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Abstract

Parallel smoothing algorithms are developed for one and two dimensional systems.
The two-dimensional algorithms are completely general and readily extend to the
case of higher dimensions. These algorithms take advantage of the reciprocal nature
(Markovianity) of the processes, and Maximum Likelihood (ML) estimation philoso-
phy to partition a discrete two-dimensional field into subregions where local statisti-
cally independent filtering is performed resulting in locally optimal ML estimates of
local boundaries. Filtering is performed in a radial direction from the center of the
subregion out towards the boundary of the subregion. Subsequently an interprocessor
data exchange step follows where data with precise statistical interpretations are ex-
changed. Finally each subregion can be updated independently and in parallel, while
processing radially inward from the boundary of the subregion towards the center of
each subregion. This algorithm has a tree structure typical of divide and conquer
algorithms and is well suited for implementation on a hypercube architecture. In
addition this recursive implementation has the same structure as the Rauch-Tung-
Striebel Algorithm. Several smoothing algorithms are developed in one dimension
based upon the two-dimensional algorithms and more traditional algorithms suitable
only for one-dimensional smoothing are developed. Both the one and two-dimensional
algorithms have the property that the information communicated between processors
is the optimal estimate of the state of the process based on an appropriate set of
data. As a result a degree of fault tolerance in the smoothing algorithm exists. If a
processor is unable to produce the desired information due to failure, the informa-
tion computed by other processors has a statistical meaning sufficient to allow us the
option of computing the optimal estimate based solely on the available information.
Furthermore, it is a simple task to alter the algorithm to compute the estimate of the
system based on a predetermined subset of the data. This is called Limited Support
Estimation (LSE), and the parallel nature of the algorithms allow LSE schemes to
be implemented efficiently, speeding up our algorithm in cases in which some of the
data contributes only marginally to the accuracy of the smoothed estimate of a given
state. A trade-off between accuracy and time is established, and optimal partitioning
of the data is discussed. To aid in the analysis of the smoothing algorithms, general
recursive estimation algorithms and square root recursive algorithms are developed to
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produce ML estimates which account for the cases of both perfect measurements and
states which are not completely estimable. Common recursive smoothing algorithms
" such as the Mayne-Fraser and Rauch-Tung-Striebel algorithm are developed for the
Separable Two Point Boundary Value descriptor Systems (STPBVDS). STPBVDS
are general acausal one-dimensional systems which are used to construct models of
two-dimensional systems with a radial time coordinate, and a state whose dimension
changes with time.

Thesis Supervisor: Alan S. Willsky
Title: Professor, Electrical Engineering
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Chapter 1

Introduction

With the advent of parallel processing environments comes a corresponding change
in the way algorithms and computations are designed and performed. The Kalman
filter which is both the culmination and the basis of a large part of our knowledge
of statistical signal processing, was formulated as a recursive algorithm in the age of
single processor environments. With parallel processing environments there is much
discussion that recursive algorithms related to the Kalman filter should be abandoned
in favor of iterative techniques for solving linear systems of equations. With advanced
iterative techniques such as multigrid, what was discussion has become cries for the
use of iterative techniques for solving linear systems of equations. Iterative algorithms
tend to parallelize easily, are applicable to a wider choice of linear equations, and
achieve comparable accuracy to other methods of solving linear equations.

There is more however that we may demand from our algorithms. Since the class
of linear systems of equations under study is not arbitrary but quite specific, we can
benefit from our knowledge of dynamic systems and stochastic processes to arrive
at algorithms which reflect this knowledge. This is one of the major advantages
of the Kalman filter. The Kalman filter is important today not only because it is a
recursive implementation, but more importantly because it is formulated as a sequence
of Bayesian estimation problems, each problem producing an estimate with a clear
and precise statistical interpretation. Each stage of the computation is understood

thoroughly. If the computation ends prematurely for any reason, the truncated results

13



have meaning and implications towards the final desired result. With the deeper
understanding gained through knowledge of stochastic processes, we will see that the
issue is not only to find clever ways of partitioning a problem into subproblems to be
computed in parallel but also how to link small well understood problems together
in a manner which represents the solution to larger and larger problems of increasing
complexity. We therefore emphasize the importance that statistically meaningful
information be generated at all points in the course of our computations.

There are many benefits of this approach. Consider a distributed processing and
decision-making environment. Clearly optimal decisions are best made using globally
optimal (smoothed) data. This global information may not be available in a timely
fashion, and therefore it may be necessary to to use local data to make at least pre-
liminary decisions. It is best, as a result, that the local information be processed in a
manner that makes it directly useful for such decision-making. The benefits of gener-
ating statistically meaningful quantities is also important in the parallel computing
environment. As the number of processors increase, the probability of a processor
failure in any interval of time increases. While in some military applications we may
be able to perform all calculations in triplicate and vote out discrepant computations,
this may be too costly in general. We may be forced to carry out our computations
without the data available from a failed processor. This lends support to the no-
tion of performing limited support estimation, i.e. optimal estimation based on some
subset of the data. In addition global information is often not necessary to produce
accurate estimates of the state. Limited support estimation could therefore be a way
to produce accurate smoothed estimates while reducing the computational burden.
Still the estimates produced have precise statistical meaning, as do their correspond-
ing error covariances which provide us with the information needed to asses their
quality. We will show that there is little algorithmic difference between full support
and limited support estimation, with the algorithms which are based upon producing
estimates recursively, and in parallel. This now produces a trade-off between compu-
tational complexity of the algorithm and precise statistical accuracy of the estimates

and therefore it is possible to compute the optimal number of processors, and par-
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titioning of the data given a certain desired level of accuracy. Another reason for
which we are interested in producing precise estimates, is that we would like to be
able to model the effects of the process outside of a local region as being manifested
solely at the boundary of the local region. Statistically it should be the case that in a
parallel algorithm, in each local region all of the external processing can be reduced
to a single measurement of the boundary of a local process. If this is understood then
it could become an important ingredient in producing efficient parallel algorithms for
random processes of arbitrary dimension.

Although a multitude of algorithms exist in one-dimension [13] ,[14], [15], [16],
[29], [11], [12], they in general do not generalize to higher dimensional algorithms.
Algorithms which are applicable to higher dimensions allow us to learn what are the
important similarities between one dimensional systems and their higher dimensional
counterparts. This knowledge should then be able to find applications more generally
in the field of digital signal processing and other related disciplines. The application
to higher dimensions necessitates the use of parallel processing environments. In
two-dimensions the boundary of a process grows at least as the square root of the
size of the region. The boundary provides a notion of the state of the system, and
in addition indicates its complexity. As a result, to manage the complexity of the
system, it makes sense to partition the region into subregions and have individual
processors work on ‘smaller’ problems. What remains is to determine exactly what
each processor computes and how the processors communicate to each other.

The parallel estimation algorithms described here have common characteristics.
First, the data is partitioned among the processors. Local calculations are performed
by processors on their own sets of data. Local information is then exchanged between
processors and this is followed by a parallel post-processing step in which each pro-
cessor updates the estimates on its subinterval to produce the final globally optimal
estimate over the entire data interval. While a variety of approaches have been devel-
oped for various optimal estimation problems [13] ,[14], [15], [16], [29], [11], [12], only
two of these[14], [15] employ a similar data partitioning structure for parallel filtering

and smoothing for causal systems. In [14] a square root algorithm is used for parallel
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filtering on the subintervals assuming perfect knowledge of the state at one endpoint.
This is followed by an interprocessor information exchange and computation step.
This step which is based on a change of initial condition formula in order to correct
for imperfect endpoint knowledge, is similar in structure to the Mayne-Fraser two fil-
ter smoother in order to obtain optimal smoothed estimates at the boundaries of the
data intervals and to allow subsequent paralle] computation of smoothed estimates
within each subinterval. A somewhat more efficient algorithm, with a similar struc-
ture, is described in /citeTewfik. This procedure deals symmetrically with the two
endpoints of each subinterval by initially processing data outward toward and in the
final step inward from the boundary points (essentially using in each interval a joint
model for (k) and z(—k), with the time index k = 0 corresponding to the center of
the interval). The interprocessor exchange step makes use of the so-called partition
theorem [19], resulting again in a two-filter sweep from processor to processor in both
directions to produce optimal estimates at all boundary points.

One issue which needs to be addressed is that of modeling. The basic class
of systems on which we focus for the most part in this thesis are Separable Two
Point Boundary Value Descriptor Systems(STPBVDS’s). These systems are natu-
rally acausal in that the dynamics are descriptor, and the boundary conditions are
independently specified in part, at each end of the interval over which the system is
defined. As we will see, this class of systems is in fact rather large, as we can in fact use
such systems to model the case where the boundary conditions at each end are cou-
pled. In addition, if the dimension of the state is allowed to vary, multi-dimensional
problems are also accommodated. In particular, an advantage of using STPBVDS’s
is that they are able to be solved without the aid of shooting algorithms which most
solutions to two point boundary value descriptor systems (TPBVDS’s) without sepa-
rable boundary conditions require[24],[2], [20]. As we will see, general non-separable
TPBVDS, and multidimensional systems, can be converted to 1-D STPBVDS’s by
defining radial recursions. In particular, for multi-dimensional processes the state is
defined along the perimeter of a square of a given radius. This notion of defining the

state as a function of radius applies in a consistent fashion to the one-dimensional
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systems. As a result filtering a (rectangular) subregion for a two-dimensional system
or an interval for a one-dimensional system involves filtering outward towards the
boundary from the center and back from the boundary towards the center.

STPBVDS have boundary conditions specified at each end of the interval which
are independent both algebraically and statistically. However with the exception of
causal systems, the boundary condition is not specified, completely at either end. In
general only partial information is known. There are times in fact where this partial
information is perfect. In these cases a filtering algorithm would need to be initialized
with an ill-defined covariance matrix because part of the state is known perfectly, and
part is completely unknown.

In well-posed STPBVDS, if the state is estimable given all of the available data,
it may not be estimable given only causal or anticausal data. However in a parallel
processing algorithm, it may not be desirable to propagate a priori information to
each subregion in order to avoid preprocessing. Since the elimination of the a priori
information for a local subinterval processor implies that the state may in fact be
(locally) non-estimable Bayesian estimation is largely abandoned here in favor of
Maximum Likelihood (ML) estimation.

ML estimation is used at each stage of our processing to compute estimates based
on the locally available information. Here as in [23], we essentially adopt the per-
spective that a priori statistics, dynamical relationships, and actual observations all
play the same role, namely as noisy constraints. The use of this formalism has sev-
eral important implications, perhaps most notably in the simplification and greatly
enhanced flexibility it provides us in the interprocessor exchange step. However, let
us first comment on some of the implications for the local processing step.

Recursive ML estimation requires the confrontation of the problem of estimation in
the face of degeneracy, where the linear equations yielding the ML estimate need not
have a unique solution (so that at least some part of z(¢) is unconstrained by available
information) but may yield perfect estimates of other parts of z(t). The framework
for generalized estimation in the static case is developed in [18] (see also [17]). In

[23] the results of [18] are used to develop recursive filtering procedures for TPBVDS
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in the case when all variables are estimable, (so that P is well defined). What we
describe in Chapter 4 are algorithms for optimal STPBVDS smoothing in the general
case. In particular we describe generalizations of the well known Mayne-Fraser and
Rauch-Tung-Striebel algorithms and in fact provide a completely symmetric version
of the first of these in which each of the two filters is initialized with the independent
boundary information available to it. These algorithms in addition to being of interest
in their own right, also provide us with the initial local and final local processing steps
for our data partitioned parallel processing procedures. Three new algorithms for the
middle interprocessor data exchange step are also described for the one dimensional
case. In the multidimensional case, a new algorithm is presented which is highly
parallel, and takes advantage of the reciprocal nature of the process, in order to
efficiently compute globally smoothed estimates of regions of finite dimension. As in
[14], [15], we can view the output of the first step as producing ‘measurements’ of
z(k) at the boundaries. However in the Bayesian approaches of [14], [15], the errors in
these ‘measurements’ are correlated since each local processor makes use of common
prior information. This leads to the comparatively involved two filter procedure
in [14], [15], for exchanging and fusing endpoint information among processors. In
contrast, by adopting the ML formalism we guarantee that the result of out first local
processing step produces independent ‘measurements’ of boundary points. This leads
to an algorithms, similar in structure but far simpler than the approach in [14], or
[15].

Adaptations for these algorithms are provided in the case of limited support es-
timation, and the trade-off between computation and accuracy is discussed. Square
root techniques are discussed in the context of recursive estimation yielding algorithms
which yield better numerical accuracy.

In Chapter 2, a brief comparison is made highlighting differences between Max-
imum Likelihood Estimation and Bayesian Estimation. The machinery needed to
perform estimation when the noise which corrupts the observations have ill-defined
covariances and when the parameters are not fully estimable is established, in both

a standard ML context and a square root context.
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In Chapter 3, separable two point boundary value descriptor systems are discussed.
The condition of separability is examined. STPBVDS’s are diagonalized, and their
Markovianity is established.

In Chapter 4, separable two point boundary value descriptor systems are discussed.
Analytical machinery is developed which allows the construction of general recursive
ML algorithms which are presented analogous to the Mayne-Fraser and Rauch-Tung-
Striebel algorithms in addition to STPBVDS square root algorithms which are also
presented and are analogous to standard algorithms.

In Chapter 5, parallel algorithms are presented which are designed to operate
on a linear array of processors. Past work is discussed and three new algorithms are
presented. These algorithms exploit Markovianity and the ML philosophy to generate
algorithms which are conceptually simpler than other parallel processing algorithms.
Furthermore, a tree topology is possible, which allows extension to processes of higher
dimension.

In Chapter 6 the algorithms of chapter 5 are examined in the context of lim-
ited support estimation. Trade-offs between complexity and accuracy are presented.
Optimal numbers of processors are discussed to obtain specified accuracy goals.

In Chapter 7 the multi-dimensional estimation problem is discussed and paral-
lel algorithms are developed. Examples are presented and suboptimal methods are

discussed.
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Chapter 2

Estimation

2.1 Maximum Likelihood Estimation

As mentioned in the introduction the development of recursive algorithms in this
thesis involves successive ML estimations to recursively compute estimates of the
state based on some set of data. The formulation of the Kalman Filter follows a
Bayesian philosophy. Here we choose an ML estimation philosophy because it allows
us to deal with a more general class of problems. As developed in [23] Bayesian least
squares estimation can be converted to ML problems by viewing prior statistics and
noisy dynamics as additional measurements. In the linear estimation problem the

likelihood function Py.(y.|z,) is derived from the observation

y=Hz+v (2.1)

Pyiz(yolzo) = Po(yo — Heo) (2.2)
P, = N(0,R) (2.3)

y € RP (2.4)

z € R (2.5)

The maximization of the likelihood function is well-defined when R has full rank

and H has full column rank. The solution obtained is equivalent to minimizing
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vTR~'v subject to the constraint that y = Hz + v. The noises are therefore being
estimated to be the smallest disturbance consistent with the observation equation

and the statistics. With the solution 9, & can be solved from
Hex =y -9 (2.6)

If H does not have full column rank then # cannot be determined uniquely. The
projection of x in the nullspace of H is unconstrained. In a minimum norm maximum
likelihood estimation problem, we choose this projection of = to be equal to zero.
Regardless of how this projection of z is set, any & solving H = y — ¢ is an ML
estimate.

Two concerns remain. The first is the event that the observation noise has a
singular covariance. There are several ways of dealing with this. One is to separate
the noiseless part from the remainder of the observation.

Let the matrices S, and S, satisfy the following

Spv=0 (2.7)
S,RST >0 (2.8)
Sp
det #0 (2.9)
Ss

then, the problem can be reformulated as solving for = given the observations

S,Hz = S,y (2.10)
S,Hz = S,y+ S (2.11)

which is equivalent to minimizing v7 ST(S$,RST)~1S,v subject to the constraints (2.10),
and (2.11). This is done explicitly in the square root algorithm in Section 2.2.

An equivalent way to deal with the singularity of the observation noise is to model
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the noise as being of reduced dimension with identity covariance

y=Hz+ Lv (2.12)

and the solution can be obtained by minimizing vTv subject to the constraint y —
Hz — Lv = 0. This constrained optimization problem can be computed using the

method of Lagrange multipliers where
¢ = argminv”v + AT(y — Hz — Lv) (2.13)

where LLT = R and ) is the Lagrange multiplier. The solution to this is given by

FarIREH =

Both methods yield equivalent results.

solving

Moving further we consider the case where the observation has the form
y=Hz + Lv (2.15)

yet v has only an information matrix associated with it E[vvT]~! = S. Note that if
S is singular, part of v is therefore completely unknown while a part of Lv is known
perfectly if L has a left nullspace. The ML problem is equivalent to minimizing
vTSv + AT(y — Hz — Lv) which is equivalent to solving

-S LT o v 0
L o H{|) =y (2.16)
0 HT o T 0

By placing S in a diagonalized form it can be shown to be equivalent to (2.14). Let

s=| " 2.17
"[0 s} (2.17)
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where § is invertible, and

v = [?} (2.18)

then solving for the ML estimate of z is equivalent to minimizing $75% 4+ AT(y —
Hz — Tv — [#). Since T is completely unknown this can be looked at as an attempt

to estimate T also. The estimate of = is obtained through solving

H T7(1A y
HT 0 0 z| =10 (2.19)
T o0 of|w 0
Given observations of the form
y=Hz +Iv + Lv (2.20)

where 7 is unknown we may choose to eliminate the effect of ¥ on our computations

since it provides no information about z. Premultiplying by T* where T°T = 0 and

T
[__ J_] has full rank yields
L
T'y=T'He+I'Lv (2.21)

This returns our observations to the form of equation (2.1). We will see that in the
recursive estimation context that L is presented in the form of a projection matrix
which makes T* particularly easy to compute.

Finally the last situation to consider is in the event the matrices in (2.14), (2.16),
and (2.19) are not invertible. This will occur under two conditions. The first is the
case where we have redundant perfect information, and the second is when the state

is not completely estimable. The standard ML problem which we wish to solve has

e

the form

R H
HT 0
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If we assume that the pseudo-inverse of the matrix in (2.22) has the form

1
R H a
= A (2.23)
HT 0 v 6
Then we wish only that 4 be specified adequately to generate the appropriate ML
estimate and if we wish to use the the form for the covariance provided by Nikoukhah

[23] we require

§ = —yRAT (2.24)

Nikoukhah [22], [23] considers the case where z is fully estimable, where H has full
column rank, but R may be singular. In this case, the symmetric indefinite matrix
in (2.19) is invertible except under the condition where there are redundant perfect
measurements. Redundant perfect measurements may be deleted without affecting
the estimate or its covariance. Nikoukhah shows that by allowing the pseudoinverse
to satisfy AXA = A that +, though not unique due to the non-unique ways in which
redundant perfect information may be used, will always provide the ML estimate of
z, and § which is given by (2.24) is unique, and yields the covariance of the estimate.

If the state z is not estimable, the matrix in (2.19) is not invertible and the
condition AX A = A is not sufficient to determine a parameter 4 which will produce
a unique estimate, nor will § be interpretable as the error covariance of the estimate.
Since the part of = in the nullspace of H is not estimable, any specification of this
value is allowed. To specify a unique estimate, we set this part of the estimate to
zero yielding a minimum norm ML solution. Given a 4 which yields a minimum
norm ML solution, we desire § = —yR+T, allowing us to use the same form for the
error covariance as used in Nikoukhah [23]. To this end we require the Moore-Penrose

pseudo-inverse, which is uniquely given by the following four conditions.

Condition 1: AXA=A (2.25)
Condition 2: XAX =X (2.26)
Condition 3: AX = (AX)T (2.27)
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Condition 4 : XA=(XA)T (2.28)

We will indicate the Moore-Penrose pseudo-inverse with the # symbol. Pseudo-
inverses which have only a subset of these conditions are referred to by the number
corresponding to the properties which they possess. For our purposes, Condition 1,
guarantees a solution to our ML problem, which is unique if = is estimable. Condition
4 guarantees that v is adequately spéciﬁed to yield the minimum norm ML estimate.
To properly specify 6 both Condition 2, and Condition 3 are required. Another
consequence of using the Moore-Penrose pseudo-inverse is that in (2.23), 3 = ~7T.

If we consider further the following product

R H
HT 0

R H PO
= (2.29)
HT 0 0 P,

we find that the use of the Moore-Penrose pseudo-inverse results in symmetric pro-
jection matrices. The projection matrix P, projects onto the estimable subspace for
the vector z, while I — P, which we will denote by P, projects onto the nullspace of

H. What results is that the ML estimate which is given by

T S#
X 0 R H ]
tyilyl = =y (2.30)
I HT 0 0
satisfies
Eymr = Pox + g (2.31)
where P, is given by
T #
0 R H H
P, — — vH (2.32)
I HT ¢ 0
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and the error covariance for P,z given by

T #
0 R H 0
¥, = — (2.33)
I HT 0 I
satisfies
Y, = P,I, P, = Cov(&épmp — Pe) (2.34)

The ML estimate obtained by using the Moore-Penrose pseudo-inverse is the minimum
norm ML solution [18]. Before continuing further we will consider an example to

show explicitly the computations involved with general ML estimation. Suppose

observations of a random vector = are given by

- o -
Y1 1000 M
L2
y2|=11 100 + | v, (2.35)
T3
Y3 0110 v3
-m4-
where the following hold
E[v,vT] =0 (2.36)
Elvyvl] >0 (2.37)

and vs is a completely unknown parameter. In constructing the ML estimate of
z based on the measurement y there are a few observations to make. The first
consideration is that the observation noise v3 is completely unknown. Since there is
no a priori information about vj, all observations which are corrupted by vs cannot
be used, because there is no way to infer anything about  if there is no information

about the observation noise. Premultiplying equation (2.35) by T" which is given by

. |1o00
It = (2.38)
010
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as in (2.21) yields

Ty
y 1 000 T v
Y= Y (2.39)
Y2 1 100 T3 Vg
b z4 -
The solution is given by
] JT . E L
0 0 00 0 01000 7
EN 0000 011100 ¥s
Zs 1000 110000 0
_ (2.40)
T3 0100 010000 0
2 0010/ (000000 0
(0001] Joooo0o0o0] |o0]
which after the evaluation of the pseudo-inverse yields
) ST . T -
0 000 0 01 -1 00 Y
EN 0000 0 00 1 00]|]|y
Ty 1000 1 00 0 0O 0
- (2.41)
T3 0 1 0O -110 1 00 0
| 2] |00 10 0 00 0 00]]o0
0001 0 00 0 00][0
The estimate as in (2.31) is given by
(1 000][z] [ w
0100 z -
2| _ Y2—U (2.42)
0 000 T3 0
] 0 000 1| %4 | i 0 ]

where the square matrix in (2.42) is the projection matrix P,. The covariance is given
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” 100 0][a 0000
- 0100 0100
S, =Cov || | - 2l = (2.43)
0 0000/ 0000
| o | [oo0o0o]|e]] [0000]

Note that P.Y P, = %,.
The estimation machinery developed so far is adequate for the measurement up-
date step of the filters discussed in Chapter 4. However the prediction step forces us

to consider the following linear transformation
z= Az (2.44)

where z is not completely estimable. Equation (2.44) can be rewritten in the following
form

z=AP,z + AP,z (2.45)

where P,z is the part of  which is estimable and P,z is the part of z which is not.
The minimum norm ML solution %377 cannot be a function of AP,z. We therefore
seek the largest rank symmetric projection matrix P, whose nullspace contains AP,.

As a result, P,A = P,AP,. Such a matrix is determined by
P. = (AP AT)1(AP,AT) (2.46)
where a (1,4) pseudo inverse is indicated. As a result,
P,z =P,AP,z (2.47)

and

2= P, A% » (2.48)

Equivalently the part of equation (2.44) which provides no information is elimi-
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nated. Specifically the equation

P,z =P, Az (2.49)

is not used in the estimation of 2. The error covariance is given by

¥, = P, AL, ATP, (2.50)
As an example, suppose that
Z1
z1 11 1 0
)
=11 -10 (2.51)
T3
Z3 10 0 0
-3 w4 -

where the z; are those in equation (2.35). From (2.46) the projection matrix P, is

given by
130
119 (2.52)
0 01
It is a simple task to verify that
Ea Y2
2| =| v (2.53)
23 )1
while the error covariance computed via (2.50) is given by
110
S.={110 (2.54)
0 00

Before continuing with an examination of square-root estimation techniques, con-
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sider the computation involved in the ML solution. Let the system we wish to solve
be AX = B where X, and B are n x g matrices because we need to recover the error
covariance, and in some cases the associated projection matrix. If A is invertible thc‘:rv;
X can be solved in Z(n, g) floating point operations (flops) using gaussian elimination
where Z(n, g) is given by

I(n,g) = 2n%/3 + 2n%g (2.55)

The estimates for specific computations were obtained from Golub and Van Loan[31].
The function 7 is one of a series of polynomial function we will use to define the
number of flops required to perform different estimation procedures.

If the inverse of the matrix does not exist, then a (1,4) pseudo-inverse for the
matrix in (2.22) which computes the minimum norm solution can be easily computed
with the aid of the QR factorization. Specifically, the QR factorization with pivoting

can be used to generate a lower triangular matrix L given by
L =TAUT (2.56)

where II is a permutation matrix, and U is an orthogonal projection matrix. The

system AX = B can be rewritten as

L{UX} =1IB | (2.57)

Ly O U, X II,B
= (2.58)
Ly 0 U, X 1I,B

The pseudo-inverse of L is easily computed, and is given by

Lt o
0 0

(2.59)
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The solution to the problem is therefore given by

U1X - LI"IIILB (2.60)
.X =0 (2.61)

If the rank of A is equal to r then the the number of computations required to compute
the QR factorization is given by 4[n?r — r?n + r3/3] flops. Solving (2.60) for UX can
be performed in gr? flops. To recover X from UX requires an additional 2gr(2n — r)

flops. The total flop count is given by
E(n,g,7) = 4(n’r —r’n +7r%/3 + grn) — gr® (2.62)

To compute the Moore-Penrose pseudo-inverse, a complete orthogonal decompo-
sition [31] is required. A complete orthogonal factorization results in the factorization

T = QAUT where Q and U are orthogonal matrices, and T has the following form

T = (2.63)
0 0

where T, is invertible. In addition if QR factorizations are used to compute this
complete orthogonal factorization, T3, is triangular. The system AX = B can be

rewritten as

T{UX} = QB (2.64)
T O U0, X B
11 1 _ Q1 (2.65)
0 0 U, X Q:B

The pseudo-inverse of T is easily computed, and is given by

[ it o0 } (2.66)
0 0
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The solution to the problem is therefore given by

X = T;'Q.B (2.67)
UpX = 0 (2.68)

The factorization requires 8[n?r —r?n+r3/3] flops. Solving (2.65) for UX requires gr?
flops, and recovering X from UX and the construction of QB each requires 2gr(2n—r)

flops. The total flop count is given by
M(n,g,7) = 8(n’r — r’n 4+ 13/3) + gr? + 4gr(2n — 1) (2.69)

As a result when these counts are applied to the ML problem in (2.22), with the
original definition of n as the dimension of z the invertible case yields Z(n + p,n + 1)
flops where we have substituted n+1 for g because the covariance and the estimate
can be obtained from

R H A =B y O

= (2.70)

HT 0 T Y 0 —I
Furthermore, we may divide the computation into ‘on-line’ and ‘off-line’ computation.
Off-line computations involve computing the covariance and projection matrices, and
on-line computations involve computing the estimate. When the state is estimable,

the off-line computation is given by

r T T -1
0 R H
Tl = (2.71)
-3, I HT 0
when this inverse exists, and requires Z(n + p,n) flops. The on-line computation is

given by

Eurlyl = vy (2.72)

and requires 2pn flops.

If the matrix is not invertible but the state is still estimable then solving (2.70)
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involves £(n + p,n + 1,r) flops where r is the rank of the matrix. The off-line

computation has the form

T T #
~T 0 R H

-3, 1 HT 0

Il

(2.73)

and requires E(n + p,n,r) flops and the on-line computation given again by (2.72)
requires 2pn flops.
If the state is not estimable then the appropriate projection matrix must also be

computed. It can be computed from the following

R H||X 0o g y H 0

(2.74)
HT 0 ||z P 3, 0 0 —I

]

The ML solution therefore requires M(n + p,n +1,r) flops. The off-line computation
is given by (2.73) and
P, =+vH (2.75)

which together total to M(n + p,n,7) + 2n?p flops. The on-line computation is
2pn. Often it is difficult to know in advance what the rank of the matrix will be.
As a result substituting » = n + p is a useful overestimate of the work required to
perform the necessary computations. As a result we will assume that (2.70) requires
E(n + p,n+1,n + p) flops and (2.74) requires M(n + p,n + 1,7 + p) flops.

In solving the estimation problem associated with equation (2.44), the computa-
tions are quite explicit. Let A € R™*™ where m is the dimension of z and n is the
dimension of z. Equation (2.46) requires two matrix-matrix multiplies and a (1,4)
pseudo-inverse computation. Equation (2.50) require three matrix multiplies where
the quantity P,A will be saved to compute equation (2.48) which requires only a
matrix-vector multiply.

U(n,r) = 6mn® + 4m?n + E(m,m,r) flops are needed to compute the projection
and covariance. The on-line computation is given by 2mn flops. If z is estimable

then equation (2.48) requires one matrix vector multiply and (2.50) requires 2
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matrix matrix multiplies yielding V(n) = 2mn? + 2mn? flops for off-line computation -~

and 2mn on-line.
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2.2 Square-Root ML Estimation

In Section 2.1, several issues were handled automatically for us. The case where
perfect measurement information is present did not have to be addressed as a special
case except when there are perfect redundant measurements. In that case the matrix
in (2.22) is not invertible. Since we want to be able to include the case where the
state may not in fact be estimable, the lack of invertibility due to redundant perfect
measurements is no longer a serious consideration because the lack of invertibility
due to non-estimability requires us to use a much stronger pseudoinverse.

There is extensive literature on the square root information filter. Here we consider
its adaptation to both the case of non-estimable states and perfect measurements,
which imply ill-defined covariances and information matrices. The square-root ML
estimation algorithm introduced in this section makes heavy use of the QR factor-
ization to partition the state into three parts, the part of the state which can be
estimated perfectly, the part of the state which has we an invertible covariance, and
the part of the state which cannot be estimated. It is based on the algorithm provided
by Bierman[6] and it requires a total of two QR factorizations for our general ML
estimation problem. Another square-root ML algorithm is provided in [33] and it of-
fers the advantage that the case of singular covariances is easily handled; however the
algorithm as presented in (33] requires two QR factorizations for the case where the
the state is estimable, and an additional QR factorization would have to be included
to account for the case where the state is not completely estimable.

Instead of the implicit way in which Section 2.1 handles perfect information, we
choose a ‘reduced order’ estimation algorithm[32] in which we deal explicitly with
perfect measurements separately and explicitly eliminate the non-estimable portion
of the state which is in the nullspace of the observation matrix H. To illustrate the
ideas behind this approach, let us return to the simple example in Section 2.1. In
equation (2.39) note explicitly that estimation of z3 and x4 is not possible since the

measurement y3 was removed, and the remaining measurements are not influenced
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by z3, or 4. The problem can be reduced again to the form

S P e I (2.76)

Y2 11 T3 vz
The problem has now been reduced to the case where the observation noise covariance
is well-defined, which implies that all of the observations y are useful, and to the case
where the observation matrix, H has only the origin for its null space implying that
the states to be determined are indeed estimable. Since vy = 0, clearly &1, = ¥;.
Information from y; cannot improve upon this estimate, which was made in the
absence of noise. The remainder of the problem is one of estimating z, given the
observation y; — z;. This is a well-defined ML problem yielding &smi = y2 — #1mi-

The part of the state which can be computed from perfect data has zero covariance.
The part of the state which has not been estimated have an infinite error covariance,
and the remaining part of the state has a positive definite error covariance. This
example was particularly easy because the coordinate system made it easy to identify
these three components of z. In a square-root implementation, the coordinate system
of y and z are rotated to this preferred coordinate system via orthogonal transforma-
tions derived from the QR factorization to efficiently, and robustly compute the ML
estimate.

Techniques for computing the QR factorization are given in [31]. Here we exploit
the QR algorithm to describe ML estimation under a variety of conditions which
allows to implement in Section 4.10 a causal Kalman filter for so-called separable
systems. The same techniques will carry over to the Mayne-Fraser, and Rauch-Tung
Striebel algorithms.

The following example treats the ML estimation problem as needed in preparation
for the square root filtering algorithms in Chapter 4. A standard treatment of square
root algorithms is provided by [6]. The first example to consider is the standard ML
estimation problem which is to estimate a random vector where the observation noise
has a well-defined, and full rank, covariance. In addition, the observation matrix, H

in equation (2.77), has only the origin in its right null space. We will call this the
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standard ML estimation problem. Asin (2.1), let the observations be given by

y=Hz+v (2.77)

where

E[vvT] = RV/2RT/? (2.78)

By normalizing the noise, the original problem can be written in the following manner.
R'*y=R'*Hz + R/* (2.79)

where

E[RY?pTRTI? = T (2.80)

Any orthogonal matrix Q which premultiplies the normalized noise R~'/2v will not
change the variance of the observation noise in (2.79). By applying the QR algorithm
we can find a matrix Q such that the product QR-Y/2H is upper triangular. Unless

the matrix is square, the lower portion of this matrix will be all zeroes.
QR %y = QR™Y?Hz + QR "% (2.81)
By making obvious substitutions, equation (2.81) can be written as
d= Az + w (2.82)

where again the matrix A is upper triangular. This can be rewritten as

d A w
0 I PV (2.83)
dz 0 Wo

Since the noise is normalized, the two noises w; and w; are independent. Since the

37



matrix A; is of full rank, the ML estimate is thus obtained by solving
di = A1Zpmr (2.84)

Since A; is uppef triangular and square, &p7 can be determined easily without re-
course to further processing of the matrix A;. In addition since the noise w; has the
identity for its covariance A;! can be identified as the inverse of the square root of
the estimation error covariance for z. By premultiplying equation (2.84) by AT it can

be seen that the solution given by this method is
vz = (H'R'H)"'HTR 'y (2.85)

which is the standard ML solution.
A different approach to square-root ML estimation is presented in [33]. Let the

observation in (2.77) be written as

y=Hz+ Lv (2.86)

where v has identity covariance so that L = R%. Then by applying the QR factoriza-
tion directly to H yields

Y H L
1 1 + 1
Y2 0 Lz

I
8

v (2.87)

An orthogonal matrix Z can be computed to multiply v such that (2.87) has the form

(4]
H 0 Ly L
n _ 1 - 11 12 v (2.88)
Y2 0 0 0 Ly
V3
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where

L5
Zv = | v, (2:89)

V3

Here we see that v; is orthogonal to the estimate of z, v; will contribute to the

estimation error, and v; is directly observed. The estimate is given by
& = H'(y1 — LunLstys) (2.90)

Note that L could be singular in this formulation, and that the square-root of the error
covariance is given by H;'L;;. In this algorithm, normalizing the noise is avoided,
but two QR factorizations are required. To adapt this algorithm to the issues which
will be presented, in this section, three QR factorizations would be required.

The standard ML estimation algorithm, formulated in equations (2.79)- (2.83), is
too restrictive for the estimation needs in this thesis. The first concern is that the
covariance of v is not necessarily normalizable. This may happen if there are obser-
vations which are known perfectly. Furthermore in the problems we will encounter
v is a parameter which corrupts our observation, and parts of v may be unknown as
in equation (2.20). Furthermore, if = is not fully estimable then A4, is not invertible,
and pseudoinverses need to be considered again. The following algorithm accounts
for all of the potential problems in the preceding discussion while maintaining the
same essential properties of the algorithm described above.

Returning to the observation equation (2.77), for purposes of recursive estimation,
we interpret v to be a vector which is partly unknown, and a part of it is identically
zero. In Section 4.10 v will include the estimation error from the state estimated at
an earlier time step. We will assume that the value of the ML estimate of v is zero.
In contrast to the previous example, H is no longer restricted to have only the origin

in its right nullspace . The availability of an orthogonal matrix § is assumed, which
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can be partitioned as follows
T _
sT=|st st 7] (2.91)

where S,v is identically zero, and the covariance of S,v is positive definite and is
equal to Ry. The vector S,v is completely unknown. In the recursive estimation
problem S is computed recursively and falls out directly from the estimation process.
The portion of the observation vector which corresponds to the unknown vector S,v
will not count as an observation since it provides no information about z, and it will
not be used in the estimation procedure. This is equivalent to the step in (2.21)
where L} is used to eliminate the ‘observations’ which contain no information. In

the following treatment, all invertible matrices will be given a zero subscript.

If (2.77) is premultiplied by L} = [ST ST]T yielding

S S 0
Ply=| 7 |Hz + v (2.92)

S, S, S,
then the QR factorization can be used to obtain the parts of z which can be de-
termined perfectly, the part which can be determined with full rank covariance, and

the part which is completely unspecified by (2.92). This is performed by finding the

orthogonal transformation U which lower triangularizes the matrix [S, S,]THU in

Upz
Sp S,HUT 0 0 0
y= Uz | + v (2.93)
S, S,HUZ' S,HUT 0 S,
U.x
The matrix U has been partitioned as follows
T _
vt =|ur ur ur (2.94)

where U,z is known perfectly, and the error covariance of U,z is invertible and is

equal to ¥o. The vector U,z is completely unspecified. If there are no redundant
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perfect measurements, U, can be determined directly from (2.93) because S,HUT is
lower triangular. If there are redundant perfect measurements, then only a subset
of Spy is needed to specify U,z. More generally, any left inverse of S, H Ug' may be
used to compute U,z. After U,z has been computed, U,z can then be determined by

normalizing the noise in (2.93)
Ry'*S8,(y — HUF {Upgmr}) = Ry/*S,(HUT {U,z} + v) (2.95)

The random vector By '/*S,v has the identity for its covariance. The QR factorization
can be used to solve this ‘standard’ problem by computing the orthogonal matrix J

to upper triangularize the matrix JR;I/ZS,HU,T in

TRGS,(y ~ HUT{(Uybr}) = R S.(HUT (U} +0)  (296)
where
2—1/2
JREIMS,HU,T — 0 (297)
0

contains the square root of the inverse error covariance of U,Zpz.
Earlier we stated that equations including S, provided no information about .
As a result in equation (2.93) we did not include §, in the premultiplication because

in the equation

Upx
Sw=| S.HUT S.HUT S.HUT || U |+ S (2.98)
U.x

we find that the term S,v is completely unknown and occurs only in this equation.
No algebraic constraints are placed upon z by this equation. This equation is only
useful if we desired to estimate S,v in addition to z.

