
February 1992 LIDS-TH-2092

Research Supported By:

Air Force Office of Scientific
Research
GrantAFOSR-F49620-92-J-0002

Offike of Naval Research
Grant ONR N00014-914-1004

National Science Foundation
GrantNSF9015281-MIP

Parallel Estimation on One and Two
Dimensional Systems

Darrin Taylor

February 1992 LIDS-TH-2092

PARALLEL ESTIMATION ON ONE AND TWO
DIMENSIONAL SYSTEMS

by

D. Taylor

This report is based on the unaltered thesis of Darrin Taylor submitted to the Department of
Electrical Engineering and Computer Science in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the Massachusetts Institute of Technology in
February 1992. This research was carried out at the M.I.T. Laboratory for Information
and Decision Systems and was supported in part by the Air Force Office of Scientific
Research under grant AFOSR-F49620-92-J-0002, Office of Naval Research under grant
ONR N00014-91-J-1004 and by the National Science Foundation under grant NSF
901528 1 -MIP.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

Parallel Estimation on One and Two Dimensional

Systems

by

Darrin Taylor

B.S. Massachusetts Institute of Technology (1984)
S.M., Massachusetts Institute of Technology (1987)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1992

� Massachusetts Institute of Technology 1992. All rights reserved.-

Author ..
Department of Electrical Engineering and Computer Science

February 4, 1992

Certified by ..
Alan S. Willsky

Professor, Electrical Engineering
Thesis Supervisor

Accepted by ...
Campbell L.Searle

Chairman, Departmental Committee on Graduate Students

Parallel Estimation on One and Two Dimensional Systems

by

Darrin Taylor

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 1992, in partial fufillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Parallel smoothing algorithms are developed for one and two dimensional systems.
The two-dimensional algorithms are completely general and readily extend to the
case of higher dimensions. These algorithms take advantage of the reciprocal nature
(Markovianity) of the processes, and Maximum Likelihood (ML) estimation philoso-
phy to partition a discrete two-dimensional field into subregions where local statisti-
cally independent filtering is performed resulting in locally optimal ML estimates of
local boundaries. Filtering is performed in a radial direction from the center of the
subregion out towards the boundary of the subregion. Subsequently an interprocessor
data exchange step follows where data with precise statistical interpretations are ex-
changed. Finally each subregion can be updated independently and in parallel, while
processing radially inward from the boundary of the subregion towards the center of
each subregion. This algorithm has a tree structure typical of divide and conquer
algorithms and is well suited for implementation on a hypercube architecture. In
addition this recursive implementation has the same structure as the Rauch-Tung-
Striebel Algorithm. Several smoothing algorithms are developed in one dimension
based upon the two-dimensional algorithms and more traditional algorithms suitable
only for one-dimensional smoothing are developed. Both the one and two-dimensional
algorithms have the property that the information communicated between processors
is the optimal estimate of the state of the process based on an appropriate set of
data. As a result a degree of fault tolerance in the smoothing algorithm exists. If a
processor is unable to produce the desired information due to failure, the informa-
tion computed by other processors has a statistical meaning sufficient to allow us the
option of computing the optimal estimate based solely on the available information.
Furthermore, it is a simple task to alter the algorithm to compute the estimate of the
system based on a predetermined subset of the data. This is called Limited Support
Estimation (LSE), and the parallel nature of the algorithms allow LSE schemes to
be implemented efficiently, speeding up our algorithm in cases in which some of the
data contributes only marginally to the accuracy of the smoothed estimate of a given
state. A trade-off between accuracy and time is established, and optimal partitioning
of the data is discussed. To aid in the analysis of the smoothing algorithms, general
recursive estimation algorithms and square root recursive algorithms are developed to

2

produce ML estimates which account for the cases of both perfect measurements and
states which are not completely estimable. Common recursive smoothing algorithms
such as the Mayne-Fraser and Rauch-Tung-Striebel algorithm are developed for''the
Separable Two Point Boundary Value descriptor Systems (STPBVDS). STPBVDS
are general acausal one-dimensional systems which are used to construct models of
two-dimensional systems with a radial time coordinate, and a state whose dimension
changes with time.

Thesis Supervisor: Alan S. Willsky
Title: Professor, Electrical Engineering

3

Acknowledgments

I like to thank Professor Alan S. Willsky for his patience, insight, and guidance

through all of this. Few can match is enthusiasm and insight.

Mrs. Clark how you knew I would come to this point is beyond me. Back in 1980

1 must have surely called you crazy, or thought so but here I am. Your confidence

has remained with me all along. Janie... thanks. I would not have started this if not

for you. I could not finish if not for you. It's so hard to say good bye to yesterday.

Thanks also to Lynda Jordan who told me that the difference between me and her

was just a matter of time.

Honorable mention: Rosalinda, Mark and Master Luke for being the closest thing

to family for me.

Cynthia... Great minds think alike!

Pnina and Adam for having been the closest thing to family for me.

Gloria thanks for being there every day.

Jeffrey H Lang thanks for your support and help.

Linda Nathan, thanks for your friendship and helping me to pursue some of my higher

interests. Norman Fortenberry Erastus

Jenneine

Janet Roberts Magwood

Captain Kenny G thanks for help to make MIT livable and providing the other point

of view. GrandDad

Darryl D Williams thanks for letting me steal you name! Robert

Mom & Dad.

Others: Susan and Marjorie, thanks for putting up with me. Thanks Julie Maria

Sierra for harassing me for 11 years. Thanks to Jennifer Nichole Sykes for harassing

me for the last year and a half. Vivian Kim Angela Perkins

Other others: Karl Wyatt Derek Washington Gallon, Isaac Kwame Sah Baidoo,

Ray E. Samuel, Jackie

4

Contents

I Introduction 13

2 Estimation 20

2.1 Maximum Likelihood Estimation . 20

2.2 Square-Root ML Estimation . 35

3 Two Point Boundary Value Descriptor Systems 45

3.1 Separable Two Point Boundary Value Descriptor Systems 46

3.2 Diagonalizability of STPBVDS's . 51

3.3 Markovianity of STPBVDS's . 59

4 Estimation of Separable Two Point Boundary Value Descriptor Sys-

tems 62

4.1 Machinery for Recursive Estimation 62

4.1.1 ML Recursive Estimation Lemma 62

4.1.2 Independent measurement ML Lemma 67

4.1.3 Updating ML Lemma . 69

4.2 Consequences of Lemmas 4.1 and 4.2 71

4.3 Maximum Likelihood Filtering . 73

4.3.1 Computational Complexity of the Filtering Equations 78

4.3.2 The prediction equation . 81

4.4 The Mayne-Fraser Smoother . 82

4.4.1 Computational Complexity of Mayne-Fraser Equations 84

4.5 Rauch-Tung-Striebel Algorithm . 85

4.5.1 Computational Complexity of the Backward Sweep 89

4.5.2 Inward-Outward filtering of TPBVDS's 91

4.6 Square Root Smoothing Algorithm 92

4.6.1 Introduction . 92

4.6.2 Square Root Forward Maximum Likelihood Filter 92

5 Parallel Smoothing for One-Dimensional Systems 97

5.1 Parallel estimation algorithm which uses the Partition Theorem . . . 105

5.2 Inward and outward recursions in a parallel smoothing algorithm . . . 108

5.2.1 Com plexity . 112

5.3 A Recursive Domain Decomposition Algorithm 117

5.3.1 Com plexity . 121

5.4 Method of Oblique Projections . 124

5.4.1 Com plexity . 128

5.5 Parallel ML Smoothing . 132

5.5.1 Com plexity . 141

5.6 Parallel ML Smoothing smoothing with Binary Tree Interconnections 143

5.6.1 Com plexity . 173

6 Parallel ML Smoothing for Two-Dimensional Systems 180

6.1 Introduction . 180

6.2 Local Processing for a Two-Dimensional Region 181

6.2.1 Computation of the system parameter for the 2-D STPBVDS 186

6.2.2 Interprocessor Communication for Two-dimensional smoothing 188

6.3 Com plexity . 205

6.4 Suboptimal Smoothing . 219

6.4.1 Suboptimal interprocessor communication 219

6.4.2 Suboptimal local filtering . 232

6.5 Com plexity . 237

7 Conclusion 245

6

i

7.1 Future Work . 249

7

List of Figures

5-1 partitioning of the data among processors 98

5-2 Parallel estimation in algorithm by Morf et al 106

5-3 Boundary Measurements from Neighboring Processors 122

5-4 This represents the system immediately after the local filtering which

starts at the center of each subinterval and ends at the boundary of

each subinterval has been performed. The the state of the system

has dimension 2n, and the local estimates produced by each processor

represents local estimates of the state. Linking the states together are

the remaining constraints. If neighboring states do not intersect then

the constraints are noisy and are a subset of the of the original set of

descriptor equations (5.1). Otherwise neighboring states intersect and

equality constraints exist (??) . 133

5-5 The interprocessor communication step consists of constructing two

filters which will provide a measurement of the boundary for a given

subinterval. The smoothed estimate of this boundary is constructed

from the local measurements and the two measurements provided by

the forward and backward filters . 134

5-6 Combining estimates at r, = ±k . 140

8

5-7 Each processor in the parallel algorithm in Section 5.5 produced bound-

ary measurements for its region which are communicated to neighbor-

ing processors. Each block represents a processor operating on a spec-

ified region and local boundary measurements are communicated to

neighboring processors using communication links such as the one in-

dicated by (a). In order to gain greater efficiencies local regions can

be grouped in clusters where one processor is responsible for obtaining

the boundary measurement for the entire region covered by a cluster of

processors. This processor can obtain this information from communi-

cation links (a), and (b). Finally all processors which are responsible

for obtaining the boundary information from a cluster of processors can

then communicate among themselves to produce the optimal bound-

ary estimate for each cluster. Then each cluster in parallel can work

to disseminate the optimal cluster boundary information to produce

optimal estimates of local boundaries. Finally the optimal boundary

information of each local boundary can be used by each processor in

parallel to update interior points of each subregion 144

5-8 Icon representing the combining of two neighboring estimates using the

dynamic constraint which links them 147

5-9 Computation of Processor #1 . 147

5-10 Using estimates of x(k2) and x(k3) to update x(ki) and x(k4) where

k3 = k2 + I- Specifically, the estimates i[k2l [ki, k2l], and ,�[k,31[k3, k4l]

are combined to produce the estimate of x(k2) and x(k3) given an

of the data denoted by i[k2 I [ki, k4j] and � [k3 I [ki, k4l] respectively. The

correlation between the estimation errors � [k, I [ki, k2l] , and � [k2 I [ki, k4l]

is then used to update � [k, I [ki, k4j] to the smoothed value given by

.i [k, I [ki, k411- This represents the basic building block for the algorithm

in this section . 149

5-11 Arriving at the smoothed estimate for the boundary of the entire region150

9

5-12 Additional boundary information in the form of the smoothed esti-

mates ��`(O) and ;i3(3) are combined with two estimates ,�[11[0,3]] and

�c[21[0,3]], which are represented by the large dots, to produce the

smoothed estimates ;�3(1) and ;�3(2). The dotted lined indicate the

flow of data which was used to construct the estimates �c[11[0,3]] and

;i[21[0,3]]. The additional boundary information can be obtained by

viewing the figure to be a part of an algorithm operating on a larger

set of data as in Figure 5-13 154

5-13 T = 7 . 156

5-14 Parallel algorithm for 16 data points 157

5-15 The dots represent the boundary of neighboring regions which win be

merged together in the measurement update step. Region #0 and

Region #1 will be merged together in into a region bounded by the

points s and K . 163

5-16 Regions are assigned to processors which are arranged with Hypercube

interconnections where processors whose label differ by one bit com-

municate directly with each other. With the above labelling scheme

the result of computations which involve a pair of processors is stored

with the processor whose label is obtained by removing the most sig-

nificant bit. For example, Processor 4 and Processor 12 after removing

the most significant bit from their labels can determine that the result

of computation based on data available to both processors win be left

with Processor 4 . 172

6-1 Nearest Neighbor Dependency . 182

6-2 Diamond ordering of the elements in X,(p). p E {O, 1, 2,31, it = I . . 183

6-3 Square ordering of the elements of X,,(p). p G 10, 1, 2, 31, it = oo . . . 184

6-4 Two ordered 'states . 189

6-5 Two non-ordered 'states . 189

10

6-6 A 2-D region is partitioned into squares. Each region is assigned a

cartesian coordinate . 190

6-7 The notation (fS1, S21, ftl, t2j)is used to refer to rectangles constructed

from the union of individual square regions. Similarly the boundary

for this region is denoted by X(f S1, S21, it, t2j) 191

6-8 The integer function O(ij,3). The shaded dot is the origin, (ij) =

(0, 0). This function orders the elements x(i, j) in the vector X(p). . . 194

6-9 Two neighboring regions for the Measurement Update step and the

dynamic constraints (which are shown by the arrows) required to merge

them .. 199

6-10 Constructing the boundary enclosing two regions from the boundaries

of two subregions X(s, t) and X(s + 1, t). The black dots represent

the boundary which encloses both regions which will be denoted by

X(f S' S + 11, t). The twelve dots which are enclosed by squares are the

elements of T(f ss + 11, t). T(Is, s + 11, t) are elements of the union of

X(s, t) and X(s + 1, t) but are not elements of X(Is, s + 11, t). - - . . 200

6-11 The black dots represent the boundary which encloses the two regions

which are merged together, X(f s, s + 11, It - 1, tj). The white dots

represents the remaining elements of the boundaries of the two original

regions whi ch will b e denot ed by T (I s, s + 1 1, I t - 1, t 1) 202

6-12 grayscale image of 56 x 56 estimation error covariance of state at p = 4 222

6-13 56 x 56 estimation error covariance of state at p = 4 showing the entries

greater than .01 . 223

6-14 grayscale image of .56 x 56 inverse estimation error covariance of state

at p = 4 . 223

6-15 56 x 56 inverse estimation error covariance of state at p = 4 showing

the entries greater than .01 . 224

6-16 grayscale image of 168 x 168 estimation error covariance of state at

p . 224

6-17 168 x 168 estimation error covariance of state at p = 11 showing the

- entries greater than .01

6-18 grayscale image of 168 x 168 inverse estimation error covariance of state

at p = 11 . 225

6-19 168 x 168 inverse estimation error covariance of state at p = 11 showing

the entries greater than .01 . 226

6-20 Maximum singular value plot for the difference between inverse esti-

mation error covariance for the state at different radii and the approx-

imation to that inverse estimation error covariance based on setting

values smaller than .01 to 0. Plot starts at p = 2 227

6-21 The integer function 0 as a function of i and j for p = 3. Here the

elements are ordered so that we may perform our processing moving

outward from the center of one leg and eventually terminate moving

inward on the opposite leg of the square boundary 228

6-22 The inverse estimation error covariance at p = 11 after the elements

have been reordered. Large elements of the matrix have been moved

to locations near the main diagonal . 229

6-23 Filtering outward along a common boundary 232

6-24 Maximum singular value plot for the difference between the optimal

inverse estimation error covariance of the optimal filter and the actual

inverse estimation error covariance for the suboptimal filter. The mini-

mum singular value for the optimal inverse estimation error covariance

is equal to 1 .. 234

6-25 Maximum singular value plot of approximated inverse estimation error

covariance to the optimal inverse estimation error covariance 235

6-26 Partitioning the state X(p + 1) so that it agrees with the partitioning

of X (p) . 236

12

Chapter 1

Introduction

With the advent of parallel processing environments comes a corresponding change

in the way algorithms and computations are designed and performed. The Kalman

filter which is both the culmination and the basis of a large part of our knowledge

of statistical signal processing, was formulated as a recursive algorithm in the age of

single processor environments. With parallel processing environments there is much

discussion that recursive algorithms related to the Kalman filter should be abandoned

in favor of iterative techniques for solving linear systems of equations. With advanced

iterative techniques such as multigrid, what was discussion has become cries for the

use of iterative techniques for solving linear systems of equations. Iterative algorithms

tend to parallelize easily, are applicable to a wider choice of linear equations, and

achieve comparable accuracy to other methods of solving linear equations.

There is more however that we may demand from our algorithms. Since the class

of linear systems of equations under study is not arbitrary but quite specific, we can

benefit from our knowledge of dynamic systems and stochastic processes to arrive

at algorithms which reflect this knowledge. This is one of the major advantages

of the Kalman filter. The Kalman -filter is important today not only because it is a

recursive implementation, but more importantly because it is formulated as a sequence

of Bayesian estimation problems, each problem producing an estimate with a clear

and precise statistical interpretation. Each stage of the computation is understood

thoroughly. If the computation ends prematurely for any reason, the truncated results

13

have meaning and implications towards the final desired result. With the deeper

understanding gained through knowledge of stochastic processes, we will see that the

issue is not only to find clever ways of partitioning a problem into subproblems to be

computed in parallel but also how to link small well understood problems together

in a manner which represents the solution to larger and larger problems of increasing

complexity. We therefore emphasize the importance that statistically meaningful

information be generated at all points in the course of our computations.

There are many benefits of this approach. Consider a distributed processing and

decision-making environment. Clearly optimal decisions are best made using globally

optimal (smoothed) data. This global information may not be available in a timely

fashion, and therefore it may be necessary to to use local data to make at least pre-

liminary decisions. It is best, as a result, that the local information be processed in a

manner that makes it directly useful for such decision-making. The benefits of gener-

ating statistically meaningful quantities is also important in the parallel computing

environment. As the number of processors increase, the probability of a processor

failure in any interval of time increases. While in some military applications we may

be able to perform all calculations in triplicate and vote out discrepant computations,

this may be too costly in general. We may be forced to carry out our computations

without the data available from a failed processor. This lends support to the no-

tion of performing limited support estimation, i.e. optimal estimation based on some

subset of the data. In addition global information is often not necessary to produce

accurate estimates of the state. Limited support estimation could therefore be a way

to produce accurate smoothed estimates while reducing the computational burden.

Still the estimates produced have precise statistical meaning, as do their correspond-

ing error covariances which provide us with the information needed to asses their

quality. We will show that there is little algorithmic difference between full support

and limited support estimation, with -the algorithms which are based upon producing

estimates recursively, and in parallel. This now produces a trade-off between compu-

tational complexity of the algorithm and precise statistical accuracy of the estimates

and therefore it is possible to compute the optimal number of processors, and par-

14

titioning of the data given a certain desired level of accuracy. Another reason for

which we are interested in producing precise estimates, is that we would like to be

able to model the effects of the process outside of a local region as being manifested

solely at the boundary of the local region. Statistically it should be the case that in a

parallel algorithm, in each local region all of the external processing can be reduced

to a single measurement of the boundary of a local process. If this is understood then

it could become an important ingredient in producing efficient parallel algorithms for

random processes of arbitrary dimension.

Although a multitude of algorithms exist in one-dimension [13] J14], [15], [16],

[29], [11], [12], they in general do not generalize to higher dimensional algorithms.

Algorithms which are applicable to higher dimensions allow us to learn what are the

important similarities between one dimensional systems and their higher dimensional

counterparts. This knowledge should then be able to find applications more generally

in the field of digital signal processing and other related disciplines. The application

to higher dimensions necessitates the use of parallel processing environments. In

two-dimensions the boundary of a process grows at least as the square root of the

size of the region. The boundary provides a notion of the state of the system, and

in addition indicates its complexity. As a result, to manage the complexity of the

system, it makes sense to partition the region into subregions and have individual

processors work on 'smaller' problems. What remains is to determine exactly what

each processor computes and how the processors communicate to each other.

The parallel estimation algorithms described here have common characteristics.

First, the data is partitioned among the processors. Local calculations are performed

by processors on their own sets of data. Local information is then exchanged between

processors and this is followed by a parallel post-processing step in which each pro-

cessor updates the estimates on its subinterval to produce the final globally optimal

estimate over the entire data interval. While a variety of approaches have been devel-

oped for various optimal estimation problems [13] J14], [15], [16], [29], [111, [12], only

two of these[14], [15] employ a similar data partitioning structure for parallel filtering

and smoothing for causal systems. In [14] a square root algorithm is used for parallel

15

filtering on the subintervals assuming perfect knowledge of the state at one endpoint.

This is followed by an interprocessor information exchange and computation step.

This step which is based on a change of initial condition formula in order to correct

for imperfect endpoint knowledge, is similar in structure to the Mayne-Fraser two fil-

ter smoother in order to obtain optimal smoothed estimates at the boundaries of the

data intervals and to allow subsequent parallel computation of smoothed estimates

within each subinterval. A somewhat more efficient algorithm, with a similar struc-

ture, is described in /citeTewfik. This procedure deals symmetrically with the two

endpoints of each subinterval by initially processing data outward toward and in the

final step inward from the boundary points (essentially using in each interval a joint

model for x(k) and x(-k), with the time index k = 0 corresponding to the center of

the interval). The interprocessor exchange step makes use of the so-called partition

theorem [19], resulting again in a two-filter sweep from processor to processor in both

directions to produce optimal estimates at all boundary points.

One issue which needs to be addressed is that of modeling. The basic class

of systems on which we focus for the most part in this thesis are Separable Two

Point Boundary Value Descriptor Systems(STPBVDS's). These systems are natu-

rally acausal in that the dynamics are descriptor, and the boundary conditions are

independently specified in part, at each end of the interval over which the system is

defined. As we will see, this class of systems is in fact rather large, as we can in fact use

such systems to model the case where the boundary conditions at each end are cou-

pled. In addition, if the dimension of the state is allowed to vary, multi-dimensional

problems are also accommodated. In particular, an advantage of using STPBVDS's

is that they are able to be solved without the aid of shooting algorithms which most

solutions to two point boundary value descriptor systems (TPBVDS's) without sepa-

rable boundary conditions require[241,[2], [20]. As we will see, general non-separable

TPBVDS, and multidimensional systems, can be converted to 1-D STPBVDS's by

defining radial recursions. In particular, for multi-dimensional processes the state is

defined along the perimeter of a square of a given radius. This notion of defining the

state as a function of radius applies in a consistent fashion to the one-dimensional

16

systems. As a result filtering a (rectangular) subregion for a two-dimensional system

or an interval for a one-dimensional system involves filtering outward towards the

boundary from the center and back from the boundary towards the center.

STPBVDS have boundary conditions specified at each end of the interval which

are independent both algebraically and statistically. However with the exception of

causal systems, the boundary condition is not specified, completely at either end. In

general only partial information is known. There are times in fact where this partial

information is perfect. In these cases a filtering algorithm would need to be initialized

with an ill-defined covariance matrix because part of the state is known perfectly, and

part is completely unknown.

In well-posed STPBVDS, if the state is estimable given all of the available data,

it may not be estimable given only causal or anticausal data. However in a parallel

processing algorithm, it may not be desirable to propagate a priori information to

each subregion in order to avoid preprocessing. Since the elimination of the a priori

information for a local subinterval processor implies that the state may in fact be

(locally) non-estimable Bayesian estimation is largely abandoned here in favor of

Maximum Likelihood (ML) estimation.

ML estimation is used at each stage of our processing to compute estimates based

on the locally available information. Here as in [23], we essentially adopt the per-

spective that a priori statistics, dynamical relationships, and actual observations all

play the same role, namely as noisy constraints. The use of this formalism has sev-

eral important implications, perhaps most notably in the simplification and greatly

enhanced flexibility it provides us in the interprocessor exchange step. However, let

us first comment on some of the implications for the local processing step.

Recursive ML estimation requires the confrontation of the problem of estimation in

the face of degeneracy, where the linear equations yielding the ML estimate need not

have a unique solution (so that at least some part of x(t) is unconstrained by available

information) but may yield perfect estimates of other parts of x(t). The framework

for generalized estimation in the static case is developed in [18] (see also [17]). In

[23] the results of [18] are used to develop recursive filtering procedures for TPBVDS

17

in the case when all variables are estimable, (so that P is well defined). What we

describe in Chapter 4 are algorithms for optimal STPBVDS smoothing in the general

case. In particular we describe generalizations of the well known Mayne-Fraser and

Rauch-Tung-Striebel algorithms and in fact provide a completely symmetric version

of the first of these in which each of the two filters is initialized with the independent

boundary information available to it. These algorithms in addition to being of interest

in their own right, also provide us with the initial local and final local processing steps

for our data partitioned parallel processing procedures. Three new algorithms for the

middle interprocessor data exchange step are also described for the one dimensional

case. In the multidimensional case, a new algorithm is presented which is highly

parallel, and takes advantage of the reciprocal nature of the process, in order to

efficiently compute globally smoothed estimates of regions of finite dimension. As in

[14], [15], we can view the output of the first step as producing 'measurements' of

x(k) at the boundaries. However in the Bayesian approaches of [141, [151, the errors in

these 'measurements' are correlated since each local processor makes use of common

prior information. This leads to the comparatively involved two filter procedure

in [14], [15], for exchanging and fusing endpoint information among processors. In

contrast, by adopting the ML formalism we guarantee that the result of out first local

processing step produces independent 'measurements'of boundary points. This leads

to an algorithms, similar in structure but far simpler than the approach in [14], or

[15].

Adaptations for these algorithms are provided in the case of limited support es-

timation, and the trade-off between computation and accuracy is discussed. Square

root techniques are discussed in the context of recursive estimation yielding algorithms

which yield better numerical accuracy.

In Chapter 2, a brief comparison is made highlighting differences between Max-

imum Likelihood Estimation and Bayesian Estimation. The machinery needed to

perform estimation when the noise which corrupts the observations have ill-defined

covariances and when the parameters are not fully estimable is established, in both

a standard ML context and a square root context.

18

In Chapter 3, separable two point boundary value descriptor systems are discussed.

The condition of separability is examined. STPBVDS's are diagonalized, and their

Markovianity is established.

In Chapter 4, separable two point boundary value descriptor systems are discussed.

Analytical machinery is developed which allows the construction of general recursive

ML algorithms which are presented analogous to the Mayne-Fraser and Rauch-Tung-

Striebel algorithms in addition to STPBVDS square root algorithms which are also

presented and are analogous to standard algorithms.

In Chapter 5, parallel algorithms are presented which are designed to operate

on a linear array of processors. Past work is discussed and three new algorithms are

presented. These algorithms exploit Markovianity and the ML philosophy to generate

algorithms which are conceptually simpler than other parallel processing algorithms.

Furthermore, a tree topology is possible, which allows extension to processes of higher

dimension.

In Chapter 6 the algorithms of chapter 5 are examined in the context of lim-

ited support estimation. Trade-offs between complexity and accuracy are presented.

Optimal numbers of processors are discussed to obtain specified accuracy goals.

In Chapter 7 the multi-dimensional estimation problem is discussed and paral-

lel algorithms are developed. Examples are presented and suboptimal methods are

discussed.

19

Chapter 2

Estimation

2.1 Maximum Likelihood Estimation

As mentioned in the introduction the development of recursive algorithms in this

thesis involves successive ML estimations to recursively compute estimates of the

state based on some set of data. The formulation of the Kalman Filter follows a

Bayesian philosophy. Here we choose an ML estimation philosophy because it allows

us to deal with a more general class of problems. As developed in [23] Bayesian least

squares estimation can be converted to ML problems by viewing prior statistics and

noisy dynamics as additional measurements. In the linear estimation problem the

likelihood function 'PI,,(y,,Ix,,) is derived from the observation

Y = Hx + v (2.1)

'P,,I.(y.lx.) -_ 'P.(y. - Hx,,) (2.2)

-P, = N(O, R) (2-3)

y E RP (2.4)

x E Rn (2-5)

The maximization of the likelihood function is well-defined when R has full rank

and H has full column rank. The solution obtained is equivalent to minimizing

20

VTR-lv subject to the constraint that y = Hx + v. The noises are therefore being

estimated to be the smallest disturbance consistent with the observation equation

and the statistics. With the solution b, i can be solved from

Hx = y - �b (2-6)

If H does not have full column rank then �c cannot be determined uniquely. The

projection of x in the nullspace of H is unconstrained. In a minimum norm maximum

likelihood estimation problem, we choose this projection of x to be equal to zero.

Regardless of how this projection of x is set, any i solving H�c = y - -� is an ML

estimate.

Two concerns remain. The first is the event that the observation noise has a

singular covariance. There are several ways of dealing with this. One is to separate

the noiseless part from the remainder of the observation.

Let the matrices Sp and SI satisfy the following

SP v =- 0 (2.7)

SRST > 0 (2-8)

det SP 0 (2.9)
L SI J

then, the problem can be reformulated as solving for x given the observations

SpHx Spy (2.10)

SHx S'Y+S'V (2.11)

which is equivalent to minimizing vTST(SRST)-1 S.V subject to the constraints (2.10),.5 3

and (2.11). This is done explicitly in the square root algorithm in Section 2.2.

An equivalent way to deal with the singularity of the observation noise is to model

21

the noise as being of reduced dimension with identity covariance

Y = Hx + Lv (2,12)

and the solution can be obtained by minimizing vTv subject to the constraint y -

Hx - Lv = 0. This constrained optimization problem can be computed using the

method of Lagrange multipliers where

,� = arg min v Tv + A T(Y - Hx - Lv) (2.13)

where LLT = R and A is the Lagrange multiplier. The solution to this is given by

solving

TLL H A Y (2.14)

HT 0 X 0

Both methods yield equivalent results.

Moving further we consider the case where the observation has the form

Y = Hx + Lv (2.15)

yet v has only an information matrix associated with it E[vvT]-l = S. Note that if

S is singular, part of v is therefore completely unknown while a part of Lv is known

perfectly if L has a left nullspace. The ML problem is equivalent to minimizing

V TSV + AT(y - Hx - Lv) which is equivalent to solving

-S L 0 17, 'O'

L 0 H A = y (2.16)

0 H T 0 -X- .0.

By placing S in a diagonalized form it can be shown to be equivalent to (2.14). Let

0 0
S = - (2.17)

-0 S.

22

where is invertible, and
V

V (2.18)

then solving for the ML estimate of x is equivalent to minimizing 6T�,& + AT(y

Hx - Tv - LD). Since F is completely unknown this can be looked at as an attempt

to estimated also. The estimate of x is obtained through solving

LS-'LT H T- A- Y,

H T o 0 X 0 (2.19)

XT 0 0

Given observations of the form

y = Hx + Tv-+ Lb (2.20)

where -ff is unknown we may choose to eliminate the effect of F on our computations

since it provides no information about x. Premultiplying by V where TLT = 0 and
TT

has full rank yields
T1

T1 y = THx + VLb (2.21)

This returns our observations to the form of equation (2-1). We win see that in the

recursive estimation context that T is presented in the form of a projection matrix

which makes T 1 particularly easy to compute.

]Finally the last situation to consider is in the event the matrices in (2.14), (2.16),

and (2.19) are not invertible. This will occur under two conditions. The first is the

case where we have redundant perfect information, and the second is when the state

is not completely estimable. The standard ML problem which we wish to solve has

the form
Y (2.22)

H T 0 X 0

23

If we assume that the pseudo-inverse of the matrix in (2.22) has the form

t
3 (2.23)

HT 0 i L 8 J

Then we wish only that -� be specified adequately to generate the appropriate ML

estimate and if we wish to use the the form for the covariance provided by Nikoukhah

[23] we require

8 = -,yR-y T (2.24)

Nikoukhah [22], [23] considers the case where x is fully estimable, where H has full

column rank, but R may be singular. In this case, the symmetric indefinite matrix

in (2.19) is invertible except under the condition where there are redundant perfect

measurements. Redundant perfect measurements may be deleted without affecting

the estimate or its covariance. Nikoukhah shows that by allowing the pseudoinverse

to satisfy AXA = A that -y, though not unique due to the non-unique ways in which

redundant perfect information may be used, will always provide the ML estimate of

X, and � which is given by (2.24) is unique, and yields the covariance of the estimate.

If the state x is not estimable, the matrix in (2.19) is not invertible and the

condition AXA = A is not sufficient to determine a parameter 7 which will produce

a unique estimate, nor will b be interpretable as the error covariance of the estimate.

Since the part of x in the nullspace of H is not estimable, any specification of this

value is allowed. To specify a unique estimate, we set this part of the estimate to

zero yielding a minimum norm ML solution. Given a -y which yields a minimum

norm ML solution, we desire 6 = -,yR-y T , allowing us to use the same form for the

error covariance as used in Nikoukhah [23]. To this end we require the Moore-Penrose

pseudo-inverse, which is uniquely given by the following four conditions.

Condition 1 AXA A (2.25)

Condition 2 XAX X (2.26)

Condition 3 AX = (AX)T (2.27)

24

Condition 4 XA = (XA)T (128)

We will indicate the Moore-Penrose pseudo-inverse with the # symbol. Pseudo-

inverses which have only a subset of these conditions are referred to by the number

corresponding to the properties which they possess. For our purposes, Condition 1,

guarantees a solution to our ML problem, which is unique if x is estimable. Condition

4 guarantees that 7 is adequately specified to yield the minimum norm ML estimate.

To properly specify 6 both Condition 2, and Condition 3 are required. Another

Tconsequence of using the Moore-Penrose pseudo-inverse is that in (2.23),,3

If we consider further the following product

R H R H PA 0 (2.29)

H T o L HT 0 J L 0 PI J

we find that the use of the Moore-Penrose pseudo-inverse results in symmetric pro-

jection matrices. The projection matrix P., projects onto the estimable subspace for

the vector x, while I - Px which we will denote by T. projects onto the nullspace of

H. What results is that the ML estimate which is given by

T
0 R H Y

,'�ML[Y] 11Y (2-30)
I J L HT o 0

satisfies

'�ML = P�x + FCML (2-31)

where P_- is given by

T
0 R H H

PX T yH (2-32)
L I J L H J 0

25

and the error covariance for Px given by

T - '#

0 R H 0Ex - - (2-33)
LI J L H T o I

satisfies

Ex = P-,-E--P:, = COV(iCML - P�X) (2.34)

The ML estimate obtained by using the Moore-Penrose pseudo-inverse is the minimum

norm ML solution [18]. Before. continuing further we will consider an example to

show explicitly the computations involved with general ML estimation. Suppose

observations of a random vector x are given by

X1
Y1 I 0 0 0 V1
Y2 1 1 0 X2 (2.35)

0 + V2
X3

Y3 L 0 1 1 0 j X4 L V3 j

where the following hold

E[viv T] = 0 (2.36)1

E[V217 Tj > 0 (2.37)

and V3 is a completely unknown parameter. In constructing the ML estimate of

x based on the measurement y there are a few observations to make. The first

consideration is that the observation noise V3 is completely unknown. Since there is

no a priori information about V3, all observations which are corrupted by V3 cannot

be used, because there is no way to infer anything about x if there is no information

about the observation noise. Premultiplying equation (2.35) by T 1 which is given by

(2-38)
0 1 0

26

as in (2.21) yields

X1

Y1 1 0 0 0 X2 V1
+ (2-39)

Y2 I 0 0 X3 V2

LX4J

The solution is given by

T
0 0 0 0 0 0 1 0 0 0 Y1

X1 0 0 0 0 0 1 1 1 0 0 Y2

'�2 1 0 0 0 1 1 0 0 0 0 0
(2.40)

0 1 0 0 0 1 0 0 0 0 0

L '�4J 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

which after the evaluation of the pseudo-inverse yields

T
0 0 0 0 0 0 1 -1 0 0 YJ

X1 0 0 0 0 0 0 0 1 0 0 Y2

'6 (2.41)

�C 3 0 1 0 0 1 1 0 1 0 0 0

L ;�4J 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0J .0

The estimate as in (2.31) is given by

I 0 0 0 X1 Y1

0 1 0 0 X2 Y2 - Y1 (2.42)

0 0 0 0 X3 0

0 0 0 0J LX4J L 0 J

where the square matrix in (2.42) is the projection matrix P.,. The covariance is given

27

by

Y1 I 0 0 0 X1 0 0 0 0

E". = COV Y2 - Y1 0 1 0 0 X2 0 1 0 0 (2.43)

0 0 0 0 0 X3 0 0 0 0

0 0 0 0 0 X4 0 0 0 0

Note that PE., P E,

The estimation machinery developed so far is adequate for the measurement up-

date step of the filters discussed in Chapter 4. However the prediction step forces us

to consider the following linear transformation

z = Ax (2.44)

where x is not completely estimable. Equation (2.44) can be rewritten in the following

form

z = AP,,x + AFx (2.45)

where Px is the part of x which is estimable and _F.,x is the part of x which is not.

The minimum norm ML solution iML cannot be a function of ATP�x. We therefore

seek the largest rank symmetric projection matrix P., whose nullspace contains AIP_�.

As a result, P,,A = PzAP, Such a matrix is determined by

T-, (A-PxA T)t (A -F:,, AT) (2.46)

where a (1,4) pseudo inverse is indicated. As a result,

P. z = P,, A P., x (2.47)

and

= P;,A�E (2.48)

Equivalently the part of equation (2.44) which provides no information is elimi-

28

nated. Specifically the equation

Tz = 7,,Ax (2.49)

is not used in the estimation of z. The error covariance is given by

TpEz P�AE.,A (2.50)

As an example, suppose that

X1
Z1 I 1 0

X2
Z2 1 -1 0 (2-51)

Z3 J L 1 0 0 0 X4 J
L

where the xi are those in equation (2.35). From (2.46) the projection matrix P,., is

given by
1 1 0
2 2

1 1 0 (2.52)
2 2

L 0 0 1

It is a simple task to verify that

il Y2

i2 Y2 (2-53)

i3 LY' J

while the error covariance computed via (2.50) is given by

I I 0

E. i I O (2.54)

0 0 0 J

Before continuing with an examination of square-root estimation techniques, con-

29

sider the computation involved in the ML solution. Let the system we wish to solve

be AX = B where X, and B are n x g matrices because we need to recover the error

covariance, and in some cases the associated projection matrix. If A is invertible then

X can be solved in 1(n, g) floating point operations (flops) using gaussian elimination

where _T(n, g) is given by

.T(n, g) =_ 2n3 /3 + 2n 2g (2.55)

The estimates for specific computations were obtained from Golub and Van Loan[31].

The function 1 is one of a series of polynomial function we win use to define the

number of flops required to perform different estimation procedures.

If the inverse of the matrix does not exist, then a (1,4) pseudo-inverse for the

matrix in (2.22) which computes the minimum norm solution can be easily computed

with the aid of the QR factorization. Specifically, the QR factorization with pivoting

can be used to generate a lower triangular matrix L given by

L -_ ITAUT (2.56)

where II is a permutation matrix, and U is an orthogonal projection matrix. The

system AX = B can be rewritten as

LJUXJ HB (2.57)

or
Li, 0 Uix HiB (2.58)

L21 0 U2X. II2B

The pseudo-inverse of L is easily computed, and is given by

L-1 011 (2.59)

0 0
L J

30

The solution to the problem is therefore given by

UiX = L-'HiB (2.60)

U2X = 0 (2.61)

If the rank of A is equal to r then the the number of computations required to compute

the QR factorization is given by 4[n 2r - r 2n + r3/3] flops. Solving (2.60) for UX can

be performed in gr 2 flops. To recover X from (TX requires an additional 2gr(2n - r)

flops. The total flop count is given by

.6 (n, g, r) =_ 4 (n2r - r2n + r3/3 + grn) - gr2 (2-62)

To compute the Moore-Penrose pseudo-inverse, a complete orthogonal decompo-

sition [31] is required. A complete orthogonal factorization results in the factorization

T = QAUT where Q and U are orthogonal matrices, and T has the following form

Til 0
T= (2.63)

. 0 0

where T11 is invertible. In addition if QR factorizations are used to compute this

complete orthogonal factorization, T11 is triangular. The system AX B can be

rewritten as

TJUXJ QB (2.64)

or

T11 0 UjX QjB (2-65)

0 0 IT2 x Q2B

The pseudo-inverse of T is easily computed, and is given by

T�- (2-66)

0 0
L

3 1

The solution to the problem is therefore given by

UiX = T�-,'QiB (2.67)

U2X = 0 (2-68)

The factorization requires 8[n 2r - r2n.+r 3/3] flops. Solving (2.65) for UX requires gr 2

flops, and recovering X from UX and the construction of QB each requires 2gr(2n-r)

flops. The total flop count is given by

M(ngr) -= 8(n 2r - r2n + r'/3) + gr 2 + 4gr(2n - r) (2.69)

As a result when these counts are applied to the ML problem in (2.22), with the

original definition of n as the dimension of x the invertible case yields T(n + p, n + 1)

flops where we have substituted n+1 for g because the covariance and the estimate

can be obtained from

Y (2.70)

HT 0 X E�� 0 -I

Furthermore, we may divide the computation into 'on-line' and 'off-line' computation.

Off-line computations involve computing the covariance and projection matrices, and

on-line computations involve computing the estimate. When the state is estimable,

the off-line computation is given by

. T T

lyT 0 R H

T (2.71)
_E� I J H J

when this inverse exists, and requires 1(n + p, n) flops. The on-line computation is

given by

,�ML[Y] - 7Y (2.72)

and requires 2pn flops.

If the matrix is not invertible but the state is still estimable then solving (2.70)

32

involves C(n + p, n + 1, r) flops where r is the rank of the matrix. The off-line

computation has the form

. T T
T 0 R H

_E I HT 0 (2-73)
L J L J

and requires 9(n + p, n, r) flops and the on-line computation given again by (2.72)

requires 2pn flops.

If the state is not estimable then the appropriate projection matrix must also be

computed. It can be computed from the following

3 y (2.74)

H T 0 X P 0 0 -1
L J L , E -_ J L

The ML solution therefore requires M (n + p, n + 1, r) flops. The off-line computation

is given by (2.73) and

P., = 7H (2.75)

which together total to M (n + p, n, r) + 2n2 p flops. The on-line computation is

2pn. Often it is difficult to know in advance what the rank of the matrix win be.

