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Chapter 1

Introduction

With the development and availability, in recent years, of fast forward models to sim-
ulate the responses of geophysical well logging tools [3], there has been considerable
interest and activity in trying to find explicit use of these models in petrophysical
interpretation, i.e., the problem of evaluating a geological formation for hydrocar-
bon presence and recoverability. Frequently, some of the formation descriptors, such
as the formation resistivity, neutron porosity and the depth of invasion [5] of the
drilling fluid, enter the problem nonlinearly; therefore, the model-based approach to
the inversion for these quantities is typically iterative, with fast forward models in
the loop.

It is the ambition of this thesis to provide the methodology for enabling a quanti-
tative characterization of the uncertainty associated with the final estimates obtained
using such an inversion method. For this purpose, we have studied two specific ways

of characterizing this uncertainty:

e When the source of the uncertainty is the measurement sensor noise, (e.g.,

nuclear counting statistics, electrical noise, cross-talk, etc).

e When the source of this uncertainty includes the case where some of the quan-
tities involved in the tool/formation description (e.g., bed boundary locations,
tool sample locations, invaded zone properties) are not precisely known during

the estimation procedure.
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In order to address these two problems systematically, and develop insight into
the senstivities to various sources of uncertainty, we have focussed on the problem of
the induction tool response [3] in a three layer, invaded medium, to be described at
length in the following chapter. It must be stressed that, ultimately, this methodology
of assessing uncertainty is applicable to much more complex formations and more
sophisticated tool response models.

There exist explicit mathematical models and computer codes that describe how
the induction tool responds to particular formation heterogeneities, principally due to
layering and invasion {13]. We have chosen the three layer, invaded formation model
to illustrate the developed methodology because it allows us, with the complexity of
the formation model kept at a minimum, to capture the physical effects that also
influence more complicated models of the formation. It is worth noting that inversion
for the petrophysical quantities of the formation (in the case of the induction tool this
is the true conductivity of the formation) is routinely carried out for multi-layered
formations with more than one invaded zone, i.e., models with very large numbers
of parameters. The large number of parameters does not make the estimation of the
desired parameters impossible; what it curtails is an adequate error characterization
of any such estimation process. With the three layer, invaded model, however, it
is possible to incorporate the complicating physical effects, (e.g., presence of the
borehole and the shoulder beds, invasion and tool depth imprecision), and to analyze
the performance of the estimation process and its robustness to various sources of
error.

The inherently stochastic nature of the observed logs demand that recourse be
taken to statistical methods for the characterization of the errors in the estimated
properties. As was mentioned previously, since the core of most of the forward models
is nonlinear, the error characterization will require the use of tools new to petrophys-
ical interpretation such as the Cramer-Rao lower bound [15] on the error variance
of the estimate. The resulting framework provides a natural means for assessing the
contribution of different measurements to the quality of the estimated parameters.
This serves as a benchmark with which to compare other measurement concepts,

current and of the future.
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The rest of this thesis is organized as follows: Chapter 2 attempts to bridge the
terrains of geophysical well logging and classical es :nation theory. Well logging is
introduced as the process by which measurement devices are lowered into the well to
obtain important petrophysical information about the formation. These formation
measurables, however, are not always of direct interest to us. The procedure by
which these measurables are used to obtain estimates of the porosity, ¢, and water
saturation, S,, - parameters that reflect the hydrocarbon presence and producibility
- is termed formation evaluation or interpretation. The fundamental principles of
formation hydrocarbon evaluation are presented.

Induction logging provides resistivity information that is important for locating
hydrocarbon-bearing formations and estimating reserves. Since the methodology of
error characterization is to be illustrated using the induction log response, the physics
of the induction logging tool is presented. The geometric factor theory [14] is used
to explain the induction tool response and is extended to account for the skin or
propagation effect [11] observed in the induction logs.

Parametric or model-based inversion is discussed next. The central assumption
here is that the formation geometry conforms to a model that can be described with
a finite number of parameters. The assumption that such a formation model exists
enables fast and reasonably precise forward (tool response) models to be developed
that simulate the response of a given tool to the formation model. One such fast.
forward model, Hybres [2], is then discussed. The three layer, invaded model to he
employed in this thesis is presented, with a discussion of its salient features and the
factors governing its choice. Estimation theory is then reviewed with special attention
given to the issues that emerge in the statistical estimation of parameters that arise
nonlinearly into the measurement equation. The nonlinear estimation algorithm for
the estimate of the true conductivity of the formation from a set of noisy induction
logs is then reviewed. The various sources of error that could arise in such an es-
timation schme are then discussed. The chapter closes with an outline of how the
characterization of the error in this estimation is to be examined in four different
performance/robustness cases.

In the first part of Chapter 3 estimator performance is considered when the only

14



source of uncertainty is the measurement noise. In the second part of the chapter
w- assume that some of the parameters in the tool/formation description are not
precisely known. The imprecision in some of these parmeters are a source of error in
the estimate of the desired quantity, the deep conductivity of the formation. The goal
of this part of the study is twofold: we first seek to establish whether measurement
noise or parametric imprecision is the major source of error in the estimation, and
secondly, we desire a means to rank the parameters according to the amount of error
they individually contribute to the overall estimation error. This will enable us to
identify those parameters to which the estimate of the deep conductivity is most
sensitive.

In Chapter 4 we extend the performance analysis to two further situations. Firstly,
in order to minimize the degradation of the deep conductivity estimate that results
from the imprecise knowledge of the tool/formation descriptor values, these val-
ues are themselves refined via a joint estimation of the deep conductivity and the
tool/formation descriptors. Since this additional refinement derives from the same
log data that is used to determine the deep conductivity (i.e., estimating more pa-
rameters from the same log data), a corresponding degradation in the quality of the
deep conductivity estimate is to be expected. The trade-off between the refinement.
in the tool/formation descriplion which leads to less error in the deep conductivity
estimate is examined on a quantitative basis.

Secondly, the methodology is expanded to determine the extent to which addi-
tional measurements of the formation descriptors (e.g., information about the hed
thickness from the Formation MicroScanner [7]) translate to a reduction in the un-
certainty in the final estimate of the deep conductivity.

In Chapter 5 some complementary issues relating to the analysis of Chapters 3
and 4 are addressed. These include extending the sensitivity analysis of Chapter 3 to
include errors due to imprecision in the tool sample locations, and a consideration of
how different choices of tool/formation descriptor values may influence some of the
conclusiéns made in the previous chapters.

In Chapter 6, which concludes this thesis, the principal contributions of the study

are summarized and possible directions for future work are suggested.
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Chapter 2

Background

2.1 Introduction

In this chapter geophysical well logging is overviewed. The process of well logging is
introduced and the well logging environment is discussed. The petrophysical charac-
teristics of an undisturbed reservoir are described followed by an examination of the
complications that drilling and tool related effects introduce into such a description.
The central difficulty in evaluating a formation for the presence and recoverability
of hydrocarbon is that few of the petrophysical parameters that are necessary for
such an evaluation are amenable to direct measurement. They must be derived from
formation measurables such as the resistivity, bulk density and the spontaneous po-
tential of the formation for example. The means for going from such information
to the actual petrophysical descriptors is provided by fundamental log interpretation
relationships that are considered in a section on formation hydrocarbon evaluation.
Resistivity measurements lie at the core of these log interpretation relationships.
The process of induction logging is introduced as a tool for obtaining resistivity in-
formation about the formation. The physics of the induction tool is presented and a
mathematical expression for the tool response is developed under certain assumptions.
The tool response is seen to be a nonlinear function of the formation parameters. The
inversion problem involves going from noisy induction logs to estimates of the forma-
tion parameters. If, as in this thesis, this inversion is done under the assumption that

the formation geometry conforms to a certain model that can be described with a
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finite number of parameters then the inversion is termed model-based or parametric.
A general model of the earth is discussed and it is shown how the assumption of such
a model enables fast and reasonably precise forward response codes to be developed.

The model considered in this thesis is chosen to be a subset of the general model
and consists of a borehole, a central, invaded bed and two uninvaded shoulder heds.
The motivation for choosing such a model is explained. At this stage the parametric
inversion pioblem for the three bed model is stated. It is observed that the formaliza-
tion of a rule for obtaining the model parameters from noisy induction logs requires
the techniques of statistical estimation.

Estimation theory is then reviewed. The notational conventions and some key
results of probability theory are stated, then the various techniques of classical esti-
mation theory are described. Bayesian and non-Bayesian estimators are considered;
the means for constructing the estimates is reviewed as also the methods of error
analysis of the estimation. The Cramer-Rao lower bound is introduced as a lower
bound that can be placed on the error variance of the estimate. Bounds such as this
are of importance in nonlinear problems in which no straightforward expression for
the error variance exists. A separate section on nonlinear estimation is included to
provide an appreciation for the practical difficulties inherent in obtaining estimates
in such problems.

At this stage the parametric inversion problem for the three bed problem is re-
stated in estimation terms. The sources of error in the estimation are then discussed.
A four tiered approach to the analysis of inversion performance and inversion robust-

ness is described.

2.2 An Overview of Geophysical Well Logging

The purpose of this section is to provide a brief overview of well logging. No exhaustive
study of the logging process is intended, instead the emphasis is on providing an

exposition of:
e what well logs are, and why they are important,

e the well logging environment, and



e the interpretation of well logs and how that enables the evaluation of a geo-

physical formation.

2.2.1 Well Logging

Definition of a Well Log

A log, or measurement by an instrument lowered into oil and gas boreholes, provides
information about the potential hydrocarbon production from the well. These mea-
surements are presented versus depth and provide a record of characteristics of rock
formations traversed by a measuring apparatus in the well bore. The logs, some-
times referred to as ‘wireline logs’ or ‘well logs’, are obtained by means of instrument
packages, or logging tools, lowered on cable (wireline) into the well. The part of the
earth under investigation, including both the rock and fluid components, is termed

the formation.

The Importance of Well Logs

Well logging, as the process of obtaining these logs is called, is usually performed
after an interruption or upon cessation of drilling activity. Little knowledge about
the producibility of a well can be gleaned as it is being drilled. Further, the process
of coring, in which cuttings of subsurface rock are returned to the surface for exam-
ination by geologists, cannot by itself furnish the data necessary for a quantitative
evaluation of the hydrocarbons in the formation. While it may indicate the general
lithology under investigation and may reveal traces of hydrocarbon, it does not per-
mit an estimate of the oil and gas in situ. Well logging, as will be seen, provides the
information necessary for such decision making, and is therefore “the most important
part of the drilling and completion process. Obtaining accurate and complete log
data is imperative. Logging costs account for only about 5 percent of completed well

costs, so it is false economy to cut corners in this phase.”[5]
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Figure 2-1: Wellsite setup for logging.[5]

2.2.2 The Well Logging Environment

In this section the actual technique of well logging, as it is carried out in the field, will
be overviewed. A brief description of the characteristics of an undisturbed reservoir
will then be presented, followed by an examination of the complicating factors that
drilling and logging may introduce into such a description. An understanding of the

petrophysical properties of rocks is essential to an appreciation of log interpretation.

The Logging Procedure

Figure 2-1 provides a schematic of the wireline logging operation.

Log measurements are made by lowering a measurement device, or sondc, into
the well by means of a cable from a winch which is mounted on a logging truck
or offshore unit. In addition to enabling the lowering and raising of the tools, the
logging cable provides depth measurements, control over tool speed, and an electrical
interface between the downhole tool and the recording and processing equipment on
the surface.

This computer based control and data acquisition system is programmed so that
a continuously recorded log is made of a physical parameter versus depth as the tool
is raised back to the surface. Taking the logs during the tool’s ascent from the well
assures better depth control and a tauter cable. Though the stretch coeflicient of the

cable in its normal operating range is small, corrections may sometimes have to he
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Figure 2-2: Section through a Hydrocarbon hearing rock.[5)]

made for elastic stretch and this is done either automatically or by mecans of a hand-
crank adjustment. The log data is recorded using digital recording technigues; this
facilitates the transmission of the information over modern electronic channels. Signal
processing can be carried out adaptively downhole, uphole in the logging truck, or,
once the data is stored and transmitted, post-processing can be done at a computing

center.

The Undisturbed Reservoir

Oil and gas producing formations, or rescrvoirs, occur in a wide varicty of shapes
and sizes. The rocks that constitute reservoirs are believed to have heen laid down in
layers or beds. As such, their physical characteristics tend to be different in different.
directions. This is known as anisotropy and is a consideration of great relevance in
reservoir engineering.

The oil and gas recovered today comes predominantly from hydrocarbon accumu-
lations in the pore spaces of reservoir rocks. Figure 2-2 illustrates a section through
a hydrocarbon bearing rock. The rock consists of solid matrix and fluid componcnts.
The matrix consists of grains of sand, limestone, dolomite or mixtures of these. The
fluid component comprises oil, water and, occasionally, gas. Fluid occupies the pore
space of the rock. Typically, water occupies very fine pores and forins a continuons
path through the rock space; oil and gas usually occupy, in that order, the larger
pores.

The properties essential to determining formation producibility are porosity, wa-

20



ter saturation and permeability. The former two provide information regarding the
amount of hydrocarbon present while the latter determines how recoverable or prod-
ucable that amount is.

o Porosity, ¢, is defined to be the pore volume per unit volume of formation. In
other words it is the fraction of the total volume that is pore space. Porosity depends
on the grain size distribution; it is higher if all the grains are of the same size than if
the grain sizes varied widely so that small grains could fill the spaces between larger
grains.

e Water Saturation, S, is the fraction of pore space containing water. Since the
pore space contains water or hydrocarbon, the fraction of pore space containing oil
or gas, the hydrocarbon saturation, Sy, equals (1 — S,,). Therefore, the fraction of
total formation volume that is hydrocarbon is ¢Sy, or ¢(1 — S,,).

o Permeability, k, is a measure of the rate at which fluid will flow through a
given area of porous rock under a specified gradient. It measures the ease with which
fluid can flow through the pore system of the rock, and depends on grain size and
the tortuosity of the path that connects pores through the rock medium. Greater
permeability usually corresponds to greater porosity but this does not always have to
be the case.

Hydrocarbon bearing rocks include sands, limestones and dolomites. Formations
containing just these are termed ‘clean’ and are relatively easy to interpret with logs.
Interpretation, it should be remembered, must take into account all of the above three
rock properties. Limestone, for instance, has low porosity which would indicate that
there is less pore space for possible hydrocarbon accumulation. However, a limestone
formation may consist of dense rock with deep fractures or fissures; this would trans-
late to high permeability (despite low porosity). Therefore, if it is determined by
some means that the water saturation of the formation is small (or equivalently, the
hydrocarbon saturation is large), then the oil and gas that is present should be easy

to recover!.

The interpretation of formations that contain clays or shales (the ‘dirty’ forma-

! Actually, it would be more correct to say that the fraction of pore space that contains immovable
water, the irreducible water saturation, S,;, should be small
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tions) is not as simple. These may have large porosity but very small permeability, so
that a large part of the fluid may be bound and hence unable to flow. Accounting for
the presence of clays and shale in the evaluation of hydrocarbon formations presents

serious complications.

Complicating Factors

There are a host of problems specific to well log measurements. Although the logs
should ideally be measurements of the formation, in reality the log responses of the
tools are affected by the presence of the borehole, the phenomenon of invasion|14],
and problems specific to the tool being used. In addition, operational problems may
be encountered due to temperature and pressure in the well and hostile environmental
conditions.

e Tool Related Effects The problems associated with the tools are much a
function of which tool is being employed, but in general a few coms - issues can be
identified. There are the obvious complications introduced by the hostility of the well
environment; the tools must be able to withstand severe temperatures and pressures
downhole. These adverse conditions are sources of mechanical and electrical error
in the log measurements. The fact that measurements are made while the tool is
in motion is another source of complications. Different tools have different logging
speeds and the errors that enter due to incorrect depth recordings have to be removed
by depth correction procedures?.

