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ABSTRACT

The problem of reconstructing a multi-dimensional
field from noisy projection measurements is approached
using an object-based stochastic formulation. Objects
within the cross-section are characterized (e.g. location,
shape, size) using a finite-dimensional set of parameters,
which are estimated directly from the projection
measurements (rather than post-processing a reconstructed
image) using nonlinear maximum likelihood (ML) parameter
estimation. Object localization involves obtaining the
log likelihood function by a convolution back-projection
operation, using a convolving kernel that is specified in
the optimal solution to the location estimation problem.
The performance of object location and geometry estimation
is investigated, as is the robustness to a variety of
modeling errors. Several computer simulations are
included which illustrate the difference between the image
representation of a localization log likelihood function
and a reconstructed image obtained using conventional
reconstruction techniques.
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CHAPTER 1
1.0 INTRODUCTION

The problem of reconstructing an n-dimensional
function from its (n-1l)-dimensional projections is a
well-studied problem arising (typically in the context of
cross-sectional imaging of a medium) in a diversity of
disciplines including radio astronomy, medicine,
nondestructive testing, geophysics, and oceanography
(Gordon, 1974; Klyuev et al., 1980; Munk and Wunsch,
1979; Bracewell, 1956). To make the problem of
reconstruction precise, let f(x) represent the value of
the n-dimensional function at the point xeR". Suppose

that the values of line integrals

g(Li) = d[f(x)ds (1.1)
L.
i

are available along a (possibly infinite) number of lines
Li in R?". The reconstruction problem, stated

generally, is then: given a set of projection line
integrals g(Li), determine an estimate E(x) of the
function f(x). Mathematically, the problem of
reconstruction is an inverse problem since the

measurements are obtained by a projection operation which

must be inverted during reconstruction.
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In practice the reconstruction problem arises in
conjunction with the internal imaging of a
three-dimensional medium. There are two ways to perform
three-dimensional imaging, either approximately by
successive cross-sectional imaging on closely spaced
parallel planes, or by direct three-dimensional
reconstruction (Kowalski, 1979). 1In reconstructing the
interior of a medium, the function f (x) corresponds to
some spatially distributed parameter of the medium, for
example density or refractive index. 1In the
reconstruction problem, it is not possible to observe f (x)
directly; instead, it must be inferred from external
projection measurements. These measurements can be
modeled under ideal circumstances as integrals of £ (x)
along straight lines, obtained by measuring energy exiting
the medium along the various lines. To simplify the
discussion we consider throughout this thesis only the
planar imaging problem, in which case f(x) is
two-dimensional and the lines L, lie in the imaged
plane. At the expense of more complicated notation, the
ideas to follow may be extended easily to the

three-dimensional reconstruction problem.

The source of the energy, typically electromagnetic
or acoustic, is either external to or internal to the
medium, giving rise to active and passive reconstruction

problems, respectively. In the active problem, an
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external source transmits energy through the medium; in
the passive problem, the energy (e.g. thermal energy) is

spatially distributed within the medium.

In most applications, the ultimate objective of the
reconstruction process is to extract specific information
about the cross-section. Typically, projection
measurements are used to obtain an approximate
reconstruction which is subsequently processed (perhaps by
humans) to remove artifacts and extract the information of
interest. For example, considerable work has been done in
the area of automated and semi-automated analysis of
medical CAT scan reconstructions, for the purpose of
detecting and delineating the boundaries of organs, bones,
lesions and fluid spaces (Belanger et al., 1979;

Selfridge and Prewitt, 198l1). This post-processing step
is effectively the utilization of a priori information
about the medium being imaged to enhance and extract

information about the cross-section.

In this thesis, we describe a method for utilizing a
priori information directly in the inverse problem.
Direct utilization of a priori information offers the
potential for significant improvements in applications
where (1) attempts to perform direct inversion result in
severely degraded reconstructions and (2) the ultimate

goal of the processing is to obtain a few specific pieces
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of information concerning the cross-section. To develop a
framework for utilizing a priori information in the
processing of projection measurements, we focus in this
thesis on a relatively simple version of the problem in
two dimensions; at the end of this thesis we discuss ways
in which the framework we have developed can be (and is

being) extended.
1.1 APPLICATIONS OF RECONSTRUCTION

Currently, the application of reconstruction

techniques spans a wide range of disciplines, including:

e medicine -- the attenuation of X-radiation transmitted
through biological tissue is related to the line
integral of the tissue X-ray absorption density; this
reconstruction procedure is currently employed in
Computerized Axial Tomography (CAT) scanners (Cormack,
1963, 1964; Hounsfield, 1973). Time-of-flight
measurements with ultrasound provide path integrals of
the tissue refractive index; this procedure is
particularly well suited to mammography (Glover and
Sharp, 1977; Greenleaf et al., 1978). 1In passive
imaging, radionuclides are injected into the body and
selectively accumulate in certain organs and
neoplasms; emitted positrons or gamma rays are used

to reconstruct the spatial distributions of both the
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energy source and the tissue absorption density

(Gullberg and Budinger, 1981; Brownell et al., 1977).

electron microscopy -- the micrograph, or electron
microscope image, represents a projection of the
spatial density distribution of a specimen onto a
plane; reconstruction techniques are used to
determine the three-dimensional density distribution

from multiple micrographs (DeRosier and Moore, 1970).

geophysics -- cross-borehole electromagnetic probing
provides measurements related to the path integral of
either attenuation or propogation velocity; these
techniques are potentially useful in energy resource
mapping and in detecting hazardous regions ahead of a
mine face (Radcliff and Balanis, 1979; Dines and

Lytle, 1979)

oceanography —-- the velocity of acoustic energy in
water is temperature dependent, and time-of-flight
measurements may be used to obtain underwater
temperature profiles (Munk and Wunsch, 1979; Spindel,
1979). Such techniques are potentially useful in
mapping and tracking large thermal water masses,

e.g. Gulf Stream cold-core rings (Backus et al.,
1981). 1In the passive problem, acoustic sources such
as ships or submarines in the ocean generate an

acoustic field whose line integrals may be observed
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via multiple acoustic arrays (Rockmore, 1980).

radio astronomy -- in this passive problem, a radio
telescope aimed at the sky measures the integral of
radio brightness temperature along strips; these
integral data are used in radio contour mapping

(Bracewell, 1956).

refractive index mapping -- holographic interferometry
is used to measure the optical pathlength (related to
the line integral of the refractive index) through a

transparent medium (Sweeney and Vest, 1973).

meteorology -- in the passive reconstruction problem,
satellite-borne microwave spectrometers measure the
line integral of thermal radiation at different levels

in the atmosphere, which may be used to determine

atmospheric temperature profiles (Ledsham and Staelin,

1978) .

target association =-- objects in a medium, such as
airplanes in flight, reflect energy from active
sources such as radar or laser. If the measurements
(reflected energy vs. bearing angle) are modeled as
integrals of a reflectance field, reconstruction of
this reflectance field may be used to infer the

location of objects (Denton et al., 1978).
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® nondestructive testing -- reconstruction techniques
have been employed in nondestructive detection of
cracks in nuclear reactor cooling water piping (Morris
et al., 1979), for nondestructive mapping of
refractive index profiles and cross-sectional geometry
of optical-fiber preforms (Chu and Saekeang, 1979),
and for nondestructive mapping of residual stress

fields inside metals (Hildebrand and Harrington,

1981).

