1 0 O
0 1 O
R(k) = R

t

(6.13)

(6.14)

[1 0 0] (6.15)

the R's, P(0), and x(0) are design parameters,

We now consider the problem of detection and classification for

these classes of arrhythmias, i.e., given a sequence of R-R intervals,

we wish to determine which one of the several possible persistent

rhythms is present,

Our design of the detection and classification

of this class of problems is based on the Multiple Model Hypothesis

Testing technique.

The method of approach of using this Multiple

Model Hypothesis Testing technique is described in detail in the

following.
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Given the dynamical model [(6.1)-(6.2)], we wish to design a
system that will estimate the state x(k) given the measurements
v(1), v(2),.. v(k). Let Q(i[j) denote the estimate of x(i) given
observations y(1),...,v¥{(j). Then these state estimates for the system
[(6.1)=-(6.2)] can be computed by the Kalman filter equation [39].
20|k-1) = &(k,k-1)%(k-1|k-1) (6.16)

x(k|k) = R(k|k-1) + M@&) yXK) (6.17)

with initial condition

2(0]0) = X(0) (6.18)

where M(k) is the filter gain, and Y(k) is the measurement residual

or innovations process

(k) = y(k) - HK)x(k|k-1) (6.19)
with statistics
Efy(k)1=0 (6.20)

T,o.vq _
Ely(k)y (3)] = V(k)ékj (6.21)

the associated error covariance matrix, P(ilj), residual covariance,
and the filter gain, M(k), can be computed according to the following

recursive relations:
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P(k|k-1) = &(k,k~1)P(k=1|k-1) 8" (k,k-1) + T(k)QU)T" (k) (6.22)

Vi) = HK)P(k|k-1)E (k) + R(K) (6.23)
. T -1 ~

M(k) = P(k|k=D)H (K)V ~ (k) (6.24)

P(k|k) = P(k|k-1) - M(X)H(kK)P(k|k-1) (6.25)

with initial condition
p(0]0) = P(0) (6,26)

Since we do not know a priori which of the possible arrhythmia
classes will occur, we hypothesize several possible arrhythmia classes,
namely, small variation, large variation, bigeminy and trigeminy, and
wish to determine which one of these possible models is the correct
one. In this case, we can employ the technique described in [40],

[41]. We have several possible models, which are specified by ¢i,

Pi' Hi, Qi and Ri as given by Equations (6,12) through (6.15). Here

subscript i is used to indicate different persistent rhythm classes.
Using Equations (6.16) through (6.26), we construct a Kalman filter

for each of.these models. The measurement residuals Yi(k), and the
associated covariance Vi(k) from each of these Kalman filters are then
used to compute the probabilities, Pri(k), that each of the models

is correct. Assuming there are n possible models, then the probability,
Prj(k), that the jth model is the correct one can be calculated from

the following recursive relation
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N(Yj(k),Vj(k))Prj(k~l)

Prj(k) = (6.27)

n
EN(Yi (k),v, (k) )Pri (k-1)
i=1 .

with initial probabilities Prj(O), j=1,2,...n, where N(Yy,V) is the

normal density function

1

572 (6.28)
)

N(y,V)

1.1 -1
1/2 exp['E'YV Y

(2w (detV)

The Pr (0) 'sare design parameters, detV is the determinant of Vv, and

Y is a p-dimensional vector.

By determining which model has the largest probability, we are
able to determine the correct underlying persistent rhythm pattern.
Therefore, this Multiple Hypothesis Testing technique will enable us
to perform both the detection and classification of the persistent
arrhythmia classes we wish to detect. The structure of this method

of approach is shown in PFigure 6.1.

6.2 The Multiple Model Hypothesis Testing Algorithm

A program has been developed and tested for performing the
multiple model hypothesis tests on the persistent rhythm classes,
which include small variation, large variation, bigeminy and trigeminy.

The dynamical models for these four classes are given in Chapter 5,
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Figure 6.1 The Multiple Model Hypothesis Testing Structure

and the assoéiated Kalman filter equations can be implemented using
Equations (6.16) through (6.26). Using the R-R interval data as
input, we can then compute the innovations, Yi(k), and the associated
covariance, Vi(k), for each of these four models from their Kalman
filter equations. The probabilities that the R-R interval data being

tested belong to different arrhythmic classes are then computed
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recursively using Equations (6.27).

In practice, we want our multiple hypothesis testing system to
lock onto the correct model as fast as possible, i.e.,, we wish to
achieve the detection and classification of the underlying persistent
rhythm for the R-R interval data being tested using as few R~R intervals
as possible., However in some cases, after the system has locked onto
a persistent underlying rhythm, the probability, pr (k), that this
underlying rhythm model is the correct one can be very large, hence
the probabilities for the other models to be true are very small., In
this case, if there is a sudden change of the rhythm pattern in the
R-R interval sequence being tested, our system will respond to this
change by adjusting the probabilities. However, this adjustment is
slow according to Equation (6.27), since Pr(k+l) is proportional to
Pr(k), which can be very small, Therefore in order to improve the
adaptability of the filters in our system, both upper and lower
bounds should be put on the probabilities, An upper bound of 97%,
and a lower bound of 1% are used for all probabilities, with the cons-
traint that the sum of all the probabilities is 100%,

Although for given initial error covariance matrices and measu-
rement noises the filter gain sequence associated with each rhythm
models can be computed "off-line" using Equations (6.22) through
(6.26), in order to study the effects on the response of the system
for different values of initial error covariances and measurement

noises we will compute all the gians "on-line" instead.
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Due to the fact that the gains of the Kalman filters will decrease
monotonically with time, a sudden change of the R-R interval data (for
instance, R-R interval data which starts with trigeminy, and suddenly
switches to regular rhythm) will not be rapidly adapted to by the
filters. In order to overcome this difficulty, we have to be able to
detect the sudden changes and reinitialize the probabilities and filter
parameters, which include initial error covariance matrices, measure~
ment noises and overall mean values of the R-R intervals. The
easiest way to detect a sudden change is to set a threshold on the
factor Yz(k)/ZV(k) of the most probable model. Here, the most pro-
bable model is defined as the one with probability greater than 80%,
After a sudden change has been detected, a reasonable period of time
should pass before searching for the next sudden rhythm change,
since, as mentioned above, a sudden rhythm change will not be adapted
to rapidly by the filters. That is, this threshold test is good only
when the multiple model filter has been locked onto the correct model.

As we have mentioned earlier in this section, we wish to achieve
the detection and classification of the underlying persistent rhythm
for the R-R interval record being tested using as few R~-R intervals as
possible. However due to the fact that the process equation for
bigeminal and trigeminal rhythms can also be used to describe the R~R
interval pattern for a small variational rhythm, the a posteriori
probabilities for both bigeminal and trigeminal filters are too high
in the presence of a small variational underlying rhythm. This will

result in a low detection and classification rate for small variational
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underlying rhythms (see experimental results in Section 6,3). In this
case all components of the filter states are about the same, which
would indicate that a small variational rhythm is present. Therefore
a test incorporating the differences between filter states to aid in
the discrimination of small variational rhythms is developed and

implemented as follows:
First, we compute

12t - “z(klk)l
A = B *b

= 5 (6,29)
MAX(xb(ka), xb(k|k))

and

Al 2 A2 a3 ~3 ~1
e %, (klx) = = ki) [+1% kR) = X (k[i0) [+]x K [k) = xp(x[x) |

MAx(Qi(klk), Qi(klk), Qi(klk))
(6.30)

s s
where x; and xi are the ith components of the filter state estimates

for the bigeminal and trigeminal models, respectively.

If AB(AT) is small, we know that the underlying rhythm is not
bigeminy (trigeminy). Therefore the a posteriori probability for the
bigeminal (trigeminal) model computed using Equation (6.27) should be
reduced. However if AB(AT) is fairly large, which is indicative of a
bigeminal (trigeminal) rhythm, no reduction on the a posteriori
probability for the bigeminal (trigeminal) model is needed. Thus
Equation (6.27) is modified as follow for the a posteriori probability

computations.

-181-



N(Yj(k),v (x))Pr (k-l)Cj

3 j

Prj(k) = . (6.31)
ZE:N(Y.(k),V.(k))Pr.(k-l)C.
1 1 1 1

i=1

where i=1,...4 are for small variation, large variation, bigeminy,

and trigeminy, respectively. The values for C1 and C2 are both set

equal to 1, and the values for C2, and C4 for different values of

AB and AT are given in Tables 6.1, and 6.2,

AB Cq
<0.1 0.2
>0,1 and <0,3 0.2 + 4(AB-0.1)
>0.3 1.0

Table 6.1 The values of C3 as a function of AB

AT C4
59.5 0.2
8
>0,5 and <0.8 0.2 + 3-(AT-0,5)
29.8 1.0

Table 6.2 The values of Cy as a function of AT
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A detailed description of the algorithm is given in the
following, and a flow chart of this program is shown in Figures 6.2(a)
and 6,2(b). This program can not only accept real R-R interval data,
but also has the ability to generate artificial data for testing pur-
poses., The filter parameters and initial probabilities for all four
models are read in first. Reading in zero for the initial error
covariance of the regular rhythm will terminate the program. The data
code IRCODE, which indicates what type of data is being used, is then
read in. The codes for different data types are given in Table 6.3.
If IRCODE is not equal to 9 more information is needed in order to
generate R=R interval data. Before generating a new R-R interval,
the total number of R-R intervals required , NRR, is checked. An

R-R interval is then generated according to the data code specified.

IRCODE TYPE OF DATA

1 Generate small or large variation data
according to the variance and the R-R
intervals mean value specified

2 Generate bigeminal data
3 Generate trigeminal data
9 Use real data

Table 6.3 Data Codes and Types of Data Used in Multiple
Hypothesis Testing Program.

For IRCODE equal to 9, areal R-R interval is read in directly. The

end of the data is indicated by a zero R-R interval. After all the
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Figure 6.2(a) Flow Chart of Multiple Hypothesis Testing Algorithm
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R-R intervals are processed, a probability plot will be generated.
For each new R~R interval, the Kalman filters for small variation,
large variation, bigeminy, and trigeminy will run in parallel, and
the innovations and associated covariances are computed. The proba-
bilities are then calculated, based on the outputs from the Kalman
filters. ©Note that the outputs from the Kalman filter for small
variation rhythm is also used as the input to a generalized likeli-
hood ratio detector, which is used to detect the transient rhythms
and is discussed in Chapter 7. Next the probabilities are checked
against the upper and lower bounds. After the most probable model
has been decided upon, a search for sudden rhythm changes of the R-R
interval data can be made. Once a sudden change is detected, all the
filter parameters and probabilities are reinitialized, and the pro-
babilities are computed again. If no sudden change is detected, the

program will continue and will read in the next R-R interval.