As a result substituting r = n + p is a useful overestimate of the work required to

perform the necessary computations. As a result we will assume that (2.70) requires

.6(n + p, n + 1, n + p) flops and (2.74) requires M(n + p, n + 1, n + p) flops.

In solving the estimation problem associated with equation (2.44), the computa-

tions are quite explicit. Let A G R,1n where m is the dimension of z and n is the

dimension of x. Equation (2.46) requires two matrix-matrix multiplies and a (1,4)

pseudo-inverse computation. Equation (2.50) require three matrix multiplies where

the quantity PzA will be saved to compute equation (2.48) which requires only a

matrix-vector multiply.

U(n, r) -= 6mn 2 + 4M.2n, + F(m., m, r) flops are needed to compute the projection

and covariance. The on-line computation is given by 2mn flops. If z is estimable

then equation (2.48) requires one matrix vector multiply and (2.50) requires 2

33

matrix matrix multiplies yielding V(n) =_ 2rnn2 + 2inn 2 flops for off-line computation � - ------ --

and 2mn on-line.

34

2.2 Square-Root ML Estimation

In Section 2.1, several issues were handled automatically for us. The case where

perfect measurement information is present did not have to be addressed as a special

case except when there are perfect redundant measurements. In that case the matrix

in (2.22) is not invertible. Since we want to be able to include the case where the

state may not in fact be estimable, the lack of invertibility due to redundant perfect

measurements is no longer a serious consideration because the lack of invertibility

due to non-estimability requires us to use a much stronger pseudoinverse.

There is extensive literature on the square root information filter. Here we consider

its adaptation to both the case of non-estimable states and perfect measurements,

which imply ill-defined covariances and information matrices. The square-root ML

estimation algorithm introduced in this section makes heavy use of the QR factor-

ization to partition the state into three parts, the part of the state which can be

estimated perfectly, the part of the state which has we an invertible covariance, and

the part of the state which cannot be estimated. It is based on the algorithm provided

by Bierman[6] and it requires a total of two QR factorizations for our general ML

estimation problem. Another square-root ML algorithm is provided in (33] and it of-

fers the advantage that the case of singular covariances is easily handled; however the

algorithm as presented in [33] requires two QR factorizations for the case where the

the state is estimable, and an additional QR factorization would have to be included

to account for the case where the state is not completely estimable.

Instead of the implicit way in which Section 2.1 handles perfect information, we

choose a 'reduced order' estimation algorithm[32] in which we deal explicitly with

perfect measurements separately and explicitly eliminate the non-estimable portion

of the state which is in the nullspace of the observation matrix H. To illustrate the

ideas behind this approach, let us return to the simple example in Section 2.1. In

equation (2.39) note explicitly that estimation Of X3 and X4 is not possible since the

measurement Y3 was removed, and the remaining measurements are not influenced

35

by x3, or X4. The problem can be reduced again to the form

Y1 I 0 XI VI
+ (2.76)

L Y2 j L J L X2 j L V2 J

The problem has now been reduced to the case where the observation noise covariance

is well-defined, which implies that all of the observations y are useful, and to the case

where the observation matrix, H has only the origin for its null space implying that

the states to be determined are indeed estimable. Since v, = 0, clearly �cj,-,,j = yl.

Information from Y2 cannot improve upon this estimate, which was made in the

absence of noise. The remainder of the problem is one of estimating X2 given the

observation Y2 - xi. This is a well-defined ML problem yielding :�2,"l = Y2

The part of the state which can be computed from perfect data has zero covariance.

The part of the state which has not been estimated have an infinite error covariance,

and the remaining part of the state has a positive definite error covariance. This

example was particularly easy because the coordinate system made it easy to identify

these three components of X. In a square-root implementation, the coordinate system

of y and x are rotated to this preferred coordinate system via orthogonal transforma-

tions derived from the QR factorization to efficiently, and robustly compute the ML

estimate.

Techniques for computing the QR factorization are given in [31]. Here we exploit

the QR algorithm to describe ML estimation under a variety of conditions which

allows to implement in Section 4.10 a causal Kalman filter for so-called separable

systems. The same techniques will carry over to the Mayne-Fraser, and Rauch-Tung

Striebel algorithms.

The following example treats the ML estimation problem as needed in preparation

for the square root filtering algorithms in Chapter 4. A standard treatment of square

root algorithms is provided by [6]. The first example to consider is the standard ML

estimation problem which is to estimate a random vector where the observation noise

has a well-defined, and full rank, covariance. In addition, the observation matrix, H

in equation (2.77), has only the origin in its right null space. We will call this the

36

standard ML estimation problem. As in (2.1), let the observations be given by

Y = Hx + v (2.77)

where

E[vv T] = R1 /2R T/2 (2-78)

By normalizing the noise, the original problem can be written in the following manner.

R- 1/2 y = R- 1/2 HX + R-' /2V (2-79)

where

E[R-1 12VVT R -T12] = I (2-80)

Any orthogonal matrix Q which premultiplies the normalized noise R-1/2 v will not

change the variance of the observation noise in (2.79). By applying the QR algorithm

we can find a matrix Q such that the product QR-1 /2 H is upper triangular. Unless

the matrix is square, the lower portion of this matrix will be all zeroes.

QR- 1/2Y = QR- 1/2 Hx + QR- 1/2V (2-81)

By making obvious substitutions, equation (2.81) can be written as

d = Ax + w (2.82)

where again the matrix A is upper triangular. This can be rewritten as

di Al x + IVJ (2-83)

L d2 J L 0 i L W2 i

Since the noise is normalized, the two noises w, and W2 are independent. Since the

37

matrix Al is of full rank, the ML estimate is thus obtained by solving

di ::-- Ai-�ML (2.84)

Since Al is upper triangular and square, iML can be determined easily without re-

course to further processing of the matrix Al. In addition since the noise w, has the

identity for its covariance A` can be identified as the inverse of the square root of

the estimation error covariance for x. By premultiplying equation (2.84) by A' it can

be seen that the solution given by this method is

-�ML = (H TR-'H)-'H TR-ly (2.85)

which is the standard ML solution.

A different approach to square-root ML estimation is presented in [331. Let the

observation in (2.77) be written as

y -_ Hx + Lv (2-86)

1where v has identity covariance so that L - R2 . Then by applying the QR factoriza-

tion directly to H yields

Yi Hi X + Li V (2.87)

L Y2 i L 0 i L L2 i

An orthogonal matrix Z can be computed to multiply v such that (2-87) has the form

Yi Hi X + 0 Li, L12 (2.88)
V2

Y2 0 0 0 L22

L V3 j

38

where
V1

ZV V2 (189)

V3 j

Here we see that v, is orthogonal to the estimate of x, V2 will contribute to the

estimation error, andV3 is directly observed. The estimate is given by

H�1(yj - L12L -L Y2)

22 (2.90)

Note that L could be singular in this formulation, and that the square-root of the error

covariance is given by H`L11. In this algorithm, normalizing the noise is avoided,

but two QR factorizations are required. To adapt this algorithm to the issues which

will be presented, in this section, three QR factorizations would be required.

The standard ML estimation algorithm, formulated in equations (2-79)- (2.83), is

too restrictive for the estimation needs in this thesis. The first concern is that the

covariance of v is not necessarily normalizable. This may happen if there are obser-

vations which are known perfectly. Furthermore in the problems we will encounter

v is a parameter which corrupts our observation, and parts of v may be unknown as

in equation (2.20). Furthermore, if x is not fully estimable then Al is not invertible,

and pseudoinverses need to be considered again. The following algorithm accounts

for all of the potential problems in the preceding discussion while maintaining the

same essential properties of the algorithm described above.

Returning to the observation equation (2.77), for purposes of recursive estimation,

we interpret v to be a vector which is partly unknown, and a part of it is identically

zero. In Section 4.10 v will include the estimation error from the state estimated at

an earlier time step. We will assume that the value of the ML estimate of v is zero.

In contrast to the previous example, H is no longer restricted to have only the origin

in its right nullspace - The availability of an orthogonal matrix S is assumed, which

39

can be partitioned as follows

ST= ST ST SI (2.91)
P 3

where Spv is identically zero, and the covariance of Sv is positive definite and is

equal to RO. The vector S,,,v is completely unknown. In the recursive estimation

problem S is computed recursively and falls out directly from the estimation process.

The portion of the observation vector which corresponds to the unknown vector S,,v

will not count as an observation since it provides no information about x, and it win

not be used in the estimation procedure. This is equivalent to the step in (2.21)

where L' is used to eliminate the 'observations' which contain no information. In0

the following treatment, all invertible matrices will be given a zero subscript.

If (2.77) is premultiplied by L' [SI ST]T yielding0 P 3

SP Y SP Hx + 0 V (2.92)
SI S, S.

then the QR factorization can be used to obtain the parts of x which can be de-

termined perfectly, the part which can be determined with full rank covariance, and

the part which is completely unspecified by (2.92). This is performed by finding the

orthogonal transformation U which lower triangularizes the matrix [Sp S,]I HU in

UP X
SpHU I 0 0 0

SP Y - P U.X + V (2-93)
S, SHU I SHUT 0 S.P U,,x

L j

The matrix U has been partitioned as follows

UT UT UT UT (2.94)
P 3

where Upx is known perfectly, and the error covariance of UIx is invertible and is

equal to E0. The vector U,,x is completely unspecified. If there are no redundant

40

perfect measurements, Up can be determined directly from (2.93) because SpHUTP is

lower triangular. If there are redundant perfect measurements, then only a subset

of Spy is needed to specify Upx. More generally, any left inverse of SpHUT may beP

used to compute Ux. After Upx has been computed, Ux can then be determined by

normalizing the noise in (2.93)

R-'I'S,(y - HU TJUpiMLj) = R-'I'S.(HUT (2.95)

0 P 0 . 1U-X1 + V)

The random vector R-' �2 Sv has the identity for its covariance. The QR factorization

can be used to solve this 'standard' problem by computing the orthogonal matrix J
to upper triangularize the matrix JR- 1/2 SHUT,

0 . in

JR- 112S,(y - HUTI Up-�MLJ) = JR-112S, (HUTf UXj + V) (2.96)0 P 0

where
F-1/2JR- 1/2 SHUT 0 (2.97)

0
0

contains the square root of the inverse error covariance of U,.-�ML-

Earlier we stated that equations including S,, provided no information about x.

As a result in equation (2.93) we did not include 5,, in the premultiplication because

in the equation

UP X

S.Y S,,HUT S,,HUT S,,HUI UX + S.V (2.98)P

- U" X

we find that the term S,,v is completely unknown and occurs only in this equation.

No algebraic constraints are placed upon x by this equation. This equation is only

useful if we desired to estimate S,,v in addition to x.

In summary we have used two QR factorizations, to recover the estimate of the

41

estimable part of x and its projection P, from equation (2.93) which is given by

P. UPT r'�T UP (2.99)
U.,

In addition, the covariance of the estimable part of the estimate is given by

COV(PX - --�ML) = E* = UTF'-1 ET (2.100)

The amount of computation nedded to compute iML is a function which depends on

the rank of S,, and the rank of U, because these ranks determine the amount of work

involved in performing the QR factorization which determines J. The QR factoriza-

tion which constructs U involves at most 2n'(p - n/3) flops, and the factorization

which constructs J requires at most 2n2(p - n/3) flops. The normalization of the noise

requires at most p 2n flops and solving for x requires n 2 flops. The premultiplication

by S required at most 2p 2n flops. The total flop count is 4pn 2 + 3p2 n - 4n 3/3

Again for the purposes of considering the update step of the filter we wish to

examine (2-44) which is given again as follows:

z = Ax (2.101)

nxmwhere A E R Given the coordinate transformation used to estimate x given by

U partitioned similarly to S in (2.91), and the covariance of Ux given by E�'.,o, the

QR factorization is used to find the orthogonal matrix Q to upper triangularize the

product

G = Q A(TTU A(TT A[TT (2.102)8 P

As a result Q can be partitioned as

T
QT QT QT (2.103)Q P

42

It then follows that

QPz = QpAU T jUpxj (2.104)P

Q-z = Q.,AUPTfUpxj+Q.AUTfUxj (2.105)

Q'Z = Q.AUPTlUpxl+Q.AUTfUxl+Q,,AUTIU,,xI (2.106)

The vector Qpz can be determined perfectly, and the vector Qz can be estimated

with a full rank covariance. The vector Qz cannot be estimated at all since Q.AU.T

has full column rank and 11,,x is completely unknown. Since we are computing square

roots of covariances and inverse square roots a further computation is necessary to

compute the square root of the covariance of Qz. By noting that Q'z is given by

T F1/2f E-1/2U TEI/2f E-1/2U".,�jQ"Z = QAU f Upxj + QAUT , .9 'i I+ Q. AU" (2.107)P X'O X'O X'O 0

The error covariance of the estimate is computed via the QR factorization to find the

orthogonal matrix T which lower triangularizes the matrix

F1/2 0 = Q.AuTE112T (2.108)Z'O M'O

In summary, we have obtained the perfectly known parts of the estimate, QpiML- In

addition the remainder of the estimable portion of the estimate is given by Q'iML,

and the square root of the inverse of its covariance by E1/2 in (2.108). The matrixZ'O

[QT QT] representing parts of coordinate rotations used to perform estimation, is theP $
square root of Pz, specifically

PZ QT QT QP (2.109)
P Qs

The remainder of the vector is completely non-estimable. Finally, the minimum

norm, minimum variance, estimate of Q,, is zero. Note that since we are performing

norm preserving, i.e. orthogonal transformations, setting Q,,,i to zero is the correct

43

operation to perform as the resulting estimate for z in its original coordinate system

will indeed have minimum norm. The product in (2.102) requires 2nM2 flops, and

the computation of Q and Qf A(Tj requires at most W/3 + 2(m - n)n 2 flops. To

obtain Q� requires at most nm and the computation of E. requires at most 4mn2

2n'(m + n) + 4n 3/3 + nM2 yielding a total of -4n'/3 + 4mn 2+ 3nM2 flops.

The matrices J and T which are instrumental in determining the covariances,

along with U and Q show that there are two QR decompositions associated with

each estimation step. In the presence of perfect information and states that are not

completely estimable the QR techniques will be of reduced dimension. In Section 4.10

the QR techniques will be incorporated into the forward maximum likelihood filter

(FMLF).

44

Chapter 3

Two Point Boundary Value

Descriptor Systems

In order to perform smoothing on multidimensional systems, a model is needed which

is more general than the standard causal systems. The systems on which we focus on

in this thesis are called Two Point Boundary Value Descriptor Systems (TPBVDS's)

and have the following form.

Ek+lx(k + 1) = AkX(k) + Bku(k) Ko < k < K, - 1 (3.1)

EKoX(KO) = AKx(Ki) + BKu(Ki) (3.2)

y(k) = CkX(k) + r(k) KD < k < Ki (3.3)

where

x (k) E R-k (3.4)

Bk G Rqk X I'll k (3.5)

u(k) - N(O, I) (3-6)

r(k) - N(O, Rk) (3.7)

where Ek, Ak, and Ck are compatibly defined but not necessarily full rank matrices

and the noises u(k), and r(k) are independent sequences. In this chapter it is assumed

45

that our TPBVDS is well-posed. Allowing Ek and Ak to be rank deficient implies that

x(k) does not have a recursive definition. These systems are interesting for several

reasons. They arise naturally in the case of discretization of partial differential equa-

tions (pde's) in two dimensions and boundary value ordinary differential equations in

one dimension.

General TPBVDS's create problems for estimation because the boundary condi-

tion links the state at each end of the interval. For example, as developed in [22] the

Hamiltonian is a TPBVDS which relates the smoothed estimate of the state x(k) with

the smoothed estimates at neighboring points with the help of auxiliary variables A(k)

which are appended to the state which represent the complementary process[36],[3],

or which represents Lagrange multipliers used in solving the optimization problem

required to solve for the optimal estimates. The dynamics of the Hamiltonian associ-

ated with a STPBVDS can be decoupled into two filters which propagate in opposite

directions. This decoupling is called diagonalization. For general TPBVDS's however,

the associated Hamiltonian cannot be 'diagonalized' into two independent filters, as

the boundary conditions of the two filters cannot be decoupled. Shooting methods

[20] are then required to solve the equations of the coupled filters. The result is that

the filters which are involved in the shooting method of solving the Hamiltonian can-

not be directly interpreted as providing estimates of the state based on any particular

set of data.[22],[24]

3.1 Separable Two Point Boundary Value Descrip-

tor Systems

The class of Separable Two Point Boundary Value Descriptor Systems (STPBVDS's)

are equivalent to the full set of TPBVDS's yet avoids the aforementioned problems.

STPBVDS's have a form given by

Ek+lx(k + 1) AkX(k) + Bku(k) Ko < k < K, - 1 (3-8)

EK,,X(KO) BKo-ju(Ko - 1) (3.9)

46

0 = AK, x (K,) + BK, u(Ki) (3.10)

y(k) = CkX(k) + r(k) Ko < k < Ki (3.11)

Here the boundary conditions are independent both algebraically, and statistically.

STPBVDS's are of interest for a variety of reasons. One is that, as we will see, any

TPBVDS can be expressed as a STPBVDS. Also, the Hamiltonian associated with

the estimation problem is an STPBVDS. When this Hamiltonian is diagonalized, the

resulting forward and backward propagating filters have independent boundary condi-

tions, and shooting is no longer required. Furthermore the separable form allows the

solution to the smoothing problem to be easily formulated in an ML framework with-

out the benefit of the Hamiltonian. Another reason which will also be demonstrated

is that the filters associated with the smoothers of STPBVDS produce estimates of

the state. Finally all STPBVDS are Markov.

If (3.9), and (3.10) are combined into one equation one concludes that STPB-

VDS's are a subclass of TPBVDS's. Continuing, we will show that STPBVDS's

are TPBVDS's whose boundary condition can be split into two independent bound-

ary conditions. One will be specified at x(Ko), while the other will be specified at

x(Ki). In the following we assume that -Ko = K, = K. Given the TPBVDS in

equation (3.1), (3.2), (3.3), and (3.8), the system is separable [1], [22] if

E T T (3.12)-KfBKBKI-'AK = 0

To see what is implied by the condition of separability, consider the equations

E-KX(-K) AKX(K) + BKU(K) (3.13)

u(k) N(O, 1) (3.14)

and (3.12). Premultiplication of equation (3.13) by E T f BKB T1-1, and A Tf BKB T 1-1-K K K K

yields

BKB T 1-'E-KX(-K) -_ E T f BKB T 1-'BKu(K) (3-15)

-K K -K

47

ATJBKB T I-'AKX(K) = -A T {BKB T I-'BKU(K) (3.16)K K K K

where, thanks to (3.12) the noises on the right hand sides of equations (3.15) and

(3.16) are independent. If we define a projection matrix P, given by

P, -- E-K(E T {BKB TJ-1E-K)tE T JBKBKTJ-1 (3-17)
-K K -K

where a generalized inverse satisfying AtAAt = At is indicated [18], then

equations (3.15), and (3-16) may be given by

E-KX(-K) = PBKu(K) (3.18)

-AKX(K) = (I - P.)BKu(K) (3.19)

where the additional equalities

P.J BKBKI-1(I - �')T = 0 (3.20)

P,.E-K = E-K (3.21)

PAK = 0 (3.22)

(I - P,)E-K = 0 (3.23)

(I - P,.)AK = AK (3.24)

are satisfied. The existence of any matrix P, satisfying (3.18) through (3.24), allows

separability to be defined in terms of BKB T instead of JBKB TI-1, and relieves usK K

of the restriction that BKB T be invertible. Furthermore we can define B-lu(-l)K

by B-ltt(-l) = PBKU(K) and the TPBVDS can be identified with the STPBVDS

model in equations (3.8), (3.9) and. (3.10). Separability is the ability to describe the

boundary condition as separate independent boundary conditions, one at k = 0, and

at k = K. In addition, the measurements of the boundary must also be independent

observations of the initial and final state.

Earlier it was stated that TPBVDS can be represented as STPBVDS. This fact

was demonstrated by Adams [1] for the case where Ek = L Separability was con-

48

nected to the generation of a causally equivalent model to the acausal TPBVDS. In

this section, we will generate a STPBVDS from a TPBVDS without constructing

a causal equivalent. Before doing so, we note that Nikoukhah showed that TPB-

VDS's can be represented by STPBVDS's of double the dimension but over half the

time interval[22]. Specifically, if we set -KO = K, = K in (3.8), then Nikoukhah's

separable representation for the TPBVDS given by (3.1) is written as

Ek+1 0 x(k + 1) Ak 0 z(k)

0 A-k-1 x(-k - 1) 0 E-k x(-k)
L J L. .1 L. J L. J

+ Bk 0 u(k)

L 0 -B-k-1 J L u(-k - 1) J
0 < k < K, (3.25)

with the boundary condition (3.2) included in

I -I X(+O) 0 0 x(K) 0
+ (3-26)

0 0 X(-O) EK A-K X(-K) BKu(K)

This boundary condition is separable and algorithms which can operate on separable

systems can in general be applied to non-separable systems by using this representa-

tion.

In the event it is undesirable or inconvenient to augment x(k) with x(-k), it is

still possible to construct an STPBVDS by essentially augmenting x(k) with x(Ko) or

x(Ki). Given any well-posed system of the form (3.1), we can refer to the projection

matrix (3.17) to facilitate the construction of a separable system. Let Ko = 0, and

K, = K. The boundary condition has been decoupled into two equations

E-KX(-K) + PAKX(K) PBKu(K) (3-27)

J - P,)AKx(K) J - P,)BKu(K) (3.28)

49

where P, is given by equation (3.17) and

The system can be made separable by augmenting x(k) with the constant vector

�(k) = x(K), and imposing the following boundary condition.

E-K PeAK x(-K) P,-BKu(K) (3.30)

L 0 0 J L �(_ K) J L 0 j

(I - P.")AK 0 x(K) (I - P,)BKu(K) (3.31)

-1 I �(K) 0

It turns out however that all of x(K) need not be appended to x(t). A 'reduced order'

separable system can be constructed by noting that often the rank of the matrix P,,AK

in equation (3-27) will have some value r which is less than n, the dimension of x(K).

When the system is separable, the value of r is equal to zero. Regardless of the rank

of PAK, the boundary conditions can be decomposed in the following manner.

P,,AK = OLOR (3.32)

where OL is an n x r matrix and OR is an r x n matrix. The boundary condition can

thus be modified in the following manner.

E-K OL x(-K) PBKu(K) (3.33)

L 0 0 JL ((-K) j L 0 j

(I - P,)AK 0 x(K) (I - P,)BKu(K) (3-34)
1

-OR I C(K) 0

The system which accompanies this boundary condition is given by

Ek+1 0 x(k + 1) Ah 0 x(k) + Bk 0 u(k)

L 0 I J L ((k + 1) j L 0 I J L ((k) j 0 0 J L 0 j

50

(3.35)

A similar separable decomposition was done by Adams in the context of developing

Markovian models for noncausal systems. This differs in that a separable model was

obtained without significantly altering the representation of the system. In addition

x(O) was appended in Adams derivation while x(K) is appended to x(k) in this

derivation.

Note in either case, that the formation of a separable system involves the gen-

eration of a boundary condition with singular noise. Returning to the model given

by (3.8) if AK does not have full column rank then it is not possible to estimate x(K)

based only on boundary information. In the case where the state of the STPBVDS

is given by [x(k), x(-k)], then the state at k = 0, is obviously degenerate in that

the two components are known to be equal. As a result a well-defined covariance

cannot be specified of the state based on boundary information. Filtering therefore

presents a problem because of the problem of initializing a Kalman filter with the

proper covariance information.

Moving forward we consider two more properties of STPBVDS, namely the diag-

onalizability property and the Markov property.

3.2 Diagonalizability of STPBVDS's

Consider a well posed STPBVDS AU of the equations can be written together in the

form

A-Y'K = BKUK (3.36)

Y = CKXK + VK (3-37)

where the vectors XK, UK, 1k, and VK are given by

VT = [XT(O)' XT(j)'...' XT (K - 1), XT (K)]T (3-38)
" 3L K

UKT = [U T(_ 1), UT(O), UT(j)'...' UT (K - 1), UT (K)JT (3.39)

51

YT = [.Y T (0), YT(j)' YT (K -1), YT]T (3-40)
K K

T T(O),VT(1),...,VT 1), VT)]TVK = IV (K - (K (3.41)

We will define Yk to satisfy the following

Xk
XK (3.42)

lyk

Similarly, we can defined overlined quantities of all the vectors in (3.38). In addition,

E[UKUKT] = diag[l, - - J] = I (3.43)

E[VKVKT] =diag[Ro,...,RK] =RK (3.44)

and the matrices A, BK, and CK are given by

Eo

Ao El

-Al E2 (3.45)

-AK-, EK

L -AK J

BK = diag[BjBOBj,...,BK-lBKj (3.46)

CK = diag[CoC, CK-1, CK] (3.47)

For the purpose of defining recursive filters in Chapter 4 we will define in addition

the matrices Ak and 7k. by

Eo

Ao El

Ak -Al E2 (3.48)

-Ak-1 Ek

52

and

-Ak Ek+j

-Ak+l Ek+2

7k (3.49)

-AK-1 EK

-AK j

The matrices 17k, and satisfy the following

dia (Bk, Rk BK (3.50)

dia (Ck, Uk) CK (3-51)

This STPBVDS system is well-posed if A is invertible. However if the dimension

of x(k) varies with time then the partitions indicated in (3.45) win be rectangular

with different but compatible sizes. Consider the inverse of A given by S, where S

is partitioned in the same fashion as A T . Although the elements of A are provided

explicitly in (3.45) we will denote the elements of A by Aij, and the elements of S

by Sjj. Since

SA = i (3.52)

and

AS = I (3.53)

the elements of these matrices satisfy

SaiAib I6ab (3.54)

and also

AjaSai 16ji (3-55)
a

where the identity is de-fined to have compatible dimension. From (3.45) it is seen

53

that the A matrix has a block bidiagonal structure.

Aij = 0 j + 1 =A i

where the indices of A are in the set f [0, N + 1], [0, N] I As a result the above sum-

mations (3.55), and (3.56) can be written in the following fashion.

SaiAii + Sai+,Ai+,,i = I8ai 0 < i, a < N (3.57)

AiiSij + Aii-,Si-lj = I8ij 0 < ij < N + 1 (3.58)

when Z' = 0 or N + I then (3.58) is replaced by

AooSoj Iboj (3-59)

and

AN+1,NSNj MN+1,j (3-60)

respectively. The matrices given by SaaAaa, Saa+,Aa+la, AaaSaal and Aaa-lSa-la

are important because they are projection matrices and have interesting properties.

By applying equations (3.57), and (3.58) we find the following to be true for c < a + 1

SaaAaaSac = Sac - Saa+,Aa+laSac

= Sac - Saa+2Aa+2,a+lSa+lc

= Sac - SaN+,AN+,,NSNc

= Sac (3.61)

and for c > a+ 1

SaaAaaSac = Sa,,,: - Saa+,Aa+laSac

54

S., -

S.,C - S, + S.,cACCSCC

-S.,c+,Ac+,,cScc

-S-,N+,AN+1,NSNc

0 (3.62)

as a result by considering the case where c = a it follows that SaaAaa, and AaaSaa

are projection matrices.

Consider the system given by the STPBVDS

Aiix(i) = -Aii-lx(i - 1) + y(i) (3-63)

with boundary conditions given by

Aoox(O) p,(O) (3.64)

and

AN+1,NX(N) p(N + 1) (3.65)

The solution to this equation is given directly in terms of the elements of S.

X(') sijl-'(j) (3.66)

Consider premultiplying x(i) by the product SiiAii

SiiAiix(i) SiiAiiSijp-(j) (3-67)

From (3.61), and (3.62), the projection matrix SiiAii kills future dynamics in the

system (3-63).

5i,-Aiix(i) SiiAiiSij[t(j) (3-68)
j<i+l

Similarly from (3-57) it follows that I - SiiAii = Sii+,Ai+,,i is a projection matrix

55

which kills the influence of past dynamics.

Sii+1Ai+1,ix(i) Sii+1Ai+1,iSijA(i) (3-69)
j>i

Since from (3.57) the set of projection matrices at each point in time are complete,

it therefore follows that if recursive equations can be written for the states when pro-

jected upon the space of past dynamics then the system will be successfully decoupled

into forward and past dynamics. Consider the product A.,._1S._1,.A.,., this can be

shown to be equivalent to the product AiiSii+1Ai+1,i. Also the product AiiSiiAii_1,

can be shown to be equal to Aii_1Si_1,i_1Ai_1,i_1. As a result the system given by

(3.63) can be decoupled into a forward and backward propagating subsystem.

AiiSii(Aiix(i)) = AiiSii(Aii_1x(i - 1) + tt(i)) (3.70)

Aii(SiiAii)x(i) -_ Aii_1(Si_1,i_1Ai_1,i_1)x(i - 1) + AiiSiiA(i) (3.71)

We need to establish that (3.71) is causal. In (3.70), which is equivalent to (3.71),

the premultiplication by AiiSii allows at most rank(AiAi) degrees of freedom on

both sides of (3.70) and (3.71). Since rank(AiiSiiAii) is equal to both rank(AiiSii)

and rank(SiiAii), the rank(SiiAii) degrees of freedom in SiiAiix(i) are constrained

only by the right hand side of (3.70) and (3.71). Since information is not lost by

premultiplying the boundary condition in (3.64) by Soo due to (3.59). This system

is therefore a causal recursion for SiiAiix(i). Similarly,

Aii_1Si_1,i[Aiix(i)J Aii_1Si_1,i[Aii_1x(i - 1) + ft(i)] (3.72)

Aii[,5ii+1Ai+1,i]x(i) (3.73)

Aii_1[Si_1,iAii_1]x(i - 1) + (3-74)

which in turns denotes a system which propagates backwards because the rank of

Aii_1[Si_1,iAii_1] is equal to the rank of Si_1,-Aii_1.

At this point it helps to translate these results into the notation for STPBVDS.

56

The system is given by

Ek+lx(k + 1) AkX(k) + BkU(k) (3.75)

where Ek = Akk, Ak = Ak+lk, and p-k Bk-lu(k - 1). Define the matrices Dfkk

SiiAii, Pk�k = Sii+,Ai+,,i, Pf - A. -S. - pb Aii_1Si_1,i- Recall that since Sk+lk k+1 ,k

exists, the system is well-posed. The forward propagated state is given by Pfkkx(k),

and the backward propagated state is given by Pb x(k). In fact the Ek and Akkk

matrices have been successfully broken into two parts. The matrix Ek+1 has been

b+ pbbroken into Pf lkEk+lPf 1,k+17 and Pk lkEk+l 1,k+1, The matrix Ak has beenk+ k+ k+

broken into Pf AkPf , and pb Ak pbk+lk kk k+lk kk

Next our aim is to find an invertible coordinate transformation Mk which win

allow (3.75) to be partitioned into forward and backward subsystems (with decom-

posed boundary conditions) of reduced dimension. Following from the experience of

diagonalizing the Hamiltonian equations for causal systems[22],[l] we expect that an

additional matrix Nk will be needed to premultiply (3.75) to aid in this diagonalizing

decomposition. Let the columns of Nk be the right eigenvectors of the projection

matrix Pf 1,k (which therefore are also the right eigenvectors of pbk+ k+lk = I - Pkf+lk'

That is,

Nk Nlk N2,k (3.76)

where for each column, 77, in Nik, Pkf+lk?7 = 77, and for each column, 77, in N2,k,

Pfk+lk?7 = 0. Then the projection matrix Pf can be written as

Pf
k+lk Nlk 0 Nlk N2,k (3-77)

_f which in the notatiion following (3.75) also equals Pk'+Iki by

Pb
k+lk 0 N2,k N1, k X2, k (3-78)

:_ 'DfSimilarly, let the rows of Mk- be the left eigenvectors of the projection matri., - kk

57

(which therefore are also the left eigenvectors of Pk',k = I - Pkjk = Pkk) That is,

JWk A11,k (3-79)

L M2,k J

where for each column, In, in Mlk, Pkf km 7'n, and for each column, III, in M2,k,

Pf
kkM = 0. Thus,

Pf Mlk Mlk

kk M2,k 0 (3-80)

and Tf

kk = Pkk is given by

Pb Mlk 0
kk - (3.81)

M2,k M2,k

These matrices are invertible since they comprise the eigenvectors of a projection

matrix and its complement.

As a result, the equation given by

1 1N- 1Ek+1MJ;�1JAIk+,x(k- + I)J N-1 A M-1JMkx(k)J + N�-+',BkU(k) (3.82)k+ k+i k k

has the form

.Lf 0 Xf(k + 1) if O Xf (k) Bf
k+1 k + k U(k) (3.83)

0 L' Xb(k + 1) 0 Jk' xl(k) Bbk+1 k

where the sequences L a and Jkb are square and invertible matrices. Finally thek+1

STPBVDS can be written as

if 0 Xf(k + 1) La'-'Jk� 0 Xf(k) La,-1 Bfk+1 k+1 k+1 k
+ u(k)

0 jb,- b b b,-1 Db
1 L' Xb(k + 1) 0 I X (k) Uk k+1 J k 4 k

(3.84)

where the super and subscripts on the identity matrices are to indicate that they may

58

vary in size. In addition x1(k) = Afikx(k), and x'(k) = M� kx(k). The next step is

to show that all STPBVDS are Markov.

3.3 Markovianity of STPBVDS's

To demonstrate the Markovianity we need to demonstrate that given x(k), the states

x(k + r), and x(k - s) are independent for any s,,r > 0. We will use the diagonalized

representation of the system to prove this assertion. Clearly the forward and backward

subsystems are separately Markov. We represent the STPBVDS by

I 0 Xf(k + 1) Af 0 X1(k) bf
k + k U(k) (3.85)

0 E' X b(k + 1) 0 1 X'(k) bbL k+1 J L i L J L i k i

where obvious substitutions from (3-84) has been made. By defining forward and

backward state transition matrices as

Of (L, K) Af Af (3.86)

O'(K, L) EKb+j ... ELLIE L (3.87)

where K < L we may then write the variation of constants formula for the forward

and backward subsystems.

k-1

Xf (k) = Of (k, j)xf (j) + E Of (k, r. + 1)bf u(n) (3.88)
K=j

k-1
b(j))Xb) + E Ob(j, b U(rX O'(j, k (k (3.89)

K=j

or equivalently

Xf (k) Of (k, ')Xf (j) + xf (k; j) (3-90)

X'(j) O'(j, k)x'(k) + Xb(j ; k) (3.91)

59

where obvious substitutions have been made. Restricting the process to a subinterval

involves restricting the causal and anticausal systems to the same subinterval. The

net result is that restrictions of STPBVDS's are themselves STPBVDS's. To prove

Markovianity we need to demonstrate that

E[(x(O) - E[x(O)jx(t)])(x(K) - E[x(K)lx(t)])'] = 0 (3.92)

This statement is equivalent to

E[x(O)x"(K)] -- E[E[x(O)jx(t)]E[x'(K)jx(t)]] (3-93)

which is also equivalent to

E[x(O)x'(K)] = E [X(O)XT (t)]E[xT(t)XT(t)] -'E [X(t)XT (K)] (3.94)

and finally in terms of the diagonalized system,

Xf (0) Xf (0)
E X'(0) XfT (K) XbT (K) E X'(0) XfT(k-) XbT(k)

LL j LL j

x E Xf (k) XfT(k) XbT(k) E Xf (k) XfT (K) X1,T (K) (3-95)
X'(k) X'(k)

This equality can be easily established by considering the following substitutions

Xf (K) Of (K, k)xf (k) + xf (K; k) (3.96)

Xb(O) 0'(0, k)Xb (k) + xb(O; k) (3.97)

Xf (0) bf 1 u(- 1) (3-98)

b(K) bb u(K) (3-99)

where xf(k) and Xb (k) are independent random vectors.

It is a simple matter to demonstrate that the first expectation in equation (3.95)

60

is given by

Xf (0)
E XI(O) XfT(K) XIT(K) (3.100)

E[Xf (O)XfT(k)]OfT(K, k) 0

01(0, k)E[xb(k)xfT(K; k) + E[Xb(O; k)xfT(k)]OfT(K, k) Ob(O, k)E[xb(k)xbT(K)]

The second expectation in equation (3-95) is given by

X (k)]

(0) XfT(k.) XbT (k) E[Xf (O)XfT (3.101)

XI(O) EIX'(O; k)XfT(k)] Ob(O, k)Eb
L L i L k J

The third expectation in equation (3.95) is given by

Xf (k) Ef 0
E XfT(k) XIT(k) k (3.102)

Xb(k) O F, I
LL i L k J

Finally, the fourth expectation in equation (3.95) is given by

Xf (k) Ef OfT(K, k) 0
E XfT (K) XbT (K) k

LL Xb(k)j i L E [Xb (k)XfT(K; k)] E[Xb(k)XbT(K)] j

(3.103)

From these relations (3.95) is confirmed and the system is Markov.

61

Chapter 4

Estimation of Separable Two

Point Boundary Value Descriptor

Systenis

4.1 Machinery for Recursive Estimation

In this section machinery is presented which is important to perform recursive es-

timation for STPBVDS's. Lemma 4.1 which is a generalization of a result in [23]

to the case where x need not be estimable, provides one way around the use of the

Hamiltonian while insuring that what we compute at each point in time are optimal

ML estimates. Lemma 4.2 shows that the estimate can be decomposed into two inde-

pendent estimates, which by virtue of Lemma 4.1, each estimate can be implemented

recursively. Lemma 4.3 allows for the updating of state parameters when additional

indirect measurements are available.

4.1.1 ML Recursive Estimation Lemma

One method to derive smoothing equations for STPBVDS's is to solve the entire prob-

lem as one large optimization problem. The result is the Hamiltonian formulation for

the optimal smoother[24]. The Hamiltonian itself is a STPBVDS which relates the

62

smoothed estimate of the state with the smoothed estimate of its neighbors. Use-

ful algorithms are obtained when the dynamics are diagonalized and triangularized,

yielding the Mayne-Fraser and Raucli-Tung-Striebel algorithms respectively. How-

ever it is not clear that the state of the filters in the Mayne-Fraser and the Rauch-

Tung-Striebel algorithms are themselves ML estimates. In addition, modifying the

Hamiltonian for the case of ill-defined covariances adds additional complication to the

algebraic process of diagonalization, and triangularization. A detailed understanding

of the smoothing problem is enhanced by examining the estimation problem at each

point in time, instead of solving the entire problem at once and recovering recursive

computations from the final solution. Lemma 4.1 provides one way around the use

of the Hamiltonian while insuring that what we compute at each point in time is an

optimal ML estimate. In addition, Lemma 4.1 allows us the freedom to incorporate

measurements in any order, in addition to incorporating them in a sequential fashion,

leading us in Section 5.5 to a new parallel recursive estimation algorithms.

Lemma 4.1

The optimal estimate of the vector z (or x) based on the measurements

Y = Hx + v (4.1)

and

w = Jx + Kz + u (4.2)

is equal to the estimate of the vector z (or x) based on the measurements

'�[Y] - PXX +,fly] (4-3)

and (4.2), where �[y] is the estimate of x based on (4.1) alone, Px is the symmetric

projection matrix which projects onto the estimable subspace of x, i[yj is the esti-

mation error associated with ;�[y], and u and v are zero mean, independent random

63

vectors.

64

Proof of Lemma 4.1

We will prove this using the same machinery and notation used in the Section 2.2 in

the context of square-root ML estimation. The main task is to show that the two sets

of observations are equivalent by noting that the information which is thrown away

in the estimation x based on y, would be eliminated anyway in estimating z (or x)

based on all of the data.

Here, the estimate of x based on y will be constructed while maintaining all of

the information which is ordinarily lost in the estimation process.

Premultiply (4-1) by 5 in (2.91).

SP SP 0

S, y S, Hx + S, v (4.4)

S. S. S. j

Use the matrix U given in (2.94) to separate the parts of x which can be estimated

perfectly, and are completely unknown from the remainder.

SpHU T 0 0 Up X 0SP P

S, Y SHU T SHUT 0 U'X + S. V (4.5)P

S. S,,H[TT S,, H UT S,,, H Uj U,, X S.
L i L P J L i L i

In this next step we shall estimate the perfect part of x and normalize the part of

the observation noise which has an invertible covariance.

JSpHU1' I-LSP I 0 0 X 0P UP
1/2 0 1/2, T 0-1l'SHUT IT,.T + R-112S, V

R S, Y= R 5,HUP

S, S,,,H[TT S,,,HCTT S,, H Ui [T"X S,,
P

(4.6)

Since the perfect portion of x has been identified, what remains is to find the matrix

65

J used in (2.96) which solves the standard ML problem.

-LSPISpHUPTI

JR-112S, Y (4.7)

S.

0 0 UPX 0

1/2 1/2 T 1/2 S. VJR- SHUPT JR- SHU 0 Ux + JR-0 0

SHLTT S.,,HUT S,,HUI U"X S.P I .

The term JR- 1/2 Sv has unity covariance and next we examine the decomposition0

performed in (2.83). Toward this end, J is partitioned appropriately as jT [jjT j2T

Then (4.7) can be written as

-LSPjSpHUPTj

JjR- 1/2 S,

0 Y (4.8)
J2R-112S�'0

L S.
0 0 0

UP X
JR-112 SHUT JR-112 SHUT 0 JR-112S.0 0 0

U. X + V
J2R- 1/2 SH[IT 12S80 0 0 J2R-1P U"X

T j L i
S,,HUP S,, H UT S,, H Uj S.

