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Abstract

This thesis addresses the problem of segmenting an image into homogeneous regions
bounded by curves on which the image intensity changes abruptly. Motivated by
large problems arising in certain scientific applications, such as remote sensing, two
objectives for an image segmentation algorithm are laid out: it should be computa-
tionally efficient and capable of generating statistics for the errors in the estimates of
the homogeneous regions and boundary locations.

The starting point for the development of a suitable algorithm is some previ-
ous work on variational approaches to image segmentation. Such approaches are
deterministic in nature and so provide an inappropriate context for discussing error
statistics. However, many variational problems lend themselves to Bayesian statis-
tical interpretations. This thesis develops a precise statistical interpretation of a
one-dimensional version of a variational approach to image segmentation. The one-
dimensional segmentation algorithm that arises as a result of this analysis is com-
putationally efficient and capable of generating error statistics. This motivates an
extension of the algorithm to two dimensions.

A straightforward extension would incorporate recursive procedures for computing
estimates of arbitrary Markov random fields. Such procedures require an unaccept-
ably large number of multiplications. To meet the objective of developing a com-
putationally efficient algorithm, the use of recently developed multiscale statistical
methods for segmentation is investigated. This results in the development of seg-
mentation algorithms which are not only computationally efficient but also capable
of generating error statistics, as desired.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Many imaging applications require segmenting an image, often corrupted by noise,

into homogeneous regions bounded by curves on which the image intensity changes

"abruptly. In some cases, the principal interest is in obtaining an estimate of the

boundaries. In others, the primary goal is to obtain an estimate of the homogeneous

regions, which provides one with an estimate of the underlying phenomenon being

imaged without undesirable smoothing across edges. Currently, the process of mark-

ing the boundaries is often done painstakingly by hand. To reduce the tedium of

component of image analysis, one would like to develop an algorithm that would

allow a computer to automatically generate estimates of the boundaries and of the

homogeneous regions. For many scientific applications, such as remote sensing, one

is interested in obtaining not only the estimates but also statistics for the errors in

the estimates.

There have been many approaches to the problems of edge detection and segmen-

tation [9, 11, 13, 14, 17, 18]. Of interest here are methods based on models that lend

themselves to relatively simple statistical interpretations. In particular, the start-

ing point for the work in this thesis is a variational formulation of the segmentation

problem. A variational approach to a general problem poses it as the minimization

of a functional over a class of admissible functions. In a segmentation formulation,:

the class of admissible functions are segmentations (boundaries and homogeneous re--

gions), and the functionals incorporate some criteria for what constitutes a good seg-
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mentation. One .Can prove that minimizers of the functionals posed for segmentation

exist and have many nice mathematical properties that are intuitively appropriate

for a segmentation. However, this deterministic approach to segmentation does not

lend itself to a discussion of error statistics. Problems formulated in the variational

context can often be rewritten into equivalent Bayesian estimation problems. Such

problems are specified by a prior model and a measurement equation. In this context,

it is natural to discuss the statistics of the errors in the estimates, as one would like

to do in the segmentation problem.

The Bayesian estimation problems that arise from a study of variational problems

typically involve the use of a particular classof priors,, Markov random field priors.

Unfortunately, the use of such priors leads to estimation algorithms that require an

unacceptably large number of computations to generate estimates and error statistics.

Previous work has addressed the use of another class of prior models, multiscale

prior models, to formulate problems which are often posed in a variational context

[6, 8, 15, 16]. The use of multiscale priors leads to computationally efficient estimation

algorithms that generate good results. This thesis investigatesthe use of multiscale

models to develop a segmentation algorithm that is

0 computationally efficient (constant computational complexity per pixel)

* and capable of generating error statistics.

1.1 Contributions

Shah has proposed a particular variational formulation of the segmentation problem

[20] whose structure is amenable to a statistical interpretation. One of the con-

tributions of this thesis is, providing a pre�cise,,:statistical interpretation of the one-

dimensional version of Shah's variational approach to segmentation. This, in turn,

leads to an exploration of various statistical properties of the segmentation formula-

tion. Developing statistical interpretations of variational problems is not new. How-

ever, the particular variational approach to segmentation addressed in this thesis has

14



,not been previously cast into a statistical framework.

The other principal contribution of this thesis is the incorporation of multiscale

models into an image segmentation algorithm. A variety of multiscale models have

been created for other problems in computer vision such as surface reconstruction

[6, 8]. Two such models are used to formulate two different image segmentation al-

gorithms. Although neither of the models are developed from scratch, one of them

requires some modifications so as to be appropriate for use as a model in a segmen-

tation algorithm. Both multiscale models are proven useful for segmentation.

1.2 Organization

Chapter 2 provides some background for the subsequent chapters. It introduces

the use of variational methods for general problems in computer vision and presents

Shah's variational approach to segmentation that forms the basis for most of the work

in this thesis. This is followed by a discussion of the relationship between variational

:and statistical approaches to problems in computer vision. Finally, an overview of

multiscale models is presented in the context of statistical approaches to computer

vision problems.

Chapter 3 develops a statistical interpretation of the one-dimensional version of

the variational approach to segmentation presented in Chapter 2. A set of estimation

problems associated with this variational approach to segmentation is derived. It

forms the core of a one-dimensional segmentation algorithm. Some numerical results

are presented in order to analyze the performance of this algorithm. These include

some typical examples and some Monte Carlo simulations designed to characterize

the parameters of the algorithm and the statistical properties of the estimates of the

edges and homogeneous regions of an image. The chapter concludes with some simple

calculations which further develop a physical understanding of the parameters in the

algorithm as well as examine how the parameters affect the convexity of the functional

in Shah's variational approach to segmentation.

Chapter 4 derives two multiscale image segmentation algorithms. The algorithms

15



are similar in that the structure of both is motivated by that of the one-dimensional

segmentation algorithm derived in Chapter 3. However, the two multiscale image

segmentation algorithms are also significantly different. They have slightly different

structures and make use of different multiscale models. As already mentioned, the

models used are simple extensions of ones developed for use in the problem of surface

reconstruction [6, 8]. Numerical results are shown for the algorithms segmenting both

synthetic images and satellite imagery of the Gulf Stream.

Chapter 5 summarizes the results and discusses possible avenues of further re-

search.

_6
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Chapter 2

Background

This chapter presents some of the background material assumed in subsequent chap-

ters. First, a brief introduction to variational calculus is presented through a dis-

cussion, of the thin membrane problem in mathematical physics. It is noted that the

variational formulation of the thin membrane problem can be used to low-pass filter

an image. This leads to a discussion of variational approaches to problems in com-

puter vision.'In'particular, Shah's variational formulation of image segmentation is

presented. It is important because it underlies all of the work on segmentation appear-

ing in later chapters. The section on variational methods leads into a discussion of

the relationship between statistical and variational approaches. The thin membrane

variational problem is revisited in the context of computer vision, and a statistical

interpretation is presented. This motivates statistical approaches to computer vision

problems. Details for a specific statistical framework for addressing computer vision

problems, the multiscale modeling and estimation framework, are then discussed. Fi-

nally, there is a brief overview of previous work which successfully demonstrated the

utility of the multiscale framework for addressing problems in computer vision. It is

this work which has strongly motivated the investigation of this thesis into the use of

multiscale statistical methods for image segmentation.
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2.1 Variational Approaches to Image Segmenta-

tion

Variational calculus is a collection of mathematical tools for setting up and solving

an optimization problem over a function space. The centerpiece of such a problem is

a cost functional, a scalar mapping from a set of candidate functions. The functional

captures the essence of a problem and, essentially, orders the candidates by the criteria

implied by the form of the functional [17]. A classic example is the thin membrane

problem in physics. In this case, one desires to describe the shape of the interior of

a thin membrane that is pinned down on the boundary into a particular shape. One

can derive a functional
IVf 12E(f dxdy (2.1)

which has the physical interpretation of representing the total potential energy of the

R2membrane whose surface is given by the scalar function f over [5]. Since natural

phenomena tendtowards states of lowest potential energy, the candidate function

which minimizes (2.1) will describe the shape of the membrane very well. Notice that

the integral in (2.1) incorporates the physical characteristics of the membrane and

hence penalizes large gradients in the surface.

Thus, a related functional can be used to process noisy images. If one defines

1(g f)2 IVf 12E(f) (r- + A )dxdy

r- 1IIg f 112 + A IIVf 112 (2.2)

where g is the raw image intensity data, r and A are positive constants, and II de-

2notes the standard L -norm of functions, then the candidate function that minimizes
er8i0n o e ra-

(2.2) is a':smboth6d'_ f th- Th" v" w image. e inierpre ation o the terms in this

functional are as follows: the first term penalizes deviations from the original image,

and the second term ensures that the minimum of (2-2) is smooth. The degree of

smoothing depends on the relative, weighting of the, data and �-gradient, terms. �-"�-,,The
r-71 Wag

larger�'A/ the- smoother, the results. Pi�&6s8ing� ah� i o'bi thi '' ay'is equivalent
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to acting on it with a low-pass filter. The result is a good method to remove noise

from an image, but the drawback is that edges are blurred. One can modify the

membrane problem to avoid this by introducing edge terms which prevent smoothing

near the edge. Such functionals can be used to produce a segmentation.

For precisely this purpose, Mumford and Shah [18] proposed the following func-

tional:

E(f, B) - r- 1(g _ f)2 dxdy + A jVf 12 dxdy + vJBI (2.3)
f f9 J fQ-B

where Q is the domain of the image, f : Q -* R is a piecewise smooth approximating

surface, B is the union of segment boundaries, and JBI is the length of B. The

edge term, B, appears in two critical places. It prevents smoothing at edges by its

introduction into the domain of the second term, but to counteract this, there is

also a third term, which places a penalty on the amount of edginess in the image.

The constants r-', A and v control the degree of interaction between the terms and

ultimately determine the edginess of the final segmentation. The functional (2.3) has

many nice mathematical and psychovisual properties, some of which are discussed

in [17]. The disadvantage 'of 'using this functional for segmentation is that actually

computing minimizers is very difficult, in large part because of the discrete nature of

the edge term.

Variants of this work have been proposed by Ambrosio and Tortorelli [1], [2]. They

attempt to solve some of the computational difficulties associated with computing

minimizers of (2.3) by constructing a family of simpler functionals whose minimum

points converge to a minimum point of (2.3). One such family of functionals is

at the core of an image segmentation algorithm developed by Shah [20], which has

been extended and implemented by Pien and Gauch [19] among others. For this

particular family of functionals, the computational difficulties associated with an edge

set term are circumvented by introducing a continuous-valued edge function instead.

A member of this family of functionals, parameterized by p, is of the form

(g 1,7 f 12 (I 82

f)2� 8) 2 + (P 1,7 812E(f, s) f,,(r + A _))dxdy, (2.4)
2 P
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where f Q ---+ R is a piecewise smooth approximating function, and 8 : Q --+ [0, 1]

is an edge function, indicating the presence of an edge where it takes values close to

one. The terms in a functional of this form have intuitive interpretations, similar to

those in (2.3). The first and second terms constrain the approximating surface f to

match the data as best as possible and also to be smooth in those places where S is

close to zero, indicating the lack of an edge. The third term places constraints on the

amount of edginess in the image and is strongly related to the penalty on the length

of the boundaries appearing in (2.3). The form of the edginess penalty on s is based

on work done by Modica and Mortola and is described by Ambrosio and Tortorelli

[2]. The main property of (2.4) that Ambrosio and Tortorelli prove is that minimum

points of (2.4) converge to a minimum point of (2.3) as p --+ 0.

The general approach Shah and Pien use to minimize (2.4) is coordinate descent.

A coordinate descent algorithm consists of alternating between fixing one coordinate

while minimizing over the other and vice versa. An example of using this technique to

find the minimum of a simple surface is diagrammed in Figure 2-1, in which asterisks

mark the path of the algorithm. Notice that at each iteration, the algorithm moves

to a location strictly better than the previous one. Another important characteristic

of such coordinate descent algorithms is that, in most cases, they will converge to

a local minimum. Now, coordinate descent of (2.4) consists of alternating between

fixing s and minimizing

Es (r -1(g _ f)2 + A117f 12(1 8)2 )dxdy (2.5)

over possible f and fixing f and minimizing

2
12(1 V 8Ef - 4(AIVf 8)2 + -(plVsl2 +,-))dxdy. (2.6)

2., p

over possible s. The intuition behind these two problems is as follows. One would

like to obtain an edge map by minimizing Ef over possible edge functions 8, for a

fixed function One can't estimate the edge function s directly froffi�,g b ause
T61"§n1b6th g, one minimiz

-it is t 'pically "noisy:, "needs to' 46�`k�othe'd'.` es E,
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3,

2,
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0

.5

0
-0.5 -0.5

Figure 2-1: An example of coordinate descent on a simple surface.

with respect to f for a fixed current estimate of s, and then, one uses the resulting

smoothed approximation f to arrive at a new estimate of s by minimizing Ef. Based

on empirical evidence, Shah [20], and Pien and Gauch [19] have noted that this

descent scheme converges to a reasonable solution and that the results are

not significantly affected by the initial condition or whether one starts by estimating

I or s. Unfortunately there are, as of yet, no mathematical results concerning the

convergence of this method, but the indication is that it, at the very least, converges

to a local minimum which serves as a good segmentation.