6.3 Experiments and Results

The algorithm described in Section 6.2 was tested on the
available R-R interval data files. The objective of this test was
to determine whether the multiple model hypothesis testing algorithm
described in Section 6.2 could detect and classify the arrhythmic
R-R interval data files being tested. We also wished to find a best
set of filter parameters and initial probabilities for all four
models, such that the multiple hypothesis testing program would

detect and classify the R-R interval data file being tested in the
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shortest time. Finally, we wished to test the filter adaptability
to the R~-R interval data when the input rhythm pattern is suddenly
switched. In this set of tests, we used data files IN.5 and IN.30
as small variational data, CUNATFIB as large variational data,
HUANPVCS as trigeminal data, and data file #503 as bigeminal data.
For each of these data files only the first twenty R-R intervals
were used in testing the multiple hypothesis testing algorithm. The
mean value, variance, and standard deviation of these twenty R=R
intervals for each of these data files are given inTables 4.3, 4.5,
4,6 and 4.9, and are summarized in Table 6.4 for convenience.

Using these actual R-R interval data, a series of tests were made.

Data File Mean Variance Standard
Name Deviation
IN.5 181.85 20.03 4.48
IN.30 233.95 57.63 7.59
CUNATFIB 116.05 292,05 17.09
#503 204,40 5486,97 74.07
HUANPVCS 141.60 2276,99 47,72

Table 6.4 Statistics of the Data Files Used in Testing the
Muiltiple Hypothesis Testing Algorithm
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The results are given in Figures 6.3-6.59. In the figures, the a
posteriori probability of each of the four possible persistent rhythm
states, namely, small variation, large variation, bigeminy, and tri-
geminy, is plotted vs. time. The time is not explicitly given, rather,
the locations of the fiducial points of the QRS complexes are shown
and the R-R intervals are printed along the time axis.

One of the most important aspectz of the filter design and sub-
sequent a posteriori probability computations is the sensitivity of
the filter performance to parameter variations. It is desirable
that the detection performance be relatively unchanged over a wide
range of variation of filter parameters, so that the filter can be
usea with confidence. Thus, a nominal set of filter parameters was
selected first, based on the statistical results given in Chapter 4
and a series of tests were then made to: (1) study the effects of
filter performance to parameter variations about these nominal values,
(2) determine a best set of filter parameters. The design parameters
for the multiple hypothesis testing filter were the initial error
covariance P(0), initial estimate of the mean R-R interval ﬁ(OIO), the
a priori probability Pr(0), and the measurement noise variance R for
each of the four persistent rhythm models.

The heart rate is determined by the rate at which the SA node
injtiates the depolarization pulses, and in general this rate is
approximately equal to 75 beats per minute. For a data sampling rate

of 250/sec, this is equivalent to an R-R interval of 200 sampling
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points. Therefore the initial estimate of the mean of the state,

denoted by x, in the figures, for all models were set equal, with

o
a nominal value of 200, Since we have no a priori information as
to which of the possible persistent rhythm classes the data file
being tested belongs; the initial probabilities, Prj(O), i=1l,...,4,
were all set equal, with a value of 0.25 such that the sum of all
probabilities is 1. In other words, this is to say that for any
given data file it is equal likely that this file is any one of

the four possible rhythm states, Although it is not true that 1/4
of all records are bigeminal or trigeminal, it is our feeling that
one does not wish to bias the test against such rhythms. This
essentially reflects a maximum likelihood philosophy as opposed to
the use of unequal a priori probabilities. Of course the approach
is quite flexible in that these initial probabilities can be

chosen to reflect patient history.

The variances of measurement noise Rs, R, were set to 64,400,

'3
respectively for small, and large variational rhythms according to
the statistical results given in Tables 4.3-4.6. The values for
bigeminy (Rb) and trigeminy (Rt) should be the same and egual to
that for the small variational rhythm, which was 64, according to
the statistical results given in Tables 4.35 and 4.36. The initial
error covariance matrix in all cases had equal diagonal elements,

denoted by P. in the figures, with a nominal value of 1600 to reflect

0
the possible large error in initial state estimate (see Equation (6.4)).
All off-diagonal elements, Pij' i#j, were set equal to each other

with a value of 0 chosen to reflect the insignificant correlations
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in the components of the error of the state estimate. The results of
the multi-filter performance {(as measured by the conditional probabi-
lities) using this set of filter parameters are given in Figures 6,3~
6.7, 1In these figures, all the data were clearly identified by the
high a posteriori probabilities associated with the correct rhythm
patterns.

For the two normal rhythms tested (Figures 6.3, 6.4), the a
posteriori probability of each of the four possible rhythm states
were approximately equal at k=l. Since at this point only one R-R
interval was given, there was not enough information to determine
anything about the data. However observe the behavior of the pro-
babilities after 2nd data point, which had a value close to the
first, was read in; because of the samll variation of this first
two data points, the a posteriori probability for the small varitional
rhythm became larger than the others. As more data points were
available, the a posteriori probability of the small variational
rhythm became even larger ~ i.e. we are more confident in our decision
of identifying the correct rhythm state.

At k=1 in Figure 6.5, the a posteriori probability for large
variationai rhythm was larger than others. This is not surprising
however, because of the fact that the filter initial state estimates
were set at 200, which was way off the first data point (101), the large
variational rhythm was favored more than others. Such transients due

to initial conditions must be dealt with via an effective initialization
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procedure, perhaps involving a preliminary scan of the first few
R-R intervals. As more data became available, the probability of
large variation started building up. However, because the variance
of the R-R intervals at each time k up to k=7 were not large (see
Table 4.6), the probability of small variational rhythm did not drop
to the preset lower limit of 1% very fast, and thus made the de-
tection of the large variational rhythm slower. Note also that a
jump of the probability for bigeminy was seen at k=3. This was
explained by the fact that the R~R interval sequence 101, 124, 99,
could very well be a bigeminal pattern.

In Figure 6.6, a bigeminal data file #503, was tested. Again no
diagnostic information was available at k=1, but at k=2, because the
large separation of these two data points (which has a variance of
8192, see Table 4.9), only bigeminy and trigeminy were likely (the
large variational rhythm does not have this much variation). In fact
these two patterns have equal probabilities (since we need at least
a third beat to distinguish between bigeminy and trigeminy). As the
third interval (128) was read in, the bigeminal pattern begins to
emerge, and this was indicated by the dramatic jump of the a posteriori
probability for bigeminy from approximately 50% to over 90%. The
preset wupper limit of 97% was reached at the fourth beat.

For HUANPVCS (Figure 6.7), a sudden jump of the probability for
large variation was observed at k=2; this was due to the variance
(which was 1152, see Table 4.7) which made the large variational rhythm
more favorable. At k=3, the only possible rhythm would be trigeminy,
and this was clearly indicated by the 97% a posteriori probability in
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Figure 6.7.

Next, two sets of tests were made by setting the variance of
measurement noise for both bigeminy and trigeminy to 100, and 400,
respectively. The motivation for these tests was that the a poste-
riori probability of bigeminy was quite high even in the case that
the data file being tested was a normal rhythm (see Figures 6.3, and
6.4), which did not have any periodic bigeminal pattern., One possible
reason for this was the equal noise variance, which was set at 64,
for both bigeminy and small variation., Therefore we would like to
increase the noise variance for both trigeminy and bigeminy; hopefully
this would reduce the a posteriori probability of bigeminy and improve
the detection performance in the case that the underlying rhythm
pattern is small variation. Note also that it seems reasonable to
expect larger fluctuations in bigeminy and trigeminy due to the ins-~
tability of the ectopic foci. The resulting a posteriori probability

plots for Rb=100 are given in Figures 6.8-6,12.

These results showed that the detection performances for the two
normal rhythm data files, IN.5 and IN.30, were improved (Figqures 6.8,
6.9) by the amount that the a posteriori probability of bigeminy was
reduced, and the performances for the other three data files, namely,
CUNATFIB, #503, and HUANPVCS were essentially unaffected (see Figures
6.10-6.12}. However for Rb=400, although the performance for normal
rhythm was further improved (see Figures 6.13,6.14), the performance
of the other three were degraded as shown in Figures 6,15-6,17
(compared to Figures 6.10-6,12 respectively)., Thus a noise variance

of 100 was set for both bigeminy and trigeminy in the subsequent tests,
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The diagonal elements of the initial error covariance matricies
were next varied, while keeping them equal for all filter states.

Two sets of tests were made, one with a smaller error covariance which
was set at 64, and the other with larger value, which was set at
10,000. As these values increase, the filter gains also increase,
reflecting the additional weighting to be given to the data relative
to the a priori information. The resulting a posteriori probability
plots for Po=64 are shown in Figures 6.18-6,22, Both of the two

normal rhythm data files were correctly identified (see Figures 6.18,
6.19); however their detection rate were much slower than those with
the error covariance of 1600, The large initial a posteriori proba-
bility for large variation in Figure 6.19 was due to the small error
covariance and the large deviation of the first data point from the
given estimates of the mean of the R-R intervals., Thus we see that
setting P(0) too small will make the filters quite sluggish (small gain)
and will, in fact, accentuate unwanted transients.

For CUNATFIB (Figure 6.20), the large variationai rhythm pattern
was not clearly detected. For #503, and HUANPVCS (Figures 6.21,6.22),
although the bigeminal and trigeminal pattern were detected, the
performanceé were degraded. In all cases, except for CUNATFIB, the
higher error covariance with value of 10,000 gave more rapid detection
as shown in Figures 6.23, 6.24, 6.26, and 6.27., The detection per=-
formance of large variation (Figure 6.25) was degraded by this large
initial error covariance (since the multifilter attributes the initial
variation in the data to its large uncertainty in the estimate of x),
and thus a compromise value of P0=1600 appeared more suitable for
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achieving best detection performance. (Note that if we used an
initialization procedure based on the first few R-R intervals, we
might be able to use a smaller initial covariance).

