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Abstract

In this thesis, we develop recursive estimation algorithms and spectral esti-
mation algorithms for 2-D isotropic random fields. Isotropic random fields are
characterized by a mean value that is a constant independent of position and a
covariance function that is invariant under all rigid body motions. In some sense,
isotropy is the natural extension to multidimensions of the 1-D notion of stationarity.
Furthermore, isotropic random fields arise in a number of practical problems. An
important property of 2-D isotropic random fields is that when they are expanded
in a Fourier series in terms of the polar coordinate angle 8, the Fourier coefficient
processes of different orders are uncorrelated.

By expanding 2-D isotropic random fields into Fourier series in terms of the
coordinate angle §, we show that a a wave-number-limited isotropic random field
z(7) whose spectral density function is zero outside a disk of radius B can be
reconstructed in the mean-square sense from its observation on the cireles of radii
ri =1in/B, i € N, or of radii r; = a;,,/B, © € N, where a;, denotes the ith zero of
the nth order Bessel function J,(z), and where n is arbitrary.

Furthermore, by using Fourier series expansions of such fields, we develop effi-
cient recursive smoothing algorithms for isotropic random fields described by non-
causal internal differential models involving a Laplacian operator. The recursions
here are with respect to the radius r in a polar coordinate representation of the
fields. We show that the 2-D estimation problem is equivalent to a countably
infinite set of 1-D separable two-point boundary value smoothing problems which
we solve by using either a Markovianization approach followed by a standard 1-
D smoothing algorithm, or by using a smoothing technique recently developed for
two-point boundary value problems. We also show that the class of fields that we
consider includes all isotropic random fields that can be represented as the output
of rational 2-D filters driven by white noise.



In the second part of the thesis, we develop two spectral estimation techniques
for isotropic random fields. The first technique is designed to estimate 2-D isotropic
covariance functions which are equal to weighted sums of cylindrical harmonics.
Such fields are often used to model background noises in geophysics and in ocean
acoustics. Our procedure is based on an eigenanalysis of the matrix of samples
of the non-stationary 1-D covariance function corresponding to the zeroth-order
Fourier coefficient process of the underlying observations. The second technique
is a more general mazimum entropy spectral estimation algorithm. We show that
the maximum entropy spectral estimation problem for isotropic random fields has
a linear solution which can be computed efficiently by using fast recursions that
were developed for the problem of estimating an isotropic random field on the
boundary of a disk of observation given noisy measurements of the field inside
the disk. The maximum entropy spectral estimation algorithm is based on a key
spectral factorization result that we derive. Specifically, we show that any isotropic
power spectrum corresponding to a covariance function that is zero outside of a
finite disk 2R in the spatial domain has a non-symmetric half plane factorization
where the spectral factors have a finite spatial support which is concentrated on a
disk of radius R. Our spectral estimation algorithms are based on the knowledge
of the covariance functions of the Fourier coefficient processes corresponding to the
underlying field and we present an unbiased and consistent method for estimating
these covariance functions from observations of the underlying isotropic field.

Finally, we develop a new uncorrelated series expansion and a spectral repre-
sentation for isotropic random vector fields. This representation is based on the
decomposition of isotropic random vector fields into their solenoidal and potential
parts which was studied earlier by a number of researchers. We believe that this
series representation may help to extend all of the results of this thesis to the vector
case.

The Fourier series expansion approach used in this thesis is easily generalized
to higher dimensions where isotropic random fields have to be expanded in terms
of spherical harmonics rather than in terms of exponential functions. In fact, this
approach can be used to solve problems involving any general random field u(-)
defined over a homogeneous space provided that its covariance function is invariant
with respect to some group G of motions. In this case, the methods introduced in
this thesis can be used if the field u(-) is expanded in terms of the characters of the
group G.
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Chapter 1

INTRODUCTION

Problems involving spatially-distributed data and phenomena arise in vari-
ous fields including image processing, meteorology, geophysical signal processing,
oceanography and optical processing. However, the presence of more than one
independent variable in such problems leads to an increased computational com-
plexity and raises some interesting questions. How can one deal effectively with the
computational complexity of multidimensional problems given that the dimension
has a strong effect on the size of a problem? How can recursions be efficiently
implemented in several dimensions? What are the new types of estimation and
signal processing problems of interest that arise in several dimensions and which do
not exist in one-dimension?

A variety of researchers whose work is reviewed below, have made contributions
which have helped to answer parts of these questions, and we feel that this thesis
is of value in this larger effort. However, much of the existing literature deals with
relatively direct extensions of formulations and approaches which have worked well
for known classes of problems, namely causal estimation problems. Furthermore,
efficient estimation and signal processing algorithms which are general enough to
be applicable to a large class of problems of practical interest, are lacking in several
dimensions. To gain a better understanding of the problems that we have listed, we
focus our attention in this thesis on a class of random fields which is of substantial
practical interest and which has enough structure to allow the development of a

detailed theory. Specifically, we study tsotropic random fields (see Chapter 2 for

10



CHAPTER 1. INTRODUCTION 11

references), i.e. fields whose mean value is a constant independent of position and
whose autocovariance function is invariant under all rigid body motions. Note that
isotropy is the natural extension of the 1-D notion of stationarity. Furthermore,
isotropic random fields arise in a number of practical problems such as the black
body radiation problem [49], the study of the background noise in seismology [13]
and ocean acoustics [5], [11], [36] and the investigation of temperature and pressure
distributions at a constant altitude in the atmosphere [31]. Our work deals with
various aspects of state-space estimation and spectral estimation for isotropic ran-
dom fields in two dimensions, and it emphasizes the use of geometrical symmetries
in the development of fast algorithms for isotropic random fields. There is no
loss of generality in focusing our interest on two-dimensional estimation problems,
since all the essential features of multidimensional estimation and signal processing
problems appear already in two dimensions. In fact, all the results that we obtained

are directly extendible to higher dimensions.

1.1 LITERATURE REVIEW

In this section we review some previous results on recursive estimation and
spectral estimation for 2-D fields. Most of these results are very general in nature

and were not specifically developed for isotropic random fields.

A Recursive Estimation for 2-D Fields

The main objective of the recursive estimation part of this thesis is to exploit the
geometrical structure of models for spatial processes, and to exploit the geometrical
symmetries associated with such processes, in order to develop efficient estimation
algorithms for such fields. Central difficulties here are the issues of recursions and
the organization of the required computations. In one dimension the ways in which
data can be organized for efficient processing are extremely limited, and causality
typically provides a natural choice. Furthermore, in one dimension internal differ-

ential realizations of random processes have been exploited to develop an efficient
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estimation algorithm, namely the Kalman filtering technique. This has led re-
searchers in estimation theory to investigate the extension of the methods for causal
1-D processes to non-causal 2-D fields. The work of Woods and Radewan [91],
Habibi [24], Attasi [4], Jain and Angel [28], Wong [87], Wong and Ogier [53] to name
a few, has shown that such extensions do exist. However, the methods developed by
these researchers are either approximate or can be applied only to a limited class of
2-D fields, namely to fields that can be described by hyperbolic partial differential
equations and which therefore are causal in some sense.

We believe that 2-D fields are more naturally and efficiently described by dif-
ferent types of models which are fundamentally non-causal in nature and whose
structure may offer significant possibilities for obtaining efficient solutions to es-
timation problems. Some of these non-causal models have been investigated by
Rodriguez [66] and by Adams [2]. In particular, Adams studied estimation tech-

niques for fields z(-) governed by an internal model of the form
Lz = Bu (1.1.1)

with the boundary conditions
v=Vz, (1.1.2)

where L is a linear differential or difference operator, B and V are linear operators,
and v and v are multidimensional noise fields. His results show that even though
the process z(-) is fundamentally non-causal, the observations associated to z(-)
can be processed recursively to generate smoothed estimates of z(-). In this thesis,
we exploit the new techniques proposed by Adams together with the geometrical
structure of isotropic random vector fields to develop fast recursive estimation
algorithms in two dimensions.

It should be mentioned at this point that our work is also motivated by the
results of Levy and Tsitsiklis [41] who exploited the geometry of isotropic random
vector fields to develop efficient Levinson-like recursions for the input-output esti-
mation of such fields. Note that, unlike the one dimensional case, the most natural
problem in higher dimensions is the smoothing problem rather than the causal

filtering problem. This is what the works of Adams and Levy and Tsitsiklis have
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in common: both focus from the beginning on smoothing problems, even though |
Adams uses an internal approach, while Levy and Tsitsiklis consider input-output
estimation.

Finally, note that an important problem of great practical interest which is
special to applications in several dimensions, is the problem of estimating random
vector fields governed, for example, by Maxwell’s equations, the heat equation or
the gravitational field equations. This problem has not yet been considered in
the literature. An interesting subclass of random vector fields is the subclass of
isotropic random vector fields. Such fields are characterized by a mean vector
and a covariance matrix that are unaffected by any translation, rotation and/or
reflection accompanied by simultaneous rotation and/or reflection of the coordinate
system with respect to which the components of the vector are determined. Isotropic
random vector fields arise in a number of physical problems such as the study of
black body radiation [49], the analysis of turbulence [50] and the examination of
the gravitational fields of planets [62]. In Chapter 6 of this thesis, we develop a
mathematical theory for isotropic random vector fields which we believe will help
in extending our results to such fields. However, more work is still required in
this area to answer the open problems pertaining to some modeling issues and
solution formulation questions. We expect that the study of estimation problems for
such fields will help us to deepen our understanding of two and higher dimensional
estimation theory in general and will point out the differences existing between one

dimensional and multidimensional problems.

B 2-D Spectral Estimation Techniques

As mentioned earlier, a goal of this thesis is the development and understanding
of 2-D spectral estimation techniques for isotropic random fields. Multidimensional
spectral analysis arises in many applications such as geophysics, sonar, radar, radio
astronomy, and for that reason, has received considerable attention. The funda-
mental problem considered in the literature is that of estimating a power spectrum
given samples of a stationary and homogeneous underlying random field. Most of

the existing 1-D estimation techniques have been extended to several dimensions.
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For example, 2-D maximum entropy procedures have been proposed by Woods [90],
Jain and Raganath [29], Lim and Malik [42], Roucos and Childers [69], Lang and
McClellan [39], Schott and McClellan [74] to name a few.

It is noteworthy that none of the desirable properties of the 1-D MEM spectral
estimation algorithms has yet been established in the 2-D case. In particular, the
1-D MEM method has a linear solution which can be implemented efficiently via the
Levinson recursions, whereas the 2-D MEM algorithms involve solving a non-linear
constrained optimization problem. Furthermore, some of these 2-D procedures
are slow, particularly when they are used to estimate highly peaked spectra, and
some are not even guaranteed to converge. By exploiting the special structure
of isotropic random fields, we show in Chapter 5 that a linear solution to the
isotropic MEM spectral estimation problem can be computed via fast Levinson-
like recursions which were developed in the filtering context for isotropic fields by
Levy and Tsitsiklis [41]. Another interesting feature in one dimension is that the
Levinson recursions give rise to lattice realizations of the underlying stationary
process [56]. These lattice realizations have the feature that their stability can be
checked by inspection, and have also the property of having a very low sensitivity
to roundoff errors. In addition, because of their modular, cascaded structure, the
lattice filters give rise to simple signal processing architectures which are now used
widely in speech processing and communications applications. Unfortunately, no
such structures are available in two or higher dimensions for homogeneous random
fields. Our work seems to indicate that such lattice realizations might exist for
isotropic fields. However, more work is still required in this area.

Note also that 1-D harmonic retrieval techniques which rely on an eigenanalysis
of a covariance matrix, such as Pisarenko’s method [58] or the MUSIC method [73], [9],
have been extended to the 2-D case by Lang and McClellan [38] and by Wax
and Kailath [84] respectively. These researchers extended the 1-D techniques to
solve the problem of estimating 2-D power spectra which are equal to a weighted
sum of multidimensional point impulses. In contrast, we present in Chapter 4 an
eigenstructure method for estimating power spectra that are equal to a weighted

sum of 2-D cylindrical impulses, i.e. which are equal to a sum of impulsive cylindrical
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sheets in the wave-number plane.

1.2 THESIS CONTRIBUTIONS

Throughout this thesis, Fourier series expansions of isotropic random fields are
used in solving a variety of sampling, recursive estimation and spectral estimation
problems for 2-d isotropic random fields. The Fourier coefficient processes in a
Fourier series expansion of an isotropic random field in terms of the coordinate
angle 6 in a polar coordinate representation of the plane, are uncorrelated. This
is just a consequence of the fact that isotropic covariance functions are invariant
under all rigid body motions. Hence, by expanding an isotropic random field in a
Fourier series, we are able to reduce any 2-D problem involving such a field into a
countably infinite number of uncorrelated 1-D problems for the Fourier coefficients.
The Fourier series expansion approach is easily generalized to higher dimensions
where isotropic random fields have to be expanded in terms of spherical harmonics
rather than in terms of exponential functions. In fact, this approach can be used to
solve problems involving any general random field u(-) defined over a homogeneous
space provided that its covariance function is invariant with respect to some group
G of motions. In this case, the methods introduced in this thesis can be used if
the field u(-) is expanded in terms of the characters of the group G. Finally, note
that Fourier series expansions of 2-D isotropic random fields were used previously
by Yadrenko [92] and by Levy and Tsitsiklis [41] to solve filtering and estimation
problems for such fields.

By using Fourier series expansions of isotropic random fields we develop in this

thesis the following new results:

1. Sampling theorems for isotropic random fields:
In Chapter 2, we develop new sampling theorems for the Fourier coefficient
processes corresponding to a wave-number-limited isotropic random field 2(7)
whose spectral density function is zero outside a disk of radius B centered
at the origin of the wave-number plane. By using these theorems, we show

that 2(7) can be reconstructed in the mean-square sense from its observation
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on the circles of radii r; = ¢n/B, i € N, or of radii ; = ¢;,/B, { € N,
where a;, denotes the ith zero of the nth order Bessel function J,(z), and
where n is arbitrary. This result is partly new and partly a generalization of
an earlier result of Yadrenko [92] who showed that any wave-number-limited
isotropic random field z(7) whose spectral density function is zero outside
a disk of radius B centered at the origin of the wave-number plane can be
reconstructed in the mean-square sense from its observation on the circles of
radii r; = a;0/B, 1 € N, where a;o denotes the ith zero of the zeroth order

Bessel function Jy(z).

2. Recursive estimation for isotropic random fields:
We develop in Chapter 3 efficient recursive smoothing algorithms for isotropic
random fields described by non-causal internal differential models involving a
Laplacian operator. The 2-D estimation problem is shown to be equivalent to
a countably infinite set of 1-D separable two-point boundary value smoothing
problems which we solve by using either a Markovianization approach followed
by a standard 1-D smoothing algorithm, or by using the smoothing technique
recently developed by Adams [2] for two-point boundary value problems. The
desired field estimate is then obtained as a properly weighted sum of the
1-D smoothed estimates. This result is important because, as mentioned in
Section 1.1, most of the earlier 2-D recursive smoothing algorithms are either
approximate or apply only to the limited class of 2-D fields that are described

by hyperbolic partial differential equations and which therefore are causal in

some sense.

3. Eigenstructure spectral estimation method for isotropic random
fields:
In Chapter 4, we present a high resolution spectral estimation method for
2-D isotropic random fields with covariance functions equal to weighted sums
of cylindrical harmonics. Such fields are often used to model some types of
background noises in geophysics and in ocean acoustics. The approach that

we present differs from previous 2-D spectral estimation techniques by the



CHAPTER 1. INTRODUCTION 17

fact that we take maximal advantage of the symmetries implied by both the
isotropy and the special covariance structure of these fields. Our approach
is similar in spirit to 1-D harmonic retrieval techniques, such as the MUSIC
method, which rely on an eigenanalysis of the covariance matrix. In the 2-D
isotropic context, we obtain a spectral estimate by performing an eigenanalysis
of the covariance matrix of samples of the zeroth-order Fourier coefficient
process in order to extract the cylindrical harmonics. However, unlike the
1-D MUSIC and Pisarenko’s methods which use sample values of a stationary
1-D covariance matrix, our procedure uses samples of the non-stationary
1-D covariance function corresponding to the zeroth-order Fourier coefficient
process of the underlying observations. We also present in Chapter 4 a method
for estimating the covariance functions of the Fourier coefficient processes from
observations of the underlying isotropic field. Furthermore, we show that our

estimates are both unbiased and consistent.