® target shape estimation -- using spatially distributed
radar, the cross-sectional area of a convex object in
three-space may be measured at a number of view
angles; these measurements may be used to reconstruct
the three-dimensional shape of the object (Das and

Boerner, 1978; Rockmore et al., 1979).

In addition to these applications, many others are
presently under investigation. 1In particular, the
well-publicized success of reconstruction from projections
in CAT scanners, as well as in radio astronomy and
electron microscopy, has recently led to suggestions to
apply reconstruction techniques to a wide variety of novel
and technologically demanding tasks, e.g. real-time
monitoring of very high production rate manufacturing
processes and "stop action" internal imaging of very

rapidly changing media (McKinnon and Bates, 1981; Klyuev
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et al., 1980)

1.2 OBJECT-BASED RECONSTRUCTION

The major emphasis of research and applications in
the area of reconstruction from projections has been on
producing accurate, high resolution cross-sectional images
from projection measurements. In practice, these images
are either observed directly and interpreted by a human
inspector or are post-processed by a computer (see for
example Belanger et al., 1979) to extract important
information about the cross-section. It is well known
(Mersereau and Oppenheim, 1974), however, that creating an
accurate, high resolution image of a cross-section by
reconstruction demands a large number of high

signal-to-noise ratio (SNR) line integral measurements.

One way to see this is to note that in any
application, what is obtained is a digital reconstruction
of f(x). Consequently, what is really being reconstructed
is a set of parameters f which form a digital
representation of f(x). For example, if f(x) is
represented using a standard pixel image representation,
the vector f consists of the complete set of pixel
intensities. Similarly, in practice only a finite set of
line integral measurements can be taken. If g denotes

this vector, then one can use (l1l.1l) to arrive at a set of
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linear equations of the form

g = HEf (1.2)

where H is a matrix (see Gordon (1974) for a more detailed
discussion). In this setting the problem is to invert the

relationship (1.2) to reconstruct f.

Although this representation for the problem is
attractive because the measurement model is linear, in
many applications the dimension of f is very large
(e.g. for a 256x256 pixel image representation, the
dimension of f exceeds 65,000). Often, considerably fewer
than 65,000 line integral measurements are available,
which results in an underdetermined set of equations
having a nonunique solution, i.e. reconstructions that
contain "suspect features" (Gordon, 1973). In such cases,
a variety of ad hoc techniques are generally used to
post-process the reconstructed image in order to remove
suspect features; this step essentially involves

incorporating a priori information about the cross-section

after the reconstruction is performed. Furthermore, as

discussed by Vest and Radulovic (1977), if measurements
can not be made at angles that span the full range from 0

to m, the matrix H is poorly conditioned, resulting in

reconstruction artifacts.
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In their work, Mersereau and Oppenheim (1974) show
that one of the most popular reconstruction algorithms
{the convolution back-projection algorithm, to be
discussed in Section 1.3) is very sensitive to both a
reduced number of measurement line integrals and to errors
or noise in the line integral data. 1In particular, the
sensitivity of this algorithm to noise manifests itself in
the reconstructed image as a mottled or speckled
appearance. This effect arises primarily because high
frequency components in the projection data are emphasized
during the reconstruction by a convolution operation that
accentuates high frequencies in the projections. This
leads to computational errors in the reconstruction

similar to those introduced by numerical differentiation.

Although accurate, high-resolution image
reconstruction requires a large number of high SNR
projection measurements taken over a wide angle, in many
cases, particularly with many of the recently suggested
applications, this may be neither practical nor possible.

This may be due to

® economic constraints that limit the total number of
measurement transducers -- e.g. oceanographic
transducers are sophisticated, low power units that

are costly to build, place and maintain.
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time constraints that limit measurement quality =--
e.g. limited measurement time interval in "stop
action" imaging of very rapid events, or in
nondestructive testing of high production rate
processes such as steel manufacturing (McKinnon and

Bates, 198l; Klyuev et al., 1980)

safety and operating constraints that limit the
measurement quality -- e.g. high temperature and/or
caustic operating environments in certain process
monitoring applications may limit sensor accuracy and

signal to noise performance.

geometrical or physical constraints that limit the
view angle -- e.g. in ultrasonic imaging, where bony
structures limit view angles, or in nondestructive

testing of certain large objects.

inaccuracy of the measurement model -- the line
integral measurement model in (l.l) is an idealization
that does not incorporate, for example, the effects of
refraction, diffraction, scattering, and

polychromaticity (Dennis et al., 1977).

As mentioned, when one or more of these factors limits the

overall view angle or the total number or SNR of line

integral measurements, the reconstructed image is known to

have artifacts, poor resolution and/or high noise levels.
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This in turn may make image evaluation by a human

inspector or a computer inconsistent and unreliable.

In a variety of applications, however, the final goal
of the signal processing is often far more modest than
obtaining a high resolution image of the cross-section.
For example, in nondestructive testing, the final goal of
processing projection data may be simply to determine
whether a certain type of flaw or defect is present within
the cross-section of a homogeneous material. Or, the goal
may be to determine where within the cross-section some
sort of object (such as an oceanographic cold-core ring

(Backus et al., 1981)) is located.

In such cases, because the signal processing goals
are relatively modest, high quality imaging may not be
necessary for the ultimate goal of detecting and
characterizing objects within the cross-section from
projection data. Acceptable object detection and
characterization may be possible instead by replacing the
current combination of image reconstruction followed by
visual or automated interpretation with more sophisticated

decision-directed signal processing algorithms.

If the goal of the processing of projection
measurements is simply to detect and characterize one or
more objects in a cross-section, conventional image

reconstruction methods may also not represent the best
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approach because they do not take full advantage of the
available a priori information about the properties and
structure of the cross-section. Typically, nominal
properties of the cross-section are well defined a priori
either statistically or deterministically. For example, a
flaw- or defect-free homogeneous material may correspond
to a constant internal density, or a cross-section of the
ocean that does not contain a cold-core ring may have a
particular well-known statistical characterization. 1In
many cases, it is the goal of the signal processing to
seek well-defined deviations from this nominal state,
where the variety and complexity of possible deviations is
limited and known a priori. Said another way, the number
of degrees of freedom associated with the problem of
detecting, locating, and characterizing objects such as
flaws in materials or cold-core rings in the ocean are far
fewer than the number of degrees of freedom in the full

image reconstruction problem.

