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ABSTRACT

One suboptimal control algorithm for systems with unknown dynamics 1is
the Multiple Model Adaptive Control algorithm (MMAC). Due to the poten-
tially wide applicability of this adaptive control algorithm, the proper-
ties of this controller need to be understood. This thesis is an exten-
sion of previous research into the behavior of deterministic MMAC systems.
The investigation undertaken looks at the properties of limited memory,
setpoint and stochastic MMAC systems.

The accuracy of approximations developed previously for deterministic
hyperbolic MMAC systems is checked, and a modification to improve the
accuracy is implemented. A similar approximation is derived for the Timited
memory and setpoint MMAC systems. The approximations are qualitatively
accurate, except in cases where the assumed switch-1ike behavior in the
probabilities did not exist. A modification ensuring the switch-like be-
havior, using a maximum 1likelihood control, resulted in an accurate pre-
diction. The need for a stronger stability condition for the setpoint
control MMAC is demonstrated.

The analysis of the stochastic MMAC system in this thesis involves
two techniques. A Random Input Describing Function (RIDF) approximation
is derived for the MMAC system, and Monte Carlo simulations are used to
check its accuracy. The accuracy of the RIDF in predicting the first two
moments of the states is good for most cases. A modification is suggested
which should improve the qualitative and quantitative accuracy of the
RIDF. An approximation for the probability density of the MMAC proba-
bility indicates that the density accumulates at zero and one for a large
class of MMAC systems, i.e., the control uses one model or another, with
little use of combinations of the models. The existence of stochastic
hyperbolic stability is conjectured along with other stability conjectures
based on the observed behavior and approximate analysis.

THESIS SUPERVISOR: Alan S. Willsky

TITLE: A Associate Professor, Electrical Enginéering and
: Computer Science
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CHAPTER 1
~ INTRODUCTION

The optimal control problem for systems in which the dynamics are
completely known has been thoroughly studied. The theory is well de-
veloped, and many techniques are available to determine the optimal con-
trol. In the case where the dynamics are incompletely known; the optima]

control problem is unsolved. Since the second case is the usual one in
| control applications, the lack of analytic tools for determining the
optimal control has led to the development of numerous suboptimal de-
signs. ‘

In determining the optimal control for the system with known dy;
namics, the control can usually be determined from calculus of varia-
tions [1], Pontryagin's maximum principle [2], or dynamic programming [3].
In the special case of the linear system, 1inear—quadratic-gaussian
methbdo]ogy can be used to determine the optimal control.

Using dynahic programming to solve for the optimal controi for a
system with unknown dynamics, Willner [4] proposed a suboptimal controller
which is defined in the next section. This algorithm forms the basis

for this investigation.

1.1 Definition of the Multiple Model Adaptive Control

Willner [4] attempted to derive an optimal control for a»c]ass of
systems with unknown dynamics. He limited this class to linear systems

7




expressible in the following form.

x(k+1)

Alw)x(k) + Blw)u(k) + w(k) (1.1)
y(r1) = Clw)x(k+l) + v(ke1) (1.2)
x(k) is the plant state vector of dimension n

X(k) is the observation vector of dimension m

u(k) is the control vector of dimension p

w(k), v(k) are independent zero mean Gaussian random vectors
with covariances W(w), V(w) respectively

A(w), B(w), C(w) are the unknown dynamics

w takes on values in some parameter space 9, i.e., we[0,1].

Using the above formulation, along with the following cost function

(1.3),

W~

J(k) = € x"(3)Q(3)x(3) + u'(3)R(F)ul3) (1.3)

j=k ~

he attempted to derive the optimal control for the case where w is con-

stant, and

we {w} i=1,2,...,N

i.e., the set of possible dynamics is finite. He showed that the optimal
control is extremely complex and could not be implemented practically. A
suboptimal_contro], which was thought to be close to the'optima1, was
investigated for this case, and was shown to be optimal for the last stage
of the dynamic programming solution [4]. This suboptimal control algorithm

is the Multiple Model Adaptive Control (MMAC) algorithm, and is defined

8




as follows.

The plant is assumed linear time invariant and defined by

]

x(k+1)
y(k+1)

Ax(k) + 8u(k) + w(k) (1.4)

Cx(k+1) + v(k+1) (1.5)

o

and the set of models for the possible system dynamics is defined by

x; (k#1) = Acx. (k) + Bou(k) + w, (k) (1.6)

]

Yi(kt1) = Coxi(kel) + v (k+1) | (1.7)

where w(k), v(k), ws (k) and yi(k) are assumed to be stationary. Under
these conditions (1.4) - (1.7), the MMAC algorithm is defined by the fol-

Towing equations and is also shown in Figure 1.1.

Ri(kt1) = AR (K) + Hir, (ke1) (1.8)
!1(k+1) = y(k+1) - € ( (k)-+B u(k)) -~ (1.9)
i=1,2,...,N
Hy = ;63077 (1.10)
- . -1
Sy = [CHV 8 + (A;S;A +W.)™] (1.11)
N A
u(k) = - 121 P1§151(k) - (1.12)
8 = (BiK;By +Ry) By (1.13)
Ki = 9 * AjKiA - AIKGBL(BIK.B. +R.)” 31|<1A1 - (1.14)
| Pi(k)p(r;(k+1)) |
Pi(k+1) = — (1.15)
L P3(K)p(r;(k+1))
j=17
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plr, (k+1)) = ((2m)",) ™% exp(~hr} (1+1)07 e, (k#1)) (1.16)

0; = ¥y + GiSiy (1.17)

This set of equations can be divided accordina to different functions
within the MMAC. Estimates of the plant state based on the different
models are computed using Eq. (1.8) - (1.11). The equations define steady
state Kalman filters based on each modei; The driving and observation
noise covariances for each model are wi and Vi’ respectively. A feed-
back gain for the state estimates 21 based on model i, the state weighting
matrix Q. and control weighting matrix R, is computed using Eq. (1.13) -
(1.14) (linear quadratic optimal contrel). Equations (1.15) -(1;18) are

used to generate a set of probabilities associated with the models.

1.2 Recent Work

One of the first applications of the MMAC algorithm was the NASA
F-8C Digital-Fly-By-Wire Aircraft project [5]. In this application,
the F-8C aircraft was used as a testbed for evaluating digital (adaptive)'
f]ight controls. In this case, data was available for ]inearizations of
the flight dynamics for various flight conditions in the f]ighf regime.
For this application, the models for the MMAC were the linearized flight
dynémics. ' |

It should be noted that in this application, the dynamics of the
~ plant were nonlinear and the models were linearizations of the dynamics
about various points. This does not fall into the formulation assumed
by Willner [4]. The structure of fhe MMAC algorithm leads to a straight-

11




. TURED

- fbkwaﬁd}fmplementatiOn for this c&ée, but no claim can be’ made concern1ng
- the opt1ma11ty of th]S type of app11cat1on even for the 1ast stage of
: the dynam1c programm1ng solution. ‘

This app11cat1on of the MMAC provided a test bed‘for the performance
of the algorithm. For certain sets of models, the a]gbrithm performance
was acceptable, while for others its performance was less than satisfac-
tory; The 0vera1] performance of the algorithm seemed to be linked to
the performénce of the identification, i.e;,'the probabilities.

One of the properties of the MMAC algorithm, demonstrated in the
F-8C app11cat1on, was a switch-like oscillation in the probability. Be-
tween sw1tches, the probability was essentially constant, leading to a
linear control in the interval. Since the probability had a switch-like
oscillation, the resulting control was piecewise linear, with jumps at the
probability switch times. It was proposed that the probabilities be low
pass filtered to smooth the control. This ad hoc modification did
achieve the desired result, without seriously affecting the stabilizing
control. This was just one example of the ad hoc procedures used in the
implementation of the MMAC for this project.

That further analysis of the MMAC algorithm was necessary became
evident with the F-8C application. The effect of the choice of models
on the overall performance of the control system was a major question
that néeded answering. Without this analysis, the control could only be
designed and then tested using Monte Carlo techniques, with ad hoc modi-
fications being suggested to improve the performance. The first steps

taken toward undefstanding the properties of the MMAC algorithm were

12




taken by Greene [6] in his analysis of a simplified MMAC system.

The response exhibited by the MMAC in the F-8C application was
thought to have significant deterministic components, and not due en-
tirely to stochastic effects. It was thought that significant portions
of the MMAC response could be understood using deterministic analysis.
Since the deterministic components needed to be analyzed before work
could be done on the stochastic response, Greene's primary assumption
was that the white noise sources (w(k), v(k)) were zero. The Kalman fil-
ters used in his analysis were designed with assumed nonzero covariances,
but for the simulation and the analysis the sources were "turned off."

Some significant insights into the behavior of the MMAC System‘wgre obtained
in this way.

To simplify the analysis, the equations were further reduced with thev
fo]]owing additional assumptions:

1. The plant is globally linear

2. The desired closed loop equilibrium state is the origin

3. The matrices B, B;, C and C; are identity matrices.

Under the above assumptions, the equations for the two model MMAC analyzed

by Greene are:

x(k+1) = Ax(k) + u(k) + w(k) - (1.18)
y(k+1) = x(k+1) + v(k+1) (1.19)
Xq(k+1) = AR (k) + u(k) + Hyr, (k+1) (1.20)
p(k#1) = y(kt1) - A% (K) = u(k) (1.21)
R, (k+1) = A%,(k) + u(k) + Hyr,(k+1) (1.22)

13




The control

rplkt) = y(ke1) - A8, (K) - u(k) (1.23)

“ulk) = -P(k)GR, (k) - (1-P(K))E,%, (k) (1.24)
{1-Pg) . 1

() = (1- |58 exp(~(k))) (1.25)

alki1) = alk) + ”rl(k+1)”§;1~ - ||r2(k+1)||§51 (1.26)

P0 is the initial probability that model 1 matches the plant

P(k) is the conditional probability that model 1 matches the
plant

B = /|el|/|92| (1,

ratio a(k). The Kalman filter gains ﬂl and EZ are computed using equa-

tions (1.10) - (1.11) assuming the following:

W= W, (1.