¢ Effects due to Drilling Wells are usually drilled with a special rotary bit
positioned at the end of a long drillstring or drillpipe that is rotated by powerful
engines at the weli surface. While drilling, a specially prepared liquid drilling mud is
pumped down through the pipe and out through holes in the bit. This fluid provides
necessary lubrication for the bit and also creates a hydrostatic pressure within the well
that is substantial enough to prevent the pore fluids in the formation from seeping in

and causing blowout.

3The issue of depth imprecision and ‘tool yoyo’ is examined more closely in Chapter 6
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Figure 2-3: The Invasion Process.[5]

1) Borehole Mud

The presence of the borehole mud influences well log measurements. This influence
depends on the radius, r, of the well (hence, also, the amount of mud present over a
certain depth) and the type of drilling mud employed. The responsc of any logging
tool will contain a contribution from the mud in the wellbore; this contribution clearly

is a function of which mud is used and how large the well is.

2) Invasion

The process of invasion is illustrated in Figure 2-3 . Because of the high pressure
of the mud within the borehole there is initially a flow of the fluid component of the
drilling mud (the mud filtrate) into permeable formations. This creates an altered
area around the borehole. As the process continues the particulate component of the
mud is filtered out onto the horehole wall forming a mudcake. Once the mudcake
forms an impermeable layer within the borehole, the outward flow of the mud filtrate
ceases and the process of invasion is completed. Due to their low permeability shales
do not invade or build up mud cakes. This is not the case for sands as can be seen
from the same figure.

The altered area refered to above develops in the following way: in the immediate
-vicinity of the wellbore is the flushcd zone followed by a fransition zonc and then the
unperturbed or uninvaded zone. Proceeding outward from the well, the mud filtrate

pushes the formation fluids away from the well. In the flushed zonc it is assumed that
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Figure 2-4: Section through invaded rock.[5]

all the fon.nation water is replaced with mud filtrate. If the formation is hydrocarbon
bearing then some but not all the oil will be pushed out. The presence of mud filtrate
gradually tapers out further away from the wellbore; the displacement of formation
fluids by the drilling mud is less noticable within the transition zone than in the
flushed. This process is summarized by the three Figures 2-4. The invasion pattcrn

usually takes a few days to reach its equilibrium condition.

2.2.3 Formation Hydrocarbon Evaluation

The central difficulty in evaluating a formation for the presence and recoverability of
hydrocarbon is that few of the petrophysical parameters discussed above are amenable
to direct measurement. Instead, they must be derived {rom logs of other physical pa-
rameters of the formation such as the resistivity, the bulk density, the interval transif.
time, the spontaneous potential, the natural radioactivity, and the hydrogen content
of the rock[13]. The process by which the desired petrophysical parameters are oh-
tained from these measurable parameters is termed log interpretation. It is the means
by which a formation is evaluated for its hydrocarbon content and producibility.
The presence of hydrocarbons in the pore spaces is primarily sensed by measuring
the electrical resistance (or its inverse, the electrical conductivity) of the formation.
Electrical logging techniques exploit the fact that the saline water found in the pore

spaces is several times more conductive (or less resistive) than the hydrocarbon. This
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simple fact provides a basis for determining oil and water saturations via resistivity
measurements. The actual resistivity of the formation is measured and is compared
with the resistivity that would have been obtained had all the pores contained water.
If the measured resistivity is much higher than the calculated resistivity, the presence
of hydrocarbons can be concluded. The means for going from this resistivity infor-
mation to the petrophysical parameters is provided by fundamental interpretation
relations usually referred to as the petro-physical mixing laws.

Petro-physical mixing laws Obtaining values for ¢ and S, from measurable for-
mation quantities involve a transformation described by the empirical petro-physical

mixing laws.

or = " S(72) (2.1)

where:

o, = The (measured) formation conductivity

0w = The (known) conductivity of the formation water

m, n, a are constants.

The above relationship is more commonly known as Archie’s law and is the basic
Equation of log interpretation.

The second relationship identifies the measured density of the rock as the sum of
the densities of solid matrix and fluid weighted by their relative volumes as given by

the porosity of the rock.

po = psd + pm(1 — @) (2.2)

where:

ps = The density, measured by the Litho-density tool[8].

p} = The density of fluid in the rock, (1 gm/cc if water, oil)

pm = Density of solid matrix. (Assumes lithology is known, eg, if the rock type
is quartz, p, = 2.75 gm/cc)

These two relationships provide the means for obtaining the desired petro-physical

parameters from logs of resistivity and density. The density logs are obtained from
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Figure 2-5: Zones created by invasion.[13]

density, neutron and sonic tools while the resistivity information is provided by clec-
trode and induction tools. This thesis shall concern itself primarily with a resistivity
(or conductivity) tool. The impact of invasion on resistivity measurcments is dis-

cussed next.

Effect of invasion on resistivity measurements

In the above discussion the conductivity o, (and the corresponding resistivity, ;) was
that of the undisturbed formation. In reality, however, invasion makes the measure-
ment of R, a more difficult task. This can be appreciated by looking at Figure 2-h.
Invasion produces a succession of zones of diflerent resistivity: proceeding ontwards
from the center of the well there is the well itself, the mudcake, the flushed zonc,
the transition zone and, lastly, the uninvaded zone whose resistivity, Ry, is actually
desired.

Clearly, then, any measurements of 1; must come from deep reading instruments.
However, there is a fundamental trade-off that occurs in the vertical resclution of any
tool when it is made to measure more deeply into the formation. As such, what is
done in practice is to run three resistivity curves simultaneously -a shallow, medinm
and deep curve- and use the first two to correct the latter curve for invasion.

In performing the correction mentioned above it is assumed that the invasion

or resistivity profile has a step-like nature as shown in Figure 2-6 (a). The actual
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Figure 2-6: Invasion profiles. (a) Step and (b) Transition.[12]

profile is t‘xsually something like that shown in Figure 2-6 (b), and the effect of this
assumption is to ignore the transition zone. Field and laboratory tests have indicated
that such an approximation is not unsatisfactory [5). Further, the contribution of the
mudcake restivity to the overall resistivity measurement is usually small enough to he
ignored. In that case, the resistivities of the mud, the flushed zone and the uninvaded
zone are taken to be the contributors to the measured resistivity signal.

The foregoing discussion served to emphasize the utility of knowing the formation
resistivity and brought to light the complicating factors that invasion introduced into
its measurement. There are two basic kinds of tools that are used to obtain resistivity
information: electrode and induction tools. In this thesis we shall consider cxclu-
sively a type of induction tool, the Dual Induction Tool, (DIT)[13], that comprises a

deep-reading induction, a medium-reading induction and a shallow focussed-clectrode

array.

2.3 Induction logging

As indicated earlier, induction logging provides resistivity information that is im-
portant for locating hydrocarbon-bearing formations and estimating reserves. By
measuring the electrical conductivity of down-hole formations and fluid, the indu-

tion tool can distinguish between nonconductive hydrocarbon-bearing formations and
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conductive water-bearing formations.

The basic induction logging tool, shown in Figure 2-7, comprises a receiver and
a transmitter coil both of which are mounted some distance apart on an insul:ting
mandrel. A constant amplitude, sinusoidal current fed into the transmitter coil creates
a magnetic field around the tool which causes eddy currents to flow in circular paths
around the borehole axis. These eddy currents are 90 degrees out of phase with
the transmitter current; their magnitude depends on the surrounding formation’s
conductivity. The eddy currents create their own magnetic field and induce in the
receiver coil an alternating voltage a further 90 degrees out of phase, i.e., 180 degrees
out of phase with the transmitter current. The measurement of this signal is called
the induction log.

The induction response is usually explained by the geometrical factor theory. This
theory assumes that the receiver voltage is the sum of contributions from an infinitely
large number of eddy current loops. This is an approximate theory because it ignores
the interaction between such loops.

Biot-Savart’s law is used to determine the contribution of a single, infinitesimal
loop of current having unit cross-sectional area, radius r, and situated distance z from

the midpoint of the two coils[11]:

K BGE
" 4rw? A NpNglr . L 3
vr = I S Erar - @z e CmH) @29
where:

w = the frequency of the transinitter current
A = cross-sectional area of the coils

N7 = number of turns in the transmitter coil
Np = number of turns in the receiver coil

Iy = transmitted current amplitude

L = the transmitter-receiver spacing

o(r,z) = The conductivity of the formation within the loop (assumed to be con-
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Figure 2-7: The basic two-coil induction tool. Transmitter T and Receiver R, se
arated by a distance L, are wound on an insulating mandrel. T produces an ede
current in a loop of unit cross-sectional area in the formation. This in turn induces

in R an emf which is proportional to the conductivity of the material in the leop.|14]

9 |

Figure 2-8: Radial and Vertical differential geometric factors for the two coil induction
tool calculated using the geometric factor theory. (a) Radial and (b) Vertical.[14]
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stant).
The first term in parentheses consists of quaniities associated with the tool, and
is therefore called the sonde constant, K. The second term in parentheses contains

mostly positional information; this is the differential geometric factor, gcyp(r, z)[14).

The single loop expression can therefore be written as:

v = Kggp(r, 2)o(r, <) (2.4)

Extending the above result to an infinite number of such loops we obtain as the

expression for the tool response the following linear convolution:

Vaz) =K [ [ ' 2)drdz
r(z) = ‘/;w A gqFr(r,z' — z)o(r,z")drdz (2.5)

As before the absence of azimuthal variation is made explicit by the notation
o(r,z). In order to examine the radial and vertical investigation characteristics of the
two coil sonde it is convenient to define two other geometric factors:

1) The differential radial geometric factor, which is defined to be:

+o0o0
ggr(m) =/_°° gqF(r, 2)dz (2.6)

This provides the relative importance of each of the cylindrical shells of radius, r,
to the overall response. Figure 2-8(a) shows the radial dependence of this differential
radial geometric factor. It can be seen that cylindrical formation layers with radius
somewhat less than the coil separation, L, assume most importance.

2)The differential vertical geometric factor,

+oo
gqr(z) = /0 gqF(r, z)dr (2.7)

This gives the contribution of a slice of unit thickness located at position z to the
overall response. Figure 2-8(b) shows the response curve as a function of z. For slices

of the formation contained between the two coils a fairly flat response is observed.
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For simple formation geometries such as the one in Figure 2-11 (to be discussed

in detail later), the total signal, o;, can be expressed as

0i = Gom + Gzo0z0 + Geoe + G,o0, (28)

where the G;s are the integrated geometric factors[14] of the respective zones and
represent the relative contribution of each zone to the overall signal. Their sum,

therefore, must obey:

Gm + G0+ G +G, =1 (2.9)

When formation geometries such as the one in Figure 2-11 apply, such a visual-
ization of the overall signal is of great value because it enables the development of
mathematically sound correction charts for the effects of borehole mud, invasion and
adjacent beds on the measurement of the true zone conductivity, o,.

Since the primary aim of induction tools is to obtain resistivity information of
the true zone, it is important to minimize the contributions of the adjacent beds, the
invaded zone and the borehole mud to the overall signal; this is achieved by minimizing
the corresponding integrated geometric factors with a focussed signal. The focussed
signal is obtained by using multicoil or focussed sondes which typically consist of
several auxiliary transmitter and/or receiver coils in addition to the basic two coils.
The response of each coil pair is weighted by the number of turns on the two coils
and their cross-sectional area. The responses of all such coil pairs are then added in
some optimum way in order to achieve better vertical resolution and radial depth of
investigation. The former is achieved by suppressing the response from the adjacent.
beds and the latter by suppressing the response from the mud and the invaded zone.
The induction tool considered in this thesis is of the focussed type.

Although the geometric factor theory described above is conceptually very useful,
it does not take into consideration the electromagnetic interaction between eddy cur-
rents flowing in nearby loops. The attenuation and finite velocity of electromagnetic
fields propogating in the conductive media surrounding the sonde affect the magni-

tudes, phases, and spatial distribution of the eddy currents. These are manifestations
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Figure 2-9: Presence of skin effect in induction logs.[13]

of the skin or propagation effects.

Figure 2-9 shows the discrepancy between the actual response of an induction
log and its response modeled without skin effect for various values of the actual
conductivity. It can be seen that skin eflect becomes more pronounced for surrounding
formations that are more conductive. Skin effect corrections are usually carried out
on the received signals.

The observed alteration of the tool response with formation conductivity implics
that the geometric factor theory cannot describe this skin effect unless the gcometric
factor is itself a function of conductivity[11]. By adopting such an approach we obtain

for the real component of the output signal the following nonlincar convolution|11]:

+oc0 poo
Vr(z) = K/ / gqp(r, ' — z,0)o(r,2')drd:’! (2.10)
—-oo JO

where:

gGF(7,2,0) = the generalized or propagated differential geometric factor.

It can be shown[14] that

gF(r 5, 0) = gqp(r, z)Re|(1 - ikr)c™*] (2.11)

where k? = iwpo with g denoling the magnetic permeability of the formation.



2.4 Parametric Inversion

In the previous section the physics of the induction tool response was developed.
Equation 2-10 yielded the tool response as a function of the conductivity distribu-
tion, o(r, z), of the formation. The induction logs themselves will be the tool response
corrupted with measurement error or noise. The objective of the inversion procedure
is to obtain from these induction logs the conductivity distribution of the formation.
Similar inversion procedures are carried out for other measurable petro-physical pa-
rameters. The different estimates so obtained can be used in turn to obtain estimates
of the desired petro-physical quantities, ¢ and S, by a transformation governed by
the petro-physical mixing laws.

In this thesis the procedure of inversion from induction log data shall be consid-
ered. Two possible approaches to this inversion are possible. In the first, o(r, z) varies
continuously over r and z, and in the second it is assumed that o(r, =) obeys a layered
model. Additional complexity can be folded into such a model-based description of
the formation by incorporating invasion, the dipping of layers, rugosity of the hore-
hole wall for example. Whatever be the appropriate model of the formation under
consideration, the effect of adopting a model is to reduce the description of o(r, =)
to one that can be completely represented with a finite number of parameters. For
this reason, the method of inversion that assumes a model shall henceforth be refered
to as model-based or parametric inversion. This thesis will concern itself with this
approach.

The central assumption in the parametric approach is that the information needed
to develop a realistic model for the formation is available through some means. The
necessary mathematical description of the formation derives from geological sources; it
is the sum total of knowledge derived from past geological modeling, bedding patterns,
laboratory studies of cores, rock fracture characterizations and data from various other
logs such as that of the Formation MicroScanner tool (FMS)[7]. The availability of
such information enables the development of a model that can then be used as the
basis both for the parametric inversion of data from different logs, and the subsequent

inversion of the petrophysical mixing laws.
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Figure 2-10: General model of the formation

Consider a general model of the earth formation as shown in Figure 2-10. This
model assumes the tollowing:

» The earth consists of several layers or beds that are assumed to be perfectly
horizontal.

e A borehole of fixed radius, i.e., no mudcake is present and there are no caves in
the formation.

o The beds may be invaded. The invasion profiles are piston-like, i.e., the resistiv-
ity varies in a step-like fashion such as that shown earlicr in Figure 2-6 (a). In other
words, no transition layer is assumed to be present.

o The formation is symmetric about the borehole axis. The conductivity distri-
bution is said to be 2-D axisymmetric.

The following set of parameters now provide a compleie description of the con-
ductivity distribution of the formation. The paramecters of primary interest in the
inversion are the a;'s, the uninvaded zone conductivities.

As shall be made more clear later, the availability of codes that model the tool
responses is essential to the inversion process and to the characterization of errors
in the estimated properties. A principal motivation for adopting a model-based ap-
proach is that we can obtain fast, approximate forward tool responses given the model
parameters. The forward responses for the cases where the conductivity continuously
varies over r and z involve finite element method codes which, while precisc, are com-

putationally intensive. Furthermore, for simple models such as the one that will bhe
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employed in this thesis the approximate code yields very satisfactory results(2]
There exists a hybrid code, Hybres[2], that is used to model the response of a
variety of induction tools for any formation geometry that is accommodated by the

above model within a certain allowable range of conductivity contrasts.