Since in these types of problems a great deal is
often known a priori about the cross-section, and the
signal processing goals are relatively specific, one
approach toward designing signal processing algorithms for
these problems is to utilize all available information
concerning the cross-section under examination and to

optimize performance in terms of the reliability and

accuracy of object detection and estimation, not in terms
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of image quality.

For example, if it is believed that there exists an
object within the cross-section, characterized a priori by
a set of random or unknown parameters (corresponding to,
say, location, shape, orientation, and/or density), then
one may utilize all available a priori information about
the cross-section and apply hypothesis testing and
parameter estimation algorithms to detect and characterize
the object. As will be shown, parameters cﬁaracterizing
the object location, size and geometry enter the problem
in a nonlinear way, resulting in a nonlinear estimation
problem of relatively small dimensionality. This is in
contrast to full image reconstruction, in which a linear

estimation problem of high dimensionality is solved.

A number of authors have considered specific problems
of detecting constant density regions in a field and
estimating the boundaries of these regions (e.g. Hanson,
1978; Belanger et al., 1979; Selfridge and Prewitt,
1981). All of these approaches have involved
post-processing a reconstructed function using automated
or semi-automated image boundary detection and estimation
techniques. Unfortunately, such an approach does not
reduce the number of degrees of freedom associated with
the preliminary image reconstruction, and consequently, a

large quantity of high SNR projection data is still
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required. Also, even if the line integral measurement
noise is white, the reconstructed image noise is nonwhite
(Riederer et al., 1978), which complicates the
post-processing operation. In this thesis, we similarly
consider detecting objects contained within a
cross-section and estimating their boundaries. Unlike
previous work in this area, however, we propose to perform
statistical detection and estimation using the noisy
projection data directly, rather than post-processing a

reconstructed image.

We develop a framework for incorporating a priori
information into the reconstruction problem by employing
an object-based, probabilistic description for the
cross-sectional density function f(x). In practice,
varying amounts of a priori information may be available
regarding objects in a cross-section -- for example one
may or may not have information concerning their number,
location, shape, orientation, and density. 1In the
framework to be presented, available detailed a priori
information is incorporated into the object detection and
estimation problem only when it is known where to focus
it. For example, as a first step in an obiject
localization and estimation problem, one may conceive of
the direct use of noisy projection measurements to solve a
coarse detection problem such as determining whether or

not an object having simple boundary shape is present at a
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hypothesized location; similarly, one may attempt to
determine the object location as well. Here only a modest
amount of a priori information is used, namely, the
possible presence of an object, and a very rough estimate
of its shape. TIf an object is determined to be present at
some location, then finer details of a priori information
(e.g. information about probable object shapes) may be
incorporated into the subsequent problem of estimating the

object boundary geometry.

We investigate the estimation performance, that is,
the accuracy with which an object”s location and geometry
can be estimated, as a function of the measurement noise
level and scanning geometry. The estimation accuracy,
besides depending on the measurement noise and geometry,
clearly also depends upon the accuracy of the mathematical
model for the cross-section, the object, and the
measurements. Consequently, we investigate not only the
performance, but also the robustness or sensitivity of the
estimation procedure to various types of modeling errors,
e.g. attempting to estimate an object”s geometry when its
location is imprecisely known, or when there exists an

unmodeled object in the cross-section.

Robustness analysis plays an important role in
assessing the utility of object-based reconstruction in

any particular application, since the incorporation of a
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priori information directly into the inverse problem
implies that the resulting procedure will be reliable only
if it is not sensitive to inaccuracies in the details of
this a priori information. The approach to be pursued in

this thesis allows systematic investigation into the

robustness issue, because the models to be employed
clearly display the assumptions which have been made, and
which are therefore the focus of attention in the

robustness analysis.

In this thesis, rather than developing a general
algorithm for processing projection data from arbitrarily
complex cross—-sections, we instead investigate several
specific problems in order (1) to develop some insight
into the structure of the resulting detection and
parameter estimation computations, and (2) to assess the
performance of the parameter estimator and the dependence
of the performance on measurement geometry. These
investigations establish a framework for more detailed
studies and indicate how one can incorporate information

and critically evaluate performance in a systematic

manner.

We focus our attention on two particular problems,
namely analyzing noisy projection data (1) to locate a
single object whose shape, orientation and density are

known, but which lies at some unknown point in the
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cross-section, and (2) to estimate the geometry

(e.g. size, shape and orientation) of a single object
whose location is known. The object location and geometry
will be estimated, for the case of projection measurements
corrupted by additive white Gaussian noise, by maximum
likelihood (ML) parameter estimation. In this case, the
computation associated with the log likelihood function
evaluations can be shown to have the same form as the
computation associated with one solution to the full image
reconstruction problem, namely the convolution
back-projection inversion formula (to be discussed in
Section 1.3). This fact will allow existing theoretical
results about the convolution back-projection inversion to

be employed in assessing the performance of the ML

parameter estimation problem.

It should be noted that a closely related problem is
object detection, that is, using projection measurements
to determine whether or not an object is present in the
cross-section. It is well known (Van Trees, 1968) that
the types of calculations and analyses that must be
performed in solving a detection problem are essentially
identical to the calculations involved in the solution to
the estimation problem. 1In this analysis, we do not carry
out these detection calculations explicitly, as we have
found that the estimation problem has provided an

excellent focus for obtaining insight into object-based
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reconstruction. Once ML estimates are available for the
object parameters, hypothesis testing (to detect the
presence of an object) may be performed by using, for

example, the generalized likelihood ratio test (GLRT) (Van

Trees, 1968; Willsky and Jones, 1976).

1.3 THE RECONSTRUCTION PROBLEM

1.3.1 Geometry

As a prelude to our development, we review the recon-
struction problem in two dimensions. Let (xl,xz) be
the Cartesian coordinates of a point X in the cross-
section being imaged, and let f(Xx) represent the value of
the spatially-distributed property of the medium being
imaged (hereafter referred to as the density) at the point
X. A line lying in the cross-section, as shown by 1(t,O)
in Figure 1.1, is specified by the polar coordinates (t,9)

of its normal vector, and is given by
1(t,8) & {x: X1cos® + X,sin@ = t} = {x: x"8 = t} (1.3)
(t,0)ey @ {(t,8): -ow<t<w, 0<0<T }

Here, X~ = (x7 x5), and 8 = (cos® sin®)” is a unit

vector at angle © to the x; axis.
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Figure 1.1 Measurement geometry.