=1

V=V, (1.

- =i

where the following is assumed.

R = R, (1.

Using the above formulation Greene was able to demonstrate some of the

properties of the MMAC algorithm.

14

Q= Q'i (1.

27)

In this formulation, the probability is a function of the log likelihood

28)

29)

gains §1 and @2 are computed using equations (1.13) - (1.14),

30)

31)



Motivated by the results fo the F-8C application, Greene, as part
of his work looked at a "worst case" of the probability switching beha-
vior. Figures 1.2 and 1.3 show a typical "worst case" response for é two
state, two model system. This type of response is characterized by large
excursions of the states, peaks, and oscillatory switching of the pro-
bability. For this case, Greene developed an approximation to the time
between switches in the probability and to the size of the states at the

switch times.

1.3 Overview of This Thesis

~ The work in this thesis proceeds in two directions. The first

(Chapter 2) is a direct extension of Greene's work, and the second
(Chapter 3) is an extension of the analysis to the stochastic MMAC system.

In the direct extension, the accuracy of Greene's approximation to
the time between switches is checked for three cases of interest. An
equivalent approximation is derived for the single observation finite
or limited memory MMAC. The accuracy of this approximétion is also checked.
The last section is a derivation of a switch time interval approximation
for the case of a nonzero set point.

In the extension to the stochastic case a random input describing
function (RIDF) 1is computed for the two model MMAC system. This approxi-

mation is compared to Monte Carlo simulation results for various cases.

1.4 Notation
Listed in this section are some definitions used later in this thesis.

15
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1AIF = maxA(A'A)

H@Iﬁ = max()\(l_x))2 (note this is not a true norm)
A(A) = eigenvalues of A

Il = /X%

Ixlly = /?W

|A] = determinant of A
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CHAPTER 2
DETERMINISTIC ANALYSIS

In this chapter, some of Greene's analysis of a "worst case" MMAC
system are reviewed, checked for accuracy, and then extended to two other
formulations of the algorithm. Using this type of analysis, qualitative
results concerning the response of the MMAC can be obtained.

Section 2.1 is essentially a review of Greene's derivation of the
approximation for the time between switches in the probability. This is
included as a reference for the type of approximation derived in Sections
2.2 and 2.3. Also, in checking Greene's approximation it became necessary
to implement a modification to the approximation, and inclusion of Greene's
derivation gives some insight into the effects of this mpdificatjon.

Section 2.2 is a derivation of an approximation to the time between
switches for the single observation 1imited memory MMAC algorithm. In
this algorithm, the MMAC probabilities are based only on the last obser-
vation, y(k), and not on all past observations. This algorithm is an
example of what Greene referred to as the Finite Memory MMAC [6]. The
accuracy of this approximation is checked using simulations of’the system
for three different cases. ;

Section 2.3 is a derivation of an approximation of the time between
switches in the probability for a nonzero set point MMAC. For this case,
the desired equilibrium is no longer the origin, as the possibiTity of
biases in thé control inputs is allowed.

19




In this chapter, the cases used for the comparison of the accuracy
of the approximations are defined in Table 2.1. These three cases cor-
respond to stable, neutrally stable, and unstable MMAC systems. The
stability of the system can be seen in the change in the height of the
peaks of the state in the responses, Figures 2.1, 2.2, and 2.3. The ,
system is stable if the height of the peaks decreases with time, neutrally
stable if the height of the peaks is constant with time, and unstable if
the height of the peaks increases with time. Further insight into these

types of stability can be obtained in Section 2.1.

2.1 A Review of Greene's Switch Time Approximation Derivation

An alternate expression for the MMAC was used in Greene's analysis.
In this a1ternate'form, the state of the MMAC system was taken to be the
plant state augmented by the filter residuals, instead of the filter es-

timates, and the probability;

x(k+1) x(k)
ry(ke1) | = A(P(K)) | ry(k) (2.1)
ry(k+1) ry(k)
A-P(K)G - (1-P(K))G, P(K)G(I-H)  (1-P(k))Gy(L-Hy)
A(P(K)) = A- A AL(I-H) 0
A- A, 0 Ap(L-H))
(2.2)

Using equatibns (2.1) -(2.2) along with equations (1.25) - (1.27), instead

of equations (1.18) - (1.27), simplified the analysis.

20




TABLE 2.1: Deterministic Case Definition

Case 3 3 b M g 9
a 2.0 0. 0.808 0.5 ~ﬁ1.éz 0
b 2.0 0. 0.809 0.5 1.50 0
c 2.0 0 0.800 0.5 1.40 0

21
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One of the advantages of this formulation is that the system is linear
for a fixed value of the probability (P(k)). This allows the use of some
of the insights of linear system theory in the analysis of the properties

of the system. For example, if A(P(k)) is stable, i.e.,
max|A(A(P))| < 1 ¥ Pel0,1]

then the system is stable, [6]. Greene called this type of stability

universal stability.

For the case of interest in this chapter, E(P(k)) is unstable for all

P(k).
max|A(A(P))] > 1 ¥ Pe[0,1]

Greene found certain conditions on é(P(k)) such that it was unstable for
all P(k), but the MMAC system was still stable. The primary assumption
for this type of stability was that each mode of the system is stabilized
for P(k) equalling either 1 or 0 (although some modes may not be sta-
bilized for both 0 and 1).

With this assumption in mind, a new set of state vectors, yl(i) and
¥2(k) were defined. The states gl(k) were unstable for P(k) =0 and the
states Zz(k) Qere unstable for P(k) =1. The matrices A, A1 and Az were
assumed to be diagonal, which allowed the following partition of A(P(k)).

¥q(k+1) AL (P(K)) 0 ¥ (k)

= 5 (2.3)
y,(k+1) Y RCONIIR(

where

25
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[z\lw(k)) 0
0 A(R(K)

is an appfopriately partitioned version of E(P(k)).

Simulations demonstrated a switch-like behavior in the probébiTity
for this MMAC system. The probability P(k) would switch from near zero
to near one and vice versa as the plant states were alternately stabilized
and destabilized.

To characterize this type of behavior, Greene introduced the concept
of hyperbo1ié oéci]]ations, with a corresponding stability Concept. If
the unstable states for P(k) =1 (or 0) increase at a slower rate duking
the time interval where P(k) =0 (or 1), then the system was cé]1ed‘bxggrf

bo]ica]]y;stable. If the rate of decay is equal to the rate of growth,

then the éystem response was neutrally stable hyperbolic oscillations,
otherwise the system was hyperbolically unstable.

Motivated by the simulations, Greene assumed the probability is 1 or
0 in the interval between switches in the probabiTity. 1In actua]ity, the
probability is not 0 or 1, but the assumption that it takes on these
values is not unreasonable, since on these intervals, the values of the
probability are nearly zero or one. Greene developed an approximation to
the time betweeh switcheé in the probability and to the norm of the state
vectors y, (k) and y,(k) at the switch times, {Tj}. We now review this

development. Let

(0
P(k) = {

26




gy (T3 % < (T it (2.5)

During the interval [T; ;, Ty), Hxl(k)Hz increases and ||3_/2(k)||2 decreases.
At the switch time, Tj,

lyy (T2 >l (3017 (2.6)

. . 2 2
and during the next interval [Tj’ Tj+1), Hyl(k)H decreases, and ”yz(k)H

increases.

The relation between the above approximation and the concepts of hyper-

bolic stability is as follows: for j sufficiently large,
Stable Hyperbolic Oscillations

g TOIZ > Ny TP and Iy (T5 2 > g (Tl® (2.7)

Neutrally Stable Hyperbolic Oscillations

ly; (T2 =y (T % and Nyo(T5 N2 = llyp(TI1% (2.8)
) 11V j+2 22V j-1 12 j, )
Unstable Hyperbolic Oscillations

Iy (T8 <y (T2 and g (Ty i < (T2 (2.9)

Using the equations (2.3), (1.25) - (1.27) for the evolution of gl(k),
Xz(k) and a(k), the time interval between switches in the probability can
be approximated. In the two model, two dimensional state case used in

Greene's examples ¥1(k) and Xg(k) are defined as follows.
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Xl(k) x2(k)

‘Zl(k) = rll(k) .Zz(k) = Y‘21(k)
rlz(k) r22(k)
where
X (k)
Plant state x(k) =
X5 (k) | |
[r11(K)]
Filter 1 residual ri(k) =
| r12(K) ]
. _ (r51(K) ]
Filter 2 residual rp(k) =
rpz(k)

so the evolution of a(k) can be written as follows:

i i
1 A(P(2)) ¢;

k
alk) = § yi(i)
i=0 2=0 ‘ 2=0

1

i
- y5(i) T AN(P(g A, (P i
LI 1 A>(P(2)) ¢, o A, (P(2)) y,(1)

where ¢, and ¢, are appropriately partitioned versions of o
1 2 g

For
K»e [Tj, Tj+1)
then

P(k) = 0

28
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

1
22 -

(2.15)



then assuming

P(k) =0
leads to
A, (P(K)) = B (0)
B (P(K)) = A, (0)
if
a, = 1 O)°
s, = 5,012

- then on this interval

> 1

4
a2 <1
andb
T.
J
alk) = al(T,) +
J x=
where
o) = llg,
02 = ”@2”

At the switch times,
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16)
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18)

19)

.20)

21)

22)
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a(Tj) =0 : (2.26)

a(Tj+1) =0 (2.27)
lyy (T2 <y, (T N1 (2.28)
v1 J =2 :
If the half period for the oscillation, T, is defined as follows:
T=Tin"Ty (2.29)
then T can be approximated from the following eguation.