In summary we have used two QR factorizations, to recover the estimate of the
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estimable part of z and its projection P, from equation (2.93) which is given by
P, = [ ur ur ] (2.99)
In addition, the covariance of the estimable part of the estimate is given by

Cov(Pyz — &) = ¥ = UTE; LU, (2.100)

The amount of computation nedded to compute &7z is a function which depends on
the rank of S,, and the rank of U, because these ranks determine the amount of work
involved in performing the QR factorization which determines J. The QR factoriza-
tion which constructs U involves at most 2n%(p — n/3) flops, and the factorization
which constructs J requires at most 2n?(p—n/3) flops. The normalization of the noise
requires at most p?n flops and solving for = requires n? flops. The premultiplication
by S required at most 2p’n flops. The total flop count is 4pn? + 3p?n — 4n3/3

Again for the purposes of considering the update step of the filter we wish to

examine (2.44) which is given again as follows:

z= Az (2.101)

where A € R™™. Given the coordinate transformation used to estimate = given by
U partitioned similarly to S in (2.91), and the covariance of U,z given by X, ,, the

QR factorization is used to find the orthogonal matrix @ to upper triangularize the

product
G=Q[avr AT auT | (2.102)

As a result () can be partitioned as

Q=|or o Qgr (2.103)
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It then follows that

Qprz = QuAUT{U,z} (2.104)
Qz = QAU {Upz} + Q. AUT{U,z} (2.105)
Quz = QAU {U,z} + Q AUT{U,z} + QuAUT{U,z} (2.106)

The vector @,z can be determined perfectly, and the vector @,z can be estimated
with a full rank covariance. The vector ),z cannot be estimated at all since Q,AUT
has full column rank and U,z is completely unknown. Since we are computing square
roots of covariances and inverse square roots a further computation is necessary to

compute the square root of the covariance of Q,z. By noting that Q,z is given by
Q.2 = QAU {Upa} + QAUTEY2{S:1/2U,3} + QAUTSYX{S;Y/U,5}  (2.107)

The error covariance of the estimate is computed via the QR factorization to find the

orthogonal matrix T which lower triangularizes the matrix
[ S ] - Q,AUTTL T (2.108)

In summary, we have obtained the perfectly known parts of the estimate, Q,2Zpr. In
addition the remainder of the estimable portion of the estimate is given by Q,2umz,
and the square root of the inverse of its covariance by £1/? in (2.108). The matrix
[QZ' Q7] representing parts of coordinate rotations used to perform estimation, is the

square root of P,, specifically

P — [ QT Qf } @ (2.109)
Qs
The remainder of the vector is completely non-estimable. Finally, the minimum

norm, minimum variance, estimate of @), is zero. Note that since we are performing

norm preserving, i.e. orthogonal transformations, setting Q.2 to zero is the correct
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- operation to perform as the resulting estimate for z in its original coordinate system
will indeed have minimum norm. The product in (2.102) requires 2nm? flops, and
the computation of @ and Q{AU} requires at most 4n®/3 + 2(m — n)n? flops. To
obtain ()2 requires at most nm and the computation of ¥, requires at most 4mn? —
2n%(m + n) + 4n®/3 + nm? yielding a total of —4n3/3 + 4mn? + 3nm? flops.

The matrices J and T which are instrumental in determining the covariances,
along with U and @ show that there are two QR decompositions associated with
each estimation step. In the presence of perfect information and states that are not
completely estimable the QR techniques will be of reduced dimension. In Section 4.10

the QR techniques will be incorporated into the forward maximum likelihood filter

(FMLF).
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Chapter 3

Two Point Boundary Value

Descriptor Systems

In order to perform smoothing on multidimensional systems, a model is needed which
is more general than the standard causal systems. The systems on which we focus on
in this thesis are called Two Point Boundary Value Descriptor Systems (TPBVDS’s)

and have the following form.

Ek+1:c(k + 1) = Ak:l:(k) + Bku(k) Ko S k S Kl -1 (3.1)
EKow(KO) = AKla:(Kl) + BK1u’(K1) (3'2)
y(k) = Crz(k) + (k) Ko<k < K, (3.3)
where
z(k) € R™ (3.4)
B, € R®**™k (3.5)
w(k) ~ N(0,I) (3.6)
r(k) ~ N(0,Ry) (3.7)

where Ej, Ax, and C} are compatibly defined but not necessarily full rank matrices

and the noises u(k), and r(k) are independent sequences. In this chapter it is assumed
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that our TPBVDS is well-posed. Allowing ) and Ay to be rank deficient implies that
z(k) does not have a recursive definition. These systems are interesting for several
reasons. They arise naturally in the case of discretization of partial differential equa-
tions (pde’s) in two dimensions and boundary value ordinary differential equations in
one dimension.

General TPBVDS’s create problems for estimation because the boundary condi-
tion links the state at each end of the interval. For example, as developed in [22] the
Hamiltonian is a TPBVDS which relates the smoothed estimate of the state z(k) with
the smoothed estimates at neighboring points with the help of auxiliary variables )‘(k)
which are appended to the state which represent the complementary process[36},[3],
or which represents Lagrange multipliers used in solving the optimization problem
required to solve for the optimal estimates. The dynamics of the Hamiltonian associ-
ated with a STPBVDS can be decoupled into two filters which propagate in opposite
directions. This decoupling is called diagonalization. For general TPBVDS’s however,
the associated Hamiltonian cannot be ‘diagonalized’ into two independent filters, as
the boundary conditions of the two filters cannot be decoupled. Shooting methods
[20] are then required to solve the equations of the coupled filters. The result is that
the filters which are involved in the shooting method of solving the Hamiltonian can-

not be directly interpreted as providing estimates of the state based on any particular

set of data.[22],[24]

3.1 Separable Two Point Boundary Value Descrip-
tor Systems

The class of Separable Two Point Boundary Value Descriptor Systems (STPBVDS’s)
are equivalent to the full set of TPBVDS’s yet avoids the aforementioned problems.
STPBVDS’s have a form given by

Ek+1$(k + 1) = Ak(l!(k!) + Bku(k) Ko S k S I{l -1 (3.8)
EKOZC(KQ) = BKo_l'lL(Ko - 1) (3.9)
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0 = Ag, (K1) + Bg,u(K1)
y(k) = Cra(k) +r(k) Ko<k < K (3.11)

Here the boundary conditions are independent both algebraically, and statistically.
STPBVDS’s are of interest for a variety of reasons. One is that, as we will see, any
TPBVDS can be expressed as a STPBVDS. Also, the Hamiltonian associated with
the estimation problem is an STPBVDS. When this Hamiltonian is diagonalized, the
resulting forward and backward propagating filters have independent boundary condi-
tions, and shooting is no longer required. Furthermore the separable form allows the
solution to the smoothing problem to be easily formulated in an ML framework with-
out the benefit of the Hamiltonian. Another reason which will also be demonstrated
is that the filters associated with the smoothers of STPBVDS produce estimates of
the state. Finally all STPBVDS are Markov.

If (3.9), and (3.10) are combined into one equation one concludes that STPB-
VDS’s are a subclass of TPBVDS’s. Continuing, we will show that STPBVDS’s
are TPBVDS’s whose boundary condition can be split into two independent bound-
ary conditions. One will be specified at z(Ky), while the other will be specified at
z(K1). In the following we assume that — Ko = K; = K. Given the TPBVDS in
equation (3.1), (3.2), (3.3), and (3.8), the system is separable [1], [22] if

ET {BxBY} 'Ag =0 (3.12)
To see what is implied by the condition of separability, consider the equations

E_gxa(—K) = Agz(K)+ Bxu(K) (3.13)
u(k) ~ N(0,I) (3.14)

and (3.12). Premultiplication of equation (3.13) by ET { Bk BE}~!, and AL {BxBEL}~!
yields

ET {BxkBY} 'E_gz(—K) = EXx{BxBL} ' Bxu(K) (3.15)
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AL{BgBY} 'Age(K) = —AL{BxBE} ! Bxu(K) (3.16)

where, thanks to (3.12) the noises on the right hand sides of equations (3.15) and

(3.16) are independent. If we define a projection matrix P, given by
P.= E_g(ETx{BxBY} 'E_g)'ET{BxB%}™* (3.17)

where a generalized inverse satisfying At AA' = A is indicated [18], then
equations (3.15), and (3.16) may be given by

E_gxz(-K) = P.Bxu(K) (3.18)
_Agz(K) = (I - P.)Bxu(K) (3.19)

where the additional equalities

PABkBx} (I - P)* =0 (3.20)
P.E.x =E_g (3.21)

P.Ag =0 (3.22)

(I-P)E_gx =0 (3.23)

(I - P.)Ax = Ax (3.24)

are satisfied. The existence of any matrix P, satisfying (3.18) through (3.24), allows
separability to be defined in terms of Bx BE instead of {BxB%}~*, and relieves us
of the restriction that Bx B% be invertible. Furthermore we can define B_ju(—1)
by B_iu(—1) = P.Bgu(K) and the TPBVDS can be identified with the STPBVDS
model in equations (3.8), (3.9) and (3.10). Separability is the ability to describe the
boundary condition as separate independent boundary conditions, one at k = 0, and
at k = K. In addition, the measurements of the boundary must also be independent

observations of the initial and final state.
Earlier it was stated that TPBVDS can be represented as STPBVDS. This fact

was demonstrated by Adams [1] for the case where E;, = I. Separability was con-

48



nected to the generation of a causally equivalent model to the acausal TPBVDS. In
this section, we will generate a STPBVDS from a TPBVDS without constructing
a causal equivalent. Before doing so, we note that Nikoukhah showed that TPB-
VDS’s can be represented by STPBVDS’s of double the dimension but over half the
time interval[22]. Specifically, if we set —Ko = Ky = K in (3.8), then Nikoukhah’s
separable representation for the TPBVDS given by (3.1) is written as

A o 2(k)
0 B || 2=k

N [ By 0 } [ u(k) j|
0 "'B—k-l ‘U.(—-k - 1)

0< k< K, (3.25)

Erpr O
0 A

z(k+1)
z(—k-1)

with the boundary condition (3.2) included in

I -1 ][ (+0)
0 0 z(—0)

This boundary condition is separable and algorithms which can operate on separable

0 0
Ex Ak

z(K)
z(—K)

(3.26)

[ Bru(K)

systems can in general be applied to non-separable systems by using this representa-
tion.

In the event it is undesirable or inconvenient to augment z(k) with z(—k), it is
still possible to construct an STPBVDS by essentially augmenting z(k) with z(Kp) or
z(K1). Given any well-posed system of the form (3.1), we can refer to the projection
matrix (3.17) to facilitate the construction of a separable system. Let Ko = 0, and

K, = K. The boundary condition has been decoupled into two equations

E_xa(—K)+ P.Axe(K) = P,Bxu(K) (3.27)
(I - P)Aga(K) = (I - P.)Bgu(K) (3.28)
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where P, is given by equation (3.17) and

e P.P. = P. : (3:29)

The system can be made separable by augmenting z(k) with the constant vector

é(k) = z(K), and imposing the following boundary condition.

E-x FAg || o(=K) | _ | P.Bxu(K) (3.30)
0 0 {(—K) 0

[ (I-P)Ax 0| | «(K) | | (I~ P)Bxu(K) (3.31)
T I]| &K 0

It turns out however that all of z( K') need not be appended to z(t). A ‘reduced order’
separable system can be constructed by noting that often the rank of the matrix P.Ax
in equation (3.27) will have some value r which is less than n, the dimension of z(K).
When the system is separable, the value of r is equal to zero. Regardless of the rank

of P, Ak, the boundary conditions can be decomposed in the following manner.

P.Ax = 6.6z (3.32)

where 6y is an n X r matrix and 0g is an 7 X n matrix. The boundary condition can

thus be modified in the following manner.

{ E_x 6 ] o(-K) | _ | PBxu(K) (3.33)

0 0 || ¢-K) ] | 0

[ (I=P)dx 0 || =(K) | _ | (I=P)Bxu(K) } (3.34)
—0gr I ] ((K) ] A 0

The system which accompanies this boundary condition is given by

4 0 [ z(k)
¢(k)

0 I

B. 0
0 0

0 I||c¢k+1)

Eipr O ]

x(k+1)]

i
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(3.35)

A similar separable decomposition was done by Adams in the context of developing
Markovian models for noncausal systems. This differs in that a separable model was
obtained without significantly altering the representation of the system. In addition
z(0) was appended in Adams derivation while z(K) is appended to z(k) in this
derivation.

Note in either case, that the formation of a separable system involves the gen-
eration of a boundary condition with singular noise. Returning to the model given
by (3.8) if Ax does not have full column rank then it is not possible to estimate z(K)
based only on boundary information. In the case where the state of the STPBVDS
is given by [z(k),z(—k)], then the state at k = 0, is obviously degenerate in that
the two components are known to be equal. As a result a well-defined covariance
cannot be specified of the state based on boundary information. Filtering therefore
presents a problem because of the problem of initializing a Kalman filter with the
proper covariance information.

Moving forward we consider two more properties of STPBVDS, namely the diag-
onalizability property and the Markov property.

3.2 Diagonalizability of STPBVDS’s

Consider a well posed STPBVDS All of the equations can be written together in the

form

AXy = BxUg (3.36)

Y =Cx Xk + Vi (337)
where the vectors Xk, Uk, Yk, and Vi are given by

X§ = [27(0),27(1),---,2T(K — 1),2T(K)]T (3.38)
Ug = [T(-1),47(0),u7(1), -, u” (K - 1),u" (K)] (3.39)
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Yi = [BT(0),9" (1), -,y (K - 1), %" (3.40)
Vi = [p7(0),v7(1), - ,vT(K - 1), (K)|T (3.41)

We will define X to satisfy the following

X

TR = Xk (3.42)
X

Similarly, we can defined overlined quantities of all the vectorsin (3.38). In addition,

ElUxUE] = diag[l,---,I] =1 (3.43)
E[VkVE] = diag[Ro,---,Rk] =Rk (3.44)

and the matrices A, Bk, and Cx are given by

Eyq
—Ao E1
—Al E2
A = e (3.45)
—Ax-1  Ex

L — Ak i
Bx = diag[B_1,Bo, B, -, Bx_1, Bx] (3.46)
CK = diag[C(),Clay"',CK_l,CK] (3.47)

For the purpose of defining recursive filters in Chapter 4 we will define in addition

the matrices A;, and Ay by

-4, E
Ak = —A1 E, (3.48)

—Ap-1 Ep |
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and

A, Ery

—Apy1 Eryo
A =
—Ag-1 Eg

The matrices By, and (' satisfy the following

diag(Bk,Fk) = BK
diag(ok,b-k) = Ck

—Ag

(3.49)

(3.50)
(3.51)

This STPBVDS system is well-posed if A is invertible. However if the dimension

of z(k) varies with time then the partitions indicated in (3.45) will be rectangular

with different but compatible sizes. Consider the inverse of A given by S, where §

is partitioned in the same fashion as .AT. Although the elements of A are provided

explicitly in (3.45) we will denote the elements of A by A; ;, and the elements of §

by S;,;. Since
SA=1

and

AS =1

the elements of these matrices satisfy

Z Sa.iAi.,b - Iéa,b
and also

> AjaSai =185

(3.52)

(3.53)

(3.54)

(3.55)

where the identity is defined to have compatible dimension. From (3.45) it is seen
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that the A matrix has a block bidiagonal structure.
Aij=0 j+14e#5 (3.56)

where the indices of A are in the set {[0, N + 1],[0, N]} As a result the above sum-
mations (3.55), and (3.56) can be written in the following fashion.

SaiAii + Saiv1Aiv,i =18, 0Zi,a <N (3.57)

A;iSij+Ai;i1Sic; =16 0<t,3<N+1 (3.58)
when ¢ = 0 or N + 1 then (3.58) is replaced by

AopSo; = I (3.59)
and
AN+1’NSN,_7' = I6N+1,j (3-60)

respectively. The matrices given by S, 44,0, Saa+14at1,0s AeaSaes ad Aga_15a-1,q
are important because they are projection matrices and have interesting properties.

By applying equations (3.57), and (3.58) we find the following to be true for c < a+1

Sa,aAa,a Sa,c

Sa,c - Sa,a+1Aa+1,aSa,c
- Sa,c - Sa,a+2Aa+2,a+ISa+1,c
= Sae— SaNn+1ANI1,NSNc

= Sa. (3.61)

and forc>a+1

Sa,aAa,aSa,c = Sa,c_Sa,a+1Aa+1,aSa,c
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- Sa,c - Sa,cAc,c-l Sc-l,c
= Sa,c - Sa,c + Sa,cAc,cSc,c
- _Sa,c+1Ac+1,cSc,c

= —SoN+1AN+1,NSNc

=0 (3.62)

as a result by considering the case where ¢ = a it follows that S;,A4,,4, and A;S6,6
are projection matrices.

Consider the system given by the STPBVDS
Ai,i:z:(i) = —-Ai,i_lw(i — 1) + ,u(z) (363)

with boundary conditions given by

Agoz(0) = 1(0) (3.64)

and

AN+1,N:IJ(N) = ;L(N + 1) (365)

The solution to this equation is given directly in terms of the elements of S.

z(i) = D Sijn(i) (3.66)

J

Consider premultiplying z(z) by the product S;;4;;

SiiAi(i) =Y SiiAiiSi () (3.67)

J

From (3.61), and (3.62), the projection matrix §;;A;; kills future dynamics in the
system (3.63).

Si,iAi,i(U(i): Z Si,iAi,iSi,ij(j) (3.68)

j<i+1

Similarly from (3.57) it follows that I — S;;A;; = S;iy14i41,; is a projection matrix
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which kills the influence of past dynamics.

Siirrdigri2(d) = D SiisrAin,iSigp(d) (3.69)
i>i

Since from (3.57) the set of projection matrices at each point in time are complete,
it therefore follows that if recursive equations can be written for the states when pro-
jected upon the space of past dynamics then the system will be successfully decoupled
into forward and past dynamics. Consider the product A, q-15:-1,644,4, this can be
shown to be equivalent to the product A;;S;i+1A4:i41,i- Also the product A4;;S5;;A;:1,
can be shown to be equal to A;; 1S;_1;-14;_1:-1. As a result the system given by

(3.63) can be decoupled into a forward and backward propagating subsystem.

A; S (Aie(R)) = A58 i(Asi2(d — 1) + p(2)) (3.70)
= A; (S A:i:)z(1) = Aiio1(Sic1ic1Aio1io1)2(@ — 1) + AiiSiap(s) (3.71)

We need to establish that (3.71) is causal. In (3.70), which is equivalent to (3.71),
the premultiplication by A;;S;; allows at most rank(A4;;5;;) degrees of freedom on
both sides of (3.70) and (3.71). Since rank(A4;;S5;;A;:;) is equal to both rank(A;;S;;)
and rank(S;;A;;), the rank(S;;A;;) degrees of freedom in S;;A;;z(i) are constrained
only by the right hand side of (3.70) and (3.71). Since information is not lost by
premultiplying the boundary condition in (3.64) by So,o due to (3.59). This system

is therefore a causal recursion for §;;A;;z(7). Similarly,

Aiic1Sic1i[Aiiz(?)] = AiicaSici[Aiiaz(i — 1) + p(2)] (3.72)
= Aii[Siit1diilz(?) (3.73)

= Aiisa[Sicidiica)e(i — 1) + Ay Sicip(e)  (3.74)
which in turns denotes a system which propagates backwards because the rank of

A,-,,-_l[Si_l,iAi‘,-_l] is equal to the rank of Si—l,iAi,i—l-
At this point it helps to translate these results into the notation for STPBVDS.
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The system is given by
Erpiz(k 4+ 1) = Arz(k) + Bru(k) (3.75)

where Ey = Apk, Ax = Aks1,k, and g = Br_ju(k — 1). Define the matrices P,f,k =
SisAigs Phi = SiiviAirr, Pliix=AiiSii Phis = Aii1Sio1,i. Recall that since §
exists, the system is well-posed. The forward propagated state is given by Pkf, LZ(k),
and the backward propagated state is given by P} ,z(k). In fact the Ej and A,
matrices have been successfully broken into two parts. The matrix Fj,; has been
broken into Pf,;  Exs1P{1 i1, and Py o Exi1 Py oy The matrix A, has been
broken into P{,, ,AxP{,, and P} AP,

Next our aim is to find an invertible coordinate transformation M, which will
allow (3.75) to be partitioned into forward and backward subsystems (with decom-
posed boundary conditions) of reduced dimension. Following from the experience of
diagonalizing the Hamiltonian equations for causal systems[22],[1] we expect that an
additional matrix V) will be needed to premultiply (3.75) to aid in this diagonalizing
decomposition. Let the columns of N, be the right eigenvectors of the projection
matrix P/ +1,& (which therefore are also the right eigenvectors of Pp,, , = I — P; Lk

That is,
Nk - [ Nl,k Ng,k ] (3.76)

where for each column, 7, in Ny, P,j:_l'kn = 7, and for each column, 7, in Ny,

P} +1,&7 = 0. Then the projection matrix P +1,% can be written as

‘ -1
Pkf+1.k = [ Nip O ] [ Nig Noag ] (3.77)

and —Fi +1k> Which in the notatiion following (3.75) also equals P, ,, by

-1
Py = [ 0 Nog ] [ Nip Nog ] (3.78)

Similarly, let the rows of M, be the left eigenvectors of the projection matrix P,f, k
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(which therefore are also the left eigenvectors of P, = I — Pkf’ = -}-";:k); That is,

M
. [ ”

(3.79)
M,

where for each column, m, in M4, P,f’km = m, and for each column, m, in M,,

P,;:km = 0. Thus,
-1
M M
He e (3.80)
M, 0

and ?i‘k = P, is given by
-1
M 0
Po=1| 'F (3.81)
M;, M,

These matrices are invertible since they comprise the eigenvectors of a projection

matrix and its complement.

As a result, the equation given by

NihEept M {Myaz(k + 1)} = NoL AcM { Mz (k)} + Ny Beu(k)  (3.82)
has the form

Ll 0 zf(k +1) g oo zf (k)

R | e B e

where the sequences L¢,, and J} are square and invertible matrices. Finally the

STPBVDS can be written as
i, 0 zf(k +1) Lytgy o || 2f(k) . Ly B
0 JpL, || k4 1) 0 Ip || (k) Jy Bt

where the super and subscripts on the identity matrices are to indicate that they may

f
*luk) (3.83)
B;

fl

u(k)

(3.84)
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“vary in size. In addition z/(k) = M;z(k), and 2b(k) = M x(k). The next stepis — -

to show that all STPBVDS are Markov.

3.3 Markovianity of STPBVDS’s

To demonstrate the Markovianity we need to demonstrate that given z(k), the states
z(k+7), and z(k — s) are independent for any s, > 0. We will use the diagonalized
representation of the system to prove this assertion. Clearly the forward and backward

subsystems are separately Markov. We represent the STPBVDS by

[ 2! (k) ] N
2*(k)

where obvious substitutions from (3.84) has been made. By defining forward and

I 0
0 Ep.,

Al 0
0 I

b

5

[ zf(k+1)

} u(k) (3.85)

backward state transition matrices as

¢f(La K) = Ai—l Tt A§(+1A§( (3°86)
¢b(Ka L) = E?ﬁ-l T EZ—1E2 (3-87)

where K < L we may then write the variation of constants formula for the forward

and backward subsystems.

27 (k) = 8 (k,3)e7(5) + ’§¢f(k, + 1)bu(e) (3.88)
2(5) = $G, Rt () + zm K)Bhu(x) (3.89)
or equivalently
el (k) = ¢*(k,7)2?(5) + =7 (k; ) (3.90)
2°(5) = ¢°(4, k)x* (k) + z°(j; k) (3.91)
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where obvious substitutions have been made. Restricting the process to a subinterval
involves restricting the causal and anticausal systems to the same subinterval. The
net result is that restrictions of STPBVDS’s are themselves STPBVDS’s. To prove

Markovianity we need to demonstrate that
E((2(0) - E[z(0)](t)])(z(K) ~ E[z(K)|z(t)])"] = 0 (3.92)
This statement is equivalent to
E[z(0)e"(K)] = E[E[z(0)|z(t)|E[=T(K)|=(t)]] (3.93)
which is also equivalent to
E(z(0)2” (K)] = E[z(0)z"(t)| E[zT(¢)2"(¢)] 7 E[z(t)z" (K)] (3.94)
and finally in terms of the diagonalized system,

of : [ 2f
E H (0) } [ fT(K) «¥T(K) | [ b((:)); } [ 5 T(k) z>T(k) ]]

2(0)
[ (k)
| <b(k)

fl
&

. -1

zf(k) } [ zfT(k) 22T (k) } E

z*(k)

xE (3.95)

] [ zHT(K) z>T(K) ]

This equality can be easily established by considering the following substitutions

eH(K) = ¢(K,k)zf(k) + ! (K;k) (3.96)
z°(0) = #%0,k)zb(k) + z*(0; k) (3.97)
f(0) = b u(-1) (3.98)
2?(K) = byu(K) (3.99)

where zf(k) and z%(k) are independent random vectors.

It is a simple matter to demonstrate that the first expectation in equation (3.95)

60



is given by

[ =(0) ,
o[ 29] e ]
_ E[a?(0)257 (k)|6/7 (K, k) 0
| PO RERM R TR k) + Eb(0; k)t T(R)|SET (K k) $5(0, k) Eleb(k)2bT (K)]

The second expectation in equation (3.95) is given by

+4(0)
24(0) j[ =l = ]} i

E[zf(0)z5T (k)] 0

E
E[z*(0; k)z!T (k)] ¢°(0,k)Z%

] (3.101)

The third expectation in equation (3.95) is given by

zf (k) 0
:nyT zb’T - .
Lb(k) } [ (k) (k) ]} [ ) 2‘,’,] (3.102)

Finally, the fourth expectation in equation (3.95) is given by

& [[ zf(k) } [ HT(K) zT(K) ]

E

2[4/ (K, k) 0

Elz*(k)e!T(K; k)] E[z*(k)z>T(K)]
(3.103)

2*(k)

From these relations (3.95) is confirmed and the system is Markov.
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Chapter 4

Estimation of Separable Two
Point Boundary Value Descriptor

Systems

4.1 Machinery for Recursive Estimation

In this section machinery is presented which is important to ‘perform recursive es-
timation for STPBVDS’s. Lemma 4.1 which is a generalization of a result in [23]
to the case where z need not be estimable, provides one way around the use of the
Hamiltonian while insuring that what we compute at each point in time are optimal
ML estimates. Lemma 4.2 shows that the estimate can be decomposed into two inde-
pendent estimates, which by virtue of Lemma 4.1, each estimate can be implemented
recursively. Lemma 4.3 allows for the updating of state parameters when additional

indirect measurements are available.

4.1.1 ML Recursive Estimation Lemma

One method to derive smoothing equations for STPBVDS’s is to solve the entire prob-
lem as one large optimization problem. The result is the Hamiltonian formulation for

the optimal smoother[24]. The Hamiltonian itself is a STPBVDS which relates the
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smoothed estimate of the state with the smoothed estimate of its neighbors. Use-
ful algorithms are obtained when the dynamics are diagonalized and triangularized,
yielding the Mayne-Fraser and Rauch-Tung-Striebel algorithms respectively. How-
ever it is not clear that the state of the filters in the Mayne-Fraser and the Rauch-
Tung-Striebel algorithms are themselves ML estimates. In addition, modifying the
Hamiltonian for the case of ill-defined covariances adds additional complication to the
algebraic process of diagonalization, and triangularization. A detailed understanding
of the smoothing problem is enhanced by examining the estimation problem at each
point in time, instead of solving the entire problem at once and recovering recursive
computations from the final solution. Lemma 4.1 provides one way around the use
of the Hamiltonian while insuring that what we compute at each point in time is an
optimal ML estimate. In addition, Lemma 4.1 allows us the freedom to incorporate
measurements in any order, in addition to incorporating them in a sequential fashion,

leading us in Section 5.5 to a new parallel recursive estimation algorithms.

Lemma 4.1

The optimal estimate of the vector z (or z) based on the measurements
y=Hz+v (4.1)
and
w=Jz+Kz+u (4.2)
is equal to the estimate of the vector z (or z) based on the measurements
2[y] = Poz + #[y] (4.3)

and (4.2), where #[y] is the estimate of z based on (4.1) alone, P, is the symmetric
projection matrix which projects onto the estimable subspace of z, &[y] is the esti-

mation error associated with Z[y|, and » and v are zero mean, independent random
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vectors.
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Proof of Lemma 4.1
We will prove this using the same machinery and notation used in the Section 2.2 in
the context of square-root ML estimation. The main task is to show that the two sets
of observations are equivalent by noting that the information which is thrown away
in the estimation z based on y, would be eliminated anyway in estimating z (or z)
based on all of the data.

Here, the estimate of =z based on y will be constructed while maintaining all of
the information which is ordinarily lost in the estimation process.

Premultiply (4.1) by S in (2.91).

Sp Sp 0
So{y=| S |Hz+ | S, |v (4.4)
S Sy Su

Use the matrix U givenin (2.94) to separate the parts of « which can be estimated

perfectly, and are completely unknown from the remainder.

S, S,HUT 0 0 Uy 0
S, |y=| S,HUT S,HUT 0 Uz | +]| 8 |v  (45)
S. S.HUT S,HUT S,HUT || Uz S,

In this next step we shall estimate the perfect part of # and normalize the part of

the observation noise which has an invertible covariance.

{S,HUT}-LS, I 0 0 Upz 0
3%s,  |v=| RS, HUT RS, HUT 0 Ue |+| RS,
S, S.HUT S,HUT  S,HUT | | Uy Sy

Since the perfect portion of # has been identified, what remains is to find the matrix
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J used in (2.96) which solves the standard ML problem.

{S,HU;} "5,

JR;12S, Y (4.7)
Sy
I 0 ‘0 Uz 0
= | JR;'?S,HUT JR;'*S,HUT 0 Uz | + | JR;128, | v
S"HUE SuHU;r SuHU;;r U.x Sy

The term JR;'/2S,v has unity covariance and next we examine the decomposition
performed in (2.83). Toward this end, J is partitioned appropriately as JT = [JT JJ]
Then (4.7) can be written as

{S,HUT}LS,
J1R;1/ZS,
y (4.8)
JzRgl/ZS’
Su
- ; . o ] : _
Upz
Ji1R;'?S,HUT J,\R;'/*S,HUT 0 JLR:128,
= U,:B + v
J,R;12S,HUT 0 0 . J,R;1/28,
wT
S.HU, S.HUT ~ S,HUT | | s,

The term J; R;l/ 28, H U,T is invertible and is the inverse square root of the covariance
of U,z. This measurement can be written as two measurements. The first measure-
ment is equivalent to (4.3), the second are those parts which are discarded in the

estimation = based on y

[ (sHUTyS,
{1 R;*?S,HUT} - J, R;Y/2S, ] v= (4.9)
I 0 Upz 0
| JIR;V2S,HUT I || U (RS, HUT}-1J, R1/S, v
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and

JzRJl/zs, —JzRgi/zs,HU,? y 0 0 U,z . LRSS,
S - S HUT Up s.HUT S, HUT Uz Su

From (4.9) the estimate of « based on y can be directly recovered and is given by

{SpHUg‘}’LSp

y(4.10)
{J1R;12S,HUT}~" J,R;1/S, — {S,HUT}-2S,J,R;*/?S, HUT
Up:fiML Upw n 0
Usgmer U,z {-]1R‘;l/zS,HU‘T}—lJlR;]‘/ZS’

At this point (4.1) and (4.2) has been shown to be equal to (4.2), (4.3) and (4.10).
Equation (4.10) can be discarded from the estimation process for two reasons. A direct
observation is obtained for the noise term J, R;'/2S5,v which however is independent
of v and thus contributes nothing to (4.2). Finally since S,v is completely unknown,
and is not observed in (4.2), this equation places no constraints on z. The equality

between the two sets of measurements is therefore established.

4.1.2 Independent measurement ML Lemma

The Mayne-Fraser two filter algorithm computes smoothed estimates by combining
pairs of independent estimates. Lemma 4.2 demonstrates that the two independent
measurements of a specific vector can be obtained from two general measurements,

both of which involve the vector of interest.

Definition 4.1
The vectors @ and b, which are comprised of both random variables and unknown

parameters, will be called independent if they satisfy the following.

o There is an invertible matrix [MY NI| such that M,d is a Gaussian random

variable with a well defined covariance, and N,a is completely unknown.

e There is an invertible matrix [MT NJT] such that M,b is a Gaussian random
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variable with a well defined covariance, and Nyb is completely unknown.

& E[(M.a — E[M.a])(Msb — E[Myb])T] = 0

e There is no redundancy in N,d, and N,b, i.e. together they represent rank(V,)
+ rank(V,) degrees of freedom.

Definition 4.2

For any matrix G, G* is defined to be any matrix which satisfies the following.

GG =0 (4.11)
L

, has full column rank (4.12)
G

Lemma 4.2
Let @ and b be independent vectors. The optimal estimate of = given the independent

observations

a=G.z+ J,z+a (4.13)
b= Gpz+ Jyz+b (4.14)
is equal to the optimal estimate of x given the independent observations
Gre=GlJ,z +Gla (4.15)
Gifb = GEJoz + Gb (4.16)
Furthermore, the observations given by (4.13), and (4.14) are equivalent to

&[a] = P,z + Z[a] (4.17)

where the indices indicate which observation the estimates where obtained from.
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Proof of Lemma 4.2

Multiply (4.13) by [GLT G,]T and (4.14) by [GET Gu)T).

Gl [ Gt ] [ Gla
a= Jaz + (4.19)
Gg A Gf i | GZ& + GZ'GaZ
Gt [ G | [ G
o= " | Jyz+ P (4.20)
GY i GY | i GTb + Gf Gyz

z is an unknown vector. As a result the bottom halves of (4.19), and (4.20) do not
provide algebraic or statistical constraints for 2. Upon removing these equations
(4.15), and (4.16) result. Equations (4.17), and (4.18) follow directly from the
application of Lemma 4.1 to (4.15), and (4.16).

4.1.3 Updating ML Lemma

Lemma 4.3 is important to the derivation of the Rauch-Tung-Striebel algorithm and
the parallel algorithm developed in Section 4.3.
Lemma 4.3

Let b be independent from both & and 3. Then the set of measurements given by
«a Laa Lab La a
= + 1 . (4.21)
g 0 Ly Th B

b=Hz, +b (4.22)

and

where the observation error is given by

a Yo Dap
| ~ N |o; (4.23)
B Lsa Zpp

Pyb ~ N[0; Zy] (4.24)

P, 0
0 P
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is equivalent to (4.21) and
B=w+ B (4.25)

where (4.25) is the estimate of x, based on (4.22) and the second half of (4.21) given
by

B = Ly + B (4.26)
Here,
T #
0 s 0 L B
B=1|o 0 P, H b (4.27)
I Lf HT o 0
and
B ~ N(0,Q) (4.28)
where @ is given by
T #
0 Y 0 Ly 0
Q=-10 0 X H 0 (4.29)
I L HT o I

In addition, the measurement given by (4.21) and (4.25) yields an equivalent mea-

surement for z, given by

Laata = —{Lab — BapZh s Lo} B + o — TasT% 58 (4.30)
and its error covariance is given by

Cov(Laa:’Ea - Laama) = Ea,a - Ea,ﬂzﬁﬁzﬁ,a + {Lab - Ea,ﬁ Eg:,ﬁLb}Q{Lab - Ea.gzﬁng}T
(4.31)
Proof of Lemma 4.3

Asin Lemma 4.1, our aim is two show equivalence between the two sets by keeping

track of the information used by each set of observations and evaluating whether the
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difference in the observations are necessary to perform the desired estimation.
The observations in (4.21) can be divided by an invertible transformation into

two independent measurements given by:

& ~ BapBh 38 = Laata + {Lay — TapZhsLs}as + {& — TapZh 56} (4.32)

and

ﬂ = Lbbwb + ,B. (4.33)

The measurements given by (4.21), and (4.22), are thus equivalent to (4.32), (4.33)
and (4.22). Equating (4.21) with (4.2), and equating (4.22), and (4.33) with
(4.1) yields via Lemma 4.1 that the above observations are equivalent to (4.32)
and (4.25). Clearly no new information is recovered by including and additional
(4.33). Recombining (4.32) equation with (4.33) demonstrates that the two sets
of measurements are equivalent. Equations (4.30), and (4.31) follow directly from
equations (4.32), and (4.33).

Lemma 4.3 and its implications for recursive estimation are explored in more detail

in Section 4.3, in which we derive the Rauch-Tung-Striebel smoothing algorithm for

STPBVDS’s.

4.2 Consequences of Lemmas 4.1 and 4.2

The first proposition applies Lemma 4.1 to STPBVDS’s. Using the notation for
STPBVDS’s in Chapter 3, let &[x|Y,] be the ML estimate of z(x) based on the
observations Y, defined in equation (3.40) for k¥ = k. We may conclude that

Proposition 4.1

The estimate #[k|Y%], is a sufficient statistic to carry along for the causal recursive

estimation problem for STPBVDS’s.

Proof of Proposition 4.1
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From Lemma 4.1 the ML estimate of z(k + 1) based on

Ar1Xes1 = Bry1Urqa (4.34)
e+ = Cer1 Xptr1 + Vi (4.35)

is equivalent to the measurement

0 - 0 —A, | Xe+ Ek+1x(k + 1) = BriiUrsr (436)
Yr+1 = Ck+1’.l!(k + 1) + 'U(k + 1) (4.37)

and the optimal estimate of X} based on

.Aka = BkUk (4.38)
Y = C Xk + Vi (4.39)

Due to the bidiagonal structure of Aj the matrix in (4.36) which premultiplies X
acts only on z(k). From Lemma 4.2, all that is required from (4.38) is an equivalent
measurement of only z(k) since the remainder of X} is not needed. As a result, the
ML estimate of z(k) based on Y}, #[k|Y:], is a sufficient statistic to carry along for
the recursive estimation problem for STPBVDS’s.
Proposition 4.2
The estimation problem for STPBVDS’s can be reduced for each k to the estimation
of (k) based on two independent measurements.
Proof of Proposition 4.2
For each k, the matrix A defined in (3.36) can be partitioned into two parts yielding
the following partitioning of (3.36), and (3.37).

{ 0 ] B Ay,

A e

X1
z(k)

—B.U,

Vi

(4.40)
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z(k) 5.7
[ ] (a4

Vi

The point here is that (4.40) and (4.41) can be thought of as two observations of
the vector z(k), capturing all of the available information. We know from Lemma
4.2 that equivalent measurements of z(k) can be constructed for (4.40) and (4.41).
From Lemma 4.1 these measurements can be reduced to independent estimates of
z(k). In the section on the Mayne-Fraser smoother we will show how these estimates

can be constructed recursively.