1.3.2 The Radon transform

In reconstruction problems, f(x) can be observed only
via its projections in various directions, and the
reconstruction problem corresponds to estimating the value
of the function f(x), for xeRz, from projection

measurements. The projection of f(x) at any angle 6 is a

one-dimensional (1D) function denoted by g(t,8) as shown

in Figure 1.2. For any value of projection angle ©, the
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Figure 1.2 Projection at angle 6.
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projection g(t,8), evaluated at the point t, is the line

integral of the function f(x) along the line 1(t,©)

g(t,9)

o0 (e ]
jﬁ jff(x)é(t - Xjcos® - xzsine)dxldxz
-0 -00

/f(x)ds (1.4)

x’e=t

where 6(t) is the Dirac delta function.

In terms of the notation introduced thus far,
reconstruction of f(x) from its projections g(t,9)
corresponds mathematically to inverting the integral
equation in (l1.4). One form of the solution to this
problem, known as the inverse Radon transform, was derived
by the Austrian mathematician Johann Radon (1917).
Radon”s derivation assumes the availability of noise-free
projections at all possible projection angles, in which
case g(t,8) can be thought of as a function g:¥- R, where
Y is defined in (1.3). In his honor, the linear operator
in (1.4) mapping the function f:RzéR into the function
g:¥Y= R is referred to as the Radon transformation, and g

is called the Radon transform of £, denoted here as #f.

Although by assumption g is defined for (t,8)eY, it
may be evaluated at any (t,®) value, and because of the

nonunique parameterization of a line
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1(t,®8) = 1(-t,86 + (2k+1)m) = 1(t,8 + 2km) k=0,%x1,...

(1.5)

g(t,8) satisfies the following periodicity properties

1) g(t,9) g(-t,0 + (2k+1)m) k=0,x1,...

2) g(t,9)

g(t,® + 2km) k=0,x1,... (1.6)

By the Radon transformation in (l1.4), a density
function has two mathematical representations, f(x) and

g(t,8), which are referred to as its object space and

Radon space representations, respectively. The Radon

transform maps the object space representation f into the
Radon space representation g, and the various exact and
approximate reconstruction techniques are concerned with
mapping the Radon space representation into the object

space representation.

Certain geometric relationships exist between points
(xl,xz) in object space and points (t,8) in Radon
space under the Radon transformation and will be important
in the discussions to follow. According to (1.3), these

four variables are related by
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t = X,Cos® + x,5in® = x76 (1.7)

First, consider a given point (t,8) in Radon space. The
corresponding set of points x in object space satisfying
(1.7) is the line 1(t,®) in (1.3). ©Next, consider a point
X = (xl,xz) in object space. The corresponding set of
points in Radon space satisfying (1.7), that is the set of
(t,9) so that 1(t,8) passes through the point x, specify a
cosinusoid ¥(x), see Figure 1.3, with magnitude [ x| and

phase equal to the arctan(xz/xl); i.e.

¢x) 2 {(t,9): x,C0s® + x,8in@ = t} (1.8)

In summary, then, lines in object space correspond to
points in Radon space; points in object space correspond

to cosinusoids in Radon space.

1.3.3 Reconstruction techniques

Mathematically, determining f(x) from the integrals
in (l1.4) is a problem of inverting an integral equation,
and currently, there exist a number of exact and
approximate reconstruction techniques. As already
mentioned, the mathematical problem of reconstructing a 2D
function f(x) given a set of noise-free integrals taken at
all possible orientations was first solved by J. Radon

(1917); his solution is referred to as the inverse Radon

transform.
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“(x)

Figure 1.3 Point x in object space and corresponding cosinusoid

in Radon space.

More recently, Fourier transform analysis has led to
the projection-slice theorem (Mersereau and Oppenheim,
1974) which states that g(t,9), the projection at angle 6o,
has a 1D Fourier transform that is a central slice at
angle © of the 2D Fourier transform of f(x). The
projection-slice theorem can be used for reconstruction by
first taking 1D Fourier transforms of the projection
measurements to estimate slices of the 2D Fourier
transform of f(x), and then inverting the Fourier
transform to obtain an estimate of f(x) (Stark et al.,
1981). The projection-slice theorem also suggests a
representation for f(x) directly in terms of its Radon

transform g(t,®), that is, it provides a second
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representation for the solution to the integral equation
in (1.4); this solution is referred to as the convolution

back-projection (CBP) inversion formula.

The CBP inversion formula is an exact solution to the
reconstruction problem that, like the inverse Radon
transform, assumes the availability of noise-free
projection measurements at all projection angles. The CBP

inversion formula is given by

A T [ T
f(x) = [ fg(t,e)v(t - x’@)dtde @ /q(gg,e)de (1.9)
0 J-oo 0

where for perfect reconstruction from noise-free

projections, the Fourier transform of the convolving

kernel v(t) is V(w) = |w

. Details regarding the
derivation of (1.9) may be found in Bracewell (1956),

Shepp and Logan (1974), Snyder and Cox (1977) and Rowland
(1979) .

The name convolution back-projection arises because
(1.9) corresponds to a two-step procedure for

reconstructing f(x):

1. Along lines of constant © in Radon space, filter or
convolve g(t,9), the projection at angle 8, with the
function v(-t) to form a convolved projection g(t,®).

The set of all convolved projections q(t,9), ©€[0,T)
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may be thought of as the function g:Y2 R in Radon

space.

The so-called back-projection operation is performed
in the integration with respect to 8 in (1.9);
back-projection corresponds to 1D integration with
respect to the differential d6 of the 2D function
q:Y2 R, over the set of (t,8) points in Y sweeping out

the cosinusoidal path ¥(x) in Radon space (see (1.8)).

This procedure may be interpreted in object space as well:

At each projection angle 8, filter the 1D projection

g(t,8) with v(-t) to obtain g(t,9).

For each © value, "back-project” g(t,®) into a 2D
function that is constant along points x on parallel

lines 1(t,8).

Integrate the back-projections from step (2) over

ee[0, ™).

Steps (2) and (3) of this procedure to reconstruct f at a

point x are known as the back-projection operation, which

is

shown schematically in Figure 1.4. The back-projection

operator maps the function g:¥Y= R into the 2D function

f:R

%»R; f is called the back-projection of g and is

denoted #q. For a more complete discussion of the

42
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Figure 1.4 Back-projection operation.
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back-projection operator, see for example Rowland (1979).

The exact reconstruction formulas in the inverse
Radon transform and the CBP in (1.9) require an infinite
amount of noise-free projection data. To apply these
formulas in practice when only a finite number of
projection measurements are available, the integrals
associated with these formulas are approximated by finite
sums. Lakshminarayanan (1975) and Horn (1978) have
investigated the discrete approximation to the inverse
Radon transform, and Bracewell (1956) and others have
investigated the discrete approximation to the CBP

solution in (1.9).