2.4.1 Induction Tool Modelling: The Hybres Code

The principle behind the hybrid approach is shown in Figures 2-11 (a) - (¢). It is
desired to obtain the induction log for the geometry shown in Figure 2-11 (a). This
geometry is partitioned into two sub-geometries shown in Figures 2-11 (b) and (c).
The first sub-geometry consists of a purely layered medium. This corresponds to
the undisturbed formation developed in Section 2.2.2 .The apparent conductivity for
this component can be expressed in closed form and therefore a rigorous solution is
possible.

The second sub-geometry essentially serves to correct for the borehole effect and
invasion. The contribution of this sub-geometry is obtained by making use of the Born
approximation[10] which assumes that field in the formation is the incident field, i.e.,
no multiple scattering effect of the field is considered.

The hybrid signal is the superposition of these two signals, i.e.,:

Hybrid Signal = Layered medium signal + Born Approximation (2.12)

Rigc;;:ous Approximation

The drawbacks of this type of modeling are that multiple scattering is not ac-
counted for, and that only low conductivity contrasts can reasonably be modelled
because of the Born approximation. However, as mentioned earlier, for simple models

such as the one considered in this thesis, the Hybres code yields satisfactory results.
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Figure 2-11: Principle behind the hybrid approach. (a) complete geometry, (b) and
(c) are the two sub-geometries

36



2.4.2 A 3-bed model

For the purposes of this investigation we shall consider the model shown in Figure
2-12. This is a simple subset of the general mod-l of Figure 2-10 that assumes:

1) three beds, those at the two extremes, also known as the shoulder beds, are
assumed to be semi-infinite in extent and equal in conductivity,

2) the center bed is invaded,

3) there is a borehole of fixed radius.

This model consists of the following parameters:

® O0pm, the conductivity of the mud present in the borehole, (in mhos)

o r, the radius of the borehole, (in inches)

The a.l;ove two parameters characterize the borehole eftect.

® 0., the conductivity of the invaded or flushed zone, (in mhos)

e h, the invasion depth, (in inches)

The latter two quantities represent the process of invasion.

o T, the center bed thickness, (in inches)

® 04, the true conductivity, (in mhos)

e 0,, the shoulder bed conductivities, (in mhos)

ez = {2,k = 1,...K}, the tool positions at which ineasurements are available.
For the simulations performed in this study, the number of measurement depth points
will be K = 21 with a sample spacing denoted as delz inches along the borehole axis.

The symmetry of the model is made clear in Figure 2-13 which shows a cross-
section of this model with resistivities indicated instead of the conductivities. The
centered tool, referred to as the mandrel, is also shown in the borehole.

A set of values for the above parameters constitutes an operating point. For a given
operating point the simulated tool response can be obtained at every depth position
specified in z using the Hybres code. The tool response is a nonlinear function of the
above parameters.

Setting the tool specific parameter, z, aside, the rest of the parameters can be
conceptually divided into those that provide a description of the formation geometry

(T, h and r) and those that provide a description of the conductivity distribution,
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(OmyTz0,0¢ and 7,). Then, letting h and T, two of the parameters that define the
formation geometries allowable under this model, vary over a prescribed range, and
keeping all other parameters at a fixed value, we say that we have a family of operating
points. This terminology shall be used throughout this thesis.

Motivation for choosing this model: The above model incorporates the fol-
lowing complicating effects:

1) The borehole effect. The borehole mud has a conductivity that could vary
between 0 and 100 mhos. If the mud conductivity is much larger than the true
conductivity, (¢, >> 0:), and if the wellbore is large (i.e., r is large), then the
presence of the borehole may have a dominant effect on the signal energy sensed by
the tool. .

2) Invasion. If the invasion is severe, (h large), and the invaded zone conductivity
is much greater than that of the uninvaded zone, (¢, >> 0,), then the contribution
of the invaded zone to the overall signal received by the tool may be dominant.

3) The shoulder effect. If the center bed is very thin, (7" small), and if the shoulder

beds are much more conductive than the uninvaded zone, (o, >> o), then the effect
of the shoulders on the tool response may be pronounced.

This is the simplest layered model that can be used to understand the above effects.
Before expanding the treatment to include more beds it is worthwile to understand
performance limits (i.e., how well can we obtain the requisite formation resistivity
information) in this simple 3 bed case. In doing so we keep the number of parameters
as small as possible while still capturing physical effects that would be present even
in a more complicated model.

It must be stressed at this point that inversion for the true conductivities of the
layers is routinely carried out for multi-layered formations with invasion, i.e., models
with very large number of parameters. The large number of model parameters does
not make the estimation of the desired parameters impossible; what it curtails is an
adequate analysis of the performance of any such estimation process and its robustness
to various sources of error. This, fortunately, is not the case for the simpler model
just discussed. Such an analysis for the simpler model is of relevance because with a

smaller set of parameters one can still capture effects that will also influence a larger
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Figure 2-12: Three Bed model for thesis
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Figure 2-13: Thesis model showing mandrel and assumed symmetry of formation.[8|
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model, and because the results of such an analysis provide an upper bound on the
performance one can expect when a more complex model is used which has more

parameters and more possible sources of modeling and measurement error.

A statement of the parametric inversion problem
For this chosen model, the model parameters may be coliected into a parameter set
P =(T,020y0¢,04,0m,h,2), and the logging tool measurement set may be represented

by the following nonlinear forward model:

where:

y = the vector of observations, or the logs

p = the vector of formation parameters

e = the measurement error

In the absence of measurement error, we would obtain values for the observation
that would identically be that predicted by the forward model h(p). Such observations
will be refered to as the noise-free measurements. Notice that as indicated by Equation
2-10, the tool response and hence the logs themselves are a nonlinear function of the
formation parameters. The error in the measurement, e, which may be electronic or
mechanical, is assumed to be additive in nature.

The inversion problem is the following: given a finite number of noisy measure-
ments y, estimate the formation parameters p.

The formalization of a rule for inverting for the desired formation parameters and
an error characterization of such an inversion require the techniques of statistical

estimation that are reviewed next.

2.5 Estimation Theory

2.5.1 Introduction

In the previous sections we touched upon the range of issues associated with para-

metric or model based inversion of induction logs to obtain estimates of the true
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uninvaded conductivity. In particular, we have chosen to consider the model shown
in Figure 2-12 because of the fact that using this model we can capture the physical
effects that would generally influence any chosen layered model while still keeping the
size of the parameter set at a minimum.

Along with the model comes a host of complicating factors. This thesis addresses
the need to understand the effect of all these parameters on the chosen model. In
this chapter we advance the theoretical tools that will be used to enable the analysis
and understanding of the effects of these complicating factors on the quality of our
estimated quantities.

We shall introduce some methods of statistical estimation in this chapter. Our
observed values of the logs are stochastic quantities because of the presence of random
noise in the measurement process. This noise has a certain probabilistic description
that is determined experimentally. Knowing this enables us to arrive at a probabilic-
tic relationship between the measured output and the input geological parameters
-desired and undesired. The random nature of this relationship allows for the tech-
niques of Bayesian, Maximum a posteriori, maximum likelihood and linear weighted
and unweighted least squares type estimation to be used to determine the unknown
parameters of the model. The above methods of estimation are discussed with em-
phasis on the underlying motivation behind their use and their relative merits.

We then consider means of establishing estimator performance. A seperate section
is devoted to the problem of nonlinear estimation with special attention given to the
fundamental problems inherent in performance analysis in a nonlinear setting. To this
end we introduce the Gauss-Newton method that combines the elements of linearized
analysis with those of classical estimation theory discussed above into a framework
for analyzing nonlinear problems about some operating point.

Given the above generalized approach, some issues specific to the estimation prob-
lem of our model are addressed.

We begin with a brief overview of probability theory.
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2.5.2 Probability Theory

In situations where the physical system being modeled is inherently random or too
complex to allow a deterministic characterization, recourse is taken to probability
theory. Probability theory consitutes the mathematical description of statistical phe-
nomena.

It is assumed here that basic probabilistic concepts are known to the reader;
this section serves to establish the notational conventions for random vectors that
will subsequently be employed and to present certain properties of Gaussian random
vectors that will be used freely from here on.

The probability density function (PDF) for a continuous random vector is defined

as [6]

Po(X)dx = Pr[X; <z, < Xi +dX1,X; < 22 < Xy +dXzy., X < 7y < X, +d X,

(2.14)
The notation Pr[X; < z; < X; + dX;] is the probability that the ith component. of x
takes on a value between X; and X; + dX;.

The mean of a random vector is defined as

and the Covariance matrix as

Cov(x,%) = Azz = Az = E[(x — mx)(x — mx)¥] = E[xx¥] — mxm¥ (2.16)
Since we shall restrict our attention to real valued matrices, the transpose opera-

tor, T', will be used instead of H, the Hermitian operator.

Bayes’ rule for random vectors yields
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Peyy(X[Y) = (2.17)

p,(Y)
Certain properties of Gaussian random variables and vectors will be of imporan-

tance to us throughout this thesis.

The notation N(m,o0?) will be used in this thesis to denote a random variable,
say y, that is Gaussian with mean m and variance o2. The PDF of y is

p,(Y) = ———e - ’ (2.18)

2ro?

The PDF of a Gaussian random variable is completely specified by its first two mo-
ments.

A Gaussian random vector is similarly defined by x = N(mx,A.). Each compo-
nent of x is a Gaussian random variable and the Gaussian random vector represents
the joint PDF of these random variables.

Further, Gaussianity is preserved under linear operations so that if x and y are

Gaussian random vectors and

z=Ax+By+b (2.19)
then z is Gaussian with mean
mg = Amx + Bmy + b (2.20)
and Covariance matrix
A, = AN AT + BA,,BT + AA,,,BT + BA, AT (2.21)
where
Aoy = A" = E[(x — mx)T(y — my)”] (2.22)
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Further, if x and y are independent Gaussian random vectors then

but the cross Covariance matrix, A,y, is zero so that
A, = AA AT + BA BT (2.24)

2.5.3 Estimation Techniques

In the earlier section a model-based code that simulated the physics of the induction
tool was introduced. In the absence of any measurement noise, we would expect this
code to simulate the actual tool response precisely. In reality, however, there is bound
to be measurement noise and the actual log data will differ from that yielded by a
simulation. The process by which values for the parameters of the model are chosen so
as to fit the related simulated response to the observed data is termed estimation. We
shall review here the methods of basic or classical estimation theory which basically
amounts to estimation of parameters from a vector of observations.

The following are common elements of a classical estimation problem:

1) a vector of parameters, x

2) an observation vector, y, that has a probabilistic mapping from x

3) it is desired to estimate x based on y.

Depending on whether x is treated as random or non-random, the estimate of x
is said to be of the Bayesian or non-Bayesian type respectively. In either case the
estimate % is a function of the stochastic observation vector, y, and is hence a random
vector.

Bayesian Estimation

Bayesian estimates arise from the minimization of the Bayes’ risk which is the
expected value of a cost function C(x,%). The minimization will yield an estimate
that is optimal for that cost assignment.

1) Bayesian Least Squares Estimation (BLSE)[16] assumes the following cost func-

tion:
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C(x,%) = ||x — ||” (2.25)

also referred to as the minimum mean square error criterion. The possibly nonlinear
estimate Xp obtained by minimizing the expected value of this cost function is the
mean of the a posteriori density p,,(X|Y), i.e., xp = E[x|y].

2) Bayesian Linear Least Squares Estimation (LLSE)[16] assumes the same cost
function as above but has the additional constraint that the estimate must be a linear

function of the observation, i.e.,

XL =Ay+c (2.26)

where A and c are to be obtained from the minimum mean square error criterion.
The advantage of the LLSE is that the estimate requires knowledge of only the
second moments of x and y instead of their joint probability distribution as the
BLSE would require. This simplification may come at the cost of possibly reduced
performance. In the Gaussian case, i.e., when x and y are jointly Gaussian, X; = Xp.
3) Maximum a Posteriori Estimation (MAP)[16] arises from a Bayes’ risk formu-

lation in which all errors are equally bad. The associated cost function is

(K >0, ifx#x;
C(x,%) = i # (2.27)

13 A

0, ifx=x

The estimate is obtained by solving the following equations

0
Ei.p'W(xIY) =0 (2.28)

Using Bayes’ rule and the fact that the natural logarithm is a non-decreasing
function over the set of real numbers, solving the above equation is equivalent to

solving

0 i)
ﬁln Py(YIX) + a-i-ln p.(X)=0 (2.29)

45




A solution of the above is a local maximum if

82

If multiple maxima exist, the MAP estimate is taken to be the maximum among
them.

Non-Bayesian Estimation

In this class of estimation techniques, x is assumed to be deterministic; i.e., the
parameters in x have unknown constant values. It must be remembered that the
estimates will still be non-deterministic because they are functions of random ob-
servations. The difference lies in the fact that either because its probability density
function is not known or because it is truly so, x is treated as deterministic in the
process of developing an estimation rule.

1) Maximum Likelihood Estimation (ML)[16]

The ML estimate, Xpsz, is chosen to be that value of x which makes the observation

y the most likely. Therefore

Xmr = argmaxp,.(Y|X) (2.31)

This is equivalent to solving the ML Equation

d

A solution of the above is a local maximum if

62

3_x_zpvlz(le) <0 (233)

In the event of multiple maxima, the ML estimate is taken to be the largest among
them.

It can be seen from Equation 2.29 that the MAP estimate reduces to the ML

estimates if p,(X) is constant; i.e., the density is uniform, or no prior information of
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X exists.
2) Non Bayesian Least Squares Estimation

In this approach no probabilistic or statistical description of the estimation prob-

lem is assumed. It is assumed, however, that the following model exists:

y=h(x)+e (2.34)

where:

y = the observation vector

x = the vector of unknown parameters

e = the measurement error vector.

The L;east squares estimate is obtained by minimizing ee” This amounts to a
component-wise minimization of the square of the error. If in fact it is known that
certain observations are more reliable than others then a weighted least squares esti-
mate (WLS) can be constructed that minimizes the quadratic measure J = eR'e”
where R is a weighting matrix that adequately reflects our confidence in the respective
observations.

If, in fact, the model is linear, i.e.,

y=Hx+e (2.35)

then the weighted least squares estimate is given by

*wrs = (HTR'H)'HTR 'y (2.36)

This is the non-Bayesian, weighted LLSE.

If the probabilistic description of e is known, then R~! has the interpretation of
being the covariance matrix of e.

Having elaborated on the various types of estimation procedures, it is important
to know how an evaluation of the performance of the estimators can be conducted.

Three criteria for judging estimator performance are used:
1) bias
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2) error covariance

3) mean square error

If we define the estimation error to be

e=x-x(y) (2.37)
then the bias is given by
b = Ele] (2.38)
The error covariance matrix is:
A.(x) = E(e — b)(e — b)T (2.39)

The (i,i)th element of this matrix is the error variance of the the estimate of the ith
parameter in x.

The mean-square estimation error is given by

El[ee”] = A.(x) + bb” (2.40)

The following two definitions (from [4]) are made now to facilitate subsequent
discussion.

Accuracy is a measure of how close the outcome of a measurement, or a sequence
of observations, approaches the true value of a specified parameter.

Precision is a measure of how close the outcome of a measurement, or a sequence
of measurements, clusters about some estimated value of a specified parameter.

Precision implies repeatability of the observations and does not imply accuracy.

If the estimate is known to be biased, then the error variance is a measure of
how far from the bias value the estimate can be expected to fall, i.e., the spread
of the estimate about a constant offset value. A larger variance would then imply
that the chances of the estimate being far from the bias value is larger than if the
variance were smaller. The error variance can be thought of therefore as a measure of

estimator precision. If, on the other hand, the bias is large then the expected value of
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our estimate will be far from the true value and the estimate is said to be inaccurate.
Bias is therefore a measure of estimator accuracy. A precise estimator by itself is not
necessarily satisfactory because if the bias is large, i.e., the estimator is inaccurate,
then the estimates will be clustered about a value that is way off from the true value.
Precision when coupled with accuracy makes for a good estimator; i.e., an unbiased
estimator with small error variance.