The term JR- 1/2 SHUT is invertible and is the inverse square root of the covariance0

of Ux. This measurement can be written as two measurements. The first measure-

ment is equivalent to (4.3), the second are those parts which are discarded in the

estimation x based on y

�SpH (TTI-LSP
P Y (4.9)

f JjR-1 /2 SHUTj-1JjR-112S'
L

0 Up X + 0

JjR-112 S., H UPT I U'X IJR-112 SHUTI-'JR-112 S.

66

and

01/2 0 1/2 0 0 U, X J2R- 112S
J2R So -J2R S, H UPT Y + 0 8 V

Su - Su H UPT UP X SuHUT SuHUj UU X Su
J L J L j L

From (4.9) the estimate of x based on y can be directly recovered and is given by

-LSPJSpHUPTj y(4.10)

JJI R-1/2 SHUTj-1JjR-112S. - f SpHUPT J-L SpJR-112 SsHUPTL 0 0 0

Up-�ML UP X 0
+ V

- 1/2 SHUTj-1JjR-112S'
Us'�ML U'X .11 RO a

At this point (4.1) and (4.2) has been shown to be equal to (4.2), (4.3) and (4.10).

Equation (4.10) can be discarded from the estimation process for two reasons. A direct

observation is obtained for the noise term J2R-112S.V which however is independent0
of u and thus contributes nothing to (4.2). Finally since Suv is completely unknown,

and is not observed in (4.2), this equation places no constraints on x. The equality

between the two sets of measurements is therefore established.

4.1.2 Independent measurement ML Lemma

The Mayne-Fraser two filter algorithm computes smoothed estimates by combining

pairs of independent estimates. Lemma 4.2 demonstrates that the two independent

measurements of a specific vector can be obtained from two general measurements,

both of which involve the vector of interest.

Definition 4.1

The vectors ii and k which are comprised of both random variables and unknown

parameters, will be called independent if they satisfy the following.

• There is an invertible matrix [MI Nj] such that Al',,a- is a Gaussian random

variable with a well defined covariance, and N,,ii is completely unknown.

• There is an invertible matrix [MbT NbT] such that Mb� is a Gaussian random

67

variable with a well defined covariance and Nb� is completely unknown.

E[(M,,a - E[-MbL])TI 0

There is no redundancy in N,,,,a, and Nbb, i.e. together they represent rank(N,,)

+ rank(Nb) degrees of freedom.

Definition 4.2

For any matrix G, G' is defined to be any matrix which satisfies the following.

G'G = 0 (4.11)

G' -
(3T has full column rank (4.12)

Lemma 4.2

Let ii and b be independent vectors. The optimal estimate of x given the independent

observations

a Gz + Jax + ii (4.13)

b Gbz + Jbx + b (4.14)

is equal to the optimal estimate of x given the independent observations

G'a = GJax + Ga, (4.15)

a a a

G'b = GJbx + Gb (4.16)

b b b

Furthermore, the observations given by (4.13), and (4.14) are equivalent to

;�[a] = Pax +;�[a] (4.17)

,�[b] = Pbx +;i[b] (4.18)

where the indices indicate which observation the estimates where obtained from.

68

Proof of Lemma 4.2

Multiply (4.13) by [GIT GajT and (4.14) by [GIT]T].a b Gb

G' G' G
a a a JaX + a (4.19)

GT GT G Tii + G T GaZa a a a

G' G G'�
b b b Jbx + b (4.20)

GT GT Tb TGbZb b Gb + Gb

z is an unknown vector. As a result the bottom halves of (4.19), and (4.20) do not

provide algebraic or statistical constraints for x. Upon removing these equations

(4.15), and (4.16) result. Equations (4.17), and (4.18) follow directly from the

application of Lemma 4.1 to (4.15), and (4.16).

4.1.3 Updating ML Lemma

Lemma 4.3 is important to the derivation of the Rauch-Tung-Striebel algorithm and

the parallel algorithm developed in Section 4.3.

Lemma 4.3

Let L be independent from both and �. Then the set of measurements given by

a Laa Lab Xa (4.21)

L 0 Lbb Xb

and

b= Hxb+b (4.22)

where the observation error is given by

P" N 0; E.,. (4.23)

L 0 Po J P J L L FIJ3,. JJ

Fbb N[O; Ebb] (4.24)

69

is equivalent to (4.21) and

B = x6 + f3 (4.25)

where (4.25) is the estimate of xb based on (4.22) and the second half of (4-21) given

by

Lbbxb + (4.26)

Here,
T

0 EOg 0 Lb 13

B 0 0 Pbb H b (4.27)
1 L T HT

b 0 0

and

f3 , N(O, Q) (4.28)

where Q is given by

T

0 Epo 0 Lb 0

Q 0 0 E6,b H 0 (4.29)

1 LT HT 0 I
b

In addition, the measurement given by (4.21) and (4.25) yields an equivalent mea-

surement for x,, given by

_fLab - F1,xOF1#OLbjB + a - E,,,,OE*'60 (4.30)01 01

and its error covariance is given by

1-d E/3,.,,+fL.b-1ZJ,,/3E# LbjQfL Lbi

ov a - L,,� X a 7-1,,,a - V,,,O 7-1)#3,o 13,0 a b E a, 13 1*3, O

(4.31)

Proof of Lemma 4.3

As in Lemma 4.1, our aim is two show equivalence between the two sets by keeping

track of the information used by each set of observations and evaluating whether the

70

difference in the observations are necessary to perform the desired estimation.

The observations in (4.21) can be divided by an invertible transformation into

two independent measurements given by:

a - E""Or"1,3,3 = L..x. + �L.b - F,,,,,3F,#OLblXb + I&

13, (4-32)

and

LbbXb + (4.33)

The measurements given by (4.21), and (4-22), are thus equivalent to (4.32), (4.33)

and (4.22). Equating (4.21) with (4.2), and equating (4.22), and (4.33) with

(4.1) yields via Lemma 4.1 that the above observations are equivalent to (4.32)

and (4.25). Clearly no new information is recovered by including and additional

(4.33). Recombining (4.32) equation with (4.33) demonstrates that the two sets

of measurements are equivalent. Equations (4.30), and (4.31) follow directly from

equations (4.32), and (4.33).

Lemma 4.3 and its implications for recursive estimation are explored in more detail

in Section 4.3, in which we derive the Rauch-Tung-Striebel smoothing algorithm for

STPBVDS's.

4.2 Consequences of Lemmas 4.1 and 4.2

The first proposition applies Lemma 4.1 to STPBVDS's. Using the notation for

STPBVDS's in Chapter 3, let -�[njYj be the ML estimate of x(r.) based on the

observations Y, defined in equation (3.40) for k = r.. We may conclude that

Proposition 4.1

The estimate i[kll-'k], is a sufficient statistic to carry along for the causal recursive

estimation problem for STPBVDS's.

Proof of Proposition 4.1

71

From Lemma 4.1 the ML estimate of x(k + 1) based on

Ak+lXk+l - Bk+lUk+l (4.34)

Yk+I Ck+lXk+l + Vk+1 (4.35)

is equivalent to the measurement

0 ... 0 -Ak Xk + Ek+lx(k + 1) = Bk+lUk+l (4-36)

Yk+1 = Ck+lx(k + 1) + v(k + 1) (4.37)

and the optimal estimate of Xk based on

Ak.,Y'k - BkUk (4.38)

Yk = C k X k + ik (4.39)

Due to the bidiagonal structure of Ak the matrix in (4.36) which premultiplies Xk

acts only on x(k). From Lemma 4.2, all that is required from (4.38) is an equivalent

measurement of only x(k) since the remainder of Xk is not needed. As a result, the

ML estimate of x(k) based on Yk, �[kjYk], is a sufficient statistic to carry along for

the recursive estimation problem for STPBVDS's.

Proposition 4.2

The estimation problem for STPBVDS's can be reduced for each k to the estimation

of x(k) based on two independent measurements.

Proof of Proposition 4.2

For each k, the matrix A defined in (3.36) can be partitioned into two parts yielding

the following partitioning of (3.36), and (3.37).

0 Ak Xk-1 - Bk Uk
+ (4.40)

L Yk, J L Ck J L x(k) i L 17k i

72

x(k)
Ak ... _RkUk (4.41)

0 : -
L Ck j Vk i

Xk

The point here is that (4.40) and (4.41) can be thought of as two observations of

the vector x(k), capturing all of the available information. We know from Lemma

4.2 that equivalent measurements of x(k) can be constructed for (4.40) and (4.41).

From Lemma 4.1 these measurements can be reduced to independent estimates of

x(k). In the section on the Mayne-Fraser smoother we will show how these estimates

can be constructed recursively.

4.3 Maximum Likelihood Filtering

In this section we present a general ML filtering algorithm for STPBVDS. We assume

that the system matrices Ek, Ak, etc. may be time varying and that the process

noise u(k) is independent of the observation noise v(k). The algorithm uses two

intermediary vectors zf (k), and z6(k) which represent the forward and backward

predicted estimates of the state x(k). This is needed particularly in the case in which

the Ek and the Ak matrices are rank deficient.

Consider a general STPBVDS:

Ek+lx(k + 1) = AkX(k) + BkU(k) 0 < k < K - 1 (4.42)

Eox(O) = Bju(-1) (4.43)

0 -_ AKx(K) + BKu(K) (4.44)

'Y(O = Ckx(k) + v(k) 0 < k < K (4.45)

Cov(u(k)) = 1 (4.46)

Cov(v(k)) = Rk (4.47)

Viewing (4.42) through (4.47) as providing a set of noisy constraints, we can

apply the ML estimation results of Subsection 2.1, Lemma 4.1, Proposition 4.1, and

73

Proposition 4.2 to obtain recursive estimation algorithms. From Proposition 4.2,

the algorithm involves constructing two independent measurements of the random

variables x(k) for each k. From Proposition 4.1, these independent measurements

are computed from two ML filters one operating on only causal data and the other

operating on only anticausal data. Each filter computes recursively ML estimates

which propagate ML estimates, a projection matrix which keeps track of the estimable

subspace, and the covariance of the estimable portion of x(k).

In presenting these algorithms it is useful to define two auxiliary (forward and

backward prediction) variables.

ZI(k) Ekx(k) (4.48)

?(k) AkX(k) (4.49)

Let ,�f L['JkJ denote the ML estimate of x(l) based on (4.42) for 0 < K < k - 1,

and (4.47) for 0 < r, < k, and ",.ML[Ilk] denote the ML estimate of z(1) based on

(4.42) for 0 < r, < k, and (4.47) for 0 < r, < k. Then the observations required for

the measurement update step are

ZkL[klk Pzf [kJk-1jEk x(k) + ML[k1 (4.50)

L YM J L Ck J L r(k) J

We then obtain the following measurement update equation for the forward ML filter

(FMLF) equations:

T T
fT [klk] 0 Ef [klk - 1] 0 Pzf [klk-,]Ek

Ef [kik] 0 0 Ri, Ck X (4.51)

Pf I ETp_f CT
x[klk] k [kik-1] k 0

ML[klk 1] 0 Pzf [klk-,]Ek

y(k) 0 Ck

0 0
J

Often it is the case that the covariance computations can be carried out in advance

74

of the acquisition of data. In that event (4.51) can be written as two equations given

by

FfT(k) V [klk - 1] 0 Pf [klk-,]Ek 0

GfT (k) 0 Rk Ck 0 (4.52)

-Ef [k1k] E Tpzf [kik-1] CT 0 IX k k

fML[klk] = Fk'mfL[klk - 11 + Gky(k) (4-53)

Pf
X[klk] = FkPzf [klk-,]Ek + GkCk (4.54)

The constraints which are needed to determine the prediction step are given by

Zf (k + 1) = Akx(k) + Bku(k) (4.55)

fML[klk] x(k) + "f L[klk]= PXf[k1k]

The prediction step is given by

�f
ML[k + Ilk] = Pf [k+1Jk]Ak-i6MfL[klk] (4.56)

F, f [k + Ilk] = Pf [k+llk](AkFxf [k1k]AT + BkB T)p (k+11k) (4.57)
Z k k �f

T)# T)
PZf (k+11k] = (Akj5xf[kJk]Ak (Ak!5.f [k1k]Ak (4.58)

where Pxf [k1k] indicates the symmetric projection matrix which defines the estimable

part of x(k) based on past data through time k, and P,,f [kll,-l] is the symmetric

projection matrix which defines the estimable part of zf (k). Note again that part

of this equation which corresponds to the portion of zf (k) which is inestimable,

Pzf [klk-]1 Zf (k) is not used in the forward estimation step. Equations (4.51) through

(4.58) represent the generalization of [23] to allow for the possibility that x(k) and/or

Zf (k) are not completely estimable. Also Exf [k I k] can be thought of as the error co-

variance in the estimate of �fML[klk] in the sense of (2.31). Fl--f[klk] represents the

corresponding error covariance for the estimable part of x (k). The matrix Ef [k + 1 1 k]Z

75

has a similar interpretation for ifML [k + II k]. We are assured via the Lemma 4.1 that

the ML estimates which are obtained at each step are precisely ML estimates based

on all of the causal data.

Similarly we can define the backward ML filter (BMLF) where �C'Wlljk] denotes

the ML estimate of x(l) based on (4.42), for k < r. < K and (4.47) for k < r. < K�

and i6 L[Ijk] denotes the ML estimate of z6(1) based on (4.42), for k - 1 < K < KM

and (4.47) for k < r, < K. The observations required for the measurement step of

the BMLF are

ib Pb[klk+l Al, ib + 1]ML[klk + 1] x(k) + ML1kI (4.59)

y(k) Ck r(k)

The BMLF is then given by

.�bT [kIk 0 Eb[klk + 1]ML z 0 P,,blklk+,,Ak

Eb [k1k] 0 0 Rk Ck x (4.60)

P.'[k I k] I AT Pb[klk+l] CkT 0

ML[kIk + 1] 0 Pbtkik+l]Ak

y(k) 0 Ck

0 -I 0

Again the covariance computation can be separated from the equation governing the

propagation of the estimates in the following fashion.

Fkb, T
zF,[kIk + 11 0 Pb[klk+,]Ak

G U 0 0 Rk Ck (4.61)k

Eb [kIk] I AT Pb[klk+l] CT 0x k z k

- bT Fk1 ; bXML[klk] ML[kIk + 1] + G'y(k) (4-62)

Eb [k1k] FkPb[klk+,]Ak + GbCk (4.63)

76

The measurements for the prediction step are given by

Pzb[klk+l]--'(k) = Pb(klk+,jEk+lx(k + 1) - P BkU(k)

_.b[klk+l] (4.64)

b = pb[k.1k]X(k) + ;ibML[klk] ML[klk]

The prediction equations are therefore given by

ibML[k - Ilk] P.�b[k-llk]Ek.-�'ML[klkl (4.65)
F, b[k - Ilk] = Pb[k-llk](EkF-'[klk]EkT + Bk_1B T 1)Pzb[k-llk] (4.66)

X k-

T)l
PZb(k-11k] = (EkF.[klkj Ek (Ek'F.[klk]EkT) (4.67)

The projection matrices which appear in these equations increase the complexity

of the estimation equations. It is therefore important to know whether or not the

propagation of the projection matrices need be carried out for the entire data length.

From the standpoint of determining the estimable, parts of the vectors, it does not

matter if the observation noises which determine the estimable subspace have full rank

covariances, or are zero. The value of the data is irrelevant also. It can be set equal to

zero, and the relationship between the estimable and non-estimable subspaces would

not change. As a result estimability can be studied by considering the causal system

given by

Ek+1 x(k + 1) Ak X(t) (4.68)
Ck+1 0

The state x(k + 1) is fully specified given x(t) if the matrix in the first half of (4.68)

has full column rank. This therefore is one assumption we place on the matrices Ek,

and Ck. Furthermore there is a sequence of matrices Lk such that preniultiplying

(4.68) by Lk+1 will yield

I x(k + 1) Ak X(t) (4-69)

L0 J L 'H k J

which is a causal system. If Ak, 'Hk is uniformly completely observable, we know that

77

x(t) is estimable in a finite number of steps. If there however are unobservable modes

which are stable, X(t) is still not estimable because knowledge that the mode decays is

not sufficient to estimate it when the amplitude of the mode was completely unknown

initially. We therefore require all modes which are not uniformly completely estimable

to be uniformly nilpotent. As a result, though a mode may be completely unknown,

it will be forced to zero with certainty in a finite period of time which is uniform over

the entire interval. These modes are therefore estimable in a finite period of time.

We call a system which satisfies these conditions, estimable. Estimability, is therefore

a condition which is stronger than delectability, yet weaker than observability.

4.3.1 Computational Complexity of the Filtering Equations

The computation required for the FMLF and the BMLF are identical. As shown in

Chapter 2, the amount of computation varies with how much of the state is estimable,

and the existence of certain matrix inverses. The amount of required for one time step

in the ML filter is denoted by IC (n, m, p; description) where n is the dimension of the

statem is the dimension of the driving noise , p is the dimension of the observations,

and 'description' represents any other relevant information. We may then define the

following polynomial functions.

x (n , M. 7 P; off - line, measurement - update, non - estimable) represents the off-

line flop count for the measurement update equations for the case where the state is

not completely estimable. It represents the computation required for (4.52), (4.54)

and constructing the product P,.f [k+llk]Ek+l

X(nm, p; off - line, measurement - update, non - estimable)

= M(2n + p, n, 2n + p) + 4,n.3 + 2pn.2 (4-70)

= '(2n + p)3 + 5n(2n + p)2 + 4n3 + 2pn 2

IC(n, m, p; off - line, prediction - update, non - estimable) represents the off-line

flop count for the prediction update equations for the case where the state is not

completely estimable. These equations are entirely off-line. If we plan to propagate

78

predicted estimates then by combining (4.53), and (4.56) together we must com-

pute the quantities Pzf [k+llkAkFk and Pzf tk+llkAkGk- If filtered estimates are being

propagated then Fk+j P�zf [k+1 jk] Ak need be computed. Computing predicted estimates

requires more flops, and will be used as the basis for these computations.

IC (n, m, p; off - line, prediction - update, non - estimable)

= E(n, n, n) + 14n' + 4pn 2+ 4mn 2 (4.71)

= 18'n' + On' + 4mn'3

K(n, m, p; off - line, measurement - update, estimable) represents the off-line flop

count for the measurement update equations for the case where the state is completely

estimable.

IC(n, m, p; off - line, measurement - update, estimable)

= 9(2n + p, n, 2n + p) (4.72)

4(2n + p)3 + 3n(2n + p)2

K(n, m, p; off - line, prediction - update, estimable) represents the off-line flop count

for the prediction update equations for the case where the state is completely es-

timable.

IC (n, m, p; off - line, prediction - update, estimable) (4.73)

= 6n' + 2mn 2 + 2pn2

K(n, m, p; off - line, measurement - update, invertible) represents the off-line flop

count for the measurement update equations for the case where the state is completely

estimable and there are no perfect observations.

IC(n, m, p; off - line, measurement - update, invertible)

= 1(2n + p, n) (4.74)

2 + p)3 + p)2= 5(2n, + 2n,(2n

K(n, m, p; off - line, prediction - update, invertible) represents the off-line flop count

79

for the prediction-update equations for the case where the state is completely es.

timable.

IC(n, ra, p; off - line, prediction - update, invertible) (4.75)

= 6n 3+ 2mn 2 + 2pn 2

IC(n, m, p; off - line, non - estimable) represents the total off-line flop count for

the filter equations for the case where the state is not completely estimable.

IC (n, m, p; off - line, non - estimable)

= 18.33n 3 + 4pn' + 4mn 2 + 2.67(2n + p)3 + 5n(2n + p)2 + 4n 3 + 2pn 2 (4.76)

= 63.67n 3 + 56n 2p + 21np 2 + 2.67 p3 + 4n 2M

IC(n, m, p; off - line, estimable) represents the total off-line flop count for the filter

equations for the case where the state is completely estimable.

IC (n, m, p; off - line, estimable) (4.77)

4(2n + p)3 + 3n(2n + p)2 + 6n 3 + 2mn 2+ 2pn 2

IC(n, m, p; off - line, invertible) represents the total off-line flop count for the filter

equations for the case where all required inverses are invertible.

IC (n, m, p; off -line, invertible) (4.78)

2(2n + p)3 + 2n(2n + p)2 + 6n 3 + 2mn 2+ 2pn 25

IC(n, m, p; on - line) represents the total on-line flop count for the filter equations.

This count is valid whether the state is estimable or not. The on-line cornputations

are given by combining (4.53), and (4.56) into the following

�[k + Ilk] P�zf[k+1jk]AkFk[klk - 11 + Pf[k+llk]AkGky(k) (4.79)

80

The on-line flop count is given by

(n, m, p; on - line)
(4-80)

2n(n + p)

4.3.2 The prediction equation

In a sense, zf (k), and z6(k) are non-essential variables, introduced in our estimation

process, since, instead of performing one step predictions of these quantities, we

could just as well perform one step forward and backward predictions for au of x(k).

Specifically, as opposed to the development in [22] in which zf (k), and z6(k) were

introduced because of a desire to compute estimates for estimable quantities only,

the whole point of our development is to relax this estimability condition. We can

certainly apply this idea here avoiding the introduction of zf (k), and ?(k). We now

describe this approach and in the process make clear why this is not a desirable

alternative, as it is computationally more involved, and it does not yield in a direct

way the estimable projection matrix for these one step predicted estimates which are

explicitly needed in the subsequent processing steps.

The observation for the prediction step is given by

if Pf [k I k] 0 x(k) ifML[klkl - + ML[klk - 1] (4.81)

L 0 J L Ak -Ek+l J L x(k + 1) J L Bu(k) J

After the elimination of the variable x(k), (4-81) can be written more compactly as

Pf [k + 1lkJAk-'�MfL[klk] = P![k + llk]Ek+lx(k + 1) - P![k + 11k](Akif L[klk] + Bu(k))

z M

(4.82)

We then obtain the following prediction step (FMLF) equations:

' T . .# -
0 Ef [k I kJ 0 Pf [k k] ML [k1k] 0

.jfT [k + Ilk] 0 0 BBT Ak -Ek+l 0 0ML

Ef [k + Ilk] 0 Pf [k I k] AT 0 0 0 0
L k

L -rJ L 0 -ET(k + 1) 0 0 J L 0 -I J

81

What remains is to compute the associated projecti6n-rriatrixPf[k-+ 1Jk].---Vhilo

we are able to compute the estimate and covariance, we should note that (4.81)

should be viewed as a joint ML estimation problem for x(k), as well as for x(k + 1).

Thus applying the results of Chapter 2 to obtain the projection matrices, we obtain a

projection matrix for the composite vector [XT (k), XT(k+ 1)] The size of this projection

matrix is 2n x 2n, rather than n x n and additional work is required to extract the

proper projection matrix. In addition the pseudo-inverse of a larger matrix for x (k + 1)

is required in (4-83) meaning that the introduction of the variables zf(k), and z6(k)

is the proper step to reduce unnecessary computation.

One reason for the additional complexity in the approach described in this section

is that if Ek+1 is singular then the second equation in (4.81) does provide additional

information about x(k). By using zf (k + 1), we explicitly eliminate x(k) and focus

attention only on the part of the dynamics related to the prediction of x(k + 1). A

consequence of this is that in the context of smoothing we have to incorporate the

part of the dynamics which we have discarded. We will see this explicitly in the

Rauch-Tung-Striebel Algorithm described in Section 4.5.

4.4 The Mayne-Fraser Smoother

From Lemma 4.2 and Proposition 4.2 two independent measurements of the state

x(k) can be constructed. One is constructed from causal data and the other from

anti-causal data. Furthermore, the structure of the measurements in (4.40) and

(4.41) form block bidiagonal systems of equations, and thanks to Lemma 4.1 and

Proposition 4.1 this structure can be exploited for the generation of efficient recursive

estimation algorithms as discussed in Section 4.2. We have the choice of includ-

ing the observation y(k) with 'either causal or anti causal data. As a result when

computing the smoothed estimate of the state, we have the choice of combining for-

ward predicted with backwards filtered estimates, or forward filtered estimates with

82

backward predicted estimates. Other variation are possible. We could for example

propagate forward and backward filtered estimates and combine the estimates xf M

and x6(k + 1) and use the intervening dynamic constraint to compute the smoothed

estimate, similarly we can propagate forward and backward predicted estimates and

include the local observation to generate the smoothed estimate of the state.

The observations required to compute the smoothed estimate from forward filtered

and backward predicted estimates are given by

Pf
ML[klk] x[klkl x(k) + ML[kik] (4.84)

b _;b
L ML[klk + 1] j L Pb[klk+,]Ak L ML[kik + 1] .1

and the smoothed estimate is computed via

'�s L(k) = Lf (k)'� Mf L[klk] + L6(k)ibML[kik + 1] (4.85)
X' + L'(k)Pb[klk+,]Ak (4.86)

P_(k) = L f (k) Pxf[klk]

where Lf (k), L6(k) , and the error covariance is given by

LfT (k) Ef [k1k] 0 PI(k) 0

L6,T(k) 0 E,,b [klk + 1] P 0 (4.87)

E' (k) PI (k) AT P-b(k) 0 I

Similar equations can be written which involve combining forward predicted with

backwards filtered estimates. The FMLF and the BMLF together with (4.85), (4.86),

and (4.87) form a generalization of the Mayne-Fraser two filter formulas for optimal

smoothing on STPBVDS's in the case where x(k) may not, be estimable, while por-

tions of it are specified perfectly. Specifically if A--I and only final conditions are spec-

ified (making the system well-posed), the FMLF and the BMLF and (4.85)- (4.87)

reduce to the usual Mayne-Fraser equations when applied to anti-causal systems. As

a result, the generalization to STPBVDS deals in a symmetric way with information

available at the two ends of the interval.

83

4.4.1 Computational Complexity of Mayne-Fraser Equations

Here we discuss the additional amount of computation required to compute the

smoothed estimates in equations (4.85)- (4.87). The computation required for the

forward and backward -filters are discussed in Sections 4.3 and 4.3.1. To describe the

amount of computation involved in combining forward and backward filtered esti-

mates, we will define the following polynomials.

'F(n; off - line, non - estimable) will represent the amount of off-line computation

associated with computing the covariance and projection for the smoothed estimate

in (4.86), and (4.87), if the smoothed estimate is infact not completely estimable.

J"(n; off - line, non - estimable)

M (3n, n, 3n) + 4n 3 (4-88)

121n 3

.F(n; off - line, estimable) will represent the amount of off-line computation asso-

ciated with computing the covariance and projection for the smoothed estimate, if

the smoothed estimate is completely estimable.

T(n; off - line, estimable)

= E(3nn,3n) (4-89)

= 63n 3

.F(n; off - line, invertible) will represent the amount of off-line computation asso-

ciated with computing the covariance and projection for the smoothed estimate, if the

smoothed estimate is completely estimable and if the forward and backwards filtered

estimates contain no redundant perfect information.

,T(n; off -line, invertible)

= -T(3n, 72.) (4.90)

= 36n 3

T(n; on - line) represents the flop count for constructing the smoothed estimates

84

from the forward and backward estimates in (4.85).

.F(n; on - line) = 4n 2 (4.91)

4.5 Rauch-Tung-Striebel Algorithm

It is possible to generalize the Rauch-Tung-Striebel algorithm to STPBVDS's in the

ML framework. Most derivations of the Rauch-Tung-Striebel algorithm arise from

an algebraic point of view. This is difficult to do in the general ML frame work,

and therefore we will use a statistical argument. This algorithm involves a forward

sweep to compute --�MfL[kjk] for each k producing the smoothed estimate ;�,(K) =

fML[KIK] at one endpoint, which initiates a reverse sweep to compute ��,(k) =

fML [k I KI over the entire interval. The key to this backward sweep is again to interpret

it as the computation of ML estimates based on an appropriate set of observations.

In particular suppose that we have computed ,�,(k + 1) and its corresponding error

covariance Es (k + 1) = Ef [k + I I K], where E., [k + 1 10, K] is interpreted as in (2.31) if

x(k) is not estimable. Then the computation of �,(k) and E" (k + 1) can be obtained

by solving the following ML estimation problem which captures all of the relevant

information relating x(k) to x(k + 1) and the available estimates of each of these:

Pf[k I k] X[kjkj 0 [k1k]

if [k + 11k] 0 Pzf [k+llklEk+l x(k) if [k + 11k]

0 P.f [k+llk]Ak Pzf [k+llk]Ek+l x(k + 1) Tf [k+1 jk] Bu(k)

(k + 1) 0 + 1)
(4.92)

The first and second measurements in (4.92) are the the filtered and predicted es-

timates which result from forward filtering. As a result their observation noises are

correlated. The third observation in equation (4.92) is a dynamic constraint which

lies in the null space of Rf . It therefore was not used in the filtering process as it

corresponds to the part of the dynamics (4.50)? not used in the one step prediction

of x(k + 1). For the smoothing problem, this dynamic constraint must be included

85

so that all information is accounted for.

Consider the Mayne-Fraser two filter smoother. We know that the smoothed

estimate of x(k) and x(k + 1) can be constructed from the following measurements.

.�f[klk] - Pfkjqx(k)+;�f[klk] (4.93)

;�'[klk] = P.[AIkjx(k)+bf[klk] (4.94)

0 = Ek+lx(k+l)-AkX(k)-Bku(k) (4.95)

This is verified by noting that (4.93), and (4.95) are the measurements required to

construct the predicted estimate of x(k + 1) which is independent of the backward

filtered estimate (4.94). A similar argument can be used to construct the independent

measurements required for the smoothed estimate of x(k). Lemma 4.1 allows for the

incorporation of measurements in any order. First we replace (4.93), (4.94), and

(4.95) by the following set of measurements

'�f [klk] = Px'[klkjx(k) +;if [klk] (4-96)

O = Pfzfk+llk][EA,+lx(k + 1) - AkX(k) - Bku(k)] (4-97)
_f

0 = PZ[k+llk] [Ek+1 x(k + 1) - Akx(k) - Bku(k)] (4-98)

,�'[k + Ilk + 1] = Px'[k+llk+llx(k + 1) + i6[k + ilk + 1] (4.99)

where we have taken equation (4.95) and premultiplied it by Pzf [k+11k], and -Fzf [k+llk]

in (4.97), and (4-98) respectively. Since Lemma 4.1 allows us to combine these equa-

tions in any order, we replace (4.96)- (4.99) by an equivalent set of measurements.

-�f [k I k] (4-100)

Pxf klkjx(k) + �f [klk]I

�f [k + Ilk] - P.fk+llkEk+lX(k- + 1) + if [k + Ilk] (4.101)

Ff- k+llk][Ek+lx(k + 1) - AkX(k) - BkU-(k)] (4-102)

,�'[k + Ilk + 11 - Px[k+llk+ljx(k + 1) +,�b[k + ilk + 1] (4.103)

where the measurement in (4.101) is constructed from the measurements in (4.96),

86

and (4.97). Note that from the development of the Mayne Fraser algorithm, we

know that (4.101), and (4.103) can be combined to recover the smoothed estimate of

x(k + 1). Thus equations (4.100)-(4.103) are equivalent to the set of measurements

indicated by (4.92). We will return to this shortly, but let us now continue with the

transformation of (4.100)-(4.103). Specifically the set of measurements in (4.100)-

(4.103), being equivalent to (4.93)-(4.94), are sufficient to construct the smoothed

estimate of x(k). The errors in the observations in (4.100)-(4.103) given byVT [k I k],

ifT [k + 1 1 k] I P�'f (k+1 1k] Bku(k), and ;i6,T [k + 1k + 11, have a joint error covariance given

by

F"' [k IO, k] F,�, [k IO, k] ATpJz[k+llk] 0 0

Pf Al, E,, [k IO, k] Ef [k + 110, k] Pf BkBTC-Ffz[k+llk] 0Z[k+llk) z Z[k+llk] k
-Ff B, BT pf 15fz[k+llk]BkBT-pf0 Z[k+llk] k Z[k+llk] k '�[k+llk] 0

0 0 0 E,,[k + 11k + 1, K] j
(4.104)

Clearly we can write (4.100)- (4.103) as one measurement in the form y = Hx + v and

compute the smoothed estimate P(k) given all of the measurements. However we

can reduce the amount of computation if we note that (4.100)-(4.103) can be written

as two measurements given by the smoothed estimate of x(k + 1) and a measurement

with measurement noise independent of P(k + 1). Specifically, we note from the

covariance in (4.104) that 0[k + 11k + 11 is independent of all other measurements.

Since ;ib[k + I I k + 1] and V [k + I I k] can be combined to yield i3(k + 1), we thus

seek to find from the remaining three measurements (4.100)-(4.102) that part whose

measurement noise is orthogonal to � f [k + II k]. The joint covariance of ;ifT[kJk],

-T ifT
P,,I[k+llk]Bku(k), and [k + 1 1 k], is given by

TpfEcjk IO, k] 0 E�[kIOk]Ak z[k+llk]

]5f TTf j5f Tpf0 Z[k+llk]BkBk 4k+11k] Z[k+1Jk)B�-Bk z[k+llk] (4.105)

Pf AkFl�[kIOk] Pf Bk BT-Ff V[k + 110, k]L z1k+11k] Z[k+llkl k z[k+llk] J

87

If we define an invertible matrix Tk by

TE*I 0 -E�,[kJOk]Ak z[k+llk]
Tk 0 I - (4.106)

_F�[k+1jkjBkB'E1[k + 11k]
k z

0 0

then, if (4.105) is premultiplied by Tk, and post-multiplied by T)TI we obtain

E�,[kjkj[I - ATE# [k + 1jkjAkr1:'[kjk]] -E,,[klk]ATE# [k + 1jkjBkBA1F.1[k+jjjj
k f k 'f 0

-j5..I[k+llkjBpB'E# [k + llk]AkE,,[klk]AT T,,t[,+,,,,BBT(I - E# (k + ilk]BkBT]15,,fk zf k k Xf k (h+11h) 0

L 0 0 Efz[k+llk] j
(4.107)

As a result the matrix Tk can be used to obtain two independent measurements from

(4.100)- (4-98). The first is given by

if 1k]ML[klk] - fv-.[klk]ATE# [k + 11k]I'MfL[k + 1k zf (4.108)

_MI'F.f [k+llk]BkBTE# [k + 11k]j;f L[k + 11k]

Pf -E,(kjk]ATE# [k + Ilk]Ek+l x(k
X(klk] k zf + v(k)

TV#-Pzf[k+llk]Ak P-,f[k+llk](I-BkBk ,�f [k+llk])Ek+l x(k + 1)

The second is given by

if[k+llk] = Pzf[k+llk]Ek+lx(k+')+'fmL[k+llk] (4.109)

The estimate if [k + I I k] may be combined with �'[k + I I k + 1] to obtain the smoothed

estimate ,P(k + 1) whose error i�'(k + 1) is independent of v(k). The error covariance

for v(k) is given by

E, [k 1k] [I - ATF# [k + 1 1k]AkEz [k jk]] -F,,,.[klk]ATF# [k + 1jk]BkBTP��.,[A:+11A.k , z f k ,zf k

BTF T T[I _ F# T]Tzfk zf k Tf [k+llk]BkB [k+llk]-Tzf [k+llk]Bk [k + 1jk]AkE�[kjk]A k zf [k + lik]BkBk
(4.110i

which is the upper left most block of (4.107). The computation of the smoothed

88

estimate x(k) is specified from the following measurements.

Pkrt'Ok,�[kik] - Pkrt'Ek-�-'(k + 1) = PkrtsAkX(k) + prts =03(k + 1) + Pkrlllv(k)

(4.111)

where E)k, Ek, and Ak are given by

Tr#I - E,,:[klk]A [k + 11h]Akk
E)k = (4.112)

TE#
L P.f [k+llk]BkBk f [k + 111c]Ak J

Ak = x[klk] (4.113)

-F.f[k+llklAk

TE#
k -F"[kik]Ak f [k + 11k]Ek+1 (4.114)

Tr#
Pzf [k+11k](I - BkBk ,zf [k+llk])Ek+l

ts =T] =T
-Frk I-kPk+l-k [=-kj5sk+l -k 1 (4.115)

The equation for the estimate is given by

'�'ML(k) = Lrt.(k)[60[kJk] - Ek-'V(k + 1)] (4.116)

where Lrt,(k) and the error covariance for the smoothed estimate, E-(k), are given

by

L T (k) Pkrt'[=kE'(k + 1)=T + Cov(v(k))]Pk"ts ts Ak 0rt X -k Pkr (4.117)
E' (k) AT Pkr ts 0 I

L X J L k J L J

Pk' = Lrt,(k)Pkrt-Ak (4.118)

4.5.1 Computational Complexity of the Backward Sweep

Here we discuss the computational complexity of the backward sweep of the Rauch-

Tung-Striebel algorithm. The equations as presented are complex for two major

reasons. One reason is that the the smoothed state may not be estimable. The other

reason is that the state may not be estimable from causal data alone. We will provide

89

flop counts for the general backward sweep, for the case where the state is estimable

based on all of the data, and the case where the state is estimable based on causal

data alone. To describe these flop counts we introduce the following functions.

T(n; off - line, non - estimable) represents the off-line computation required to

compute the smoothed estimate assuming that the state is not estimable.

T(n; off - line, non - estimable)

= 82n 3+ 4n 2M + M (n , 2n, n) + M (3n, n, 2n) + 9(2n, 2n , n) (4.119)

= 223.33n 3 + 4n 2M

T(n; off - line, non - causally - estimable) represents the off-line computation required

to compute the smoothed estimate assuming that the state is estimable, but is not

estimable based on causal data. Computational savings comes from not having to

compute the projection matrix in (4.115), and forming products with this projection

matrix and the quantities in (4.112)- (4.114). In addition (4.118) will not have to

be computed.

T(n; off - line, non - causally - estimable)

= 42n 3 + 4n 2M + M (n, 2n, n) + 6(3n, n, 2n) (4.120)

= 101.33n 3+ 4n 2M

T(n; off - line, causally - estimable) represents the off-line computation required to

compute the smoothed estimate assuming that the state is estimable during the filter-

ing step. Computational savings comes from the fact that the quantities in (4.112)-

(4.114) are of reduced dimension because -Pzf[k+llk] = 0- In addition the pseudo-

inverse in (4.117) will not have to be computed. Since the state is estimable, Ak = L

As a result Lt, = I. The smoothed covariance is given by

Cov(V(k)) = =_kCov(V(k + 1)),,:7T + Cov(v(k)) (4.121)k

90

T(n; off - line, causally - estimable)

= 12n 3 + A4 (n, n, n) (4J22)

= 19'n 3
3

T(n; off - line, invertible) represents the off-line computation required to compute the

smoothed estimate assuming that the state is estimable during the filtering step and

has a full rank error covariance. Computational savings comes from the fact that the

quantities in (4.112)- (4.114) are of reduced dimension because -F"f[k+llk] = 0. In

addition the pseudo-inverse (4.117) and (4.106) will not have to be computed. Since

the state is estimable, Ak = 1. As a result Lt, = 1. The smoothed covariance is

given by

Cov(V(k) = "EkC0V(V(k + + Cov(v(k)) (4.123)

T(n; off -line, invertible)

= 12n 3+ 1(n, n) (4.124)

= 14'n 3
3

T(n; on - line) represents the on-line computation required to compute the smoothed

estimate in (4.116) regardless of the estimability of the step.

T(n; on - line) = 4n 2 (4.125)

4.5.2 Inward-Outward filtering of TPBVDS's

The general problem with the smoothing of TPBVDS's is that the boundary con-

ditions cannot be matched to implement filters whose individual computations can

be interpreted as producing estimates of the state. In Section 3.1 it was shown that

any TPBVDS can be described by a STPBVDS where the state is constructed by

augmenting x(k) with x(-k). This suggests the notion of filtering outward to the

boundaries of the system, and inward towards the center. Given that the system is

separable, no new equations need be written since they follow immediately by sub-

91

stituting the model (3.25) for (3.8) and applying the filtering algorithm in Section

4.6 Square Root Smoothing Algorithm

4.6.1 Introduction

The new smoothing algorithms presented in this thesis are based on the ML estimation

philosophy. Specifically, all of the algorithms presented consist of the solution of a

sequence of ML estimation problems. In addition these algorithms can au be cast in

the square-root framework. To illustrate this, a square root algorithm for the FMLF

algorithm. Square-root algorithms for the Mayne-Fraser and the Rauch-Tung-Striebel

can be similarly derived. The square-root FMLF algorithm essentially computes a

reduced order observer [32] for the case in which perfect measurements are available.

It therefore shares the flavor of the algorithms [6] and [27]. However, our algorithm

does not rely on the invertibility of the Ak matrices as does the algorithm in [6].

4.6.2 Square Root Forward Maximum Likelihood Filter

Here we consider the FMLF separated into measurement update steps and time up-

date steps. The time update step is given by the following equations. The vector

zf (k + 1) to be estimated satisfies

zf (k + 1) = AkX(k) + Bku(k) (4.126)

We assume that an estimate of x(k) based on 1'k exists and that we have available an

orthogonal matrix Uk with the following partitioning

(TP'k

(Tk U,,k (4.127)

U., k

9 2

such that, based on Yk, Up,,,x(k) is known perfectly, the ML estimate based on Yk

exists for U,,kx(k), with an invertible error covariance, and U kX(k) is completely

unknown. The orthogonal matrix which separates the relevant subspaces' of R", to

estimate zf [k + I I k] is given by solving for the matrix, Qk+1 which upper triangularizes

the following matrix.

UT UT UTQk+1 Ak U'k f Ak sk:'Bkl A pk rk (4.128)

The matrix Qk is partitioned as follows.

Quk

Qk Q,,k (4.129)

Qpk

The following equations then determine zf (k + 1) in the new coordinate system.