2.2 Multiscale Estimation Framework

Many functionals that are interesting for computer vision purposes are related to

statistical estimation problems. For instance, consider the discrete form of (2.2),

E(f r-'I Ig - fj 12 + AIILf 112, (2.7)

where f and g are elements in a finite dimensional real vector space, II represents

the Euclidean norm, and L is a linear operator. Notice that this' framework includes
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the case where f and g are vectors consisting of a lexicographic ordering of pixels in an

image and L is a matrix that operates by taking first differences of nearest neighbors

as an approximation of a derivative. In general, the function f that minimizes (2.7)

is also the solution to finding the Bayes least-squares estimate of a process f whose

measurement equation is

g - f + VT V (2.8)

and whose prior probabilistic model is given by

VALf -w, (2.9)

where v and w are independent white Gaussian random vectors with identity covari-

ance. Thus, one can view the problem at hand from the viewpoint of optimization or

of statistical estimation.

The main advantage of the statistical formulation is that it casts the problem

into a probabilistic framework in which it is natural to ask questions concerning the

average quality of the results. This is especially relevant in many scientific applications

such as remote sensing, in which one is interested in estimating the size of the errors

in the results as compared to some underlying truth. Estimating the magnitude

of the errors is natural in the Bayesian statistical framework. For example, if one

were interested in forming a smoothed version of a noisy image, one could compute

a Bayes least-squares estimate of the image using the model equations (2.8), (2.9).

Then, the variance of the error for the estimate can be 'Used to assess the quality

of the smoothed image. The merits of a statistical formulation are not restricted to

error statistics. Viewing a problem in a probabilistic context can also help guide one's

choice of a specific operator L that leads to a prior model (2.9) which is appropriate

for a specific application.

One particular class of operators are those associated with multiscale tree models

[4]. Rather than describe the structure of the matrix associated with these operators,

one often describes them more simply by writing down recursive equations that define,

the prior probabilistic model. The recursive equations for the stochastic process f are
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Figure 2-2: In the notation of this thesis, if v is the index of some node, v,�Y7 denotes
the parent of that node.

written in terms of a tree. Each node can have an arbitrary number of children, but for

applications considered in this thesis, the number of children is constant throughout

the tree and is either two or four per node. An abstract index v is used to specify

a particular node on the tree, and the notation v�y- is used to refer to the parent of

node v (see Figure 2-2). The process that lives on the tree has a state variable f, at

every node and is defined by the root-to-leaf recursion

f, -_ Af,;-y + Bw, (2.10)

where the wv and the state fo at the root node are a collection of independent zero-

-mean Gaussian- random variables, the w's with identity covariance and fo with some

prior covariance. The A and B matrices are deterministic quantities which define the

statistics of the process on the tree. Observations g, of the state variables have the

form

9V = CVfV + VV (2.11)

where the v, are an independent collection of Gaussian random variables, and the

matrices Cv are deterministic quantities which specify what is being observed.

A rich class of processes can be modeled within this framework. In particular,

Luettgen demonstrates that given any one-dimensional Gauss-Markov process, there

exists a multiscale one on a binary tree where the finest-scale nodes have the same

statistics as the specified Gauss-Markov process [15]. The same is true for two-

dimensional Gaussian Markov random fields but using quad trees instead. Such

Markov processes are important because they include those processes that arise when

L in (2.9) ha's the structure' of a local difference operator, as would be" natural to use
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when approximating a differential operator in a continuous formulation. Thus, the

class of multiscale models encompass a wide variety processes that arise from using

local difference operators in the plane to approximate derivatives, but the class is

even larger.

Now, given a prior for a stochastic process and some data, one of the key tasks

one would like to accomplish is to compute the Bayes least-squares estimate of the

process. For the case in which the prior model is multiscale, Chou has derived a

recursive estimation algorithm that is computationally efficient [4]. The number of

multiplications required to compute the estimates and error variances is proportional

to
T63

v (2.12)
VET

where 'T is the set of nodes in the tree and 6v is the state dimension at node v. In the

case of N-point one-dimensional Gauss-Markov processes, the corresponding exact

multiscale tree models developed by Luettgen have a fixed state dimension 6v = 3

for all v T for all N > 3. Thus, the multiscale estimation algorithm performs a

number of multiplications proportional to

3
v6 27 (2.13)

vET vET

27(N - 1). (2.14)

So, the algorithm is essentially O(N), which is fantastic.

For an N x N two-dimensional Gauss-Markov process, the corresponding multi-

scale tree model has a state dimension 6, 2m-'(v)-l - 0 where M - 1092 N, a and

are constants, and m(v) is the scale corresponding to node v with zero being the

coarsest and M - I being the finest. The multiscale estimation algorithm performs a

nu, mbe'r'of 'mu tip icati6ns prop rtionaf to

M-1
3 2m6V (.2m' ' _'3)32 (2.15)

vEIT M=0
3 2 2 03'

OZ 3 '3 6/3 2) 2 2_-(N N _ N 1092 N+ N N) -�-(N 1)�2.16)
4, 4 2
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'Hence, the multiscale estimation algorithm requires O(N') multiplications to compute

estimates and error variances of a two-dimensional Gauss-Markov process. As it turns

out, the multiscale estimation algorithm computes estimates for such processes with

optimally few multiplications in the order of magnitude sense. Recursive estimation

algorithms, such as the multiscale estimation algorithm, solve a system of equations

essentially by Gaussian elimination and back substitution. For the type of equations

that arise when estimating an N x N Markov random field, one can not solve the

3)system by such methods with fewer than O(N multiplications [10]. This is precisely

the order of the number of multiplications required by the multiscale algorithm.

For problems in computer vision, one would like to do better than O(N'). Specif-

ically, one would like to develop algorithms that are O(N') so that they have con-

stant computational complexity per pixel. Now, the O(N') lower bound is applicable

��only when applying recursive algorithms to estimation problems involving arbitrary

Gauss-Markov random field priors. In order to circumvent the lower bound, it is

quite common to use iterative algorithms to compute estimates. The advantage of

''such techniques is that they usually calculate estimates more efficiently than recursive

techniques. The disadvantage of iterative algorithms is that they generally do not

compute error variances as well. Thus, one can not use iterative methods in a seg-

mentation algorithm and expect to meet the objective of computing error statistics

set out in the introduction. However, there also has been much work investigating the

use of other prior models and employing recursive algorithms to compute estimates

and error variances efficiently for problems in computer vision.

Recall that the Gauss-Markov random field model arose as a result of using sim-

ple difference schemes to approximate the derivatives in the continuous variational

-formulations. However there is no particular reason why this is the right thing to do.

One may be able to find other models which lead to less computationally intensive

recursive estimation algorithms and have characteristics appropriate for a computer

vision problem. In particular, there recently has been much work on the use of mul-

tiscale prior models with bounded state dimension (6, -< 6 Vv, VN, for some fixed

6). From (2.12) one notes that in this case the multiscale, estimation algorithm can
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Figure 2-3: An example of using Paul's multiscale� models to perform surface recon-
struction.

calculate the estimates and error statistics with O(N 2) multiplications. The question

that remains is whether one can find such models which are appropriate for computer

vision problems.

Luettgen and Fieguth have addressed this issue and concluded that there are

multiscale priors which can be used to obtain results similar to the ones obtained by

minimizing functionals associatedwith the optical flow [16] -and surface reconstru' ion,

problems, [6]. As an exampk of this approached considerlhe problem of reconstructing
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a surface from noisy measurements. The functional typically associated with this

problem is

E(f) ((g - f)' + ce(p' + p' + q' + q') +,3(lVf 1 2) (2.17)X Y X Y

where g is a data term, p - 9f 1,9x, q = 9f 1,9y, and the subscripts denote second

partial derivatives with respect to the indicated variable. Notice that the difference

between (2.17) and (2.2) is the introduction of second derivatives. The second deriva-

tive term represents the potential energy of a deformed thin plate, as opposed to a

thin membrane. Fieguth developed a multiscale prior with constant state dimension

which can be used in place of a Markov random field involving local difference opera-

tors that mimic first and second derivatives. An impressive result using this model to

reconstruct a smooth surface from measurements which contain unit intensity white

Gaussian noise is illustrated in Figure 2-3.

-2.3 ,�Concluding Remarks

The background material presented in this chapter motivates the flow of the remainder

of the thesis. The next chapter starts with Shah's variational approach to image

segmentation and develops a statistical interpretation of it. This interpretation is

then used to guide the development in Chapter 4 of an image segmentation algorithm

which calculates efficiently both edge and piecewise smooth image estimates and also

the error variances for those estimates. The algorithm is formulated in a multiscale

framework according to the precedent set by Luettgen and Fieguth. Based on their

promising results, one expects the final image segmentation algorithm to perform

well, and this is what one observes.
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Chapter 3

Segmentation in One Dimension

The problem of deriving a multiscale algorithm to segment images is a difficult one

and needs to be simplified as a first step. A natural approach is to reduce the com-

plexity of the problem by reducing the dimension of the domain involved. Rather than

segmenting images, one could try segmenting one-dimensional signals. This problem

is considerably easier for many reasons. First of all, one desires that the edge sets of

images are connected in some way, but'the'edge �6ts'of signalsdo not need to satisfy

this restriction. Thus, segmenting a signal is a fundamentally easier problem. In ad-

dition, computation is not as much of an issue. Many algorithms including multiscale

ones can do the relevant computation and have a complexity that is proportional only

to the number of points in the signal. Even though this one-dimensional segmentation

problem is much easier than the image segmentation problem, there is much that can

be learned by considering this simplification, both from deriving the algorithm and

analyzing its results and properties.

3.1 The Estimation Problem

In order to use multiscale statistical methods to perform segmentation based on the

variational formulation of Shah introduced in the last chapter, one must first derive

related estimation problems. Since these problems are formulated in, a, continuous
Space, on ned on the

e should first analyze the estimation:. problems� for, functions defi
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real line. This will give one an idea for the form of the statistical formulation and the

intuition behind it. In order to implement the algorithm using standard multiscale

techniques, one needs a problem for which one estimates sampled functions, however.

The discretization of the signal and edge functions must be done carefully for a

variety of reasons. The discussion of both the continuous and discrete problems in

one-dimension yields considerable insight into the original segmentation problem and

forms the basis for a one dimensional segmentation algorithm.

3.1.1 Continuous version

In one-dimension, equation (2.5) becomes

E,(f) - 4(r-'(f - g)' + Al dx 12 (I - s)'dx. (3.1)

The problem of minimizing this functional with respect to f, for a fixed function 8

that is less than one, is equivalent to the problem of estimating f given a prior model

described by

g (X) - f (X) + VrV f (X) (3.2)
df (x)

dx - (I - S(X))-v/_AW f (X) (3.3)

where vf (x) and wf (x) are independent Gaussian white-noise processes with unit

intensity. Equation (3.3) admits a very nice intuitive explanation. Where the edge

function s -_ 1, the multiplier of the process noise I / (1 - s) is very large. Thus, at these

locations, the prior model for the underlying function f allows for increased variability,

and a least-squares estimator will allow large jumps to occur in the estimate of the

function f. This is exactly what one wants the estimator to do at edge locations.

Casting the minimization over the edge function s for a fixed piecewise smooth

function f into a statistical framework is more difficult because of the constraint

placed on the edge process that it lie between zero and one. If one removes this

constraint, the new unconstrained problem is easier and not much different from the
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constrained one. Minimizing (2.6) is equivalent to minimizing

df 2 8) 2 + (PI 12 +Ef(s) - f "))dx (3.4)
dx 2 dx P

with respect to s. By completing the square, one can rewrite the integrand as

(a + b) (-y _ _Y2 + (8 _ _Y)I) + CI dx 12 (3.5)

where a(x) = AI df 1dx 12, c - vp12, b - vl2p, and -y(x) = a(x)l(a(x) + b). Thus, the

problem of finding the minimum over s of (3.4) is the same asfinding the minimum

of

Ef (s) = 4(a + b)(S - -Y)2 + CI ds(x) 2 dx. (3.6)
dx

This leads one to an estimation theoretic problem described by the pair of equations

-Y W 8 W + V, (X) (3.7)
ra(x) + b

ds(x) 7W, W (3.8)
dx C

where ws(x) and vs(x) are independent Gaussian white-noise processes with unit

intensity. Notice that -y plays the role of an observation of the edge function. This

function takes on values close to one where the derivative of the smooth function f

is large and zero where the derivative is small. Since one declares edges at locations

where the edge function s -_ 1, the form''of -y'miakes intuitive sense. Observe also that

the range of -y lies within [0, 1). As a consequence, the first term in (3.6) provides
ithi [0, 1]. This is desirable

an increased penalty for functions s that do not stay w n

because a solution to the unconstrained minimization of (3.6) that lies within [0, 1] is

an optimal solution of the constrained problem. Asit tfiriis'dut; this is often the case,

as discussed in Section 3.2, which presents results for the segmentation algorithm that

is formed by alternately solving discrete versions of the estimation problems specified

by (3.2), (3.3) and (3.7), (3.8).
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3.1.2 Discrete version

The first attempt at discretizing (3.2), (3.3) and (3.7), (3.8) was to discretize each

estimation problem separately without much regard as to how they interacted. This

approach did not yield the desired results. To understand why, recall that provided

these estimation problems yield estimates that satisfy the constraint 8 E [0, 1], they

are equivalent to the variational minimization problems that result from using coordi-

nate descent to minimize the functional (2.4). Thus, the process of alternately finding

estimates of the piecewise smooth function f and the edge function 8 should converge

to a local minimum. The discretized estimation problems that were formed, however,

did not. The cause of this problem was the fact that the pair of discrete estimation

problems were not equivalent to estimation problems associated with the coordinate

descent of a discrete functional. In order to ensure convergence, one merely has to be

very careful about how one -defines the sampling grids and the difference operators

used to approximate derivatives on those grids.