4. Maximum entropy spectral estimation for isotropic random fields:
We present in Chapter 6 a new linear maximum entropy method (MEM)
algorithm for 2-D isotropic random fields. Unlike general 2-D covariances,
isotropic covariance functions which are positive definite on a disk are known
to be extendible. Here, we develop a computationally efficient procedure for
computing the MEM isotropic spectral estimate corresponding to an isotropic
covariance function which is given over a finite disk of radius 2R. We show
that the isotropic MEM problem has a linear solution and that it is equivalent
to the problem of constructing the optimal linear filter for estimating the
underlying isotropic field at a point on the boundary of a disk of radius R given
noisy measurements of the field inside the disk. Our procedure is based on
Fourier series expansions in both the space and wave-number domains of the
inverse of the MEM spectral estimate. Furthermore, our method is guaranteed
to yield a valid isotropic spectral estimate and it is computationally efficient
since it requires only O(BRL?) operations where L is the number of points
used to discretize the interval [0, R|, and where B is the bandwidth in the

wave-number plane of the spectrum that we want to estimate. We believe

B EE——————— 1< e e o P . e m e e e e e
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that this result is the most important contribution of this thesis. As men-
tioned earlier, all of the previous 2-D MEM algorithms involve solving a non-
linear constrained optimization problem because of the lack of useful spectral
factorization theorems in the discrete 2-D case. Our method is based on a
key spectral factorization result that we derive in an appendix to Chapter 6.
Specifically, we show that any isotropic power spectrum corresponding to a
covariance function that is zero outside of a finite disk 2R in the spatial domain
has a non-symmetric half plane factorization where the spectral factors have

a finite spatial support which is concentrated on a disk of radius R.

5. Series expansions for isotropic random vector fields:
We develop a new uncorrelated series expansion and a spectral representation
for isotropic random vector fields. This representation is based on the decom-
position of isotropic random vector fields into their solenoidal and potential
parts which was studied earlier by Yaglom [93], Ito [27] and Ogura [54]. We
believe that this series representation may help to extend all of the results of

this thesis to the vector case.

1.3 THESIS OVERVIEW

This thesis is organized as follows:

In Chapter 2 we present an overview of the mathematical properties of 2-D
isotropic scalar random fields. In particular, we focus our attention on Fourier series
expansions of such fields in terms of the coordinate angle # in a polar coordinate
representation of the underlying plane. Fourier series expansions of 2-D isotropic
random fields have the important property that the Fourier coefficients processes
of different orders are uncorrelated. Such expansions will be used throughout this
thesis to solve and understand a number of problems for 2-D isotropic random
fields. In particular, they are used in Chapter 2 to develop new sampling theorems
for isotropic random fields where the fields are sampled along circles rather than at

a discrete set of points.
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In Chapter 3, we introduce a non-causal internal differential model for a class
of 2-D isotropic fields. The model that we consider is expressed in terms of the
Laplacian operator, and it defines a class of isotropic fields which includes fields
that can be represented as the output of rational 2-D filters driven by white noise.
The smoothing problem for isotropic random fields in this class given noisy mea-
surements over a disk of radius R is defined and is reduced to a countably infinite
set of decoupled 1-D estimation problem. Two-point boundary value models are
then developed to describe the 1-D estimation problems. Furthermore, we outline
two solutions to the 1-D two-point boundary value smoothing problems and we
study the asymptotic behavior of the 1-D filters that we introduce to solve the 1-D
problems.

Following some motivation for considering the class of isotropic covariance func-
tions that are equal to a weighted sum of cylindrical harmonics, we formulate in
Chapter 4 the problem of retrieving cylindrical harmonics from the covariance of
samples of the zeroth-order Fourier coefficient process. We then present a new
algorithm for recovering the cylindrical harmonics by performing an eigenanalysis
of the covariance matrix of samples of the zeroth order Fourier coefficient process
corresponding to the measurements. Both the theory behind this algorithm and its
numerical implementation are discussed. The proposed algorithm is very similar in
spirit to the eigenstructure approach developed by Schmidt [73], and by Bienvenu
and Kopp [9] for solving the 1-D harmonic retrieval problem. Furthermore, we
develop a method for estimating the covariance matrix that is used as an input to
our procedure. Both the statistical properties of the covariance estimate and its
practical implementation are presented. In particular, our estimate is shown to be
both unbiased and consistent, and an example is provided to demonstrate this fact.
Finally, two examples are presented to illustrate the high resolution and robustness
properties of our method.

In Chapter 5, we consider the maximum entropy method (MEM) spectral es-
timation problem for isotropic random fields. We begin by deriving an expression
for the isotropic MEM estimate. The MEM spectral estimation problem is then

related to the problem of finding the best linear filter for estimating an isotropic
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field on the boundary of a disk given noisy observations of the field inside the disk.
By using Fourier expansions of the optimal linear estimation filter and the efficient
recursions of [41], a fast and robust method for computing the MEM estimate
is developed. The numerical implementation of our procedure is also described
in this chapter. Particular attention is given to the issues of numerical stability
and convergence of our implementation. Finally, several examples are presented to
illustrate the behavior of our algorithm and particularly to demonstrate its high
resolution property.

In Chapter 6, we review some of the mathematical properties of isotropic random
vector fields. Furthermore, we develop a new series expansion for such fields. This
series expansion is seen to be the generalization to the vector case of the Fourier
series expansions for isotropic scalar fields. We describe some recursive estimation
and spectral estimation problems for isotropic random vector fields which we believe
can be solved by using the series representation that we developed and by using
some of the techniques that we introduced earlier in the thesis. We also discuss
some open modeling problems for random vector fields.

Finally, in Chapter 7, we summarize our results, and suggest areas where future

research may be fruitful.



Chapter 2

MATHEMATICAL THEORY OF
ISOTROPIC RANDOM FIELDS

The objective of this chapter is to introduce the reader to some of the mathe-
matical properties of 2-D isotropic random fields, and in particular to Fourier series
expansions of such fields. Fourier series expansions of isotropic random fields will be
used throughout this thesis to solve a variety of smoothing and spectral estimation
problems for 2-D isotropic random fields in Chapters 3, 4 and 5. Specifically, these
expansions will allow us to reduce the general 2-D problems that we address to a
possibly countably infinite number of corresponding 1-D problems. In some cases,
we will even be able to solve our problems by looking at a single 1-D problem by
properly exploiting the properties of the Fourier coefficients corresponding to the
underlying 2-D isotropic random field. The usefulness of Fourier series expansions
is also illustrated in this chapter by the sampling theorems that we have developed

for 2-D isotropic random fields and which we present in Section 2.2.

2.1 FOURIER SERIES FOR ISOTROPIC FIELDS

The covariance function

K(F) = E[2(9)2(7 + 7)] (2.1.1)

21
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of any zero-mean isotropic random field z(7) !, is a function of r only, so that, by

abuse of notation we can write
K(¥) = K(r). (2.1.2)

Since K(r) is a function of r only, it is straightforward to show that the power
spectrum S(X) of the field z(r), i.e. the 2-D Fourier transform of K (7), is actually

a function of A = |X | only, and with a slight abuse of notation we will write this as
S(A). This follows from the fact that

S = /R2 K(r) e IA gF
00 271 .
= / / K (r) e73Areos(0=1) o 47 dg
o Jo
= 27r‘/0 K(r)Jo(Ar) rdr
= S(A), (2.1.3)

where we have used the fact that
Jo(2) = — /2 e’ 4g (2.1.4)
27 Jo ’ o

and where X = (},7). In (2.1.3) and (2.1.4) Jo(-) is the Bessel function of order 0.
Observe that S() is nothing more than 27 times the Hankel transform [55] of X ()
viewed as a function of the scalar r = |F|. Equation (2.1.3) can also be inverted to
yield .

K(r) = = /0 S(A)Jo(Ar) Ad. (2.1.5)

Note that the covariance function
K(|F—3]) = K((r* + s* — 2rscos(8 — ¢))*/?) (2.1.6)

is a positive-definite symmetric function of the scalar variables 8 and ¢ where
7= (r,0) and § = (s, ¢). Hence, if we assume that the random field 2(-) has a finite

energy, then the covariance function K(-) viewed as a function of the variables

!Throughout this thesis we use 7 to denote a point in 2-D Cartesian space. The polar coordinates
of this point are denoted by r and §. The Cartesian coordinates of 7 are denoted by r1 and rs.
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0 and ¢ must have a symmetric eigenfunction expansion according to Mercer’s

theorem [63]. By using (2.1.5) and the addition theorem for Bessel functions [7],

Jo(F—38]) = fj Jn(Ar)Jn(As) e2m(6-9) (2.1.7)

n=-—o0o

where 7 = (r,0) and § = (s, ¢), we can write

K(F=38)= > kn(r,s)e™9), (2.1.8)
where .
kalrs) = /0 Ta(Ar)Ja(A8)S(A)A dA, (2.1.9)

In (2.1.9) J,(-) is the Bessel function of order n. Alternatively, kn(r,s) can be
computed from K(:) as

kn(r,s) = 2_11r— ‘/:T K((r* + s — 2rscos 8)/%) e dg. (2.1.10)
Note that since K(-) is a real and even function of 8, then
kn(r,s) = k_n(r, s). (2.1.11)
Alternatively, (2.1.11) can be derived by using (2.1.9) and the fact that
Jn(z) = (—1)* J_n(2). (2.1.12)

Note also that both the covariance function K(r) of the full process 2(7) and
its power spectrum S(A) can be recovered exactly from ko(r,s) as follows. By

specializing (2.1.10) to the case n = 0 we obtain for s = 0
K(r) = ko(r,0). (2.1.13)

Furthermore, (2.1.9) implies that S()) can be recovered from k,(r,s) in general by
taking the nth order Hankel transform [55] of k,(r,s) with respect to the variable
r and dividing by J,(As)/2w, i.e.

0

0

5() = 27 f Ta(Ar)kn(r, 8) r dr /J.(As). (2.1.14)
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Thus, if we are interested in extracting information from K (), or from its associated
power spectrum S()), we can as well focus our attention on the covariance ko(r, s)
without any loss of information. This important observation is the key to the high
resolution spectral estimation procedure that we present in Chapter 4.

By using (2.1.3) and the Karhunen-Loeve theorem [81] we can expand z(7)
as [93], [92], [88]

(e}

2(f) = ; zn(r) ™, (2.1.15)

) = o /D"z(;)e-f"’do, (2.1.16)
where

E[2,(r)2m(s)] = kn(r, 8)bpm, (2.1.17)

and where 6, is a Kronecker delta function. Note that equations (2.1.9) and
(2.1.17) imply that although z(7) is isotropic, 2,(r) is not a stationary process,
i.e. kn(r,s) is not a function of r — s. Equation (2.1.15) is very interesting since
it can also be interpreted as a Fourier series expansion of the field z(7) in terms
of the coordinate angle §. In particular, (2.1.15)-(2.1.17) state that the Fourier
coefficients z,(r) in a Fourier series expansion of z(7) in terms of the angle 0 are
independent. This observation plays a key role in a number of works dealing with
isotropic random fields (e.g. [92],(41]) and we shall use it throughout this thesis to
solve a variety of smoothing and spectral estimation problems for isotropic random
fields.

Finally, note that a spectral representation for the Fourier coefficient processes
zn(r) has been developed in [93] and [92]. Specifically, it is shown in [93] and [92]

that z,(r) has the representation
2n(r) = / ” Jn(A) Za(dN) (2.1.18)
0
where the {Z,(d))} are uncorrelated orthogonal random measures satisfying

E[Z,(d))] = 0 (2.1.19)
E[Zn(d)q)Z,’;(d)\z)] = 6(A1 - Az)S(Al) Al dAl dAz 6n,m, (2.1.20)
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and where Z () denotes the complex conjugate of Zm(-). Hence, by combining
(2.1.15) and (2.1.18)-(2.1.20) we find that the isotropic random field 2(7) has the

spectral representation

(= 3 & / (AF)Z,(dN). (2.1.21)

n=-—o0o

2.2 RESTRICTION OF 2-D ISOTROPIC FIELDS
TO A LINE

The restriction of a 2-D isotropic random field to a line is clearly a 1-D stationary
random process. Similarly, the restriction of a 3-D isotropic random field to a line is
also a 1-D stationary random process. In this short section, we derive a relationship
between the 1-D power spectrum S, (A1) of the restriction of a 2-D isotropic random
field to a line L and the 2-D power spectrum S (A) of the isotropic random field.
Without loss of generality, let us assume that the line L coincides with the r1 axis.
Accordingly, we have

Sl (Al) = /'.°° I{(?‘l)e_“ﬂlrl dr1

B
- 2—7r/_m3(x)¢zz,\2

Y Tl R (2.2.1)

b e—n

and where A = (A1,);) in a Cartesian representation of the wave-number plane.
To obtain S(A) from S;(A1), we note that (2.2.1) is an Abel integral equation (80].

Hence, by using known results concerning these equations we find that [10]

_2/ xS0 === \/—»\2

The fact that a the restriction of a 2-D isotropic random field to a line is a

(2.2.2)

stationary random process suggests a different approach than the one we have taken
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in this thesis for solving problems involving 2-D isotropic random fields. Specifically,
one might think of using a generalization of the 1-D techniques that were developed
for stationary random processes to solve problems involving 2-D isotropic random
fields. For example, one may try to use 1-D spectral estimation techniques to
estimate S1(A;) and then use (2.2.2) to compute an estimate of S (A). In theory,
such an approach is possible provided that one makes sure that all the constraints
implied by (2.2.1)-(2.2.2) are satisfied. The constraints implied by (2.2.1)-(2.2.2)
are easier to visualize in the 3-D case where (2.2.1)-(2.2.2) take the form [10]

Si(M) = /:AS(,\)d)\ (2.2.3)

In (2.2.3)-(2.2.4) S(A) and Si();) are respectively the 3-D power spectrum of a
3-D isotropic random field and the 1-D power spectrum of the restriction of the
same 3-D isotropic random field to a line. In particular, note that since S(A) is
nonnegative then $;(A,) is a nonincreasing function of |A;|. Hence, if one uses 1-D
spectral estimation techniques to compute an estimate of S, (A1), one has to make

sure that the computed 1-D spectral estimate is nonincreasing for all [Ax].

2.3 SAMPLING THEOREMS

In this section, we develop two different procedures for sampling and recon-
structing the 1-D Fourier coefficient processes associated with a given isotropic
random field. Using the sampling theorems for the Fourier processes, we show
that a wave-number limited isotropic random field can be reconstructed from its
observations on a countably infinite number of concentric circles with a, vanishing
mean-square error. In [57], Petersen and Middleton extended the 1-D Shannon
sampling theorem to m-dimensional Euclidean spaces. In particular, they developed
efficient point sampling and reconstruction techniques for wave-number limited
homogeneous random fields which minimize the number of sample points required

per unit area to reconstruct a given field in the sense of a vanishing mean-square

e ————t e s oo eno . - % v xem en v e e e m
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error. Here, by contrast, we present a new reconstruction procedure for 2-D wave-
number-limited isotropic random fields sampled along circles in the Euclidean plane,

where the reconstruction is to be understood in a mean-square sense.

A Sampling the Fourier processes covariance functions

Let us begin by presenting two different sampling procedures for the covariance

function of the nth order Fourier coefficient process.

Theorem 2.1 The nth order Fourier coefficient process covariance function k,(r, s)
of an isotropic random field z(¥) whose spectral density function S(A) 1s wave-
number limited to the region A < B, can be reconstructed ezactly from the sample
values of the mth order Fourier coefficient process covariance function kn,(r,s) taken
over a lattice of points {(aim/B,a;m/B); i,j € N}, where a; n, is the ith zero of the
mth order Bessel function J,(z).

Proof

Over the interval 0 < A < B, J,(Ar) can be expanded into a Fourier-Bessel
series of the form [30]

Ju(Ar) = Zb(rJ( ) 0<A<B (2.3.1)

where A
bi(r) = 200 In(Ar) I (*5%) d
t Bsz+l(a'|',m)J —l(a'l'.‘m) ’

Substituting (2.3.1) for J,(Ar) and J,.(As) into (2.1.9) yields the desired result

(2.3.2)

bu(r,8) = 33 bi(r)bs () ,,,(“'"‘ “’"‘) (2.3.3)

t=1j5=1

Note that, according to Theorem 2.1, it is possible to reconstruct the covariance
functions of the Fourier coefficient processes of all orders given sampled values of
the covariance function of a single Fourier coefficient process of any order. This
should not come as a surprise: if one can reconstruct k,, (r,s) exactly from its sample

values on the grid {(*3>, %4™); 1,5 € N} then one can easily compute S(}) (e.g. by
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taking the mth order Hankel transform of k,y, (r,s) with respect to r and dividing by
Jm(Xs)). Given S(A), one can then evaluate ky(r,s) for all n through (2.1.9). We
now state and prove a second sampling theorem for the covariance function kn(r,s)

of the nth order Fourier coefficient process. In this case we use samples of k,(r,s),
rather than of k,,(r,s).

