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ABSTRACT

A completely new approach to develop an automated program for rhythm ana-
lysis of electrocardiograms and vectorcardiograms using powerful statistical
techniques of sequential estimation and detection theory is studied. The
underlying cardiac rhythms are modeled as outputs of low-order linear sto-
chastic dynamical systems. The relatively predictable persistent cardiac
rhythms are detected and classified by using a multiple model hypothesis
testing technique. Detection and classification of the relatively unpre-
dictable transient cardiac arrhythmias are performed using a generalized
likelihood ratio technique. Both the multiple model hypothesis testing
and the generalized likelihood ratio identification techniques are tested
extensively on a variety of actual data which includes normal sinus rhythm,
bigeminy, trigeminy, PVC, PAC, dropped beat, SA block, tachycardia burst,
multiple PVC, and slowing of heart rate. The results indicate that these
cardiac events can be identified with great accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Principle of Electrocardiography

It has been known for many years that a measurable amount of

potential variations within the electrical field on the body surface

is associated with the electrical activity of the heart. As early as

1887, Ludwig and Waller [1] experimented with the capillary electro-

scope and recorded this electromotive force from the precordium. In

1899, Wenckebach [2] employed the polygraph to make simple but precise

observations of the electrical events of atrial and ventricular acti-

vation. Einthoven's description [3], in 1903, of the string galvano-

meter for recording the potential variations, stimulated a sudden

increase in both clinical and experimental studies of electrocardio-

graphy. This type of galvanometer has remained one of the most

frequently used recording method because of its simplicity and porta-

bility,although other principles, such as the use of vacuum tube

amplification, have been applied. Recording the potential difference

between any two points on the body surface is accomplised by means of

electrode from which the current is conducted to the galvanometer of

the electrocardiograph via the lead wire, to be returned to the body

by way of a second lead wire and its electrode. In clinical practice

twelve leads are usually recorded routinely: (1) three bipolar

extremity leads (standard limb leads), (2) three unipolar extremity

leads, and (3) six unipolar precordial chest leads [4]. Using this

standard twelve-lead system, the resulting potential difference record

is called the Electrocardiogram (ECG).
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Biophysical models of the heart and factor analysis of surface

potentials have shown that the electrical effects on the surface of

the body can largely be accounted for by a single equivalent electrical

dipole free to rotate in three dimensions [51-[7]. Under suitable

homogeneity assumptions, the components of this equivalent dipole can

be estimated by measuring three potential differences in perpendicular

directions on the surface of the body, or by resolving non-orthogonal

measurements. In practice, the Frank orthogonal lead system which

consists of seven leads resolved along mutually orthogonal axes [8],

is the most commonly used for this purpose. A record obtained by the

use of this lead system is called a Vectorcardiogram (VCG).

While many differences occur in various leads from the same

subject, and different persons yield distinctive curves, they all tend

to conform to a common pattern illustrated in Figure 1.1. The normal

electrocardiogram of a cardiac cycle consists of a series of waves

arbitrarily designated by Einthoven as the P wave, the QRS complex,

and the T wave. When the heart is at rest the electrocardiogram dis-

R

T

P

Q
S

Figure 1.1 Waves of the Electrocardiogram
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plays a straight horizontal line, the so-called iso-electric line

or baseline. This baseline represents a constant direct current value

produced by the recording device. Alternating current developed

with myocardial activity is superimposed upon this baseline and is

recorded as upward (positive) or downward (negative) deflections. The

baseline may be shifted whenever there is movement of electrodes or a

sudden change in skin resistance. In such a case the electrocardio-

graphic signal is superimposed upon the baseline variations.

The P wave represents the depolarization wave of the auricular

musculature which spreads radially from the sinoauricular (SA) node to

the atrioventricular (AV) node. There is a delay in transmission of

the impulse at the AV node, represented on the electrocardiogram by

the P-R segment. The QRS complex is the depolarization of the ventri-

cular musculature. It consists, usually, of an initial downward deflec-

tion, the 0 wave, an initial upward deflection, the R wave, and an

initial downward deflection after the R wave, the S wave. The T wave

represents the ventricular repolarization and follows the QRS complex

with a delay, the S-T segment, which represents, roughly, the duration

of the excited state of the ventricular musculature, or the interval

of time between completion of depolarization and the beginning of

repolarization of the ventricular musculature (9].

Under pathological conditions the electrocardiogram undergoes

some characteristic changes. The various resulting abnormalities

in the electrocardiogram may be divided into two groups:

(1) disturbances in the cardiac rhythm, and (2) changes in the elec-

trocardiographic waveform. Abnormalities in the electrocardiographic
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waveform are more or less related to the specific pathological process

and its location in the heart, and thus, can be used to describe the

state of the working muscle masses. The abnormalities in the order

of the heart beat, known as cardiac arrhythmias, yields information

concerning the sites and rates of cardiac pacemakers and the impulse

propagation through the cardiac conduction system [9]. The electro-

cardiogram is the instrument "par excellence" in the diagnosis of the

following clinical conditions: myocardial infection, atrial and

ventricular hypertrophy, arrhythmias, pericarditis and systemic diseases

which affect the heart. A complete analysis of the electrocardiogram

should include both the rhythm analysis and the waveform analysis.

1.2 Computer-Aided Analysis of the Electrocardiogram

1.2.1 Background

Due to the high cost of labor, and the large amount of ECG/VCG

records to be analyzed, the time available to the interpreting cardio-

logist is too limited for taking a multitude of measurements. In

addition, due to the limited precision of hand measuring, which does

not exceed 0.05 mm, and lack of well-defined criteria for determining

the onset and end of waves especially in cases when waves are of low

amplitude and have gradual slope, cardiologists are known to differ

frequently in their measuring of electrocardiographic events. It is

difficult to correlate mentally large numbers of ECG/VCG parameters,

and extensive hand calculations for making use of efficient statistical

classification techniques are also too time-consuming to be practical.

Careful studies have been made to assess the human variability

in ECG interpretation. In one study, the results showed that in
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repeated observations of one ECG the same cardiologist did not agree

with his own diagnostic statements in 20% of the time, and different

cardiologists did not agree with each other in nearly 25% of the

statements [10]. Another study showed that 7 cardiologists completely

agreed in only 28 out of 100 ECG's [11].

The advent of modern computer techniques changed this situation

drastically. The unique ability of computers to perform a large number

of numerical computations in a very short period of time enables one

to apply a variety of mathematical operations for analyzing ECG/VCG

records. ECG/VCG analysis from its engineering aspect is also an

ideal field for automation. Some of the advantages of using computer-

aided analysis of ECG/VCG are given in the following:

(1) Short-term and long-term cost saving.

(2) It become feasible and practical to obtain any

number of ECG/VCG measurements. For instance,

the slope of the wave at every point can be

easily computed. Whether the signals are

complex or simple, the measurements will be

remarkably precise compared to those obtained

manually.

(3) Best utilization of information already available

on the scalar or vector electrocardiograms is

obtained. Using high fidelity recording equip-

ment, the computer can store and repeat the

electrical signals of cardiogram; eliminating

noise, interference, and other confusing artifacts

which present difficulties in analysis.

(4) Application of complex statistical classification

procedures no longer represent a limiting factor

in ECG/VCG data evaluation.
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(5) It is feasible to perform mass screening of

large population groups which is absolutely

necessary for the study and control of heart

diseases.

Although the computer-aided analysis of ECG/VCG is an attractive

one, problems do exist:

(1) In contrast to the human interpreter who

possesses high pattern recognition capa-

bility, the computer finds this one of the

most difficult operations to perform.

(2) The tremendous amount of variation that

occurs among subjects, which we would

like to classify into the same class,

makes it very difficult to invent prac-

tical rules that include all instances.

(3) For a computer-aided ECG/VCG analysis pro-

gram, the instructions must be listed in

an orderly manner and followed precisely

during interpretation. In contrast to this

orderly, predetermined logical process,

the human interpreter has the opportunity

to review the record for any amount of

time limited only by his own needs. He

may review the data randomly, and even

correct his initial diagnosis subject to

further reviews.

(4) It is very difficult for the computer to

identify the P waves, which have low am-

plitude and gradual slope, and thus may

be buried in noise or masked by ventricular

activity. This is also true of other

subtleties of the cardiogram.
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1.2.2 Historical Review

The concept of computerized analysis of the ECG/VCG is not new.

The requirements for practical clinical applications of such programs

include two parts: (1) analysis of cardiac rhythm, and (2) analysis of

the contour or waveform of the complexes. Starting in the late 1950's

there have been numerous efforts to automate the analysis of

ECG/VCG's, resulting in many computer-aided programs for ECG/VCG ana-

lysis being used and developed [12]-[27]. Pattern recognition in

these programs are almost exclusively done using a heirarchical com-

puter logic structure. Much time is spent checking validity of the

data, correcting measurement errors, and extrapolating for missing

data. These tests are deterministic in that specific thresholds are

set for the various tests, rather than statistical, wherein probabi-

listic statements are given based on statistical models of the temporal

patterns. Thus, these schemes involve very complex logic structure

which are difficult to debug and to modify. Another drawback in using

the logic tree structure is the limitation of the rhythm analysis

program in their assignment of severity levels. For example, arbitrary

terms such as "severe", "mild", and "regular" are used. Thus, in

spite of the amount of wo'rk done on this problem, the problem of com-

puter-aided analysis of ECG/VCG is not yet completely solved.

Recent comparative studies on the performance of the available

programs have indicated that the IBM program was the best overall [28].

On an overall basis, the program had a detection rate of 94.6% on a

total of 1150 waveforms tested. However, the rate of correct identi-

fication was lower than this detection rate, because some of the

arrhythmias detected by the program were assigned to "undetermined

-12-
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rhythm" by the final identification logic. The program performed

even worst on ventricular arrhythmias, for which the detection rate

was only 86%. In the reproducibility study, the results showed that

using two different digital representations of the same analog ECG

record, the output rhythm statements generated by this program did not

agree with each other about 10% of the time. It would appear that

available programs are too highly tuned in that some features used

for diagnosis actually contain more noise than information.

In more recent years, a variety of statistical analysis procedures

for ECG/VCG analysis were studied to improve the performance of de-

tection and classification for arrhythmias. Gersch, et al. [29),[30]

transformed a sequence of 100 or 200 R-R intervals into a three-symbol

(namely, short, regular, and long R-R interval) Markov chain sequence.

The probability that the observed sequence was generated by each set

of prototype models characteristic of different arrhythmia classes,

was computed. That prototype corresponding to the largest probability

of generating the observed sequence was classified as the disorder.

The disorders considered were atrial fibrillation, PVC and PAC, bige-

miny, sinus tachycardia with occasional bigeminy , sinus tachycardia,

and ventricular tachycardia. Tests of this approach on patients with

atrial fibrillation (AF) and atrial fibrillation with occasional

PVC's (AFOCC) showed that 4 out of 15 AF records were misclassified

as AFOCC using 200 heart-beats. The performance was worst when using

100 heat-beats. Pipberger, et al. [31] applied linear discriminat

function analysis to training and independent sets of three common

arrhythmias (namely, normal sinus rhythm, sinus rhythm plus premature

beats, and atrial fibrillation) using R-R interval information only.
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On an overall basis, this approach correctly classified 85% of the

records tested. The performance for the premature beat classification

was the worst, for which a correct identification rate of only 66%

was obtained.

All the above statistical analysis procedures for classification

have used fixed sample tests. Among the problems with a fixed sample

test is the -possibility that if the sample size is too large then a

transient phenomenon may go undetected due to the large number of

normal beats used in the average. Tsui and Wong [32] studied the

feasibility of utilizing Wald's sequential probability test in cardiac

rhythm classification. It has provisions for controlling error rate

than sample size. The expected number of observations under pairwise

testing of three selected rhythm classes (atrial fibrillation, normal

sinus rhythm, and premature atrial and ventricular contractions) as a

function of error rate were shown. However, no test of this approach

on actual ECG data was given.

It is important to point out that, on an overall basis, arrhythmias

were the greatest source of program errors of the three programs

tested (IBM-1971, PHS-D, Mayo-1968) by Bailey, et al. [28]. The im-

portance of the identification of arrhythmias is further underlined

by the increasing recognition of the role of arrhythmias as a cause

of sudden death [33]. Further, the reproducibility results of

Bailey, et al. indicate that more robust computer algorithms are

needed, and the statistical results suggest that more powerful statis-

tical techniques should be used. These facts have provided much of

the motivation for the work of developing an automated detection and

classification program for rhythm analysis of ECG/VCG studied here.

-14-
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1.3 Methods of Approach

The problem of automated arrhythmia analysis is, simply put, the

problem of adequately reproducing the pattern recognition capabilities

of the cardiologist. This problem may be only partially solvable,

given the complexity of human pattern recognition capabilities and the

limitations of even the most advanced computers. It seems fair to

say that, given the exact timing of P waves and QRS complexes, together

with gross descriptions of these waveforms, that arrhythmia diagnosis

would be considerably simplified, since the electrophysiological me-

chanisms responsible for a large number of arrhythmia patterns have

been described satisfactorily [34]. Theoretically at least, powerful

pattern recognition techniques could then be brought to bear on the

problem.

The techniques proposed in this research for arrhythmia detection

and classification explicitly take into account uncertainties within

each arrhythmia class in a systematic manner by using the very powerful

statistical techniques of modern estimation and detection theory.

This approach differs significantly from previous approaches to

rhythm analysis in three ways; (1) the underlying rhythms are modeled

as outputs of linear stochastic dynamical systems (2) rhythm classifi-

cation will be done by hypothesis testing to find the most likely

operating system, (3) unpredicted disturbances will be detected using

a generalized likelihood ratio technique. Thus, the emphasis is on

statistical modeling and testing of the data.

This approach has several advantages. First, since beat-to-beat

variations are present and the wave intervals are never exactly regular,

uncertainty has to be accommodated in any rhythm analysis scheme.
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This can best be done by first obtaining detailed statistical infor-

mation from actual data, which is readily available and quite exten-

sive. Given a comprehensive statistical analysis of such data, it is

natural to attempt to use it in the best possible manner. This can be

done, for example, by trying to match the data to some dynamical model.

Thus, if extensive correlation data were available and diagnostically

significant, it would be feasible to construct dynamical models with

the identical correlation characteristics. One can then bring the

powerful techniques of sequential estimation and detection theory into

action.

Alternatively, since the temporal patterns of many types of

arrhythmias are known, a dynamical model may be subsumed for each

"dynamically different" class. The parameters of the models can then

be selected to best match the statistical characteristics of the model

to the observed data. This approach has been taken in the present

research and is covered in detail in subsequent chapters.

Of all of the data that can be obtained from an ECG or VCG, R-R

interval data is by far the easiest to obtain and the "cleanest" in

the sense of being almost error free. Such data possesses the

highest "signal-to-noise ratio" and thus provides the most reliable

information. On the other hand, data such as P-R and P-P intervals

are inherently more noisy, as the detection of the smaller P waves

introduces more errors. Considering this point, we have adopted the

point of view that our first task is to understand fully the content

of the more accurate R-R interval data. That is, we wish to deter-

mine precisely what information concerning arrhythmias is contained

in R-R data and then to determine how to best extract this information

-16-
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from the R-R intervals.

Our work along this direction has several natural subdivisions:

(1) The Categorization of Arrhythmias - The determination of how

various types of arrhythmic behavior manifest themselves in the ob-

served signal. This involves the explicit determination of how various

arrhythmias affect R-R interval histories (we do not categorize

the effects of arrhythmias on other observable quantities, such as

P-R intervals, P-P intervals, shapes of QRS complexes, etc.; because,

for the purpose of this initial study we are mostly concerned with

the R-R data). (2) Statistical Analysis of Arrhythmic R-R data -

The purpose of this task is to obtain further and more quantitative

information about the manifestation of various arrhythmias. Certain

simple statistics related to the R-R data are computed, and these

statistics can be used either to identify certain arrhythmias or to

provide useful inputs in the design of more sophisticated mathematical

models. (3) Determination of Dynamic Models for the Generation of

R-R Interval Data for Different Arrhythmias - Based on the information

in (1) and (2), we can obtain relatively simple dynamic models that

generate R-R intervals with the desired statistical properties. The

purpose of this task is to construct models to which we can apply the

powerful tools of sequential estimation, detection, and hypothesis

testing. (4) The Development and Testing of Estimation, Detection,

and Hypothesis Testing Algorithms for Arrhythmia Detection Based on

R-R Data - We apply several signal processing techniques to the

mathematical models developed in (3).

-17-



1.4 Synopsis of Following Chapters

In Chapter 2, an algorithm for fiducial point detection of the

QRS complex for the ECG/VCG record utilizing both slope and amplitude

information is present. The detection is done using a single lead

only. Results on experimental tests using actual data are presented.

The categorization of arrhythmias into different distinctive

classes is the subject of Chapter 3. This involves the determination

of how various types of arrhythmias manifest themselves in the observed

signal, and how various arrhythmias affect the R-R intervals. Further

and more quantitative information about the manifestation of various

arrhythmias is studied in Chapter 4, by performing statistical analysis

on the R-R intervals of different arrhythmia classes.

Based on the information obtained in Chapters 3 and 4, we deter-

mine the dynamical models for the generation of R-P interval data for

different arrhythmias in Chapter 5. The purpose of this task is to

construct models to which we can apply the powerful statistical

analysis tools for detection and classification.

In Chapter 6, the multiple model hypothesis testing algorithm for

the detection and classification of persistent rhythms is discussed.

Numerical results obtained using actual data are presented. The

generalized likelihood ratio detector system for the detection and

classification of the transient rhythms is studied in Chapter 7. The

necessary GLR equations are derived in detail. Actual data are tested,

and the results are presented. Finally, some further discussion and

conclusions are qiven in Chapter 8. Several. areas which need further

research are also pointed out, and discussed.
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All the data used in the tests were digitized at a rate of

250 samples per second, and were provided by USAF/SAM personnel.

The computer used to remove the baseline drifts, to locate fiducial

point for the QRS complex, and to perform the statistical analysis,

was a Nova 2 minicomputer. An IBM/360 computer was used for perform-

ing both the multiple model hypothesis and GLR detection tests.
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CHAPTER 2

DATA PREPROCESSING

Data preprocessing refers herein to the sequence of steps required

to obtain the R-R interval sequence from the digitized ECG/VCG record

being processed. The preprocessor may be conveniently divided into

two steps: (1) remove the low frequency baseline drifts, (2) detect

the fiducial points of QRS complexes. These are discussed separately

in the following sections.

2.1 Baseline Removal

A crucial step in the computer analysis of ECG/VCG's is the re-

moval of low frequency baseline drifts. These disturbances can be

quite severe and, if not eliminated, can cause significant errors in

fiducial point detection and area computation of the QRS complex, which

will be used in arrhythmia detection and classification. The slow

varying baseline drift is caused by a combination of factors

including:

(1) DC bias of the ECG/VCG output amplifiers

(2) slow changes in temperature

(3) coding/decoding mismatch of the FM tape recording

(4) variations in tape speed during data digitization

(5) electrode polarization changes

(6) geometric changes of torso due to respiration of

patient

For the present purposes, the baseline will be defined as any

unwanted low frequency components of the measured cardiographic sig-

nals. Let the measured signal at time t be m(i) and denote the

underlying cardiographic signal by v(i). Then,

-20-



m(i) = v(i) + b(i) (2.1)

where the baseline b(i) is an additive disturbance which includes both

physiological and non-physiological effects. In order to remove this

disturbance b(i) in the data preprocessing, we need to design a base-

line estimator, which will take the measured signal m(i) as input and

give an estimated baseline b(i) as output. Then we can get the under-

lying cardiographic signal v(i) by subtracting the estimated baseline

b(i) from the measured signal m i). The structure of this recursive

baseline removal process is illustrated in Figure 2.1.

Baseline Removal Filter

M) Baseline b () --
Estimator

Figure 2.1 Recursive Baseline Removal Process

Several recursive baseline removal processes have been designed

and tried in [353, [36]. The results showed that an efficient data

preprocessor can best be realized by using a moving average non-causal

filter for baseline removal. It is further tested in [37] on

arrhythmic data. The experimental data indicate that very little dia-

gnostic information is lost. Since the problem of baseline removal

has been studied in detail in [35]-[37], no further discussion is given

here.
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2.2 Fiducial Point Detection for the QRS Complex

The high slope segments of the QRS complex relative to the re-

mainder of the waveform appear to be the most reliable indicator to

identify this complex. In order to have a well defined fiducial point

for the QRS complex, we use the maximum startup slope point or the

maximum slope point before the maximum amplitude of the R wave as the

fiducial point (see Figure 2.2). The maximum slope at the fiducial

point varies markedly from lead to lead. However, most of the QRS

complexes on a given lead have a higher slope at the fiducial point

than any part of the P and T waves in that lead. Accordingly, the

first step in detecting the fiducial point is to find the slope for

each lead which distinguishes P's and T's from QRS's.

Although this method is generally quite reliable, some problems

do exist. Occasionally a small number of aberrant QRS complexes are

present in a record. The maximum slope at the fiducial point on these

QRS complexes may be markedly lower than the maximum slope on the

complexes representing the dominant rhythm, and comparable to the high

slope parts of the T waves. In this case it is not possible to find a

slope which will distinguish all of the T waves from the QRS complexes.

In order to detect all the QRS complexes, we therefore have to set the

slope threshold at a very low value. Although we will be able to

detect all the QRS complexes by doing this, at the same time we will

also detect those T waves which have their maximum slopes greater than

the slope threshold. The easiest way to avoid this difficulty is to
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Figure 2.2 Fiducial Point Detection
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skip a selected number of data points after the fiducial point is de-

tected. We choose the number of data points to be skipped to insure

skipping of the T wave, yet small enough so as not to miss any QRS

complexes.

Another problem caused by using the low slope threshold is that

we will detect noise bursts which have slopes greater than the slope

threshold and which are not in the region skipped after the detection

of the fiducial point. Since these have amplitudes much lower than

the amplitudes at the fiducial points, we can thus reject them by re-

quiring that the fiducial point should also satisfy the condition that

the product of its amplitude and slope be greater than a positive

threshold. This condition will not only reject noise bursts, but also

insure that the fiducial points of the R waves detected are at the

points before the maximum amplitudes of the R waves, since we require

slope times amplitude to be positive.

2.3 Algorithm for Fiducial Point Detection

A program, RRFILE, has been developed based on the conceptdes-

cribed above for detecting the fiducial points of the QRS complexes for

both the arrhythmic and non-arrhythmic data from which the low frequency

baseline shifts have been removed. A detailed description of the

algorithm is given in the following, and a flow chart of this program

is shown in Figures 2.3(a) and 2.3(b).

First, three data points are read into REM(l), REM(2) and REM(3).

The slope of a best fit straight line over these three points is

calculated as: REM(3) - REM(l). The window REM moves forward by

dropping its trailing point REM(l), shifting REM(2) to REM(l), etc.,
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and reading in a new data point as REM(3). The maximum absolute value

of the slope, TREM, over the first 500 data points in the input data

file is searched. The slope threshold, TRESH, is then set at a

certain percent PERC of the maximum absolute value of the slope TREM.

The value of PERC is an adjustable parameter.

Once the slope threshold is set for this record, we can start

searching for the fiducial points from the very beginning of this

input data file. When the absolute value of the slope TSUM is greater

than the slope threshold TRESH, the maximum slope is searched. This

maximum slope point is not the fiducial point of an R wave, unless the

product, STA, of its amplitude REM(3) and slope TSUM is greater than

a threshold XDX. The value of XDX is a design parameter.

Finally, we require ITIME, the point where a fiducial point is

detected, to be greater than 170 before we can declare that an R wave

has been detected. The reason for imposing this condition is due to

the fact that some records may start in the middle of a QRS complex;

in this case the fiducial point may be in error for this QRS complex.

A safe way to avoid this problem is to neglect the fiducial point

detected within the first 50 data points, which is greater than the

width of a QRS complex. All the input data files used in this program

must have their baseline shifts removed first. That is, the input to

the program RRFILE is the output data file from the baseline removal

filter BSLNFT, in which a moving window average is used to estimate the

baseline. The baseline at the midpoint of the overall window is

estimated as the average of all the data pr4nts within this window.

Thus, at the start of a record no baseline estimates can be made for

the first 120 data points which are used to fill the window. Hence a
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value of zero is assigned to the first 120 output data points for the

baseline removal filter. Therefore, in order to avoid false detection

we neglect the fiducial point detected within the first 170 data

points in a record.

When a fiducial point is detected, a selected number of data

points IDPSK are not searched for R waves. This will not only skip

the high slope part of the T waves but also speed up the overall pro-

cessing. The value of IDPSK is a design parameter.

2.4 Experiments and Results

The algorithm for R wave detection RRFILE was tested for both

arrhythmic and non-arrhythmic data. A summary of all these data

files is given in Table 2.1.

Data file name Diagnosis

IN.5

IN.20 Normal Rhythm

IN,30

HUANPVCS Premature ventricular contractions

HARNETPVCS Premature ventricular contractions

SPOONPAC Premature atrial contractions

BLOOM Supraventricular arrhythmia

CUNATFIB Atrial fibrillation

Table 2.1 Summary of Data Files Used for Testing the

Fiducial Point Detector RRFILE
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The objective of this test was to determine whether the algorithm des-

cribed in Section 2.3 could detect all of the R waves and reject all

T waves and noises in each record for a proper choice of the parameters

PERC, XDXand IDPSK, where PERC is the percentage of the maximum ab-

solute value of the slope TREM over the first 500 data points for the

slope threshold TRESH, (TRESH=TREM*PERC), XDX is the slope times ampli-

tude threshold for REM(3)*TSUM, and IDPSK is the number of data points

skipped after a fiducial point is detected. We also wished to find

a set (or sets) of numbers for the parameters PERC, XDX and IDPSK which

are good in the sense that no R waves are missed in any of the data

files we have on hand (see Table 2.1). This will aid in our evaluating

the robustness of the detector with respect to these parameters.

The input data files to the R wave detector RRFILE were the third

lead of those in Table 2.1, from which the baseline shifts have been

removed, and the output data files were the R-R intervals detected

in each lead. A total of 1,000 sampling data points (250 data points

=1 second) in the third lead of all the arrhythmia data files both

before and after the baseline shifts have been removed are shown in

Figures 2.4 - 2.8). From these figures we can see that there are

aberrant R waves present in all these data files. Note also that the

filtered waveforms appear unaffected from a diagnostic viewpoint. All

these data files were tested individually at first for different values

of parameters. The R waves detected for each different set of para-

meters were then checked visually with the data files, which were dis-

played on the Tektronics 4010 digital display. Finally, a satisfactory

set of values for the parameters were found, which were good for all

the data files being tested. These are given in the following:
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PERC = 0.20

XDX = 3,000

IDPSK = 70

The results are given in Tables 2.2-2.9 for all the data files in

Table 2.1. The fourth and fifth columns give the fiducial point

detected and the intervals between the two consecutive fiducial points

(or the so called R-R intervals), respectively. We also give the

slope and slope* amplitude at the fiducial point in column two and

three, respectively. The R-R interval data in column five is in the

output data file from program RRFILE. This R-R interval data file

will be used in subsequent chapters for arrhythmia analysis.

In this section we have developed a simple procedure for the

determination of fiducial points of the QRS complexes. Although good

performance was obtained for the data files tested, more data should

be tested to evaluate this fiducial point detector in a wide variety

of situations. These tests will either be used to adjust parameters

of the present detector, or suggest more robust detector designs.
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Figure 2.4(a) Unfiltered Data File HUANPVCS
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Figure 2.4(b) Filtered Data File HUANPVCS
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Figure 2.5(a) Unfiltered Data File HARNETPVCS

4000. 4100. 4200. 4300. W400, 4500. 4600. 4W. 4WD, 4900. 5000.

_______________ 3~ Lb ~

Figure 2.5(b) Filtered Data File HARNETPVCS
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Figure 2.6(a) Unfiltered Data File SPOONPAC

7000. 7100. 7200. 7300. 7400. 7500.

II.

7600. 7700.

I.
V

7800. 7900. 8000.