The natural approach is to define the samples to be regularly spaced in a closed

interval on the real line and to use a first order difference operator to replace the

derivative. This can be written most simply by using the notation of real vector

spaces. For example, a collection of n regularly spaced samples of the function f (x)

is written as a vector f E R n By defining the (n - 1) x n matrix

-1 I 0 0 ... 0 0

0 -1 I 0 ... 0 0
L (3.9)

0 0 0 0 -1 1

the first difference of f C R' can be written as Lf. Notice that if f G R, then

n-1Lf ER . Since the edges are defined in terms of this difference operator, one can

not use the same number of sampling points for the piecewise smooth approximating

function f and the edge function s. The solution is to mesh the sampling grids for

these two functions: samples of the edge function occur only between samples of the
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Figure 3-1: An example of the sampling grids that would be used for the piecewise
smooth function f and edge function s.

piecewise smooth approximating function. This is diagrammed in Figure 3-1. This

adds a little bit of complexity, but it is necessary in order to maintain consistency.

Keeping this sampling framework in mind, one can rewrite the functional (2.4) in

discretized form as

n n-1 1', n-2 n-1
E(f, s) - r- Eyi gi)2 + A E(I Si)2(fi+l fi)2 + _(P 2+ 2).

2 ii=1 i=1 P
(3.10)

Now, the problem of fixing s and finding the f that minimizes (3.10) is equivalent to

finding the f that minimizes the discrete functional

n n-I

E,(f) r-1 gi)2 + A(l Si)2(fi+l fi)2. (3.11)

I IXI12 XTA slightly more compact form can be written by using the notation x and

I IXI12 - XTWX for vectors x E R nand matrices W C- R nIn Now, for an edge processW -

s E R n-I define the diagonal matrix

S (3.12)

Sn-1)

Then, (3.11) simplifies to

E�'(f) Ilf gII2_lj 12
r + AIlLf I STS, (3.13)

Finding the minimum of E, for fixed invertible S is equivalent to finding the least--
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squares estimate of f assuming the following measurement and prior model:

g = f + ,,Fr V f (3.14)

Lf = 1 S-IWf (3.15)
VA-

where vf and wf are independent Gaussian random variables with covariance I.

Likewise, the problem of finding the s that minimizes (3-10) for fixed f is the same

as finding the s that minimizes the discrete functional that can be written as

Ef (s) = Al ILf I J'TS +P(plILsl I' + (3.16)S 2 P llSll')

with only a slight abuse of notation that occurs since the matrix L has a different

dimension in each of the two terms in which it appears in (3.16) (since s is of dimension

one less then f).- As in the continuous case, one can arrive at a standard estimation

problem if one removes the constraints placed on the edge function S. Now, make the

substitutions c vp12, b = vl2p, and define the diagonal matrix

VT(L f )I �+b
A (3.17)

FA(Lf)(.-,) + b

and the vector
A(Lf),_2

A(Lf)2+b

ly - (3.18)
A(Lf)2

A(Lf)2 +b

This leads to the the problem of estimating s given the following measurement and

prior model:

-Y + A-Y (3.19)

Ls 1 Ws (3.20)
V/C
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where v' and w' are again independent Gaussian random variables with covariance

1. Combining this estimation problem with that described by (3.14), (3.15) yields an

algorithm that can segment well.

3.2 Results

Almost all of the pieces of the segmentation algorithm are in place, and it remains

only to put them together and discuss some of the implementation details. Using the

estimation problem formulations (3.14), (3.15) and (3.19), (3.20), one can directly

apply the results of [15] to obtain nearly equivalent multiscale recursive models. The

only difference in the models is that the standard multiscale recursive form requires

the specification of prior covariances Pf and Rs on the first samples of the piecewise

smooth function f and edge function s. However, the precise int erpretation of the

variational formulation as an estimation problem corresponds to viewing the initial

value as unknown, which is equivalent to a maximum-likelihood problem. One can

closely approximate the solution to this problem in the standard �multiscale framework

Sby setting the prior covariances Rf and R to large numbers. Given the resulting

multiscale model, one can use a recursive estimation algorithm [4] to estimate a

signal of length n with 0(n) multiplications. Using this multiscale estimation engine,

the segmentation algorithm involves alternately estimating the edge function S and

the piecewise smooth approximating function Enforcing the constraint on the

range of s has been ignored up till now, but one must incorporate the constraint in

the algorithm because estimating f requires that (I 'S)2 be well-behaved. A simple

Solution that proves adequate is to clip each estimate of the edge function so that for

some small c, s E [0, I - c]. With the introduction of the clipping step, one iteration of

the segmentation algorithms,, asdiagrammed. inFigure 3-2, is determined. The only

remaining two items to specify are how to start and when to stop. For all of the

examples in this section, the algorithm starts by estimating s using the data as an

initial estimate of the smooth function and the algorithm stops when the percent

"Change of the functional (3.10) falls below some threshold A. This threshold is the
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Figure 3-2: The one dimensional segmentation algorithm.

last of the four new parameters Rf R' E and A that have been added to the list

of parameters A, v, p and r, which are input to the one dimensional segmentation

algorithm. To illustrate the operation of the algorithm, some typical examples follow.

These, in turn, are followed by some Monte Carlo experiments designed to assess

quantitatively the performance of the algorithm.

3.2.1 Typical Examples

Figure 3-3 illustrates a segmentation for a synthetic example, using the parameters in

.-Table 3. L. The. data consists of a synthetic signal to. which white Gaussian noise with

unit intensity has been added. The synthetic signal is a a realization of a Gaussian

process described by (3.14), (3.15) for a small initial covariance of 0.001 and for an

exponential edge function so that is portrayed in the figure. The particular function

so used is natural in the following sense. If f were fixed as a step function with a

single large jump, then the estimates resulting from the estimation problem posed in

(3.19), (3.20) would be precisely so. Now, recall that where the edge function is ap-

proximately one, the variance of the process noise for the model of f increases. Thus,

a realization is more likely to have jumps at such locations, but not all realizations

will have jumps where the edge function is close to one. The particular realization

used in the example displayed in Figure 3-3 was chosen for having a noticeable jump

in the vicinity of the edge function's peak. The results shown are for four iterations,

at which point, the values of the functional (3.10) were changing by less than A -_ 1%.

No clipping was necessary during the course of the run, and thus, the results are true

.".;to. Shah's variational formulation. The final estimates yield a good segmentation.
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Parameter Value
A
b 10
C 100
r I
Rf 100

POS 100
6 1.0 X 10-4

A 1%

Table 3.1: Parameter values for the synthetic example in Figure 3-3.

The piecewise smooth function is a smoother version of the data, but the edge has

not been smoothed away, and the edge function has a strong peak at the location of

the edge. The results for the synthetic signal are good, but the signal used in this

example is matched to the algorithm by its construction.

A simpler more prototypical example is a step edge. Figure 3-4 displays results for

a noisy observation of a unit step, using the parameters in Table 3.2. The estimates

are shown after six iterations, at which point the percentage change in the functional

(3.10) has dropped below A = 1%. Once again, no clipping was necessary in the

iterative process. The final results are veryimpressive. The piecewise smooth function

is almost flat everywhere except at the location of the original step, and the edge

function marks the location of that step well. When considering the effect of noise on

the algorithm, the most useful quantity to consider is the ratio of standard deviation

of the observation noise to magnitude of the discontinuity. For this unit step example,

the ratio is'a moderately large 0.2. How the algorithm performs with respect to other

noise values is explored in Section 3.2.3. However, just from this one example, it

appears that the performance of the algorithm is -quite' good.

A The iterative scheme that generates these results converges quite nicely. Fig-

ure 3-5 displays.values of the functionalafter each iteration for the examples already

presented. One can observe not only the monotone behavior one expects from a coor-

dinate descent minimization but also a rapid convergence to a local minimum. A few

test runs have indicated that only three iterations of the algorithm are necessary to get

reasonably close Io, a minimum. and that, �the, local:.minimum to w ich one converges
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Figure 3-3: A synthetic segmentation example.

is independent of initial location in the piecewise smooth-edge function coordinate

space. Shah remarks on the apparent uniqueness of the result [20], but nobody has

formally demonstrated that this coordinate scheme has a unique stationary point.

One can conclude from the empirical evidence, however, that for many functions of

interest, convergence is fast and robust to perturbations in the initial conditions.

This fast segmentation algorithm not only computes the impressive estimates

already discussed but also.error standard deviations. They are graphed along with

the estimates in Figures 3-3 and 3-4. Recall first of all that the plots are not truly of

Z., error standard deviations but of error standard deviations conditioned on assuming

-,some extra knowledge. In the case of the piecewise smooth function, one assumes

knowledge of the edges. Thus, the error standard deviations areligher in the locations
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Parameter Value
A' 2.5 x I O'
b 2 5
C 2 5
r 0.04

PO, 100
POS 100

1.0 X 10-4

%

Table 3.2: Parameter values for the step edge example in Figure 3-4.

of the edges, where the process noise variance in the statistical model (3.14), (3.15)

is higher. This is very intuitive because the behavior of the functional edges is more

difficult to estimate from noisy data. One can also form an intuitive understanding of

the edge function error standard deviations. These are computed assuming knowledge

of the piecewise smooth function. Where it has an abrupt change, one can be fairly

certain that there is an edge present in the original data. Thus, the error variance

for estimating the edge function decreases at these points. At locations where the

smooth function is smooth, the presence or absence of an edge in the original

data is indeterminate because the process of estimating the smooth function may

have smoothed over discontinuities. Hence, the error variance will be larger at these

locations than where there is an edge. The amount of uncertainty in these locations is

determined by how smooth one expects the original function to be, as specified by the

parameter A. Thus, the segmentation algorithm generates error standard deviations,

that match one's intuition and are useful in interpreting the final estimates.

.3.2.2 �Error Statistics

By performing a variety of Monte Carlo experiments, one can obtain a quantita-

tive assessment of t e a gorit in t, at eepens one's understanding of it beyond the

intuitive level of the last section. Figure 3-7 gives results for some Monte Carlo sim-

ulations that characterize the errors in the estimates generated by the segmentation

algorithm and how they relate to the error variances calculated by'the algo thm,
iiii-ofthe 6Yppe, t- li' ti f of the process de-

itself. For each r rimen , one gen ra es a rea za on
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Figure 3-4: A step edge segmentation example.

scribed by (3.14), (3.15) for a small initial covariance of 0.01 and the edge function so,

which is the same as in Figure 3-3 but is also graphed in Figure 3-6. After generating

the realization f using the edge function so, one adds white Gaussian measurement

noise with intensity P, = 1 and then applies the segmentation algorithm using the

parameters in Table 3.1 to obtain the estimates f of the realization f and 9 of the

edge function so as well as Pf and P, the error variances for these estimates that the

algorithm generates. The main quantities of interest for each run are ef Y

es = (9 - so), and the error variances Pf and Ps. From many independent runs, the

following quantities are estimated: Ee', Var(ef), EPf, Ee', Var(e,), and EPs- As af s

reference, one can compare the error statistics associated with estimating the piece-

wise smooth function to Pf, the optimal error variance for generating the estimate
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Convergence of the Functional in the Synthetic Example
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Figure 3-5: These plots depict how the value of the functional converges for the

examples of Figures 3-3 and 3-4.

when the true edge function so is known. The results from doing this for 100 runs

are plotted in Figure 3-7, in which error bars at set at two standard deviations.

Figure 3-7a depicts the quantities relating to the errors for estimating the piecewise

e2smooth function f. Notice that E f -- Var(ef), which is close to Pf. This implies

that the average error in the estimate of the piecewise smooth function f generated

by the segmentation algorithm (which does not have prior knowledge of so but must

estimate it) is close to the optimal average error for estimating f when the underlying

edge function so is known. Thus, the estimate generated by the'algorithm is quite

good. In addition, EPf Pf. Hence, the error variance generated by the algorithm
knowing, th ledge function. So, the

is close to the true error variance conditioned ow e

algorithm generates a good estimate of the piecewise smooth function, and the error

in that estimate is fairly close to the error variance generated by the algorithm.,

2The error statistics for the edge functionare depicted in Figure 3-7b. Both Ee

an d Var(e,) are small relative to one. The fir'st indicates that the estimate of the edge
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Figure 3-6: The edge function used to generate the realizations in the Monte Carlo
runs of Figures 3-7 and 3-12 through 3-14.

function is fairly accurate, and the second indicates that the error does not vary very

much from sample path to sample path. In addition to the magnitude, the shape of

the plot of Ee 2has two interesting features. The first is that the mean-squared error

jumps close to the edge location. If one examines Figure 3-3, one can see that the

algorithm generates edge functions that are more narrow than so, the edge function

used to generate the realizations. Apparently, the algorithm tends to make the peak

of the estimated edge function more narrow than that specified by the function used

to generate realizations. This is actually preferable for segmentation. The other

interesting point is that the shapes of Var(e,) and EP, are not the same. Var(e,)

increases where EP, decreases. This is due to the fact that the peak of the estimate of

the edge function appears in slightly different locations in each segmentation, thereby

introducing a large variance near the edge. This does not necessarily imply a poor

segmentation, however. The conclusion is that e, is not the best measure of the

error between edge functions. Some quantity that captures difference in locations

between peaks would be more useful. Nevertheless, the statistics of C, are important

in assessing the error in the estimate of the edge function. In this particular example,

the statistics of e, indicate that the estimates of the edge function are close to so,

and the error variance generated by the algorithm, P, is useful because it is of the

same order of magnitude as Var(e,).
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Figure 3-7: A comparison of various error statistics compiled using Monte Carlo
techniques for segmenting synthetic data.