{UpkX(k)1
Qpk+,AkUT 0Qpk+l zf (k + 1) pk

JU.,k-T(k)j
Q,,k+l zf (k + 1) Q,,k+jAkUp�k1UPkX(k)j Q.,k+l AkUTk Bk u(k)

(4.130)

Note that in equation (4.130) the desired result is obtained through direct multipli-

cation, not solving for the solution of simultaneous algebraic equations. The products

Qk+,AkUpk, and Qk+,A[U,,k:Bl have already been calculated in the triangularization

process in equation (4.128). The predicted estimate Of Qpk+lZ(k + 1) is given by

Qpk+l �'-f [k + Ilk] - Qpk+,Akl",kf Upk;i[klk]j (4.131)P

The predicted estimate of the vector Q,,I,+, zf (k + 1) is obtained by noting that it

satisfies

Qsk+l Zf (k + 1) Q,,k+lAkUT JUpkX(k)j + (4.132)

93

{El,-1'2[kjk]U,,ki(k)}
/2 X ST 0,0

X a [kjkj B, Sk kQsk+1 AkUTkN' fi(k) +

{E,,-1/2
Q,,k+ UTkEf,112 Sk X ST X'O [kjk]U.,kZ(k)j

Ak X'O [kJO, k] Bk k fi(k)

where the orthogonal matrix ST which premultiplies the noise term is chosen to lowerk

UTkEf,1/2triangularize the matrix Q,,k+l [Ak X'O [kik]:Bk]Sk- The square root of the error

covariance is the square and lower triangular portion of the matrix

TT Ff,1/2 = [El/2 [k + Ilk]:O]
Q.,,k+1[Ak'sk xo [kik]:Bk]Sk zf 'O (4.133)

The estimate of Q sk+ 1 Z f (k + 1), which is given by if [k + 1 1 kj, is obtained by removing

the noise terms from (4.132) and setting -�.(k) = 0.

The next step is to compute the measurement update step in the FMLF. The

measurements required to produce the ML estimate x(k) given data up to and

including time k is given by the following

41^f[k+llk] Ek+lx(k+l)+if[k+llk] (4.134)

y(k + 1) Ck+lx(k + 1) + v(k + 1) (4.135)

This problem is in the form y -_ Hx + v used in the discussion in Chapter 2. Assume

that there may be perfect information in the observation vector y(k). Let Lk be an

invertible matrix which is partitioned as follows.

Lpk
Lk = (4.136)

L L,, k i

We will assume that we are given Lk with the data, and that Lpky(k) is known per-

fectly, and L,,ky(k) has an invertible covariance ROk- If we combine equation (4.134)

[-,fT yTand (4.135) into a larger single vector equation for [k + Ilk], (k + 1)], we then

94

premultiply it by the following matrix

Qpk+l 0

Qpk+l 0 Lpk+l

Qk+1 Q.,,k+l Q,,,k+l 0 (4.137)

Q.,k+l 0 Lsk+l

Q.,k+l 0

Following the development of square-root ML estimation in Section 2.2 the matrix

Uk+,, which is constructed to lower triangularize the product

Qk+1 Ek+1 Uk+1 (4.138)

L Ck+1 i

where Uk+l is partitioned as in (4.127). The part of the state x(k + 1) which can be

determined perfectly is obtained by considering the following 'measurement'.

UT
Qpk+l Zf (k + 1) Qpk+,Ek+l pIk+1

jUpk+lx(k + 1)1 (4.139)
UT

L Lpk+lY(k + 1) L Lpk+lCk+l pk+l

where Upk+1x(k + 1) is the part of x(k + 1) which can be estimated perfectly. Equa-

tion (4.139) can be uniquely solved to determine the vector {Upk+lx(k + 1)1 which

is given by

T
Qpk+l Ek+I U Qplc+iZ'(k + 1)pk+l jUpk+lx(k + 1)1 (4.140)

Lpk+1Ck+1Up�k+1 j L Lpk+IY(k + 1) j

The part of the state with an invertible covariance is obtained as the solution of the

95

ML estimation problem where the observation noise has been normalized.

E-1/2
ZfO [k + I I k] Qgk+l Zf(k + 1)

R-' /2 L
L ak+l ,,k+lY(k + 1)

/2 E-1/2E-' [k + Ilk]Q.,,k+lEk [k + ilk-1Q.,k+1V(k + 1)Zf O +1 x(k + 1) + Zf O
R- 1/2 Lsk+1 Ck+1 R-' /2 L,,k+lr(k + 1)

ok+l ok+l

(4.141)

As in (2.96), the part of the estimate which has been determined perfectly is removed

resulting in a 'measurement' for the part of x for which we can assign a fun rank

covariance. What results is the following 'measurement' for a 'standard' square-root

problem.

1/2[h
F, - + 110, k]Q, F1_1/2[k + 1 10, k]Q,,,%+,EA,+, Up�k + 1jk+1 ZfO k+lif(k + 1) Z1,0 UPA,+,Z(k + 1)

R- 1/2 L, R- 1/2 L,,k+,Ck+l UPT, k + I
Ok+1 k+lY(k + 1) Ok+1

F, -1/2 [k + 1 10, k]Q,,k+,Ek+l UTk+l E_ 1/2 [k + 1 10, k]Q,,,+,,Ef (k + 1)
jk+1 ZfO U,,k+lX(k + 1) + ZfO

110- 1/2 Lak+,Ck+luTk+l R- 1/2 L,,k+ir(k + 1)
k+1 Ok+1

(4.142)

where the orthogonal matrix Jk+j is determined via the QR factorization to upper

triangularize the the following matrix

E-1/2 [k + 110, k]Q,,kEk+l U,,k+l Ffl-1/2 [k + 11k + 1]ZfO X10
Jk+1 (4.143)

R- 1/2 Lsk+1 Ck+1 U,,k+l 0L ok+l

The matrix Uk represents a coordinate transformation which can be used to return

the estimate of the state to the coordinate system in which the state was originally

defined. In addition the covariance matrix E,.,o[k + 11k + 1] can be placed in the

original coordinate system to yield Ef [k + II k + 11.X

96

Chapter 5

Parallel Smoothing for

One-Dimensional Systen-is

Our aim in this chapter is to find parallel algorithms for smoothing TPBVDS's given

by

Ek+ix(k + 1) = Akx(k) + BkU(k)

Eox(O) = AKX(K) + BKu(K)

based on observations given by

y(k) = Ckx(k) + v(k) (5.2)

where u(k), and v(k) are independent white noise sequences where

u(k) N(O; I)
(5.3)

v(k) N(O; Rk)

In this chapter we consider algorithms for one-dimensional processes where the

data is spatially partitioned in order to limit the amount of data a processor would

have to access, and to limit the complexity of the local processing. The data is

partitioned along the time axis into intervals, where one processor is assigned to one

interval of data. A given processor operates on local data, and also communicates

with other processors operating on other intervals of data. The problem is divided

97

Processor i

0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0

y(ki) Y(ki+1)
Ek,+lx(ki + 1�= Akix(ki) + Bku(ki) Ekj+1 +1 x(ki+,A+ 1) = Aki+�m(ki+j) + Bkj+, u(ki+l

Figure 5-1: partitioning of the data among processors

evenly among L processors. We assume further that the i'h processor has access to

y(ki-i + 1) through y(ki) and the dynamic constraints which link the states x(ki-1)

through x(ki). See Figure 5-1. The value of ki in these algorithms are given by iK
T7

whereKis an odd integer.
L

The parallel processing algorithms which use this data partitioning typically have

the following steps. During the first step, each processor operates in parallel on lo-

cal data, and computes certain sufficient statistics which contain information needed

by other processors to compute smoothed or filtered estimates. In the second step,

there is an interprocessor exchange step, where sufficient statistics are exchanged

between processors, processed and exchanged again, until each processor has infor-

mation necessary to compute globally filtered or smoothed estimates without further

communication. In the final step, each processor computes globally smoothed or fil-

tered estimates in parallel based on local data, and the sufficient statistics obtained

by other processors.

In the first local processing step, many methods of processing the data are possible.

For example, in the algorithm of Morf et al. [14] , which produces filtered estimates for

causal systems, the local processing takes the form of two filters. The first filter is a

Kalman filter where the state is locally initialized with zero initial condition with a

covariance which is also set to zero. The second filter is a backward information filter

over the same subinterval which computes the equivalent of ML estimates based on

local, but 'future' data.

Another example of local filtering is provided by Tew-fik, et al[15]. in which a

model which is radially causal is filtered locally from the center of each subinterval to

the boundary of the respective subinterval. A system is called radially causal, when

98

the system with the state taken as [x(t), x(-t)] is causal in t.

The algorithms of Morf et al., and Tewfik et al. compute estimates locally which

are correlated with the estimates which are computed by processors operating over

other regions. Furthermore a correction step is needed to deal with local assumptions

made about the boundaries of the individual subregions in both algorithms, and

the repetition of a priori information in each subregion. In these algorithms this is

performed during the interprocessor exchange step.

Borrowing from the literature on solving partial differential equations (pde's), the

domain decomposition approach [91 offers new insight into the smoothing problem.

Domain decomposition algorithms are iterative procedures for solving pde's in which

iterations are performed to match boundary conditions of the local solutions with

those of neighboring subregions. These reduced problems, focusing on boundary

matching, have less structure than the local subproblems. The algorithm iterates

between solving the local subproblems and matching the boundary conditions until

it converges to a solution. Similarly, locally smoothed estimates can be computed

in each subregion instead of locally filtered estimates. The problem at the boundary

can be solved to provide the local subregions with the boundary information needed

to update locally smoothed estimates to produce globally smoothed estimates. A

smoothing domain decomposition algorithm is provided in Section 5.3.

Another novel example of local processing is one we refer to as the oblique pro-

jection approach. Each processor produces forward and backward filtered estimates,

based on the assumption that boundary measurements will be available from neigh-

boring processors. As a result local processors do not compute optimal estimates

based on their own data in an effort to make the incorporation of boundary informa-

tion easier.

Finally, we consider for the initial processing step the use of using filters which

compute ML estimates based on local data. The result is that an of the estimates

produced in each subregion are statistically independent. No assumptions are made

about the nature of the boundary of each subregion, other than that which is sup-

ported by local data, and furthermore, prior information is treated locally where it is

99

defined, and in the same manner as all other 'noisy constraints'.

Continuing with the second step in these parallel processing algorithms we con-

sider the interprocessor exchange step. The purpose of this step is to provide all of

the information required to compute globally filtered or smoothed estimates of the

boundaries of each subregion. The typical way of achieving this is to perform a for-

ward and, if smoothed estimates are to be obtained, backward filtering operation on

the boundaries of the subregions using boundary statistics and estimates computed

locally in each subregion. The details of the filtering process is largely determined

by the first local processing step. Such a forward-backward filtering process implies

that there is a total ordering to the computations used in the interprocessor commu-

nication step. This total ordering is not necessary and as an example, an algorithm

is provided in Section 5.6 where the interprocessor communication is mapped on the

binary tree structure.

The final local processing step must propagate filtered or smoothed estimates in

parallel throughout each subinterval. Again given the operations executed in the

first processing step, few options are available for the final processing step. One

method to accomplish this is to re-filter or resmooth the original data given the global

estimates of the boundary of each subinterval. Another method is to apply change of

initial condition (CIC) equations to locally filtered quantities, and apply the Mayne-

Fraser algorithm to recover smoothed estimates. In the case where the filtering step

is radial, the backward sweep of the Rauch-Tung-Striebel algorithm can be used to

update filters estimates to smoothed estimates.

As an aid to analyzing parallel smoothing algorithms, there are minor issues which

we want to address. We are interested in obtaining smoothed estimates, however many

parallel estimation algorithms primarily address obtaining filtered estimates. We

view these algorithms as part of a parallel implementation of the Mayne-Fraser two

filter algorithm. A second minor issue concerns the availability of a clear statistical

interpretation for parallel algorithms. For example, in some cases the derivation of an

algorithm begins with the specification of the solution to the smoothing problem e.g.

with the Hamiltonian TPBVDS and proceeds with parallelizing the computations.

100

In contrast, in our approaches we parallelize the smoothing problem, so that each

processing step has a clear statistical interpretation.

The method of dividing the data discussed in this chapter is not the only one which

is suited for extension for two dimensional systems. Another method is to distribute

to each processor, every L 1h datum as adopted by Hashemipour and Laub[13]. This

'round-robin' approach requires a central processor to merge the local estimates to

produce globally filtered or smoothed estimates. This method of distributing the data

among processors has been demonstrated in the literature to be viable for

2-D iterative algorithms for solving pde's [9],[30]. Specifically the iterative algorithms

which use red-black ordering are examples of the use of multidimensional round-robin

techniques. Using the analogy of a checker board, data in red regions are updated

simultaneously, then data in black regions are updated. The process then repeats on

the red data. While one can imagine assigning all of the red data to one processor

and all of the black data to another processor, greater efficiencies can be obtained

by assigning one red and one black region to one processor. From the point of view

of understanding the operations on the underlying process, difficulty arises because

the reciprocal nature of the process is lost under sampling. This contrasts with the

1-D case where all samplings of 1-D reciprocal processes, are themselves reciprocal.

Indeed it is essentially this fact that causes the two-dimensional algorithms which use

red black ordering to be iterative rather than recursive. This fact is exploited heavily

in the algorithm which is presented in section 5.6 at the end of this chapter.

The analysis of complexity of the algorithms in this thesis basically amounts to

an accounting of the computation, storage, and communication requirements needed

to implement the algorithms in this thesis. For any given computation there are

a variety of ways in which it may be computed. with various trade-offs involving,

accuracy, and operation count. These considerations vary with the specific processor

on which the computation is to be implemented. The approach which we take here

is to look at issues specific to the algorithm, and to choose a 'reasonable' means

of computation. We assume that the amount of time which a processor spends in

computation is proportional to the number of additions and multiplications required

101

to perform the computation. This may not necessarily be the case but without specific

.data on the processor and the algorithm by which matrix multiplies, for example,

are implemented this is also a reasonable assumption. To aid in understanding the

complexity computations we refer the reader to the computations on complexity for

the FMLF, Mayne-Fraser smoother, the Rauch-Tung-Striebel smoother and the ML

estimation problem in Sections 4.3, 4.4, 4.5, and 2.1 respectively.

The comparison of off-line computations for these algorithms varies substantially

if there are fundamental differences in the way that estimates are computed. For

example, the quantities

E:, - E�H T(HE:,H T + R)-'HE�. (5.4)

(E-' + H TR-'H)-l (5.5)

and

.T

0 E 0 P" 0

0 0 R H 0 (5-6)

-I P__ H T 0 j I j

are increasingly complex ways to compute the same quantity, however some expres-

sions are applicable when others are not. For example in (5.4) the matrix R may

be positive semidefinite. Only (HE,,,H T + R) need be invertible. In (5.5), R must

always be invertible. In (5.6) few restrictions are placed upon the matrices E.., R and

H, but as a result we must compute pseudo-inverses. Because the manner in which

the quantities are computed interferes with our ability to compare one algorithm to

another we will assume that locally, all algorithms compute quantities using FMLF

unless it is clearly unnecessary. It should be noted however that the computations

listed here are all 0(n') computations.

The on-line computations will vary little despite dramatic -differences in the off-

102

line computations. This is simply because the on-line computations simply reflect the

basic linear relationships that the estimate at k + 1 have with the data y(k) and the

estimate at k. AU of the issues of estimability, pseudo-inverses, and perfect data are

all handled off-fine.

We would expect the computation involved with any algorithm using processors

which are arranged on a linear array to be comparable. The amount of computation

associated with the data exchange step rises linearly with the number of processors,

while the remainder of the computations we would expect to be inversely proportional

to the number of processors. Thus we expect the amount of time required to produce

the results to be given in the following form

T = K -ri f (n, p, m) + L-r2g(n) (5.7)
T

where ri are machine dependent parameters, K is the length of the entire interval on

which the process is defined, L is the number of processors, and f and g are algorithm

dependent functions of the parameters n, p and m which are the dimensions of the

state, the observations and the driving noise respectively. This general relationship

of the amount of time to perform computations to the number of processors holds for

both the off-line and on-line computations. Sometimes it is necessary that the off-

line computations be carried out in advance of the on-line computations, but for the

algorithms discussed in this chapter, the off-line computations can also be computed

in parallel.

The algorithm in Section 5.6 does not operate on a linear array of processors. In-

stead since the operations map to a binary tree, we will assume a hypercube intercon-

nection between processors. As a result we expect that the form for the computation

time to be given by

T = K -ri f (n, p, m.) + 'r2g('n')log 2 L (5-8)T

In our algorithm discussed in Section 5.6, both the off-line and the on-line computa-

tions have a binary tree structure. As a result the same time dependence applies to

both off-fine and on-line computation.

103

We may further compute the optimal number of processors by minimizing (5,T)

yielding
Kr, f (n, p, , m)

r2g(n) (5.9)

Similarly the same minimization can be carried out in (5.8) yielding

Krif (nip, , m) (5.10)
,r2g(n)

and checking the two integers which bound L.

The optimal computation time for algorithms described by (5.7) is given by

�,r2g(n) x Krjf(nI P7 M)

which increases with the square root of K the number of data points. The optimal

computation time for algorithms described by (5.8) is given by

Krjf(nIP7M)
T -- ,r2g(n)(1 + 1092 729(n) (5.12)

Thus in this case the amount of time it takes algorithms described by (5.8) to compute

estimates increases with the logarithm of the number of points K.

104

5.1 Parallel estimation algorithm which uses the

Partition Theorem

Morf, Dobbins, Freidlander, and Kailath [14] presented a square root algorithm for

parallel filtering, and smoothing causal systems in discrete time. We will not focus

on the square root nature of the algorithm or the details of the computation, but

will focus on the essentials of the interprocessor communication step. The filtering

algorithm follows. To aid in this discussion we will define the notation for three esti-

mates. The first is the expectation operator E[x(k)ja,0] representing the conditional

expectation of x(k) given data y(r), a < r < 0. The second is the expectation op-

erator given the same data set plus the information that the initial condition x(a) is

exactly zero which will be denoted by E,,[x(k)ja,,3]. The third, denoted by.'�[aja,'3],

represents an ML estimate of x(a) based on data y(a), through y(p).

Step 1

On the i1h segment, forward predicted estimates E,,[x(k)lki, k - 1] are computed

as is the estimate �i [ki I ki, k]. From the partition theorem [37] the estimate ,� [ki I ki, k]

is shown to be obtainable from forward filtering the innovations which result from

computing E,,[x(k)lki, k - 1].

Step 2

Information is exchanged between neighboring processors to compute the global

filtered estimates at each ki.

The interprocessor exchange step involves combining the globally filtered estimate

at ki, denoted by E[x(ki)lk,, ki - 11 which is obtained from the previous processor, and

combining it with the local backwards filtered estimate �i [(ki) I ki, kj+j - 1] to compute a

smoothed estimate E[x(ki) I ko, kj+j - 1]. Finally E[x(ki) I ko, kj+j - 1] can be combined

with the locally filtered estimate E,,[x(k)lkik - 1] to arrive at the globally filtered

estimate E[x(ki+,)Ik,,,ki+l - 1].

The set of equations which govern this is given by the partition theorem and is

105

Kalman Filter with zero
initial mean and uncertainty

F Data in the segment i Data in segment i + I

Additional filter operating

on innovations gennerated from Kalman filter

E[ki-3 I ko, ki-3 - 11 E[ki-1 Iko, ki-1 - 11 E [ki+l I ko, kj+j - 1]

seg. i - 3 seg. i - seg. i - 1 seg. i seg. i + seg. i +

Figure 5-2: Parallel estimation in algorithm by Morf et al.

shown by the following.

E[x(ki+,)Iko, kj+j 1] = (b(ki+,, ki)E[x(ki)lko, kj+j - 11 (5-13)

+ E,, [x (ki+,) I ki, kj+1 - 11

P(ki+l I [ko, kj+j 1]) = ,b(ki+,, ki)P(ki I [ko, kj+j _ 11).j�T(k,+I, ki) (5.14)

+ P.(ki+l Iki, kj+j - 1)

where 4,(ki+,, ki) is the state transition matrix for the system, Po(ki+l Iki, kj+j - 1) is

the covariance associated with the estimate Eo[x(ki+,) I ki, kj+j - 1] and P(ki+l I ki, kj+j -

1) is the covariance associated with the estimate E[x(ki+,) Iki, kj+j - 1].

The above equations for the interprocessor communication step are implemented

as a filter with a structure resembling that of the Kalman filter.

E[x(ki+,)Iko, kj+j - 1] = (b(ki+,, ki)E[x(ki)lko, ki - 1] + E.[x(ki)lki, kj+j - 11

+ Kj(E[x(kj)jkj., kj+j - 1] - E[x(ki)lkol ki - 1]) (5-15)

Here the local boundary estimates can be interpreted as observations. The compu-

106

tations are a little more complex due to the fact that embedded in the problem are

corrections for the fact that the local processing makes assumptions about the value

of the process at the boundary. However this encourages the notion that the interpro-

cessor communication step can be formulated as the simple application of a known

filtering algorithm on a sampled system using the local estimates as observations.

Step 3

The globally filtered estimates of the interior points E[x(k)lko, k - 1] are obtained

by combining the global filtered estimate of the boundary E[x(ki) I k, ki - 1], with the

local fixed point smoothed estimate of the same boundary given by ��[ki I ki, k - 1) and

the locally filtered estimate of the interior points E,,[x(k) Iki, k - 1] in the following

fashion.

We will not go into the complexity of this algorithm because we are not discussing

the details of this algorithm but just the essentials of the partitioning of the problem.

Local estimation based on the assumption of perfect boundary knowledge aids in

partitioning the estimation problem both in this algorithm and in the algorithm

discussed in the next section. However we will see that it is possible to partition the

problem such that the local estimates have the interpretation of optimal estimates

based on local data without additional assumptions concerning perfectly known initial

conditions.

107

5.2 Inward and outward recursions in a parallel

smoothing algorithm

Tewfik, Willsky, and Levy [15] describe a distributed smoothing algorithm based

on the partition theorem and the notion of inward and outward processes. It is

included in this section for three reasons. First it is an interesting algorithm in its

own right. Secondly we will adopt inward and outward processing techniques in

the new algorithms presented in Section 5.5 and 5.6. Finally one may ask how his

algorithm applies to STPBVDS's.

In particular, the algorithm discussed in Tewfik, et al.[15] involves the construc-

tion of an outward Markov model. This model is written as a recursion from the

center of the interval outward to the boundary. A priori information for these models

is specified at the center of the interval. The parallel algorithm discussed in this

section starts with this model. However, since all STPBVDS's are Markov, a causal

model could be constructed first, then the outward Markov Model can be obtained as

described in [15]. Similarly, the outward Markov Model can also be obtained directly.

Although the algorithm in [15] is given in continuous time, we present here, a

discrete time analog. This formulation also yields additional simplification if the

process is stationary. Using a joint model for x(k) and x(-k), local Kalman filtering is

performed radially outward from the center of each interval. Information is exchanged

between neighboring processors to compute the globally smoothed estimates. Finally

the interior points of each segment are updated radially inward and in parallel to

obtain the globally smoothed estimate of the state everywhere.

Given a causal system

x(k + 1) AkX(k) + BkU(k) (5.16)

y(k) Ckx(k) + Dlu(k)

108

where the following holds

BkD T = 0 (5.17)
k

The data is segmented along the time axis to be processed independently. In each

segment consider the case where the time origin has been shifted to the center of each

interval. Tewfik defines the following process xp,.(k).

x(k)
xp,,,, (k) = 1 (5-18)E x(-k

L j

where Flk satisfies the Lyapunov equation

Ek+1 = AkEkA T+ BkB T (5.19)
k k

and
y(k)

YPM = (5-20)
Y(-k)

The model for the system is described by the following matrices

Ak = Ak 0 (5.21)

0 A T
L -k-1 J

Bk = Bk 0 (5.22)
E-1-1A-1-1B-k
k -k

Ck 0
Ck (5.23)

0 C-k-1

'D k Dk 0 (5.24)

0 -D-k-1

(5.25)

109

Step 1:

Locally, Kalman filtering is performed on the following model

xp,jk + 1) = Akxp.(k) + BkW(k) (5.26)

yp.(k) = Ckxp,.(k) +Dkw(k) (5-27)

where

E(O) I
Efxp,.(O)xT (O (5.28)

PM PM(O)

In the original time coordinate system the Bayesian estimate of the local boundary

is given by i(ki-1 Iki-1, ki.) and ;�(kj Iki-1, ki).

Step 2:

A two filter algorithm is used to smooth the data at the endpoints of the segments.

Thus the smoothed estimate at an endpoint is given by

E-'(kjjk,,kN);i(kjjk,,,kN) -- E-1(kjjk,,,kj)i(kjjk,,,ki) (5.29)

+ E - 1 (ki I ki, kN):� (ki I ki, kN)

F, (ki I k,, kN) = E - 1 (ki I k,, ki) (5.30)

E-1 E-1
+ 8 (ki I ki, kN) ki

where E-1 is the a priori covariance of x(ki). The forward filtered estimates for theki

endpoints are given by

E-1(kj-jjk,,kj);�(kj-jjk,,kj) = F,-'(ki-ilk,,,ki-1).�(ki-ilk,,,ki-1) (5-31)

+ E-l(ki-ilki-,,ki)i(ki-ilki-,,.ki)
V-1(kj-jjk,,kj) = -1(kj-jjk,,' ki-1)
ES VE

+ E-1 (ki-1 I ki-1, ki) - E-1 (5-32)ki-1

110

and

;i(kilk,ki) -_ �(kjjkjjkj) (5;33)
K

+
L

E(kilk,,ki) = E(kjjkjjkj)

+ b (0, K)[F-(ki-i Ik., ki) - E(ki-I Iki-1, ki)],I,'(0, K (5.34)
T T

Before continuing to Step 3, equations (5.31) and (5.33) need further discussion.

Assume locally at the start of a subinterval that the initial condition was known

exactly. We may then write

,�(kilk,ki) = e(ki I ki-1, ki) (5.35)

+ IP(0, K);� (ki - 1 1 k, ki)T
E(kilhoki) = EO (ki I ki - 1, ki)

+ (P(O, K)F,(ki-i I ko, ki),I�T(0, K (5.36)
T T

We still need to compute.e(kj Iki-1, ki), the estimate based on the 'assumption' that

x(ki-1) =_ 0. Since x0(k) x(k) - 4�(O, k)x(O) we find that

io(ki Iki-1, ki) �(kjjkjj, ki) 4)(0, K)�C(kjj Iki-1, ki) (5-37)
T

E " (ki I ki - 1, ki) F, (ki I ki - 1, ki) 4� (0,K) E (ki I ki- 1, k_,),pT (0, K (5-38)
T T

Equation (5.35), and (5.37) can be combined to produce (5.33). This is an application

of the partition theorem[37], [19]. Similar equations exist for the backwards filtered

estimates. We will see that parallel processing algorithms may have much simpler

statistical interpretation of the manner in which data is combined than the partition

theorem lends in this algorithm.

Once the smoothed estimate of the state is computed at each of the ki, the data

in each interval is updated via the backward sweep of the Rauch-Tung-Striebel Al-

gorithm [21]. Following the development of the Rauch-Tung-Striebel Algorithm in

ill

Section 4.3, under the assumption of no perfect observations and estimable states, it

is given by

-,P'.[kjkjATF-1 [k +4ms(k-) = -�p,.(k) I I k] (�cp,, (k + 1) _ AT;�P' (k)) (5.39)k pm k

where Ep,[klk] is the filtered covariance obtained through Kalman filtering.

This algorithm involves the preprocessing to generate the outward Markov model

in equations (5.26), (5.27), and (5.28).

5.2.1 Complexity

Step I

Off-line

Besides the obvious computation involved in this algorithm, given by the on-line

computations and the computation of the matrices Fk, Gk and the covariances, there

are two other sources of computational complexity which are incurred in preparation

to use this algorithm. The first is that if the process is presented as a normal state

space system, then a priori information must be propagated to the center of each

subinterval and to the subinterval boundaries. This is accomplished by using the

Lyapunov equation. More importantly further computation is involved to construct

the outwardly causal model used locally in this algorithm. Both the causal, and

outward causal models are used in this algorithm. Locally the outward causal model

is used. During the interprocessor exchange step, the standard causal model is used, as

evidenced by the use of the state transition matrix. If the original system is specified

as a STPBVDS, or as the outward model, then additional computation would be

involved to generate the state transition matrix.

The local processing amounts to applying the Rauch-Tung-Striebel algorithm to

a system whose state dimension is 277, while the dimension of the observations is given

by 2p and the dimension of the driving noise is given by 2m. The filter is only run

over half the interval since the time axis locally is radial for the local processing.

112

Since the interprocessor communication requires the computation of matrix inversesi

we will assume that that there are no perfect observations, and as a consequence the

error covariance of the boundary estimate has full rank. The computation of one

processor acting on one region is given by

1 K IC (2n, 2p, 2m; off - line, invertible) (5.40)
_2 T

where K (n, p, m; off - line, invertible) is defined in Section 4.3.1 by

2 (2n + p)' + 2n(2n + p)' + 6n 3 + 2mn 2 + 2pn 2 (5.41)
3

On-line

The on-line computation of one processor acting on one region is given by

I K K(2n, 2p, 2m.; on - line) (5.42)
2 T

where K represents the radius of the subintervals and K (n, p, m; on - line, invertible)2L

is defined in Section 4.3.1 by

IC (n, m, p; on - line) = 2n(n + p) (5.43)

Step 2

Off-line

The off-line computation required to implement the interprocessor communication

can be implemented with

(L - 1)(41(n, n) + 8n3)
(5.44)

(L - 1)10.67n 3

flops.

On-line

113

The on line processing can be carried out in

(L - 1)8n 2 (5.45)

flops.

114

Step 3

Off-line

Here the backward sweep of the Rauch-Tung-Striebel algorithm is implemented.

Thus the computation of one processor acting on oneregion is given by

1 K T(2n; off - line, invertible) (5.46)'�T

where T(n; off -- line, invertible) is defined in Section 4.5.1 by

142 n3 (5.47)

On-line

The on-line computation of one processor acting on one region is given by

1 Kr(2n; on - line) (5-48)
2 L

where T(n; on - line) is defined in Section 4.5.1 by

4n 2 (5.49)

In summary, the total amount of off-line time required to compute the smoothed

estimate of the state in this parallel smoothing algorithm is given by

T = 1 Kri [T(2n; off - line, invertible) + IC (2n, 2p, 2m; off - line, invertible)] + (L - 1)10.67r2n3
2 T

Kr, [165.33n' + 5.33(2n + p)3 + 16n(2n + p)2 +16mn 2 +16pn 2] + (L - 1)10.67-r2n3
2T

(5-50)

where the appropriate f and g functions in (5.7) for this case can be immediately

identified. The amount of on-line time required to compute the smoothed estimate

115

of the state in this parallel smoothing algorithm is given by

- T = 1 Kr, [T(2n; on - line) + IC(2n; on - line)] + (L - 1)r2lO.67n'2 L

K ri [12n2+ 4np] + (L - 1),r28n 2T

Again the appropriate f and g functions can be readily identified.

116

5.3 A Recursive Domain Decomposition Algorithm

In the first step of this algorithm we produce locally ML smoothed estimates; The

second step solves the ML smoothing problem at the boundaries, and propagates the

boundary information to each of the processors. The third step updates the locally

smoothed estimates to produce globally smoothed estimates. This algorithm is es-

sentially a parallelization of the Mayne-Fraser two filter smoother where, to aid in

the interprocessor exchange step, forward and backward fixed point smoothers are

implemented instead of the usual forward and backward filters. Since ML estimates

are used in each subinterval, the computed estimates in each subinterval are inde-

pendent, allowing simple estimation equations to be used during the second step to

produce globally smoothed estimates of the boundaries of the subintervals.

In order to minimize the number of projection matrices required to describe the

algorithm in this section, we will assume that the state of the system is estimable

given local data although the state may not be estimable based on local causal or

anti causal data alone.

Step 1:

Locally each processor implements the 2n dimensional fixed point smoother for (5.1)

given by computing the FMLF for the following augmented system

Ek+1 0 x(k + 1) A� 0 x(k) + Bk u(k) (5-52)

L 0 I L �(k + 1) J L 0 I J L �(k) .1 L 0 J

x(ki-1)
0

y(k) Ck 0 x(k) + v (k) (5-54)
-�(k) .

ki-1 + 1 < k < ki (5-55)

The fixed point smoother produces at each point the following estimate given local

117

data

i[klki-i + 1, k] Px(k),x(ki-1)Jki-1+1,k x(k) + ,�[klki-i + 1,k]
i[ki-1 1ki-1 + 1, k] x(ki-1) i [ki-1 I ki-1 + 1, k]

(5.56)

wherePx(k),,(ki-�)Jki-1+1,k is the projection matrix generated by the FMLF indicating

the estimable subspace and the error statistics are given by

�E[klki-,, k] E--x[klki-l + 1, k] E,,,-4[kJki-1 + 1, k]
Px(k),x(ki-1)Jki-1 +1,k N 0;

.t[ki-l Iki-1, k] S�x[ki-llki-1+1,k] E�Jki-ilki-1+1,k]

(5.57)

In particular for k ki, a measurement of the boundary given local data is obtained.

Since x(k) is estimable given local data, the projection matrix is equal to the identity

at the boundary of the local subinterval. Similarly a backward fixed point smoother

can be constructed by computing the BMLF for the following augmented system

Ek+1 0 x(k + 1) Ak 0 X(k) + Bk u(k) (5-58)

L 0 I J L C(k + 1) L 0 I J L ((k) J L 0 J

X(k-)
0 (5-59)

X(k)
y(k) Ck 0 + V(k) (5-60)

C(k)

ki-1 +I < k < ki (5.61)

From the backward fixed point smoother one obtains

b zb
[kik + 1, ki] P-b(k),x(ki)Jk+1,ki Ak 0 x(k) + [klk + 1, ki]

L i[kilk + 17 kil J L 0 1 J x(ki) J L �[kilk + 11 kil
(5.62)

118

where the error statistics are given by

i[kik + I, kil E,,[k1k + 1, kil E,,c [k I k + 1, ki-1
Pzb(k),x(kj)jk+1,kj , N 0 ;

L ;Z[ki lk + 1, ki]J L L FI(.[kjjk+1)kjj] F,�C[kjjjk+1,kjj]
(5.63)

Since we are implementing a parallel Mayne-Fraser algorithm, there are two inde-

pendent measurements of x(k) at each point in time. One resulting from the forward

filter, and one from the backward filter. One possibility is that locally smoothed

estimates can be computed by incorporating all of the local information first. Con-

sidering the local 'measurements' of the local states provided by the local forward

and backward prediction filters, and local 'measurements' of the states which bound

the subregion, the ML estimate based on these 'measurements'

i[kjjjkjjkj

Px(kjj.),x(k)jkjjk 0 i[kiki-1, k]

......

ib[klk +0 Pzb(k),x(ki)lk+lki 1, ki]

L i[kilk + 1, ki] (5.64)

I 0 0 i [ki-I I ki-1, k

0 I 0 x(ki-1) ;i[kiki-1, k - 1]

...... x(k) +

0 EA, 0 x(ki) ib [kik + 1, ki,

0 0 I FE[kilk + 1, ki] j

results in the locally smoothed ML estimate of the boundaries of the subinterval and

the state x(k) given by

ki-1, ki] x(k) ;�[kjkjj, ki]

.�[kjj Iki-1, kil x(ki-1) + �c[kjj Iki-1, ki] (5.65)

;�[kj I ki-1, ki] x(ki) �[kj I ki-1, ki]

where thanks to the assumption of the estimability of the state based on local data,

119

the projection matrix associated with the estimate in (5.65) is equal to the identity.

The error covariance for (5.64) is obtained from the forward and backward filters, and

the error covariance in (5.65) comes directly from the solution to the ML estimation

problem applied to (5.65).

Step 2:

The globally forward filtered estimate is constructed by implementing a filter which

operates on the boundaries of the subintervals using local boundary measurements

as observations. From Lemma 4.3, the estimate ,�[ki 10, ki] can be constructed at each

point in time with the addition of the measurement �c[ki-110'ki-11- The estimate

which processor i + 1 requires is obtained from a filter constructed from the following

measurements.

[ki I ki-1, ki - 1] I 0 X-[kilki-i + 11
X(ki) kil

.�[ki-i Iki-1, ki - 1] 0 I x(ki-1) + Fc[ki-i Iki-1 + 1, ki] (5.66)

,�[ki-i Iko, ki - 1] 0 I L iqki-i 10, ki-1]
J L J L J

where represents the predicted estimate of the state given by (4.48). The globally

filtered estimates are given by

�i[ki+11koki+1] o o o 0 I

E;Ej[ki, kilki + 1, ki+,] Ej:B[ki, ki+1 I ki + 1, ki+11 0 I 0

E�B�[ki+,,kilki+lki+il Ej-q-[ki+1,ki+1Jki+1,ki+1] 0 0 I

0 0 F,&&[ki, ki ko, ki] I 0

I 0 I 0 0

0 0 0 0
T

X i[kiJki+1,ki+1] �E[ki+1Jki+Iki+1] �,[kilki-1+1,kil 0 0

(5-67)

Similarly a backward prediction filter can be constructed for computing backward

global predicted estimates of the boundaries of the process.

Step 3:

At each point in time a locally and jointly smoothed estimate of x(k) and the local

120

boundary [x1(ki_1)x1(ki)]' is available along with the associated joint error ova

ancei This joint estimate was obtained in Step 1 in equation (5.65). Also globally

filtered estimates of the local boundaries given by (5.68) are available from the pro-

cessing in (5.67) in Step 2 and from the associated backward filter. The measure-

ments (5.65) can be combined with the boundary measurement provided by the for-

ward and backward filters in the interprocessor exchange step to obtain the smoothed

estimate of the state at each point in the subinterval. Figure 5.3 shows a processor

which operates on data form ki-1 to hi recieving boundary measurements from neigh-

boring processors to construct the smoothed estimate of the boundary at ki-I and

hi -

[ki-1 10, ki-1] x(ki-1) + FE[ki-1 10, ki-1] (5-68)
x(ki) KI

�[kilkij K] �Z[kiikil

In this algorithm the boundary of the local interval is appended to the state

at each point in time. If we were to consider adapting this algorithm to the two

dimensional case, we would need again to append the state with the boundary. In 2-D

however the boundary states of local subregions have high dimension. The smoothing

algorithm would suffer a dramatic increase in computational complexity. Providing

locally smoothed estimates is not the direction we wish to take in higher dimensional

processors.

This method is comparable to the domain decomposition method[9] where a pde

is solved in local regions in an attempt to compress the problem to solving a system

of equations at the boundary. In this one-dimensional algorithm provided here, the

complexity of the boundary smoothing problem has not increased and updating the

interior points is simple. Domain decomposition methods win be discussed further in

Chapter 6 in connection to multidimensional state estimation.

5.3.1 Complexity

Step 1

Off-line

The forward filter in this algorithm is a fixed point smoother. The state dimension

121

,,�ML[kj 10, ki - 11 iML[ki + 11ki + 1, K]

[0, ki-1 [ki-1, ki] [kj + L KI

Figure 5-3: Boundary Measurements from Neighboring Processors

is given by 2n. The dimension of the driving noise and the observations remains un-

changed from the original model. The amount of computation which a given processor

acting on a single region of data must execute is given by

2 K [K (2n, m, p; off - line, non - estimable) + M (7n, 3n, 7n)]L (5.69)
2 K [2159n' + 224n'p + 16n2 M + 42np2 + 2.67p']L

where K is defined in Section 4.3, and M is defined in Section 2.1.

On-line

The online computation required is given by

' [2K (2n, m, p; on - line) + WIT (5.70)

2 K [12n' + 4nPIL

where the factor of two indicates that the computation needs to be carried out both

for the forward filter and the backward filter.

Step 2

Off-line

The off-line computation required for the interprocessor communication is given by

(L - 1),F(5n, 2n, 5n) = (L - 1)316.67n, 3 (5.71)

On-line

The on-line computation required for the interprocessor communication is given by

(L - 1)6n 2 (5.72)

122

Step 3

Off-line

Here local estimates of the state and the boundary are combined with globally filtered

boundary measurements. The off-line computations are given by

K9(8n,3n,8n) = K874.67n3 (5-73)T L

On-line

The amount of on-line computations is given by

T = K10n' (5-74)L

In summary, the total time required to compute the off-line computations is given by

T = 2 K [IC (2n, m, p; off - line, non - estimable) + M(7n, 3n, 7n)L

+ '.6(8n, 3n, 8n)] + (L - I)E(5n, 2n, 5n)]
2 (5.75)
2 K [2596.33n3+ 224n2p + 16n2M + 42np2 + 2.67 p3]

L

+ 316.67(L - I)n3

and the total time required to compute the estimates on-line is given by

2 2] 2 KT= 2K[1C(2nmp;on-line)+4n +5n +(L-1)6n 2_[17n' + 4np] + (L - 1)6n'L L

(5.76)

123

5.4 Method of Oblique Projections

Many parallel processing algorithms take advantage of the partition theorem [19],

or somehow compute locally optimal estimates and use the information obtained

from neighboring processors to create globally optimal estimates. Simplification may

result if each processor behaves with the knowledge that it will receive information

from neighboring processors. Specifically, our aim is to represent equations (3.36),

and (3.37) by the following 'measurements'.

