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ABSTRACT

The two point boundary value descriptor system (TPBVDS)

Exk+1 = Axk + Buk
i f

\" xO + V xN= v
Vi = Cxy

where E and A can be singular, is the natural internal model for
discrete-time noncausal linear systems. In this thesis, we develop a
deterministic and a stochastic system theory for this class of
systems. This theory is closely related to the work of Krener for
continuous-time, non-descriptor boundary value linear systems, but it
must also deal with the possible singularity of E and A. In
particular, in the deterministic case, we investigate concepts of
reachability, observability, minimality, stationarity, and stability.
In the stochastic case, we investigate the concept of stochastic
stationarity and relate it to stability by studying the properties of
a generalized Lyapunov equation.
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I- Introduction

Most systems evolving in time are causal, in the sense
that the state at present time is only a function of the
inputs and the disturbances of the past. However, systems,
where the independent variable is the space and not the
time, are not in general causal. Consider, for example, a
beam clamped at both ends that supports a distributed load.
Clearly, the deflection of the beam at any point is a
function of the load on both sides of that point. In this
case, by writing out the differentiel or difference equation
describing the dynamics of the deflection of the beam and
the equation describing the boundary conditions, we obtain a
non-causal system. Other examples of non-causal systems are
cyclic systems. A system is called cyclic if its initial and
final states are identical. For example, the system
representing the temperature distribution in a ring is a
cyclic system.

In general, non-causal systems are described by a
dynamics equation and a boundary equation. In the case of
the clamped beam, the boundary equation is of the form which
we call separable which means that the boundary condition
imposed at one end of the beam is independent of the
boundary condition imposed at the other end of the beam.

Non-causal systems, however, are not always separable, for



example, cyclic systems where the initial and final
conditions are clearly not independent. We study a class of
non-causal systems where the dynamics equation is linear and
time-invariant first order descriptor difference equation-
and the boundary equation is a linear equation in the
initial and final states. We shall call such systems two
point boundary value descriptor systems (TPBVDS).

The two point boundary value descriptor system (TPBVDS)

Exk+1=Axk+Buk (1.1.1)
i £

V1x0+V XN=V (1.1.2)

¥, =Cx, (1.1.3)

where E, A, Vi and Vf are nxn (possibly singular) matrices
is a generalization of the autonomous boundary value linear
system (BVLS) introduced by Krener [1], and more
specifically of its discrete-time equivalent. TPBVDS’s arise
naturally in the study of non-causal systems, for example,

they arise in the study of two-dimensional nearest neighbour

models [20].

Special Cases

System (1.1) has a very general form. It is useful to
describe at this point some of its special cases.

(1) Linear Causal Systems

Linear causal systems are a special case of TPBVDS

where E=Vi=I and Vf=0. These systems have been extensively

10



studied in the past (see for example [23]).

(2) Non-Descriptor Two-Point Boundary Systems

In this case, E and A are assumed to be invertible.
- These systems are straight forward extensions of Krener’s

BVLS’'s to the discrete time.

{3) Cyclic Systems (Anticyclic Systems)

Cyclic systems (anticyclic systems) are obtained from
TPBVDS by letting Vi=-vi-1 (vizvio1).

(4) Descriptor {Singular) Systems [13-19]

Descriptor Systems are a special class of TPBVDS where

E is singular and Vf equals O.

The objective of our work is to develop a system theory
for the TPBVDS (1.1). Clearly, this theory should be a
generalization of causal system theory and descriptor system

theory.

Summary

In Chapter II, we review that part of descriptor system
theory that is related to the study of TPBVDS. We also
review Krener's study of boundary value linear Ssystems which
is used as guidance for some of our study of TPBVDS.

Chapter III contains the main body of our work. In
Section 3.1 we introduce the concepts of well-posedness and

standard form. We also derive the Green’s function solution

11



for the TPBVDS. In Section 3.2, we present the idea of an
inward boundary process and an outward boundary process and
we define the concepts of strong reachability and strong
observability. Then, using the concept of standard form, we -
derive simple expressions for the strong reachability and
strong observability matrices and spaces. In Section 3.3, we
introduce the weaker notions of reachability and
observability and show that in general these notions differ
from those of strong reachability and strong observability.
We also derive reachability and observability matrices and
spaces. In Section 3.4, we introduce the concept of
stationarity. We show that reachability and observability
matrices take simple forms in the stationary case. We also
explore the properties of the reachability and the
observability matrices. In Section 3.4.2, we explore the
question of minimality and obtain a method to reduce any
stationary TPBVDS to a minimal TPBVDS. Finally, in Section
3.4.3, we consider the problem of stability for stationary
TPBVDS.

Chapter IV is devoted to the study of stationary TPBVDS
driven by white noise. In Section 4.2, we introduce the
concept of stochasic stationarity and derive necessary and
sufficient conditions for a TPBVDS to be stochastically
stationary. Later, we show how the covariance of the state

of a TPBVDS can be computed using a generalized Lyapunov

12



equation and a simple recursion. Finally, we investigate the
relationships between the notion of stability ahd the
generalized Lyapunov equation.

Chapter V is the concluding chapter. There, we first
present a list of contributions of our work, and then,
suggestions for future research.

In Appendix A, we derive a recursive method for
computing the inward boundary process introduced in Chapter
IIT. We also present proofs for some of the results
discussed in Chapter III. Finally, in Appendix B, we present

algorithms to solve TPBVDS.

13



II-Background

Even though no system theory has ever been developed
for two point boundary value descriptor systems (TPBVDS)
there exist results from other system theories that are very -
helpful in our study. In fact, the development of our
theory, in many instances, parallels that of the
(continuous-time, non descriptor) boundary value linear
system (BVLS) theory studied extensively by Kremer [1,2] and
by Gohberg and Kaashoek [3-5]. The reason a direct analogy
between TPBVDS and BVLS does not exist is the singular
nature of the dynamics of the TPBVDS. As we will see later
in the case of the BVLS the state transition matrix is
always non-singular. In the TPBVDS case, however, the state
transition matrix, in general, is singular. This, of course,
complicates our study. Some work has been carried out,
however, by Luenberger, Lewis, Cobb, Yip and Sincovec, and
others [6-14] on a special class of TPBVDS's which
corresponds to what we will call separable systems. In
Section 2.1, we review those results from existing
descriptor system theory that are of use to us. In this
development we draw on material from [6,7,12,22]. Section

2.2 is devoted to a review of the BVLS theory.

2.1-Descriptor Dynamics

14



In this section, we consider the discrete descriptor
system

=Ax, +Bu k=0,1,2,...,N-1 (2.1.1)

Exp s =A% *Buy
yk=ka k=0,1,2,...,N (2.1.2)
where E and A are arbitrary nxn matrices, and B and C are

nxm and pxn matrices, respectively.

2.1.1-Introduction

Solvability of system (2.1) has been examined by
Gantmacher [22] and Luenberger [6]. Solvability is the
property that guarantees that system (2.1) has a solution Xy
for any input sequence u, - The system (2.1) is solvable if
and only if det(sE-A) does not vanish identically. Matrices
E and A satisfying this condition constitute, by definition,
a regular pencil. In our study, we will assume that {E.A}

always comprise a regular pencil.

Equation (2.1) can also be written as follows

L
S[: |=]| : (2.2.1)
XN BuN_1
where
-A E
s=| "AE (2.2.2)
-AE

(missing elements of the matrix S in equation (2.2.2) are

zero). Solvability of system (2.1) implies that S has full

15



row rank, however, since S is not square, the solution X is
not unique and thus additional conditions are needed to make
the system well-posed. Before considering these additional
conditions we present the following useful properties of

regular pencils {E,A}.(for detail see [9,11]).

a) There exist invertible matrices V and W such that

w N
VEW = and VAW = (2.3)
N I

where N is nilpotent. Since we can multiply (2.1) on the
left by V without affecting the system, then by a simple

. -1 .
change of coordinate z=W "x, we can decouple the system into

two subsystems

1 1
Zps1 = Jzk + Bluk (2.4.1)
2 2
Zpy_ 1 = Nzk - B2uk_1 (2.4.2)
1 2
Yy = Clzk + szk . (2.4.3)

Note that z1 is recursive in the forward direction and

22 in the backward direction.

b) In a deleted neighborhood of zero (i.e. away from

s=0), the following Laurent expansion exists

(sE-A) "' = s71) ¢ 57K (2.5)
k=-p

where p is the index of nilpotency of the pencil {E,A} (i.e.
,N“—I#O. Nu=0). The sequence of matrices’¢k is called the

sequence of relative fundamental matrices.