V

Figure 2.6(b) Filtered Data File SPOONPAC
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Figure 2.7(a) Unfiltered Data File BLOOM
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Figure 2.7(b) Filtered Data File BLOOM
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Figure 2.8(a) Unfiltered Data File CUNATFIB
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Figure 2.8(b) Filtered Data File CUNATFIB
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N AMP*SLOPE J8LQPj R ROR

1 309222,00 486 343
2 142400,00 467 524 181
3 289014,00 517 706 182
4 335369,00 524 893 18
5 410010,00 503 1081 188
6 302316,00 491 1266 185
7 251758,00 486 1446 10
8 383176,00 518 1629 183
9 318708,00 528 1814 185

10 371700,00 514 2001 187
11 302670,00 506 2186 185
12 179740,00 463 2366 %80
13 420332,00 479 2549 183
14 384524,00 522 2735 186
15 240672,00 514 2921 186
16 167268,00 479 3101 180
17 254380,00 477 3275 174
18 362604,00 509 3448 173
19 250332,00 534 3624 176
20 289333,00 529 3804 180
21 314730.00 475 3980 176
22 377762,00 451 4153 173 4
23 284400,00 526 4330 177
24 387660,00 507 4506 176
25 272847,00 520 4683 177
26 18732e,00 479 4854 171
27 315792,00 474 5019 165
28 322848,00 524 5187 168
29 356580,00 536 5357 170
30 227416,00 496 5533 176
31 375221,00 454 5705 172
32 234720,00 493 5871 166
33 197358,00 488 6044 173
34 292734,00 545 6218 174
35 237870,00 513 6395 177
36 307572.00 506 6567 172
37 338845,00 473 6133 166
38 283974,00 506 b903 170
39 355200,00 530 7075 172
40 324401,00 544 7248 173
41 363540,00 470 7421 173
42 283745,00 483 7592 171
43 174523,00 467 7763 171

Table 2.2 Results from R Wave Detector for Data File IN.5
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N AMP*SLOPE SLOPE R RwR

I b38420,00 639 224
2 601198,00 631 423 199
3 700036,00 636 629 206
4 624162,00 630 834 245
5 625719,00 634 1028 194
6 678700,00 619 1226 198
7 658125,00 635 1431 205
8 642178,00 622 1634 203
9 635680,00 653 1828 194
10 646323,00 625 2022 194
11 600392,00 632 2222 200
12 666357,00 633 2422 200
13 583128,00 630 2614 192
14 522886,00 629 2807 193
15 510960,00 631 3006 199
16 656051,00 632 3202 196
17 607910,00 629 3387 185
18 554228,00 630 357! 190
19 b25443,00 645 3177 200
20 638352,00 655 3980 203
21 538248,00 622 "176 196
22 500185,00 636 4378 202
23 612315,00 633 4586 208
24 605402,00 640 4790 204
25 b02141,00 624 4989 199
26 525800,00 626 5194 205
27 522110,00 635 5398 204
28 585972,00 641 5593 195
29 590187,00 636 5791 198
30 604144,00 641 5997 206
31 685035,00 661 6204 207
32 544208,00 638 6405 201
33 609224,00 642 6613 208
34 548886,00 640 6828 215
35 593388,00 637 7038 210
36 578716,00 617 7239 201

Table 2.3 Results from R Wave Detector for Data File IN.20
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N AMP*SLOPE SLOPE R R

1 575901,00 647 376
2 601650,00 606 612 236
3 557118,00 619 854 242
4 579723,00 614 1093 239
5 550745,00 652 1325 232
6 660050,00 659 1548 223
7 304010,00 594 1778 230
8 461610,00 600 2009 231
9 608854,00 637 2239 230

10 670735,00 680 2464 225
11 653016,00 626 2692 228
12 556665,00 587 2936 244
13 624193,00 624 3185 249
14 562100,00 662 3420 235
15 475295,00 6b0 3655 235
16 474240,00 593 3899 244
17 616701,00 607 4142 243
18 664796,00 640 4373 231
19 586440,00 663 4596 223
20 620730,00 632 4821 225
21 540855,00 605 5055 234
22 571340,00 611 5294 239
23 638400,00 663 5526 232
24 567120,00 629 5758 232
25 567862,00 601 5998 240
26 544840,00 61? 6235 237
27 463246,00 632 6465 230
28 b53646,00 683 6680 215
29 592620,00 682 6892 212
30 601620,00 614 7105 213
31 529440,00 553 7323 218
32 667454,00 657 7544 221
33 b40646,00 656 7771 221

Table 2.4 Results from R Wave Detector for Data File IN.30
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N AMP*SOPL SLOPE R

I 49b17,00 22l 19h
2 31504,00 200 334 18

3 1;0696,00 219 424 90
4 37760,00 211 637 213

5 35610,00 199 77t> 139
6 98580,00 20V 867 91
7 58290,00 215 1060 193

8 24218,00 189 1198 138
9 9211200 207 12h5 87

10 505hO.00 208 1497 212
11 36942,00 175 1635 138

12 110187000 209 tiles 90
13 53694,00 204 1915 190
14 20731.00 186 2052 137
15 103500,00 202 2145 93
16 66714.00 202 2351 206
17 24628,00 180 2491 146
18 102567,00 233 2584 87
19 49395,00 19V 2799 215
20 19662,00 169 2935 156
21 90280.00 187 3028 93
2? 35772,00 200 3218 190
P3 20806.00 167 3362 144
24 94952,00 197 3449 8?
25 54008,00 190 3658 209
26 20336,00 189 3792 134
27 85290,00 169 3888 90
28 53298.00 194 4093 P45
29 27950,00 196 4242 149
3 107112.00 219 4330 88

.i 63640,00 191 4535 205
32 30414,00 167 4666 131
33 100992,00 200 4766 100
34 55566,00 216 4935 161
35 44082,00 198 5058 125
36 49125,00 209 5182 124
37 86613,00 173 5299 111
38 63168,00 194 5461 162
39 31515,00 176 5631 110
40 49700.00 P01 5805 114
41 40 00 190 5964 159
42 91698,00 19S 6051 87

Table 2.5 Results from R Wave Detert+jr for Data File

HUANPVCS
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N AMP*SLOPL SLOPE R RwR

1 187192,014 116 227
2 14833,00 98 381 154
5 16791,00 Ii6 533 152
4 12388,00 101 692 159
5 3276,00 45 798 106
6 15662,00 115 1028 230
7 11255,00 110 1190 162
8 1415,100 100 1348 158
9 5280,00 108 1502 154

10 4312,00 57 1649 147
11 18291,00 101 1800 151
12 26924,100 126 1951 151
13 32112,00 133 2105 154
14 28416,00 140 2257 152
15 34075,00 158 2416 159
lb 24252,00 136 2581 165
17 38148.00 165 2744 163
18 29555,00 131 2901 157
19 30702,00 150 3061 160
20 10595,00 65 3166 105
21 30492,00 135 3395 229
2p 24910,00 152 3550 155
23 31255,00 142 3712 162
24 28320,00 150 3866 154
25 21144,00 146 4016 ISO
26 28896,00 150 4170 154
27 27132,00 144 4323 153
28 27664,00 146 4471 148
29 23552,00 146 4624 153
3P 3132,00 38 4725 101
31 32562,00 135 4942 21r
32 30222,100 141 5092 150
33 25864,00 135 5246 154
34 16566,00 133 5395 149
35 30702,00 148 5545 150
36 21156,00 147 5686 141
37 23544,00 128 5831 145
38 1176,00 107 5983 152
39 4968,00 65 6086 103
40 24696,00 126 6300 214
41 30226,00 136 6451 151
42 25338,00 147 6602 151
43 29348,00 116 6759 157

Table 2.6(a) Results from R Wave Detector for Data
File HARNETPVCS
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Table 2.6(b) Results from R Wave Detector for Data
File HAPIIETPVCS

-41-

AMP*SLOPE SLOPE R i"

44 15453,00 112 6911 152
45 2592t,0 148 7068 157
46 32508,00 132 72?6 158
41 253122,00 t39 7315 149
48 16920,00 M1 1537 162
49 24300900 123 7695 158
50 18948,00 131 1860 165
131 2RP2,00 130 803b 116
52 20384,00 140 8211 175
53 2201$,0o 140 8378 16?
54 288M0.0O 136 8544 165



N AMP*SLOPE 5OPE RoR

1 76744,00 ?11 212
2 57330,00 251 396 184
3 10152,00 224 499 103
4 62900,00 232 792 293
5 13486,00 225 982 190
6 87636,00 222 1212 230
7 66132,00 219 1457 245
8 61246,00 230 1696 239
9 6340,00 207 1936 240

10 49346900 192 2147 211
11 13481,00 213 2346 199
12 81719,00 220 2561 215
13 64500,00 234 2761 206
14 66946b00 207 2964 197
15 75601,00 227 3171 207
16 65520900 238 3379 408
17 80832.00 1229 3582 203
18 70218,00 243 3808 226
19 54927,00 202 4019 211
2A 79758,00 220 4236 217
21 63954,00 243 4458 222
22 81204,00 213 4661 203
23 65824,00 202 4794 133
P4 12618000 236 5070 216
25 69888,00 232 5254 184
26 60750,00 220 5445 191
27 73905,00 226 5627 182
28 60990,00 208 5802 175
29 85690400 226 5919 117
30 67840,00 232 6174 255
31 70434,00 237 6357 183
32 514a0,00 197 6538 181
33 51060,00 173 6735 191
34 56496000 239 6949 214
35 72420,00 248 7149 2aO
36 64214.00 198 7336 187
37 66066,00 212 7523 187
38 85490,00 232 7629 106
39 67488.00 242 7903 2r4
40 61182,00 252 8078 175
41 89880,00 214 8252 174

Table 2.7 Results from R Wave Detector for Data File

SPOONPAC
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N AMP*SLOPE SLOPE R Ror

1 12136,00 128 171
95046000 229 334 163

3 90288,00 205 502 168
4 51035,.00 196 670 168
5 55420,00 206 835 165
6 38280,00 167 1003 168
7 82000,00 241 1174 171
8 86724,00 207 1344 110
9 3600,00 65 1471 127

79050,00 187 1687 216
11 61685000 214 1854 167
12 71857,00 213 2024 1t7
13 85140,00 220 2193 169
14 72581,00 221 2357 164
15 73146,00 173 2524 161
16 81435,00 208 2692 168
11 79346,00 199 2868 176
18 90153,00 210 3047 179
19 54522,00 197 3225 j7#
20 36b00,ok 151 3400 175
21 69660,00 199 3582 182
22 74382,00 201 3752 170
23 58320,00 210 3918 166
24 75647,00 222 4089 11
25 41478,00 187 4257 168
26 84534,0 205 4427 170
27 6428bo0 184 4596 169
28 68442,00 207 4762 166
29 86112,00 209 4928 166
s0 71526000 204 5095 167
31 59004,00 197 5257 162
32 7A666,00 230 5419 162
33 81480,00 229 5590 111
34 104594,00 232 5764 114
35 9591.00 95 5923 159
36 64148,00 186 6128 245
37 71940,00 ?35 6302 174
38 13125,00 95 6440 138
39 73617,00 201 6634 194
40 $8100,00 180 6788 154
41 67868,00 195 6944 156
42 75990,00 230 7102 158
43 65330,00 205 7273 111

Table 2.8(a) Results from R Wave Detector for Data
File BLOOM
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N AMP*SLUPE SLOPE R R 1

44 65564,00 202 7442 169
45 686200 78 7589 147
4b 20164,0 1 7802 213
47 59940,00 185 7975 173
48 4560,00 62 8097 122

Table 2.8(b) Results from R Wave Detector for Data

File BLOOM

4
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N AMP*SLOPE SLOPE R

1 33228,00 163 235
2 41440,00 207 336 141
3 42884,00 176 460 124
4 38418,00 167 559 99
5 30870,00 178 652 93
6 30856.00 157 740 88
7 21090,00 185 852 112
8 30784,00 175 969 117
9 37668,00 209 1098 129

10 6489,00 82 1219 121
11 16020,00 125 1345 126
12 20169,00 165 1460 115
13 39198900 188 1594 134
14 31697s00 172 1739 145
15 20440,00 153 1852 113
16 12969,00 134 1952 100
17 40764,00 209 2085 133
18 29344,00 152 2178 93
19 31536,00 169 2314 136
20 11622,00 139 2417 103
21 32809,00 196 2556 139
22 3216,00 100 2708 152
23 48944,00 177 2800 92
24 29832,00 t99 2885 85
25 33142,00 149 2998 113
26 36606,00 181 3085 87
27 36580,0 166 3171 92
28 19992,00 118 3327 150
29 35133,100 206 3439 112
30 34875,00 165 3546 101
31 56980,00 221 3642 96
32 14231,00 140 3735 93
33 41216.0 158 3905 1l?
34 35086,00 163 4025 120
35 30115,00 149 4134 109
36 52052,00 179 4223 89
37 49511,00 231 4343 120
38 53130,00 175 4474 131
39 34750,00 164 4581 101
40 43875,00 185 4675 94
41 44892,00 228 4768 93
42 39732,00 183 4856 88
43 47894,01 190 5006 150

Table 2.9(a) Results from R Wave Detector for Data
File CUNATFIB
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AMP*SLUPL SLOPE R RqR

44 36224.00 174 5114 108
45 34299.00 191 5251 137
46 38440000 214 534F 96
41 34320,00 176 5435 88
48 25536,00 152 5535 10
49 41922.00 P29 5626 91
50 19836900 124 5730 14
51 340360ko 176 5864 134
52 57510,00 183 5957 93
53 8307.00 123 6076 119
54 43245,00 224 6176 100
55 33371.00 lip 6268 92
bb 38870,00 235 6351 83

51 33396,00 157 6437 86
58 3344.00 78 6522 85
59 39249,00 161 6638 116
60 29304,00 163 6758 121
61 21090,00 143 6869 111
bp 25872,00 143 6994 125
63 33288.00 142 7096 132
64 35119.00 136 7212 116
65 44b88,00 154 7308 96
66 34844,00 143 7450 142
67 3479000 80 7555 145
68 30315,00 176 7652 97
69 31970000 166 7764 112
70 68250.00 182 7850 86
71 29868,00 163 7938 88
12 31005,00 154 8023 85
73 48504.00 200 8109 86
74 48620900 172 8192 83
75 28900,00 194 8284 92
76 49319.00 182 8371 81
7? 34026,00 190 8459 88
78 23364.00 148 8552 93
19 34866,00 159 8667 115
82 33612,00 190 8755 88
81 32960,00 154 8845 90
82 31772.00 176 8984 139
83 24378,00 173 9097 113
84 5626,00 107 9209 112
85 41793,00 188 9288 79
86 27572.00 154 9361 19

Table 2.9 (b) Results from R Wave Detector for Data
File CUNATFIB
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N AMP*SLUOPE SLOPE R

87 31845,00 ROO 9484 11?
18 30429oO I50 9591 11

89 55120,00 194 9687 0
90 34130,00 184 9780 93
91 21888,00 132 9881 101
92 29344,00 143 9964 83
93 40081,00 187 10014 110
94 42174,00 219 10159 85
95 45510,00 230 10238 19
96 32034,00 183 10355 117
97 38280,00 I5 10444 89
98 35340,00 191 10542 96

Table 2.9(c) Results from R Wave Detector for Data
File CUNATFIB
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CHAPTER 3

CATEGORIZATION OF CARDIAC ARRHYTHMIAS

3.1 Introduction

The main goal of cardiac rhythm analysis is to classify ECG/VCG's

into various diagnostic categories or arrhythmic patterns. Cardiac

arrhythmias result from disturbances or alterations in the normal

mechanisms of cardiac activity. Such disturbances manifest themselves

as changes in the contours of the P waves and QRS complexes, absence

of the P or QRS complexes, or irregularity of the P-P, P-R, or R-R

intervals. Therefore, a complete categorization of cardiac arrhythmias

must take all these characteristics into account. However, since only

the R-R interval data will be used in this study to test feasibility

of the proposed detection methods. Thus, in the following an attempt

is made to categorize cardiac arrhythmias based on the use of R-R

intervals only. Due to the fact that no P wave information is used

in this classification, all the arrhythmic patterns which have the

same R-R interval characteristics will be classified into the same

category. No QRS contour information is considered either; hence the

abnormality of the QRS complex is not of interest in this study.

All the arrhythmic patterns are first divided into two distinct

families: (1) persistent rhythms, (2) transient events. In each

family, further classification into various classes are made, based

on the clearly identifiable R-R interval patterns. We have attempted

to devise a set of classes that include most arrhythmias. These

classes will form the basis for our statistical analysis and detection

schemes.
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3.2 Persistent Rhythms

All the cardiac arrhythmias which have a persistent rhythmic

pattern belong to this family. Four classes are further identified

in this family.

(1) Small Variation

This is the category for R-R intervals which exhibit small but

random deviations from the mean value of the R-R intervals and its

R-R interval pattern is shown in Figure 3.l. Here only the QRS com-

plexes, which are represented by impulses, are shown.

I I I - I I I _ _
Figure 3.1 R-R Interval Pattern for Small Variation

This class includes:

(a) normal sinus rhythm (60-100 beats/min)

(b) sinus tachycardia (>100 beats/min)

(c) sinus bradycardia (<60 beats/min).

The rate used to distinguish between these three cases is based

on the mean value of the R-R interval. Note that 2:1 SA block may be

indistinguishable from sinus bradycardia here.

(2) Large Variation

This class is characterized by a large but random variation in

the R-R interval sequence from the mean value. This class contains,

among others:

(a) sinus arrhythmia

(b) atrial fibrillation
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The R-R interval pattern for large variations, is shown in

Figure 3.2

Figure 3.2 R-R Interval Pattern for Large Variation

(3) Bigeminy

This class is characterized by R-R intervals which are alterna-

tely long and short as shown in Figure 3.3. The causes for this

cardiac arrhythmia are:

(a) a premature contraction following every normal

contraction (coupling)

(b) the presence of an AV block of every third

auricular impulse.

long-short

Figure 3.3 R-R Interval Pattern for Bigeminy

(4) Trigeminy

This class is characterized by R-R interval sequence which takes

one of the following patterns: normal-short-long, normal-long-short,

short-short-long or long-long-short. The causes for these patterns

are due to the following cardiac disturbances:

(a) a premature contraction that regularly follows

every two normal heart beats

(b) two consecutive premature contractions following

a normal heart beat
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(c) a complete AV block of every fourth impulse.

The four possible patterns in this class are show in Figure 3.4.

I I I I I
normal-short-long

normal-long-short

I~ -I I J
short-short-long

long-long-short

Figure 3.4 R-R Interval Patterns for Trigeminy

3.3 Transient Events

All the cardiac arrhythmias which do not have a persistent

pattern shall be included in this family. The occurances of the

cardiac arrhythmias in this family are totally unpredictable.

Several classes are also identified in the following.

(1) Rhythm Jump

This class is characterized by a sudden change of the heart rate,

which occurs in the case of onset of bradycardia or tachycardia. The

R-R interval patterns are shown in Figure 3.5.

onset of tachycardia
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II . I I I - 1
onset of bradycardia

Figure 3.5 R-R Interval Patterns for Rhythm Jump

(2) Non-Compensatory Beat

This class is characterized by intermittent premature QRS com-

plexes in which there is incomplete compensation of the R-R interval

subsequent to the premature beat or by dropped QRS complexes in which

a much longer than normal R-R interval results. The patterns are

shown in Figure 3.6. This class includes:

(a) sinus arrest (persistent loss of impulses)

(b) SA block

(c) atrial prematures

premature

block

Figure 3.6 R-R Interval Patterns for Non-Compensatory
Beats

(3) Compensatory Beat

This class of arrhythmias is characterized by intermittent pre-

mature QRS complexes in which complete compensation of the R-R inter-

val is achieved subsequent to the premature beat. Thus, the interval

between the QRS complex preceeding the premature and the post-premature

QRS complex is equal to two normal R-R intervals. The associated
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R-R interval pattern is shown in Figure 3.7.

2 x I 2x

Figure 3.7 R-R Interval Pattern for Compensatory Beat

This class includes:

(a) AV nodal prematures

(b) ventricular prematures

(4) Double Non-Compensatory Beat

This arrhythmia class is characterized by one of the following

patterns: (1) an underlying uniform R-R interval upon which is

superposed intermittent extra or ectopic beats called interpolated

beats (these extra beats do not interfere with the normal ventricular

rhythm); (2) a double premature, or (3) two consecutive dropped beats.

The patterns are shown in Figure 3.8.

I
-- x -- +- x

interpolated beat

double premature

I bIIck

double block

Figure 3.8 R-R Interval Patterns for Double Non-Compensatory
Beat
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It should be emphasized that the choice of classes made here

reflects significantly different structural characteristics of the

R-R interval pattern only and does not include either P-R or R-P inter-

vals, or the equally important P-P intervals.

There is another important class of arrythmias which can be

detected without resorting to detection of P waves. This is the im-

portant class in which there is an unusually large amount of high-

frequency energy. This class includes fibrillation and flutter and it

appears that detection can be accomplished by use of digital high pass

filters. It should be pointed out that the classes described in this

chapter are used to form the basis for our detection and classification

techniques. There may be other classes which are not considered here.

Any further classes can be handled in a similar manner.
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CHAPTER 4

STATISTICAL ANALYSIS OF R-R INTERVAL DATA

4.1 Introduction

In this chapter we will discuss some statistical tests for the

analysis of R-R interval data. The motivation for this statistical

analysis of the R-R interval data is to determine the statistical

characteristics of each different arrhythmia class that we wish to

detect and identify. These statistical characteristics could possibly

be used by themselves in performing the detection and classification

of the arrhythmias, or they could be used as important information in

the development of more detailed dynamical models of R-R interval be-

havior. Having such mathematical models, we could design more sophis-

ticated statistical detection and identification algorithms for per-

forming the automatic rhythm analysis (several such techniques are

discussed in Chapters 6 and 7). A detailed description of each sta-

tistical tests we wish to perform on the R-R interval data is given

first in Section 4.2. The formula needed to perform the tests are also

derived. Finally, a wide variety of actual data are tested, and the

results are given in Section 4.3.

4.2. Analysis

4.2.1 Histogram, Sample Mean and Sample Variance

Assume that we are given a sequence of R-R intervals:

y(1), y(2),...,y(k), .. y(n), where y(k) is the kth R-R interval and n

is the total number of R-R intervals in the ECG/VCG record which we

would like to analyze. The onset of the ventricular activity is random
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in the sense that even for a regular normal rhythm the R-R intervals

are not exactly the same; rather they have small random deviations

from their mean value. Therefore, the given R-R interval sequence,

y(i), i=l,...,n, should be treated as a discrete random process.

However, if we do not care about the order in which these R-R intervals

are given, y(i), i=l,...,n, can then be considered as samples of a ran-

dom variable Y, All the possible samples form the sample space of this

random variable, and the probability that Y will assume a particular

value lying in this sample space is given by the frequency function or

the probability density function. Hence a random variable is completely

specified by giving its sample space and frequency function. In our

case, the random variable Y is the R-R interval, which can only take

positive integer values (because our digitized approach quantize the

intervals),therefore the sample space is the set of all positive integers.

From this statistical standpoint, the different arrhythmia classes are

then characterized by different frequency functions only, because their

underlying sample spaces are all identical. Therefore if we can find

the frequency functions associated with each arrhythmia classes, then

the problem of detection and classification of arrhythmias would be

simplified considerably. Although an analytical form of the frequency

function is usually hard to get, we can graphically display this func-

tion by generating a histogram of the R-R intervals in the record. For

different arrhythmia classes the associated R-R interval histogram

patterns would hopefully be quite different; hence by examining the R-R

interval histogram pattern we obtain useful classification information.

One would also like to know some of the simple statistical
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parameters associated with the frequency functions, as these few numbers

often provide useful information and are far more easily dealt with

than an entire histogram. The most obvious statistic one would like to

get is the sample mean, m , over all the R-R intervals contained in a
5

record. The mean thus gives the average value of the R-R intervals one

would expect to see and is computed as

n

m = E y(i) (4.1)
s n i=l

Such a piece of information can be useful in detecting tachycardia, or

bradycardia.

In many cases, the information in the sample mean is not sufficient

to distinguish all the arrhythmia patterns we wish to identify. For

example, a regular normal rhythm may have the same mean R-R interval as

a bigeminy, even though their R-R interval patterns are very different

(one is very regular and the other has frequency function with two

peaks). Therefore, one would like to have a measure of the variation

of the R-R intervals away from the mean value. One such measure is pro-

vided by the sample variance over all the R-R intervals contained in

the record.

2
The sample variance a is the mean-squared value of the R-R inter-

S

vals about the sample mean, and as is the r.m.s. deviation or standard

deviation; thus,

n
2 12a 1 E [y(i)-m 1 (4.2)
s n-1 . si=1
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The reason for using (n-1) instead of n for the average in Equation

(4.2) is we want an unbiased measure of the variance (38]. From

Equation (4.2) we see that a large variance means that the data may

vary widely from the mean value, and a small variance means that the

sample mean is a pretty good estimate of the data. Thus, by computing

the sample variance, we can distinguish, for example, a bigeminy or

sinus arrhythmia from a normal rhythm which has regular R-R intervals.

4.2.2 Running Mean and Running Variance

Thus far we have introduced the statistical concepts of R-R inter-

val histogram, sample mean, and sample variance by considering that the

given R-R intervals, y(i), i=l,2,...,n, are samples of a random variable

Y. These simple statistical concepts provide us with some very important

information for use in the detection and classification of the cardiac

arrhythmias. However, due to the fact that we have not considered the

order in which these R-R intervals occur we will not be able to distin-

guish, for example, a sudden rhythm jump from a bigeminal rhythm, or a

gradually slowing normal rhythm from a sinus arrhythmia. Therefore,

other statistical concepts are necessary that in some sense take into

account the sequential variations of the given R-R interval sequence.

In other words, we are also interested in knowing the values of some of

the simple statistical parameters at each instant of time k. In prin-

ciple, one might wish to compute the mean and variance at each time k,

k=l,... ,n; however this is not possible, since we only have one sample

at each time. One alternative might be to use the running mean, m(k),

which is given by:
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k

m(k) = L y(i)
i=l

k=1,.. .,n (4.3)

In the case when k=n, Equation (4.3) reduces to Equation (4.1), thus we

have

m(n) = ms
(4.4)

It is more efficient for computing to put Equation (4.3) into a

recursive form. Rewriting Equation (4.3) in the following form

k-l

m (k) = yWi + y (k)
i

k=1,... ,n (4.5)

and using Equation (4.3) for k=k-1, Equation (4.5) becomes

m(k) = - [(k-l)m(k-l)+y(k)]
k

k=l,... ,n (4.6)

Equation (4.6) thus gives us the desired recursive form for computing

the running means. The running mean m(k) gives the mean value of the

R-R intervals up to time k; hence if the running mean m(k) begins to

change markedly, one might be able to detect the onset of tachycdrdia

or the presence of some other arrhythmic activity.

The variance of the R-R intervals at each time k, a 2(k), is given

as

k

S(k) = [ y(i) - m(k)]
=1

k=2,...,n (4.7)

where m(k) is computed from Equation (4.6). For k=n, Equation (4.7)
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is just Equation (4.2); thus,

c2 (n) = r2 (4.8)
s

one would also like to write the running variance, a2 (k), in a

recursive form. Expanding the square in Equation (4.7), we have

k
2 1 22
F (k) = -- (y (i) - 2y(i)m(k) - m (k)] k=2,...,n (4.9)

k-l .(

or

k k

S2(k) = y2(i) - 2 yim(k) + km2(k) k=2,...,n (4.10)
kli=1 i=1

Upon using Equation (4.3), Equation (4.10) becomes

k
2 122
a (k) = -y2(i) - km (k) k=2,...,n (4.11)

k-1 .~

Equation (4.11) is still not in a recursive form, because of the first

term in the bracket; therefore we define a new quantity as follows

k

RO (k) = y 2i) (4.12)
k i=l

Where R (k) is another statistical quantity, the mean-squared value.

Equation (4.11) can then be rewritten in the following form, by

substituting Equation (4.12) in Equation (4.11):

2 k F 2 k
a (k) = k L R0 (k) - m (k] (4.13)
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with k=2,...,n. The mean-squared value, R (k), can be computed using

the following recursive equation

1 2
R (k) = [k-1)R (k-l) + y (k)] (4.14)

0 k 0

Therefore, using Equation (4.13) we can compute the running

variance recursively, where R (k) and m(k) are given by Equations (4.6)

and (4.14), respectively.

4.2.3 Sliding Window Mean, Variance, and Outlier Test

One problem with the computation of the running mean and running

variance at each time k over all the k R-R intervals is that they are

very slow in responding to a change in R-R interval behavior. By

examiningEquations (4.6) and (4.7) we can see that as k gets larger,

the new piece of R-R interval y(k) is weighted by a small factor 1/k

and 1/k-1 for computation of running mean and running variance, res-

pectively. Therefore a sudden change of the R-R interval behavior at

large k will not change the running mean and running variance by much,

and thus we might not be able to detect this change. This is not

surprising, since the running mean m(k) and variance a 2(k) are

statistics based on the assumption that the first k intervals have

similar probabilistic properties.

In order to overcome this problem, we can compute a sliding window

mean and variance, i.e., at any instant of time k, we only use the last

k R-R intervals, and k is the sliding window width. This is equivalent

to assuming that the R-R intervals are slowly varying (quasi-stationary)

in a statistical sense. Thus, the equation for computing the mean can
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be written as:

k

m(k) = y(i) k=Z, +1,. .. n
i=k-k+1

Again, rewriting Equation (4.15) in a recursive form, we have

m(k) = m(k-1) + Ey(k)-y(k- k)J k=pl,k+l,...,n

(4.15)

(4.16)

where m(k) for k<k is computed using Equation (4.6). The equation

for computing the sliding window variance of width k is

k

2( = E [y(i)-m(k)]2

i=k-Z+l
(4.17)

In order to get a re

R (k) = 1t

cursive relation for 2(k), we define

k

Sy 2
(i)

i=k-k+l
(4.18)

which can be rewritten as:

R~kR~-l 1 2 2
RO = RO (k-1) + [y (k) -y (k-2P)]

Substituting Equation (4.18) into Equation (4.17), we have

2 ( 2a (k) = - [R0 (k) - m (k)J

(4.19)

(4.20)

Where RO(k) and m(k) are computed from Equations (4.19) and (4.16),

respectively.
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From Equations (4.16) and (4.17) we can see that all the R-R

interval data are weighted with the same factors l/9 and 1/k-1 for

sliding mean and variance, respectively. These factors are not changed

with the time k, and therefore, these statistical parameters will res-

pond to behavior of the R-R interval sequence that is not constant over

the entire time sequence of interest, and the instant at which this

erratic behavior happens will be more easily detected.

At this point we would like to discuss another statistical test

that is useful for detecting the transient events in an R-R interval

sequence. From Chapter 3, we see that all the transient arrhythmia

classes are characterized by either a longer or shorter R-R interval

(relative to the preceding pattern), or a combination of both. Therefore

a satisfactory test should detect both the magnitude and sign of the

change of the aberrant R-R interval. A simple statistical test which

will perform this task is an outlier test, which is an effective test

for distinguishing a piece of data from a particular ensemble, which is

specified by some statistical parameters.

In our case, we wish to detect the ectopic event on top of an

underlying normal sinus rhythm; hence, the ensemble is formed by all

the R-R intervals of this underlying normal rhythm. For an ectopic

event, we would expect that the R-R interval is very different from

the ensemble which contains the usual R-R intervals and is characterized

by the running mean m(k) and standard deviation G(k). Therefore, an

outlier test on a new R-R interval y(k+l) is given as:

y(k+l) - m(k) A
G =(k)(4.21)
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for a > 6 declare an ectopic event with a longer R-R

interval

a < -F_ declare an ectopic event with a shorter R-R

interval

where e is a positive valued threshold that represents how many

standard deviations of variation we are willing to tolerate before

declaring an interval to be an outlier. The quantities m(k) and

G(k) in Equation (4.21) are computed according to Equations (4.6)

and (4.13), respectively, for the case that clt< E. However, in the

case that Jai> c we will exclude this new R-R interval y(k+l) from

the computations of m(k) and G(k).

By using this simple outlier test one could in principle detect

the various transient rhythms described in Chapter 3. For evamnle, an

a < -E follows by an a > S is the indictive of a compensatory beat,

and two consecutive a > 6 might be classified as a double non-compen-

satory event.

4.2.4 Correlation Functions and Scatter Diagram

All the statistical tests described so far do not tell us anything

about the sequential nature of the pattern of the R-R intervals.