ST+ T+1

1 1 2 a, -1 5
-1 T 0 = Ny Tl %, (2.30)

As Greene noted, éxact solution of this equation (2.30) for T, is not pos-
sible, buf’T can be approximated using numerical techniques.

This approximation Wi]] be checked using the three cases defined in
Table 2.1. These cases correspond to the three types of hyperbolic sta-
bility, for which the approximation was derived. The stability of each
case is defined below.

Case a) Stable Hyperbolic Oscillations

b) Neutrally Stable Hyperbolic Oscillations
c) Unstable Hyperbolic Oscillations

2.2 Implementation of Greene's Switch Time Approximation

The approximation to the switch times and the norms of the states

derived by Greene, outlined in the previous section (2.1), appears to be
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quite useful. Greene showed this approximation should allow insights to
be gained concerning the type of response of the MMAC system. The actual
implementation of the approximation was not done, i.e., no specificlcases
were checked.

The work done in this section is a check of the accuracy of Greene's
approximation, something not done in his thesis. Similar approximations
are derived for two other MMAC formulations later in this chapter, so a
check on the accuracy of this type of approximation, sWitch time, seems
prudent.

Difficulties were encountered in the computation of the norms of the

matrices in Greene's approximation. In the derivation of the approximation

it was assumed that:

1A, ()% > 1 (2.31)

IIZ\Z(O)H2 <1 | (2.32)

but the values computed for these norms were not as expected. Instead of
lléi(P)ll2 being greater than one for P=1 (or 0) and less than one for
P=0 (or 1), it was strictly greater than one, Table 2.2.

Using the values for the norms, it is obvious that the approximation
will indicate instability independent of the stability of the actual MMAC
system. Since the norms are greater than one for P=1 and P=0, the
estimates of'[|¥2(k)||2 and ll_yz(k)ll2 generated by the approximation will
grow with time, ruling out any behavior similar to stable hyperbolic oscil-

Tations.
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TABLE 2.2: [|A,(P)[|® for Deterministic Cases

CASE B, N2 A2
a 0 8.00 4.15
1 4.15 8.00
b 0 8.00 4.23
1 4.23 8.00
(o 0 8.00 4.37
1 4,37 8.00
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Greene had suggested using the following measure of the size of the

matrix (quasi-norm):

IIAIF = max(2(A))? (2.33)
instead of the norm
AP = maxA(A'A) (2.34)

It was suggested in [6] that this might result in an improvement in
the approximation. Thus the use of this quantity was investigated.

It is easily shown that [|(+)l]], is not a true norm. However, it in
fact does improve the approximation, as is seen later. Also as is seen
in Table 2.3, the values assumed for the matrices have the expected pro-
perties, i.e., the matrices §i(P) were not stable for P=0 or P=1.

| To determine the accuracy of the approximation, in predicting the

switch times and the corresponding magnitude of the states, a measure of
the size of the states is needed. Greene developed a quasi-Lyapunov func-

tion to measure the growth or decay of the states of the p]ant'

V(k) = Tn x, (k)x,(k) - (2.35)

Although (2.35) is not a true Lyapunov function, it gives a good indication
of the stability of the system in the hyperbolic sense. Since the plant
states are not computed in the approximation of the switch times, a modified
function was chosen for this analysis of the accuracy of Greene's approxi-
mation. This second quasi-Lyapunov function uses parameters which are

computed in the approximation
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TABLE 2.3: ||A, (P)]|% for Deterministic Cases

CASE P Hél(P)HE | HEZ(P)HE

a 0. 4.00 0.14
1. 0.14 4.00

b 0. 4.00 0.25
1. 0.25 4.00

c 0. 4.00 0.36
1. 0.36 4.00
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Vx(k) = Infly, (Ol 2y, (k)12 (2.36)

This function is quite similar to Greene's quasi-Lyapunov function, and
consequently has similar properties with regard to the stability of the
systém.

For the cases of interest, the function V* behaves linearly with
time as does Greene's [6]. The increment of the Tlinear function V* is

indicative of the stability of the system.

A
o

V*(k+1) - V*(k)
V¥(k+1) - V*(k)

Stable Hyperbolic Oscillations

]
[em)

Neutrally Stable Hyperbolic Oscillations
V*(k+1) - V*(k)

Vv
(]

Unstable Hyperbolic Oscillations

This Tinearity with time, exploited by Greene in his analysis, is also
quite useful in this work, so V* will be repeatedly used in this approxi-
mate stability analysis.

To obtain a comparison of the approximation to the actual system
response, V* is plotted at the switch times (Figures 2.4a, 2.4b, 2.4c).
In these figures, V* from the simulation results is plotted at the actual
probability sWitch time. For the sake of contrast, V*, as predicted by
the approximation, is plotted at the predicted switch times, also from
the approximation. By plotting the data in this way the accuracy of the
approximation»for both the size of the states and switch times is seen.

It is apparent from the figures that the approximation is not an exact
predictjon of the behavior of the system, but that it is indicative of
the response. The error in predicting the times of probability tranéi-

tions (Tj) is significant as is the error in predicting the size of the
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states at these times. Even with these inaccuracies, the approximation
is still useful in predicting the type of response. Looking at the
different cases, the accuracies of the approximation are seen.

For the hyperbolically stable case (la), similarities are seen in
the approximation and the simulation. First, the negative increment of
V* for both the approximation and the system simulation indicates the
system is stable. Secondly, the increment is nearly the same for both
the approximation and simulation, indicating the degree of stability,
rate of decay of the states, is quite similar. Thirdly, the time inter-
val between switches in the probability is increasing with time, again
a property of the approximation and the system response.

For the other two cases (1b, 1lc) the approximation agrees with the
system response in a similar manner, indicating the neutral stability
and instability, respectively, and the change in switch times intervals
for the probability with good accuracy.

From these examples, some conclusions can be drawn concerning the
utility of this approximate analysis. In the examination of the
qualitative behavior of the MMAC, this approximation would be useful.
The insights gained in Greene's worst case analysis using this approxi-
mation demonétrate its usefulness. The explicit indication 6f stability
and switch time trends are useful in understanding the fesponse of 5
MMAC system. It should be noted that the qualitative accuracy is good,
but the quantitative accuracy is not nearly as good. As with most ap-
proximation, however, some care must be taken in using this method to

ensure no assumptions vital to the approximation accuracy are violated.
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For examb]e; later, in Section 2.3, the effect of violating the assump-
tion that P=0 or P=1 on the accuracy of the approximation is investi-

gated.

2.3 Limited Memory MMAC

One of the properties exhibited in the case of hyperbolic oscillations
is the Targe excursions of the state as they are alternately stabilized
and destabilized. Greene [6] showed this is mainly due to the inertia or
lag in the probabilities. Since the probabilities are based on all past
observations, the probabilities may be driven toward 0 (or 1) during one
time intefva],‘and then have to overcome the inertia of the prior in-
terval to feverse direction and go to 1 (or 0). This is illustrated in

the log Tikelihood formulation of the MMAC, repeated here.
- 2 2
a(k+1) = a(k) + |fr; (ke1)llg-1 - [[r,(k+1)] g-1 (1.25)
1 =2 ,

1-P
POO B exp(-}a(k))) ! . (1.26)

8 = /ToyT 18]

P(k) = (1 +

In this case, a(k) tends to attain large values compared to the in-

crement Ac(k) defined as follows:

k) = fleg (D=1 = Hptheli2 | (2.37)

so if a(k) gets large in the positive sense compared to Aa(k), it will

take many times steps before d(k) is reduced to zero by a sequence of
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negative increments. During this interval the unstable states will grow
geometrically, resulting in the peaks seen at the switch times of the
probability.

A modification to the MMAC proposed by Greene to "speed up the pro-
babilities" or reduce the inertia is to limit the memory of the MMAC. This
is done by introducing a moving observation window for the computation
of the probabilities, i.e., instead of using all past observations for
the computation of the probabilities, only the most recent observations
are used [6]. For the log Tikelihood formulation, only the equation for.
a(k) (2.14) is changed in implementing the 1imited memory MMAC algorithm.

For an observation window of length M, the equation for a(k) is as follows:

k

- Y 12
a(k) = 1,=E_Mllr:1(1)llgil -Ilr2(1N|951 (2.38)

A 1imiting case of the limited memory MMAC algorithm is where the
probabilities are based on only the last observation. In thisvcase equa-

tion (2.38), a dynamic equation for a(k),becomes a static equation
- 2 2 ' '
a(k) -llrl(kﬂleil -Ilrz(kﬂleél (2.39)

To obtain some insights into the behavior of the éystem, an'approxi-
mation similar to that for the full memory MMAC is derived in this section.
For the limited memory case, the equation for a(k) in terms of xl(k),

yz(k), oD and a,, defined in (2.3), (2.24) - (2.25) is:

a(k) = lly, (K%, - [y, (1%, (2.40)
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With this formulation, the half period T, defined in equation (2.29),
can be approximated, assuming P(k) switches between zero and one, and does
not take on intermediate values. Assuming P(k) =0 on the interval [Tj, Tj+1),
then it follows from the assumptions on Xl(k) and zz(k) (Section 2.1):

118 (o)

1}
jal]
—
A\
—

(2.41)

18, ()12

it
=]
nN
A
—

(2.42)

ApproximatingIlri(Tj+kM|gjl by a?”xi(TjN|zoi on this interval, simplifies
=i

the analysis and resuylts in

alkeTy) = ay lly; (7)1 - a [1y, (7))l %, (2.43)
If

g (T2 < 1y (TNl (2.28)
and

a(Ty,q) = 0 (2.27)

then T can be approximated by the following equation.
T 2 2
0= 31||¥1(Tj”| oy - azllyz(TjM| oy (2.44)
This equation can be solved for T, resulting in the following.