Although these discrete approximations can be
determined for any given set of measurement lines
(i.e. any given set of measurement sample points in Radon
space), in the case where the line integrals in every
projection are taken along parallel lines (the so-called
parallel-ray measurement geometry), these analyses provide
the same approximate reconstruction formula, known as the

convolution back-projection reconstruction algorithm:
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t
~ A . o
SO DD 9388 (36 - 8y (1.10)
k=0 j=-N_

where
ek = k7 /Ne

A = sample spacing in t
Ne = number of angular increments
N, = largest iﬁteger =T/p - 1/2
¥ = an appropriately selected weighting

function

The weighting function ¥ is the function v(t) in
(1.9) with Fourier transform V(w) = |w|, multiplied by

some window function that attenuates high frequencies.

Various tradeoffs between reconstructed image resolution
and noise sensitivity arise in selecting the weighting
function ¥, and are discussed in Shepp and Logan (1974),
Horn (1978), and Rowland (1979). Equation (1.10) is the
type of reconstruction algorithm currently employed in-
medical CAT scanners; it is a simple, explicit formula
that provides rapid, quality teconstructions when a large
number of high SNR line integral measurements are

available at a full range of viewing angles.
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It should be noted that the term "back-projection"
has so far been used in two distinct ways. First, it has
been used in naming the convolution back-projection
reconstruction formula in (1.9) and the approximate
reconstruction algorithm in (1.10). Second, it has been
used to refer to the operation of integration along a
cosinusoid in Radon space, which in object space
corresponds to the integrated effect of a continuum of
two-dimensional back-projected functions, each of which is
constant along parallel lines. 1In the latter use,
back-projection corresponds to an operator mapping a 2D
function in Radon space into a 2D function in object space
(Rowland, 1979). 1In this thesis, we have occasion to use
the term back-projection in the sense of an operator.
Also, in this thesis, the term "convolution
back-projection” is used to refer to a somewhat more
general two-step procedure than that shown in (1.9)
(convolution in the t variable followed by
back—projection); in particular, V(w), the 1D Fourier
transform of the convolving kernel, is not be restricted

to only equal |w|, and in fact is allowed to be different

for different values of ©.

The convolution back-projection algorithm in (1.10)
resulted from discrete approximation of the exact

reconstruction formula Y(1.9). The so-called series

expansion reconstruction algorithms also result from an
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approximation, in particular, the cross-sectional density
function f(x) is approximated by a finite number of terms

in a series expansion on a known basis set {¢i}

N

—_—

i=1
For example, in a pixel representation for f(x), the ¢i
are indicator functions on square-shaped subsets that
result from horizontal and vertical tesselation of the

plane.

This type of series expansion representation gives
rise to a linear measurement equation (as in (1.2); see
Gordon (1974) for details), and reconstruction corresponds
to a matrix inversion problem which has been approached by
numeric relaxation (ART, see Gordon; 1974; Herman, 1973),
minimum norm (Kashyap and Mittal, 1973), generalized
inverses (Krishnamurthy et al., 1974), and least squares
(Cho and Burger, 1977), and, in cases where measurement
noise is explicitly modeled, by Bayesian analysis (Herman
and Lent, 1976), maximum likelihood estimation (Rockmore
and Macovski, 1976; Tasto, 1976), and minimum variance
estimation (Wood and Morf, 198l1). For a comparison of the
CBP and series expansion algorithms, see Rohler and

Krishnaprasad (1981).
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1.4 THESIS OUTLINE

As mentioned in Section 1.2, we focus our attention
in this thesis on several specific problems involving a
probabilistic object-based representation for the
cross-sectional density f(x). In particular, in Chapter
2, we develop the general problem of using noisy
projection measurements to determine maximum likelihood
(ML) and maximum aposteriori (MAP) estimates of the
density, location and geometry of a single object located
within a cross-section. Several specific examples of
objects are discussed, including a constant density object
on a disk and a Gaussian object. 1In Chapters 3 and 4, the
single object location estimation problem is addressed;
the estimation performance analysis machinery is developed
in Chapter 3 and then illustrated with two examples in
Chapter 4. The location estimation log likelihood
function is shown to have the same form as the CBP
inversion formula in (1.10), where the convolving kernel
does not satisfy V(w) = |w]|, but instead is specified in
the solution to the optimal object localization problem.
In Chapter 4 several computer simulations are also
presented which illustrate the distinction between log
likelihood function evaluation and conventional image

reconstruction from noisy projection data.
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In Chapter 5, issues related to model sensitivity are
addressed; 1in particular, the sensitivity of the location
estimation performance to errors in the modeled object
geometry, as well as to the presence of multiple objects
is investigated. 1In Chapter 6, the problem of estimating
the geometry of a single object with known location is
addressed. In this chapter, one approach toward the ML
estimation of object geometry {(size, angular orientation,
and extent of elongation or eccenticity) is developed,
estimation performance is assessed, and several questions
of practical importance are answered. In the conclusion
to Chapter 6, we discuss ways in which one might structure
an iterative algorithm for the problem of estimating the
location and geometry of one or more objects in a
cross-section from a set of noisy projection measurements.
Finally, in Chapter 7, we conclude by summarizing the
results of the location and geometry estimation problem,

and discuss ways in which the framework developed in this

thesis can be extended.
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CHAPTER 2
AN OBJECT-BASED APPROACH TO RECONSTRUCTION

2.0 INTRODUCTION

Suppose that a cross-sectional density profile f (x),
whose projections are being measured, can be approximately

represented as some known background field fb(x),

superimposed upon which are N "objects" -- an object will
be modeled as a 2D function that is an additive component
of the overall cross-sectional density. The object-based
approach to reconstruction will involve using noisy
projections of the overall density function f£(x) to
determine information about each of its component
two-dimensional objects. As discussed in Chapter 1, the
information desired about each object may include the
object location within the cross-section, its density or
contrast (with respect to the background), and information
about the detailed variation of the two-dimensional object
density profile. 1In addition, information concerning the

number of objects may also be desired.

While many object density profiles are possible, all
of the representations to be considered in this thesis

will satisfy the following:
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the brightness or contrast of the object will be
characterized by a scalar multiplier of the function
representing the object. That is, the function
corresponding to the object (which need not be
constant) corresponds to some relative density
variation within the object; the contrast is simply
the overall scaling. The jth object contrast or

density scaling factor will be denoted djeR.

the location of the object will enter the
representation by a shift in the 2D variable x; the

jth object location will be denoted c.€R?