Y(i) H(i, j)x(j) + v(i) (5.77)

where i G 11, 2, 3,...LJ. We then seek the operators C(j, i) such that

-4i) ICUI 011'(i) (5.78)

where L are oblique projection operators. Properties of these operators are discussed

in by Ayalar and Weinert in [4]. The advantage of these operators are that the

contributions of neighboring processors can be simply added together. It is desirable

however that the operations indicated by C(j, i) be factorable into two operators of

low dimension so that few parameters need be transmitted to neighboring processors.

In other words, we desire C(ji) to be written as C(ji) = Ll(ii),C2(ii) where

L2(ii)y(i) is a sufficient statistic of lowest dimension to be passed to neighboring

processors, and is easily computed while computing C(j, j)Y(j). In addition we desire

Ll(j, i) to be an operation which can be carried out in the i1h processor during the

third step in the parallel processing algorithm. In this formulation, the computation

in a given subinterval is suboptimal. This partitioning of the problem is based on the

assumption that the proper information will become available from other processors.

As a result all of the gain matrices in each subinterval are based on the knowledge of

the statistics of the entire process and all of the data instead of having information

only about the process and the data in the local interval. As a result after local

estimates of the state has been obtained, the processors will not have to communicate

124

with neighboring processors to obtain covariance information.

The algorithm presented in this section has a structure similar to those discussed

in Section 5.1, and 5.2. The data is partitioned into segments. Local filtering is

performed upon each segment. The filter in this algorithm is an n dimensional filter

instead of a 2n dimensional filter as in Section 5.1 and 5.2, which also results in

computational savings over the algorithms discussed in those sections both off-line

and on-line. In the data exchange step between neighboring processors sufficient

statistics are passed to compute the smoothed estimate at the endpoints of each

segment. Finally the points within each segment are updated from the information

available at the endpoints of each segment. This algorithm is distinctive in that the

global equations are implemented locally in all aspects except that the estimate of

the boundary of the subinterval is set to zero. Since the local processing requires

knowledge of the statistics of the process and data over the entire data interval,

covariance information must be determined in advance of processing the data. In

the other algorithm discussed in this chapter, and in the change of initial condition

equations discussed in Ljung and Kailath[19], global statistical information are not

assumed to be available to local subinterval processors.

The algorithm has the property that from the perspective of a particular processor

processing data on the 1" interval, the computations of neighboring processors provide

measurements of the process on the boundary of the i" interval. These measurements

are then used to provide measurements of the boundaries of neighboring processor in

addition to updating the local estimates to their smoothed values.

The algorithm is as follows. Starting from (5.1) we seek a parallel implementation

of the Mayne-Fraser smoother. The Mayne-Fraser algorithm constructs forward pre-

dicted estimates zf (k) and backward filtered estimates xb(k). The backward filtered

estimates can be obtained from the BMLF, or if the system in (5.1) is causal, the

backward estimates can be obtained from from backward information filtering [21].

If the system is causal then a backward Markovian model can be constructed for

implementing a backward Kalman filter [34]. The filtered estimates are combined via

equation (4.85)

125

The forward ML filter can be written as

;�f (k + 1) = �tf (k + 1, k)if (k) + Gf y(k) (5.79)

where

�t f (k + 1, k) Fkf P, (k) Ak (5-80)

and where Fkf and Gf are given by

T T T
Ff' 0 ZZf [k + Ilk] 0 Ek+1

GfT 0 0 Rk+1 Ck+1 (5-81)k

-E.,[k + Ilk + 1] I ET CkT+ 1 0 jk+1

where P.,[k + I I k] is given by

P�,� [k + II k] Fkf Ek+1 + Gf CT (5-82)
k k+1

The algorithm is obtained by attempting to implement the above equation for the

estimates directly. Specifically the gains in each subinterval should be based on all of

the statistics of the process and data prior to the data in the given subinterval. If a

parallel algorithm is required to compute Ff and Gf then the parallel algorithm ink k)

Section 5.3 can be used for this purpose.

Given that locally, all processors have the gains Ff and Gf based on the statistics

of the entire process, filtering the data is simple. Locally, each processor computes

the zero state response (ZSR) solution to the filtering equations. When boundary

information becomes available, the zero input response (ZIR) equations are used to

update the output of the ZSR filter to the optimal globally filtered solution. In

addition, the ZIR equations are used to compute the boundary condition for the

subsequent processor.

Step 1:

Using the F� and Gf matrices, each processor computes the ZSR for the FMLF.

126

Thus locally each processor will compute

k-1

x* (k) ��f (k, v. + 1)Gf y(r.)
f

ki-I

which is the solution to the FMLF equations assuming x*(ki-1) = 0. The state is

computed for all k in the interval [ki-1, ki]. The matrix 4�f (k, r.) is the state transition

matrix for the FMLF. All of the information available from processors operating on

data before time ki-1 is used to construct the estimate of the state at ki-1. It is this

estimate that has the interpretation as a boundary measurement.

Similarly with the Fkb and Gb matrices, generated from the backward filter, each

processor computes the ZSR for the BMLF. Thus locally each processor will compute

ki
b

bz*(k) (bb(kK)P�-b(n)E,,G,,y(r-) (5.84)
k

which is the solution to the BMLF equations assuming z*(ki + 1) = 0. 4,b(k, k + 1)

P,� (k) EkFkb+l is the state transition matrix for the BMLF. The state is computed

for all k in the interval [ki-,,ki]. AU of the information available from processors

operating on data before time ki-1 is used to construct the estimate of the state at

ki-1. This estimate also has the interpretation as a boundary measurement.

Step 2:
'thIn the data exchange step, the 1 processor can immediately compute the initial

condition, �f (i), for the next processor when the initial condition at time ki-1 given

by �f (i - 1) becomes available. This is accomplished using the state transition matrix

of the FMLF as follows

(ki) = x* (i) + (I)f (ki, kj-,)�f (I - 1) (5-85)f

where �f (i) represents the initial condition at time ki. Also for the backward filter,

the ith processor can immediately compute the initial condition,�b(i), for the previous

processor when the initial condition at time ki given by �b(i) becomes available. This

127

is accomplished using the state transition matrix of the BMLF as follows

Z. b (5-86)

6(- 1) = x*(k-j-1) + �Pb(ki_,, ki)�b(i)

where �b(i) represents the initial condition at time ki.

Step 3:

Similarly the results of the local processing in Step 1, can also be updated to the

globally filtered estimates by using the state transition matrix.

Xf(k) = x*(k-)+4,f(kki_1)�f(i-1) (5.87)f

Similar processing can be done for the backwards estimates. The final result for

the smoothed estimates is a weighted sum of the forwards and backwards estimates,

given by equations (4.85), (4.86), and (4.87).

Before the estimates can be computed however, all of the local processors must

be given sufficient information to compute gains based on the statistics of the entire

process. These gains can be precomputed off line and distributed to each processor

in advance of the estimation process.

5.4.1 Complexity

Since locally each processor requires knowledge about the global statistics of the

process in order to implement the local filters, a certain amount of preprocessing is

necessary if we intend off-line and on-line computations to take place concurrently.

Here we will briefly outline one method of computing the gains in parallel. The

off-line computations for a fixed point smoother can be run in each subinterval in

parallel as described in Section 5.3. Then an FMLF and a BMLF are run on the

boundary points to generate the appropriate covariances and projection matrices as

in Step 2 of Section 5.3. Given the covariances and projections for globally filtered

estimates at the boundaries, the off-line computation proceeds as described in Section

4.3 and 4.4 with a local FMLF and BMLF which compute the required gains. The

128

state transition matrix for the FMLF, and the BMLF must be computed for the

on-line interprocessor communication step.

Step 0

Preprocessing

Preprocessing consists of running the off-line computations for a forward fixed

point smoother, and performing the interprocessor communication necessary to insure

that globally filtered covariance data of each boundary has been propagated to each

subinterval processor. The preprocessing requires

T = K [K(2n, m, p; off - line, non - estimable) + (L - 1)M(5n, 2n, 5n)
L (5.88)

= K [509.33n' + 224n 2p + 16n 2M + 42np' + 2.67p'] + (L - 1)583-33n'T I

flops where we assume that the state is not causally or anticausally estimable. The re-

maining off-line computations can take place concurrently with the on-line calculation

and will be included below with the on-line calculations.

Step 1

Off-line

After the preprocessing just described, forward and backward ML filters can be locally

implemented using globally determined statistics. The off-line computation is given

by

2 K [IC (n, m, p; off - line, non - estimable) + 4n3
L (5-89)
2 K [67.67n3 + 56n 2p + 4N 2M + 21np' + 2.67 p3

L

where the additional 4n' flops are needed to compute the state transition matrix for

the ML filters.

On-line

The on-line computation required is given by

K 8n(n + P) (5.90)T

129

Step 2

Off-line

There is no off-line component to this algorithm which can be implemented toneur-

rently with this step because all off-line interprocessor communication takes place

during the preprocessing step.

On-line

The on-line computation required for the interprocessor communication is given by

(L - 1)2n 2 (5.91)

Step 3

Off-line

The estimates from the forward and backward filters are combined to produce the

smoothed estimate. The amount of off-line computation needed for this step is given

by

K T(n, m; off - line, estimable)T (5.92)
K 63n3
T

where F is defined in section 4.3 and it is assumed that the state is estimable given

all of the data.

On-line

The amount of on-line computations is given by

K 2n' (5-93)T

In summary, the total off-line time required is given by

T = K [2K (n, m, p; off - line, non - estimable) + 8n 3 + T(n, m; off - line, estimable)]
L

+ K K (2n, m,, p; off - line, non - estimable) + (L - 1) M (5n, 2n., 5n)]T (5.94)

2 K [67.67n' + 56n 2p + 4N 2M + 21np2 + 2.67p'l + K63n'
L L

+ K [509.33n' + 224n'p + 16n 2M + 42np2 + 2.67p'] + (L - 1)583.33n'll
L

130

where the term in braces indicates the preprocessing required. The on-line computa-

tion is given by

K (10n 2+ 8np) + (L + 1)4n 2 (5.95)
T

where f and g in (5.7) are readily identifiable.

131

5.5 Parallel ML Smoothing

In the treatment of parallel processing in this section, the issues of parallel processing

are simplified as much as possible. The local processing consists of ML filtering

starting from the center of each interval to the boundary. At the boundary, the

optimal estimate is obtained given all of the local data and dynamic constraints.

These boundary measurements represent 'observations' of the sampled system whose

states are the boundaries of the local subintervals. Since the initial local processing

computes ML estimates based on local data, these 'observations' are independent.

The interprocessor communication step amounts to implementing the Mayne-Fraser

two filter smoother on the sampled system consisting only of the boundary points,

resulting in smoothed estimates for the boundary of each subinterval. Finally the

backward sweep of the Rauch-Tung-Striebel algorithm is used in each subinterval to

produce globally smoothed estimates starting from the boundary of the subinterval

and proceeding to its center.

The first aim is to show that local processing can result in an equivalent but

sampled process, where the local computations play the role of state observations.

Step 1

Let the local processors filter outward from the center of the interval to the boundary

by applying the FMLF equations using the folded model indicated in equations (3.25)-

(3.26) which was shown to be equivalent to (5. 1). The local processors compute locally

filtered estimates of the boundary based on local data and dynamic constraints. From

the outward filtering process described in Section 4.4, the result of filtering to the

boundaries from the center of each subinterval is

[ki I ki, k1+1 - 1] x(kj)

Pk-tkllklkk+l -1 Pkjkj+j Jklkk+1 -1

�c[kj+j Iki, k1+1 - 11 Pkl+lkllklkk+l-l Pkj+jkj+jjkjkA:+j-1 X(kl+,)

i� [k, I ki, k1+1 - 1]

,i [kl+l I ki, k1+1
(5.96)

132

Sampled System

Dynamic Constraints

Figure 5-4: This represents the system immediately after the local filtering which
starts at the center of each subinterval and ends at the boundary of each subinterval
has been performed. The the state of the system has dimension 2n, and the local esti-
mates produced by each processor represents local estimates of the state. Linking the
states together are the remaining constraints. If neighboring states do not intersect
then the constraints are noisy and are a subset of the of the original set of descrip-
tor equations (5.1). Otherwise neighboring states intersect and equality constraints
exist (??)

133

Forward ML Prediction Filter

Backward ML Prediction Filter

Mayne-Fraser on Sampled System

Figure 5-5: The interprocessor communication step consists of constructing two filters
which will provide a measurement of the boundary for a given subinterval. The
smoothed estimate of this boundary is constructed from the local measurements and
the two measurements provided by the forward and backward filters.

where the matrix Of Piilkl represents the projection matrix associated with the esti-

mate of the local boundary. If the system is estimable, and if the local subinterval is

large enough, then the projection matrix which premultiplies the boundary [xk, Xk,+, I

in (5.96) is the identity. Note that this differs from the algorithm discussed by Tew-

fik, et al., in that while both locally filter folded processes whose state is given by

IXT(k) XT(-k)]T, this model, as shown in Chapter 3, is simply a reordering of the

dynamic constraints in (5-1), while the model which appears in Section 5.2 is an out-

wardly causal model. Our algorithm therefore avoids any cost associated with the

construction of this outwardly causal model. The covariance of the estimation error

in (5.96) is given by

i [ki I ki, k1+1 - 11 N 0; E&j [ki, ki I ki, k1+1 - 1] 1LJE&[k1,k1+1Jk1,k1+1 - 1]

[k1+1 I ki, k1+1 - 11J L L [kl+,, ki I ki, k1+1 - 1] E:E;z [kl+,, k1+1 I k1, k1+1 - 1]

Step 2 The remaining constraints required to produce globally filtered estimates

134

follow the form
x(ki)

I 0 0 I (5.98)
z(ki)

The sampled system in (5.98) can be filtered using (5.96) as observations via the

Mayne-Fraser algorithm to produce forward and backward filtered estimates and as

a result produce smoothed estimates of the states of this sampled system. Figure 5-4

represents the system after the local filtering step, and the location of the remaining

dynamic constraints.

By acknowledging that after filtering the system is a sampling of the original

system, the issue of transmitting information from one processor to another is just

an implementation of the Mayne-Fraser smoothing algorithm. In this cas e we prop-

agate forward and backward predicted estimates of the 2n dimensional boundary

[x'(ki), xl(kl+,)] and combine them with the estimate of the boundary which is pro-

duced by each subinterval. processor. Given only past data (i.e. causal data excluding

the measurement of the current boundary), at most an estimate can be constructed

for x(ki) while no information is available about X(kl+,). Therefore if we were to

interpret (5.98) as a descriptor system whose state is 2n dimensional, and (5.96) as

the observations for this system then a 'prediction' filter can at most estimate the n

dimensional subvector for [I, 0] [x'(ki), x'(kl+,)]T . As a result the interprocessor com-

munication need only communicate n dimensional vectors, and n x n covariances, and

projections instead of larger matrices and vectors. Figure 5-5 shows the application

of the Mayne Fraser algorithm to the sampled system.

The smoothed estimate is obtained by combining n dimensional forward and back-

ward predicted estimates of the 2n dimensional state with the local measurement of

135

the state. The FMLF for the sampled process is given by

i[k1+1 Iko, k1+1 - 11 O O O O I
kilki, k1+1 - 1] E+

Ej&[ki, . &[ki, k1+1 I kl, k1+1 0 I 0

F,&&[kl+,, k1Jk1, k1+1 - 1] 7-&&[k1+1, k1+1 Iki, k1+1 - 11 0 0 I

0 0 Ej& [ki, ki I ko, ki - 1] I 0

0 0 0

0 0 0 0
T

X �i[kllki, k1+1 - 1] i[k1+1 Iki, k1+1 - 1] ic[kilki-i, ki - 1] 0 0

(5-99)

where we assume that x(kl+,) is estimable based on data over the interval from k,

to k1+1 - 1. If x(kl+,) is not estimable then projection matrices must be included in

the computation. As an aside we will now include the equivalent computation for the

case where x(kl+,) is not estimable.

-T

0 R Hi H2

Li Ml+, Ni 0 A:z [k,+1 I ko, k1+1 - 11 0 HT 0 0 (5.100)1

H2 0 0 J

where

F,,��[kikllkikl+, - 1] F,:B& [ki, k1+1 I ki, k1+1 - 1] 0

R E&&[k1+1,k1Jk1,k1+1 E&j[k,+1 I k1+1 I ki, k1+1 0

0 0 EI& [ki, ki I ko, ki - 1] J
(5.101)

PkkiJk,,k1+, -1

Hi Pk,+1k, Jk1.k,+, -1 (5-102)

L Pk,1kok,-1 J

and finally

Pkk,+1 Jk,,k,+1 -1

H2 Pkl+lkt+l Jk1,k,+1 -1 (5.103)

L 0 J

136

The projection matrix for the estimate of x(kl+,) is computed from

Pkl+llkokl+,-, :::::: (LIPclkl+llklkl+,-,+Ill'lPkl+lkl+llktkl+1-1)* (5.104)

x (LPkk,+,Ik,,k,+,-l + MlPkl+lkl+llklkt+,-l)

The estimate and covariance are given by

i[kI+1JkokI+1-I] :-- Pkl+llko,k,+,-,(Li�i[kilkikl+,-I]+Mli[kl+llklkl+1-1]+Niii[kilko,ki-1])

(5-105)

Fj&&[kI+IkI+1JkoIk1+1-IJ ::-- Pk-,+llko,ki+,-,A&[kl+lkl+llko7kl+,-l]Pk,+,Ik,,,k,+,-i (5.106)

Returning to the assumption that the state is estimable, the equations for the BMLF

can be written in a manner similar to (5.99). For the estimable case, they are given

by

i[kIJk1,kL-11 = 0 0 0 0 1 X
j[ki, kilki, k1+1 - 11 E,

E:E. �& [kI, k1+1 I ki, k1+1 - 1] 0 I 0

E&&[kl+,, kilki, k1+1 - 1] Ejj[kI+1, k1+1 Iki, k1+1 - 11 0 0 I

0 0 F,-.&[kl+,, kl+llkl+,, kL-11 I 0

I 0 I 0 0

0 I 0 0 0
T

i[kilki, k1+1 - 1] �[ki+l Iki, k1+1 - 1] -�[kilki-,,ki-l] 0 0

(5.107)

The BMLF can also be written for the case where the state is not estimable, which

is similar to that provided to the FMLF. We will not provide these equations but

refer the reader to equations (5.100) - (5.105) the equations for the FMLF as a

model to construct the BMLF for the non estimable case. We will now continue with

constructing the smoothed estimate for the the estimable case.

The smoothed estimate of the boundary of subregion denoted by [,�'T(kI).�,(k14-I)]T

137

can be constructed from

T

i,(ki) 0 0 0 1 0

�c,(ki+i) 0 0 0 0 1

E&;g[ki, kilki, kl+,] F,.,zj[kj, k1+11ki, kl+,] 0 0 I 0

F,&&[kj+jkjjkjkj+j] E,,Bi,[kl+,, kj+jjkj, kl+,] 0 0 0 I

0 0 E:B�[kj, ki I ki, kL-11 0 I 0 (5-108)

0 0 0 E:�&[kj, kilki, kL-11 0 I

I 0 I 0 0 0

0 0 I 0 0 j

T

x i[kilki, kl+,] ;�[k1+11kI, k1+1 - 1] i[kilko, kj] i[kl+likl+,, kL-1 0 0

when the state is estimable. When the state is not estimable it can be constructed

from
T

.�,(ki) 0 R H y (5.109)

I HT 0 0

where
E;j., [ki, ki I ki, ki + 1 E, 0

.�� [ki, k1+1 ki, k1+1

F,-*�[kj+jkjjkjkj+jj E&�z[kj+j7kj+jjkj7kj+j] 0 0
R=

0 0 E&&[kjkjjkjkL-1j 0

0 0 OE&&[ki, k1+1 I ki, kl+,]
(5.110)

Pkjkjjkjkj+j Pkjkj+j Jklk1+1

H PkI+II�Ijkjkk+j Pkl+,,kz+llkzkt+l (5-111)

PkjkjjkjkL-1 0

L 0 Pkl+,,kl+l jkjkL-1

138

and
[kj I ki, k1+1

[kl+l I ki, k1+1 - 1]
Y (5.112)

�i [ki J ko, kil

;�[kj+j lkl+,, kL-11

Equivalently the local processing can produce forward and backward filtered esti-

mates while leaving the remaining dynamic constraints for the subsampled process.

The local processors can produce

iML[kjjkjjkj+j - 1] x(ki) [ki I ki, k1+1 - 11

L-�ML[kj+j - 1 1 ki, k1+1 - 1]J L X(kl+,) J L iML[kl+l - 1 1 k, 7 k1+1 - 1] J
(5-113)

The resulting subsampled process after the local processors have performed their

filtering is given by

x(ki) x(ki-1)
Ek, 0 o Ak,-l + Bk,_ju(kj - 1) (5.114)X(kl+l - x(kj - 1)

L

Since the process reduces to a filtering problem of a subsampled process using locally

outward filtered boundaries as the state observations, it is clear that the new problem

is self similar to the original problem. The Mayne-Fraser algorithm therefore repre-

sents a linear non-parallel solution to the sampled process. We therefore can consider

the possibility of computing the smoothed estimate of the sampled process in parallel.

The above algorithm can therefore be exploited recursively to obtain an algorithm

with logarithmic time. In the next section we consider this concept incorporating the

highest degree of parallelism.

Step 3 Since the elements of this sampled system are the boundaries of the local

subregions, the local subregions can be smoothed via the backward sweep of the

Rauch-Tung-Striebel algorithm for the local models given by (3.25)- (3.26).

An alternate approach to looking at this problem is to examine exactly what

information is needed to compute smoothed estimate. We take the STPBVDS and

139

Z[ki+1JkiIki] k ki -�[ki+ilKiki] k Ki

'�[kji Iki-1,kijk ki-1 ki] k KO

Figure 5-6: Combining estimates at r, = ±k,

fold it over and relabel the states such that the state is now [x'(k) xl(-k)]'. The

new system, as in (3.25) is separable and we therefore know that the smoothed

estimate is provided by the Mayne-Fraser two filter algorithm discussed in Section 4.4.

Figure 5.5 illustrates this example. The boundary condition at k = ±K is decoupled

because the original system is separable. As a result the backward filter for the 2n

dimensional system can be decoupled into two subsystems, with one filter for each

leg. Ultimately, the estimates provided by these filters can be computed from outward

filters themselves propagating outward from the centers of the partitions formed by

each leg. What was originally a two partition algorithm results in a three partition

algorithm. The smoothed estimate is obtained by combining three estimates. The

joint estimate provided by the local processing from the center processor (5.96), and

the estimate of the boundary given by

�iML[ki Ki, ki] (5.115)

iML[ki Ki, ki] (5-116)

which are provided by the processors working on each leg on the right side of Fig-

ure 5.3. An advantage of this view of combining data at the boundaries is that

by considering the analogy to the Mayne-Fraser filter, the information required to

compute the estimates are made clear. The interprocessor exchange step is seen to

combine three of the four measurements required to compute the smoothed estimate

at the boundaries of the subinterval. The filter which propagates the estimate from

140

processor to processor is obtained simply by removing either (5.115), or (5.116) from

consideration. What results is the forward filter or a backward filter, identical to that

obtained when filtering the sampled process in (5.98).

5.5.1 Complexity

The computation involved in this algorithm depends on the fact that the state, though

twice what single processor would require, only propagates over half the interval. The

dimension of the data is 2p and the dimension of the driving noise is 2m. While the

structure of this algorithm is similar to that in Section 5.2, there is no prior processing

used to generate a 'preferred' model.

Step I

Off-line

Since filtering begins from the center and proceeds to the boundaries the amount of

computation which a given processor acting on a single region of data must execute

is given by

1 KIC(2n, 2m, 2p; off - line, non - estimable)�T (5.117)
IK 509.33n3 + 448n 2p + 32n 2m, + 168np 2 + 21.33 p3iT

On-line

The online computation required is given by

K IC(2n, 2p; on - line)
(5-118)

K 8n' + 8n�Ff P

Step 2

Off-line

The off-line computation required for the interprocessor communication is given by

(L - 1)2 [M (5n, 2n, 5n) + E(n, n, n) + 2n 3] _- (L - 1)2[589.67n 3] (5.119)

141

where the factor of two indicates that the computation needs to be carried out both

for the forward filter and the backward filter.

On-line

The on-line computation required for the interprocessor communication is given by

(L - 1)6n 2 (5.120)

Step 3

Off-line

The computations here are the backward sweep of the Rauch-Tung-Striebel algorithm.

The off-line computations are given by

' K T(2n, 2m; off - line, non - causally - estimable)
2 L (5.121)

1 K941.33n 3+ 32n 2M�T

On-line

The amount of on-line computations are given by

K T(2n; on - line)
�T (5.122)

K An 2
'il_

Here we have assumed that the state is estimable given all of the data but not es-

timable given only causal or anticausal data. In summary, the off-line time required

for computation is given by

T = 1 K [)C(2n, 27n, 2p; off - line, non - estimable') + T(2n, 2m.; off - line)]
2 L

+(L - 1)2[.,k4 (5n, 2n, 5n.) + 9(n, n, n) + 2n 3] (5-123)

K 2 2 2 p3 '2]TL1450.67n' + 448n p + 64n m + 168np + 21.33 + (L - 1)2[589.67,n

The total time for the on-line computations are given by

K [IC(2n, 2p; on - line) + T(2n, 2p; on - line)] + (L - 1)6n' (5.124)
iT

142

5.6 Parallel ML Smoothing smoothing with BIL

nary 'Dree Interconnections

The algorithms discussed in detail in the previous sections basically have the following

structure. Processing in the local subregions produce local estimates of the bound-

aries given local data. The interprocessor communication step basically amounts to

implementing a two filter algorithm on a sampled system using the results of the

local processing as observations and including in the computation, if necessary, any

additional dynamic constraints which were not used in the local processing. Once

the information required to obtained smoothed estimates has been propagated to

each boundary point, the points interior to each subinterval can be updated to their

smoothed values. Once we recognize that the interprocessor communication step is a

two filter algorithm, not unlike the Mayne-Fraser algorithm, it is clear that the inter-

processor communication step can be implemented in parallel. This approach towards

parallelization suggests a different connectivity between the processors. Figure 5-7

is a possible architecture when the filters for the interprocessor communication step

are implemented in parallel. We will, however take a slightly different approach to

the issue of parallel processing. We will map the smoothing problem directly to the

binary tree by analyzing the parallel smoothing problem of a region divided into two

subregions. This approach allows a priori information in the form of a two point

boundary condition (and in fact certain multi-point boundary conditions) can be in-

corporated quite easily into the smoothing algorithm. Since Mayne-Fraser algorithms

are perfectly suited for STPBVDS's it follows that these algorithms are not limited

to STPBVDS's, they can also be applied directly to TPBVDS's. Furthermore, ad-

ditional measurements of local boundaries can be included and the possibility exists

to adapt the algorithm to a wide variety of measurements of subregion boundaries.

We will find that the algorithm presented has similarities to the multi-resolution algo-

rithms discussed by Chou[261. Furthermore, it will be shown that the methodology in

this section is completely generalizable to smoothing algorithms for multidimensional

processes.

143

(C)

b)

Figure 5-7: Each processor in the parallel algorithm in Section 5.5 produced bound-
ary measurements for its region which are communicated to neighboring processors.
Each block represents a processor operating on a specified region and local bound-
ary measurements are communicated to neighboring processors using communication
links such as the one indicated by (a). In order to gain greater efficiencies local
regions can be grouped in clusters where one processor is responsible for obtaining
the boundary measurement for the entire region covered by a cluster of processors.
This processor can obtain this information from communication links (a), and (b).
Finally all processors which are responsible for obtaining the boundary information
from a cluster of processors can then communicate among themselves to produce the
optimal boundary estimate for each cluster. Then each cluster in parallel can work to
disseminate the optimal cluster boundary information to produce optimal estimates
of local boundaries. Finally the optimal boundary information of each local boundary
can be used by each processor in parallel to update interior points of each subregion.

We will demonstrate that the parallel smoothing algorithm can be written pre-

cisely as the Rauch-Tung-Striebel algorithm when the proper definition of state and

notion of time is provided. Since the backward sweep of the Rauch-Tung-Striebel algo-

rithm amounts to the construction of an anticausal (Markov) model for the smoothed

process, it can be shown as a direct result that reciprocal processes can be modeled

by processes which live on trees. This further suggests new algorithms which take

advantage of this structure. We will see in Chapter 6 that multidimensional processes

also have tree structured models associated with them.

The systems which we are examining are reciprocal, that is given a closed contour,

the interior and exterior are independent. On a line, we define a closed contour

to be a boundary consisting of two points. We define the 'state' of the system to

be the value of the process on a closed contour. Thus for the points S, and S2

we will define the state to be [x'(S1),X'(S2)j, not. unlike the definition of state in

Chapter 3 where STPBVDS's are constructed from TPBVDS's. There, the definition

of state is is defined on the closed contour given by Is, -sj, here, we consider a

144

much larger set of pairs fS1 , S21. Finally, we define an order operation -� on the set

of contours. Specifically, the contour f S1, S21 is interior to the contour 183, $41, i.e.,

181, 521 __� fS3, S41 if S3 :!� 81 < S4 and S3 < S2 < S4- We use this definition later

and in Chapter 6 when discussing the Markov nature of these algorithms. Before

describing a general algorithm for smoothing TPBVDS's we provide two examples of

smoothing the following acausal model for a vector process.

r,(t + i)x(t + i) r,,(t)x(t) + u(t) 0 < t < T - 1

Y(t) X(t) + V(t) 0 < t < T (5.125)

1',(O)x(O) r,,,(T)x(T) + u(T)

where u(t) and v(t) are independent white noise sequences with the following statistics

u(t) - N(O, q(t))

v(t) - N(O, r(t)) (5.126)

det q(t) 7� 0 V t

det r(t) �4 0 V t

The two examples which follow differ with respect to the set of noisy constraints

which are used in Step 1, the initial processing step. In contrast to an other algo-

rithms discussed in this chapter, we do not consider forward and backward filters

operating on the boundaries of the subregions. There are only two subregions in both

examples and the calculations involved in updating boundaries can be performed in

one computation.

Example 5.1

Here we consider the case where T -_ 3. The data, is divided between Processor # 0

and Processor # 1.

Step 1:

145

In the local processing step, Processor #0 takes the measurements given by

Y(O) I 0 X(O) V(O)

0 - r,,, (o) - r, (i) + U(O) (5-127)
X(1)

YM 0 I V(1)
L J L j L j

to compute the estimate

x X(O)'[01[01111 + ill (5.128)

x1i I IO, ill X(1) i[11101 ill

where the notation [s, t] indicate that the estimates are based on an of the dynamic

constraints linking x(s) to x(t) and all of the observations y(.9) through y(t). The

error covariance is given by

-101[01111 -r00j[O'1] E011[ol]
Cov (5-129)

L -�111[0' 1]]i L E101[ol] E111[0'1] j

As an aid in understanding the structure of this algorithm we win use Figure 5-

8 to represent the merging of the estimates of x(O) and x(l) (which are provided

in this case by y(O) and y(l)), and the dynamic constraint which links them. We

include u(O) in the figure to make clear which dynamic constraint is merged with

which observations. In the case of Figure (5-8) the observations y(O) and y(l) are

combined with the dynamic constraint indicated by u(O). While these computations

are being performed, Processor #1 performs an analogous computation for x(2) and

x(3). Processor #1 takes the measurements given by

y(2) I 0 X(9 v(2)

0 F,, (2) - r, (3) + u(2) (5.130)
x(3)

y(3) 0 1 v(3)I- J L. J L. J

146

U(O

Y (0) YM

Figure 5-8: Icon representing the combining of two neighboring estimates using the
dynamic constraint which links them

i[21[2,3]] i[31[2,3]]

u 2

y(2) y(3)

Figure 5-9: Computation of Processor #1

to compute the estimate

�E[21[2,3]] x(2) + i[21[2,3]] (5-131)

L '�[31[2,3]1J L x(3) J L;Z[31[2,3]] J

where the error covariance is given by

[21[2, 31 21[2,3] 231[2,3]

La 7.

Cov i� [31[2, 3] 7-321[2,3] 7-331[2,31 (5-132)

We will use Figure 5-9 to represent this estimation procedure.

Step 2:

The interprocessor communication step has several parts. For this example, Step 2

147

of the parallel algorithm has three parts which we will now outline.

Part 1

The first part Step 2 consists of using the remaining dynamic constraint, O= r"'(i)x(i)_
r,(2)x(2) = u(1), to produce a locally smoothed estimate of the boundary which en-

closes the two regions. This boundary is equal to IX T (0), X T (3)]. The measurements

needed to produce the boundary estimate for [xT(O)' XT (3)] is given by

ill X(O) �E[01[0' ill

i[11101 ill 0 1 0 0 i[i I A ill
X(I)

0 o (1) r,(2) 0 + U(i) (5.133)

i [21[2, 3] 0 0 1 0 X(2) i[21[2,3]]

j I j .X(3) L�i[31[2,3]] I

resulting in the estimate

[O [0, 3]] X(O) ;i [O [0, 3]]

-�[11[0,3]] X(1) + i[11[0, 3]] (5-134)

�c[21[0,3]1 x(2) i[21[0,3]]

L i[31[0,3]] j L x(3) j L i[31[0,3]] j

The error covariance for this estimate is given by

i[01[0, 3]] EOOI[0,3] E011[0,3] E021[0,3] E031[0,3]

Cov �E[11[0, 3]] E101[0,3] E111[0,31 E121[0,3] E131[0,3]

[21[0, 3]] E201[0,3] E211[0,3] E221[0,2] E231[0,3]

L i [31[0, 3] j E301[0,3] E311[0,3] E321[0,3] E331[0,3]

This estimation step can be interpreted as combining the estimates of the process

at two neighboring points, x(l) and x(2) and using the information contained in

the estimates at these points to update the boundary enclosing the two regions.

Figure 5-10 is a graph which we will use to represent this operation. We call this

an estimation module because it is the basic building block for larger and larger

148

;i [k, I [ki, k4j] i [k4l [ki, k4j]

k4l] i[k3l[4

.i [ki I [ki, k2l '�Ik2j[kj, k211 � [k3 I[k3, k4l] [k4j Ik3, k4l]

Figure 5-10: Using estimates of x(k2) and x(k3) to update x(ki) and X(k4) where
k3 = k2 + L Specifically, the estimates �[k2j[kjk2j], and d�[k3l[k3,k4fl are com-

bined to produce the estimate of x(k2) and x(k3) given all. of the data denoted by

i [k2l [ki, k4l] and � [k3 I [ki, k4l] respectively. The correlation between the estimation er-

rors i [ki I [ki, k2fl, and i [k2 I [ki, k4l] is then used to update i [ki I [k-1, k4l] to the smoothed

value given by -�[kj I [ki, k4l]. This represents the basic building block for the algorithm

in this section.

149

[O [0, 3] i[31[0,3]]

1 107 311 i (21 [O

u

0 u 2

Y(O) YM y(2) y(3)

Figure 5-11: Arriving at the smoothed estimate for the boundary of the entire region

estimation algorithms.

Part 2

The estimates of the boundary states are then combined with the two point boundary

condition to produce the smoothed estimates of the boundary. The measurements

required to produce this smoothed estimate is given by

i[01[0, 3 1 0 �[Oj [0, 3]]11 X(O)

�c[31[0,3]] 0 I x(3) j + i[31[0,3]] (5.136)

L 0 j L - F, (0) 1,, (3)J J

150

The smoothed estimate which result from (5.136) are given by

X(O) + (5-137)
�c, (3) j x (3)j FE, (3) j

The smoothed error covariance for the boundary is given by

EOO E03
Cov (5-138)

;i.,(3)j FIN E33
L

151

Part 3

The final part in Step 2 is to propagate smoothed estimates to the boundaries of the

individual subregions, that is, to propagate estimates from the state [x'(0),x'(3)]

to the the states [XT(O)' XT(1)] and [XT (2), XT (3)]. The smoothed estimate of the

boundaries of the subregions are provided by

[O I [0, 3] + EOOI[0,3] E031[0,3] EOOI[0,3] E031[0,3]

j L ;�[11[0, 3]] J L F'101[0,3] E13110,,31 J L E301[0,3] E331[0,3] J

(0) [O I [0, 3]]
x

(3) �[31[0,3]]
(5.139)

and

,�,(2) i [21[0, 3 r'201[0,3] E231[0,3] r:JOOI[0,3] E031[0,3]
�[31[0,3]] 1[0,3] E331[0,3] E331[0,3]

E30 J L Z30110131

(0) [O I [0, 3]
x

(3) �c[31[0,3]]
(5.140)

The smoothed error covariances for each boundary are given by

E00 E01 E001[0,31 E011[0,31 EOOI[0,3] E031[0,3] EOOI[0,3] E031[0,3]

L Elo Ell i LE101[0,3] F- I 1 1[0,3]j L E101[0�,3] E13110,31 J L E301[0,3] E331[0,3] J

x EOO E03 EOOI[0,3] FJ031[0,3]

E30 E33 E301[0,3] E331[0,3]

x EOOI[0,3] E031[0,3] FJOOI[0,3] E101[0,3]

E301[0,3] E331[0,31 7-031[0,3] E311[0,31

(5.141)

152

and

E22 FJ 23 E 2 21[0,3] E231[0,31 F4201[0,3] E231[0,3) FJOOI(0,3] FJ031[0,3]

L FJ32 E33 J L FJ321[0,3] E 331[0,3] j L E301[0,3] FJ331[0,3] J L E 301[0,3] FJ331[0,3] j

X FJOO E03 E001[0,31 E031[0,3]

E30 E33 E 301[0,3] F'331[0,3]

X EOOI[0,3] E031[0,3] E021[0,3] F'031[0,3]

E301[0,3] E331[0,3] F-321[0,3] E 331[0,31

(5-142)

respectively.

Figure 5-12 is used to represent the transference of smoothed estimates from the

boundary surrounding the two regions to smoothed estimates of the sub-boundaries.

Step 3

When the algorithm is applied to this simple problem there is no Step 3 because

each subregion consists only of its boundary; there are no interior states to update.

For general TPBVDS's, the algorithm can always be implemented where the smallest

subregions consists of non overlapping pairs of points. States however may not be

fully estimable and more complicated equations are needed to deal with this case. We

will deal with this case later in this section. If the system is uniformly estimable, we

may perform outward filtering in local subregions until we can construct a boundary

which has a well defined covariance. Step 2 in this algorithm can be e:kecuted until the

boundaries of the local subregions have smoothed estimates then finally the Rauch-

Tung-Striebel algorithm can be used to smooth interior states in each subregion in

parallel.

In Part 2 of Step 2, boundary conditions are incorporated. The result of including

the boundary condition is a smoothed estimate of the boundary. This represents the

smoothed information which this module may expect from the remainder of a larger

algorithm in which this module is embedded. In addition, we can include additional

boundary measurements of subintervals throughout the algorithm without altering

153

3]] [21[0, 3]]

'v(o) ;P(2) (3)

Figure 5-12: Additional boundary information in the form of the smoothed estimates
.iII(O) and ,P(3) are combined with two estimates �[11[0,3]1 and �c[21[0,3]], which are
represented by the large dots, to produce the smoothed estimates -P(1) and 'P(2).
The dotted lined indicate the flow of data which was used to construct the estimates
.i[11[0,31] and �[21[0,311. The additional botindary information can be obtained by
viewing the figure to be a part of an algorithm operating on a larger set of data as in
Figure 5-13

154

the basic structure of this smoothing algorithm. For example when the algorithm is

applied to 16 points as shown in Figure 5-14 additional measurements such as

00
Y03 -, 0,3x(O) + CO,3x(3) + VO,3

- C8 + C15 (5.143)
Y8,15 - ,lx(8) ,lx(15) + V8,115

can be included which cannot be neatly included in the standard Kalman filtering

framework. It also suggests that the choice of subintervals can be chosen to accom-

modate the available measurements.

We are able to combine the estimation modules which represent this example to

construct estimation algorithms which exist over larger and larger data sets. Figure 5-

13 shows a graphical representation of the algorithm for T = 7 and Figure 5-14

shows a graphical representation of the algorithm for T = 15. In this example,

dynamic constraints are incorporated at selected points throughout the algorithm to

link neighboring boundaries. In the next example, all of the dynamic constraints are

used in Step 1 while the the remaining steps include the information that neighboring

boundaries intersect. 0

Example 5.2

Here we consider the case where T _- 2. In addition we will assume that r, (t) = i.
These systems are called two point boundary value systems and are discussed in

Adams [1]. The data is divided between two processors.

Step 1:

In the local processing step, Processor #0 takes the measurements given by

I 0 X(O) V(O)
Y(O) + (5.144)

0 r,,(o) -i X(1) U (0)

to compute the estimate

X(O) + i�' 10 I 10 1)] (5.145)

L ;i [1 I 10, 1)] J L X(1) J L -�[11[011)1 J

155

A

L

/ u 3
1 L A

A L A

,/",I I N 5
A L I L A L A

V"'N [//ii(2 N 4 6

Y(O) YM y(2) y(3) y(4) Y(5) Y(6) y(7)

Figure 5-13: T = 7

156

X(413)

X (312)

X(21 1)

X(110)

X(01 - 1)

y(O) y(l) y(2) y(3) y(4) y(5) y(6) y(7) y(8) -y(9) Y(IO)y(ll)y(12)y(13)y(14)y(15)

Figure 5-14: Parallel algorithm for 16 data points.