2

T = 1 1n||¥2(Tj)|| P
(In a, -Tn a,) 2

1 2 “‘ZI(TJ)“ 01

) \

(2.45)



Three cases were used to evaluate the approximation and simultaneously
investigate the properties of the 1imited memory MMAC. The cases are
the same used to check the full memory approximation and are defined in
Table 2.1. Figures 2.5a, 2.5b, and 2.5c contrast the behavior predicted
by the approximation with the simulation results.

One of the interesting properties of the approximation is that it
predicts that the probability switches every time instant, after the first
few switches. This is an erroneous prediction, since the minimum interval
found in the simulations has a length of three time steps, but again fhe
qua]itative prediction is correct. In terms of the prediction of sta-
bility, the approximation correctly predicts the rate of growth for the
neutrally stable hyperbolic case (2b) and the unstable hyperbolic case (2c).
For the Timited memory implementation hyperbo]ica11y stable system case
(2a), the norms of the states H)_/l(k)||2 and ||z2(k)||2 are predicted to de-
crease to zero, but the simulation exhibits a 1imit cycle type response.

The 1imit cycle response of the simulation can be explained as follows.
As the norm of the states,||)_/1(k)||2 andll)_'z(k)H2 decrease towafdlzero,
the probability will move toward %. For P(k) fixed at %, the system is
unstable, and so as P(k) approaches %, the system becomes unstable, or
the'norms||¥1(kﬂ|2and|Lyz(kM|2 increase. This increase in these norms
drives P(k) away from %, towards 0 or 1. This shifting of P(k)‘from 0 or

1 to near % and back leads to the 1imit cycle type behavior.

An assumption made in the derivation of this approximation was that

P(k) was either 0 or 1 and did not take on any intermediate values. In

the simulation, P(k) did take on intermediate values as the system limit
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- cycled violating the assumption. This explains the discrepancy between
the approximation and the assumption.
~ An example of this type of limit cycle response is seen in Figure 2.5.
For the initial portion of the time history (0<k<16), the approximation
and the simulation agree as to the stabilization of the states, but later
in the time history (k >16) the stability indication of the approximation
and the simulation differ. A look at P(k) for these two different in-
tervals, (0<k<16) and (k >16), reveals the cause of the_discrepancy
in the approximation and the simulations. In the initial interval, the
values taken on by P(k) were essentially zero or one, but during the

latter interval P(k) was near one-half. This violated the assumption that
P(k) was near zero or one, resulting in a limit cycle.

A Took at the initial conditions supports the claim of degradation

to a 1imit cycle response.

|Is_'11(0)ll2 100. (2.46)

L}
—

ly, (o)1 % = (2.47)

For the initial switch intervals Hxl(k)HZ and ||_y2(k)||2 were significantly
different, due to the difference in the initial conditions. For later
switch intervals, the state had been reduced so that the difference be-
tween them was small. At this point, o(k) was near zero, so thg proba-
bility was near one-half, and not near zero or one, where some of the
states would be stabilized. When the states reached nearly the same size,

a limit cycle resulted.
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To test the hypothesis that intermediate values of P(k) would account |
for the discrepancy in the simulation and the approximation, a maximum
likelihood control was used instead of the probabilistically weighted

control, i.e., the following control law was used.

-G. %, (k) P(k)>%
‘g(k)={_1>_(1() (k) }

(2.48)
-6,%,(k)  P(k) <

Ne

In this case, the control is precisely piecewise linear, with gains cor-
responding'to the P=0 and P=1 limits.

It Was;found that the negative increment of the quasi-Lyapunov func-
tion (V*(ki), indicative of the stability of the system, is exhibited by
both the Simu]ation and the approximation, i.e., the limit cycle was
eliminated. Since the only change in the control was to ensure the as-
sumption was valid, it would appear that P(k) taking on intermediate values
in the probabilistically weighted control contributed to the neutral sta-

 bi1ity of the limited memory MMAC system.

The discrepancy between the approximation and the simulation for
the hyperbolically stable case (2a) of the limited memory MMAC with
probabi]istica11y weighted control demonstrated an effect of vid]ating
the P(k) =0 or P(k) =1 assumption. The significance of the assumption
is brought out, when in violating it, the approximation breaks down.

If the assumption of P(k)=0 or P(k)=1 is not vio]afed, the approxi-
mation is fairly good. The prediction concerning the stability of the
system appears to be correct, although care must be taken in the stable
case. In the case of a prediction of stability, the actual system may

Timit cycle, as P(k) takes on intermediate values.
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2.4 Set Point Analysis

In the analyses done thus far, the control associated with each
model was designed to drive the state to the origin. In this section,
an extension of this zero set point analysis is undertaken. The more
general case of interest in this section is where the control associated
with each model is biased.

u; (k) = -G, (k) + b, (2.49)

If the controller were linear, this bias would not affect the stability
of the system, but since the MMAC is a nonlinear controller, the bias
may affect the stability. It should be noted that the bias also affects
the MMAC probabilities. If the Kalman filters used in the MMAC were all
matched with the true system (plant), the bias would not affect the pro-
babilities, but since there is no guarantee that all the filters are
matched, the bias will affect the probabilities through the mis-matched
Kalman filters. |

To gain some insights into the effects of a biased contro], an ap-
proximation was developed for the time between switches in the probability.
As before, in this approximation the states are partitioned into those
unstable for P(k) =0, Xl(k) and P(k) =1, Xz(k)- With the assumption

of a diagonal system, the equations for the evolution of ¥1(k) and Zz(k) are:

y )] TR (PK)) 0 Yy (0] [B(P(K))
) +] - (2.50)
¥, (k+1) 0 R(PUD| |y, (k)| | B,(P(K))
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where El(P(k)) and éz(P(k)) are defined by equation (2.3) and EI(P(k)),

EZ(P(k)) are appropriately partitioned versions of (P(k)§1-+(1 -P(k)gz).
- To compute the half period T, (2.29), assume a switch-1like behavior

in P(k), and that P(k) =0 for the interval [Tj’ Tj+1)' The evolution of

||)_/1(k)||2 and H)_/z(k)H2 can be approximated by the following equations.

k
d.; - L
lls_rl(Tj+k)ll2 = (d'{llyl(Tj)ll + a1___1_”131(0)”)2 (2.51)
2 _ gk d-1 2
‘I‘ZZ(Tj+k)l| = (d2“¥2(TJ’)“ + d_z’:_l‘“tjz(o)”) (2.52)

Using these two approximations (2.51) - (2.52) in the equation for o(k),

the following approximation for the evolution of a(k) is obtained.

Ko 4 di-1 2 i
k) = a(Ty)+ T (a7l + gplE (0 e, - (&]ly(ryl

i

+-§%%};-HEZ(0)H)202 (2.53)

where
d, = max|A(#,(0))] (2.54)
dp = max|A(A,(0))] (2.55)

Now if
a(T,) =0 ' (2.56)
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N

lyy (T2 < lyp(T (2.58)

The time interval between switches T can be approximated using the fol-

Towing:
T df -1 dk
Tyl g IR - z (& g, Tl + 1IIb2(0)ll)
(2.59)
or equivalently,
@) 2 2 2(T+1) _ T+2 _ T+l -
l_d—1T—1 ly, (T3l +(d1_1)(d§_1) (d] -dy - dy o Hdy) [y (THIF 1R (O]
' (d1i1)2 : dé{1 (62T - 24" - 24"+ 20, 41) + TH11 B, (0)]°
T -1 2 2 2(T+1) _ T2 T+l | .
: [—?‘?1—}“!2“5‘)” S T e TR
+ (dzf 7l d§11 (BT _2q]*2 pa)*h + 20,+1) + 411 ||b, (o2 o, (2.60)
Assuming
d, > 1 (2.61)
dy < 1 | (2.62)
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and conseduent]y, for large T

d. > d1 ’ ' (2.63)

d, «d, | | | (2.64)

N =

then (2.60) reduces to the following:

2(T+1)) 2(T+1) 2(T+1)
1y, oy e g (T 0 1B, O +—2— L5 (0) 2o
Lai-1 ) T ey T R 2y (o) !
1) 2 2 - T+l ¢ 2
= ly (T +2 (T 116, (0)]] +—=2—1|B,(0)
5| g, (7)) (1-d2)(1-d§) Y, (T lle, 0] (d2-1)2 l1b,(0)I1 %],

l-dzJ

(2.65)

After some simplification, the equation (2.65) reduces to the following,

which is used to approximate T.

di(T+1)°1 2
1 -~
o 2d, I+, .
= iz U T+ 15 B0 + g B, (0% (2.66)
-dy |

The stability of the system can be determined in a way analogous to Greene.
The relative size of the peaks at the switch time can be determined using

the following equivalent form of equation (2.66):
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2, %
Tl =

21 1d2:'”

, ——dz(dz Ty (TOIP + (52 d2 (T +——)—g (T+1) || (Vo)[]v)lllzl(o»)n]
2% T

(2.67)

For the caée where HEi(O)H5=O, this equation reduces to_fhe iero}set
point equation used by Greene f6]. In the case of interest in this o
section,||Ei(0N| is not zero, and equation (2.67) must be used. Due to
the complexity of the equation (2.67) no simple condition, involving the -
parameters of the MMAC system, has been developed for the stability of
the nonzero set point MMAC system.

Before recommending that the approximation derived in this section
be used in any future work, an analysis of its accuracy is desired. A
check of the accuracy of this approximation was done for the three cases
defined in Table 2.1. The bias in the control associated with each model
was such that the desired equilibrium point for the plant states was the

same.

1. '
Xsteady state [1 J (2.68)

Insight into the behavior of the set point control was gained from
the test cases investigated. A1l three cases were found to be unstable,
even the hyperbolically stable case (3a). This would seem to indicate a
need for a stronger stability condition for the nonzero set point control
MMAC system than for the zero set point system.