J

the profile of the object (that is, the detailed
variations in the 2D object) may, in view of points
(1) and (2) above, be completely specified by
knowledge of the profile of a unit contrast object
located at the origin. This will be called the

relative profile of the object since it is the unit

contrast profile of the object relative to its
location point c. Such object properties as size,
shape and orientation will be incorporated into the
relative profile description, as we discuss in Section
2.1. While a wide variety of representations for
relative profiles are possible, in the interest of
estimating an object profile using finite dimensional

optimal estimation techniques, we will suppose that
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the relative profile belongs to some finitely
parameterized class of 2D functions of unit contrast
situated at the origin. The jth object relative
profile will then be characterized by some finite
dimensional parameter vj.
As an example, an object might correspond to a region
of the field having constant density d relative to the
background, where the region is a subset K(c) of the plane
with its centroid at the point cGRz. In this case, the

object is given by

d (x) =4d (x - c) (2.1)
><K(c) ><K(0)

where >( is the indicator function on the set K,
K

1 if x€K
)( (x) = (2.2)
K

0 otherwise

From (2.1), the relative profile is )( an

r
K(0)
indicator function of the set K(0) (a unit contrast
function located at the origin). 1In Sections 2.1.1 and

2.1.2, we will discuss several general types of possible

relative profiles.
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By characterizing each of the N objects as just
described, the jth object may be represented as
djfo(x—cj;vj) where fo(x;vj) is the object”’s

relative profile. The overall cross-sectional density

function may then be represented as
N
E(x) = £, (x) + zl djEq(x = c5iv)) (2.3)
J:

In the object-based reconstruction problem with such
a field, one is interested in analyzing noisy projections
of f(x) to determine such things as how many objects are
present in a cross-section, and for each object detected,
determining an optimal estimate for its parameters d.,

o] and v: (with respect to some optimization

3f j

criterion) . In order to establish some intuition into
the estimation of object parameters, we will focus our
attention in this thesis on the parameter estimation
problem assuming only a single object is present within
the cross-section. The single object problem, a natural
precursor to the N-object problem, will provide us with
intuition into the underlying task of estimating the
location and profile of an object from noisy projection
data, without becoming involved at this point in the
problem of reconciling data from two or more objects.
Also, it will provide insight into a number of areas we

wish to explore, including
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® estimator structure -- interpretation of the
estimation computations, and methods for efficiently

and/or approximately performing the computations

® estimation performance -- how well can objects be
located and characterized versus SNR? To what extent
do the values of particular parameters influence our
ability to estimate other parameters; for example,
how does an object”s shape affect the accuracy with

which its location or orientation can be estimated?

@ the effect of limited projection data -- in what ways
does performance degrade when the total number of

projections or the total view angle is reduced?

® robustness to modeling errors -- determining the
impact of particular modeling errors, such as the
effect on the location estimation problem of

inaccuracies in the assumed object size or shape.

While these issues arise for each object in the
N-object problem, they are much more clearly assessed in
the single-object case. Consequently, we will develop the
problem of using noisy projection measurements to estimate
the density, location and relative profile for a single

object in a cross-section represented as
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f(x) = £, (x) + d-fo(x - c;v) (2.4)

This investigation into the single object problem not only
uncovers much about the areas of interest just mentioned,
but also establishes a systematic approach which extends
to the N-object case and to other model-based signal

processing problems.

The relative profile for the object in (2.4) is
fo(x;v); in the next section we discuss several
potentially useful parametric representations for this

orofile, and investigate the Radon transform of (2.4) in

Section 2.2.

2.1 THE OBJECT RELATIVE PROFILE

As discussed in the previous section, the object
relative profile fo(x;v) is a unit contrast 2D function
correponding to an object situated at the origin of the
cross-sectional coordinate system. While this function
has been constrained to be finitely parameterized, it is
otherwise completely arbitrary. 1In any application, a
priori information about the type of objects likely to
occur in a cross—-section should serve as a guide in
appropriately selecting the class of modeled relative
profile functions. Generally speaking, the various
choices may be split into two groups, namely discontinuous

and continuous functions, and in the next three sections
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we present several possible profiles, as well as some
specific examples that will be further analyzed in the

course of this thesis.

2.1.1 Discontinuous relative profiles

In a number of applications, automated or
semi-automated delineation of boundaries in reconstructed
images is currently being accomplished by partitioning the
cross-section into regions (e.g. bone, kidney, airspaces),
where the density variations within any region are small,
but where the variation between regions may be great
(Belanger et al., 1979; Selfridge and Prewitt, 1981).

Any such region may be either exactly or approximately
represented as a constant density object, i.e. an object
having a relative profile that is an indicator function on
some set K situated (e.g. centroid location) at the

origin.

The unknown information in such a relative profile is
the boundary 2K of the set K; 29K is a closed curve in the
plane which is represented parametrically. The problem of
stochastic curve representation has been treated by a
number of authors (Anastassiou and Sakrison, 1981; Cooper
et al., 1980). Since the projection of an indicator
function on a set K is a constant times the chord length

of intersection of the line 1(t,8) with the set K, we

56



desire a finite dimensional parametric representation for
9K that is amenable to easy chord length of intersection

calculation. A variety of representations are possible,

including the following:

@ If 2K can be well approximated by a simple geometric
element (e.g. rectangle, ellipse), it may be
approximately specified by a small number of

parameters, e.g. side length or semi-axis lengths.

e If K is convex, 9K can be completely described by its
support function, which is periodic in 2x (Santalo,
1976). This periodic function can be approximated by
a finite number of terms in a series expansion, e.g. a
Fourier series, in which case 2K is parameterized by a

finite number of coefficients in a truncated series.

e The boundary 29K can be approximately represented by a
sequence of horizontally and vertically directed edge
segments, corresponding to a binary pixel
representation for the set K (Elliott and Srinivason,
1981; Cooper et al., 1980). In this case, K is
represented by the finite set of parameters

characterizing the sequence of edge segments.
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Each of these representations (as well as others not
listed), has relative advantages and disadvantages, such
as the simplicity of computation, or the goodness of fit
to the actual boundary 2K for a given number of
parameters, and in any application, a priori information
would be taken into account in making an appropriate
choice of parameterization for the curve 23K. The
indicator function on a disk is a simple relative profile
that we will use frequently in this thesis to illustrate a
number of points about the parameter estimation problems

being investigated.

2.1.2 Continuous relative profiles

In some applications, a discontinuous density
function may be an inappropriate model. For example,
oceanographic thermal or salinity profiles do not have
infinite gradient values because of mixing at the
interface between regions of different temperatures or
salinities. 1In such cases, a continuous object is a more
appropriate model. A smooth circularly shaped object of
radius "R" may, for example, be described by a Gaussian
object, f_(x;R) = exp(—”x”z/Rz), where ||x|| is the

magnitude of the point x.
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Such an object profile is clearly an approximation to
an actual object, since the Gaussian object is nonzero at
arbitrarily large distances from the location point. The
Gaussian object is a very good approximate profile,
however, since its density value decreases rapidly to a
small value with increasing distance from the location
point. This profile will be used in this thesis to
illustrate many of the parameter estimation techniques,
and is attractive because the corresponding calculations

are in most cases simple and analytic.