For general nonlinear problems such as the one that will be considered in this
thesis it is not usually possible to obtain explicit formulas for the error covariance.
For these cases there exists another measure of estimator performance in the form of
a matrix inequality that provides a lower bound on the estimation error variance. It
is known as the Cramer-Rao lower bound (CRLB)[15] and for an unbiased estimate

is given as follows:

Ac(x) > I(X) (2.41)

where I,(X) is the Fisher’s Information matrix and is given by:

L(X) = Bll % Inp,1,(¥|X)]'}x = X] (242)
62
= E[[mln Py YIX)]|x = X] (2.43)

If an unbiased estimator satisfies the above equation with equality it is termed
efficient. In the linear Gaussian problem this is always the case. Notice that one of
the nice features of an analysis of the error covariance using the Cramer-Rao lower

bound is that it does not require actual computation of the estimate.
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2.5.4 Nonlinear Estimation

Suppose that the measurement vector y and the vector of parameters x are related
by

y=h(x)+v (2.44)

where h(x) is differentiable and v is N(0,R) with R > 0. This is an example of a
nonlinear estimation problem. If x is assumed to be non-random, the techniques of
weighted least squares estimation can be applied to obtain an estimate of x. The

estimate is obtained by minimizing the following quadratic measure:

J = (y — h(x))"R"}(y — h(x)) (2.45)

This is equivalent to maximizing

I(x) = hT(x)R"y — %hr(x)R'lh(x) (2.46)

The estimation problem is now a nonlinear optimization problem for the global
maxima of 1(x).

No straightforward expression for the error covariance is possible in such a prob-
lem, and so one of many possible bounds on the error covariance can be considered.
It can be shown [16] that for the assumptions of this model, the Cramer-Rao lower

bound can be simplified to

Ax) > (2 ';Z*’R-‘ Xy (2.47)

In principle the estimate of x is obtained by evaluating l(x) for all values of x and
choosing the maximum. This is hardly a viable approach and in practice what is done
is to apply the Gauss-Newton method which assumes that the nonlinear prediction
function can be replaced by the first two terms of a Taylor series expansion.

It is hypothesized that a sufficiently good estimate %, of x exists, so that h(x)
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can be expanded into a Taylor series with only the first two terms retained. Thus,

h(x) =~ h(%x,) + aha(xio)ch (2.48)
= h(%,) + H.6x (2.49)

where
x=x— %o (2.50)

Using the above relationships in Equation 2-44 yields

by =Hxbx+v (2.51)

where

6y =y — h(%o) (2.52)

This is now a linear estimation problem which can readily be solved as in Equation
2-36 for the required estimate of §x. This yields a second estimate, %o + §x, and the
above process of linearization is repeated. This method of solution by successive
perturbations, if it converges, does so to a local maxima of 1(x).

The process of finding the global maxima can be conceptually visualized as con-
sisting of two stages. In the first, a coarse search is performed in which the parameter
space of x is coarsely divided up into intervals, then local maximas are found within
some of these intervals® and a global maxima picked from among them.

Having identified the interval over which the global maxima is to be found, the
problem reduces to a local search starting from that point. In the local search the
linearization steps are iterated until a reasonable convergence criterion is satisfied.

The success of the above procedure assumes that no error is made in the first,

coarse estimation step* and that convergence in the local search is guaranteed. The

3In practice, the local maximas are computed over a limited set of grid points in the parameter
space. The intervals of search are the ones that appear most promising. The trade-off in such an
ad hoc procedure is the time saved by searching fewer intervals versus the risk of missing the global

peak by choosing too large an interval spacing
4with increasing noise variance the probability of such a global error increases; this behavior is
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fact that an error is global is no indication of its size. A local error, made in the final

step, where the correct interval has been chosen, could theoretically be as severe.

2.6 Parametric Inversion for the 3 Bed Model

The logging tool measurement set for the model shown in Figure 2-12 was represented
by the forward model given in Equation 2-13. The tool response is given exactly by
Equation 2-10, but under the assumption of this formation model a fast, approximate
forward response model for the DIT is available using Hybres.

The observation vector, y, consists of measurements from three separate channels
which penetrate to different radial distances into the formation. Measurements are
assumed to be taken at 21 different depth locations. At each depth 3 readings are
obtained from the different channels thus yielding 63 measurements over the entire

formation. The general form of the observation vector is shown below:

( yl \
: } Channel 1
Yn
Y22
y= : } Channel 2 (2.53)
Ya2
Ya3
: } Channel 3

\ Ye3

The measurement noise for the DIT has experimentally been determined to be
a Gaussian random vector with a covariance matrix, R. The noise terms are inde-
pendent, identically distributed within each channel, but their variances are different.
from one channel to the next. The covariance matrix has therefore the following

structure:

refered to as the threshold phenomenon in nonlinear estimation problems
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(:? 0 0 0 0 w
0 0
R=| : 0 o2 0 °: (2.54)
0 .. 0
\ P F P 0 0%

where 0,2, 0,2 and 03?2 are the respective error variances for the three channels.

Therefore, the forward response can be represented by

y=h(p)+v (2.55)

where:

y = the vector of observations

p = the vector of formation parameters

v = zero mean measurement additive Gaussian noise with covariance matrix R.

In practice, some subset of the parameters in p may be known beforehand, or the
number of available measurements may be insufficient to estimate all the parameters
in p. Consequently, p is often divided into two subsets x and #, where x are the
parameters to be estimated and # are parameters which are assumed to be known.

In this case, the model in (2.55) may be rewritten as

y =h(x,0)+v (2.56)

where:

x = vector containing the unknown parameters

# = vector of parameters assumed to be known a priori

In this case, the inversion problein may be stated as: given a finite set of noisy
measurements y, and a priori knowledge of the parameters #, estimate the unknown
parameters X.

Given the above stochastic model, a choice must be made irom the available

techniques of estimation. Since the desired formation parameters are assumed to be
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MODEL-BASED INVERSION

FORMATION TOOL

MODEL RESPONSE LOGS
PARAMETERS
x: unknown —] h(x,0) —?—) y
v
0: known noise

° 8

1
h(x,0)
L L ol

A
X <1+

-9”;

iterative adjust

X = argmin Il h(x,0) - y i
X

Figure 2-14: Iterative technique for obtaining the estimate of x

unknown constants, a non-Bayesian approach is to be followed. We shall employ
the weighted least squares estimate with the weighting matrix being given by R. As
indicated earlier this estimate is identical to the ML estimate under the Gaussian
noise assumption.

The estimation of x is a nonlinear estimation problem. As was seen in the earlicr
section, this results in what is essentially a nonlinear optimization problem. A solution
of this problem requires an iterative technique as shown in Figure 2-15 . It is assumed
here that the parameters in @ are perfectly known. Each successive estimale is passed
through the forward model and the predicted response is compared with the actual
log. The minimization of this difference over the space of all possible estimates yields

a new estimate. This process is continued until the estimation error falls within a

tolerable threshold.

54



In this thesis we shall assume that no global error is made in the above inversion
process. This being the case, the estimation process will iteratively seek out values
for the estimate that converge to the neighborhood of the true value of the parameter;
this is, therefore, a local search problem for a maxima that is known to be the global
maxima. Further, it shall be assumed that this iterative procedure has reached a stage
in which the estimate is at least so close enough to the true value of the parameter for
it to be in ths domain of the parameter space for which a linearization of the noise-
free tool response about the true value of the parameter can be considered a valid
enough representation of the nonlinear function. Mathematically, this is expressed as
follows:

If we let x¢ be the true value of the desired parameter, and #g be the known, true
value of the nuisance parameters then a Taylor series expansion about these values

yields

azh(xﬂv..)

e (x — xp)? + higher order terms (2.57)

h(x,6f) = w&' — Xo) +

For certain perturbations, §x, where

ox =x —Xxp (2.58)
it can be held that
__ Oh(xoe,0)
h(x,‘) =~ —5—;—&: (2.59)

Let éxr be the largest perturbation so that the above linearized approximation

th

remains valid. Now, if thei"" stage of the iterative adjustment process for the estimate

of x yields the estimate X;, then, defining

ox; = %X; — xop (2.60)

55



th

it is required of the i*" and any subsequent stage of the estimation process that

[6x;| < |6y (2.61)

for it to be a candidate for the analysis performed in this thesis.

Sources of Error:

The parameter whose value is of primary interest is 0,. In addition, a few param-
eters like 2 and T may be of value in other aspects of the interpretation procedure.
This subset of parameters are the desired parameters, x; these are the quantities that
we would like to estimate. The rest of the parameters are of no direct interest to us,
however, knowing them is essential to the estimation of the desired parameters. These
parameter.s are termed the nuisance parameters, #. In the simple example in which
o, is the sole parameter of interest, all the remaining parameters are the nuisance
parameters and their values need to be obtained (either from the same or different
set of log measurements) for an estimation of o, to be possible.

¢ Imprecise knowledge of these nuisance parameters is one of the important cor-
rupting influences on the estimate of o,.

o There is in addition the obvious presence of noise in the measurement which
will lead to errors n our estimation. This noise may derive from sources having to
do with the tool itself; e.g., electronic noise or mechanical noise.

o Furthermore there may be errors due to the choice of model itself. In other words,
while it may be true that the formation being considered is bedded and invaded, the
beds may in fact be tilted, the invasion profile may rot be vertical or symmetric
about the borehole axis, the shoulder beds will not be infinite in extent or equal in
conductivity, and the borehole wall may be rugose. All these are possible sources of
error. It would be of great importance to know how robust the estimation is to these

sources of error. Some of these issues are addressed in Chapter 5.
Error Analysis: The shape of things to come

In the procedure of inversion described above two issues arise, iiiviuding the anal-
ysis of inversion performance (how well can x be estimated assuming # is perfectly

known}, and inversion robustness (how do errors in knowledge of @ affect the es-
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timate of x). In this thesis we will consider four separate performance/robustness
cases which address these two issues.

e Performance Analysis

It shall initially be assumed that @ is perfectly known. In this case the only source
of error is the measurement noise, v. The question to be answered here is: how well
can x be estimated from a finite number of noisy measurements, y?

¢ Robustness Analysis

It is now assumed that @ is not perfectly known. The obvious question is: what
is the effect of uncertainty in # on the estimate of x? It shall be shown that, to first
order, the result of imprecision in # is an additive bias term in the estimate. We
would then be interested in knowing which modelling errors (i.e., layer position errors

or invasion depth errors or layer conductivity errors, etc) cause the largest bias?

e Multiparameter Estimation: (performance analysis)

If it is established from the robustness analysis that the bias produced by imprecise
knowledge of the parameters in @ is the dominant source of error in the estimation,
then the estimation of some or all of the parameters in # may become necessary.
If this multiparameter estimation is carried out then our estimates of the nuisance
parameters ought to be more precise than before; as such, the bias introduced into
the estimate of x, on average, ought to be less. This enhanced accuracy in #, however,
comes at the cost of less precision in the estimate of x. We would like to have a means
of mathematically evaluating this trade-off.

e Auxiliary measurements

It is possible that somewhere in the overall interpretation procedure auxiliary in-
formation on some of the parameters within # may become available. First of all, it
would be of importance to know how such additional sources of information would he
folded into the existing estimation framework. Then, an analysis of estimator perfor-
mance, in the light of this auxiliary information, should be conducted. A comparison
of the performance analyses with and without the auxiliary information would then
provide a means for determining the requisite worthiness of any further source of
information to be of any value in improving estimator performance.

Each of the above mentioned issues shall be addressed in the forthcoming chapters.
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The above study was conducted for 5 different choices of operating points (cases A-

E) corresponding to commonly encountered geophysical formations. Chapters 3 and
4 focus on the results of one such choice of operating point, Case E, which will be
described in detail in the next chapter. A few of the results of the other cases will he
discussed in Chapter 5 with a view to displaying how these results complement the

conclusions made about the results obtained under a different assumption of operating

point.
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Chapter 3

Sensitivity Analysis

3.1 Introduction

The preceding sections have served to explain the equation

y=h(x,0)+n (3.1)

in the context of the induction logging tocl. In addition, the process of inversion,
i.e, obtaining an estimate of x from noisy measurements, y was discussed. It was
seen that the process of estimating x became, in essence, a nonlinear optimization
problem which required as its solution the unique maxima of a nonlinear likelihood
function. The solution involved a three step procedure in which the parameter space
of x is coarsely divided up into regions. The local maximas of the function are
obtained in some promising intervals and the global maxima is picked from among
these. This corresponds to an M-ary Hypothesis testing problem for the global peak
of the function. What we obtain for the maxima, however, is assumed to be a coarse
approximation to the true value. The problem then becomes a local search for the
true value. From this point on in the thesis, the attention will be on a performance
and robustness analysis of this stage of the estimation process.

In this chapter it shall first be assumed that the parameters in @ are perfectly
known. An estimator for x will be developed and a performance analysis will be un-

dertaken. In this case measurement noise is the only source of error in the estimation,
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and this performance analysis will provide an upper bound on achievable performance
when noise is not the only complicating factor. In the second part of the analysis
it shall be assumed that the parameters in # are imprecisely known. This is a more
realistic assumption. Now it is desired to determine the error that such imprecision
in the knowledge of the parameters introduces into the estimation. This is done by
employing the imprecise parameters in @ in the estimator rule developed under the
assumption of precisely known 8. If the estimate so obtained is close enough to the
one obtained by using precise values of 8, it can then be concluded that the estimate
is robust to imprecisions or perturbations in the parameters of #. An analysis along
these lines constitutes a robustness analysis.

Together these analyses constitute a sensitivity analysis. The common thread
between the two componenis is that the performance and robustness analysis are
both conducted on an estimator that assumes for its development that @ is perfectly
known. The overall result is to determine the sensitivity of an estimator engineered
under such an assumption to the effects of measurement noise and imprecisions in
the parameters assumed known.

The initial sensitivity analysis conducted in this chapter will set the stage for a
multiparameter estimation approach to the problem in which the performance of a
multiparameter estimator will be analyzed under the assumption that # is imperfectly

known.

3.2 Performance Analysis

It will initially be assumed that the parameters in @ are perfectly known, and a
performance analysis of the estimate x will be undertaken. While such an idealized
situation will never exist in practice, the purpose of such an investigation will be
to determine what the estimator performance will be in the best of all scenarios.
Therefore, it will provide an upper bound on optimistic estimator performance. Also,
it characterizes performance with noise being the sole degrading factor. As such, it
serves as a useful benchmark to be compared with future results obhtained for cases

where measurement noise is not the only complicating factor.
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3.2.1 Mathematical Development

Performance Analysis: Error variance of the estimate of x assuming # is perfectly

known.

To begin, denote the true values of x and @ as x¢, @ and let yg be the noise-free

response to Xg,f, i.e.,

Yo = h(xo,0s) (3.2)

We consider x and y to be perturbations about xg and yy

x = x¢ + éx (3-3)

Y =Yo + 8y (3.4)

Linearizing about the operating point xo,fs, and ignoring second and all higher

order terms yields

dy =~ W¢Sx+v (3.5)
= H.bx+v (3.6)

It is assumed that the perturbations in (3.3) and (3.4) are small enough to ensure
that the approximation in (5) remains valid.

The weighted least-squares estimate for §x with respect to the weighting matrix
R, (also the maximum likelihood estimate under the assumption that v is zero-mean

Gaussian noise of variance R), given noisy measurements of 6y[16] is

éxwrs = F,"'H, TR '6y (3.7)

where F; is the Fisher’s information matrix[15),

61




F = (Her—le ) (3'8)

Substituting (3.6) into (3.7),

§xXwrs = 6x + Fl"lH,TR’lV (3.9)

The weighted least squares estimate of §x is seen to be the true éx plus a zero
mean Gaussian variable whose variance is the same as the variance of §Xw s, and is

given by the Cramer-Rao lower bound {15],

CRB, = F,! (3.10)

The Cramer-Rao lower bound will enable us te evaluate the effect of electronic
measurement noise, v, on the estimate of the true conductivity in the electrical bore-
hole logging problem.