(although those just described in Section 4.2.3 do deal time variations.)

In other words, if the given R-R interval sequence has a periodic

pattern, one will not be able to identify it using the previously in-

troduced statistical tests. However a test to identify a periodic R-R

interval pattern in arrhythmia analysis is very important, since two

of the arrhythmic classes we wish to detect and identify - bigeminy
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and trigeminy - are of this nature. For a bigeminal rhythm, the R-R

interval sequential pattern is: long, short, long, short, etc., thus

we have

y(i) y(i+2) i=1,2,... (4.22)

(where is used to indicate "to within small random variations"), which

is a periodic function of period two. Similarly for a trigeminal rhythm

of a period of three, we have

y(i) y(i+3) i=1,2,... (4.23)

An available statistical test which could be used to aid in detec-

ting these periodic patterns is the sample correlation. For a given

sequence of data points, y(i), i=l,...,n, the correlation function

R (k) is defined as follows:

T

k-T

R T(k) = y(i)y(i+T) k>T (4.24)

which is the average over data points up to time k of the correlation

between data points T time units apart. These numbers are computed in

general for several values of T. For T=O, Equation (4.24) becomes

k

R(k) y W2() (4.25)0 kI
w1

which is identical to the mean-squared value defined earlier in Section
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4.2.2. Equation (4.24) can be rewritten recursively as

R (k) = ---- ( (k-l-T)R (k-i) + y(k-T)y(k)] k>T (4.26)
T k-T TU

A possible method of utilizing these correlation functions to

detect a periodic function is illustrated by an example. Suppose we

are given a bigeminal R-R interval sequence y(i), i=l,...,n, which has

a pattern of long, short, long, short, etc. In the ideal case we have

the equality

y(i) = y(i+2) i=1,2,...,n-2 (4.27)

or, upon rewriting Equation (4.27) out explicitly:

y(l) = y(3) = y(5) ........ (4.28)

y(2 ) = y(4 ) = y(6) ........ (4.29)

and y(l) > y(2).

The sample correlation functions are then computed for different values

of T using Equation (4.24) for k=n:

n

RO (n) = y i y(i) for T=O

n-l

R1 (n) =- y(i)y(i+l) for T=l (4.30)

n-2

*2(n) = - y(i)y(i+2) for T=2
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Using Equations (4.27) through (4.29), and assuming that n is even,

Equation (4.30) can be reduced to:

" (n) = 1 2y2(l) + - y2 (2)] = y2(1) + y 2(2)

R (n) = I -[(n-l)y()y(2)J = y(l)y(2)
1 n-l

R1n L E-2 y2 l n-2 2
R2(n) = y (1) + y (2)

R (n) = -- [(n-3)y(l)y(2)] = y(l)y(2)
3 n-

which implies

RO(n) = R2(n) = R (n) =

= 1 [y (1) + y (2)]

(4.32)

and

R 1(n) = R3 (n) = R 5(n) = ... (4.33)

Note that since a squared quantity is alway greater or equal to zero,

we have

[y(l) - y( 2 )]2 > 0

1 2 2
[y (1) + y (2)] > y(1)y(2)

(4.34)

(4.35)

where the equality holds for y(l) = y(2) (where all of the beats are

of the same length). Hence from Equation (4.31), we have
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R (n) > R 1(n) (4.36)

The relations given by Equations (4.32), (4.33) and (4.36) are thus the

condition for a bigeminal rhythm.

From these relations, we can devise simple tests for bigeminy.

For example, as we have seen bigeminy is characterized by

R (n) = R 2(n) (4.37)

and we may have a rule that we declare an R-R interval sequence to be

bigeminy if

R 2(n) > (l-C)R (n) (4.38)

where E is a small positive number. One could, of course, consider more

complex tests - involving R4 , R0 , etc., but these will entail more and

more calculations on-line. In addition, from Equation (4.30) we see

that R (n) has only n-T terms in it. Thus, the higher order correla-T

tions, such as R4 , are more apt to have large errors due to small sample

sizes. In any event, the main point of this example is to illustrate

that the correlation function contains extremely useful diagnostic infor-

mation concerning the sequential correlation of a string of R-R

intervals.

Another mechanism which could also be used to detect a cardiac

rhythm which has some periodicity is considered here. From Equations

(4.22) and (4.23), we see that the R-R intervals of a rhythmic pattern

which has a periodicity of two have the following relations:
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y(1) = y(3) = y(5) =

(4.39)
y( 2 ) = y( 4 ) = y(6) =.

and for the R-R intervals of a periodic pattern of period three, we

have

y(l) = y(4) = y(7 ) =.

y(2 ) = y(5) = y(8) = ..... (4.40)

y(3) = y(6) = y(9 ) =.

This motivates the computation of statistics for every qth beat, i.e.,

the original R-R interval sequence y(i), i=1,2,..., is broken up into

q strings

y(l), y(q+l), y(2q+l) .....

y(2 ), y(q+2), y(2q+2 ),.....

(4.41)

y(q), y(2q), y(3q), ........

and then compute the statistics of these strings. Note that Equation

(4.41) reduces to Equation (4.39) for q=2 , and to Equation (4.40) for

q=3. For a periodic pattern of periodicity q, the mean of the overall

pattern would differ markedlly from the means computed based on the q

substrings, and the variance of the overall would be much larger than the

variances of the q substrings. In this way, one could detect a pattern

that has some periodicity.

In Section 4.2.2 we have introduced a simple method to display the

R-R interval data graphically by using an R-R interval histogram. The
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histogram gives us useful information for use in the detection of dif-

ferent cardiac arrhythmias, but it yields no information as to the

sequence of occurrance of various size intervals. Another available

graphical method which will display the correlations between the adja-

cent intervals is the scatter diagram. A scatter diagram is a plot of

points, which have the adjacent intervals as their coordinates, on a

two-dimensional space,. This graphical technique will provide us with

more diagnostic information. For instance, since the R-R interval his-

togram does not display the sequence of occurrance of the R-R intervals,

a bigeminal rhythm may not be distinguishable from a sudden rhythm jump.

However, their scatter diagrams will be markedlly different due to the

fact that the sequences of occurrance of the R-R intervals for these two

rhythms are not the same. Therefore a bigeminy and a sudden rhythm

jump will be easily identified by using a scatter diagram. Identifica-

tion of different arrhythmia classes using scatter diagrams will be

demonstrated in the next section.

4.3 Experiments and Results

A program RRARAN was written to perform the R-R interval statistical

analysis described in Section 4.2. A wide variety of both persistent

and transient rhythm data was tested. In addition to the data files

given in Table 2.1, we have also run tests for the data files listed in

Table 4.1. As before the R waves were found using the R wave detector

RRFILE described in Chapter 2.
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Table 4.1 A Summary of Part of the Data Files Used in
the R-R Interval Statistical Analysis

In order to study the characteristics of each different arrhythmia

;, all the data files given in Tables 2.1 and 4.1 are reclassified

different arrhythmic classes according to the categorization con-

described in Chapter 3. This categorization is given in Table 4.2.

Table 4.2 Categorization
and 4.1

of the Date Files Given in Tables 2.1

-71-

Data File Name Diagnosis

#503 Atrial premature contractions

#476 Graduate Slowing of heart rate

#463 Second degree AV block of the
Wenckebach type

#492-1 Atrial premature contraction

clas.

into

cept

Arrhythmia Category Data File Names

Small Variation IN.5, IN.20, IN.30

Large Variation CUNATFIB

Trigeminy HUANPVCS, HUANTRI '1

Bigeminy #503

Compensatory Beat HARNETPVCS, SPOONPAC, BLOOM

Rhythm Jump IN.5+30 (2) , #476 (3)

Non-Compensatory Beat #463

Double #492-1
Non-Compensatory Beat



Notes:

(1) A study of the R-R intervals of data file HUANPVCS in Table 2.5

shows that the trigeminal pattern persists only over the first

31 R-R intervals. Thus, in order to study the statistical charac-

teristics of a trigeminal pattern, we creat a new pure trigeminal

data file HUANTRI using the first 31 R-R intervals in data file

HUANPVCS.

(2) Since none of the data files given in Tables 2.1 and 4.lhas a rhythm

jump pattern as we described in Chapter 3, a pattern of this type

was created artificially by adding data file IN.30 which has a

slower heart rate to data file IN.5 which has a faster heart rate.

This new data file is denoted by IN.5+30.

(3) We do not have an exactly matched category for data file #476,

which exhibits a gradually slowing heart rate. For the present

study, we classify it in the rhythm jump category.

All the data files were studied in the order given in Table 4.2.

First an R-R interval histogram for each of the data files was gene-

rated. For all the date files except #476 and #463, the range of

the R-R intervals covered were from 0 to 300 sampling points (250

sampling points = 1 second). With 10 sampling points in each bin, the

whole range was divided into 30 bins. There was an extra bin, which

gave all the R-R intervals which exceeded 300. Therefore, this histo-

gram shows 31 bins altogether. For data files #476 and #463, since

there were many R-R intervals exceeding 300, the R-R interval range

covered was changed to the range of 60 to 400 sampling points. The

resulting histograms are shown in Figures 4.1 - 4.14. A two-dimensional
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R-R interval scatter diagram was generated next for all the data files

with the nth R-R interval as the abscissa, and (n+l)st R-R interval

as the ordinate. The range covered by both coordinates was from 0 to

400 sampling points. These scatter diagrams are shown in Figures

4.15 - 4.28.

Next, the running mean, running variance and deviation (a)

defined in Equation (4.21) were computed and are given in Tables 4.3 -

4.16. The results of sliding window statistics using a window width

of five are given in Tables 4.17 - 4.29. Next the statistics of every

qth R-R intervals were computed for q=1,...,5, and the results are

given in Tables 4.30 - 4.42. Finally ten correlation functions,

T=0,1,...,9 in Equation (4.24), were computed, and the associated

normalized correlation functions were also calculated. The results

are given in Tables 4.43 - 4.55. From these results, we can make the

following observations:

(1) R-R Interval Histogram

The R-R interval histograms have very small r.m.s. (root mean

square) deviations for the non-arrhythmic data (see Figures 4.1 - 4.3)

compared with those of the arrhythmic data (Figures 4.4 - 4.14).

For the fourteen data files studied, the r.m.s. deviations for the

non-arrhythmic data varied from 6.2 to 9.3, while those for the arrhy-

thmic data varied from 16.7 to 71.2. There is a clear separation

between the arrhythmic and non-arrhythmic data for these fourteen data

files, but if we put too much emphasis on these r.m.s. deviations we

may be misled. An example will demonstrate this point. Suppose in

our data file all the R-R intervals are almost the same, with very
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small r.m.s. deviation, except for one R-R interval, which is due to

the presence of an aberrant R wave, say an atrial premature beat. In

this case, since there is only one premature beat, the r.m.s. deviation

of those regular R-R intervals will not be changed by much. This

implies that even for a single arrhythmic beat the r.m.s. deviation

over all the data would be small. Therefore, while it is safe to say

that if the r.m.s. deviation of a record is greater than a given

threshold, the record contains arrhythmic data, a small r.m.s. devia-

tion does not necessarily imply that the data is non-arrhythmic.

The range over which the R-R intervals vary is small for non-

arrhythmic data. It only covers 3 to 4 bins, while the arrhythmic

data will cover at least ten bins (see Figures 4.4 - 4.14). Therefore,

it seems reasonable to say that if the range of R-R intervals in the

histogram is greater than 5 or 6 bins, this data is arrhythmic.

The R-R interval histogram tells us more than just whether the

data is arrhythmic or non-arrhythmic; it also indicates to some extent

what type of arrhythmia is in the record. Figure 4.4 clearly shows

the large R-R interval variations about its mean value which is the

indicative of a sinus arrhythmia or atrial fibrillation. Note that

the histogram measures frequency of occurrance of various size intervals

but yields no information as to their sequence. Thus for those arrhy-

thmias that are characterized by a particular sequencing of events,

the histogram can not be used to make a definite diagnosis. of

course the histogram can give indications of the presence of such

arrhythmias.

Consider Figure 4.5, where the short R-R intervals correspond
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to premature beats, and the long ones to the compensatory beats.

However the trigeminal rhythm pattern is not so obviously identified

in this histogram. This is due to the fact that the trigeminal pat-

tern in HUANPVCS persists only over the first 31 R-R intervals; thus

the non-trigeminal part of the data clouds the pattern. A trigeminal

pattern is clearly evident for HUANTRI (Figure 4.6) by the three

clearly separated R-R interval clusters representing the premature

beats, normal intervals, and compensatory beats. Figure 4.7 clearly

shows that a bigeminal rhythm may be present in data file #503.

Figure 4.8 shows clearly the premature ventricular contractions with

the short intervals and long compensatory intervals. Figure 4.9 and

4.10 are similar to Figure 4.8, with the regular R-R intervals cen-

tered in the histogram and a group of short premature beats and

group of long compensatory beats around it.

A sudden rhythm jump of data file IN.5+30 manifests itself in the

histogram (Figure 4.11); however, this is indistinguishable from a

bigeminal rhythm (Figure 4.7). This again indicates the limited use-

fulness of the histogram. Graduate slowing in Figure 4.12 shows the

R-R intervals cover a large range, which is from 160 to 340 sampling

points for data file #476. The non-compensatory beats are all clearly

identified from the R-R interval histograms (Figures 4.13 and 4.14),

however a double non-compensatory is indistinguishable from a non-

compensatory beat.

(2) Scatter Diagram

Scatter diagrams display the correlations between two consecutive

R-R intervals. If all the R-R intervals are regular with small random
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variations, then all the points in the scatter diagram should be

confined to a small region and its distribution should be circular

because of the randomness. Figures 4.15 - 4.17 show that the points

in the scatter diagrams are confined in a rather small region, but

they are elliptically distributed roughly along the diagonal line x=y,

rather than a circle. This implies that the R-R intervals are some-

what serially correlated for normal rhythms. The scatter diagrams

for the arrhythmic data spread over a large region compared with those

of the non-arrhythmic data.

The random variations of the R-R intervals for atrial fibrillation

are shown clearly for CUNATFIB in Figure 4.18. For HUANPVCS (Figure

4.19), a triangular shaped distribution is shown with many points in

three outlying clusters roughly forming the triangle. This pattern

is more obvious for HUANTRI (Figure 4.20). This is indicative of

trigeminy and is of diagnostic use, since the scatter diagram does

reflect the sequencing of the R-R intervals. Two clusters which are

symmetric about the diagonal line x=y are observed for #503 in Figure

4.21. This is suggestive of bigeminy. In Figure 4.22, the compensa-

tory beats are obvious, with the underlying regular R-R intervals

close to the center of the triangle and the premature and compensatory

beats at the vertices of the triangle. Every time there is a premature

beat the point will move down from the center. The next point, with

the short premature beat followed by a long compensatory beat, will

move up and to the left. After the long compensatory beat, ,the R-R

interval is back to normal again, and the point will move to the right

of the center first and then back to the center. The distributions
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of Figures 4.23 and 4.24 are similar to that of Figure 4.22, except

that in Figure 4.23 the triangle is bigger and the variations of the

points in each group are larger, and in Figure 4.24 the points in the

vertices have relatively large variations.

A rhythm jump is characterized by two clusters along the diagonal

line x=y, and a single point which has its coordinates approximately

equal to the mean values of the two clusters as shown in Figure 4.25.

Using a scatter diagram, a bigeminal rhythm (Figure 4.21) is clearly

distinguishable from a rhythm jump. In Figure 4.26 a gradually

slowing heart rate has all its points near the diagonal line x=y. This

shows a strong serially correlation in the R-R intervals for graduate

slowing rhythm. In Figure 4.27 the non-compensatory beats are

obvious, with the underlying normal R-R intervals confined to a small

region which is located on the diagonal x=y line. Every time

there is a dropped (premature)beat, the point will move up (down) first

from the normal R-R interval cluster. The next point, with the heart

rate back to normal again, will move to the right (left) of the center

cluster, and then back to the center. However, for a double non-com-

pensatory beat an extra point is shown along the diagonal line x=y

for data file #492-1 in Figure 4.28, representing the two consecutive

shorter intervals.

(3) Deviation (a)

It appears that monitoring the deviation (a) provides a very

simple way of detecting an ectopic change in the R-R intervals. In

table 4.7, the deviations clearly show a rhythm pattern of period

three. For instance, at N=3, a=2.92, a longer interval (213) is
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detected, at N=5, c= -1.06, a shorter interval (91) is detected, and

at N=6, a=l.17, a longer interval (193) is again detected. In table

4.9, a bigeminal pattern is shown by the changing of signs of the

deviations. In Tables 4.10 - 4.12, the compensatory beats are iden-

tified by a large negative deviation followed by a large positive

one. For instance, in Table 4.10 for N=19,20, the deviations are

-2.37 and 3.02, respectively, which is indictive of a compensatory

beat. More compensatory beats are detected at N=29,38 in Table 4.10,

at N=22,28,37 in Table 4.11, and at N=8,34,37 and 44 in Table 4.12.

Other ectopic events are detected by monitoring a (see Tables 4.13 -

4.16). Therefore, it is clear that a study of the behavior of these

deviations will provide useful information in the design of an

arrhythmia detection and classification system. Note however that

this algorithm cannot detect ectopic beats prior to the third beat,

since it has no basis for computing a running variance until two

intervals have been processed (see Table 4.11 for an example of a

missed premature beat at N=2).

(4) Sliding Window Statistics

As we discussed in Section 4.2, the advantage of using sliding

window is to get a faster response to a sudden change in R-R interval

behavior. This is clearly shown in Tables 4.17 - 4.29 by the dramatic

changes in the variances of the R-R intervals compared to those

computed using overall R-R interval data.

(5) Statistics of Every gth Beat

In Tables 4.30 - 4.42, the normal rhythms are indicated by

approximately the same mean values and same (small) variances. On
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the other hand, for CUNATFIB we observed approximately the same but

larger variances, which are given in Table 4.33. As indicated

earlier, HUANPVCS and #503 are indicative of trigeminy and bigeminy,

respectively. These are clearly shown by the statistics in Tables

4.34 - 4.36. For example, in Table 4.34 we see that we obtain markedly

smaller variances for the "every 3rd beat" calculations. This is

clearly indicative of trigeminy. Since this algorithm is designed

particularly to detect R-R interval sequences which have a certain

period, Tables 4.37 - 4.42 do not suggest any detection and classifi-

cation information for these periodic patterns.

(6) Correlation Function

The periodic pattern of HUANPVCS is clearly reflected in the

correlation function in Tables 4.47 and 4.48, which peak strongly at

T=0,3,6, and 9. For #503, the correlation function in Table 4.49

peaks strongly at T=0,2,4,6,8, which suggests a periodic function of

period two. Note also that the correlation function falls off very

slowly for normal rhythms (Tables 4.43 - 4.45) and somewhat faster

for the slightly less correlated rhythms (such as in Tables 4.46 and

4.51). Note that the correlation function is an average statistic.

Thus, transient events are often masked in this statistic. As an

example, consider the jump between two normal rhythms as shown in

Table 4.53. Since the only temporal deviation is at the one point at

which the rhythm shifts, the correlation function is dominated by the

remaining regular pattern.

In this chapter we have described and tested a variety of sta-

tistical tests for the analysis of R-R interval data. These tests

-79-



provide both qualitative and quantitative information that will be

useful in the design of an overall detection system. However, as we

have seen each of the tests has its limitations, and the output of

the tests is not particularly amenable to simple decision rules. In

the next chapters, with the aid of the knowledge gained from these

tests, we will put together two compact and systematic techniques

for the detection and classification of arrhythmias.
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Figure 4.15 R-R Interval Scatter Diagram for Data File IN.5.
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Figure 4.16 R-R Interval Scatter Diagram for Data File IN.20.
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Figure 4.17 R-R Interval Scatter Diagram for Data File IN.30.
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Figure 4.18 R-R Interval Scatter Diagram for Data File
CUNATFIB.
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Figure 4.19 R-R Interval Scatter Diagram for Data File HUANPVCS.
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Figure 4.20 R-R Interval Scatter Diagram for Data File

HUANTRI.
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Figure 4.21 R-R Interval Scatter Diagram for Data File #503.
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Figure 4.22 R-R Interval Scatter Diagram for Data File
HARNETPVCS.
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R-R Interval Scatter Diagram for Data File
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Figure 4.24 R-R Interval Scatter Diagram for Data File BLOOM.
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Figure 4.25 R-R Interval Scatter Diagram for Data File IN.5+30.
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Figure 4.26 R-R Interval Scatter Diagram for Data File #476.
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Figure 4.27 R-R Interval Scatter Diagram for Data
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RON RUNNIN6 RUNNING RUNNING DEVI AT'ION
INIFJW Mt.AN RM$ 0EV VARIANCE O

19 18100
14?~ 1819514 (4 i 0,54

S 147 183,33 3.21 10933 71,78

1 A'5 1849614 3.105 9,q3 0 0.14
S 15.4 183,83 3,01 10991 -1 v!)

1 183 1630,11 3*04 9,24 05
18 83 88 p,8 8 0, 4

9 ii ie ,68,19 1.10
11 18aJ,30 7.34 oa

I1 18j 139 1 P.88,P9 -1.59
13 183.83 p?,16 7060 t

14 A8 184 144 P v6 b 7,l06 00,14
18$ 18 3 8 .1 1,69 -

lb 114 183 P's 3,64 13*21 -305b
if 11.3 1 ako65 4,3 86

180 181 43 7 19a,14 -0,95 1
116 118 4.48 ,3-11

173 v8,4 /4, 0 i 22ol -1.98

PS 176 e9,3 PP"11
24 171 180483 4o74 224 -0.84

lbs 179,85 5,933o49 30
27 168 1179,41 6v,11 319,4 - 0
28 110 179,01 6,026 39,19 -1,154
P9 116 118091 h"17 38 . I WW1449

30 li 1 18,73 #6.P0 38,41-11
31 1 &3 17802~ 6,51 42936 20

173 1 18,lb1 6,47 41,988 8
53 174 118.0,3 IS94 1 41j08 -0.64

-54 171 178.040 ~3 1 39v,8 q-0016
3 11 1 .77,8.1,0 91 -4,95

3sb 16 1 11lo50 6952 4 2 q4 8 -31 11 ill I V,930 6054 42482 -1,v15
38 112 17-1416 6,51 42,142 -0.81
39 113S ' 1 0 13 6o46 41, 14 -0,64
44 1173 176,95 bv41 41,08 -4*6341 1 1 16,80 6.4 0 e9 1 -1093

42 7 1 1 h60 6.38 40,1.74 -0.,91

Table 4.3 Running Statistics of Data File IN.5.
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'4 w RNN IN6 kUtNN N UNNI~r rfEV I AT 1(N
I TFP Mt-AN kms UEV VARIANCE CL

1199) 11 I9 v (A V

5 03,33 3 .19 14.33 ,5

394 2 . 4 1! 5 ,9 o ~ 3 1.30.0 ?

P 115 1.M,6 4.99 e d~. I909

I?' ?A 1,4 5 4.5 ?,1.3.9? -138

?, 0 L) 0,49 1SI1
21 191, 6 9 ~ 94

11t2099 ,8A5 4,56 20016 Oi(
1 .9 -90eb 291

96 1991,33 8.d5.5, -0051
SI t~~A1 0-,9.9,3

3 ~ ~ ~ ~ 96 'it 084 -C!.4 .3 91 b
c~Ai..4riot/? 33032L

Table 4.4 Running Statistics of Data File IN.20.
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Table 4.5 Running Statistics of Data File IN.30.
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N R4R RUNNIN6 RUNNIN( RUNNING DEVIATION
INTIER MtAN RMS DtV VARIANCE (ed

1 236 236,00
2 4 239,0 04,24 18,00
3 239 239,0w 3,00 8,99 0,00

232 237,25 4,27 18,25 P2,33
5 223 234,4(0 7,31 54,30 .3,34
6 230 233,67 6,83 46,68 -0,60
/ 231 233.29 6,32 39,92 -0,39
8 230 232.81 5,96 35,55 -0,52
9 225 232,00 6,16 38,00 -1,32

14 228 231,60 b,95 35,37 -0,65
11 244 232.73 6,77 45,81 2,08
12 249 234,08 7,98 63910 2,40
13 235 234,15 7,65 58,47 0,11
14 235 234.21 7,35 54,02 0,11
15 244 234,87 7,52 56,55 1,33
ib 243 235,31 7.54 56,92 1,08
1 231 235,12 7,38 54,49 -0.58
18 223 234,44 7.11 59,44 -1,64
19 225 233,95 1,80 60,82 -1022
2 234 233,95 7.59 57,63 0,00
21 239 234,19 7,48 55,96 0,67
22 232 234,09 7v32 53,53 -0.29
23 232 234,00 7,16 51,28 -0,29
24 240 234,25 7,11 50,5b 0,84
25 237 234,36 6,98 48,75 0,39
2h 230 234,19 6,89 47,53 -0.62
1? 215 233,48 7,10 59,32 -2,78
28 212 232,71 S,58 73,62 -2,19
29 213 232.03 9,19 84,4O .2,30
34 218 231,5/ 9,38 88,05 -1.53
31 221 231,23 9,42 88.73 -1,13
32 22/ 231,09 9,30 86,42 -0.45
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4

4

q

4

4



N4 .0e R RUNN I N6 RUNNING RUNNING )E VI A I IN
INTER MEAN RMS fLtV VARIANCL (cdt1N N~fUNN R~NLG KVAI3

1
2

is
14

5
6
17
8
9

d I
11
12
13
14
15
'b
11
18
19

2 0
21

22
23
24

26
2/1
28
29

3 1
3?
3
34
359
3b
3,

59

41
42
43

14 3fjA
124
99
93

112
111/
129
121
126
115
1 2
15 (

113

1 33
93
1 0
123
39

92

1. 5 0

92
15 A
11?

93

112
I3 A

96 0
13

12A

139

89

I4 5
I3 1

1 *

104. P

0 4.8 b
114.00

1 Al *

1 14.29

1 /4,8 b

111.005
111,3 Sb
113,25
115,69
115,5,

1 4' 51 14.43

1 15,62
114.29
I 15,50
114 6t'
1 16,05
1 177
1 lb.59
115.22
1 15,1 e
I 14.00
1t3. 5
1 14,52
1 14.43
1 14, /
115.51
I P.9
11 4,69
114,85
1 14.6b
113.94
114.11
114.5/
114, 31
13.85

113.32
112.71
I 13,60
113.41

I ~

1 ,2 ,

13, 64
13,84
13,If
13,16
14 ,88
14,59
14,/3
14 .02
14, 88
16,.15
16.11
16,03
16,117
16,59
16,88
16,66
17,09
18.41
18,19
19,q10
19,08
19,51
19,59
2 ,48

* 10
19.19
19,13
19. 14
21 o89
21 ,56
21 ,26
21,39
21. 1 o
2 1,99
2V, 14
2v' 13
2V', 12

21.14

193,0 *1

184,92
9 1 *50

113.3/1
13. it
221 .21
212. 1
216.89
jib. 66
221 48
280.51/
259,50
256,98
261,32
215,10
285,09

4211.*4?1

2 ,47 

292., A
338,99
353,0?
38 ', 36
364 9
380,5 *

383,91
419.41
404, 11
391 .58
389. 043
389.6 b
479,0 b
44* 94
451,.8.'
45. s
445.36
440. 1
430,.31
429.61
429.41
434.56
456,8 b
446,72

Table 4 .6(a) Running Statistics of Data File CUNATFIB.
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1.83
-1,* 8
-1.19
0,19
1.08
1,83
A *88
1614
0,27
1,.61
2,1 3

-4,16
-0.96

1.16
-1',40

1.31
-0,74~
1,45
2,10

-1,.40

-1,63
-0,11
.1.4?