Theorem 2.2 The nth order Fourier coefficient process covariance function k,, (r,$)
of an isotropic random field 2(F) whose spectral density function S(A) is wave-
number limited to the region A < B, can be reconstructed exactly from its own
sample values taken over a lattice of points {im/B,jn/B); 1,5 € N}, or over a
lattice of points {(aim/B,a;m/B); 1,5 € N}, where a;, is the ith zero of the mith
order Bessel function J,(z).

Proof
Consider the identity (see Appendix 2.A)

Ja(Ar) = Zd"(r)J ( )\) 0<A<B (2.3.4)
where
_ 1 nStn(B(r + )  sin(B(r — & )
d;(r) = m((—l) B(r+ %f Br—% ). (2.3.5)

Substituting (2.3.4) into (2.1.9) yields

bn(rss) =303 d}'(r)d;-'(s)k,,(%, ) (2.3.6)

1=0 =0

Similarly, by substituting the identity (see Appendix 2.A)

Ju(Ar) = Ec, m émk), 0<A<B (2.3.7)
where 9 (Br)
e (r) = @i mJm(Br %i,m \ jm—n| 3.
i,m( ) ( B2T2)J 1 (a' m)( ) ? (2 3 8)

into (2.1.9) we obtain
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oo 0o

bn(r8) = 323 €fin (1) (6) n (B, 2o, (2.3.9)

=1 5=1

oag

Observe that Theorem 2.2 asserts that the same sampling grid can be used for
all the Fourier coefficient process covariance functions. The sampling grid can be
selected to be {(iw/B, jm/B)} or {(aim/B,a;m/B)} where m is fixed but arbitrary.

This fact will prove useful in deriving sampling theorems for isotropic random fields.

B Sampling Isotropic Fields
Theorem 2.2 can now be used to prove the following important result.

Theorem 2.3 The nth order Fourier coefficient process 2,(r) corresponding to an
isotropic random field z(F) with o wave-number limited spectrum S(A), where
S(A) = 0 for A > B, can be reconstructed with zero mean-square error from its
samples {z,(%~); ¢ € N}, where a;m tS the ith zero of the mth order Bessel

function Jp,(z) as,

zn(r) = i ¢Fm(7)2a( ), (2.3.10)
=1 ' B
and from its samples {2,(%%); i € N} as,
zn(r) = i d?(r)zn(i—”), (2.3.11)
1=0 B

where (2.3.10) and (2.8.11) hold in a mean-square sense, and where d}(r) and
¢tm(r) are defined respectively by (2.8.5) and (2.5.8).

Proof
Let

3B(r) = iczjm(r)z,,(‘%"‘ . (2.3.12)

From (2.3.1) and (2.1.9), it can be shown that

kalr,) = 3 hm(elnlr, %57), (23.13)
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and that

atm a“m a’,
Ecjm ? JB) (2.3.14)

Using the above two equations we obta.ln
~ n Qi m
Elen(r)(zn(r) = 22(r))] = ka(r,r) = 3 cf p(r)hin(r, —22)
= 0, (2.3.15)
and

E[zn(

F)E0) =0 = k) - 5 (57, 22)
= 0. . (2.3.16)
Combining (2.3.15) with (2.3.16), it follows that
E||za(r) = 22 (1)l = 0. (2.3.17)
By using a similar approach it can be shown that

El|zn(r) - 2, (r)|] = 0, (2.3.18)

where

) =3 dr (r)z,,( (2.3.19)

=0
00

Now recall that the knowledge of z(7) on a circle of radius r' is sufficient to
compute all of the Fourier coefficient processes z,(r) at the location r = #'. Hence,

we have the following important result.

Theorem 2.4 Any isotropic random field 2(¥) with a wave-number limited spec-
trum S(X), where S(A\) =0 for A > B, can be reconstructed with zero mean-square
error from its samples on the countable set of circles of radii r; = ﬂéﬂ, 1t € N, where

@i,m 1S the ith zero of the mth order Bessel function Jn(z), as

()=~ 3 > ml) [ (%, )5 ag o, (2.3.20)
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and from its samples on the countable number of circles of radii r; = %’ ,tEN, as

© o0 or . ) ]
4?):% > ) [ a)e i dp e, (2.3.21)

n=-00 =0

where equations (2.3.20) and (2.8.21) are to be understood in a mean-square sense.

Theorem 2.4 follows directly from Theorem 2.3 and equation (2.1.15), and is a
generalization of a result in [92]. A natural question to be asked here, is which of the
above two sampling schemes __i.e. the Bessel sampling scheme involving sampling
on circles of radii r; = a; m/B, or the uniform sampling scheme using circles of radii
ri = 17 /B__is more efficient in terms of minimizing the number of sampling circles
per unit radial length? This leads us to examine the distribution of the zeros @i m
of the mth order Bessel function Jn,(z), along the positive real axis. For large 1,
and a fixed value m, the zeros of the mth order Bessel function are approximately
given by the McMahon expansion [1]

1 (4m? — 1)

a,.-,mz(z+§m—z)1r—sw(z_+%m_i)...,

(2.3.22)

which shows that the separation A;,, between two successive large zeros @it1,m and
ai,m of J(z), with ¢ >> m, is approximately equal to

Dim = Gig1m — Gijm X T+ (4m;+1) +0(™3). (2.3.23)
In particular, two successive large zeros of Jo(z) are separated by a distance slightly
less than 7, whereas two successive large zeros of J,, (z) for m # 0, are separated by
a distance slightly larger than 7. As the order 7 of the zeros aim of Jp, (:z:) tends to
infinity the separation A; ,, between successive zeros is asymptotically equal to 7, for
all m. Furthermore, examination of the small zeros of the mth order Bessel function
reveals that even for ¢ = 2, A;,, is approximately equal to 7. Hence, the Bessel
sampling scheme is slightly more efficient than the uniform sampling scheme if the
zeros of a large order Bessel function are used to generate the nonuniform circular
sampling grid. However, the Bessel sampling scheme is primarily of theoretical
interest, while the uniform sampling scheme is of more practical value since it does

not require the knowledge of a large number of zeros of one of the Bessel functions.
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Finally, observe that in practice one does not need to sample the field z(7)
continuously as a function of # along any of the circles r;. Note that along any of

these circles z(r;,0) is a stationary process with the covariance function

K(ri;0,0) = E[z(ri,0)(2(ri, 0)]
= > ka(ri,r) e, (2.3.24)

n=—oo

Examination of a plot of J,,(z) [1] reveals that
Jo(z) 0 for z>1 and n>z. (2.3.25)

Hence, by using (2.1.9) and the Lebesgue dominated convergence theorem [72] to

interchange the operations of limit and integration, we obtain
kn(ri,r;i) ~0 for Br;>1 and n > Br,. (2.3.26)

Equation (2.3.26) implies that along any circle of radius r;, 2(r;,8) can be approxi-

mated with a small mean square error by the finite sum

N

2(ri,0) = > 2z4(r;) ™ (2.3.27)
n=—N

where N > Br;. In particular, (2.3.20)and (2.3.21) can be approximated in the

Inean square sense as

(=3 3 za(r)e™ (2.3.28)

i=1 n=-N;
where )
i .
n=3g and Ni>in (2.3.29)
or
s = a.iém and N; > i m. (2330)

The coefficients z,(r;), —N; < n < N, can be determined by sampling z(r;,6) at
2N; + 1 points.
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2.4 CONCLUSION

In this chapter we have described the Fourier expansions for 2-D isotropic
random fields. We have illustrated the usefulness of these expansions with some
new sampling theorems for 2-D isotropic random fields, where the fields are sam-
pled along concentric circles rather than at discrete points. The true power of
these expansions will become clear in the next three chapters in which we use
them to reduce a number of 2-D smoothing and spectral estimation problems to
a possibly countably infinite number of corresponding 1-D problems. The results
of this chapter, and indeed the whole analysis developed in this thesis, can easily
be extended to isotropic random fields in higher dimensions. In the general m-D
case, isotropic random fields can be expanded in terms of spherical harmonics [93],
[92], [88] rather than in Fourier series. In fact, expansions similar to (2.1.15) can be
developed for homogeneous fields 2(7) defined over a homogeneous space R provided

that the covariance function of such fields satisfies a condition of the form
K(7,r) = K(g7,gr) (2.4.31)

where g belongs to an arbitrary group of motions G (see [95] and [94] for more

details). Such expansions provide a means for generalizing most of our results to
such fields.
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APPENDIX 2.A

Proof of (2.3.4)

Let pp()) be the function

1 A<B
A) = 2.A.1
pe(3) { 0 otherwise. ( )
By using the identity [20], p. 43 and p. 99
o | 2(—5)" 3 0 < Jul < A
/ Ju(Ar)e 7Y dr = (A2-u?) (2.A.2)
-0 0 otherwise,

where T, (z) is a Chebyshev polynomial of order n, it can be shown that the Fourier
transform of J,(Ar)pp(A) with respect to r is bandlimited to B radians per unit

distance. Hence, J,(Ar)pp(A) can be written as [30]

Ta(Ar)ps(A) = f:d?(r)J,.(%r,\), 0<A<B (2.A.3)
where
niy 1 LSin(B(r + %)) sin(B(r — )
di(r) = m((—l) B(r + %rf B(r — Z) ), (2.A.4)

and where 6, denotes the Kronecker delta function.

Proof of (2.3.7)

Consider the identity (7], p. 72

Ji(Ar) = ic,-,,(r)Jg(%)\), 0<A<B (2.A.5)

=1
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where
2a;,J,(Br)

ciar .
i(r) = (a2, — B?r?)Ji11(as,)
By repeatedly differentiating both sides of (2.A.5) with respect to A, and by using
the identity

(2.A.6)

2 Tn(Ar) = rdoa (3r) - = I () (2.A.7)

for the case where n < I, and the identity
m
aJm(AT) = —TJm+1 (AT) + TJm(AT) (2A.8)
for the case where n > I, we obtain

Jo(Ar) Z (r)Jn "'A), 0<A<B (2.A.9)

where

efi(r) = eualr) (Z) . (2.A.10)
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Chapter 3

RECURSIVE ESTIMATION FOR A
CLASS OF ISOTROPIC RANDOM
FIELDS

As mentioned in Chapter 1, problems involving spatially-distributed data and
phenomena arise in various fields including image processing, meteorology, geophys-
ical signal processing, oceanography and optical processing. A major challenge in
any such problem is to develop algorithms capable of dealing effectively with the
increased computational complexity of multidimensional problems and which can
be implemented in a recursive fashion. In one dimension the ways in which data can
be organized for efficient processing are extremely limited and causality typically
provides a natural choice. Furthermore, in one dimension, internal differential
realizations of random processes were exploited to develop an efficient estimation
algorithm,namely the Kalman filtering technique. This has led researchers in esti-
mation theory to investigate the extension of 1-D Kalman filtering and smoothing
methods to non-causal 2-D random fields. However, all of the estimation algorithms

developed in higher dimensions are either approximate or can be applied only to

~ a limited class of 2-D fields, namely to fields that can be described by hyperbolic

partial differential equations, and which therefore are causal in some sense.
The objective of this chapter is to study the smoothing problem for a class

of random fields which have non-causal internal differential realizations but which

36
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also have enough structure to allow the development of efficient recursive smoothing
algorithms. Note that, unlike one dimension, the most natural estimation problem
in higher dimensions is the smoothing problem, rather than the causal filtering
problem. This is due to the fact that in higher dimensions, the filtering problem
requires an artificial partition of the data between past and future, whereas the
smoothing problem does not assume any causal ordering of the data. Specifically,
in this chapter we investigate efficient recursive smoothing techniques for isotropic
random fields which can be represented as the output of rational 2-D filters driven
by white noise, and which admit therefore simple internal differential models. The
smoothing problem for 2-D isotropic random fields has been studied from an input-
output point of view by Levy and Tsitsiklis [41] who used Fourier expansions of
these fields to develop efficient Levinson-like recursions for the smoothing filter.
Here, by contrast, we consider the smoothing problem for isotropic random fields
z(7) having an internal differential realization involving the Laplacian operator. The
motivation for studying a model of this form is that any isotropic process that can be
obtained by passing 2-D white noise through a rational linear filter has an internal
realization of this type (see Section 3.1). Another motivation for considering such
a model is that it can be used to describe a large class of physical phenomena such
as the variation of the electric potential created by a random charge distribution.
Given noisy observations of the isotropic random field 2(7) over a finite disk of
radius R , our approach is to reduce the 2-D smoothing problem to a countable
set of decoupled 1-D smoothing problems for the uncorrelated Fourier coefficient
processes z(r) corresponding to the process z(7). Using the internal model of
the process z(7), we construct 1-D state space two-point boundary value (TPBV)
models for the Fourier coefficient processes . We then solve the resulting 1-D TPBV
smoothing problems using either a Markovianization technique which transforms
the non-causal model to a causal one to which standard 1-D smoothing techniques
can be applied, or directly by using the method of Adams et al. [2]. Finally, we
obtain the best linear least squares estimate of z(7) given the observations as a
properly weighted combination of the 1-D smoothed estimates of all the Fourier

coefficient processes zx(r) . Observe that by properly exploiting the structure of
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isotropic random fields, a recursive solution to the smoothing problem for a non-
causal isotropic process has thus been constructed . The recursions here are with

respect to the radius r in a polar coordinate representation of the fields.

3.1 INTERNAL MODEL

A Differential Model

The class of random fields considered in this chapter is described over the plane
R? by the differential model

(I,V? - A%)z(rf) = Bu(F) (3.1.1)
2(rf) = Cz(7) (3.1.2)

with the asymptotic condition
E[z(F)zT(5)) =0 as |F—35] — oo. (3.1.3)

Here, z(¥) € R™ , u(¥) € R™ , 2(F) € R?, and A , B, and C are real matrices
of appropriate dimensions. The eigenvalues of the matrix A are assumed to have
strictly positive real parts. This assumption insures that there exists a solution z(7)
to (3.1.1) that obeys the asymptotic condition (3.1.3). In equation (3.1.1) u(F) is a

random zero-mean two-dimensional white Gaussian noise process with
E[u(F)uT(5)] = I.é(F - 3), (3.1.4)

where I, is the m X m identity matrix. The class of random fields that can be
modeled by (3.1.1)-(3.1.2) includes a large number of physical phenomena. Fur-
thermore, as we shall show latter, this class includes also all isotropic random fields
which can be represented as the output of rational 2-D filters driven by white noise.

- From an input-output point of view equations (3.1.1)-(3.1.2) together with the

asymptotic condition (3.1.3) are equivalent to the representation

- _1 5 N Fe R2
27 = —5 fRzKo(A|r 7)Bu(F)dri, FeR (3.1.5)

z2(7) = Cz(7) (3.1.6)
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where drf = dz'dy' denotes an element of area. Here, K(Ar) denotes a ma-
trix modified Bessel function of the second kind and of order zero [7]. In fact,
G(7,8) = 3-Ko(A|F — §]) is the Green’s function associated to the differential

equation (3.1.1), i. e. G(7, §) satisfies the equation
(I.V? — 4%)G(7,5) = —L,6(F — 3) (3.1.7)
for 7,8 € R?, with the asymptotic condition
G(r,8) -0 as |F— 3| — oo. (3.1.8)

Matrix modified Bessel functions of the first and second kinds arise naturally in
the study of rational isotropic random fields. A brief discussion of some of their
properties appears in Appendix 3.A. (For more details see [7] and the references
therein).

The main property of the process z(F) defined by (3.1.1) and (3.1.3) is that it

is a 2-D rational isotropic random field as is shown below.

Theorem 3.1 The process z(F) defined by equation (3.1.1) together with the asymp-
totic condition (3.1.3)is an isotropic random field, i.e. its autocorrelation function

R.(7,5) = E[z(7)zT(5)] is invariant under translations and rotations.