As indicated earlier, o, is assumed to be the only desired parameter of interest at

this stage of the analysis, so that:

X = {dt}, and @ = {0., Oz0, amyh’ T’ L) Z}

In this case the Fisher’s information matrix is a scalar:

6h(xn,‘.))TR_, (31!(3‘01'0))

Fl = ( 80. (')m

(3.11)

The weighted least squares estimate of o, is given by:

a_h(_xo,_o.))r R (ah(xo,O.) ))“ (ah(xo,o.)

T
Bos For Fos ) R"'v  (3.12)

6 wwrs = bo, + ((

The Cramer-Rao bound for this single parameter estimation case reduces to:
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Error Variance (étWLS) = CRB] = Fi (3.13)
1

3.2.2 Results and Analysis

The CRLB on the error variance of the estimaie of o, is computed as a function of T
and k with all other parameters fixed. Such an approach makes it possible to compare
the performance of the estimator for different formation geometries of interest that
the chosen model supports. For example, the error variance of the estimate of o, for
a thin bed with shallow invasion (i.e., T' and A& both small) can be compared with
that obtained for a thicker bed with deeper invasion (i.e., T and h both large).

As indicated earlier, the operating point of the forward model is chosen to be that

of Case E. The operating point is:

e o, = 0.05mho
e 0, = 0.2mho
® 0., = 0.5mho

e 0, = lmho

(The above choice of conductivities corresponds to a commonly encountered
physical situation in which a less conductive sand bed is surrounded by more
conductive shoulder beds of shale. Since sand is permeable and shale is not,
the central sand bed suffers invasion. The invading fluid is more conductive
than the virgin sand bed and creates an invaded zone which is ten times more
conductive than the uninvaded zone. The wellbore itself contains conductive

mud.)

e r = 5 inches
e z = 2] samples every 6 inches (i.e., delz = 6 inches)

e h and T vary over the following ranges:
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— h = 0 to 50 inches ( in 5 inch increments)

— T =1 to 10 feet (in 1 foot increments)

Each value of h and T corresponds to a single operating point. Therefore, Case E
corresponds to the family of operating points in which the conductivities in the dif-
ferent zones of the model take on the fixed values specified above, while the geometry
of the model itself varies over the range specified by h and T above.

Figure 3-1(a) shows that the error variance of o, decreases as T increases. This
seems reasonable, because as T increases, the contribution of o, to the signal energy
detected by the tool increases. On the other hand when T is small and & is large, i.e.,
the center bed is thin and has suffered deep invasion during drilling, it can be seen
that the estimator performance is at its worst. The second Figure 3-1(b) shows the
same surface, but with the standard deviation (St.Dcv) of the error on o, expressed

as a percentage of the true value of ;. In other words:

%St.Dev of error = vError Variance x 100 (3.14)

To

where 0, is the true value of o,.

Figure 3-2 shows the CRLB as a function of T for a set of four different invasion
depths. It is evident that the effect of invasion is to reduce estimator performance;
this deterioration is more evident in thinner beds. This is because for thin beds with
deep invasion, the relative proportion of the uninvaded zone that falls within the
range of investigation of the induction tool is at a minimum.

Certainly, then, in this scenario where the tool ‘sees’ o, as its major contributor,
followed by o, (o contributes least of all), if the values of o, and o, are very different
from oy, (i.e., the associated conductivity contrasts are high), we would be in the very
worst of all performance scenarios, while if the values of o, and 0., are reasonably
close to oy, (i.e., the conductivity contrasts are low), we should hope to see better
performance.

It can be seen that at worst the estimator has an error variance of 0.6 percent of

the true value of o,. This tells us that under the assumption of perfect knowledge of
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a7 CRLB on sigma_t assuming all other parameters known. Case E

Figure 3-2: Cramer-Rao Lower Bound on o, for various invasion depths, assuming all
other parameters are known

the nuisance parameters, and for this particular choice of operating point family, the
estimate of o, can never be more than 0.6 percent of the true value of o, off from the
true value. Further, in actuality, the bed thicknesses that are usually encountered in
logging are more than 2 feet thick and therefore the estimate will be even less than 0.6
percent off from its true value. The results obtained for Cases A through D! reveal
that not too dissimilar a performance can be expccted on the whole even for the cases
where the contrast of conductivities is considerably different from that considered in
Case E.

Such performance indicates that for reasonably thick beds with modest invasion,
we can expect to obtain estimates of o, that are almost pinpoint in their accuracy
and precision, as long as the nuisance parameters are exactly known. The prescnce
of electronic measurement noise, by itself, is not the major factor that leads to error

in the estimation.

1A survey of the key results for the other cases will be presented in Chapter 5
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3.3 Robustness Analysis

It will now be assumed that # is known to within some degree of precision. This
is a more realisitic assumption because, in practice, some of the parameters in @
are obtained from other measurements and the rest from a successive estimation
procedure like the one used to obtain xg¢. As such, there is bound to be an error in
the estimation of #.

What the following analysis aims to do is to analyse the effect of imprecise knowl-
edge of # on the estimate of x and to compare the error produced in the estimate of x
by such imprecision in # with that produced by the noise alone. The entire procedure
will enablg us to establish whether or not the estimation error is noise driven or bias
driven, i.e., whether the error variance due to noise or the bias produced due to pa-
rameter imprecision is the dominant source of estimation error. Further, it will allow
us to determine to which of the parameters within # the estimate of x is most sensi-
tive, or conversely, to the imprecisions in which parameters within @ the estimation

is fairly robust.

3.3.1 Mathematical Development

Robustness Analysis: Effect of imprecise knowledge of # on the estimate of x.

Suppose 8 is not precisely known a priori. Let @ correspond to a perturbation

about @,

0=0,+60 (3.15)

Assuming the second and higher order terms are negligible, the following linearized

measurement model is obtained

oy ah(x01..)6x + ah(x07'.)

Sy % E")

50+ v (3.16)

= H,6x + Hob0 + v (3.17)

67




It shall be assumed that the perturbations are small enough to ensure that the
approximation in (3.16) is valid. Substituting (3.17) into (3.7):

6%wrs = 6x+ Fy " H,”R"'Ho60 + F,'H.TR 'v (3.18)
=6x+ F," M, + F,"'H,”R"'v (3.19)

where
M, =HR'H, (3.20)

The weighted least squares estimate §Xw s is in this case equal to the true value
0x plus two terms: a bias term, b = Fy,"'M,6#, and a zero mean Gaussian random
variable.

The formulation provided in (3.15)-(3.20) is used to evaluate the size of the overall
bias, b, due to imprecise knowledge of any or all of the model parameters in 0. Since
the bias term can be expressed as the sum of the individual biases it is possible
to consider the individual contribution to the overall bias produced by imprecise
knowledge of the bed thickness, T, invasion depth, h, tool positions, z, shoulder
conductivity, o,, mud conductivity, o,,, and the conductivity of the invaded zone,
Ozo-

This makes it possible to identify those parameters within @ to which the esti-
mate of x is extremely sensitive, i.e., those parameters which produce a large bias in
the estimate of o, for a small perturbation in their magnitude. These will play an
important role as additional parameters to be estimated in the next chapter.

As in the preceding analysis, we have:

ox = {é0.}, and 80 = {b0,,60.,,60.m,8h,8T, ér,62} (3.21)

Two approaches are considered. In the first 60 is assumed to be non-random, i.c.,
a vector of unknown constants, and in the second it is assumed to be random with a

specified probabilistic description.
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3.3.2 Results and Analysis

Non-random Perturbations

The formulation developed above is used to arrive at the total bias, b, due to imprecise
knowledge of any or all of the model parameters in #.

From Equation (3.19), the bias term is

b = F,"1M,50 (3.22)
( 5T
5h
= Py Y (Myr|May| ... |Mag,| ... | M) 5; (3.23)
\ o1 )

=Y Fi7 Mys,86; (3.24)

=1
where N is the number of parameters within # that are imprecisely known.

Since the bias term can be expressed as the sum of the individual biases, it is
possible to consider the individual contribution to the overall bias introduced by
imprecise knowledge of any one parameter 6;.

The first part of the following robustness analysis concerns itself with the actual
bias introduced in the estimate due to imprecisions in each parameter. The second
component of the analysis is directed at determining whether noise or bias is the

major degrading factor in estimator performance.
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o Part 1
From Equation (3.24)

b =Y Fi~' M50 (3.25)
i=1
can be expressed as
b= zn: Fy "1 M,.0; & (3.26)
———— 0;

= G,,=Bias Factor

- 80,
= ZG,'. (—') (3.27)
i=1 0i

where Gj s are defined to be Bias Factors. They are termed bias factors because
the bias produced by a perturbation in any given parameter can be derived from a
simple linear operation on the associated bias factor of the parameter. Hence, an x%

perturbation in §; will result in a bias in the estimate of magnitude |;Z5 x Gq,|.

Figure 3-3 (a)-(h) shows the bias factors obtained for the parameters in @ assuming
the operating points in Case E. For T and delz, negative values are observed for a
certain subspace of the parameter space, and for these two cases, the absolute bias
factors are also displayed.

For the purposes of illustration, assuine that the imprecision in each parameter is
1 percent of its true value? . The resulting bias introduced is examined for the cases of
shallow (h = 10 inches), medium (h = 20 inches) and deep (h = 50 inches) invasion,
in Figures 3.4(a)-(c). It must be remembered that the overall bias introduced in the

estimate is the sum of all these individual bias terms.

2This will obvionsly .10t be the case in general. Different parameters will be known to different
degtees of precision depending on the quality of the a priori knowledge of their values or the wor-
thiness of the estimation procedure by which they are obtained. A more realistic scenario, in which

the degree of precision of their a priori known values varies, will be considered in Chapter 5
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Bias introduced due to a 1% perturbation in the parameters. h=50 in
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It can be seen that as the depth of invasion increases, the relative contribution to
the overall bias by k and o,,, the parameters associated with invasion, increases. In
fact, as is exemplified in Figure 3-4(c), for thick enough beds (T > 5feet), the bias
introduced by these two factors is larger in magnitude than that due to v,. This is
because, for large T, the contribution of o, to the signal received by the tool is less.
Further, for larger h, the contribution of o., to the total signal increases, and the
corresponding bias introduced due to imprecision in it is that much larger.

In all of the above, it must be remembered that the relative importance of the
parameters from the point of view of ‘sensitivity’ (as measured by the bias introduced
per unit perturbation), is very much a function of the family of operating points
being considered. For a different choice of operating points we may obtain different.
sensitivity results. The above analysis provides a rule for determining a ranking of
the parameters by their sensitivity given reasonable knowledge of the operating point.
As we shall see, this is critical in determining the future course of action in estimating
ox.

As a final observation, it can be seen that the bias introduced by imprecision in
om and delz, the tool position, is much less than that due to the other parameters,
and is fairly independent of the depth of invasion, h.

o Part 2

The objective of thic part of the robustness analysis is to determine whether the
estimation is bias or noise driven.

This is done as follows:

1) The bias introduced in the estimate by each parameter is set equal to the
standard deviation of the estimate in (3.9). (This estimator assumes no bias, because
the nuisance parameters are assumed to be known exactly. The estimation error in
this case is solely due to the noise.)

i.e.,

be, = G, (—) =/ F! (3.28)
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2) The perturbation necessary to produce an error in the estimate equal to the
error produced by the noise alone is determined.

This is done by solving the above Equation (3.28) for §6;, i.e.,

5o, = VI8 3.29
t GG.‘ ( b )

If, for example, the required perturbations turn out to be very large, then the
amount of bias introduced in practice will be small, and the estimate will be noise
driven.

The results for case E are shown in Figures 3.5 (a) - (f). The required perturbation

is expressed as a percentage of the true value of the parameter, ((%‘:l) x 100). Also,

the required perturbation surfaces are displayed as the absolute values of the actual
perturbations required.

The percent perturbations are examined in Figures 3.6 (a) and 3.6 (b) for two
different h’s corresponding to shallow and deep invasion. The following observations

are readily appparent:

1. The estimate is relatively more robust to perturbations in delz and o,,. The
perturbations required in their magnitude to produce a bias error equal to that
due to noise, while still small, is much larger than that required for the other
parameters. Further, at least for the case of 7,,, the required perturbation varies

little with h, the invasion depth.

2. As before, with an increase in invasion depth, the parameters of invasion, h
and o, play a more important role. The reason for that is the same as was

discussed earlier in part 1.

3. Relative variations aside, it is apparent that on the whole the perturbations
required in any parameter to alone produce a bias equal to the error due to
noise is very small. Since the overall bias is the sum of these individual bias
terms, the corresponding perturbations required to produce an overall bias equal

- to the error due to noise alone will be even smaller.
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In a realistic context one could never imagine obtaining values of the nuisance
parameters to within s:ach a high degree of required precision. The imprecision
ihat one will likely encounter will be considerably larger and the resulting bias
introduced, that much more. Therefore, it seems reasonable to conclude that
the error due to bias is the dominant contributor to the overall error produced

in the estimation.

Bandom Perturbations

It is assumed here thait @ has a known probabilistic description. This would be the
case, for instance, when @, is arrived at through a sequential estimation such as that
refered to'in Chapter 2. In that case, since the choice of cperating point, 8,, is an

estimate, i.e., a function of random observations, # will be random.

As before,

0=0,+50 (3.30)

where the §0;s are now random variables. It shall be assumed that the §8;s are zero

mean, uncorrelated Gaussian random variables with variance p;

Substituting the above description of 6@ into Equation (3.19), it can be seen that
there is now no constant bias term. The term, b = F, ! M,0, contributes an addi-
tional variance term to the overall estimate of x.

The estimate of §x therefore consists of the true value éx plus two zero mean
Gaussian random vectors. The resulting estimate has mean éx, (i.e., it is unbiased),
and covariance Fi~! + Y0 ,(Gg, )*p;i

It can be seen from a comparison with the estimate obtained in (3.9), that the
effect of the 50 term is to produce an additional variance term: in addition to F, ',
the variance term due to the noise alone.

Figures 3.7 (a)-(f) show the additional variance terms contributed by the various
parameters in # when the standard deviation of §6; is assumed to be 1 percent of the

operating point value of the parameter, i.e.,
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STD(86;) = /pi = -1%5 (3.31)

Further, if we assume h = 20 inches and 50 inches representing moderate and deep
invasion, we can obtain a ranking of the parameters by th:ir sensitivities as before.
This is shown in Figures 3.8 (a) and (b). We obtain similar sensitivity results as for
the 60 non-random case because of the choice of the standard deviation of 8;s. It
can be seen therefore that incorporating the case of 60 randem into the previously
existing framework poses no problem.

We have a way, therefore, of arriving at a ranking of the parameters by their sensi-
tivity, and a means for actually computing the additional variance terms contribute
due to uncertainty in their knowledge for the 80 random case as well.

The perturbations necessary to produce a variance term as large as that due to
noise alone were seen to be very small>. The results for that investigation are not
shown in the interest of brevity. The conclusions, however, are very forthcoming from
the extremely large amount of variance produced by the 1 percent perturbations in the
parameters, as aiso from the following section which provides an intuitive visualization

of the interrelationship between the different approackes undertaken thus far.

3.4 Theoretical Interlude

The relationship between the cases in which (1) @ is known perfectly, (2) 0 is impre-
cisely known and is deterministic, and (3) @ is imprecisely known and is stochastic,
can be visualized as in Figure 3-9. In the absence of 80, i.e., for the case where @ is
known perfectly, the presence of noise produces a cloud of variance that surrounds
the true value of the estimate as can be seen in Figure 3-9 (a).

When thei e is imprecision in #, and more s}. cifically, when @ is non-random, the

resulting bias term skews the vector in another direction, as shown in Figure 3-9 (b).

3This correspoands to part 2 of the 80 non-random case
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This corresponds to a constant offset, or bias, from the true value, and one of the
results of the above analysis was to show that the bias vector throws the estimate off
from the true value much more than the cloud due to the noise possibly could.