-11.12

.0,92

-1 ,04
2, c89

4024
-0,21

-1.21
4,28

A 9 p3

-1 .2?
1,19

-0.26



R PR RIUNNIN PUNNING RUNNING DEVIATION
INTER I MtAN RMS DEV VARIANCE (t)

44
45
46
41
48
49
5 a
51
52
53
54
55
56
51
58
59
60
61
62
63
64
65
66
67
68
69
10
11
72
73
14
15
76
V?
78
19
80
81
82
83
84
85
86

137
96
88
1 ZA

91
104
134

93
119
100
92
83
86
85

116
120
111
125
1,12
116
96

142
105

97
112
86
88
85
56
83
92
87
88
93

115
88
90

139
113
112

79
19

111

1 14,00
113,60
113,04
112,71
112,31
112,14
112,58
112,20
112,33
1 12,09
111,72
111,20
110, .75
110,30
110,40
1 10,56
110,5,
101,80
110,66
110,5
110,52
111,00
110,91
110,10
110.12
110,36
110,04
109, 69
109,36
109,00
108,1 
108.48
108,21
108,01
108,10
101,85
1 07 ,63
108.01
108,01
108,12
101,71
101,44
101,55

21,19
21 ,12
21,22
21 ,01
21 ,08

20,91
20,88
20,0
20,51
20,56
20,73
20,81
2o,91
20,14
20,60
20,42
20,33
20,20
20,05
19,97
20,19
20,05
19,997
19,82
19,90
19,94
20,02
20,07
20,17
20,13
20.15
20,15
20,09
19,98
19,98
19,95
20.13
20,01
19,89
20,03
2015
20,06

448,91
445,92
450,26
444,10
444,49
436,67
437,31
456,08
428,42
423,05
422,51
429,71
433,24
437,14
430,04
424,16
416,99
413,45
407,92
401,80
398,82
407.83
402,13
398,89
392,99
396,05
39748
400,61
402,78
406.10
405,03
405,86
405,95
403, 64
399,01
399,02
397q96
405.13
400,44
395.72
401,06
406,03
402,33

1,11
"0,85
-1.21
.00,61
-1,03
-0,39

1,05
-0,94
0,33

-0.60
-0,98
-1,40
-1,22
-1.24
0,27
0,46
0,02
0,71

-0,43
0,26

-,1.4
1,58

-0,30
-0.69
0,06

-1,25
"1.12
-1,26
-1,18
-1,31
-0,84
-1,08
"1,02
-0.15
0,35
01,01

-0,89
1,5?
'0,25
0,20

-1,46
-1,44
0.47

Table 4.6(b) Running Statistics of Data File CUNATFIB.
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Table 4 .6(c) Running Statistics of Data File CUNATFIB

-107-

N RwR RUNNING RUNNING RU4N1NG OEVIATIUN
INTER MEAN RMS OEV VARIANCE (a)

87 113 101,61 19,95 397,91 0,27
88 90 107,e41 19.92 396,98 0,li
89 93 10 ,?5 19,8 394,77 - ,/
921 101 10r.16 19.71 340.75 -0,31
91 83 10b,91 19,82 392.81 -1,2
92 110 106,95 19,71 388,6q4
93 95 1469-71 1,9.74 389,59 .1
94 79 1.06,41 19,64 393,56 -1.40

9i7 1'06,53 19.t6 390,5 5,
96 $9 1.6,34 19,J4 389,71A .,89
97 98 1I-.2b 19,65 386,629 -142



N RWR RUNNING RUNNING RUNNING DEVIATION
INTER ME AN RMS 0tV VARIANCE (c)

13$
90

213
139

91
193
138

87
212
138

90
190
13 7
93

206

8,
215
136
93

190
144
81

134
96

205
149
88

205
131
100
167
125
124
11?
162
170
174
159

87

138,00
114,00
147,000
145,00
134,20
144,00
143,14
136,12
144,56
143,90
139.00
143,25
142.71
139*21
143,61
143,81
140,47
144,61
144.* lb
141060
143,90
143,91
141.43
144,25
143,84
142,00
144,33
144,950
142,55
144.63
144,19
142,81
143,55
143,00
142,46
141, 15
142,30
1 43,03
143,82
144,20
1 42, 80

33,94
61,99
90,71 1so .17 t50 o 11
50,89
46,51
47,41
51,06
48,18
48,51
48,54
46,91
46,62
48,12
46,49
47.08
48,93
47,60
47,72
47 ,9
46,54
47900
47,99
47,02
47.02
47,,bl
46.79
47,15
47,69
46,95
46,85
46,30
451,11
45,14
44,69
44,20
43,83

43.53
43,03
4 3, 42

1152,00
3843,00
2578,0A
2516, 10
2589, 60
216314
2248,12
2606,17
2321,43
2353,39
235b, 19
2162,85
2173,41
2315 a 515
2161,50
2216,21
2394,49
2265,.36
227b,99
2274,69
2166,39
2208,71
2302,90
2211,15
2210,72
2272,61
2189,30
2221,19
2274,59
2204,16
2194,61
2143,81
2088,97
2037,84
1991,61
1953,21
1920,63
1894,68
1851,86
1885, 317

I &

Table 4.7 Running Statistics of Data File HUANPVCS.
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2,92
-0, 1 .
-1,06

1,11
-0,12
-1,21
1,60

-0,113
-1,12
1.05

-0,13
-1,07

1,43
0,05

-1,22
1.58

-0,18
-1.07

1901
0000

-1.22
1 .44

-0,21
-1,02

1,34
0.09

-1.21
1,33

-0,29
-0.94
0.52

-0,40
-0.42
-16,56
0,45
0.63
0,71
0-, .

-1,33
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N R-R RUNNING RUNNING RUNNING ()EVIATION
INTER MtAN RMS OLV VARIANCt. c)

1 438 180
90 114,00 33,94 1152,00

3 213 t1,00 6199 3843,00 2,98
4 139 145.00 50,77 258,00 -,3
5 91 134, 20 se , 1/ 2516, /o -1,06
6 193 1444,00 5.89 2589,60 1,11
7 138 143,14 46,51 2163,14 -0,10
8 17 I36.12 47,41 2248,12 -1,21
9 212 144,56 51,06 2606, 1 1,60

10 158 143,90 48.18 2321,43 -0.13
11 90 139,00 48,51 2353,39 -1,12
12 190 143.25 48,54 2356,19 1,05
13 111 142,77 46,51 2162,85 -1,13
14 93 139,21 46,62 21?3,44 -1,
15 36 143,6/ 48,12 254i,51 1,43
16 146 143,81 46,.49 2161,5 0 005
1 I 13 140,4/ 47,08 22)6,2/ .2r
18 215 144,61 48,93 2394,49 1,98
19 136 144,16 47,O6 226t,56 -0,18
20 93 14 ,60 47,72 2276,99 -1.07
21 190 143,90 47.69 22/4,69 1,01
22 4 143,91 46,54 21bb. 59 4,Ow
23 8? 141,43 47.00 2208, 1 -1,22
24 219 144,?5 47,99 2302,90 1.44
25 134 1143.h4 47,02 2211,15 -0,21
2 6 9 6 1 4IR 0 00 47,02 2210,/2 1
27 205 144,33 47,61 2272,6i 1.34
28 149 144,50 46,9 2189,34 0,09
29 98 142.55 47,13 2221.19 -1O21
30 209 144,63 47,69 2274,59 1.33
31 131 144,19 46.95 2204, 16 -0,9

Table 4.8 Running Statistics of Data File HUANTRI.
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N RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS t)LV VARIANCE ()

1 133 153,00
2 261 197,00 90,51 8192,00
3 128 114,00 75,39 5683,'0 -og'I
4 275 199,25 79,be 633d,92 1.34
9 132 185,81 75,2? 5658,70 -0,84

274 21,50 7.31 5823,51 1,17
7 133 190.86 74,19 5503,81 -0,88

73266 200.25 73,64 5423,6 1,01
9 132 192,67 72,55 5263,0g -0,93

I 26 3 199,70 71,92 5112.89 0,97
1112 7 19S,00 6 7 1 5136,06 ,1,.01

12 291 201,25 73.95 5466,00 1,31
1.3 133 196.0' 73,28 5310,66 W0.92
t4 292 202,86 74,94 5615,81 1,31
15 136 198,40 74,25 5512,67 -0,89
j6 281 203,56 74,64 5571,58 1,11
17 139 199,76 73,95 5468,57 -00.86
18 277 204,16 74,02 5478,29 1.04
19 133 200,32 73,75 5439,65 -0.96
20 282 204,40 14, 07 5486,91 1.11
21 134 201,05 73,81 5448,63 -0.95
22 273 204,32 73,65 5424,51 0.91
23 138 201,43 73,27 5369,15 -0,90
24 216 204,54 73,26 5367,59 1,02
25 129 201,52 73,29 5311.99 -1,03
26 264 203.92 12,85 5307,21 0,85
2 131 201.22 72,80 5300,08 -1,00
28 257 203.21 72,21 5214,90 0.77
29 134 200.983 72,07 5193,84 -0,96
30 262 202,87 71,69 5139,50 0,85
,1 124 a0,32 'I,89 5168,82 -1,10
32 276 202.69 71,98 5181,05 1,05
33 129 200,45 7IIL 5183,68 -1002
34 278 202,74 12,13 5203,46 1,08
35 136 200.83 71,96 5177.64 -0.93
36 269 202,12 71,82 5158,82 0.95
31 138 200,91 71,62 5128,75 -0.90
38 266 2,66 71,42 5101,42 0,91
39 141 201.110 71,17 5064,12 -0086

Table 4.9 Running Statistics of Data File #503.
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M i-R RUNNIN 1 RUiNING RUNNING j)EVIATIUN
INTEN MEAN RMS OtLV I VARIA.CE ( )

154
152

230
162
158
154
1 4 7
14115 1

194
152
159
165
193
15?

i? ; (
1055224
159
I 62
154
150
14
153
14$
153
131
2117
150
154
149
1.50
141

P. 4
151214
151
15'1
151
152

154, *
153,00
15 5 0i&
142, 15
S6 , 20
16 0,5 S
160, 14
159.31
158.00
151,30
156. 73
156.50

1'36,36
156.93
15 .1 
157,29
15?.44
154.66
1 5.40

15i.4 115b.41
157 ,22
197.81
151.12
155154
151,19
15 , 04
155.10 11
15 1 v 1,
I 56,94
156,84
1596.61
156,41
1 55,97
155.60

134,18
155.72

155,49
155.52
155.44

1,41.
3,61

24, 68
44.49
39,80
36,34
33,72
31,61
30.,01
28.59
27,21
26.14
25a13
24.31
23,54
22o /9
22 , 1
24,64
29.11
28,044
27. 11/
27,15
26,60

25,55
25,12
24,66
26.36b
28,26
27 ,81
27 36
26,97
26,58
26,32
26,9 oo
25,64
26,69
28,03
27,68
27.34
27 ,60
26,69

e 0 4 0

1979,20
1583.90
1320,81
1 13b.84

8 17, 40
143.12
683,31
631,33
591.21
554.10
519.4?1
489,33
606,89
851,10
809,10

731,01
707, 9
678,89
652,58
630.85
608,11
694,67
198,44
'73,4?
14 d ,19
7 21, 2951/.25

692,v50
676,05
657, 65
112,61
785,58
166.00
141,36
129 ,20
112,11

4,24
-13,59

3.54
0,04

-0.06

-0, 31/
mid,22
-0.21

-16,1/

LI034
0.25

-0.01
0.12

-2,31

-0.12
16,13

-0.16

-2.15
-0.11
-0,3
-0.11
-2.2!
2,35

-0,25
-0. 11
-0.29
-0,24
-0,58
-0.42
-16,14

2.24
-16.11
-0.11
0.06

-0,13

Table 4.10(a) Running Statistics of Data File HARNETPVCS.
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Table 4.10(b) Running Statistics of Data File HARNETPVCS.

-112-

N R RUNNING RUNNIN6 RUNNING DEVIATION
IN TER MEAN RMS Otv VARIANCE (0)

44 151 195.46 2h,3J 695,58 000
4b 158 15 53 26.0d 679,94 0009
46 149 15.39 29,80 66t,78 -O.25
41 102 155.53 25,54 652, 3 26

S155,5 8 251 638,44 0,09
165 15508 2, 26,99 o,37

51 176 156.1b 2*95 622,6 0,81
175 156.55 24,84 616,84 0,75
167 156.75 24,63 60.842

53 66 1. 91 2142 96 ,4 8 0.33



-R RUNN I NG R)NING RUNNING 1VA11 UN
N7ER JNNAN RMS 0eV VARIANCE

3
4

1 4
11
K'
I3

15
11 6

12
2 A

24
95

16
l '

?9

S A

2

25

$1

29 1

27
2'45
23-i

211
199
215

2,519/

211

22
25

133

97

1? 1 4

191
1M2

175

i17
255
135
181
1971
24

200
181
181

974
175
114

164,00
143, 59
193. 35
1 92,50

207.50

215.50
215.00
21 3,40
213.55
212.92
211.89
211 , 13
211,13
21 0.62
P11 .53
211.50
211.79
212.30
211,8b
2I8.2
211.22
210,08

208.2?
207,04
203,82
2A5.59

204.8 15
204,05
203.54c, 4,9 b
2,4.3 O
;J 03,4 6

202.39
20 1. 9
201.00

57,*28
95.34
17,87
69,49
64.81
80,35
56,4
53,10
r5 0.32
41v 14
45.5 
43.85
42,15

3 81.c633*.50
38,23
37 ,09
36,07
35.18
34.35
31 .5 V

38.81
38.18

37 0 8
4V,64
41 ,0
40,52
4 0.0 b
39,43
38.85
38,2 1
37,81
37.31
4 0, 15
41 .36
41 ,05
40,16

3280,50
9090033
6065,00
4826 * 50
4200.31
3642.01
3219,71
2$ 19.50
2531 ,$3
2278.6
20 76,43
1922,90
17 76,
1650.42
1544 .52
1461,89
1375,92
1301, 06
123.80
1180.02
140b.51
1541.99
150. 84
149 163
1428,05
141j4.10
1651.21
1682.61
1641,0 b
1605.19
1554,9i
1509.49
1464926
1429,46
139b,23
1612.20
17110,96
1685,14
1661,12

2.61
-0.03
0.48

0,49
0,49

0 t.
-0.0/

-0.16
-0,35
-0.11
-0,08
-0,24
0,39

-0.01
0,15
0.

-0.26
-2,30

1.81
-0.69
-0*49
-0,72
-0,86
-2.39

1 .2b

-0.59
-01$

-0.11
-0.45
-0.44
-2.60

1,83

-(0.67

Table 4.11 Running Statistics of Data File SPOONPAC.
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N R-R RUNNINGv RUNNING RUNNING DEVIATION
INTER MEAN kMS .Fv VARIANCE (a)

S b163 163,00
2 168 165,95o 3,54 12,50
3 168 166,33 2,89 8,33 01
4 165 1b6,00 2,45 6,00 -1,46
5 168 166,40 2,30 5,31 082
6 171 167,11 2,9 l,71 2,0
I 110 161,51 2,16 7,62 1,02
8 121 162,50 14,5/ 212,29 -t4,lo
9 216 168,44 22,44 503,71 3,67

to 16'1 168.30 21,17 448,01 "0,06
11 170 168,45 2v, 09 403,47 0,08
12 169 168,50 19,15 3t6,81 0,03
13 164 168,15 18,38 337,82 -vC!3
14 161 168.01 17,66 311,92 06
1 168 168,07 17,02 289,64 00
lb 176 168.56 16,56 2f4,26 0.47
11 179 169,18 16,23 263,53 0,83
18 178 169,61 15,89 252,35 o.54
19 175 169,95 15,49 239,83 0,34
20 182 10,55 15,31 234,41 0,18
21 170 170,52 14,92 222,t5 -0,04
22 16 h 170,32 14, f0 213,10 00.30
23 111 170,35 14926 203,42 0,05
24 168 170,25 13,96 194,82 "0,16
25 170 170,24 13,66 186,68 -,02
26 169 110,19 13,39 179,28 -0,09
21 166 110,04 13,15 113,04 p0,31
28 166 169,89 12,93 167,21 .0,31
29 167 169,79 12,11 161,53 -0,22
30 162 169,53 12,57 157,98 "0,61
31 162 1b9,29 12,43 154,54 -0,60
32 171 169,34 12,23 149,65 0.14
33 174 169,48 12,07 145,63 0,38
34 159 169,18 12,02 144,45 -0,87
35 235 170,20 13,30 116,85 2,98
36 174 170,31 13,12 112,21 0,29
37 138 169,43 13,99 195,64 -2,46
38 194 110,06 14,36 206,24 1,16
39 154 169,67 14,40 207,42 -1,12
40 156 169,33 14,38 206,71 -0,95
41 158 169,05 14,31 204,74 .0,19
42 171 169,10 14,14 199,83 0,14
43 169 169,09 13,9 195,07

Table 4 .12(a) Running Statistics of Data File BLOOM.
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N H-R RUNNING RUNNING RUNNING DEVIATION
INTER MLAN RMS OEV VARIANCE (a)

44 147 168,59 14,20 201,60 -0.58
45 213 169,58 15,52 240,87 3,13
46 173 1696b5 15,36 25,78 9,2
47 12? 168,64 16.1 278,97,

Table 4.12(b) Running Statistics of Data File BLOOM.
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N R-R RUNNING RUNNING RUNNING 1EVIATION
INTER MEAN RMS DEV VARIANCE (a)

12

3
4
5
6

17

8
9
10
11
12
13
14
15

26
ell

17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35

31
38
39
40
41
42
43

181
182
185
188
185
180
183
185
187
189
180
183
18
186
180
174
113

1768

17
176
173
171

177
171
165
168
170
176
172
166
173
174
177
2172
166
170
I 72
173
113
171
171
236

181,00
181,50
183,33
184,50
184,60
183,83
183,71
183,88
184,22
184,30
183,91
183,83
184,00
184,14
183,87
183,25
182,65
182,28
18?, 16
181,85
181,43
181,23
181,00
180,83
180,44
179,85
179,41
179,01
178,9?
178,73
178, 32
1718,16
178.03
178,00
177,83
177,50
1 77.30
111,16
17 ,05
116,95
1 7b,80
176,67
178.05

0,71
3.21
3,51
3,05
3,31
3,04
2,85
2,86
2,71
2,88
2,76
2,71
2,66
2,71
3,b4
4,31
4,47
4,37
4,48
4,7
4,75

4,74
5,03
5,79
6,11
6.26
6,17
6,20
6,51
6,41
6,41
6,31
6,30
6,52
6,54
6,51
6,46
6,41
6,40
6,38

11,03

0,50
10,33
12,33
9,30
10,9?
9,24
8,12
8,19
7,34
8,29
1,60
'.33
1,06
7,69

13,27
18,62
19,98
19,14
20,03
22.75
22.57
22,72
22,42
25,33
33,49
31,39
39,19
38,10
38,41
42.36
41,88
41,08
39,88

39, 71
42,48
42.82
42,42
41,74
41,08
40,91
40,12

121,61
- q a L I 9,30

1s78
1,45
0.14

-1,51
-0,25
0,42
1,10
0,27

"1,59
-0,32

0.19
0, 1'4

-1.56
-3,56
-2.81
-1.54
-0.51
-1,41
-1,98
-0.93
-1 .10
-0.84
-2,08

-3,07

-2,05
"1,54
-0.49
-1 1.3
-2,05
-0,82
-0,64
-0.16
-0,95
-1,88
"1 ,15
-0.81
-0,64
"0,63
-0,93

-0,91

Table 4 .13(a) Running Statistics of Data File IN.5+30.
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N
r I

NF)EVIAI ION
( C)

P1 tz A N VAR1A~C~ (k )4- & _____________________ I -

INTER

44
45
46
4,
48
49

51
52
53
54
55 
56
5/'

5$

62
63

64
65

66

67
F)8
69
10
11

13
74

I I & 1 1

RUNNING
RMS UEV

239
232
223

231
230
225
228
244
249

2 3S

24 4
P4 4
231

e 3 9225
234
239
232
232

231

R 15

213

221
221

16 9,5 2

181,9.5
182,81
183,79
184. 1I
185, 66
186.43
181,23
18$,.31d
189,43
19 0,a5

1929,8

19.,3 11 94,1 8
195, 5 1

195,84
19 b.41

I 9,95
197,61
196,19
19 8. b
198 9vi
199 09L9
199,28
199,54
199,84
1200.020

14,55
16,90
18,34
19,10

20,99
21 ,74
22,21
P?, V4
23,83
25.01
25,52
25,99

27 .29
27,51
27,54
?71,59

2, ,8e

28, 
28.41
28,68
28,8/
284,91
28,/lb
28,60
28,44
28,33
28,24
28,22

211, 12
285.61
33620
364,16
40 3 /
440, 48
472, 4e
493,31
516, 89
567,15

651,45
65, 35
712 ,47
144,88
7S6.64
/58,34
161.4 1
/7'4 , 1 4
192, 1 1

80/, 3 t
82,69
$3.3, 38

82/,'*8 1

'1 I,89

19/,53
'9b,5h

Table 4.13(b) Running Statistics of Data File IN.5+30.
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R0 NNI N G
VARIANCE

5.80
4, 9

2.24

2, 47
2,35
2,16

1.87

2,55
1 .82
1.75
2, J4

1,94

1.1-S
S143
1,5 '8
1 .28

1, .v 9
S37

P1.5?

0, /6
k., 9

RUNNING
11 -A N



kwR RUNNING RUNNING RUNNING jgVIATIUN
INTER MEAN RMS DEV VARIANCE (0)

141 1 10
18LA 1/,50 6,36 40,0

3 174 175.00 4,58 21s,00 0.24
4 175 175,00 3,74 14,0 0,00
S 186 17?20 5,89 34,10 2,94
6 202 181.33 11,41 130.21 4,21
4 20 184,43 13.25 175,62 1,90
8 216 188,31 If659 275.12 2,38
9 233 193.33 21,49 462,00 2969
S 25 199,60 28,34 803,39 2,92

11 302 208,91 40,94 1676.28 3.61
12 299 216,42 46,91 2200,25 2.20
13 323 224.6e6 53,11 2890,15 2,21
14 333 232.36 59.21 3507,48 2,02
1.5 33 239,33 63,14 3986.94 1, 17

Table 4.14 Running Statistics of Data File #476.
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Table 4.15 Running Statistics of Data File #463.
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R-R RUNNING RUNNING RUNNING )EVIA1JUN
INTER MhAN RMS OLv VARIANCE (t)

1 211 210
2 92 201.50 13,44 105

3 2A3 202,00 9,54 91, 4 0.11
4 344 23/,50 71043 5101,67 14.89
5 191 229,40 64,45 4154,3A -0,57
6 190 222,83 59,85 3582,18 -0,61
1 198 219,29 55,44 3073,2' -0,41
8 32 232,81 64,12 4111,55 1,96
9 213 2 30,61 60,34 3641,49 -0,.3

1 2014 28,50 5 7,q30 3283,8 1 -o .36
11 366 241,190 68.37 4674,19 2.40
12 215 238,83 69,62 4305, b -0,8
13 2 9 216,54 63,37 401j27 -0.45



N - LRUNNING kUNNING RUNNING DEVIATION
INTER MEAN RMS ULV VARIANCE (ca)

241 247.00
2 238 242,5w 6,36 40,50
3 11 198,33 76,b3 5872,33 -2082
4 137 163,00 69,68 4855,33 -0,80
5 244 195,20 66,0a 4385,90 0,88
6 258 hO*,6 64054 4165,81 0.95
7 259 213,29 6?2 3871,990 0,3
8 254 21130 59,42 3531,12 _ ,65

Table 4.16 Running Statistics of Data File #492-1.
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7

13
9

11
12
13

15
16
11
18
19

e0

22
23
24
25
26
27
28
29

51

35
34
35

31

40 1

A R R NUNNING kUNNING RUNNING DEVIATION
INTEk MEAN RMS (tV VARIANCE (C)

1

1
I
1
1
1
1
1
1
1
1

1
1

1
1
1

1

I
1
1

I
1

1
I

1
1
1
I
1
1
1
I
I
I
1
1
I
1
1
I
1
1
1
I
I
1
1
1
1
1
1
1
I
I

I

1
1
I
1
I
1
1

84, bf

84,4 L
F84, 6

8420

84.00084,04

84,00
83,00
81,814
79,80
17,8 4
16,60
75,80
15,60
16,40
76,140
15,80
14 0 804
73,20
/1,40

70,20

10040

11 A

, 4 0

11.40

/1 ,40

11,8
72,0(4

3h5

3.21
2. 95
2,64

2,84

2,64
2,1/
2,55
3,00
5,02
6,26
5,31
3,28

2,88
2,51
2,51
1.64
2,68
5,21
5,13
4,44
4.06
4,15
3,85
3. 11
3.71
4.04
4, 044
4,04L

4,15
3.91

2,1/9
?,95
1,30
S.0

9,30
11.30I I so(
10,34

8.10
1: .99
h, 99
6.99
6,99
1,0 t
6,49
8,99

25,19
39,19
28,19
10,19

1,19
8,29
629
629

2,b9
1,19

27,19
26.30
j9, 10
16.49
11,20
14,80
1 5.6b
14.19
16, 30
16, 30
16,30
If, 20
15,8(4
1,8010

1.10
1.* (4

-) .51
-4,42
4,12
0 95

-1.51
-o,38

0416
(4,65

"1,57
-5,00
-1.75
-(4,61

4,41
-0,18
-1 ,04
0.49

-0,16
0,,24

-2.93
-3,65
-1,00

1,31
0,49

-1.01
0.68

1,21
-0.09
,-1,59
-0 .59
0,05
0,40
0,86
(4,06

-0,61

Table 4.17 Statistics of Sliding Window Width 5 for Data File IN.5.

-121-



N RpR RUNNING RUNNING RUNNING DEVIATION
INTER MLAN RMS QEV VARIANCE (C)

5 198 eo(, 40 5,03 25930
6 205 201,60 5,32 28,30 0,91
7 2o3 201,00 4,85 23,51 0,26
8 194 198,80 5,07 25,11 1,44
9 194 jq8.80 5,01 25,71 -0.95

10 200 199,20 5, 01 25, 0, 24
11 200 198,20 4,03 16,21 0,16
12 192 196b00 3,74 14,01 -1,54
13 193 195,80 3,90 15,21 -0,80
14 199 196,00 3,96 15,1 0,82
15 196 196,00 3,54 12,51 -0,20
16 185 193,00 5,24 21,51 "3,11
17 190 192,60 5,41 29,30 -O,51
18 200 194,00 6,36 40,51 1,37
Iq 203 194,80 7,33 53,11 1,41
20 196 194,80 7,33 53,/1 0.16
21 202 198,20 5,31 28,21 0,98
22 208 201,80 4,38 19,21 1,85
23 204 202,60 4,34 18,81 0,50
24 199 201,80 4,60 21,21 -. 83
25 205 203.60 3,36 11,30 0,69
26 204 204,00 3o24 10.51 04t2
21 195 201,40 4,28 18,31 -2,18
28 198 200,20 4,21 11,r1 0,079
29 206 201,60 4,83 23,31 1,38
30 207 202,00 5,25 21,52 1.12
31 201 201,40 5,13 26,32 -(.19
32 208 204,00 4,30 18,52 1,29
33 215 207,40 5,03 25,32 2,56
34 210 208.20 5,01 25, 12 0,52
35 201 207,00 6,04 36,51 -1,42

Table 4.18 Statistics of Sliding Window Width 5 for Data File IN.20.
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Table 4.19 Statistics of Sliding Window Width 5 for Data File IN.30.
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N Rq-R RUNNING R UNNIN(, NVNNING DEVIATION
iNTER MEAN RMS DEV VARIANCE (a)

5 223 234,40 7,37 54,30
6 2310 233,o2 7,53 5b,70 -0,060
r 231 231,00 5,70 32,50 -0,29
8 230 229,20 3,56 12,10 -0,18
9 225 227,80 3,56 12,170 O1,18

10 228 228,80 2,39 5,70 0,06
11 244 231,60 7,30 53,30 6,31
12 249 235,20 10,62 112,69 2,38
13 235 236,210 10,23 104,69 -000
14 235 238,20 1,29 68,69 -00,12
15 244 241,40 6,19 38,29 0,
16 243 241,20 6,1(0 31,19 0,26
17 231 231,60 5,64 31,80 -1.6?
18 223 235,20 8,73 16,19 -2,59
19 225 233,20 9,86 97,19 -1,17
20 234 231,20 7,95 63,19 0,08
21 239 230,40 6,54 42,19 0,98
22 232 230,60 6,58 43,30 0,24
23 232 232,40 5,03 25,29 0,21
24 240 235,40 3,85 14,9 1,51
25 237 236,00 3,81 14,49 0,42
26 230 234,20 4,15 11,20 -1,58
21 215 230,80 9,68 93,69 -4.63
28 212 22b,80 12,72 161,69 -1,94
29 213 221,40 11,37 129,29 -1.09
30 218 2171,60 7,30 53,29 -0.30
31 221 215,80 3,70 13,69 0,47
32 221 218,20 6,14 37,70 3,03



RR RLJNNIN RUNNING RUNNING OEVIA TION
INTER MEAN RMS DEV VARIANCE (O)

5 88 101,00 13.84 191,50
6 112 Uj3,20 14,69 215,70 0,19
1 11? 101,80 12,36 15d,10 0.94
8 129 107,8LI 17,05 290,10 2020
9 121 113,40 15.50 240,30 0,77

1i 126 121,00 6,82 46,49 0,81
11 115 121,60 5,90 34,79 -0,88
12 134 125,00 7,31 53,49 2,10
13 145 128,20 11,69 136,69 2,73
14 113 126,60 13,35 178,30 1,30
15 1a0 121,40 17,92 321,30 w1,99
16 133 125,0O 18,12 328,50 0,65
17 93 116,80 21,91 480,20 w1,77
18 136 115,00 19,22 369,50 0,88
19 103 113,00 19,99 399,50 -0o62
24 139 120,80 21,22 450,20 1,30
21 152 12,4,60 25,26 638,29 1,47
22 92 124.40 25,58 654,29 "1,29
23 85 114,20 29,64 878,69 54
24 113 116,20 29,03 842,69 wo,04
25 87 105,80 28,12 190,70 "1,01
26 92 93,80 11,17 124,70 -0,9
21 150 105.40 27,30 745,29 5,03
28 112 110,80 24,81 615,69 0.24
29 171 109,60 24,83 616,29 00.15
30 96 111,40 23,4 530,79 40,55
31 93 111,60 22,83 521,29 -0,80
32 170 115,60 31,39 985,29 2,56
33 120 1117,20 31,36 983,69 0,14
34 109 111,60 31,21 974,29 -0.26
35 89 lib,20 32,55 1059,69 '0092
36 120 121,60 29,81 892,29 0,12
31 131 113.80 15,90 252,69 0,31
38 107, 111.20 15,69 246,19 .0,43
39 94 108,20 17,54 301,69 '"1,10
44 93 109.00 16,51 212,49 -0,81
41 88 102,60 17,36 301g29 "1,2f
42 150 106,40 25,36 643,29 2,73
43 1 08 106,60 25,37 643,79 0,06

Table 4.20(a) Statistics of Sliding Window Width 5 for Data File
CUNATFIB.
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1 RR RUNNIN6 RUNNING RUNNING DEVIATION
INTER M .AN RMS OEV VARIANCE (cc)

44
45

4,

48

49

51
52
53
S 4
55
56
57
58
59
b0
61
62
63
b 4

65
66
67

69
7 1
71
72
'3
14

7 b
1 1
78
79

81
82
83
S4
85
86

131
96
88

14 0
91

104
134

93
119
100

92
83
86
85

116
120
111
125
102
116

96
142
1215

97
112

8
85
86
83
92
87
88
93

115
88
90

139
1t 3
112

79
'9

ii,/

115.20
115,480
115,10
105, 80
102 40

95,80
103,40
104,40
108,20
110,000

91,40
96,00
89.20
92,40
98,0 0

103,60
111140
114,80
1 14.80
110.1001 1 vb4?L0

I 12,20
111,210
110.410
148,41
91.60
95,60
91.40

85,6bk
Mb, 80
A6, 6 60
617,20
88,60
95,100
9 4, _0
94,80

1 A 9, 00
108 40
10b.60
104,440
1 C10 00

27 ,25
26,61

18,87
19,88
6,050

18,30
17,36
18,21
16,45
18,31
13,50
14, 40
6,91

13,61
18.34
16,883
15,63
8,81
8.81

41,42
18,39
18,17
18.99
18,82
21 ,13
11 ,16
11.33
11,51

1,1
3,42
3.36

4,04
11,41

11.46

21,87
20.94
20 , 11
23,22
25,59
19,26

742,69
711,19
111,19
356,19
39,29
42,19

334/8
301,28
331.68
270,48
335,28
182,28
20l,48
4 1,6 8

185,28
336,48
283,28
244,2l

17/,68
71,68

1300,48
538,18
530.18
3610,68
354,28
446,28

122,29
128,29
133, 78

3,29
11,69
11,29
10,69
16, 29

131,49
140,69
131,69
478,48
438,48
4319,29
539,29
654, '18
370,99

1,20
-0,70
-1.214
-0,59
-10, 18
0,08
5.88

-0,51

V0,45
-1 ,09
1.34

-10,84

-10,76
3.88
2,03
0,91
1,2/

.s0.60

10.14
-2.13
2.810

-0,61
-0,84

0,104

- 1, 30
-0 ,91
-1,14
-10,61
"10,13

3.53
0,06
0.42
1.71
6,54

"0,61
-0,35

3,85
0,37
0,14

-1.42
-1, 19
0,49

Table 4.20(b) Statistics of
CUNATFIB.