16



c) Relative Cayley-Hamilton theorem

Let
A(s) = det (sE-A) = pos™-p;s" ... p_ (2.6.1)
then
A(D) = po¢k—p1¢k_1....—pn¢k_n = 0, k2n and k<-1. (2.6.2)

2.1.2-Well-Posedness

As seen previously, we need additional conditions to
make the descriptor system well-posed. In the literature,
the issue od boundary conditions has not been dealt with
thoroughly and in some cases not at all. For example, in his
work Lewis does not consider any additional conditions and
only studies the descriptor dynamics.

Yip and Sincovec, and Bender consider a very special
type of additional condition, namely, an initial condition.
Their system is an extension of the continuous-time
descriptor system (see [13,17]). In essence, they decompose
the system as in (2.4) and consider an initial condition for
system (2.4.1). They also consider the system to be defined
over all non-negative integers so that the final condition
required for system (2.4.2) to make (2.4) well-posed becomes
irrelevent, since N is nilpotent.

Luenberger has considered a slightly more general case.

17



He has shown that a complete set of additional conditions
can be specified in terms of pure initial and pure final
conditions. We call these systems separable.

A separable system is a special case of a TPBVDS. The
boundary condition of our more general class of TPBVDS’s is
a linear function of the initial and the final state. All
the above authors except Lewis, explicitly consider
separable systems. Lewis’s work. also, implicitly considers
separable systems. Many of our results reduce to the results
obtained by these authors in the separable case, and in fact
our analysis provides new and useful results and insights in

this special case.

2.1.3-Reachability and Observability

There are a variety of definitions for reachability and
observability for the descriptor system (2.1) with the
special separable boundary conditions described previously
given in the literature [12-14,17,18]. In this section, we
present Lewis’s definitions for reachability and
observability. Lewis does not consider any boundary
conditions for his descriptor dynamics; however, in his
definition of reachability, he implicitly assumes causality.
Therefore, it is not surprising that his defintion is
essentially equivalent to that proposed by Yip and Sincovec,

and Bender for their systems.

18



Reachability for causal systems is defined as the
ability to drive the system from any initial state to any
desired state by proper choice of the inputs. Lewis’s

definition (given below) is very similar.

Definition 2.1

System (2.1) is reachable if for any z, and z_, e RT,

1 2
there exist controls uj where je[O,N-1] for some N>O, such
that X, Where ke[O,N] is a solution to (2.1.1) and

(XO’XN)=(ZI’22)'

He has shown that the following statements are
equivalent.
a) System (2.1) is reachable.

b) The matrices [sE-AIB] and [EiB] have full column

rank for all s.

c) Rank [¢_uB.....¢_1B:¢OB:....¢n_1B] = n.
d) The matrices [B iJB ¢...1J" !B ] and
[B,iNByi...!N*"'B,] have full column rank.

The problem of observability is more complex. Yip and
Sincovec’s defintion of observability differs from that of
Lewis and Cobb. Lewis and Cobb’s concept for observability
is the dual of the reachability concept and it turns out to-

be the one most useful in our study. At this point, it is
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very difficult to explain Lewis’'s definition given below and
the only expanation seems to be that it leads to a concept
dual to the concept of reachability. In Chapter III, we

explore the significance of this concept.

Definition 2.2

System (2.1) is observable if for u, =0 and some N>O,

k
knowledge of the output Yy where ke[O,N] is sufficient to
uniquely determine Axo and ExN+1.(The choice of the final

time (i.e. N+1 instead of N) results in duality with the

definition of reachability).

The following statements are equivalent.
a) System (2.1) is observable.

b) The matrices sE-A and E have full rank for all
C C

C
c) Rank ¢:” ] = n.
b,

C C
d) The matrices |: and ;2 have full rank.
n-1 p-1
ClJ 02N

We will see in Chapter III that it is possible to
interpret these reachability and observability conditions
for the more general TPBVDS without imposing a restrictive

separability assumption on the boundary conditions. Not only

20



do these interpretations shed more light on reachability and
observability for descriptor systems, but they also lead to
reachability and observability matrices expressed directly
in terms of the original matrices A, E, B, and C. In
addition, in the more general context of TPBVDS-.i.e. where
we explicityly account for the nature of the boundary
conditions- we show that, much as in the work of Krener [2]
to be discussed in the next subsection, it is actually
necessary to define two distinct notions each for

reachability and observability.

2.2-Boundary Value Linear Systems

In this section, we review some of the results obtained

by Krener [2] for linear boundary value problems specified

by
x(t)=Ax(t)+Bu(t) (2.7.1)
VOx( ) +Vix(t,)=v (2.7.2)
y(t)=Cx(t) (2.7.3)

wvhere A, B and C are real-analytic functions of t. We will

call the system autonomous if A,B and C are constant.
System (2.7) is well-posed (i.e. it has a unique

solution x for any arbitrary input) if and only if

F=V0+V1¢(to,t1) (2.8)

21



where ¢ is the state transition matrix. Thus, if (2.7) is
well-posed, without loss of generality we may assume that

F=I (that is because we can premultiply (2.7.2) by F_1

). If
this condition is satisfied, the boundary condition (and the
system) is said to be in standard. form. The solution to

(2.7) is given by

t
1
x(t)=¢(t,to)v+JC(t.s)B(s)u(s)ds (2.9)
t
0
where
Ot t)VOP(ty. ) t>s
G(t, = 2.10
(c.s) —¢(t1,t)V1¢(t1.s) t<s ( )

Clearly, the Green’s function is not causal and in fact
x(t) is a function of all inputs u(t) over the interval
[0.T].

Krener has proposed a notion of causality for the
system (2.7). He has shown that there exists an inward
boundary value process k(To,Tl) such that the system

x=Ax+Bu (2.11.1)

Kox(To)+K1x(Tl)=k(To,Tl) (2.11.2)
has the same solution x(t) for To<t<T1 as system (2.7).
k(TO,Tl) is only a function of v and of the inputs u(t) for

t off the interval [10,71], i.e. for te[to,tlj/[TO,Tl]. In

fact

22



To ot
k(TO,Tl)zJ +TJ G(To,s)B(s)u(s)ds (2.12)

o ™1
KO=d(ry. t5)VOD(t . 7) (2.13.1)
K'=§(ry. tg)V (e . 7)) (2.13.2)

So, if we think of t off [To.Tl] as the past and t on
[TO,Tl] as the future, k(TO’Tl) is a causal process. In the -

same way it is possible to define an anticausal process

T

1
j(To,T1)=I ¢(Tl,s)B(s)u(s)ds (2.14.1)
T
0
wvhich depends only on u(t) on the interval [TO,TI]. The

process j is called the outward boundary process or the jump

process and can be shown to be equal to
j(TO.T1)=x(Tl)—¢(Tl.TO)X(TO). (2.14.2)
It can be shown that x(To) and x(Tl) can be uniquely

recovered from j(TO,Tl) and k(TO,Tl). In fact

1
X(TO _ I _¢(T0’t0)g ¢(t1'71) k(TO’Tl) (2 15)
x(T) T[0T m0) Ot VOt o. ) ||t | 2
There are two useful definitions of both
controllability and observability for system (2.7): one
associated with the process j and the other associated with

the process k. The system is defined to be controllable off

if the process k is controllable (i.e. by proper choice of
the input function outside any interval [To,Tl],'k(To,Tl)

can be made arbitrary), and it is defined to be observable

23



off if the process j is observable (i.e. by observing the

output function off any interval [TO.Tl], j(TO,Tl) can be
uniquely determined). The system is defined to be

controllable on if j is controllable and finally the system

is defined to be observable on if k is observable. Notice"

that controllabilty on and observability on are simply
causal controllability and observability.

It can be shown that controllability on and
observability on are stronger conditions that controllabilty
off and ‘observability off. Thus, any system that is
controllable on (observable on) is also controllable off
(observable off).

Krener has shown that system (2.7) is minimal if and
only if it is controllable and observable off and any state
which is unobservable on is controllable on.

In our work, we are interested in the class of
autonomous systems. It turns out that the class of
autonomous BVLS’s considered by Krener, in general, does not
contain a minimal realization. However, this is true if we
further restrict ourselves to stationary systems.
Specifically, a system is defined to be stationary if it is
autonomous and its Green’s function G(t,s) is only a
function of t-s. It can be shown that (2.7) is stationary if
the boundary matrices V0 and V1 commute with A.