When 8 is probabilistic (i.e., when the parameters in @ take on one of many values
with a certain probability), then there is uncertainty as to the amount of offset from
one realization of 8@ to the next. Hence there is no constant offset or bias term as
was observed for the deterministic case. In the lizniting case as the variance of 80 goes
to zero, one obtains a bias term*, however; in general, the amount of offset from the
true value is intimately tied to the probabilistic description of @ itself. When the é6;s
were assumed to be zero mean, Gaussian variables one obtains an additional variance
term in the estimate of x. This corresponds to another cloud of variance, shown in
Figure 3-9 (c). The analysis of this chapter showed that this cloud is much bigger
than that produced due to the noise alone.

The mean square estimation error is the sum of the bias term and the standard
deviation of the error. In going from /@ deterministic to é@ probabilistic what one

effectively does is to push all the error into the two variance terms.

3.5 Conclusion

The performance of the estimator was considered under the assumption of perfect
knowledge of the nuisance parameters. This enabled the characterization of estimator
performance under noise alone, and provided an upper bound on performarce to
be used in comparison with the cases where noise is not the sole degrading factor.
It was found that the error variance of the estimate, as given by the Cramer-Rao
lower bound, was very small. This was found to be the case quite independent of
the operating point being considered, indicating that irrespective of the conductivity
contrast, and geometric variation of the model, an exceptional performance can be
expected if noise is the sole corrupting factor.

That, of course, it is not. Therefore, it was then assumed that @ was imprecisely

known. Two cases were considered. In the first case # was assumed to be deterministic.

4thus the 50 non-random case can be thought of as a special case of the 60 random case
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SOURCE OF ERROR ERROR INTRODUCED | % OF TOTAL FRROR | % OF a,
I (in mhos)
Measurement noise 3.275 x 10~ 0.4290 0.0655
Imprecision in knowledge
of parameters 0.0076 99.5710 15.2
Parameter | % perturbation
i o, 1 2.85 x 1073 37.339 5.7
Ozo 1 1.2 x 1073 15.7217 2.4
Om 1 8 x 10~° 1.0481 0.16
h 1 2.41 x 10~ 31.5745 1.82
T 1 7.1 x 1074 9.302 1.42
delz 1 . 3x10* 3.9304 0.6

gfal;k: 3.1: The relative contributions of the different sources of error in the estimation
The bias due to imprecision in the knowledge of the parameters in @ could be simply
expressed as the sum of the biases introduced by each parameter separately.

The bias introduced by a 1 percent perturbation in the parameter values was
computed and used as the basis for a ranking of parameters by their sensitivities.
Table 3.1 displays the result of the sensitivity analysis for a bed thickness, T', of 4
feet, and shows how such a ranking may be obtained.

It was emphasized that any such ranking depended on the operating point heing
considered as also on the relative size of perturbations in the various parameters.
Once these are known, the procedure outlined can be used to obtain the sensitivity
ranking specific to that particular case. It was then established that the estimate of
x was bias driven. This was done by setting the bias produced by the parameters
equal to error produced by the noise alone and calculating the perturbations in the
parameters necessary for such a bias to be produced. These were found to be very
small; a realistic estimate of @ would undoubtedly have imprecisions greater than
that, and hence the conclusion that the dominant source of error is imprecision in the
knowledge of the nuisance parameters.

In the second case, @ was assumed to be random. The 0;s were assumed to bhe
zero mean uncorrelated Gaussian random variables with variances p;. Instead of the
bias term one now obtained an additional variance term due to imprecisions in each

parameter. The rest of the treatinent was similar to the @ non-random case, with the
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only semantic difference being that one cannot now talk of the estimate as being bias
driven. It is more correct to say that the error due to iinprecision in 8 (wh'~h has
not a constant, bias value in this case) is much more dominant than that due to the
presence of noise.

Lastly, a visual model was developed to aid the understanding of the estimation

procedure so far, and to place it in a more physically intuitive context.
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Chapter 4

Multiparameter Estimation and
the Incorporation of Auxiliary

Measurements

4.1 Introduction

The previous chapter underscored the fact that imprecision in the knowledge of the
nuisance parameters was the major detrimental factor in the performance of the
estimator for 0,. Knowledge of the parameters in # is bound to be at a level of
precision that cannot guarantee that there will be no bias in the estimate.

In the first part of this chapter we explore the nossibilities of estimating all or
a subset of the parameters in #. The additional precision in # and the subsequent
increase in accuracy of the estimate of o, will likely come at a cost in the precision
of the estimate of o,. This degradation in precision in the estimation of oy due to
a multiparameter estimation from the same observation set will be examined under
various choices of x.

The second part of the chapter is concerned with the incorporation of auxiliary
measurements on some of the nuisance parameters into the framework for estimation
that hae already been built. Such measurements may come from additional shallow

measurements of 0, and o,,, or from other logging tools that may provide information
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on bed boundaries (i.e., T in the thesis model). One contribution of this investigation
would obviously be to see how the performance of the estimates of oy and the other
nuisance parameters being estimated will improve with this auxiliary information. In
addition, it will enable us to set a threshold on how good the additional information

must be for it to enable a significant improvement on the estimate of a,.

4.2 Multiparameter Estimation

The treatment that follows is different from the preceding one in that # is recognized to
be imprecisely known and needs to be estimated either in whole or in part along with
o,. In the first case that was considered in the previous chapter, the knowledge of the
nuisance paraineters was assumed to be perfect and the lirearized approximation that
was employed for the forward model took into account only the first order perturbation
in x. Subsequently it was suggested that the knowledge of & was in fact not perfect.
The linearized model of the first case was used anyway and, for the 8 non-random
case, a bias term was obtained. (This corresponded to the cost of unmodelled 40.)
Now @ is treated as imprecise. The prediction function is approximated by a

multi-dimensional Taylor series expansion about x and .

4.2.1 Mathematical Development

Performance Analysis: Error variances of the estimates of x and @ assuming @ is

unknown.

Equation (3.17) may be rewritten as

) (H, Hy) b

y = ( H. +v (4.1)
"\ s

In this case the weighted least squares estimates of éx and o@ with respect to the

weight matrix R (also the maximum likelihood ertimates under the assumption of

Jaussian noise with zero mean and autocorrelation R) are
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- T
(6’.‘) R (H’T) R '3y (4.2)
60 WLS H,

where the Fisher’s Information matrix is:

F,:((H'T)R—I(H He)) (4.3)
HoT :

Substituting (4.1) into (4.2) yields:

6% éx HT
. = + ! r R v (4.4)
80) .5 50 H,

So the estimated q' ntities equal the true values plus a zero mean Gaussian vector

whose covariance matrix is given by the Cramer-Rao lower beand

CRB, = F»! (4.5)

The diagonal entries of C RB, correspond to the variances of the individual scalar
parameters in x and 4.

Introducing a new variable

M, = He"R 'H, (4.6)
F, can be expressed as
R M,
F = (4.7)
M,T M,

The formulafion in (4.))-(4.7) was used to examine the degrading effect on the
estimate of true conductivity, o,, due to the estimating of a larger set of parameters.
Further, it was possible to evaluate the tradeoff in performance as more and more

parameters are estimated simultaneously.
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4.2.2 Results and Analysis

A few points deserve some attention at this stage. From the results of the previous
chapter, the bias factor multiplied by the perturbation provides a measure of the need
of a given parameter to be estimated. The bias factors were computed for the family
of operating points in Case E, and in theory could readily be computed for any choice
of operating point. If, in addition, the order of magnitude of the perturbation in each
parameter is known a priori, then, as was shown earlier, a ranking of the parameters
by sensitivities could easily be obtained. This would also costitute a ranking of the
parameters by their need to be estimated.

In this chapter, the process of estimating some or all of the nuisance parameters is
studied. The Cramer-Rao lower bound is used to obtain a measure of the performance
of the estimate of o, and of the other parameters being estimated. Estimating more
parameters is bound to result in a loss of estimator performance. This is a conse-
quence of the fact that any increase in measurement precision for one of the measured
system parameters must be accompanied by a compensating decrease in measurement
precision for the remaining parameters if they are measured simultaneously from the
same set of information data[4]. The estimating of certain parameters instead of
certain others may result in a greater loss in performance. Therefore, the increase
in variance of the estimates of o, and the other parameters also being estimated, if
any, due to the inclusion of a certain parameter, §;, as an additional parameter to he
estimated provides a measure of the cost of estimating that particular parameter.

The two notions of ‘need’ and ‘cost’ are intimately tied together and one aspect of
this chapter is to explore their relationship with a view to determining an optimnm
set of parameters to estimate in addition to o¢. It will be seen that the cost of esti-
mating a certain parameter is inversely related to the sensitivity of the measurement
to perturbations in that parameter. In simpler terms, it is casier to estimate a pa-
rameter to which the estimate is more sensitive. This is a comforting result because
the parameters to which the estimate is more sensitive are the ones that would be

estimated fiist of all.2

more correctly, a ranking of the parameters by the sensitivity of the estimate to perturbations
in the parameters

2There is a little more here than may immediately meet the eye. The fact that it costs less to
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In this chapter any reference to need and cost will assume that these two terms
are measured by the criteria indicated above. The fact that cne obtains an unhiased
estimate of a certain nuisance parameter 0; in addition to o, implies that, on average,
the size of the perturbation in #; will be zero, and hence the expected value of the
bias in the estimate of o, (averaged over 6;) is zero. On a single realization we wili
get a non-zero perturbation in the estimate of f; causing the estimate of o, to he
biased. The size of the perturbation in 8; that can be expected is proportional to the
standard deviation of the estimate of 6;, and for this reason it is crucial to pay close
attention to the Cramer-Rao lower bound on the auxiliary parameters that we choose
to estimate. If the error variances were too large it would mean that we will obtain
big enough perturbations in our estimates of #, on average, to produce an undesirable
bias.

The issues mentioned above will be made clearer in the light of the following cases,

all of which assume the operating point family given by Case E:

Case 1

Defining,
o Case la where x = {0,,T},0 = {0,,020,0m, h, 7,2}
e Case 1b where x = {o.,h},8 = {04,020,0m, T, 7,2}
o Case 1c where x = {0y,0,},0 = {020.0m, T, h,7,2}
e Case 1d where x = {0,0:,},0 = {0,,0m, T, h, 7,2}

The above provide four illustrative examples of possible 2 parameter estimation
cases.
Figures 4-1 (a) - (d) show the Cramer-Rao lower bounds on the estimate of o, and

the additional parameter being estimated for each of these cases.

estimate parameters to which the estimates i3 more sensitive would most likely imply that the oper-
ating point knowledge of these parameters (obtained by a Gauss-Newton type iterative estimation)
would be superior in the first place. This implies smaller perturbations and hence a lower need to
be estimated. Note that this will be true when the values of these parameters are obtained from the
same measurements that are used to obtain the estimate of o,
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For example, Figure 4-1 (a(i)) shows the CRLB on the estimate of T'. It can be
seen that the estimate of T has very small error variance, and that the estimate of o,
has not suffered a very large increase in error variance in going from the case where T
is assumed known to the one in which it is estimated. Therefore, it can be concluded
that Case la effectively provides a situation in which the bias due to imprecision
in T is reduced to zero, on average. On a particular realization of T', the standard
deviation of the estimate of T provides a measure of the size of the perturbation in
T that can be expected, and this too is observed to be very small. Furthermore, this
good news comes at a cost, as measured by the decrease in precision in the estimate of
o, that is not too severe at all. Statements such as this can be made about each of the
above cases individually. In all of them it is seen that the two parameter estimation
case results in the situation that the errors due to bias due to a given parameter (i.e.,
inaccuracy in the estimate of o;) can be reduced, on average, without an appreciable
decline in estimator precision of 0.

There is something to be learned from comparing these cases as well. Figure 4-2
shows the Cramer-Rao lower bound as a function of bed thickness in the four different
cases for a particular choice of A = 20 inches, corresponding to moderate invasion.
It can be seen that the error variance on the estimate of o; is larger for the cases in
which h and T are estimated, indicating that these two parameters are more costly
to measure (i.e., more precision in o, has to be sacrificed to estimate h and T than for
the other parameters considered). Referring back to Figure 3-4 (b), computed for the
same h, we see that these were parameters that would feature lower in a ranking of
the 4 parameters in terms of the sensitivity of the estimate to perturbations in them.
This provides an example of the inverse relationship that exists between the need of

a parameter to be estimated and the cost of actually estimating it.

Case 2

If instead of estimating one additional parameter one chooses to estimate two, then,

as before, several choices exist. Suppose the choice, Case 2a, were made:

o Case 2a: x = {04,0,,T}, 0 = {Gz0yOm, h,7,2}
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Figure 4-2: Cramer-Rao lower bound on the o, estimate for different choices of the
additional parameter to be estimated. h=20 inches. Case 1

The Cramer-Rao lower bounds on the estimates of oy, @, and T are shown in
Figures 4-3 {a) - (c). Comparison with Figure 4-1 shows that the loss in precision
of the estimate of o, is not too significant. Further, comparison with Figures 4-1 (c)
and (a) shows that in going from x = {o,a,} to x = {0¢,0,,T} and going from
x = {0y, T} to x = {01, T, 0,} does not result in a large increase in the crror variances
of o, and T respectively. The standard deviations of these cstimates are still quite
small and the expected value of the perturbations in them is thus reasonably within
limits.

It can therefore be concluded that for this operating point family, an increase in
the precision of the estimates of T' and o, and the consequent increase in accuracy
of the estimate of o; can be obtained without appreciable loss of precision in the

estimate of o;.
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Figure 4-3: Cramer-Rao lower bounds for the oy, o, and T estimates of Case 2.
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Case 3

We consider now the limiting case where every nuisance parameter is estimated.
Figures 4-4 (a)-(f) show the Cramer-Rao lower bounds on each of the estimated
parameters. Figure 4-5 shows the error variance of o, alongside each other for the two
extreme cases where all parameters are assumed known and where all are assumed
unknown and have to be estimated. The loss of estimator performance is visible,
but it is still not very severe. At worst, the estimate of oy is 15% off from its true
value. More so, in the regime of h and T values that one will usually encounter
in practice, the performance is quite remarkable. For moderately invaded beds, the
multiparameter estimation can be carried out without resulting in an estimate of o,
that has a.lpercent standard deviation of error greater than 5 percent. This is certainly
acceptable performance.

Figure 4-6 (computed for A = 20 inches) shows that in going from the case of
estimating o, as the only additional parameter in x to the case where it is estimated
along with all the rest, we see that the percent standard deviation of the estimate of 7,
stays within a half percent. An intermediate case, case 3b, (in which x = {oy,0,,T,h}
and @ = {040,0m,7,2} ) is also shown to indicate the behavior of a case intermediary
to the two extreme ones. Therefore, the decrease in estimator performance of the
nuisance parameters also seems to be within acceptable bounds. Similar comparisons
were made for the other parameters and the conclusions are basically the same. It
is possible to cbtain an estimate with reasonably small variance, i.e., one that is

reasonably accurate and precise.

Case 4

The above three cases provide examples of situations in which the number of pa-
rameters being estimated was fixed and an analysis done of the performance of the
parameters within in each case and then between the cases themselves. In practice,
however, one is more likely to follow a procedure that would be a natural extension
of the results of the earlier chapter. The earlier results indicated a ranking of the

parameters by the sensitivity of the estimates to them as follows:
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Figure 4-4: Cramer-Rao lower hounds on the estimate of o, and all the other param-
eters. Case 3.
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Figure 4-5: Cox;tlfarison of the Cramer-Rao lower bound on the estimate of a, for

the case where all the paramelers are perfectly known and for the case where all the
parameters are imprecisely known and have to be estimated
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Figure 4-6: Increase in the Cramer-Rao lower bound on the estimatc of o, as morc
parameters are estimated. Case 3.

1) o,

2) 020,

HT

4) 0,n, delz where, in 2) and 4) the separation between the parameter sensitivities
was not appreciable or depended on the interval of h and T being considered.