The effect of nonzero off-diagonal elements in error covariance

matricies was studied, with all off-diagonal elements Pij' i#j, set

equal to each other, with a value of 20 chosen to reflect the possible
small positive correlations in the components of the state estimate
error. The results are given in Figures 6.28-6.,32, By comparing

these figures with those with a value of Pij=o (Figures 6.8-6,12),
we see that a slightly better performance was .obtained with Pij=O.

The effect of varying the initial estimate of the mean R-R
interval X, was studied next, with the resulting a posteriori probabi-
lities given in Figures 6.33-6.42. Tor the two normal rhythms, the

detection performance was essentially unaffected. However, trigeminy

detection was best at x0=150 (Figure 6.37), while large variation was
best at xo=300 (Figure 6.40). This is explained by the fact that the

trigeminy value was close to the actual mean value (see Table 6.2).
However, the large variation detection is degraded by a good a priori
mean value estimate since this produces a small initial measurement
residual,

We had tried to reduce the bigeminy and trigeminy a posteriori
probabilities in the presence of normal rhythm by increasing the noise
variance for both bigeminy and trigeminy from a value of 64 to 100,

these probabilities were still quite high (see Figures 6.8 and 6.9).
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In this case all components of the state estimates of both bigeminy
and trigeminy are about the same, which would indicate that normal
rhythm is present. A test was thus done incorporating the differences
between bigeminy and trigeminy filter state components aid in the
discrimination of normal rhythm. The results are shown in Figures
6.43-6,47, The detection performances for bigeminy and trigeminy
were essentially unaffected. However the performance for the normal
rhythms was improved with the use of state estimate information.
Note that this problem stems from the fundamental indistinguisability
of normal rhythm from bigeminy and trigeminy (egual component bigeminy
and trigeminy look like a normal rhythm) and the above tests allow
one to remove this difficulty.

One critical test of the multiple hypothesis testing algorithm
is its ability to detect sudden switches of the underlying rhythm
pattern, Six cases were selected for experimentation: (1) small
variation (IN.5)*> large variation (CUNATFIB), (2) large variation
(CUNATFIB)~ small variation (IN.5), (3) small variation (IN.5)= bige~
miny (#503), (4) bigeminy (#503)~ small variation (IN.5), (5) small
variation (IN,5)- trigeminy (HUANPVCS), (6) trigeminy (HUANPVCS)-
small variation (IN.5), and the results are shown in Figures 6.48-6,59.

Filter parameters used were P0=16OO, Pij=0, x0=200, Rb=100. Both the

non-reinitialization and reinitialization of the filter after detection
of a switch of rhythm pattern were tested. In the filter reinitiali-
zation case, the gains and state estimate were reinitialized at the

2
point where the switch was detected. An outlier test, vy (k)/2V(k),
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which is an effective test for distinguishing a piece of data from a
particular ensemble, was used to detect rhythm switches, A rhfthm
switch is declared if Yz(k)/ZV(k)>€, where € is a positive valued
threshold that represents the tolerance we are willing to accept
before declaring a piece of data to be an outlier., It seems reasonable
to assume that any data which has a deviation greater than two
standard deviations will be an outlier. This gives the threshold €

a value of 2, For the data tested, this threshold value successfully
detected all the rhythm switches. As seen in the figures, identifi-
cation of rhythm switches was degraded without filter reinitialization,
and fast and accurate with the reinitialization. Thus it is necessary
to reinitialize the filter when a rhythm switch is detected.

Two other comments are necessary. First of all the use of this
outlier test should be viewed as a temporary tool in detecting rhythm
switches. As the results in the next chapter indicate, the GLR pro-
vides an excellent tool for the effective detection of sudden rhythm
changes. Secondly, note the one example of a shift from large
variation to small variation (Figure 6.51) involves a situation in
which there is a large shift in the underlying mean value as well. This
in fact makés detection much easier. If the two patterns had the same
means, then an outlier test - which looks for a large deviation from
the mean - would not work (since the shift is to a small variation
rhythm at the same mean). This is a situation that merits study in

the future.
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CHAPTER 7

DETECTION AND CLASSIFICATION OF TRANSIENT RHYTHMS

7.1 Generalized Likelihood Ratio Technique

In Chapter 5, we have developed dynanical models for several
transient arrhythmia classes. We now would like to consider the pro-
blem of detection and identification for this class of arrhythmias.
All the dynamical models for these arrhythmia classes can be written

in a general form

x (k) x(k-1) + F(k,0)v (7.1)

y{k) = x(k) + v(k) (7.2)

where x(k) is the state of the system, and y(k) is the measurement of
the state, which is corrupted by a white Gaussian noise v(k). The term
F(k,8)v in the process equation, Equation (7.1), represents the tran-
sient effect, where 8 is an unknown time where this transient event
commences and V is the unknown strength of this change. F(k,0) is a
function of both k and 6. Refering to Equations (7.1l) and (7.2),
F(k,09) for the transient arrhythmia classes modeled in Chapter 5 are
then given as follows:

(1) normal rhythm jump

F(k,0) = Ge'k

(2) non-compensatory beat

S

P09 = 8g,x7% k-1

(3) compensatory beat

6,k-l+68,k—2
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(4) double non~compensatory beat

§

Flk,0) = ée,k— 6,k=-2

Therefore a satisfactory method of detection and identification for
this class of problems should not only be able to detect these abrupt
changes, but also be able to estimate the time, 6, where this change
occurs, and, V, the strength of this abrupt change. Our design of the
detection and estimation of this class of problems is based on the
Generalized Likelihood Ratio (GLR) technique [42]. This GLR approach
will detect the abrupt changes and also give a maximum likelihocod esti-
mate of vV and 9.

The philosophy of our approach based on the GLR method is described
in the following. The GLR eguations for a jump model have been derived
previously in [43]. However, in this study a more general derivation
of these equations is given in Section 7.2. For each dynamical model
developed in Chapter 5, there is associated with it a F(k,8)V term. We first
construct a Kalman filter based on this dynamical model neglecting
this term. The measurément residual sequence, Y{k), and the associated
variances, V(k), from the Kalman filter are then used as the input to
a GLR detector. 1In this case, if there is no abrupt change of the R-R
interval sequence, the statistics of y(k) are those computed based on
the Kalman filter neglecting the F(k,0)V term. Otherwise, Y{k) contains
a bias term, which is proportional to V. The proportionality matrix
G(k,0), called the rhythm signature, can be computed from the Y(k),
Vv(k) and F(k,B8). We can then perform a maximum likelihood estimation

procedure to determine the most likely values of 6 and v, and then
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determine the generalized likelihood ratio 2(k,8) for the abrupt
change. This GLR detection system is shown in Figure 7.1. Here y(k)

is the actual R-R interval sequence,

(x) Kalman Filter
S AL {neglect F(k,8)V term
in the state equation)

Y (k) GLR | 2(x,0)
Detector

Figure 7.1 The GLR Detector

Since the transient events are always viewed, from the cardio-
logists' stand point, with respect to an underlying regqular rhythm,
the Kalman filter to be used in the GLR detector is designed based on
a regular rhythm dynamical model. Since, we have no a priori infor-
mation as to which of the arrhythmia classes described in Chapter 3
will occur, a bank of GLR detectors in parallel is built., Each member
of this bank of detectors corresponds to one of the possible arrhythmia
classes we wish to detect. In other words, we hypothesize several
possible arrhythmia classes and wish to determine which is the correct
one. This transient rhythm detection configuration is shown in
Figure 7.2.

In use, the generalized log-likelihoed ratio, 2(k,0), correspond-
ing to the correct model should be a monotonically increasing function
of k; i.e., we should become more confident that this is the correct

model as more data becomes avaliable. Thus, a correlation test on
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GLR Detector Ql(k'e)

# 1
. \
Kalman Filter . .
__ZiEl.. based on a small Y(k{, - De01§10n
. . Logic
variation model

GLR Detector QN(k'e)

# N

Figure 7.2 The Transient Rhythm Detection Configuration

Qi(k,e) for varying k, and a monotone increasing test on Qi(k,e) for
increasing k should be able to identify the correct arrhythmia classes

(see experimental results in Section 7.4).

7.2 Derivation of GLR Equations

7.2.1 Derivation of Rhythm Signatures

Consider a general discrete-time dynamical system of the following

form:

™
z
1

d(k,k-1)x(k-1) + I'(K)w(k) + F(k,0)v (7.3)

:~<
z
1

H(k)x(k) + v(k) (7.4)
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where x(k) € r? is the state, with initial condition x(0) being a
gaussian random variable with mean %(0) and covariance P(0), and

"fW(k)} is an m-dimensional white Gaussian sequence with statistics

E[w (k) ]=0 (7.5)
Elw(k)w (§)1=0(k)§ (7.6)
v (31100008, )

P

y(k) € R is the observation, and v(k)} 1is a p-dimensional white

Gaussian sequence with statistics
Elv(k)]=0 (7.7
E[v(k)vT(j)]=R(k)5kj (7.8)

In addition,

Elw(k)ve (§)1=0 (7.9)
T

Elw(k)x" (0)]=0 (7.10)
T

E[v (k) %" (0)]=0 (7.11)

The term F{k,08)V represents the abrupt changes defined in Section
7.1, where V is an unknown shift and 8 is the unknown time at which
this shift occurs.

The problem of determining whether there is an abrupt change or
not is equivalent to a decision problem with the following two hypo-

theses:

-258-



HO: No abrupt change up to the present time
(i.e., O>k)

le An abrupt change has occurred (6 ¥ k)

Under hypothesis H, , the Kalman-Bucy filter for the system [(7.3)-

¢}
(7.4)] is implemented:

®(k|k-1) = ®(k,k-1)% (k-1]|k-1) (7.12)
R(klk) = 2(k|k-1) + MX) Y (k) (7.13)

where Y(k) is the measurement residual

Y(K) = y(k) - H(K)%(k|k-1) (7.14)

with statistics

E[Y(k)]=0 (7.15)

ElY(K)Y (§)] = VoS, (7.16)

and Q(i|j) is the estimate of x(i) given observations y(1),v{(2),...,y{(j)

under hypothesis H_, and M(k) is the filter gain. The associated error

0

covariance matrix, P(i[j), is computed according to the following

recursive relations:

P(k|k-1) = &(k,k-1)P(k-1]k-1)8" (k,k-1) + I'(k)Q&K)T" (k) (7.17)

Vik) = HK)PX|k-1)H (k) + R(K) (7.18)
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M(k) = P(klk-l)HT(k)v'l(k) (7.19)
P(k|k) = P(k|k=1) = M(K)H(X)P(k|k-1) (7-20)

with initial condition P(0]0) = P(0).