We will see in Chapter III that two point boundary

24



value descriptor systems (TPBVDS) can be studied in a way

similar to the study of boundary value linear systems (BVLS)

presented here. In the case of TPBVDS'’s, however, the

singular nature of the dynamics of the system makes for some -

important differences and for some more delicate analysis to

derive and prove results.
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III- TWO-POINT BOUNDARY VALUE DESCRIPTOR SYSTEM (TPBVDS):

The Deterministic Problem

In this chapter we consider the deterministic

two-point boundary value descriptor system (TPBVDS)

Exk+1 = Axk + Buk (3.1.1)
i f

\'/ X * \ Xy =V (3.1.2)

yk = ka (31.3)

where E, A, Vi, and Vf are constant nxn matrices; and B and
C are constant nxm and pxn matrices, respectively. The
sequence u, is the input and Y the output of system (3.1).
We also assume that N>2n. It should be clear that the TPBVDS
(3.1) is the natural extension, to the discrete case, of the
autonomous BVLS described in the previous section, since the
system is as noncausal as possible. Note indeed that the
dynamics (3.1.1) are noncausal and that the boundary
condition (3.1.2) involves both the initial and the final

value of the state, so that no time direction is preferred.

3.1- Well-Posedness and Standard Form:

Definition 3.1:

The system (3.1) is well-posed if it has a unique

26



solution Xy for any input sequence u -

By writing together in matrix form all the equations

(3.1.1) (i.e. for k=0,...,N-1) and (3.1.2), we obtain
Xg B?O
S|: |=|qg. (3.2.1)
N 3“N—1
N
where
-A E
-A E
S = .o . (3.2.2)
i A Eg
\ \

It is easy to see a necessary and sufficient condition for
well-posedness is that the matrix S be invertible.

A necessary condition for well-posedness is that {E,A}
comprise a regular pencil (see section 2.1). To obtain a
sufficient condition we would like to be able to perform
simple row cancellations on the matrix S. But in order to
accomplish this, E and A must commute. Fortunately this can
be guaranteed. Specifically, assuming that {E,A} is a
regular pencil, there exist a and B such that aE+BA is
invertible. Then we simply multiply equation (3.1.1) by
(aE+ﬁA)_1 on the left. This does not change the system or -
the state variable x but guarantees that the resulting new E

and A matrices commute.

Note indeed that since

27



E = (¢E+BA) 'E , A = (aE+BA) !A

are the new E and A matrices, we have
aE+BA = 1 (3.3.1)
and

A(aE+BA) = (aE+BA)A (3.3.2)
so that if a#0, we must have EX:XE, i.e. E and Z commute. In
the case when a=0 we can take =1 and X:I. so that E and X
necessarily commute.
For this new form of the system, we have
aE + BA =1 . (3.4)
Now since E and A commute we can examine the invertibility

of the matrix S by simple row elimination, and thus we

obtain the following result.

Theorem 3.1:

Let aE + BA =1 for some a and B , then (3.1) is
well-posed if and only if
viEN & vEAN

is invertible.

This result is obtained by applying row elimination to

solve for X, and XN in (3.2.1) (also see Appendix B).

Definition 3.2:

The TPBVDS (3.1) is in Standard Form if and only if

28




(1) 3 a.B e R such that aE+BA = 1

NovEaN _ 1

(2) VE

The concept of standard form is motivated by Theorem -
(3.1). It is clear that any well-posed TPBVDS can be
transformed into Standard Form without any change of
coordinates. That is we only use left multiplications on the
system equations (3.1.1) and (3.1.2) first to ensure that
(1) is satisfied by premultiplying (3.1.1) by (aE+ﬁA)_1, and
then to obtain (2) by multiplying (3.1.2) by (ViEN+VfAN)_1.
On the other hand, any system in Standard Form is
well-posed. From this point on, we shall assume that system
(3.1) is in Standard Form.

The solution to (3.1) is obtained by writing the matrix

S as the following product

I
I
(VIANaovEEN) Pl (vIEANTLaov EZAN2) Tl (vigNayfaNy ot
A E
A E
(3.5)
A E
wE -A

where

29



I = oENY1 _ 4N+1 (3.6)

and where w is any scalar for which I' is invertible. Note
that o can always be chosen so that I' is invertible because
if a and B are both non-zero then since aE+BA=1, E and A
have the same Jordan structure, and thus since {E.A}
comprise a regular pencil, E and A cannot both have a zero
eigenvalue associated to a common eigenvector which implies

k

that (E ,Ak} comprise a regular pencil for all k. When

either a or B is zero clearly either E or A must equal I in

k ,k . . .
A"} comprise again a regular pencil.

which case {E
Inverting each of the two matrices in (3.5) separately
gives us S—l. The entries of the S—1 matrix form the Green’s

function solution of system (3.1) because

1l =87 5. (3.7)
: N-1
xN v
We obtain
N-1
k_N-k :
x, = AE" Ky o+ ) G(k.i).B.u, (3.8)
1=0
where
At (A-ENTH (vipsovTE) R EITIAN-I-1-1 idi
G(i.j) = b o e (3.9)
EN "1 (0E-A (ViA+ovTE) AN ygipi-d-1p-1 i>j.

G is called the Green’'s function of system (3.1.1)-(3.1.2)
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and the input-output weighting pattern is given by
W(i,j) = CG(i.j)B . (3.10)

Note that the Green’'s function is the analog of the
state-transition matrix for deterministic causal systems,
and that the weighting pattern is the analog of the system’s
impulse response.

In the rest of this chapter, we assume that I is
invertible for w=1 and use the expression (3.9) for G with o
set equal to 1. This, of course, means that no (N+1)St root
of unity is an eigenmode of the system. We do this only for
simplicity in what follows. All of the results in this
chapter have obvious extensions to the case of an arbitrary
value of o (essentially we must simply carry o along in the

various expressions).

3.2- Strong Reachability / Strong Observability:

3.2.1-Inward and Outward Boundary Value Processes

Similarly to Krener's outward process j (see Equation
(2.15)), we define the outward boundary value process

z(i.j):—AJ"xi+EJ'1xj=

j-i-1 j-i-2 j-i-1 ‘N s
A Bui+EA Bui+1+...+E Buj_1 j>i+1 (3.11.1)
and,
z(i,i+1)=—Axi+Exj=Bui. (3.11.2)

Note, however, that since E and A could be singular, z(i,j)
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can only be propagated outward whereas, in the continuous
case, the outward process j could be propagated inward as
wvell as outward.

The above expression for z(i,j) is obtained by

cancelling x.

i1 through xj_1 in Equations (3.2.1) by simple

row manipulations on matrix S (see Appendix A). It is easy

to show that the four point boundary system

Ex, 41 = Axk + Buk (3.12.1)
Vig + Vixg = v (3.12.2)
—Aj_ixi + Ej_ixj = z(i.j) (3.12.3)

has the same solution as system (3.1) for ke[O,N]\[i+1, j-1]
(i.e. system (3.1) has the same solution as the system
(3.11) over [0,i] and [j.N]). So, z is analogous to the
anticausal process j defined by Krener. It is also possible
to define a process z’(k,l) analogous to Krener's k process.
Unfortunately, in the general case, z'(k,l) is a very
complex function of the boundary matrices and of the

controls uj for je[O,N-1]\[k,1], which we write as

. _owl f _
z'(k,1) = Wklxk+Wk1x1 =

Fkl(uO’ul"'"uk—l’ul'u1+1""'uN—l’v] (3.13.1)
where 1>k and

z'(k,k) = X, = Fkk(uO"""uN—l’v)' (3.13.2)

The above expression for z' and the matrices W' and Wf
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can be computed recursively as described in Appendix A.
There we show that when E and A are both invertible, W;l and
wkl have ranks independent of k and 1 and equal to the ranks
- of Vi and Vf respectively. We also show that when E -and A
are both invertible Wil and Wil have a simple form, similar
‘to that of the inward boundary matrices for the continuous
case (Equations (2.13.1) and (2.13.2)); moreover, the
Green’'s function solution is simplified and looks very much
like the Green’s function solution in the continuous case
(Equation (2.10)). In this case, as in the continuous case,
we can propagate the inward process outward as well as

inward, a property which is not true in general.