3.2.3 Edge Localization

Figures 3-9 to 3-11 present results from a series of Monte Carlo simulations designed to

characterize how well the algorithm can segment signals for different sets of measure-

ment noise and parameter choices. For each of the three experiments, the algorithm

is segmenting a unit step edge. The quantity computed from each segmentation is

W, the number of values of the st' � 'ate'd' d " �"' im e ge unction that lie above a given thresh-

old set close to one. This corresponds to the sum of the widths of the edges in the

segmentation. For the step edge example, the desired value of W is one. In all of the

figures, the parameters not being adjusted take, on the values listed in Table 3.2, and
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the threshold is set at 0.9.

The first simulation characterizes how W is affected by measurement noise. Fig-

ure 3-9 presents the average of W versus the standard deviation of the measurement

noise. For this example, the value of the parameter r is set equal to P, the variance of

the measurement noise. The results are shown for 100 runs, and the error bars are set

at three standard deviations. The results indicate that the algorithm performs very

well up to a noise standard deviation of about 0.3. After this point, the algorithm

still yields reasonable segmentations, especially considering that the signal length is

256 and that the noise level is so high that localizing the edge to one or two pixels is

not possible. The difficulty is illustrated in Figure 3-8, which shows a unit step edge

added to white Gaussian measurement noise for three different standard deviations:

0, 0.2, and 0.4. Localizing the edge and avoiding detection of spurious edges to noise

are clearly more difficult as the noise increases. The conclusion is that W will increase

with added noise, but the amount of increase is to be expected and is rather small

considering the levels of noise involved.

In Figure 3-10, the results for varying the parameter A are plotted while maintain-

ing a value of Vr and measurement noise standard deviation VP, of 0.2. The results

shown are for 500 runs, and the error bars are set at three standard deviations. Recall

that the amount of smoothness the algorithm expects in f where there is no edge is

directly related to A. For A -_ 2.5 x 103, the algorithm generates the very flat step

estimate of Figure 3-4. However, one needs to be careful setting A, as Figure 3-10-

shows, because the average of W will increase with A. Remember that W is a measure

of how many points are declared edges. If A is set too high, the algorithm will declare

edges in many places and set the estimate of the function f almost constant between

edges. Yet, the slope of the curve in Figure 3-10 is not very steep, indicating that

small perturbations in the value of A will not severely diminish the performance of

the algorithm.

Finally, Figure 3-11 plots the effect of changing the parameter p while fixing

-,A = 2.5 x 103 and r-1 P,� 0.04. The results shown are for 500 runs, and the

error bars are set at three standard deviations. Although the value of p is not listed
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Figure 3-8: Step edges with differing amounts of measurement noise.

in Table 3.2, p is uniquely determined by b and c. For the b and c listed in Table 3.2,

p - 1, which should be considered the nominal value of p for this example. Now,

recall that the parameters b and c in the statistical formulation are related to p by:

c oc p and b oc 11p. Also remember that the solutions of Shah's functional (2.4)

converge to that of Mumford and Shah's (2.3) as p ---+ 0. Thus, one expects the

width of the edges to decrease as p --+ 0. and this is corroborated by the results in

Figure 3-11. As in the case of adjusting A, the slope of the curve in Figure 3-11 is not

very steep, indicating that the effect of small changes in p will have a minimal effect

on the results of the segmentation algorithm.

.4 The''No"se Parameter

In each of the previous experiments, the value of r is set equal to P,. The next and

last set of Monte Carlo simulations characterize the effects of adjusting the variance

of the measurement noise P, in the simulation separately from the measurement
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Average Value of W for a Step Edge Example
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Figure 3-9: The average value of W for the step edge example of Figure 3-4 but with
different levels of measurement noise added.

Figure P, r
3-7 1 1

3-12 5 1
3-13 5 5
3-14 1 5

Table 3.3: Values of P, and r used to characterize the error statistics.

noise parameter r in the algorithm. The first set of simulations presented here in

Figures 3-12 to 3-14 address how adjusting r and P, affects the error statistics. The

experiment used is precisely the same as that used in Figure 3-7. The values of P,

and r considered are listed in Table 3.3.

The results displayed in Figure 3-12 are for P, = 5 and r = 1. They are computed

from 100 runs, and error bars are set at two standard deviations. In Figure 3-12a,

Pf is the optimal error variance for estimating the piecewise smooth function f given

knowledge of the true ed e function and assuming the measurement noise variance is

5. One observes that Var(ef) is significantly higher than Pf away from the edge, but
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Average Value of W for a Step Edge Example
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Figure 3-10: Average value of W for the step edge example of Figure 3-4 but for
different values of the parameter A.

Var(ef) -- -Pf in the vicinity of the edge. A similar examination of Ee 2 in Figure 3-

12b indicates that the algorithm is able to fairly accurately estimate the edge function

for this case. The conclusion is that maintaining r -- 1 despite moderate increases in

noise leads to segmentations for which the edge and the piecewise smooth function

estimates are fairly good, especially in the vicinity of the actual edge, but the estimate

of the piecewise smooth function f is, poor away from the edge in comparison with

This is because the algorithm thinks the measurements are very good; so, it is

responsive to the data, localizing edges well but not 9moothin' the data away from

the edge.

This, is in contrast with the results, in; Figures, 3- 13'and 3-14 for which r 5.

'One hundred runs were used to generate each of these plots, and the error bars are

set at two standard deviations. In both Figures 3-13a and 3-14a, Pf is the optimal

error variance for computin f give4,the, true edge function and assuming the actual

amountofmeasurementnoisep,,which,,is.5in.Fig-ure,3-13�andlinFigure3-14. For
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Average Value of W for a Step Edge Example
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Figure 3-1 1: Average value of W for the step edge example of Figure 3-4 but for
different values of the parameter p.

thes e two cases, Var(ef) -- Pf away from the edge, but Var(ef) is significantly larger

than Pf close to the edge. One also observes that Ee2 is fairly large near the edge

and small away from the edge; although, Var(e,) is relatively small everywhere. One

concludes that the estimates of the edge function s are less peaked near the edge.

The explanation for these observations is that the algorithm thinks the data is poor,

when r is large; so, the algorithm is hesitant to produce a localized edge function

and smoothes the data significantly. The result is that the estimates of the edge and

piecewise smooth functions are good away from the edge, but large errors are incurred

in the vicinity of the edge. This indicates that there is a tradeoff in setting the value

of the parameter r. Smaller values of r will often lead to a more peaked edge function

and better estimates of the piecewise smooth function near the actual edge location.

Larger values of r result in less peaked edge functions but better estimates of the

plecewise smooth. function away from the edge-

The value of the parameter r also affects the relationship between Var(ef) and
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Figure 3-12: A comparison of various error statistics for P, - 5, r

EPf. In the figures for which P, -- r, Var(ef) -- EPf away from the edge, and

Var(ef) is bigger than but on the same order of magnitude as EPf close to the edge.

For the case that P, = 5, r = 1, one observes that Var(ef) -- 5EPf. Although not

pictured here, one also observes that Var(ef) - 10EPf when P, = 10, r = 1. This

observation leads one to a guideline for setting the parameters. First, notice that the

solution obtained by coordinate descent of the functional (3.10) depends not on the

'pdra 6ters i` A an but 6n'the rati" b, and So, the piecewise2p 2 'OS r r

smooth and edge functions one would obtain for r = ozP, for some constant a are the

same functions one would obtain if A, b, and c were multiplied through by 1/W�'a'iid
VI th

However whentheparameters-"ariescaled:'sothat�r, Pji 6, error variances

Pf ''and P,' enerated� by, the 'algorithm" will �S'cale by- 1 /6. Th '' s mu at -' i ' I ions indicate
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Figure 3-13: A comparison of various error statistics for P, 5, r 5.

that the actual errors in the estimates closely match the error variances generated by

the algorithm when the parameters are scaled such that r = P,. Thus, if one were

to set r - aP, for a < I in order to get accurate edge localization, then one should

rescale the parameters so that r = P, in order to obtain accurate estimates of the

error variances.

The previous set of results analyze how the error statistics are affected by different

settings of P, and r. The next result examines how the quantity W defined in

Section 3.2.3 is affected by different values of P, when the parameter r is kept fixed.

.,The result displayed in Figure 3-15 is computed exactly as in, Figure 3-9 except all
-kept fixed- to the- val' es inTabl6'3-2, and only

the parameters of the algorithm are u

the actual noise variance is changed. Thus, the plot in Figure 3-15 is of W versus
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Figure 3-14: A comparison of various error statistics for P, 1, r 5.

measurement noise standard deviation V V when the measurement noise parameter

r - 0.2. This is in contrast to the plot in Figure 3-9, in which the parameter r varies

along with the actual measurement noise used. The results are shown for 50 runs,

and error bars are set at three standard deviations. The graph is very interesting.

It dips slightly at the point where the actual measurement noise and r coincide, and

thereafter, the graph increases dramatically, at a slightly faster rate than in Figure 3-

More points are Deing declared e' d�g'e's in'the'high noise region of Figure 3-15 than

is warranted because the parameter r is set too low. The indication is that setting

r too large has a slightly adverse affect, but setting r too small is relatively worse.

Comparingthese-resultswiththose-oftheprevious para;graphs,.onecan-conclud6.that,

although'it -is often advantageous to 'Use, a small value of'r in order to get a sharply
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Average Value of W for a Step Edge Example
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Figure 3-15: The average value of W for the step edge example of Figure 3-4 but with
different levels of measurement noise added and r kept constant.

peaked edge function, this may lead to more locations being declared edges than

would be otherwise declared if r were set equal to the measurement noise variance.

The final guideline for selecting r is listed in the next section along with some general

principals for selecting the other parameters.

3.2.5 Concluding Remarks

The results of the segmentation method presented in this section are quite promising.

Each iteration of the algorithm is computationally efficient, and very few iterations

are required to obtain convergence. Moreover, the algorithm is not only computa-

tionally efficient, but it is also capable of computing error statistics. In the case of

the piecewise smooth function, these error statistics tend to coincide with the actual

errors in the algorithm's estimates, which, in turn, are close to the optimal error for

estimating the piecowise smooth function given the edge function. In addition the
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empirical results indicate that the algorithm is robust to noise and small changes in

the parameters.

3.3 Analysis

The simulations also have provided insight into tradeoffs in setting parameters. How-

in order to make use of this segmentation algorithm, one needs a better un-

derstanding of it and how the choice of parameter values affects performance. One

of the benefits of formulating a minimization problem in terms of statistics is that

this yields a natural interpretation. of the parameters.. From this,, one can obtain a

loose set of guidelines, which were followed to pick the parameters for the examples

of the previous section. One can obtain another perspective on the parameter choices

from an analysis of the convexit' of the one-dimensional discrete functional (3.10).

The deterministic argument complements the statistical one, and the two together

combined with the empirical results of the last section give one a good idea of the

role of the parameters in the segmentation algorithm.

3.3.1 Parameter choices

First, note that each row of (3.15) can be written as

f
fi+1 - A - Sj)vIAqVZ (3.21)

f,)2,where w� is zero mean Gaussian with unit variance. Defining ai - A(fj+j

E[ail - (3.22)

Examination of equations (3.19), (3.20), indicates that the derived quantity -yj acts as

an observation of the edge process. Thus, one would like -yj to be close to zero where

the gradient is small and close to one where the gradient is large. Since -Yj ai/(ai'.+b),

one -should set the parameter b >� 1, where I is the expected value of ai where there
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is no edge (i. e. (3.22) with Si ' 0). However, one should not set b so large that -Y

does not approach one at edges.

Now, note that for a fixed value of M, one can use (3.20) to write

VV -
Si+M - Si:.,:::: 7 wi 3.23)

whereCvi is a zero mean Gaussian random variable with unit variance. Thus,

M
E[(si+m _ S,)2] = C (3.24)

If one desires that the edge process should change in value from its two extremes

over an interval of length M, then one should pick the parameter c -_ M. Hence, c

controls the width of the edges.

Thus, one has the following guidelines for parameter choices

9 A is inversely proportional to the amount of variability allowed in the piecewise

smooth approximating signal f. One should pick a A that matches one's expec-

tations for the smoothness of the observed signal. Care should be taken so as

to avoid picking A's that are very extreme. Too large a choice of A may lead to

segmentations with many edge locations, as indicated by the simulation results

in Figure 3-10. Fortunately, the algorithm is not too sensitive to the value of A,

as discussed in Section 3.2.3. Estimating A within an order of magnitude will

suffice.

* c is proportional to the width of the edges. Generally, c should be chosen small,

but it should not be chosen so small that the edge function tracks all the subtle

variations in the derivative. Erring on the large side will result in slightly thicker

edges as indicated by the simulations result displayed in Figure 3-11. But this

is not a major problem since the segmentation is not severely affected by small

changes in this parameter, as discussed in Section 3.2.3.