Sliding Window Width 5 for Data File
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Table 4.20(c) Statistics of Sliding Window Width 5 for Data File
CUNATFIB.

-126-

N Ro,#R RUNNING RkNNING RUNNING EVATION
INTER MtAN RMS DEV VARIANCE (0)

37 113 100,00 19,26 370 199 0,67
88 90 95,6( 18,32 335, 78 -a 52
89 93 '8,40 16,k99 25d,78 Ov,14
94/ 1' !4 1 1029814 11,192 14a2, 19 0, 16
91 33 96,010 11,49 131,99 -1,66
92 1 10 95040 10,41 1 01,29 1*22
93 85 94,4O 1.1,26 126,09 -1,00
94 7 9 9 1.60 13,26 175* 79 -1, 371
95 ill7 94,80 17, 38 3022 19 19 92
96 89 96.od 16,55 273,99 -0133
97 9$ 93,60 14,79 218,79 2

I

4



N k-R RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (c)

5 91 134,20 50,17 2516,70
6 193 145,20 56,80 3226,20 1,1,
7 138 154,80 48,60 2362,20 -003
8 87 129,60 43,25 1870,80 -1,39
9 212 144,20 57,2f 3219,70 1,91

1i 138 153,60 49,71 2471,30 -0,11
11 90 133,00 5b,64 2564,00 -1028
12 190 143,440 56,88 3234,81 1,13
13 137 153,40 48,22 2324,81 -0,11
14 93 129,bO 40,87 1670,31 -1.25
15 206 143,20 53,67 2880,0 1,87
16 146 154,40 44,93 2018,30 0,05
11 57 133,80 48.03 2306,11 -1,50
18 215 149,40 60,40 3648,30 1,v9
19 136 158,00 52,97 2605,50 -0,22
20 93 135,40 51,45 2647,30 -1,23
21 190 144,20 51,16 3267,70 1,06
22 144 155,60 47,83 2281,30 -000
23 8 130,00 41,98 1762,50 -1.43
24 209 144.60 55,20 304,30 1,88
25 134 152,80 48,23 2325, 0 -0,19
26 96 134,00 48,42 2344,50 -1,18
21 205 146,20 58,26 93,10 1,47
28 149 158,60 48,24 2327,31 0,05
29 88 134,40 46,97 2206,31 -1,46
3- 205 148,60 6,57 3200,31 1,50
31 131 155,0o 50,25 2524,81 -0,31
32 100 134,60 46,22 2136,31 -1,11
33 167 138,20 48,28 2330,71 0,0
34 12S 145,60 4V,94 1675,81 -0.21
35 124 129,40 24,13 582,31 -0,53
36 111 126,60 24.70 610,31 -0,51
31 162 139,00 23,55 554,51 1,43
.38 _ 70 139.60 24,46 59_,3_ 1 1,32
39 174 149,40 26,85 720,81 1,41
4 159 156,40 22,83 521,31 0,36

41 57 150044 35,95 1292,31 -3,04

Table 4.21 Statistics ofSliding Window Width 5 for Data File
HUANPVCS.
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N R-R RUNNING RUNNING RUNNING DEVIArION

INTER MEAN RMS DEV VARIANCE Cot)

5 91 134,20 50,17 2516,10
6 193 145,2O 56,80 3226,20 1.17
7 138 154,80 48.60 2362,20 R0,13
8 87 129,60 43o25 1870,80 -1,39
9 212 144,20 57,27 3279,10 1,91

10 138 153,60 49,71 2471,30 -0,11
11 90 133,00 50,64 2564.00 -1,28
12 190 143,40 56,88 3234,81 1,13
13 137 153,40 48,22 2324,81 -90,11
14 93 129,6w 40,,81 1670,31 -1,25
15 206 143,20 53,67 2880.10 1,87
16 146 154,40 44,93 2018,30 0,05
17 87 133,80 48,03 2306,?1 -1,50
18 215 149,40 60,40 3648,30 1,69
19 136 158,Ow 52,97 2805,50 V0,22
2 93 135,40 51,45 2641,30 -1,23
21 190 144.20 57,16 3261,70 1,06
22 144 155,60 47,81 2281,30 -0,00
23 87 130,00 41,98 Ir6dso -1,43
24 209 144,60 55,20 3047,30 1,88
25 134 152,80 48,23 2325,0 -0.19
26 96 134,00 48,42 2344,50 1,18
27 205 146,20 58,2b 3393,10 1,47
28 149 158,60 48,24 2327,31 0.05
29 88 134,40 46,97 2206,31 "1.46
34 205 148,60 56,57 3200,31 1,50
31 131 155,60 50,25 2524,81 -0.31

Table 4.22 Statistics of Sliding Window Width 5 for Data File

HUANTRI.
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N R*R RUNNING RUNNING RUNNING O)EVIATIUN
INTER MEAN RMS DEV VARIAACE (a)

5 132 185,80 75,22 565dtl
6 274 214,00 76,89 5912,50 1,11
7 133 168,40 78,b2 6181,30 -1,05
8 266 21b,00 76,31 5822,0 0,99
9 132 18/,40 75,46 5693.80 -1

to 263 P13.60 74,14 549/.30 100
11 127 1a4 Op 73,35 5379,4 0 -1.1
12 291 215,80 79,55 6321,10 1,46
1. 133 189,20 80979 652/,20-
14 292 221,20 84,09 701,20 1.2
15 136 195,80 87,42 1642.70 P1.01
16 281 226.60 84,19 7088.30 0,97
17 139 196.?0 82,55 614,b9 -1.04
18 217 225,0o 80,17 6411,49 0,98
19 133 193,20 7 .* 7 6141,19 Jq,5
20 282 222,40 78492 6228,80 1,13
21 1t4 193,00 79,02 624S,49 -1.12
22 273 219.80 78,85 6216,69 1,01
23 138 192,00 18,14 6105,50 m1,04
24 276 22',L60 77,31 5976,79 1.08
25 129 190,00 77,21 5961.49 -1.18
26 P64 216,0 75,51 5701,44 0.96
27 131 187,64 75,41 5687,29 Wf,13
28 257 211,40 74,62 5568,29 0.92
29 134 183,00 70,81 5014,48 P1,4
3A 262 209,60 70,44 4961,28 1012
31 124 181,60 71,23 5073,28 -1.22
32 276 210,60 74,90 5609,78 1.33
33 129 185,00 76,92 5916,98 -109
34 278 213,80 79,95 6392,18 I,21
35 136 188,60 80,81 6530.18 -0,91
36 269 217,60 77.80 6092,28 019
37 138 190,00 76,36 5831,48 -1,02
38 266 217,40 73,53 5406,79 1,00
34 141 190,00 77,18 5009,48 -1,04

Table 4.23 Statistics of Sliding Window Width 5 for Data File #503.
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N RUNNING RUNNING RUNNING DEVIATIUN
INTER MEAN RMS 01 V VARIANCE (a)

5 230 1610,20 44,49 1979,20
6 162 161,80 44,35 1967,20 0,04
7 158 163,00 44,10 1945,00 0-008
8 154 162400 44,21 1960,00 -0,21
9 147 110,20 33,89 1148,20 -0,34

10 151 154,40 5,86 34,30 -0,57
11 151 152,20 40,09 16,70 -0,58
12 154 151,40 2,88 8,30 0,44
13 152 15190, 1 2,55 6,50 0,21
14 159 153,40 3,36 11,30 3,14
11 165 15b,20 5,81 33,710 3,45
16 163 158o60 5,59 31,30 1.17
17 157 159,20 5,12 26,20 -0029
18 160 160,80 3,19 10,20 0,16
19 105 150,00 25,34 642,40 17,41
20 229 162,80 44,06 1941,20 3,12
21 155 161,20 44,20 1953,20 -0,18
22 162 162,214 44,13 1947,10 ,02
23 154 161,00 44,29 1961,50 -0019
24 10 170,00 33,26 11106,50 -0,25
25 154 155,00 4,36 19,00 -0,48
26 153 154,60 4,45 19,80 *O,4b
21 148 151,80 2,68 7,20 -1,48
28 153 151,60 2.51 6,30 0,45
29 101 141,80 22,93 525,70 -20,16
3a 217 154,40 41,28 1103,80 3,28
31 150 153,80 41,32 170 ,70 -0.11
32 154 155,00 41,20 1691,50 000
33 149 154,20 41,29 1704,70 W0,15
34 10 164,00 29,69 881,50 -0,10
35 141 148,80 4,76 22,70 wfm1
36 145 141,680 4,91 24,10 -0,80
37 152 147,40 4,39 19,30 0,85
38 103 138,20 20,14 405,10 -10,11
39 214 151,00 40,03 1604,49 3.76
40 151 153,00 39,65 1572,49 0
41 151 154,20 39,44 1555,69 0,105
42 157 155,20 39,44 1555,19 0,07
43 152 165,00 27,50 76,49 -0,08

Table 4 .24(a) Statistics of Sliding Window Width 5 for Data File
HARNETPVCS.
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Table 4.24(b) Statistics of
HAPNETPVCS.

Sliding Window Width 5 for Data File

-131-

-N R RUNNING RUNNING RUNNING iEVIATIUN
INTER MEAN LMS DtV VARIANCE (C)

44 157 153,60 3.13 9,79 -0,29
45 158 155,00 3,24 10,!0 1.41
46 149 154,6 3,91 15,29 Rloh5
41 162 155,060 5,13 262,9 1,89
48 158 jb6,80 4,76 22, 10 vi.4 7
49 165 158 0 6,02 56.29 1,7e
54 176 1.62f, 00 9, a 910,49 d-.92
51 175 167,20 7,98 63,69 1a32
52 167 168.20 7,46 55,69 -0,03
53 165 169,610 S.46 291/9 - .43



9 R-R RUNNING RUNNIN 1 RUNNING [EVIATION
INTER MtAN RMS utV VARIANCE (a)

5
6
I
8
9

2a

11
12
13

24

15
16
17
18
19

230

21
22
23
24
25
26
27
28
29

31
32
33
3,4
35
36
37
38
39

h a

230
245
239
240
211
199
215

197
27 F
2,08
203
226
211
217
222
2213
133
276
184
191
182
145

255
183
I 81
191
214
230
187
187
106
274
175
174

iw 100
212,20
239,40
228,a80
233,0 
226,80
220,80

214,20

204,80
206,60
204,20
208,20
211 0 0
213,00
215,80
215,80
197,20
210.20
203. bO
197 i4 i
193, 20
20) ,bk)

169,8 0
184900
182,40
182,20
1 l6, 6(
206,00
195,00
195,80
197.00
178 , 8io
190.80
185,80
183,20

69.49
71,1
30,86
22,35
13,44

18,06
15,61
7,6h
7,16
6,43
4,44

10,85
8,86
8,86
9,09
9,09

36,58
51 ,30
52,32
51 ,42
51,71
41,98
30,06
49,15
4 9, 00
49,00
49,18
30,41
13,51
12.72
11 16
42.20
59,64
59,72
59,94

4828,50
5084, 0
1358,30
499,71
18,51
419,20
326,20
243, it

56,81
51,21
41,31

9,71

78,5%

82,7 F
82,1

1338,21
2631,11
2131,31
2644,31
267,71
1762,31
903, 11

2416,42
2400,82
2401922
2418,82
925,02
182,52
161.12.
124,52

1180,12
3556,72
3566.72
3592,12

0,65
0,38
0,02

.0,80
-2,53
-0,58
-0,82
-1,10
4,16
0,45

-0,56
4,91
0,26
0.66
1,.02

'.,41
-9,10
2,15

-0.51
'.0,24
-0, SO
-l,35
"2.02
2,83

0,36

'.0,20
-0,59
-0,69
-8,15
2,26

-0,26
-0,20

Table 4.25 Statistics of
SPOONPACS.

Sliding Window Width 5 for Data File
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R RUNNIN RUNNIN(G RUNNING OEVIATION
INTER MEAN RMS DEV VARIANCE (a)

5
6
7

13
11
12
13
14
15

17

19

21
22
23
24
25
26
27
28
29
34
31
32
33
34
35
56
37

39
4 Z
41
42
43

168
171
170
127
21 b
167

169
164

182

168

170

166
167

11 4
175
282

170

166
171
168
179
169
166
I 66
16?
162
162
171
174
159

174
138
194
154
156
I 56
171
169

166,40
168,00
168,0 40

160,20
170,40
110,020
110,000
169,80
177,20
167,40
161,60
168.80
1 0.80
173,610
175,20
1 78,'0 16
176,80
174,20
172,80
I 71,4W0
169,00
168,80
lb6,8 
167,80
167q60
166,00
164,60
165,60
167,20
165,60
1 74,220
176,60

01 6v163,20
1610, 0

l66b60
161,60

2,30
2,12
2,30

31 ,50
31 ,52
31 m52
31 ,52
21,81

2,30
2,310
4.44
6,38
5,68
4,32
2,74
4,55
6,34
6,06
6,23
2.00

,92
I ,92
1,78
1,61
2,55
2,41
3,16
5,36
6 ,50
18,29
17 , f 4
24,0 
26,84
27,62
21 ,43
20,59
160714
7,83

- _______ & I. I

5,3 0
4,50
5,30

349, 10
992.30
993, 70
99 ,5 *

993,69
415,69

, 30
5,30

19,0 
40,70
32,30
18,70

1.50
20,69
40,20
3b,69
36,79
3,99
3,69
3,69
3,19
3.28
6, 49
5,79
14,29
28,68
42,29

534,68
290,26
600,49
720, 49
162,99

423,99
276,78
61,26

Table 4.26(a) Statistics of Sliding Window Width 5 for Data File BLOOM.

-133-

0,94
-17,99

2,96
.10,11
-0,00
-0,03

0, 1$

-10,47
0,26
3,65
.230
1,13
0,25
1,57

-2.92
W2,37

-0,79
"0,22

-1,46
-1,46
-0,45
-3,109
-1,57
2.b6
2,22

-1,53
6,06

-0,01
"2,27
0,98

-10, 15

,0,24
0053
0,14



N ROR RUNNING RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (a)

44 147 160,20 9,88 91,68 "1,87
A 213 171,610 25,06 627,79 5,34
46 173 174,60 23,89 570,79 0,06
41 122 164,8(6 33,75 1139,19 P-2,20

Table 4.26(b) Statistics of Sliding Window Width 5 for Data File BLOOM.
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N mR I RUNNING N RUNNING RENNING OFVIATION
INTER 1LAN RMS DEV VARIANCE (c)

13
9
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2a
21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
.57
38
39
40
41
42
43

185
18
183
185
187
185
1 80
183
186
I 86
180
174
173
116

18 1176

173
17E

11TO
176
1770

112
172

1 6

174
17170166

17 2
173
173
171
171
236

184,60
184,40
184,616
184,20
184,00
184,00
184,0 (
184,00
184,20
1,44.00
183,00
181,80
179.80
177,80
1 1b,60
1 75.80
1 75,60
176b,4o
I1?6,4(4
1 1580
174,8o
I 13,20
171.40
170,20
170,00
110,20
170,40
171 940
1.7.26
1 72, 40

1 12,40
171,40

17160,60
1176,80
171 ,80
1 72,04
164,80

3,05
3,36
3,21
2,95
2,64
2,64
2,64
2,64
2.77
2,55
3,00
5,102
6,26
r,31
3,28
2,68

2,51

1,64
2,68
5,21
5,13
4, 44
4,6
4,15
3,85
3,71
3,7,
4,04

4,04
4,15
3,97
2,79
2,95

1,00
28,64

9,516
11 ,3o
10,34
8,116
6,99
b,99
6,99
6 99

1,70
b, 49
8,99

25,19
39,19
28,19
11,19

8,29
6,29
6,29
2,69
7,19

21.19
2 6, 30

19,70a
16,49
I17,24
14,80
13, 60
14,19
16, 3(4
16,30
16,3-4
11,20
15,80

1.80
7, 84
0,70
1,110
1 *4V

824,216
63.91I A I

-1,51
mO,42

0,12
0.95

-1,51
.0,38
4.76

3,65
"1,51

-1 31503,49
-1071

0,41

-1,*04

0,68

0, 16
16.24

-2,93
-3.65

00,40

.(4,27

1,31
(4,49
.1,01
0,68
0,17
1.21

-0,09
-1.59
-0,59

0,416
0,86

-4.61

Table 4 .2 7 (a) Statistics of Sliding Window Width 5 for Data File IN.5+30.
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N RmR RUNN1NG RUNNING RUNNING DEVIATION
INTER MEAN RMS DEV VARIANCE (a)

44 242 198,60 36,95 136,30 2,0o
45 239 211,80 37,31 1391,70 1909
46 232 224,00 29,86 891,50 0,54
47 223 234,40 7,37 54,30 0,03
48 230 233,20 7,53 56,70 '00
49 231 231,00 5,70 32,50 -0,29
50 230 229,120 3,56 12,70 -0,18
51 225 2271,80 3,56 12,74 41,18
52 228 228,80 2,39 5,70 0,06
53 244 231,ho 7,30 53,30 6,31
54 249 235,20 1ki,62 112,69 2,38
55 235 236,20 1v,23 104,69 -0,02
56 235 238,20 8,29 68,69 -0,12
57 244 241,40 6,19 38,29 07
58 243 241,20 6,10 37,19 0,26
59 231 237,60 5,64 31,80 .1,67
6a 223 235,20 8,73 76,19 02,59
61 225 233,20 9,86 97,19 1,117
62 234 231,20 7,95 63,19 0,08
63 239 230,40 6,54 42,19 0,98
64 232 230,60 6,58 43,30 0,24
65 232 232,40 5,03 25v29 0.21
66 240 235,40 3,85 14,79 1,51
61 237 236,00 3,81 14,49 0,42
68 230 234,20 4,15 1/,20 '1,58
69 215 230,80 9,68 93,69 v4,63
7 212 226,80 12,72 161,69 v1,94
71 213 221,40 11,37 12 929 ,1,09
72 218 211,60 7,30 53,29 '.0,30
73 221 215,80 3,70 13,69 047
74 227 218,20 6,14 31,10 3,03

Table 4.27(b) Statistics of Sliding Window Width 5 for Data File IN.5+30.
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IN RwR RUNNING RUNNiNG RONNING DEVIATION
INTER MEAN RMS DEV VARIANCE (at)

5 186 177,20 5,89 34,0
6 232 183o40 1 1 ,44 130,81 4,21
7 203 188,00 14,05 197,50 17
8 216 196,40 16,01 P.56,31 1,99
9 233 20,00 17,56 308,51 2,29

Ij 256 a22eo 22,17 51t3,51 2p73
11 302 242,0 38,91 1518,51 3,51
12 299 2bi,2 38,60 1489,12 1,46
13 323 282,060 36,9 1,361,42 1.,60
14 333 32, 6 0 29,b9 881,43 1,31
15 337 318,80 17,50 306,41 1,16

Table 4.28 Statistics of Sliding Window Width 5 for Data File #476.
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N RmR RUNNIN6. RUNNING RUNNING DEVIATIUN
INTEH MEAN RMS OLV VARIANCE (ce)

5 197 229.4w 64,45 4154,30
6 19o 2R5420 66,60 4435*10 -09hi
7 198 226,40 65,9O 4343j3r -0,41
8 328 251,40 77.50 6005,84 1.54
9 21.3 225, 2O 5 , 08 33 72, 13 WO ,50

14 239 227,6O 56,85 3232o34 -VA28

11 366 262q8O 78,22 6118,69 2.43
12 215 266.20 75,00 5625,74 "0.61
13 209 242.40 69,14 4780483 -0076

Table 4.29 Statistics of Sliding Window Width 5 for Data File #463.

4
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GROUP SAMPLE SAMPLE SAMPLF
q NUMBER MEAN RMS DEV VARIANCE

1 1 174,67 6,38 40,71

1 116,76 6,44 41, 49
2 2 116,51 6,48 41,9b

1 177,22 6,83 46,65
3 2 176,57 6,o4 38,88

3 176121 6,51 42,34

1 111,00 6,51 42,p4d
4 2 116,64 6,39 4085

3 1?6,50 6,7k0 44,94
4 116,516 6,92 47,83

1 112,89 6,41 41011
5 2 175,56 5,88 34,53

3 18,25 6,73 45,36
4 180,50 5,73 3i,86
5 116,715 5,85 34,21

Table 4.30 Statistics of Every qth R-R Interval for Data File IN.5

* For q=k, the R-R interval sequence is

(see Equation (4.41)). Each of these
the "Group number".

broken up into k substrings
substrings is indicated by
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q GROUP SAMPLE SAMPLE SAMPLE
NUMBLR MEAN RMS LEV VARIANCE

1 1 P2i0,4i 6.21 ,6

2 5 , 5e 33,91
200,29 6,78 45,97

1 199,92 6,89 41,54

3 2 200,50 5,42 R9, 3
3 200,91 6,79 46,09

1 240,22 7,74 59.94
42 20433 3,91 1,25

3 200,89 3,44 11,86
4 195,75 6,56 45,01

1 199,43 6,7o 44,95

5 ?- 20,29 7,76 60,24
3 p0 1,29 7,57 51, 24
4 200,?1 5.99 35,91
S 200,43 40,8 18,28

Table 4.31 Statistics of Every qth R-R Interval for Data File IN.20.
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GRUUP SAMPLE SA MPLE SAMPLE
q NUMkILR MLAN RMS UEV VAkIANCE

1 231,09 9,30 86,41

1 2.30,62 9,51 90,452
2 31,5 9,36 87,60

1 p50,18 8,49 7
3 P 31, 0 8, '22i

41 8,909

3 231 37 10,69 1 1,4
4 e33,3/ 1I.a9 127,41

5 1 P34, 1 1,24 67,91
2 232, 41 1Aq,83 117,?8
3 228,50 9,69 93,9,
4 228,33 9,50 91,21
5 ?30,bT 9,54 91,0b

Table 4.32 Statistics of Every qth R-R Interval for Data File IN.30.
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q GROUP SAMPLE SAMPLE SAMPLE
NUM8ER MEAN RMS DLV VARIANCL

1 1 1062,6 19,65 386,30

1 103,84 19,22 369,51

2 2 108,73 19,98 399,31

1 101,82 17,22 296 ,59
2108. 78 20,44 417,79

3 108.31 20,99 440.42

4 1 105,64 22,09 487,99
e 108,29 17,40 302,91
3 101,96 15,9b 254,74
4 109,11 221,64 512,67

1 105,2k 20040 41b,11

5 2 113q85 23,45 549,71
3 108,47 17,32 300904
4 101,00 15,25 ?3?,44
5 102,42 19,83 393,04

Table 4.33 Statistics of
CUNATFIB.

Every qth R-R Interval for Data File
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GR OUP SAMPLE SAMPLE AM P L
NUMBER MEAN RMS EV qARIANCE

1 1 142,80 43,42 1895,3h

2I 14L2,. 1 44.86 201P,31
2 142',9 43,02 p;50,94

1141.14 10,15 1A3, b
2 96 /9 P2,65 513,10
3 194?,00 270,04 31,33

4 1 135.73 44,12 t946,82
2 146,90 47,11 d219,21
3 150,40 46,73 2183.36
4 138,9O 40,6 1652.71

1 13a,00 39,73 1518.5b

5 a 139,50 44,94 2019,43
3 153,12 49,15 2416,12
4 147,04 47,61 2266,29
5 ,43,75 44,30 1962,21

Table 4.34 Statistics of Every qth R-R Interval

HUANPVCS.
for Data File
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GRUUP SAMPLE SAMPLE SAMPLE
q 1UMBLR MEAN RMS DEV VARIANCE

1 1 144,19 46,95 2204,76

1 142,69 48,20 2323,43
2 2 145,80 47,22 2229,74

1 139,09 5,28 27,89
3 2 90,20 3,08 9,51

3 203,80 9,48 89,95

134,62 46,93 2202,21
4 2 146,75 52,04 208,50

3 150,75 51,26 2627,93
4 144011 45,17 2040,24

1 140.57 40,55 1643,95
5 2 142,33 49,03 2404,21

3 148,00 57,06 3259,60
4 146,17 54,12 2929,36
5 144,50 51,20 2621,90

Table 4.35 Statistics of
HUANTRI.

Every qth R-R Interval for Data File
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GROUP SAMPLE SAMPLE SAMPLE
q SjUMBER MEAN RMS 0EV VARIANCE

1 1 201.10 l1,17 5064,72

1 133,00 4,29 1,42
2 2 272,19 9,74 94,92

3 1 196,15 72,60 5210,14
2 208,69 72,16 52o6,73
3 198,46 13,93 5464,94

1 133,30 3,27 10,68
2 211,00 9,76 95,35

4 3 132,70 5,29 28.01
4 274,8 9,89 97,90

1 200,75 76,38 5834,21
5 2 205,25 75,31 5671,64

3 199,25 72,15 5206,21
4 207,62 77,86 6061,98
5 191,43 12,89 5313,29

Table 4.36 Statistics of Every qth R-R Interval for Data File #503
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GROUP SAMPLE SAMPLE SAMPLE
q %UMaLR MEAN RMS DEV VARIANCE

1 1 156491 24,42 496,48

I 156,44 24,56

2 5,,8 d4,75 612,81

1 149,67 16,99 288,59

3 2 158,28 31,98 1022,69
3 163,12 21,05 443,24

4 1 156,43 26,11 681,65
2 Ib7,7 24,36 593,53
3 156,46 23,85 568,61
4 157,00 26,15 682,83

1 155,2f 8o43 71,02

5 2 156,64 5,46 29,85
3 150,82 16,50 212,17
4 145,40 34,34 1178,93
5 117,24 34,63 1199,51

Table 4.37 Statistics of Every qth R-R Interval for Data File
HARNETPVCS.
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qGROUP SAMP4,E SAMPLE SAMPLE
NUMBER MEAN RMS QFV VAR1ANCL

1 1 201,00 40,016 1h661S.i

1 29,1( 40,0 2p 1h11, e

2 192,85 40965 1652,03

3 1 180,79 3/,57 1411,41
216,46 45,28 2049,94

3 ?07,31 32,26 1i4A,9j

4 1 201,/0 39,55 1564,46
2 193470 49,20 2420,68
3 216,63 41,56 1127,61
4 194,,0d 32,64 106593S

1 20000 21,97 48i,5 /

5 113,12 53,22 2831,84
3 227,75 5b,76 3222,PI
4 204,87 24,1 140,70
5 149,25 19,49 379,93

Table 4.38 Statistics
SPOONPAC.

of Every qth R-R Interval for Data File

-147-



GROUP SAMPLE SAMPLE SAMPLE
q JUMHER MEAN RM$ DEV VARIANCE

1 1 168,64 16,70 218,98

1,0000 20,03 401,22
2 t4 67,22 12,64 159,72

3 1 164,94 9,01 81,,13
2 166,56 at,12 446,13
3 114,80 17,04 d90,46

1 113,35 213 472,24
4 2 1701,42 8,91 79,35

3 166,67 18,50 342,42
4 163,73 15,44 238,42

I 168,60 5,78 33,38
5 2 1bi01 17,66 312,00

3 167,89 17,76 315,,36
4 168,67 19,62 384 ,75
5 116,78 19,63 385,2

Table 4.39 Statistics of Every qth R-R Interval for Data File BLOOM.

I
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GROUP SAMPLE SAMPLE SAMPLE
q NUM8ER MEAN RMS DEV VARIANCE

1 1 200,20 28,22 796,58

2 1 200005 28,15 792,61
2 200,35 28,68 822,62

3 1 200,52 27,85 175,42
2 200,52 28.49 811.51
3 199,54 29052 871,65

4 1 199,89 28, 78 828,44
2 20,53 50,01 900,59
3 200,22 28,31 801424
4 200,17 28,08 788,38

1 195,01 29,09 146,21
5 2 197,60 288,8 833,25

3 204,64 30,03 901,97
4 204g73 28,03 785,78
5 198,93 27,58 760,84

Table 4.40 Statistics of
IN.5+30.

Every qth R-R Interval for Data File
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GROUP SAMPLE SAMPLE SAMPLE
q NUMt3ER MEAN RMS DEV VARIANCE

1 1 239,33 63,14 3986,96

2 1 241,14 69,26 4197,55
2 237,29 6b,8(o 3696,5f

3 1 225,060 64,15 4115,80
2 243,40 69,87 4881,80
3 249,tO 67,7 C 4583 52

4 1 228,25 68,47 4b87,58
242,75 68,11 4639,58

3 254,00 77,88 6064,67
4 230,00 63,17 3991,00

1 225,00 68,46 4687,oo

5 2 227,33 63,12 3984,314
3 237,67 76,83 5902,33
4 247,04 19,92 6388,00
5 259, 6 15,57 5 1.3

Table 4.41 Statistics of Every qth R-R Interval for Data File #476.
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GROUP SAMP E SAMPLE SAMPLE
q 4UMtER MEAN RMS OEV VANIANCE

1 1 236,54 63,37 4015,2/

1 228,14 61.11 3I34,14

2 2 p46,35 /0,30 494t,

3 1 234,20 61,59 3793,7o
2 2le? 69,43 7996,92
3 205,25 11,44 130,92

4 1 207,5 7,19 51,6r
2 197,00 10,44 10900
3 255,67 95,58 9136,30
4 295,6? 70,32 4944,27

5 1 255,6? 96,13 9240,36
201,67 11,93 142,33

3 246,67 70,50 4970,33
4 278,54 92,63 8580,50
5 P03,0a 8,49 72,00

Table 4.42 Statistics of Every qth R-R Interval for Data File #463.
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NORMALIZED
TF CORRELATION CORRELATION

FUNCTION FUNCTION

0 0,131253E 7 0.100000E -
I 0,131219E 7 0,999739E 0
2 0,131179E 7 0,999436E 0
3 0,131162E 7 0,999305E 0
4 0,131168E 7 0,999350t 0
5 0,131178E 7 0,999429E 0
6 0,131151E 7 0,999221E 0
1 0,131112E 7 0,998927e 0
8 0,131100E I 0,998829E 0
9 0,131107E 'I 0,998889 0 1

Table 4.43 Correlation Functions for Data File

NORMALIZED
CORRELATION CORRELATION
FUNCTION FUNCTION

0 0,140731E 7 0,100000E I
1 0,140665E 7 0,999531E 0
2 0,140600E 7 0.999067E 0
3 0,140643E 7 0,999374E 0
4 0,140676E I 0,999607e 0
5 0,140605E 7 0,999100E 0
6 0,140558E 7 0,998769E 0
I 0,140614E 7 0,999168t 0
8 0,140647L 7 0,999401E 0
9 0,140587E 7 0,998972E 0

Table 4.44 Correlation
IN.20.