Proof

We will first show that R,(7,5) is invariant under translation. From (3.1.5) we have

R.(73) = Elz(f)a"(3)] (3.1.9)
- 4_11; A Ko(AlF — @) BB Ko(A|5— @) dé  (3.1.10)

Now perform the transformation

<
Il
3
+
&

(3.1.11)

to obtain

— 1 — N — T - N —| —
(7,8 = fm Ko(A|F + k — 5)) BBTKo(A|5 + ki — 7)) da. (3.1.12)

[ e — ™ - = = = 2 B BN | seeseeewemens son f
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This shows that R,(,5) is invariant under translation. Using this fact, we can write

R.(7,5) = R,(¥,0) (3.1.13)
where ¥ = 7 — §. Hence,
— 1 — — T — —
B9 = /R  Ko(Al7 — @) BBT Ko(Alg]) di (3.1.14)
— 1 2 2 % T -
= m/;v Ko(A(v* + u® — 2uv cos(0 — ¢))?) BBT Ko(Au) dit
(3.1.15)

where ¥ = (v,¢) and @ = (u,0). Letting o = ¢ — 8, we conclude from the above
equation and the periodicity of cos a that
1

R.(7,5) = 472

2xr foo 1
/(; /(; Ko(A(v® + u® — 2uvcos 0)7) BBT Ko(Au)u du de (3.1.16)

oo

Theorem (3.1) implies also that the output process z(7) is isotropic with auto-

correlation function
R,(7,5) = CR,(7,5)CT. (3.1.17)

Since R, (") is translation-invariant we can define its spectral density matrix S, (X),
which is the 2-D Fourier transform of R, () :

S, (%) = [m R, (F)e~3* g (3.1.18)
= or fomRz(r)Jo(/\r)rdr (3.1.19)
= (AL, + M)"'BBT (XL, + MT)™! (3.1.20)
= 5, (3.1.21)

where we have taken advantage of the circular symmetry of R.(7),and where
M = A®. Here MT denotes the transpose of M. Observe that S2(A) is rational
in ), the magnitude of X. Furthermore, the poles of the spectrum Sz()), obtained
by setting p = jA in (3.1.20), have a quadrantal symmetry property when plotted in
the complex p-plane. Another important property of the process z(7) that follows
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from equation (3.1.20) is that z(F) is pseudo-Markovian of order 1 [59], i.e. the
value of z(7) inside a closed curve I' is independent of the value of z(¥) outside T
given the value of z(7) and of its normal derivative along I'. In the sequel, we shall

make extensive use of the isotropic and pseudo-Markovian nature of the process

B Motivation

The motivation for considering model (3.1.1)-(3.1.3) is that it can be used to
describe a large class of physical phenomena such as the variation of the electric po-
tential created by a uniformly distributed random sources in a lossy medium, where
the loss is described here by A%. Another important motivation for considering such

a model is given in the following theorem.

Theorem 3.2 Any tsotropic process that is obtained by passing 2-D white noise
through a rational and proper 2-D circularly symmetric linear filter has an internal
realization of the form (8.1.1)-(3.1.2).

Proof Consider the scalar 2-D random field z(¥) described by the partial
differential equation

a 9 a 0
P(a—n,a—n)zm = Q(aTla a—rz)"(’_") (3.1.22)
where u(F) is a 2-D white noise process of intensity I,,. Here, P(sy,s;) and Q(si, sz)
are 2-D polynomials in the variables s; and s;. Equation (3.1.22) implies that z(7)
is the output of a rational 2-D filter H(}) driven by the noise process u(7), where

» _ QUALJIA)
H(A) = Z——7. 3.1.23
% P(jM1,52s) (3:1.23)
The spectrum of () is given by
S.(X) = |[H(X) | (3.1.24)

In [92], Yadrenko shows that the process z(¥) is isotropic if and only if the 2-D
polynomials P(-,-) and Q(-,-) are functions of A = (AZ + A)'/2 only, i.e. if P(-,)
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and Q(-,') are of the form

P51, 522) = Z":pk(—,\”)" (3.1.25)
= ;9:?—,\2) (3.1.26)
QidniM) = 3 a(-AY* (3.1.27)
= SF_,V). (3.1.28)

In this case, the model (3.1.22) reduces to

P(V¥)z(F) = Q(V?)u(r). (3.1.29)

Furthermore, if n > ¢, by writing
H(-2}) = % (3.1.30)
= C(-XI,-M)'B (3.1.31)

and using any of the standard 1-D state-space realization techniques with the
variable s replaced by A?* and the operator 4 by the operator V2, we can obtain a
state space realization of z(7) in the form (3.1.1)-(3.1.2).

oa

We see therefore that the class of random fields with an internal differential realiza-
tion of the form (3.1.1)-(3.1.2) is quite large. It is, in fact, the analog of the class
of 1- D stationary processes which are obtained by passing white-noise through a

finite dimensional, linear time-invariant filter.

C Model over a Finite Disk

Over the finite disk Dg = {f : r < R}, the field 2(7) defined by
(3.1.1)-(3.1.3) or alternatively by the integral representation (3.1.5) can be modeled
by (3.1.1)-(3.1.2) together with a suitable boundary condition on the edge I of Dg.
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In addition to well-posedness, we would like to specify this boundary condition so
that it is independent of the noise u(¥) inside the disk Dg. This will allow us later
to directly apply the results of Adams et al. [2] for the estimation of boundary value
processes. We shall call a boundary condition that satisfies the above conditions an
admissible boundary condition. An admissible boundary condition can be specified

as follows.

Theorem 3.3 An admissible boundary condition for the process z(7) over the disk
Dpg 1s given by
T

/ () 22(3) - O (R a@)di=p(R0), 0<O<2r (3132

where T' is the circle of radius R, G(F,3) = L Ko(A|F — §]), and

E[B(R,0)] = 0 (3.1.33)
E[ﬂ(R,ﬂ)ﬂT(R,(ﬁ)] = Hp(R;0—¢)
= i I(AR)II, (R)IT (AR)e™(°~%)  (3.1.34)
with
I, (B) = % [ Ku(45) BB K (4s)s do. (3.1.35)

Here, ;%i and dl denote respectively the normal derivative with respect to I' and an
infinitesimal element of arc length along I'. The functions I;(Ar) and K (Ar) are
matrix modified Bessel functions of the first and second kind respectively, and of
order k (see Appendix 3.A and [7]).

Theorem (3.3) is proved in Appendix 3.B, where by repeatedly applying Green’s
identity it is shown that the boundary condition (3.1.32) leads to a well-posed prob-
lem and that the process z(¥) given by (3.1.5) is the unique solution to
eq. (3.1.1) with the boundary condition (3.1.32). It is further shown that the
boundary process #(R,f) is independent of the noise u(7) for r < R . Since we
are primarily interested in the smoothing problem for the field z(7) over the finite
disk Dg, we shall assume throughout the remainder of this chapter that 2(7) is
described by the model (3.1.1)-(3.1.2) together with the boundary condition (3.1.32)
or equivalently by equations (3.1.5)-(3.1.6).
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3.2 THE SMOOTHING PROBLEM

A Problem Statement

Let
y(F) = 2(7) +v(7), 7€ Dr (3.2.1)
with Dp = {r: r < R}, be noisy observations of the isotropic field 2(¥) defined
by the internal model (3.1.1)-(3.1.2) together with the boundary condition (3.1.32).
Here, v(¥) is a two-dimensional white Gaussian noise field of dimension p uncorre-

lated with u(7) and B(R,0), and with intensity V, where V is a positive definite
matrix. Thus,

Ep(u’(5)] = 0 (3.2.2)
E[w(r)8T(R,0)] = © (3.2.3)
Eju(FwT(3)] = Vé6(F-13) (3.2.4)

where 6(7) denotes a two-dimensional delta function. The estimation problem that

we consider here consists in computing the conditional mean
2(F|R) = E[2(7)| y(3) : 0< s < R| (3.2.5)

for all ¥ € Dpg.

B Solution via Fourier Series Expansions

Following [41], our estimation procedure relies on the Fourier series expansions

of the observation, signal and observation and process noise fields, e. g.

f(r,0) = k_i; fe(r) €, (3.2.6)
filr) = % /0 " 1(r,0)e* do (3.2.7)

where f(-) stands for y(-), z(-), z(:), (-} or v(-). (See Section 2.1.) Note that

the Fourier coefficient processes yi(r), zx(r), ui(r) and vi(r) are one dimensional
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processes. Substituting the Fourier series expansions of y(-), z(:), and v(-) into
(3.2.1) yields

y(r) = 2x(r) + wi(r), 0<r<R. (3.2.8)

According to the results of Section 2.1, the Fourier coefficient process of different

orders are uncorrelated, i.e.
Elax(r)y(s)] =0, for k #1 (3.2.9)

where ¢(-) and ~(-) stand for y(-), 2(-), z(-), u(-) or v(-). Consequently, our original
two-dimensional estimation problem requires only the solution of a countable set
of decoupled 1-D smoothing problems for the Fourier coefficient process z(r) given
the observations yi(s) over the interval 0 < s < R. Once the smoothed estimates
2e(r|R) = E[z(r)|yx(s) : 0 < s < R] are found, 2(|R) may be computed as

SFAR) = 3 a(r|R) ™ (3.2.10)

k=—00
where the equality in (3.2.10) is to be understood in the mean-square sense. In
practice, of course, one would consider only a finite number N of the above one
dimensional estimation problems. We shall have more to say about this point in
Section 3.4.

C State-Space Models For The Fourier Processes

Using the internal model (3.1.1)-(3.1.2) and (3.2.1) for the process z(¥) and
the observations y(7), 1-D state-space two-point boundary value models can be

constructed for the Fourier coefficient processes z(r) and yx(r) as follows.

Theorem 3.4 A two-point boundary value (TPBV) model describing z(r) and
Yk (r) over the interval [0,R] is given by

d £k(r) _ —rI,,(Ar)B
E[nk(r)] = | rns |0 (3.2.11)
z(r) = [CKi(Ar) CIi(Ar)) Ek(r; (3.2.12)
Ni\T

ye(r) = z(r) + ve(r), (3.2.13)
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with the boundary conditions
£x(0) =0  with probability 1 (3.2.14)

and
nk(R) ~ N(0,1L,, (R)) (3.2.15)

where I, (R) is given by equation (3.1.85). Here, ux(r) and vi(r) are two one

dimensional zero-mean white Gaussian notse processes with covariance

I 0
oV

8(r — )
2rr

E (3.2.16)

uk(r) 'U,T S ‘UT S =
v,,(r)][ (o) of( )1]

Note that the TPBV model dynamics (3.2.11) are extremely simple, consisting of
a gain matrix multiplying the input noise process uy(r). This is to be contrasted
with the more complicated dynamics of an equivalent Markovian model for z(r)

that we shall develop in the next section.

Proof
To derive equations (3.2.11)-(3.2.13), we shall use the following identity [7]

Ko(AlF - §]) =) Ii(Ar ) Ki(Ars) cos(k(6 — ¢)) (3.2.17)

where 7 = (r,0), § = (s,¢), r<« = min(r,s) and r» = max(r,s). Upon multiplying
both sides of (3.1.1)-(3.1.2) and (3.2.1) by e ¥/ /27 and integrating from O to 2,

we obtaln

zk(r) = —Ki(Ar) /or I(As)Bug(s)sds
— L(ar) [ ” Ky(As)Buy(s)s ds (3.2.18)
2(r) = Czi(r) (3.2.19)

and
yi(r) = 2i(r) + vi(7). (3.2.20)
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Define the state variables £ (r) and n4(r) by

&x(r) = — /0 " I(As) Buy(s)s ds (3.2.21)

and
m(r) = - [ ” Ki(As)Buy(s)s ds. (3.2.22)

Then, it follows from (3.2.18)-(3.2.22) that a TPBV model describing y;(r) over the
interval [0,R] is given by the system (3.2.11)-(3.2.13).

oo

Note that the boundary condition for the process nk(r) follows directly from the

boundary condition (3.1.32) for the process z(¥) upon recognizing from
identity (B.8) that

B(R,6) = i I(Ar)ne(R) &%, (3.2.23)

k=—-00
Note also that the TPBV model (3.2.11)-(3.2.15) is well-posed, since z(r) can be

expressed uniquely in terms of ux(r) and 7, (R) as
ze(r) = —C(Ki(Ar) /;r It(As)Bug(s)s ds
R
+ I(Ar) / Ki(As)Buk(s)sds + I(Ar)ny(R))  (3.2.24)

Furthermore, observe that 7, (R) is independent of u(r) for r < R.

3.3 1-D SMOOTHERS

In this section we discuss two solutions to the 1-D TPBV smoothing problems for
the Fourier coefficient processes. The first solution is based on a Markovianization
procedure followed by standard 1-D smoothing techniques, while the second solution
is a direct application of the method proposed by Adams et al. [2]. Conceptu-
ally, the difference between the two approaches lies in the way they deal with
the boundary conditions for the smoother. In the method of Adams et al. the
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boundary conditions are replaced initially by zero boundary conditions and a two-
filter smoothing formula with simple dynamics is used. Once all the measurements
Yk(r) have been processed, a second step is required to take the true boundary
conditions into account. On the other hand, the Markovianization approach deals
with the boundary conditions directly as the measurements are processed. It does
so by properly incorporating the boundary conditions into the dynamics of the

estimator, a step that results in a more complicated smoother implementation.

A The Markovianization Approach

As mentioned earlier, the main feature of the TPBV model (3.2.11)-(3.2.15)
describing the k** order Fourier coefficient is that it is separable, i.e. the boundary
conditions {x(0) and 7,(R) are decoupled (cf. [35]). Hence, a Markovian model
of the same order as the model (3.2.11)-(3.2.15) can be constructed for z;(r) by
reversing the direction of propagation of nx(r) using a technique introduced by

Verghese and Kailath [82] for constructing backwards Markovian models. Let
FF=o{m(s),0<s<r} (3.3.1)
be the sigma field generated by the process n;(s) over the interval [0,7]. Then

ar(r) = Elu(r)|7
= E[";k(")ﬂf (") E[na(r)nil (r)] " ma(r)

= —ﬂBTKk(Ar)H;:(r)nk(r), (3.3.2)

where )

Ty, (r) = 5- / Ki(As)BBTKT(As)s ds, (3.3.3)
and where we have assumed that II,, (r) is non-singular. The process i;(r) defined
by

Ur(r) = ui(r) — @x(r) (3.3.4)
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is then an F* - martingale with the same intensity I,/27r as uk(r). Substituting
(3.3.2) and (3.3.4) into (3.2.11)-(3.2.15) yields the forwards propagating model

d [ &) | _ [0 Gulr) [ &(r) ] N [ ~rh(4nB | o
dr ne(r) 0 Fk(f) ne(r) rKk(Ar)B
(3.3.5)
ur = [CKi(Ar) CI(Ar)] &(r) + vi(r), (3.3.6)
Mk (r)
with
Elig(r)] = 0 (3.3.7)
Elw(r)] = 0 (3.3.8)
ﬁk(r) . " _ I 0 5(1‘ - S)
E ” e (r) ] [@f (s) of (s)]] = lov!| 2 (3.3.9)
and where
Gi(r) = #Ik(Ar)BBTKE(Ar)H;:(r) (3.3.10)
and
Fi(r) = —%Kk(Ar)BBTK,'f(Ar)H;: (7). (3.3.11)
The initial conditions for the state-space model (3.3.5) at r=0 are given by
[ &) | N(0,T1,(0)) (3.3.12)
Mk (r)
with
I (0) = g I 0(0) ], (3.3.13)
where we have used the fact that
Bl& () (0)] =o. (3:3.14)

Here, nff(r) denotes the complex conjugate transpose of nk(r) . The smoothing
problem associated with the system (3.3.5)-(3.3.6) over [0,R] is a standard causal
smoothing problem and can be solved using any of the 1-D smoothing techniques
such as the Mayne-Fraser two-filter formula [45], [21], or the Rauch-Tung-Striebel

formula [61], among others.
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B The TPBV Smoother Formulation

Directly applying the results of [2] to the TPBV model (3.2.11)-(3.2.15), we
find that the smoothed estimates of &(r) and ni(r), &(r) and #(r) respectively,
satisfy the following Hamiltonian TPBYV system