It can be shown that the TPBVDS

Exk+1 = Axk + Buk (3.14.1)
i f s g a

lexj+wj1x1_z (j.1) (3.14.2)

has the same solution as system (3.1) for ke[j,1]. We will

see later in this chapter that, for stationary systems, the

function F takes a simple form.

3.2.2-Notation

Several concepts of reachabilty and observability for
TPBVDS will be discussed in Chapter III. In each case, we
have to introduce a new symbol for the reachability and the

observability matrices and the reachable and the
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unobservable spaces. To prevent confusion, we introduce in
this section the notation that will be used throughout

Chapter III.

1) R(i.j) {=R(j-i)}: The strong reachability matrix on [i.3]
(reachability matrix of z(i,j)).
u,
i
Z(i,J)=R(isJ)[: J-
us_g
2) %: The strongly reachable space,
ﬁ:Im(R(n) ) .
3) 0(i,j) {=0(j-i)}: The strong observability matrix on

[i,3] (observability matrix of z'(i,j)),
Y
[= ]=0(i-J)Z'(i-J)-
Y3

4) 0: The strongly unobservable space,
0=Ker(0O(n)).
5) R'(i.j): The reachability matrix off [i.3] (reachability

matrix of z’(i,j)),

z'(i.3)=R"(i.j)|%i-1

o
UN-1
6) 2°(i.j): The reachable space off [i,j] (the reachable

space of z'(i,j)),

%’(i,j):Im(R’(i,j)).
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7) 0°(i,j): The observability matrix off [i,j]
(observability matrix of z(i,j)),
Yo
Vi[=0"(i.4)z(1.3).
Y3
YN
8) 0°(i,j): The unobservable space off [i,j] (the
unobservable space of z(i,j)),
0°(i,j)=Ker(0’(i,j)).
9) Rit The reachability matrix of X, (=z°(i.i)),
Ri=R’(i.1).
10) 0;: The observability matrix of Bui (=z(i.i+1)),
0:=0"(i,i+1).
11) %it The reachable space of X,
ﬁi=Im(Ri).

12) 0{: The unobservable space of Bui,

0£=Ker(0£).
13) %’: The reachable space in the stationary case (see
section 3.4),
%’:%i ie[n,N-n].
14) 0’: The unobservable space in the stationary case
0’=Oi ie[n,N-n].

3.2.3- Strong Reachability and Strong Observabilty Matrices

and Spaces
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Definition 3.3.1:

The system (3.1) is reachable on [i,j] if the map
{uk= ke[i,j-1]} -> z(i,j) is onto.

System (3.1) is called strongly reachable or reachable

on if it is reachable on [i,j] for all i and j such that

j-i2n.

By writing the system in forward-backward form, as was
‘done in the previous chapter, we can show that for the
special case of descriptor systems where the backward model
is nilpotent and for the more general case where the
backward model is not necessarily nilpotent, reachability on
is identical to the concept of reachability presented in
Chapter II even though they have been defined in terms of
different variables (reachability on is defined in terms of
z and reachability in terms of x). This will become clear
when in Theorem (3.3) (statements (c) and (d)), we derive
necessary and sufficient conditions for reachability on and
compare them to the necessary and sufficient conditions for
reachability presented in in Chapter II. For reasons that
will become apparent later, we use the expression strong

reachability instead of reachability on.

From (3.11.1), it is clear that the reachability matrix
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for z is
R(i.j) = [AI7171giEad™172gy | pd-i-1py o pej-1) (3.15)
where we have abused notation, since R(i,j) depends only on
j-i. Thus, R(j-i) is the strong reachability matrix on [i.3]
associated to the system (3.1). It is clear that

a) Im{R(k+1)} = Im{ER(k)} + Im{AR(k)}

b) Im{R(k)} C Im{R(k+1)}.
Using the above two properties of R(.) we obtain the
following results,

v k, Im(R(k)) € Im(R(n))

and Im(R(k))

Im(R(n)) for kdn.
So, natural choices of the strong reachability matrix R and
strong reachability space % are

R R(n)

%

Im(R).
An alternative derivation of % is possible using the

Generalized Cayley-Hamilton theorem given below.

Theorem 3.2 {Generalized Cayley-Hamilton Theorem}

Let {E,A} be a regular pencil in standard form. Then

for all K,L20, 3 ag:---.a 4 €R such that
n-1
EXAb = ) a aniTIED (3.16)
i=0
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This theorem basically states that the space of
matrices EKAL is spanned by

(a™ 1 Ea™ 2 EPThoEMAY) 60530, 1+5=n-1).

The proof of this theorem relies on the fact that for -
some a and B, aE+BA = I. Suppose that a0, then we can
express E as a function of A in EKAL. Apply the usual
Cayley-Hamilton theorem to all the powers of A higher than
n-1. Then multiply all Ak s with (aE+ﬁA)n—k_1 's which are
equal to the identity matrix and finally expand the

resulting expression.

So, we have the following theorem.

Theorem 3.3:

The following statements are equivalent

a) System (3.1) is strongly reachable.

b) The strong reachability matrix R has full rank.

c) The matrix [sE-tAiB] has full rank for all
(s,t)#(0,0).

d) The state X where ie[n,N-n] can be made
arbitrary by proper choice of the inputs uj: je[i-n,i+n-1]
with all other inputs and the boundary value v set to Zero,

and for all pair of matrices V' and Vf’in standard form. See

Fig. 1.
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0 n i-n i i+n-1 N-n N

Note that in statement d), we require that X can be
made arbitrary by applying proper controls over the 2n point
symmetric neighbourhood of i. In fact, we only need an n
point neighbourhood of i, but then this interval is not
necessarily symmetric and its position depends on the
matrices E, A and B. The union of all possible such n point
neighbourhoods, however, is the 2n point symmetric
neighbourhood of i. Later, we introduce the concept of
reachability where we require that x; can be made arbitrary
by proper choice of inputs u over the whole interval [O.N].
Clearly, reachability is a weaker condition than the notion

of strong reachability presented here.

Proof

Statement b) is obtained by noting that

u.
1

z(i.§) = R(j-1)|Ti+1 . (3.17)
uJ._1
Statement c) is proven as follows. First, assume that
aZ0. In this case

-1

% = Im[B!AB!...!A" "B].
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This is a direct consequence of the Generalized
Cayley-Hamilton theorem. Now, since aE+BA=I,

[sE-tAiB]=[(s/a)I-(t-sB/a)AiB]=[ul-vAiB]. (3.18)
- It is clear that (u,v)=(0,0) if and only if (s,t)=(0,0).
When v#0, the problem is reduced to the well known causal
case (see for example [23]) because we can write Equation
(3.18) as [(u/v)I-AiB]. If v equals zero, u must be nonzero
and thus [uliB] has full rank. For the case where a=0, we
have B#0 and thus we can argue similarly by replacing A by
E. Note that if a#0 and B#O then

%:Im[B:AB:...:An_lB]=Im[B:EB:...:En_lB].

Statement d) is obtained by writing Xy in terms of
z(i-n,i) and z(i,i+n), using expression (3.9), as follows:
x; = AYA-ENTY(viaevIE)EY ) rla(4,14n)

. (3.19)

+ BN At (viaeviE) AN Yy r S (4onL ).

Now, let z(i,i+n)=—AN_i§ and z(i—n,i):EiE. vhere § is
an arbitrary vector. This can be done because R has full
rank. By replacing the expressions for z(i-n,i) and z(i,i+n)
in (3.19) we obtain

x, = IT 1§ = . (3.20)

This of course means that x; can be made arbitrary.

Definition 3.3.2:

The system (3.1) is observable on [i,j] if the map
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z’(i,j)= {yki ke[i,j]} is one to one.

System (3.1) is called strongly observable or

observable on if it is observable on [i,j] for all i and J

such that j-i)n.

Following a reasoning similar to the one used for the
reachability case, we can show that the observability matrix
is given by

n-1
CA -2

0 = X . (3.21)
;Cén—l
The strongly unobservable space is

0 = Ker(0).

Theorem 3.4

The following statements are equivalent
a) System (3.1) is strongly observable.
b) The strong observability matrix O has full

rank.

sE-tA

b) The matrix [ ] has full rank for all

C
(s.t)#(0,0).

d) The state X, where ie[n,N-n] can be uniquely
determined from the outputs yj: je[i-n,i+n-1] for all V' and

Vf in standard-form.
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Later, we shall introduce the concept of observability
where X; can be uniquely determined from yj’s over the whole
interval [O,N]. Clearly, observability is a weaker condition
than strong observability.