* b controls the degree of edginess. One should generally pick b > 1; however, one

must be careful not to pick b to be greater than the maximum possible value of
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a for the type of discontinuity expected. In other words, choose

df (x) 2b < Al dx I , for x at edge locations. (3.25)

Not picking a b to satisfy this latter constraint can lead to segmentations where

there are no edges. One observes this in Figure 3-11 for large values of b, which

which correspond to small values of p since p oc 11b.

r selects the variance of the measurement noise that the algorithm expects in the

data. As discussed in regards to Figures 3-7 and 3-12 through 3-14, there is a

tradeoff in setting r. Small values of r will yield better estimates of the edge and

piecewise smooth functions near the edge, and large values of r will yield better

estimates away from the edge. However, as discussed in regards to Figures 3-9

and 3-15, setting r smaller than the actual level of measurement noise may lead

to the generation of spurious edge detections due to noise and consequently

less accuracy in localizing the actual edge. Thus, one must carefully consider

the amount of noise in the signal and weigh the tradeoffs 'when selecting this

parameter.

These guidelines match Pien's choice of parameters in [19]. Recall that the pa-

rameters b and c are related to the parameters in equation (2.4) by:

2 C
P (3.26)b
V' 4bc. (3.27)

f (i))2]'Thus, by choosing b > E[A(f (i+ 1) I where there is no edge, one implies

that the choice of v should scale with the expected value of the derivative in the data.

it, [19], Pien'- giv�s-s6jg"Me:intation examples for w�c`h v is chosen to be on the same

order as lVf 12. Thus, the guidelines outlined in this section are consistent with the

values of the parameters used in Pien's work.
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3.3.2 Convexity

The guidelines given above were derived with the goal of obtaining a good segmenta-

tion, but one can also consider how one should pick parameters so that the algorithm

has good convergence properties. In particular, it is natural to ask under what con-

ditions the discrete functional (3.10) is convex since this would imply that coordinate

descent of the functional will converge to a global minimum. The following proposi-

tion gives a sufficient condition for convexity of the discrete functional (3.10).

n n-1Proposition Let the function E : R x R R be defined by

n n-1 n-1 n-2

E(f, s) - r- 11: (f, _ g,) 2+AE(f,+,_f,)2(1-si)2+bES2+CE(S,+,_S,)2 (3.28)i
i=1 i=1

where r, A, b, and c are positive constants, g is observed data, f is a piecewise smooth

ating function, and s 's an edge map such that s (E [0, 1]. Then, if B is a

positive constant E(f, s) is a convex function for

n n-1(f, s) E �(f, s) E R x R (fi+l - fj)' < B, i I ... n 1 (3.29)

prov%'ded

b - 3AB > 0. (3.30)

Proof The proof comes in two parts. The first part decomposes E into a sum of

terms, several of which are convex. The second part demonstrates that the conditions

of the proposition guarantee that the remaining terms are convex. Since a sum of

convex functions is convex, E is convex.

Now, (fi - gj)' and (sj+j - sj)' are convex functions; so, E is convex if the function

K defined by

K(fi, fi+,, si) = A(fj+j _ f,)2(l _ 8,)2 + bS2 (3.31)i

is convex. To demonstrate this, we form the Hessian of K and show that it is positive

55



semi-definite for Si c [0, 1] and (fi+l - fj)' < B. The Hessian is given by

S,)2 S,)22A(I -2A(l 4A(fi+l - fi)(1 - SO

-2A(I _ S,)2 2A(I _ S,)2 -4A(fi+l - fi)(I - Si) (3.32)

4A(fi+l - fi)(I - Si) -4A(fi+l - fi)(1 - Si) 2A(fi+l _ f,)2 +2b

To show positive semi-definiteness, we'll check that all of the determinants of the

principal sub-matrices are greater than or equal to zero

* All of the diagonal terms are greater than or equal to zero.

* The upper left 2 x 2 submatrix and the whole matrix are singular and so their

determinants are zero.

9 The determinants of the bottom right 2 x 2 submatrix and the outer 2 x 2

submatrix are both equal to 4Ab(I - Si) 2 _12A(fi+l _ f,)2 (I _ Si)2This quantity

S,)2is greater than or equal to zero if and only if b(I > 3A(fi+l f,)2(l S,)2,

which is guaranteed by (3.30).

So J(f, s) is convex over the set specified in (3.29), which is convex since it is defined

by linear constraints. El

This proposition is only sufficient for convexity. It is not clear whether it is

necessary, but the derived condition is still interesting because of its marked similarity

with one of the guidelines formulated from an analysis of the statistical formulation
of the problem. TheJunctional i's c' and A(f + 1) _ f (i))2

onvex if b > 3AB < AB for

all i for all admissible f and some constant B. However, one of the guidelines derived

for a good segmentation states that b should be chosen so that it will be less than

the value of A (f (i + 1) _ f (i))2 at edge locations. Thus, it would appear that the

-parameters that,,make"for-a�'goo-d segmentation e s at permit non-convex

functionals. Although the goal was to demonstrate that there exist useful parameter

values for which the functional is convex, this is still an interesting result that makes

sense and is thoroughly grounded inthe. parameter discussion of.this section.
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3.4 Summary of One Dimensional Results

This chapter's analysis of the one dimensional segmentation problem has introduced

in a simple framework many of the concepts and results that will be useful for an ex-

tension to the image segmentation problem. Using as a starting point the variational

segmentation formulation of Shah, a pair of related statistical estimation problems

was derived for use in an iterative algorithm to perform one dimensional segmentation.

That algorithm is fast, gives good segmentations, and computes error statistics that

may be useful in scientific applications. In addition, the parameters in the statistical

formulation of the problem can be picked according to a set of guidelines that follow

from simple properties of the statistical problems. The results are very promising and

strongly motivate an extension to the two dimensional problem.
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Chapter 4

Image Segmentation

The one-dimensional segmentation algorithm in the previous chapter satisfies the two

main objectives set in Chapter 1 for a segmentation algorithm. It has a computational

cost that grows proportionally to the number of data points, and it generates a set

of error statistics. The goal is to extend this algorithm to two dimensions, keeping

the overall structure the same. This structure is laid out in Figure 4-1. The principal

components of the algorithm are the methods for computing estimates of the piecewise

smooth and edge functions and the associated error statistics. The problem central

to both of these components is how to compute an estimate of a two-dimensional

process and associated error statistics given a map of the statistical variability in the

underlying process. When computing an estimate of the piecewise smooth function,

this map corresponds to the fixed edge function, and when computing an estimate

of the edge function, this map' is constant. In one dimension, this central problem

is addressed by using a recursive estimation algorithm which computes the relevant

quantities using the model equations (3-14), (3.15) and (3.19), (3.20) that specify

an estimation problem equivalent to a discretization of Shah's variational problem.

,.,The problem is more difficult in two,� diime�nsi6iis: Standard discr'etization of Shah's

variational problem in two dimensions lead to estimation problems involving Gaus-

sian Markov random field models defined on. a rectangular lattice. As discussed in

Chapter 2, any recursive estimation algorithm which can compute estimates, and er�,-.,,

ror variances given arbitrary Gaussian., Markov -random, field priors must perform an
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Figure 4-1: General structure of the two-dimensional algorithms.

unacceptably large O(N') multiplications.

The focus of this chapter is to address, in the context of segmentation, the problem

of computing estimates of a two-dimensional process and associated error statistics

given a map of the variability in the underlying process. At the core of the two com-

putational methods presented here is a recursive estimation algorithm that estimates

a process given a map of its variability using, instead of a Markov random field prior

model, a multiscale model. Such models are introduced in Chapter 2. The first com-

putational method discussed involves an extension of 1/f-like models [6] whose form

is clos ely related to the one-dimensional models (3.14), (3.15), and (3.19), (3.20).

The structure is chosen to ensure convergence of the iterative process of alternately

estimating the piecewise smooth and edge functions. In order to remove artifacts,

some additional processing is necessary before and after this iterative procedure, (see

Figure 4-1). However, the pre- and post-processing complicates the algorithm, and, in

particular, makes it difficult to analyze how to adjust the parameters so as to improve

performance. The second computational method presented in this chapter is formu-

lated so as to remove the necessity of pre- and post-processing. This simplifies the

algorithm and allows one to analyze more easily the role of the parameters and the

structural elements of the algorithm and then adjust them to obtain better results.

This latter method makes use of a slightly different multiscale model, the thin plate

model [6], which is also discussed in Chapter 2. Both computational methods produce

good results as part of a segmentation algorithm, but the latter method shows more

promise.
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Figure 4-2: Progression of recursion in one-dimensional (a) and quad tree models (b).

.4.1 Segmentation with 1/f-Like Models

The 1/f -like multiscale models for segmentation are formed in analogy with the dis-

crete one-dimensional models (3.14), (3.15) and (3.19), (3.20). These can be written as

causal one-dimensional models. Since the structure of a quad-tree is linear in nature,

one can form an extension of the causal one-dimensional models to multiscale ones
V

involving recursions progressing from the root node to the leaves on a quad tree as

diagrammed in.Figure 4-2. The resulting multiscale models have strong connections

to models used in previous works for estimating surfaces. For the case when there are

no edges, the multiscale model is exactly the multiscale model developed by Fieguth

[8] to estimate the surface of the ocean. The ocean surface is described well by a prior

model whose power spectrum decays as 11f. Fieguth developed the multiscale model

so as to be appropriate for surfaces described by such Ilf prior models; hence, these

multiscale models are termed 1 If -like. Their successful application to estimating the

surface of the ocean motivates the'application of the subsequent related multiscale

models to image segmentation.

4.1.1 Derivation of the Algorithm

'Any equation ofthe form (3.14), (3.15) and (3.19), (3.20) can be rewritten as a

causal state space recursion provided the matrices L, S, and A have a suitably sparse

structure. In particular, one can rewrite (3.14), (3.15) as the recursion

9i f� + Vrvf (4.1)

60



I f
f4i - f, + Wi (4.2)

and (3.19), (3-20) as the recursion

Vs-Yj Si+ (4.3)
rA(fj+� - fj�)+ b

Si+I Si + 7C Wi (4.4)

where w�, v�, w�, and v� are all independent unit variance Gaussian random variables.

The two estimation problems described by these sets of equations form the core of

the one-dimensional segmentation algorithm presented in the last chapter. Their form

also motivates the multiscale model presented here.

Before discussing that model, some notation needs to be introduced to simplify

Ahe discussion. The plain letters f and s will denote multiscale processes or admissi-,

ble multiscale functions in a minimization problem according to the context. Fixed

multiscale functions appearing in the model equations for a multiscale process or in a

functional of a minimization problem will be denoted by f and §. The final estimates

produced upon termination of the segmentation algorithm are denoted by f and

Now, the specific multiscale model described here is an extension of the I/f-like

models presented in [6] and [8]. Recall that one can specify a multiscale model using

a root-to-leaf recursion of the form (2.10) with observations of the form (2.11). Let

f be a multiscale process whose finest scale corresponds to a piecewise smooth image

and whose other nodes correspond to aggregates of their four children. Then, by

analogy with the one-dimensional segmentation algorithm, it is natural to construct

an image segmentation algorithm which consists of alternately estimating f given a

multiscale edge function 9 and data g and estimating s given a particular f, where the

equations describing the estimation problem are the multiscale equivalents of (4.1),

(4.2) and (4.3), and (4.4). The problem of estimating f given a particular multiscale

edge function 9 is described by

g' + (4.5)
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f+ (4-6)
1 (I - §,) VAd, '-'

where vf and wf are independent Gaussian random variables with unit variance; theV V

independent observations gv exist only at the finest scale and have a measurement

noise variance rv; and dv are a set of constants that decrease geometrically as the scale

becomes finer [6]. Likewise, one can write the problem of determining the multiscale

edge function s given a specific multiscale piecewise smooth image intensity function

f as

)sIYV 8V + I V (4.7)
7a, + b

8V sv,� + W (4.8)
VI-cdv V

where

)2
av Ad' (4.9)

av
'YV (4.10)

av + V

and vs and ws are independent Gaussian random variables with unit variance. OneV V

now has a pair of estimation problems from which one can start to build an image

segmentation algorithm. The principal novelty of the models in these two-dimensional

estimation problems is the use of a first difference between scales in lieu of a local

difference operator acting in a plane.- This has the major advantage that calculating

estimates using these priors is fast. One disadvantage is the introduction of some

artifacts.

These artifacts arise because of the correlation structure associated with multi-

scale tree models.-To understand, how this can lead �to problems, consider the model

specified by (4.6) when the edge function § is zero everywhere. Since the finest scale

nodes of f correspond to a piecewise smooth version of the image, one desires that

the prior model (4.6) will imply that nearest neighbors of f at the finest scale-,,have

relatively large correlation. Consider fvl and fv., in Figure,. 4-3. They are nearest
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V V
2

Figure 4-3: Even in the absence of edges, two process values on the finest scale of
a quad tree, such as f,1 and f, can be physically close together but have a small
correlation.

neighbors at the finest scale, but their correlation is relatively low because the two

paths from the root node to each of f, and f, share no branches in the tree. Thus,

using the model equations (4.5), (4.6) to estimate a piecewise smooth function may

lead to an estimate with undesirable edge features even when no edges are assumed

present. Due to the nature of the quad tree prior, these artifacts are generally blocky.