157

where the notation [s, t) indicate that the estimates are based on all of the dynamic

constraints linking x(s) to x(t) and all of the observations y(q) through y(t - 1). The

error covariance is given by

Cov EOOI(0,1) E011(ol) (5.146)

L ;i[11101 I)] J L E101(ol) E111[0'1) j

While these computations are being performed, Processor #1 performs an analogous

computation for x(l) and x(2). Processor #1 takes the measurements given by

YM I 0 X(1) + v(2) (5.147)

L 0 j r,, (i) - i x (2) u(2)

to compute the estimate

[1 I [1, 2)] X(I) + 1, 2)] (5.148)

L [21[l, 2)] J L x(2) j L FE [21[l, 2)]

where the error covariance is given by

Cov i [I 1, 2)] E111[1,2) E121[1,2) (5.149)

-� [21[2)]L j L E211[1,2) E221[1,2) j

Step 2:

Here, Step 2 of the parallel algorithm has three parts which we will now outline.

Part I

The -first part of Step 2 consists of providing the information that neighboring bound-

aries intersect. Specifically, the estimates in each region represent independent inea-

surement of x(l). With the combined information of the intersection of the two

boundaries, a locally smoothed estimate of the boundary which encloses the two re-

gions is obtained. This boundary is equal to [x T (0), X T (2)]. The measurements

158

needed to produce the boundary estimate for [x T (0), X T (2)] are given by

Ili 10 I [O I 1)] I 0 0

-iIIII01 1)] 0 I 0 X(O) i[OI[Ol 1)]

1[1, 2)] 1 X(I) + ;E[11[0, 1)] (5.150)

x(2) i [21[l, 2)]0 0 I L j L

resulting in the estimate

[O I [0, 2)] X(O) i [O I [0, 2)]

[1 1[0, 2.)] x(I) + ;i [1 1[0, 2)] (5-151)

,�[21[0,2)] x(2) [21[0, 2))

The error covariance of this estimate is given by

,i [O I [0, 2)] E001[0,2) E011[0,2) E021[0,2)

Cov i� [1 1[0, 2)] F,101[0,2) E111[0,2) E121[0,2) (5.152)

[21[0, 2)] E 201[0,2) E 211[0,2) E 2 21[0,2)

This estimation step can be interpreted as combining two independent estimates

of x(l), and using the resulting information contained in the estimates of x(l) to

update the boundary enclosing the two regions on which the two measurements of

x(l) were based. We call this an estimation module because it, as is the corresponding

computation in Example 5.1, a basic building block for larger and larger estimation

algorithms.

Part 2

The boundary condition is then combined with the boundary estimate to produce

the smoothed estimates of the boundary. The measurements required to produce this

159

smoothed estimate are given by

i [O I [0, 2)] 1 0 x (0) i [O I [0, 2)]

[21[0, 2)] 0 I x(2) + � [21[0, 2)] (5.153)

0 -re(O) r.(2) u(2)

The smoothed estimates which result from (5.153) are given by

X(O)
+

�c, (2) j x (2) . . ;i.(2) j

The smoothed error covariance for the boundary is given by

EOO E02
Cov (5.155)

L ;Tc,(2) j L E02 rd 2 2

Part 3

The final part in Step 2 is to propagate smoothed estimates to the boundaries of the

individual subregions, that is, to propagate estimates from the state [XT(O)' XT(2)] to

the states [XT(O)' XT(1)] and [XT(j)' XT (2)]. The smoothed estimates of the boundaries

of the subregions are provided by

.i, (0) [O I [0, 2) + F-001[0,2) F-021[0,2) EOOI[0,2) E021(0,2)

L 'i, (1) j L i[11[0, 2)] j L E101[0,2) E121[0,2) J L FJ201[0,2) E221[0,2) j

�[01[0, 2)]
x

[21[0, 2)]
(5.156)

160-

and

.i,(l) 1 1[0, 2)] + E101[0,2) 7-121[0,2) EOOI[0,2) E021[0,2)

(2) [21[0, 2)] E 201[0,2) F-221[0,2) E201[0,2) E221[0,2) J

[O I [0, 2)]
X

(2) ,�[21[0,2)]

The smoothed error covariances for the two subregion boundaries are given by

EOO E01 EOOI[0,2) FJ 0 1 1[0, 2) EOOI[0,2) E021[0,2) EOOI[0,2) E021[0,2)

Filo Ell EIOI[0,2) E111[0,2) EIOI(0,2) E 1 21[0,2) E 201[0,2) El 2 21[0,2)

X EOO FJ 0 2 EOOI[0,2) E021[0,2)

E20 E22 E201[0,2) FJ 2 21[0,2)

X EOOI(0,2) E021[0,2) EOOI[0,2) E01 1[0,2)

E201[0,2) E 2 21[0,2) FJ201[0,2) E211[0,2)

and

Ell E12 E111[0,2) E 1 21[0,2) EIOI(0,2) E 1 21[0,2) EOOI[0,2) E021[0,2)

FJ 2 1 E22 E 211[0,2) E 2 21[0,2) E 2 01[0,2) E 2 21[0,2) E 201[0,2) E 2 21[0,2)

X EOO E02 EOOI[0,2) E021[0,2)

FJ 2 0 E22 FJ201[0,2) E 2 21[0,2)

X EOOI[0,2) E021[0,2) E011[0,2) E021[0,2)

F-201[0,2) E221[0,2) F-211[0,2) E221[0,2)

Step 3

Here as in Example 5.1, the local subregions and their boundaries are the same. There

are no interior points to update. F�

Returning to the issue of smoothing the TPBVDS in equation (5.1), we now

continue with our general algorithm for smoothing one dimensional systems. We

also return to the notation used to describe estimates and their data dependencies

161

established in Section ??4.3. The data is partitioned along the time axis into L = 2M

subintervals and one processor is assigned to each subinterval. Since Examples 1 and

2 show the structure of the algorithm when all inverses exist we will now carry out

the computations when the state is not estimable.

Step I

Local filtering is performed in each of the subintervals starting from the center outward

toward the boundary to produce local estimates of the boundary of each subinterval.

This preprocessing step is therefore identical to the preprocessing step of the algorithm

in Section ??5.5. The result of the computation in this step is given by

k + 6] X(r,) + k + 61 (5.160)

,�[k + 61r,, k + 6] x(k + 6) i[k + 61K, k + 8]
L J L J L

The error covariance of this estimate is given by

,Z[KIK, k + 6]Cov FIKKlr.,k+b Fjnk+bjnk+6 (5-161)
i[k + 61K, k + 6] 7-k+bnlKk+b Ek+6,k+bj#ck+b

where the process at the boundary of the subinterval is given by [x'(r,), x'(k + 8)]T.

The neighboring boundary we will denote by IXT (k), XT(S)]T , and the binary variable

6 determines whether or not the neighboring boundaries intersect. If 8 = 1 the

boundaries do not intersect. If 6 = 0 the boundaries do intersect.

Step 2

At this point the remainder of the algorithm represents a hierarchical assembling of

Step 2 in Example 5.1 or 5.2. The states to be combined for the measurement update

step are shown in Figure 5-15. The measurement. up(late step is given by considering

162

k-k + 8 K,

Region #0 Region # 1

Figure 5-15: The dots represent the boundary of neighboring regions which will be
merged together in the measurement update step. Region #0 and Region #1 will be
merged together in into a region bounded by the points s and tc.

the following measurement of neighboring boundaries

,�[rclk + 6, r'] Pr,,r.1nk+b P,,.,k+61Kk+b 0 0

.�[k + 81k + 8, K] Pk+bKlr,,k+b Pk+bk+bl#ck+b 0 0

0 0 �Ek+bjb -JAW 0

�[kls, k] 0 0 Pkklks Pks1ks

i[sIs, k] J 0 0 P.,klks Psslks

x(r,) i�[rclk + 8, KI
,�[k + 81k + 6, K]

x(k + 8)
X x(k) + 6BkU(k)

,�[kls, k]
X(S)

[s Is, k]
(5.162)

The matrix PiJJk,1 represents a submatrix of the projection matrix which is associ-

ated with the estimate of [x'(k), x'(1)]. The result of the estimation problem is the

following estimate

Is, r.] X(ti) ��[rcls, K]

:�[k + 81s, r,] x(k + 6) ;i[k + b1s, K]
= Px(r,),x(k+b),x(k),x(k)JSK + (5-163)

;i [k Is, r,] x(k) i�[k Is, r,,]

;i [s Is, r,] X (S)

where P,(,),,(k+b),x(k),x(.s)J3,K is the associated projection matrix for the estimate. The

163

error covariance of the estimate is given by

,i[k + 81s, K]
Cov (5.164)

,i[k

To continue with further steps of the interprocessor communication step the

boundary which encloses the two regions is kept. The system is therefore sampled.

Since projection matrices are involved, the proper projection matrix for the sam-

pling must be computed. Let denote the desired projection matrix which

satisfies

I 0

15x(r I 0 0 0 0 0

0 0 0 1 Px(tc),x(k+6),x(k),x(k)JsPc0 0

0 I
L J

I 0

I 0 0 0 0 0

X 0 0 0 I Px(r.),x(k+b),x(k),x(k)JsP.0 0

0 I

then the joint estimate for x(r.) and x(k) is given by

i[rcls, K]

;i[rcis, rJ I 0 0 0 �c[k + 81s, K]
= Px(.),x(k)l.,,. (5.166)

,,�[k 0 0 0 I ��[kls, KI

[k Is, r,]

Since sampling does not introduce new noise to the process, the covariance is

164

obtained from

I 0

Px(K),x(k)lsK 0 0
0 0 0 I 0 0

0 I

(5.167)

Once smoothed estimates have been obtained at the boundary of the entire process,

smoothed estimates may be propagated from a boundary of a subregion to the bound-

aries of the two next smaller subregions. The following measurements are combined:

the smoothed estimates at 1K, sl and the 'filtered' estimates to f K, k + 81 and Jk, sl

.�[r, Is, r,] ;i[rcls, r,]

Sc[k + b1s, r,] i[k + 61s, r.]

;i[kls, K] Px(K),x(k+b),x(k),x(S)JSr. x(k) i�[kls, K]

,�[s Is, rl + [s Is, r,]

......... x(k)0 Px(r.),x(s)J0,K J

,�[kIO, K] X(S) J i[kIO, KI

L i[sIO, K] J L ,�[sIOK] J
(5.168)

The resulting estimate is the jointly smoothed estimate of the two neighboring

boundaries.

X(K)

;i[KIO, K] Fc[r.10, K]
�c[k + 810, K] X(k) ;i[k + 610, K]

P.
x(K),x(k+b),x(k),x(s)JsK +

,�[kIO K ;i[kIO, K]I I x(k)

L ;i [s IO, K] J X(S) L ;�[s IO, K] J
L

(5-169)

The estimates of the two boundaries can be decoupled by premultiplication by the

165

appropriate projection matrices. If we let

I 0

I 0 0 0 0 I
Tx(K),x(k+6)10,K 0 I 0 0 _Fsx(r.),x(k+b),x(k),x(k)JOK 0 0

L J

L 0 0 J (5-170)
I O

I 0 0 0 0 I
x S

0 I 0 0)5x(K),.(k+6),x(k),x(k)J0,K 0 0

0 0

and

0 0

0 0 I 0 0 0
T'x(k),x(.9)10,K 0 0 0 1 _Fx(n),x(k+6),x(k),x(k)J0,K I 0

J

0 I
L J (5-171)

0 0

0 0 I 0 0 0
x _Fx(K),x(k+6),x(k),x(k)J0,K

0 0 0 I I 0

L 0 I J

then premultiplying (5.169) by

P.'(k),.(.)IOK 0

L 0 Px8(k).a-(s)JOK J

Thus to compute the smoothed estimate of the process at the boundary surround-

ing two neighboring subregions, we require measurements of the 'filtered' estimates

of the process at the boundary of each neighboring subregion, and the smoothed

estimate of the boundary which immediately encloses the two subregions.

This process can be continued recursively until a smoothed estimate is obtained

166

at the boundary of each subinterval marking the end of the interprocessor exchange

step.

Step 3

The backward sweep step of the Rauch-Tung-Striebel is used to propagate smoothed

estimates from the boundaries inward to the center of each subregion.

The sampling of the system is a key feature of this algorithm. Here we will show

that the interprocessor communication can be formulated precisely as the Rauch-

Tung-Striebel algorithm operating on an equivalent 'causal' system. This establishes

the interprocessor communication step as the simple application of known algorithms

on sampled processes. It also lends a different perspective to the notion of 'filtered'

and 'predicted' estimates in a parallel processing context. To accomplish this it helps

to reinterpret the role that different noisy constraints play. In the following example,

the observations y(k) are interpreted as 'a priori' information, the dynamics plays the

role of of 'observations', and the sampling of the state plays the role of the 'dynamics'

of the system.

Consider again, the model used in Example 5.1. Here we will stack all of the

elements of the vector x(k) into one large vector X(O) in order to describe au of the

operations which can be carried out in parallel. We will define the 'model' describing

the system as simply sampling the process, by dropping the pairs of points required

to define the boundaries of larger and larger subregions as indicated in Example 5.1.

The model can be written as

X(m + 1) = A(m)X(m) (5.172)

Thus the sampling operation A(m) Imposes a receive definition of the remaining

states X(m), given X(O). Typically we would expect a 'causal' model to have a priori

statistics defined for X(O). Let the observations y(k) = x(k) + v(k) define the 'a priori'

statistics for X(O). We will therefore initialize the state X(O) with the observations

y(s) appropriately stacked into one large vector ±(01 - 1). The covariance of this

initial estimate is formed from the covariances associated with the individual error

167

covariances for the observations y(s).

±(01 - 1) = X(O) + ±(01 - 1)

X(01 - 1) - N(O; E(01 - 1)) (5-173)

P(O I - 1) = diag [r(O), r(l), r(2), - - - , x(2-)]

Finally, the dynamics of the system of the form of 0 = -e(t+l)x(t+l)+a(t)x(t)+

u(t) can be 'selectively' included in the observations 0 = C(M)X(m) + V(m) in

order toinsure that as many of the computations can be performed in parallel as

possible. If u(t) has nonzero mean or if the process has inputs, then we can write

Y(m) = C(m)X(m) + V(m) where Y(m) would represent these nonzero means, and

inputs to our system. Once the model is written as

X(m + 1) A(m)X(m)

X(O) N(,t(01 - 1); E(01 - 1)) (5.174)

0 C(M)X(M) + V(M)

then the smoothing algorithm follows directly. Specifically, the Rauch-Tung-Striebel

algorithm is given by the filtering equations

±(MIM) = (I - E(MIM - I)C'(M)

x (C(m)E(mjm - 1)C'(m) + R(m))-'C(m))±(mjm - �).175)

E(MIM) = E(MIM - 1) - E(MIM - 1)C'(M)

x (C(M)E(MIM - 1)C'(M))-'C(M)E(MjM - 1) (5-176)

±(m + 11-m) = A(m)-k(m1m) (5.177)

E(m + 11m) = A(m-)E(mjn?-)A'(m) (5.178)

and the backward sweep given by

±(mlM) = ±(mim) - 7-,(m.jm)A T(M)E-I(M + IIM)(±(M + 11M) _ ±(M + 11M))

(5.179)

168

E-(mlM) = E(m1m) + 11m)

x (E(m + 11M) - E(m + 1jm.))E-'(n7, + 1jm)A,,,E(mjm) (5-180)

Because 'of the specific model we chose, all inverses exist. The computations which

correspond to Step 1, which is the preprocessing step, occur in the filtering step

for m = 0. A(O) = I because the purpose of Step 1 is to compute measurements

of local boundaries based on interior data. Sampling only occurs when boundaries

which consist of two points are being combined to enclose larger and larger regions.

Here, interior data is simply the dynamic constraints which link each element of the

boundary. In this operation half of all of the dynamic constraints are used. We may

then combine the dynamics 0 = x(s + 1) - a(s)x(s) - b(s)u(s) for s even into one

4observation' and, under the assumption that the noise is zero mean, it can be written

as

Y(O) = 0 = C(O)X(O) + V(O)
(5.181)

V(O) - N(O; R(O))

R(O) = diagfq(O), q(2), q(4), ... 7 q(2- - 1)j (5-182)

C(O) = diagf[-a(O) 1], [-a(2) II, [-a(4) I], [-a(2m - 2) III

The resulting filtered estimate after this measurement update is performed is given

by

±(010) = (I _ E(01 _ 1)CT(o)(C(O)F'(01 _ 1)CT(O) + R(O))-'C(O))±(Ol - 1) (5-183)

This processing can be carried out in parallel, since C(O), E(01 - 1), and R(O) are

all block diagonal. We are now prepared for further processing. Also since A(O) = I

the 'Predicted' estimate and the 'filtered' estimate are the same. Furthermore the

4dynamics' are noiseless, resulting in the 'predicted' error covariance 11"(110) being

equal to the 'filtered' error covariance E(010).

The remainder of the algorithm corresponds to Step 2 in Example 5.1. Half of

the remaining dynamic constraints will be included at each step, and the state will

be sampled reducing the dimension of the state by 2 when m increases by 1.

169

With each sampling, the elements of X(m) are given by x([j - 1]2-), and x(j2- - 1)

for 1 < i < 2M-'. The matrix A(m) is defined to be the matrix which win perform

this sampling. A(m) is given by

A(m) diagjZZ,...,Z1

I 0 0 0
z (5-184)

0 0 0 I

A(m) E R2m--X2M-in+l

The 'dynamics' for the system given by (5.172) are not driven by noise. The 'predic-

tion' update step of the filter is given by

X(M + 11m) = A(m)±(m1m) (5-185)

P(m + 11m) = A(m)P(mjm)A T(M)

Thus a 'predicted' estimate is formed from sampling the 'filtered' estimates. This

amounts to premultiplying X(m) by A(m) which removes two neighboring elements

in the center of a larger region while keeping the elements which bound this larger

region.

The measurement update step is accomplished by incorporating dynamic con-

straints which link pairs of 'states' together. The constraints of the form

0 = x(s + 1) - a(s)x(s) - b(s)u(s) which are used in the measurement update of the

state X(m) are those which correspond to s = j2- - 1 for j odd. These constraints

can be incorporated into a single measurement of the form 0 = C(m)X(m) + V(M).

0 = C(M)X(M) + V(M) (5.186)

V (M) , N(O; R(ni-))

R(m) = diagfq(2m - 1), q(3 x 2' - 1), q(5 x 2m - 1), - --, q(2m - 2m - 1)

C(m) = diagj[-a(21 - 1) 1], [-a(3 x 2' - 1) II, [-a(5 x 21n - 1) II, [-a(2m - 2- - 1) III
(5.187)

The system has been represented by a causal system as in (5.174), and as a result

170

all of the matrices in the Rauch-Tung-Striebel algorithm have been defined. Since

C(m), A(m), R(m), and E(01 - 1) are all block diagonal matrices, an computations

including the matrix inverses in (5.175), and (5.176) can be carried out in parallel

in the filtering step. At each level all computations are self similar, though fewer in

number. On the other hand, the smoothed estimates of the state X(m) are not block

diagonal and we would expect that the backward sweep computations could not be

carried out in parallel. However in the backward sweep equations of the Rauch-Tung-
T -'(m + 1 Im), are all diagonal.

Striebel algorithm (5.179) and (5.180), E(mjm), Am , E

As a result only the diagonal elements of E(m + II M) are used in the computation of

the diagonal elements of E(mjM). Therefore the computation of the diagonal blocks

of the smoothed covariance can be carried out in parallel.

Using the ML techniques we know that this algorithm can be carried out without

Ca priori' information about X(O). In other words this algorithm can be carried

out without the data y(t). The resulting smoothed system is nothing other than

the process, less observations. With the smoothed estimate of X(O) (in the absence

of observations y(t)), the process at all other samplings are well defined because

X(m + 1) = A(m)X(m) is a noiseless process. The process is clearly Markov, and as

• result a backward Markov process can be defined. Equivalently, given a 'state' of

• reciprocal system to be the process defined at the boundary f 0, 2M - 1 1 then any

state on a boundary which is interior to 10, 2M - 11, as defined by the order relation

can be written as a linear function of the state at f 0, 2M - 11 plus independent white

noise. Specifically we consider the two 'states' at 10, 2m-' - 11 and 12m-', 2M - II.

Consequently if we consider the 'state' at the top of a binary tree to be the process

at the boundary 10, 2M - 11 then the 'state' at the descendant nodes are the process

at 10, 2m-' - 1 1, and f 2m-', 2M - II which are the boundaries of the next smaller

subregions. What results is a model not unlike that used by Chou in [26]. As a result

the basic principles of smoothing algorithms used in [26] can be applied here.

Consider the processors operating on the regions indicated in Figure 5-16. Each

Processor has a binary label associated with it. (Note that the digits in the binary

labels when taken backwards count from 0 to 15.) If each processor communicates

171

000010000100 11000010 10100110 11100001 1001 0101 1101 0011 10110111 i ill
0 8 4 12 2 10 6 14 I 9 5 13 3 11 7 15

Figure 5-16: Regions are assigned to processors which are arranged with Hypercube
interconnections where processors whose label differ by one bit communicate directly
with each other. With the above labelling scheme the result of computations which
involve a pair of processors is stored with the processor whose label is obtained by
removing the most significant bit. For example, Processor 4 and Processor 12 after
removing the most significant bit from their labels can determine that the result of
computation based on data available to both processors will be left with Processor 4.

with other processors whose binary label differ by one bit, then the interconnection

is that of a hypercube. During the interprocessor communication step, processors

first communicate in pairs. Processor 0 communicates with Processor 8, Processor 4

communicates with Processor 12, etc.. The location of the new boundary estimates

for the region which the processor operated is obtained by removing the highest order

bit. Therefore Processor 0, and Processor 8 will place the results of the boundary

computations in Processor 0, Processor 5, and Processor 13 will place the results of

their computations in Processor 5, etc.. Next the processors which communicate next

are Processors 0, 4, 2, 6, 1, 5, 3, and 7. These processors will then communicate in

pairs. Processor 0 communicates with Processor 4, Processor 2 communicates with

Processor 6, etc.. Again the location of the new boundary estimates for the region

which the processor operated is obtained by removing the highest order bit. Therefore

Processor 0, and Processor 4 will place the results of the boundary computations in

Processor 0, Processor 1, and Processor 5 will place the results of their computations

in Processor 1, etc.. Eventually Processor 0 and Processor 1 will remain. The results

will be placed in Processor 0, where a priori information will be included. The

smoothed estimates will be distributed amongst the processors in the reverse pattern

while computing the necessary smoothed estimates of the boundaries of smaller and

smaller subregions until each processor has smoothed estimates of the boundary of

the region for which it was originally assigned.

172

5.6.1 Complexity

The computation involved in this algorithm, as does that for the other new algorithms

in this chapter, varies with whether or not the state is estimable. Here, we will provide

three figures. The first will assume that the states at each step are not estimable. The

second will assume that the states are estimable but pseudo-inverses may be needed

during the computations. Finally we will consider the case where all inverses exist.

For all of these cases, we will assume that the final smoothed estimates are estimable

given all of the data.

Non-estimable states

Step 1

Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

K IC (2n, 2p, 2m; off - line, non - estimable) (5.188)
2L

K 3 2 2 2 31T [509.33,n + 448n p + 32n m + 168np + 21.33p (5.189)
L

On-line

The on-line computation in Step I is given by

K IC (2n, 2p, 2ra; on - line) (5.190)
TL

K [8n2 + 8np] (5.191)
2L

Step 2

tup' Off-line

These computation counts are for one step up the tree.

(M (9n, 4n, 9n) + 160n, 3 + 9(2n, 2n, 2n) + 32n3) log L (5.192)

= 4090.67n3 log L (5-193)

173

On-line

The on-line computation in Step 1 while merging regions together is given by

(32n') log L (5.194)

'down' Off-line

These computation counts are for one step 'down' the tree.

(M(10n, 4n, 10n) + 192n 3 + E(2n, 2n, 2n) + 32n') log L (5.195)

(4925.33n') log L (5.196)

On-line

The remaining on-line computation in Step 1 is given by

(48n') log L (5.197)

Step 3

Off-line

In Step 3 then backward sweep of the Rauch-Tung Striebel algorithm is performed.

The amount of computation is given by

K
-_T(2n, 2m; off - line, non - causally - estimable) (5-198)
2L

K 3 2M]
T [941.33n + 32n (5.199)

L

On-line

The on-line computation in Step 3 is given by

K T(2n; on - line) = K An 2 (5.200)
TL 2L

Estimable states

If the interprocessor communication step deals with well-defined covariances the

174

amount of computations are given by

Step 1

Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

iff IC (2n, 2p, 2m; off - line, non - estimable) (5.201)
2L

K 2P 2M + P2 P3TL [509.33n3 + 448n + 32n 168n + 21.33 (5.202)

On-line

The on-line computation in Step 1 is given by

K IC (2n, 2p, 2m; on - line) (5.203)
TL

K [8n2 + 8np] (5.204)
2L

Step 2

4up' Off-line

These computation counts are for one step up the tree.

9(9n, 4n, 9n) log L = 1944n3 log L (5.205)

On-line

The on-line computation in Step 1 while merging regions together is given by

32n 2log L (5.206)

'down' Off-line

These computation counts are for one step 'down' the tree.

E(10n, 4n, 10n) log L -_ 2533-33?z 3 log L (5.207)

On-line

175

The remaining on-fine computation in Step 1 is given by

48n' log L (5.208)

Step 3

Off-line

The amount of computation is given by

K T(2n, 2m; off - line, non - causally - estimable) (5.209)
2L

K [941.33n 3+ 32n 2M] (5.210)
2L

On-line

The on-line computation in Step 3 is given by

K T(2n, 2m; on - line) = K 16n2 (5.211)
2L 2L

Invertible Covariances

Finally if full rank covariances are available for the interprocessor exchange step, the

pseudoinverses are not necessary. The operation count is then given by

Step 1

Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

K IC (2n, 2p, 2m; off - line, non - estimable) (5.212)
2L

K 3 2 2 2 3]T[509-33,n. + 448n p + 32n m + 168np + 21.33p (5.213)
L

On-line

The on-line computation in Step I is given by

K IC (2n, 2p, 2m; on - line) (5.214)
2L

176

K [8n' + 8np] (5.215)
TL

Step 2

4up' Off-line

These computation counts are for one step up the tree.

_T(9n, 4n) log L = 1134n' log L (5.216)

On-line

The on-line computation in Step 1 while merging regions together is given by

32n2 log L (5.217)

4down' Off-line

These computation counts are for one step 'down' the tree.

(1(10,n., 4n)) log L = 1466.67n3 log L (5.218)

On-line

The remaining on-line computation in Step I is given by

48n 2log L (5.219)

Step 3

Off-line

The amount of computation is given by

T(2n, 2772.; off - line, non - causall - estimable) (5.220)
2L

K 3 2M][941.33,n. + 32n (5.221)
2L

On-line

177

The on-line computation in Step 1 is given by

K T(2n, 2rn; on - line) = K 16n 2 (5.222)
2L 2L

In summary, the total off-line computation time for the case where we assume the

state is not estimable locally, is given by

K 3 2 2 2 3] 3T = T[1450.66n + 448n P + 64n m + 168nP + 21.33p + 9016n log L (5.223)
L

The total on-line computation time for the case where we assume the state is not

estimable locally, is given by

T = K [24n 2 + 8np] + (96n 2)log L (5.224)
2L

The total off-line computation time for the case where we assume the state is

estimable given local data, but pseudo-inverses are needed in the computation, is

given by

T = K [1450.667t3+ 448n 2p + 64n 2m + 168np 2+ 21.33p 3] + 4477.33n 3 log 45.225)
2L

The total on-line computation time for the case where we assume the state is estimable

is given by

T = K [24n2 + 8np] + (80n 2)log L (5.226)
2L

The total off-line computation time for the case where we assume that all covari-

ances are invertible, is given by

T = K [1450.66n 3 + 448n.2p + 64n 2 ra + 168,n.P2 + 21.33 P3]+ 2600.67n 3 log .45.227)
2L

The total on-line computation time for the case where we assume the state is estimable

178

is given by

T _- K [24n 2+ 8np] + (80n 2)log L (5.228)
2L

In each of the computation times given, the form follows that outlined in Equa-

tion 5.8. The functions f, and g are easily identifiable from these equations. The

only difference between these times are in the off-line computations.

179

Chapter 6

Parallel 1\4L Smoothing for

Two-Dimensional Systems

0.1 Introduction

Those algorithms discussed in detail in Sections 5.2 through 5.5, which operate on

a linear array of processors, have a structure which does not easily extend to the

problem of smoothing in two dimensions. The algorithm in Section 5.6 however, which

operates on processors with hypercube interconnections, does extend to algorithms

which are applicable in two dimensions in a straightforward fashion. Local processing

is performed in parallel in each of the local subregions to produce local estimates of the

boundaries given local data. These estimates are obtained by filtering outward from

the center of the subregion to the boundary of the subinterval. The interprocessor

communication step involves combining the boundaries of two neighboring subregions

to produce estimates of both boundaries based on all of the data and dynamics

within each subregion and any additional dynamic constraints which may link the two

regions, since these may not have been used in the local processing step. The estimate

of the process at the boundary which encloses the two subregions, which is based on

all enclosed data, is then combined with neighboring boundaries whose estimates have

been constructed in the same manner. The process of merging boundaries is carried

out recursively until the boundary of the entire process remains whose estimate is

180

based on all available data. As in Section 5.5, an algorithm analogous to the Rauch-

Tung-Striebel is used to propagate smoothed estimates recursively to progressively

smaller subregions, until smoothed boundary estimates are obtained for an of the local

subregions. Finally smoothed estimates are propagated from the boundary toward the

center of each of the local subregions. The computations for the smoothing problem

map, as do the computations for the algorithm in Section 5.5, directly to the binary

tree. The smoothing algorithm for two-dimensional processes win be analyzed by

examining the parallel smoothing problem of a region divided into four subregions,

in a manner similar to the two subregion analysis which takes place in Section 5.5.

The nature of the smoothing algorithm suggests new approaches to modeling two-

dimensional processes, not unrelated to the multi-resolution approaches discussed by

Chou[26]. Furthermore the methodology in this section is completely generalizable

to smoothing algorithms on higher dimensional processes.

6.2 Local Processing for a Two-Dimensional Re-

gion

The first and last steps of the ML parallel algorithms discussed in Section 5.4, Section

5.5, and in this chapter, are precisely the filtering and backward sweep steps, respec-

tively, of the Rauch-Tung-Striebel algorithm. In Section 4.3, the Rauch-Tung-Striebel

algorithm for STPBVDS's is presented. In this section we model two-dimensional sys-

tems with STPBVDS's. with this model, the Step 1 amounts to the FMLF algorithm

outlined in Section 4.1, and Step 3 amounts to the backward sweep of the Rauch-

Tung-Striebel algorithm as outlined in Section 4.3. In this section we take a more

traditional model for two-dimensional systems and construct STPBVDS's by properly

reordering the dynamic constraints.

In our view of processing multidimensional systems, we impose a radial time co-

ordinate. We continue with our notion of processing outward from the center of the

region towards the boundary and inward from the boundary toward the center of the

region. In Chapter 3, we show that all TPBVDS's can be described as STPBVDS's

181

+

j +
x(ij) = Nx(ij + 1)

+ Sx(ij - 1)
+ Ex(i + 1,j)
+ WX(i - 1,j)
+ Bu(i, j)

j - 1

Figure 6-1: Nearest Neighbor Dependency

and as a result have a Markov description. Similarly in this section, we show how

a two-dimensional system described by a nearest neighbor model[2](NNM), can be

written as a STPBVDS. We could incorporate other two-dimensional models such as

Roesser's model [35], Marchesini and Fornasini's model [8], and Jain's scalar NNM[101

into the STPBVDS model quite simply. Smoothing algorithms for NNM's are dis-

cussed in [1], and [2]. Since the actual model which we filter is a STPBVDS, our

choice of the underlying model or original two-dimensional representation is made to

be specific and not out of necessity.

Nearest neighbor models (NNM's) are given by the following

x(i, j) = Nx(i, j + 1) + Sx(i, 1) + Ex(i + 1, j) + Wx(i - 1, j) + Bu(i, j)

(6.1)

where the the matrices N, S, E, and TV represent the dependencies on the neighbors

immediately to the north, south, east, and west. Figure 6-1 shows the nearest neigh-

bor dependency for this description of 2-D systems. Details as to the structure of the

boundary condition for NNM's is discussed in [1]. We assume in this example that

the noise sequence u(i, j) is a white noise sequence. Let pj be a radial coordinate

182

'North'

i=O

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

j=0 -- 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Figure 6-2: Diamond ordering of the elements in X�,(P)- P E 10, 1, 2, 31, p 1

with the following definition

PA, (6.2)

it f 1, 001

The 11 norm of (ij) is equal to jil + IjI, and the 1,,. norm is given by maxf jil, IjIl.

Each of the x(ij) which lie along a contour of constant P. can be grouped into single

vectors 1j,(p). The subscript it will be dropped when the value of p is either obvious

or irrelevant to the discussion. The number of elements in each vector varies with

P. The elements which form X,,,(p) are shown in Figure 6-2, and Figure 6-3 for the

different values of it. A dynamic model for xm(p) can be constructed which has the

following structure.

DpAXA(p) = Fp+,,,.,x,.(p + 1) + Gp-,,,�,,(p + Hp,,,w,(p)

Do,,,,X,.(O) -- Fj,.Xp(I) + Ho,,.wp(O) (6-3)

DRAp(R) -- GR-liX,.(R - 1) + HR,,.w,.(R)

This is a second order model and is not a STPBVDS. One is obtained by combining

the vectors Xj,(p) in pairs, and writing a descriptor system which propagates the state

183

'North'

0

0 0 0-0-0- 0-0- 0-0 0 0 0

0 O 0-0-0-0-0 0 0 0

0 O O 0-0-0 U U 0 0 0

j=0 -- O O 0 0 0 0 0 0 0 0

0 O 0 0-0-0 0 0 0 0

0 0-0-0-0-0 U 0 0 0

0 C) 0-0-0-0-0-0-0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-3: Square ordering of the elements of X4(p). p E 10, 1, 2131, /t 00

X,,,(p) defined as

xt,(P) XIA(P) (6.4)

X/,(p - 1)

We specifically call X,(p) a state, and not x(i, j) nor X,,(p) because X,(p) is sufficient

to give the system a Markov representation. The following STPBVDS's describe the

two-dimensional systems.

-Fp+2,A Dp+,,p XA(p + 2)

L 0 Fp+l J L XIA(P + 1) j (6.5)
P4A XP(P) H, + 0 w(P + 1)

DPAA -Gp-,,,A xP(P - 1) 0 Hp, TV(P)

184

and

-Fp+,,IA Dp,,4 X'U(P + 1) 0 G PsA XIA(P) + HpIA

0 I XA(P) -I 0 XA(P - 1) 0

(6.6)

which by making obvious substitutions equations (6.5) has the form

Ep+2,jXp(P + 2) = App-,Y,.(p) + BppUp(p) (6.7)

and equation (6-6) has the form

EP' X,(p + 1) = A',,,,,X,.(p) + B',,w,,(p) (6.8)+Iil P P

The boundary conditions for both models can be written as

Eoj,_Yt,(O) = B-,,,uU(-IIL) (6.9)

AR,,,-Yj,(R) = -BRp(II, (R)

Since the NNM can be fully described by a STPBVDS where the state dimension

varies with size, the Mayne-Fraser, and the Rauch-Tung-Striebel algorithms, devel-

oped in Chapter 4 for STPBVDS's can be applied to two-dimensional systems with

no loss of generality. With this model and the Rauch-Tung-Striebel algorithm, the

local processing for each of the local subregions in our parallel processing algorithm

has been defined. Specifically, in our parallel algorithm, filtering will begin in parallel

from the center of each interval to the boundary, where the local representation of

the process in each subregion will be a STPBVDS whose initial state represents the

x(ij) located at the center of the local region. Local estimates of the boundaries

are computed based on local data and dynamic constraints. After the interprocessor

communication step has been completed, the last step of the parallel smoothing algo-

rithm is the application of the backward sweep of the Rauch-Tung-Striebel algorithm

to update the interior states in the local subregions to their smoothed values.

185

6.2.1 Computation of the system parameter for the 2-D

STPBVDS

Before continuing with an explanation of the interprocessor communication step, we

will. provide the matrices Fp,,,, GPAID P'1A) and Hp,,. We will define the vector X1,(P)

to begin with the northern most element such that (in local coordinates) i = 0.

In Figures 6-2 and 6-3, this element is denoted by the shaded dot. The remaining

elements of Xm(p) represent the elements of the state proceeding in a counter-clockwise

direction. To aid us in defining these matrices we will define a * operator. The action

of this operator is defined by performing the following operations on the set of elements

N, S, E, W, II.

f N*, S*, E*, W*, I* ST, NT, WT, ET, II (6.10)

Then when we consider any matrix formed from f N, S, E, W, II, such as Fp,., we

use the notation Fp*,. to denote the matrix formed in exactly the same way from

N*, S*, E*, W*, I*j.

We also define a scalar n,'A which is the dimension of the vector XA(p). First we

define the system matrices when it = 1.

npj = 4p + 8(p) (6.11)

D'O'l = I

Trace[Dpj] = nj, (6.12)

G T = FP*+ (6.13)P'i

Fp, 1 C- Rnjpj Xnjp (6.14)

186

Let F,,,, (j, k) indicate the (j, k) element of Fp,,. Then

Fp,,(j, k) = W j - 1 = i k - 1 = i + 1

Fp,,(jk)=S j-l=p-l+i k - I = P + 1 + i

Fpl (j, k) = E j - 1 = (2(p - 1) + i)mod n,,-,,, k - 1 = (2p + 1 + i)mod npj

Fpl (j, k) = N j - I = (3(p - 1) + i)mod n,,-,,, k - 1 = (3p + 1 + i)mod npj

0 < i < 2p - 2

(6-15)

Hpj = diag(B, B, B) (6.16)
Hp,, EE Rnplxnpl

Hpj = diag(B, B, - - B) (6-17)

Hp,1 E RNPJ xN,-,'

For the case where it = oo, we have the following

n, = 8p + 6(p) (6-18)

We define the matrix ZP to be equal to zero except for the following entries

ZP(j'j + 1) = S P + i

Zp(jj + 1) = E j = 3p + i

Zp(jj + 1) = N j = 5P + i (6.19)

Zp(l + [(j - 1) mod n,,,pj, 2 + [(j - 1) mod n,,,p]) W j = 7p + i

1 < i < 2p

DP'- = I - ZP - ZP*T (6.20)

G T . = FP*+ (6.21)
P,

Fp,, m C- Rn.,p-l Xn_,p (6.22)

187

F,0,1(jk)=W j=p+i k = p + i + 2

Fp,,(jk)=S j=3p-2+i k=3p+2

Fp,,(j, k) = E j =5p-4+i k =5p+2+i

Fp,,(j, k) = N i - I = (7p - 7 + i)mod k - I = (7p + 1 + i)mod n,,,,.

0 < i < 2p - 2
(6.23)

diag(B, B,..., B) (6.24)

Hpw E Rnpj xnpj

6.2.2 Interprocessor Communication for Two-dimensional

smoothing

The interprocessor communication step in this section bears strong resemblance to

the Rauch-Tung-Striebel algorithm. The issue of applying the Rauch-Tung-Striebel

algorithm to the parallel processing step, requires a natural notion of a time direction

which is consistent with the types of two-dimensional systems which we are examining.

The systems which we are examining are reciprocal, that is, given a closed contour,

the interior and exterior are independent. This closed contour we have defined, in the

last subsection, as a 'state' of the system.

We will define an order relation ---< on the set of closed contours on which states

are defined. For these models closed contours are 'thick'. For example, an (ij) such

that p - I < i I (i, j) I 1, < p, comprise a closed contour for each p. Assume that our

coordinate system is shifted such that (i, j) = (0, 0) falls in the center of the region

whose boundary corresponds to the state X,,,(,r). Any closed contour X such that for

all X(i, j) E X, I I (i, j) I lp < r satisfies X --� X,.(r). We have therefore imposed a partial

ordering of the states. In particular, Figure 6-4 shows that the state X --� A,,(7). In

Figure 7.2, X and X,(7) are not ordered with respect to each other.

Continuing in more detail, we next describe the filtering process. We will assume

that ft = oo unless otherwise stated. We start with a square region and partition it

into 2 2M subregions by partitioning each side of the square region into 2M subregions,

as shown in Figure 6-6 for M = 3, and the processors assigned to each subregion

188

I x I I

X(r)

Figure 6-4: Two ordered 'states'

11 X(7) 11 x 11
____j

Figure 6-5: Two non-ordered 'states'

189

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

(1, 0) (1,I) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
1

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2,6) (2, 7)

(3,O) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3,6) (3,7)

(4,O) 4,1) (4,2) (4,3) (4,4) 1 (4,5) (4,6) (4,7)

(5,O) (5, 1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,O) (6, 1) (6,2) (6,3) (6,4) 1 (6,5) (6,6) (6, 7)

(7,O) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)
1

Figure 6-6: A 2-D region is partitioned into squares. Each region is assigned a
cartesian coordinate.

filter outward from the center to produce local estimates of the boundaries of each

subinterval. We will give each processor and the region to which it is assigned an

integer Cartesian coordinate to assist in describing this algorithm. In order to describe

larger rectangles composed of individual square regions, we will denote a rectangle

whose corners are given by (sl, ti), (si, t2), (S2, ti), and (S2, t2), by (IS1, S21, ItI, t2j)

as shown in Figure 6-7.

Step 1

The model on which this preprocessing step is performed is provided in the previous

subsection. Filtering is performed in each subregion from the center to the boundary

of each subinterval using the FMLF filtering equations (4.52), (4.53), and (4.54)),

applied to the model described in Section 6.2.1.

Step 2

We will analyze the computations involved for a square region divided into four sub-

regions. Again there are several parts to this step.