These strong reachability and observability properties
are properties of the dynamics of the system given by
equation (3.1.1) and do not depend on the boundary
conditions. In the next section we present alternative
definitions for reachability and observability which depend
on the boundary conditions, and later we show how all of
these notions are needed to analyze system (3.1).

In the case of continuous-time boundary value linear
systems Krener has shown that the controllability and
observability on are simply the causal controllability and
observability. In our case, however, this is true only if E
is invertible. This is one difference that arises in the

descriptor context. Others will become clear as we proceed.

3.3- Reachability and Observability: General Case

In Chapter II, we saw that for boundary value linear

systems it is useful to define the concept of reachability

and observability off. Reachability off (reachability) and - -

observability off (observability) can be easily defined for

the case of TPBVDS as well.
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Definition 3.4:

The system (3.1) is reachable off [i.j] if the map

{u(k): ke[0,i-1JU[j.N-1]} -> z’(i,j) is onto.
System (3.1) is called reachable if it is reachable off

[i.J] for all i and j such that n<i{j<N-n.

Definition 3.5:

The system (3.1) is observable off [i,j] if the map

z(i,j)-> {yk: ke[0,iJU[j.N] is one to one.

System (3.1) is called gbservable if it is observable

off [i,j] for all i and j such that n<{i{j<{N-n.

Theorem 3.5

If the reachable space %'(i,j) of the inward process
z’(i,j) has dimension m for some i, je[n,N-n], then it has

dimension m for all i,j € [n,N-n].

Corollary
If the system (3.1) is reachable off some i, je[n,N-n]

then it is reachable off all i, je[n,N-n].

Proof

See Appendix A.
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Thus, if the reachable space of z’(i,j) has dimension n
for some i,j then it has dimension n for all i,je[n,N-n].
So, to test reachability, we can test the reachability space
of z’(i,i):xi for example. Similarly in the case of -
observability, testing, for example, whether z(i,i+1)=Bui
can be uniquely determined is enough to show if the system
is observable or not. This of course means that reachability
is equivalent to being able to make any X, far enough from
the boundaries arbitrary by proper choice of the inputs u
and that observability is equivalent to being able to
determine Bui from the outputs y.

The next step is to obtain the reachability and
observability spaces. In many cases of interest such as the
causal case and the cyclic case (Vi=I, Vf=—I) the two
definitions of reachability (observability) coincide (this
will become apparent later when we derive the reachability
and observability spaces). But in general the reachability
(observability) space has a more complex structure, and
unlike the strong reachability (strong observability) space
it is not time invariant. This means of course that we need
to index the reachability (observability) space. Let Ri be
the reachability matrix for z’(i,i):xi, and let Oi be the
observability matrix for z(i,i+1). Then, by noting that Ri
is the image space for the map from {uo, ""uN-l} -> X

(the boundary value v is set to zero) and that R is the

44



image space for the map {ui—n""" ui+n} -> X;. We can
deduce that the image space of R is included in the image
space of R; for ie[n,N-n] and similarly the null space of Oi
is included in the null space of O for ie[n,N-n]. This of

- course means that reachability off (observability off) is a
weaker condition that reachability on (observability on)
i.e. reachability on implies reachability off and

observability on implies observability off.

These time varying spaces can be computed as follows.

Theorem 3.6

The reachable space %i (unobservable space 0;) where

ie[n,N-n] is given by

#;=In[A'EV T (VIAVIE)R  RI=e[ATENTU(viR vER} R (3.22)

o 0
0:=Ker[ . e ]:Ker ov'],N-j-1._j (3.23)
1 o(via+vig)aN-J-1gJ [[va]A E

where R (0) is the strong reachability (strong

observability) matrix.

Proof:
¥e prove the result for the reachability case.
Using the expression (3.9) for G(i,j), it is clear ‘that"
the reachability matrix Ri is given by

Ri:[Ai(A—EN_i(ViA+VfE)Ei)R(N—i):EN—i(E—Ai(ViA+VfE)AN_i)R(i)]
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(3.24)
The above expression basically means that if weIm(Ri) then

dx,y e # such that

w=At (A-EN T (VI asvEE) BT e EN T (oAl (viAsvEE) ANy (3.25)
or equivalently,
w=(AT g+ ENTERLyy pN13 v TRy (BIxeaN iy (3.26)
Thus, using the fact that % is E and A invariant,

w=s-EN 1Al (viasviE) e where s.t e 4. (3.27)

So, we have shown that

Im(R;)cIm[AEN T (viA+vIE)R BT (3.28)

Now, we have to show that any w in the range of

[Al N-i

(V R+V R) R] is in the range of Ri. Clearly, we
can decompose w as in equation (3.27). What remains to be

shown is that there exist x and y in % such that (3.26) is

satisfied. But

o R 1 | R EIP

Since % is E,A,T and consequently T 1 invariant, x and y are
in %, which is the desired result.

Now, we show that

Im[A'EY T (via+viE)R  RI=Tm[AlENTi(viR vER) R (3.30)

It is clear using the fact that % is E and A invariant and

V E +VfAN—I that

Im((VA+vIE)R R)cIm(vir viRr}. (3.31)

Thus, we have to show that
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Im{ViR VIRjcIm((viA+viE)R R). (3.32)
But,

In((V'A+VIE)R R)2Im((VIA+VIE)ENR  (VIEM+vEAN)aR )

Sim(vE(EM-ANM YR Ry-in(viR R) (3.33.1)

similarly

Im((ViA+viE)R R)oIm(viR R) (3.33.2)
and thus (3.32) holds. By using equations (3.31) and (3.32)
and the fact that

In[A'EN T (viAsvIE)R  RI=Im[ATENTI((viA+vE)R R) R] (3.34.1)

and

i N-i i f i N-i i f
Im[AE {V'R V' R} R]=Im[A'E (V'R V'R) R] (3.34.2)
we obtain equation (3.30). Q.E.D.

We already know that the reachable space ﬁi has
~constant dimension for all i far enough from the boundaries.
However, ﬁi could "rotate" in space; something that could
never happen with time-invariant causal systems where

reachability on and off coincide.

Example 3.1

Consider the following TPBVDS

100 ] 100 1

010 |x,..=|l 001 |x,+| 0 |u (3.35.1)
loo1 ¥l | o010 k|0 ]|k
[ 1 00 000

010 [x,+[ 000 Xy =0 (3.35.2)
101 | 100




V=¥ - (3.35.3)
The system (3.35) is in standard form for all N. We

would like to find the strong reachability and reachability

spaces.

The strong reachability matrix R can be computed by

using equation (3.14). This gives
11
R = [0 o "t ]. (3.36)
Clearly then, the strong reachability space % is

1
spanned by [0]. From Equation (3.22), we find that ﬁi is the
0
1 0
space spanned by [0] and [0] for i even and the space
0 1

1 0
spanned by [0] and [1] for i odd. We see here that the
0 0

reachability matrix rotates while keeping the same rank.
This system is not reachable because %i is not RB. It is

easy to check that this system is observable and strongly

observable.

The question to ask at this point is what is a simple
test for reachability (observability). The answer is given

by the following theorem.

Theorem 3.7

a) System (3.1) is reachable if and only if the matrix

[EA(V'A+VIE)R  R] (or equivalently [EA{VIR VfR} R]) has
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full rank.

b) System (3.1) is observable if and only if the

0 0
matrix [ i £ ] (or equivalently OVI'-AE ) has
O(V A+V E)AE OVf

full rank.

We only prove part a). Part b) can be proven by a
similar argument.
Proof:

We know that system (3.1) is reachable if the
reachability space ﬁi has dimension n for some i. So, we
- need to show that %i has dimension n if and only if

[EA(ViA+VIE)R R]

has full rank.

First we show that for all subspaces % of R™

(E9 + & = R") <=> (EX®@ + & = R®, vk>0) (3.37)
where <{=> signifies equivalence. Then, by letting
%:Im((ViA+VfE)R) we obtain the desired result.