Functions for Data File

4
-152-
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Table 4.45 Correlation Functions for Data File IN.30

Table 4.46 Correlation
CUNATFIB.

Functions for Data File

-153-

NORMALIZED
CORRELATION CORRELAT1ON
FUNCTION FUNCTION

0 4,1711b1E I 0,100001E I
1. ,11077E 1 0,9995054 V
2 o,110946E 1 0,99814e- 0
3 0,10891E 1 0,998423 0
4 ,1110889L 1 0,9 98401t 0
5 0,170847E 1 0.9981b1e 0
6 0.1!0718L / 0,997161 '
P 0,110/85E I 0,998oeL
8 Ool1898E I 00998461t 0
9 0.10997 1 0,999041t 0

NORMAL IZE0
CORRELATION CORRELATION
FUNC7ION FUNCtION

0 0,11e228E I 0,10000L
1 OI10095t 1 00972330t 0

OI09811t 7 0,9698et
3 0,109108E 1 0,968914t i
4 0,109580E 7 0,967180k 0
S 0,110299k 1 0,9f4134t 0
b 0,110008t 1 0,971560o 0

O ,1O9458L 7 0,96610t1 0
8 0,109972. 1 0,910805t 0
9 0,109599E I 0,967874t 0



NORMALIZED

CORRELATION CORRELATION
FUNCTION FUNCTION

0 ,911537E b 0,100000E I
I 0,803614E 6 0,881669E o
2 W,8747E 6 0,865040E 0
3 0,889520E 6 0,915846L 0
4 0,804125E b 0,88216s3 0
5 0,811316E 6 0,890052 0
6 0,888813E 6 0,975070E 0

0812154E 6 0 ,890972E 0
8 0,811228E 6 0,889956E 0
9 0,881890E 6 0,961415t 0

Table 4.47 Correlation Functions for Data File
HUANPVCS

NORMALIZED
CO~RRELA TION CORRELATION
FUNCTION FUNCTION

0 0,710688E 6 0,100000E 1
1 0,611490E 6 008b419E 0
2 061b511E 6 0,8b7484L r
3 0,697579E 6 0,981554E t
4 0,623659E 6 0,877542L 0
5 0,614015E 6 0,864057k 0
6 0,690736E 6 009719a5E 0
P 0,630871E 6 0,88769ot 0
8 0,61b431L 6 0,867372E 0
9 0,61404E 6 0,954513t 0

Table 4.48 Correlation
HUANTRI.

Functions for Data File

4
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NORMALIZED

TORRELATION C(RRELATJ1ON
FUNCTION FUNCION

0 ,1/697QE / 0,100(A0E I
1 ,139541E. 1 0,185L 0

2 .1/5252,E 1 0,9902?92L 0
3 ,14126b01 / A,798i(1b A,

4 173c232E I ./88 0
5 0,I45148EE 1 .081

/ ,145t99E / .249
9 0,169 283 . 1 ,9"t6 t v
9 C ,t4l 3/t fo 8F19ie 0

Table 4.49 Correlation Functions for Data File #503

Table 4.50 Correlation Functions fo Data File
HARNETPVCS.
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NORMAL IZEfD
CJRRELATION CORRtLAIION
FUNC T ION FUNC T IO;

0 0,133584E /~ V,I1000L I
I ,129213E / ,/99b119 -

0.130/53E 7 0,9/t88O8L
3 0. 54 5 1 , /2 1
'4 .130263t 1 ,/43

S 0.150557t 7 0 .911338 
AI,30462E I 0,9'b626b L

/ 9 ,I3i439t / ,9/6460L (
8 ,13k398E 7 0.9ib146L (P

9 0.I308i06E I ,9792'4r o



NORMALIZED
T CORNELATON CORRELATION

FUNCTION FUNCTION

0 0,168082E 1 0,100000E I
1 0,19831E 7 0,95091oe 0
2 ,162566E 7 I,961181L o
3 0,1b240E 7 00965e42h 0

0,160987E ' 00,957190E 0
5 0,162667E I 0,967783E 0
6 0,161513E 7 0,961272E 0

0,160943E 7 0.957525E 0
8 0,160847E 7 0,95695E 0
9 O.162688E 7 0,9b7907E 0

Table 4.51 Correlation Functions for Data File

SPOONPAC.

NORMALIZED
T CORRELATION CORRELATION

FUNCTION FUNCTION

0 0,134946E I 0,100000E I
I 0,133297E I 0,987786L 0
2 0,133411E 7 0,988630E 0
3 0,13394oE 7 0,999255oE
4 0,133580E I 0,989818E 0
5 0,133549E 7 0g98964it e
6 0,133542E 7 0,989596E .
I 0,133952E 7 0,992636E 0
8 0,133773E I 0,991308E o
9 0,1332b8E I 0,987568E 0

Table 4.52 Correlation Functions for Data File BLOOM.
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Table 4.53

Table 4.54

Correlation Functions for Data File IN.5+30

Correlation Functions for Data File #476,.

157-

NORMAL IZED
CORRELATION CURR LAT1ON

F ONCTION FUNCTION

40,342415E 7 0,100000k I
1 0,3419h8E I 0,9983i8mL 0
2 0301515k I 0.94102i3 0
3 ,o01215t 1 0,996033E 0
4 0,301t 1 0,995541h 0

0,300898E 7 0,994985t 0
0 1,300566E 1 0,993886t 0

' O.3OO2O2k 7 0,992b83E o
8 0e,99977t 1 O,991939t 0
3 4,299832F / O,991459 0

NORMAL IZED
T CORRELAT1ON COkRtLA1O0N

FJNCTION FUNCTION

O,9024E 6 0,100000t I
0 ,899096t 6 0,962592L 0

2 W,883430E 6 0,965411L o
3 ,8bb015E b 0,946439E 0
4 00695e 6 0.929696L 0
5 00,85008E h 00912553L 0
6 062822L 6 0,905136t 0
S 0,240/2L b 0,9006b11I 0

8 0.8l2kt2 ) b ,90513hk 0



NORMALIZED
CORRELATION CORRELATJON
FVNCTION FWNCTION

0 0,1775539E 6 0,100000E I
I 0,715681E 6 0,922817E 0
2 0,1164E 6 08916993E 0
3 0,134015E b 0,946457E 0
4 0,730161E 6 0,941488E 0
5 0,714299E 6 0,921035E 0
6 01734723E 6 09947370E 0
7 0,734723E 6 0,947370E 0
8 0,714299E 6 0,921035L0
9 0,730161E 6 0,941488E 0

Table 4.55 Correlation Functions for Data File #463.
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CHAPTER 5

DYNAMICAL MODELLING OF CARDIAC RHYTHMS BASED

ON THEIR R-R INTERVAL CHARACTERISTICS

5.1 Introduction

In Chapter 4 we have demonstrated that we could detect and identify

different arrhythmia classes by their statistical characteristics,

which are expressed in terms of some simple statistical parameters.

However, a completely automated computer algorithm for rhythm analysis

of ECG/VCG's using these statistics would be quite complex. The reason

for this is the fact that in order to detect and identify positively

the presence of a certain rhythm pattern, we need to perform several

threshold tests. For instance, some tests for identifing a bigeminal

rhythm would be: (1) sample variance greater than a preset threshold,

(2) sample variance of every other R-R intervals less than a preset

threshold, and (3) the difference of the two sample means of every other

R-R intervals greater than a preset threshold. Thus for each

arrhythmia class we wish to detect, we need to set up some necessary

threshold tests just for the purpose of detecting this particular

rhythm. Therefore the final structure of the algorithm is formed by

putting all the threshold tests needed to detect and identify all the

arrhythmia classes together, and since all these tests are of threshold

type, the final detection logic is deterministic. In other words, an

ECG/VCG record will be classified into a particular rhythm pattern based

solely on certain threshold tests, and this decision structure does not

take into account the margins by which the thresholds passed or failed.

What would be preferable would be a decision rule that
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(1) contains a minimum number of threshold tests, since

it is extremely difficult to modify and analyze decision

rules that contain numerous (and extraneous) logical

branches

(2) is based on statistics that somehow reflect and quantify

our confidence in our decision - i.e. We would like to

use quantities such as the probability or likelihood that

a certain decision is the correct one. In this case one

will have a much more rational basis for the setting of

thresholds.

There is a more sophisticated statistical method for the detection

and identification of the arrhythmias, as we will see in Chapters 6

and 7. The final structure of the algorithm using this approach is

extremely unified and the decision tests are done statistically rather

than deterministically. However, in order to utilize this powerful

statistical method, we need to develop mathematical models for each

of the rhythm patterns we wish to detect. The models developed in this

chapter are based upon the categorization concepts described in

Chapter 3, and the dynamical descriptions defined in a qualitative

manner in Chapter 4. (As we will see, the statistical analysis of the

preceding chapter provides a method for choosing certain parameters

in these mathematical models). In the rest of this chapter we will

discuss the modelling concept and the mathematical models for both the

persistent and transient rhythms described in Chapter 3.

5.2 Dynamical Models for Persistent Rhythms

For this class of rhythms, our conceptual picture for the models

-160-
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is illustrated in Figure 5.1.

v(k)

Underlying x(k) + y(k)
Pattern
Generator +

Figure 5.1 Conceptual Diagram of the Dynamical Model

for Persistent Rhythms

Here we imagine that an underlying pattern generator generates a se-

quence of R-R intervals, x(k), k=l,2,..., according to a particular

ideal pattern. This ideal R-R interval sequence is what we called

"nominal R-R interval sequence" or "state sequence" which is different

from the actually observed R-R interval sequence, y(k), k=1,2,... .

The actual R-R interval, y(k), is the nominal R-R interval x(k) cor-

rupted by an additive noise v(k), which comes from two sources. The

first of these is the unavoidable errors in computing the R-R intervals,

caused by inaccuracies in locating the fiducial points of the QRS

complexes. In addition, as we have discussed in Chapter 4, even for a

regular normal rhythm the R-R intervals are not exactly the same;

rather there are normal variations about the ideal underlying rhythmic

pattern. Thus, a second source of noise is included to represent

these normal variations.

Using this conceptual picture, a persistent rhythm class can then

be modelled mathematically by using two discrete-time relations. The
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first equation describes the mechanism in which the ideal underlying

rhythm pattern is generated and is called the process equation, which

describes the state of a system at every instant of time. The second

equation, which is called the observation equation, gives the relation

between the actually observed data and the state of the system. In

our case, the actually observed R-R interval is given by the state plus

an additive noise term. In the following we will describe the mathe-

matical models of this form for the persistent rhythm classes discussed

in Chapter 3.

(1) Dynamical Model for Small Variation

For this class of rhythm, the given R-R interval sequence,

y(k), k=l,2,..., has only small, random variations about its mean

value. Thus, we can model this class of rhythms by an ideal pattern

consisting of exactly equal R-R intervals, generated by an underlying

pattern generator, and an additive noise, which represents the small

variation, is then added to the nominal R-R interval and gives the

actually observed R-R interval data.

Therefore the mathematical model for this class of rhythms is

given as:

x(k) = x(k-1) (5.1)

y(k) = x(k) + v(k) (5.2)

where Equation (5.1) is the process equation which describes an ideal

state sequence consists of exactly equal states, x(k), k=1,2,..., and

the actually observed data is given by the observation equation,

Equation (5.2), which is the sum of the state and a noise term v(k).
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Here the initial state x(0) is thought of as a random variable with

given mean m(O) and covariance P(O). The noise v(k) is assumed to be

unbiased and uncorrelated with itself, thus we have

E[v(k)]=0 (5.3)

E[v(k)v(j)]=R 6 . (5.4)
s kj

where Rs is the noise variance for the small variation rhythm and

6 , is the Kronecker delta, 6 .=0 if k&j and 1 if k=j. In addition

we assume that the noise at any time k is independent of the underlying

rhythm state, thus

E[v(k)x(j)I=0 (5.5)

We also assume that all random variables have Gaussian probability

density functions.

The quantities P(0), m(0), and Rs are free parameters to be

determined from the statistical tests of Chapter 4. It is not true

that we will determine these for each patient individually from the

statistical tests. Rather, we will use these tests on a number of

records to determine reasonable values in general (the role of these

parameters will become clearer in Chapters 6 and 7),

(2) Dynamical Model for Large Variation

For this class of rhythms the observed R-R intervals have large va-

riations about the mean value. Therefore, we can model this class of

rhythms using the same model we used for the small variation rhythm, and

increase the noise variance of v to account for the larger variations in

this class. The mathematical model is then identical to Equations (5.1)
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and (5.2) and is rewritten here for convenience

x(k) = x(k-1) (5.6)

y(k) = x(k) + v(k) (5.7)

Here the observation noise v(k) has variance R, which is greater

than R , or
s

E[v(k)v(j)] = R 6k R >R (5.8)

(3) Dynamical Model for Bigeminy

For a bigeminal rhythm, the observed R-R intervals oscillate

between two different R-R interval sizes, i.e., the R-R interval

sequence has a pattern of short, long, short, long, etc. Thus we

need a mathematical relation which will generate an ideal underlying

pattern of this form, and the variations observed in the R-R intervals

will again be modelled as additive noise. A second order model which

describes this rhythm pattern is

0 1
x(k) =x(k-1) (5.9)

10

y(k) = [1 0]x(k) + v(k) (5.10)

where x(k) is the nominal R-R interval and is a two-dimensional vector

x 1(k)

x(k) = (k) (5.11)
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The initial state x(0) is a two-dimensional random vector with given

mean m(0) and covariance P(0), and the noise {v(k)} is again a white

Gaussian sequence with the following statistics

E[v(k)]=0 (5.12)

E[v(k)v(j)] = Rb kj (5.13)

Again, P(0), m(0), and R. are free parameters to be determined by

some statistical means.

Assuming that we are given the initial state,

x 1(0)

x(O) = (0) (5.14)

then the state sequence given by the process equation, Equation (5.9),

is

x2(0) x1(0) x2(0)
x(l) =[ 0) x(2) = L2 (0) x(3) = L (0) .. (5.15)

The observation equation, Equation (5.10), then gives

y(l) = x 2(0) + v(1)

(5.16)
y( 2 ) x 1(0) + v(2)

y(3 ) = x 2(0) + v(3)
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which is an alternation between x (0) and x2(0), and the correct

model for a bigeminal rhythm.

(4) Dynamical Model for Trigeminy

In this case we have an R-R interval sequence which has a period

of three; hence we need a process equation which can generate such

a pattern. A model which describes this class of rhythms is

-0 0 1 ~

x(k) = 1 0 0 x(k-l) (5.17)

.0 1 0 _

y(k) = [1 0 0J x(k) + v(k) (5.18)

where x(k) is a three dimensional vector

x(k) = x2(k)(5.19)

Sx3 (k).

and the noise process is again a white Gaussian sequence with

statistics

E(v(k)]=0 (5.20)

E[v(k)v(j)] = R 6 . (5.21)
t kj

It is easily seen that this model is appropriate for the trigeminal

rhythm we wish to model.
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5.3 Dynamical Models for Transient Rhythms

In order to model the transient rhythm classes we use again a

conceptual picture for the models as we did in the case of persistent

rhythms. A transient rhythm can always be viewed dynamically as an

abrupt change, additively superimposed upon an underlying small

variational rhythm. Using this concept, we can then model the transient

rhythms by imagining that a noise free ideal underlying pattern,

which includes the abrupt changes is generated first, and the actually

observed R-R interval sequence {y(k)} is then obtained by superimposing

a noise sequence tv(k) } upon the underlying nominal R-R interval

pattern. This conceptual picture is illustrated in Figure 5.2.

Underlying Pattern Generator v(k)

Transient
x (k)_ y(k)

Event

Generator +

unit

delay
activate I
at timeO

Figure 5.2 Conceptual Diagram of the Dynamical Model for
Transient Rhythms

Here the underlying pattern generator is driven by a randomly activated

transient event generator, which generates one of the four abrupt R-R

interval changes described in Chapter 3 at activating time 0. For

k<O, the unit delayed feedback loop will generate an R-R interval

sequence, x(k), k=l,...0-1, which are all exactly equal. However for
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k>G, the underlying nominal R-R interval is given as the sum of the

outputs from the transient even generator and the unit delayed feed-

back. Using this conceptual diagram, we will describe the mathematical

models for the transient rhythm classes in the following.

(1) Dynamical Model for Rhythm Jump

In this class of rhythm, there is a sudden change of the size

of the R-R intervals. The model for this is

x(k) = x(k-1) + N6 ,k (5.22)

y(k) = x(k) + v(k) (5.23)

where V is an unknown jump in the normal R-R interval, and e is the

unknown time at which this jump occurs. Here 6,k is the Kronecker

delta defined earlier. The nominal R-R interval pattern given by

Equation (5.22) is

x(l) = x(0)

x(2) = x(0)

x(e-1) = x(O) (5.24)

x(0) = x(0) + v

x(e+l) = x(0) + V

Note that for v>O there is a sudden jump to a slower heart rate, and

for V<O a sudden jump to a faster heart rate; thus the model given by
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Equations (5.22) and (5.23) describes both the onset tachycardia and

bradycardia.

(2) Dynamical Model for Non-Compensatory Beat

For this class of ectopic events, there is either a shortened or

lengthened R-R interval, followed by a return to the regular pattern.

Thus a mathematical model which describes this pattern is

x(k) = x(k-1) + V[6 6,k 6,k-1 (5.25)

y(k) = x(k) + v(k) (5.26)

Equation (5.25) gives the following state sequence:

x(l) = x(O)

x(2) = x(O)

x(6-1) = x(O) (5.27)

x(O) =x(O) + v

x(0+1) = x(O)

which has a non-compensatory beat at time 0.

(3) Dynamical Model for Compensatory Beat

In this case, there is either a shortened or lengthened R-R

interval, followed by a compensatory pause, such that the sum of these

two successive R-R intervals equals twice the regular R-R interval.

The model for this is
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x(k) = x(k-l) + v[6 ,k - 26 +k-1 6,k-2 (5.28)

(5.29)y(k) = x(k) + v(k)

The sequence of the states given by Equation (5.28) is

x(l) = x(O)

x(2) = x(O)

x(e-1) = x(O)

x(e) = x(O) + V

x(e+l) = x(o) - V

x(0+2) = x(Q)

(4) Dynamical Model for Double Non-Compensatory Beat

For this case, we are seeking a model which is characterized by

two successive lengthened or shortened R-R intervals. The model for

this is

x(k) = x(k-1) + v[ 6 ,k

y(k) = x(k) + v(k)

6 ,k-2 (5.31)

(5.32)

The nominal R-R interval sequence from Equation (5.31) has the

following pattern
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x(1) = x(0)

x(2) = x(0)

x(O-l) = x(0) (5.33)

x(O) = x(0) + v

x(O+l) = x(0) + v

x(6+2) = x(0)

which is precisely the model we need. Note also that if V =-x()/2,

Equation (5.33) gives the state sequence for an interpolated beat.
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CHAPTER 6

DETECTION AND CLASSIFICATION OF PERSISTENT RHYTHMS

6.1 The Multiple Model Hypothesis Testing Technique

In Chapter 5, we have developed dynamical models for several per-

sistent arrhythmia classes, namely, small variation, large variation,

bigeminy and trigeminy. All the dynamical models for these arrhythmia

classes can be considered as special cases of a more general discrete

dynamical system of the following form:

x(k) = l(k,k-l)x(k-l) + r(k)W(k) (6.1)

y(k) = H(k)x(k) + v(k) (6.2)

where x(k) R is the state, with initial condition x (0) being a

Gaussian random variable with mean

E[x(0) = x(0) (6.3)

and covariance

-T
E[(x(0)-x(0))(x(0)-x(Q)) 1 = P(0) (6.4)

and the driving noise, w(k), is an m-dimensional white Gaussian

sequence with statistics

E w(k) =0 (6.5)

T4
E[w(k)w (j)]=Q(k)6k. (6.6)

k -
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y(k) 6 RP is the observation, and {v(k)lis a p-dimensional white

Gaussian measurement noise sequence with statistics

E[v(k)]=0 (6.7)

E[v(k)v (j)]=R(k)6 kj (68)

Furthermore, x(0), w(k), and v(j) are mutually independent, i.e.,

E[w(k)v (j)]=0 (6.9)

E[w(k)x (0)3=0 (6.10)

E[v(k)x (0)3=0 (6.11)

Referring to Equations (6.1) through (6.11), the dynamical

models for the persistent rhythms are specified by (,F,H,Q, and R.

Since no driving noise is included in the state equation of the dy-

namical models, Q is set equal to zero for all these four persistent

rhythm classes. The other parameters for different classes are

given as

(1) small variation

(D(k,k-l)=l H(k)=l

R(k)=R (6.12)
s
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(2) large variation

4(k,k-1)=1

R(k) = R (>R)

(3) bigeminy

D(k,k-1) =
0

1

1

0 ]

H(k) = (1 0] (6.14)

R(k) = Rb

(4) trigeminy

)(k,k-1) 0 0 1

1 0 0

0 1 0J

H(k) = [1 0 0] (6.15)

R(k) = Rt

the R's, P(0), and x(0) are design parameters.

We now consider the problem of detection and classification for

these classes of arrhythmias, i.e., given a sequence of R-R intervals,

we wish to determine which one of the several possible persistent

rhythms is present. Our design of the detection and classification

of this class of problems is based on the Multiple Model Hypothesis

Testing technique. The method of approach of using this Multiple

Model Hypothesis Testing technique is described in detail in the

following.
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Given the dynamical model [(6.1)-(6.2)], we wish to design a

system that will estimate the state x(k) given the measurements

y(l), y(2),.. y(k). Let x(ijj) denote the estimate of x(i) given

observations y(l),...,y(j). Then these state estimates for the system

[(6.1)-(6.2)] can be computed by the Kalman filter equation [39].

x(kjk-l) = f(k,k-l)x(k-ljk-l) (6.16)

x(klk) = x(kjk-l) + M(k)y(k) (6.17)

with initial condition

x(00) = x(O) (6.18)

where M(k) is the filter gain, and y(k) is the measurement residual

or innovations process

y(k) = y(k) - H(k)x(klk-l) (6.19)

with statistics

E[y(k)]=O (6.20)

E[Y(k)y (j)] = V(k) kj (6.21)

the associated error covariance matrix, P(ilj), residual covariance,

and the filter gain, M(k), can be computed according to the following

recursive relations:
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P(klk-1) = l(k,k-l)P(k-lIk-l)D (k,k-l) + P(k)Q(k)F (k) (6.22)

v(k) = H(k)P(klk-l)HT (k) + R(k) (6.23)

M(k) = P(kik-l)H (k)V (k) (6.24)

P(klk) = P(klk-l) - M(k)H(k)P(klk-l) (6.25)

with initial condition

P(010) = P(0) (6.26)

Since we do not know a priori which of the possible arrhythmia

classes will occur, we hypothesize several possible arrhythmia classes,

namely, small variation, large variation, bigeminy and trigeminy, and

wish to determine which one of these possible models is the correct

one. In this case, we can employ the technique described in [40],

[41]. We have several possible models, which are specified by D.,

r., H., Q. and R. as given by Equations (6.12) through (6.15). Here
1 1 1 1

subscript i is used to indicate different persistent rhythm classes.

Using Equations (6.16) through (6.26), we construct a Kalman filter

for each of these models. The measurement residuals y. (k), and the

associated covariance V.(k) from each of these Kalman filters are then

used to compute the probabilities, Pr. (k), that each of the models

is correct. Assuming there are n possible models, then the probability,

Pr. (k), that the jth model is the correct one can be calculated from
)

the following recursive relation
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N(y (k) V (k) )Pr (k-i)
Pr (k)= I(6.27)

J n

N(Y. (k),v. (k))Pr. (k-1)
i. 1 1 1i=1

with initial probabilities Pr.(0), j=1,2,...n, where N(Y,V) is the
J

normal density function

N(y,V) = p!2  1/2 YV Y (6.28)

(2rr) (detV)

The Pr(O)'sare design parameters, detV is the determinant of V, and

y is a p-dimensional vector.

By determining which model has the largest probability, we are

able to determine the correct underlying persistent rhythm pattern.

Therefore, this Multiple Hypothesis Testing technique will enable us

to perform both the detection and classification of the persistent

arrhythmia classes we wish to detect. The structure of this method

of approach is shown in Figure 6.1.

6.2 The Multiple Model Hypothesis Testing Algorithm

A program has been developed and tested for performing the

multiple model hypothesis tests on the persistent rhythm classes,

which include small variation, large variation, bigeminy and trigeminy.

The dynamical models for these four classes are given in Chapter 5,
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Kalman filter y1 (k),V1 (k)

#1

0

0

0

Kalman filter yn (k),vn (k)

# n

Pr (k)

Probability 1

Computations

Pr (k)
; n

4
Figure 6.1 The Multiple Model Hypothesis Testing Structure

4and the associated Kalman filter equations can be implemented using

Equations (6.16) through (6.26). Using the R-R interval data as

input, we can then compute the innovations, y. (k), and the associated

covariance, V (k), for each of these four models from their Kalman

filter equations. The probabilities that the R-R interval data being

tested belong to different arrhythmic classes are then computed

4
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recursively using Equations (6.27).

In practice, we want our multiple hypothesis testing system to

lock onto the correct model as fast as possible, i.e., we wish to

achieve the detection and classification of the underlying persistent

rhythm for the R-R interval data being tested using as few R-R intervals

as possible. However in some cases, after the system has locked onto

a persistent underlying rhythm, the probability, Pr (k), that this

underlying rhythm model is the correct one can be very large, hence

the probabilities for the other models to be true are very small. In

this case, if there is a sudden change of the rhythm pattern in the

R-R interval sequence being tested, our system will respond to this

change by adjusting the probabilities. However, this adjustment is

slow according to Equation (6.27), since Pr(k+l) is proportional to

Pr(k), which can be very small. Therefore in order to improve the

adaptability of the filters in our system, both upper and lower

bounds should be put on the probabilities. An upper bound of 97%,

and a lower bound of 1% are used for all probabilities, with the cons-

traint that the sum of all the probabilities is 100%.

Although for given initial error covariance matrices and measu-

rement noises the filter gain sequence associated with each rhythm

models can be computed "off-line" using Equations (6.22) through

(6.26), in order to study the effects on the response of the system

for different values of initial error covariances and measurement

noises we will compute all the gians "on-line" instead.
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Due to the fact that the gains of the Kalman filters will decrease

monotonically with time, a sudden change of the R-R interval data (for

instance, R-R interval data which starts with trigeminy, and suddenly

switches to regular rhythm) will not be rapidly adapted to by the

filters. In order to overcome this difficulty, we have to be able to

detect the sudden changes and reinitialize the probabilities and filter

parameters, which include initial error covariance matrices, measure-

ment noises and overall mean values of the R-R intervals. The

easiest way to detect a sudden change is to set a threshold on the

factor Y 2(k)/2V(k) of the most probable model. Here, the most pro-

bable model is defined as the one with probability greater than 80%.

After a sudden change has been detected, a reasonable period of time

should pass before searching for the next sudden rhythm change,

since, as mentioned above, a sudden rhythm change will not be adapted

to rapidly by the filters. That is, this threshold test is good only

when the multiple model filter has been locked onto the correct model.

As we have mentioned earlier in this section, we wish to achieve

the detection and classification of the underlying persistent rhythm

for the R-R interval record being tested using as few R-R intervals as

possible. However due to the fact that the process equation for

bigeminal and trigeminal rhythms can also be used to describe the R-R

interval pattern for a small variational rhythm, the a posteriori

probabilities for both bigeminal and trigeminal filters are too high

in the presence of a small variational underlying rhythm. This will

result in a low detection and classification rate for small variational
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underlying rhythms (see experimental results in Section 6.3). In this

case all components of the filter states are about the same, which

would indicate that a small variational rhythm is present. Therefore

a test incorporating the differences between filter states to aid in

the discrimination of small variational rhythms is developed and

implemented as follows:

First, we compute

x (kIk) - x (klk)
AB = bx (6 29)

^1 ^2
MAX(Xb (k k, x (k k))

and

^A ^2 1+^2 ^3 ^31^3
xt(kjk) - xt(k~k)l+ xt(k~k) - x(k1k) +lxt(kk) - xtkk)

AT = ^ t 2 ^3
MAX(xt(k Ik), xt(klk), xt(kk)) (6.30)

^i ^i
where xb and xt are the ith components of the filter state estimates

for the bigeminal and trigeminal models, respectively.

If AB(AT) is small, we know that the underlying rhythm is not

bigeminy (trigeminy). Therefore the a posteriori probability for the

bigeminal (trigeminal) model computed using Equation (6.27) should be

reduced. However if AB(AT) is fairly large, which is indicative of a

bigeminal (trigeminal) rhythm, no reduction on the a posteriori

probability for the bigeminal (trigeminal) model is needed. Thus

Equation (6.27) is modified as follow for the a posteriori probability

computations.
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Pr(k) =
I

(Y i(k),V (k))Pr i(k-1) C

4
N(Y (k) ,V (k))Pr, (k-1)C.

1 1 1 1
i=l

(6.31)

where i=1,...4 are for small variation, large variation, bigeminy,

and trigeminy, respectively. The values for C1 and C2 are both set

equal to 1, and the values for C 2, and C4 for different values of

AB and AT are given in Tables 6.1, and 6.2.