4.3 Maximum Likelihood Filtering

In this section we present a general ML filtering algorithm for STPBVDS. We assume
that the system matrices Ej, A, etc. may be time varying and that the process
noise u(k) is independent of the observation noise v(k). The algorithm uses two
intermediary vectors zf(k), and 2%(k) which represent the forward and backward
predicted estimates of the state (k). This is needed particularly in the case in which
the E; and the A, matrices are rank deficient.

Consider a general STPBVDS:

Erprz(k + 1) = Awa(k) + Beu(k) 0< k<K —1 (4.42)
Eoz(0) = B_ju(—1) (4.43)

0 = Axz(K) + Bxu(K) (4.44)

y(t) = Crx(k) +v(k) O0<E<K (4.45)

Cov(u(k)) = I (4.46)

Cov(v(k)) = Ry (4.47)

Viewing (4.42) through (4.47) as providing a set of noisy constraints, we can

apply the ML estimation results of Subsection 2.1, Lemma 4.1, Proposition 4.1, and
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Proposition 4.2 to obtain recursive estimation algorithms. From Proposition 4.2,
the algorithm involves constructing two independent measurements of the random
variables x(k) for each k. From Proposition 4.1, these independent measurements
are computed from two ML filters one operating on only causal data and the other
operating on only anticausal data. Each filter computes recursively ML estimates
which propagate ML estimates, a projection matrix which keeps track of the estimable
subspace, and the covariance of the estimable portion of z(k).

In presenting these algorithms it is useful to define two auxiliary (forward and

backward prediction) variables.

H (k) = Erz(k) (4.48)
(k) = Ara(k) (4.49)

Let &};;[l|k] denote the ML estimate of z(l) based on (4.42) for 0 < k < k — 1,
and (4.47) for 0 < & < k, and 2{,;[l|k] denote the ML estimate of z(I) based on
(4.42) for 0 < k < k, and (4.47) for 0 < k < k. Then the observations required for

the measurement update step are

Seclkle =10 | | Porppon Br 2(k) + Hyrlklk — 1] (4.50)
y(k) Ci r(k)

We then obtain the following measurement update equation for the forward ML filter
(FMLF) equations:

1T r T f #
23y [k|k] 0 Zilklk =1 0 Pppe—1)Er
=1 [k|k] 0 Ry C X (4.51)

P;{[Hk] I ELP siee-yy CF 0

il
o

Eppplkle =11 0 Pospope—11Er
y(k) 0 Ck
0 I 0

Often it is the case that the covariance computations can be carried out in advance
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of the acquisition of data. In that event (4.51) can be written as two equations given

by

#
FHT(k) Bifklk —1] 0 Py B 0
GHT(k) | = 0 Rs Ch 0 (4.52)
—Xi[k|k] ETP, (k-1 CF 0 I
holklR] = Fuzlpp[klk — 1] + Gay(k) (4.53)
Pz[klk] = FiP.srjk—1)Ex + G Cr (4.54)

The constraints which are needed to determine the prediction step are given by

Zf(k + 1) = Ak:c(k) + Bku(k) (4.55)
heolklk] = Pf[uk]-’”(k) + &g, [klk]

The prediction step is given by

zML[k + 1|k] = Pt e 11k) AkmML[klk] (4.56)
Toslk + 1]k = ) TR (4k23f (k|k)AT + B BF)P 2t [kt1[k] (4.57)
_P_zf[k—{»llk] = (Akme[klk]AZ)#(AkP:c![k[k]Ak) (4,58)

where P, indicates the symmetric projection matrix which defines the estimable
part of z(k) based on past data through time k, and P,s_y) is the symmetric
projection matrix which defines the estimable part of z7(k). Note again that part
of this equation which corresponds to the portion of zf(k) which is inestimable,
P _sjk-127 (k) is not used in the forward estimation step. Equations (4.51) through
(4.58) represent the generalization of [23] to allow for the possibility that z(k) and/or
zf(k) are not completely estimable. Also Tf[k|k] can be thought of as the error co-
variance in the estimate of &},;[k|k] in the sense of (2.31). s represents the

corresponding error covariance for the estimable part of (k). The matrix Tf[k + 1|k]
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has a similar interpretation for 24, [k + 1|k]. We are assured via the Lemma 4.1 that
the ML estimates which are obtained at each step are precisely ML estimates based
on all of the causal data.

Similarly we can define the backward ML filter (BMLF) where #%,,[l|k] denotes
the ML estimate of z(l) based on (4.42), for k < x < K and (4.47) for k < k < K
and 2%,;[l|k] denotes the ML estimate of 2%(1) based on (4.42), for k-1 <k < K
and (4.47) for K < k < K. The observations required for the measurement step of

the BMLF are

y(k) G (k)
The BMLF is then given by
b,T T #
&5y (kK] 0 Be[klk+1] 0 Popeesn)Ar
olklk] | =10 0 R, Chr X (4.60)
Py [k|k] I AL Poapesyy OF 0

2?"L[k'k + 1] 0 sz[k|k+1]Ak
y(k) 0 Ck
0 -1 0

Again the covariance computation can be separated from the equation governing the

propagation of the estimates in the following fashion.

T T #
BT 0 Dolklk+1] 0 PoppenAe
GoT =10 0 Ry Ch (4.61)
AL I AL Paprsyy CF 0
arrlklk] = FUZplklk + 1]+ Ghy(k) (4.62)
E’;[klk} = FISPz"[kaH]Ak + G’;’ch (4-63)
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The measurements for the prediction step are given by

Popper1)2° (k) = Puspppr)Brsrz(k + 1) = Pospepess Bru(k) (4.64)
&yplklk] = Pllklklz(k) + &5, (kK]

The prediction equations are therefore given by

Eyrplk — UE] = Popee1jg Bt kK] (4.65)
Dalk — 1k = Pap i EeSS[k|kET + Bio1Bi_1)Pospe—14 (4.66)

Poporpy = (ExPopu B )* (EePopein Ex ) (4.67)

The projection matrices which appear in these equations increase the complexity
of the estimation equations. It is therefore important to know whether or not the
propagation of the projection matrices need be carried out for the entire data length.
From the standpoint of determining the estimable, parts of the vectors, it does not
matter if the observation noises which determine the estimable subspace have full rank
covariances, or are zero. The value of the data is irrelevant also. It can be set equal to
zero, and the relationship between the estimable and non-estimable subspaces would
not change. As a result estimability can be studied by considering the causal system
given by

Epiq

Ai
z(k+1) = z(t) (4.68)
k+1 0

The state z(k + 1) is fully specified given z(t) if the matrix in the first half of (4.68)
has full column rank. This therefore is one assumption we place on the matrices E,,

and (). Furthermore there is a sequence of matrices L; such that premultiplying

(4.68) by L4y will yield

b+ 1) = | 7 | 200) (4.69)
0 Hy

which is a causal system. If Ax, Hi is uniformly completely observable, we know that
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z(t) is estimable in a finite number of steps. If there however are unobservable modes
which are stable, z(t) is still not estimable because knowledge that the mode decays is
not sufficient to estimate it when the amplitude of the mode was completely unknown
initially. We therefore require all modes which are not uniformly completely estimable
to be uniformly nilpotent. As a result, though a mode may be completely unknown,
it will be forced to zero with certainty in a finite period of time which is uniform over
the entire interval. These modes are therefore estimable in a finite period of time.
We call a system which satisfies these conditions, estimable. Estimability, is therefore

a condition which is stronger than detectability, yet weaker than observability.

4.3.1 Computational Complexity of the Filtering Equations

The computation required for the FMLF and the BMLF are identical. As shown in
Chapter 2, the amount of computation varies with how much of the state is estimable,
and the existence of certain matrix inverses. The amount of required for one time step
in the ML filter is denoted by K(n,m, p; description) where n is the dimension of the
state, m is the dimension of the driving noise , p is the dimension of the observations,
and ‘description’ represents any other relevant information. We may then define the
following polynomial functions.

K(n,m,p;off — line, measurement — update,non — estimable) represents the off-
line flop count for the measurement update equations for the case where the state is
not completely estimable. It represents the computation required for (4.52), (4.54)

and constructing the product P,spi 1 Eri1

K(n,m,p;off — line, measurement — update,non — estimable)
= M(2n + p,n,2n + p) + 4n® + 2pn? (4.70)
= £(2n + p)® + 5n(2n + p)? + 4n® + 2pn?

K(n,m,p;off — line, prediction — update,non — estimable) represents the off-line
flop count for the prediction update equations for the case where the state is not

completely estimable. These equations are entirely off-line. If we plan to propagate

78




predicted estimates then by combining (4.53), and (4.56) together we must com-
pute the quantities P.sp 1)) ArFr and Pyyq)AxGr. If filtered estimates are being
propagated then Fi1P,s1y1xAx need be computed. Computing predicted estimates

requires more flops, and will be used as the basis for these computations.

K(n,m, p;off — line, prediction — update,non — estimable)
= E(n,n,n) + 14n® + 4pn? 4+ 4mn? (4.71)
= 183n® + 4pn? + 4mn?

K(n,m, p;off — line, measurement — update, estimable) represents the off-line flop
count for the measurement update equations for the case where the state is completely

estimable.

K(n,m,p;off — line, measurement — update, estimable)
= &(2n + p,n,2n + p) (4.72)
2(2n + p)® + 3n(2n + p)?

K(n,m,p;off — line, prediction — update, estimable) represents the off-line flop count
for the prediction update equations for the case where the state is completely es-

timable.

K(n,m, p;off — line, prediction — update, estimable) (4.73)

= 6n® + 2mn? + 2pn? '
K(n,m,p;off — line, measurement — update,invertible) represents the off-line flop
count for the measurement update equations for the case where the state is completely

estimable and there are no perfect observations.

K(n,m,p;off — line, measurement — update, invertible)
=ZI(2n + p,n) (4.74)
= %(271 +p)® + 2n(2n + p)?

K(n,m,p;off — line, prediction — update,invertible) represents the off-line flop count
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for the prediction-update equations for the case where the state is completely es-

timable.

K(n, m,p;off — line, prediction — update,invertible) (4.75)

= 6n° + 2mn? + 2pn?

K(n,m,p;off — line,non — estimable) represents the total off-line flop count for

the filter equations for the case where the state is not completely estimable.

K(n,m,p;off — line,non — estimable)
= 18.33n3 + 4pn? + dmn? + 2.67(2n + p)® + 5n(2n + p)® + 4n® + 2pn?  (4.76)
= 63.67n% + 56n?p + 21np? + 2.67p% + 4n’m

K(n,m, p;off — line, estimable) represents the total off-line flop count for the filter

equations for the case where the state is completely estimable.

K(n,m,p;off — line, estimable)
(4.77)
= £(2n + p)® + 3n(2n + p)® + 6n° 4 2mn? + 2pn?
K(n,m,p;off — line,invertible) represents the total off-line flop count for the filter

equations for the case where all required inverses are invertible.

K(n,m, p;off — line,invertible)
(4.78)
= £(2n + p)® + 2n(2n + p)® + 6n° 4 2mn? 4 2pn®
K(n,m,p;on — line) represents the total on-line flop count for the filter equations.

This count is valid whether the state is estimable or not. The on-line computations

are given by combining (4.53), and (4.56) into the following

2k + 1|k] = Posporpg ArFrlk

k— 1]+ P.sppr AeGry(k) (4.79)
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The on-line flop count is given by

K(n,m,p;on — line) (4.80)
= 2n(n + p) .

4.3.2 The prediction equation

In a sense, zf(k), and 2%(k) are non-essential variables, introduced in our estimation
process, since, instead of performing one step predictions of these quantities, we
could just as well perform one step forward and backward predictions for all of z(k).
Specifically, as opposed to the development in [22] in which zf(k), and z%(k) were
introduced because of a desire to compute estimates for estimable quantities only,
the whole point of our development is to relax this estimability condition. We can
certainly apply this idea here avoiding the introduction of zf(k), and z%(k). We now
describe this approach and in the process make clear why this is not a desirable
alternative, as it is computationally more involved, and it does not yield in a direct
way the estimable projection matrix for these one step predicted estimates which are
explicitly needed in the subsequent processing steps.

The observation for the prediction step is given by

Erlklk] PI[klk] 0
0 A

z(k)
z(k + 1)

Theslklk — 1]
Bu(k)

i

(4.81)
—Epys

After the elimination of the variable z(k), (4.81) can be written more compactly as

Pk + 1k Auiheg k1K) = PY[k+11k] Brao(k +1) — P [k + L{K( Ay klk] + Bu(k))

(4.82)
We then obtain the following prediction step (FMLF) equations:
- 4T S # e
0 S [k|k] 0 Pflklk] O #ho[k|k] 0
#5T [k + 1]k] 0 0 BBT A —Ewnr 0 0
Tk + 1|k] 0 Pflk|k] AT 0 0 0 0
I | 0 -ET(k+1) 0 0 0 -1 |
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TTTTTTT(4.83)

we are able to compute the estimate and covariance, we should note that (4.81)
should be viewed as a joint ML estimation problem for z(k), as well as for z(k + 1).
Thus applying the results of Chapter 2 to obtain the projection matrices, we obtain a
projection matrix for the composite vector [z7(k), 2T (k+1)] The size of this projection
matrix is 2n X 2n, rather than » x n and additional work is required to extract the
proper projection matrix. In addition the pseudo-inverse of a larger matrix for z(k+1)
is required in (4.83) meaning that the introduction of the variables zf(k), and 2%(k)
is the proper step to reduce unnecessary computation.

One reason for the additional complexity in the approach described in this section
is that if Ej.; is singular then the second equation in (4.81) does provide additional
information about z(k). By using zf(k + 1), we explicitly eliminate z(k) and focus
attention only on the part of the dynamics related to the prediction of z(k + 1). A
consequence of this is that in the context of smoothing we have to incorporate the
part of the dynamics which we have discarded. We will see this explicitly in the
Rauch-Tung-Striebel Algorithm described in Section 4.5.

4.4 The Mayne-Fraser Smoother

From Lemma 4.2 and Proposition 4.2 two independent measurements of the state
z(k) can be constructed. One is constructed from causal data and the other from
anti-causal data. Furthermore, the structure of the measurements in (4.40) and
(4.41) form block bidiagonal systems of equations, and thanks to Lemma 4.1 and
Proposition 4.1 this structure can be exploited for the generation of efficient recursive
estimation algorithms as discussed in Section 4.2. We have the choice of includ-
ing the observation y(k) with either causal or anti causal data. As a result when
computing the smoothed estimate of the state, we have the choice of combining for-

ward predicted with backwards filtered estimates, or forward filtered estimates with
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backward predicted estimates. Other variation are possible. We could for example
propagate forward and backward filtered estimates and combine the estimates zf(k)
and z(k + 1) and use the intervening dynamic constraint to compute the smoothed
estimate, similarly we can propagate forward and backward predicted estimates and
include the local observation to generate the smoothed estimate of the state.

The observations required to compute the smoothed estimate from forward filtered

and backward predicted estimates are given by

idrp kK P} 2Kk
Earplk| k] _ x[k|k] z(k) + ) Earp (K| k] (4.84)
2yplklk + 1] Poofet) Ak Zyplklk + 1]
and the smoothed estimate is computed via
&311(k) = LY (k) 21y, [kIk] + L2(k) 234 kIR + 1] (4.85)
Py = L (k)PLug + LP(R) Poapiass) Ar (4.86)
where Lf(k), Lb(k) , and the error covariance is given by
#
LT (k) ALY 0 Pf(k) 0
LPT(k) | = 0 Toelklk +1] Pu(k)Aw 0 (4.87)
E:(k) Pi(k) AL P.(k) 0 I

Similar equations can be written which involve combining forward predicted with
backwards filtered estimates. The FMLF and the BMLF together with (4.85), (4.86),
and (4.87) form a generalization of the Mayne-Fraser two filter formulas for optimal
smoothing on STPBVDS’s in the case where z(k) may not be estimable, while por-
tions of it are specified perfectly. Specifically if A=I and only final conditions are spec-
ified (making the system well-posed), the FMLF and the BMLF and (4.85)- (4.87)
reduce to the usual Mayne-Fraser equations when applied to anti-causal systems. As
a result, the generalization to STPBVDS deals in a symmetric way with information

available at the two ends of the interval.
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4.4.1 Computational Complexity of Mayne-Fraser Equations

Here we discuss the additional amount of computation required to compute the
smoothed estimates in equations (4.85)- (4.87). The computation required for the
forward and backward filters are discussed in Sections 4.3 and 4.3.1. To describe the
amount of computation involved in combining forward and backward filtered esti-
mates, we will define the following polynomials.

F(n;off — line,non — estimable) will represent the amount of off-line computation
associated with computing the covariance and projection for the smoothed estimate

in (4.86), and (4.87), if the smoothed estimate is infact not completely estimable.

F(n;off — line,non — estimable)
= M(3n,n,3n) + 4n? (4.88)
= 121n3

F(n;off — line, estimable) will represent the amount of off-line computation asso-
ciated with computing the covariance and projection for the smoothed estimate, if

the smoothed estimate is completely estimable.

F(n;off — line, estimable)
= &(3n,n,3n) (4.89)
= 63n®

F(n;off — line,invertible) will represent the amount of off-line computation asso-
~ ciated with computing the covariance and projection for the smoothed estimate, if the
smoothed estimate is completely estimable and if the forward and backwards filtered

estimates contain no redundant perfect information.

F(n;off — line,invertible)
= I(3n,n) (4.90)
= 36n°

F(n;on — line) represents the flop count for constructing the smoothed estimates
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from the forward and backward estimates in (4.85).

F(n;on — line) = 4n? (4.91)

4.5 Rauch-Tung-Striebel Algorithm

It is possible to generalize the Rauch-Tung-Striebel algorithm to STPBVDS’s in the
ML framework. Most derivations of the Rauch-Tung-Striebel algorithm arise from
an algebraic point of view. This is difficult to do in the general ML frame work,
and therefore we will use a statistical argument. This algorithm involves a forward
sweep to compute #},[k|k] for each k producing the smoothed estimate &,(K) =
24, [K|K] at one endpoint, which initiates a reverse sweep to compute #,(k) =
21, [k|K] over the entire interval. The key to this backward sweep is again to interpret
it as the computation of ML estimates based on an appropriate set of observations.
In particular suppose that we have computed #,(k + 1) and its corresponding error
covariance L3 (k+ 1) = Bf[k + 1| K], where £ [k + 1|0, K] is interpreted as in (2.31) if
z(k) is not estimable. Then the computation of &,(k) and X2(k + 1) can be obtained
by solving the following ML estimation problem which captures all of the relevant

information relating z(k) to z(k + 1) and the available estimates of each of these:

ki) | [ Pl 0 ] [ & [k
1k + 1K) | 0 Pssipg Bess (k) } NIRRT
0 Porprigde PorBess | | ok +1) || PosperspgBu(k)
| 2 (k+1) | | 0 I ] | E(k+1)

(4.92)
The first and second measurements in (4.92) are the the filtered and predicted es-
timates which result from forward filtering. As a result their observation noises are
correlated. The third observation in equation (4.92) is a dynamic constraint which
lies in the null space of P.;. It therefore was not used in the filtering process as it

corresponds to the part of the dynamics (4.50)? not used in the one step prediction

of z(k + 1). For the smoothing problem, this dynamic constraint must be included
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so that all information is accounted for.
Consider the Mayne-Fraser two filter smoother. We know that the smoothed

estimate of z(k) and z(k + 1) can be constructed from the following measurements.

#f[klk] = Pl z(k) + 2k|k] (4.93)
#klk] = Pluz(k) + b/[k|k] (4.94)
0 = Ek+1$(k + 1) — Ak:l:(k) — Bku(k) (4.95)

This is verified by noting that (4.93), and (4.95) are the measurements required to
construct the predicted estimate of z(k + 1) which is independent of the backward
filtered estimate (4.94). A similar argument can be used to construct the independent
measurements required for the smoothed estimate of z(k). Lemma 4.1 allows for the
incorporation of measurements in any order. First we replace (4.93), (4.94), and

(4.95) by the following set of measurements

B [kk] = Plyye(k) + & [k|k] (4.96)

0 = PlylBrpz(k+1) — Aez(k) — Biu(k)] (4.97)

0 = PlyylBrrrz(k +1) — Awz(k) — Beu(k)]  (4.98)

S+ 1k+1] = Plhypgetk+1)+&k+1k+1] (4.99)

where we have taken equation (4.95) and premultiplied it by P,s 114}, and -pz;[kﬂlkl

in (4.97), and (4.98) respectively. Since Lemma 4.1 allows us to combine these equa-

tions in any order, we replace (4.96)- (4.99) by an equivalent set of measurements.

#f[kk] = Plgz(k)+ 27 [k|k] (4.100)
Hlk+ 1k = Pl Beprz(k +1) + 2 [k + 1]k) (4.101)
0 = PlplBraz(k+1) — Aw(k) - Biu(k)]  (4.102)

Plh+1k+1] = Plhyprgz(k+1) +&°k+1]k+1] (4.103)

where the measurement in (4.101) is constructed from the measurements in (4.96),
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and (4.97). Note that from the development of the Mayne Fraser algorithm, we
know that (4.101), and (4.103) can be combined to recover the smoothed estimate of
z(k + 1). Thus equations (4.100)-(4.103) are equivalent to the set of measurements
indicated by (4.92). We will return to this shortly, but let us now continue with the
transformation of (4.100)-(4.103). Specifically the set of measurements in (4.100)-
(4.103), being equivalent to (4.93)-(4.94), are sufficient to construct the smoothed
estimate of z(k). The errors in the observations in (4.100)-(4.103) given by #/T[k|k],
5T [k + 1|k, P, (k+1%) Br(k), and 2Tk + 1]k + 1], have a joint error covariance given
by

L. [k]0, k] . [k]0, k]ATP (k+1]k] 0 0
Pz[k+1lk]A"2 k[0, ] 25 [k + 10, k] z[k+11k]B'¢Bk C-Pz[k%—llk] 0
~f f
0 Pilh+110) Br BEP.{[k+1(k] z[k+1|k]BkBk 2[k+1{k) 0
0 0 0 Te[k+ 1k + 1, K]

(4.104)
Clearly we can write (4.100)-(4.103) as one measurement in the form y = Hz +v and
compute the smoothed estimate #°(k) given all of the measurements. However we
can reduce the amount of computation if we note that (4.100)-(4.103) can be written
as two measurements given by the smoothed estimate of z(k+ 1) and a measurement
with measurement noise independent of z°(k + 1). Specifically, we note from the
covariance in (4.104) that #*[k + 1|k + 1] is independent of all other measurements.
Since #(k + 1|k + 1] and 2k + 1|k] can be combined to yield #*(k + 1), we thus
seek to find from the remaining three measurements (4.100)-(4.102) that part whose
measurement noise is orthogonal to 2/[k + 1|k]. The joint covariance of #/T[k|k],

-P.fr[k+1|k]Bku(k), and #5T[k + 1|k], is given by

Z.[%|0, k] 0 T.[k|0, k]AkP[k+1|k
0 P“[’c+1‘k]BkBk P k+1|k] P k+1[k BkBk P k+1|k] (4-105)
P} et 1 Ak D K]0, k] Pfk+1|k B.Bf'P! clkt1]k] ik + 1]0, k]
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If we define an invertible matrix T} by

I 0 —X,[k|0,k]ATS#[k + 1]k]
To=|0 I —Ply,1qBiBI Stk + 1[k] (4.106)
0 0 I

then, if (4.105) is premultiplied by T}, and post-multiplied by TF, we obtain

SaklKII — ATE¥, [k + 1]k) A4 B [klk] ~Sa (RKATE?, [k + 1RBBIP 1 0
~P s nsr i BeBFE¥, [k + 1|k 4B (k[R] AT Poppupq ) BaBTU - 2 [k + 1161 Bu BT, s i1 pu 0
0 ) 2k + 1|k]
(4.107)

As a result the matrix T} can be used to obtain two independent measurements from

(4.100)- (4.98). The first is given by

#heolkIk] — {Selk|FATEF, [k + 1[k]} 2k + 10R) | _ (4.108)
| Parra BeBESE [k + LRI 2 [k + 1K)
Plim — okl kAT S, [k + 1]k] Ersr O I
I ~PietrAe Pospgrg( - BkBI{Eﬁ«[kH;k])EkH z(k+1)
The second is given by

The estimate [k + 1|k] may be combined with #[k+1|k+ 1] to obtain the smoothed
estimate £°(k + 1) whose error #*(k + 1) is independent of v(k). The error covariance

for v(k) is given by

T [k|k][I - A{Efy [k + 1|k] Ar X, [k |K]] —Ex[klk]A{Zf, [k + 1|k]Be BT P sphv114)
—_ﬁz:[k+1|k]BkB£Eﬁ [k + llk]AkEx[klk]A'{ ﬁzy[k+1|k]BkB{[I — Eﬁ, [k + 1|k]BkB£]—ﬁz;[k+1|k]
{(4.110)

which is the upper left most block of (4.107). The computation of the smoothed
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estimate z(k) is specified from the following measurements.

Prt*@ua[k|k] — PrtoSias(k + 1) = PrtsAwz(k) + PL#=i*(k + 1) + Prtou(k)

(4.111)
where Oy, =i, and A} are given by
[ 1 — S [k|kATSE [k + 1|K]A
@k — N { ' ] k .,f[ ‘ ] k (4.112)
| Potpesrig Be B ST, [k + 1K) Ay
Pf
Ay = | _°HH (4.113)
|~ Potferain Ar
_ T [k|kJATEE [k + 1|k] Exys
o= | _ . (4.114)
I sz[k+1|k}(1“ BkBI’szf[kHlk])EkH
P = [EwP,, Er*[EkP; =T (4.115)
The equation for the estimate is given by
E5rr(k) = Lys(k)[Or[k|k] — Zd®(k + 1)] (4.116)

where L., (k) and the error covariance for the smoothed estimate, I:(k), are given

by
#
0
[ } i)
I

P{ = L,.,(k)P[ Ay (4.118)

LL,(k) | | PreEaZe(k + DET + Cov(v(k)) Pt Pyt As
22 (k) AT Pt 0

4.5.1 Computational Complexity of the Backward Sweep

Here we discuss the computational complexity of the backward sweep of the Rauch-
Tung-Striebel algorithm. The equations as presented are complex for two major
reasons. One reason is that the the smoothed state may not be estimable. The other

reason is that the state may not be estimable from causal data alone. We will provide
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flop counts for the general backward sweep, for the case where the state is estimable
based on all of the data, and the case where the state is estimable based on causal
data alone. To describe these flop counts we introduce the following functions.

T (n;off — line,non — estimable) represents the off-line computation required to

compute the smoothed estimate assuming that the state is not estimable.

T (n; oft — line,non — estimable)
= 82n® + 4n’m + M(n,2n,n) + M(3n,n,2n) + £(2n,2n,n) (4.119)
= 223.33n® + 4n’m

T (n;off — line,non — causally — estimable) represents the off-line computation required
to compute the smoothed estimate assuming that the state is estimable, but is not
estimable based on causal data. Computational savings comes from not having to
compute the projection matrix in (4.115), and forming products with this projection
matrix and the quantities in (4.112)- (4.114). In addition (4.118) will not have to

be computed.

T (n;off — line,non — causally — estimable)
= 42n® + 4n’m + M(n,2n,n) + €(3n,n,2n) (4.120)
= 101.33n% + 4n’m

T (n;oft — line, causally — estimable) represents the off-line computation required to
compute the smoothed estimate assuming that the state is estimable during the filter-
ing step. Computational savings comes from the fact that the quantities in (4.112)-
(4.114) are of reduced dimension because —sz[k+1lk] = 0. In addition the pseudo-
inverse in (4.117) will not have to be computed. Since the state is estimable, A, = I.

As a result L,;, = I. The smoothed covariance is given by

Cov(#°(k)) = ZuCov(#(k + 1)=T + Cov(v(k)) (4.121)

90



T (n; off — line, causally — estimable)
= 12n® + M(n,n,n) (4:122)

2
= 19§n3

T (n;off — line,invertible) represents the off-line computation required to compute the
smoothed estimate assuming that the state is estimable during the filtering step and
has a full rank error covariance. Computational savings comes from the fact that the
quantities in (4.112)- (4.114) are of reduced dimension because ?zf[k+1|k] =0.In
addition the pseudo-inverse (4.117) and (4.106) will not have to be computed. Since
the state is estimable, Ay = I. As a result L,,, = I. The smoothed covariance is
given by

Cov(2°(k) = ExCov(&°(k + 1))ET + Cov(v(k)) (4.123)

T (n;off — line, invertible)
= 12n® + I(n,n) (4.124)

= 14§n3

T (n;on — line) represents the on-line computation required to compute the smoothed

estimate in (4.116) regardless of the estimability of the step.

T (n;on — line) = 4n? (4.125)

4.5.2 Inward-Outward filtering of TPBVDS’s

The general problem with the smoothing of TPBVDS’s is that the boundary con-
ditions cannot be matched to implement filters whose individual computations can
be interpreted as producing estimates of the state. In Section 3.1 it was shown that
any TPBVDS can be described by a STPBVDS where the state is constructed by
augmenting z(k) with z(—k). This suggests the notion of filtering outward to the
boundaries of the system, and inward towards the center. Given that the system is

separable, no new equations need be written since they follow immediately by sub-
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stituting the model (3.25) for (3.8) and applying the filtering algorithm in Section
4.2.

4.6 Square Root Smoothing Algorithm

4.6.1 Introduction

The new smoothing algorithms presented in this thesis are based on the ML estimation
philosophy. Specifically, all of the algorithms presented consist of the solution of a
sequence of ML estimation problems. In addition these algorithms can all be cast in
the square-root framework. To illustrate this, a square root algorithm for the FMLF
algorithm. Square-root algorithms for the Mayne-Fraser and the Rauch-Tung-Striebel
can be similarly derived. The square-root FMLF algorithm essentially computes a
reduced order observer [32] for the case in which perfect measurerﬁents are available.
It therefore shares the flavor of the algorithms [6] and [27]. However, our algorithm
does not rely on the invertibility of the A, matrices as does the algorithm in [6].

4.6.2 Square Root Forward Maximum Likelihood Filter

Here we consider the FMLF separated into measurement update steps and time up-
date steps. The time update step is given by the following equations. The vector
zf(k 4 1) to be estimated satisfies

zf(k + 1) = Akw(k) + Bku(k) (4.126)

We assume that an estimate of (k) based on Y, exists and that we have available an

orthogonal matrix U, with the following partitioning

Uy i
Ue=| U,y (4.127)
Uu,k
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such that, based on Yj, U,z (k) is known perfectly, the ML estimate based on Y
exists for U, xz(k), with an invertible error covariance, and U,rz(k) is completely
unknown. The orthogonal matrix which separates the relevant subspaces of R" to
estimate z/[k+1|k] is given by solving for the matrix, Qr+1 which upper triangularizes

the following matrix.
Qunr | UL, {AULIBY AUT, | =T (4.128)
The matrix @ is partitioned as follows.

Qu,k
@k = | Qs (4.129)

Qp,k

The following equations then determine z#(k + 1) in the new coordinate system.

U, k
Qp,k+lz‘f(k + 1) _ Qp,k+1AkUg:k 0 EU vkxik)}
Qser12f(k + 1) Qukt1 AUL {Uppz(k)}  Qakta [ AT, Bk] skz(k)}
u(k)
(4.130)

Note that in equation (4.130) the desired result is obtained through direct multipli-
cation, not solving for the solution of simultaneous algebraic equations. The products
Qrs1AkUp k, and Qi1 AU, i:B] have already been calculated in the triangularization

process in equation (4.128). The predicted estimate of Qpk+12(k + 1) is given by

Qs [k + 1E] = Qs AULUpad [E[H]} (4.131)

The predicted estimate of the vector @, 4127 (k + 1) is obtained by noting that it

satisfies

QuiniFh+1) = Quin AUL{Upra(k)} + (4.132)
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Qs kt1 [ Aka'kE!::yz[klk] B ] S X 5,3‘ {
' a(k)
sL2 VP k(KU 48 (k)}

(k)

s

Q41 [ AUT, =LY k|0, k] By ] Sk x ST { {

where the orthogonal matrix S¥ which premultiplies the noise term is chosen to lower
triangularize the matrix Qk+1[AxUL,Z11/2[k|k]:Bi]Sk. The square root of the error

covariance is the square and lower triangular portion of the matrix
Quis1 [AUT, 1Y [k|K):By] Sy = [S2% [k + 1]k]i0] (4.133)

The estimate of Q,+127(k+1), which is given by 2/[k+1|k], is obtained by removing
the noise terms from (4.132) and setting @(k) = 0.

The next step is to compute the measurement update step in the FMLF. The
‘measurements’ required to produce the ML estimate z(k) given data up to and

including time k is given by the following

Hk+1k] = Eppo(k+ 1)+ 27k + 1]k (4.134)

This problem is in the form y = Hx + v used in the discussion in Chapter 2. Assume
that there may be perfect information in the observation vector y(k). Let L; be an

invertible matrix which is partitioned as follows.

i
Ly = (4.136)

We will assume that we are given Lj with the data, and that L,,y(k) is known per-
fectly, and L, y(k) has an invertible covariance Ry k. If we combine equation (4.134)

and (4.135) into a larger single vector equation for [2/T[k + 1|k], yT(k+1)], we then
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premultiply it by the following matrix

[ Qpi+i” 07 -
Qo kt+1 0 Lyt
Q1= | Qopyr | =| Qopn 0 (4.137)
Quk+1 0 Lyt
| Quisr 0

Following the development of square-root ML estimation in Section 2.2 the matrix

Up+1, which is constructed to lower triangularize the product

Ept1

Qlet1 Ukt1 (4.138)

Clet1

where Upy is partitioned as in (4.127). The part of the state z(k + 1) which can be

determined perfectly is obtained by considering the following ‘measurement’.

[ Qpit127(k + 1) } B { Qpi+1Be11Ugj 4

} {Upjesrz(k + 1)}  (4.139)
Lpjkrry(k +1)

Lp,k+10k+1 U§k+1
where Uy, p412(k + 1) is the part of z(k + 1) which can be estimated perfectly. Equa-
tion (4.139) can be uniquely solved to determine the vector {Upr+1z(k + 1)} which

is given by

-L
[ Qp,k+1Ek+lUg:k+1 j! [ Qp,k+lzf(k + 1)

} = {Upps1z(k+1)} (4.140)
Lp,k+1y(k + 1) )

T
Lp,k+1 Ck+1 Up,k+1

The part of the state with an invertible covariance is obtained as the solution of the
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ML estimation problem where the observation noise has been normalized.

S5k + 1K) Qa1 2? (k + 1)
;,llcizl Lopry(k+1)

_ Ez_}’{’?[k + 1|k]Q s et 1 Bt ok + 1)+ z-fl,(/’z[k + k] Q12 (K + 1)
;,}c{l-zl L-’,k+10k+1 Ro k+1 a,k+1r(k + 1)
(4.141)

As in (2.96), the part of the estimate which has been determined perfectly is removed
resulting in a ‘measurement’ for the part of z for which we can assign a full rank
covariance. What results is the following ‘measurement’ for a ‘standard’ square-root

problem.

Ry Lo jesry(k +1) R ALk 41CenUT,
= Jyt1 H 22"1{:2[’“ +110,k]Q, k41 B 41U 1y
= Ju+

-1/2 T
Ro k+1Ls,k+1Ck+1U.,h+1

B2k + 100, k)Q, k187 (k + 1 T2k + 100,k ExaUT
JHIH e+ 100, MQuua b+ 1) || S+ 10 MQuasi By |

272k + 100, K]Qu k412 (k + 1)

Ry Lugar(k +1)
(4.142)

:| U:,k-i»lz(k + 1) +

where the orthogonal matrix Je4, is determined via the QR factorization to upper

triangularize the the following matrix

J) zflﬁz[k' + 110, k] Qs Ery1Us k1 _ DLk + 1k + 1] 4.143
k+1 -1/2 L C U - 0 ( . )
- k+1 sk +10k41Us k41

The matrix U, represents a coordinate transformation which can be used to return
the estimate of the state to the coordinate system in which the state was originally
defined. In addition the covariance matrix X, ,[k + 1|k + 1] can be placed in the
original coordinate system to yield Li[k + 1|k + 1].
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Chapter 5

Parallel Smoothing for

One-Dimensional Systems

Our aim in this chapter is to find parallel algorithms for smoothing TPBVDS’s given
by
Eryq :c(k + 1) = Ak:l:(k) + Bku(k)

(5.1)
Eoz(0) = Agz(K) + Bgu(K)

based on observations given by
y(k) = Crx(k) + v(k) (5.2)
where u(k), and v(k) are independent white noise sequences where

u(k) ~ N(0;1)

v(k) ~ N(0; R (53

In this chapter we consider algorithms for one-dimensional processes where the
data is spatially partitioned in order to limit the amount of data a processor would
have to access, and to limit the complexity of the local processing. The data is
partitioned along the time axis into intervals, where one processor is assigned to one
interval of data. A given processor operates on local data, and also communicates

with other processors operating on other intervals of data. The problem is divided
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Figure 5-1: partitioning of the data among processors

evenly among L processors. We assume further that the i** processor has access to
y(ki—1 + 1) through y(k;) and the dynamic constraints which link the states z(k;_,)
through z(k;). See Figure 5-1. The value of k; in these algorithms are given by i%—,
where %’- is an odd integer.

The parallel processing algorithms which use this data partitioning typically have
the following steps. During the first step, each processor operates in parallel on lo-
cal data, and computes certain sufficient statistics which contain information needed
by other processors to compute smoothed or filtered estimates. In the second step,
there is an interprocessor exchange step, where sufficient statistics are exchanged
between processors, processed and exchanged again, until each processor has infor-
mation necessary to compute globally filtered or smoothed estimates without further
communication. In the final step, each processor computes globally smoothed or fil-
tered estimates in parallel based on local data, and the sufficient statistics obtained
by other processors.

In the first local processing step, many methods of processing the data are possible.
For example, in the algorithm of Morf et al.[14], which produces filtered estimates for
causal systems, the local processing takes the form of two filters. The first filter is a
Kalman filter where the state is locally initialized with zero initial condition with a
covariance which is also set to zero. The second filter is a baékward information filter
over the same subinterval which computes the equivalent of ML estimates based on
local, but ‘future’ data.

Another example of local filtering is pr.ovided by Tewfik, et al[l15]. in which a
model which is radially causal is filtered locally from the center of each subinterval to

the boundary of the respective subinterval. A system is called radially causal, when
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the system with the state taken as [z(t), z(—t)] is causal in ¢.