One would then carry out an estimation scheme that would estimatc the additional

parameters in this order. Therefore, if we define:
o Case 2b where x = {04,0,,h},0 = {020,0m, T, 7,2}
e Case 2c where x = {0y,0,,0:}, 0 = {71, T, I, 7,2}
o Case 4 where x = {04,0,,0:0,1,1},0 = {7,,,,7,2}
a logical choice of successive cases would be going from

1. Case 1c, where o, and o, are estimated

2. to Cases 2b and 2c¢, where oy, 0,, h or 0,, 0,, 0, are estimated, to
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Figure 4-7: Cramer-Rao lower bound on the estimate of g, when the estimation
scheme of Case 4 is employed. h = 20 inches

3. to Case 4, where 0y, 0,, h, 0.,, T are estimated, to
4. Case 6 where all the parameters are estimated.

If at any point along this process the estimate of o, degraded beyond an acceptable
level, we would know what subset of @ it would be optimal to estimate in that casc.
Optimality, here is defined by some desired compromise between the accuracy and

precision of the estimate of the parameters in x.
Figure 4-7 shows the Cramer-Rao lower bound on the estimate of o, for the varions

choices of x just described assuming h = 20 inches. As was mentioned before, we
see that at least for this value of h, estimating all the parameters (Case 6) rather
than estimatiing just one (Case lc), does not result in too large of an increase in the

variance of o;. The estimate of o, is still within 3% of its true value even for Case 6.

Further, the difference is even smaller for beds thicker than two feet which is what

one usually encounters in practice.



It must be remembered that estimating for delz involves the estimation of a single
parameter, which corresponds to the constant offset, €, in each component of the
vector of tool depth positions.

Another point deserves mention at this stage. It was seen that for the three bed
model estimating all the parameters in # in addition to o, results in a loss of estimator
precision that is not unreasonable. As such there is no need in this model to select
a subset of @ to estimate. This, however, need not be the case for more complex
multi-bed models with many more model parameters. For such models the choice
of what subset of 8 to estimate in addition to o; is made by following the procedure
adopted in case 4: keep on increasing the number of parameters to be estimated,
(x), in accordance with the ordering of the parameters (obtained by the methods of

Chapter 3) until the loss in estimator precision becomes unacceptable.

4.3 Auxiliary Measurements

Additional information may be available to us from many sources: auxiliary knowl-
edge of # could come from additional wellbore measurements, for example, of the
Formation Micro-Scanner, FMS, which provides information about the layer bound-
aries or bed thickness. As another example, auxiliary measurements of the invaded
zone conductivity, o,, may be known from additional shallow reading instruments.
The purpose of this part of the chapter is to develop a mathematical framework for
the incorporation of additional measurements of # into the estimation rule. Then, a
performance analysis is carried out for a sample case, and certain inferences drawn
from it which yield valuable information on the requisite quality of the additional

measurements that is needed for the estimator to show a marked decrease in variance

4.3.1 Mathematical Development

Error variance of the estimate of x assuming auxiliary measurements of @ are available.

Suppose, in addition to the measurements y already introduced, auxiliary mea-
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surements q are available, for a total set:

y = h(x,0) + v (4.8)

q="f(0)+w (4.9)

where q is the vector of additional measurements and w is white, Gaussian ncise of
variance Q.

Let qg correspond to the noise-free response to 9y, i.e.,

qo = f(0o) (4.10)

and let q be a perturbation about qpg,

q=qo + éq (4.11)

Assuming, as before, that the second and higher order terms are negligible,

6.q:=: Fob0 + w (4.12)
where
of
Fy = % (4.13)

The linearized measurement model is now given by:

()= () ()

As before, it is understood that the perturbations are small enough so that the lin-
earized model stays valid.

The weighted least squares estimates in this case are:
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% H.T HyT R!' 0 dy
. = F! r (4.15)
60 ) i 0 F, 0 Q! bz
where Fisher’s Information matrix, F3, is:

P ( HT o0 Rl 0 H. H, \ 6
*“\\g,T FT 0 Q- o F )’ (4.16)

Following a procedure similar to that used in Case 1 and Case 3 it can be shown

that the Cramer-Rao lower bound, C'RBj, is:

CRB; = F;! (4.17)
Defining
M, =F,"Q'F, (4.18)
we get
F; M, a1
CRB; = ( , ) (4.19)
MY M; + M,
so that
0 0
CRB;' =CRB;"' + (4.20)
0 M,
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Figure 4-8: Cramer-Rao lower bounds on the estimate of o, illustrating the effect of
having additional information on T and 0., available. h = 20 inches.
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4.3.2 Results and Analysis

It is assumed that auxiliary measurements of T' and o, are available in the following

form:

T=T,+qr (4.21)

Oz0 = Oz00 + Qo., (4.22)

where g9, = N(0,Q;), and the standard deviation of Q; is chosen for the purposes of

illustration to be one percent of the true value of the parameter 0;. i.e.,

V@i = 1% of b, (4.23)

Figure 4-8 shows the error variance and the percent standard deviation of the
error in the estimate of 0;. It can be seen that for additional information of this
quality performance is improved only for thin beds. Had the Q;'s been smaller, the
error variance would have been even smaller. However, as was mentioned in the
introduction, for the auxiliary information to be of value after the multiparameter
estimation procedure has been completed, the information has to be at least of a
certain quality, and what we have here is a way of determining what that necessary
quality (as measured by the Q,'s) ought to be for any given case.

Similar decreases in variances are seen in Figures 4-9 (a) and (b) for the estimates
of T and 0., In all of this it must be reemphasized that more precise auxiliary
measurements will lead to smaller variances in the estimates of all our parameters.
Decrease in the error variances of T' and o, will translate to lower imprecisions in T
and o, in general and hence less bias introduced into the estimates of the parameters
in x.

It should be remembered at this stage that additional information which is of
little use in reducing error variance at this stage is likely to have already been folded
into the estimation process at an earlier stage; i.e., at the stage where x, and 0,, the

operating points we assumed to be known at the outset, were being estimated.
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Figure 4-9: Cramer-Rao lower bounds on the estimates of T and ¢, illustrating the
effect of having additional information on these parameters available. h = 20 inches.
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Further, auxiliary information that is of little use in reducing error variance in this
model will probably be of more value in more complex formation models in which the
estimator performance (in the absence of auxiliary measurements) can be expected

to be worse than in the three bed model.

4.4 Conclusion

The performance of the estimator was considered under the assumption of imperfect
knowledge of the nuisance parameters. The results of the previous chapter indicated
that imprecision in the knowledge of the nuisance parameters was the major source
of error in the inversion. By using an estimator constructed on the assumption of
perfect knowledge of the parameters in # one obtained an estimate that was precise
but, potentially®, highly inaccurate. In this chapter the transition from such an
estimate to one that is more accurate but less precise is made.

Chapter 3 provided the means for obtaining a ranking of the parameters by their
need to be estimated (as measured by the amount of bias introduced into the estimate
by a given perturbation in their magnitude). This chapter provides the means for
determining the cost and feasibility of estimating the respective parameters (as mea-
sured by the incremental loss of precision in the estimate induced by the additional
estimation of each parameter).

Various estimation scenarios were considered. The number of parameters to bhe
estimated was successively increased in keeping with the ordering of the parameters
by their need to be estimated. It was seen that for this model estimating all of the
nuisance parameters resulted in an increase in the error variance of the estimate of
o, that was not unreasonable on the whole and mucn less so in regimes of common
interest. For example, for an invasion depth of 20 inches it was seen that for the case
when all the parameters are estimated along with o, the estimate of o, was within 3
percent of the true value. Thus the increased accuracy of the estimate of oy does not
result in a substantial loss in estimator precision. This can be seen in Table 4.1 which

shows the incremental standard deviation added to the o, estimate for the successive

3depending upon the size of the perturbation in @
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CASES ERROR St.Dev | INCREMENTAL St.Dev

ON ESTIMATE | ADDED TO ESTIMATE
(in % of ;) (in % of a;)
# perfectly known 0.0655 -

Case 1c 0.089 0.0235

Case 2b 0.1547 0.0657

Case 2c 0.2113 0.1223

Case 4 0.3125 0.1012

Case 6 0.4018 0.0893

Table 4.1: Degradation in the o, estimate caused by the successive multiparameter
estimation cases
estimation scenarios.

The error variances on the estimates of the other parameters being estimated are
also of importance because they provide indicators of the size of perturbations to he
expected on average. These were seen to be within reasonable limits - for instance,
in the case when all the parameters are estimated along with o, the estimate of o,
for an invasion depth of 20 inches, stays within 0.5 percent of its true value..

In the second part of this chapter it was assumed that auxiliary information on
some of the parameters was available through other sources. The incorporation of
these additional measurements into the pre-existing mathematical framework for er-
ror analysis was formalized. The performance of the estimator was considered in
the light of this additional knowledge. It was seen that for the chosen quality of
auxiliary information the estimator performance did not improve remarkably, though
a marginal improvement was seen for thinner beds. For a 1 foot thick bed, with
an invasion depth of 20 inches for instance, an improvement of about 0.5 percent
of the true value of o, results from the incorporation of auxiliary measurements of
the quality described in Section 4.3.2. Such results, however, are entirely a function
of the quality of the additional measurements chosen and need not reflect estimator
performance given superior auxiliary information.

The methodology developed in the previous chapter enabled the ordering of the
parameters by the sensitivity of the estimate of o, to them. By using the methodolgy
developed in this chapter, the percentage increase in the variance of the o, estimate

that results from estimating some or all of the nuisance parameters can be computed.
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Further, the quality of auxiliary measurements needed to be of use in reducing the
variance of the estimate of o, can also be determined using the framework developed

in this chapter.
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Chapter 5

Further Issues

5.1 Introduction

In the preceding chapters we considered a performance and robustness analysis of the
inversion of induction log data for the 3 bed model. The logs are noisy nonlinear
functions of the formation parameters for which the inversion is carried out. Such
an analysis was possible for a 3 bed model because the fewer number of parameters
involved made a mathematical error analysis possible!. The results of the perfor-
mance and robustness analysis for the 3 bed model are of value for more complex
models, (with more possible sources of error), because they provide an upper bound
on achievable estimator performance and, more importantly, because the primary
complicating effects faced in the inversion for the true conductivity of the formation
using the simpler model are encountered in inversion from more complex models as

well. These are:
e the presence of shoulder beds, (T is not infinite and o, # o)
o the presence of the borehole, (» # 0 and o, # 0¢)
e the presence of an invaded zone, (h # 0 and 0., # o¢)

e tool depth position uncertainty, (delz is not constant)

1 Another outcome of such a choice of model is that the fast, approximate tool response modelling
codes are more accurate for such a simple model
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These four complicating effects were considered in the preceding analysis under

the following simplifying assumptions:

1. The shoulder beds are assumed to be semi-infinite in length and equal in con-

ductivity.
2. The borehole wall is not rugose; i.e., the wellbore is a cylinder of constant radius.

3. There is no transition zone; i.e., the conductivity profile has a step-like profile

in the center bed.

4. The tool positions, if they are in error, are assumed to be skewed by a constant

offset in one direction only.

In the first section of this chapter we expand our study of the above mentioned
complicating effects by examining more closely the assumptions made in their mod-
elling. In the second section we extend the analysis of the previous chapters to

different choices of operating points and parameter imprecision values.

5.2 Tool Depth Position Uncertainty

In the analysis of Chapter 3 it was assumed that imprecisions in the tool position
were as shown in Figure 5-1 (a). The tool position was off from its expected value by
a constant amount given by ¢, (¢ > 0). We now extend the treatment of imprecisions
in the logging tool’s position to the case where the error in the tool position alternates
between constant positive and negative values of +€ and —e¢ as shown in Figure 5-1
(b).

Both of these cases are examples of systematic errors. These are errors due to one
or a few definite causes acting according to a definite rule. The error in Figure 5-1
(a) is one-sided. It may arise in a situation in which the cable length is measured
incorrectly or if the cable has suffered stretching by a constant amount. The error
shown in Figure 5-1 (b) is skew symmetric. The tool goes from being in positive error
at one depth position to being in negative error at the next. This may arise in a

situation in which the tool alternately experiences an acceleration and deceleration
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Figure 5-1: Expected and actual tool i)ositions. (a) one-sided perturbation, (b) skew-
symmetric perturbation. (Borehole diameter exaggerated)
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Bias Factor (abs) due to unit fractional perturbation in delz...(2)
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Figure 5-2: Bias Factor for skew-symmetric perturbation

while being raised out of the borehole. If it is assumed, for simplicity, that this
speeding up and slowing down occurs successively and by equal amounts then the tool
position will oscillate between the expected tool position plus and minus a certain
e. This is a rudimentary model of ‘tool yoyo’, which is a source of tool position
uncertainty. In reality, the yoyo-like behaviour induced by tool speed fluctuations
creates random perturbations in the tool depth position that do not have to obey
a systematic model such as the one being employed (which can be thought of as a
limiting case of the more general tool speed fluctuation problem).

Figures 5-1 (a) and (b) show the expected and actual (perturbed) tool positions.
An equivalent representation can be obtained by assuming that the tool’s sampling
step size, delz, is perturbed by +e in Figure 5-1 (a) and by +e and —e successively
in Figure 5-1 (b).

In Section 3.32 the bias introduced into the estimate of o, due to a non-random
perturbation in the parameters was considered. Figures 3-4 (a) - (h) showed the

Bias Factors obtained for the various parameters assuming that Case E was the
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x104 Bias Introduced due to a 1% perturbation in the parameters. h=20 in
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Figure 5-3: Comparison of the absolute bias (in mhos) introduced for the two types
of perturbations

chosen operating point family. The Bias Factor obtained assuming a non-random
perturbation of delz of the type depicted in Figure 5-1 (b) is shown in Figure 5-2.
We shall refer to this kind of perturbation in delz (and, consequently, depth position)
by dz;. This result should be compared with those obtained in Figure 3-4 (h) where
the perturbations, dz;, obey the pattern indicated in Figure 5-1 (a). It can be seen
that the Bias Factor obtained for the one-sided error case of dz is larger than the
corresponding Bias Factor for dz; over the entire space of h and T considered.

Figure 5-3 shows a comparison of the bias introduced into the estimate of o; due to
a 1% perturbation in each of the parameters for the two cases when the invasion depth
is assumed to be 20 inches. The difference between the two cases is most pronounced
for thinner beds. Further, for the skew symmetric case the bias introduced is relatively
independent of bed thickness while for the one-sided depth position error case the bias
introduced decreases as the bed thickness increases.

Now, dz; was the case that was used in the preceding analyses for imprecision in

delz. We saw earlier that the estimate of o, was most robust to o,, and delz,i.e., dz,.

121



We see here that if an ordering were to be made between dz; and dz; based on the
sensitivity of the estimate of o, to perturbations in these parameters values we would
find that dz; would feature above dz,, i.e., the estimate is more robust to dz, than
dz,. Therefore, any conclusions drawn earlier about the relative robustness of the

estimate to perturbations in dz; as compared to the rest of the parameters (except

0,,) will also be valid for dz,.

5.3 A Different Choice of Operating Point

So far in this thesis all the results presented have been restricted to the range of op-
erating points associated with the conductivity contrast given by Case E (each case
was termed an operating point family). As was mentioned in Chapter 1, the investi-
gation was performed for 5 different conductivity contrasts that reflected commonly
encountered formations in well logging. In all of these, the conductivities were given
by Cases A-E and the parameters governing the geometry of the formation, viz, h
and T, varied over the ranges 0 to 50 inches and 1 to 10 feet respectively.

In this section we address the questions: how would the results obtained in Chap-
ters 3 and 4 for the operating point family, Case E, be any different for the other
cases and how would the different choice of operating points influence the conclusions
made in those chapters? We further extend the results of the robustness analysis to a
more realistic choice of the resolution with which the tool/formation parameters are
known. In this section it is assumed that delz corresponds to a constant offset of ¢ in
the tool depth position, i.e., the dz; model of the previous section.