Using Equations (7.3),(7.4) and (7.12) through (7.20) we can
derive an expiession for the measurement residual Y(k) that explicitly
involves 6 and V; i.e., we wish to compute the effect of the F(k,0)Vv
term on the state estimates and measurement residuals.

Let us first define the error of the estimate as the difference

between the estimated state and true state

ek|k) = X(k|k) - x(k) (7.21)

and

e(kx|k-1) = X(k|k-1) - x(k) (7.22)

Substituting Equations (7.3) and (7.12) into Equation (7.22), we have

e(k|k-1) = ®(k,k-1)%(k-1]|k-1) - ®(k,k-1)x(k-1)
- T(w(k) - F(k,0)V

= 0(k,k-1) [%(k-1]k-1) - x(k-1)]
- I'kwix) - Fk,0)V (7.23)
Using Equation (7.21), Eguation (7.23) becomes
e(k|k-1) = ®(k,k-De(k-1]|k-1) - T'(k)w(k)
- F(k,0)v (7.24)
From Equation (7.14), the measurement residual is given as

y(k) = y(k) - HK)X(k|k-1) (7.25)
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Using Equation (7.4) in Equation (7.25), we get

Y(k) = HK)x(k) + vk) - H(K)®(|k-1)

= - H(K) [X(k|k-1) - x(K)] + v(k) (7.26)
By Equation (7.22), this is just
Y(k) = = H(k)e (k|k-1) + v(k) (7.27)

Substituting Equation (7.13) into Equation (7.21), we obtain

R(k]k-1) + M) Y&) - x(k)

e(klk)

]

[K(k|k-1) - x(k)] + M(k)vy(k)

elk]k-1) + M(k)y(k) (7.28)

Under hypothesis H,, which assumes no abrupt change up to the

0

present time, Equations (7.24),(7.27) and (7.28) become, upon setting

v=0¢
e (k|k=1) = 8(x,k-1)e’ (k=1]k-1) - T(k)w(k) (7.29)
Yo x) = B e®(k|k-1) + vi(k) (7.30)
and
e klx) = % (k]k-1) + M) Y® (k) (7.31)

Here, the superscript "o" is used to indicate the estimation error and

measurement residual under the hypothesis Ho.
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Now we define the difference between e(k|k-1) and eo(klk-l) as

®(klk-1) - e(k|k-1) = B(k,8)V (7.32)

where B(k,0) is a function of both k and 6. Note that there is no
difference between e(k[k-l) and eo(klk-l), unless some abrupt changes

occur. Thus, we require

B(k,0)=0 k<6 (7.33)
Using Equations (7.24) and (7.29) in Equation (7.32), we have

(k,k-1) [e” (k-1]|k~-1) - e(k-1[k-1)] + F(k,8)V

= B(k,0)V (7.34)
Substituting Equations (7.28) and (7.31) into Equation (7.34), we get

B(k,8)v= 0 (k,k-1) [e° (k-1 |k-2) ~e (k-1|k-2) #M(k-1)¥° (k=1) =M (k=1) ¥ (k=1) ]

+ F(k,0)v

= ®(k,k~1) [B(k-1,0)v + M(k-1) (v (k-1)-Y(k-1))] + F(k,0)V
(7.35)

Using Equations (7.27) and (7.30) for y(k=-1) and Yo(k—l), respectively,

we have
B(k,8)v = &(k,k-1) [B(k-1,0)v-M(k-1)H(k-1)B(k-1,8)V]
+ P(k,0)v
= &(k,k-1) [T-M(k-1)H(k~1)]1B(k-1,8)V
+ F(k,0)v (7.36)
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or, since this must be satisfied for all v:
B(k,0) = ¢(k,k-1) [T-M(k-1)H(k~1)]IB(k-1,8) + F(k,0) (7.37)
From Equation (7.33) we have B(k~-1,0)=0 for k=0; therefore, we have

B(0,8) = F(0,0) (7.38)

We can also define a relationship between Y (k) and Yo(k) similar

to the one we defined for e(k|k-1) and eo(k|k—l) as follows

Y& =y (k) + Gk,8)v (7.39)

where Yo(k) is the measurement residual under hypothesis HO {(no abrupt

changes up to present time k). The G(k,8)V term is the effect of
F(k,B)V term on the measurement residual, and G(k,8) is a function of

both k and 8. For the same reason, we also have

G(k,0)=0 k<8 (7.40)

Substituting Equations (7.27) and (7.30) into Equation (7.39), we

obtain
Glk,0v = -H(k) [e(k|k-1) - e®(k|k-1)1
= H(k)B(k,0)V (7.41)
or,
G(x,08) = H(K)B(k,H) (7.42)
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From Equation (7.38), we have, as the initial condition

G(6,8) = H(B)B(6,0)

(7.43)

H(6)F(0,0)

Using Equations (7.37),(7.38) and (7.42), we can compute G(k,9)
for all k and 6. The values of G(k,0) are all zero for O greater
than k, as given by Equation (7.40). Therefore for a given k, we need
only to compute G(k,8) for 6 less than or equal to k. For O less than k
B(k, 0 can be calculated using Equation (7.37), while for 8 equal to k,
B(k,8) is given by Equation (7.38). Once B(k,0) is computed, G(k,6)

are then given by Equation (7.42).

7.2.2 Derivation of Likelihood Ratios and Jump Estimates

Now the problem of determing whether or not there is an abrupt
change is equivalent to a decision problem based on the observations

Y(k), with the following two hypotheses:

o

Y (k) YO (k)

Y x) + G(k,0)V

iy

v (k)

where Yo(kf is the measurement residual assume no abrupt changes occur,
and is a zero-mean white sequence with covariance V(k).

Here we have two hypotheses with two unknown parameters 6 and V.
If 6 and V are random variables with known probability density func-
tions, then the decision rule can be formulated easily by using a
likelihood ratio test, But in our case, O is the time at which the
abrupt change occurs and V is the strength of this abrupt change.

They are not random variables but rather are two unknown quantities,
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i

Therefore a generalized likelihood ratio test technique [42] will be
utilized to formulate the decision rule., The procedure of this genera-
lized likelihood ratio test is first to estimate both 6 and Vv as func-

tions of k assuming that hypothesis H, is true, and then use these

1
A ~
estimates O(k) and v(k) in a likelihood ratio test as if they were

correct. The estimates of 0 and V are done using a maximum likelihood

estimate as follows:

_-_3 ”~
38 (k) [P(Y(l),....Y(k)lHl.e(k).V(k)ﬂ =0
6 (x) =B (k) (7.44)
and
3 R )
aG(ET‘[:P(Y‘l’r-~-rY<k)lHl,e<k),v<k))] =0

v (k)= (k) (7.45)

where P(Y(l),...,Y(k)lHl,S,v) is the joint probability density function
of Y(1),4+.,Y(k) conditioned on 0,v and under hypothesis Hl. Since
the measurement residual y(i) are Gaussian, this conditional

probability density function is

Py (1) 1,000 ,v(k) = n|v1) )2 exp [- Sy (1) -6 (1,8 1)) v (k)T

V—l(i)(Y(i)—G(i,G(k))v(k)ﬂ (7.46)
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We have assumed Y{i) is a scalaer here. The extension to vector case
is straightforward.

Because the Y(i) are statistically independent, the joint proba-
bility density function of y(1),...,Y{k) is simply the product of the

individual probability densities, Thus

k
P(Y(l),...,Y(k)]Hl,e(k),\)(k)) = I P(y(i)IHl,B(k),\)(k)) (7.47)
i=1

or,upon some simplifications:

k
1
POY(1),eea,Y(R) [H,,00(0),000) = | T ———
1 i=1 qf2rv(i) |
k
cexpl- D ((1)=6(5,6 () v00) v (6) (r (1) -6(1,600) v (k)

i=1 (7.48)

Having computed the maximum likelihood estimates 6(k), G(k), the gene-

ralized likelihood ratio, denoted by A(k), is given as:

P(Y(1),eea,y (k) IHl,é(k) (k)
Ax) = (7.49)
P(Y(l),...,Y(k)IHO)

where P(Y(l),...,Y(k)IHO) is the conditional probability density func-

tion of Y(1),...,Y(k) assuming HO is true, and is given as:

k

k
N I I e e > vty
i=1  27|vd) | i=

(7.50)
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The decision rule for selecting either H_ or H. is
H
1
>
(7.51)

Ak) £ n
Hy

Since the natural logarithm is a monotonic

where n is the threshold.
function, the decision rule is equivalent to, upon taking logarithm

on both sides of Equation (7.51):

H
(7.52)

o

nn

AV

in A(k)H

o

Now, we would like to compute 3 (k) using Equations (7.45) and

(7.48). sSubstituting Equation (7.48) into Equation (7.45), we have

k
> z (Y(i) -G (1,8 KNV -

3 koo
i=1 \/2w|v<i)| i=1

. v-l(i)(Y(i)—G(i,@(k))v(k)] =0

or, equivalently'
k
] . . A T -1,. . A
— jz (y{(1)=G(i,8(k))v(k)) v “ (1) (y(i)-G(i,0(k))v(k)) =0
3v (k) by
v (k) =V (k)
(7.54)

writing out the product term in the bracket, we have
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i=1

k
33(k> ZS ['YT(i)V—l(i)Y(i)-YT(i)V-l(i)G(i,@(k))v(k)

-vime w8 v iy + viet i, 8k)v ).
. G(i,é(k))v(k)] -0
v (k) =v (k) (7.55)

The first term is independent of V(k), and the second and third terms

T
are equal, because they are scalers and V(i) = Vv (i). Thus we have

k

3 z T oo =l "
S [}ZY (1) v 7 (1)G6(1i,6(k))v(ik)
i=1
+ e 1, 8viwed, 8u)vix | =0
v (k) =V (k)
(7.56)
upon differentiating with respect to v(k), we have
K k
-2 ZYT(i)v'l(i)G(i,é‘(k)) + 2 Z STt (1,800)v ) -
i=1 i=1
G(4,8(k))=0 (7.57)
ox
k
o (%) [z GT(i,é(k))v'l(i)G(i,é(k))J -
{=1
k (7.58)

ES YL v i) es,8 &)
i=1
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therefore (assuming the indicated inverse exist:)

k
Vik) = ZS

~ - -1
GT(i,e(k))V l(i)G(i,@(k))] .