2.1.3 Size, eccentricity and orientation

A potentially rich class of object relative profiles
may be obtained from any given profile fo(x;v) by
considering the effect of applying scaling, stretching and
rotation transformations to the x coordinate system. For
example, by using such a representation, an indicator
function on an ellipse may be easily expressed in terms of

the circularly symmetric indicator function on a disk.

Specifically, let

X = Q(R,A,9)x

cos@ sing {X- 0 R 0
o | x (2.5)
-sin@ cos@ 0 l<ﬁr 0 R
In this case, the relative profile fo(Q-l(R,A,¢)i;v)
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is the relative profile fo(x;v) isotropically magnified

by a size factor R, stretched in the Xq direction and
compressed in the x, direction by a factor {X, and

rotated by the angle @. This relative profile
representation is particularly attractive because it leads
to analytically tractable evaluation of some interesting
specific examples. The transformation in (2.5) will find
application in Chapter 6 of this thesis, where we consider
the problem of using limited noisy projection data to
estimate the geometry of a single object, specifically,
the problem of estimating object size, eccentricity and

orientation.

2.2 THE RADON TRANSFORM

The cross-sectional density f(x) can be observed only
via its projections, i.e. via its Radon transform, where

the Radon transform (equation 1.4) of f(x) in (2.4) is

j{fb(x)ds + d J/éo(x - ¢;v)ds (2.6)

x"8e=t x°8=t

Since the background field is assumed known, the first
term in (2.6) may be subtracted from the Radon transform

to leave that part due solely to the object, namely
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g(t,e;d,c,v) =

d-g(t,8;c,v) =4d j[fo(x - c;v)ds (2.7)

x"e=t

Notice that the contrast parameter d, which affects -
the density function in object space linearly, also
affects the Radon transform linearly. Thus, in order to
see how ¢ and v affect the Radon transform, it is
sufficient to look at the case where d=1. We will use the
notation go(-) to denote the Radon transform of a

relative profile, namely

9o (t,8:v) & j[fo(x;v)ds (2.8)
x“8=t

Finally, the Radon transform of a relative profile which

has been shifted to the point c is

g(t,9;c,v) = ./}o(x - c;v)ds

x"e=t
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Shifting a relative profile from the origin to the point c
in object space causes its Radon transform to experience a
shift in the t variable in Radon space, the magnitude of

the shift depending sinusoidally on 8.

EXAMPLE 1 -- Pillbox Object

Consider the problem of using projection measurements
to locate a constant density object on a disk (this 2D
function is often referred to as the pillbox function).

Let the object be given by a weighted indicator function

on the disk D(R) 2 {x: |x|=<Rr},

d if x| =R
(2.10)

0 otherwise

which is illustrated in Figure 2.la. For any value of &,
the projection is a half-ellipse centered at t=0,
2d\|R2—t2 if |t] < R

d-gq(t,9;R) =[ (2.11)
0 otherwise

The Radon transform, viewed as a 2D Radon space function

is the 8-independent function shown in Figure 2.lb. It

should be noted that whenever the density function is
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Figure 2.1 (a) Projection at angle ©.
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gy(t,0)

Figure 2.1 (b) Radon transform for a single pillbox object

located at the origin.
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circularly symmetric, as it is in this example, the Radon
transform is 6-independent, and is also referred to as the

Abel transform (Bracewell, 1965).

Consider now the case where the object is situated at

an arbitrary point ceR2

in the cross-section. As
indicated by (2.9), the projection at the angle © is the
1D function d-g,(t - ¢"8,8;R), which from (2.11) is a
half-ellipse centered at the point t = ¢c”© = c,cos6 +

C,sin®, as shown in Figure 2.2a. The projection has the

following properties:

1. The projection at angle 8, sampled at the point t, is
equal to the product of 4 times the chord length of

intersection of line 1(t,8) with the disk D(R)

centered at c.

2. The area under the projection at any angle 6 equals

the product of d and the cross-sectional area of the

disk D(R).

3. The centroid of the projection at angle © is located
at the point c”9, which is the projection at angle ©
of the object centroid c. This is true not only for

circular objects, but for any object.
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Figure 2.2 (a) Projection at angle 6.
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4. For all ©, the projection is symmetric about the point
c”’8. This is true not only for objects that are

indicator functions on circularly-shaped sets, but for

relative profile that is centrally symmetric, i.e. one

satisfying fo(q;v) = fo(—q;v) for all qERz.

5. The projections at all angles are the same relative to
the point c¢c”9; this is true whenever the relative

profile is circularly-symmetric.

6. While this discontinuous object has a continuous
projection, the first partial derivative 2g(t,9)/2t
has points of discontinuity. This is more generally
true for indicator functions on any set K having a
boundary 23K following a curve with a finite radius of
curvature (Galvin and Bjarngard, 1975). The first
partial derivative is discontinuous at (t,8) points
corresponding to the line tangent to the boundary at

points of finite radius of curvature.

The Radon transform of the pillbox object located at c,
viewed as a function g:¥- R, is the ©6-dependent function
shown in Figure 2.2b, which is related to the Radon
transform in Figure 2.l1b by a sinusoidal shift in the t
variable. The problem of estimating the object location
CERZ in object space, therefore, is the same as

estimating the sinusoidal shift of its Radon transform in
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g(t-c'9,8;R)

Figure 2.2 (b) Radon transform for a single pillbox object

located at the point c.
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Radon space.

EXAMPLE 2 -- Box Object

Consider now an object that is a weighted indicator
function on a square with sides of length L parallel to
the x axes, centered at the point ¢, and having constant

density d. 1In this case, the object is given by
d-fo(x - c;L) =d X (x =) (2.12)
I(L)
as illustrated in Figqure 2.3a, where I(L) 2 {x: |xl|5L

and |x,|<L}.

The prcjection at angle 6 is a trapezoid, as shown in

Figure 2.3a, where

h(e) = Ld/Cos(m /4 -58)
wy(8) = (L/y2)Sins
W5 (8) = LSin(m/4 -56)

o
]

| (émod m/2) - m/4 | (2.13)

As was the case in Example 1, the centroid of the
projection is the projection of the centroid, and the
projection is symmetric about the centroid. The Radon

transform of the square object is shown in Figure 2.3b as
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Figure 2.3 (a) Projection at angle ©.
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g(t,9)

AR OOUX

ARAXAXREX

Figure 2.3 (b) Radon transform for a single box object.
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a two-dimensional function on ¥ . It should be noted that
since the relative profile is not circularly-symmetric,
the projection, relative to its centroid c¢c”8, has a shape
that is not independent of the projection angle 6. Also,
for certain projection angles, the projection is seen to
be a discontinuous function; this is true for any profile
that is an indicator function on a set having a boundary

containing straight lines.