The algorithms of Morf et al., and Tewfik et al. compute estimates locally which
are correlated with the estimates which are computed by processors operating over
other regions. Furthermore a correction step is needed to deal with local assumptions
made about the boundaries of the individual subregions in both algorithms, and
the repetition of a priori information in each subregion. In these algorithms this is
performed during the interprocessor exchange step.

Borrowing from the literature on solving partial differential equations (pde’s), the
domain decomposition approach [9] offers new insight into the smoothing problem.
Domain decomposition algorithms are iterative procedures for solving pde’s in which
iterations are performed to match boundary conditions of the local solutions with
those of neighboring subregions. These reduced problems, focusing on boundary
matching, have less structure than the local subproblems. The algorithm iterates
between solving the local subproblems and matching the boundary conditions until
it converges to a solution. Similarly, locally smoothed estimates can be computed
in each subregion instead of locally filtered estimates. The problem at the boundary
can be solved to provide the local subregions with the boundary information needed
to update locally smoothed estimates to produce globally smoothed estimates. A
smoothing domain decomposition algorithm is provided in Section 5.3.

Another novel example of local processing is one we refer to as the oblique pro-
jection approach. Each processor produces forward and backward filtered estimates,
based on the assumption that boundary measurements will be available from neigh-
boring processors. As a result local processors do not compute optimal estimates
based on their own data in an effort to make the incorporation of boundary informa-
tion easier.

Finally, we consider for the initial processing step the use of using filters which
compute ML estimates based on local data. The result is that all of the estimates
produced in each subregion are statistically independent. No assumptions are made
about the nature of the boundary of each subregion, other than that which is sup-

ported by local data, and furthermore, prior information is treated locally where it is
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déﬁned, and in the same manner as all other ‘noisy constraints’.

Continuing with the second step in these parallel processing algorithms we con-
sider the interprocessor exchange step. The purpose of this step is to provide all of
the information required to compute globally filtered or smoothed estimates of the
boundaries of each subregion. The typical way of achieving this is to perform a for-
ward and, if smoothed estimates are to be obtained, backward filtering operation on
the boundaries of the subregions using boundary statistics and estimates computed
locally in each subregion. The details of the filtering process is largely determined
by the first local processing step. Such a forward-backward filtering process implies
that there is a total ordering to the computations used in the interprocessor commu-
nication step. This total ordering is not necessary and as an example, an algorithm
is provided in Section 5.6 where the interprocessor communication is mapped on the
binary tree structure.

The final local processing step must propagate filtered or smoothed estimates in
parallel throughout each subinterval. Again, given the operations executed in the
first processing step, few options are available for the final processing step. One
method to accomplish this is to refilter or resmooth the original data given the global
estimates of the boundary of each subinterval. Another method is to apply change of
initial condition (CIC) equations to locally filtered quantities, and apply the Mayne-
Fraser algorithm to recover smoothed estimates. In the case where the filtering step
is radial, the backward sweep of the Rauch-Tung-Striebel algorithm can be used to
update filters estimates to smoothed estimates.

As an aid to analyzing parallel smoothing algorithms, there are minor issues which
we want to address. We are interested in obtaining smoothed estimates, however many
parallel estimation algorithms primarily’ address obtaining filtered estimates. We
view these algorithms as part of a parallel implementation of the Mayne-Fraser two
filter algorithm. A second minor issue concerns the availability of a clear statistical
interpretation for parallel algorithms. For example, in some cases the derivation of an
algorithm begins with the specification of the solution to the smoothing problem e.g.
with the Hamiltonian TPBVDS and proceeds with parallelizing the computations.
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In contrast, in our approaches we parallelize the smoothing problem, so that each
processing step has a clear statistical interpretation.

The method of dividing the data discussed in this chapter is not the only one which
is suited for extension for two dimensional systems. Another method is to distribute
to each processor, every Lt* datum as adopted by Hashemipour and Laub[13]. This
‘round-robin’ approach requires a central processor to merge the local estimates to
produce globally filtered or smoothed estimates. This method of distributing the data
among processors has been demonstrated in the literature to be viable for
2-D iterative algorithms for solving pde’s [9],[30]. Specifically the iterative algorithms
which use red-black ordering are examples of the use of multidimensional round-robin
techniques. Using the analogy of a checker board, data in red regions are updated
simultaneously, then data in black regions are updated. The process then repeats on
the red data. While one can imagine assigning all of the red data to one processor
and all of the black data to another processor, greater efficiencies can be obtained
by assigning one red and one black region to one processor. From the point of view
of understanding the operations on the underlying process, difficulty arises because
the reciprocal nature of the process is lost under sampling. This contrasts with the
1-D case where all samplings of 1-D reciprocal processes, are themselves reciprocal.
Indeed it is essentially this fact that causes the two-dimensional algorithms which use
red black ordering to be iterative rather than recursive. This fact is exploited heavily
in the algorithm which is presented in section 5.6 at the end of this chapter.

The analysis of complexity of the algorithms in this thesis basically amounts to
an accounting of the computation, storage, and communication requirements needed
to implement the algorithms in this thesis. For any given computation there are
a variety of ways in which it may be computed, with various trade-offs involving,
accuracy, and operation count. These considerations vary with the specific processor
on which the computation is to be implemented. The approach which we take here
is to look at issues specific to the algorithm, and to choose a ‘reasonable’ means
of computation. We assume that the amount of time which a processor spends in

computation is proportional to the number of additions and multiplications required
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to perform the computation. This may not necessarily be the case but without specific

data on the processor and the algorithm by which matrix multiplies, for example,

are implemented this is also a reasonable assumption. To aid in understanding the
complexity computations we refer the reader to the computations on complexity for
the FMLF, Mayne-Fraser smoother, the Rauch-Tung-Striebel smoother and the ML
estimation problem in Sections 4.3, 4.4, 4.5, and 2.1 respectively.

The comparison of off-line computations for these algorithms varies substantially
if there are fundamental differences in the way that estimates are computed. For

example, the quantities

Y. — 5. HY(HX.HT + R)'HE, (5.4)
(2;'+ HTR'H)! (5.5)
and
T #
0 X, 0 P, 0
0 0 R H 0 (5.6)
—I P, HT 0 I

are increasingly complex ways to compute the same quantity, however some expres-
sions are applicable when others are not. For example in (5.4) the matrix R may
be positive semidefinite. Only (HX,HT + R) need be invertible. In (5.5), R must
always be invertible. In (5.6) few restrictions are placed upon the matrices ., R and
H, but as a result we must compute pseudo-inverses. Because the manner in which
the quantities are computed interferes with our ability to compare one algorithm to
another we will assume that locally, all algorithms compute quantities using FMLF
unless it is clearly unnecessary. It should be noted however that the computations
listed here are all O(n®) computations.

The on-line computations will vary little despite dramatic. differences in the off-
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line computations. This is simply because the on-line computations simply reflect the
basic linear relationships that the estimate at k + 1 have with the data y(k) and the
estimate at k. All of the issues of estimability, pseudo-inverses, and perfect data are
all handled off-line.

We would expect the computation involved with any algorithm using processors
which are arranged on a linear array to be comparable. The amount of computation
associated with the data exchange step rises linearly with the number of processors,
while the remainder of the computations we would expect to be inversely proportional
to the number of processors. Thus we expect the amount of time required to produce

the results to be given in the following form

T = %—Tlf(n,p,m) + Lryg(n) (5.7)

where 7; are machine dependent parameters, K is the length of the entire interval on
which the process is defined, L is the number of processors, and f and g are algorithm
dependent functions of the parameters n, p and m which are the dimensions of the
state, the observations and the driving noise respectively. This general relationship
of the amount of time to perform computations to the number of processors holds for
both the off-line and on-line computations. Sometimes it is necessary that the off-
line computations be carried out in advance of the on-line computations, but for the
algorithms discussed in this chapter, the off-line computations can also be computed
in parallel.

The algorithm in Section 5.6 does not operate on a linear array of processors. In-
stead since the operations map to a binary tree, we will assume a hypercube intercon-
nection between processors. As a result we expect that the form for the computation

time to be given by

K
T = 'z'Tlf(na p, m) + ng(n)logzL (58)

In our algorithm discussed in Section 5.6, both the off-line and the on-line computa-
tions have a binary tree structure. As a result the same time dependence applies to

both off-line and on-line computation.
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We may further compute the optimal number of processors by minimizing (5.7)

yielding
2 KTlf(n’pnm)
L= : 5.9
\J T2g(n) (5:9)
Similarly the same minimization can be carried out in (5.8) yielding
2 R’Tlf(n’pnm)
L= 5.10
T29(n) ( )

and checking the two integers which bound I.

The optimal computation time for algorithms described by (5.7) is given by

T = \/-rzg(n) x Kt f(n,p,m) (5.11)

which increases with the square root of K the number of data points. The optimal

computation time for algorithms described by (5.8) is given by

KTIf(”‘??? m))

T = mg(n)(1 + log, m29(n)

(5.12)

Thus in this case the amount of time it takes algorithms described by (5.8) to compute

estimates increases with the logarithm of the number of points K.
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5.1 Parallel estimation algorithm which uses the
Partition Theorem

Morf, Dobbins, Freidlander, and Kailath [14] presented a square root algorithm for
parallel filtering, and smoothing causal systems in discrete time. We will not focus
on the square root nature of the algorithm or the details of the computation, but
will focus on the essentials of the interprocessor communication step. The filtering
algorithm follows. To aid in this discussion we will define the notation for three esti-
mates. The first is the expectation operator E[z(k)|a, 3] representing the conditional
expectation of z(k) given data y(7), « < 7 < 3. The second is the expectation op-
erator given the same data set plus the information that the initial condition z(«) is
exactly zero which will be denoted by E,[z(k)|e, 3]. The third, denoted by #{a|a, 3],
represents an ML estimate of z(a) based on data y(«), through y(83).

Step 1

On the it* segment, forward predicted estimates E,[z(k)|k:yk — 1] are computed
as is the estimate &[k;|k;, k]. From the partition theorem [37] the estimate &[k;|k;, k]
is shown to be obtainable from forward filtering the innovations which result from
computing E,[z(k)|k:, k — 1].
Step 2

Information is exchanged between neighboring processors to compute the global
filtered estimates at each k;.

The interprocessor exchange step involves combining the globally filtered estimate
at k;, denoted by E[z(k;)|ko, k; —1] which is obtained from the previous processor, and
combining it with the local backwards filtered estimate &[(k;)|k;, ki1 — 1] to compute a
smoothed estimate E[z(k;)|ko, kir1 — 1]. Finally E{z(k;)|ko, kis+1 — 1] can be combined
with the loca;lly filtered estimate E,[z(k)|k;,k — 1] to arrive at the globally filtered
estimate E[z(kiy1)|ko, kiv1 — 1].

The set of equations which govern this is given by the partition theorem and is
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Figure 5-2: Parallel estimation in algorithm by Morf et al.

shown by the following.

Elz(kiy1)|ko, kiyr — 1] = @(kir1, ki) Elz(ki)lko, kivr — 1] (5.13)
+  Eolz(kit1)lkis kiyr — 1]
P(kiallko, kiss —1]) = ®(kip1, ki) Pkil[ko, kivr — 1)@ (ki1 ki) (5.14)
+  Po(kiyalkiykiyr — 1)

where ®(k;11,k;) is the state transition matrix for the system, Po(kit1|k:, kiy1 — 1) is
the covariance associated with the estimate E,[z(kiy1)|ki, ki+1—1] and P(kiy1|ki, Riy1—
1) is the covariance associated with the estimate E[z(kiy1)|kiy kiyr — 1]

The above equations for the interprocessor communication step are implemented

as a filter with a structure resembling that of the Kalman filter.

Elz(kip1)lkos kips — 1) = ®(kiya, ki) Elz(ki)lko, ki — 1] + Eo[e(ki) ki kiva — 1]
+ Kl(E[:c(kl);k,, kg+1 - 1] - E[m(kl)lko,k, — 1]) (515)

Here the local boundary estimates can be interpreted as observations. The compu-
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tations are a little more complex due to the fact that embedded in the problem are
corrections for the fact that the local processing makes assumptions about the value
of the process at the boundary. However this encourages the notion that the interpro-
cessor communication step can be formulated as the simple application of a known
filtering algorithm on a sampled system using the local estimates as observations.
Step 3

The globally filtered estimates of the interior points E[z(k)|ko, k — 1] are obtained
by combining the global filtered estimate of the boundary E[z(k;)|ko, k; — 1], with the
local fixed point smoothed estimate of the same boundary given by #[k;|k;, k — 1] and
the locally filtered estimate of the interior points E,[z(k)|k;,k — 1] in the following
fashion.

We will not go into the complexity of this algorithm because we are not discussing
the details of this algorithm but just the essentials of the partitioning of the problem.
Local estimation based on the assumption of perfect boundary knowledge aids in
partitioning the estimation problem both in this algorithm and in the algorithm
discussed in the next section. However we will see that it is possible to partition the
problem such that the local estimates have the interpretation of optimal estimates
based on local data without additional assumptions concerning perfectly known initial

conditions.
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5.2 Inward and outward recursions in a parallel
smoothing algorithm

Tewfik, Willsky, and Levy [15] describe a distributed smoothing algorithm based
on the partition theorem and the notion of inward and outward processes. It is
included in this section for three reasons. First it is an interesting algorithm in its
own right. Secondly we will adopt inward and outward processing techniques in
the new algorithms presented in Section 5.5 and 5.6. Finally one may ask how his
algorithm applies to STPBVDS’s.

In particular, the algorithm discussed in Tewfik, et al.[15] involves the construc-
tion of an outward Markov model. This model is written as a recursion from the
center of the interval outward to the boundary. A priori information for these models
is specified at the center of the interval. The parallel algorithm discussed in this
section starts with this model. However, since all STPBVDS’s are Markov, a causal
model could be constructed first, then the outward Markov Model can be obtained as
described in [15]. Similarly, the outward Markov Model can also be obtained directly.

Although the algorithm in [15] is given in continuous time, we present here a
discrete time analog. This formulation also yields additional simplification if the
process is stationary. Using a joint model for z(k) and z(—k), local Kalman filtering is
performed radially outward from the center of each interval. Information is exchanged
between neighboring processors to compute the globally smoothed estimates. Finally
the interior points of each segment are updated radially inward and in parallel to
obtain the globally smoothed estimate of the state everywhere.

Given a causal system

z(k+1) = Arz(k)+ Bru(k) : (5.16)
y(k) = Chre(k)+ Dyu(k)
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where the following holds

B.DI = 0

(5.17)

The data is segmented along the time axis to be processed independently. In each

segment consider the case where the time origin has been shifted to the center of each

interval. Tewfik defines the following process T, m(k).

oo (k) = [ o) ]
Toiz(—k)

where X, satisfies the Lyapunov equation

Yrp1 = ASi AT + By BF

[ y(k) ]
Ypm =
y(—Fk)

The model for the system is described by the following matrices

and

A4, 0
Ao = | 7F
| 0 AT,
[ B 0
B, = k
0 21-1‘4:%—13—’0
C. 0
Ce = k
| 0 C_k1
[ D 0
D = | °
0 —D_p_s
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Step 1:

Locally, Kalman filtering is performed on the following model

Tom(k+1) = Apzpm(k) + Brw(k) (5.26)
Ypom(k) = Cizpm(k) + Diw(k) (5.27)

where

Elzpm(0)2,,,(0)] =

0) I
I ¥-Y0)

] = Zpm(0) (5.28)
In the original time coordinate system the Bayesian estimate of the local boundary
is given by ‘i(ki—llki—laki) and iﬁ(kilki_l, kl)

Step 2:

A two filter algorithm is used to smooth the data at the endpoints of the segments.

Thus the smoothed estimate at an endpoint is given by

S5 kilkoy kN )& (Rilkoy by ) = S (kilko, ki )& (Kilko, k:) (5.29)
+ TN klki, k)@ (ki) ki, k)

S7 " (ilkoy ki) (5.30)

+ Z7V(kilkiykn) — 357

S (kilkoy k)

Il

where £} is the a priori covariance of z(k;). The forward filtered estimates for the

endpoints are given by

T (kio1lkoy ki )2 (ki1 ko, ki) =

L

S (kizt|ko, kio1)&(kiq ko, ki) (5.31)
TR T (N T A 10 S R
S kict ko, ki) = S (kisq ko) ki)

+ T kicalkioy, ki) — Bt (5.32)
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and

B(kilkoy ki) = &(kilkio1, ki) (5:33)
p
+ @0, 7)o (kica oy ki) — (ko i, )]
(kilkoy ki) = X(kilkio1, ki)

K K
+ @0, F)[E(ki-1lko, ki) — B(kis [kioa, k:)197 (0, 7)) (5:34)

Before continuing to Step 3, equations (5.31) and (5.33) need further discussion.
Assume locally at the start of a subinterval that the initial condition was known

exactly. We may then write

i(kilko ki) = #°(kilkir, ki) (5.35)
K
+ @(O,T)fl(ki_llko,ki)
Y(kilkoy ki) = XTO(kilkio1,k:)

+ a0, %)z(k,-_lgk,,, k)37 (0, _12:) . (5.36)

We still need to compute £°(k;|k;_1,k;), the estimate based on the ‘assumption’ that
z(ki-1) = 0. Since z°(k) = z(k) — ®(0,k)z(0) we find that

5(ilkir, k) = @(ki;ki_l,ki)_Q(o,%)ﬁ(ki_llk,-_l,k,,) (5.37)

K K
o(ki|kioy, ki) = E(kilki_l,ki)—@(0,—L—)Z(ki|k,~_1,k,-)<I>T(0,——) (5.38)

Equation (5.35), and (5.37) can be combined to produce (5.33). This is an application
of the partition theorem[37], [19]. Similar equations exist for the backwards filtered
estimates. We will see that parallel processing algorithms may have much simpler
statistical interpretation of the manner in which data is combined than the partition
theorem lends in this algorithm.

Once the smoothed estimate of the state is computed at each of the &;, the data
in each interval is updated via the backward sweep of the Rauch-Tung-Striebel Al-
gorithm [21]. Following the development of the Rauch-Tung-Striebel Algorithm in
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Section 4.3, under the assumption of no perfect observations and estimable states, it

is given by
Zpma(k) = &pm(k) — Spm kR AL Z 0 [k + LK) (Zpms(k + 1) — ALEpm(K))  (5.39)

where ¥,.,[k|k] is the filtered covariance obtained through Kalman filtering.
This algorithm involves the preprocessing to generate the outward Markov model

in equations (5.26), (5.27), and (5.28).

5.2.1 Complexity

Step 1
Off-line

Besides the obvious computation involved in this algorithm, given by the on-line
computations and the computation of the matrices F, G) and the covariances, there
are two other sources of computational complexity which are incurred in preparation
to use this algorithm. The first is that if the process is presented as a normal state
space system, then a priori information must be propagated to the center of each
subinterval and to the subinterval boundaries. This is accomplished by using the
Lyapunov equation. More importantly further computation is involved to construct
the outwardly causal model used locally in this algorithm. Both the causal, and
outward causal models are used in this algorithm. Locally the outward causal model
is used. During the interprocessor exchange step, the standard causal model is used, as
evidenced by the use of the state transition matrix. If the original system is specified
as a STPBVDS, or as the outward model, then additional computation would be
involved to generate the state transition matrix.

The local processing amounts to applying the Rauch-Tung-Striebel algorithm to
a system whose state dimension is 2n while the dimension of the observations is given
by 2p and the dimension of the driving noise is given by 2m. The filter is only run

over half the interval since the time axis locally is radial for the local processing.
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Since the interprocessor communication requires the computation of matrix inverses;
we will assume that that there are no perfect observations, and as a consequence the
error covariance of the boundary estimate has full rank. The computation of one

processor acting on one region is given by

_;_.I%}C(zn, 2p, 2m; off — line, invertible) (5.40)

where K(n,p, m;off — line,invertible) is defined in Section 4.3.1 by
§(2n +p)® 4 2n(2n + p)? + 6n° + 2mn? + 2pn? (5.41)

On-line

The on-line computation of one processor acting on one region is given by

%%K(Qn,zz;, 2m;on — line) (5.42)

where & represents the radius of the subintervals and K(n,p, m;on — line, invertible)

is defined in Section 4.3.1 by

K(n,m,p;on — line) = 2n(n + p) (5.43)

Step 2
Off-line
The off-line computation required to implement the interprocessor communication

can be implemented with

(L —1)(4Z(n,n) + 8n®)

(5.44)
= (L —1)10.67n?

flops.

On-line
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The on line processing can be carried out in
(L —1)8n? (5.45)

flops.
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Step 3
Off-line

Here the backward sweep of the Rauch-Tung-Striebel algorithm is implemented.

Thus the computation of one processor acting on one region is given by

L1ET(2n;off — line,invertible) (5.46)

where T(n;off — line,invertible) is defined in Section 4.5.1 by

2

On-line

The on-line computation of one processor acting on one region is given by

%%T(Zn;on — line) (5.48)

where T(n;on — line) is defined in Section 4.5.1 by

4n? (5.49)

In summary, the total amount of off-line time required to compute the smoothed

estimate of the state in this parallel smoothing algorithm is given by

T = 1 X7,[T(2n; off — line, invertible) + K(2n, 2p, 2m; off — line, invertible)] + (L — 1)10.677,n?

= £7,[165.33n% + 5.33(2n + p)® + 16n(2n + p)? + 16mn? + 16pn?] + (L — 1)10.67myn3
(5.50)

where the appropriate f and g functions in (5.7) for this case can be immediately

identified. The amount of on-line time required to compute the smoothed estimate
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of the state in this parallel smoothing algorithm is given by

T = +%£7,[T(2n;0n — line) + K(2n;on — line)] + (L — 1)r,10.67n®

_K 2 2 (5.51)
= 7711[12n? + 4np] 4 (L — 1)728n

Again the appropriate f and g functions can be readily identified.
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5.3 A Recursive Domain Decomposition Algorithm

.In the first step of this algorithm we produce locally ML smoothed estimates: The
second step solves the ML smoothing problem at the boundaries, and propagates the
boundary information to ea(;h of the processors. The third step updates the locally
smoothed estimates to produce globally smoothed estimates. This algorithm is es-
sentially a parallelization of the Mayne-Fraser two filter smoother where, to aid in
the interprocessor exchange step, forward and backward fixed point smoothers are
implemented instead of the usual forward and backward filters. Since ML estimates
are used in each subinterval, the computed estimates in each subinterval are inde-
pendent, allowing simple estimation equations to be used during the second step to
produce globally smoothed estimates of the boundaries of the subintervals.

In order to minimize the number of projection matrices required to describe the
algorithm in this section, we will assume that the state of the system is estimable
given local data although the state may not be estimable based on local causal or

anti causal data alone.

Step 1:
Locally each processor implements the 2n dimensional fixed point smoother for (5.1)

given by computing the FMLF for the following augmented system

S N o I I I R B (e A
0 I||ék+1) ] 0 I|| &k 0
[I -I] z(ki-1) _ 0 (5.53)
E(ki-1) |
z(k
y(k) = { C 0] (%) + v(k) (5.54)

kioi+1 <k< k (5.55)

The fixed point smoother produces at each point the following estimate given local
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data

elk|ki—1 + 1, k]
&lki_1lkio1 + 1, k]

wk) |, [ #lhikia+ 1.4 |
z(ki_1) Elki_y|kioy + 1, k]
(5.56)

where Po(i)a(k;_;)k:_1+1.k 15 the projection matrix generated by the FMLF indicating

= Po(i)a(kio1)lkic +1,k [

the estimable subspace and the error statistics are given by

2lk|ki_1, k]
E[k;_1]ki_1, k]

~ N |0
Dealbialkioy + 1, k] Zeelkialki_y + 1, k]

(5.57)

E:z:m[klki-—l + 1: k] Emf[k'ki—l + 15 k]
Po(ke)a(iei 1 )kiy +1,k ;

In particular for & = k;, a measurement of the boundary given local data is obtained.
Since z(k) is estimable given local data, the projection matrix is equal to the identity
at the boundary of the local subinterval. Similarly a backward fixed point smoother

can be constructed by computing the BMLF for the following augmented system

Een 0} [:c(k+1) _ [ao [m(k)]+[3k]u(k) (5.58)
0 I]|¢k+1) ) o I|/| ¢k 0
[I _1}[dh) - 0 (5.59)
(k)
z(k)
(k) = Cr 0 + v(k) 5.60
y [ } [C(k) (5.60)
ki +1 <k< Kk (5.61)

From the backward fixed point smoother one obtains

z(k) . 2 k|k + 1, k]
z(k;) &kilk + 1, k)

(5.62)

A 0
0 I

= :b(k),m(kg)!k-{-l,k,‘

éb[k‘k + l,ki]
:ﬁ[k,’k + 1,ki]
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where the error statistics are given by

Zlkilk + 1, k] Teolkilk + 1, k1] Teelkioalk + 1, k4]
(5.63)

Since we are implementing a parallel Mayne-Fraser algorithm, there are two inde-

z[k|k + 1, k] Toolklk + 1,k] Zoelklk+ 1, ki)
Pob(ie) () e+1,k: { } ~ N [0; { !

pendent measurements of (k) at each point in time. One resulting from the forward
filter, and one from the backward filter. One possibility is that locally smoothed
estimates can be computed by incorporating all of the local information first. Con-
sidering the local ‘measurements’ of the local states provided by the local forward
and backward prediction filters, and local ‘measurements’ of the states which bound

the subregion, the ML estimate based on these ‘measurements’

&lki—1|ki_1, k]
Potli_y)ak)lkis ik - 0 &[k|ki_1, k]
0 E sz(k),m(k;)]k+l,k; ib[klk + 1, k,]
2lkilk + 1, k;
- - - - [ i ] - (5.64)
I 00 #lkia|kios, k — 1]
0 I 0 (E(ki_l) il.![klki_l,k — 1]
=1 ...... z(k) |+ e
0 E, 0 :c(k,) Eb[klk + l,k,',]
0 o0 I Blkilk + 1, k]

results in the locally smoothed ML estimate of the boundaries of the subinterval and
the state z(k) given by

#[k|kiy, k] z(k) #[k|ki1, ki]
Blliykicg, ki) | = | @(kicy) | + | #[kio1|kioy, ki) (5.65)
Elkilkio1, ki z(k;) Zlkilkioy, ki

where thanks to the assumption of the estimability of the state based on local data,
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the projection matrix associated with the estimate in (5.65) is equal to the identity.
The error covariance for (5.64) is obtained from the forward and backward filters, and
the error covariance in (5.65) comes directly from the solution to the ML estimation
problem applied to (5.65).

Step 2:

The globally forward filtered estimate is constructed by implementing a filter which
operates on the boundaries of the subintervals using local boundary measurements
as observations. From Lemma 4.3, the estimate #[k;|0, k;] can be constructed at each
point in time with the addition of the measurement #[k;_1|0,k;_;]. The estimate

which processor ¢ 4+ 1 requires is obtained from a filter constructed from the following

measurements.
é[kilki-—laki - 1] I 0 (k ) i[kz“ki—l + l,kt']
AR
Elki1lkir, ki —1] | =0 I (hit) + | 2[kicy|kicy + 1, k] (5.66)
T\Ri-1
i[ki_1|ko,ki — 1] 0 7 :E[ki_IIO,k,-_l]

where represents the predicted estimate of the state given by (4.48). The globally

filtered estimates are given by

i[ki+1|ko,ki+1]=[0 0 00 I]

[ Zaalkis kilki + L kiv1]  Baalki, kipalki + 1, kiga] 0 Io] f
Daelkirrs kilki + 1, kip1]  Baalkipr, kipalks + 1, ki) 0 0 I
0 0 Ssalki, kilko ki) I 0
I 0 I 00
0 I 0 00

X [ Blhilki + 1, kiga] E[kigelki + L kiva] @lkilkia+1L,k] 0 0 ]T
(5.67)
Similarly a backward prediction filter can be constructed for computing backward
global predicted estimates of the boundaries of the process.
Step 3:

At each point in time a locally and jointly smoothed estimate of z(k) and the local
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boundary [zT(k;_1)zT(k;)]T is available along with the associated joint error covari-
ance. This joint estimate was obtained in Step 1 in equation (5.65). Also globally
filtered estimates of the local boundaries given by (5.68) are available from the pro-
cessing in (5.67) in Step 2 and from the associated backward filter. The measure-
ments (5.65) can be combined with the boundary measurement provided by the for-
ward and backward filters in the interprocessor exchange step to obtain the smoothed
estimate of the state at each point in the subinterval. Figure 5.3 shows a processor
which operates on data form k;_; to k; recieving boundary measurements from neigh-
boring processors to construct the smoothed estimate of the boundary at k;_; and
k;.

&[k;-1]0, k;_1] _ z(ki—1) N z[k;_1|0, ki_1] (5.68)

2[k;|ki, K] z(k;) &[ki| ki, K|

In this algorithm the boundary of the local interval is appended to the state
at each point in time. If we were to consider adapting this algorithm to the two
dimensional case, we would need again to append the state with the boundary. In 2-D
however the boundary states of local subregions have high dimension. The smoothing
algorithm would suffer a dramatic increase in computational complexity. Providing
locally smoothed estimates is not the direction we wish to take in higher dimensional
processors.

This method is comparable to the domain decomposition method[9] where a pde
is solved in local regions in an attempt to compress the problem to solving a system
of equations at the boundary. In this one-dimensional algorithm provided here, the
complexity of the boundary smoothing problem has not increased and updating the
interior points is simple. Domain decomposition methods will be discussed further in

Chapter 6 in connection to multidimensional state estimation.

5.3.1 Complexity

Step 1
Off-line

The forward filter in this algorithm is a fixed point smoother. The state dimension
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ﬁML[kilO,ki - 1] :i!ML[ki + 1lki + 1,K]

0,ki1 —1] p— (ki1 ki] [k; + 1, K]

Figure 5-3: Boundary Measurements from Neighboring Processors

is given by 2n. The dimension of the driving noise and the observations remains un-
changed from the original model. The amount of computation which a given processor

acting on a single region of data must execute is given by

2%[1C(2n,m,p; off — line,non — estimable) + M(7n,3n, Tn)]

(5.69)
= 2K(2159n% + 224n?p + 16n%m + 42np? + 2.67p°]
where K is defined in Section 4.3, and M is defined in Section 2.1.
On-line
The online computation required is given by
K19K(2n, m, p;on — line) + 8n?

= 2£[12n? + 4np]

where the factor of two indicates that the computation needs to be carried out both
for the forward filter and the backward filter.

Step 2

Off-line

The off-line computation required for the interprocessor communication is given by
(L — 1)&(5n,2n,5n) = (L — 1)316.67Tn° (5.71)

On-line

The on-line computation required for the interprocessor communication is given by

(L — 1)6n? (5.72)
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Step 3
Off-line
Here local estimates of the state and the boundary are combined with globally filtered

boundary measurements. The off-line computations are given by

K£(8n,3n,8n) = £874.67n° (5.73)

On-line

The amount of on-line computations is given by
T = %1011,2 (574)

In summary, the total time required to compute the off-line computations is given by

T = 2%—[1C(2n, m, p;off — line, non — estimable) + M(7n,3n,Tn)
+ 1£(8n,3n,8n)] + (L — 1)€(5n,2n,5n)]
= 2K(2596.33n% + 224n%p + 16n2m + 42np? + 2.67p°]
+ 316.67(L — 1)n®

(5.75)

and the total time required to compute the estimates on-line is given by

T = 2&[K(2n,m,p;on — line) + 4n? + 5n%] + (L — 1)6n* = 2£{—[17n2 + 4np] + (L — 1)6n®

L
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5.4 Method of Oblique Projections

Many parallel processing algorithms take advantage of the partition theorem [19],
or somehow compute locally optimal estimates and use the information obtained
from neighboring processors to create globally optimal estimates. Simpliﬁca.tion may
result if each processor behaves with the knowledge that it will receive information
from neighboring processors. Specifically, our aim is to represent equations (3.36),

and (3.37) by the following ‘measurements’.
Y(i) =3 H(,5)e(j) + (i) (5.77)
J
where ¢ € {1,2,3,...L}. We then seek the operators £(j7,7) such that
8(5) = 32 LGV () (5.78)

where L are oblique projection operators. Properties of these operators are discussed
in by Ayalar and Weinert in [4]. The advantage of these operators are that the
contributions of neighboring processors can be simply added together. It is desirable
however that the operations indicated by L£(7,7) be factorable into two operators of
low dimension so that few parameters need be transmitted to neighboring processors.
In other words, we desire L(j,t) to be written as L£(j,t) = L£1(j,2)L2(j,%) where
L2(7,1)Y(7) is a sufficient statistic of lowest dimension to be passed to neighboring
processors, and is easily computed while computing £(7,7)Y(j). In addition we desire
L£1(j,1) to be an operation which can be carried out in the i*" processor during the
third step in the parallel processing algorithm. In this formulation, the computation
in a given subinterval is suboptimal. This partitioning of the problem is based on the
assumption that the proper information will become available from other processors.
As a result all of the gain matrices in each subinterval are based on the knowledge of
the statistics of the entire process and all of the data instead of having information
only about the process and the data in the local interval. As a result after local

estimates of the state has been obtained, the processors will not have to communicate
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with neighboring processors to obtain covariance information.

The algorithm presented in this section has a structure similar to those discussed
in Section 5.1, and 5.2. The data is partitioned into segments. Local filtering is
performed upon each segment. The filter in this algorithm is an n dimensional filter
instead of a 2n dimensional filter as in Section 5.1 and 5.2, which also results in
computational savings over the algorithms discussed in those sections both off-line
and on-line. In the data exchange step between neighboring processors sufficient
statistics are passed to compute the smoothed estimate at the endpoints of each
segment. Finally the points within each segment are updated from the information
available at the endpoints of each segment. This algorithm is distinctive in that the
global equations are implemented locally in all aspects except that the estimate of
the boundary of the subinterval is set to zero. Since the local processing requires
knowledge of the statistics of the process and data over the entire data interval,
covariance information must be determined in advance of processing the data. In
the other algorithm discussed in this chapter, and in the change of initial condition
equations discussed in Ljung and Kailath[19], global statistical information are not
assumed to be available to local subinterval processors.

The algorithm has the property that from the perspective of a particular processor
processing data on the i*" interval, the computations of neighboring processors provide
measurements of the process on the boundary of the i*" interval. These measurements
are then used to provide measurements of the boundaries of neighboring processor in
addition to updating the local estimates to their smoothed values.

The algorithm is as follows. Starting from (5.1) we seek a parallel implementation
of the Mayne-Fraser smoother. The Mayne-Fraser algorithm constructs forward pre-
dicted estimates z4(k) and backward filtered estimates (k). The backward filtered
estimates can be obtained from the BMLF, or if the system in (5.1) is causal, the
backward estimates can be obtained from from backward information filtering [21].
If the system is causal then a backward Markovian model can be constructed for
implementing a backward Kalman filter [34]. The filtered estimates are combined via

equation (4.85)
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The forward ML filter can be written as

Ze(k+1) = Bk + 1,k)2 (k) + GLy(k) (5.79)

where

®(k+1,k) = F/ P.(k)Ax (5.80)

and where F, and G{ are given by

T T #

FPT 0 Sak+1k 0  Eup

G{'T =10 0 Rit1 Crps (5.81)
— Tk + 1]k + 1] I ET., ct,, 0

where P.[k + 1|k] is given by
P,k +1|k) = F{Ev\y + GLCTL,, (5.82)

The algorithm is obtained by attempting to implement the above equation for the
estimates directly. Specifically the gains in each subinterval should be based on all of
the statistics of the process and data prior to the data in the given subinterval. If a
parallel algorithm is required to compute F,f , and G,’:, then the parallel algorithm in
Section 5.3 can be used for this purpose.

Given that locally, all processors have the gains F,f , and Gi based on the statistics
of the entire process, filtering the data is simple. Locally, each processor computes
the zero state response (ZSR) solution to the filtering equations. When boundary
information becomes available, the zero input response (ZIR) equations are used to
update the output of the ZSR filter to the optimal globally filtered solution. In
addition, the ZIR equations are used to compute the boundary condition for the

subsequent processor.

Step 1:
Using the F/, and G{ matrices, each processor computes the ZSR for the FMLF.
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Thus locally each processor will compute

k-1
zj(k) = 3 B (k,x + 1)Gly(x) (5:83)

Fe;_y
which is the solution to the FMLF equations assuming z*(k;_;) = 0. The state is
computed for all & in the interval [k;_1, k;]. The matrix ®;(k, <) is the state transition
matrix for the FMLF. All of the information available from processors operating on
data before time k;_; is used to construct the estimate of the state at k;_;. It is this

estimate that has the interpretation as a boundary measurement.

Similarly with the F? and G matrices, generated from the backward filter, each

processor computes the ZSR for the BMLF. Thus locally each processor will compute

kg

25(k) = 3 Ba(k ) Par () B Gl () (5.84)

which is the solution to the BMLF equations assuming 2*(k; + 1) = 0. ®s(k,k+1) =
P,(k)E,F},, is the state transition matrix for the BMLF. The state is computed
for all k in the interval [k;_1,k;]. All of the information available from processors
operating on data before time k;_; is used to construct the estimate of the state at

k;_1. This estimate also has the interpretation as a boundary measurement.

Step 2:
In the data exchange step, the i** processor can immediately compute the initial
condition, £;(7), for the next processor when the initial condition at time k;_, given

by £4(i — 1) becomes available. This is accomplished using the state transition matrix

of the FMLF as follows

Er(ki) = a3(d) + Pp(kiy kioa)Ep(i — 1) (5.85)

where {;(7) represents the initial condition at time k;. Also for the backward filter,

the i*" processor can immediately compute the initial condition,é,(¢), for the previous

processor when the initial condition at time k; given by &(¢) becomes available. This
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is accomplished using the state transition matrix of the BMLF as follows
b(i —1) = =z3(ki-1) + Po(ki1, ki)és(3) (5.86)

where (i) represents the initial condition at time k;.

Step 3:
Similarly the results of the local processing in Step 1, can also be updated to the

globally filtered estimates by using the state transition matrix.
2i(k) = (k) + &5k, hiy)és(i - 1) (5.87)

Similar processing can be done for the backwards estimates. The final result for
the smoothed estimates is a weighted sum of the forwards and backwards estimates,
given by equations (4.85), (4.86), and (4.87).

Before the estimates can be computed however, all of the local processors must
be given sufficient information to compute gains based on the statistics of the entire
process. These gains can be precomputed off line and distributed to each processor

in advance of the estimation process.