A Comparison of the approximation to the simulation results reveals

the significantly better accuracy of this approximation compared to earlier
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approximations‘investigated (Sections 2.2 and 2.3). The approximation
derived in this section predicted the switch times with good accuracy
and the magnitude of the states at these times was also predicted well,
as seen in Figures 2.6a, 2.6b, and 2.6¢c. [t is conjectured that the
biased control inputs greatly accentuate the effects of the model mis-
match, which would 1ead to a better approximation for the biased control
case. It would seem that this approximation would be useful in future
work concerning stability conditions for the nonzero set point MMAC

-system.
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CHAPTER 3
STOCHASTIC ANALYSIS

This chapter is a presentation of the results of research into the
stochastic properties of the MMAC. These results were obtained from a
combination of exact and approximate analysis and simulations. This work
constitutes a first step towards understanding the stochastic properties
of the MMAC algorithm.

In Greene's work [6] and the work of the preceding chapter, the
assumption of zero noise input was made. This simplifying assumption
allowed many insights to be gained into the response of the deterministic
MMAC. To obtain a complete understanding, the stochastic properties
must also be investigated. Consequently, the noise sources have been
assumed nonzero for the work in this chapter. 1

Since the MMAC is a nonlinear control algorithm, the analysis of the
stochastic response is not straightforward. Even though the npise 1nputsv
are white and Gaussian, the nonlinearity leads to non-Gaussian pro-
bability densities for the states of the MMAC. These non-Gaussian
densities impede the analysis by requiring numerical integration‘tech-
niques for the Chapman-Kolmogorov equation [7].

A way of bypassing some of fhe difficulties of analyzing nonlinear
stochastic systems is to use a quasi-linear approximation. One analysis
of this type is a Random Input Describing Function (RIDF) approximation,
which in its standard form leads to approximations for the first two moments
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of the system states. The accuracy of this tyﬁe of approximation varies
significantly with different applications, i.e., sometimes it works, and
sometimes it doesn't.

In Section 3.1, the RIDF method is outlined for a general non-
Tinear system. This section serves as the background for Section 3.2,
where a RIDF is derived for the MMAC system. In Section 3.3, the concept

of stable probability intervals is introduced as a way of classifying

stochastic MMAC systems. In addition, this c1assificafion is compared

to Greene's classifications for deterministic systems. To check the ac-
curacy of the RIDF approximation, a set of test cases, defined in Section 3.4,
are used in Monte Carlo simulations of the MMAC system. The results of

these simulations are analyzed and compared to the predictions of the RIDF

approximation in Section 3.5.

3.1 Random Input Describing Function

In the analysis of nonlinear stochastic systems, one technique for
approximating the first two moments of the states of the system is the
random input describing function (RIDF) [8]. This approximation has good
accuracy for a large class of nonlinear equations. For this reason, the
RIDF approximation was used in this analysis of the stochastic MMAC.

The basic idea of RIDF analysis is to develop a quasi-linear approxiQ
mation for the nonlinearities in the system. This is done by computing
minimum mean square error linear approximations for the non]inearities,

assuming an input of known distribution, usually Gaussian. For example, if
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w(k) = N(O,w) (3.1)
E[w(k)w'(§)] = O jtk

A quasi-linear approximation can be computed as follows. Assuming

x(k) = N(m(k),2(K)) | (3.2)
then f(+) can be approximated by

F(x(k)) = F(m(k),Z(k))(x(k) -m(k)) + b(m(k),Z(k)) (3.3)
where F(m(k),Z(k)) and b(m(k),Z(k)) have been chosen to minimize

P = E{[f(x(k)) - F(m(k),2(k))(x(k) -m(k)) - b(m(k),2(k))]
x [f(x(k)) - F(m(k),-£(k))(x(k) -m(k)) - b(m(k),Z(k)1}

(3.4)

Once the functions F(-,+) and b(+,-) have been determined, the following
equations can be used to approximate the evolution of the mean, m(k), and

~

the covariance, I(k), of the system.
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(3.6)

The reason for assuming that x(k) is Gaussian is twofold. First, the
driving noise, w(k), is white and Gaussian implying that x(k) is always

a convolution of a Gaussian and a non-Gaussian density. Secondly, and
most important, the minimization of the error (3.4) is simplified, due to

the moment factoring property of the Gaussian distribution. Whether this
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assumption is reasonable depends upon the application.

The abp]ication of RIDF analysis to the MMAC system necessitates
the linearization of the nonlinearities in the identification and control
portions of the algorithm. The resulting quasi-linear system.is used

to approximate thé means and covariances of the MMAC states.

3.2 Derivation of the RIDF for the MMAC System

In this section, a RIDF is derived for the two mode] MMAC system,
defined in equations (1.18)-(1.27). This derivation approximates the
nonlinearities in the identification and control sections of the algorithm,
equations (1.24) - (1.27). The extension to the N-model MMAC, set point
MMAC, etc. is conceptually straightforward.

The equation for the evolution of the log Tikelihood ratio d(k),

(1.26), is quadratic in rl(k) and fz(k)

alktl) = a(k) + ri(er)er'e () - rp(ken)gstr (k1) (3.7)

A RIDF for a(k+l) can be computed, assuming rl(k) and fz(k) are jointly
Gaussian. Since the MMAC is a nonlinear controller, the plant states and
filter estimates do not have Gaussian densities. The residuals, being
functions of the states and filter estimates, are also non-Gaussian. To
retain tractability in the computation of a RIDF for the MMAC, the residuals
wére assumed to be close to Gaussian. This assumption is reasonable, if
there is substantial measurement noise. Under this assumption, a(k+1)

can be approximated by the following.
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ake1) = Ko (k) =my (k) + K' o (ry (k4D = m (k1))

o o} 1 1

+ 'S'arz(rz(k”) -rgrl(k+1)) + b, (3.8)

L. (k+1) and Zu(k). After minimizing the expected error in the lineariza-
2

where Kaa’ K., K. _ , and ba are functions of m. (k+1), @rz(k+1), §r1(k+1),

tion, K . K, s K and b are defined as follows:

-arl arz
Kaa =1 (3.9)
= -1
Kyp, = 22, (k+l)e "m  (k+1) (3.10)
1 1 1
= -1
Ko = -2, (kb1)gy m (k+1) (3.11)
2 2 2
Ba =m, | (3.12)

The RIDF approximation for this product of states type of non]inearit&
has limitations. Geier [10] has proposed modifications to this method
which improve the accuracy. His modified RIDF propagates higher order
moments for those étates used in the product nonlinearity. Later in this
work, Section 3.5, as part of the analysis of the accuracy of the RIDF,
it will be proposed that Geier's method be used to improve the accuracy
of the approximation.

The states used in this analysis of the MMAC are the plant state,
x(k), augmented by the filter estimates, gl(k) and gz(k), and by the log
likelihood ratio a(k). To get the approximation for d(k+1) in terms of

the state of the MMAC system, the following equalities are used:
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El(k+1)

"
>
x
o~
=~
o
]

A% (k) + v(k+1) + w(k) (3.13)

ro(k+l) =

i
x>
>
—
>~
~—
n

AoXo(k) + v(k+1) + w(k) (3.14)

Substituting for ri(k+1) and r,(k+1), using equations (3.13) - (3.14) in

equation (3.7) the new approximation for a(k+l) is the following:

1) = o + K (100 - (K)) + Ky (81 (6) - (6))

+ Ea§2(§2<k)- @Qz(k)) + K Y(kFL) K (k1) + b
(3.15)

The functions K ,‘K A
=0X -0

s KA, K K , and b are defined as follows:
X1 o

-uxz —av’ -ow

K, = 2A'[67"(Am (k) - Ay (K)) - g5 (A, (k) - B (KNT(3.16)
fgagl = 2nte7 (Am, (k) - g () (3.17)
Kag,, = 2B3(Am, 00 - By (1) (3.18)
K, = 2[87 (An (k) - By (K)) - 01 (Am, (k) - Bt (k)] (3.19)
géw -k, | (3.20)

v - - 1 1 ! 1
ba = tr{@l [éEx(k)é - 25§x§1(k)61 + 61§gl(k)61 TtV +

* (A, () - g () (B, () - Aymg (6)']
(3.21)

'1 ] I 1
- 9 [sz(k)e - 26§§§2(k)52 * Agggz(k)éz YU

+ (Am (k) - Azmgz(k))(amx(k) - élTiz(k))']}
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For the nonlinearity defined by equations (1.24) - (1.25) the derivation

of a describing function involved an expectation with the following term:

1 ’ )
E Gx(k)-.~X(k)]
T-p g2k - GX
1+gL e 2K). |
0

where the expectation is taken over a(k), gl(k), and gz(k). The computa-
tion of this RIDF assumes a(k), gl(k) and 32(k) are jointly Gaussian.
Even with this Gaussian assumption for the states an additional simpli-

- fication is needed to compute the RIDF. To simplify the expectations in-

volving this term and others similar to it, the following assumption was

used.
1 . 1 o‘(k):”lswitch 3,29
l'P k)_ 0 (k) ( . )
1+g——Je & alK) <Q¢uitch
PO 2
Po
Oswitch = 2 1N TP, B (3.23)

It should be noted that this approximation is precisely the maximum 1ike-
Tihood control formulation of the MMAC, defined in Section 2.3. Using this
approximation (or exact expression, if the maximum 1ikelihood control is

used) (3.22) - (3.23), the describing function for equations (1.24) - (1.25)

is the following.
k) = Ky 0 - KD) + Kyp (500 -mg (K1) + Ky (B(k)
- g, () + Ky oK) =m (k) + b, (3.2)
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vwhere the functions Kux’ Kuil’ Kuiz’ Kua, and bu are defined in the fol-
lowing equations.