Clearly, we need to show the two implications in
(3.37).
i) We show <=:

This is clear because multiplying Ek—1 with vectors of
9 that are not in the E invariant space % could only make
the space 9’lose rank where 9°® % = E9 + %.

ii) We show =>:
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By the above argument, we know that 9 + % = R™. Let H
be an operator such that: H(E) = Ef + % where £ is any
subspace of R®. Then,

EZ+% = R" <=> H(R™) = R™. But. this implies that

k®+ﬁ = R™ because"

Hk(Rn)=Rn, which in turn is equivalent to E
Hk(@+%) = Ek%+% and thus we obtain the desired result.
Similarly, we can show that
(A + & = R") <=> (AJ9 + &% = R®,vj>0) (3.38)
and thus

(EAZ + & = R®) <=> (E¥AY9 + & = BR™,vj.k>0).(3.39)

Q.E.D.

Thus far, we have seen that the autonomous model (3.1),
in general can give rise to time varying reachability and
observability matrices. Also, in the case of BVLS, Krener
has shown that the class of autonomous systems do not, in
general, contain a minimal realization. However, he has
shown that if we restrict our attention to systems with
stationary weighing patterns then the class of autonomous

systems does contain a minimal realization. This is one of

our motivations for looking at stationary TPBVDS.

3.4- Stationary TPBVDS
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Definition 3.6

The system (3.1) is stationary if and only if
a)[E.vl]1 =0 and [A.vi] =0
where [2,A] = 3A - A3.
b)Ker (E®) € Ker(V})

c)Ker(An) c Ker(Vf)

Condition a) is necessary to guarantee that the Green's
function G(i,j) depends only on the difference of the
arguments i and j, i.e. G(i,j) = G(i-j). The precise reasons
for conditions b) and c¢) will become apparent later when we
study the inward boundary process z’, and are also

illustrated in the following example.

Example 3.2

Consider the following system

[é ?]xk+1=[é]uk (3.40.1)

10 10
[o 1]x0+[1 1]xN_o. (3.40.2)

This system is in standard form. The boundary matrices
commute with E and A (A is zero here) so condition a) of
Definition (3.6) is satisfied. It is easy to verify that
condition b) is also verified but condition c) is not.

Now, consider the reachable space of system (3.40).

ﬁi is the space spanned by [é] for i#0, and the space
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spanned by [i] for i=0.

Clearly, the reachable space of Xq is not included in
the reachable space of X for i far enough from the
boundaries. In fact, this can happen any time the nilpotent
Jordan blocks of E and A are not zeroed out by Vi and Vf

respectively.

Using the fact that the boundary matrices commute with
E and A, we obtain the following expression for the Green’s

function of the system
A viAi—j—lEN—i+j
G(i-j)=G(i,j)= _vaj—iAN—l—j+i

j<i
i<y (3.41)
Notice that this expression for G(i,j) is much simpler

than in the general case (3.9).

By adding conditions b) and c) it might appear that we
are ignoring interesting systems that have time invariant
Green’s function solutions. But for any system that
satisfies condition a) there exists an "almost identical"
stationary system; "almost identical” means here that for
any input sequence uj, the states of the two systems X) and
xﬁ are identical for ke[n,N-n]. In fact,by inspecting
Equation (3.41), we see that the almost identical stationary

system for a system that only satisfies condition a) can be

52



obtained by replacing Vi and Vf by Vi and Vf such that

is the lowest rank matrix satisfying vl EP=vED

Vf ~is the lowest rank matrix satisfying va En=van

Specifically what we are doing is to make sure that V@
and Vf annihilate all the nilpotent blocks of E and A.
Since the nth and higher powers of these blocks are zero in

any case, the effect of this modification is seen only near

- the boundaries O and N.

Note that the almost identical system for (3.40) has
Vf=0. The reachability space of X, is then equal to 0, and

we have a stationary system.

3.4.1-Reachability / Observability: Stationary Case

In the stationary case, we are able to completely
characterize the inward boundary process z’(i,j).

In particular,

27 (1.3) = VIEN I ayEpN-dvi, o gNoayt,

VIENTI (a1 1By +EATT 2Bu1+...+Ei_1Bui_1)—VfAi(AN_j—lBuj+
N-j-2 N-j-1

EA Bu, +.. . +E Buy ). (3.42)

As before, we define reachability in terms of this

process. We define the reachability matrix R’(i,j) as the
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reachability matrix of z'(i,j). It is clear that R’'(i,j) can
be written as

R'(i,3)=[VEN IR(i-1)  viAlR(N-j-1)] (3.43)
where R(.) is the strong reachability matrix defined
previously. It should be clear at this point that z’(i,i) is
simply X, and that Im(R’(i,i)) is the reachability space %i
of X What remains to be shown is that

%' (i,j)=Im(R’(i,j)=%" (3.44)
(i.e. #’(i.j) does not depend on either i or j ) for i and j
far enough from the boundaries and that %°(i,j) is included
in #° for i or j near the boundaries. This is the main
difference between stationary and non-stationary systems. In
the non-stationary case, the reachable space may rotate
while, in the stationary case, the reachable space is
constant far enough from the boundaries. It is also true in
the stationary case that the reachable space near the
boundaries is a subspace of the reachable space far from the

boundaries.

Theorem 3.8

Let #°(i,j) be the reachability space for the
stationary system (3.1). Then for i,j far enough from the
boundaries i.e. for i, je[n,N-n],

#°(i.3) = & = Im[VIENR  vEaNgRj (3.45)

where R is the strong reachability matrix. In addition,
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%'(i,j) for i or j near the boundaries, is included in %’.

Proof:

Comparing (3.42) and (3.45) we see that we would like
to show that

viIENdg + vialg = viENg + viANg. (3.46)

But first, we will show that

EXa = Elg for K.Ldn (3.47)
We know that E® C %. If the dimension of E% is less than
the dimension of % then consider Ezﬁ. Continue this process
until for some k<n, Dim(Ek+lﬁ)=Dim(Ek%). This implies that
EX*19-EX%. And thus, for K.L>k EX#i-Elg.
Consequently, we have that EN_j%=EN%, which implies that
ViEN_jﬁ=ViENQ. By the same method we can show that
VfAi%=VfAN% and thus we have the desired result.

The second part of the theorem states that %°(i,j) for
i and j near the boudaries is included in %'. This can be
easily proven by noting that because of conditions b) and c¢)
of Definition (3.6), VEX#=vi# and via¥a=vi# (that is
because VIEK® c vig and Ker(ViEk) = Ker (Vi)). In fact, this
allows us to obtain the following simple expression for %’:

%' = Im[viR viRry. (3.48)

In the stationary case we can simplify the expression

for the unobservable space as well and show that
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ovia ovf

where O is the strong observability matrix.

oviglN ovl
0’ = Ker[ f N] = Ker[ ] (3.49)

Corollary
a) Stationary system (3.1) is reachable (observable) if
and only if %’=R" (0'=0).
b) Stationary system (3.1) is reachable (observable) if
sE-tA
and only if [sE—tAlVlB:VfB] ( [ cv' ] ) has full rank for
cvi
all (s.,t)#(0,0).

To prove statement b) we express %’ in a form slightly

different from the one given in Equation (3.48):

% =Im[E""'viB1aAER 2vip:. AP lyipipnlyfg, AR lyfpy

= m[E™ Y viBiviRy AP vigivipy g (3.50)
Here, we have used the fact that both E and A commute with
Vi and Vf.

Now, we can obtain the desired result by following the
argument presented to prove statement c) in Theorem (3.3).

Note that in this case {ViB:VfB) plays the role of B.
For system (3.1) we have characterized reachability,

strong reachability, observability, and strong

observability. As in the case of causal discrete time linear
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systems, it is possible to define concepts of
controllability and constructibility. These concepts are
defined in the same way as for the causal case. For example,
system (3.1) is controllable if there exist controls u such .
that x, far enough from the boundaries, can be driven to
zero regardless of the boundary value v. System (3.1) is
strongly controllable if there exist controls u on the
interval [i-n,i+n-1] such that x; can be driven to zero
regardless of the values of controls off [i-n,i+n-1] and v.
For the sake of completeness, we will give conditions for

these concepts without any details.

Proposition 3.1
a) System (3.1) is strongly controllable if
Im((EA)™)C &
b) System (3.1) is controllable if Im((EA)n)C %’
c) System (3.1) is strongly constructible if
0C Ker ((EA)™)

d) System (3.1) is constructible if 0°C Ker((EA)n)
In the next section, we will see why all four

definitions of rechability and observability are useful for

the study of System (3.1).
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3.4.2-Minimality for Stationary TPBVDS

Recently, the minimality of boundary value linear
"systems (BVLS) with real-analytic coefficients has been
studied extensively (see[2,5]). It turns out that a
minimality condition for the stationary system (3.1) can be

obtained directly by analogy with the case of BVLS.