&(r) E(r)
d | fwlr) | 0 a=BBT | | f(r) N 0
dr | 34(r) | | 2arcTV-1C 0 Ae(r) —2mrCTV 1y (r) |’
&e(r) Bi(r)
(3.3.15)
where
BT = [—rBTII(Ar) rBTK(Ar)] (3.3.16)
C = [CK],(A?) CII,(AT)], (3.3.17)
and with the boundary conditions,
&(0) = o, (3.3.18)
5(0) = o, (3.3.19)
4 (R) = 0, (3.3.20)
B(R) = -IIY(R)a(R). (3.3.21)

An alternative way of deriving the Hamiltonian system (3.3.15) is to note that, since
z(7) is described by the model (3.1.1)-(3.1.2) with the boundary condition (3.1.32),
then according to Adams et al. [2], the 2-D smoothed estimate of z(7), Z(F|R),
satisfies the Hamiltonian system

(I.V? — M)(F|R) = BBTO(F|R) (3.3.22)
(I.V?— MT)8(F|R) = CTV~'(y(7) — Ci(F|R)) (3.3.23)

with the boundary condition [2]
~ 52 (B|R)

o =V'I;'v
O(E[R)

(3.3.24)
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where R = (R,0) and R' = (R,$). In the above identity, if L%(T') denotes
the space of k vector functions which are square-integrable over T, the operator
V : L*(T) — L3(T) is such that for

f(R) = [f{(B) (B (3-3.25)

we have
(V £)(RB) / [—( R ) (R + G(R, B fo(RY)] i (3.3.26)

where G(R, R') = %KO(A|R — R'|) and where dl denotes an element of arc length
along I'. In (3.3.24) the operators V* and II;' denote respectively the Hilbert
adjoint of the operator V and the inverse of the correlation operator associated to
the kernel Ils(R;0 — ¢) defined in eq. (3.1.35). If we introduce the variable

¥(7|R) = 27rO(7|R) (3.3.27)
and substitute the Fourier expansions of Z(F|R) and ¥(7|R) into (3.3.22)- (3.3.23)

we obtain the following Hamiltonian system for the k** order Fourier coefficient

process
2 2
(L (:7+}jr fz)—M)a:,,(rm) = S _BE'W(rE)  (3.3.28)
(s~ 425 MDYueIR) = 2mectve
(yx(r) — Czi(r|R)).
(3.3.29)
By properly selecting the state variables
&) = ro (AR~ rL(4r) 2 5,0 R), (3.3.30)
Bl = -re(K(ARCIR) + (4 Sa0iR), (3331
a) = (B Ak (ar) - KT, (4r) detrIR)
— ATKT(Ar) i«.z,,(rm) (3.3.32)
hlr) = ((k+1)A‘TIT(A)+ T (Ar)) b (r|R)

— AT (Ar) az?;,,(dR) (3.3.33)
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it can be shown that the second order Hamiltonian system (3.3.28)-(3.3.29) has the
realization (3.3.15).
The Hamiltonian TPBV system (3.3.15) for the smoother with the boundary

conditions (3.3.18)-(3.3.21), can be solved efficiently by using the procedure pro-

posed by Adams et al. (see [2] for details).

Once the smoothed estimates Ek(r) and 7 (r) have been computed for all k, the

smoothed estimate 2(7|R) of z(7) can be found as

BFR) = 3 CKW(A)E(r) + Lu(Ar)ie(r))e™. (3.3.34)

k=—o0
Finally, as noted earlier, the two efficient processing schemes that we have devel-
oped for estimating isotropic random fields with an internal differential realization
of the form (3.1.1)-(3.1.2) are based on a concept of causality where the data is
processed outwards or inwards with respect to a disk of observation as shown in
Figs. 3.1 a and 3.1 b. Observe that this concept of causality follows naturally from

the special geometrical structure of isotropic random fields.

3.4 IMPLEMENTATION ISSUES

In this section we briefly discuss some implementation issues. Specifically, we
examine the problem of truncating the series (3.2.10) and the problem of imple-

menting the 1-D smoothers of Section 3.3.

A Truncation of the Series Representation of the Smoothed

Estimate

The smoothed estimate 2(7|R) is given by equation (3.2.10) as an infinite sum
of the 1-D Fourier coefficient processes smoothed estimates %, (r|R). In practice, of
course, one would consider a finite set of 1-D smoothing problems and one would
approximate the series (3.2.10) by the finite series

En(F) = Y 2k(r|R) &™*. (3.4.1)

|k|<N
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(a) | - (b)

Figure 3.1: Outgoing and incoming radial recursions.
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Note that, with Zx(7) = 2(7) — 25 (¥) and with Z(r) = zx(r) — 2x(r|R), we have

Een(PE A = X Bla@@ ]+ X Blal) () (3.4.2)
[kl<N |k|>N

As r tends to zero, the matrix E[z;(r)zf (r)] tends to zero as r2 for k # 0. Further-
more, as r tends to infinity, the matrix E[z;(r)zf(r)] tends to zero as r~! for all
values of k. Hence, in order to keep the variance of the estimator error small, the
number 2 N + 1 of terms to be used in (3.4.1) should increase with the distance
between the origin and the point where z(7) is to be estimated. If r is small, one can
use very few terms in (3.4.1) and still obtain a good estimate of z(7). In fact, for
r = 0 one needs only the zeroth order Fourier coefficient process smoothed estimate,

25(0), in order to compute 2(0|R) exactly.
Finally, note that the concept of a white-noise process is really an idealization
of the physical reality. In some cases of interest, we may assume that the noise
sources u(-) and v(-) have covariance functions that can be well approximated by

expressions of the form

Eupt () = =9 pogs L e90-#) (3.4.3)
E[v(f)vT(3)] = V6(r—r_s)llz<:ane""(a'¢) (3.4.4)

where 7 = (r,0) and § = (s,¢) and where we have assumed that u(-) and v(-) are
white in the radial direction only. In such a case where the noise processes are
not exactly white in the angular variable, we can obtain an ezact solution to the
smoothing problem that we have considered in this chapter by using 2NV + 1 terms
in (3.2.10).

B 1-D Smoother Implementation

At first glance the implementation of the 1-D smoothers of Section 3.3 poses
some problems since the models (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6) are not well
behaved in the vicinity of r = 0 for k£ # 0. This can be seen from the singularity

of Kx(Ar) at r = 0, and is not surprising since the Fourier series decomposition
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degenerates at the origin. We now show that this is of no practical consequence.
In practice, to compute 2(7|R) we divide the intervals [0, R] and [0, 2] into M and
N subintervals of length A; = R/M and A; = 27 /N respectively. As a result,
the Fourier coefficient processes yi(r) are available at the positions r = mA;, 0 <
m < M. The 1-D smoothed estimates 2x(r|R) are then found by discretizing the
smoother equations corresponding to models (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6).
In particular, for k£ # 0 we consider the 1-D discretized smoother implementations
for 1 <m < M. Note that, since 2,(0) = 0 and y;(0) = 0 with probability one for
k # 0, then

2x(A10) =0, Kk #0. (3.4.5)
Thus,

E[ze(mAy)|ye(lA,) : 0<I< M| = E[z(mAy)|ye(lAy) : 1 <1< M] (3.4.6)
for k # 0. For k = 0, the models (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6) are well

behaved at r = 0. Hence, we solve the 1-D discretized smoothing problem for
the zeroth order Fourier coefficient for 0 < m < M. Observe that the zeroth
order Fourier coefficient process is the only process needed to compute 2(0|R).

Consequently, in practice, the smoothed estimate of 2(mAq,nA,) is computed as

20(0) ifm=0
2(mAy,nA,) = 3 %(mA,) ™2 otherwise, (3.4.7)
k<K

where
E[zk(mA1)|yk(lA1) i | S l _<_ M] k :,é 0,

and where K is some number suitably chosen (see the previous section).

2e(mA,y) = { (3.4.8)

3.5 ASYMPTOTIC BEHAVIOR OF THE DIF-
FERENTIAL MODELS AT INFINITY

The Fourier coefficient processes z,(r) have a finite variance for all r € R since

by definition z(7) has finite variance over the whole plane (see Section 3.1.) Hence,
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the optimal estimator for the Fourier coefficient process z,(r) written in integral
form, must have a well-behaved kernel for all r. However, the matrices appearing
in (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6) are not well-behaved as r tends to zero or
infinity. This ill-behavior is due to the singularity of Ki(Ar) and I,(Ar) as r tends
to zero and infinity respectively [1], [7]. Furthermore, models (3.2.11)-(3.2.13) and
(3.3.5)-(3.3.6) define a singular estimation problem as r tends to infinity. This
follows from the fact that the intensity of the noise processes uy(r), #(-) and
vk(-) varies as r~!. In Section 3.4, we discussed a strategy for dealing with the
singularity of the models (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6) as r tends to zero.
Here, we introduce differential models for the Fourier coefficient processes that are

well-behaved as r tends to infinity.

A Models

The models that we develop are obtained by applying the state transformation

xilr) = n(r)[s"(') (35.)
i(r)
_ K (Ar) I (Ar)
Te(r) = [—K,,+1(Ar) I,,+1(Ar)] (3.5.2)

to models (3.2.11)-(3.2.13) and (3.3.5)-(3.3.6), followed by a normalization of all the
processes. The normalization consists in multiplying all processes by r!/2, which
forces the intensity of the noise processes to be a constant.

Note that by using (3.2.12) we can identify

zx(r)
xk(r) = : (3.5.3)
A7 (Grzi(r) — Ezi(r)) ]
Note also that the transformation Ti(r) has the properties that
d 1 4
ET],(T) = [ 4 - [""'"1]1' Tk(r) (3.5.4)
Al1(A —Al(A
() = | Alnld) —Ak(an) | (3.5.5)
AK),.H(A?‘) AKk (Ar)
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Identities (3.5.4)-(3.5.5) can be derived by using the recurrence relations for modi-
fied Bessel functions [1], [7] and the Wronskian identity [1], [7]

Iir1(Ar)Ki(Ar) + I (Ar) Kpa (A7) = A7127L, (3.5.6)

If we apply the state transformation Ti(r) to the model (3.2.11)-(3.2.13) and if we

introduce the normalized processes

ax(r) = Vra(r) (3.5.7)
where a(r) stands for xi(r), uk(r), yk(r) or vi(r), we obtain
Zx0) = (Axlr) + D) + Buar) (3.5.8)
Ge(r) = Cxu(r) + vi(r) (3.5.9)
where
4 1 4
(r) = " —@I (3.5.10)
_ [0
B = a-ip (3.5.11)
C = [C 0], (3.5.12)

and where we have used (3.5.4)-(3.5.5). In (3.5.8)-(3.5.9) @4(r) and ;(r) are two
uncorrelated zero-mean Gaussian noise processes with intensities I /27 and V /2%
respectively. Hence, (3.5.8)-(3.5.9) does not lead to a singular estimation problem.

Similarly, by using the state transformation T} (r) and normalizing all processes
we find that model (3.3.5)-(3.3.6) is transformed to

%)‘ck(r) = (A',,(r)+2—Ir);‘<k(r)+Bﬁk(r) (3.5.13)
Ge(r) = Cxu(r) + x(r) (3.5.14)
where
kr A
W) = A+'Dk(r) ey g (3.5.15)
Di(r) = —5-A7'BETKT(Ar)II;} () Kiy (4r) A (3.5.16)
Ei(r) = —#A-IBBTK,’;’ (Ar)TL M (r) K (4r) A, (3.5.17)
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and where i (r) and 9(r) are two uncorrelated zero-mean Gaussian noise processes
with intensities J/2m and V' /27 respectively. Once more, note that this implies that
(3.5.13)-(3.5.14) defines a nonsingular estimation problem.

To study the asymptotic behavior of models (3.5.8)-(3.5.9) and (3.5.13)-(3.5.14)
as r tends to infinity, we note that as r tends to infinity the modified Bessel functions
K (Ar) and I;(Ar) have the asymptotic forms [1]

Ii(Ar) ~ (2mAr) 2e? (3.5.18)
Ki(Ar) ~ (Lf'-)_%e—A'. (3.5.19)

Hence, if we assume that the pair (4, B) is controllable we obtain
. . - T —ATr( [® —Asp T _—ATs ; \—1 —Ar
lim Di(r) = lim —A"'BBTe (/ e BB e *ds) e A
r—o0 r—o0 r
= —A'BBTQ 4
= D, (3.5.20)
where @ is the matrix
Q =f e A*BBTe 4" ¢s. (3.5.21)
0
Note that since —4 is a stable matrix and since the pair (4, B) is controllable then
Q is the unique positive definite solution of the matrix equation 8]
—AQ — QAT + BBT =o0. (3.5.22)
Similarly, we have
lim Ex(r) = D. (3.5.23)
r—oo

Thus, as r tends to infinity the TPBV model (3.5.8)-(3.5.9) takes the form

%)_(k(") = Axx(r) + Bi(r) (3.5.24)
Ge(r) = Cxu(r) + wi(r) (3.5.25)
where
a=|°% 4, (3.5.26)
A O
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whereas the Markovian model (3.5.13)-(3.5.14) takes the form
d

Zx(r) = A'X(r) + Bi(r) (3.5.27)
ge(r) = Cxu(r) + e(r) (3.5.28)
where
_ 0 A
A= K (3.5.29)
A+D'D

Note that the asymptotic models (3.5.24)-(3.5.25) and (3.5.27)-(3.5.28) imply that
the models (3.5.8)-(3.5.9) and (3.5.13)-(3.5.14) are well-behaved as r tends to infin-
ity. Note also that the asymptotic models (3.5.24)-(3.5.25) and (3.5.27)-(3.5.28) are
space invariant models that do not depend on the order k of the Fourier coefficient
process under consideration. This reflects the fact that as r tends to infinity all
the Fourier coefficient processes have an equal importance in the sense that we
would have to retain a very large number of terms in (3.2.10) to obtain meaningful
results, as was already observed in Section 3.4. Furthermore, model (3.5.27)-(3.5.28)
provides a stable spectral factorization of S;(A). In particular, observe that the

transfer function associated with equation (3.5.27) is

Wi(s) = A(sI+A)'(sI— A+ A'BBTQ'4)'A™'B
= (sI+A)"(sI- A+ BBTQ™Y)'B. (3.5.30)

The formula
— A+ BBTQ™' = QATQ! (3.5.31)

(which is easily derived from (3.5.22)) now shows that —A + BBTQ! and A have
the same eigenvalues. Therefore, W;(s) will have its poles in the left half-plane
since all the eigenvalues of A have a positive real part by assumption. Note that

this also implies that the matrix A’ is a stable matrix. Furthermore, observe that

Wy(s)U(s) = Wi(s) (3.5.32)
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where
Wy(s) = (sI+ A)7'(sI-A)'B
= ($*I-AY)"'B
= (s*I-M)'B (3.5.33)
and where
U(s) =I+BTQ'(sI — A)™'B. (3.5.34)

It is easy to verify that U(s) is a paraunitary or allpass transfer function in the
sense that

U(s)UT (~s) = UT(—s)U(s) = I. (3.5.35)

Hence, we have

Wis)Wf(=s) = W)W, (~s)
= (s + A)7(sI — A)7'BBT(—sI — AT)™!(—sI + AT)™!
= Se(N)|a=—ss, (3.5.36)

which proves that the asymptotic model (3.5.27)-(3.5.28) does lead to a stable
spectral factorization of S;()). Finally, observe that the results of [82] imply that
(sI—A+BBTQ')"!B is the transfer function of a stable forward Markovian model
corresponding to the stable backwards Markovian model with transfer function
(sI — A)'B.

We now show that the stability of the matrix A’ implies that the Kalman filter
associated to (3.5.13)-(3.5.14) is stable. To do this we will need the following lemma
which is an adaptation of a result of Coddington and Levinson ([15], p. 314).

Lemma 3.1 Let
&= Az + f(t,z) (3.5.37)

where A is a real constant matriz with eigenvalues all having negative real parts.

Furthermore, let f be real, continuous for small |z| and t > 0, and such that

f(t,z) =o(|z]) as |z|—>0 (3.5.38)



CHAPTER 3. RECURSIVE ESTIMATION PROCEDURE 61

uniformly in t, t > 0. Then, the system (8.5.37) is exponentially stable in a
neighborhood of z = 0.