EXAMPLE 3 -- Gaussian Object

In this final example, consider the Gaussian object
of size R presented in Section 2.1.2, having relative

profile
_ 2,2
£, (x;R) = exp(-|x]|“/R") (2.14)
The projection of a 2D Gaussian function is a 1D Gaussian,
and the Radon transform is the ©-independent function

90 (£,0:R) ={T R exp(-t?/R?) (2.15)

Again, the centroid of the projection is the projection of
the centroid, and the projection is symmetric about its
centroid. Also, the projection is continuous, and has a

continuous first partial derivative with respect to t.
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Example summary

The object-space structure in the profile
d-fo(x—c;v) is seen to translate directly into structure
in its Radon transform -- a "cosinusoidally-displaced"
two-dimensional function, where the centroid of the
projection at angle © sweeps out the cosinusoid €(c) in
Radon space. The Radon space representation of the
densities for Examples 1 and 2, shown in Figures 2.2b and
2.3b, are completely described by the variables c, d, R,
and L. Variable c affects only the projection centroid
cosinusoid ¥(c), variables R and L affect the shape of the
projection at every © value, and the contrast parameter d

affects only the magnitude of the Radon transform (in a

linear manner).

These simple examples serve to illustrate the
perspective being taken in this thesis -- the problem of
searching for an object in object space (Figures 2.2a and
2.3a) may be approached by searching in Radon space
(i.e. measurement space) for a highly structured

cosinusoidally displaced Radon transform (Figures 2.2b and

2.3b).
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2.3 THE MEASUREMENT MODEL

In practice, only noisy samples of the Radon
transform are available as measurements, and two

stochastic measurement models are commonly used:

1. Poisson process model -- in the case of low-level
electromagnetic probing of an attenuating field,
sensors measure the rate at which photons escape the
field along straight lines. If a narrow beam of
photons with rate ko is directed through the field
along the line 1(t,8), the escaping photons obey a

Poisson process model with rate

A(t,8) = loexp(—g(t,e)) (2.16)

where g(t,9) denotes the Radon transform at the point

(t,9).

2. Additive nolise model -- with acoustic or high level
electromagnetic energy, the measurements are typically
modelled as the Radon transform contaminated with

zero-mean additive noise

y(t,8) = g(t,8) + w(t,8) (t,0)e¥ (2.17)

Typically, w(t,8) is a zero-mean white Gaussian noise
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process, although other noise models have been used;
for example, an additive correlated noise model arises
by line integration of a homogeneous random field with

exponential correlation (Tasto, 1974).

Throughout this thesis, we will employ the
measurement model (2.17) with w(t,8) a zero-mean white
Gaussian process, (t,0)€% where &% denotes the subset of ¥
on which the measurements are taken. We will consider two
types of measurements, specifically, projection
measurements taken over a continuous interval of 6 values
and projection measurements taken at only a finite number

of projection angles.

Case 1 Continuous-view Measurements

In the continuous-view case, measurements are taken
over a total viewing angle of 2A centered at m/2,
i.e. views are taken up to an angle A on either side of

the X, axis (here 0<A=<m/2). The measurement subset

is given by

K= 92
2 {(t,0):-w<t<m, —;L—A59<%+A } (2.18)

In the continuous-view case, the additive noise w(t,9)

is a 2D zero-mean Gaussian random field on &% with
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covariance

NO -
E{w(t,0)w(T,23)} = 7ze(t—r,e-¢) (t,0)eF (2.19)

where 5(t,9) is a 2D impulse. The standard tomographic
reconstruction problem, where (noise-free) measurements
are assumed to be available at all possible projection

angles, is the special case of continuous-view

measurements with A=%%. We will refer to this as the

full-view measurement case, and to the case A<%§ as the

limited-view measurement case.

Case 2 Discrete-view measurements

In the discrete-view case, projections are measured at

N angles that are uniformly spaced over the interval

(0,7). The measurement subset is
57=.7h
2{(t,0): -oe<t<wm, e=ej=-§l, 3=0,1,...,N-1} (2.20)

For each view angle ej' the noise process w(t,ej)

is a 1D zero-mean Gaussian process with covariance

N
E{w(t,05)w(r,09)} = — (=) (2.21)

and the noise at different view angles ei and ej,

i#j, is uncorrelated.
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In practice, only a finite number of line integral
measurements can be taken, in which case the Radon-space
measurement set % corresponds to a finite set of points in
Y (for example, in the so-called parallel-ray scanning
geometry, # corresponds to a lattice of points uniformly
spaced in ©€[0,7) and t€[-T,T] for some value of T). 1In
this thesis, we will not consider this case explicitly,
because it is much simpler to expose the basic ideas by
using projections that are continuous in the t direction.
In the course of the analysis, however, a variation of the
measurement equation in (2.17) will be introduced that
involves a continuous projection which has been spatially
bandlimited in the t direction; this analysis effectively

considers t-direction sampling of the projections.

2.4 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Suppose in the problem being considered that the
parameters d, ¢ and v are known a priori to belong to the
sets D, C and V respectively. Given a set of continuous-
or discrete-view measurements, we wish to estimate these
object parameters by maximum likelihood (ML) estimation.
The ML estimates are obtained by first using the
projection measurements to compute a log likelihood
function ¥(d,c,v) (Van Trees, 1968), and then finding the

parameters d€eD, c€C and v€V that maximize #(d,c,v).
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In the continuous-view case, the log likelihood

function is given by

1 2T [,
-+ 4 g2(t,0;c,v)dtde (2.22a)

and in the discrete-view case, it is given by

N-1 o
2
,%h(d,c,v) = NB zg ];-y(t,ej)g(t,ej;c,v)dt
]=0 - 0o
N-1
[+ -]
1 z 2 2
- - d t,0.:c,v)dt
No / g ( i )
J=0 —-00

(2.22b)

In each case, the log likelihood function is the
difference between two terms, the first of which is
obtained by a matched filtering operation (Van Trees,
1968) on the measurements using a Radon-space filtering
template g(t,9;c,v). The second term involves the Radon
transform energy on the measurement subset. Maximum
likelihood (ML) estimates for these parameters then

satisfy
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= argmax Z(d,c,v) (2.23)
deD
ML ceC
VeV

<O

If the parameters d, ¢ and v, rather than being nonrandom
unknown parameters, are instead random variables with
joint a priori probability distribution p(d,c,v), then the
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