190

fS1, 321

(SI, tj (S21 tj

Itl, t2i

(Sj, t2) (S2, 12)

L

Figure 6-7: The notation (IS1, S21, Itl, t2j) is used to refer to rectangles constructed
'from the union of individual square regions. Similarly the boundary for this region is
denoted byX(f8l, $21, ftl, t2j)

191

Part I

Part 1 involves computing the optimal estimates of the boundaries of two neigh-

boring regions from local measurements of these boundaries and any dynamic con-

straints which may link them (which we may interpret as an observation). After the

local filtering step, the boundaries of the local subregions satisfy a nearest neighbor

model which in essence is a a sampling of the states of the original system. We will

denote the boundary of a given subregion by X(s, t), where the label s, t, consisting

of a pair of integers, represents the location of the entire region on a square grid as

shown in Figure 6-6. X(s, t) for a specific value of s, and t therefore represents a

collection of x(ij). The nearest neighbor relationship among the boundary vectors

can be written as
AX(s, t) = AX(s, t + 1)

+ AX(s, t - 1)

+ AX(s + 1, t-) (6.25)

+ A,,X(s - 1, t)

+ B, U,, (s, t)

with 'observations' which are computed locally given by

X(3, t) = X(s, t) + X(s, t) (6.26)

The Aj's are written only to show the form of the NNM relationship. These matrices

will not be written explicitly as were the Fp, and GP,/Amatrices in Section 6.2.1.

We will however explore the structure of these equations further. Specifically by

examining the structure and the local nature of the dynamic constraints, the relation

192

between X(s, t) and its neighbors can also be written in the following form.

HX(s, t) = YX(s, t + 1) + BU,(s, t)

HX(s, t) = SX(st - 1) + BU,(st)

H,. X (s, t) = EX(s + 1, t) + B, U,(s, t)

H,.,, X (a, t) = WX (s - 1, t) + A, U,,, (s, t) (6.27)

H,,, X (s, t) Y, X (s, t + 1) + 6,,X (s + 1, t) + B,,,,, U,,,. (s, t)

H,, X (s, t) SX(s, t - 1) + EX(s + 1, t) + BseUse(-97 t)

H,,,,, X (s, t) N� X (s, t + 1) + W, X (s - 1, t) + B,,. U,.,. (a, t)

H,,-,, X (s, t) S,,X(s, t - 1) + WX(s - 1, t) + B8WU8W(8j t)

Let us now take some time to examine the construction of these matrices. This is

basically a bookkeeping problem which requires specifying an explicit ordering of the

elements in vectors of the form X(st). To do this we refer to the construction of

X(p), i.e., the vector of values that are a distance p, and p - 1 away from the origin

(at the center of the region). Let us use 0 to denote the variable indexing the elements

of this vector, (i.e. the components 1 of X(p) are Xq(p)), where by counting we find

that

1 < 0 < 16p - 8 (6.28)

The way in which we order the elements x(ij) which comprise X(p) is given by a

function O(ijp),where since our boundaries are thick (since our model is second

order), for each (ij), O(ijp) is defined for two values of p (i.e. x(ij) appears in

X(p) for two values of p.

Furthermore E) is invertible for a fixed p. Specifically given O(ijp) we can

uniquely define the integer functions i(O, p) and j(9, p). Figure 6-8 shows the values

of theta for p = 3. The matrices H,, H,, H,, H,,,,, etc. are matrices composed of n, x n

blocks. These blocks will be referenced directly when defining these matrices.

Note that each 'component' here is a value of x (i, j), which in itself, can be a vector.

193

'North'

0 0 4 3 - 2 - 1 -24-23-22 0 0 0

0 O 27-26-25-40-39 21 0 0 0

0 O 28 0-0-0 38 20 0 0 0

0 O Y 29 0 0 37 19 0 0 0

0 O 6 30 0-0-0 36 18 0 0 0

0 O 9 31-32-33-34-35 17 0 0 0

0 0 10-11-12-13-14-15-16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-8: The integer function 0(i, j, 3). The shaded dot is the origin, (i, j) (0, 0).
This function orders the elements x(ij) in the vector X(p).

H., E R(2p-l)nx(16p-8)n (6.29)

0 E �3p + 2,- - -,5pl' (6.30)

H,(O - 3p - 1,O) = I (6-31)

H�(O - 3p - 1, 0(i(O, p), 1 + j(O, p), p)) = -N (6.32)

H.(O - 3p - 1, E)(1 + i(O, p), j(O, p), p)) = -E (6.33)

H.(O - 3p - 1, 0(- I + i(#, p), I (0, P)! p)) = -W (6-34)

H - R(2p-l)nx(16p-8)n
e C (6.35)

0 C f 5p + 2'..., 7pl (6-36)

H,(O - 5p - 1,O) = I (6-37)

H,(O - 5p - 1, 0(i(O, p), I + j(9, p), p)) = -N (6.38)

194

H,(O - 5p - 1,0(i(Op),-l +j(Op),p)) = -S (6.39)

H,(O - 5p- 1,0(- I+i(Op),j(Op),p)) = -W (6.40)

H. . R(2,o-l)nx(16p-8)n (6.41)

0 E fp + 2,- - -,3p) (6.42)

H,(O - p - 1,O) = I (6.43)

H.(O p 1, 0(i(O, p), I + j(O, p), p)) = -N (6.44)

H,,(O p 1, 0(l + i(91 P), j(8, p), p)) = -E (6.45)

H.(O - p 1, 0(i(O, p)7 -1 + Ao' P), p)) = -S (6.46)

Hn . R(2,o-l)nx(16p-8)n (6.47)

0 7p + 2,..., 8p, 1 I ...)PI (6.48)

Hn(O - 7p - 1, 0) = I 0 E j7p + 2, 8pj (6.49)

Hn(O - 1 + PO) = I o E fic. .,PI (6.50)

Hn(O 7p 1,0(40,p)) -1 + '(0,P),P)) = -S 0 E j7p + 2,---,8pj (6.51)

Hn(O + p 1, 0(i(O, p), - 1 + j(O, p), p)) = - S 0 E Ili ... 7PI (6.52)

Hn(O - 7p - 1, O(l + i(O, p), j(O, p), p)) -E 0 E I 7p + 2, --- ,8pj (6.53)

Hn(O + P - 1, O(l + 481 P), j(O, p), p)) -E 0 E Ill ...)PI (6.54)

Hn(O - 7p - 17 0(-l + i(O, p), j(O, p), p)) - W 0 E j7p + 2,---,8pj (6-55)

Hn(O + P - 1,0(-l + i(OP),j(OP),P)) -W 0 E 117 ... A (6-56)

H-ne Ej Rnx(16p-8)n (6.57)

H, (7p + 1) -- I (6-58)

Hn,(7p) = -S (6.59)

Hn,(7p + 2) = -W (6-60)

195

HSe EE Rnx(16p-8)n (6.61)

H.,, (5p + 1) (6.62)

H,,(5p) -W (6.63)

He(5p + 2) -N (6-64)

H nw EE Rnx(16p-8)n (6.65)

Hnw(p + 1) = I (6.66)

Hnw(p) -E (6-67)

Hnw(p + 2) -S (6.68)

Haw . Rnx(16p-8)n (6.69)

Hw(3p + 1) 1 (6.70)

Haw (3p) N (6.71)

H,w(3p + 2) -E (6.72)

S C R(2,o-l)nx(16p-8)n (6.73)

0 G f 3p + 2'..., 5PI (6.74)

S(O 3p 1, 0(i(O, p), 2p + j(O, p), p)) = -S (6.75)

g Ej R(2p-l)nx(16p-8)n (6.76)

0 c �5p + 21 ... j7pl (6.77)

.6(0 - 5p - 1, E)(-2p + i(Op),j(Op),p)) = -E (6.78)

W . R(2p-l)nx(16p-8)n (6.79)

0 E {p + 2,..., 3pl (6.80)

196

W(O - p - 1, 0 (2p + i(O, p), j (0-, p), p)) W (6.-81)

A(c R(2p-l)nx(16p-8)n (6.82)

0 E j7p + 2,..., 8p, 1, pi (6-83)

A((O - 7p - 1, 0(i(O, p)) -2p + j(O, p), p)) -N 0 f7p + 2,..-,8pl (6.84)

+ p - 1, O(i(o' P) 2p + j(O, p), p)) -N 0 PI (6.85)

A(EE gnx(16p-8)n (6-86)

A/', = N (6-87)

Sn E gnx(16p-8)n (6-88)

En = E (6.89)

$1 E gnx(16p-8)n (6-90)

SI = s (6.91)

E., E Rnx(16p-8)n (6.92)

9, = E (6.93)

A(w E Rnx(16p-8)n (6.94)

.lVw -- N (6-95)

Wn c anX(16P-8)n. (6.96)

Wn - W (6.97)

197

SW Rnx(16p-8)n (6-98)

S", S (6-99)

W 's Rnx(16p-8)n (6-100)

Ws = W (6-101)

Bn E R(2p + 1)n x (2,o + 1)n (6-102)

Bn B, = B, = B,,, = diag(B, - - B) (6-103)

B,,,. = B., = B,,. = B, w B (6-104)

where N, S, E, W, and B is defined in Section 6.2. Now we will return to the discusion

of merging two boundaries.

Two states to be combined in this step are shown in Figure 6-9. In this formulation

the boundaries of the neighboring regions do not intersect, and there are dynamic

constraints which link the two regions. The arrows in Figure 6-9 show the dynamic

constraints required for the measurement update step. The 'measurement' required

to compute the estimate of the boundary which are the shaded circles in Figure 6-10

and which encloses both regions is given by

HX(s, t) = EX(s+1,t)+BU,(st)

HX(s + 1, t) = WX (s, t) + B,, U + 1,t) (6-105)

±(Slt) X (5, t) + 't (s, t)

MS + 1, t) X(S + 1, t) + -Y,- (8 + 1, t)

All of the observation noises shown in equation (6.105) are independent. The x(zj)

which are estimated in this problem are contributed from the boundary of Region (s, t)

and from Region (s + 1, t). The elements of this boundary can be separated into those

which comprise the boundary which enclose both Region (s, t) and Region (s+1, t) and

the remainder which we will call IT(Is, s + 11, t)j. The elements of IT(Is, s + 11, t)j

198

Region (st) Region (s+lt)

0-0-0-0-0-0- 0-0-0-0-0-0

V 0-0-0-0- -0-0-0-0

0 0 0-0-0 0-0-0 0 0

0 0 U (1) U U U

0 0 O - C) - C) U - Q) - (1) 0 0

0 0-0-0-0- -0-0-0-0 O

0-0-0-0-0-0- -0-0-0-0-0-0

Figure 6-9: Two neighboring regions for the Measurement Update step and the dy-
namic constraints (which are shown by the arrows) required to merge them.

are enclosed in squares in Figure 6-10. The boundary denoted by MIS's + 'I, 01

are the shaded circles in Figure 6-10.

JX(s, t)j U JX(s + 1, t)j == IX(Is, s + 11, t)j U IT(Is, s + 11, t)j (6.106)

f T(ja, s + 1}, t)j n IX(Is, s + 11, t)j = 0

The result of the estimation problem based on the measurements in (6-105) is the

following estimate

±(Stlfss + 11,t) X (s, t) + X(S, t I Is, 3 + 11, O (6.107)

L ±(S + I, tjfSS + 11,t) j L X(S + 1, t) J L±(S + l'tils's + 11,t) J

equivalently we could write

MIS S + 11, tjjS, 8 + 11, t X(f S's + 11, t) + 11,0

I + X(ISS + lbtlfs,

L t(IS, S + 11, tIfs, S + 11, t) i L T(f s, s + 11, t) J L tasl S + 11, tjjS, S + 11, t) j

(6.108)

The next step amounts to sampling [X'(1s, s + 11, t)T'(�S7 S + 11, t)]T by keeping

the XT(IS, S + 11, t) which is the process on the boundary which contains both of the

199

Region (sit) Region (s+lt)

0-0-0 U a U 0-0-0

0 U u 13 El u O O 0

0- 0- O u U U u 0- 0- 0

Figure 6-10: Constructing the boundary enclosing two regions from the boundaries of
two subregions X(s, t) and X(s + 1, t). The black dots represent the boundary which
encloses both regions which will be denoted by X(Is, s + 11, t). The twelve dots which
are enclosed by squares are the elements of T(f ss + 11, t). T(f s, s + 11, t) are elements
of the union of X(s, t) and X(s + 1, t) but are not elements of X(Is, s + 11, t).

subregions. Sampling is performed in the following

+ 11, tils, s + 11, t) I 0 Si S + 11, t1f Si s + 1}' t) (6.109)
L T(Is, s + 11, t1f s, s + 11, t) j

Since sampling is a noiseless process, the covariance is given by

COV[±(Is' S+11, tif Si S+11, t)] = I 0 COV X(f Si s + 11, tils, 3 + 11, t) I
+ 11, tils, 3 + 11, t) 0

(6-110)

Similarly the same computations can be performed for Region (s, t-1) and Region

(s+lt-1) by substituting t-l for t in Equations (6.106)-(6.110).

Now with an estimate of the boundary surrounding Region (s, t) and Region (s +

lit) (i.e., Region (Is, s 4- 11, t.)), and an estimate of the boundary surrounding Re-

gion (s, t - 1) and Region (s + 1, t - 1) (i.e., Region (I s, s + 1 1, t - 1)), they can

be combined into an estimate of the boundary for the entire region which comprises

Region (Is, s + 11, t) and Region (Is, s + 11, t - 1) (i.e., Region (Is, s + 11, It - 1, tj)).

200

Figure 6-11 shows the dynamic constraints necessary to merge these two regions.

These dynamic constraints are represented here by

H,,X(s, t - 1) Al-X(s, t)

H, X (s, t) SX(S, t - 1)

H,,X(s + 1, t - 1) A"X (s + 1, t)

HX(s + 1, t) SX(S + 1,t - 1) (6.111)

H, X (s, t - 1) AlX(s, t) + 9,,X(s + 1, t - 1)

H,,,,, X (s + 1, t - 1)= V�X(s + 1, t) + WX(s, t - 1)

H,, X (s, t) = SX(S, t - 1) + EX(S + 1, t)

H,,,,X(s + 17 t) = S,,,,X(s + 1, t - 1) + W,,X(S, t)

By examining Figure 6-11 we see that all of the dynamic constraints have a similar

structure. The the last four equations in (6.111) appear different only because of the

partitioning of the plane into subregions. This suggests a different ordering of the

points on the plane than the one used here. We will return to this point later.

The elements of the two boundaries of each subregion can be ordered into two

vectors where one represents the boundary of the entire region which is shown as the

set of shaded circles in Figure 6- 11 and will be denoted by X(Is, s + 11, It - 17 tj)

and the remaining states will be denoted by T(f s, s + 11, It - 1, tj) The estimates

which have been obtained are denoted by

±(IS, S + 11, It - 1, tj 11S, S + 11, It - 1, tj)

L t(IS1 S + 11, It - 1, tjjjS, S + 117 It - 1, tj) j

X(IS, S + 11 7 It - 1, tj) + X(IS, S + 11, It - 17 tjjjS, S + 11, It - 1, tj

T(Is, s + 11, It - 1, tj) t(IS, 8 + 11, I t - 1, tj 113, S + 11, I t - 1, tj)

(6-112)

The next step of the estimation process would incorporate the estimates

MI S, S + 11, It - 1, tjjjS7 S + 11, It - 1, tj),

±(Is + 2, s + 31, It - 1, tjjf s + 2, s + 31, It - I, t1)7

MIS, s + 11, It - 3, t - 2111s, s + 11, It - 3, t - 21),

201

Figure 6-11: The black dots represent the boundary which encloses the two regions
which are merged together, X(Is, s + 11, It - 1, tj). The white dots represents the
remaining elements of the boundaries of the two original regions which will be denoted
by T(Is, s + 11, I t - 1, tj)

202

and ±(Is +2, a + 31,ft - 3,t - 2JIfs + I, s + 31, It - 3,t - 21)

to construct the estimate of the boundary surrounding region given by

MIS) s + 31, I t - 3, tjIf s, s + 31, I t - 3, tj).

Part 2

Once the smoothed estimate for the boundary of the entire region has been obtained,

smoothed estimates are propagated to the boundaries of smaller and smaller subre-

gions until each subregion has a smoothed boundary. Typical measurements for this

step are given by the following.

11,ft 1'tjIfS'S 11,ft 1'tj) X(IS, S + 11, It - 11 0)

t(fs'a + 11,ft - 1'tjIf3'S + 11, It I'tj) 0 I T(Is, s + 11, It - 1, tj) j

MISO + 11,ft - 1,tjIf0,Sj, 10JI) I 0 L

±(ISI S + 11, It - 1, tj If S's+ 11, It - 1, tD

+ t(IS, S + 11, It -I, tj I Is, 8 + 11, It - 1'tj)

X(Iss + 11,ft - 1,tjIfO, SI, 10JI)

(6-113)

where S and T represent the maximum values of s, and t respectively. This measure-

ment has the same structure as the measurement given in (4-92) used to derive the

Rauch-Tung-Striebel algorithm. From this measurement

T(Iss + 11,ft - 1,tjIfO, SI, J0,Tj) can be estimated and as a result the estimates

±I(Isis + 1jtIj0,Sjf0,Tj), and ±(Iss + 1},t - 1If0,Sjj0,Tj) have been ob-

tained. Next the following measurements are combined

MI S) S + 1}' tIfs, S + 117 t I 0 X(IS, 8 + 11, t)

t(IS7 S + 11, tIf S, S + 11, t) 0 I
T(f s, s + 11, t)

X(Is, s + 11, t If 0, SI, I 0, TI) I 0 (6.114)

X(IS, S + 11, tjjS' S + 111 0

+ S, S + 11, tIf S, 8 + 11, t)

X(f s, s + 11, tj IO, SI, 10, Tj) j

From this measurement T(Is, s + 11, I t - 1 1 tj I I 0, SI, I 0, TI) can be estimated

203

and as a result the estimates±(St I JO, SI, 10,TI), and ±(s+ I, t I JO,S},10,TI) have

been obtained.

This procedure continues until smoothed estimates are obtained for the boundaries

of the individual subregions.

204

Step 3

Once the smoothed estimates of the individual subregions have been obtained, the

backward sweep of the Rauch-Tung-Striebel algorithm proceeds in parallel in each

subregion.

6.3 Complexity

The computational requirements of the algorithm we have just described, differ from

those of the one dimensional algorithms in several respects. First the dimension of

the state changes as a function of the p coordinate. Specifically in the local filtering

step the complexity of the processing in a one dimensional system varied as Kn3

where K is the length of the interval, and n is the dimension of the state. With the

dimension of the state proportional to p we can expect the complexity of the off-line

computations to rise as the fourth power of p. Since the on-line computation for a

one-dimensional system varies as Kn 2 we may now expect that the complexity of the

online computation varies as p 3 when summed over the entire region. Secondly in the

interprocessor communication step, the size of the state roughly grows by the factor

V�_2 at each step. The size of the state grows geometrically. We will see that the state

grows so fast that we could ignore all computations except those involving the largest

state, Le the boundary.

Step 1

The key issue in computing the computational complexity for this step are to manage

the bookkeeping of the computations in more detail. The important numbers to keep

track of are the dimension of the state of the system, the dimension of the driving

noises, and the observations. The dimension of the state X(p) is given by

X(p) E R16n(p- 1) p (6.115)
X(J) E wq"�

The dimension of the predicted estimate Z, (defined by equation (4.48) when applied

205

to the model given in (6.8)) is given by

Z(p) E R16n(p-1) p > 2 (6J16)

The dimension of the driving noise is given by

U(P) (E R'P- P > 1 (6-117)

U(O) G RM

The dimension of the observation is given by

Y(P) E R'PP p > 2 (6-118)

Y(1) E R9P

The dimension of these vectors dictate the dimension of AP, EPI BP7 Cp in the STP-

BVDS model. The.dimension of the state satisfies a simple polynomial in p agreeing

for all p except p = 1. In the following we will approximate the dimension of X(1)

by X(1) E RIn instead of RIn in order that the polynomial 16n(p - ') specify the
2

dimension for all p and we may minimize the number of extra computations needed

to deal with having to generate separate equations for p -- 1. The dimension of the

matrices which describe the STPBVDS satisfy the following

P G R16npX 16n(p- I)A 2 (6.119)

R16n(p+')Xl6npEP+1 E 2 (6.120)

BP R16n (6.121)

-1 Wpm X 16n(P 2(1P (6.122)

With this, the computations necessary for the filtering step can be computed. The

amount of computation was computed in the same manner as the computation in

Chapter 5. Here however we need to take into account that all of the dimensions are

time varying and therefore formulas for computational complexity are more complex.

206

Step I

To determine the amount of computation involved in these computations we returned

to the filtering equations in Section 4.2 and apply them to the model given in (6.8)

while accounting for the fact that the dimension of the matrices vary with time. The

number of operations were computed with the aid of the polynomial functions defined

in Section 2.1 First we will compute the amount of operations for one time step (i.e.,

one value of p). Then we will compute the amount of operations over the entire

region.

Off-line

One time step

If we assume that the state is not completely estimable then the amount of off-

line computation required to compute the estimate of X(p) from the estimate of

±[p - lip - 1] in the filtering step is given by requires

M(16(2pn - 3n + 1pp), t6n(p - 1), 16(2pn -3n + 1 pp))2 2 2 2 2

+ (16)3 [p3 (l6n3+ n2p + 2n 2M) + p2 (-45n 3 - n2p - 4n 2M)

+ P(43.5n 3 + .25n'p + 2n'm) - 14.5n 31

+ 9(16n(p - 1), 16n(p - 1), 16n(p - 1)) (6.123)

(16)3 [p3 (70-33n3+ 27n'p + 5.25np' + .33 p3 + 2n 2m)

p2 (146n3 + 37.5n2p + 3.625np2 + 4n 2M)

+ P(l 18.75n 3 +An 2p + 2n 2M)

- 42.125n 3]

If the state is estimable then the amount of off-line computation to compute ±[PIP]

207

from X[p - 11p - 1] is given by

,6(16(2pn - 3n + 1pp), 16n(p - '), 16(2pn -3n + 1pp))2 2 2 2 2

+ (16)' [p3 (6n3+ n-) + p2(-21n3- 2n 2M) + p(24n3+ n 2M) - 9n3

+ .6(16n(p - 1), 16n(p - 1), 16n(p - 1))

(16)3 [p3 (28.66n' + An 2p + 2.75np2 +.166p' + n2M) (6.124)

P'(69n' + 19.5n 2p +1.875np2 + 2n 2M)

+ P(46.75n' + 6.75n 2p + n2rn)

- 16.875n3

Finally if pseudo-inverses are not required in the computation, then then the amount

of off-line computation to compute ±[p1p] from ±[p - Ilp - 1] is given by

1(16(2pn -3n + lpp),16n(p -2 2 12

+ (16)3[p3 (6n3+ n-) + p2(-21n3 - 2n 2M) + p(24n3+ n 2M) - 9n3

(16)3[p3(19-33n3+ 8n 2p +1.5np2 + .083 p3 + n2M)

P2(49n 3 +11n 2p + np2 + 2n 2M) + p(43.5n3+ 3.75n 2p + n2M) _13.5n 3]

(6.125)

On-line

One time step

The amount of on-line computation is given by

(16)2[p2 (2n2+ np) + p(-4n 2 _.5np) + 1.5n 2] (6.126)

The on-line computation does not change if the state is estimable, or if pseudoinverses

are unnecessary in the off-line computations.

Off-line computations

Summed over the region

To determine the computation needed to provide filtering from the center to the

boundary of a region of radius p = r, we sum these terms from p = 2 to p = r and

208

add a separate term for computing the initial estimate ±[111]. Using the identities

P=r 3 .25r4 + .5r 3 + .25r 2 _ 1
Ep=2 P

p=r 2 3 + 2
Ep=2p .33r .5r + .166r - 1 (6.127)

Ep=r 5r 2+ .5r - I
p=2 P

the operations may be counted by substituting pi with the corresponding sum from

2 to r in equations (6.123)-(6.126). The initial computation required to compute

±[1111 is not a function of p in addition if we were to compute the optimal number

of processors by taking the derivative, this term would not be essential. We win

therefore just include only the summation in the following computations. For the

case where the state is not estimable, the number of computations is given by

,o=r
Ep=2 [M(16(2pn -3n + 1 pp), 16n(p - 1), 16(2pn -3n + 'pp))2 2 2 2 2

+E(16n(p - 1), 16n(p - 1), 16n(p - 1))

+(16)3p3(An 3 + n 2p + 2n 2M)

+(16)3p2(-45n 3- n 2p - 4n 2M)

+(16)3p(43.5n3 + .25n 2p + 2n 2M)

-(16)3 14.5n 3]

(16)3 [(.25r 4 +.5r 3 + .25r 2 _1)(70.33n3 + 27n 2p + 5.25np2 + .33 p3 + 2n'm)

(.33r3 + .5r 2+ .166r - 1)(146n3+ 37-5n 2p + 3.625np 2 + 4n 2M)

+ (.5r 2+ .5r - 1)(118.75n 3 + 13n 2p + 2n 2M)

- (r - 1)42.125n 3]

(6.128)

If the state is estimable then the amount of off-line computation needed to compute

209

filtered estimates in an entire region of radius k is given by

,Q=r
E,=2 [E(16(2pn -3n + 1pp), 16n(p - 1), 16(2pn -3n + 'pp))2 2 2 2 2

+(16)3 [p3 (6n3+ n-) + p'(-21n 3 - 2n 2M) + p(24n 3+ n1m) - 9n 3

+E(16n(p - 1), 16n(p - 1), 16n(p - 1))]

(16)3 [(.25r4+ .5r 3 + .25r2 - 1)(28.66n 3+ An 2p + 2.75np2 + .166p' + n 2M)

(.33r 3 + .5r2+ .166r - 1)(+69n 3 + 19.5n 2p + 1.875np2 + 2n 2M)

+ (.5r 2 + .5r - 1)(46.75n 3 + 6.75n 2p + n 2M

- (r - 1)16.875n 3]

(6.129)

Finally if pseudo-inverses are not required in the computation, then the amount of

off-line computation required to perform filtering within a radius of r is given by

,,=r
Flp=2 [-T(16(2pn -3n + 'pp), 16n(p -2 2 2

+ (16)3 [p3 (6n 3+ n-) + p2(-21n 3 - 2n 2M) + p(24n 3+ n2m) _ 9713]

(16)3[(.25r 4 + .5r3+ .25r 2 - 1)(19-33n 3 + 8n'p + 1.5np2 + .083 p3 + n 2M)

(.33r3 + .5r 2+ .166r - 1)(+49n 3+ Iln 2p + np2 + 2n 2M

+ (.5r 2+ .5r - 1)(43.5n 3 + 3.75n 2p + n 2M)

- (r - 1)13.5n 3]

(6-130)

On-line

Summed over the region

The amount of on-line computation is given by

(16)2 [(.33r 3 +.5r2+ .166r - 1)(2n 2+ np) (6.131)

-(.5r 2 + .5r - 1)(+4,n.2 + Anp) + (r - 1)1.5n 21

Note how the complexity varies with the parameters n and r. The computational

complexity of the off-line computations varies with n', and since the dimension of the

state is proportional to p, the complexity is proportional to r 4 where r is the radius

of the region being filtered.

Step 3

210

In step three we compute the number of computation necessary to implement the

Rauch-Tung-Striebel equations in Section 4.3. First we will consider the computation

for one time step, then we will consider the sum of these operations over the entire

region of radius p = r. If we assume that the state is not causally estimable, we need

not compute the projection matrix in (4.115), and form products with this projection

matrix and the quantities in (4.112)- (4.114). In addition (4.118) will not have to

be computed. The amount of off-line computation required to compute ±8(p) from

X"(p + 1) in the backward sweep of the R-auch-Tung-Striebel algorithm is given by

M(16pn, 32n(2p - 1), 16pn)2

+ E(16n(p - 1), 16n(p - 1), 32np)
2

+ (16)3 ['03 (27n3+ 3n2n7,) (6.132)

+ P 2(- 12.5n 3) + p(1.5n 3)

+ P(43.5n 3 + .25n 2p + 2n 2M) _ 14.5n 31

= (16)3[p3(115.66n3+ 3n 2M) + p2(-65n 3) + p(13.5n 3)

If the state is causally estimable then the amount of off-line computation to com-

pute XI (p) from to (p+ 1) is reduced because the quantities in (4.112)- (4.114) are of

reduced dimension. This follows from-Fzf[k+llk] = 0- In addition the pseudo-inverse

in (4.117) will not have to be computed. Since the state is estimable, Ak= I. As a

result Lt, = I. The smoothed covariance is given by

COV(V(k)) = =_kCOV(;i'(k + 1))=T + COV(V(k)) (6.133)
k

The amount of computation for one time step is given by

E(16pn, 167i (p - 1), 16pn)
2

+ (16)3[p3(12,n.3) + p2(- 7'n.3) (6.134)

- (16)3[p3(19-667Z3)+ p2(-8.5n.3)

Finally if pseudo-inverses are not required in the computation, then then the amount

211

of off-line computation to compute ±8(p) from ±-I(p + 1) is given by

-T(16(pn), 16n(,o - 12))

+ (16)'[p'(12n3) + P2(- 7,n3) (6.135)

(16)3[p3(15.33n 3)+ P2(- 8n3)

On-line

One time step

The amount of on-line computation is given by

(16)2[p2(,4n 2)+ p(-2n 2)] (6.136)

The on-line computation does not change if the state is estimable, or if pseudoinverses

are unnecessary in the off-line computations.

Off-line computations

Summed over the entire region

To determine the computation needed to provide filtering for from the center to

the boundary of a region of radius p = r, we sum these terms from p = 1 to p = r - 1.

Using the identities

p=r-1 3 + 2E'0=1 P3 = .25r' - .5r .25r
p=r-1 2 2 +EP=1 P .33r' - .5r .166r (6-137)
p=r-1 2EP=I p .5r - .5r

Note that the limits of summation are different that those for the filtering step. this

is because we may estimate X(1) given the smoothed estimate at X(2) while in the

filtering step, there is no X(O) defined to aid in estimating X(1). We perform the

summation by substituting p3 with the corresponding sum from p = 1 to p = r -

For the case where the state is not causally estimable, the number of computations

212

is given by

M(16pn, 32n(2p - '), 16pn)2

+ E(16n(p - 1), 16n(p - '), 32np)2

+ (16)3 [p3 (27n3+ Wn7')

+ P2(-12.5n3) + p(LW) (6.138)

+ P(43.5n' + .25n2p + 2n 27n) - 14.5n 31

= (16)3 [(.25r 4 _.5r' + .25r2)(115.66n 3 + 3n 2M)

+ (.33r3 - .5r2 + .166r)(-65n3)

+ p(13.5n')

If the state is causally estimable then the amount of off-line computation to com-

pute ±8(p) from ts(p + 1) is given by

,6(16pn, 16n(p - 1), 16pn)2

+ (16)3 [03(12n 3) +P2(-7n 3) (6.139)

+ (16)3 [(.25r4 - .5r 3 +.25r 2)(19.66n 3)

+ (.33r 3 - .5r 2+ .166r)(-8.5n 3)

Finally if pseudo-inverses are not required in the computation, then the amount of

off-line computation to compute ±8(p) from ±3(p + 1) is given by

-T(16(pn), 16n(p - 1)) + (16)' [p3(12n.') + p2(-7n 3)
2 (6.140)

(16)3 [(.25r4- .5r 3 +.25r 2)(15.33n 3) + (.33r 3 _.5r2 + .166r)(-8n 3)

On-line

The amount of on-line computation is given by

(16)2 [(.33r 3 _.5r 2+ .166r)(4n2) + (.5r2 - .5r)(-2.72,2)] (6.141)

Step 2

Part I

The interprocessor communication requires two types of computations. One is com-

bining two square regions to form a rectangular region. The second is to combine

213

two rectangular regions to form a square region. We will handle these two cases

separately. The computations deal with the measurements depicted in Figures 6-11,

and 6-9.

The key issue again is how the dimension of the state varies from step to step. We

will use the integer variable t to help us indicate the number of levels of interprocessor

communication which take place. At the start of the interprocessor communication,

t = 0 and it is incremented every two interprocessor communication levels. Thus once

four squares are combined into a larger square, t is incremented. In the following the

parameter r is fixed, representing the radius of the smallest square region. Earlier it

was stated that the dimension of the state increases roughly by a factor of V�'2- at each

step. If we define r as the radius of the smallest square subregion then the dimension

of a state defined on a square boundary during the interprocessor communication step

is given by

X(2t) C R((16r+8)X2t-16)n (6.142)

where 2t here represents the number of interprocessor communications. Only for even

values of 2t is the boundary a square. The dimension of the odd indexed states is

given by

X(2t + 1) C R((24r+12)x2t-16)n (6.143)

There are also n [(4r + 2)2t - 4] dynamic constrains used to merge the estimates of two

square states together. There are also n[(8r + 4)2t - 4] dynamic constraints involved

in combining the estimates of two rectangles into an estimate of the state around a

square boundary. Computational economies result if we take advantage of the fact

that the parameters N, S, E, W, B, and C , do not vary with position. In these

computations however we will assume that independent processors compute different

and independent inverse estimation error covariances.

Off-line

One time step

An example of the measurements used to determine the number of computations is

given by equation (6.105) for t = 0 and is shown in Figure 6-9. The amount of

214

computation to compute an estimate for the boundary of a rectangular region from

two square regions is given by

M(((68r + 34)2t - 72)n, ((32r + 16) x 2' - 32)n, ((68r + 34)2t - 80)n))

+ 0(((24r + 16)2t - 16)n, ((24r + 16 ')2t - 16)n, ((24r + 16)2' - 16)n)

+ 2((32r + 16)2t - 32)2 ((36r + 18)2t - 40))n 3

(6.144)

Equation (6.111) provides an example of the equations required to combine two rect-

angles together to construct a square boundary. See also Figure 6-11. The amount of

computation required to combine the estimates of the boundaries of two rectangular

regions into the estimates of the square boundary which encloses the two subregions

is given by

M(((104r + 34)2t - 80)n, ((48r + 32) x 2' - 32)n, ((104r + 34)2t - 80)n)

+ 6(((16r + 8)2t+l - 16)n, ((16r + 8)2t+' - 16)n, ((16r + 8)2t+l - 16)n)

+ 2((48r + 16)2t - 32)2 ((56r + 18)2t - 40))n3
(6.145)

Here for all values greater than t = 0 and all r > 1 all expressions of the form

(ar+b)2t+c can be approximated by (ar+b)2'. We may therefore approximate (6.144)

and (6.145) by

M(((68r + 34)2t - 72)n, ((32r + 16) x 2t - 32)n, ((68r + 34)2t - 80)n))

+ .6(((24r + 16)2t - 16)n, ((24r + 16)2t - 16)n, ((24r + 16)2t - 16)n)

+ 2((32r + 16)2t - 32)2 ((36r + 18)2t - 40))n3

(16)3 (50.41)2 3'n3(2r + 1)3 + (16)3 (.96)2 3tn3(3r + 2)3

(6.146)

and

215

M(((104r + 34)2t - 80)n, ((48r + 32) x 2t - 32)n, ((104r + 34)2t - 80)n)

+ 6(((16r + 8)2t+l - 16)n, ((16r + 8)2t+' - 16),n., ((16r + 8)2t+' - 16)n)

+ 2((48r + 16)2t - 32)2 ((56r + 18)2t - 40))n3

23n323t(52r + 17)2 (172r + 97)

(6.147)

respectively.

On-line

One time step The amount of on-line computation required to combine two square

boundaries is given by

(16)2 * 6 * 22t (r' + r + .25) (6.148)

The amount of on-line computation required to combine two square boundaries is

given by

(16)2 * 12 * 22t(r2 + r + .25) (6.149)

Off-line

Summing over the entire region Since these equations vary with t which here

represents the number of levels of interprocessor communication pairs performed, we

need concern ourselves particularly with summing terms which grow exponentially.

We therefore need to use the equality

�V j 9N+I3=0 9 g-1 g > (6-150)

From this sum we can tell that the if g is sufficiently large then the total number of

computation is approximately g'. Since the square states alone varies by 2', and for

one computation, the off-line computation varies as 2", and the on-line computation

varies as 2 21 , in this problem g = 8 for the off-line computation and g = 4 for online

computation. We may conclude that the computation is dominated by the the last

computation corresponding to n = N, and we could if necessary neglect all prior

computations. We will not but it is important to realize that the size of the state

216

increases so fast that operations on prior states are negligible.

We can conclude that for 2T levels of interprocessor communications, the total

number of floating point operations off-fine required in computing the necessary gains

for combining square boundaries together to form rectangular boundaries is given by

3 1)3 23(T+l) _ 1
(16) [(50.41)(2r + + (.96)(3r + 2)3]n'3[7 1 (6.151)

and the number of off-line computations involved in combining rectangular regions

into square regions is given by

23n3(52r + 17)'(172r + 97)[2 3(T-1) (6.152)
7

The total amount of computation involved is given by

+ 1)3)3] 3)2(3[2 3(T+l)1(16)3[(50.41)(2r + (.96)(3r + 2 + 2 (52r + 17 172r + 97)In 7 1

(6.153)

For the case that the state is estimable the total amount of computation is approxi-

mately given by

,F(36n[2T(r + 1)], 24,n. [2T(r + 1)], 36n [2T(r + 1)1)
2 2 2 (6-154)

3.33(36)323Tn 3(r + 1) 3
2

for combining square regions

,0(48n[2 T(r + 1)], 16n[2 T+1 (r + 1)], 48n [2T(r + 1)])
2 2 2 (6.155)

5.833(48)323T n3(r + 1)3
2

for combining rectangular regions

For the case that pseudo-inverses are not required, the total amount of computa-

tion is given by

1(36n[2 T (r + 1)], 24n[2T (r + 1)])
2 2 (6.156)

2(36)3n3 23T (r + 1)3
2

217

for combining square regions

1(48n[2T(r + 1)], 16n[2 T+1 (r + 1)])
2 2 (6.157)

2.166(48)3n323T (r + 1)3
2

for combining rectangular regions

On-line The total amount of on-line computation required to combine two boundaries

is given by

(16)2 * 6 *22(T+I)_l 23 (r + r + .25) (6.158)

We may conclude this section by noting that if K 2 is the number of points in

the entire region, and if we use L 2 processors to partition them then the radius of

the smallest subregion will be given by r = K-. The number of interprocessor2L

communications will be given by 2T = 1092 L 2 = 21092 L. The total computation

time for the case where the state is not estimable is given by

1(16)3 [(50.41)(2' + 1)3 + (.96)(3K-L + 2)3] + 23(52K-L + 17)2(172K-L + 97)ln 3[8L3_1
2L 2L 2L 2L 7

+ (16)3 [n 3(15.161 1 14 - 25.33) + n 2p(6.5f K-L 14
2L 2L

+ 25.171 K-L 13 + 37.631 K-L 12 + 12.46K-L)
2L 2L 2L

+ np2 (1.311K-L 13 + 1.411 K-L 13 - .51K-L 12 _ .61 K-L
2L 2L 2L 2L

(6.159)

In this term the logarithms and the exponents have canceled leaving an algorithm

whose complexity increases in polynomial time. The local processing in this algo-

rithm grows with the size of the region and much more computations are performed

at larger radii than for smaller. For a square region of large radius r the ratio of

computation performed radially outward, to the amount of computation required if

a marching method is used is equal to 128 for the off-line computations and is equal

to approximately 42.33 for the on line computations. One thing which is gained by

filtering inward and outward is that a general boundary condition is feasible, where

as a general boundary condition was not supported in the marching methods used by

Adams[l], for example. We will find that certain suboptimal tecniques can bring this

ratio to zero asymptotically for the on-line processing. Specifically to compute the

218

optimal estimate on a region of radius r requires O(r 3) flops of on-line computation..

We will present suboptimal tequniques which will compute the estimate in a region

with O(r 2)flops, and also O(r log r) flops.

6.4 Suboptimal Smoothing

6.4.1 Suboptimal interprocessor communication

The computation in the algorithm as described in this chapter involves combining

larger and larger boundaries together. The size of the boundary increase by approx-

imately a factor of v�2_ at each stage in the interprocessor communication. Although

the complexity of the operations involved increases dramatically at each step, the

number of computations required is greatly reduced. In fact the bottleneck is the fact

that the computation involving the larger sub-boundaries including the boundary of

the entire region.

As the size of the state grows the complexity of the interprocessor communication

grows. The size of the covariance of the state grows as the square of the size of the

state. If the state is not estimable, then a projection matrix must be carried along

whose size is equal to the size of the covariance of the state.

For the purposes of the discussion in this section we assume that the process at

the boundary of the local subregions is estimable based on data in the local sub-

regions, and therefore avoid issues associated with the projection matrix. Consider

equation (6.105) given by

0 H, 9 B, ET, (s7 O

0)/V H,, X(s7 B, U, (s, t) (6.160)

X (S' t) I 0 X('8 + 1, t) X(S' t)

L ±(S + 1, t) t. 0 I J L X(s + 1, t)

This equation is of the-form

y -_ Hx + v (6-161)

219

where H is given by

H, 9

H H, (6.-162)

1 0

0 1

y is given by

0

0

Y k t) (6.163)

X(S + 1, t)

x is given by

X (s, O (6.164)

X(s + 1, t)

and v is given by

B, U, (s, t)

B, U,, (s, t)
V (6.165)

±(S t)

X(S + 1, t)

Since the solution in (6.107), and (6.108) is constructed from solving

R H A Y
(6.166)

H T 0 0

or equivalently since R is invertible from solving

H TR-'H,� = H T R-'Y (6.167)

where H T R-'H is the inverse estimation covariance of x, it may be desirable to

exploit sparsity in H T R-'H to solve for x, or to exploit sparsity in R or R-' to solve

for x.