5.4.1 Complexity

Since locally each processor requires knowledge about the global statistics of the
process in order to implement the local filters, a certain amount of preprocessing is
necessary if we intend off-line and on-line computations to take place concurrently.
Here we will briefly outline one method of computing the gains in parallel. The
off-line computations for a fixed point smoother can be run in each subinterval in
parallel as described in Section 5.3. Then an FMLF and a BMLF are run on the
boundary points to generate the appropriate covariances and projection matrices as
in Step 2 of Section 5.3. Given the covariances and projections for globally filtered
estimates at the boundaries, the off-line computation proceeds as described in Section

4.3 and 4.4 with a local FMLF and BMLF which compute the required gains. The
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state transition matrix for the FMLF, and the BMLF must be computed for the
on-line interprocessor communication step.
Step O

Preprocessing

Preprocessing consists of running the off-line computations for a forward fixed
point smoother, and performing the interprocessor communication necessary to insure
that globally filtered covariance data of each boundary has been propagated to each

subinterval processor. The preprocessing requires

T= K(2n,m,p;off — line, non — estimable) + (L — 1)M(5n,2n,5n)

: (5.88)
[509.33n° + 224n%p + 16n%m + 42np? + 2.67p%] + (L — 1)583.33n3]

SR =

flops where we assume that the state is not causally or anticausally estimable. The re-
maining off-line computations can take place concurrently with the on-line calculation
and will be included below with the on-line calculations.

Step 1 |

Off-line

After the preprocessing just described, forward and backward ML filters can be locally
implemented using globally determined statistics. The off-line computation is given

by

2%—[1C(n, m, p;off — line, non — estimable) + 4n3]

(5.89)
= 2K[67.6Tn® + 56n%p + 4N?m + 21np? + 2.67p%]

where the additional 4n® flops are needed to compute the state transition matrix for
the ML filters.
On-line

The on-line computation required is given by

K8n(n + p) (5.90)
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Step 2
Off-line

There is no off-line component to this algorithm which can be implemented coricus- — —

rently with this step because all off-line interprocessor communication takes place
during the preprocessing step.
On-line

The on-line computation required for the interprocessor communication is given by
(L —1)2n° (5.91)

Step 3
Off-line
The estimates from the forward and backward filters are combined to produce the

smoothed estimate. The amount of off-line computation needed for this step is given

by

£ F(n,m;off —line,estimable)

(5.92)
= £63n°

where F is defined in section 4.3 and it is assumed that the state is estimable given
all of the data.
On-line

The amount of on-line computations is given by
Lon? (5.93)

In summary, the total off-line time required is given by

==

2K(n,m, p; off — line, non — estimable) + 8n® + F(n,m; off — line, estimable)]
[K(2n,m, p;off — line, non — estimable) + (L — 1)M(5n,2n,5n)]}
2K[67.6Tn° + 56n%p + 4N?m + 21np® + 2.67p%] + £63n3

[509.33n° + 224n?p + 16n2m + 42np® + 2.67p%] + (L — 1)583.33n%]}

+ I+
Il

P Sy

o= blw e

~
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where the term in braces indicates the preprocessing required. The on-line computa-
tion is given by
£(10n? + 8np) + (L + 1)4n? (5.95)

where f and g in (5.7) are readily identifiable.
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5.5 Parallel ML Smoothing

In the treatment of parallel processing in this section, the issues of parallel processing
are simplified as much as possible. The local processing consists of ML filtering
starting from the center of each interval to the boundary. At the boundary, the
optimal estimate is obtained given all of the local data and dynamic constraints.
These boundary measurements represent ‘observations’ of the sampled system whose
states are the boundaries of the local subintervals. Since the initial local processing
computes ML estimates based on local data, these ‘observations’ are independent.
The interprocessor communication step amounts to implementing the Mayne-Fraser
two filter smoother on the sampled system consisting only of the boundary points,
resulting in smoothed estimates for the boundary of each subinterval. Finally the
backward sweep of the Rauch-Tung-Striebel algorithm is used in each subinterval to
produce globally smoothed estimates starting from the boundary of the subinterval
and proceeding to its center.

The first aim is to show that local processing can result in an equivalent but
sampled process, where the local computations play the role of state observations.
Step 1
Let the local processors filter outward from the center of the interval to the boundary
by applying the FMLF equations using the folded model indicated in equations (3.25)-
(3.26) which was shown to be equivalent to (5.1). The local processors compute locally
filtered estimates of the boundary based on local data and dynamic constraints. From
the outward filtering process described in Section 4.4, the result of filtering to the

boundaries from the center of each subinterval is

&(ki|kry Rigr — 1] 3 Prbibikrsi -1 Prokrgy rikgg -1 x (ki)
&(kiy1 |k, kipr — 1] | Pryykilkikess -1 Py gk kg -1 z(kiy1)
by, s — 1
N [ +1—1]

| &k ki, kigr — 1]

(5.96)
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Sampled System
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NN AN AN AR

T T T T

Dynamic Constraints

Figure 5-4: This represents the system immediately after the local filtering which
starts at the center of each subinterval and ends at the boundary of each subinterval
has been performed. The the state of the system has dimension 2n, and the local esti-
mates produced by each processor represents local estimates of the state. Linking the
states together are the remaining constraints. If neighboring states do not intersect
then the constraints are noisy and are a subset of the of the original set of descrip-
tor equations (5.1). Otherwise neighboring states intersect and equality constraints
exist (?7)
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Forward ML Prediction Filter
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Backward ML Prediction Filter

Mayne-Fraser on Sampled System

Figure 5-5: The interprocessor communication step consists of constructing two filters
which will provide a measurement of the boundary for a given subinterval. The
smoothed estimate of this boundary is constructed from the local measurements and
the two measurements provided by the forward and backward filters.

where the matrix of P, represents the projection matrix associated with the esti-
mate of the local boundary. If the system is estimable, and if the local subinterval is
large enough, then the projection matrix which premultiplies the boundary [z, z4,,,]
in (5.96) is the identity. Note that this differs from the algorithm discussed by Tew-
fik, et al., in that while both locally filter folded processes whose state is given by
[zT(k) zT(—k)]%, this model, as shown in Chapter 3, is simply a reordering of the
dynamic constraints in (5.1), while the model which appears in Section 5.2 is an out-
wardly causal model. Our algorithm therefore avoids any cost associated with the
construction of this outwardly causal model. The covariance of the estimation error

in (5.96) is given by

&(ky|kry kr4 — 1] N o | Zeslkokilki ki =11 Baalk, kialke, ks — 1]
&[kry1|kr, kryr — 1] Bezlkir, kilki kv = 1] Saalkier, kipalky, ki — 1]
(5.97)

Step 2 The remaining constraints required to produce globally filtered estimates
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follow the form

[I o] :(:Iiii) -—-[0 I] z::;;) (5.98)

The sampled system in (5.98) can be filtered using (5.96) as observations via the
Mayne-Fraser algorithm to produce forward and backward filtered estimates and as
a result produce smoothed estimates of the states of this sampled system. Figure 5-4
represents the system after the local filtering step, and the location of the remaining
dynamic constraints.

By acknowledging that after filtering the system is a sampling of the original
system, the issue of transmitting information from one processor to another is just
an implementation of the Mayne-Fraser smoothing algorithm. In this ca,sé we prop-
agate forward and backward predicted estimates of the 2n dimensional boundary
[T (k;), 2T (ki41)] and combine them with the estimate of the boundary which is pro-
duced by each subinterval processor. Given only past data (i.e. causal data excluding
the measurement of the current boundary), at most an estimate can be constructed
for z(k;) while no information is available about z(k;4+1). Therefore if we were to
interpret (5.98) as a descriptor system whose state is 2n dimensional, and (5.96) as
the observations for this system then a ‘prediction’ filter can at most estimate the n
dimensional subvector for [I,0][zT(k;), 2T (ki41)]%. As a result the interprocessor com-
munication need only communicate n dimensional vectors, and n X n covariances, and
projections instead of larger matrices and vectors. Figure 5-5 shows the application
of the Mayne Fraser algorithm to the sampled system.

The smoothed estimate is obtained by combining n dimensional forward and back-

ward predicted estimates of the 2n dimensional state with the local measurement of
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the state. The FMLF for the sampled process is given by

&lkir1lkoy kipr — 1] = { 0000 I}

1#
Szslki, kil kipq — 1] Sezlkiy kip1lke, kigq ~ 1) 0 I 0
Teslkirr, kilkr, kipr — 1] Baelkigr, kipalky, kg — 1] 0 0 I
0 0 Eii[kl’ kllk(), kl - 1] I o
I 0 I 0 0
0 I 0 0 0
| - )
X :i[klikl,kH,l - 1] :f:[k1+1|]c1, ki1 — 1] i[kllkl_l,kl - 1] 0 0
(5.99)

where we assume that z(k;41) is estimable based on data over the interval from k;
to kiy1 — 1. If z(ki41) is not estimable then projection matrices must be included in
the computation. As an aside we will now include the equivalent computation for the

case where z(ki41) is not estimable.

T #
0 R H, H,

Ly Miyy Np 0 Aglkipalko ki —1] | = | 0 HY 0 o0 (5.100)
1 HE 0 o

where
Teslki, kilki, ki — 1 Taalki, ki ko, ki — 1] 0
R = Yaslkirr, kilki, kivr — 1] Zazlkivr, ki ki ki — 1) 0
0 0 Saalkt, kilko, ki — 1]
(5.101)
Proyieiler k1 -1
H = Proy ko ky kg g -1 (5.102)
Pr ko ky 1
and finally
Projky oy fhikig s -1
Hy = | Puyiigs ki -1 (5.103)

0
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. The projection matrix for the estimate of (ki) is computed from

Pkl+l|k09kl+l—1 = (LlPkrkz+1|khkz+1—1 + A/IlPkl+1kl+llkhk!+x—1)# (5 104)

X (LlPk,k,+1|k¢,k¢+1—1 + MlPk:+x kz+1|khkt+1—1)

The estimate and covariance are given by

&lkiralko, kir1—1] = Pry, ko kiyy —1 (L@ lkilkry Ry — 1]+ My kg |k, kg1 — 1]+ Ni[ki| ko, ki—1])
(5.105)

2££[k1+1kl+1 *ko" kl+1 - 1] = Pku.}_ [ko ,kl+1—1A5¢[kl+1 k”‘l |k0, kl+1 - I]Pkl.H jko k141 —1 (5'106)

Returning to the assumption that the state is estimable, the equations for the BMLF

can be written in a manner similar to (5.99). For the estimable case, they are given

by

E[kilki,kp-1]=10 0 0 0 I]X

1#

Dsslks, kilki, kipr — 1) Daelki, kipal ke, kigr — 1] 0 I o
Dsslkiyr, kilk, kg — 1) Baskier, kil ke Ry — 1] 0 0 I
0 0 Zss(kiv1s kipilkigr, koog] 10
I 0 I 00
0 I 0 0 0

| T |

:i:[kzik[, kipr — 1) @[kpeq|ky, ki — 1] i[kllkl_l, k; — 1] 0 0
) (5.107)

The BMLF can also be written for the case where the state is not estimable, which
is similar to that provided to the FMLF. We will not provide these equations but
refer the reader to equations (5.100) - (5.105) the equations for the FMLT as a
model to construct the BMLF for the non estimable case. We will now continue with
constructing the smoothed estimate for the the estimable case.

The smoothed estimate of the boundary of subregion denoted by [#T(k;)&,(ki41)]T
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can be constructed from

- T
g(ki) | 0000
| 2o(ki41) oo o1
[ Saslki kilki kisa]  Sealke, kg ki ki 0 0 I 0.#
Seslkier, kilki, ki) Taalkiva, kel ke, ki) 0 0 0 I
0 0 Bsalki, kilkiy kp1] 0 I 0 |(5.108)
0 0 0 sk, kilki, kp—1] 0 T
I 0 I 0 00
| 0 I 0 I 0 0|

T
X[ﬁ[kzlkz,kzu] elkipalkr, ki — 1] 2[kilko, k1] 2[kiyalkigr, kp-1 0 0]

when the state is estimable. When the state is not estimable it can be constructed

from r 4
&,(k) |0 R H Y (5.109)
E4(k141) I HT ¢ 0
where
Tsalki, kilki, kip]  Baslki, kiga ki, kiga) 0 0
P Tsalkivr, kilk kiv1]  Baalkivn, ke ke, kiga] 0 0
0 0 Saalki, kilki ki_1] 0
0 0 0Zss(ki, kigalkiy kipa]
(5.110)
Prolkigeiys Py e
H= sz+1ykt|’°ukk+x sz+1-kz+1lkhkz+1 (5.111)
Pk;,k,|k,,k;,_1 0
L 0 Pkl+1’kl+1ikuk1,_1 i
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and
&k ki, krgr]
&k |k, kg — 1]

Y = 5.112
&ki|ko, ki) ( )

| 2kl kroa]
Equivalently the local processing can produce forward and backward filtered esti-

mates while leaving the remaining dynamic constraints for the subsampled process.

The local processors can produce

Eprplkil ke, kg — 1) | =(k) L Earrlkilkr, ki — 1]
Eprlkipr — ki, by — 1] z(kit1) Emr(kier — ki, by — 1]
(5.113)

The resulting subsampled process after the local processors have performed their

filtering is given by

z(k;) z(ki_1)
|2 o] [“’(ktﬂ*l)}:[o Ak'"l]L(k,—l)}wk'—lu(kl_l) o

Since the process reduces to a filtering problem of a subsampled process using locally
outward filtered boundaries as the state observations, it is clear that the new problem
is self similar to the original problem. The Mayne-Fraser algorithm therefore repre-
sents a linear non-parallel solution to the sampled process. We therefore can consider
the possibility of computing the smoothed estimate of the sampled process in parallel.
The above algorithm can therefore be exploited recursively to obtain an algorithm
with logarithmic time. In the next section we consider this concept incorporating the
highest degree of parallelism.
Step 3 Since the elements of this sampled system are the boundaries of the local
subregions, the local subregions can be smoothed via the backward sweep of the
Rauch-Tung-Striebel algorithm for the local models given by (3.25)- (3.26).

An alternate approach to looking at this problem is to examine exactly what

information is needed to compute smoothed estimate. We take the STPBVDS and
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2[k;+1[k;_1,k,’] k= ki i’[ki'{‘l‘thx’] k= Kl

I
e

Y

Y
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Rl sfkiik] k= kict ZyKok] k= Ko
Figure 5-6: Combining estimates at k = +k,

fold it over and relabel the states such that the state is now [zT(k) zT(—k)]T. The
new system, as in (3.25) is separable and we therefore know that the smoothed
estimate is provided by the Mayne-Fraser two filter algorithm discussed in Section 4.4.
Figure 5.5 illustrates this example. The boundary condition at £ = K is decoupled
because the original system is separable. As a result the backward filter for the 2n
dimensional system can be decoupled into two subsystems, with one filter for each
leg. Ultimately, the estimates provided by these filters can be computed from outward
filters themselves propagating outward from the centers of the partitions formed by
each leg. What was originally a two partition algorithm results in a three partition
algorithm. The smoothed estimate is obtained by combining three estimates. The
joint estimate provided by the local processing from the center processor (5.96), and

the estimate of the boundary given by

Epplki| K1, ki] (5.115)
Earplki| Kq, ki (5.116)

which are provided by the processors working on each leg on the right side of Fig-
ure 5.3. An advantage of this view of combining data at the boundaries is that
by considering the analogy to the Mayne-Fraser filter, the information required to
compute the estimates are made clear. The interprocessor exchange step is seen to
combine three of the four measurements required to compute the smoothed estimate

at the boundaries of the subinterval. The filter which propagates the estimate from
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processor to processor is obtained simply by removing either (5.115), or (5.116) from
consideration. What results is the forward filter or a backward filter, identical to that

obtained when filtering the sampled process in (5.98).

5.5.1 Complexity

The computation involved in this algorithm depends on the fact that the state, though
twice what single processor would require, only propagates over half the interval. The
dimension of the data is 2p and the dimension of the driving noise is 2m. While the
structure of this algorithm is similar to that in Section 5.2, there is no prior processing
used to generate a ‘preferred’ model.

Step 1

Off-line

Since filtering begins from the center and proceeds to the boundaries the amount of

computation which a given processor acting on a single region of data must execute

is given by
1K )C(2n,2m, 2p; off — line, non — estimable
22 P ) (5.117)
= 1X509.33n% + 448n?p + 32n?m + 168np® + 21.33p°
On-line
The online computation required is given by
L K(2n,2p;on — line
wpK (2, 2 ) (5.118)
= £8n? + 8np
Step 2
Off-line

The off-line computation required for the interprocessor communication is given by

(L —1)2[M(5n,2n,5n) + E(n,n,n) + 2n°] = (L — 1)2[589.67n° (5.119)
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where the factor of two indicates that the computation needs to be carried out both

for the forward filter and the backward filter.

On-line

The on-line computation required for the interprocessor communication is given by
(L —1)6n® (5.120)

Step 3
Off-line
The computations here are the backward sweep of the Rauch-Tung-Striebel algorithm.

The off-line computations are given by

-;--I{—T(2n, 2m;off — line,non — causally — estimable)

(5.121)
1%941.33n° + 32n?m
On-line
The amount of on-line computations are given by
L T(2n;0n — line
7 ( ) (5.122)

K
51—16712

Here we have assumed that the state is estimable given all of the data but not es-
timable given only causal or anticausal data. In summary, the off-line time required

for computation is given by

T = -12—%—[7(,‘(211, 2m, 2p; off — line, non — estimable) + 7T(2n,2m;off — line)]
+(L — 1)2[M(5n,2n,5n) + E(n,n,n) + 2n?| (5.123)
= £1450.67n® + 448n’p + 64n’m + 168np® + 21.33p° + (L — 1)2[589.67n°]

The total time for the on-line computations are given by

£ [K(2n,2p;on — line) + T(2n,2p;on — line)] + (L — 1)6n? (5.124)
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5.6 Parallel ML Smoothing smoothing with Bi-
nary Tree Interconnections

The algorithms discussed in detail in the previous sections basically have the following
structure. Processing in the local subregions produce local estimates of the bound-
aries given local data. The interprocessor communication step basically amounts to
implementing a two filter algorithm on a sampled system using the results of the
local processing as observations and including in the computation, if necessary, any
additional dynamic constraints which were not used in the local processing. Once
the information required to obtained smoothed estimates has been propagated to
each boundary point, the points interior to each subinterval can be updated to their
smoothed values. Once we recognize that the interprocessor communication step is a
two filter algorithm, not unlike the Mayne-Fraser algorithm, it is clear that the inter-
processor communication step can be implemented in parallel. This approach towards
parallelization suggests a different connectivity between the processors. Figure 5-7
is a possible architecture when the filters for the interprocessor communication step
are implemented in parallel. We will, however take a slightly different approach to
the issue of parallel processing. We will map the smoothing problem directly to the
binary tree by analyzing the parallel smoothing problem of a region divided into two
subregions. This approach allows a priori information in the form of a two point
boundary condition (and in fact certain multi-point boundary conditions) can be in-
corporated quite easily into the smoothing algorithm. Since Mayne-Fraser algorithms
are perfectly suited for STPBVDS’s it follows that these algorithms are not limited
to STPBVDS’s, they can also be applied directly to TPBVDS’s. Furthermore, ad-
ditional measurements of local boundaries can be included and the possibility exists
to adapt the algorithm to a wide variety of measurements of subregion boundaries.
We will find that the algorithm presented has similarities to the multi-resolution algo-
rithms discussed by Chou[26]. Furthermore, it will be shown that the methodology in
this section is completely generalizable to smoothing algorithms for multidimensional

processes.
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Figure 5-7: Each processor in the parallel algorithm in Section 5.5 produced bound-
ary measurements for its region which are communicated to neighboring processors.
Each block represents a processor operating on a specified region and local bound-
ary measurements are communicated to neighboring processors using communication
links such as the one indicated by (a). In order to gain greater efficiencies local
regions can be grouped in clusters where one processor is responsible for obtaining
the boundary measurement for the entire region covered by a cluster of processors.
This processor can obtain this information from communication links (a), and (b).
Finally all processors which are responsible for obtaining the boundary information
from a cluster of processors can then communicate among themselves to produce the
optimal boundary estimate for each cluster. Then each cluster in parallel can work to
disseminate the optimal cluster boundary information to produce optimal estimates
of local boundaries. Finally the optimal boundary information of each local boundary
can be used by each processor in parallel to update interior points of each subregion.

We will demonstrate that the parallel smoothing algorithm can be written pre-
cisely as the Rauch-Tung-Striebel algorithm when the proper definition of state and
notion of time is provided. Since the backward sweep of the Rauch-Tung-Striebel algo-
rithm amounts to the construction of an anticausal (Markov) model for the smoothed
process, it can be shown as a direct result that reciprocal processes can be modeled
by processes which live on trees. This further suggests new algorithms which take
advantage of this structure. We will see in Chapter 6 that multidimensional processes
also have tree structured models associated with them.

The systems which we are examining are reciprocal, that is given a closed contour,
the interior and exterior are independent. On a line, we define a closed contour
to be a boundary consisting of two points. We define the ‘state’ of the system to
be the value of the process on a closed contour. Thus for the points s; and s,
we will define the state to be [z7(s1),z7(s2)], not unlike the definition of state in
Chapter 3 where STPBVDS’s are constructed from TPBVDS’s. There, the definition

of state is is defined on the closed contour given by {s,—s}, here, we consider a
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much larger set of pairs {s;,s,}. Finally, we define an order operation =< on the set
of contours. Specifically, the contour {s1,s:} is tnterior to the contour {s3, s4}, i.e.,
{81,852} =X {83,384} if 83 < 57 < 34 and 33 < s, < s4. We use this definition later
and in Chapter 6 when discussing the Markov nature of these algorithms. Before
describing a general algorithm for smoothing TPBVDS’s we provide two examples of

smoothing the following acausal model for a vector process.

Fo(t+ Dz(t+1) = T.(t)z(t) + u(t) 0<t<T -1
y(t) = =z(t)+o(t) - 0<t<T (5.125)
F(0)z(0) = Lo(T)z(T)+ w(T)

where u(t) and v(t) are independent white noise sequences with the following statistics

u(t) ~ N(0,q(t))
v(t) ~ N(0,r(t))
det g(t) # 0 Vi
det r(t) # 0 Vit

(5.126)

The two examples which follow differ with respect to the set of noisy constraints
which are used in Step 1, the initial processing step. In contrast to all other algo-
rithms discussed in this chapter, we do not consider forward and backward filters
operating on the boﬁndaries of the subregions. There are only two subregions in both
examples and the calculations involved in updating boundaries can be performed in
one computation.

Example 5.1

Here we consider the case where T' = 3. The data is divided between Processor # 0
and Processor # 1.

Step 1:
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In the local processing step, Processor #0 takes the measurements given by

0 = | T.(0) —T.(1) u(0) (5.127)

y(0) I 0 v(0)
ol
y(1) 0o I o(1)

to compute the estimate

[:e[ouo,ln}:[wm)]ﬂ [ouo,lu] (5.128)
o) | [ =] | a0, )

where the notation [s,t| indicate that the estimates are based on all of the dynamic

&

constraints linking z(s) to x(¢) and all of the observations y(s) through y(¢). The

error covariance is given by

#[0(]0, 1 s s
Cov £[0][0, 1]] _ 0oljo,1] 201|[0,1] (5.129)
2[1[0,1]] Zioo,y]  S11)[o,1

As an aid in understanding the structure of this algorithm we will use Figure 5-
8 to represent the merging of the estimates of z(0) and #(1) (which are provided
in this case by y(0) and y(1)), and the dynamic constraint which links them. We
include u(0) in the figure to make clear which dynamic constraint is merged with
which observations. In the case of Figure (5-8) the observations y(0) and y(1) are
combined with the dynamic constraint indicated by u(0). While these computations
are being performed, Processor #1 performs an analogous computation for #(2) and

z(3). Processor #1 takes the measurements given by

y(2) I 0 . v(2)
0 |=]|r.2 -1 { m(;) } + | u(2) (5.130)
y(3) 0 I :

146



z{0{0, 1]] (1[0, 1]]

y(0) y(1)
Figure 5-8: Icon representing the combining of two neighboring estimates using the

dynamic constraint which links them
(2((2,3] (3([2,3]]

y(2) y(3)

Figure 5-9: Computation of Processor #1

to compute the estimate

[ #[2/[2, 3] } _ [ z(2) } N [ z(21[2,3]] ] (5.131)
]

_ Lol2,3]  23|[2,3] : (5.132)
Yaol2,3]  L33|[2,3]

We will use Figure 5-9 to represent this estimation procedure.

Step 2:
The interprocessor communication step has several parts. For this example, Step 2
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of the parallel algorithm has three parts which we will now outline.

Part 1

The first part Step 2 consists of using the remaining dynamic constraint, 0 = ['(1)z(1)—
I.(2)z(2) = u(1), to produce a locally smoothed estimate of the boundary which en-
closes the two regions. This boundary is equal to [zT(0), z7(3)]. The measurements

needed to produce the boundary estimate for [z7(0), z7(3)] is given by

ooy ] [1 o o o, o [zl
z(0)
2[11[0, 1}] 0 I 0 0 ) (1[0, 1]]
&
0 =0 I (1) -T.(2) 0 o + | (1) (5.133)
z(2
[2((2, 3]] 0 0 I 0 3) z[2|[2, 3]]
xr
£[3((2, 3]] 0 0 0 I~ T | 2BI2,3]
resulting in the estimate
2(0][0, 3]] z(0) z(0][0, 3])
#[1)[0,3 z(1 #[1/[0,3
.[ 0,30 | _ | =(1) N -[ (0, 3]] (5.134)
£[21[0, 3]] z(2) (2][0, 3]]
| 2[3][0,3]] | | =(3) ] [ #(30,3]] ]
The error covariance for this estimate is given by
&[0{0, 3]] ool0,3] Zoiljo,3] Hoz([0,3] 203|[0,3]
#[1/[0,3 5 ) 5 s
Cov [11[0, 3]] _ 10/[0,3] 211)[0,3] 212|[0,3] 213][0,3] (5.135)
[2([0, 3]] Toolf0,3] T21)0,3] Bz22|[0,2] 223|[0,3]
| 2(3][0,3]] | | Dsolo3) Zaujo.s] Zazi[o,3] Ts3)(0,3] |

This estimation step can be interpreted as combining the estimates of the process
at two neighboring points, z(1) and #(2) and using the information contained in
the estimates at these points to update the boundary enclosing the two regions.
Figure 5-10 is a graph which we will use to represent this operation. We call this

an estimation module because it is the basic building block for larger and larger

148



&k | (K1, ka]] &[ka|[k1, ka))

&k |[K1, ko)) &[ks|[ k1, k2]) &[ks|[ks, ka]] &[ka|(ks, k4]

Figure 5-10: Using estimates of z(k;) and z(ks) to update z(k,) and z(ks) where
ks = ko + 1. Specifically, the estimates &[ks|[k:, k,)], and #[ks|[ks, ks]] are com-
bined to produce the estimate of z(k;) and z(ks) given all of the data denoted by
&[ko|[k1, ka]] and &[ks|[k1, ka]] respectively. The correlation between the estimation er-
rors &[ki|[k1, k2], and Z[ks|[k1, k4]] is then used to update &[k:|[k1, k4]] to the smoothed
value given by &[k; |[k1, k4]]. This represents the basic building block for the algorithm
in this section.
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z[0][0, 3]] £(3[0,3]]

u(0) u(2)

y(0) y(1) y(2) y(3)

Figure 5-11: Arriving at the smoothed estimate for the boundary of the entire region

estimation algorithms.

Part 2

The estimates of the boundary states are then combined with the two point boundary
condition to produce the smoothed estimates of the boundary. The measurements

- required to produce this smoothed estimate is given by

2[0][0, 3] I 0 o(0) [0}[0, 3]]
2(3)[0,3]] | = 0 [ @) } [3/[0,3]] (5.136)
0 T0) Tu3) | u(3)
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The smoothed estimate which result from (5.136) are given by

lﬁ:,((}) } _ {w(O) ] N { z,(0) } (5.137)
34(3) z(3) Z4(3)

The smoothed error covariance for the boundary is given by

[ £,(0) } [ S0 Tos }
Cov = (5.138)
z,(3) Loz a3
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Part 3

The final part in Step 2 is to propagate smoothed estimates to the boundaries of the

individual subregions, that is, to propagate estimates from the state [zT(0),z7(3)]

to the the states [zT(0),zT(1)] and [27(2),27(3)]. The smoothed estimate of the

boundaries of the subregions are provided by

{ ,(0) ] _ - [0[0, 3]] } . { Yool0,3] Zos|[0,3] } [ Zool[o,3] Zo3|[0,3] }—1
2,(1) | 2(1][0,3]] Liojjo,3]  Z13|[0,3) Zsolf0,3] Z33i[0,3]
’ f[ £(0) ] ) {@[ono,?,n D
z,(3) £[3][0, 3]]
(5.139)
and
‘ 2,(2) ] _ - [2((0, 3]] } 4 { Ysoli0,3]  23|[0,3) ] [ Zoojj0,3] Z03|[0,3] ]—1
&,(3) | 2(31[0,3]] Zsolfo,8] Zssllo,g] | | Zsolo,3] Lssifo,s]
) [ 2,(0) } ) [:bmno,:%ﬂ D
\ [ #:(3) 2(3/[0,3]]
(5.140)

The smoothed error covariances for each boundary are given by

Loojjo,3]  01][0,3]

Yoo Xo1
Y0 Xn

| Ziojo,s) Tiijfo,3)
( { oo Tos
\

T30 Yas
A
Yooljo,3] Zo3|[0,3]

| Zsojo.s) Tasifo,3)

N

Yool0,3] Z03|[0,3]

N

Yio|j0,3] 213|[0,3]

J

z3001[0,3] 210;[0,3]

Loolj0,3] L03|[0,3]
3ojj0,3] 233|[0,3]

|

2’3031[0.3] 5-331|[0,3]
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|

Lool0,3] Zo3|[0,3)

:

Lsolj0,3] 33|[0,3]

(5.141)



and

Ta2 Za3 _ [ Dozlfo,g) Dasjos) | | Tooliog) Dasiog) Loojjo,3]  Los[o,3] -
Ba2 Tas | Bazio,a) Laslo,) Zsolf0,3] Baslo,3) | | Baolfo,3] L33|[0,3]
y Yoo Yos 3 Loojjo,3]  Zo3|(0,3]
Yz Yss Ysolfo,3]  iss|fo,3)
y [ Zoojj0,3] Yos|[0,3] B Tozi0,3] Los|f0,3]
| Tsojo,3]  Liss|o,3] Zazi0,8) Lsajo,3)
(5.142)
respectively.

Figure 5-12 is used to represent the transference of smoothed estimates from the

boundary surrounding the two regions to smoothed estimates of the sub-boundaries.

Step 3

When the algorithm is applied to this simple problem there is no Step 3 because
each subregion consists only of its boundary; there are no interior states to update.
For general TPBVDS’s, the algorithm can always be implemented where the smallest
subregions consists of non overlapping pairs of points. States however may not be
fully estimable and more complicated equations are needed to deal with this case. We
will deal with this case later in this section. If the system is uniformly estimable, we
may perform outward filtering in local subregions until we can construct a boundary
which has a well defined covariance. Step 2 in this algorithm can be executed until the
boundaries of the local subregions have smoothed estimates then finally the Rauch-
Tung-Striebel algorithm can be used to smooth interior states in each subregion in
parallel.

In Part 2 of Step 2, boundary conditions are incorporated. The result of including
the boundary condition is a smoothed estimate of the boundary. This represents the
smoothed information which this module may expect from the remainder of a larger
algorithm in which this module is embedded. In addition, we can include additional

boundary measurements of subintervals throughout the algorithm without altering
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2°(0) (1) 2(2) &°(3)

Figure 5-12: Additional boundary information in the form of the smoothed estimates
#°(0) and £°(3) are combined with two estimates #[1|[0,3]] and £[2|[0, 3]], which are
represented by the large dots, to produce the smoothed estimates £°(1) and £°(2).
The dotted lined indicate the flow of data which was used to construct the estimates
#[1}[0,3]] and £[2|[0,3]]. The additional boundary information can be ohtained by
viewing the figure to be a part of an algorithm operating on a larger set of data as in

Figure 5-13
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the basic structure of this smoothing algorithm. For example when the algorithm is

applied to 16 points as shown in Figure 5-14 additional measurements such as

Yos = CF32(0) + CF32(3) + vo,3

(5.143)
Ysais = 6188,1513(8) + 081’515"3(15) + Vs,15

can be included which cannot be neatly included in the standard Kalman filtering
framework. It also suggests that the choice of subintervals can be chosen to accom-
modate the available measurements.

We are able to combine the estimation modules which represent this example to
construct estimation algorithms which exist over larger and larger data sets. Figure 5-
13 shows a graphical representation of the algorithm for T = 7 and Figure 5-14
shows a graphical representation of the algorithm for T = 15. In this example,
dynamic constraints are incorporated at selected points throughout the algorithm to
link neighboring boundaries. In the next example, all of the dynamic constraints are
used in Step 1 while the the remaining steps include the information that neighboring
boundaries intersect. O
Example 5.2
Here we consider the case where T = 2. In addition we will assume that T'.(¢) = I.
These systems are called two point boundary value systems and are discussed in
Adams [1]. The data is divided between two processors.

Step 1:
In the local processing step, Processor #0 takes the measurements given by
y(0) I 0 z(0) v(0)

= + (5.144)
0 T 0) —I || «(1) u(0)

to compute the estimate

&[0]{0, 1)] z(0) N z[0][0,1)] (5.145)
&[1([0,1)] z(1) z[1/[0,1)]
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Figure 5-13: T =7
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Figure 5-14: Parallel algorithm for 16 data points.
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where the notation [s,t) indicate that the estimates are based on all of the dynamic
constraints linking z(s) to «(t) and all of the observations y(s) through y(¢ — 1). The

error covariance is given by

#[0][0, 1 5 5
COV [ H )] — OOI[O,I) 01'[0‘1) (5.146)
£[1](0,1)] Tioo,1)  Z1ffo,)

While these computations are being performed, Processor #1 performs an analogous

computation for (1) and z(2). Processor #1 takes the measurements given by

B A | o e B,
0 To(1) —I || 2(2) u(2)

to compute the estimate

{ {1/(1,2) ] ) { (1) ] N [ (1I[1,2)] (5.148)
2L | =@ ] | a2i02)

where the error covariance is given by

#[14[1,2 ) by
Cov [ H )] _ 11{[1,2) 12(1,2) (5.149)
[2([1,2)] Torp1,2) Ba2i1,2)

Step 2:

Here, Step 2 of the parallel algorithm has three parts which we will now outline.
Part 1

The first part of Step 2 consists of providing the information that neighboring bound-
aries intersect. Specifically, the estimates in each region represent independent mea-
surement of z(1). With the combined information of the intersection of the two
boundaries, a locally smoothed estimate of the boundary which encloses the two re-

gions is obtained. This boundary is equal to [zT(0), «T(2)]. The measurements
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needed to produce the boundary estimate for [z7(0), z%(2)] are given by

7 3 b

2[0{[0,1)] I 00 i
. z(0) z[0[[0,1)]
£[1][0,1)] 0 IO
= z(1) | + | Z[1][0,1)]
2[1][1,2)] 0 IO N
. z(2) (2([1,2)]
| 2[2([1,2)] | | 0 0 T
resulting in the estimate
2[0[[0,2)] z(0) £[0][0,2)]
2[1][0,2)] | = | =(1) | + | 2[1][0,2)]
2(2[[0,2)] z(2) z(2[[0,2)]
The error covariance of this estimate is given by
53[0”0, 2)] 2001[0,2) Eou[o,z) 2ozuo,z)
Cov | £[1/(0,2)] | = | Ziop2) Zi1jo2) Z12ifo,2)
z(21[0,2)] Toolo,2) S21fo,2) D22[0,2)

(5.150)

(5.151)

(5.152)

This estimation step can be interpreted as combining two independent estimates

of z(1), and using the resulting information contained in the estimates of z(1) to

update the boundary enclosing the two regions on which the two measurements of

z(1) were based. We call this an estimation module because it, as is the corresponding

computation in Example 5.1, a basic building block for larger and larger estimation

algorithms.
Part 2

The boundary condition is then combined with the boundary estimate to produce

the smoothed estimates of the boundary. The measurements required to produce this
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smoothed estimate are given by

2(0](0,2)] I 0 #(0) (0][0,2)]
sR0,2)] | = o 1 [ ) ] £[21[0,2)] (5.153)
0 1) T | L7 u(2)

The smoothed estimates which result from (5.153) are given by

z,(0 z(0 z,(0
o] _[«0], [20 5150
24(2) z(2) Z,(2)
The smoothed error covariance for the boundary is given by
0 oo Z
Cov | =) v oz (5.155)
£,(2) Loz T

Part 3

The final part in Step 2 is to propagate smoothed estimates to the boundaries of the
individual subregions, that is, to propagate estimates from the state [z7(0), zT(2)] to
the states [z7(0), z7(1)] and [zT(1),zT(2)]. The smoothed estimates of the boundaries

of the subregions are provided by
- -1
2,(0) | | 2[0l[0,2)] N Loojjo,2) Lo2([0,2) Zool0,2) Z02([0,2)
,(1) [1][0,2)] Tio0,2) Z12ifo0,2) Laol0,2) T22([0,2)

X’[ } [é[ouo,znn
| 2.) #[2([0,2)]

(5.156)

160



and

{ 2,(1)
£,(2)

.

X

#[1][0,2)]
| 2(2/[0,2)]

] ;
{@,(0)] ) l
\ | £:(2)

Yiojjo,2)  L12(fo,2)
aojjo,2) Ba22i[0,2)

£[0][0,2)]
£[21[0,2)]

J

-1
Loojjo,2) Zoz|[0,2)
Taojjo,2) Laz|[o,2)

(5.157)

The smoothed error covariances for the two subregion boundaries are given by

200 201
Lo Zn

and »
DIPREDIP)
Y1 X

Step 3

|

oo
220

E02
222

([ Soo S0
\ Yoo Yo

Yoo|[0,2) 201|[o,2)] B [ Lool[0,2) 2oz|[o,z)] [

| Tiojfo,2) Bi1ffo,2) Liojjo,2) Zizfo,2)

-1
Toojlo,2) Toz|[o,2)
aoljo,2) La2([0,2)

Loojjo,2) Xo2[0,2) )

Yaol0,2) B22([0,2)
-1

aoljo,2) D22([0,2)

Zooj{0,2) 202|[o,2):l [2001[0,2) 201;[0,2)}

| Zaojo,2)  Bazio,2) Yaoljo,2) H21([0,2)

(5.158)

- -1
Tiij0,2)  Z12i[0,2) B Lioo,2) S12ifo,2) oojjo,2) Lozifo,2)
| Z21j0,2)  T22if0,2)

Daojjo,2) La2i[o,2)

Yoolj0,2) Zoz([0,2) )

Yaol0,2) L22([0,2)
-1

Yoolfo,2) 202[[0,2)} [Eon[o,z) Eoz;[o,z)]

| 2oj0,2) Tizzifo,2) Laijjo,z) Bz2zif0,2)

(5.159)

Here as in Example 5.1, the local subregions and their boundaries are the same. There

are no interior points to update.