Eux =0 (3.25)

Euﬁ = qG (3.26)

| 1

g, = (1-0)8, (3.27)

K =- 261, (k) - 6,2 (K] - —— [Game (K) - Gome (K)]

~ua r (k) ““1=%.a =2=%,0 1-X 2

: o 1 2 zcx 1
(3.28)

.F

b, = qG.ms (k) + (1-q)G,ms (k) - [G,Zc (k) -G, Zs (k)]

u - -Xl —2-X2 W -1-X10L '2-)(2(1
(3.29)

Ocritop = M (k)
g = _Switch ~ "o (3.30)
/Zaik)
2
-1 -z7/2
f = 5 @ (3.31)
z 2
a- [ L2 (3.32)
o/ P7r

This set of equations (3.15) - (3.21), (3.24) - (3.32) led to the fol-

lowing quasi-linear form for the MMAC.

_g(k+1)_1 x(k)

X, (k+1 X, (k

%, (k+1) Ak %, (k) 80
R, (k+1) R, (k)

[a(k+1) | | a(k)
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m, (k)]

Tﬁl(k)
ng(k)

m,, (k)

(3.33)



- K .
Ak K ~ K -
= Sux -uxy “uf, -ua.
R HA-Kix (l'ﬂl)el-guﬁl 'Euﬁz Ko
A(k) =
tlZA.'Eux 'Euﬁl (Q'HZ)BZ'EUQZ Ko
~ax Kuil Eaiz
— - T'(')=T.(k)
L, (+)=z, (k)
(3.34)
_ -
I 0
H H
OO I D (3.35)
Hy H
K '
L‘OLV -OLW__ r_f_]_(')'—'lll_(k)
L, ()= (k)
Kux Euﬁl Eu§<2 Ko -1 0
R Kux Euil Euﬁz Ko -1 0
B(k) = (3.36)
K' K'a K's K -1 0
fux o Suxp tuX,  tua T=
Koax Koy Keg, 0000
m, (+)=m,_(k)
L,(+)=2, (k)

With this quasi-linear approximation, the approximations for the means and
covariances of the MMAC system can be propagated in time using equations

(3.37) - (3.40).
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Let

x(k) ]
L[}
m(k) = E (3.37)
Qz(k)
Ot(k)J
[ [x(k) [x(k) ] )
il(k) §l(k)
Z(k) = cov| | . L (3.38)
X (k) X5 (k)
CLedk) | Lalk) § )
and ﬁ(k), g(k) be approximations for fi(k), (k). Then
- —
o A e | KD
m(k+1) = A(k)m(k+1) + B(k) { =---- (3.39)
b,
B
% N " w 0
2(k+1) = A(k)E(k)A' (k) + T(k) ~ ' (k) (3.40)
0 v

This‘approximation will be used later in this chapter, to demonstrate some

of the properties of the stochastic MMAC system.

3.3 Stable Probability Intervals

In Greene's work, MMAC systems were cliassified according to the de-
terministic response. These classifications, universally stable, hyper-
bolic oscillations, and mixed case, lend themselves to equivalent classifications
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for the stochastic MMAC. 1In this section, the idea of stable probability
interval is used as a classification criterion. There is a direct cor-
relation between Greene's classification and the stable probability
interval classification, which is explained below.

As mentioned in Section 2.1, the MMAC system is linear for fixed P(k).
The stability of the system can be determined for various values of P(k).
The set of values of P(k) for which the MMAC system is stable is called
the set of stable probabilities. In the cases of interest in this chapter,

this set of stable probabilities defines an interval on [0,1], i.e.,

P

A
av)

A
e
—

A

stable € [Pmin’ Pmax:I 0 min max

For the work in Sections 3.5- 3.7 the stable probability interval is an
important quantity in determining the response of the stochastic MMAC.
The following terminology is used in the discussions that follow:

1. Universally stable systems. These systems have a stable pro-

bability interval of [0,1].

2. End point stable intervals. These systems have a stable pro-

bability interval which includes 0 or 1.

3. Interior stable intervals. These systems have a stable in-

terval which does not include O or 1.

4. No stable interval. These systems have no stable probability

interval.

The following correlation exists between the stable probability in-

terval and deterministic response characterizations.
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Probability Interval Deterministic Response

Universally stable <= > Universally stable

>  Mixed case
No stable interval Cemmmmm— Hyperbolic oscillations

End point and interior<

There aré‘Systemsuwith no stable probability interval that do not oscillate,

i.e., the states grow without oscillatory behavior.

3.4 Case Definition

To 1Tfustrate the types of stochastic responses investigated, a few
cases were chosen. These cases were used to check the accuracy of the
RIDF, as well as to gain insight into the response characteristics. In
this section background information for the case definition and Monte
Carlo simulation is presented.

In the last section, the concept of stable probabiiity 1ntervé1 was
presentedl In this section, the determination of cases with specified
probability intervals is outlined. Also some motivation for the choice
of cases is given.

To reduce the number of parameters which determine the stable pro-

bability interval, the following assumption was made.

Q=R=V=W=1 (3.41)

—
il

nxn identity matrix ' (3.42)

With this simplification the matrices A, A;, and A, will determine the

stable probability interval. The matrices A, A

Ape and A, being diagonal

allows the following form.
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b ‘
A= (3.
0 a

43)
Ca 0 ]
A = (3.44)
0 a1
_az 0]
A, = (3.45)
0 a
h 0
Hy = W (3.46)
|0 hy]
th 0]
H, = (3.47)
(g 0 |
6 - (3.48)
[0 9y
- N
9, 0
6, = (3.49)
0 g |
[1+h 0
0, = - (3.50)
0 1+h
_ 1
+h, 0
8, = (3.51)
0 1+h

where Hi’ 91 and 6, are obtained using equations (1.10) - (1.11), (1.13) -

(1.14), (1.17), assuming C; and B; are identity matrices. In this case,

the matrix equations (1.10) - (1.11), (1.13) - (1.14) can be replaced by

fd]]owing set of independent scalar equations.
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SN |
Si T |7t 1 (3.52)
%3
h, = 51 (3.53)
g9; = a;h, (3.54)

Using this formulation, the matrices EI(P) and EZ(P), defined by equation

(2.3), reduce to the following form for this two state case.

a-pg)-(1-P)g,  P(1-h)g,  (1-P)(1-hy),
A(P) = 0 (1-h,)a 0 (3.55)

a-a 0 (1-h,)a
_ 2 2’72 B

a-Pg)-(1-P)g,  P(1-h)g;  (1-P)(1-h)a,

Ar(P) = a-a, (1-hy)a, 0 (3.56)
0 0 (1-h)a
— -
These matrices BI(P) and EZ(P), can be used to determine Pryin aNd P

if they exist.
~Using the Routh-Hurwitz criterion [9] to determine stable ranges for
P, a plot of Pmin as a function of 2y for él(P) can be determined. An

example of this plot, Figure 3.1, was made for the case where
a=2.0 (3.57)

An equivalent plot was é]so made for Pma as a function of ays Figure 3.2,

X
for KZ(P). For fixed 3y and Py the stable probability interval is the
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following intersection:

[P e 11000, P ]

min

As mentioned before, this interval [P Pmax] is an important quantity

min’
in differentiating the cases used for examples.

Since the universally stable case is a type of "best case" MMAC
system, the properties of this type of response were investigated. To
demonstrate some of the properties, and to determine the accuracy of the
RIDF, Case 1 was developed as a universally stable example. This case
is defined in Table 3.1, along with the following cases.

Case 2 is a hyperbolic oscillation system, i.e., a system with no
stable probability interval. This "worst case" MMAC system is precisely
Greene's deterministic hyperbolically stable system in the stochastic
version, i.e., with non-zero noise sources.

Cases 3 and 4 are two examples of Greene's mixed case MMAC system.
They are used to demonstrate the effects of decreasing the stable pro-
bability interval, and the effect on the error in the RIDF approximation.
Both of these cases have internal stable probability intervals,

Case 5vis another mixed case MMAC, but this system has an endpoint

inclusive stable probability interval. This case is used to demonstrate

some errors in the RIDF, and to demonstrate the accuracy of an approximation

derived Tlater.
In each of the five cases, sample means and sample covariances of
the MMAC states are obtained from Monte Carlo simulations. The sample

statistics are averaged over 100 runs. This number of runs led to an
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acceptable scatter in the sample statistics, without the higher cost of

averaging over a greater number of runs.

3.5 Stochastic Responses of MMAC Systems

In this section, insights irto the stochastic response of the MMAC
will be presented. These insights were obtained from Monte Carlo simu-
lations, RIDF approximations, and analysis. Five different responses
are used to demonstrate the properties of the stochastic MMAC system.

The MMAC system design uses nominal noise covariances, but in appli-
cation the actual noise covariance may differ signifitant]y from the
nominal. This noise mismatch was found to have little effect on the
nature of the response of the stochastic MMAC. The effects were limited
to scaling the variances of the states, or in some cases, scaling the
response of the variances in time. This time scaling effect is used in
Case 4 to speed the response. All other simulations use the nominal noise
covariances for the noise inputs.

The first case of interest is the universally stable MMAC, a globally
asymptotically stable system. For a system of this type, the first two
moments of the states should be finite, for bounded covariance inputs.
This behavior is exhibited by both the Monte Carlo simulations and the
RIDF prediction, Figure 3.3. It should also be noted that the RIDF ac-
curately predicts the transients of these moments of the plant states.

Looking at this example, the response of the variance is quite similar
to that of a stable linear system. This is not unexpected, since the MMAC

system is linear for fixed P, and in this case, also stable for all P(k).
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A Took at the expected value for P(k) from the simulation explains the
quasi-linear behavior. The expected value for P(k) approaches 1, there-
fore, this system is essentially linear after the initial time interval.
In the following paragraph an approximation is derived for the probability
density of P(k).