The undesirable side effects of working with a multiscale tree prior can be dimin-

ished by working within the overlapping tree framework of Fieguth and Irving [7]

The general idea is to allow overlap between the regions represented by process values

at a particular scale. For example, each of the finest scale process values depicted

normally correspond to a single pixel, but in an overlapping framework, two different

finest scale process values may correspond to the same pixel. Thus, one may designate

f, and f,, to represent the same image pixel in Figure 4-3. In order to estimate an

image with an overlapping tree multiscale prior, one must duplicate measurements

methodically, then estimate using a multiscale prior, and finally combine multiscale

estimates to create an estimate of one's image. The additional operations occurring

before and after the estimation process are termed injecting into the lifted domain

and projecting back into the original domain respectively. These steps are performed

using non-invertible linear operators that have a very particular structure to allow

for rapid computation and good results. The general scheme for computing using

overlapping trees is diagrammed in Figure 4-4. The example displayed in Figure 2-3
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9 INJECT INTO 9 MULTISCALE PROJ CT BACK INTO

LIFTED DOMAIN ESTIMATION ORIGINAL DOMAIN
R R PI P

Figure 4-4: Using overlapping tree framework to compute estimates f with error
covariance P from data g with measurement noise R.

was computed in the overlapping framework using Fieguth's multiscale models for

surface reconstruction [6]. As one can observe, the results are quite good.

However, one has to be careful how one incorporates the overlapping framework

into the segmentation algorithm for the same reason one has to be careful in one di-

mension with selecting a sampling framework. Namely, if one desires convergence of

the process of alternately forming an estimate of the ple'cewise smooth function f and

an estimate of the edge function s, then one should ensure that this process is perform

ing coordinate descent of some functional. The problem is that the scheme outlined

"inFigure4-4forformingestimatesintheoverlappingtreeframeworkdoesnotneces-

sarily correspond to finding the minimum of some functional. Thus, a segmentation

algorithm making use of overlapping trees may have a problem with convergence, just

as described, inAhe previous chapter when discussing issues 'of samplin'g'.` One solution

is diagrammed in Figure 4-5. One injects the data into the lifted domain once. Then,

one alternates between estimating the piecewise smooth function f given the edge

function § and using the model (4.5), (4.6) and estimating the edge function s given

the piecewise smooth function f and using the model (4.7), (4.8). By construction,

this iterative process is performing coordinate descent of the functional

E(f s) r-1 (g. fv)2 + (A(f, f,�)2(1 8,)2 + b82 + C(S' S"7,)2
V V

VET vET-10}

(4.11)

where F denotes the nodes of the tree at the finest scale and T - f 01 denotes all

nodes of the treeexcept the root 'Jiod6"' This-coor inate sc eme'will converge, and

when it does, one can then project the estimates back into the original domain to get

a final segmentation.
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Figure 4-5: Multiscale segmentation algorithm formed by using overlapping projection
operations just once.

4.1.2 1 Results

The segmentation algorithm making use of 1/f-like multiscale models is almost com-

pletely specified. It remains only to list some of the implementation details and

"introduce the parameters associated with these details.

Prior Covariances: As in the one-dimensional case, one must specify a pair

of prior covariances Rf and R for use when estimating the piecewise smooth

function and edge function respectively. In the multiscale case, these quantities

are the prior covariances of the process values at the root nodes. Making use

of reasoning analogous to that presented in the last chapter, Rf and Rs are

typically set to relatively large values.

Ch 'ng: As in the one-dimensional case, one must clip the edge function esti-

mates so that they lie in [0, 1 -,E] for some small E.

Initialization: The algorithm is started by estimating the piecewise smooth

function f assuming that the edge function 9 is zero everywhere.

9 Stopping Criterion: In the one-dimensional algorithm, the iterations are stopped

when the change in the value of the functional being minimized falls below a

given threshold. This criterion is not valid if the edge function s'is persistently

clipped. , Clippingrarely occurs in 'the on6-dimensional examples 'presented.

However, the edge function is often clipped in the subsequent results. Thus, the
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Parameter Value
A
b
C

Rf0 10000
POS 10000

1.0 X lo-,
5

T 0.9
0 0 5 3 2 1 0 0

Table 4.1: Parameter values for the synthetic example in Figures 4-6 and 4-7.

changes in the functional can not be used as a stopping.criterion. The iterative

process in this two-dimensional algorithm is stopped after a fixed number of

iterations 1. Typically I -_ 5 since the results indicate that the process has

almost converged after five iterations.

Overlap Operators: Making use of the overlapping computational framework

presented in [6], one can specify the particular operators with a single vector of

parameters O'. For"an interpretation of their meaning, one should consult [6]_

Im aging the Piecewise Smooth and Edge Function Estimates: In the model

equation (4.5), the image is an observation of the finest scale of f. Thus, one

can use the finest scale estimates f to form an image of the piecewise smooth

function estimate. However, the finest scale of the estimate of the edge function

does.not necessarily correspond to an edge function estimate for the image

because coarse scales of � provide information about the edges in the image that

is not available at the finest scale of �. Nonetheless, it is reasonable to consider

the finest scale of to correspond to an edge function of the image. The results

that follow display the finest scale of and along with jh a thresholded

image of the finest scale of defined by

I if �jj > T-Th -
ij 4.12)

0 if �jj < T,
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Data Thresholded Edge Estimate
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0.810

20 208
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30 6 30
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Smoothed Estimate Edge Estimate
12 1
10 10

0.8
020 8 20

6 30 0.6
30

4
40 0.4

2
50 50

0 0.2

-2 60
20 40 60 20 40 60

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations
0.16

10 10. 0.14

0.8 0.12
20 20,

0.1
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0.08
040 40

0.06
50 0.4 50 0.04

60 60 0.020.2
20 40 60 20 40 60

Figure 4-6: A circle segmentation example.

where the subscript ii denotes the (i, j) position in the image plane (0, . . . n -

1) x (0, . . . , n - 1) and T is a constant approximately equal to one. The thresh-

olded edge function estimate provides an indication of how well the edges are

delineated by

The parameters Rf Rs E 1, 0, and T that have been introduced here as well as the

previously mentioned parameters A, b, and c are input to the segmentation algorithm

along with the data.

A segmentation example for a circular step is presented in Figures 4-6 and 4-7. The

data consists of a piecewise constant intensity function with a circular stepof height
,noise r-thi"e"" '" le, the'al oriihm

10 added to unit intensity whit sgi'an' F6' s xamp

uses the parameters listed in Table 4.1 and measurement noise parameters r, of unit
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Figure 4-7: Mesh plots of the circle segmentation example.

value. As the table indicates, the number of iterations I = 5. The results for 10

iterations are not much different, indicating that 5 iterations is adequate to achieve

convergence. A qualitative examination of the results in Figures 4-6 and 4-7 indicates

that the segmentation is good. The piecewise smooth function estimate is smooth,

especially far away from the circular edge. The edge function estimate also takes on

the desired characteristic that it is close to one in the vicinity of the circular step and

is close to zero away from the step. The thresholded edge function estimate provides
6- ary map ind ng th b" � ̀6e`o'f �an�iedg'e. The error standard

d-9 d bifi-- icati e presence or a sen

deviations have a similar structure and interpretation as those in one dimension.

One thing that is noticeable in all of the results in Figure 4-6 is the presence of
the use of overlap. This, blockiness is', n'otic

some blockiness despite eable in

the� edge function2 estimate,� in which there is�an undesir`able��btloadening in certain
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Figure 4-8: AVHRR data of the North Atlantic on June 2, 1995 at 5:45:01 GMT.

-preferred directions along the ridge where the function is close to one. Nonetheless

the segmentation algorithm generates a fairly accurate piecewise smooth and edge

function estimates and motivates an investigation into the algorithm's use on a real

image.

The real images to be considered are formed from Advanced Very High Resolution

Radiometer (AVHRR) data of the North Atlantic taken by NOAA satellites. The

AVHRR images in this thesis were obtained from an online database maintained by

The University of Rhode Island Graduate School of Oceanography. They are gray

scale images which portray water temperature. Lighter tones correspond to warmer,

water, and darker tones to cooler water. A sample image with a coastline overlay is

displayed in Figure 4-8. Data exists only for the lightly colored square-like region.

One observes a thin northeast running warmer body of water off the coast of the

Carolinas. This is the Gulf Stream. The position of the Gulf Stream is important

to the shipping industry and oceanographers, among others. The features that are

important for a segmentation algorithm to pick out are the north and south walls of

the Gulf Stream and the occasional eddies that break off to the north and south of

the Gulf Stream called warm and cold core rings respectively. The task of picking out,,,.

these features is a good test of the segmentation algorithm because the underlying
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Parameter Value
A 10
b 0.01
C 0.001

PO, 10000
POS 10000

1.0 X lo
5

T 0.75
0 10 5 3 2 1 0 0

Table 4.2: Parameter values for the AVHRR data example in Figure 4-9.

data match our. model. The task is difficult because there is also a significant amount

of measurement error. The principal source of measurement error is the presence of

clouds. The effect of clouds is to depress the temperature from its actual value. In

particular, one can observe bands of black running through the image in Figure 4-8.

These correspond to measured temperatures of zero degrees Celsius or lower. Such

measurements are considered so poor that they are simply designated points where

there existsnomeasurement. Clouds are present in other areas, but the measurements

are not depressed below freezing. One has no separate knowledge of such locations;

so, one can not mask them out from the data. The result is that the measurement

error may be large in certain areas of the image. This can complicate matters.

Figure 4-9 displays a sample segmentation of AVHRR data. The parameters fed

to the algorithm are listed in Table 4.2. The image is a portion of the North Atlantic

image that. is displayed in Figure 4-8. - There are a handful of points in this image

for which there is no data due to dense cloud cover. These points are marked as

black in Figure 4-10. At locations where there exist measurements, the measurement

noise parameters r, are set to unit value. The results in Figure 4-9 indicate that the

algorithm is able to do a fair iob of -picking out the north wall of the Gulf Stream.

However, the edge function estimate indicates that the algorithm is declaring edges

within the Gulf Stream. From the thresholded edge function estimate, one can ob-

serve that points of the edge function estimate within the Gulf Stream are larger than

points near the south wall. Now, the south wall is more difficult to isolate because
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Data Thresholded Edge Estimate
L.

10 8 10
0.8

20 20
6 0.6

30 30

4 0.440 40

50 2 50 0.2
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Smoothed Estimate Edge Estimate
9
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40 40 0.4
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20 40 60 20 40 60

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations
4 3.5

10 3.5 10 3

3 2.520 20
2.5 2
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2

1.5
40 1.5 40
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60 0.5 60 0.5

20 40 60 20 40 60 0

Figure 4-9: An AVHRR data segmentation example.

the temperature gradient is not as steep there, but it is still important to discern

the boundary between the Gulf Stream and the waters to the south. Nonetheless,

the algorithm is able to reasonably pick out the north wall, and this is more impor-

tant in applications than being able to pick out the south wall precisely because the

temperature gradient is steeper on the north side.

4.1.3 Analysis

These results indicate that the algorithm performs reasonably well on simple images

such as the circle in Figure 4-6, but the performance is not very good on images

such as the one in Figure 4-9, in which there is more variability. One of the reasons,-TI

why the performance is poor is that the algorithm is difficult to tune because the
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Figure 4-10: Location of data drop outs for the example in Figure 4-9.

operations associated with the overlap are difficult to analyze. Another reason is that

information about the edges in the image is lost because of the method for imaging

the edge function estimate.

The use of overlap for multiscale estimation 'was originally proposed as a method

for using multiscale techniques to solve estimation problems associated with Markov

random field priors [7]. In this framework, the operations associated with the overlap

are applied just before and just after the multiscale estimation step as indicated

in Figure 4-4. This contrasts with the overlap operator usage in the segmentation

algorithm. As indicated in Figure 4-5, the overlap in the segmentation algorithm

just presented is not applied before and after each estimation step. This is to ensure

convergence of the algorithm. Although the results indicate that the segmentation

algorithm works fairly well when the overlap is used as in Figure 4-5, analyzing the

algorithm with the intention of improving it is difficult because the overlap was not

designed to be�used in this fashion.

Another problem with this image segmentation algorithmis the difficulty in form-

ing an image from the multiscale edge function estimate �. The edge function esti-

mates displayed in Figures 4-6 and 4-9 are the finest scale of. However, the other

values of the edge function estimate provide information about the edges in the image.

One would like to use all of the multiscale edge function estimate to form an edge

image from which one can easily pick out edges in the original image. Although this

problem seems tractable, it is rather tricky. Rather than tackle this and the overlap
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problem head on, the next section presents a different multiscale segmentation algo-

rithm in which problems concerning overlap and imaging the edge function estimate

are not as difficult to address.

4.2 Segmentation with Thin Plate Models

The goal of this section is to present another multiscale algorithm which can compute

an estimate of a two-dimensional process given a map of its underlying statistical vari-

ability. This multiscale method can be incorporated into the segmentation algorithm

diagrammed in Figure 4-1 in such that way that no processing steps are required be-

fore or after the iterative procedure of alternately forming piecewise smooth and edge

function estimates. The lack of any pre- or post-processing simplifies the structure

of the overall algorithm, making it easier to understand and analyze for possible im-

provements. The starting point for the development of this segmentation algorithm

is work done by Fieguth demonstrating the use of a particular multiscale method

for reconstructing -surfaces from noisy observations and given a binary map of edge

locations [6]. Fieguth's computational technique is incorporated, as a black-box, into

the algorithms used for computing the piecewise smooth and edge function estimates.