Theorem 3.9

The stationary system (3.1) is minimal if and only if

a) %’ =R"
b) 0’=0
c) 0 C &.

Furthermore, any well-posed stationary TPBVDS can be

reduced to a minimal stationary TPBVDS.

Theorem (3.9) basically states that the stationary
system (3.1) is minimal if it is reachable, observable and
any mode which is strongly unobservable is strongly
reachable.

Proof:

First, we show that any stationary system (assumed to -
be in standard form) can be reduced to a system satisfying
conditions a), b), and c) of Theorem (3.9). This will be

done in three steps. The approach is similar in spirit to
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the usual decomposition of causal systems into parts which
are reachable and observable, reachable but unobservable,
etc... However, here we need to worry about two different
notions of reachability and observability.

Step 1:

Suppose that %'=R™. Then let T be a matrix such that

z
z = T—lx = [22] where zleﬁ’, zze%"

and where %’'® %" = R™. This gives the following system for z
(note that this change of coordinate does not affect the

weighing pattern).

E'z,, =A"z, +Bu (3.51.1)
i ’ f ’ y

\' zO+V Zy=v (3.51.2)

¥,=C'z (3.51.3)

where C’=CT, E'=T lET, A'=T AT, B =T~ !B, vi -1 lyir,

fr . -1_f

V' =T "V'T, 1

and v’'=T ‘v.
Note that system (3.51) is in standard form. Minimality is
concerned with mapping from inputs u to outputs y, so we can
assume that v and consequently v’ are zero.

Now, we write the above matrices in matrix block format

according to the decomposition of z.

T T TRt R~ - 1pr- cmwr e v m e s

s s ’ N i. i,
. A1 Ale , [E11 Eis it Y11 V12
A= Aoy Agl” B= Es1 Egol” Vo= vi. oyl I’
21 22
£ £
. oovEs oy B
vVl 2] corer 1. o]l
Vi vE 1 2 B,
21 22
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Using the fact that TA'=AT and that %’ is A and E
invariant we can show that

Ay =ES =B,’=0. (3.52)

z
Moreover, since yk=[Ci Cé][z2] and 22 is identically zero
(z” is in the unreachable space and v’'=0), we can assume
that Cé:O.

Consequently we obtain the following expression for the

weighing pattern of system (3.51):

c:viipa;i-d-1g,N-i+jg, j<i
.. 1'11%11 11 1
W(i.j) = .. . (3.53)
_C,Vf.E,J—1A.N—1—J+1B. e
111711 11 1 12J

But this weighing pattern is identical to the weighing
pattern of the following reachable system with lower

dimension.

1 1

B 1%ke1™211%*B1 % (3.54.1)
it 1. f 1,
VitZo*Vi12n= v (3.54.2)
1
Y=C1%k- (3.54.3)

Thus, we have shown how to reduce an unreachable system into
a reachable system of lower dimension.
Step 2:

Suppose that 0’#0. Then, we can find a matrix T such

that

z
z=T_1x=[22] where zleO". 2260’ where 0’0 0" = R".

Following the same steps as in the previous case, it can be
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shown that (3.52) can be reduced to an observable system of
the form (3.54).
Step 3:

Suppose 0 is not included in %#; then there exists a
‘'subspace ¥#0 such that YCO and %O¥Y=%+0.

Let T be such that

-1 [* 1 2
z=T x=[z2] where z e€¥%’, z“¢¥% where %0 %’ = R".
% is not strongly reachable so B2=O and A21=E21=O. Also, %
is not strongly observable so Cé:O. Thus, (3.52) can be

reduced to a system of the form (3.54) and satisfying
condition c).

A similar 3 step procedure has been used by Gohberg and
Kaashoek [5] to reduce continuous-time BVLS's to minimal
dimension. This procedure is essentially equivalent to the
procedure used by Krener [2] to reduce BVLS's to minimal
size. His approach is to first do a 4 part Kalman
decomposition with respect to the reachability and
observability spaces, and then with respect to the strong
reachability and strong observability matrices. In the first
case, he shows that the unreachable part and the
unobservable part do not contribute to the weighting pattern
(just as we did in steps 1 and 2). In the second case, he
shows that the strongly unreachable and strongly

unobservable part does not contribute to the weighting
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pattern (step 3).

Now, we need to show that two realizations of the same
weighing pattern satisfying conditions a) thru c) of Theorem
(3.9) must have the same dimension and consequently are
minimal. Let System El(El,Al.Bl,Cl,Vi,Vi) and System
3 (E2 9 B2,C2,V;,V;) be two such systems with dimensions n,
and n, respectively. In addition, without loss of
generality, assume that aEi+ﬁAi=I for i=1,2.

We know that the two realizations have the same

weighing pattern, so that

i, N-1-k_k -1-k_k

C,VIA] E\B, = 2V2A2 E;B, (3.55)
f,N-1-k_k f N-1-k_k

C V1A] E{B = CyVoA, E,B, (3.56)

Before proceeding with the rest of the proof we need to
prove the following lemma.

Lemma 3.1

Let aEi+BAi = I for some non-zero a and B. Also suppose
that for some matrices Mi’ N1
MoASE] TRy - M ASES 'TKN,  ke[0.N-1].  (3.57)
Then, if N)n, (E1 and Ai are n.xn, )
M ATETN, = M ASELN N, for all K,L (3.58)

Proof

Case 1: K+L < N-1

In this case, we can write ETA = EEA%(aEi+BAi)N—1—K—L
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and expand the expression in the parentheses. In the
resulting expression, the powers of E and A add up to N-1
and thus we can use Equation (3.57) to prove Equation
(3.58).

Case 2: K+L>N

From Case 1, we know that

k k
M1A1N1 = M2A2N2 ke[O,N-1]. (3.59)
But,

M_AEN, = M.Af

. N, k>0 , i=1,2 (3.60)
1 1 1 1

i

where zi(Xi,ﬁi.ﬁi) is the reachable and observable part of
the causal system Ei(Ai'Ni’Mi) for i=1,2 (see for example
[1).

Using (3.59) and (3.60), we obtain the following:
9 ke[0,N-1]. (3.61)

Since zi(Xi,ﬁi,ﬁi) (i=1,2) are reachable and
observable, 21 and 22 must be related by a similarity

transformation. Thus

- —k— - —k—
M1A1N1 = M2A2N2 k>0 (3.62)

and so,
M AkN =M AkN k>0 3.63
17171 — 727272 = ' (3. )

By using (3.63) and the fact that aEi+BAi=I, we can

easily obtain (3.58). Q.E.D.
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Now, using Lemma (3.1) and the fact that

viE¥+va§=v;Eg+v;Ag=I, we find that

. (3.64)

In the case of standard causal systems, the Hankel
matrix is very useful in proving minimality. As it turns
out, in our case, we can define two Hankel matrices: H’ for
the inward process z’'(i,j) and H for the outward process
z(i,j). In the first case, we drive the system with inputs
off the interval [i,j] and observe the output on [i,j]. In
the second case, we drive the system with inputs on [i.3]
and observe the output off [i,j]. Note that Hankel matrices
for the two systems must be identical because the two
systems are identical from an input-output point of view. To
proceed, let us choose i and j sufficiently far from the
boundaries and from each other. For simplicity, let us
assume that N-1 is divisible by 4 and choose i=(N-1)/4 and

j=(3N-3)/4. We then have the following result.

=09 RO fo0gmRStf (3.65)
=03  fRO=03f frQm (3.66)
where
ROP=[E(NT1)/2p 1y g(n=3)72p 1, (N-1)/25 1 (5 ooy
J J J J ] J J J

64



. c g(N-1)72
05"= I3 (3.68)
c a(N-1)72
3
rOff_yigon  yfgong (3.69)
J i A
on,,i
0.V,
ogff=[ 3 g‘. (3.70)
0V,
i
Also, we can write Equation (3.64) as
o?“ngn=og“Rgn (3.71)

Since (N-1)/2 is larger than n, and n,. we know that

off off
i i

In(RO%)=a", Im(RO'%)=g-1, Ker(09")=0" and Ker(0°ff)-0'1,
where ﬁi, g1 ,Oi and 0'1 are the strongly reachable,
reachable, strongly unobservable and unobservable spaces of
system Ei. Now to show that the two systems have the same
dimension, first we show that Rgn and Rgn have the same rank

r, and that o?n and Ogn have the same rank o. This can be
seen by inspecting Equations (3.65) and (3.66) because the
"off" matrices have full rank. Then we use condition c) to
obtain the ranks of the two sides of the Equation (3.71); we
obtain

©o+r-n =o+r-n (3.72)
and thus

n, = n,. (3.73)

This completes the proof of Theorem (3.9).
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In general, in contrast with the causal case, two
minimal realizations of the same weighting pattern are not
necessarily related by a similarity transformation (the same
thing is true for continuous time BVLS, see [2]). However,
it can be shown that two strongly reachable and strongly
observable realizations of the same weighting pattern are
related by a similarity transformation. The proof is
somewhat similar to the proof of Lemma 3.1.