AB C3

<0.1 0.2

>0.1 and <0.3 0.2 + 4(AB-0.1)

>0.3 1.0

Table 6.1 The values of C3 as a function of AB

Table 6.2 The values of C4 as a function of AT
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<0.5 0.2

8
>0.5 and <0.8 0.2 + - (AT-0.5)

3

>0.8 1.0
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A detailed description of the algorithm is given in the

following, and a flow chart of this program is shown in Figures 6.2(a)

and 6.2(b). This program can not only accept real R-R interval data,

but also has the ability to generate artificial data for testing pur-

poses. The filter parameters and initial probabilities for all four

models are read in first. Reading in zero for the initial error

covariance of the regular rhythm will terminate the program. The data

code IRCODE, which indicates what type of data is being used, is then

read in, The codes for different data types are given in Table 6.3.

If IRCODE is not equal to 9 more information is needed in order to

generate R-R interval data. Before generating a new R-R interval,

the total number of R-R intervals required , NRR, is checked. An

R-R interval is then generated according to the data code specified.

IRCODE TYPE OF DATA

1 Generate small or large variation data
according to the variance and the R-R
intervals mean value specified

2 Generate bigeminal data

3 Generate trigeminal data

9 Use real data

Table 6.3 Data Codes and Types of Data Used in Multiple
Hypothesis Testing Program.

For IRCODE equal to 9, areal R-R interval is read in directly. The

end of the data is indicated by a zero R-R interval. After all the
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Figure 6.2(a) Flow Chart of Multiple Hypothesis Testing Algorithm
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Figure 6.2(b) Flow Chart of Multiple Hypothesis Testing Algorithm
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R-R intervals are processed, a probability plot will be generated.

For each new R-R interval, the Kalman filters for small variation,

large variation, bigeminy, and trigeminy will run in parallel, and

the innovations and associated covariances are computed. The proba-

bilities are then calculated, based on the outputs from the Kalman

filters. Note that the outputs from the Kalman filter for small

variation rhythm is also used as the input to a generalized likeli-

hood ratio detector, which is used to detect the transient rhythms

and is discussed in Chapter 7. Next the probabilities are checked

against the upper and lower bounds. After the most probable model

has been decided upon, a search for sudden rhythm changes of the R-R

interval data can be made. Once a sudden change is detected, all the

filter parameters and probabilities are reinitialized, and the pro-

babilities are computed again. If no sudden change is detected, the

program will continue and will read in the next R-R interval.

6.3 Experiments and Results

The algorithm described in Section 6.2 was tested on the

available R-R interval data files. The objective of this test was

to determine whether the multiple model hypothesis testing algorithm

described in Section 6.2 could detect and classify the arrhythmic

R-R interval data files being tested. We also wished to find a best

set of filter parameters and initial probabilities for all four

models, such that the multiple hypothesis testing program would 4

detect and classify the R-R interval data file being tested in the
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shortest time. Finally, we wished to test the filter adaptability

to the R-R interval data when the input rhythm pattern is suddenly

switched. In this set of tests, we used data files IN.5 and IN.30

as small variational data, CUNATFIB as large variational data,

HUANPVCS as trigeminal data, and data file #503 as bigeminal data.

For each of these data files only the first twenty R-R intervals

were used in testing the multiple hypothesis testing algorithm. The

mean value, variance, and standard deviation of these twenty R-R

intervals for each of these data files are given inTables 4.3, 4.5,

4.6 and 4.9, and are summarized in Table 6.4 for convenience.

Using these actual R-R interval data, a series of tests were made.

Data File Mean Variance Standard

Name Deviation

IN.5 181.85 20.03 4.48

IN.30 233.95 57,63 7.59

CUNATFIB 116.05 292.05 17.09

#503 204.40 5486.97 74.07

HUANPVCS 141.60 2276.99 47.72

Table 6.4 Statistics of the Data Files Used in Testing the
Multiple Hypothesis Testing Algorithm
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The results are given in Figures 6.3-6.59. In the figures, the a

posteriori probability of each of the four possible persistent rhythm

states, namely, small variation, large variation, bigeminy, and tri-

geminy, is plotted vs. time. The time is not explicitly given, rather,

the locations of the fiducial points of the QRS complexes are shown

and the R-R intervals are printed along the time axis.

One of the most important aspects of the filter design and sub-

sequent a posteriori probability computations is the sensitivity of

the filter performance to parameter variations. It is desirable

that the detection performance be relatively unchanged over a wide

range of variation of filter parameters, so that the filter can be

used with confidence. Thus, a nominal set of filter parameters was

selected first, based on the statistical results given in Chapter 4

and a series of tests were then made to: (1) study the effects of

filter performance to parameter variations about these nominal values,

(2) determine a best set of filter parameters. The design parameters

for the multiple hypothesis testing filter were the initial error

covariance P(O), initial estimate of the mean R-R interval X(O0), the

a priori probability Pr(O), and the measurement noise variance R for

each of the four persistent rhythm models.

The heart rate is determined by the rate at which the SA node

initiates the depolarization pulses, and in general this rate is

approximately equal to 75 beats per minute. For a data sampling rate

of 250/sec, this is equivalent to an R-R interval of 200 sampling
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points. Therefore the initial estimate of the mean of the state,

denoted by x0 in the figures, for all models were set equal, with

a nominal value of 200. Since we have no a priori information as

to which of the possible persistent rhythm classes the data file

being tested belongs; the initial probabilities, Pr.(0), j=l,...,4,
J

were all set equal, with a value of 0.25 such that the sum of all

probabilities is 1. In other words, this is to say that for any

given data file it is equal likely that this file is any one of

the four possible rhythm states. Although it is not true that 1/4

of all records are bigeminal or trigeminal, it is our feeling that

one does not wish to bias the test against such rhythms. This

essentially reflects a maximum likelihood philosophy as opposed to

the use of unequal a priori probabilities. Of course the approach

is quite flexible in that these initial probabilities can be

chosen to reflect patient history.

The variances of measurement noise R , R were set to 64,400,
5

respectively for small, and large variational rhythms according to

the statistical results given in Tables 4.3-4.6. The values for

bigeminy (Rb) and trigeminy (R ) should be the same and equal to

that for the small variational rhythm, which was 64, according to

the statistical results given in Tables 4.35 and 4.36. The initial

error covariance matrix in all cases had equal diagonal elements,

denoted by P0 in the figures, with a nominal value of 1600 to reflect

the possible large error in initial state estimate (see Equation (6.4)).

All off-diagonal elements, P.., ifj, were set equal to each other

with a value of 0 chosen to reflect the insignificant correlations
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in the components of the error of the state estimate. The results of

the multi-filter performance (as measured by the conditional probabi-

lities) using this set of filter parameters are given in Figures 6.3-

6.7. In these figures, all the data were clearly identified by the

high a posteriori probabilities associated with the correct rhythm

patterns.

For the two normal rhythms tested (Figures 6.3, 6.4), the a

posteriori probability of each of the four possible rhythm states

were approximately equal at k=l. Since at this point only one R-R

interval was given, there was not enough information to determine

anything about the data. However observe the behavior of the pro-

babilities after 2nd data point, which had a value close to the

first, was read in; because of the samll variation of this first

two data points, the a posteriori probability for the small varitional

rhythm became larger than the others. As more data points were

available, the a posteriori probability of the small variational

rhythm became even larger - i.e. we are more confident in our decision

of identifying the correct rhythm state.

At k=l in Figure 6.5, the a posteriori probability for large

variational rhythm was larger than others. This is not surprising

however, because of the fact that the filter initial state estimates

were set at 200, which was way off the first data point (101), the large

variational rhythm was favored more than others. Such transients due

to initial conditions must be dealt with via an effective initialization
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procedure, perhaps involving a preliminary scan of the first few

R-R intervals. As more data became available, the probability of

large variation started building up. However, because the variance

of the R-R intervals at each time k up to k=7 were not large (see

Table 4.6), the probability of small variational rhythm did not drop

to the preset lower limit of 1% very fast, and thus made the de-

tection of the large variational rhythm slower. Note also that a

jump of the probability for bigeminy was seen at k=3. This was

explained by the fact that the R-R interval sequence 101, 124, 99,

could very well be a bigeminal pattern.

In Figure 6.6, a bigeminal data file #503, was tested. Again no

diagnostic information was available at k=l, but at k=2, because the

large separation of these two data points (which has a variance of

8192, see Table 4.9), only bigeminy and trigeminy were likely (the

large variational rhythm does nothave this much variation). In fact

these two patterns have equal probabilities (since we need at least

a third beat to distinguish between bigeminy and trigeminy). As the

third interval (128) was read in, the bigeminal pattern begins to

emerge, and this was indicated by the dramatic jump of the a posteriori

probability for bigeminy from approximately 50% to over 90%. The

preset upper limit of 97% was reached at the fourth beat.

For HUANPVCS (Figure 6.7), a sudden jump of the probability for

large variation was observed at k=2; this was due to the variance

(which was 1152, see Table 4.7) which made the large variational rhythm

more favorable. At k=3, the only possible rhythm would be trigeminy,

and this was clearly indicated by the 97% a posteriori probability in
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Figure 6.7.

Next, two sets of tests were made by setting the variance of

measurement noise for both bigeminy and trigeminy to 100, and 400,

respectively. The motivation for these tests was that the a poste-

riori probability of bigeminy was quite high even in the case that

the data file being tested was a normal rhythm (see Figures 6.3, and

6.4), which did not have any periodic bigeminal pattern. One possible

reason for this was the equal noise variance, which was set at 64,

for both bigeminy and small variation. Therefore we would like to

increase the noise variance for both trigeminy and bigeminy; hopefully

this would reduce the a posteriori probability of bigeminy and improve

the detection performance in the case that the underlying rhythm

pattern is small variation. Note also that it seems reasonable to

expect larger fluctuations in bigeminy and trigeminy due to the ins-

tability of the ectopic foci. The resulting a posteriori probability

plots for Rb=100 are given in Figures 6.8-6.12.

These results showed that the detection performances for the two

normal rhythm data files, IN.5 and IN.30, were improved (Figures 6.8,

6.9) by the amount that the a posteriori probability of bigeminy was

reduced, and the performances for the other three data files, namely,

CUNATFIB, #503, and HUANPVCS were essentially unaffected (see Figures

6.10-6.12). However for R=400, although the performance for normal

rhythm was further improved (see Figures 6.13,6.14), the performance

of the other three were degraded as shown in Figures 6.15-6.17

(compared to Figures 6.10-6.12 respectively). Thus a noise variance

of 100 was set for both bigeminy and trigeminy in the subsequent tests.
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The diagonal elements of the initial error covariance matricies

were next varied, while keeping them equal for all filter states.

Two sets of tests were made, one with a smaller error covariance which

was set at 64, and the other with larger value, which was set at

10,000. As these values increase, the filter gains also increase,

reflecting the additional weighting to be given to the data relative

to the a priori information. The resulting a posteriori probability

plots for PO=64 are shown in Figures 6.18-6.22. Both of the two

normal rhythm data files were correctly identified (see Figures 6.18,

6.19); however their detection rate were much slower than those with

the error covariance of 1600. The large initial a posteriori proba-

bility for large variation in Figure 6.19 was due to the small error

covariance and the large deviation of the first data point from the

given estimates of the mean of the R-R intervals. Thus we see that

setting P(0) too small will make the filters quite sluggish (small gain)

and will, in fact, accentuate unwanted transients.

For CUNATFIB (Figure 6.20), the large variational rhythm pattern

was not clearly detected. For #503, and HUANPVCS (Figures 6.21,6.22),

although the bigeminal and trigeminal pattern were detected, the

performances were degraded. In all cases, except for CUNATFIB, the

higher error covariance with value of 10,000 gave more rapid detection

as shown in Figures 6.23, 6.24, 6.26, and 6.27. The detection per-

formance of large variation (Figure 6.25) was degraded by this large

initial error covariance (since the multifilter attributes the initial

variation in the data to its large uncertainty in the estimate of x),

and thus a compromise value of PO=1600 appeared more suitable for
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achieving best detection performance. (Note that if we used an

initialization procedure based on the first few R-R intervals, we

might be able to use a smaller initial covariance).

The effect of nonzero off-diagonal elements in error covariance

matricies was studied, with all off-diagonal elements P.., iyj, set
1J

equal to each other, with a value of 20 chosen to reflect the possible

small positive correlations in the components of the state estimate

error. The results are given in Figures 6.28-6.32. By comparing

these figures with those with a value of P..=0 (Figures 6.8-6.12),
1]

we see that a slightly better performance was.obtained with P..=0.
1J

The effect of varying the initial estimate of the mean R-R

interval x0 was studied next, with the resulting a posteriori probabi-

lities given in Figures 6.33-6.42. For the two normal rhythms, the

detection performance was essentially unaffected. However, trigeminy

detection was best at x 0=150 (Figure 6.37), while large variation was

best at x0=
300 (Figure 6.40). This is explained by the fact that the

trigeminy value was close to the actual mean value (see Table 6.2).

However, the large variation detection is degraded by a good a priori

mean value estimate since this produces a small initial measurement

residual.

We had tried to reduce the bigeminy and trigeminy a posteriori

probabilities in the presence of normal rhythm by increasing the noise

variance for both bigeminy and trigeminy from a value of 64 to 100,

these probabilities were still quite high (see Figures 6.8 and 6.9).
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In this case all components of the state estimates of both bigeminy

and trigeminy are about the same, which would indicate that normal

rhythm is present. A test was thus done incorporating the differences

between bigeminy and trigeminy filter state components aid in the

discrimination of normal rhythm. The results are shown in Figures

6.43-6.47. The detection performances for bigeminy and trigeminy

were essentially unaffected. However the performance for the normal

rhythms was improved with the use of state estimate information.

Note that this problem stems from the fundamental indistinguisability

of normal rhythm from bigeminy and trigeminy (equal component bigeminy

and trigeminy look like a normal rhythm) and the above tests allow

one to remove this difficulty.

One critical test of the multiple hypothesis testing algorithm

is its ability to detect sudden switches of the underlying rhythm

pattern. Six cases were selected for experimentation: (1) small

variation (IN.5)-* large variation (CUNATFIB), (2) large variation

(CUNATFIB)-- small variation (IN.5), (3) small variation (IN.5)+ bige-

miny (#503), (4) bigeminy (#503)+ small variation (IN.5), (5) small

variation (IN.5)+ trigeminy (HUANPVCS), (6) trigeminy (HUANPVCS)-*

small variation (IN.5), and the results are shown in Figures 6.48-6.59.

Filter parameters used were P0=1600, P. =0, x0 =20
0, P=100. Both the

non-reinitialization and reinitialization of the filter after detection

of a switch of rhythm pattern were tested. In the filter reinitiali-

zation case, the gains and state estimate were reinitialized at the

point where the switch was detected. An outlier test, y 2(k)/2V(k),
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which is an effective test for distinguishing a piece of data from a

particular ensemble, was used to detect rhythm switches. A rhythm

switch is declared if y 2(k)/2V(k)>s, where E is a positive valued

threshold that represents the tolerance we are willing to accept

before declaring a piece of data to be an outlier. It seems reasonable

to assume that any data which has a deviation greater than two

standard deviations will be an outlier. This gives the threshold E

a value of 2. For the data tested, this threshold value successfully

detected all the rhythm switches. As seen in the figures, identifi-

cation of rhythm switches was degraded without filter reinitialization,

and fast and accurate with the reinitialization. Thus it is necessary

to reinitialize the filter when a rhythm switch is detected.

Two other comments are necessary. First of all the use of this

outlier test should be viewed as a temporary tool in detecting rhythm

switches. As the results in the next chapter indicate, the GLR pro-

vides an excellent tool for the effective detection of sudden rhythm

changes. Secondly, note the one example of a shift from large

variation to small variation (Figure 6.51) involves a situation in

which there is a large shift in the underlying mean value as well. This

in fact makes detection much easier. If the two patterns had the same

means, then an outlier test - which looks for a large deviation from

the mean - would not work (since the shift is to a small variation

rhythm at the same mean). This is a situation that merits study in

the future.
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CHAPTER 7

DETECTION AND CLASSIFICATION OF TRANSIENT RHYTHMS

7.1 Generalized Likelihood Ratio Technique

In Chapter 5, we have developed dynamical models for several

transient arrhythmia classes. We now would like to consider the pro-

blem of detection and identification for this class of arrhythmias.

All the dynamical models for these arrhythmia classes can be written

in a general form

x(k) = x(k-1) + F(k,O)V (7.1)

y(k) = x(k) + v(k) (7.2)

where x(k) is the state of the system, and y(k) is the measurement of

the state, which is corrupted by a white Gaussian noise v(k). The term

F(k,6)V in the process equation, Equation (7.1), represents the tran-

sient effect, where 6 is an unknown time where this transient event

commences and V is the unknown strength of this change. F(k,8) is a

function of both k and e. Refering to Equations (7.1) and (7.2), 4

F(k,8) for the transient arrhythmia classes modeled in Chapter 5 are

then given as follows:

(1) normal rhythm jump

F(k,O) = 66,k

(2) non-compensatory beat

F(k,e) = 6 -6,k-1

(3) compensatory beat

F(k,e) = 6 ,k-26 +6k-+ 8k-2
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(4) double non-compensatory beat

F(k,6) = 66,k 6,k-2

Therefore a satisfactory method of detection and identification for

this class of problems should not only be able to detect these abrupt

changes, but also be able to estimate the time, 0, where this change

occurs, and, V, the strength of this abrupt change. Our design of the

detection and estimation of this class of problems is based on the

Generalized Likelihood Ratio (GLR) technique [42]. This GLR approach

will detect the abrupt changes and also give a maximum likelihood esti-

mate of V and 0.

The philosophy of our approach based on the GLR method is described

in the following. The GLR equations for a jump model have been derived

previously in [43]. However, in this study a more general derivation

of these equations is given in Section 7.2. For each dynamical model

developed in Chapter 5, there is associated with it a F(k,0)v term. We first

construct a Kalman filter based on this dynamical model neglecting

this term. The measurement residual sequence, y(k), and the associated

variances, V(k), from the Kalman filter are then used as the input to

a GLR detector. In this case, if there is no abrupt change of the R-R

interval sequence, the statistics of y(k) are those computed based on

the Kalman filter neglecting the F(k,0)V term. Otherwise, Y(k) contains

a bias term, which is proportional to V. The proportionality matrix

G(k,0), called the rhythm signature, can be computed from the y(k),

V(k) and F(k,e). We can then perform a maximum likelihood estimation

procedure to determine the most likely values of 0 and V, and then
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determine the generalized likelihood ratio k(k,O) for the abrupt

change. This GLR detection system is shown in Figure 7.1. Here y(k)

is the actual R-R interval sequence.

y~~k) Kalman Filter yk L
1(neglect F (k,e) V term D-------r

in the state equation) Dtco

Figure 7.1 The GLR Detector

Since the transient events are always viewed, from the cardio-

logists' stand point, with respect to an underlying regular rhythm,

the Kalman filter to be used in the GLR detector is designed based on

a regular rhythm dynamical model. Since, we have no a priori infor-

mation as to which of the arrhythmia classes described in Chapter 3

will occur, a bank of GLR detectors in parallel is built. Each member

of this bank of detectors corresponds to one of the possible arrhythmia

classes we wish to detect. In other words, we hypothesize several

possible arrhythmia classes and wish to determine which is the correct

one. This transient rhythm detection configuration is shown in

Figure 7.2.

In use, the generalized log-likelihood ratio, (k,8), correspond-

ing to the correct model should be a monotonically increasing function

of k; i.e., we should become more confident that this is the correct

model as more data becomes avaliable. Thus, a correlation test on
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GLR Detector 1(k,O)

#1

Decision
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GLR Detector N

# N

The Transient Rhythm Detection Configuration

k . (k,O) for varying k, and a monotone increasing test on k. (k,6) for

increasing k should be able to identify the correct arrhythmia classes

(see experimental results in Section 7.4).

7.2 Derivation of GLR Equations

7.2.1 Derivation of Rhythm Signatures

Consider a general discrete-time dynamical system of the following

form:

x(k) = 4(k,k-l)x(k-1) + F(k)w(k) + F(k,O)v

y(k) = H(k)x(k) + v(k)

(7.3)

(7.4)
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nwhere x(k) £ R is the state, with initial condition x(Q) being a

gaussian random variable with mean x(0) and covariance P(0), and

{w(k)} is an m-dimensional white Gaussian sequence with statistics

E[w(k)]=0 (7.5)

T
E[w(k)w (j)]=Q(k)6 k (7.6)

y(k) E R is the observation, and {v(k)} is a p-dimensional white

Gaussian sequence with statistics

E[v(k)]=0 (7.7)

T
E[v(k)v (j)]=R(k)6 k (7.8)

In addition,

T
E(w(k)v (j)=0 (7.9)

E[w(k)x (0)1=0 (7.10)

E[v(k)x (0)3=0 (7.11)

The term F(k,0)V represents the abrupt changes defined in Section

7.1, where V is an unknown shift and e is the unknown time at which

this shift occurs.

The problem of determining whether there is an abrupt change or

not is equivalent to a decision problem with the following two hypo-

theses:
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H0: No abrupt change up to the present time

(i.e., O>k)

H1: An abrupt change has occurred (8 < k)

Under hypothesis HO, the Kalman-Bucy filter for the system [(7.3)-

(7.4)] is implemented:

x(kjk-l)- = (D(k,k-l)x^(k-l|k-l) (7.12)

x(klk) = x(kjk-1) + M(k)y(k) (7.13)

where y(k) is the measurement residual

y(k) = y(k) - H(k)x(kk-l) (7.14)

with statistics

E[y(k)]=0 (7.15)

T
E [yk)y (j)] = V(k)6 . (7.16)

and x(iIj) is the estimate of x(i) given observations y(l),y(2),...,y(j)

under hypothesis HO, and M(k) is the filter gain. The associated error

covariance matrix, P(ijj), is computed according to the following

recursive relations:

P(klk-l) = D(k,k-l)P(k-lIk-l)@ (k,k-l) + P(k)Q(k)' (k) (7.17)

V(k) = H(k)P(kik-l)H (k) + R(k) (7.18)
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M(k) = P(klk-l)H (k)V (k) (7.19)

P(klk) = P(klk-l) - M(k)H(k)P(k k-i) (7-20)

with initial condition P(0l0) * P(0).

Using Equations (7.3),(7.4) and (7.12) through (7.20) we can

derive an expression for the measurement residual y(k) that explicitly

involves 0 and V; i.e., we wish to compute the effect of the F(k,O)V

term on the state estimates and measurement residuals.

Let us first define the error of the estimate as the difference

between the estimated state and true state

e(kjk) = x(klk) - x(k) (7.21)

and

e(kik-l) = x(klk-1) - x(k) (7.22)

Substituting Equations (7.3) and (7.12) into Equation (7.22), we have

e(klk-l) = ((k,k-l)x(k-lIk-1) - 0(k,k-1)x(k-1)

- r(k)w(k) - F(k,O)v

= D(k,k-l)[x(k-ljk-l) - x(k-l)]

- r(k)w(k) - F(k,O)v (7.23)

Using Equation (7.21), Equation (7.23) becomes

e(kjk-1) = 4(kk-l)e(k-lk-1) - r(k)w(k)

- F(k,0)V (7.24)

From Equation (7.14), the measurement residual is given as

y(k) = y(k) - H(k)x(klk-l) (7.25)
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Using Equation (7.4) in Equation (7.25), we get

y(k) = H(k)x(k) + v(k) - H(k)x(k Jk-1)

= - H(k) (x(k k-1) - x(k)] + v(k) (7.26)

By Equation (7.22), this is just

y(k) = - H(k)e(k k-1) + v(k) (7.27)

Substituting Equation (7.13) into Equation (7.21), we obtain

e(kIk) = x(kIk-1) + M(k)y(k) - x(k)

= [x(kIk-1) - x(k)] + M(k)y(k)

= e(kIk-1) + M(k)y(k) (7.28)

Under hypothesis HO, which assumes no abrupt change up to the

present time, Equations (7.24),(7.27) and (7.28) become, upon setting

v=0:

e0 (klk-1) = T(k,k-1)e0 (k-1Ik-1) - I(k)w(k)

y 0 (k) = -H(k)e 0 (k k-1) + v(k)

e0 (kik) = e (k k-1) + M(k)y (k)

(7.29)

(7.30)

(7.31)

Here, the superscript "o" is used to indicate the estimation error and

measurement residual under the hypothesis H 0

-261-

and



Now we define the difference between e(klk-1) and eo(kjk-1) as

e0 (kik-1) - e(kjk-l) = B(k,e)v (7.32)

where B(k,O) is a function of both k and 6. Note that there is no

difference between e(kjk-1) and eo(klk-1), unless some abrupt changes

occur. Thus, we require

B(k,0)=0 k<O (7.33)

Using Equations (7.24) and (7.29) in Equation (7.32), we have

4(k,k-1) (e 0 (k-i|k-1) - e(k-i1k-1)] + F(k,e)v

= B(k,0)v (7.34)

Substituting Equations (7.28) and (7.31) into Equation (7.34), we get

B(k,e)v= c(k,k-l) [e0 (k-llk-2)-e(k-llk-2)+M(k-l)Y0 (k-1)-M(k-l)y(k-1)]

+ F(k,0)v

= D(k,k-1) [B(k-l,e)v + M(k-l) (Y0 (k-l)-y(k-l))] + F(k,0)v
(7.35)

Using Equations (7.27) and (7.30) for y(k-1) and y (k-i), respectively,

we have

B(k,e)v = 4(k,k-l) [B(k-l,0)v-M(k-l)H(k-l)B(k-l,0)v]

+ F(k,0)V

= 1(kk-l) [I-M(k-l)H(k-l)]B(k-l,0)v

+ F(kO)v (7.36)
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or, since this must be satisfied for all V:

B(k,O) = D(k,k-l) [I-M(k-l)H(k-l)]B(k-l,0) + F(k,0) (7.37)

From Equation (7.33) we have B(k-1,0)=0 for k=O; therefore, we have

B(0,6) = F(e,O) (7.38)

We can also define a relationship between y(k) and y (k) similar

to the one we defined for e(kik-1) and eo(klk-1) as follows

y(k) = y (k) + G(k,0)v (7.39)

where y 0 (k) is the measurement residual under hypothesis H (no abrupt

changes up to present time k). The G(k,e)V term is the effect of

F(k,e)V term on the measurement residual, and G(k,O) is a function of

both k and e. For the same reason, we also have

G(k,0)=0 k<E) (7.40)

Substituting Equations (7.27) and (7.30) into Equation (7.39), we

obtain

G(k,e)V = -H(k) [e(k k-l) - eo (k k-l)]

= H(k)B(k,E)V

G(k,e) = H(k)B(k,0)
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From Equation (7.38), we have, as the initial condition

G(e,e) = H=()B(O,0)

= H(0)F(OO) (7.43)

Using Equations (7.37),(7.38) and (7.42), we can compute G(k,E)

for all k and e. The values of G(k,6) are all zero for 0 greater

than k, as given by Equation (7.40). Therefore for a given k, we need

only to compute G(k,8) for e less than or equal to k. For 0 less than k

B(k,0) can be calculated using Equation (7.37), while for 8 equal to k,

B(k,0) is given by Equation (7.38). Once B(k,0) is computed, G(k,0)

are then given by Equation (7.42).

7.2.2 Derivation of Likelihood Ratios and Jump Estimates

Now the problem of determing whether or not there is an abrupt

change is equivalent to a decision problem based on the observations

y(k), with the following two hypotheses:

H0: y(k) = Y (k)

H 1 :y(k) = y (k) + G(k,8)v

where y0(k) is the measurement residual assume no abrupt changes occur,

and is a zero-mean white sequence with covariance V(k).

Here we have two hypotheses with two unknown parameters 0 and V.

If 0 and V are random variables with known probability density func-

tions, then the decision rule can be formulated easily by using a

likelihood ratio test. But in our case, 0 is the time at which the

abrupt change occurs and V is the strength of this abrupt change.

They are not random variables but rather are two unknown quantities.
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Therefore a generalized likelihood ratio test technique [42] will be

utilized to formulate the decision rule. The procedure of this genera-

lized likelihood ratio test is first to estimate both 0 and V as func-

tions of k assuming that hypothesis H1 is true, and then use these

estimates 0(k) and v(k) in a likelihood ratio test as if they were

correct. The estimates of 0 and V are done using a maximum likelihood

estimate as follows:

D)(k) P(Y(l),...,(k) H 1,e(k),v(k))] =0

e(k)=(k) (7.44)

and

S(k) [P(Y(1),...,y(k)IH1 ,9(k),v(k)) =0

v(k)=v(k) (7.45)

where P(y(l), ... ,y(k)IH ,,v) is the joint probability density function

of y(l),...,y(k) conditioned on 0,V and under hypothesis H1. Since

the measurement residual y(i) are Gaussian, this conditional

probability density function is

P(Y(i) H1 ,e(k),V(k)) = (2TrIV(i)I) l1/2 exp - (y(i)-G(i,0(k))v(k))T

V-1(i) (Y(i) -G(ie(k))v(k)) (7.46)
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We have assumed y(i) is a scalaer here. The extension to vector case

is straightforward.

Because the y(i) are statistically independent, the joint proba-

bility density function of y(l),...,y(k) is simply the product of the

individual probability densities. Thus

k
P(y(l),...,y(k)JH 1 ,0(k),v(k)) = T1 P(y(i)IH ,0(k),v(k)) (7.47)

i=l

or,upon some simplifications:

k
P(Y(l),...,y(k)1H 11 8(k),v(k)) = [IT 1

i=1 427TrIV (i) I

k
T -l

exp V(y(i)-G(i, (k))V(k)) V (i) (y(i)-G(i,8(k))V(k)

i= (7.48)

A

Having computed the maximum likelihood estimates O ,(k), (k), the gene-

ralized likelihood ratio, denoted by A(k), is given as:

A(k) (1(7.49)

P(y(]),...,y(k)1H 
0

where P(Y(1) ,. . . ,Y(k) H0 ) is the conditional probability density func-

tion of Y(1),...,Y(k) assuming H0 is true, and is given as:

k
kk

P(Y(l),...,Y(k) H )=1 x TV1,Y,
0 i=1 2TO|(i) 1 2i=1

(7.50)
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The decision rule for selecting either H or H1 is

H
1

A(k) < T (7.51)
H
0

where n is the threshold. Since the natural logarithm is a monotonic

function, the decision rule is equivalent to, upon taking logarithm

on both sides of Equation (7.51):

H
1

Zn A(k) < Pnj (7.52)
H
0

Now, we would like to compute V (k) using Equations (7.45) and

(7.48). Substituting Equation (7.48) into Equation (7.45), we have

k
a k 1 lex T

V(k I 1 exp -2 (Y (i) -G i,(k(k))) -3v(k) L I 22 K J 1-
i=l 2TrV(i) p2

V (i) (y (i)-G(i, (k))V (k) =0

V (k)=V(k) (7.53)

or, equivalently,

V(k(Y -G (i, (k) V (k) ) V (i) (Y (i)-G (i,(k))V(k) =0

v(k)=v(k)

(7.54)

writing out the product term in the bracket, we have
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k

T (i) 1(i)Y i Y (T) VT1 (i)G(i ,T e k )

- T (k)G (iO(k))V 1(i)y(i) + V (k)G (i(k))V 1(i).