To gain further insight into the response of the MMAC system, an

approximation for the density of P(k) is derived for the following case:

a; = a, (3.58)
h1 = h2 (3.59)
91 = 9, . (3.60)

Moments of a(k) can be determined analytically. The equation for al(k),

equation (3.7), is repeated here.
1 '1 1 =
allr1) = alk) +rj(ke1)ap ey (ke1) = rp(keD) Gy rp(ke])  (3.7)

Letting

balk) = rj(ke1)aytey (k1) - ry(ke1)ey rp(kel) (3.61)

allows the following formulation for a(k+l):
a(k+1) = g(k) + da(K) | (3.62)
In the Case of a symmetric mismatched system, |
Efaa(k)] = 0 B €N )
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implying
Efa(k)] = (0) (3.64)
The second moment of a(k) can also be determined for this case:

E[(a(k) + Aa(k))?] (3.65)
ELE[o(k)8a(k) |a(k) 1T+ ETa®(k) T+ E[ (aa(k))2] (3.66)

E[0?(k+1)]

ELo(K)ELr] (k+1)07 ry (k+1) = rp(k#1)0y r, (k1) a(K)T]
+ E[o?(k)] + E[(aa(k))?] (3.67)

Due to the symmetric mismatch

E[ri(k+1)@11r1(k+1) - ré(k+1)95152(k+1)(a(k)] =0 (3.68)
Therefore

Efa(k)Aa(k)] = 0 (3.69)
Since

EL(aa(k))?] > 0 (3.70)
in all but the singular case where

Lo-3D. st =0 | (3.71)

Sry o TryryiroTrory

One example of this is where both models are the same, not a very interesting
case. It was assumed, for the following analysis, that this singular con-
dition did not hold, so that the mean square value of a(k) was greater than
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sero. Then the second moment of a(k) is unbounded in this case, i.e.,

> 00

ELa®(K)]
k o
If the residuals of the filters were Gaussian, the increment in o
(Aa(k)) would have a two sided chi square probability density, since
Aa(k) would be the difference between two squared Gaussian random vari-
ables. With substantial measurement noise, the residuals were approxi-
mately Gaussian, so the probability density for a(k) (assumed to be two

sided Chi Square) was approximated by the following.

s 2 _
l—e(am&ﬂh a<m‘
‘ Oy o
fla) = 4 (o : (3.72)
1 () /2% a>m ‘
o
o
Ela] = m, | (3.73)
Ef(a-m )?] = o | (3.74)

The purpose of this assumed density was to determine an approximate density
for P(k). The choice of this two-sided exponential was one of convenience.
A comparison of using different two sided densities for a(k) showed little
effect on the induced density of P(k), for large m, and/or O

The induced density on P, assuming f(a) is the above (3.72) two sided

exponential density, is the fo]1owing.
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-2m /o \
2 o' "o 1-P 0o 1 1
( o ® L5 Topamy P> m72
1+e
f(P) = 1 A f (3.75)
2m /o — 1 1
L e PO sy P <
o] 1-P
a 1+e )

Figure 3.4 is a p]bt of this approximate density for P for various values
of 9, and ma==0. This plot is indicative of the trend in f(P) as g,
increases, as in the case of symmetric mismatch of thevmodels. In this

case, the Timiting density of P approaches the following:
F(P) = 3% o(P) + 3 §(P-1) (3.76)

A11 of Greene's cases fit in the symmetric mismatch system class--
in particular, the stable hyperbolic case which is examined now. In
- this case, the system is stable in the deterministic sense, but it is
unstable for the stochastic case, as indicated in the simulators to be
described later.

The proof of stochastic instability of the deterministic hyperbolically
stable system has not been completed. The fact that the probability ap-
proaches the singular density, equation (3.76), for which the probability
mass is concentrated at zero and one is not enough to prove instability
of the system. Even though the system is unstable for these two points
an alternation from P=0 to P=1 and back may stabilize the system in a
manner similar to the deterministic response. In the stochastic case
the expected trend in these peaks must be decreasing for the system to be
stable. One way to show this would be a generalization of the deterministic

work. To determine trends in the expected peak height, a conditional
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Figure 3.4 Approximate Probability Density for P
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expected switch time could be computed. The conditioning would be on
the present state of the MMAC system. The details of this approach are
not trivial and have not been worked out.

Figure 3.5 is a plot of the variances of the plant states for this
type of system (Case 2) for both the Monte Carlo simulation and RIDF ap-
proximation. The indication of instability is evident for both of these
runs, but the quantitative prediction of the RIDF is seen to be in error.

In Tooking at the full covariance matrix for the MMAC states as pre-
dicted»by the RIDF, it was found that the variance of a{k) approached
a constant value, contrary to the behavior predicted in the analysis of
Ao(k) and the Monte Carlo response. It is conjectured that inclusion of
higher order moments of a(k) in the approximation, Geier [10], would im-
prove the accukacy of the approximation. Verification of this conjec-
ture was not pursued in this work.

The next two cases to be investigated are both internal stable
probability interval cases. The first is quite close to the universally

stable MMAC, in terms of the stable probability interval,

P e [.05, .95]

stable

and the second is quite close to the hyperbolically stable system

P e [.75, .95]

stable

With this large difference between the two systems' stable probability
intervals, the responses are surprisingly similar.

Since the first case is almost universally stable the response might
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be expected to be similar to theuniversally stable system. This is not
true, and this is demonstrated by Tooking at P(a(k)). For the symmetric
mismatch MMAC system, the mass of the probability density for P moves
out of the stable interval for sufficiently large k, leading to an un-
stable response, i.e., growth of the variance of the plant states. Fig-
ure 3.6 is a plot of the variance of the plant states for both the Monte
Carle simulation and the RIDF prediction.

This effect is more pronounced in the second case with the smaller
stable probability interval. A smaller ou(k) is sufficient in this case
to have a large portion of the probability mass outside the stable inter-
val. The smaller of the growth rates of the variances of the two plant
states increases significantly as Gu(k) becomes sufficiently large;
consequently f(P) approaches a density with delta functions at zero and
one. After this threshold is passed, the smooth growth rate changes to
a more erratic growth.

This case is the only one where mismatched noise covariances were

used. The actual covariances used for the noise inputs are
V = W = 1001 (3.77)

This mismatched noise covariance does not affect the type of response
beyond the variance scaling and time scaling mentioned earlier. The
threshold is attained in a shorter time with this larger covariance, Fig-
ure 3.7. Using nominal covariance noise sources would also result in the
unstable behavior but it takes longer to develop (since the growth rate

for E[az(k)] is smaller in the nominal case).
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The last case presented is an endpoint inclusive stable probability
interval MMAC system. This case is one of Greene's mixed case type MMAC
systems. This MMAC system has a region of attraction Sehavior similar
to the deterministic mixed cases. It is used to demonstrate the error
in the RIDF and to demonstrate the accuracy of another approximation
derived next.

This case does not have the symmetric mismatch mentioned earlier, so
E[Aa(k)] # O (3.78)

With this drift in E[a(k)], the probability density for P(k) accumulates
at P=1. To get a handle on the rate of drift of E[a(k)], Aa(k) will be

investigated in more detail.

aa(k) = e (k)8 b (k1) - rp(krl)optr, (ke1) O (3.61)

Replacing rl(k+1) and 52(k+1) in equation (3.61) using equations (3.13) -
(3.14) results in the following (the time dependence k, k+1 having been

dropped) :

E[Aa] = EL(Ax-AZ,+v+w) '] (Ax-A & +vhw) - (Ax-,%ytvu) ' 851

x (Ax-A %o tv+u) ] 1 (3.79)
Assuming the second moments of x, 31 and 82 are approximately equal
= ] 1 1 -1 1 1 1
E[aa] = tr[(8] [AA'-2AA1+A A1T - 05 [AA" -2AA +A,AS T)EXx ']

v (071051 (v+)] (3.80)
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It should be noted that the assumption on the second moments of X5 21
and 22 is crucial to this approximate analysis. Although it holds for
the exampje case, in genefa] it may be unfounded. So with these assump-
tions, an épprdximation to the expected drift in a(k) as a function of
the input noise covariance and second moment of the plant states can be

derived.

For Case 5, the approximation for E[Aa] is the following.

| -17.6 0 .049 0
E[Aa] = tr [ ]E[55'1+ j,

(V+w% - (3.81)
0 .03 0 .012

if E[xx'] dominates (V+W) then

176 0
E[Aa] = l: J Elxx'] (3.82)
0 .03

Due to the structure of the MMAC system, the input noise filters through
both plant states, i.e., the V1 input will affect the plant state X5 in
the diagoﬁa] case investigated in this thesis. This leads to the situa-

tion where

E[x]] = E[x3] | (3.83)

for the two model case. For Case 5, the above assumptions were found to

be reasonable. Consequently, the prediction of

> = 00

Efa(k)]

k o

was accurate.
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With E[a(k)]> -, the mass of the probability density for P(k) will

accumulate at one and zero, i.e., f(P) will approach the following:
f(P) = qs(P) + (1-q)8(1-P)

| The weight, g, will depend on the relative rates of growth of'mOL and Oy
With P(k) approximately one, the system is stable, so only the noise
inputs will drive P(k) away from one. If the sequence of Aa(k) make a(k)
large, positively, the system will be unstable for the corresponding
P(k) (P(k)=0). So the states will grow, particularly state Xq- This
increase in the states will drive a(k) negative, where the system is
stable. This behavior has been observed in several individual simulation
~ runs which were run for a longer period than the Monte Carlo simulations
described earlier.
Figure 3.8 is a plot of the Monte Carlo variances and the RIDF var-
jances. As is seen in the time history of the variances, the RfDF is
grossly in error for this case. Again, inclusion of higher moments in

the computation of a(k) is thought to improve this error, Geier [10].
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CHAPTER 4
CONCLUSTONS

In the prior two chapters, results of research into the properties
of the MMAC a]gorithm have been presented. Techniques for analysis and
insights into the behavior of the MMAC algorithm comprise the results of
this work. In this chapter, the major results of this work will be re-
viewed, along with discussion concerning their significance, interrelation,

and suggestions for future work.