O

Returning to the issue of smoothing the TPBVDS in equation (5.1), we now

continue with our general algorithm for smoothing one dimensional systems. We

also return to the notation used to describe estimates and their data dependencies
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established in Section 774.3. The data is partitioned along the time axis into L = 2M
subintervals and one processor is assigned to each subinterval. Since Examples 1 and
2 show the structure of the algorithm when all inverses exist we will now carry out
the computations when the state is not estimable.

Step 1

Local filtering is performed in each of the subintervals starting from the center outward
toward the boundary to produce local estimates of the boundary of each subinterval.
This preprocessing step is therefore identical to the preprocessing step of the algorithm

in Section ?775.5. The result of the computation in this step is given by

E[klr, k+ 6 z(k Elk|k,k+ 6
winkrd) ][ e ][ aluek+d) 5.160)
&k + 8|k, k + 8] z(k + 6) Zlk + 8|k, k + 8]
The error covariance of this estimate is given by
Z[klk, b+ 6 L kin B k8],
Cov [ Pl e 5 ktSlkt5 (5.161)
Z[k + 6|k, k + 6] Dhtbmlmots  Dhtbket6|nkets

where the process at the boundary of the subinterval is given by [zT(x),zT(k + §)]7.
The neighboring boundary we will denote by [zT(k),zT(s)]T, and the binary variable
6 determines whether or not the neighboring boundaries intersect. If § = 1 the
boundaries do not intersect. If § = 0 the boundaries do intersect.

Step 2

At this point the remainder of the algorithm represents a hierarchical assembling of
Step 2 in Example 5.1 or 5.2. The states to be combined for the measurement update

step are shown in Figure 5-15. The measurement npdate step is given by considering
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Region #0 Region #1
Figure 5-15: The dots represent the boundary of neighboring regions which will be

merged together in the measurement update step. Region #0 and Region #1 will be
merged together in into a region bounded by the points s and «.

the following measurement of neighboring boundaries

- . S #
&[k|k + 6, K] Picieprs  Puptsinhrs 0 0
&k + 8|k + 6, K] Prysningers  Prisktsiekors 0 0
0 = 0 {E}H.g }6 —{Ak}6 0
&[k|s, k] 0 0 Pikikys  Phosik,s
&[s|s, k] 0 0 P, kikys  Paslr,s
z|klk + &, K]
z(K)
zlk + 8|k + 6, K]
z(k +6)
X + 6Bku(k)
z(k)
z(k|s, k]
z(s)
- - z[s|s, k]
) (5.162)

The matrix P, jjx, represents a submatrix of the projection matrix which is associ-
ated with the estimate of [zT(k),zT(l)]. The result of the estimation problem is the

following estimate

&[k|s, K] ] [ z(K) ] [ z[kls, K] ]

tlk+ 6ls,k (k+ 6 £k + é|s, K

2| 27 = Fr(n)a(k+6).z(k)a(k)|sx =l ) + 2 5] (5.163)
&(k|s, k] z(k) z[k|s, ]
2ls|s,k] | Cox(s) | | 2[slsynl

where Poy(y) o(k+6),z(k),z(s)|s,x iS the associated projection matrix for the estimate. The
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error covariance of the estimate is given by

(5ls,k] ]

z
&k + 8], 5]
Cov i = Da(w)a(k+8)z(k)z(s)ls,n (5.164)
z(k|s, k]

z(s|s, x|

To continue with further steps of the interprocessor communication step the
boundary which encloses the two regions is kept. The system is therefore sampled.
Since projection matrices are involved, the proper projection matrix for the sam-

pling must be computed. Let Py(x)z(s)s,« denote the desired projection matrix which

satisfies
.  \#
I0
- I 000 B 00
x(r),x(s)]s,x z(r),2(k+68),x(k),x(k)|s,~
(m)sa(a)] 0 0 0 I | kD@l | f
I
L0 § (5.165)
I0
) I 000 B 00 |
X z(r),z(k+6),x(k),z (k)]s
0 00 I = 00
|0 T |
then the joint estimate for (k) and z(k) is given by
[ 2[x|s, K] ]
&[xls, K] I 000 &k + 8|s,
’ = Pz(n),m(k)'s,n [ ’ ] (5.166)
2[k|s, K| 0 00 I zlk|s, k]
| 2[kls, k]

Since sampling does not introduce new noise to the process, the covariance is
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obtained from

I 000

Law)e(k)ow = Po(x),a(k)]s,x Lia(r),a(k+8),z(k),z(2)]a,x Pric),z(k)|sx
0 0 0 [

[T e B -

_ o O ©

(5.167)

Once smoothed estimates have been obtained at the boundary of the entire process,
smoothed estimates may be propagated from a boundary of a subregion to the bound-
aries of the two next smaller subregions. The following measurements are combined:

the smoothed estimates at {x, s} and the ‘filtered’ estimates to {x,k + é} and {k, s}

&(k|s, k] ] [ z(x|s, K]

&k + 8|s, ] z(k) E[k + 8|s, ]
&[k|s, &] Pa(r),a(k+8),2(k).z(s)lsy z(k) &(kls, £]
é[sls’n] e O I, + ﬁ[s's’n]
......... 0 : Pz(n),w(s)lO,K ’ ;z;(k) Ceeeerans
#[k|0, K] ] z(s) z[k|0, K]

&[]0, K] ] z[s|0, K]
(5.168)
The resulting estimate is the jointly smoothed estimate of the two neighboring
boundaries.
. z(K) -
z[x|0, K] %) z[x|0, K]
T
&k + 6|0, K| z[k + 6]0, K]
= P et ratira(o | e 4
z[k|0, K] %) z[k|0, K]
T
I 2[s|0, K] | | #[s]0, K]
z(s)

(5.169)
The estimates of the two boundaries can be decoupled by premultiplication by the
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appropriate projection matrices. If we let

- -
I0
_p:(n),m(k‘l"s)lﬂ,f{ = [I vl }—P-:(ﬂ)vw(kthS)ym(k)m(k)|°'K 0 L
071 00 00
‘ LO Y1) (5.1m0)
I 0
I1000]|_, 0 I
X 0o 700 (r),e(k+8),a(i),e(k)|0,K 0 0
L 0 0 Jd
and
' 1\ #
00
-P_::(k),m(s)m,K = 0o ne ?;(n),m(k+5),m(k),m(k)|0,K 00 (
0 00 I I 0
- 0 I: : (5.171)
00
oo ol 0 0
0 0 0 7| etb®@aetlok |
L 0 I 4 7

then premultiplying (5.169) by

Pl e(s)o,x 0
0 Pliya(a)o.x

Thus to compute the smoothed estimate of the process at the boundary surround-
ing two neighboring subregions, we require measurements of the ‘filtered’ estimates
of the process at the boundary of each neighboring subregion, and the smoothed
estimate of the boundary which immediately encloses the two subregions.

This process can be continued recursively until a smoothed estimate is obtained
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at the boundary of each subinterval marking the end of the interprocessor exchange
step.

Step 3

The backward sweep step of the Rauch-Tung-Striebel is used to propagate smoothed
estimates from the boundaries inward to the center of each subregion.

The sampling of the system is a key feature of this algorithm. Here we will show
that the interprocessor communication can be formulated precisely as the Rauch-
Tung-Striebel algorithm operating on an equivalent ‘causal’ system. This establishes
the interprocessor communication step as the simple application of known algorithms
on sampled processes. It also lends a different perspective to the notion of ‘filtered’
and ‘predicted’ estimates in a parallel processing context. To accomplish this it helps
to reinterpret the role that different noisy constraints play. In the following example,
the observations y(k) are interpreted as ‘a priori’ information, the dynamics plays the
role of of ‘observations’, and the sampling of the state plays the role of the ‘dynamics’
of the system.

Consider again, the model used in Example 5.1. Here we will stack all of the
elements of the vector z(k) into one large vector X(0) in order to describe all of the
operations which can be carried out in parallel. We will define the ‘model’ describing
the system as simply sampling the process, by dropping the pairs of points required
to define the boundaries of larger and larger subregions as indicated in Example 5.1.

The model can be written as
X(m+1) =A(m)X(m) (5.172)

Thus the sampling operation A(m) imposes a recursive definition of the remaining
states X(m), given X(0). Typically we would expect a ‘causal’ model to have a priori
statistics defined for X(0). Let the observations y(k) = z(k)+v(k) define the ‘a priori’
statistics for X(0). We will therefore initialize the state X(0) with the observations
y(s) appropriately stacked into one large vector X(0| — 1). The covariance of this

initial estimate is formed from the covariances associated with the individual error
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covariances for the observations y(s).

X(0]-1) = X(0)+ X(0] —1)
X(0]-1) ~ N(0;3(0] — 1)) (5.173)
P(0[-1) = diag[r(0),7(1),7(2),---,2(2™)]

Finally, the dynamics of the system of the form of 0 = —e(t+1)z(t+1)+a(t)z(t)+
u(t) can be ‘selectively’ included in the observations 0 = C(m)X(m) + V(m) in
order to insure that as many of the computations can be performed in parallel as
possible. If u(t) has nonzero mean or if the process has inputs, then we can write
Y(m) = C(m)X(m) + V(m) where Y (m) would represent these nonzero means, and

inputs to our system. Once the model is written as

X(m+1) = A(m)X(m)
X(0) ~ N(X(0] - 1); (0| — 1)) (5.174)
0 C(m)X(m) + V(m)

Il

then the smoothing algorithm follows directly. Specifically, the Rauch-Tung-Striebel
algorithm is given by the filtering equations

X(mlm) = (I-X(mlm—1)CT(m)
x (C(m)S(m|m — 1)CT(m) + R(m))~*C(m))X(m|m — 15.175)
L(mim) = E(m|m —1) - Z(m|m — 1)CT(m)

x (C(m)E(m|m —1)CT(m))~1C(m)S(m|m - 1) (5.176)
X(m+1m) = A(m)X(m|m) (5.177)
T(m+1m) = A(m)S(m|m)AT(m) (5.178)

and the backward sweep given by

X(m|M) = X(m|m)—-S(m|m)AT(m)E"Y(m + 1jm)(X(m + 1|M) — X(m + 1jm))
(5.179)
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L(m|M) = I(m|m) - Z(m|m)ALT " (m + 1|m)
X (E(m+1M) - Z(m + 1jm))Z~ (m + 1|m)AnZ(m|m) (5.180)

Because of the specific model we chose, all inverses exist. The computations which
correspond to Step 1, which is the preprocessing step, occur in the filtering step
for m = 0. A(0) = I because the purpose of Step 1 is to compute measurements
of local boundaries based on interior data. Sampling only occurs when boundaries
which consist of two points are being combined to enclose larger and larger regions.
Here, interior data is simply the dynamic constraints which link each element of the
boundary. In this operation half of all of the dynamic constraints are used. We may
then combine the dynamics 0 = z(s + 1) — a(s)z(s) — b(s)u(s) for s even into one

‘observation’ and, under the assumption that the noise is zero mean, it can be written

Y(0) = 0= C(0)X(0) + V(0) (5.181)
V(0) ~ N(0; R(0))
R(0) = diag{q(0),q(2),q(4),---,9(2™ — 1)} (5.182)

C(0) = diag{[-a(0) I],(~a(2) I],(-a(4) I],---,[—a(2™ —2) I]}
The resulting filtered estimate after this measurement update is performed is given

by
X(0]0) = (I —2(0] — 1)CT(0)(C(0)Z(0| — 1)CT(0) + R(0))~*C(0))X (0| — 1) (5.183)

This processing can be carried out in parallel, since C(0), (0| — 1), and R(0) are
all block diagonal. We are now prepared for further processing. Also since A(0) = I
the ‘predicted’ estimate and the ‘filtered’ estimate are the same. Furthermore the
‘dynamics’ are noiseless, resulting in the ‘predicted’ error covariance L(1|0) being
equal to the ‘filtered’ error covariance ¥(0|0).

The remainder of the algorithm corresponds to Step 2 in Example 5.1. Half of
the remaining dynamic constraints will be included at each step, and the state will

be sampled reducing the dimension of the state by 2 when m increases by 1.

169



With each sampling, the elements of X(m) are given by z([j—1]2™), and 2(j2™—1)
for 1 < j < 2M-m_ The matrix A(m) is defined to be the matrix which will perform

this sampling. A(m) is given by

A(m) = diag{Z,Z,---,Z}
I 000

zZ = (5.184)
0 00 [

A(m) e RzM—-msz-—-m+1

The ‘dynamics’ for the system given by (5.172) are not driven by noise. The ‘predic-
tion’ update step of the filter is given by

X(m + 1|jm) = A(m)X(m|m)

(5.185)
P(m + 1ljm) = A(m)P(m|m)AT(m)

Thus a ‘predicted’ estimate is formed from sampling the ‘filtered’ estimates. This
amounts to premultiplying X (m) by A(m) which removes two neighboring elements
in the center of a larger region while keeping the elements which bound this larger
region.

The measurement update step is accomplished by incorporating dynamic con-
straints which link pairs of ‘states’ together. The constraints of the form
0 = z(s + 1) — a(s)z(s) — b(s)u(s) which are used in the measurement update of the
state X(m) are those which correspond to s = j2™ — 1 for j odd. These constraints

can be incorporated into a single measurement of the form 0 = C(m)X(m) + V(m).

0 = C X 1%
(m)X(m) + V(m) (5.186)
V(im) ~ N(0; R(m))
R(m) = diag{q(2™ — 1),q(3 x 2™ — 1),q(5 x 2™ — 1),---,q(2™ — 2™ - 1)
C(m) = diag{[—a(2™ — 1) I},[-a(3 x 2™ —1) I],[-a(5 x 2™ - 1) I},- oy [~a(2™ —~2m™ 1) I]}
(5.187)

The system has been represented by a causal system as in (5.174), and as a result
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all of the matrices in the Rauch-Tung-Striebel algorithm have been defined. Since
C(m), A(m), R(m), and Z(0| — 1) are all block diagonal matrices, all computations
including the matrix inverses in (5.175), and (5.176) can be carried out in parallel
in the filtering step. At each level all computations are self similar, though fewer in
number. On the other hand, the smoothed estimates of the state X(m) are not block
diagonal and we would expect that the backward sweep computations could not be
carried out in parallel. However in the backward sweep equations of the Rauch-Tung-
Striebel algorithm (5.179) and (5.180), £(m|m), AL, £-(m + 1|m), are all diagonal.
As a result only the diagonal elements of £(m + 1| M) are used in the computation of
the diagonal elements of £(m|M). Therefore the computation of the diagonal blocks
of the smoothed covariance can be carried out in parallel.

Using the ML techniques we know that this algorithm can be carried out without
‘a priori’ information about X(0). In other words this algorithm can be carried
out without the data y(t). The resulting smoothed system is nothing other than
the process, less observations. With the smoothed estimate of X(0) (in the absence
of observations y(t)), the process at all other samplings are well defined because
X(m+ 1) = A(m)X(m) is a noiseless process. The process is clearly Markov, and as
a result a backward Markov process can be defined. Equivalently, given a ‘state’ of
a reciprocal system to be the process defined at the boundary {0,2™ — 1} then any
state on a boundary which is interior to {0,2¥ — 1}, as defined by the order relation <
can be written as a linear function of the state at {0,2™ — 1} plus independent white
noise. Specifically we consider the two ‘states’ at {0,2M-! — 1} and {2M-1,2M _ 1},
Consequently if we consider the ‘state’ at the top of a binary tree to be the process
at the boundary {0,2¥ — 1} then the ‘state’ at the descendant nodes are the process
at {0,2M-1 — 1}, and {2M-1,2M _ 1} which are the boundaries of the next smaller
subregions. What results is a model not unlike that used by Chou in [26]. As a result
the basic principles of smoothing algorithms used in [26] can be applied here.

Consider the processors operating on the regions indicated in Figure 5-16. Each
Processor has a binary label associated with it. (Note that the digits in the binary

labels when taken backwards count from 0 to 15.) If each processor communicates
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0000100001001100001010100110111000011001010111010011101101111111

0 )8 4,12, 2 410, 6 143 1 4 9 {5 (133 3 ;114 7 ;15
1 1 1 | I 1 i 1 1 i 1 1 I I

Figure 5-16: Regions are assigned to processors which are arranged with Hypercube
interconnections where processors whose label differ by one bit communicate directly
with each other. With the above labelling scheme the result of computations which
involve a pair of processors is stored with the processor whose label is obtained by
removing the most significant bit. For example, Processor 4 and Processor 12 after
removing the most significant bit from their labels can determine that the result of
computation based on data available to both processors will be left with Processor 4.

with other processors whose binary label differ by one bit, then the interconnection
is that of a hypercube. During the interprocessor communication step, processors
first communicate in pairs. Processor 0 communicates with Processor 8, Processor 4
communicates with Processor 12, etc.. The location of the new boundary estimates
for the region which the processor operated is obtained by removing the highest order
bit. Therefore Processor 0, and Processor 8 will place the results of the boundary
computations in Processor 0, Processor 5, and Processor 13 will place the results of
their computations in Processor 5, etc.. Next the processors which communicate next
are Processors 0, 4, 2, 6, 1, 5, 3, and 7. These processors will then communicate in
pairs. Processor 0 communicates with Processor 4, Processor 2 communicates with
Processor 6, etc.. Again the location of the new boundary estimates for the region
which the processor operated is obtained by removing the highest order bit. Therefore
Processor 0, and Processor 4 will place the results of the boundary computations in
Processor 0, Processor 1, and Processor 5 will place the results of their computations
in Processor 1, etc.. Eventually Processor 0 and Processor 1 will remain. The results
will be placed in Processor 0, where a priori information will be included. The
smoothed estimates will be distributed amongst the processors in the reverse pattern
while computing the necessary smoothed estimates of the boundaries of smaller and
smaller subregions until each processor has smoothed estimates of the boundary of

the region for which it was originally assigned.
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5.6.1 Complexity

The computation involved in this algorithm, as does that for the other new algorithms
in this chapter, varies with whether or not the state is estimable. Here, we will provide
three figures. The first will assume that the states at each step are not estimable. The
second will assume that the states are estimable but pseudo-inverses may be needed
during the computations. Finally we will consider the case where all inverses exist.
For all of these cases, we will assume that the final smoothed estimates are estimable
given all of the data.

Non-estimable states

Step 1

Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

%K(2n, 2p,2m;off — line, non — estimable) (5.188)
- %[509.337;3 + 448n%p + 32n°m + 168np? + 21.33p°] (5.189)

On-line

The on-line computation in Step 1 is given by

%K(Zn, 2p,2m;on — line) (5.190)
= -[-{—[sn2 + 8np] (5.191)
2L |

Step 2
‘up’ Off-line

These computation counts are for one step up the tree.

(M(9n,4n,9n) + 160n® + £(2n,2n,2n) + 32n%)log L (5.192)
= 4090.67n® log L (5.193)
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On-line

The on-line computation in Step 1 while merging regions together is given by
(32n%)log L (5.194)

‘down’ Off-line

These computation counts are for one step ‘down’ the tree.

(M(10n,4n,10n) + 192n° + £(2n,2n,2n) + 32n°)log L (5.195)
= (4925.33n%) log L (5.196)

On-line

The remaining on-line computation in Step 1 is given by
(48n?)log L (5.197)

Step 3
Off-line
In Step 3 then backward sweep of the Rauch-Tung Striebel algorithm is performed.

The amount of computation is given by

2—I2-T(2n, 2m; off — line, non — causally — estimable) (5.198)
= %[941.33113 + 32n’m] (5.199)

On-line

The on-line computation in Step 3 is given by

K , K.,
ET(2n,on — line) = —zflﬁn (5.200)

Estimable states

If the interprocessor communication step deals with well-defined covariances the
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‘amount of computations are given by
Step 1
Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

%IC(%,, 2p,2m; off — line, non — estimable) (5.201)

= %[509.3%3 + 448n%p + 32n’m + 168np® + 21.33p°] (5.202)

On-line

The on-line computation in Step 1 is given by

%IC(iln, 2p, 2m;on — line) (5.203)
K o s
= -Q—Z[Sn + 8np] (5.204)

Step 2
‘up’ Off-line

These computation counts are for one step up the tree.
E(In,4n,9n)log L = 1944n°log L (5.205)

On-line

The on-line computation in Step 1 while merging regions together is given by

32n?log L (5.206)

‘down’ Off-line

These computation counts are for one step ‘down’ the tree.
E(10n,4n,10n)log L = 2533.33n%log L (5.207)

On-line
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The remaining on-line computation in Step 1 is given by

48n2log L (5.208)

Step 3
Off-line

The amount of computation is given by

EKI_}T (2n,2m;off — line, non — causally — estimable) (5.209)
- %[941.337;3 + 32n%m) (5.210)

On-line
The on-line computation in Step 3 is given by
K

. : — K 2
-2—-ET(2n, 2m;on — line) = ﬁlﬁn (5.211)

Invertible Covariances

Finally if full rank covariances are available for the interprocessor exchange step, the
pseudoinverses are not necessary. The operation count is then given by

Step 1

Off-line

In Step 1 radial filtering is performed. The amount of computation is given by

K
EZIC(2n, 2p, 2m; off — line,non — estimable) (5.212)
= %[509.3371.3 + 448n%p + 32n*m + 168np® + 21.33p%] (5.213)

On-line

The on-line computation in Step 1 is given by

EI%IC(%%, 2p,2m;on — line) (5.214)
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K
= —2—5[8112 + 8np]

Step 2
‘up’ Off-line

These computation counts are for one step up the tree.
Z(9n,4n)log L = 1134n°log L

On-line

(5.215)

(5.216)

The on-line computation in Step 1 while merging regions together is given by

32n’log L

‘down’ Off-line

These computation counts are for one step ‘down’ the tree.
(Z(10n,4n))log L = 1466.67n° log L

On-line

The remaining on-line computation in Step 1 is given by
48n?log L

Step 3
Off-line
The amount of computation is given by
ﬂ'f(2n, 2m;off — line,non — causally — estimable)
K

= é—z{941.33n3 + 32n®m]

On-line
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The on-line computation in Step 1 is given by

-

K , K.,
—2——L—T(2n, 2m;on — line) = é—ilﬁn (5.222)

In summary, the total off-line computation time for the case where we assume the
state is not estimable locally, is given by

LS

T:L

[1450.66n° + 448n’p + 64n’m + 168np® + 21.33p%] + 901675 log L (5.223)

oo

The total on-line computation time for the case where we assume the state is not

estimable locally, is given by
K 2 2
T = é—L-[24n + 8np| + (96n°)log L (5.224)

The total off-line computation time for the case where we assume the state is
estimable given local data, but pseudo-inverses are needed in the computation, is

given by

T = -2—1%[1450.66113 + 448n%p + 64n’m + 168np® + 21.33p%] + 4477.33n% log [5.225)

The total on-line computation time for the case where we assume the state is estimable

is given by

T = 51%[2477,2 + 8np] + (80n?)log L (5.226)

The total off-line computation time for the case where we assume that all covari-

ances are invertible, is given by

-

T = —[1450.66n° + 448n’p + 64n’m + 168np® + 21.33p°] + 2600.67n° log [5.227)

| >

The total on-line computation time for the case where we assume the state is estimable
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is given by

K

T = |

24n® + 8np) + (80n?)log L (5.228)

In each of the computation times given, the form follows that outlined in Equa-
tion 5.8. The functions f, and g are easily identifiable from these equations. The

only difference between these times are in the off-line computations.
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Chapter 6

Parallel ML Smoothing for

Two-Dimensional Systems

6.1 Introduction

Those algorithms discussed in detail in Sections 5.2 through 5.5, which operate on
a linear array of processors, have a structure which does not easily extend to the
problem of smoothing in two dimensions. The algorithm in Section 5.6 however, which
operates on processors with hypercube interconnections, does extend to algorithms
which are applicable in two dimensions in a straightforward fashion. Local processing
is performed in parallel in each of the local subregions to produce local estimates of the
boundaries given local data. These estimates are obtained by filtering outward from
the center of the subregion to the boundary of the subinterval. The interprocessor
communication step involves combining the boundaries of two neighboring subregions
to produce estimates of both boundaries based on all of the data and dynamics
within each subregion and any additional dynamic constraints which may link the two
regions, since these may not have been used in the local processing step. The estimate
of the process at the boundary which encloses the two subregions, which is based on
all enclosed data, is then combined with neighboring boundaries whose estimates have
been constructed in the same manner. The process of merging boundaries is carried

out recursively until the boundary of the entire process remains whose estimate is
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based on all available data. Asin Section 5.5, an algorithm analogous to the Rauch-
Tung-Striebel is used to propagate smoothed estimates recursively to progressively
smaller subregions, until smoothed boundary estimates are obtained for all of the local
subregions. Finally smoothed estimates are propagated from the boundary toward the
center of each of the local subregions. The computations for the smoothing problem
map, as do the computations for the algorithm in Section 5.5, directly to the binary
tree. The smoothing algorithm for two-dimensional processes will be analyzed by
examining the parallel smoothing problem of a region divided into four subregions,
in a manner similar to the two subregion analysis which takes place in Section 5.5.
The nature of the smoothing algorithm suggests new approaches to modeling two-
dimensional processes, not unrelated to the multi-resolution approaches discussed by
Chou[26]. Furthermore the methodology in this section is completely generalizable

to smoothing algorithms on higher dimensional processes.

6.2 Local Processing for a Two-Dimensional Re-
gion

The first and last steps of the ML parallel algorithms discussed in Section 5.4, Section
5.5, and in this chapter, are precisely the filtering and backward sweep steps, respec-
tively, of the Rauch-Tung-Striebel algorithm. In Section 4.3, the Rauch-Tung-Striebel
algorithm for STPBVDS’s is presented. In this section we model two-dimensional sys-
tems with STPBVDS’s. with this model, the Step 1 amounts to the FMLF algorithm
outlined in Section 4.1, and Step 3 amounts to the backward sweep of the Rauch-
Tung-Striebel algorithm as outlined in Section 4.3. In this section we take a more
traditional model for two-dimensional systems and construct STPBVDS’s by properly
reordering the dynamic constraints. -

In our view of processing multidimensional systems, we impose a radial time co-
ordinate. We continue with our notion of processing outward from the center of the
region towards the boundary and inward from the boundary toward the center of the

region. In Chapter 3, we show that all TPBVDS’s can be described as STPBVDS’s
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z(i,j) = Nz(i,j+1)

+ Sz(i,j—1)

+ Ez(i+1,j)

J O + We(i - 1,5)
+ Bu(s,j)

Figure 6-1: Nearest Neighbor Dependency

and as a result have a Markov description. Similarly in this section, we show how
a two-dimensional system described by a nearest neighbor model[2](NNM), can be
written as a STPBVDS. We could incorporate other two-dimensional models such as
Roesser’s model [35], Marchesini and Fornasini’s model [8], and Jain’s scalar NNM[10]
into the STPBVDS model quite simply. Smoothing algorithms for NNM’s are dis-
cussed in [1], and [2]. Since the actual model which we filter is a STPBVDS, our
choice of the underlying model or original two-dimensional representation is made to
be specific and not out of necessity. |

Nearest neighbor models (NNM’s) are given by the following

z(i,j) = Nz(i,j + 1) + Sz(i,j — 1) + Ez(i + 1,5) + Wz(i — 1,5) + Bu(i, j)
(6.1)
where the the matrices N, S, E, and W represent the dependencies on the neighbors
immediately to the north, south, east, and west. Figure 6-1 shows the nearest neigh-
bor dependency for this description of 2-D systems. Details as to the structure of the
boundary condition for NNM’s is discussed in [1]. We assume in this example that

the noise sequence u(t,j) is a white noise sequence. Let p; be a radial coordinate
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Figure 6-2: Diamond ordering of the elements in x,(p). p € {0,1,2,3}, p =1

with the following definition
pu = 14,3 l]u (6.2)
p € {1,00}
The 4 norm of (¢,7) is equal to |i| + |j|, and the [, norm is given by max{|¢|,||}.
Each of the z(z, ) which lie along a contour of constant p, can be grouped into single
vectors X ,(p). The subscript u will be dropped when the value of y is either obvious
or irrelevant to the discussion. The number of elements in each vector varies with
p. The elements which form x,(p) are shown in Figure 6-2, and Figure 6-3 for the

different values of . A dynamic model for x,(p) can be constructed which has the

following structure.

Dp,uXu(P) = Fp+1,uXu(P + 1) + qu,uxu(/? - 1) + Hp,u'wu(p)
DU,MXM(O) = Fl,uXu(l) + HOyuwu(O) (6'3)
Druxu(R) = Gro1,uXu(R — 1) + Hp, w,(R)

This is a second order model and is not a STPBVDS. One is obtained by combining

the vectors x,(p) in pairs, and writing a descriptor system which propagates the state
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Figure 6-3: Square ordering of the elements of x.(p). p € {0,1,2,3}, p = o0

X,.(p) defined as

XAm=[ xulp) J (6.4)

xu(p — 1)

We specifically call X,,(p) a state, and not z(%, j) nor x.(p) because X,(p) is sufficient

to give the system a Markov representation. The following STPBVDS’s describe the

two-dimensional systems.

- p+23l‘ DP+19V'
L 0 F p+1
GP#" 0
I D Pkt “Gp—l,u

[x4p+a

] Xulp +1) (6.5)
xu(p) Hypi 0 w(p + 1)

i Xulp — 1) 0 ~H,, w(p)
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and

~Fot1u D,y Xu(P + 1) 0 Gou Xu(P) H,,
= + wyu(p)
0 I Xu(p) -1 0 Xulp — 1) 0
(6.6)
which by making obvious substitutions equations (6.5) has the form
Epi2,uXu(p +2) = ApuXu(p) + BouUu(p) (6.7)
and equation (6.6) has the form
E;’H—l,uXM(p +1) = A;,”XH(P) + B:a,pwp(/’) (6'8)
The boundary conditions for both models can be written as
Eo,uX,(0) = B_1,,U(-1,4) (6.9)

ApuXu(R) = ~Bpr,Uu(R)

Since the NNM can be fully described by a STPBVDS where the state dimension
varies with size, the Mayne-Fraser, and the Rauch-Tung-Striebel algorithms, devel-
oped in Chapter 4 for STPBVDS’s can be applied to two-dimensional systems with
no loss of generality. With this model and the Rauch-Tung-Striebel algorithm, the
local processing for each of the local subregions in our parallel processing algorithm
has been defined. Specifically, in our parallel algorithm, filtering will begin in parallel
from the center of each interval to the boundary, where the local representation of
the process in each subregion will be a STPBVDS whose initial state represents the
z(z,7) located at the center of the local region. Local estimates of the boundaries
are computed based on local data and dynamic constraints. After the interprocessor
communication step has been completed, the last step of the parallel smoothing algo-
rithm is the application of the backward sweep of the Rauch-Tung-Striebel algorithm

to update the interior states in the local subregions to their smoothed values.
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6.2.1 Computation of the system parameter for the 2-D
STPBVDS

Before continuing with an explanation of the interprocessor communication step, we
will provide the matrices F,, ,, Gy, Dpu, and Hy,,. We will define the vector x,(p)
to begin with the northern most element such that (in local coordinates) i = 0.
In Figures 6-2 and 6-3, this element is denoted by the shaded dot. The remaining
elements of x,(p) represent the elements of the state proceeding in a counter-clockwise
direction. To aid us in defining these matrices we will define a * operator. The action

of this operator is defined by performing the following operations on the set of elements

{N,S,E,W,I}.
{N*,8* E*,W*,I*} = {ST,NT,WT ET, I} (6.10)

Then when we consider any matrix formed from {N, S, E,W,I}, such as F,,, we
use the notation F;, to denote the matrix formed in exactly the same way from
{N*,S*,E*,W* I*}.

We also define a scalar n,, which is the dimension of the vector x,(p). First we

define the system matrices when g = 1.

np1 = 4p + 6(p) (6.11)
D,,=1
ol (6.12)
Trace[D, 1] = n1,,
Gg:1 =FJi4 (6.13)
F,1 € RM.e-1Xm1p (6.14)
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Let F,1(7,k) indicate the (7, k) element of F,,. Then

Foa(g,k)=W j-1=i E—1=1i+41
Fou(jyk)=5 j—-1=p—-1+: k—1l=p+1+i

For(jok)=E j-1=2(p—-1)4+i)modn,1; k—1=(2p+1+i)mod n,,
F,i(Gok)=N j—-1=3(p—1)+t)modn,_1; k—1=(3p+1+i)mod n,,

0<i<2 —2

Hpvl - dia‘g(B7Ba"'9-B)
Hp’1 € RreaXnp

HPJ = dia’g(B,B""aB)
Hp,l € %Np,l XNp,l

For the case where it = 00, we have the following

Meo,p = 8p + 6(p)

We define the matrix Z, to be equal to zero except for the following entries

Z(5,i+1) =S J=p+1
Zy(3,j+1)=E | j=3p+i
Z,(j,j+1)=N j=5p+1
Zp(1+[(j — D)mod ne,], 2+ [(7 — 1)mod ne,]) =W j=Tp+i
1<i<2

Dypoo =1—2,- 23T
G, =F:

p+1,00

Fp,oo € RPeow=1XNooyp
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(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
(6.21)

(6.22)



Foa(G,k) =W j=p+i k=p+i+2
Foi(j k) =S j=3p—2+i k=3p+2
Foi(Gk)=E j=5p—4+i k=5p+2+i
Foi(j,k) =N j—-1=(Tp-T+1)mod np 1.6 k—1=(Tp+1+1)mod n,
0<i<2—2
(6.23)
H,. = diag(B, B,---, B)

6.24
Hpoo € §Rn"'1 X"Tp1 ( )

6.2.2 Interprocessor Communication for Two-dimensional

smoothing

The interprocessor communication step in this section bears strong resemblance to
the Rauch-Tung-Striebel algorithm. The issue of applying the Rauch-Tung-Striebel
algorithm to the parallel processing step, requires a natural notion of a time direction
which is consistent with the types of two-dimensional systems which we are examining.
The systems which we are examining are reciprocal, that is, given a closed contour,
the interior and exterior are independent. This closed contour we have defined, in the
last subsection, as a ‘state’ of the system.

We will define an order relation < on the set of closed contours on which states
are defined. For these models closed contours are ‘thick’. For example, all (¢,7) such
that p — 1 < ||(¢,7)||x < p, comprise a closed contour for each p. Assume that our
coordinate system is shifted such that (z,7) = (0,0) falls in the center of the region
whose boundary corresponds to the state X, (7). Any closed contour X such that .for
all z(z,7) € X, ||(2,7)||s < 7 satisfies X < X,(r). We have therefore imposed a partial
ordering of the states. In particular, Figure 6-4 shows that the state X < X, (7). In
Figure 7.2, X and X,(7) are not ordered with respect to each other.

Continuing in more detail, we next describe the filtering process. We will assume
that g = oo unless otherwise stated. We start with a square region and partition it
into 22M subregions by partitioning each side of the square region into 2™ subregions,

as shown in Figure 6-6 for M = 3, and the processors assigned to each subregion
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X

X(r)

Figure 6-4: Two ordered ‘states’

X(7) X

Figure 6-5: Two non-ordered ‘states’

189




(0,0) ] (0,1) | (0,2) | (0,3) } (0,4) | (0,5) | (0,6) | (0,7)

(1,0) | (1, 1) | (1,2) | (1,3) § (1,4) | (1,5) } (1,6) | (1,7)

(2,0) | (2,1) 1(2,2) | (2,3) | (2,4) | (2,5) | (2,6) | (2, 7)

(3,0) [(3,1)[(3,2) ] (3,3) | (3,4) | (3,5) | (3,6) | (3,7)

(4,0) | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) | (4,7)

(5,0) { (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) | (5,7)

(6,0) | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) | (6,7)

(7,0) | (7, 1) | (7,2) | (7,3) } (7,4) | (7,5) } (7,8) | (7,7)

Figure 6-6: A 2-D region is partitioned into squares. Each region is assigned a
cartesian coordinate.

filter outward from the center to produce local estimates of the boundaries of each
subinterval. We will give each processor and the region to which it is assigned an
integer cartesian coordinate to assist in describing this algorithm. In order to describe
larger rectangles composed of individual square regions, we will denote a rectangle
whose corners are given by (s1,t1), (s1,%2), (s2,t1), and (82,t2), by ({s1, 32}, {t1,¢2})
as shown in Figure 6-7.

Step 1

The model on which this preprocessing step is performed is provided in the previous
subsection. Filtering is performed in each subregion from the center to the boundary
of each subinterval using the FMLF filtering equations (4.52), (4.53), and (4.54)),
applied to the model described in Section 6.2.1.

Step 2

We will analyze the computations involved for a square region divided into four sub-

regions. Again there are several parts to this step.
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{81332}

(s1,t1) (82,t1)

{t19t2}

(sl,tg) (32at2)

Figure 6-7: The notation ({s1,s2}, {t1,¢2}) is used to refer to rectangles constructed
from the union of individual square regions. Similarly the boundary for this region is

denoted by X ({s1,s2},{t1,2})
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Part 1

Part 1 involves computing the optimal estimates of the boundaries of two neigh-
boring regions from local measurements of these boundaries and any dynamic con-
straints which may link them (which we may interpret as an observation). After the
local filtering step, the boundaries of the local subregions satisfy a nearest neighbor
model which in essence is a a sampling of the states of the original system. We will
denote the boundary of a given subregion by X(s,t), where the label s,¢, consisting
of a pair of integers, represents the location of the entire region on a square grid as
shown in Figure 6-6. X(s,t) for a specific value of s, and t therefore represents a
collection of z(7,7). The nearest neighbor relationship among the boundary vectors

can be written as

A, X (s,t)

A X (st +1)

A,X(s,t —1)

AX(s +1,8) (6.25)
AuX(s —1,1)

B,U,(s,t)

+ + 4+ +

with ‘observations’ which are computed locally given by
X(s,t) = X(s,t) + X(s,t) (6.26)

The A;’s are written only to show the form of the NNM relationship. These matrices
will not be written explicitly as were the F,,, and G,, matrices in Section 6.2.1.
We will however explore the structure of these equations further. Specifically by

examining the structure and the local nature of the dynamic constraints, the relation
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between X(s,t) and its neighbors can also be written in the following form.