4.2.1 Derivation of the Algorithm

At the core of Fieguth's method for reconstructing surfaces from noisy observations

and an edge map is a recursive algorithm for computing the necessary estimates

and error variances using a particular multiscale model. The underlying multiscale

model is an extension of the multiscale thin plate model discussed in Section 2.2 that

performs surface estimation without knowledge of the discontinuities. That model

results in surface estimates that are similar to the results obtained by finding the

minimum of the functional

f) ((f 2 2 2 f 12)E( g)2 + Ce(P2 + P + q +,q;) + (4.13)X Y X
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Notice that the principal difference in the form of this functional and that of the thin

membrane functional (2.1) is the presence of second-order derivatives in (4.13).

Likewise, the principal difference between the thin plate multiscale model and the

1 If -like model (4.5), (4.6) when there are no assumed edges (9 -_ 0) is that the thin

plate model incorporates second-order multiscale derivatives by augmenting the state

vector to include multiscale first-order derivatives of the surface. Discontinuities

are taken into account in the thin plate multiscale model by introducing greater

uncertainty in the scale-to-scale recursion where the line connecting the descendant

to the.parent node crosses a discontinuity. This is illustratedby the example in

Figure 4-11. The thick line in the figure represents a known discontinuity. Let vi for

i C 10, 201 denote the nodes of the quad tree on which the multiscale model is

defined. Each node vi corresponds to a particular region in the image depending on

the scale and position of the node in the tree. Dots are placed in the midpoints of

these regions and are shaded according to the scale of the corresponding node Pi: the

darker the dot, the coarser the scale. For this example, greater uncertainty is added

into the'recursion from vo to v, and v2, fro In' v, to v8, from V2 to vil and V12, and from

V3 to V13, but no additional uncertainty is added in the other parent-child recursions.

The additional uncertainty is introduced in the form of higher process noise and a

small modification in the recursive model so that gradient information contained in

the state variable is not propagated across discontinuities. Since this technique is

viewed as a black-box component of the segmentation algorithm, the specific details

are not important to the current discussion and can be found in Appendix A and

[6]. The important point is that Fieguth's algorithm provides one with a method for

estimating a surface given a binary map of discontinuities. � � --

The multiscale image segmentation algorithm presented in this section uses

Fieguth's multiscale �thin; plate techniques for surface reconstruction to compute esti-

mates of both a piecewise smooth function f and edge function s. The discontinuity

map used to compute an estimate of f given a fixed estimate 9 is §Th a thresholded
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Figure 4-1 1: How discontinuities are incorporated into the thin plate multiscale model.

version of § defined by

§Th I if §i� > T (4.14)

t3 0 if §jj < 7

where the subscript ij denotes the (i, j) position in the image plane and 'T is a con-

stant approximately equal to one. The map §Ih is fed along with the data g and

observation measurement noise levels to the multiscale thin plate algorithm to com-

pute an estimate of a piecewise smooth function f. A multiscale thin plate algorithm

is also used to estimate s given a fixed estimate The prior used to estimate s

is always a fixed multiscale thin plate model which assumes no discontinuities are

present in s. The measurements for s are formed from f, in analogy to (3.19) and

(4.7), as follows. Let fij denote the value of f at position (ij) in the image plane

n'- 1) x (0,..., n - 1). For (ij) E (0,..., n - 2) x (0,..., n - 2), define

j(,7f),jj2 (f(,+,)j fj)2 + (f j+1) fj)2 (4.15)

75



in analogy to the magnitude of the gradient squared in a continuous setting. Then,

one can make the following definitions akin to (4.9) and (4.10):

aij AITA.7-11 (4.16)
aij

aij + b'

As before, -yij acts as an observation of the edge function at position (i, j), and

1/(aij + b) is the observation error variance. One can now use the multiscale thin

plate approach to compute s at positions (i, j) in the image plane (0, . . . , n - 2) x

(0, . . . , n - 2). The methods described here for computing an estimate of f given a

fixed estimate of s and vice versa form the computational components of an image

segmentation algorithm.

4.2.2 Results

The key elements of the segmentation algorithm are specified, but, as with the other

in felgorith ' s, th are a few implementation 'details And`assoc'i�ted parameters that

need to be listed.

e Thin Plate Model Parameters: In Appendix A, it is noted that the overlapping

thin plate models require the specification of three parameters B, Bg, and Rp.

The first of these is the standard deviation of the noise affecting the first-order

derivatives in the thin plate model. The latter two parameters are the standard

deviations of the noise affecting the second-order derivatives in the model. They

have physical interpretations as discussed in [6]_

* Prior Covariances: The multiscale model also requires the specification of prior

Dfcovariances Pos, and A which are set to large values for the reasons discussed

in regards to the one-dimensional algorithm.

Calculating the Line in the Discontinuity Model: Additional uncertainty is in-

�.corporatedin'tothemulti�cale-modelrecursionatlo'cationswh�ere'thelinecon

necting. the midpoints � of the, regions corresponding to 'the"paren�t and the child
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nodes cross a discontinuity. In a discrete setting, there is not a unique definition

of a line connecting two points. For the examples in this section, the following

definition of a line is applied. Let (xo, yo) and (xi, yi) be the integer valued

coordinates of the end points in the image plane. Without loss of generality,

assume x0 < xi. Then, the line connecting these points is the set

(x, y) E Z'Ixo < x < xi, y"' < Y < Ymax (4.18)x x

where

Tn = Yi - Yo (4.19)
Xi - XO

xy"' = minfflx - xo - I)m + Yol, L(x - xo)Tn + yol) (4.20)

max max(L(x - xo - 1)m + Yol, L(x - xo)m + YoD (4.21)

Parameters in the Discontinuity Model: Additional process noise is added into

the first derivative terms of the thin plate model where the edge function exceeds

a certain level along the line connecting the midpoints of the regions correspond-

ing to the parent and child nodes. Thus, one must specify the variance of the

added noise, q, and the thresholds. One should set Aq_ to be approximately

the size of the expected discontinuities andT -_ 1.

• Parameters in Edge Function Observation: The parameters A and b affect the

observation (4.17) for the edge function. From the form of (4.17), one observes

that increasing A will increase the sensitivity of the edge function to gradients

in the data and that increasing b will decrease the number of points of the edge

function close to one. This interpretation of A and b can then help guide one to

pick appropriate values.

• Overlap Operators: The estimation algorithm using this thin plate model is

applied in an overlapping framework; so, one must also specify an overlap vector

0 chosen according to guidelines in [6].
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Parameter Value
A 10
b 3

B, 20
B9 0.2
Rp 0.35

IX 106
PO,
POS 1 X 106

Iq 10

T 0.9
1.0 X 10-2

6

2
T 0.9
0 16 10 7 4 2 2 0 0

Table 4.3: Parameter values for the synthetic examples in Figures 4-12 and 4-13, 4-15,
and 4-16.

Clipping: As before, the 'estimates of the edge function S are clipped sothat

they lie in [0, I - E] for some small e.

Initialization and Stopping Criterion: As in the segmentation algorithm using

1/f-like models, the algorithm is started by estimating the piecewise smooth

function f assuming an edge function � which is zero everywhere, and the

algorithm is stopped after a fixed number of iterations 1. Convergence is not an

issue in choosing I since one is not performing coordinate descent of a functional.

Typically I = 2 since this appears to generate good results.

Imaging the Piecewise Smooth and Edge Function Estimates: The results sub-
A

sequentl plotted include the estimates f and � of the piecewise smooth and

edge function estimates as well as � thresholded at some value T, where T -_ 1.

To summarize, the list of items input to the segmentation algorithm are the data, the
nd"the parameters B,, Bg, Rp,

measuremen noise variances, a Pos, Rf -r A, b, 0,

,E, 1, and T.

Figures 4-12 and 4-13 display a circle example using the parameters-in Table'4.3
-,measurement noise everywhere.,, The'dat i' the san ie,,qs

and assuming unit intensity a s.

that in, Figures 4-6 and,4-71 but the results for estimating the ed e function are better.
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Data Thresholded Edge Estimate

10 10
1 0

20 20

30 30
5 0.5

40 40

50 0 50

60 60
020 40 60 20 40 60

Smoothed Estimate Edge Estimate

10 10 10 0.8

20 20
0.6

30 30

0 40 0.4

0 so 0.2

6 60

20 40 60 20 40 0

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations

0.08
10 10

0.8
20 20

0.06
30 0.6 30

40 40
0.040.4

-50 50

60 0.2 60 0.02

20 40 60 20 40 60

Figure 4-12: A circle segmentation example computed using the multiscale thin plate
approach.

A lot of the blockiness in the edge function estimate has disappeared, and there is a

very distinct ridge marking the edge location, as indicated by the thresholded edge

function estimate. The piecewise smooth function estimate is fairly smooth away

from the edge. However, the piecewise smooth function estimate in Figures 4-12

and 4-13 is not as smooth in the vicinity of the edge as the piecewise smooth function

estimate appearing in Figures 4-6 and 4-7. In Figure 4-12, the lack of smoothness

near the circular edge in the piecewise smooth estimate is made quantitatively precise

by noting the presence of a wide ring in which the piecewise smooth estimate error

standard deviations are large. Although the piecewise smooth function'estimate- in

Figures 4-12 and 4-13 is not as good at that in Figu're'4-6 and 4'7,'th u' ntity
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Data Without Noise

20,

15,

10,

5-

01

-5

-10

40
30

Piecewise Smooth Function Estimate Edge Function Estimate

20,

15,
0.8,

10,
0.6,

5

0.4,
O'

0.2,

0
60 80

0 80
'IO

40 4
40

10 20 0
0 0 0 0

Figure 4-13: Mesh plots of the circle segmentation example computed using multiscale
thin plate models.

of interest is the edge function estimate, and the edge function estimate generated by

this multiscale algorithm is very impressive.

The segmentation example in Figure 4-15 is for a different synthetic image that

tests how the algorithm responds to gradients in the underlying data. This example

is generated using the parameters in Table 4.3 and specifying measurement noise

variances of unity. The data in this example is a sum of two surfaces, which are

plotted, along with the sum in. Figure, 4-14. The: first, constituent surface is the steps

surface also shown in Figure 2-3. The second is the surface h defined by

n-1 )2
hij 100j 1 - -2 (4.22)

n-1

2
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Steps Surface Semicircular Surface h

40,

100,

30,
80,

20, 60,

10, 40,

01 20,

-10
0 0

0 0
_I___20 10 20

30 0

60 6 50

Sum of Surfaces

120,

100,

80,

60,

40,

20,

0

0

20

____1 -0-0
20

Figure 4-14: Surfaces comprising the data for the example in Figure 4-15.

where hij denotes the height of the surface at position (ij) in the image plane

(0, . . . , n - 1) x (0, n - 1). The function h is semi-circular in profile and thus

has very steep gradients near the edges. Hence, one expects that the edge function

estimate will tend towards one at the boundary of the image domain. One observes

this in Figure 4-15. The indication is that the algorithm is performing as desired.

An example of how the algorithm performs on a synthetic image with missing

measurements is presented in Figure 4-16. This is an important example to consider

because there are missing measurements in AVHRR -imagery. The dark region in

Figure 4-17 corresponds to the portion of the image lacking measurements. The mea-

surement noise variances are specified as unity at all locations where measurements

exist. The parameters for this example are the ones listed in, Table'4.3. The perfor-

mance is quite good. The edge function estimate has a distinct ridge at the boundary
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Data Thresholded Edge Estimate
1

100
10 10 0.8

20 80 20
0.6

30 60 30

0.440 40 40

50 20 50 0.2

130 601

20 40 60 0 20 40 60 0

Smoothed Estimate Edge Estimate

100
10 10 0.8

8020 20
0.6

30 60 30

40 40 0.4

50 50
20 0.2

60 60
20 40 60 0 20 40 60

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations
1 0

0.08
0.95 10

0.07
20. 20 0.06

0.9
30 30 0.05

40 0.85 40 0.04
50

50 0.03

0.8
60 60 0.02

20 40 60 20 40 60

Figure 4-15: Segmentation of a semicircular steps surface using the multiscale thin
plate approach.

of the circle where there are measurements, and the piecewise smooth function esti-

mate is a good representation of the circular step, even at locations where there are

no measurements. Given the good performance on this synthetic example and the

ones in Figures 4-12 and 4-15, one is interested in testing the performance on real

AVHRR imagery.

One set of results obtained from using the algorithm on AVHRR imagery is dis-

played in Figure 4-18. The parameters for this example are listed in Table 4.4. The

data is the same as that in Figure 4-9, and the measurement noise variances used by

the algorithm are again all unity. Comparing Figures 4-9 and 4-18, one observes.-that
the edge function estimate in th -has a-in6re'distinct:ridg at b h' 'dges �ffhe

e latter e ot 'e
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Data Thresholded Edge Estimate

10 12 10
1 0 0.8

20 208
0.6

30 6 30

40 4 40 0.4
2

50 0 50 0.2

60 -2 60

20 40 60 20 40 0

Smoothed Estimate Edge Estimate
12

10 10 10 0.8

20 8 20

30 6 0.63
4

40 40 0.4
2

50 50 0.2
0

60 -2 60

20 40 60 20 40 60 0

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations
8

0.08

10 7 10 0.0720 20
5 0.06

30 30
4 0.05

�6' 403 0.04

50 2 50
0.03

60 1 60 0.02

20 40 60 20 40 60

Figure 4-16: A circle segmentation example with data drop outs.