4,1 Deterministic MMAC Conclusions

In the deterministic work, three approximations were investigated,
each for a different class of MMAC systems. In the case of the full
memory MMAC systems, Greene's approximation was found to be in error when
imp]eﬁented. The normllf_\]l2 was too conservative when used in the approxi-
mation, the rates of growth of the states were predicted incorrectly.

In this approximation, ||I_Al|2 was not used as a bound, but it was used to
reflect the rate of growth of the states. It was found that the quasi-
norm HQHE more accurately approximated the rate of growth of the states.
In future use of this approximation, replacement of'||l_\||2 by’ll@HE will
result in a more accurate approximation in most cases. In ana1yzing the
accuracy of the approximations for deterministic MMAC systems, this re-
placement has been made.

For the cases that have been considered, the accuracy of the modified
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approximation is quite good. The stability indications are accurate, as
are the predictions of the rates of grthh or decay of the magnitudes of
the peaks. The trends in the length of the interval between switches in
the probabi]ity are also accurately predicted.

A]thbﬁgh the accuracy was good for the simple cases examined, it
might be worse for higher order stiff systems. For the more complex systems,
this modified approximation may also be conservative. The predicted rates
of decay and growth may be such that a prediction of instability may be
made for a system that is stable. This is the same type of error that
was found for the approximation using ]|5||2.

The second approximation was one derived for the response of fhe
Timited memory MMAC system. This approximation was derived in a manner
similar to Greene's, and exhibited similar accuracy for unstable and neu-
trally stéb]e hyperbolic MMAC systems. For these two cases, the responses
were hyperbo]ié oSci]]ations, but at a higher frequency. The approximation
correctly predicted the stability (unstable, and neutrally stable) of the
systems. Although the prediction of high frequency was qualitatively cor-
rect, the actual switching frequency exhibited in the simulations was
somewhat sTower than the predicted frequency.

For the hyperbolically stable MMAC system, the prédiction of the
approximation for this limited memory case was in error. The approxima-
tidn predicted an asymptotically stable response, when the simulated
response was neutrally stable. Insight into the response of the limited
memory MMAC was gained in determining the cause for this erroneous pre-

diction.
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The magnitudes of the states decrease with time for the full memory
hyperbolically stable MMAC system. With large initial conditions, this
js also the case for the Timited MMAC, during the initial time 1ﬁterva1.
In the limited memory case as the magnitudes of the states decrease to
zero, the probability (P(k)) goes to %. If the linear system for P(k)
fixed at % is unstable, the magnitude states will grow, driving P(k)
away from %. Consequently, the system will have a 1imit cycle response.
This is one explanation for response observed in the simulations. In
addition the derivation of the approximation for the 1imited memory MMAC
system assumed that P=0 or P=1. In hyperbolically stable system
1imited memory response outlined above, it is observed that P takes on
values around %, violating the assumption used in the derivation. With
this assumption, the possibility of a 1imit cycle response described
above is ignored, so the approximation will be in error for this case.

As a check on the results presented for this last case, a modified
control was used for the MMAC system. This maximum 1ikelihood control is
equivalent to ensuring P=0 or P=1. This modification does not change
the approximate analysis for the limited memory MMAC; the maximum likeli-
hood control guarantees the switch-1ike behavior of the probabilities
assumed in the approximate analysis. In contrast to the limit cycle
behaviof exhibited earlier, this maximum likelihood control MMAC system
had an asymptotically stable response. For this case, the predicted rate
of decay of the states was accurate. Again the qualitative prediction
of high frequency switching in the probability was correct, although the

actual rate was somewhat slower than predicted.
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This analysis of the limited memory MMAC system has brought to Tight
an interesting effect of modifying the control used in the a]gofithm. If
one of the models matches the actual plant dynamics, the full memory MMAC
will lock on to that model. If none of the models match, the Timited
memory may db better, because the full memory MMAC may lose its adép-
ability in'locking into one model. In limiting the memory, the smoothing
of the probabilities in the full memory MMAC is sacrificed for adaptability.
Using the maximum likelihood control in the T1imited memory MMAC improves
the stability of the overall system in some cases. How well this sta-
bilizing property of the maximum 1ikelihood control MMAC applies in
more complex systems needs to be investigated.

The 1a$t approximation derived, was for the case where constant
biases in the control inputs were allowed. The approximation for this
class of problems was founa to have good accuracy in predicting the switch
times and the magnitudes of the peaks. In the case where the biases are
zero this approximation reduces to Greene's approximation. The effects
of the mismatched models was accentuated by the biased inputs. In the
approximation, the bias effects dominated some effects which led to the
errors in the approximate analysis in the non-biased case.

The response of the hyperbolically stable MMAC for this case of
biased inputs was found to be unstable. Hyperbolic stability depends on
a tenuous balance of alternately stabilizing and destabilizing the states,
which the biases overwhelm. Consequently, the magnitudes of the peaks
grow with time. This instability indicates a need for a stronger sta-

bility condition for this case. An equation for determining the stability
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was derived, but no simple condition, similar to Greene's for the unbiased

case, has been obtained from this equation.

4.2 Stochastic MMAC Conc]usions

In the study of the stochastic MMAC systems, a two-fold approach was
used to gain insights into the stochastic response. A RIDF approximation
was derived, and checked against cases representative of the various re-
sponses of the class of MMAC systems studied. In checking this approxi-
mation,‘further insights into the characteristic responses of the MMAC
were gained. In parallel with the RIDF work, some other, more exact
ana]ysis Ted to some interesting results and insights.

In checking the RIDF approximation, five cases were used, each‘rep-
resenting different types of deterministic system behavior. In the cases
where the RIDF predicted a stable response for the first two moments of
the MMAC states, the predicted values were very accurate when compared
to Monte Carlo simulation results. Only in one of the five cases was
there a discrepancy between the qualitative prediction of the RIDF and
the Monte Carlo simulation.

In checking the response of the first two moments of the log 1ike1i-
hood ratio, a(k), it was conjectured that the RIDF does not accéunt for
the effects of higher order moments in the distribution of a(k). These
effects can be included using a method similar to the modified CADET
investigation by Geier [10]. Future work in this area might lead to an
improvement in the qualitative predictions of the RIDF. |

As mentioned above, the RIDF approximation was in error qualitatively
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for one case. For this case the RIDF predicted the system was unstable,
when the corresponding simulations indicated the system was stable. In-
vestigating caﬁses for this erroneous instability prediction led to sig-
nificant insights into the stochastic MMAC system. For a specific class
of MMAC systems, those where the expected value of a(k) is constant, it
‘was determined analytically that the variance of alk) grew without bound,
implying that the corresponding density of P(k) is singular at P(k) =0
and P(k) =1. Approximate analysis of the density of a(k), where the
mean value fs not constant, also leads to this conclusion. The relative
weights of the delta functions at zero and one, for the limiting density
of P(k), are determined by the relative rates of growth of the mean and
variance of a(k). The unbounded growth of the variance of a(k) is not
predicted by the RIDF. It is conjectured that implementing Geier's [10]
modified CADET, mentioned earlier, in the RIDF to inc]ﬁde higher order
moments of oa(k) will improve the accuracy of the predictions of the
variance of a(k).

The stable probability interval is an important factor in determining
the stability of a stochastic MMAC system. Since the density of P(k)
approaches a'singu]ar density for a large class of MMAC systems, whether
the stable probability interval includes the singular points of the
Timiting density or not clearly plays a crucial role in détermining the
stability of the system.

The endpoint inclusive stable probability interval MMAC system is
the only case where the RIDF prediction of instability was in error. The

prediction of a finite varianée for a(k) disagrees with the analysis
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indicating the variance should be unbounded. An approximation to the
drift in the expected value of a(k) indicates that the expected value of
a(k) is driven toward the stable end point. Consequently, the weighting
of the delta function at the stable end point will be much greater than »
the weighting at the unstable end point, in the limiting density of P(k).
The relative length of time that P(k) stays at the stable end point versus
the unstable end boint will determine the stability of the system. The
relative Iength of time spent at each end point is dependent upon the
time correlation of P(k), which, in general, has not been derived. In-
dependent of correlation of P(k), the much lower probabi]ity associated
with the unstable end point leads to the conjecture of stability for this
end point inclusive MMAC system.

It is conjectured that the internal stable probability interval MMAC
systems are unstable. In the deterministic equiva]eht of these stochastic
systems, Greene‘s mixed case MMAC, P(k) will converge to a value within
the stable interval. In the stochastic case, P(k) is driven outside the
stable interval, as is seen in the limiting density of P(k). The singular
points of the limiting density lie outside the stable interval, implying
that the system should be unstable.

One possible mechanism for stability for systems with interna] sta-
bility intervals is stochastic hyperbolic stability, a stochasfic analog
of Greene's deterministic hyperbolic stabiiity. Instead of the precise
switch-1ike behavior of the probabliity, observed in the deterministic
hyperbo]ic system, P(k) would have a stochastic switch-like behavior. The

stability of this system would depend on the time correlation of P(k).
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Stochastic hyperbolic stability may also be possible for Greene's hyper-
bolically stable case, but it has not been observed in simulations of
hyperbolic or internal stability interval MMAC systems.

For the detefministic hyperbolically stable MMAC system, introduction
of biased inputs (set point MMAC) was sufficient to destabilize the sys-
tem. It is possible that the stochastic end point inclusive MMAC sysfem
may also be destabilized by biased controls. The biases may drive a(k)
away from the stable end point, 1.e.,\the biases may overcome the drift
in a(k) toward the stable endpoint. It is possible that this may lead to
an unstab]é system, but this effect has not been investigated in this work.

As menti