- i=1
[k T A -1 (7.59)
2 G (i,8(k))V ~(i)y(d)
Li=1
If we define
k
c(k,8(k)) = ZGT(i,e(k))v‘lu)c;(i,e(k)) (7.60)
i=1
and
k
DU,OGN = D 6T (E,80)V L (5)Y (@) (7.61)
i=1

then Equation (7.59) becomes

~ -1 ~ ~
vi{k) = ¢ “(k,0(k))D(k,0(k)) (7.62)
~
The maximum likelihood estimate of O(k) is that value of 0(k) at
which the conditional probability density function

PY(L),eee, Y(K) |Hl,6(k),\)(k)), which is given in Equation (7.48), is

a maximum. Thus, we have

~

(k) = arg max P(Y(1),...,y(&) |H ,8(k),v(k)) (7.63)
8 (k) 1
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which is equivalent to

k
§(k) = arg min z (Y (1) =G (1,0 (k)Y () v (1) (v (1) =G (4,8 (k) )0 (k)
8(k) i=1 (7.64)
or, upon some simplifications
k
N X T, ...~1, . \ ~
8(kx) = arg min 25 [-2Y (i)v " (1)G(i,8(k))v(k) +

8(x) i=1

GT(k)GT(i,em)>v‘1(i>c(i,e<k))3<k)] (7.65)

Using Equations (7.60) through (7.62) in Equation (7.65), we have

By = arg min [-ZDT(k,e(k))C—l(k,e(k))D(k,e(k))
0 (k)

T
+ D (k,0(k))c T (k,e(k))C(k,e(k))C_l(k,e(k))D(k,G(k)):, (7.66)
or
(k) = arg max [DT(k,euk))c‘l(k,e(k))nm.e(k))] (7.67)
8 (k)

~ ~
Once the maximum likelihood estimates 6(k) and v(k) are computed,
we can then use Equations (7.48) through (7.50) to compute the

generalized likelihood ratio. Upon canceling common terms, we obtain

- k
exp [~ 3 2((Y(i)-e(i,g(k)>3(k”T"_l(i) (Y‘i"G(i'a(k))G(k))]
Ny = i ]
(k) =
r k
L T,...-1,. .
exp __ > 121 Y (i)V (1)Y(1)] (7.68)
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taking the logarithm, and after some simplifications, we have

k
b)) = - 3 :E:[}ZYT(i)V_l(i)G(i,g(k))G(k)
i=1

+ GT(k)GT(i,6(k))V—l(i)G(i,§(k))G(kﬂ

Using Equations (7.60) through (7.62), we have
tnh ) =3 DT, B00)¢ 60Dk, B kD)

Using Equation (7.52), thus the generalized likelihood ratio test

Hl
A0 = 3 0" (6,8 0007 (6,800 Dk, B 000 E gan
0
or
Hl
~ T ~ -7 A ~ >
20,800 = 0,800 ok, 80D, B ) 2 20mm = ¢
H
0

Equation (7.67) can be rewritten as

A

0(k) = arg max [2(k,0)]
0 (k)

where

2.(k,8) = D (k,0(k))c T (k,8(k))D(K,8 (k)

Finally, a summary of the computation algorithm for this

generalized likelihood ratio test is given as follows:
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(1) G(k,8) are computed first for all 0<k, using the following

equations
B(e'e) = F(ele) (7075)
B(k,8) = ¢(k,k-1) [I-M(k~-1)H(k-1)]B(k-1,8) + F(k,0) (7.76)
and
G(k,8) = H(k)B(k,H) (7.77)

(2) Compute C(k,6(k)) and D(k,0(k)) for all 6<k from

k

Cl,B00) = D60 (1,00)v T ()6 (1,0 () (7.78)
i=]1
k

Dk,8(k)) = 2, aT(i,0 v ()Y (i) (7.79)
i=1

~
(3) Estimates V(k) and 8(k) are then given as

»~

8(k) = arg max [2(k,6)] (7.80)
8 (k)
where
T -1
2(kx,8) = D (k,B(k))C " (k,B8(k))D(k,B(k)) (7.81)
and
Vi) = ¢k, 8 k))D 0k, 0 () (7.82)
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(4) The decision rule for selecting either Hl or HO is

MAV I

K(k,g(k)) £ (7.83)

where the threshold € can be adjusted to achieve acceptable performance.

7.3 Additional Considerations for GLR Computations

7.3.1 GLR Window Width

From Section 7.1, we see that the basic GLR configuration
(Figure 7.2) requires the computation of the likelihood ratios Qi(k,e),
where the index i refers to the transient event being looked for
(rhythm jump, compensatory beat, non-compensatory beat, and double
non-compensatory beat), k is the number of the latest R~R interval
to be processed by the system, and 6 is the number of the R-R interval
at which the hypothesized transient event began. Because of the
causal nature of the processing, Gfk. From Equations 7,75-~7.81, we
see that the required computations of the number of the likelihood
ratios grows linearly with time k. Because of the fact that for each
k, we must, in principle, evaluate Qi(k,e) for all 6 which are less
than or equal to k. One possible way of avoiding this computation
problem is using a "data window" which requires only a fixed number
of likelihood ratios computations. Specifically, for a GLR "data
window" width of N, we only need to evaluate Ki(k,e) for the N most
recent values of 6 (i.e., k-N+1 <6<k).

It is clear that using a finite "data window", a great reduction

in the required number of likelihood ratios to be evaluated is
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achieve. The basic philosophy here is that if we have not detected
an transient event over the given window, it is wvery likely that the
event is not there, so why keep searching for it? Another advantage
of using finite data window is that a better detection performance
for multiple transient events can be achieved. 1In many records one
may have several transient events, On the other hand, the GLR is de-
signed to looking for a single transient event. Therefore, if one
has a very wide window (or if one calculates all of the
Ri(k,e) for 6=1,2,...,k), it may become very difficult to separate
these transient events. On the other hand using a narrow window, we
can isolate events which are spaced at points wider than the window
width. However, we do not want to make the GLR window too narrow
because of the following facts:
(1) Suppose we are looking for an event at time 6.

As we incorporate more and more data (i.e., as

we take data at time 86, 6+1, 0+2,...,), we are

more likely to obtain an accurate picture of

what happened at time 0. This is because by

waiting to look at several data points, we es-

sentially make the filter noncausal and are

performing smoothing which inherently increases

the accuracy of the test.

(2) Several of the transient events we are looking

for can not be distinguished until we have

seen several data points. For example, we

need at least 3 R~-R intervals in order to

distinguish a double non-~compensatory beat
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from a jump to tachycardia, at least 2 to
distinguish between a compensatory and

non-compensatory event, etc.

Motivated by these considerations, a GLR window width of 5 is
chosen in order to provide a reasonable tradeoff between computation,
multiple event isolation, and the question of smoothing and event

distinguishability.

7.3.2 Filter Initialization

Another problem with the GLR technique as described so far is
the detection of transient events that occur at the start of a record.,
The difficulty is that the filter, which is trying to estimate the
average R-R interval, initially has no data on which to base its
estimate, Therefore, a great deal of weighting is placed on the first
few R-R intervals. The consequence of this is that the filter tends
to "follow" the first few intervals, and the GLR detector, which is
looking at the filter behavior in order to determine if a transient
event has occured, will be fooled. O0Of course, as we smooth the data
by processing more and more data points, the GLR will, in principle,
be able tovdetermine that it is the first beat that is the problem,
but for short record lengths or for narrow GLR windows, one may not
be able to obtain enough smoothing in this manner.

Therefore a filter initialization is needed for providing for
more initial smoothing. One possible method is to compute an average
over the first several R~R intervals and use this average to initialize

the filter, along with a smaller initial error covariance. We then
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start the filter from the beginning of the record. The smaller initial
covariance implies a smaller filter gain, which means that the filter
will not "follow" the data as much initially. This will speed up the
correct GLR response. However, there is one problem with this initia-
lization method. If the first several R-R intervals to be averaged are
extremely erratic, the average we will provide may not aid things very
well. For example, one extremely long R-R interval can greatly effect
the average.

Motivated by the problem of one aberrant interval causing a pro-
blem in computing an initial average, we propose the following initia-
lization scheme:

Step (1): Search the first 5 beats and find the first two
consecutive intervals y(k) and y(k+1l) that are
sufficiently close in length

ly (k) - y(k+1)|<B

Step (2): Set the initial filter estimate equal to their
average

_ oy () 4y ()

%(0) >

and set the initial covariance P(0) to 1/2 of
the noise covariance associated with the
measurement of a normal R-R interval. This
reflects accurately the variance associated
with an estimate of a random variable obtained

by averaging two samples.
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Step (3): If none of the first 5 beats are less than
B apart, the initial filter estimate is set
equal to the average of the first 5 beats

and set P(0) at a lower value.

For the actual runs described in the next section, we have taken

B=20 and P(0)=32.

7.4 Experiments and Results

The generalized likelihood ratio detection system described in
Section 7.1 was tested on a wide variety of actual data. The objective
of this test was to determine whether the generalized likelihood ratio
testing algorithm described in the previous section could detect and
classify the presence of the transient rhythms, described in Chapter
5, in the R~R interval data files being tested. A summary of the R-R
interval data used in the tests is given in Table 7.1. Three R—~R
interval sequences were used as rhythm jump data. The first was a
shift from IN.5 to IN.30 at 6=6, and represents a sudden increase in
heart rate from approximately 81 beats/min to 64 beats/min. This was
formed artificially by putting the first five R-R intervals from data
file IN.30 after the first five of those from IN.5 (see Tables 4.3,
4.5). The second R-R interval sequence was a shift from IN.30 to
IN.5 at 6=6 and represents a sudden decrease in heart rate. The third
one was the R-R interval sequence of data file #476 (see Table 4.14),
which was indicative of a gradual slowing of the heart rate from appro-
ximately 85 beats/min to 45 beats/min.