L-ti.n. of M...r-.t D.p Ot.

10 -

20

30

40

50

60

10 20 30 40 50 60

Figure 4-17: Locations of data drop outs for the �circle'example in- Figure 4-16.
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Parameter Value
A 100
b 10

B, 20
B9 0.2
Rp 0.35

fPO, I x lo,
POS I X 106

Iq 10

0.55
o-2

6 1.0 x I

.1 2
T 0.55
0 16 10 7 4 2 2 0 0

Table 4.4: Parameter values for the AVHRR segmentation in Figures 4-18.

Parameter Value
A 100
b 10

B, 20
B9 0.2
Rp 0.35
Pof I X 106

POS I X 106

10

T 0.55
6 1.0 x lo-,

2
T 0.5
0 16 10 7 4 2 2 0 0

Table 4.5: Parameter values for the AVHRR segmentation in Figure 4-19.
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Data Thresholded Edge Estimate

owl
10 8 10

0.8
20 6 20

0.6
30 30

40 4 40 0.4

50 2 50 0.2

60 60

20 40 60 20 40 60 0

Smoothed Estimate Edge Estimate
9

A,

8 10

10 0.8

6 0.630 30

40 0.4

50 3 50 0.2

60 2 60.

20 40 60 20 40 60 0

Smoothed Estimate Error Standard Deviations Edge Estimate Error Standard Deviations
0.12

10 4 10
0.1

20 20
3 0.08

30 30

40 2 40 0.06

50 0.04
1

60 60 0.02

20 40 60 20 40 60

Figure 4-18: Segmentation of AVHRR data using the multiscale thin plate approach.

gulf stream. In addition, the edge function estimate takes on smaller values over the

Gulf Stream region in Figure 4-18. Thus, the edge function estimate in Figure 4-18 is

more desirable than the one in Figure 4-9. On the other hand, the piecewise smooth

function estimate in Figure 4-9 is smoother than the one in Figure 4-18. However,

it is more important that the Gulf Stream be clearly delineated by the edge function

estimate, and this is the case in Figure 4-18.

Recall that one not only desires to locate the boundaries of the Gulf Stream

but also the boundaries of any warm or cold core rings that might be present in the

data. A segmentation of AVHRR imagery containing a warm core ring is presented in

Figure 4-19, for the parameters listed in Table 4.5 and a specified measurement noise

-variance of unity everywhere. Locations of data drop outs are marked in Figure 4-

85



Data Thresholded Edge Estimate

8 P,
10 10 0.8

20 6 20
0.6
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40 40 0.4

50 2 0.2India
60 0
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Smoothed Estimate Edge Estimate

8
1 0 1 0 0.8

20 6 20
0.65 30

4
40 0.4

3
O5 50M, 2 0.2

60 - 60

20 40 60 20 40 60 0

SmoothedEstimateErrorStandardDeviations Edge Estimate, Error Standard Deviations
0.12

6
1 0 1 0

5 0.1
20 20

4 30 0.08

3
:00 40 0.06

50 50 0.04

60 1 60 0.02

20 40 60 20 40 60

Figure 4-19: Segmentation of AVHRR, data containing a warm core ring.

L-ti.,-f M..--t D.p Ot.
er . I
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-20: Locations of data drop outs for the AVHRR data -19.
Figure 4 example in Figure 4
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20. If one examines the data, one observes a warm core ring directly to the north

of the Gulf Stream. In Figure 4-19, the edge function estimate delineates both the

north and south wall of the Gulf Stream. It also marks the northern and part of the

southern boundary of the warm core ring well, but the remainder of the ring boundary

is marked only by very low edge function estimate values. However, one should note

that the south edge of the ring is much less sharply delineated than the north edge.

This fact makes the determination of the south edge of the ring very difficult. Thus,

the performance attained by the algorithm is quite good.

4.2.3 Analysis

One of the main advantages of the structure of the thin plate algorithm compared to

that of the 1/f-like algorithm is that the modularity of the former allows for simple

high level interpretations of the components that can guide improvements. In the case

of the segmentation algorithm using 11f -like models, the results generated at each it-

eration by the multiscale estimation algorithm are difficult to interpret in the context

of segmentation because the estimates remain in the lifted domain. However, each of

the components of the thin plate segmentation algorithm has a simple interpretation

in the context of Shah's general approach to segmentation introduced in Chapter 2.

Consequently, it should be possible to improve the performance of each piece sepa-

rately so as to improve the performance of the whole algorithm. In particular, one

should be able to incorporate changes to increase the quality of the piecewise smooth

function estimate and decrease the thickness of the ridge delineating the borders of

the Gulf Stream in the AVHRR imagery.

One possible improvement involves making a small change in the model for esti-

mating the piecewise smooth function given the continuously varying edge function 9.

Recall that the variance of the process noise increases by the additional amount q at

locations where the line connecting the parent to the descendent node crosses a dis-

continuity as diagrammed in Figure 4-11. However, in light of the fact that the edge

function is continuously'varying, it is more appropriate to allow a varying amount of
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process noise. In particular, one could use the sum of 1 across the line connect-
(1-�jj )2 A

ing the parent to the descendent node to multiplicatively increase the process noise.

This is motivated from the form of the one-dimensional statistical models. One still

needs to form a binary edge map by thresholding § because the algorithm must make

a fundamental change to the measurement equation at edge locations so as to prevent

the propagation of gradient information in the state variable across edges. Details of

the change to the measurement equation are given along with other specifics of the

multiscale thin plate model in Appendix A. Simply allowing the increase in process

noise to vary continuously, however, should yield piecewise smooth function estimates

which are more smooth in the vicinity of an edge.

To decrease the thickness of the ridges in the edge function estimates, one can

consider adjusting the parameters in the model for s. Recall that there are three

parameters in this model: B,, Bg, and Rp. The values of the parameters adjust

the relative penalties placed on first and second order derivatives of s in the model.

After adjusting the parameters to reduce the penalty on second order derivatives, one

should obtain edge function estimates which better localize the edges in the original

image.

4.3 Conclusion

A 1/f-like and a thin plate multiscale segmentation algorithm are derived in this

chapter. Both use as a starting point the discussion in the previous chapter of the

one-dimensional statistical variant of Shah's variational segmentation algorithm. The

1/f-like algorithm displays moderate performance on synthetic images but poor per-

formance on real AVHRR imagery. However, there are possibilities for improving

the results by considering other methods for interpreting the multiscale edge function

estimate. The results obtained with the thin plate algorithm are better overall, and

its modular structure makes it simpler to improve upon. This motivates a future

refinement of the thin plate algorithm so as to achieve even better results.
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Chapter 5

Conclusions and Extensions

5.1 . Brief Summary

The objectives of this thesisare set out in the introduction: to develop an image seg-

mentation algorithm which has constant computational complexity per pixel and is

capable of generating error statistics. A variational formulation of the segmentation

problem due to Shah [20] is used as a starting point. Shah's' approach'io segmenta-

tion involves coordinate descent of a nonlinear functional. Each of the minimization

problems associated with the coordinate descent is amenable to a statistical interpre-

tation. The advantage of casting the problems into a statistical framework is that

this provides the proper context for discussing error statistics.

In one dimension, a precise statistical interpretation of the minimization problems

is developed. This leads to the creation of a segmentation algorithm in one dimension

in which one alternates between using a recursive estimation algorithm to compute

piecewise smooth and edge estimates and associated error variances. A set of typical

examples demonstrates that the estimates provide one with a good segmentation.

A sequence of Monte Carlo simulations indicates further the good quality of the

estimates. The experiments also characterize the error variances generated by this

iterative segmentation process and establish a strong relationship between them and

the actual errors in the estimates. The results are very good and motivate an extension

to two dimensions.
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In two dimensions, segmentation algorithms are considered whose structure in-

volves alternately forming piecewise smooth and edge estimates and associated error

variances. It is noted that standard discretizations of Shah's variational approach to

image segmentation are associated with Gaussian Markov random field estimation

problems. For such problems, there exists a lower bound on computing estimates

and error variances with a recursive estimation algorithm [10]. In order to develop

an image segmentation algorithm with constant computational complexity per pixel,

this lower bound is circumvented by replacing the Markov random field prior model

in the estimation problem with a multiscale prior. This is done in two different ways,

yielding two different multiscale segmentation algorithms. One, makes use of 11f -like

multiscale models, and the other thin-plate multiscale models. The performance of

the algorithms is characterized by segmenting a variety of synthetic images as well

as AVHRR imagery of the Gulf Stream. Both algorithms segment well, but the one

incorporating thin-plate models generally performs better.

5.2 ."Extbnsions

One ma or extension of this work involves the investigation of other multiscale prior

models for the piecewise smooth process f and edge process s. Obtaining a multi-

scale model for the piecewise smooth process f is difficult because the model must

incorporate information from a previous edge estimate. To obtain a model for f, one

could conceivably use the recently developed modeling framework of Irving [12]. He

has developed a set of algorithms for generating a multiscale model whose statistics

approximate those of a given arbitrary Gaussian random field [12]. Unfortunately, the

current process for computing the approximate models is intensive. Thus, it would

not be appropriate to use Irving's algorithms to compute an approximate model for

the piecewise smooth process f at each iteration in a segmentation algorithm. For

the special structure of the segmentation problem, however, one may be able to find a

simpler technique for generating approximate multiscale models. This may result in

a multiscale model for f that leads to piecewise smooth estimates which are less noisy

90



in the vicinity of an edge. Generating a multiscale model for the edge process s is

not as difficult because the model does not change at each iteration. In this case, one

could apply Irving's algorithms to obtain a multiscale model which approximates the

random field associated with Shah's variational problem for finding s. The resulting

multiscale model for the edge process will probably lead to edge estimates which are

better able to localize the edges in an image.

Another possibility for improving the quality of the edge and piecewise smooth

estimates would be to use a Markov random field prior for both the piecewise smooth

and edge processes and to develop a different algorithm to compute estimates and

error variances. Recall that the lower bound on the computational complexity applies

only for computing estimates of Markov random fields using a recursive estimation al-

gorithm. This bound is circumvented in Chapter 4 by using multiscale models instead

of Markov random fields. One could also consider using Markov random field priors

and an estimation algorithm which computes approximations of the optimal estimates

and error variances. An approximate algorithm may be able to find near-optimal es-

-timates efficiently since such an algorithm is not subject to the computational lower

bound. Some steps towards developing such an estimation algorithm have already

been started. This work is closely related to that of Chin [3] and looks promising,

especially when applied to MRI imagery of the brain.

Both avenues of research will be explored in the future and are expected to yield

even better segmentation algorithms which are both efficient and capable of generating

error statistics.
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Appendix A

1\4ultiscale Thin Plate 1\4odel

The segmentation algorithm derived in Section 4.2 makes use of Fieguth's multiscale

thin plate model for surface estimation given a binary edge map. The principal

details of this model are presented here, and more details are available in [6]. First,

the standard form of the root-to-leaf recursion and observation equations are laid

out. Then, the discussion turns to the modifications of these equations that occurs

at &S'continuft Jocations.

The state vector in the multiscale recursive model is a four dimensional vector

Zpv )TZV PV qv The first component zv corresponds to the the height of the

surface. The second and third components p, and q, correspond to first partial

derivatives of the surface. The fourth component zp, is the value of zv at the parent

node. The recursion for the model is given by

zV I 0 0 0 zv;? B 2 -m(v)/2 0 0

PV 0 1 0 0 pv'� 0 B 2 -m(v)/2 09
+ WV

qv 0 0 1 0 qvy 0 0 B 2 -m(v)/29

zPV 1 .- O'. 0 zPV'r' 0 0 0

(A. 1)

where m(v) is the scale of node v, and the WV are independent unit variance Gaussian

random variables. The recursion essentially specifies a 1/f-like model for each of z,

p, and q.
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i=1 i=3

VY

i=2 i=4

Figure A-1: How nodes are numbered in the thin plate model.

Observations are of the form

Z'

h, C, 0 0 0 Pi/

0 -2m(v)-M cei Oi 2m(v)-m qv + V" (A.2)

zPV

where the v, are independent Gaussian random variables, Cis I at the finest scale

and 0 elsewhere, and h,, is a measurement of the surface. The index i is determined

by the location of the node v in relation to its parent v,�y as indicated in Figure A-1.

For i 1, 2, 3, 4 1, the values of ai and 3i are given by:

al a2 = a3 = a4
(A.3)

,31 02 = 03 = 04 - -1

The second row in (A.2) is actually a component of the prior model that has been

recast as an observation so as to avoid necessitating an increase in the state dimension.

This component of the observation acts to ensure that the gradient terms p and q are

close to approximations of the gradient of the surface z.

At locations where a discontinuity has been determined as diagrammed in Fig-

ure 4-11, the process noise in the surface term is increased by 'q, and the model is

modified so that no information about the gradient terms p and q is propagated across
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the edge. The recursive model at these locations is given by

2 -,m(v)12 + TI) 1
Z' I 0 0 0 zv;� (B 2 2 0 0

2 0
PV 0 0 0 0 PVI- 0 (Po--)

+ WV

qV 0 0 0 0 qVY 0 0 (POZ)2

zPV 1 0 0 0 zPV'7Y 0 0 0

(A.4)

where Poz is the prior variance of the root node (generally quite large). The observation

equation at edge locations becomes

Thv Cv 0 0 0 + V'. (A.5)

Thus, information contained in the gradient terms p and q is not propagated across

discontinuities.
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