Proof

Let ¢(t) be a solution of (3.5.37). So long as ¢(t) exists, it follows from (3.5.37)
that

8(t) = e44(0) + [ " A9 £ (s, 6(s)) ds. (3.5.39)

Because the real parts of the eigenvalues of A are negative, there exists positive
constants K and o such that

le*| < Ke™ for t> 0. (3.5.40)
Hence, we have
t
()] < Kl + K [ e6=)£(s, 6(s))] ds. (3.5.41)

Given € > 0, there exists by assumption a § > 0 such that |f(t,z)| < €|z| /K for
|z| < &. Thus, as long as |¢(t)| < 6, it follows that

16(0)] < KI$(0)] +« [ "¢ §(s)| ds. (3.5.42)
This inequality yields
e”|¢(t)| < K|p(0)[e, (3.5.43)
or
[6(¢)| < K|$(0)]e"“~)* for ¢>o0. (3.5.44)

The above discussion now implies that if initially |¢(0)| < 6/K, then |6(t)] will

decay exponentially to zero.
od
Lemma 3.1 can now be used to prove the following result.

Theorem 3.5 The system defined by equations (8.5.18)-(3.5.14) is exponentially
stable.
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Proof

The proof follows by writing
Ay (r) = A"+ A'(r)
where A’ is defined in (3.5.29). By taking f(r,z) in Lemma 3.1 as
F(rsxe) = A(r)xe(r),

and noting that
lim A'x(r) =0,
r—oo

we obtain the desired result by invoking Lemma 3.1.
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(3.5.45)

(3.5.46)

(3.5.47)

oo

By using Theorem 3.5 we can state and prove the main result of this section.

Theorem 3.6 The Kalman filter associated with the model (3.5.13)-(3.5.14) is

asymptotically stable. Furthermore, the error covariance associated with the nor-

malized process Xi(r) converges to a non-negative definite matriz P as r tends to

infinity, where P is the solution of the algebraic Riccati equation
0=A'P+PA" + BBT - PCTV-ICP,
where the matriz A' is defined in (3.5.29).

Proof

The result follows by direct application of Theorem 4.11 of [37].

(3.5.48)

oo
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B Discussion

The normalized models (3.5.8)-(3.5.9) and (3.5.13)-(3.5.14) that we have ob-
tained in this section involve the state transformation Ti(r) of (3.5.2) and a nor-
malization procedure which consists in multiplying all processes by the gain r/2,
Note that the transformation T(r), its inverse T} !(r) and the normalization gain
r'/2 blow up as r tends to infinity. (The transformation T} (r) and its inverse Ty !(r)
blow up as r tends to infinity because of the singularity of the matrix functions
It(Ar) as r tends to infinity.) However, the normalized processes that appear in
(3.5.8)-(3.5.9) and (3.5.13)-(3.5.14) are well-behaved and have a finite variance as
r tends to infinity. In fact, by using the asymptotic forms of Ki(Ar) and I;(Ar)
as r tends to infinity (cf. (3.5.18)-(3.5.19)) and using equation (3.5.1), it can be
shown that the process xi(r) has a variance that tends to zero as r~! as r tends
to infinity. Furthermore, recall that the intensity of the noise processes uy(r) and
vk(r) is also proportional to r~!. Hence, the variance of all the Fourier coefficient
processes tends to zero as r~! as r tends to infinity. This is precisely the reason
why we have to keep a very large number of terms in (3.2.10) to obtain meaningful
results as r tends to infinity. Note that this also implies that all the normalized
processes are well-behaved with variances and noise intensities that tend to a finite
constant as r tends to infinity.

Observe also that the models (3.5.8)-(3.5.9) and (3.5.13)-(3.5.14) show that we
can interpret the Fourier coefficient process y;(r) as being the output of a cascaded
system which is driven by the non-singular noise processes #,(r) and 9x(r). The
cascaded system consists of a system which is well-behaved as r tends to infinity
followed by a gain stage with a gain of r~1/2, as shown in Fig. 3.2.

Finally, observe that the stability analysis for the Kalman filters that we have
presented in this section really concerns the Kalman filters associated with the
normalized Markovian model (3.5.13)-(3.5.14) which corresponds to the center block
in Fig. 3.3. The filtered estimates Xx(r) are actually obtained by feeding the
observations yx(r) into an input gain stage with a gain of r'/2 followed by the asymp-
totically stable Kalman filters associated with the Markovian model

(3.5.13)-(3.5.14) and an output gain stage with a gain of r~'/2, as is shown in
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u, (r), v (r)

—_—

System
(3.5.13)-(3.5.14)

)|y

— 7

yk(r)

Figure 3.2: A model for yj(r) for large values of r.

Kalman
Filter

Figure 3.3: Filtering procedure for large values of r.
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Fig. 3.3. Note that the overall Kalman filter based estimation procedure is well-

behaved according to the above discussion.

3.6 CONCLUSION AND EXTENSIONS

In this chapter we have obtained efficient recursive estimation techniques for
isotropic random fields described by non-causal internal differential realizations. By
exploiting the properties of isotropic random fields, we showed that the problem of
estimating an isotropic random field given noisy observations over a finite disk of
radius R is equivalent to a countably infinite set of decoupled one-dimensional
two-point boundary value system (TPBV) estimation problems for the Fourier
coefficient processes of the random field. We then solved the 1-D TPBYV estimation
problems using either the method of Adams et al. [2] or by using a Markovianization
approach followed by standard 1-D smoothing techniques. We have also studied the
asymptotic behavior of the Markovian models that we developed as the radius R of
the disk of observation tends to infinity, and we have shown that the 1-D Kalman
filters associated to these models are asymptotically stable The smoothing schemes
that we have developed result in a processing structure that is recursive with respect
to the radius r in a polar coordinate representation of the field.

Note that the approach that we have used in this chapter carries over to the
case where the source term u(-) appearing on the right hand side of (3.1.1) is not
spatially white but has a covariance function which is invariant under rotations only.

In particular, it applies to the case where the field u(-) has a covariance function of
the form

E[u(u"(3)] = Ki(r,s)Kz(0 - ¢)
= Ki(r,s) Y axe*(®-4) (3.6.49)

where Ki(r,s) is a positive definite function of the variables r and s which is
assumed to have a finite dimensional state-space realization. In such a case the noise
process u(-) has a Fourier series expansion with uncorrelated Fourier coefficients. By
substituting the Fourier series expansion of u(-) into (3.1.1) we find that the field z(-)
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has also a Fourier series expansion with uncorrelated coefficients. Hence, the 2-D
estimation problem for the field z(-) can be reduced to a countably infinite number of
1-D estimation problems for its Fourier coefficient processes. Note however that in
such a case the TPBV model (3.2.11)-(3.2.13) describing the 1-D Fourier coefficient
processes has to be properly augmented to account for the fact that the processes
uk(r) have covariance functions a;Ki(r,s) and must be realized as the output of a
1-D dynamical system driven by white noise.

The approach presented in this chapter can also be used in the case where
the matrices A, B and C of (3.1.1)-(3.1.2) are functions of the polar coordinate
variable r only. Again in such a case, the TPBV model (3.2.11)-(3.2.13) has to
be properly modified to account for the r dependence of the matrices A, B and
C. However, our method fails when the matrices A, B or C are allowed to be a
function of the angular coordinate variable #, and when the source term u(-) has a
covariance function which is not invariant under rotations. Since this latter case is of
importance in a number of applications (e.g. in ocean acoustics) where the source
term u(-) is often homogeneous with a 2-D power spectrum that has an angular
dependence only in the wave-number plane, alternative estimation approaches have

to be developed. Chapter 7 discusses this case in more detail.
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APPENDIX 3.A

In this chapter, we make frequent use of the matrix modified Bessel functions of
the first and second kinds, Ix(Ar) and Ky (Ar). These functions are a generalization
of the corresponding scalar modified Bessel functions, and they satisfy the matrix

differential equation

(I,‘(d‘i—:2 + %dir - ’:—:) — AYF(r) = 0 (3.A.1)
with the limiting forms

Li(Ar) ~ (ks)-l(%)* (3.4.2)

Ko(Ar) ~ In(Ar) (3.A.3)

Ki(Ar) ~ @(%)"‘, k>1 (3.A.4)

as r tends to zero, and with the asymptotic forms

Ii(Ar) ~ (2mAr)~3eAr (3.A.5)
Ki(Ar) ~ (27’4")-%5/*' (3.A.6)

as r tends to infinity. Thus I;(Ar) and K, (Ar) are regular at r = 0, and as r tends
to infinity, respectively.

Bessel functions have a number of useful properties which are listed in [7].
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APPENDIX 3.B

In this appendix we show that the boundary condition for the process z(7)
given in Theorem (3.3) is independent of the noise inside the disk Dg, where
Dr = {f: r < R}, and that this boundary condition leads to a well-posed
problem. From Green’s identity, we have

[, CEAUY? - 47)2(3) — (IV* - 4)G(F, D)a() 5 =
/P[G(F,é‘)%z(éj - (%G(?,é'))z(é’)] dl (3.B.1)

where 7 € Dg, G(,3) = ;- Ko(A|F—35]), and where 2 denotes the normal derivative
with respect to the curve ' = {#: r = R}. Here, dl is an element of arc length
along I'. Equation (3.B.1) implies that

z(7) = — /D _G(F,5)Bu() ds+ [r [G(?,E')%x(é) - (%G(F,é’))z(é‘)] dl. (3.B.2)

However, from (3.1.5) z() can be expressed as
z(F) = — / G(F,3)Bu(3) d5 — / G(F,5)Bu(3) d5 (3.B.3)
Dp D:Z

where D, denotes the complement of Dy in R2. Hence, we conclude from (3.B.2)
and (3.B.3) that

oa() = [16(7,9)522(3) ~ (G el (3.B.4)
- /D _G(7,3)Bu(3) s (3.B.5)

and the above identity can be used to specify a boundary condition for z(¥) which
is independent of the noise inside the disk Drg. Specifically, ®z(R, ) depends only
on the noise u(7) outside the disk Dg, and is therefore independent of the noise
inside Dg. Let

B(R,6) = ®g(R,6). (3.B.6)
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By taking the expression (3.B.5) into account, and using the expansion [7]

Ko(AlF—3)) = ; Ii(Ar<) Ki(Ars) cos(k(8 — ¢)) (3.B.7)
where 7 = (r,0), § = (s,4), r< = min(r, s) and r» = max(r, s), we obtain
B(R,0) = — kf:m L(4r) [ Ki(43)Buy(s)s ds ¥, (3.B.8)
where .
u(r) = - /o " u(r,0) 7 dp. (3.B.9)

Since the random variables ux(s) and w(s) with k # [, are independent zero-mean

white Gaussian noise processes of intensity I /27s , it follows that

E[8(R,0)] = o, (3.B.10)
E[ﬂ(R’a)ﬂT(Ra¢)] = Hﬂ(R;0—¢)
= Y L(AR)L, (R)IT(AR)e™o-9),

k=—o00

(3.B.11)

where II,,, (R) is given by (3.1.35). Then, as indicated in Theorem (3.3), equation
(3.B.5) together with (3.B.10) and (3.B.11) can be used to specify a boundary
condition for the 2-D field z(7) in terms of the boundary process 8 (R, 9).
To show that the boundary condition (3.1.32) leads to a well-posed problem,
note that (3.B.4) implies that ®z(7) satisfies
(InV?— A%)®p(F) = 0, for7e€ Dy (3.B.12)
®r(R,0) = B(R,0). (3.B.13)
Let Gr(F,5) denote that Green’s function corresponding to the system (3.B.12)-
(3.B.13). Then Gg(r,5) obeys the equation
(I.V? — A*)GR(7,3) = —Lé6(F - 3), (3.B.14)

for 7,5 € Dg, with the boundary condition

Gr(R,5) =0 for ReT. (3.B.15)



CHAPTER 3. RECURSIVE ESTIMATION PROCEDURE 70

Now using Green’s identity, we obtain
fd . "
2x(7) = - [ (5= Ga(F,9)B(H) al. (3:B.16)
Then, combining relations (3.B.3), (3.B.4) and (3.B.16), z(7) can be expressed as
=)=~ [ G(FaBuE) di - [(Zcai )8R a (3.B.17)
Dpg ’ r on ’ ’

which shows that the boundary value problem for z(7) is well-posed.




Chapter 4

THE CYLINDRICAL HARMONICS
RETRIEVAL PROBLEM

In Chapter 3 we have considered recursive estimation techniques for isotropic
random fields. In various applications, e.g. in radar [46], sonar [6], image
processing (85| etc., one is interested instead in estimating the power spectrum
of an underlying random field. For example, in geophysical applications and in
ocean acoustics knowledge of the frequency-wave-number power spectrum of the
background noise field is important for studying the performance of optimal array
processing schemes [13]. Spectral estimation techniques have also been applied to
the problems of processing electroencephalographic data monitored via an array of
scalp electrodes [25], and of reconstructing unknown radio brightness distributions
in radio astronomy [85]. Several multidimensional spectral estimation methods
(see Chapter 1 and [47] for references and discussion) have been developed in the
past and have been applied to the above mentioned problems. These techniques
can certainly be used to estimate the frequency-wave-number power spectrum of
isotropic random fields. However, these methods are very general and do not
attempt to exploit any special structure of the power spectrum to be estimated
(i.e. they do not make explicit use of isotropy).

In this chapter and in the next one, we develop two spectral estimation methods
which are specifically adapted to isotropic random fields. In particular, we present

in this chapter a new high resolution spectral estimation method for a class of 2-D
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isotropic random fields that is often used to model some types of background noises
in both geophysics and ocean acoustics. Our algorithm uses the special structure of
the covariance functions of isotropic random fields in this class. The specific class of
2-D isotropic fields that we consider corresponds to fields whose covariance function
can be modeled as a weighted sum of cylindrical harmonics. The term cylindrical
harmonics is used in this context to denote a radially symmetric function f (¥) of the
form Jy(Axr) where A, is a fixed two-dimensional “cylindrical frequency” measured
in radians per unit distance. Such covariance functions arise in geophysics whenever
the background noise field consists of either fundamental-mode, or higher mode,
Rayleigh waves propagating uniformly from all azimuths simultaneously [13]. The
covariance function of the “circle noise” [5] in ocean acoustics is also of this particu-
lar form. Note that the two-dimensional Fourier transform of a cylindrical harmonic
is radially symmetric in the wave-number plane and consists of a cylindrical impulse
at a radial frequency of )\, radians per unit distance (i.e. the Fourier transform is
a 1-D sheet of impulses concentrated on a circle of radius Ax). Hence, our problem
is to determine the number, location and amplitude of the cylindrical impulses in
- the wave-number spectrum of an isotropic field. This problem differs from the one
which was investigated by Lang and McClellan [38] and by Wax and Kailath (84],
who extended Pisarenko’s method [58] and the MUSIC method [73],9] respectively,
and used them to estimate power spectra which are equal to a weighted sum of

multidimensional point impulses.

4.1 MOTIVATION AND PROBLEM STATEMENT

Array processing is a popular technique for solving estimation problems involv-
ing propagating waves. Such problems arise in geophysics and in ocean acoustics,
among other fields. Arrays of receivers often work against a background noise
field. Knowledge of the frequency-wave-number power spectrum of the background
noise field is important for studying the performance of optimal array processing
schemes [13]. In many applications, the medium in which the waves of interest

are propagating supports surface waves; for example Rayleigh and Love waves or
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internal ocean waves. In such applications, the background noise is often modeled
as consisting of a large number of independent waves propagating from all az-
imuths simultaneously with the same velocity ¢ m/sec and with the same frequency
fo Hertz. The frequency-wave-number power spectrum of such a background noise

has the form [13],[5]

(A — Xo)
A H

where C is a positive constant and where Ao = 27 fo/c is the wave-number of the

S(w:X) =2rC (4.1.1)

background noise in rad/m. A background noise that has a frequency-wave-number
power spectrum of the form (4.1.1) is called a circle noise in [5] and has a temporal
frequency spatial correlation function (i.e. the inverse Fourier transform of S(w: X)
with respect to X) of the form

K(w:7) = CJo(hor). | (4.1.2)

Observe that K (w : 7) is a cylindrical harmonic. In some situations, the background
noise can be a superposition of a number L of circle noises of different wave-
numbers, and one is then interested in estimating both the cylindrical frequencies
corresponding to the circle noise wave-numbers A; and the cylindrical harmonics
amplitudes C) for 1 < ! < L, in order for example to evaluate the performance of
any processing array which is to be used in the presence of such a background noise
field.

In other situations, one might be interested in finding the propagating surface
modes that an isotropic medium of interest can support. In this case, one can excite
the medium with a large number of independent wideband directional sources unj-
formly distributed over the circumference of a circle whose radius is large compared
to any wavelength of interest, and all radiating towards the center of the circle.
One then measures the response of the medium close to the center of such a circle.
If the isotropic medium can support only a finite number of wave-numbers then
the resulting waves will have a frequency-wave-number power spectrum of the form
(4.1.1).