0 G(i,0(k))V(k) =0

A=V k (7.55)

The first term is independent of V(k), and the second and third terms

are equal, because they are scalers and V(i) = V i) . Thus we have

k

3 (k) . -2YT (i) V-1 (i) G (i, (k ) ()
DVW i=1 1

+ V (k)G (i,e(k))V (i)G(i(k))v(k) =0

v(k)=V(k)
(7.56)

upon differentiating with respect to v(k), we have

k

-2 Y T(i)V-1(i)G(i,
i=1

or

k

0(k)) + 2 v (k)G (i,(k))V l(i)-
i=l

G (iO (k))=O

[ k Ti

k

T -1
Y (iv (i)G(iO(k))
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therefore (assuming the indicated inverse exist:)

VWk G (i, (k))V (i)G i, (k))W

k T
G (ie(k))V ) ()

i=l

If we define

C(k,8(k)) =

D(k,0(k)) =

k

G T(i,(k))V (i)G (i,(k))

k

G T(i,0(k))V (i(i)

i=1

(7.60)

(7.61)

then Equation (7.59) becomes

v(k) = C 1 (k,0(k))D(k,O(k)) (7.62)

The maximum likelihood estimate of 0(k) is that value of W(k) at

which the conditional probability density function

P(y(l),..., y(k)IH1,8(k),v(k)), which is given in Equation (7.48), is

a maximum. Thus, we have

0(k) = arg max P(Y(l),...,y(k)IH ,0(k),v(k))
0(k)

(7.63)
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which is equivalent to

k

T -lO(k) = arg min (y(i)-G(i,0(k))V(k)) V (i) (y(i)-G(i,0(k))V(k))
0(k) i=l 

(7.64)

or, upon some simplifications

k
A \7F m -1

0(k) = arg min -2 (i)V (i)G(i,0(k))V(k) +
0(k) i=L

^T T -1 ()G(,0M (
AT (k)G (i,(k))V (i)G(i,0(k(k) (7.65)

Using Equations (7.60) through (7.62) in Equation (7.65), we have

A F T -1
0(k) = arg min -2D (k,0(k))C (k,0(k))D(k,0(k))

0(k) L

+ D (k,0(k))C (k,O(k))C(k,0(k))C (k,e(k))D(k,e(k) (7.66)

or

A FT -1
6(k) = arg max D (k,0(k))C (k,1 (k))D(k,,(k))J (7,67)

0(k) L

Once the maximum likelihood estimates 0(k) and V(k) are computed, {

we can then use Equations (7.48) through (7.50) to compute the

generalized likelihood ratio. Upon canceling common terms, we obtain

exp - ((y(i)-G(i ,(k))v(k))T V (i)((- ,(k))V(k))

A(k) =

k

exp [YT (k V->,i ( ( (7.68)
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taking the logarithm, and after some simplifications, we have

k

knA(k) = - -2y (i)V~l(i)G(i,$(k))I(k)
2i=1-

AT T A i) ,()k+ V (k)G (i.0 (k))V l(i)G(1iOe(k))v^(k)

Using Equations (7.60) through (7,62), we have

1 T A - A

knA(k) = - D (k,0(k))C (k,0(k))D(k,0(k))
2

(7.69)

(7.70)

Using Equation (7.52), thus the generalized likelihood ratio test is

H
1

or

1 T A - ^ >
knA(k) = -D (k,0(k))C (k,Q(k))D(k,e(k)) <

2 
H0

H1

£CTk) A A>l

(k,e(k))= D (k,0(k))C (k, (k))D(kr(k)) <
H
0

(7.71)

2Znn = E (7.72)

Equation (7.67) can be rewritten as

0(k) = arg max [2(k,0)1
6(k)

where

Z(k,O) = D (k,0(k))C 1(k,6(k))D(k,8(k))

Finally, a summary of the computation algorithm for this

generalized likelihood ratio test is given as follows:

(7.73)

(7.74)
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(1) G(k,e) are computed first for all 0<k, using the following

equations

B(8,e) = F(e,8)

B(k,6) = D(k,k-l)[I-M(k-)H(k-1)]B(k-l,0) + F(k,0)

and

G(k,e) = H(k)B(k, 0)

(2) Compute C(k,0O(k)) and D(k,e(k)) for all O<k from

C(k,e(k)) =

D(k,e(k)) =

k

G (i,0(k))V (i)G(i,(k))
i=1

k

G (i, (k)) V (i) y (i)

(3) Estimates v(k) and O(k) are then given as

0(k) = arg max
0 (k)

[Z (k,0) 1

)(k,e) = D (k,0(k))C (k,6(k))D(k,6(k))

A -lA
V(k) = C (k,0(k))D(k, (k))
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(7.77)

(7.78)

(7.79)

where

(7.80)

and

(7.81)

(7.82)
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(4) The decision rule for selecting either H1 or H0 is

H

k(k,e(k)) < E (7.83)
H
0

where the threshold 6 can be adjusted to achieve acceptable performance.

7.3 Additional Considerations for GLR Computations

7.3.1 GLR Window Width

From Section 7.1, we see that the basic GLR configuration

(Figure 7.2) requires the computation of the likelihood ratios 2.(k,Q),

where the index i refers to the transient event being looked for

(rhythm jump, compensatory beat, non-compensatory beat, and double

non-compensatory beat), k is the number of the latest R-R interval

to be processed by the system, and 0 is the number of the R-R interval

at which the hypothesized transient event began. Because of the

causal nature of the processing, 0<k. From Equations 7.75-7.81, we

see that the required computations of the number of the likelihood

ratios grows linearly with time k. Because of the fact that for each

k, we must, in principle, evaluate .(k,0) for all 0 which are less

than or equal to k. one possible way of avoiding this computation

problem is using a "data window" which requires only a fixed number

of likelihood ratios computations. Specifically, for a GLR "data

window" width of N, we only need to evaluate Z.(k,0) for the N most

recent values of 0 (i.e., k-N+l <0<k).

It is clear that using a finite "data window", a great reduction

in the required number of likelihood ratios to be evaluated is
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achieve. The basic philosophy here is that if we have not detected

an transient event over the given window, it is very likely that the

event is not there, so why keep searching for it? Another advantage

of using finite data window is that a better detection performance

for multiple transient events can be achieved. In many records one

may have several transient events. On the other hand, the GLR is de-

signed to looking for a single transient event. Therefore, if one

has a very wide window (or if one calculates all of the

k. (k,e) for 6=1,2,...,k), it may become very difficult to separate

these transient events. On the other hand using a narrow window, we

can isolate events which are spaced at points wider than the window

width. However, we do not want to make the GLR window too narrow

because of the following facts:

(1) Suppose we are looking for an event at time 0.

As we incorporate more and more data (i.e., as

we take data at time 6, 0+1, e+2,...,), we are

more likely to obtain an accurate picture of

what happened at time 0. This is because by

waiting to look at several data points, we es-

sentially make the filter noncausal and are

performing smoothing which inherently increases

the accuracy of the test.

(2) Several of the transient events we are looking

for can not be distinguished until we have

seen several data points. For example, we

need at least 3 R-R intervals in order to

distinguish a double non-compensatory beat
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from a jump to tachycardia, at least 2 to

distinguish between a compensatory and

non-compensatory event, etc.

Motivated by these considerations, a GLR window width of 5 is

chosen in order to provide a reasonable tradeoff between computation,

multiple event isolation, and the question of smoothing and event

distinguishability.

7.3.2 Filter Initialization

Another problem with the GLR technique as described so far is

the detection of transient events that occur at the start of a record.

The difficulty is that the filter, which is trying to estimate the

average R-R interval, initially has no data on which to base its

estimate. Therefore, a great deal of weighting is placed on the first

few R-R intervals. The consequence of this is that the filter tends

to "follow" the first few intervals, and the GLR detector, which is

looking at the filter behavior in order to determine if a transient

event has occured, will be fooled. Of course, as we smooth the data

by processing more and more data points, the GLR will, in principle,

be able to determine that it is the first beat that is the problem,

but for short record lengths or for narrow GLR windows, one may not

be able to obtain enough smoothing in this manner.

Therefore a filter initialization is needed for providing for

more initial smoothing. One possible method is to compute an average

over the first several R-R intervals and use this average to initialize

the filter, along with a smaller initial error covariance. We then
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start the filter from the beginning of the record. The smaller initial

covariance implies a smaller filter gain, which means that the filter

will not "follow" the data as much initially. This will speed up the

correct GLR response. However, there is one problem with this initia-

lization method. If the first several R-R intervals to be averaged are

extremely erratic, the average we will provide may not aid things very

well. For example, one extremely long R-R interval can greatly effect

the average.

Motivated by the problem of one aberrant interval causing a pro-

blem in computing an initial average, we propose the following initia-

lization scheme:

Step (1): Search the first 5 beats and find the first two

consecutive intervals y(k) and y(k+l) that are

sufficiently close in length

jy(k) - y(k+1)1<

Step (2): Set the initial filter estimate equal to their

average

y(k) + y(k+l)
x (0) = 2

and set the initial covariance P(0) to 1/2 of

the noise covariance associated with the

measurement of a normal R-R interval. This

reflects accurately the variance associated

with an estimate of a random variable obtained

by averaging two samples.
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Step (3): If none of the first 5 beats are less than

apart, the initial filter estimate is set

equal to the average of the first 5 beats

and set P(O) at a lower value.

For the actual runs described in the next section, we have taken

=20 and P(O)=32.

7.4 Experiments and Results

The generalized likelihood ratio detection system described in

Section 7.1 was tested on a wide variety of actual data. The objective

of this test was to determine whether the generalized likelihood ratio

testing algorithm described in the previous section could detect and

classify the presence of the transient rhythms, described in Chapter

5, in the R-R interval data files being tested. A summary of the R-R

interval data used in the tests is given in Table 7.1. Three R-R

interval sequences were used as rhythm jump data. The first was a

shift from IN.5 to IN.30 at 0=6, and represents a sudden increase in

heart rate from approximately 81 beats/min to 64 beats/min. This was

formed artificially by putting the first five R-R intervals from data

file IN.30 after the first five of those from IN.5 (see Tables 4.3,

4.5). The second R-R interval sequence was a shift from IN.30 to

IN.5 at 0=6 and represents a sudden decrease in heart rate. The third

one was the R-R interval sequence of data file #476 (see Table 4.14),

which was indicative of a gradual slowing of the heart rate from appro-

ximately 85 beats/min to 45 beats/min.

For the non-compensatory beat model, three R-R interval sequences

were tested. The first (second) sequence was obtained using a single,
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Data Type and R-R Intervals

Beat Rhythm Jump Non-Compensatory Beat

Number -
IN.5+ IN.30+ #476 IN.30 IN.30 #463
IN.30 IN.5 (300at e=6) (140at 0=6)

1 181 236 171 236 236 211

2 182 242 180 242 242 192

3 187 239 174 239 239 203

4 188 232 175 232 232

5 185 223 186 223 223 197

6 236 181 202 340 190

7 242 182 203 230 230 198

8 239 187 216 231 231

9 232 188 233 230 230 213

10 223 185 256 225 225 209

11 302 366

12 299 215

13 323 209

14 333

15 337

Table 7.1(a) R-R Interval Data Used in Testing The Generalized
Likelihood Ratio Detection System.

artificial beat 300 (140), inserted after 0=5 in IN.30, represents

possibly an SA block, dropped beat, or sinus arrest (premature con-

traction). This gave v a value of about +65 (-95). Here v is the size

of the jump due to the non-compensatory beat (see Chapter 5). The

third sequence was the R-R interval sequence of data file #463. This

file includes three lengthened beats at 0=4, 8 and 11. A segment of
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Data T pe and R-R Intervals
Beat Compensatory Double Non-Compensatory

Number Beat Beat

HARNETPVCS #492-1 #534-1

1 159 247 252

2 165 238 193

3 163 110 191

4 157 137 201

5 160 244 201

6 105 258 211

7 229 259 96

8 155 254 80

9 162 249

10 154

Table 7.1(b) R-R Interval Data Used in Testing The Generalized
Likelihood Ratio Detection System.

the R-R interval sequence, N=14 to N=23, in data file HARNETPVCS

(Table 4.10) was selected as compensatory data. This data contained

a single compensatory PVC at 0=6. For the double non-compensatory

data, two files, #492-1 and #534-1, (see Table 7.1), were tested. In

#492-1, the normal rhythm was interrupted by one atrial premature con-

traction at 0=3, resulting in two consective shortened R-R intervals.

In #534-1, there is a PVC in the first beat, and there are two ventri-

cular complexes, indicative of a rate of more than 150 beats/min (if

there were only a single focus) at 0=7,8.

Using the R-R interval data given in Table 7.1, a series of tests

were made. First the GLR detection system was tested using a full GLR
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window width, i.e., the window width was equal to the total number of

R-R intervals contained in a file being tested. In addition, the

filter reinitialization procedure described in the previous section was

not utilized; rather, the initial R-R interval estimate was set to 200,

and the initial error covariance was set to 1600 as suggested in

Section 6.4. The next set of tests was made using a small sliding win-

dow of length 5 for the GLR detection system without using the filter

reinitialization procedure given in Section 7.3. In the cases where

the transient events occur at the very beginning of a record, the detec-

tion performance of the GLR system were degraded due to the high initial

filter gains. This problem was resolved by using the filter reinitia-

lization procedure given in Section 7.3. All the test results are

shown in Figures 7.1-7.7.72. In the figures, the likelihood ratio

L(k,O) of each of the four possible transient rhythms, namely, rhythm

jump, non-compensatory beat, compensatory beat, and double non-compen-

satory beat, is plotted vs. time. The time is not explicitly given;

rather, the locations of the R wave are shown, denoted by the vertical

lines along the abscissa, and the R-R intervals are also given along

the time axis. Also shown in the figures are the values of the best

jump estimates, V(k,0), which are computed at the local maxima of the

likelihood ratios Z(k,O).

The results for a sudden normal rhythm shift from IN.5 to IN.30

at e=6 are shown in Figures 7.1-7.5. The jumped GLR likelihoods are

shown in Figure 7.1. For k<5, the likelihoods are small indicating

that no transient event has occurred. However, for k>6, a strong peak
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of the likelihood is observed at e=6. Furthermore, Z(k,6) increases

monotonically with k, indicating that the likelihood of a rhythm

shift at 0=6 increases as more data is available. This behavior is

clearly indicative of a rhythm shift occurring at 6=6. The likelihood

for the other GLR detectors, namely, non-compensatory, compensatory,

and double non-compensatory, are given in Figures 7.2-7.4. Note that

in each of these cases a jump of the likelihood is observed at k=6.

However, in each case (k,6) is seen to decrease as more data is

available, indicating that none of these transient events is present.

The data of Figures 7.1-7.4 are summarized in Figure 7.5, which shows

the maximum of Z (k,e) over all 0 plotted vs. k. For k<5, the likelihood

of each possible transient events is small, indicating that no ectopic

change has occurred. However at k=6, the likelihoods for all models

increase as the lengthened R-R interval 236 is obtained. This is what

we expected, because any one of the four possible transient events can

start with a single, lengthened (or shortened) R-R interval. Therefore

with the data available up to k=6, there is no way to determine which

one of the four ectopic events is present. This is indicated by the

equal likelihoods for all models at k=6. As the next data point 242,

which is another lengthened R-R interval, becomes available, the only

possible transient rhythm models which can describe this data pattern

are rhythm jump, and double non-compensatory beat; and there is no way

to distinguish between these two. This is indicated by the decreases

of the compensatory and non-compensatory likelihoods, and the increases

of the jump and double non-compensatory likelihoods. As one more
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lengthened R-R interval, 239, is obtained, only the rhythm jump model

can match this data sequence, which is indicated as a high likelihood

for jumped GLR at k=8. As more data becomes available, the likelihood

of the jump GLR increases monotonically and is never lower than any of

the likelihoods for the other GLR detectors. Furthermore, the confi-

dence that a jump has actually occurred increases as more data is

obtained.

Next, a sudden shift in normal rhythm from IN.30 to IN.5 was

tested to demonstrate the detection capability of the GLR detection

system to a shift from a lower heart rate to a higher heart rate. The

resulting likelihood plots are shown in Figures 7.6-7.10. In this

case a similar detection performance is achieved, and the detection

of a rhythm jump at 0=6 is accomplished as seen in Figures 7.6, 7.10.

The next rhythm data tested was file #476, which has a gradual

slowing heart rate from about 85 beats/min to 45 beats/min. The

likelihood ratios are shown in Figures 7.11-7.15. A jump is strongly

identified in Figure 7.11. The width of the likelihood peaks indicates

that a gradual jump is taking place, which is consistent with gradual

slowing. The summary plot of Figures 7.15 shows that a jump is

clearly identified, however the exact location of this jump is not so

obviously determined due to the characteristic of a gradual slowing

R-R interval sequence.

Next, several tests were made using the non-compensatory data

given in Table 7.1. The results of a non-compensatory beat of

(1) 300(v= +65), and (2) 140(v= -95) at 0=6 are shown in Figures 7.16-

7.20, and 7.21-7.25, respectively. In each case, detection of the
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non-compensatory beat at 0=6 was accomplished as seen in Figures7.l7,

7.20 and Figure 7.22, 7.25. However the confidence that a non-compen-

satory beat has actually occurred in the second case is much greater

than that of the first, this is due to the high value of Iv 1(=95),

which means a higher signal/noise ratio, in the former case. The

results for file #463, which contains three lengthened R-R intervals

at 0=4,8, and 11, are given in Figures 7.26-7.30. In Figure 7.27

three non-compensatory beats are clearly detected at 0=4,8, and 11, as

desired. Since the GLR system is designed assuming that only one

transient event occurs within the window, it is rather encouraging

that multiple transient events can be detected within the same window.

(here of length 13). However, since multiple transient events occur

within the window, the summary plot of Figure 7.30 suggests little

information on the detection and classification of the ectopic events.

In such cases one may wish to track all of the local maxima of the

likelihood ratios separately, or we may want to use a very short GLR

window, in which case we will detect and classify each separate event

as it occurs and will be able to avoid the difficulties of multiple

events within a window. Success with such a technique will be

discussed shortly.

The next test was made using the compensatory R-R interval data

given in Table 7.1. This data sequence contains a single compensatory

PVC at 0=6. The results are shown in Figures 7.31-7.35 and demons-

trate that detection of the compensatory PVC is accomplished easily

(see Figures 7.33, 7.35). Since the effect of the PVC on the innova-

tions is negligible after the compensatory pause, the likelihood for
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the compensatory GLR remains essentially constant for K>7 (i.e.,

there is no more information in the filter output concerning this

event, since the lengthened and shortened R-R intervals effectively

average out in the filter).

Next, two tests were made to evaluate the detection performance

of the double non-compensatory GLR detector. First, we studied file

#492-1, which has an interpolated beat at e=3, resulting in two con-

secutive shortened R-R intervals at 0=3,4. The resulting likelihood

plots are given in Figures 7.36-7.40, and the two consective shortened

beats are clearly identified. Note that the model for this arrhythmia,

described in Chapter 5, specifies that the R-R interval jump is

constant over two successive R-R intervals. Here we have demonstrated

that our GLR detector system can detect quite easily a double non-

compensatory beat with unequal lengthes (hence demonstrating its

robustness) Next, file #534-1 was studied. This file contains a

single PVC in the first beat (0=1 - i.e. we only have the compensatory

pause part), and two ventricular complexes at 0=7,8. The results

are shown in Figures 7.41-7.45. The two shortened beats are clearly

identified as double non-compensatory beat at 0=7; however, the PVC

in the first beat is either missed or weakly detected in Figure 7.42.

This is basically an initialization problem.

Note that the window width in Figures 7.26-7.30 is 13 and that

three transient events occur within the window. In Figures 7.41-7.45,

we have a window width of 9, and two transient events occur within

the window. The philosophy of design for the GLR detection system

is based on the occurrence of a single transient event within the
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window. In addition, it is not feasible to use a window of length

equal to the total number of R-R intervals contained in a record.

Thus, a "sliding window" GLR detection system of length 5 was studied.

This value was selected since the effect of a transient rhythm

persists over no more than three beats, and therefore a window width

of at least three is necessary, but should be not so large that

there is a high probability that more than one transient event will

occur within the window. The results for file #463, #534-1, using

the sliding window GLR detector, are shown in Figures 7.46-7.54, and

Figures 7.55-7.59, respectively. In the figures, the value of T in

the captions denotes the beat number at the far left side of the

window, and the window moves, in successive plots, to the right over

the data. For file #463, the first lengthened beat at 0=4 is

clearly identified as a non-compensatory beat in Figure 7.46, and,

as more data becomes available, as in the subsequent plots showed

(Figures 7.47,7.48), we are more confident in our detection of this

ectopic event. The second ectopic beat, which occurs at 0=8, is

detected as seen in Figures 7.50 and 7.51. The third lengthened beat

at 6=11 is also clearly identified in Figures 7.53 and 7.54. For

file #534-1, either a non-compensatory beat at 0=1 or a rhythm jump

occurs at 0=2 is detected, recall that in Figures 7.41-7.50 where

a full window width was used, we were not be able to detect this

ectopic beat. After the first beat passed the window, the peaked

likelihoods of the jumped GLR detector indicate a rhythm jump as seen

in Figure 7.56. The two successive shortened beats at 0=7,8 are

detected and identified as a double non-compensatory beat at 0=7 as

we wished (Figure 7.59).

-285-



Using the normal filter reinitialization procedure given in

Section 7.3, data file #534-1 was tested again, with the initial R-R

interval estimate set to 192 and the initial error covariance set to

32. The results are shown in Figures 7.60-7.64. It can be seen by

comparing Figure 7.55 and 7.60 that filter reinitialization gives

significantly improved detection performance, which is indicated by

the much sharper peak of the likelihoods for non-compensatory GLR

detector in Figure 7.60. Recall, this first R-R interval was the

compensatory pause asociated with a PVC; since we do not have the

preceding shortened interval available, we can not diagnose this as

compensatory and hence classify it as non-compensatory. Clearly a

scheme that uses this approach in conjunction with wave shape infor-

mation would be able to do a better job of classification, but we

can expect no more from R-R data alone. This behavior holds true as

the window moves over the data. However as k becomes larger, the

filter gain without reinitialization is approximately the same as that

used with reinitialization and there will be little difference in the

likelihood ratios. This behavior is clearly indicated by the approxi-

mately identical results in Figures 7.57-7.59 and Figures 7.62-7.64.

Finally, file #492-1 was tested using the sliding window with

and without reinitialization. The reinitialization condition used

was x = 242.5 and P = 32. The results are shown in Figures 7.65-7.68
0 0

for the non reinitialization run, and in Figures 7.69-7.72 for the

reinitialization run. By comparing these results, we conclude that

a much better detection performance can be achieved by using a

sliding window GLR detector with filter reinitialization.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a new approach to development of an automated

computer program for the detection and classification of cardiac

arrhythmias involving the use of powerful statistical techniques has

been studied. The principle results and conclusions of this work are

given in the following:

(1) A robust, simple procedure for the determination of fiducial

points of the QRS complexes for ECG/VCG has been developed. This fi-

ducial point detector has been tested on a variety of data and good

performance has been obtained.

(2) The development of methods for performing rhythm analysis

is facilitated by first categorizing the arrhythmias into several

classes based on certain clearly identified dynamical characteristics.

An attempt was made to categorize cardiac arrhythmias into different

classes, based on the use of R-R intervals only. For the persistent

rhythms, four classes are identified: small variation, large variation,

bigeminy, and trigeminy. For the transient events, four ectopic

classes, namely, rhythm shift, non-compensatory beat, compensatory beat,

and double non-compensatory beat, are proposed.

(3) Further and more quantitative information about the manifes-

tation of various arrhythmias was obtained by the statistical analysis

of the available R-R interval data. Certain simple statistics were

computed and two simple graphic display tools, namely, the R-R

interval histogram, and the scatter diagram, were employed. These

statistics provide us with useful information in the design of the
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mathematical models for different arrhythmia classes.

(4) We have shown that several important cardiac disorders can

be modeled by a low-order linear stochastic dynamical system for the

R-R intervals. These include normal sinus rhythm, sinus tachycardia,

sinus bradycardia, atrial fibrillation, bigeminy, trigeminy, PAC, PVC,

sinus arrest, SA block, AV block, and interpolated beats. The para-

meters of the models can be selected to best match the associated

statistical characteristics of the cardiac arrhythmia classes. Based

on the mathematical models, powerful statistical techniques are avail-

able and easily implemented for efficient detection and classifi-

cation of persistent rhythms (e.g., normal sinus rhythm), and ectopic

events (e.g. PVC's)

(5) An algorithm based on multiple model hypothesis testing

of a set of Kalman filter residuals has been developed and works

quite well in classifying persistent rhythms. A different Kalman fil-

ter is used for each persistent rhythm class. Detection of persistent

rhythms generally occurred within five heart beats. Detection of

switches in persistent rhythms was achieved by using an outlier test,

and the desired detection performance was made fast and accurate by.

reinitializing the Kalman filter parameters and the probabilities for

the various rhythm classes0

(6) A generalized likelihood ratio (GLR) testing technique

was developed and implemented for the detection and classification of

transient events on top of normal sinus rhythms. Extensive tests

have been performed on available data. Initial test results suggest

that the GLR detection technique is promising. Detection of multiple
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ectopic events was achieved by using a "sliding window" GLR detector

of window width 5. Using this narrow window we can isolate events

that are spaced at points wider than the window width, and thus better

detection performance can be obtained. The problem of the detection

of ectopic events that occur at the start of a record was overcome by

reinitializing the GLR detector.

The results of this work suggest several areas of further research

as well as continued development of present ideas. Specifically:

(1) More ECG/VCG data should be tested to evaluate the fiducial

point detector in a wide variety of situations. These tests will

either be used to adjust parameters of the present detector, or sug-

gest more robust detector designs. For instance, a noise burst of

high amplitude, and high frequency may be identified as a QRS complex

by the present fiducial point detector. If this should happen, a

measure of the width of the QRS complex is necessary. A declaration

that an R-wave has been detected will not be made unless the width of

the possible QRS complex exceeds a preset value. In addition, in this

study, detection has been done using only a single lead. A detector

utilizing several or all leads of the ECG/VCG record should be

developed and tested.

(2) Since only a limited number of data files were tested,

further R-R interval statistical tests will be necessary to get the

best estimate of the dynamical model parameters.

(3) Further tests are needed forthe multiple model hypothesis

testing system to determine the optimal set of filter parameters,

which include the measurement noise, initial state estimate, and
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initial error covariance for each of the persistent rhythm filters,

such that the underlying persistent rhythm associated with each record

being tested will be detected and classified in the shortest time,

and with the greatest accuracy. Furthermore, the detection and esti-

mation of the multiple model hypothesis testing system is done using

causal models. That is, estimates of model states and a posteriori

probabilities use only past and present data. However, the detection

performance may be improved if one uses non-causal models, which employ

future data to perform the detection and estimation. Thus a non-causal

detection system should be developed and tested.

(4) For the transient rhythm classes proposed in this study, a

GLR window width of at least three is needed in order to distinguish

each classes. Therefore a window width of five was choosen for the

GLR detector system in this study. However the test results show

that a window width of three should do as well. Using a smaller

window width will not only reduce the computations of the likelihood

ratios, and separate the multiple ectopic events, but also simplify

the logic for classifying different transient rhythm classes. Thus

if the detection performance is not degraded a smaller window width

is more desirable. Furthermore, it appears that it is feasible to

use only a window width of two for the GLR system. In this case, a

rhythm shift will be identified by the detection of more than two

consecutive double non-compensatory beat. Using this window width

the computations and classification logic will be further simplified.

A GLR detector using a window width of two should be implemented and

tested.
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(5) The Kalman filter models now have no driving noise, so

that the gains will approach to zero asymptotically. Driving noise

could be included to produce non-zero steady state gains, or techniques

such as age-weighted filtering could be used.

(6) The multiple model hypothesis testing system and the GLR

detection system must be integrated together in an overall system

for the detection and classification of arrhythmias. At the beginning

of the record both the multifilter and GLR detector should be running.

When an ectopic event is detected by the GLR detector, additional

logic will be used to determine type of arrhythmia. The multiple mo-

dels may have to be reinitialized when an ectopic event occurs such

that accurate and fast detection can be obtained. However the exact

configuration and the detailed logic will be determined only as

experience with more actual data is gained.

(7) The arrhythmia detection and classification system consi-

dered thus far has only utilized the R-R interval information. Thus,

a PVC may not be distinguishable from other prematures (since their

interval sequence patterns may look identical). In this case the

wave shape information should be considered, since PVC's have

aberrant QRS's and this can be used to distinguish from other prema-

tures. Therefore, a classification system utilizing the waveshape

information should be developed and integrated in the rhythm analysis

system.

(8) Extensions should be made to include both P-R and P-P inter-

vals, which require the development of a P-wave detector. Once these

intervals are known the present techniques used for R-R interval data
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can be extended in a straight forward manner by simply defining

higher order dynamical models with the R-R, P-R, and P-P intervals

as the components of the state.

(9) The detection of another arrhythmia class -flutter and

fibrillation- in which there is an unusually large amount of high

frequency energy will need some type of high pass digital filter.

To do this, the diagnostic characteristics and spectral character of

this class of arrhythmias must be studied.
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