H,X(s,t) = NX(s,t+1)+ B,U,(s,t)
H,X(s,t) = SX(s,t—1)+ B,U,(s,t)
H.X(s,t) = EX(s+1,t)+ B.Ud(s,t)
HoX(s,t) = WX(s~1,t) + By,Uy(s,t)

(6.27)
HpeX(s,t) = NX(s,t+1)+EX(s+1,t) + BpUne(s,t)

H,X(s,t) = SeX(s,t—1)+&EX(s+1,t) + BeeUsel(s,t)
HowX(5,t) = NoX(s,t+ 1)+ WaX(s — 1,t) + BnwUnuw(s,t)
HowX(8,t) = SuX(s,t —1)+W,X(s — 1,t) + By Usu(s,t)

Let us now take some time to examine the construction of these matrices. This is
basically a bookkeeping problem which requires specifying an explicit ordering of the
elements in vectors of the form X(s,t). To do this we refer to the construction of
X(p), i.e., the vector of values that are a distance p, and p — 1 away from the origin
(at the center of the region). Let us use 6 to denote the variable indexing the elements
of this vector, (i.e. the components ! of X(p) are X4(p)), where by counting we find
that

1<60<16p -8 (6.28)

The way in which we order the elements x(i,j) which comprise X(p) is given by a
function O(%, j, p),where since our boundaries are thick (since our model is second
order), for each (%,7), O(%, 7, p) is defined for two values of p (i.e. z(¢,j) appears in
X(p) for two values of p. |
Furthermore © is invertible for a fixed p. Specifically given 0(:,j,p) we can
uniquely define the integer functions i(8,p) and j(,p). Figure 6-8 shows the values
of theta for p = 3. The matrices H,, H,, H., H,,, etc. are matrices composed of n x n

blocks. These blocks will be referenced directly when defining these matrices.

INote that each ‘component’ here is a value of #(i, ), which in itself, can be a vector.
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‘North’

—3—2—1—24—23—22

27—26—25—40—39 21
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|
T
6 28 0O—O—O 38 20
| || | 1 |
7290003719
3
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30 O—O—O 36 18

31—32—33—34—35 17
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0]

Y

0O O O O o O o o

Figure 6-8: The integer function ©(z, 7,3). The shaded dot is the origin, (¢,7) = (0,0).

This function orders the elements z(z, ) in the vector X(p).

Ha c §R(2p-—l)nx(16p—8)n

0e€{3p+2,---,5p}

H(0-3p-1,6)=1
Hy(0—3p—1,0(i(8,p),1 +j(8,p),p)) = =N
H,(6 —3p —1,0(1+1i(0,p),5(0,p),p)) = —E

H,(0 —3p—1,0(—1+41(8,0),5(8,p).p)) = -W

H, € R(2p-1)nx(16p-8)n
0c{5+2,--,7p}

H.0-5p—1,0)=1

H.(0 —5p —1,0(i(8,p),1 + j(6,p),p)) = =N
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(6.29)
(6.30)
(6.31)
(6.32)
(6.33)
(6.34)

(6.35)
(6.36)
(6.37)
(6.38)



He(0 - 5P - 1,@(i(9,p),—1 +j(0,P),P)) =-S5
He(e - 5P - 139(_1 + i(e,p),j(a,p),p)) =-W

H, € Ree-Dnx(16p-8)n
6e{p+2,---,3p}

Hy(0—p—1,0)=1

Hy(0 —p—1,0(i(9,p),1 + j(8,p),p)) = =N
Hy,(8 —p~1,0(1+1i(6,p),5(8,p),p)) = —E
H,(8 —p—1,0(i(0,p), -1+ j(8,p),p)) = =S

H, ¢ §R(2p—1 Jnx(16p—8)n

fe{ip+2,---,8p,1,---,p}

Hi0-Tp—1,0)=1 6€{lp+2,

Hi0—1+p,8)=1 fe{l,--

Hn(o - 7P - 17®(i(0vp)’_1 +j(0,P),P)) =-5 f¢ {7P + 27"'

Hn(g +p- 1,®(i(9,p), -1 +](0,P),P)) =-S5 be {17' vt

Hn(0 - 7P - 17(:-')(1 + i(ﬁ,p),j(a,p),p)) =-FE f¢ {7P+ 2,00

Hn(0+p—1,@(1+i(0,p),j(0,p),p))= ~E 6 € {1""

Hn(o - 7P - 179(_1 + i(a,p),j(ﬂ,p),p)) =-W f¢ {7P + 27' °e

H.(0+p—-1,0(-1+ i(8,p),7(0,p),p)) = W fe{l,---

H,, € R™(17-5
HolTp+1) =1
Hpe(Tp) = =5
H,(7p+2)=-W
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(6.39)
(6.40)

(6.41)
(6.42)
(6.43)
(6.44)
(6.45)
(6.46)

(6.47)
(6.48)
(6.49)
(6.50)
(6.51)
(6.52)
(6.53)
(6.54)
(6.55)
(6.56)

(6.57)
(6.58)
(6.59)
(6.60)



H,, € Rrx(ee=8)n
H,.5p+1)=1
H,.(5p) = -W
H,(5p +2) = —N

Hnw € ERnx(ISp-S)n
Huw(p+1) =1
Hnw(p) =-F
Hpw(p+2)=-S

H,, € Rrx(16p=8)n
Ho(Bp+1) =1
H,,(3p) = =N
H,,(3p+2)=-FE

Se §R(2p—1)nx(16p—8)n

8c{3p+2,---,5p}
S(8—3p—1,0(i(8,p),2p + j(8,p),0)) = =S

£¢c §R(2p—1)nx (16p—8)n

9e{50+2,-,7p}
E(8 —5p —1,0(-2p +1i(8,p),5(0,p),p)) = —E

W e §R(2p—-1)nx(16p—8)n

8e{p+2, .30}
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(6.61)
(6.62)
(6.63)
(6.64)

(6.65)
(6.66)
(6.67)
(6.68)

(6.69)
(6.70)
(6.71)
(6.72)

(6.73)
(6.74)
(6.75)

(6.76)
(6.77)
(6.78)

(6.79)
(6.80)



W(e -pP - 159(2/7 + z((),p),g(&, P),P)) =-W

N € §R(2p—1)nx(16p—8)n
S {7P+27"‘:8P717"‘7P}
N(e —Tp— 1,@(i(0,p), —2p+j(8,p),p))=—-N f¢€ {7P +2,- ",8P}
N(0 +p- 17®(i(97p)’_2p +j(0,P),P)) =-N RS {1$" ) 7P}

-A/e € §Rnx(16p—-8)n

Ne=N

gn € §Rnx(16p—8)n

&.=FE

se € ERnx(le—S)n

S.=3S5

£ € §Rnx(16p—8)n

& =EFE

N c §Rnx(16p—8)n

Ny =N

Wn c §Rnx(16p—8)n

W,=W
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(6.81)

(6.82)
(6.83)
(6.84)
(6.85)

(6.86)
(6.87)

(6.88)
(6.89)

(6.90)
(6.91)

(6.92)
(6.93)

(6.94)
(6.95)

(6.96)
(6.97)



S, € Rrx(16p=8)n (6.98)

So=S (6.99)
W, € Rrx(1ep-8)n (6.100)

W,=W (6.101)

B, € R(2p+1)n x (2p + 1)n (6.102)

B, = B, = B, = B,, = diag(B,---, B) (6.103)

B,. = B, = Bp, = Bjw=FB (6.104)

where N, S, E, W, and B is defined in Section 6.2. Now we will return to the discusion
of merging two boundaries.

Two states to be combined in this step are shown in Figure 6-9. In this formulation
the boundaries of the neighboring regions do not intersect, and there are dynamic
constraints which link the two regions. The arrows in Figure 6-9 show the dynamic
constraints required for the measurement update step. The ‘measurement’ required
to compute the estimate of the boundary which are the shaded circles in Figure 6-10

and which encloses both regions is given by

H.X(s,t) = EX(s+1,t) + B.U.(s,t)

HoX(s+1,t) = WX(s,t)+ B,Us(s + 1,¢

) (8 ) (8 ) N (3 b ) (6.105)
X(s,t) = X(s,t)+ X(s,t)

X(s+1,t) = X(s+1,t)+X(s+1,¢)

All of the observation noises shown in equation (6.105) are independent. The =(z,7)
which are estimated in this problem are contributed from the boundary of Region (s,t)
and from Region (s+1,t). The elements of this boundary can be separated into those
which comprise the boundary which enclose both Region (s,t) and Region (s+1,¢) and
the remainder which we will call {Y({s,s+1},¢)}. The elements of {Y({s,s+1},t)}
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Region (s,t) Region (s+1,t)

0—0—0—Q0—0—O0— —0—0—0—0—0—0

O—0O0—O0—O0—

© O0—O0—0

O O O O

O O0—0—0O

O—O0—0—O0O0—

—0—0—0—0

—0—0—0—0

—0—0—0—0—0—
o)
o)
o)
o)
—0—0—0—0—0—

0—0—0—0—0—O0— —0—0—0—0—0—0

Figure 6-9: Two neighboring regions for the Measurement Update step and the dy-

namic constraints (which are shown by the arrows) required to merge them.

are enclosed in squares in Figure 6-10. The boundary denoted by {X({s,s + 1},¢)}
are the shaded circles in Figure 6-10. |

{X(s, )} U{X(s + 1,8)} = {X({s,s + 1}, )} U{T({s,s + 1}, 1)}

(6.106)
{Y{s,s +11L)IN{X({s,s + 1}, 1)} = ¢

The result of the estimation problem based on the measurements in (6.105) is the

following estimate

X(sytl{s,s +1},1)
X(s+1,t|{s,s +1},1)

X(s,t)
X(s+1,1)

X(s,t|{s,s+ 1},t)
X(S + L ¢[{s,s +1},¢)

} (6.107)

equivalently we could write

X({s,s +1},1)
Y({srs + 11,1)

T({s,s +1},t{s,s + 1},1)

X({s,s + 1}, t[{s,s + 1},¢) ]

X({s,s + 1}, t1{s, s + 1},1) }

T({S’s + 1}, ¢|{s,s + 1},t)
(6.108)

The next step amounts to sampling [XT({s,s + 1},t)YT({s,s + 1},¢)]T by keeping
the XT({s,s+1},t) which is the process on the boundary which contains both of the
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Region (s,t) Region (s+1,t)

I |
® 0—0—0— 90— 0 —0— 0 —0—0—0— 90— 0 °
! | 1 | ||
) () oO—0—0 0 0O O O O—0—0 ® °®
I R [ I I I I
° e O O O© O O O o O O e °®
I I R I R R
° ® O—0O0—0 EIJ KIJ Ell Elj O—0O0—0 T |.
||

°® *o—0—0—0—0—0—0—0—@0—0—0— @ ®
| |
e—0—0—0—0—0—0—0—0—0—0—0—0—0

Figure 6-10: Constructing the boundary enclosing two regions from the boundaries of
two subregions X(s,t) and X(s+ 1,¢). The black dots represent the boundary which
encloses both regions which will be denoted by X ({s,s+1},¢). The twelve dots which
are enclosed by squares are the elements of Y({ss+1},t). T({s,s+1},t) are elements
of the union of X(s,t) and X (s + 1,¢) but are not elements of X({s,s + 1},¢).

subregions. Sampling is performed in the following

R({s,s + 11, tl{s,s + 1},8)

X({8’3+1},t|{s,s+1},t)=[I 0}[1‘({3 +1},t/{s,s + 1},1)

} (6.109)

I
0
(6.110)

Similarly the same computations can be performed for Region (s, t-1) and Region

Since sampling is a noiseless process, the covariance is given by

X({s)s + 1}, ¢{s,s + 1},¢)

Cov|X({s,s+1},t|{s,s+1},8)] = [ I0 ] Cov | _
T({s,s + 1}’“{373 + 1}’t)

(s+1,t-1) by substituting t-1 for t in Equations (6.106)-(6.110).

Now with an estimate of the boundary surrounding Region (s,t) and Region (s +
1,t) (i.e., Region ({s,s + 1},t)), and an estimate of the boundary surrounding Re-
gion (s,t — 1) and Region (s + 1,¢ — 1) (i.e., Region ({s,s + 1},t — 1)), they can
be combined into an estimate of the boundary for the entire region which comprises

Region ({s,s+1},t) and Region ({s,s+1},t —1) (i.e., Region ({s,s+ 1}, {t — 1,¢})).
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Figure 6-11 shows the dynamic constraints necessary to merge these two regions.

These dynamic constraints are represented here by

H,X(s,t—1) = NX(s,t)

H,X(s,t) = SX(s,t—1)

H.X(s+1,t-1) = NX(s+1,%)

H,X(s+1,t) = SX(s+1,t—1) (6.111)
H..X(s,t —1) = NX(s,t) +EX(s+1,t—-1)
HuwX(s+1,t—1) = NoX(s+1,8) + W, X(s,t — 1)

H, X (s,t) = S.X(s,t—1)+&X(s+1,1)

fl

H,X(s +1,1) SuX(s+1,t — 1) + W,oX(s,t)

By examining Figure 6-11 we see that all of the dynamic constraints have a similar
structure. The the last four equations in (6.111) appear different only because of the
partitioning of the plane into subregions. This suggests a different ordering of the
points on the plane than the one used here. We will return to this point later.

The elements of the two boundaries of each subregion can be ordered into two
vectors where one represents the boundary of the entire region which is shown as the
set of shaded circles in Figure 6-11 and will be denoted by X({s,s + 1},{t — 1,t})
and the remaining states will be denoted by Y({s,s + 1},{t — 1,t}) The estimates

which have been obtained are denoted by

T({s)s + 1}9{t - 17t}l{373 + ]-}’ {t - 1’t})
X({s’s + 1}7 {t - l,t})
T({s,s + l}a {t - 1,t})

X({s,s+1},{t — 1,t}{s,s + 1}, {t — 1,}) }

X({s,s+ 1}, {t = 1,t}{s,s + 1}, {t - L,¢})

T({Sas + 1}, {t = Lt} {s,s + 1}, {t — 1,t})
(6.112)

+

The next step of the estimation process would incorporate the estimates
X({s,s +1}1,{t — 1,t}l{s,s + 1}, {t - 1,¢}),
X({s+2,s+3},{t—1,t}{s +2,s+ 3}, {t — 1,t}),
X({s,s +1},{t —3,t — 2}|{s,s + 1}, {t — 3,t — 2}),

201



Figure 6-11: The black dots represent the boundary which encloses the two regions
which are merged together, X({s,s + 1},{t — 1,t}). The white dots represents the
remaining elements of the boundaries of the two original regions which will be denoted

by T({Svs + 1}7{t - lvt})
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and X({s+2,s +3},{t —3,t —2}[{s + 1,s +3},{t - 3,t — 2})

to construct the estimate of the boundary surrounding region given by

X({'s’s + 3}, {t — 3, t}{s,s + 3}, {t - 3’t})'
Part 2

Once the smoothed estimate for the boundary of the entire region has been obtained,

smoothed estimates are propagated to the boundaries of smaller and smaller subre-

gions until each subregion has a smoothed boundary. Typical measurements for this

step are given by the following.

X({s,s+1},{t — L, ¢}|{s,s + 1}, {t — 1,t}) I0
T({s,s +1},{t - 1,t}{s,s +1},{t - 1,t}) | =] 0
X({s,s+1},{t — 1,¢}|{0,S},{0,T}) I0

X({s,s + 11, {t — L,t}{s,s + 1},{t — 1,¢})
+ | T({s,s+ 1}, {t — 1,t}{s,s + 1}, {t — 1,¢})
X({sas +1},{t - 1,t}{0, S}, {0,T})

X({s,s + 1}7{t - 17t})
T({s,s+1},{t - 1,t})

(6.113)

where S and T represent the maximum values of s, and ¢ respectively. This measure-

ment has the same structure as the measurement given in (4.92) used to derive the

Rauch-Tung-Striebel algorithm. From this measurement

T({s,s+1},{t — 1,t}|{0,5},{0,T}) can be estimated and as a result the estimates
X({s,s + 1},t[{0,5},{0,T}), and X({s,s + 1},¢ — 1/{0,5},{0,T}) have been ob-

tained. Next the following measurements are combined

X({s,s +1},tl{s,s + 1},¢) I0
T({s,s+1},tl{s,s +1},t) | =10
X({s,s+1},t{0,5},{0,T}) I

X({s’s + 1}, ti{s,s + 1},¢)
+| T({s,s+ 1}, t{s,s + 1},1)
X({s,s+1},t{0,5},{0,T})

X({s,s +1},¢)
T({s,s+ 1},¢)

(6.114)

From this measurement Y({s,s + 1},{t — 1,£}|{0,5},{0,T}) can be estimated
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and as a result the estimates X (s,¢|{0,5},{0,T}), and X(s+1,t/{0,S5},{0,T}) have
been obtained.

This procedure continues until smoothed estimates are obtained for the boundaries

of the individual subregions.
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Step 3
Once the smoothed estimates of the individual subregions have been obtained, the
backward sweep of the Rauch-Tung-Striebel algorithm proceeds in parallel in each

subregion.

6.3 Complexity

The computational requirements of the algorithm we have just described, differ from -
those of the one dimensional algorithms in several respects. First the dimension of
the state changes as a function of the p coordinate. Specifically in the local filtering
step the complexity of the processing in a one dimensional system varied as Kn®
where K is the length of the interval, and n is the dimension of the state. With the
dimension of the state proportional to p we can expect the complexity of the off-line
computations to rise as the fourth power of p. Since the on-line computation for a
one-dimensional system varies as Kn? we may now expect that the complexity of the
online computation varies as p® when summed over the entire region. Secondly in the
interprocessor communication step, the size of the state roughly grows by the factor
V2 at each step. The size of the state grows geometrically. We will see that the state
grows so fast that we could ignore all computations except those involving the largest
state, i.e the boundary.

Step 1

The key issue in computing the computational complexity for this step are to manage
the bookkeeping of the computations in more detail. The important numbers to keep
track of are the dimension of the state of the system, the dimension of the driving

noises, and the observations. The dimension of the state X(p) is given by

X(p) € Rono-H) > 2

(6.115)
X(1) € Ron

The dimension of the predicted estimate Z, (defined by equation (4.48) when applied
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to the model given in (6.8)) is given by

Z(p) € R1Ee-1) p > 2 (6:116)
The dimension of the driving noise is given by

U(p) e R¥*™ p2>1

(6.117)
U(0) e R™
The dimension of the observation is given by
Y(p) e R®P p>2
(e) P (6.118)

Y(1) € R

The dimension of these vectors dictate the dimension of 4,, E,, B,, C, in the STP-
BVDS model. The dimension of the state satisfies a simple polynomial in p agreeing
for all p except p = 1. In the following we will approximate the dimension of X(1)
by X(1) € R®" instead of R°" in order that the polynomial 16n(p — 1) specify the
dimension for all p and we may minimize the number of extra computations needed
to deal with having to generate separate equations for p = 1. The dimension of the

matrices which describe the STPBVDS satisfy the following

Ap = §R16np><16n(9-%) (6119)
Eypi € §R16n(p+%)X16np (6.120)
Bp = ERIGn(p—%)Xst (6.121)
C’p € §}?8me16"-(9-1§) (6122)

With this, the computations necessary for the filtering step can be computed. The
amount of computation was computed in the same manner as the computation in
Chapter 5. Here however we need to take into account that all of the dimensions are

time varying and therefore formulas for computational complexity are more complex.
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Step 1

To determine the amount of computation involved in these computations we returned
to the filtering equations in Section 4.2 and apply them to the model given in (6.8)
while accounting for the fact that the dimension of the matrices vary with time. The
number of operations were computed with the aid of the polynomial functions defined
in Section 2.1 First we will compute the amount of operations for one time step (i.e.,
one value of p). Then we will compute the amount of operations over the entire
region.

Off-line

One time step

If we assume that the state is not completely estimable then the amount of off-
line computation required to compute the estimate of X(p) from the estimate of

X[p — 1|p — 1] in the filtering step is given by requires

M(16(2pn — $n + 3pp), 16n(p — 3),16(2pn — $n + 3pp))
(16)3[0%(16n° + n?p + 2n?m) + p*(—45n° — n’p — 4n’m)
p(43.5n3 + .25n%p + 2n?m) — 14.5n8)

E(16n(p — 1),16n(p — 1),16n(p — 1))

(16)3[0%(70.33n3 + 27n2p + 5.25np + .33p° + 2n’m)

—  p*(146n3 + 37.5n%p + 3.625np? + 4n?m)

+ p(118.750° + 13n2p + 2nm)

— 42.125n3]

+ + +

(6.123)

If the state is estimable then the amount of off-line computation to compute X [p|p]
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from X[p — 1|p — 1] is given by

E(16(2pn — $n + 3pp),16n(p — 3),16(2pn — 3n + 3pp))

(16)%[p%(6n% + n™) + p?(—21n® — 2n?m) + p(24n® + n?*m) — 9n®

£(16n(p — 1), 16n(p — 1),16n(p — 1))

(16)3[p%(28.66n° + 14n’p + 2.75np® + .166p® + n?m) (6.124)
—  p*(69n® + 19.5n%p + 1.875np* + 2n’m)

+ p(46.75n + 6.75n%p + n?m)

— 16.875n3

+ +

Finally if pseudo-inverses are not required in the computation, then then the amount

of off-line computation to compute X[p|p] from X[p — 1|p — 1] is given by

I(16(2pn — §n + 3pp), 16n(p — 3))
+ (16)°[p%(6n° + n™) + p*(=21n° — 2n’m) + p(24n° + n’m) — 9n®
= (16)%[0%(19.33n® + 8n?p + 1.5np? + .083p® + n?m)
—  p*(49n® + 11n%p + np? + 2n%m) + p(43.5n% + 3.75n%p + n?m) — 13.5n3]

(6.125)
On-line
One time step
The amount of on-line computation is given by
(16)2[p*(2n® + np) + p(—4n? — .5np) + 1.5n?] (6.126)

The on-line computation does not change if the state is estimable, or if pseudoinverses
are unnecessary in the off-line computations.
Off-line computations

Summed over the region

To determine the computation needed to provide filtering from the center to the

boundary of a region of radius p = r, we sum these terms from p = 2 to p = r and
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add a separate term for computing the initial estimate X[1]1]. Using the identities

zz; p® = .25r% 4+ 5r3 4+ 2572 — 1
IS e = .33r% + 5r? 4 .166r — 1 (6.127)
Shosp = bri45r—1

the operations may be counted by substituting p’ with the corresponding sum from
2 to r in equations (6.123)-(6.126). The initial computation required to compute
X[11] is not a function of p in addition if we were to compute the optimal number
of processors by taking the derivative, this term would not be essential. We will
therefore just include only the summation in the following computations. For the

case where the state is not estimable, the number of computations is given by

=z [M(16(2pn — 3n + 3pp), 16n(p — 3),16(2pn — 3n + 3pp))
+E(16n(p — 1), 16n(p — 1), 16n(p — 1))
+(16)%p*(16n° + n?p + 2n?m)
+(16)3p%(—45n° — n?p — 4n’m)
+(16)%p(43.5n3 + .25n2p + 2n%m)
—(16)*14.5n%]
= (16)%[(.257* + .57% 4 .257% — 1)(70.33n° + 27n?p + 5.25np? + .33p° + 2n2m)
— (-337% 4 .57% + .166r — 1)(146n° + 37.5n%p + 3.625np? + 4n2m)
+ (572 + 5 — 1)(118.75n° + 13n2p + 2nm)
~ (r —1)42.125n%
(6.128)

If the state is estimable then the amount of off-line computation needed to compute
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filtered estimates in an entire region of radius k is given by

=2 [E(16(2pn — 3n + 3pp),16n(p — 3),16(2pn — $n + 3pp))
+(16)3[p%(6n® + n™) + p*(—21n% — 2n2m) + p(24n® + n?m) — 9nd
+&(16n(p — 1),16n(p — 1),16n(p — 1))]
= (16)3[(.257* + .57° + .257% — 1)(28.66n° + 14n’p + 2.75np? + .166p® + n?m)
— (.33 + .5r% 4 .166r — 1)(+69n> + 19.5n%p + 1.875np? + 2nim)
+ (.57% + .57 — 1)(46.75n3 + 6.75n%p + n?m)
~ (r—1)16.875n%]
(6.129)
Finally if pseudo-inverses are not required in the computation, then the amount of

off-line computation required to perform filtering within a radius of r is given by

=2 [Z(16(2pn — 3n + 3pp), 16n(p — 3))
+ (16)%[p*(6n® + n™) + p*(—21n% — 2n2m) + p(24n® 4+ n?m) — In?)
= (16)%[(.257* + .57® + .25r% — 1)(19.33n® + 8n?p + 1.5np? + .083p% + n?m)
— (.33r® + .57 + .166r — 1)(+49n°% + 11n?p + np? + 2n?m)
+ (.5r? 4 .5r — 1)(43.5n2 + 3.75n2p + n’m)

— (r~1)13.5n]
(6.130)
On-line
Summed over the region
The amount of on-line computation is given by
(16)%[(.33r% + .57% + .166r — 1)(2n? + np) (6.131)

—(.5r% + .5r — 1)(+4n? + 5np) + (r — 1)1.5n?)

Note how the complexity varies with the parameters n and r. The computational
complexity of the off-line computations varies with n2, and since the dimension of the
state is proportional to p, the complexity is proportional to r* where r is the radius
of the region being filtered.

Step 3
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In step three we compute the number of computation necessary to implement the
Rauch-Tung-Striebel equations in Section 4.3. First we will consider the computation
for one time step, then we will consider the sum of these operations over the entire
region of radius p = r. If we assume that the state is not causally estimable, we need
not compute the projection matrix in (4.115), and form products with this projection
matrix and the quantities in (4.112)- (4.114). In addition (4.118) will not have to
be computed. The amount of off-line computation required to compute X *(p) from

X*(p+1) in the backward sweep of the Rauch-Tung-Striebel algorithm is given by

M(16pn,32n(2p — 3),16pn)

E(16n(p — 1), 16n(p — 1),32np)

(16)3[p3(27n® + 3n?m)

p*(~12.5n°) + p(1.5n°)

p(43.5n% + .25n%p + 2n?m) — 14.5n°]
(16)3[p3(115.66n3 + 3n2m) + p?(—65n3) + p(13.5n3)

(6.132)

+ + + +

If the state is causally estimable then the amount of off-line computation to com-
pute X*(p) from X*(p+1) is reduced because the quantities in (4.112)- (4.114) are of
reduced dimension. This follows from ?z,[kﬂlkl = 0. In addition the pseudo-inverse
in (4.117) will not have to be computed. Since the state is estimable, A;, = I. As a

result L,,, = I. The smoothed covariance is given by
Cov(2°(k)) = ZxCov(#°(k + 1)L 4 Cov(v(k)) (6.133)
The amount of computation for one time step is given by

E(16pn,16n(p — 1),16pn)
4 (16)3[p3(12n°) + p¥(—Tn?) (6.134)
= (16)3[p®(19.66n3) + p%(—8.5n3)

Finally if pseudo-inverses are not required in the computation, then then the amount
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of off-line computation to compute X*(p) from X*(p + 1) is given by

T(16(pm), 16n(p — 1))
+ (16)*[p®(12r®) + p*(—Tn?) (6.135)
= (16)%[p®(15.33n3) + p%(—8n?)

On-line
One time step

The amount of on-line computation is given by

(16)2[p*(4n?) + p(—2n2)] (6.136)

The on-line computation does not change if the state is estimable, or if pseudoinverses
are unnecessary in the off-line computations.
Off-line computations
Summed over the entire region

To determine the computation needed to provide filtering for from the center to
the boundary of a region of radius p = r, we sum these terms from p = 1 top = r—1.

Using the identities

TS pd = 25r% — 5r% 4 2572
P=17p? = .33r% — 572 + 1667 (6.137)
YhTlp = 5% — 5

Note that the limits of summation are different that those for the filtering step. this
is because we may estimate X (1) given the smoothed estimate at X(2) while in the
filtering step, there is no X(0) defined to aid in estimating X(1). We perform the
summation by substituting p’ with the corresponding sum from p = 1 to p = » — 1.

For the case where the state is not causally estimable, the number of computations
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is given by

M(16pn,32n(2p — 1), 16pn)

E(16n(p — 1),16n(p — 1),32np)

(16)3[p%(27n® + 3n%m)

p2(—12.5n%) + p(1.5n3)

p(43.5n3 + .25n2p + 2n?m) — 14.5n°]
(16)3[(.257* — .5r3 + .25r%)(115.66n° + 3n’m)
(.337® — 572 + .1667)(—65n2)

+  p(13.5n3)

(6.138)

+ o+ + o+

If the state is causally estimable then the amount of off-line computation to com-

pute X*(p) from X*(p + 1) is given by

E(16pn, 16n(p — 3),16pn)
£ (167[p%(120%) + p2(~Tn?)
+ (16)3[(.257% — 5r® + .25¢2)(19.66n3)
+ (.33r% — 52 + .166r)(—8.5n°)

(6.139)

Finally if pseudo-inverses are not required in the computation, then the amount of

off-line computation to compute X*(p) from X*(p + 1) is given by

I(16(pn),16n(p — 3)) + (16)*[p*(12n°) + p*(~Tn?)

(6.140)
= (16)3[(.257* — .57 + .257%)(15.33n3) + (.33r® — .5r% 4 .1667)(—8n®)
On-line
The amount of on-line computation is given by
(16)%[(.33r% — .5r% 4 .1667)(4n?) + (.5r% — .5r)(—2n?)] (6.141)
Step 2
Part 1

The interprocessor communication requires two types of computations. One is com-

bining two square regions to form a rectangular region. The second is to combine
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two rectangular regions to form a square region. We will handle these two cases
separately. The computations deal with the measurements depicted in Figures 6-11,
and 6-9.

The key issue again is how the dimension of the state varies from step to step. We
will use the integer variable ¢ to help us indicate the number of levels of interprocessor
communication which take place. At the start of the interprocessor communication,
t = 0 and it is incremented every two interprocessor communication levels. Thus once
four squares are combined into a larger square, ¢ is incremented. In the following the
parameter r is fixed, representing the radius of the smallest square region. Earlier it
was stated that the dimension of the state increases roughly by a factor of v/2 at each
step. If we define r as the radius of the smallest square subregion then the dimension
of a state defined on a square boundary during the interprocessor communication step
is given by

X(Zt) € §R((16r+8)x2’—16)n (6.142)

where 2t here represents the number of interprocessor communications. Only for even
values of 2t is the boundary a square. The dimension of the odd indexed states is
given by

X (2t +1) € R((2ar+12)x2'~16)n (6.143)

There are also n[(47+2)2! — 4] dynamic constrains used to merge the estimates of two
square states together. There are also n[(8r + 4)2¢ — 4] dynamic constraints involved
in combining the estimates of two rectangles into an estimate of the state around a
square boundary. Computational economies result if we take advantage of the fact
that the parameters N, S, E, W, B, and (' , do not vary with position. In these
computations however we will assume that independent processors compute different
and independent inverse estimation error covariances.

Off-line

One time step

An example of the measurements used to determine the number of computa;tions is

given by equation (6.105) for ¢ = 0 and is shown in Figure 6-9. The amount of
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computation to compute an estimate for the boundary of a rectangular region from

two square regions is given by

M(((68r + 34)2¢ — 72)n, ((327 + 16) x 2t — 32)n, ((68r + 34)2! — 80)n))
+ E(((24r + 16)2¢ — 16)n, (247 + 16)2¢ — 16)n, (247 + 16)2* — 16)n)

+ 2((32r + 16)2t — 32)2((36r + 18)2¢ — 40))n?
(6.144)

Equation (6.111) provides an example of the equations required to combine two rect-
angles together to construct a square boundary. See also Figure 6-11. The amount of
computation required to combine the estimates of the boundaries of two rectangular
regions into the estimates of the square boundary which encloses the two subregions

is given by

M(((104r + 34)2t — 80)n, ((48r + 32) x 2¢ — 32)n,((104r + 34)2¢ — 80)n)
+ E(((16r + 8)2t*! — 16)n, ((167r + 8)2'*! — 16)n, ((16r + 8)2!*! — 16)n)

+ 2((48r + 16)2¢ — 32)2((567 + 18)2¢ — 40))n®
(6.145)

Here for all values greater than ¢ = 0 and all » > 1 all expressions of the form
(ar+b)2t+c can be approximated by (ar+5)2¢. We may therefore approximate (6.144)
and (6.145) by

M(((68r + 34)2¢ — 72)n, ((32r + 16) x 2¢ — 32)n, ((68r + 34)2¢ — 80)n))
+ E(((24r + 16)2t — 16)n, ((24r + 16)2t — 16)n, ((24r + 16)2¢ — 16)n)
+ 2((32r + 16)2t — 32)%((36r + 18)2¢ — 40))n?

~ (16)3(50.41)2%n3(2r + 1) + (16)3(.96)2%n3(3r + 2)3
(6.146)

and
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M(((104r + 34)2t — 80)n, ((487 + 32) x 2t — 32)n, ((104r + 34)2t — 80)n)

+ E(((167 + 8)21 — 16)n, (167 + 8)2t+1 — 16)n, (167 + 8)2¢1 — 16)n)
+ 2((48r + 16)2¢ — 32)%((56r + 18)2¢ — 40))n®
~ 23n3234(52r + 17)*(172r + 97)
(6.147)
respectively.
On-line

One time step The amount of on-line computation required to combine two square

boundaries is given by

(16)2 6 % 22(r? + r + .25) (6.148)

The amount of on-line computation required to combine two square boundaries is
given by
(16)2 * 12 % 22(+2 + 7 + .25) (6.149)

Off-line

Summing over the entire region Since these equations vary with ¢ which here
represents the number of levels of interprocessor communication pairs performed, we
need concern ourselves particularly with summing terms which grow exponentially.

We therefore need to use the equality

YN,gi =0 g>1 (6.150)

From this sum we can tell that the if g is sufficiently large then the total number of
computation is approximately g”V. Since the square states alone varies by 2¢, and for
one computation, the off-line computation varies as 23, and the on-line computation
varies as 2%, in this problem g = 8 for the off-line computation and g = 4 for online
computation. We may conclude that the computation is dominated by the the last
computation corresponding to n = N, and we could if necessary neglect all prior

computations. We will not but it is important to realize that the size of the state
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increases so fast that operations on prior states are negligible.
We can conclude that for 2T levels of interprocessor communications, the total
number of floating point operations off-line required in computing the necessary gains

for combining square boundaries together to form rectangular boundaries is given by

23(T+1) —1

(16)%[(50.41)(2r + 1) + (.96)(3r + 2)%]n7[ - ]

(6.151)

and the number of off-line computations involved in combining rectangular regions

into square regions is given by

23(T—1) -1

22n3(52r + 17)%(172r + 97)[ - ] (6.152)
The total amount of computation involved is given by
3 3 3 3 2 322740 — 1
{(16)%[(50.41)(2r + 1)° + (.96)(3r + 2)°] + 2%(52r + 17) U72r4-gn}n[-——ﬁr—__]
(6.153)

For the case that the state is estimable the total amount of computation is approxi-

mately given by

E(36n[2T (r + ) 24n[2T(r + D, 36n2T(r + %)])

(6.154)
= 3.33(36)°2%Tn3(r + 1)°
for combining square regions
£(48n[2T (r + 1), 16n 2T+ (r + 1)],48n[2T(r +
(onl27(r+ ) 16T+ DRI 1)

= 5.833(48)323Tn3(r + 1)3

2

for combining rectangular regions
For the case that pseudo-inverses are not required, the total amount of computa-

tion is given by
I(36n[27(r + 3)], 24n 2T (r + 1)])

(6.156)
= 2(36)*n%2%T (7 + 1)
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for combining square regions

Z(48n[27(r + 3)], 16027+ (r 4+ 1))

(6.157)
= 2.166(48)3n32%T (7 + 1)3

for combining rectangular regions
On-line The total amount of on-line computation required to combine two boundaries
is given by

(16) % 6 x Z0=1(72 4 1 4+ .25) (6.158)

We may conclude this section by noting that if K% is the number of points in
the entire region, and if we use L? processors to partition them then the radius of
the smallest subregion will be given by » = £=E£, The number of interprocessor
communications will be given by 27" = log, L? = 2log, L. The total computation

time for the case where the state is not estimable is given by

{(16)°((50.41)(257E + 1)° + (.96)(353E + 2)°] + 23(52E3L + 17)2(17255E + 97)}n?[82=1)
+ (16)°[n3(15.16{£7%}* — 25.33) +n2p(6.5{% 4
+ 25.07{£7E}% + 37.63{£35}? + 12.465:L)
+ np2(13l{K ~L 3+141{K ~L\3 _ 5{1{ L2 _ 61K L]
(6.159)

In this term the logarithms and the exponents have canceled leaving an algorithm
whose complexity increases in polynomial time. The local processing in this algo-
rithm grows with the size of the region and much more computations are performed
at larger radii than for smaller. For a square region of large radius r the ratio of
computation performed radially outward, to the amount of computation required if
a marching method is used is equal to 128 for the off-line computations and is equal
to approximately 42.33 for the on line computations. One thing which is gained by
filtering inward and outward is that a general boundary condition is feasible, where
as a general boundary condition was not supported in the marching methods used by
Adams[1], for example. We will find that certain suboptimal tecniques can bring this

ratio to zero asymptotically for the on-line processing. Specifically to compute the
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optimal estimate on a region of radius r requires O(r?) flops of on-line computation..

We will present suboptimal tequniques which will compute the estimate in a region

with O(r?) flops, and also O(rlog r) flops.

6.4 Suboptimal Smoothing

6.4.1 Suboptimal interprocessor communication

The computation in the algorithm as described in this chapter involves combining
larger and larger boundaries together. The size of the boundary increase by approx-
imately a factor of /2 at each stage in the interprocessor communication. Although
the complexity of the operations involved increases dramatically at each step, the
number of computations required is greatly reduced. In fact the bottleneck is the fact
that the computation involving the larger sub-boundaries including the boundary of
the entire region.

As the size of the state grows the complexity of the interprocessor communication
grows. The size of the covariance of the state grows as the square of the size of the
state. If the state is not estimable, then a projection matrix must be carried along
whose size is equal to the size of the covariance of the state.

For the purposes of the discussion in this section we assume that the process at
the boundary of the local subregions is estimable based on data in the local sub-
regions, and therefore avoid issues associated with the projection matrix. Consider

equation (6.105) given by

[ o | [-m ¢ ] [ B.U.(s,t) |
0 W —H, X(s,t) B U.(s,t)
) = + i (6.160)
X(s,t) I 0 X(s+1,¢t) X(s,t)
| X(s+1,8) | | O I | | X(s+1,t) |

This equation is of the form

y=Hz+v (6.161)
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where H is given by

H =
y is given by

y =
z is given by

r =
and v is given by

v =

Since the solution in (6.107), and (6.108) is constructed from solving

R
HT

X(s,t)
| X(s+1,t)

X(s,t)

| X(s+1,t)

[ B.U.(s,¢) |

B, Uy(s,t)
X(s,t)

| X(s+1,%)

L)

or equivalently since R is invertible from solving

HTR'H# = HTR 'y

(6:162)

(6.163)

(6.164)

(6.165)

(6.166)

(6.167)

where HTR™'H is the inverse estimation covariance of z, it may be desirable to

exploit sparsity in HT R~ H to solve for x, or to exploit sparsity in R or R~! to solve

for z.