In all of the above situations, there is a need to estimate isotropic covariance

functions that are equal to a weighted sum of cylindrical harmonics. This is the
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problem that we consider in this chapter. We shall assume that we are given some
noisy measurements y(7) of a Gaussian isotropic random field () whose covariance

function is of the form L
K(r) =) PJy(\r), (4.1.3)

=1
or equivalently whose power spectrum is of the form

L
- A
S(A) = 213,5(’\—‘). (4.1.4)
=1 A
Specifically, we assume that measurements y(¥) are made on a finite set of concentric

circles of radii {r; : 1 < ¢ < I}, and that y(r;,0) is given by
y(ri,0) = 2(ry,0) + n(r;,0), 0< 6 < 2r. (4.1.5)

In (4.1.5) the observation noise n(r;,) is uncorrelated with 2(¥) and is a zero-mean
Gaussian white noise process of intensity o? in the discrete radial coordinate r; and

the continuous angle coordinate 9, i.e.

E[n(r,0)] = o, (4.1.6)
Eln(ri,0)n(r;,4)] = 02%’5(0-@. (4.1.7)

Our objective is to solve the cylindrical harmonics retrieval problem, i.e. to simulta-
neously estimate the measurement noise power o2 and to reconstruct S (A) by finding
the cylindrical harmonics powers P, and the cylindrical harmonics frequencies ;.
Note the parallel between the cylindrical harmonics retrieval problem that we
have described above and the 1-D harmonic retrieval problem where one is interested
in estimating a stationary covariance function that is equal to a weighted sum of
cosine functions. In the 1-D case, the objective is to estimate both the location
and amplitude of a number of 1-D impulses in the frequency domain while in the
2-D case the goal is to find the location and amplitude of a number of cylindrical
impulses in the wave-number plane. It will turn out that the algorithm that we
propose in the next section for solving the cylindrical harmonics retrieval problem
is very similar in spirit to 1-D harmonic retrieval procedures [73], [9] based on an

eigenanalysis of a covariance matrix, even though our algorithm uses samples of the
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non-stationary covariance function of the zeroth-order Fourier coefficient process
corresponding to the measurements y(7).

Finally, observe that the harmonic retrieval problem can be solved by using
any of the high resolution 2-D spectral estimation methods. As mentioned earlier,
these methods are very general and do not exploit any special property of the
power spectrum to be estimated. In comparison, our procedure takes explicitly into
account the isotropy property of y(7), as well as the special structure (4.1.4) of the
spectrum that we want to estimate.

4.2 THE EIGENSTRUCTURE APPROACH

In one-dimensional signal processing, several eigenstructure methods have been
proposed to solve the 1-D harmonic retrieval problem, i.e. the problem of estimating

covariance functions of the form
L
r(i,7) = 026.-,,- + E Py cos(27 fi(¢ — ) At), (4.2.1)
=1

where & ; is a Kronecker delta. These techniques require an eigenanalysis of the
autocorrelation matrix R = [r(¢, 7). In particular, Pisarenko’s method [68] uses the
value of the smallest eigenvalue of R as an estimate of the noise power o2. The loca-
tions of the frequencies f; are then determined by finding the zeros of a polynomial
whose coefficients are the elements of the eigenvector corresponding to the smallest
eigenvalue. The disadvantage of this method lies in the fact that, as the size of the
matrix R grows, (a necessary feature for resolving closely spaced frequencies), the
number of close eigenvalues corresponding to the white noise component of the signal
becomes large, leading to an ill-conditioned eigenvector determination problem (86].
To overcome this problem, Schmidt [73] and Bienvenu and Kopp [9] noted that the
computation of the subspace spanned by the eigenvectors corresponding to the
set of smallest eigenvalues is much less sensitive to perturbations in the entries
of the matrix R, than the computation of individual eigenvectors. The methods
they proposed use the whole eigenspace associated with the cluster of smallest

eigenvalues to estimate the frequencies of model (4.2.1). In this section, we shall
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develop an algorithm for solving the cylindrical harmonics retrieval problem which

is very similar in spirit to those of Schmidt and Bienvenu and Kopp.

A Mathematical Theory

In the remainder of this section we shall assume that we are given a finite
number of samples {ko(r,r;) : 1< 4,5 < n} of the covariance function of the zeroth-
order Fourier coefficient process Yo(r) corresponding to the measurements y(r:, 0)
of (4.1.5). A procedure for estimating ko(ri,r;) from the given measurements will
be presented in the next section. Note that under the assumptions of Section 4.2
(see (4.1.3)-(4.1.7)), ko(r, ;) is of the form

L 2 6. .
ko("c',"j) = ZHJo(/\zT.')Jo()qrj) + ;—ﬂ_i (4.2.2)
=1

T

The first step in our algorithm is to construct a symmetric matrix out of the given
sample values of koy(r,s). Denote by ki;

k,'j = ,/r'-r,-ko(r.-,r,-). (4.2.3)

Note that k;; is a normalized version of ko(ri,7;). The normalization is introduced
here to make the measurement noise intensity constant instead of inversely pro-
portional to r; (see (4.2.2)). This will enable us to solve the cylindrical harmonics
retrieval problem by performing an eigenanalysis of the normalized zeroth order
covariance matrix R = [k;;]. In particular, note that the matrix R can be written

as
2

o
2

where S is an n X n symmetric matrix with entries

R=8+ —In, (4.2.4)

L
ED> VT Bildo( M) Jo (). (4.2.5)
=1
Furthermore, it is clear from (4.2.5) that S can be decomposed as

S =cDCT, (4.2.6)
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where D =diag{P} is an L x L diagonal matrix, and where C is an n x L matrix
with entries

ci; = \/rido(Ajr:). (4.2.7)
In the sequel, we assume that C has full column rank. Hence, the rank of S is equal
to min(n, L). This key observation will allow us to recover both the measurement
noise power o? and the cylindrical harmonics frequencies A; by performing an
eigenanalysis of the matrix R.

To estimate the noise power o2, we note that if n > L, then the (n — L) smallest
eigenvalues of R are exactly equal to o2 /27. Hence, the measurement noise power
can be computed as 27y, where i, is the smallest eigenvalue of R.

The location of the cylindrical harmonics can be determined by observing that if
¥Ym = [ym(7)], 1 < m < (n— L), is an eigenvector of R corresponding to the repeated
eigenvalue 0?/2m, then

S¥m =0. (4.2.8)
Equation (4.2.8) implies that
L n
Y Po/rido(Nr) > VTido(Airi)ym(7) =0, Vi. (4.2.9)
=1 i=1
If we denote by f,,(\) the quantity
fm(A) =D Vrdo(Ari)ym (4), (4.2.10)
=1
then equation (4.2.9) is equivalent to
fm(Al)
co| =0, (4.2.11)
fm(AL)
where CD has full rank, so that we must have
fa(M) =0 (4.2.12)

for 1<m <n-—Land1<!< L. Hence, the cylindrical harmonic frequencies );

appearing in (4.1.3) must be the roots of the equation

fm(A) = 0. (4.2.13)




CHAPTER 4. THE RETRIEVAL OF CYLINDRICAL HARMONICS 78

However, equation (4.2.13) is not useful as a practical way of computing the values of
the cylindrical frequencies. The roots of (4.2.13) are very sensitive to perturbations
in the entries of the matrix R because the coefficients of (4.2.13) come from a single
eigenvector associated with the smallest eigenvalue of R. To avoid this problem, we
can use the whole eigenspace associated with the smallest eigenvalue of R, and take

our estimates of the cylindrical frequencies to be the roots of the equation

n—-L

2 fa=o. (4.2.14)

m=1
Finally, to compute the amplitudes P, of the cylindrical harmonics, we use the
fact that
L o?

VTitiko(ri, i) = IZ; VTP Jo (M) Jo(Nrj) + g-biis 1<i,j<n. (4.2.15)
Because of the symmetry of R, there are only n(n + 1)/2 identities of the form
(4.2.15). By properly scanning the indices 7 and J, these n(n + 1)/2 identities can
be written in matrix form as

' k = Ap (4.2.16)

where the vectors k and p = [P] are of size w X 1 and p X 1 respectively, and
where A is a matrix of appropriate dimensions. The estimated cylindrical harmonics
amplitudes are then taken to be equal to the entries of the optimal solution p* to
(4.2.16), i.e. the one that minimizes the Euclidean norm of the error ||k — Ap||.
Note that it is well known that p* is given by the equation (78]

p’' = (ATA)1ATk. (4.2.17)

B Numerical Implementation

The eigenvalues and eigenvectors of R can be computed numerically by first
reducing the matrix R to tridiagonal form by means of Householder transformations
and then using the QR algorithm to generate the eigenvalues. The eigenvectors of R
can be computed by saving and then multiplying together the transformations used

in the first step. The above procedure has been implemented as part of a singular
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value decomposition routine available through Linpack [17] and was found to be
numerically robust and highly accurate. Its only deficiency lies in its complexity; it
requires O(n®) operations where n is the size of the square symmetric matrix R.

In practice, due to inaccuracies in the estimated values of k, (ri,74), the computed
smallest eigenvalues of R are not all exactly equal, and the noise power has to
be computed as the average of the (n — L) cluster of smallest eigenvalues of R
Furthermore, the separation between the “large” eigenvalues of R and the “small”
eigenvalues of R is sometimes not well marked and it is difficult to determine the
exact number of harmonics in the given zeroth order Fourier coefficient covariance
data. In this case statistical methods can be used to determine the number of
cylindrical harmonics. (See [83] for a discussion of how statistical methods can be
used to determine the number of signals in the one-dimensional case.)

The search for the cylindrical harmonics is done by plotting
v(A) =1/ X525 f2(X), where fn()) is defined in (4.2.10). The roots of equation
(4.2.14) correspond to peaks of v()). This step is numerically robust and poses no
problems.

Finally, the estimation of the amplitudes of the cylindrical harmonics via equa-
tion (4.2.17) is done by performing a QR decomposition of the matrix A. The total
number of operations involved in this step is of the order of l(ille 3 , where
L is the number of harmonics to be estimated and 5(”—“1 is the total number of

correlations available.

C Summary

In summary, given sample values of the covariance function ko(ri,7;) corresponding
to the zeroth-order Fourier coefficient process associated with the measurements
y(7) of (4.1.5), the cylindrical harmonics retrieval problem can be solved by per-
forming the following steps:

1. For a suitably large n, determine all of the eigenvalues and eigenvectors of the
n X n covariance matrix R obtained from the normalized sample values of the

zeroth order Fourier process covariance function. The noise power is equal to
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27m, where [ is the average of the (n — L) cluster of smallest eigenvalues of
R. The number L of larger eigenvalues is equal to the number of cylindrical

harmonics.

2. Let fim(A), 1 < m < n— L, be the functions given by (4.2.10) and which are
specified by the eigenvectors y,, corresponding to the (n — L) smallest eigen-
values of R. Determine the roots of equation (4.2.14) by plotting
v(A) =1/ f2()). The computed roots are the estimates of the values of

the L cylindrical frequencies in (4.1.3).

3. Using equation (4.2.17), determine the amplitudes {P,: 1 <! < L} of the L

cylindrical harmonics.

The next section examines the problem of obtaining unbiased and consistent esti-

mates of ko(7;,7;) from the given field measurements.

4.3 ESTIMATION OF THE COVARIANCE FUNC-
TIONS

The algorithm that we presented in the last section is based on the knowledge
of ko(ri,;), the covariance function of the zeroth order-Fourier coefficient process
corresponding to the measurements y(7). However in practice, one is given the mea-
surements themselves rather than ko(ri,r;). In this section, we present an unbiased
and consistent procedure for estimating the non-stationary covariance functions
kn(ri,r;) from the measurements. This procedure is well suited for the sampling
geometry that we introduced in Section 4.2, where the isotropic random field of
interest is measured along a discrete set of concentric circles (see the discussion
preceding (4.1.5)).

A Theory

Let us start by assuming that measurements of the field y(7) are available at
all points inside the disk Dg. = {F: 0<r < R*}. Then to estimate kn(ri,r;), we

R eemmee G e R Y
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can use a two step procedure. In the first step we estimate K (r) using the given
data. In the second step we substitute our estimate of K (r) into (2.1.10) to obtain
an estimate of k,(r;,r;).

K (r) can be estimated by using a simple extension of the 1-D techniques that
were developed to estimate the covariance function of ergodic stationary processes.
Observe that along any line ¢ = ¢, in a tomographic coordinate system!?, y(7) is
stationary. Hence, given the measurements {y(t,¢0) : —R* <t < R*} along this

line we can estimate K (r) using a simple extension of the 1-D techniques as

e
K(r:¢o) = R*zf y(t, do)y(r +t, o) |t dt. (4.3.1)

Since measurements of y(7) are assumed to be available all over the disk Dg-, we
can compute K (r : ¢o) for all ¢g, 0 < ¢ < 7, and take K (r) to be the average of
the K (r : ¢o) over all ¢o. In other words, we can estimate K(r) as

K@) = e /R. ds /21r disy(s,0)y(r +s,0). (4.3.2)

Note that we have used the weight function w(t) = [t| in (4.3.1) to guarantee that
(r) corresponds to a spatial average.

Next, we can use K (r) to obtain an estimate of k,, (ri,7;) by simply substituting

K(r) for K(r) into (2.1.10). Thus, we take as our estimate of ky(r;, r;) the quantity

fen(riyry) = g-/o " do K((r2+ r? — 2r;r; cos 0)'/?) cos n. (4.3.3)

Note that according to (4.3.3) one needs to estimate K (r) for 0 < r < 2R* in order
to be able to estimate k,(r;,7;) for 0 < ri,r; < R*.

Let us now study the unbiasedness and consistency properties of the estimates
(4.3.2) and (4.3.3). It is a simple matter to show that K (r) is an unbiased estimate
of K(r). Equation (4.3.2) implies that

a 1 R 2x
E[K(r)] = WR*2/; ds A df s K(r)

= K(r), (4.3.4)

1A tomographic coordinate system (¢, ¢) is a modified polar coordinate system where ¢t takes both
positive and negative real values, and where ¢ varies from 0 to .
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which proves that K (r) is indeed an unbiased estimate of K (r). Furthermore, it
can be shown that K(r) is a consistent estimate of K () under the assumption that
the underlying random field is Gaussian. The proof of this fact uses a number of
properties of the Bessel functions and can be found in Appendix 4.A.

To show that kn(ri, ;) is an unbiased and consistent estimate of kyn(ri,r;), we
note that (2.1.10) and (4.3.3) imply that k,(r;,r,) and & n(ri,7;) are related linearly
to K(r) and K (r) respectively. Hence, it follows immediately from the unbiasedness
and consistency properties of K (r) that kn(ri,7;) is an unbiased and consistent
estimate of kn(r;,7;). Thus, by using (4.3.2) and (4.3.3) we are able to obtain an

unbiased and consistent estimate of the non-stationary covariance function k, (74, ri)-

B Numerical Implementation

In practice we are given the values of the field y(¥) at discrete points
{(ri,0;) : 1<i<IL1<j< J}. Let us assume for simplicity that r; = ;A
where A is a positive number, and that 0; = (5 — 1)27/J. The estimate K(r) can
be computed by approximating the 2-D integral (4.3.2) with a rectangular rule in
the radial coordinate s, and with a trapezoidal rule in the angular coordinate 6 as

I J
R08) = 5732 3 ivi, G- DT+ 086G - 02, sy

The estimated covariance k, (%, 7) can then be computed by similarly approximating

the integral (4.3.3) with a trapezoidal rule as

fen(ly, 1) ~ E K((13 +12 — 2Lyl cos((5 — 1)—))1/2) cos(n(s — 1)—). (4.3.6)

J =
Note that to compute k,(l1,1;) via (4.3.6) we may need the value of K(-) at points
not equal to some multiple of A. However, if A is chosen small enough, we can
interpolate the values of K (r) at the required abscissas from the values of & (r) at the
points r = kA using any of the known interpolation schemes. In our experiments we
used a linear interpolation procedure. Better, but computationally more expensive

ways of approximating the integrals in (4.3.2) and (4.3.3) can be found in [16].
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C Example

We now illustrate the behavior of our estimation procedure for the case where
n = 0 with an example. The example clearly indicates the fact that as more and
more data is available the estimates that we get become better and better. This is

to be expected since our estimators are consistent.