For the non-compensatory beat model, three R-R interval seguences

were tested. The first (second) sequence was obtained using a single,
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Data Type and R-R Intervals
Beat Rhythm Jump Non-Compensatory Beat
Number
a0 | s | #4976 focat =6 | (140a¢ o=6) | 462
1 181 236 171 236 236 211
2 182 242 180 242 : 242 192
3 187 239 174 239 239 203
4 188 232 175 232 232 344
5 185 223 186 223 223 197
6 236 181 202 300 140 190
7 242 182 203 230 230 198
8 239 187 216 231 231 328
9 232 188 233 230 230 213
10 223 185 256 225 225 209
11 302 366
12 299 215
13 323 209
14 333
15 - 337

Table 7.1(a) R-R Interval Data Used in Testing The Generalized
Likelihood Ratio Detection System.

artificial beat 300 (140), inserted after 6=5 in IN.30, represents
possibly an SA block, dropped beat, or sinus arrest (premature con-
traction). This gave v a value of about +65 (-95). Here v is the size
of the jump due to the non-compensatory beat (see Chapter 5). The
third sequence was the R-R interval sequence of data file #463. This

file includes three lengthened beats at 6=4, 8 and 11. A segment of
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Data Type arnd R-R Intervals
B
eat Compensatory Double Non-Compensatory
Number i .
Beat ) Beat
HARNETPVCS #492-1 #534-1

1 159 247 252
2 165 238 193
3 163 110 101
4 157 137 201
5 160 244 201
6 105 258 211
7 229 259 26
8 155 254 80
9 162 249
10 154

Table 7.1(b) R-R Interval Data Used in Testing The Generalized
Likelihood Ratio Detection System.

the R-~R interval sequence, N=14 to N=23, in data file HARNETPVCS
(Table 4.10) was selected as compensatory data. This data contained
a single compensatory PVC at 0=6. For the double non-~compensatory
data, two files, #492-1 and #534-1, (see Table 7.1), were tested. 1In
#492-1, the normal rhythm was interrupted by one atrial premature con-
traction at 6=3, resulting in two consective shortened R-R intervals.
In #534~1, there is a PVC in the first beat, and there are two ventri-
cular complexes, indicative of a rate of more than 150 beats/min (if
there were only a single focus) at 6=7,8.

Using the R-R interval data given in Table 7.1, a series of tests

were made. First the GLR detection system was tested using a full GLR
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window width, i.e., the window width was equal to the total number of
R-R intervals contained in a file being tested. In addition, the
filter reinitialization procedure described in the previous section was
not utilized; rather, the initial R-R interval estimate was set to 200,
and the initial error covariance was set to 1600 as suggested in
Section 6.4. The next set of tests was made using a small sliding win-
dow of length 5 for the GLR detection system without using the filter
reinitialization procedure given in Section 7.3. In the cases where
the transient events occur at the very beginning of a record, the detec-
tion performance of the GLR system were degraded due to the high initial
filter gains. This problem was resolved by using the filter reinitia-
lization procedure given in Section 7.3. All the test results are
shown in Figqures 7.1-7.7.72. In the figures, the likelihood ratio
2(k,8) of each of the four possible transient rhythms, namely, rhythm
jump, non-compensatory beat, compensatory beat, and double non-compen-
satory beat, is plotted vs. time. The time is not explicitly given;
rather, the locations of the R wave are shown, denoted by the vertical
lines along the abscissa, and the R-R intervals are also given along
the time axis. Also shown in the figures are the values of the best
jump estimates, G(k,G), which are computed at the local maxima of the
likelihood ratios £(k,8).

The results for a sudden normal rhythm shift from IN.5 to IN.30
at 0=6 are shown in Figures 7.1-7.5. The jumped GLR likelihoods are
shown in Figure 7.1. For k<5, the likelihoods are small indicating

that no transient event has occurred. However, for k>6, a strong peak
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of the likelihood is observed at 68=6. Furthermore, 2(k,6) increases
monotonically with k, indicating that the likelihood of a rhythm

shift at 0=6 increases as more data is available. This behavior is
clearly indicative of a rhythm shift occurring at =6, The likelihood
for the other GLR detectors, namely, non-compensatory, compensatory,
and double non-compensatory, are given in Fiqures 7.2-7.4, Note that
in each of these cases a jump of the likelihood is observed at k=6,
However, in each case %(k,6) is seen to decrease as more data is
available, indicating that none of these transient events is present.
The data of Figures 7.1-7.4 are summarized in Figure 7.5, which shows
the maximum of & (k,0) over all O plotted vs. k. For k<5, the likelihood
of each possible transient events is small, indicating that no ectopic
change has occurred. However at k=6, the likelihoods for all models
increase as the lengthened R-R interval 236 is obtained. This is what
we expected, because any one of the four possible transient events can
start with a single, lengthened (or shortened) R-R interval. Therefore
with the data available up to k=6, there is no way to determine which
one of the four ectopic events is present. This is indicated by the
equal likelihoods for all models at k=6. As the next data point 242,
which is another lengthened R-R interval, becomes available, the only
possible transient rhythm models which can describe this data pattern
are rhythm jump, and double non-compensatory beat; and there is no way
to distinguish between these two. This is indicated by the decreases
of the compensatory and non-compensatory likelihoods, and the increases

of the jump and double non-compensatory likelihoods. As one more
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lengthened R-~R interval, 239, is obtained, only the rhythm jump model
can match this data sequence, which is indicated as a high likelihood
for jumped GLR at k=8. As more data becomes available, the likelihood
of the jump GLR increases monotonically and is never lower than any of
the likeiihoods for the other GLR detectors. Furthermore, the confi-
dence that a jump has actually occurred increases as more data is
obtained.

Next, a sudden shift in normal rhythm from IN,30 to IN,5 was
tested to demonstrate the detection capability of the GLR detection
system to a shift from a lower heart rate to a higher heart rate. The
resulting likelihood plots are shown in Figures 7.6-7.10. In this
case a similar detection performance is achieved, and the detection
of a rhythm jump at 9=6 is accomplished as seen in Figures 7.6, 7.10.

The next rhythm data tested was file #476, which has a gradual
slowing heart rate from about 85 beats/min to 45 beats/min. The
likelihood ratios are shown in Figures 7.11-7.15. A jump is strongly
identified in Figure 7.11. The width of the likelihood peaks indicates
that a gradual jump is taking place, which is consistent with gradual
slowing. The summary plot of Figures 7.15 shows that a jump is
clearly idéntified, however the exact location of this jump is not so
obviously determined due to the characteristic of a gradual slowing
R-R interval sequence.

Next, several tests were made using the non-compensatory data
given in Table 7.1. The results of a non-compensatory beat of
(1) 300(v= +65), and (2) 140(v= -95) at 6=6 are shown in Figures 7.16=-
7.20, and 7.21-7.25, respectively. In each case, detection of the
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non-compensatory beat at 6=6 was accomplished as seen in Figqures7.17,
7.20 and Figure 7.22, 7,25, However the confidence that a non-compen-
satory beat has actually occurred in the second case is much greater
than that of the first, this is due to the high value of |v|(=95),
which means a higher signal/noise ratio, in the former case. The
results for file #463, which contains three lengthened R-R intervals
at 0=4,8, and 11, are given in Figures 7.26-7.30. 1In Figure 7.27
three non-compensatory beats are clearly detected at 6=4,8, and 11, as
desired. Since the GLR system is designed assuming that only cne
transient event occurs within the window, it is rather encouraging
that multiple transient events can be detected within the same window.
(here of length 13). However, since multiple transient events occur
within the window, the summary plot of Figure 7.30 suggests little
information on the detection and classification of the ectopic events.
In such cases one may wish to track all of the local maxima of the
likelihood ratios separately, or we may want to use a very short GLR
window, in which case we will detect and classify each separate event
as it occurs and will be able to avoid the difficulties of multiple
events within a window. Success with such a technique will be
discussed éhortly.

The next test was made using the compensatory R-R interval data
given in Table 7.1. This data sequence contains a singlé compensatory
PVC at 6=6, The results are shown in Figqures 7,31-7.35 and demons~-
trate that detection of the compensatory PVC is accomplished easily
{(see Figures 7.33, 7.35). Since the effect of the PVC on the innova-
tions is negligible after the compensatory pause, the likelihood for
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the compensatory GLR remains essentially constant for K>7 (i.e.,
there is no more information in the filter output concerning this
event, since the lengthened and shortened R-R intervals effectively
average out in the filter).

Next, two tests were made to evaluate the detection performance
of the double non-compensatory GLR detector. First, we studied file
#492-1, which has an interpolated beat at 6=3, resulting in two con-
secutive shortened R-R intervals at 6=3,4. The resulting likelihood
plots are given in Figures 7.36-7.40, and the two consective shortened
beats are clearly identified. Note that the model for this arrhythmia,
described in Chapter 5, specifies that the R~R interval jump is
constant over two successive R-R intervals., Here we have demonstrated
that our GLR detector system can detect quite easily a double non-

compensatory beat with unequal lengthes (hence demonstrating its

robustness). Next, file #534-1 was studied. This file contains a
single PVC in the first beat (0=1 - i.e. we only have the compensatory
pause part), and two ventricular complexes at 6=7,8. The results

are shown in Figures 7.41-7.45. The two shortened beats are clearly
identified as double non-compensatory beat at 6=7; however, the PVC

in the first beat is either missed or weakly detected in Figure 7.42,
This is basically an initialization problem.