The approach we will take here is to model the process at the boundary after the
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local processing step, as a one dimensional process going around the boundary.

-~ If we partition R as follows

- -

B.BT 0 0 0
0 B,BT 0 0
R= (6.168)
0 0 E‘Y(s’t) 0
i 0 0 0 EX(a-H,t) ]

where the diagonal entries of the matrix in (6.168) correspond to the covariances of
the elements of v. We are therefore proposing exploiting structure in EX(,,e)’ and in
Z #(s41,) OF their corresponding inverses to compute (6.167).

Specifically we expect that we should either be be able to neglect correlations be-
tween elements in the state outside of a neighborhood of some characteristic radius or
neglect interactions between elements outside of a neighborhood of some characteris-
tic radius when computing the Gibbs distribution for the equivalent Markov Random
Field. The first method roughly amounts to modeling the process as a moving aver-
age, and the latter models the system as an auto-regressive system. Outside of this
characteristic radius we will assume that the elements of the estimation error covari-
ance, or inverse estimation error covariance are precisely zero. We will choose an
example where the largest singular value of the error in approximating the estimation
error covariance is small compared to the smallest singular value of the estimation
error covariance. If we are using the inverse estimation error covariance to model the
process then we wish that the largest singular value of the error in approximating the
inverse estimation error covariance is small compared to the smallest singular value of
the inverse estimation error covariance. In addition since the number of interprocessor
communication steps is small, we can expect to accumulate only a limited amount of
modeling errors while gaining a computational advantage in combining the estimates
of neighboring boundaries.

In the following example we are considering a NNM of the form (6.1) where
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Figure 6-12: grayscale image of 56 x 56 estimation error covariance of state at p = 4

N =S =F =W = B =1 with observations given by

y(i’j) = T('L,]) + v(iaj) (6169)

where v(Z, j) has unit covariance. The system which we are filtering is given by (6.5)
where ¢ = co. Here we aim to find for this example when and how to model the
process around the boundary of a two dimensional region as a one-dimensional pro-
cess. In Figures 6-12 and 6-13 we provide the estimation error covariance for X(p)
for p = 4 based on data from p = 0 to p = 4. The matrix is banded but the bands
are relatively large compared to the size of the matrix and suggests few opportuni-
ties for meaningful approximation. The inverse estimation error covariance for the
same vector is provided in Figures 6-14 and 6-15. This matrix is full and presents
few opportunities for meaningful approximation. For p = 11 we are able to take
advantage of sparsity in the estimation error covariance and inverse estimation error
covariance matrix. Figure 6-16 and 6-17 show the estimation error covariance for the
state X(11) while Figure 6-18 and 6-19 show the inverse estimation error covariance
for the same.  Both matrices demonstrate a five band structure. In between these

bands the elements are small. It is these small elements which we will approximate
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Figure 6-17: 168 x 168 estimation error covariance of state at p = 11 showing the
entries greater than .01

Figure 6-18: grayscale image of 168 x 168 inverse estimation error covariance of state
at p =11
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\ 1 i

Figure 6-19: 168 x 168 inverse estimation error covariance of state at p = 11 showing
the entries greater than .01

by zero. The bands in the estimation error covariance are narrower than those of
the inverse estimation error covariance and suggest that we may take advantage of a
moving average representation of the process. Here we examine approximating the
inverse estimation error covariance in anticipation of using further the tools involving
STPBVDS developed in earlier chapters.

Toward this end, we chose to set all values whose magnitude is less than .01 to 0.
To support this approximation we note that for all p > 1 the smallest singular value

of the inverse estimation error covariance Y x(,) is equal to 1.
2(Tx(p) =1 (6.170)

Let us denote the difference between the actual inverse estimation error covariance and
the approximated inverse estimation error covariance by éX x(,) where Xy (,) +0Xx(,)

is the approximated inverse estimation error covariance. Figure 6-20 shows that for
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Figure 6-20: Maximum singular value plot for the difference between inverse estima-
tion error covariance for the state at different radii and the approximation to that
inverse estimation error covariance based on setting values smaller than .01 to 0. Plot
starts at p = 2.

p > 11 that

B—'(égx(p)) < .03 (6171)

where

max(éEX(p))ij S .01 (6172)
J

With this approximation the computation for the union of two boundaries becomes
greatly simplified. We will examine efficient methods to compute the estimate and es-
timation error covariance HT (S +6T)H where © = R~! is the inverse error covariance
of the observations in (6.168) and where ¥ + éX = (R + é R)~! is the approximation
to the corresponding inverse estimation error covariance.

We will now outline how to combine the boundaries of two neighboring regions.
First we will reorder the elements of the vector X(p) so that large elements of

Y x(p) are near the main diagonal. This amounts to choosing a different ordering
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Figure 6-21: The integer function © as a function of 7 and j for p = 3. Here the
elements are ordered so that we may perform our processing moving outward from
the center of one leg and eventually terminate moving inward on the opposite leg of
the square boundary.

function ©(i,7,p). An example of the new ordering function is shown in Figure 6-21.
Basically the elements are chosen such that we progress both to the left and to the
right (outward) from the first element at the top in Figure 6-22 while accounting
for elements at p, and p — 1 together. As a result elements which are near each
other spatially remain near each other in the vector X(p) while elements in the
inverse estimation error covariance matrix decay away from the main diagonal. With
this ordering only 43 diagonals to the left and to the right of the main diagonal
in the inverse estimation error covariance matrices have elements with magnitudes
greater than .01. The bandwidth of the matrix remains constant as the size of the
inverse error covariance matrix grows with the radius of the region as 16(p + %) X
16(p + %). In order to model this as a (causal) STPBVDS, the approximation to the

inverse estimation error covariance can be partitioned into 44 x 44 blocks, so that

the matrix is block tridiagonal. Before we consider a recursive method of solving
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Figure 6-22: The inverse estimation error covariance at p = 11 after the elements
have been reordered. Large elements of the matrix have been moved to locations
near the main diagonal.

this suboptimal problem, we will note that there are many algorithms which operate
on sparse matrices. If we were to re-order the elements of both boundary estimates
we could again arrive at a inverse covariance matrix for the combined estimate which
is block tridiagonal with a bandwidth of approximately 176 elements. Cyclic block
reduction can be performed on this system[30][31][9], Gauss-Seidel or any of a number
of other iterative methods can be used on this system[30],[31],[9]. In particular for
this example if we were to perform cyclic block reduction to compute the estimate of

the combined region, it would require

O[(t + log, (167 — 8))(44)?] (6.173)

flops where the number 44 represents the size of the blocks in the inverse covariance.
The scalar r represents the radius of the smallest subregion and 2t represents the
number of levels of interprocessor communication. The computation time grows with
the logarithm of the size of the state, and as the square of the bandwidth of the inverse
estimation error covariance. Cyclic block reduction can be performed in parallel and

is suitable for implementation on a hypercube, and thus has the advantage of easily
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mapping onto the architecture on which the remainder of the algorithm is designed
to run.

Gauss Seidel has very good performance with finite bandwidth diagonally domi-
nant positive definite matrices. The amount of computation required to compute one
iteration is approximately twice the number of nonzero elements in HT(Z + §Z)H
in the expression z' = [HT(Z + §Z)H] ' [HT(Z + 6X)y. Since the bandwidth of the
system remains constant for larger and larger regions the complexity of the computa-
tion increases linearly with the size of the matrices. Furthermore when the matrices
are diagonally dominant, the rate of convergence is independent of the size of the
matrix. As a result the number of iterations required to compute the estimate is a
also independent of the size of the matrix.

Returning to the issue of modeling the process of the boundary by a STPBVDS,
we note the two salient features in Figure 6-22 are the bowtie regions which represent
the corners of the square region and the fact that the matrix is nearly diagonal. There
are only two bowties because in our ordering we reach two corners simultaneously.
The bowties exist because at the corners more points fit into a neighborhood of a
given size. The diagonal nature of the matrix suggests the opportunity to model the
system as a STPBVDS.

The Cholesky factorization can be taken for the approximation to the inverse
estimation error covariance yielding a block bidiagonal matrix, whose blocks are the
parameters of the system which models the process around the boundary. If we use
the variable 1 to count the diagonal blocks of the approximated inverse estimation
error covariance matrix, then the system around the boundary has the following

representation.

Epyi1 X,( + 1) = A,y X,(8) + Bouly(4) (6.174)

where X,(3) € R** is the state in the 9** partition of X(p) If we account for the fact
that the bowtie regions are significantly wider than the remaining regions we could
in fact model the process as a STPBVDS with ¢ varying dimension yielding greater

computational efliciencies. We will not pursue modeling this system with variable
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dimensional systems.
Computing the estimate of the common boundary to two neighboring regions is a

matter of augmenting the state in one boundary with the state of the other boundary

Eat)u41 0 - Xy (¥ +1)
0 Eripwr | | Keorn(® +1)
_ | Ao 0 X(s)(¥) N B(st) 0 Uty (%)
0 A(a+1,t),¢ ] X(s+1,t)(‘/’) 0 B(s+1,t),¢ U(a+1,:)(¢’)

(6.175)
where we have replaced the index p with (s,?) since the squares have the same di-
mensions and we need to distinguish between the boundaries of the two regions. The
remaining dynamic constraints which are shown in Figure 6-11 can be written in two
forms. Note that the nearest neighbor model is a local model which constrains the
z(i,7) a distance of two apart. Since the state X(,)(¢) in our example contains 44
of the z(3,j), all near each other, most of the dynamic constrains will not connect
the state for different values of ). Therefore the first form which accounts for most

of the dynamic constraints can be written in the form

0 = Hiut)pX(0,6)(¥) + His1,6),9 X (s41.6)(¥) + Vigs,s+13,6)(¥) (6.176)

In our example this will account for 36 dynamic constraints. The remaining dynamic
constraints will link the small number of (7, ) which lie on the edge of the region
corresponding to X (%) and X(¢ + 1) together. These dynamic constraints can be

written in the form

Xy +1)
X+1,0) (¥ + 1)

X(o0)(¥)

X(s+1.t)(‘/’)
(6.177)

0= [ A(a,t),e A(s+1,t),e ] Asira Atit)a }

which accounts for 8 dynamic constraints. The result is that (6.174), (6.175),
and (6.176) comprise a STPBVDS which can be filtered and smoothed via common
means to compute the required estimates. However to further combine neighboring

boundaries we need not compute the entire process, but arrive at a model for the
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Figure 6-23: Filtering outward along a common boundary

process around the two boundaries which will be used to combine with similar mod-
els for neighboring boundaries. We accomplish this by filtering outward only along
the boundary common to both regions. We therefore are performing causal filtering
from 9 = 0 to some 3, when the corner is reached. See Figure 6-23. The inverse
covariance for the remaining process can be recomputed and the Cholesky factoriza-
tion computed again to arrive at a new model for the boundary which surrounds the
two regions. The process for combining the next two neighboring regions can then

proceed after the inverse estimation error covariance is re-approximated.

6.4.2 Suboptimal local filtering

Another opportunity for computational gains through suboptimal estimation arises
in the local filtering step. By approximating the inverse covariance as in Section 6.3.1
for each value of p we may take advantage of the smoothing and filtering theory for
STPBVDS’s to perform estimation spiraling outward from the center to produce sub-
optimal estimates approximating optimal estimates based on data within a specified
radius.

Here we will consider the case where we make approximation to the inverse covari-

ance after each measurement update step. From Section 6.1 and 4.2 the measurements
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have the form

X 0 I X
(p) X(p+ 1) (p)
0 =| -E,.1 A4, +| B,U, (6.178)
X(p)
Y(p+1) c, 0 Vip+1)

where the inverse estimation error covariance of the estimate at p + 1 is given by
Sx(o+1) = En1(A:Z%(,)Ap + B,BY)Eppy + C1C, (6.179)

The issue here is not to simplify the off-line computations but just the on-line compu-
tations. The idea here is to use the approximated inverse estimation error covariance
(where all elements have magnitude greater than .01) in place of Xx(, and to ap-

proximate the result. The equation may then be written as
zA:Jl’(p+1) = TrunC(EZ;-I(AP}j}l(p)Ap + BPBZ)Ep+1 + CZ‘C,,) (6.180)

where Trunc returns zero for all values smaller than a certain tolerance (.01).

The next question is how would a filter such as this perform. Figure 6-24 shows a
maximum singular value plot for the difference between the optimal inverse estima-
tion error covariance and the inverse of the suboptimal estimation error covariance.

Specifically, consider the optimal ML estimate, given by
¢ =(HTSH)'HTSy (6.181)

where

Y, = HTSH (6.182)

is the inverse estimation error covariance for #. The suboptimal estimate based on

the same observation, is given by.

' = (HTS + 6SH) *HT(Z + 6Z)y (6.183)
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Figure 6-24: Maximum singular value plot for the difference between the optimal
inverse estimation error covariance of the optimal filter and the actual inverse esti-
mation error covariance for the suboptimal filter. The minimum singular value for
the optimal inverse estimation error covariance is equal to 1.

The inverse estimation error covariance of the suboptimal estimate z' is not given by

HT(T + 6Z)H but by
o= HU(S + 6S)H{HT (S + 265 + 62(Z) " Y6T)H}HT(Z + 6T)H (6.184)

Figure (6-25) shows a maximum singular value plot for the difference between the
computed (approximated) inverse estimation error covariance and the optimal inverse
estimation error covariance.

With this approximation there are many ways of computing the estimates. Since
the inverse covariance is banded we may use Cholesky factorization, or perhaps cyclic
block reduction to solve for estimates. Furthermore we could use the results from
the Cholesky decomposition to model the process around the boundary as a one

dimensional process. The on-line computations turn into a filter operating around
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Figure 6-25: Maximum singular value plot of approximated inverse estimation error
covariance to the optimal inverse estimation error covariance

the boundary of the region. From Section 6.3.1, the process for X(p) is given by

Epur1Xp(¥ +1) = A, X, (¥) + BoyUp(¥) (6.185)
A small number of the dynamic constraints represented by E,,;, and A, are given by

Xo(¥ +1) Xo(¥)
0= Lye(d) Lpsre H Lpa(¥) Lot +W(¥)
Qe | B ) Loral®) | .

(6.186)
where the partitioning of X'(p+ 1) compared to the partitioning of X(p) with respect
to the value ¢ is shown in Figure 6-26. The remaining dynamic constraints and the

observations have the form

, () .
p+1(¥) = Hppi () + Voqa(¥) (6.187)
*’Yo+1('¢’)



Figure 6-26: Partitioning the state X(p + 1) so that it agrees with the partitioning
of X(p)
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by augmenting the state X,(¢) with X,.;(¢) the equations given by (6.185), (6.186),
and (6.187) represent a large STPBVDS for which filtering would lead to on-line

computational savings.

6.5 Complexity

Here we want to examine the complexity of the suboptiinal methods discussed in
the previous section. Here we are considering getting complexity estimates of various
parts of the algorithm when different methods are applied. Under the assumption that
the state is estimable with a well defined inverse error covariance, first we will consider
the computation for the interprocessor communication , then we will consider the
complexity for the filtering in the local processing step. We note that the complexity
going up or down the tree are essentially the same, and as a result it is not necessary
to explicitely compute the complexity for propagating smoothed estimates to the
individual points in order to understand the functional relationships between the
various variables and the complexity of the problem. In addition, the local complexity
filtering outward is the same as obtained for the backward sweep of the Rauch-Tung-
Striebel algorithm. We will not compute the complexity for this part of the algorithm
either.

Interprocessor Communication

Here we will compare three methods for combining the estimates of the boundaries of
neighboring square regions together to form estimates of the boundaries of rectangular
regions. Here we will consider the complexity for one time step, and later we will sume
the computation over all time steps.

Gauss-Seidel

Off-line

The computation involved to set up the Gauss-Seidel Computations is essentially to

compute the inverse covariance. This will require approximately
S % (16)32%(r + 1)3 (6.188)
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for combining squares and

3 % (16)°2%(r 4 1)3 (6.189)

for combining rectangles.

On-line

For diagonally dominant matrices, the rate of convergence can be bounded indepen-
dent of the size of the matrix. As a result, the amount of iterations necessary to
compute the estimate is independent of the size of the matrix. This will require

approximately

C2(16)(88){2t(r + 1) — 1} (6.190)

computations for combining squares together to form rectangles and

C2(24)(88){24(r + 1) — 1} (6.191)

flops for combining rectangles together to form squares. C here represents the number
of iterations. Note that the complexity grows geometrically with ¢ because the size
of the state grows geometrically with ¢.

Cyclic Block Reduction

Cyclic block reduction has a structure which fits very well on a a hypercube. We will

assume that this algorithm is implemented in parallel.

Off-line

The off-line computation for applying cyclic block reduction is given by

5 4 (16)%2%(r + 1)
+3 % (16)32%(r + 1)? (6.192)
(16)(r+4

+K(88)4{t + log, “A22)1

where K is a constant associated with the details of the cyclic block reduction. Re-
gardless the term involving K is dwarfed by the term with 23¢.

On-line
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The on-line computation for applying cyclic block reduction is given by

C(88)3{t + log, L0r+2)y (6.193)

88

where C is a constant associated with the on-line details of the cyclic block reduction.
The on-line computation is growing linearly where the size of the vectors involved in
the computation is growing geometrically.

If we model the process by a STPBVDS we may note that computing the elements

of the model via the Cholesky factorization requires.

(16)2(r + £)((44)% + 3(44)) + 28(167 + 8)(44)T(218,88)Z(98,98) + 6(88)%(96) + 4(88)3]
(6.194)
flops. The on-line computation increases linearly with the bandwidth and the length

of the state and is given approximately by

5(16)2(88)2¢(r + 1) (6.195)
for combining square regions and by

33(24)2(88)2¢(r + 1) (6.196)

for combining rectangular regions

Of these methods Cyclic block reduction has the advantage of being implementable
in parallel and easily mapping into the architecture for which the remainder of the
algorithm is designed to run. Furthermore the online computations increase logarith-

mically instead of polynomially with respect to the size of the state.
Filtering

The filtering step also benefits from sub-optimal techniques.
Gauss-Seidel
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Off-line

Constructing the joint inverse covariance for X(p), and X(p + 1).

approximately

10(16)3p®
flops.
On-line

The on-line computation requires approximately

C2(88)(16)p

flops .

Cyclic Block Reduction

Off-line

Off-line, cyclic block reduction requires approximately

10(16)%p° + K log, 2¢=7)(gg)*

88

flops off-line. For large p this is dominated by the term p3.
On-line

The on-line computation required grows as

C log, {22e=1)}(88)°

Modeling by STPBVDS
Off-line

This requires

(6.197)

(6.198)

(6.199)

(6.200)

The amount of computation required for the filtering step is approximately

16(p — .5)((44)? + 3 = 44) + 36(88)2(16)p

(6.201)

On-line The amount of computation required for the filtering step is approximately
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6(88)(16)p (6.202)

Now that we have estimated the number of computations required for one time
step, we will sum the computations over there respective domains.
Interprocessor Communication
Now the figures for one time step will be summed to compute the computational
complexity over the proper region. Specifically we will sum the interprocessor com-
munication figures fromt =0to ¢t =T
Gauss-Seidel
Off-line
The computation involved to set up the Gauss-Seidel Computations is essentially to

compute the inverse covariance. This will require approximately
3(T—1)_
g- * (16)3(r + %)3[?——7————1—] (6.203)
for combining squares and

3% (16)3(r + %)3[2&_1] (6.204)

7

for combining rectangles.
On-line This will require approximately

C2(16)(88){(r + 1)}[E =1 (6.205)

3

computations over the entire region for combining squares together to form rectangles

and

C2(24)(88){(r + H[E5L)} (6.206)

flops for combining rectangles together to form squares.
Cyclic Block Reduction
Off-line
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The off-line computation for applying cyclic block reduction is given by

(T-1)_
5+ (16)°(r + 3’ (=]

+3 % (16)%2%(r + $)° (6.207)
+K(88){[.5T? — .5T] + [T — 1]log, “25*2)}

As before, for large T, the term involving K is dwarfed by the term with 237.

On-line

The on-line computation for applying cyclic block reduction is given by

C(88)3{[.5T? — 5T] + [T — 1]log, 12¢+2)y (6.208)

The on-line computation is growing quadratically while the size of the vectors involved
in the computation is growing geometrically. |

Modeling the process by a STPBVDS

Off-line

If we model the process by a STPBVDS we may note that computing the elements

of the model via the Cholesky factorization requires.

(16) 2572 (r + 1)((44)% + 3(44)) + 252 (16r + 8)(44)~[Z(218, 88) + (98, 98)]
+6(88)%(96) + 4(88)*
(6.209)
flops. The function Z is define in Section 2.1.
On-line
The on-line computation increases linearly with the bandwidth and the length of the

state and is given approximately by

5(16)2(88) 22 (r 4+ 1 (6.210)
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for combining square regions and by

92(T—1)

33(24)2(88) 221 (r 4 1y (6.211)

for combining rectangular regions
Of these methods Cyclic block reduction has the advantage of being implementable
in parallel and easily mapping into the architecture for which the remainder of the
algorithm is designed to run.
Filtering
The filtering step also benefits from sub-optimal techniques.
Gauss-Seidel
Off-line
Constructing the joint inverse covariance for X(p), and X(p + 1). This requires

approximately

10(16)3[.25¢% + 573 + .25r% — 1] (6.212)

flops.
On-line

The on-line computation requires approximately

2(88)(16)[.5r2 + .57 — 1] (6.213)

flops per iteration over the entire sub-region
Cyclic Block Reduction
Off-line

Off-line, cyclic block reduction requires approximately

10(16)3[.257% + .57® 4+ .257% — 1]
+K Y p=2 logz{fﬁ(—p“_%_)}(ggﬁ

88

(6.214)

flops off-line. For large r this is dominated by the term r*

On-line
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The on-line computation required grows as

C Ty log, { 22620 1(88)* < Crllog, (r — §)] (6:215)

Modeling by STPBVDS
Off-line

The amount of computation required for the filtering step is approximately

16(.57% — r)((44)2 + 3 x 44) + 36(88)2(16)[r? — 7] (6.216)

On-line

The amount of computation required for the filtering step is approxima,teiy

6(16)(88)(r% —r) (6.217)

Cyclic block reduction is clearly the preferred method of performing suboptimal
computation with O(r log, r) growth for local filtering, and T'? growth in the compu-

tations involving the interprocessor communication step.
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Chapter 7

Conclusion

Along the road to developing a general multidimensional smoothing algorithm. several
things were accomplished.

In Chapter 2 we established the general framework for Maximum Likelihood (ML)
estimation to be applied for the remainder of this thesis. This general framework al-
lows for estimation in statistical environments with large dynamic range. Specifically
ML estimates are constructed for vectors which are not completely estimable in the
presence of perfect observations. In this situation covariance matrices and inverse
covariance matrices are not well-defined and as a result we use projection matrices
to specify a covariance matrix for the part of the vector which is in fact estimable.
The computations involved in finding the ML estimate are in general not well-posed
and pseudo-inverses are required. The Moore-Penrose pseudo-inverse guarantees that
we compute minimum norm ML estimates. We note that these computations can be
formulated in a square root context and noted the complexity of the ML estimation
computations for later reference.

In Chapter 3 Two Point Boundary Value Descriptor Systems (TPBVDS’s) are
discussed. These systems differ from causal systems in two ways. The first is that
the boundary conditions at the two endpoints are coupled. Secondly the equations
are defined implicitly resulting in no natural direction of recursion. In particular, the
presence of possibly singular matrices multiplying both z(k) and z(k + 1) make issues

of filtering and smoothing more complicated than those associated with causal sys-
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tems. We also showed the utility of the class of Separable Two Point Boundary Value
Descriptor Systems (STPBVDS’s) because these systems are Markov, and are diag-
onalizable into forward propagating, and backward propagating subsystems. These
systems are not restricted to have constant coeflicients, nor are they restricted to have
a state with constant dimension. Since all TPBVDS can be described by STPBVDS
by appending the state z(—k) to z(k), algorithms designed for STPBVDS’s are also
applicable to TPBVDS’s.

In Chapter 4 useful lemmas are developed which encapsulate the basic require-
ments for recursive estimation and smoothing. A filter is then presented which re-
cursively computes filtered ML estimates for STPBVDS’s, generalizing the Kalman
filter. The filter does not require that the model be well-posed, and perfect measure-
ments can be handled. This recursive filter in addition to propagating the estimation
error covariance and the ML estimate also propagates a projection matrix which keeps
track of the estimable subspace. The Mayne-Fraser two filter algorithm and the The
Rauch-Tung-Striebel algorithm are adapted for smoothing STPBVDS’s. The compu-
tational complexities of these algorithms are computed for different statistical envi-
ronments. A square root version of the forward Maximum Likelihood filter (FMLF)
is constructed to demonstrate that all of the algorithms can be easily formulated in
the square root context yielding greater numerical accuracy.

In Chapter 5 new parallel smoothing algorithms are developed for one dimen-
sional processes. The algorithms presented all parse the data into segments on each
of which one processor is assigned to operate. Local processing is performed first
in which each processor produces a sufficient statistic representing the summary of
information about the process at the boundary based on local observations. An in-
terprocessor communication step follows where sufficient statistics are passed forward
and backward through the processors until all processor have sufficient information to
compute the smoothed estimafe of the process locally at each of the interior points. Fi-
nally the smoothed estimates are computed locally and in parallel. Three algorithms
assume a linear array of processor with nearest neighbor communication between

them. One algorithm is based on the assumption that the processors are arranged
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on a hyper-cube. The complexity of the problem grows with the logarithm of the
number of data points.

In Section 5.4 a parallel smoothing algorithm is constructed so that from the per-
spective of each processor, the computation of the neighbors are known and certain
information is expected in order to simplify the computation of the smoothed esti-
mate. Each processor essentially computes the ML estimate of the local process given
that the observations of the process outside of its local region is exactly zero. In other
words the zero state response of the optimal smoother is computed. The zero input
response is used to compute, pass, and update boundary information from processor
to processor. Finally the ZIR is used to update interior points in each interval in
parallel.

In Section 5.3 a parallel smoothing algorithm is constructed so that locally smoothed
estimates are produced in parallel. Forward and backward ML filters which operate on
the boundaries bring global forward and backward filtered estimates of local bound-
aries to each processor. This information is used to update each processor’s locally
smoothed estimates to produce globally smoothed estimates. It was concluded that
this was not the proper way to perform two-dimensional smoothing because the state
at each point was augmented with the boundary state. In two dimensional systems,
the boundary state is large and would tremendously increase the computational com-
plexity of the algorithm.

In Section 5.5 a parallel smoothing algorithm is presented which performs optimal
ML filtering from the center of each local sub-region outward to the boundaries The
system is reduced to a sampled STPBVDS made of the dynamic constraints which
link the local regions together and where the results of the local computations play the
role of observations. The Mayne-Fraser algorithm developed in Chapter 4 is sufficient
to smooth the sampled process at the boundaries, and finally the local processor can
perform smoothing from their local boundaries back to the center of each sub-region
using the Rauch-Tung-Striebel algorithm.

In Section 5.6 it is noted that the interprocessor communication step which is used

in the algorithm in Section 5.5 is a non-parallel implementation of the Mayne Fraser
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algorithm operating on a sampled system. This interprocessor communication com-
putation can itself be performed in parallel. Carrying this parallelization to repeated
levels yields an algorithm where the computations are arranged on a binary tree and
the processors and their communication links are arranged on a hyper-cube. This
algorithm shows the most promise for adaptation for recursive and parallel multi-
dimensional estimation. This algorithm also computes smoothed estimates in in an
amount of time proportional to the logarithm of the number of data points, as com-
pared to the polynomial time required for the other algorithms in Chapter 5.

Chapter 6 considers the problem of smoothing two dimensional systems. The re-
gion is divided into squares of equal size. The initial local processing involves filtering
from the center of each region to the local boundary. Regions are grouped two at a
time to combine local boundary estimates into estimates of larger and larger bound-
aries until the boundary of the entire region is computed. The smoothed estimate
at boundary of the entire region is combined with the estimates of the two smaller
boundaries from which the larger boundary was constructed. Smoothed estimates
are constructed from these smaller boundaries and the process is continued until
smoothed estimates are obtained for the boundaries of each individual sub-region.
Local smoothing is carried out from the local boundary to the center using the Rauch
-Tung-Striebel algorithm. Like the algorithm in Section 5.6 the computation can be
arranged on a binary tree and the processors and their communication links can be
arranged on a hyper-cube. During the interprocessor communication the size of the
state grows geometrically. Although the number of times processors communicate is
proportional to the logarithm of the number of processors, the computation on the
larger boundaries dominate the complexity. As a result it is necessary to find clever
sub-optimal techniques to deal with the boundary computations.

Section 6.4 discusses avenues for sub-optimal computation of the filter boundaries
both in the interprocessor communication step and in the local processing steps by
exploiting structure, and sparsity in the error covariance and inverse error covariance
of the process. Through an example we show that indeed both the error covariance

and the inverse error covariance both may exhibit structure allowing us to model the
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process around the boundary by a moving average process or by a STPBVDS. Also
more traditional methods of exploiting the sparsity such as performing cyclic block
reduction on the ML estimation equations or performing Gauss-Seidel iterations allow
the amount of computation associated with the processing of the large matrices in the
interprocessor communication to be greatly reduced allowing for efficient computation

of estimates of large two-dimensional regions.

7.1 Future Work

There are many avenues or research which remain.

While much is known about the system theory regarding STPBVDS’s the theory
regarding STPBVDS’s with time varying coeflicients is less plentiful, particularly in
the arena of systems whose state dimension varies as a function of time.

Work needs to be done in the finite support estimation problem demonstrating
how the statistics and characteristics of the process may lead to reduced computation
times and faster algorithms. By eliminating the need to propagate information by
all of the processors the interprocessor communication time can be reduced and a
tradeoff between smoother performance and computation time will become apparent.

The parallel algorithms are applicable to a variety of statistical environments in-
cluding the deterministic environment. There is therefore the possibility to construct
general algorithms for the parallel implementation of digital filters. The work in this
thesis already represents the parallelization of an acausal filter which is the solution
to the optimal smoothing problem. In essence, if we know the problem for which an
acausal filter is the optimal estimator, all the work has been done to implement this
in parallel. Furthermore the possibility exists to construct parallel and acausal state
observers and parallel implementation of general digital filters i.e., filters which would
not arise in the smoothing context.

The structure of the parallel smoothing algorithms is quite similar to the algo-
rithms for multi-resolution smoothing algorithms described in [26]. This suggests a

strong connection between reciprocal processes and tree processes. In fact, the tree
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processes as a result are far more general than was originally assumed, and include
higher dimensional processes as a result. Higher dimensional processes modeled on
trees will have the same issues as discussed in Chapter 6, namely that the size of the
state is not constant, and there are several associated computational costs associated
with the states whose dimension varies geometrically. There may be a way of incor-
porating wavelets into the description of reciprocal processes and constructing faster
algorithms as a result.

Although Markovianity was used to derive the parallel smoothing algorithms in
Sections 5.6 and Chapter 6, we note that it was not necessary by the fact that
certain dynamic constraints can be added which do not spoil the the structure of
the algorithm. It would be interesting to find just how general a set of dynamic
constraints will allow the methods used in Section 5.6 compute smoothed estimates.

There is no reason why the multidimensional smoothing algorithm (particularly
when applied to the one dimensional processes in in Section 5.6) cannot compute
Bayesian estimates. While using ML estimation reduces the complexity of the algo-
rithm both computationally, and intellectually, prior information can and should be
incorporated, to eliminate the need for the projection matrices due to lack of estima-
bility of the state based on local data. This may result in replacing the complexity
due to carrying along projection matrices with that involving dealing with correlated
estimates. However pseudo-inverses would be eliminated resulting in computational
savings.

x

250




Bibliography

[1]

2]

(5]

[7]

Adams, Milton Bernard Jr. , Linear Estimation of Boundary Value Stochastic
Processes, MIT-Laboratory for information and Decision Systems, LIDS-TH-
1295

Adams, Milton Bernard, Alan S. Willsky, Bernard C. Levy, Linear Estimation of
Boundary Value Problems-Part II: 1-D Smoothing Problems, IEEE Transactions
on Automatic Control, Vol AC-29, No 9, Sept 1984

Adams, Milton Bernard, Alan S. Willsky, Bernard C. Levy, Linear Estimation of
Boundary Value Problems-Part I: 1-D Smoothing Problems, IEEE Transactions
on Automatic Control, Vol AC-29, No 9, Sept 1984

Kayalar, Selahattin, Howard L.Weinert, Oblique Projections: Formulas, Algo-
rithms and Error Bounds, Math. Control Signals and Systems (1989)2: 33-45

Bello, Martin G., Alan S. Willsky, Bernard C. Levy, and David A. Castanon,
Smoothing Error Dynamics and Their Use in the Solution of Smoothing and
Mapping Problems,JEEE Transactions on Information Theory, Vol IT-32, No.4,
July 1986

Bierman, Gerald J.,Factorization Methods for Discrete Sequential Estimation ,

Mathematics in Science and Engineering Series, Vol 128, Academic Press, 1977

Levy, Bernard C., David A. Castanon, George C. Verghese, and Alan S. Willsky,
A Scattering Framework for Decentralized Estimation Problems, Automatica Vol

19, No 4, pp373-384, 1983

251




-——- - [8] Sebek, Michael, Mauro Bisiacco,and Ettore Fornasini Controllability and Re: -~ -
constructability Conditions for 2D Systems IEEE Transactions on Automatic

Control, Vol AC-33, No.5 pp496-499, May 1988

[9] Kuo,Chung-Chieh, Discretization and Solution of Elliptic PDEs: A Transform
Domain Approach, Center for Intelligent Control Systems, MIT CICS-TH-11
Aug 1987 (domain dec)?

[10] Jain, A. K., and E. Angel Image Restoration, Modelling, and Reduction of Di-
mensionality IEEE Trans Comput. No 5, C-23, pp470-476, May 1974

[11] Speyer J.L., Computation and Transmission Requirements for a Decentralized
Linear-Quadratic-Gaussian Control Problem, IEEE Transactions on Automatic

Control, Vol AC-24, pp266, 1979

[12] Willsky, Alan S., Martin G. Bello, David A. Castanon, Bernard C. Levy and
George C. Verghese, Combining and Updating of Local Estimates and Regional
Maps along One-Dimensional Tracks, IEEE Transactions on Automatic Control,

Vol AC-27, No.4, pp799-813, August 1982

[13] Hashemipour, Hamid R., Sumit Roy, and Alan J. Laub, Decentralized Structures
for Parallel Kalman Filtering, IEEE Transactions on Automatic Control, Vol
AC-33, No.1, January 1988

[14] Morf, M., J.R. Dobbins, B. Freidlander, and T. Kailath, Square Root Algorithms
for Parallel Processing in Optimal Estimation, Automatica, Vol-15, pp. 299-306,
1979

[15] Tewfik, A.H., B.C. Levy, and A.S. Willsky, 4 New Distributed Smoothing Algo-
rithm, MIT Laboratory for Information and Decision Systems, (LIDS-P- 1501),
Aug 1988

[16] Tewfik, Ahmed.H., Parallel Smoothing for Time-Invariant Two-Point Boundary

Value Systems Proceedings of the 27t Conference on Decision and Control

252



[17]
(18]

[19]

[20]

21]

[22]

[23]

24]

[25]

[26]

[27]

Catlin, Donald E.,Estimation of random States in General Linear Models, IEEE

Transactions on automatic control, Vol. 36, No.2, February 1991

Campbell, S.L., and C.D. Meyer, Generalized Inverses of Linear Transforma-

tions.London: Pitman, 1979

Ljung Lennart, and Thomas Kailath , A Unified Approach to Smoothing Formu-
las, Automatica, Vol. 12, pp147-157, 1976

Gelb, Arthur ed., Technical Staff of Analytic Sciences Corporation Applied Op-
timal Estimation MIT Press, Cambridge, 1974

Nikoukhah, Ramine A Deterministic and Stochastic Theory for Two-point
Boundary Value Descriptor Systems, MIT-Laboratory for information and Deci-

sion Systems, LIDS-TH-1820

Nikoukhah, R., A.S. Willsky, and B.C. Levy, Kalman Filtering and Riccati Equa-
tions for Descriptor Systems Proceedings of the 29t* IEEE Conference on Deci-
sion and Control, Dec 1990

Nikoukhah, Ramine, Milton B. Adams, Adam S. Willsky, and Bernard C. Levy,
FEstimation for Boundary Value Descriptor Systems Circuits Systems Signals Pro-

cess, Vol 8, No 1, 1989

Verghese,George, C.,T. Kailath, A Further note on Backward Markovian Models
IEEE IT-25 No. 1, Jan 1979

Chou, K.C., A Stochastic Modeling Approach Multi-Scale Signal Processing Ph.D
Thesis, MIT, Jun 1991

Fogel, Eli, and Huang, Y.F., Reduced order state estimator for linear systems

with partially noise corrupted measurement, IEEE Transactions on Automatic

Control, Vol. AC-25, No. 5, Oct 1980

253



(28] Levy, B.C., M.B. Adams, A.S. Willsky, Solution and Linear Estimation of 2-D
Nearest neighbor Models Proceedings of the IEEE Vol.78, No. 4, April 1990

[29] Levy, Bernard C., David A. Castanon, George C. Verghese, and Alan S. Willsky,

A Scattering Framework for Decentralized Estimation Problems, Automatica Vol

19, No 4, pp373-384, 1983

[30] Bersekas, Dimitri P., John N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Prentice Hall, 1989

[31] Golub, Gene Howard, Charles F. Van Loan, em Matrix Computations Johns
Hopkins University Press, 1989

[32] Faiman, F.W., and L. Luk, On reducing the order of Kalman Filters for discrete
time Stochastic Systems having singular measurement noise, IEEE Transactions

on Automatic Control, Vol AC-30 No 11, Nov 1985

[33] Paige, C.C.,Computer Solution and Perturbation Analysis of Generalized Least
Squares Problems, Math. Comp. #33 pp 171-184

(34] Wall, Joseph, A.S. Willsky, N.R. Sandell, On the fized Interval Smoothing Prob-
lem, Stochastics, Vol 5 ,No. 1,ppl-41, Jan 1981

[35]

[36] Weinert Howard L., and Uday B. Desai, On Complementary Models and Fized
Interval Smoothing IEEE TAC-26, No. 4, Aug 1981

[37] Lainiotis, Dimitrius G.,Joint Detection , Estimation and System Identification

Information and Control 19 pp75-92, 1971

254