The approach we will take here is to model the process at the boundary after the

220

local processing step, as a one dimensional process going around the boundary.

If we partition R as follows

TBe Be 0 0 0

0 B,,,BT 0 0R W (6.168)

0 0 F'k(s't) 0

0 0 0 Et(3+1,t)

where the diagonal entries of the matrix in (6.168) correspond to the covariances of

the elements of v. We are therefore proposing exploiting structure in E't .(,), and in

or their corresponding inverses to compute (6-167).

Specifically we expect that we should either be be able to neglect correlations be-

tween elements in the state outside of a neighborhood of some characteristic radius or

neglect interactions between elements outside of a neighborhood of some characteris-

tic radius when computing the Gibbs distribution for the equivalent Markov Random

Field. The first method roughly amounts to modeling the process as a moving aver-

age, and the latter models the system as an auto-regressive system. Outside of this

characteristic radius we wiH assume that the elements of the estimation error covari-

ance, or inverse estimation error covariance are precisely zero. We will choose an

example where the largest singular value of the error in approximating the estimation

error covariance is small compared to the smallest singular value of the estimation

error covariance. If we are using the inverse estimation error covariance to model the

process then we wish that the largest singular value of the error in approximating the

inverse estimation error covariance is small compared to the smallest singular value of

the inverse estimation error covariance. In addition since the number of interprocessor

communication steps is small, we can expect to accumulate only a limited amount of

modeling errors while gaining a computational advantage in combining the estimates

of neighboring boundaries.

In the following example we are considering a NNM of the form (6.1) where

221

...............
...............

.....
...

.............
...............

........... I � %

..........

....

..........
.................

....
.

..
........... X....

........
.....

....
....

.. -
.......... .
..........

..

..
......

Figure 6-12: grayscale image of 56 x 56 estimation error covariance of state at p 4

N _- S -_ E -_ IV _- B -_ I with observations given by

Y(i, A -_ X(ij) + V(ij) (6.169)

where v(iJ) has unit covariance. The system which we are filtering is given by (6.5)

where It = oo. Here we aim to find for this example when and how to model the

process around the boundary of a two dimensional region as a one-dimensional pro-

cess. In Figures 6-12 and 6-13 we provide the estimation error covariance for X(p)

for p -_ 4 based on data from p -_ 0 to p -_ 4. The matrix is banded but the bands

are relatively large compared to the size of the matrix and suggests few opportuni-

ties for meaningful approximation. The inverse estimation error covariance for the

same vector is provided in Figures 6-14 and 6-15. This matrix is full and presents

few opportunities for meaningful approximation. For p -_ I I we are able to take

advantage of sparsity in the estimation error covariance and inverse estimation error

covariance matrix. Figure 6-16 and 6-17 show the estimation error covariance for the

state X(11) while Figure 6-18 and 6-19 show the inverse estimation error covariance

for the same. Both matrices demonstrate a five band structure. In between these

bands the elements are small. It is these small elements which we will approximate

222

..
.

+ + + + + +
+ + +

.
.

.

.
.

+ . . + + +
.

.
.
.

.
+

+ + + + + + +
+ + + + + +

+ + + + +
.

+ + + + + +
+ + + +
+ + + + +

--+ + + + + +
.

+ + + + + +
.

+ + + + + + + +
+ + + + + + + + +

+ + + + + + + +
.

+ + + + + +

.
.

.
+ +

.
.

+ + + + +

+ + + + +
.

.
+

.
+ + + + + +

+ + + + +

+ + + + +

t+,.+. +11

Figure 6-13: 56 x 56 estimation error covariance of state at p 4 showing the entries
greater than .01

..........
...........
...........

..........

..........

..

............

..........
.........

...........

......
...........

......

Figure 6-14: grayscale image of 56 x 56 inverse estimation error covariance of state
at p -- 4

223

........ . +�T++It++i++++++++++ V il......... ++ +.......... +............ ++ +........... + ++ ++ ++ ++++.......... ++++ ++ +. ++ +... +++. + ++ ++).-+ + + + ++++ + ++ + +-+ + .+ ++++ ++.-.. ++ ++++ ++ + :.-++++ +++ + ++ + ++++ +-...... ++ ++ +....... +++.........
+++

......... + + ++. +
+

......... ... +++.......... + + ++.
+ +.........+ +++ +++++ ++++ +

+ +
+ +

Figure 6-15: 56 x 56 inverse estimation error covariance of state at p4 showing the
entries greater than .01

N

....

..........

"A

Figure 6-16: grayscale image of 168 x 168 estimation error covariance of state at
p

224

Figure 6-17: 168 x 168 estimation error covariance of state at p 11 showing the
entries greater than .01

Figure 6-18: grayscale image of 168 x 168 inverse estimation error covariance of state

at p

225

14-

Figure 6-19: 168 x 168 inverse estimation error covariance of state at p 11 showing
the entries greater than .01

by zero. The bands in the estimation error covariance are narrower than those of

the inverse estimation error covariance and suggest that we may take advantage of a

moving average representation of the process. Here we examine approximating the

inverse estimation error covariance in anticipation of using further the tools involving

STPBVDS developed in earlier chapters.

Toward this end, we chose to set all values whose magnitude is less than .01 to 0.

To support this approximation we note that for all p > 1 the smallest singular value

of the inverse estimation error covariance is equal to 1.

O-('X(P)) 1 (6.170)

Let us denote the difference between the actual inverse estimation error covariance and

the approximated inverse estimation error covariance by bv4jx(p) where E'x(p) + 6EX(P)

is the approximated inverse estimation error covariance. Figure 6-20 shows that for

226

0.045

0.04 -

0.035 -

0.03 -

0.025 -

0.02 -

0.015 -

0.01 -

0.005 -

0
0 2 4 6 8 10 12 14 16 18

Figure 6-20: Maximum singular value plot for the difference between inverse estima-
tion error covariance for the state at different radii and the approximation to that
inverse estimation error covariance based on setting values smaller than .01 to 0. Plot
starts at p = 2.

P > 11 that

X(P)) < .03 (6.171)

where

maX(bEX(P))jj < .01 (6-172)
-1,.7

With this approximation the computation for the union of two boundaries becomes

greatly simplified. We will examine efficient methods to compute the estimate and es-

tiniation error covariance H'(V.-, + bv,:j)H where Ed R-1 is the inverse error covariance

of the observations in (6.168) and where EJ + bEd (R + 6R)-' is the approximation

to the corresponding inverse estimation error covariance.

We will now outline how to combine the boundaries of two neighboring regions.

First we will reorder the elements of the vector X(p) so that large elements of

Ex(p) are near the main diagonal. This amounts to choosing a different ordering

227

'North'

0 0 11- 7 - 3 - 1 - 5 - 9 -13 0 0 0

0 0 12 8 - 4 - 2 - 6 -10 14 0 0 0

0 0 15 16 0-0-0 18 17 0 0 0

0 0 19 20 0 0 22 21 0 0 0

0 0 23 24 0-0-0 24 25 0 0 0

0 0 28 32-36-40-38-34 30 0 0 0

0 0 27-31-35-39-37-33-29 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-21: The integer function 0 as a function of i and j for p 3. Here the
elements are ordered so that we may perform our processing moving outward from
the center of one leg and eventually terminate moving inward on the opposite leg of
the square boundary.

function O(i, p). An example of the new ordering function is shown in Figure 6-21.

Basically the elements are chosen such that we progress both to the left and to the

right (outward) from the first element at the top in Figure 6-22 while accounting

for elements at p, and p - I together. As a result elements which are near each

other spatially remain near each other in the vector X(p) while elements in the

inverse estimation error covariance matrix decay away from the main diagonal. With

this ordering only 43 diagonals to the left and to the right of the main diagonal

in the inverse estimation error covariance matrices have elements with magnitudes

greater than .01. The bandwidth of the matrix remains constant as the size of the

inverse error covariance matrix grows with the radius of the region as 16(p + ') x
2

16(p + 1). In order to model this as a (causal) STPBVDS, the approximation to the
2

inverse estimation error covariance can be partitioned into 44 x 44 blocks, so that

the matrix is block tridiagonal. Before we consider a recursive method of solving

228

X N 0C

Figure 6-22: The inverse estimation error covariance at p 11 after the elements
have been reordered. Large elements of the matrix have been moved to locations

near the main diagonal.

this suboptimal problem, we will note that there are many algorithms which operate

on sparse matrices. If we were to re-order the elements of both boundary estimates

we could again arrive at a inverse covariance matrix for the combined estimate which

is block tridiagonal with a bandwidth of approximately 176 elements. Cyclic block

reduction can be performed on this system[30][31][9], Gauss-Seidel or any of a number

of other iterative methods can be used on this systeni[30],[31],[9]. In particular for

this example if we were to perform cyclic block reduction to compute the estimate of

the combined region, it would require

01(t + 1092(16r - 8))(44)2] (6.173)

flops where the number 44 represents the size of the blocks in the inverse covariance.

The scalar r represents the radius of the smallest subregion and 2t represents the

number of levels of interprocessor communication. The computation time grows with

the logarithm of the size of the state, and as the square of the bandwidth of the inverse

estimation error covariance. Cyclic block reduction can be performed in parallel and

is suitable for implementation on a hypercube, and thus has the advantage of easily

229

mapping onto the architecture on which the remainder of the algorithm is designed

to run.

Gauss Seidel has very good performance with finite bandwidth diagonally domi-

nant positive definite matrices. The amount of computation required to compute one

iteration is approximately twice the number of nonzero elements in H'(F, + 6E)H

in the expression x' = [HT(E + 8E)H]-1[HT(E + 8E)y. Since the bandwidth of the

system remains constant for larger and larger regions the complexity of the computa-

tion increases linearly with the size of the matrices. Furthermore when the matrices

are diagonally dominant, the rate of convergence is independent of the size of the

matrix. As a result the number of iterations required to compute the estimate is a

also independent of the size of the matrix.

Returning to the issue of modeling the process of the boundary by a STPBVDS,

we note the two salient features in Figure 6-22 are the bowtie regions which represent

the corners of the square region and the fact that the matrix is nearly diagonal. There

are only two bowties because in our ordering we reach two corners simultaneously.

The bowties exist because at the corners more points fit into a neighborhood of a

given size. The diagonal nature of the matrix suggests the opportunity to model the

system as a STPBVDS.

The Cholesky factorization can be taken for the approximation to the inverse

estimation error covariance yielding a block bidiagonal matrix, whose blocks are the

parameters of the system which models the process around the boundary. If we use

the variable 0 to count the diagonal blocks of the approximated inverse estimation

error covariance matrix, then the system around the boundary has the following

representation.

Epv,+lXp(V, + 1) = ApVXO(�',) + BJ140) (6.174)

where X,(O) E R44 is the state in the V," partition of X(p) If we account for the fact

that the bowtie regions are significantly wider than the remaining regions we could

in fact model the process as a STPBVDS with -�, varying dimension yielding greater

computational efficiencies. We will not pursue modeling this system with variable

230

dimensional systems.

Computing the estimate of the common boundary to two neighboring regions is a

matter of augmenting the state in one boundary with the state of the other boundary

E(8't)'O+1 0 X014)(0 + 1)

L 0 E(s+,,t),V,+, J LX(.'+1't)(0 + 1)

A(S't)'O 0 'Y("t)(70 + B(st),V, 0

0 A(s+j't)'V' X(-+1't)(0) 0 B(3+1't)'O U(-1+1't)(0)
(6-175)

where we have replaced the index p with (s, t) since the squares have the same di-

mensions and we need to distinguish between the boundaries of the two regions. The

remaining dynamic constraints which are shown in Figure 6-11 can be written in two

forms. Note that the nearest neighbor model is a local model which constrains the

x(ij) a distance of two apart. Since the state X(,,t)(V,) in our example contains 44

of the x(ij), all near each other, most of the dynamic constrains win not connect

the state for different values of 0. Therefore the first form which accounts for most

of the dynamic constraints can be written in the form

0 = H(8't)'V'X(-'t)(0 + H(.,+1't)'?kX(-1+1't)(V') + (6.176)

In our example this will account for 36 dynamic constraints. The remaining dynamic

constraints will link the small number of x(ij) which lie on the edge of the region

corresponding to X(?k) and X(O + 1) together. These dynamic constraints can be

written in the form

0 A(st),e A(3+1,t),e x(st)(0 + 1) + A(st),a A(s+lt),a +W(O)
X(1+1,t)(VI + 1) Xo'+1't)(V1)-

(6.177)

which accounts for 8 dynamic constraints. The result is that (6.174), (6-175),

and (6.176) comprise a STPBVDS which can be filtered and smoothed via common

means to compute the required estimates. However to further combine neighboring

boundaries we need not compute the entire process, but arrive at a model for the

231

Figure 6-23: Filtering outward along a common boundary

process around the two boundaries which will be used to combine with similar mod-

els for neighboring boundaries. We accomplish this by filtering outward only along

the boundary common to both regions. We therefore are performing causal filtering

from O = 0 to some 0,, when the corner is reached. See Figure 6-23. The inverse

covariance for the remaining process can be recomputed and the Cholesky factoriza-

tion computed again to arrive at a new model for the boundary which surrounds the

two regions. The process for combining the next two neighboring regions can then

proceed after the inverse estimation error covariance is re-approximated.

6.4.2 Suboptimal local filtering

Another opportunity for computational gains through suboptimal estimation arises

in the local filtering step. By approximating the inverse covariance as in Section 6.3.1

for each value of p we may take advantage of the smoothing and filtering theory for

STPBVDS's to perform estimation spiraling outward from the center to produce sub-

optimal estimates approximating optimal estimates base(] on data. within a specified

radius.

Here we will consider the case where we make approximation to the inverse covari-

ance after each measurement update step. From Section 6.1 and 4.2 the measurements

232

have the form

0 1
X(P + 1)

0 -EP+1 AP + BP UP (6.178)

Y('O + 1) CP 0 L W J V(P + 1)
L J L J L J

where the inverse estimation error covariance of the estimate at p + 1 is given by

Ex(p+,) = ET l(ApE-1 A + BpB T)Ep+l + CTCP

P+ X (p) P P p (6-179)

The issue here is not to simplify the off-line computations but just the on-line compu-

tations. The idea here is to use the approximated inverse estimation error covariance

(where all elements have magnitude greater than .01) in place of Ex(p) and to ap-

proximate the result. The equation may then be written as

T)EP+J + CTEx(p+,) = Trunc(ET+1(Apt-1 A + BB (6-180)P X (P) P P P CP)

where Trunc returns zero for all values smaller than a certain tolerance (.01).

The next question is how would a filter such as this perform. Figure 6-24 shows a

maximum singular value plot for the difference between the optimal inverse estima-

tion error covariance and the inverse of the suboptimal estimation error covariance.

Specifically, consider the optimal ML estimate, given by

i = (H TEH)-'HTEY (6.181)

where

E� = H T E H (6-182)

is the inverse estimation error covariance for �. The suboptimal estimate based on

the same observation, is given by.

Tr -'HT(E + 8E)yX' = (H , + 8EH) (6.183)

233

X104

4.5

4 -

3.5 -

3 -

2.5 -

2 -

1.5 -

1

0.5 -

0
0 2 4 6 8 10 12 14 16 18

Figure 6-24: Maximum singular value plot for the difference between the optimal
inverse estimation error covariance of the optimal filter and the actual inverse esti-
mation error covariance for the suboptimal filter. The minimum singular value for
the optimal inverse estimation error covariance is equal to 1.

The inverse estimation error covariance of the suboptimal estimate x' is not given by

HT(E + 6E)H but by

T(V T(HT(V -16F F, bE (6.184)

Ex, H + 6v-,)Hf + 26E + bE(E))HIH)H

Figure (6-25) shows a maximum singular value plot for the difference between the

computed (approximated) inverse estimation error covariance and the optimal inverse

estimation error covariance.

With this approximation there are many ways of computing the estimates. Since

the inverse covariance is banded we may use Cholesky factorization, or perhaps cyclic

block reduction to solve for estimates. Furthermore we could use the results from

the Cholesky decomposition to model the process around the boundary as a one

dimensional process. The on-line computations turn into a filter operating around

234

0.045

0.04 -

0.035 -

0.03 -

0.025 -

0.02 -

0.015 -

0.01 -

0.005 -

0 1 I I I I- L

0 2 4 6 8 10 12 14 16 18
Figure 6-25: Maximum singular value plot of approximated inverse estimation error
covariance to the optimal inverse estimation error covariance

the boundarv of the region. From Section 6.3.1, the process for X(p) is given by

+ 1) -- Apv,-Vp(V,) + Bpv,[Tp(V,) (6.185)

A small number of the dynamic constraints represented by E,+,, and A, are given by

XP(O + 1) XPNI)
0 Lp,,,(V,) Lp+,,,, + Lpa(O) Lp+la(lk) +W(VI)

L XP+1 (VI + 1) XP+1 (0) ,

(6.186)

where the partitioning of X(p + 1) compared to the partitioning of X(p) with respect

to the value V, is shown in Figure 6-26. The remaining dynamic constraints and the

observations have the form

+ 17I"P+i(V') = HP+1(VI) P+1 NO (6.187)
L AP+1

235

I

I

I

I

I
I I

I - -I --- I I I I I
Figure 6-26: Partitioning the state X(p + 1) so that it agrees with the partitioning
of X (P)

236

by augmenting the state X,(7k) with -I,',+, (O) the equations given by (6.185), (6.186),

and (6.187) represent a large STPBVDS for which filtering would lead to on-line

computational savings.

6.5 Complexity

Here we want to examine the complexity of the suboptimal methods discussed in

the previous section. Here we are considering getting complexity estimates of various

parts of the algorithm when different methods are applied. Under the assumption that

the state is estimable with a well defined inverse error covariance , first we will consider

the computation for the interprocessor communication , then we will consider the

complexity for the filtering in the local processing step. We note that the complexity

going up or down the tree are essentially the same, and as a result it is not necessary

to explicitely compute the complexity for propagating smoothed estimates to the

individual points in order to understand the functional relationships between the

various variables and the complexity of the problem. In addition, the local complexity

filtering outward is the same as obtained for the backward sweep of the Rauch-Tung-

Striebel algorithm. We will not compute the complexity for this part of the algorithm

either.

Interprocessor Communication

Here we will compare three methods for combining the estimates of the boundaries of

neighboring square regions together to form estimates of the boundaries of rectangular

regions. Here we will consider the complexity for one time step, and later we will sume

the computation over all time steps.

Gauss-Seidel

Off-line

The computation involved to set up the Gauss-Seidel Computations is essentially to

compute the inverse covariance. This will require approximately

5 * (16)3 23t(r + 1)3 (6-188)
2

237

for combining squares and

3 * (16)`2 3t (r +1)3 (6.189)
2

for combining rectangles.

On-line

For diagonally dominant matrices, the rate of convergence can be bounded indepen-

dent of the size of the matrix. As a result, the amount of iterations necessary to

compute the estimate is independent of the size of the matrix. This win require

approximately

C2(16)(88)12t(r + 1 1 1 (6.190)
2 2

computations for combining squares together to form rectangles and

C2(24)(88)f 2t (r + 1) - 1 1 (6.191)
2 2

flops for combining rectangles together to form squares. C here represents the number

of iterations. Note that the complexity grows geometrically with t because the size

of the state grows geometrically with t.

Cyclic Block Reduction

Cyclic block reduction has a structure which fits very well on a a hypercube. We will

assume that this algorithm is implemented in parallel.

Off-line

The off-line computation for applying cyclic block reduction is given by

5 * (16)3 23t(r + 1)3
i 2

+3 * (16)323t (r +1)3 (6.192)
2

+K(88)4�t (16)(r+ 17)
+ 1092 88

where K is a constant associated with the details of the cyclic block reduction. Re-

31gardless the term involving K is dwarfed by the term with 2

On-line

238

The on-line computation for applying cyclic block reduction is given by

C(88)31t (16)(,-+-j') 1 (6.193)
+ 1092 88

where C is a constant associated with the on-line details of the cyclic block reduction.

The 'on-line computation is growing linearly where the size of the vectors involved in

the computation is growing geometrically.

If we model the process by a STPBVDS we may note that computing the elements

of the model via the Cholesky factorization requires.

(16)2'(r + 1)((44)2 + 3(44)) + 2t(16r + 8)(44)-11(218,88)1(98,98) + 6(88)2 (96) + 4(88)3]
2

(6-194)

flops. The on-line computation increases linearly with the bandwidth and the length

of the state and is given approximately by

.5(16)2 (88)2t(r + 1) (6.195)
2

for combining square regions and by

.33(24)2 (88)2t(r + 1) (6.196)
2

for combining rectangular regions

Of these methods Cyclic block reduction has the advantage of being implementable

in parallel and easily mapping into the architecture for which the remainder of the

algorithm is designed to run. Furthermore the online computations increase logarith-

mically instead of polynomially with respect to the size of the state.

Filtering

The filtering step also benefits from sub-optimal techniques.

Gauss-Seidel

239

Off-line

Constructing the joint inverse covariance for X(p), and X(p + 1). This requires

approximately

10(16)3p3 (6.197)

flops.

On-line

The on-line computation requires approximately

C2(88)(16)p (6.198)

flops

Cyclic Block Reduction

Off-line

Off-line, cyclic block reduction requires approximately

)3p3 16(P-D (88)4 (6.199)10(16 + K 1092 88

flops off-line. For large p this is dominated by the term p3.

On-line

The on-line computation required grows as

16(p- -y') J(88)3 (6.200)
C 10921 88

Modeling by STPBVDS

Off-line

The amount of computation required for the filtering step is approximately

16(p - .5)((44)2 + 3 * 44) + 36(88)2(16)p (6.201)

On-line The amount of computation required for the filtering step is approximately

240

6(88)(16)p (6i,202)

Now that we have estimated the number of computations required for one time

step, we will sum the computations over there respective domains.

Interprocessor Communication

Now the figures for one time step will be summed to compute the computational

complexity over the proper region. Specifically we will sum the interprocessor com-

munication figures from t = 0 to t _- T

Gauss-Seidel

Off-line

The computation involved to set up the Gauss-Seidel Computations is essentially to

compute the inverse covariance. This will require approximately

5 * (16)3(r + I)3[23(T-I)_l] (6.203)
2 7

for combining squares and

3 * (16)3 (r +1)3[23(T-I)_l] (6.204)
2 7

for combining rectangles.

On-line This will require approximately

C2(16)(88)f (r + 1),,22(r-I)_j, (6.205)
2 3

computations over the entire region for combining squares toget�er to form rectangles

and

C2(24)(88)f(r + 1)[22(T-I)_l (6.206)
2 3

flops for combining rectangles together to form squares.

Cyclic Block Reduction

Off-line

241

The off-line computation for applying cyclic block reduction is given by

(16)3(r + 1)3[23(T-1)-l
2 7

+3 * (16)3231 (r +1)3 (6.207)
2

)4f 2 _ (16)(r+§) I+K(88 [.5T .5T] + [T -11 1092 88

3TAs before, for large T, the term involving K is dwarfed by the term with 2

On-line

The on-line computation for applying cyclic block reduction is given by

)3� 2 (16)(,-+-11) 1 (6.208)C(88 [.5T - .5T] + [T - 11 1092 88

The on-line computation is growing quadratically while the size of the vectors involved

in the computation is growing geometrically.

Modeling the process by a STPBVDS

Off-line

If we model the process by a STPBVDS we may note that computing the elements

of the model via the Cholesky factorization requires.

(16) 2317- 'I (r + 1)((44)2 + 3(44)) + 23,1-1, (1 6r + 8) (44) -1 [_T(218, 88) + I(98, 98)]
7 2 7

+6(88)2 (96) + 4(88)3

(6.209)

flops. The function I is define in Section 2. L

On-line

The on-fine computation increases linearly with the bandwidth and the length of the

state and is given approximately by

.5(16)2 (88) 2"'-" (r + 1) (6.210)
3 2

242

for combining square regions and by

.33(24)2 (88) 22,1-1, (r + 1) (6.211)
3 2

for combining rectangular regions

Of these methods Cyclic block reduction has the advantage of being implementable

in parallel and easily mapping into the architecture for which the remainder of the

algorithm is designed to run.

Filtering

The filtering step also benefits from sub-optimal techniques.

Gauss-Seidel

Off-line

Constructing the joint inverse covariance for X(p), and X(p + 1). This requires

approximately

10(16)3 [.25r4 + .5r' + .25r' - 1] (6.212)

flops.

On-line

The on-line computation requires approximately

2(88)(16)[.5r 2+ .5r - 1] (6.213)

flops per iteration over the entire sub-region

Cyclic Block Reduction

Off-line

Off-line, cyclic block reduction requires approximately

10(16)3 [.25r4 + .5r3 + .25r2 (6.214)

16'p- T') J(88)4
+K Ep'=2 10921 88

4flops off-line. For large r this is dominated by the term r

On-line

243

The on-line computation required grows as

C E"=210921 16'p-,1') 1(88)3 < Cr[1092(r -P 88 2

Modeling by STPBVDS

Off-line

The amount of computation required for the filtering step is approximately

16(.5r2 - r)((44)2 + 3 * 44) + 36(88)2 (16)[r2 - r] (6.216)

On-line

The amount of computation required for the filtering step is approximately

6(16)(88)(r 2- r) (6.217)

Cyclic block reduction is clearly the preferred method of performing suboptimal

computation with 0(rlog2r) growth for local filtering, and T 2growth in the compu-

tations involving the interprocessor communication step.

244

Chapter 7

Conclusion

Along the road to developing a general multidimensional smoothing algorithm. several

things were accomplished.

In Chapter 2 we established the general framework for Maximum Likelihood (ML)

estimation to be applied for the remainder of this thesis. This general framework al-

lows for estimation in statistical environments with large dynamic range. Specifically

ML estimates are constructed for vectors which are not completely estimable in the

presence of perfect observations. In this situation covariance matrices and inverse

covariance matrices are not well-defined and as a result we use projection matrices

to specify a covariance matrix for the part of the vector which is in fact estimable.

The computations involved in finding the ML estimate are in general not well-posed

and pseudo-inverses are required. The Moore-Penrose pseudo-inverse guarantees that

we compute minimum norm ML estimates. We note that these computations can be

formulated in a square root context and noted the complexity of the ML estimation

computations for later reference.

In Chapter 3 Two Point Boundary Value Descriptor Systems (TPBVDS's) are

discussed. These systems differ from causal systems in two ways. The first is that

the boundary conditions at the two endpoints are coupled. Secondly the equations

are defined implicitly resulting in no natural direction of recursion. In particular, the

presence of possibly singular matrices multiplying both x(k) and x(k + 1) make issues

of filtering and smoothing more complicated than those associated with causal sys-

245

tems, We also showed the utility of the class of Separable Two Point Boundary Value

Descriptor Systems (STPBVDS's) because these systems are Markov, and are diag.

onalizable into forward propagating, and backward propagating subsystems. These

systems are not restricted to have constant coefficients, nor are they restricted to have

a state with constant dimension. Since all TPBVDS can be described by STPBVDS

by appending the state x(-k) to x(k), algorithms designed for STPBVDS's are also

applicable to TPBVDS's.

In Chapter 4 useful lemmas are developed which encapsulate the basic require-

ments for recursive estimation and smoothing. A filter is then presented which re-

cursively computes filtered ML estimates for STPBVDS's, generalizing the Kalman

filter. The filter does not require that the model be well-posed, and perfect measure-

ments can be handled. This recursive filter in addition to propagating the estimation

error covariance and the ML estimate also propagates a projection matrix which keeps

track of the estimable subspace. The Mayne-Fraser two filter algorithm and the The

Rauch-Tung-Striebel algorithm are adapted for smoothing STPBVDS's. The compu-

tational complexities of these algorithms are computed for different statistical envi-

ronments. A square root version of the forward Maximum Likelihood filter (FMLF)

is constructed to demonstrate that all of the algorithms can be easily formulated in

the square root context yielding greater numerical accuracy.

In Chapter 5 new parallel smoothing algorithms are developed for one dimen-

sional processes. The algorithms presented all parse the data into segments on each

of which one processor is assigned to operate. Local processing is performed first

in which each processor produces a sufficient statistic representing the summary of

information about the process at the boundary based on local observations. An in-

terprocessor communication step follows where sufficient statistics are passed forward

and backward through the processors until all processor have sufficient information to

compute the smoothed estimate of the process locally at each of the interior points. Fi-

nally the smoothed estimates are computed locally and in parallel. Three algorithms

assume a linear array of processor with nearest neighbor communication between

them. One algorithm is based on the assumption that the processors are arranged

246

on a hyper-cube. The complexity of the problem grows with the logarithm of the

number of data points.

In Section 5.4 a parallel smoothing algorithm is constructed so that from the per-

spective of each processor, the computation of the neighbors are known and certain

information is expected in order to simplify the computation of the smoothed esti-

mate. Each processor essentially computes the ML estimate of the local process given

that the observations of the process outside of its local region is exactly zero. In other

words the zero state response of the optimal smoother is computed. The zero input

response is used to compute, pass, and update boundary information from processor

to processor. Finally the ZIR is used to update interior points in each interval in

parallel.

In Section 5.3 a parallel smoothing algorithm is constructed so that locally smoothed

estimates are produced in parallel. Forward and backward ML filters which operate on

the boundaries bring global forward and backward filtered estimates of local bound-

aries to each processor. This information is used to update each processor's locally

smoothed estimates to produce globally smoothed estimates. It was concluded that

this was not the proper way to perform two-dimensional smoothing because the state

at each point was augmented with the boundary state. In two dimensional systems,

the boundary state is large and would tremendously increase the computational com-

plexity of the algorithm.

In Section 5.5 a parallel smoothing algorithm is presented which performs optimal

ML filtering from the center of each local sub-region outward to the boundaries The

system is reduced to a sampled STPBVDS made of the dynamic constraints which

link the local regions together and where the results of the local computations play the

role of observations. The Mayne-Fraser algorithm developed in Chapter 4 is sufficient

to smooth the sampled process at the boundaries, and finally the local processor can

perform smoothing from their local boundaries back to the center of each sub-region

using the Rauch-Tung-Striebel algorithm.

In Section 5.6 it is noted that the interprocessor communication step which is used

in the algorithm in Section 5.5 is a nonparallel implementation of the Mayne Fraser

247

algorithm operating on a sampled system. This interprocessor communication com-

putation can itself be performed in parallel. Carrying this parallelization to repeated

levels yields an algorithm where the computations are arranged on a binary tree and

the processors and their communication links are arranged on a hyper-cube. This

algorithm shows the most promise for adaptation for recursive and parallel multi-

dimensional estimation. This algorithm also computes smoothed estimates in in an

amount of time proportional to the logarithm of the number of data points, as com-

pared to the polynomial time required for the other algorithms in Chapter 5.

Chapter 6 considers the problem of smoothing two dimensional systems. The re-

gion is divided into squares of equal size. The initial local processing involves filtering

from the center of each region to the local boundary. Regions are grouped two at a

time to combine local boundary estimates into estimates of larger and larger bound-

aries until the boundary of the entire region is computed. The smoothed estimate

at boundary of the entire region is combined with the estimates of the two smaller

boundaries from which the larger boundary was constructed. Smoothed estimates

are constructed from these smaller boundaries and the process is continued until

smoothed estimates are obtained for the boundaries of each individual sub-region.

Local smoothing is carried out from the local boundary to the center using the Rauch

-Tung-Striebel algorithm. Like the algorithm in Section 5.6 the computation can be

arranged on a binary tree and the processors and their communication links can be

arranged on a hyper-cube. During the interprocessor communication the size of the

state grows geometrically. Although the number of times processors communicate is

proportional to the logarithm of the number of processors, the computation on the

larger boundaries dominate the complexity. As a result it is necessary to find clever

sub-optimal techniques to deal with the boundary computations.

Section 6.4 discusses avenues for suboptimal computation of the filter boundaries

both in the interprocessor communication step and in the local processing steps by

exploiting structure, and sparsity in the error covariance and inverse error covariance

of the process. Through an example we show that indeed both the error covariance

and the inverse error covariance both may exhibit structure allowing us to model the

248

process around the boundary by a moving average process or by a STPBVDS. Also

more traditional methods of exploiting the sparsity such as performing cyclic block

reduction on the ML estimation equations or performing Gauss-Seidel iterations allow

the amount of computation associated with the processing of the large matrices in the

interprocessor communication to be greatly reduced allowing for efficient computation

of estimates of large two-dimensional regions.

7.1 Future Work

There are many avenues or research which remain.

While much is known about the system theory regarding STPBVDS's the theory

regarding STPBVDS's with time varying coefficients is less plentiful, particularly in

the arena of systems whose state dimension varies as a function of tirne.

Work needs to be done in the finite support estimation problem demonstrating

how the statistics and characteristics of the process may lead to reduced computation

times and faster algorithms. By eliminating the need to propagate information by

all of the processors the interprocessor communication time can be reduced and a

tradeoff between smoother performance and computation time will become apparent.

The parallel algorithms are applicable to a variety of statistical environments in-

cluding the deterministic environment. There is therefore the possibility to construct

general algorithms for the parallel implementation of digital filters. The work in this

thesis already represents the parallelization of an acausal filter which is the solution

to the optimal smoothing problem. In essence, if we know the problem for which an

acausal filter is the optimal estimator, all the work has been done to implement this

in parallel. Furthermore the possibility exists to construct parallel and acausal state

observers and parallel implementation of general digital filters i.e., filters which would

not arise in the smoothing context.

The structure of the parallel smoothing algorithms is quite similar to the algo-

rithms for multi-resolution smoothing algorithms described in [26]. This suggests a

strong connection between reciprocal processes and tree processes. In fact, the tree

249

processes as a result are far more general than was originally assumed, and include

higher dimensional processes as a result. Higher dimensional processes modeled on

trees will have the same issues as discussed in Chapter 6, namely that the size of the

state is not constant, and there are several associated computational costs associated

with the states whose dimension varies geometrically. There may be a way of incor-

porating wavelets into the description of reciprocal processes and constructing faster

algorithms as a result.

Although Markovianity was used to derive the parallel smoothing algorithms in

Sections 5.6 and Chapter 6, we note that it was not necessary by the fact that

certain dynamic constraints can be added which do not spoil the the structure of

the algorithm. It would be interesting to find just how general a set of dynamic

constraints will allow the methods used in Section 5.6 compute smoothed estimates.

There is no reason why the multidimensional smoothing algorithm (particularly

when applied to the one dimensional processes in in Section 5.6) cannot compute

Bayesian estimates. While using ML estimation reduces the complexity of the algo-

rithm both computationally, and intellectually, prior information can and should be

incorporated, to eliminate the need for the projection matrices due to lack of estima-

bility of the state based on local data. This may result in replacing the complexity

due to carrying along projection matrices with that involving dealing with correlated

estimates. However pseudo-inverses would be eliminated resulting in computational

savings.

Be

250

Bibliography

[1] Adams, Milton Bernard Jr. , Linear Estimation of Boundary Value Stochastic

Processes, MIT-Laboratory for information and Decision Systems, LIDS-TH-

1295

[2] Adams, Milton Bernard, Alan S. Willsky, Bernard C. Levy, Linear Estimation of

Boundary Value Problems-Part 11. 1-D Smoothing Problems, IEEE Transactions

on Automatic Control, Vol AC-29, No 9, Sept 1984

[3] Adams, Milton Bernard, Alan S. Willsky, Bernard C. Levy, Linear Estimation of

Boundary Value Problems-Part I.- 1-D Smoothing Problems, IEEE Transactions

on Automatic Control, Vol AC-29, No 9, Sept 1984

[4] Kayalar, Selahattin, Howard L.Weinert, Oblique Projections: Formulas, Algo-

rithms and Error Bounds, Math. Control Signals and Systems (1989)2: 33-45

[5] Bello, Martin G., Alan S. Willsky, Bernard C. Levy, and David A. Castanon,

Smoothing Error Dynamics and Their Use in the Solution of Smoothing and

Mapping ProblemsIEEE Transactions on Information Theory, Vol IT-32, No.4,

July 1986

[6] Bierman, Gerald J.,FactoriZation Methods for Discrete Sequential Estimation

Mathematics in Science and Engineering Series, Vol 128, Academic Press, 1977

[7] Levy, Bernard C., David A. Castanon, George C. Verghese, and Alan S. Willsky,

A Scattering Framework for Decentralized Estimation Problems, Automatica Vol

19, No 4, pp373-384, 1983

251

[8] Sebek, Michael, Mauro Bisiaccoand Ettore Fornasini Controllability and Re;;

constructability Conditions for 2D Systems IEEE Transactions on Automatic

Control, Vol AC-33, No.5 pp496-499, May 1988

[9] KuoChung-Chieh, Discretization and Solution of Elliptic PDES: A Transform

Domain Approach, Center for Intelligent Control Systems, MIT CICS-TH-11

Aug 1987 (domain dec)?

[10] Jain, A. K., and E. Angel Image Restoration, Modelling, and Reduction of Di-

mensionality IEEE Trans Comput. No 5, C-23, pp470-476, May 1974

[11] Speyer J.L., Computation and Transmission Requirements for a Decentralized

Linear-Quadratic-Gaussian Control Problem, IEEE Transactions on Automatic

Control, Vol AC-24, pp266, 1979

[12] Willsky, Alan S., Martin G. Bello, David A. Castanon, Bernard C. Levy and

George C. Verghese, Combining and Updating of Local Estimates and Regional

Maps along One-Dimensional Tracks, IEEE Transactions on Automatic Control,

Vol AC-27, No.4, pp799-813, August 1982

[13] Hashemipour, Hamid R., Sumit, Roy, and Alan J. Laub, Decentralized Structures

for Parallel Kalman Filtering, IEEE Transactions on Automatic Control, Vol

AC-33, No-1, January 1988

[14] Morf, M., J.R. Dobbins, B. Freidlander, and T. Kailath, Square Root Algorithms

for Parallel Processing in Optimal Estimation, Automatica, Vol-15, pp. 299-306,

1979

[15] Tewfik, A.H., B.C. Levy, and A.S. Willsky, .4 Ncuy Distributed Smoothing Algo-

rithm, MIT Laboratory for Information and Decision Systems, (LIDS-P- 1501),

Aug 1988

[16] Tewfik, Ahmed.H., Parallel Smoothing for Tirne-Invariant Two-Point Boundary

Value Systems Proceedings of the 27" Conference on Decision and Control

252

[17] Catlin, Donald E.,Estiniation of random States in General Linear Models, IEEE

Transactions on automatic control, Vol. 36, No.2, February 1991

[181 Campbell, S.L., and C.D. Meyer, Generalized Inverses of Linear Transforma-

tions.London: Pitman, 1979

[19] Ljung Lennart, and Thomas Kailath , A Unified Approach to Smoothing Formu-

las, Automatica, Vol. 12, ppl47-157, 1976

[20]

[21] Gelb, Arthur ed., Technical Staff of Analytic Sciences Corporation Applied Op-

timal Estimation MIT Press, Cambridge, 1974

[221 Nikoukhah, Ramine A Deterministic and Stochastic Theory for Two-point

Boundary Value Descriptor Systems, MIT-Laboratory for information and Deci-

sion Systems, LIDS-TH-1820

[23] Nikoukhah, R., A.S. Willsky, and B.C. Levy, Kalman Filtering and Riccati Equa-

tions for Descriptor Systems Proceedings of the 29' IEEE Conference on Deci-

sion and Control, Dec 1990

[24] Nikoukhah, Ramine, Milton B. Adams, Adam S. Willsky, and Bernard C. Levy,

Estimation for Boundary Value Descriptor Systems Circuits Systems Signals Pro-

cess, Vol 8, No 1, 1989

[25] VergheseGeorge, C.,T. Kailath, A Further note on Backward Markovian Models

IEEE IT-25 No. 1, Jan 1979

[26] Chou, K.C., A Stochastic Modeling Approach 11idti-Scale Signal Processing Ph.D

Thesis, MIT, Jun'1991

[27] Fogel, Eli, and Huang, Y.F., Reduced order state estimator for linear systems

with partially noise corrupted measurement, IEEE Transactions on Automatic

Control, Vol. AC-25, No. 5, Oct 1980

253

[281 Levy, B.C., M.B. Adams, A.S. Willsky, Solution and Linear Estimation of 2-D

Nearest neighbor Models Proceedings of the IEEE Vol-78, No. 4, April 1990

[29] Levy, Bernard C., David A. Castanon, George C. Verghese, and Alan S. Willsky,

A Scattering Framework for Decentralized Estimation Problems, Automatica Vol

19, No 4, pp373-384, 1983

[30] Bersekas, Dimitri P., John N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods, Prentice Hall, 1989

[31] Golub, Gene Howard, Charles F. Van Loan, em Matrix Computations Johns

Hopkins University Press, 1989

[32] Faiman, F.W., and L. Luk, On reducing the order of Kalman Filters for discrete

time Stochastic Systems having singular measurement noise, IEEE Transactions

on Automatic Control, Vol AC-30 No 11, Nov 1985

[33] Paige, C.C.,Computer Solution and Perturbation Analysis of Generalized Least

Squares Problems, Math. Comp. #33 pp 171-184

[34] Wall, Joseph, A.S. Willsky, N.R. Sandell, On the fixed Interval Smoothing Prob-

lem, Stochastics, Vol 5 No. lppl-41, Jan 1981

[35]

[36] Weinert Howard L., and Uday B. Desai, On Complementary Models and Fixed

Interval Smoothing IEEE TAC-26, No. 4, Aug 1981

[37] Lainiotis, Dimitrius G.Joint Detection , Estimation and System Identification

Information and Control 19 pp75-92, 1971

254