The five cases are:

Case A: o, = 0.5 mho, 0., = 0.2 mho, 5, = 0.1 mho, o,, = 1 mho.
e Case B: o, = 0.5 mho, 0., = 0.05 mho, o, = 0.1 mho, 5, = 1 mho
e Case C: o, = 0.5 mho, 0., = 0.02 mho, o, = 0.01 mho, 6, = 1 mho

e Case D: ¢, = 1 mho, 0., = 0.2 mho, o, = 0.04 mho, 0, = 1 mho

Case E: ¢, = 0.2 mho, 0., = 0.5 mho, o; = 0.05mho, 0,» = 1 mho
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Figure 5-4: Percent perturbations required in the various parameters to producc
bias terms as large as the standard deviation of the estimate of g, obtained when
measurement noise is the only corrupting factor. Cases A-D, h=20 inches
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In all of the above h varies from 0 to 50 inches, T from 1 to 10 feet, and the
wellbore radius, r, is 5 inches.
In Cases A-C, the shoulders (of conductivity o, = 0.5 mhos) are more conductive

than the central bed. These cases represent three situations in which:

1. the invaded zone is twice as conductive as the virgin formation,
2. the deep conductivity is 20 times more than that of the uninvaded zone, and

3. the invaded zone is twice as conductive as the uninvaded zone.

In Case D, the shoulders are still more conductive than the central bed (o, = 1
mho), but the invaded zone is 50 times more conductive than the uninvaded zone.

As was mentioned in Chapter 2, when the measurement sensor noise is the only
source of uncertainty in the deep conductivity estimate, i.e., when all the assumed
known parameters are precisely known, the Cramer-Rao lower bound on the error
variance of the estimate of o, is seen to be virtually identical for all the cases. The
conclusion that the measurement noise is not the dominant contributor to the error
in the estimation appears to hold irrespective of the choice of operating point.

Figure 5-4 (a)-(d) shows the percent perturbations in the different parameters
required to produce in the estimate of o; a bias as large as the error introduced
by the measurement noise alone. It can be seen that for cases A, B and D, the
percent perturbations required are less than 1% for all the parameters. In case C, the
perturbations are no larger than 2% (for beds of 1 foot thickness and more) for any
of the parameters. These results are similar in spirit to those obtained in Chapter
2 for Case E, where the required perturbations did not exceed 0.5% for any of the
parameters. Such levels of imprecision are inevitable in practice, and so it can be
concluded that the bias contributed by the various parameters will be the dominant

source of error for the operating points spanned by these 5 cases.
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The relative bias terms introduced by .mprecisions in the various parameters is a
function of the choice of operating point. In Section 3.3.2 the bias introduced into the
deep conductivity estimate was examined for the case in which all the parameters arc
known to within 1 percent of their true value (the perturbations were further assumed
to be non-random). This is an unrealistic assumption. It does not take into account
the fact that in reality the different parameters will be known with different degrees
of certainty to the log analyst; for instance, the mud conductivity, o, is hound to he
more precisely known than the invasion depth, h.

Figures 5-5 (a)-(e) show the absolute bias introduced (in mhos) into the estimate
of o, for the 5 cases assuming an invasion depth of 20 inches and the following set of

a priori known perturbations:

o 0, = 2.5% of its true value

020 = 1% of its true value

om = 1% of its true value

o h = 4.5% of its true value

delz = 1.5% of its true value, and

T is known to within an inch?

In cases A -D, o,, T, delz and h, in that order, are the parameters to which the
estimate of o, is most sensitive. In case C, the low conductivity value of 0., makes the
deep conductivity estimate least sensitive to it; in all other cases o,, is the parameter
to which the estimate of o; is most robust. The relative sensitivity of the estimate to h
and o,, the parameters characterizing invasion, is seen to vary in cases A-D, though
the variatior is not enough to induce a change in the ranking of the parameters by
the sensitvity of the estimate to them. Sensitivity to h, for instance, is more in Case

D than in cases A-C because 0., contributes more to the overall signal energy, and a

2This is because the estimate of T is obtained by a detection scheme for a point of inflection in
the induction log response [7]. This detection can be performed to within a known resolution of
about an inch irrespective of the bed thickness
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Figure 5-6: Cramer-Rao lower bound on the estimate of o for different choices of the
parameter set to be estimated

change in h directly influences the contribution of the invaded zone to the measured
signal energy.
In Case E, the changes are most dramatic. For bed thicknesses in excess of 3 fect
it is seen that the estimate of o, is most sensitive to h. The parameters o, and T’
continue to remain parameters to which the estimate is highly sensitive but the choice
of operating point in Case E (with 0., ten times more than the true conductivity
and 2.5 times greater than the shoulder bed conductivities) results in an enhanced
sensitivity of the estimate to the parameters that govern the description of invasion
in the formation model. (The estimate is seen to be more sensitive to h than ag, for
all the conductivity contrasts chosen in this study). Thus, for bed thicknesses greatcer
than 6 feet it can be seen that o., assumes a higher place in the sensitivity ranking
than even the bed thickness, something that is not seen in any of the other cases.
| A systematic appraisal of the results of the sensitivity analysis for Case A assuming
an h of 20 inches and a T of 4 feet is shown in Table 5.1. The error due to parameter

imprecision is seen to be more than 99.9% of the total error and 43.8% of the truc
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SOURCE OF ERROR ERROR INTRODUCED | % OF TOTAL ERROR | % OF a,
(in mhos)

Measurement noise 4.303 x 10~ 0.0981 0.043

Imprecisicn in knowledge
of parameters 0.0438 99.9019 43.8

Parameter | % perturbation

o, 2.5 0.0252 57.5173 25.2174

Ozo 1 5.07 x 10-4 1.1569 0.5072

Om 1 9.973 x 10! 0.2275 0.0908

h 4.5 0.0025 5.734 2.514

T within an inch 0.0117 26.6039 11.664

1.5 0.0038 a 8.6763 3.804

g;_aglt-: 5.1: The relative contributions of the different sources of error in the estimation
value of 0,. This clearly illustrates the dwarfing of the error due to noise by that
due to imprecision in the assumed known parameter values. For the choice of percent
perturbations assumed in this section it is seen that o, and T contribute the most
error - 57.5% and 26.6% respectively - with the rest of the parameters introducing
errors less than 10% of the total error. It is easy to appreciate, from the results in this
table, that refining the parameter values via a joint estimation with o, is an option
worth considering.

Figure 5-6 shows the error standard deviation of the estimate of o, when the
parameter set to be estimated is expanded in accordance with the results of the

sensitivity analysis for Case A. Therefore the estimation scheme goes from:

e Ilc: in which o, and o, are estimated, to

e 2a: in which oy, o, and T are estimated, to

e 3d: in which o, 7,, T and delz are estimated, to

e 4b: in which oy, ,, T, delz and h are estimated, to

e 5b: in which oy, 0,, T, delz, h and 0., are estimated, to

e 6: in which oy, o,, T, delz, h and o,, and o, i.e., all the parameters, are

estimated.
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ERROR St.Dev
ON ESTIMATE
(in % of o)

INCREMENTAL St.Dev
ADDED TO ESTIMATE
(in % of o)

# perfectly known

Case 1c

Case 2a 0.17 0.1139
Case 3d 0.1734 0.0034
Case 4b 0.2055 0.0321
Case 5b 0.21 0.0045
Case 6 0.2878 0.0778

Table 5.2: Degradation in the o, estimate caused by the successive multiparameter
estimation cases

It can be seen that even for the case in which all the parameters are estimated
along with o, the error standard deviation on o, is within 2.7% of the true value of
0:. Thus, as was seen earlier for Case E, the loss in estimator precision due to the
additional estimation of the assumed known parameters is within acceptable limits.

Table 5.2 shows the results for Case A in table form for a bed thickness, T', of 4
feet. For this choice of operating point it is seen that for the case in which all the
parameters are estimated for in the multi-parameter estimation, the error standard
deviation of the estimate is within 0.3% of the estimate. The last column of the table
shows the incremental standard deviation added to the estimate by the succesive
addition of one more parameter to the set of parameters to be estimated. It provides,
therefore, a way to assess the cost of estimating a certain parameter as measured by
the loss in precision of the o, estimate that accrues from estimating it. It can be seen
that the largest increase comes from estimating T'. Note, however, that even in this
case, the incremental standard deviation added to the o, estimate is 0.1139% of the
true value of o, (from Table 5.2), an amount which is far less® than the uncertainty
introduced into the o, estimate due to imprecisions in some of the parameters as is
seen in the last column of Table 5.1 where a 1.5% perturbation in delz and a 2.5%
perturbation in o, produce, respectively, errors of magnitude 3.804 % and 25.2174 %

of the true value of ¢,.

3except for perturbations in o, and o,,, to which the estimate of o, is reasonably robust (see
Chapter 3).

131



Figure 5-7: Cramer-Rao lower hounds on the estimate of o, illustrating the eflect of
improving quality of additional information on T and 0., h = 20 inches

Finally, Figure 5-7 illustrates the Cramer-Rao lower bound on the a; estimate in
Case A, expressed as a percent standard deviation of a;, when auxiliary information

on T and o, are available. In this illustrative example we go from:
¢ (C3: no auxiliary information, to
e Cda: /Q; =1%ol §;, to
o C4b: /Q; = 0.5% of 6;

where the Q,’s are as in (4.23), k is 20 inches and all parameters are heing estimated
along with o;. Notice that in going from C4a to Cdb the quality of the additional
information is being improved. As was seen in Case E, an improvement in estimator
precision is seen oaly for thinly bedded formations. For bed thicknesses less than 2
feet, the quality of the additional information greatly determines the improvement in

the precision of the deep conductivity estimate.
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5.4 Conclusion

In this chapter some issues complementary to the investigation conducted in the
preceding two chapters were addressed. The issue of tool depth imprecision was
considered in detail in the first section. It was seen that the bias introduced into the
deep conductivity estimate due to a one-sided, or systematic, tool position error was
more severe than that caused by tool position errors that oscillated from positive to
negative values.

In the second section, the consequences of a different choice of operating point on
the conclusions of the earlier two chapters were addressed. It was seen that while the
conclusion that parameter imprecision is the dominant source of error in the estima-
tion held t.-rue for all cases, the sensitivity rankings obtained as in Chapter 3 are very
much a function of the chosen operating point. A more realistic robustness analysis
was performed in which the parameter imprecisions were assigned values in keeping
with the resolution with which they may be known in practice. The performance anal-
ysis for the multiparameter estimation revealed that the loss in estimator precision
incurred when all the tool/formation parameters are refined via a joint estimation
with o, is within reasonable bounds. Finally, it was seen that additional information

was of value in improving the quality of the estimation in thinly bedded formations.
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Chapter 6

Conclusion

This thesis was motivated by the need to develop a methodology to characterize
quantitatively the uncertainty associated with the estimates obtained using a model-
based inversion of log data. In this thesis we have focussed on the problem of the
induction log response in a three layer, invaded medium model. The methodology of
error characterization, however, is applicable to more complex formations and more
sophisticated tool responses as well. This chapter summarizes the main contributions

of this thesis and suggests some directions for future work.

6.1 Thesis Contributions

o The parametric inversion problem was defined for the thesis model. The mo-
tivation for choosing this particular model was discussed. The stochastic na-
ture of the logs required that techniques of statistical estimation be applied;
the inherently nonlinear nature of the forward models implied that the error
characterization required methods, such as the Cramer-Rao lower bound, that
are new to petrophysical interpretation. Four separate performance/robustness

cases were identified.

e It was seen that when all the nuisance parameters are perfectly kaown, i.e.,
when the only source of uncertainty is the measurement sensor noise (which

for induction tools is very small), the estimate was extremely accurate. This
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was seen to be the case irrespective of the choice of operating point. This case
served as a useful upper bound on estimator performance in the sense that it

represented the best performance that one could expect to achieve.

e When the nuisance parameters are assumed to be known to only within a certain
degree of precisior, as is the case in practice, this imprecision in the parameters
is another source of =rror in the estimation. The bias produced by this impreci-
sion in the assumed known parameters which is inevitable in practice, was seen
to dominate the error due to the measurement noise alone. This result was s2en
to be independent of the choice of operating point as well. A methodology was
thon developed to assess the individual contribution of the imprecision in each
of the assumed known parameters to the overall bias term. If one assumed a
priori known values for the imprecisions in the various parameters! then this
enabled a ranking of the parameters by the sensitivity of the deep conductivity
estimate to imprecision in these parameters. It was observed that this ranking
of the parameters was highly operating point specific. A model for the for-
mation in which the conductivity of the invaded zone, o,,, greatly exceeded
those in the other zones implied that the parameters h and 0., assumed greater
importance and the slightest of perturbations in their values was sufficient to
make imprecisions in them the dominant source of the error in the estimation.
The important contribution of this component of the study was that a method-
ology was developed that could be used to obtain the sensitivity ranking for

any choice of operating point.

o A performance analysis was then conducted for a multiparameter estimation
scheme in which some or all of the tool/formation parameters were estimated
along with the deep conductivity. In choosing what subset of the tool/formation
parameters to estimate, the ranking obtained from the sensitivity analysis was
adhered to. In other words, the quantity most likely to introduce the most bias

in the estimate was the one to be refined first of all via this joint estimation

IThis is possible because knowledge of the assumed known parameters, i.e., the tool/formation
descriptors, comes from different measurement sources, the quality of whose estimates may be es-
tablished from test pit experiments
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scheme. Since this additional refinement derives from the same log data that
is used to determine the deep conductivity, a corresponding degradation in the
quality of the deep conductivity estimate is to be expected. It was seen that
even for the case in which all the parameters are estimated along with the deep
conductivity, the loss in the precision of the deep conductivity estimate is within

acceptable bounds.

e Finally, a performance analysis was conducted for the case in which addi-
tional information on some of the tool/formation descriptors becomes available
through some auxiliary measurement source, such as the FMS([7]. The error
characterization methodology was expanded to determine the extent to which
additional measurements of formation descriptors translate to a reduction in the
uncertainty of the final estimate of the deep conductivity. It was seen that ad-
ditional information about the bed thickness, T', in thinnly bedded formations
was of particular importance in reducing the uncertainty of the deep conductiv-
ity estimate. Another important contribution of this component of the study
was that it led to a means of defining the minimum quality of the auxiliary in-
formation needed for any improvement in the quality of the deep conductivity

estimate to be achievable.

6.2 Directions for Future Work

There are several issues that arise in the wake of this investigation. In Chapter 5 the
results of the performance/robustness analysis were presented for different choices of
operating points to illustrate how a different conductivity contrast could influence the
ranking of the parameters obtained from the sensitivity analysis. The methodology of
the preceding chapters was also extended to embrace the case of tool depth imprecision
and tool yoyo. In a similar vein, future work could be directed at addressing the effects
of some of the other complicating factors that have not been modelled in this thesis.
These include the assumption of the shoulders being equal in conductivity and semi-
infinite in extent, the absence of dip, the piston-like nature of the invasion front and

the absence of caves and any rugosity in the wall of the well. The bias introduced
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into the estimate due to each of these complicating factors can be computed and a
sensitivity analysis similar to the one performed in Chapter 3 can be conducted to
see whether any of these factors is a dominant source of error in the estimation.

Another possible avenue for future work is the design and implementation of actual
estimation algorithms for the parameters of interest. Subsequent simulations of these
algorithms can be carried out to see how close the estimation errors approach the
bounds arrived at in this investigation.

The meihodology of error characterization illustrated in this thesis can be ex-
tended to other tools with different forward responses. For instance, a similar error
characterization may be performed for the neutron tool[8] which is used to yield a
formation.density estimate. In this case the measurement noise will be Poissonian
but the performance/robustness analysis conducted in this thesis can readily be per-
formed assuming the availability of the necessary forward model. Furthermore, this
error characterization methodology may be extended to more sophisticated formation
models in the future; these models may explicitly account for dipped beds, rugose
walls and may have several beds with more than one invaded zone. Eventually, this
methodology may be extended to an error characterization of the estimates of the
parameters of eventual petrophysical interest, viz, porosity, ¢, and water saturation,
S.. These estimates are themselves derived from estimates of formation measurables
such as the deep conductivity, and an error characterization of the estimation of these

two quantities will be of extreme interest and value to petrophysical interpretatios.
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