Note that the window width in Figures 7.26-7.30 is 13 and that
three transient events occur within the window. In Figures 7.41-7.45,
we have a window width of 9, and two transient events occur within
the window. The philosophy of design for the GLR detection system

is based on the occurrence of a single transient event within the
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window. In addition, it is not feasible to use a window of length
equal to the total number of R~R intervals contained in a record.
Thus, a "sliding window" GLR detection system of length 5 was studied.
This value was selected since the effect of a transient rhythm
persists over no more than three beats, and therefore a window width
of at least three is necessary, but should be not so large that

there is a high probability that more than one transient event will
occur within the window. The results for file #463, #534-1, using
the sliding window GLR detector, are shown in Fiqures 7.46-7.54, and
Figures 7.55-7.59, respectively. In the figures, the value of T in
the captions denotes the beat number at the far left side of the
window, and the window moves, in successive plots, to the right over
the data. For file #463, the first lengthened beat at 0=4 is
clearly identified as a non-compensatory beat in Figure 7.46, and,

as more data becomes available, as in the subsequent plots showed
(Figures 7.47,7.48), we are more confident in our detection of this
ectopic event. The second ectopic beat, which occurs at 6=8, is
detected as seen in Figufes 7.50 and 7.51. The third lengthened beat
at 6=11 is also clearly identified in Figures 7.53 and 7.54, For
file #534-1, either a non-compensatory beat at 8=1 or a rhythm jump
occurs at 6=2 is detected, recall that in Figures 7.41-7.50 where

a full window width was used, we were not be able to detect this
ectopic beat. After the first beat passed the window, the peaked
likelihoods of the jumped GLR detector indicate a rhythm jump as seen
in Figure 7.56. The two successive shortened beats at 6=7,8 are
detected and identified as a double non-compensatory beat at 0=7 as

we wished (Figure 7.59).
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Using the normal filter reinitialization procedure given in
Section 7.3, data file #534-1 was tested again, with the initial R~R
interval estimate set to 192 and the initial error covariance set to
32. The results are shown in Fiqures 7.60-7.64., It can be seen by
comparing Figure 7.55 and 7.60 that filter reinitialization gives
significantly improved detection performance, which is indicated by
the much sharper peak of the likelihoods for non-compensatory GLR
detector in Pigure 7.60. Recall, this first R-R interval was the
compensatory pause asociated with a PVC; since we do not have the
preceding shortened interval available, we can not diagnose this as
compensatory and hence classify it as non-compensatory. Clearly a
scheme that uses this approach in conjunction with wave shape infor-
mation would be able to do a better job of classification, but we
can expect no more from R-R data alone. This behavior holds true as
the window moves over the data. However as k becomes larger, the
filter gain without reinitialization is approximately the same as that
used with reinitialization and there will be little difference in the
likelihood ratios. This behavior is clearly indicated by the approxi-
mately identical results in Figures 7.57-7.59 and Figures 7.62-7.,64,

Finally, file #492-1 was tested using the sliding window with
and without reinitialization. The reinitialization condition used
was x = 242.,5 and PO= 32, The results are shown in Figures 7,65-7,68
for the non reinitialization run, and in Figures 7.69-7.72 for the
reinitialization run. By comparing these results, we conclude that
a much better detection performance can be achieved by using a

sliding window GLR detector with filter reinitialization.
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Figure 7.46 Sliding Window GLR for Data File #463, without Filter Reinitiélization (7=1).
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-6EE~

®: K=8. a: K=8., 4 : K=10. x: K=11. o : K=12,

NON-COMPENSATORY GLR -DOUBLE NON-COMPENSATORY GLR

300 300,
2504 250 -
% 2001— % 2004+
x 1504 x 1504
- -
100+ 100+
50. + S0.
0. ' % + 0. ! . ¢
328. 213. 208. 366. 215, 328. 213. 208, 366. 215,
TIME (&) TIME (o)
300, JUMPED GLR 300, COMPENSATORY GLA
250+ 250+
5 2°0F 5 2907
x 1504+ x 1504
| —J
100+ 100+
50. |- 50.
0. : & —+ 0. ! ot +
328. 213. 208. 366. 215. 328. 213. 208. 366. 216.
TIME (o] _ TIME (o)

Figure 7.53 Sliding Window GLR for Data File #463, without Filter Reinitialization (T=8).
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Figure 7.56 8liding Window GLR for Data File #534-1, without Filter Reinitialization (T=2).
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Figure 7.59 Sliding Window GLR for Data File #534-1, without Filter Reinitialization (T=5).
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Figure 7.60 Sliding Window GLR for Data File #534-~1, with Filter Reinitialized at P =32, x =192 (T=1).
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X : K=5. & : K=6,

DOUBLE NON-COMPENSATORY GLR

N* :

193, 181, 201, 201, 211,
TIME (o)

COMPENSATORY GLR

193. 191, 201, 201, 211.
TIME (®

Sliding Window GLR for Data File #534-1, with Filter Reinitialized at P =32, x =192 (T=2),
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®: K=3, a: K4, 41 K=5, X1 K=b6. o1 K=7.

200 NON-COMPENSATORY GLR 500 DOUBLE NON-COMPENSATORY GLR
175+ ’ 1754+
P
150+ 1504
% 125- T 1355
x 100+ x 100+
~ 75, - ~ 75,
S0. 0. +
25. + 2s.
0. — - 0. — —k
19t.  20t, 201,  211,96. 191, 201, 201,  211.96.
TIME (o) TIME (&)
200 JUMPED GLA 200, COMPENSATORY GLR
175+ | 175+
p
150+ 1504
® 185+ $ 125+
x 100+ x 100+
— 75, F ~ 75, +
S0. 50. +
25. F 2s. +
0. e & PR ek 0. e > T
191,  20t. 201,  211.96. 191, 20t. 201,  211.96.
TIME (o) TIME (o]

Figure 7.62 Sliding Window GLR for Data File #534-1, with Filter Reinitialized at P =32, x =192 (T=3).
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®: K=ll., A& Ks5, 4+ K=6. X K=7. o : K=8,

350, NON—COMPENSATORY GLR 350, DOUBLE NON-COMPENSATORY GLR
300 | 300 -
250 | 250 4
? 200 ® 200
= < f
= 150t = 150,
100} 100 4
50. - s0. -
0. + 0. | o +
201. 201. 211, 96, 80. 201, 201. 211, 96. 80.
TIME (o) TIME (o)
350, JUMPED GLR 350, COMPENSATORY GLR
300} 300 -
250k 250 &
® 200+ ® 2004t
. 5 4 5 3
= 150 = 1504
100 100+
50. - 50. |
0. & - & + 0. & e .
201. 201. 211. 96, 80. 201. 201. 211. 96. 80.
TIME (®) TIME (&)

Figure 7,63 Sliding Window GLR for Data File #534-1, with Filter Reinitialized at Po='32, xo=l92
(T=4),
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o: K=5. & : K=6,
NON-COMPENSATORY GLR

ugao,
350+
300
o 250.
x 200,
- 150,
100 .+
S0. +

T

TIME (o)

JUMPED GLR

400
350+
300
® 250+
x 200+
~ 150+
100,
S0.
g, t4—m-rn——b—o—i

T

201. 211.96. 80. 248,

TIME (o)

201. 211.96. 80. 249,

K=7, X : K=8, o : K=3,
DOUBLE NGN-COGMPENSATORY GLR

400.
350,
300+
D 250+
x 200,
~ 150,
100.
50.

1

T

e

T

f A

201,  211.96.
TIME (&)

80. 243,

COMPENSATORY GLR

400
3504+
300+
% 2504
x 2004+
— 150,
100+
S0. +

F
201, 211.96.

TIME (e}

—

80. 243,

Figure 7.64 Sliding Window GLR for Data File #534-1, with Filter Reinitialized at P =32, x =192
o o

(T=5).
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m: K=1. A : K=2,
300. NON-COMPENSATORY GLR
250
~— 200,
al
x 1504
—
100+
50. [' ;
0. — -o——b +
247, 238,110, 137. 24y,
TIME (o)
300, JUMPED GLR
250 &
. 200+
1)
é 150{
o
100+
50. - p
0.
2u7. 238.110. 137. 2uu,
TIME (@)

Figure 7.65 Sliding Window GLR for Data File #492-1, without

K=3. x: K=U. ¢ : K=5,
300 DOUBLE NON-COMPENSATORY GLR
250 4
. 2004+
¢.
x 150+
_
100+
S0. + 3
0. >— A *
247, 238.110. 137, 244,
TIME (o)
300, COMPENSATORY GLR
250+
— 200+
]
x 1504
-
100+
SO. ™ b
0. +
247, 238.110. 137, 2uy,
TIME (&)

Filter Reinitialization (T=1).
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o: K=2.
NON-COMPENSATORY GLR

A K=3,

350,
3004
250+

® 200/

= 150+
100,
50. +

&

238.110. 137, 24y,

TIME (o)

JUMPED GLR

258.

350,
300+
2504
200
=~ 150}
100

T

T

y

—&——&

Figure 7.66

238,110, 137, 24y,

TIME (e)

Sliding Window GLR for Data File #492-1, without Filter Reinitialization (T=2),

258.

K=4,

Xt K=5. o K=6.
DOUBLE NON-COMPENSATORY GLR

350,
300.
250
® 200,
= 150,
100,
50.

&

238.110. 137. cHY, -

TIME (o)

COMPENSARTORY GLR

258.

350,
300.
250,

® 200,

= 150.
100.
50.

&

238.110. 137.  2uy.

TIME (o)

258.
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®: K=3. & K=, 4+ 1: Ks5, x: K=B6. o : K=7,

NON-COMPENSATORY GLR DOUBLE NON-CBMPENSATGRY GLR

400 400
ssow— 350+
3004 300+ V=125
% 250+ $ 250
x 2004+ x 200+
— 1504 ~ 150+
100 4 100+
S0. | S0. + L
0. ‘ + 0. ' -
110. 137. 24y, 258. 259, 110. 137. 2ul, 258. 259.
TIME (&) TIME (o)
400, JUMPED GLR 400, COMPENSATORY GLR
3504 350+
300} 3004
D 250+ ® 250+
X 200} x 200+
— 150+ — 1504
1004 1004+
S0. b S0. + X
0. . . + 0. +
110. 137, 2uy, 258. 259, 110. 137. ouy, 258. 259,
TIME (e) TIME (e}

Figure 7,67 Sliding Window GLR for Data File #492-1, without Filter Reinitialization (T=3).
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m: K=, & : Ks5, 4+ K=b6, X: K=7. ¢ K=8,

200 NON-COMPENSATORY GLR 500, DOUBLE NON-COMPENSATERY GLR
1754 175+
1504 150+
T 125+ 3 125+
x 100 x 100+
- 75. + — 75, +
S0. - S0. +
2S. + b 25. + b
0. ~b + 0. \
137. 2y, 258, 259, 254, 137, 24,  258.  259. 25U,
TIME (&) TIME (&)
200, JUMPED GLR 200, COMPENSATORY GLR
1754+ 175+
150 150
® l1e5r % 125+
x 100 x 100+
— 75, + - 75, F
50. + 50. +
25. + ' 2S. t+ S
0. + 0. . k
137. 244,  258.  259. 254, 137.  2uyy, 258,  259. 25y,
TIME (o) TIME (&)

Figure 7.68 Sliding Window GLR for Data File #492~1, without Filter Reinitialization (T=4).
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m: K=l, A K=2. 4 K=3. x: K=U, o K=5,
NON-COMPENSARTORY GLR DOUBLE NON~COMPENSATORY GLR

350, 350.
300+ 300+
2504 ' 250+
m. 200+ ¢‘ 200 +
< <
T 150F —, 1504+
1004 100+
SO. t+ 50. + L
b
0 — P 1 0. - —i T
247, 238,110, t37. 4y, 247, 238.110. 137. 44,
TIME (&) TIME (&)
350 JUMPED GLR 350, COMPENSATORY GLR
3004 300+
2504+ 250+
® 200} ® 200+
_y 190F = 1504
100+ 100+
S0, - 50. +
3 p
0\ * ﬁt b g 0‘ *‘ -
2u7. 2368.110. L37. 244, 247, 238.110. 137. A4,
TIME (&) TIME (&)

Figure 7.69 Sliding Window GLR for Data File #492-1, with Filter Reinitialized at Po=32 and x0=242.5
(T=1).
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®: K=2. a: K=3., 4: K=, x: Ks5. o : K=6b.