Example 4.3.1

In this example we used the method of [76] to generate an isotropic random field
with a covariance function consisting of two cylindrical harmonics at 0.1 rad /m and
0.3 rad/m. The amplitudes of both harmonics were taken to be equal to 10 Watts.
The field was generated on a circular polar grid at the points (0.14, (j — 1) 2%). We
then added to this field a 2-D white noise field of intensity 3 Watt.m?. Thus, over
the rectangular grid r = 7, s = 5 the covariance function of the zeroth-order Fourier

coefficient corresponding to the resulting field has the form

ko(z.,j) = 10-]0(0.11).]0(0.1]) + 10J0(0.32)J0(0.3])

3
+ %5.-,,-. (4.3.7)

The corresponding power spectrum is shown in Fig. 4.1. Using the values of the
resulting field over the disk 0 < r < 30, we used (4.3.10) to compute K (IA) for
A = 0.1 and for 0 < ! < 200, and then used these values to compute ko(z, 5)
for 1 < 4,7 < 10 via (4.3.11). The estimated covariance function K (1A) that
we computed is plotted in Fig. 4.2 together with the exact covariance function.
Fig. 4.2 shows that the relative error in the estimated values of K (IA) was less than
2.2 percent for I < 10 and less than 130 percent for all . The corresponding relative
error in the estimated values of ko(7,7) was on the average around 40 percent and
was equal to 246 percent in one case. By using the values of the field over the disk
0 < r < 100 we obtained the estimated covariance function K (IA) that is plotted
in Fig. 4.3. In this case, the relative error in the estimates K (IA) was less than
1.6 percent for ! < 10 and less than 70 percent for all /, while the relative error in the

estimated values of ko(7, ) was on the average around 30 percent and was still equal
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Figure 4.1: True spectrum for Examples 4.3.1 and 4.4.1.
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Figure 4.2: Plot of exact and estimated covariance functions for Example 4.4.1 when
observations are available over a disk of radius 30.
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Figure 4.3: Plot of exact and estimated covariance functions for Example 4.4.1 when
observations are available over a disk of radius 100.
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to 246 percent in one case. Note that as with any covariance estimation method
whether in one or two dimensions, one expects a degradation in performance as [
increases because of the reduction in the extent of spatial averaging that can be done.
This effect can clearly be seen in this example. Indeed, Figs. 4.2 and 4.3 show that
the large relative errors in the values of K (A) occur for large lags. Furthermore,
by comparing Figs. 4.2 and 4.3 we observe an increase in the range of lags over
which K (IA) can be estimated accurately when we expand the set of available data.
The overall improvement in the accuracy of our estimates when more data is used
in (4.3.10) is a direct result of the fact that our estimator is consistent and should
not come as a surprise. Note also that the improvement in the estimates of ko(7,7)
when more data is used is relatively smaller than the corresponding improvement
in the estimates of K(/A) for large values of I. This seems to be due to the fact
that the relative improvement in the accuracy of the estimates of K (1A) for small
! is small and that these values tend to be used repeatedly in computing I::o(z', 7).
Furthermore, part of the inaccuracy of the estimated values of ko(z,7) is due to both
the approximation errors and the interpolation errors that occur in the process of
computing ko3, J) via equation (4.3.11). However, as we shall see in the next
section, the inaccuracy of the estimated values of ko(?,5) does not seriously affect

the performance of our cylindrical harmonics retrieval algorithm.

D Alternative Estimation Procedures

Other methods for estimating kn(ri,7;) can also be developed. For example,
one can imagine estimating k,(r;,r;) as a spatial average of the product of the
nth order Fourier coefficients 2,(r:;) and 2,(r,) computed with respect to different
origins. Specifically, if we denote by 2n(%; r;) the value of the nth order Fourier

coefficient process computed with respect to the origin #, e.g.

am(@in) = o= [ 2( + 7) i (43.8)
n 17 27[' 0 1 1) bl

where 7; = (r;,6;), then we can compute an estimate of kn(ri,r;) as

kn(ri,rj) = % LG(ﬁ; ri)zn (i 7;) 4, (4.3.9)
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where A denotes the area of the region A and where a* denotes the complex
conjugate of a.
Once more, it is a simple matter to show that I::,.(r.-, r;) is an unbiased estimate

of kn(ri,7;). Equation (4.3.9) implies that

1 2r 2x i .
: . El2(@ + 7)2( 4 7. 1e7085)
4W2A/Adu/; do; /0 do; Elz(i + 7:)2(@ + 7;) ]

= %/ﬂdﬁ' kn(riy ;)
= kn(r,-,r,-). (4.3.10)

Elkn(ri,rj)] =

The proof of the consistency of the estimator I::,,(r.-,r,-) under the assumption that
2(-) is Gaussian is more involved and can be found in Appendix 4.B.

In practice, it may be easier to estimate k,(r;,r;) via equations (4.3.2)-(4.3.3)
rather then via equation (4.3.9) because of the fact that (4.3.9) requires comput-
ing the Fourier coefficient processes zn(¥;7;) taken around different origins. The
numerical integration of highly oscillatory functions, such as the integrands in
(4.3.3) and (4.3.9), is a difficult operation that has to be implemented with some
care [16]. The method that we have presented in this subsection involves computing
a large number of such integrals per pair (r;,7;) (one for each 2, (%;7;)) whereas
the method of subsection 4.4.A requires computing only one such integral per pair

(ri,7;). Furthermore, the method of this subsection requires a much denser sampling
scheme.

4.4 EXAMPLES

The objective of this section is to illustrate some properties of the algorithm of
Section 3 with two examples. The first example uses the synthetic data generated for
Example 4.3.1 while the second example uses exact covariance values. Example 4.4.1
clearly displays the robustness of our procedure and its high resolution properties,
even when relatively inaccurate estimates of ko(7,7) are used as an input to our
method. Example 4.4.2 is meant to show the robustness of our algorithm in the

presence of modeling errors.
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Example 4.4.1

In this example we consider the data generated for Example 4.3.1 and use the
resulting estimates of ko(¢,7) as an input to our procedure. Recall that the exact
form of ko(%, 5) for the data of Example 4.3.1 is

ko(7,7) = 10J5(0.12)Jo(0.15) + 10J5(0.3¢) Jp(0.35)

3
+ %6;_1', (4.4.1)

Recall also that this corresponds to a signal with a power spectrum consisting of
two cylindrical impulses at 0.1 rad/m and 0.3 rad/m respectively, and which have
both an amplitude of 10 watts, i.e. the power spectrum of the signal is of the form
§(A—0.1)  §(A—0.3)

S(A) =10 10 .

Observe that the noise intensity in the data of Example 4.3.1 is 3 watts.m?. Thus,

the total noise power in the wave-number band [0,1] rad/m is only 0.25 dB lower

(4.4.2)

than that of either cylindrical impulse. The exact power spectrum of the observa-
tions (i.e. of the signal plus noise field) is shown in Fig. 4.1.

When we used the estimates of ko(?,7) , 1 < 4,5 < 10, which were computed in
Example 4.3.1 from the data inside the disk 0 < r < 30, we obtained the results
shown in Table 4.1 and Fig. 4.4.

Table 4.1 lists the eigenvalues of R. It is clear from this list that two eigenvalues
are considerably larger than the other ones and must therefore be associated with
cylindrical harmonics. However, there exists several intermediate eigenvalues which
might correspond to low energy harmonics. To determine whether this is the
case, we plot in Fig. 4.4 the function v()) formed with the eigenvectors of R
corresponding to its five smallest eigenvalues. Note that this means that our initial
guess for the number of cylindrical harmonics is five. From Fig. 4.4 we see that
v(A) has only two peaks corresponding to the presence of cylindrical harmonics
at 0.134 rad/m and 0.285 rad/m, so that the intermediate eigenvalues of R do not

correspond to low level harmonics. These intermediate eigenvalues can be attributed
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Figure 4.4: Plot of v()) for Example 4.4.1 when ko(3,7) is computed from the
observations inside the disk 0 < r < 30.




CHAPTER 4. THE RETRIEVAL OF CYLINDRICAL HARMONICS 91

to the fact that we have used noisy estimates of the covariance ko(7,7) as an input to
our algorithm. The five smallest eigenvalues of R correspond to an estimated noise
intensity of 2.50 watt.m?. Finally, the amplitudes of the cylindrical harmonics were
computed via (3.17) to be 10.29 and 9.69 watts respectively. Hence, the estimated
signal power spectrum is

S(A) = 10.296()‘_/\¢34) 9.696(—’\_/\0'i5). (4.4.3)

Note that our algorithm is quite robust since it performed well even though the
relative error in the estimated values of ko(¢,7) is relatively large, as was noted in
our discussion of Example 4.3.1.

When we used the estimates of ko(?,7) , 1 < 4,5 < 10, which were computed in
Example 4.3.1 from the data inside the disk 0 < r £ 100, we obtained the results
shown in Table 4.2 and Fig. 4.5. Table 4.2 lists the eigenvalues of R and Fig. 4.5
is a plot of v()). In this case, the estimated signal power spectrum that we find is
given by

S(A) =9.62

10.35

§(\ — ;).096) N (4.4.4)

8(A — 0.208)
—

The estimated noise strength using the values of the four smallest eigenvalues of R
(see Table 4.2) is 2.98 watt.m?. Note the improvement in the estimates in general,
and particularly in the location of the cylindrical frequencies. This improvement is
a direct result of the fact that we have used more accurate estimates of ko(7,7) as
an input to our algorithm. In fact, the performance of our algorithm is limited only
by the accuracy of the estimated values of ko(7,7). With the exact values of ko(7,7),
1 < 1,5 < 10, used as an input to our procedure, the computed eigenvalues of R
and a scaled-down version of the corresponding v(A) formed with the eigenvectors
corresponding to the five smallest eigenvalues of R, are shown in Table 4.3 and
Fig. 4.6 respectively. In this case the estimated noise intensity is 3 watt.m? and
the estimated signal power spectrum is exactly equal to the actual signal power
spectrum.

Finally, to demonstrate the high resolution property of our algorithm, we used
a conventional spectral estimation method on the estimated values of the field

covariance function K (r) that were computed in Example 4.3.1 using the data inside
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395.6348871
48.78233281
1.953576725
1.329499295
0.963524627
0.655533921
0.476865723
0.444997037
0.245708484
0.168982806

Table 4.1: Eigenvalues of R for Example 4.4.1 when ko(3,7) is computed from the
observations inside the disk 0 < r < 30.

470.6285589
73.75886486
1.966603612
1.321482724
1.079630800
0.825874114
0.717595417
0.545082122
0.416322808
0.217525026

Table 4.2: Eigenvalues of R for Example 4.4.1 when l::o(z', J) is computed from the
observations inside the disk 0 < r < 100.
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Figure 4.5: Plot of v() for Example 4.4.1 when ko(¢,7) is computed from the
observations inside the disk 0 < < 100.
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Figure 4.6: Plot of v()) for Example 4.4.1 when exact values of ko(s, j)are used.
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the disk 0 < r < 100. The conventional power spectral estimate was taken to be
equal to a weighted Hankel transform of the estimated field covariance function
K(r) [47]. The weighting function that we chose was of the form

w(r) = 2cos 5 — L /1— (%) 0<r<20, (1.4.5)
0 otherwise.
The Hankel transform of this weighting function is
JZ(10))
mijrﬂ (4.4.6)

and is positive for all frequencies. Hence, the expected value of the conventional
power spectral estimate obtained by using this window is guaranteed to be positive [47).
The computed estimate is shown in Fig. 4.7. Note that the conventional method
does not resolve the two cylindrical harmonics. This should not come as a sur-
prise since the resolution of conventional spectral estimation is always inversely
proportional to the spatial extent of the interval over which K (r), or its estimate,
is given, regardless of the choice of the window [47]. In our case an estimate of
K (r) was computed over the interval [0,20]. This implies that the resolution of any
conventional spectral estimation method is on the order of 0.3 radians /m, which is

much larger than the separation between the cylindrical harmonics of (4.5.2).

Example 4.4.2

In this example we demonstrate the robustness of our algorithm with respect
to modeling errors. Since we have already analyzed the effect of errors due to
inaccurate covariance estimates in Example 4.4.1, we shall use exact covariance
data in order to focus our attention on errors due to inaccuracies in the signal
power spectrum model.

Consider a signal power spectrum of the form

SO = 106(A —0.1) + 156(A —0.2) + 106('\ -0.3)

) ) )
+100(u(A — 0.4) — u(A — 0.3)), (4.4.7)

where u (1) is a unit step function. Note the presence in (4.5.7) of a relatively strong

unmodeled colored noise component whose total power is only 1.76 dB lower than
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Figure 4.7: Plot of the conventional power spectral estimate of Example 4.4.1.
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that of the strongest cylindrical harmonic. The measurement noise power o? is taken
to be 1 watt.m? corresponding to a total white noise power in the wave-number band
[0,1] rad/m which is only 6.7 dB lower than the power of the strongest harmonic.
Let us further assume that we are given exact values of ko(7,7) for 1 < 4,5 < 10.
The computed eigenvalues of the 10 x 10 symmetric matrix R = (Vi7ko(3, 7)] are
listed in Table 4.4. Examination of these eigenvalues reveals the presence of four
cylindrical harmonics, a fact that is confirmed by the scaled-down plot of the v(})
(Fig. 4.8) which is formed with the eigenvectors corresponding to the two smallest
eigenvalues of R.  In this example, the estimated measurement noise power is

1 watt.m? and the reconstructed signal power spectrum is found to be of the form

5(X —A0.104) + 15.10765 —Ao.zos)
(A —Ao.31) 13050 = ;).387).

S(A) = 10.95

+10.95 (4.4.8)

Note that the presence of a strong unmodeled colored noise component in the
signal power spectrum has introduced a small bias in the estimated positions of the
cylindrical harmonics, and has led to estimated cylindrical harmonics amplitudes
which are slightly higher than their true values. Note also the presence of a spurious
cylindrical harmonic at 0.387 radians /m in the reconstructed power spectrum given
by (4.5.8). This spurious cylindrical harmonic is solely due to the unmodeled colored
noise component. The fact that the unmodeled colored noise component gives rise
to a spurious cylindrical harmonic is reminiscent of what happens in the 1-D case,
since it was observed in [33] that 1-D harmonic retrieval methods which are based
on an eigenanalysis of the covariance matrix do produce spurious 1-D harmonics in
the presence of an unmodeled colored noise component.

The above two examples, and others, show that, overall, our algorithm is quite
robust, that it has a strong resolution property and that its accuracy is really limited

only by the accuracy of the estimated values of ko (3, 7)-
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446.8880110
66.36065499
0.477464780
0.477464780
0.477464780
0.477464780
0.477464780
0.477464780
0.477464780
0.477464780

Table 4.3: Eigenvalues of R for Example 4.4.1 when exact values of & (¢,7) are used.

732.4243282
99.73272777
0.827748745
0.160029111
0.159159233
0.159155971
0.159154672
0.159154011
0.159153889
0.159151870

Table 4.4: Eigenvalues of R in Example 4.4.2.
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Figure 4.8: Plot of v()) for Example 4.4.2.
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4.5 CONCLUSION

In this chapter, we have presented a high resolution spectral estimation method
for isotropic random fields with a covariance function equal to a weighted sum of
cylindrical harmonics. Such fields are often used to model some types of background
noise in geophysics and in ocean acoustics. The algorithm that we have obtained
takes maximal advantage of the symmetries implied by the special structure of
covariance functions which are equal to a weighted sum of cylindrical harmonics.
Our approach is similar in spirit to the 1-D spectral estimation methods based
on harmonic retrieval from an eigenanalysis of the covariance matrix. In the 2-D
isotropic context, the spectral estimate is determined by performing an eigenanalysis
of the covariance matrix of samples of the zeroth-order Fourier coefficient process
corresponding to the given noisy observations of the underlying field. We have
also discussed the estimation of this covariance matrix and presented examples to
illustrate the high resolution and robustness properties of our procedure.

In the next chapter, we present a new maximum entropy spectral estimation
algorithm for isotropic random fields. This algorithm can be used to estimate
power spectra of the form (4.1.1.). However, as will become clear in Chapter 5,
our maximum entropy spectral estimation algorithm is better suited for estimating
smooth power spectra. Furthermore, it requires the estimation of a number of the
nth order Fourier coefficient covariance functions kn(ri,7;). In contrast, the proce-
dure of this chapter is based on the knowledge of ko(rs,7;) only, and is specifically
designed to estimate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>