350 NON-COMPENSATORY GLR 350, DOUBLE NON-COMPENSATORY GLR
3001 - 300 +
290 250+
% 2001 ® 200+
X x
= 150t = 150+
1004 100+
SO. r " 50, b
0. b \y 0. e v
236.110. 137, 244, 258, 238.110. 137, 24y, 258,
TIME 18) TIME (&)
350 JUMPED GLR 350, COMPENSATORY GLR
300} 3004
250+ 250+
% 200t ® 200+
h - h -
_ 150F = 1504+
100+ 1004+
S0. - X 50, + ’
0. H v O‘ é - v
238.110. 137. 244, 258, 238.110. 137, 24y, 258,
TIME i8) TIME (8)

Figure 7.70 Sliding Window GLR for Data File #492~1, with Filter Reinitialized at Po=32 and xo=242.5
(T=2).



m: K=3. a: K=, 4+ K=5, x: K=6. o: K=7.

400 NON-COMPENSATORY GLR 4o DOUBLE NON-COMPENSATORY GLR
350+ 3504
300+ 300+
® 250+ 7 250+
X 200+ < 2004
~ 150+ — i1sp4
100+ 100+
s0. + X S0.
0. ' + 0. +
110. 137.  2uM. 258. 259. 110. 137, 244, 258. 259.
TIME (8) TIME (&)
b
3
' 400 JUMPED GLR 400 COMPENSATORY GLR
3504 350+
300 300+
$ 250+ 3 250+
X 200f x 200+
— 150+ — 1504
1004 100+
50. |- 50, +
p 4
0. ' + 0.
110. 137, 244, 258. 258, 110. 137. 24y, 258, 259,
TIME (®) TIME (&)

Figure 7.71 Sliding Window GLR for Data File #492-1, with Filter Reinitialized at P =32 and x =242.5
(T=3). © ©
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®: K=4. a: K=5. 4: K=6. x: Ksl. o K=8,

156 NON-COMPENSATORY GLR {50 DOUBLE NON-COMPENSATORY GLA
125 ¢ 125+
. 100+ . 1004+
) )
x 5.t x 5.t
-J -J
50. + 50. t+
25. ~ 25.
4 p
0. ' - + 0. - +
137. 244, 258,  259. 254, 137. 244, 258, 259, 254,
TIME (o) TIME (o)
150, JUMPED GLR 150, COMPENSATORY GLR
125+ 125+
—. 100+ ~. 1004
) )
< 7. F "\ < 75. +
- ~J
S0. - 50. +
5. 5. +
p p
0. + 0. ' +
137. 244, 258,  259.  25M, 137. 244, 258,  259. 25U,
TIME (o) TIME (®)

Figure 7.72 Sliding Window GLR for Data File #492-1, with Filter Reinitialized at P =32 and x =242.5
(T=4) . o o



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a new approach to development of an automated
computer'program for the detection and classification of cardiac
arrhythmias involving the use of powerful statistical techniques has
been studied. The principle results and conclusions of this work are
given in the following:

(1) A robust, simple procedure for the determination of fiducial
points of the QRS complexes for ECG/VCG has been developed. This fi-
ducial point detector has been tested on a variety of data and good
performance has been obtained.

(2) The Aevelopment of methods for performing rhythm analysis
is facilitated by first categorizing the arrhythmias into several
classes based on certain clearly identified dynamical characteristics.
An attempt was made to categorize cardiac arrhythmias into different
classes, based on the use of R~R intervals only. For the persistent
rhythms, foﬁr classes are identified: small variation, large variation,
bigeminy, and trigeminy. For the transient events, four ectopic
classes, namely, rhythm shift, non-compensatory beat, compensatory beat,
and double non-compensatory beat, are proposed.

(3) Further and more guantitative information about the manifes-
tation of various arrhythmias was obtained by the statistical analysis
of the available R-R interval data. Certain simple statistics were
computed and two simple graphic display tools, namely, the R~R
interval histogram, and the scatter diagram, were employed. These
statistics provide us with useful information in the design of the
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mathematical models for different arrhythmia classes.

(4) We have shown that several important cardiac disorders can
be modeled by a low-order linear stochastic dynamical system for the
R-R intervals. These include normal sinus rhythm, sinus tachycardia,
sinus bradycardia, atrial fibrillation, bigeminy, trigeminy, PAC, PVC,
sinus arrest, SA block, AV block, and interpolated beats. The para-
meters of the models can be selected to best match the associated
statistical characteristics of the cardiac arrhythmia classes. Based
on the mathematical models, powerful statistical techniques are avail-
able and easily implemented for efficient detection and classifi-
cation of persistent rhythms (e.g., normal sinus rhythm), and ectopic
events (e.g. PVC's)

(5) An algorithm based on multiple model hypothesis testing
of a set of Kalman filter residuals has been developed and works
quite well in classifying persistent rhythms. A different Kalman fil-
ter is used for each persistent rhythm class. Detection of persistent
rhythms generally occurred within five heart beats. Detection of
switches in persistent rhythms was achieved by using an outlier test,
and the desired detection performance was made fast and accurate by
reinitializing the Kalman filter parameters and the probabilities for
the various rhythm classes,

(6) A generalized likelihood ratio (GLR) testing technique
was developed and implemented for the detection and classification of
transient events on top of normal sinus rhythms. Extensive tests
have been performed on available.data° Initial test results suggest

that the GLR detection technigque is promising. Detection of multiple

~360-



ectopic events was achieved by using a "sliding window" GLR detector
of window width 5. Using this narrow window we can isolate events
that are spaced at points wider than the window width, and thus bettexr
detection performance can be obtained. The problem of the detection
of ectopic events that occur at the start of a record was overcome by
reinitializing the GLR detector.

The results of this work suggest several areas of further research
as well as continued development of present ideas. Specifically:

(1) More ECG/VCG data should be tested to evaluate the fiducial
point detector in a wide variety of situations. These tests will
either be used to adjust parameters of the present detector, or sug-
gest more robust detector designs. For instance, a noise burst of
high amplitude, and high frequency may be identified as a QRS complex
by the present fiducial point detector. If this should happen, a
measure of the width of the QRS complex is necessary. A declaration
that an R-wave has been detected will not be made unless the width of
the possible QRS complex exceeds a preset value. In addition, in this
study, detection has been done using only a single lead. A detector
utilizing several or all leads of the ECG/VCG record should be
developed and tested.

(2) Since only a limited number of data files were tested,
further R-R interval statistical tests will be necessary to get the
best estimate of the dynamical model parameters.

(3) TFurther tests are needed forthe multiple model hypothesis
testing system to determine the optimal set of filtexr parameters,

which include the measurement noise, initial state estimate, and
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initial error covariance for each of the persistent rhythm filters,
such that the underlying persistent rhythm associated with each recoxd
being tested will be detected and classified in the shortest time,
and with the greatest accuracy. Furthermore, the detection and esti-
mation of the multiple model hypothesis testing system is done using
causal models. That is, estimates of model states and a posteriori
probabilities use only past and present data. However, the detection
performance may be improved if one uses non-causal models, which employ
future data to perform the detection and estimation. Thus a non-causal
detection system should be developed and tested.

(4) For the transient rhythm classes proposed in this study, a
GLR window width of at least three is needed in order to distinguish
each classes. Therefore a window width of five was choosen for the
GLR detector system in this study. However the test results show
that a window width of three should do as well. Using a smaller
window width will not only reduce the computations of the likelihood
ratios, and separate the multiple ectopic events, but also simplify
the logic for classifying different transient rhythm classes. Thus
if the detection performance is not degraded a smaller window width
is more desirable., Furthermore, it appears that it is feasible to
use only a window width of two for the GLR system. In this case, a
rhythm shift will be identified by the detection of more than two
consecutive double non-compensatory beat. Using this window width
the computations and classification logic will be further simplified.
A GLR detector using a window width of two should be implemented and

tested.
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(5) The Kalman filter models now have no driving noise, so
that the gains will approach to zero asymptotically. Driving noise
could be included to produce non-zero steady state gains, or techniques
such as age-weighted filtering could be used.

(6) The multiple model hypothesis testing system and the GLR
detection system must be integrated together in an overall system
for the detection and classification of arrhythmias. At the beginning
of the record both the multifilter and GLR detector should be running.
When an ectopic event is detected by the GLR detector, additional
logic will be used to determine type of arrhythmia. The multiple mo-
dels may have to be reinitialized when an ectopic event occurs such
that accurate and fast detection can be obtained. However the exact
configuration and the detailed logic will be determined only as
experience with more actual data is gained.

{7) The arrhythmia detection and classification system consi-
dered thus far has only utilized the R-R interval information. Thus,
a PVC may not be distinguishable from other prematures (since their
interval sequence patterns may look identical). 1In this case the
wave shape information should be considered, since PVC's have
aberrant QRS's and this can be used to distinguish from other prema-
tures. Therefore, a classification system utilizing the waveshape
information should be developed and integrated in the rhythm analysis
system.

(8) Extensions should be made to include both P-R and P-P inter-
vals, which require the development of a P-wave detector. Once these
intervals are known the present techniques used for R-R interval data
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can be extended in a straight forward manner by simply defining
higher order dynamical models with the R-R, P-R, and P-P intervals
as the components of the state.

(9) The detection of another arrhythmia class ~flutter and
fibrillation= in which there is an unusually large amount of high
frequency energy will need some type of high pass digital filter.

To do this, the diagnostic characteristics and spectral character of

this class of arrhythmias must be studied.
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