We have seen how our definitions of reachability and
observability are used to find conditions on the minimality
of the system. We also have shown how we can reduce any
stationary system to a minimal system. It must be clear at
this point why we cannot use the same argument to
characterize minimality in the general case (that is because
in the proof of theorem (3.9) we used the fact that %’ and
0’ are time-invariant, otherwise the transformation T would
become time-varying). So in general, we do not have any
systematic way of reducing a non-stationary TPBVDS into a
minimal system, or even to test whether a non-stationary
system is minimal or not. The only thing we know is that if
a TPBVDS satisfies the conditions of Theorem (3.9) it is

minimal. These conditions, however, are difficult to verify

in the non-stationary case.
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3.4.3-Stability for Stationary TPBVDS

Until now we have been considering N as a finite
constant. Our system has been defined on a bounded segment
of the integers. In this section, we study the stationary
TPBVDS over an infinite interval.

In the standard causal case, we know that a system is
stable if the effect of the initial condition approachs zero
~as we get further away from the origin. In the case of the
TPBVDS’s that we have been studied so far, however, we can
not get arbitrarily far away from the boundaries to study
stability; that is because our domain is bounded. We could,
however, extend the interval over which the system is
defined. We already know how to reduce this interval. In
Appendix A, when studying the inward boundary process, we
showed that we could move in the boudary matrices. We showed
that by moving in the boundary matrices, we obtain a new
system defined over a smaller interval which has a weighting
pattern identical to the weighting pattern of the original
system restricted to its domain of definition. The new
system has the same dynamics as the original system but the
boundary matrices are different. The new boundary matrices.
are in fact

N-k+j

wi —vig and W

£ f N-k+j
ik '

K=V A (3.74)
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It is possible to use the same idea to move out the
boundaries. The system obtained by moving out the boudaries
must have the same weighting pattern as the original system,
which means that if we move back its boundaries to the
original locations, we should get the original :system back
(note that we can move out the boundaries only if the system
is stationary i.e. it satisfies all three conditions of
Definiton (3.9)). Thus we want to find W;k and W?k for j<O
and k>N such that

w}kEk'N‘i=vi and wgkAk'N'j=vf. (3.75)
Clearly, W;k and W;k always exist because E is invertible in .
the range of Vi and A is invertible in the range of Vf
(conditions b) and c) of Definition (3.6)). In fact, they
can be computed as follows

pk-N-jy-1

w}k=vi(E f

f ~e
=V (A

where E and A are matrices having the same eigenstructure as

and W k-N-j,-1 (3.76)

E and A but with their zero eigenvalues replaced by one (or
any other non-zero scalar). Notice that if either E or A is

i f .
jk and ij are not unique.

not invertible, W
We have shown that it is possible to extend the domain
of definiton of any stationary system. Another way of
looking at it is that any stationary system can be obtained
by moving in the boundaries of another stationary system

defined over a larger interval. An interesting question that

relates to stability is under what conditions we can push
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back the boudaries to % in a meaningful way so that we can
think of our system as a part of a system defined over an
infinite interval.

In fact, there are two situations where we might want
to study stability. The first situation, as mentioned above,
corresponds to the case when the system is actually defined
over an infinite interval. the second situation arises when
the system is defined over a finite interval with boundary
conditions which are physical constraints of the problem,
-and when we would like to study the effects of increasing
the domain of the system (same dynamics, same boundary
constraints). For example, consider a system that describes
the heat distribution on a ring. This system has boundary
conditions (which are periodic) independent of the size of
the ring. In this case, we might want to study the effect of
increasing the size of the ring.

In the first case, we would like to find systems such
that if we move out the boundaries while keeping the
weighting pattern the same, the system stays stable. We show
that this happens only when the system is separable and both

the forward and the backward subsystems are stable. To show

this, we need to decompose the modes of our system. Consider -

the following block diagonalization:
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BN
E = Ay , A = I (3.77)
I U

where Af and Ab have eigenvalues inside the unit circle and
U has eigenvalues on the unit circle. This is a trivial
generalization of the decompositon in [24].

Thus, the first block is stable in the forward
direction, the second block is backward stable and the last
block is marginally stable.

Now, we would like to show that this block diagonalization
also block diagonalizes Vi and Vf. But first we need to

prove the following theorem.

Theorem 3.10

Let

0O F C D

If ST=TS and no eigenvalue of E equals any eigenvalue

S= [E 0] and T= [A B]. (3.78)

of F then B=C=0.

Proof:

ST=TS implies that EB=BF and thus EXB=BFX. This implies
in turn that

p(E)B=Bp(F) for any polynomial p(-) - -  (3.79)

Let u, be any generalized eigenvector of F. Then there

exists k such that
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(AI-F)¥u, =0 (3.80)
so that for p(x)=(k—x)k.

p(E)Bui=0 . (3.81)
Now, if Bui#O, then A must be an eigenvalue of E which is a
contradiction because A is an eigenvalue of F. If Bui=0 for
all u, then B must be zero because the ui’s span the whole

space, which is the desired result. Q.E.D.

Since Vi and A commute and Vf and E commute, we can use
Theorem (3.10) to show that all the off diagonal blocks of
vi and»Vf are zero except maybe the (1,3) and (3,1) blocks
of Vi and the (3,2) and (2,3) blocks of Vf. Then the fact
that VIEN+vFAN=1 implies that the (1.3) and (3.1) blocks of
vl and the (3,2) and (2,3) blocks of Vf are zero, so that V1
and Vf have the following structure:

i f
viz [ Vlv; . ]. vis [ ‘1, ]. (3.82)

£
V3 V3

N =»

Clearly, the boundary matrices W are also

block-diagonalized (see Equation (3.76)).

i
2,1

i
. W
wiz [ ly
w3 LY

where for simplicity we have dropped the subscript jk.

wf £
£
]. wi- [ WE ] (3.83)

Notice that as j and k go to minus and plus infinity,
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. ¢ . i ke-i.-1
(W;)jk and (wl)jk grow unbounded because (W;)jk=V;(Ab 3

f i ak-iy-1 i f
and (Wl)jk—Vl(Af ) unless V2 and V1 are zero (for the
moment assume that Ab and Af are invertible, then clearly

there inverses are unstable). Also notice that W! does not

3
change and stays equal to V;.
NERY
Now consider the outward process z(j,k):[zz(j,k) It
25(3.k)

is clear (see Appendix B) that, z, and z, are stricly stable

processes whereas z4 is not. Also, notice that,

(xi)j=(Wi)jkzl(j.k) (3.84.1)
(x5) 1 =(¥3) ;25 (4. k) (3.84.2)
(xa)j=(w;)jkz3(j,k). (3.84.3)

Clearly, since if either Wi, W; OT Z5 Erows unbounded x

cannot stay bounded, thus the system is stable if and only
if

vi-o (3.85.1)

V5=0 (3.85.2)
and no eigenmode is on the unit circle.

This of course is the result that we wanted to show. In
the case where Af and Ab are not invertible, the nilpotent
part of Af and the nilpotent part of Ab must be strictly
causal and anticausal respectively. This can be easily

deduced from conditions b) and c) of Definition (3.6). Since

nilpotent systems are stable, we obtain the desired result.
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In the case where we extend the domain of the system
while keeping the same boundary conditions, a stable and
separable system would clearly be considered as stable, but..
separability is not a necessary condition. What we would
like to find is a necessary and sufficient condition for
stability in this case.

Since N is now a parameter, we relax the standard form
condition and suppose that Vi and Vf are in standard form
“ for some-No>n. What we are interested in is the effect of

the boundary value v on some x in the middle of the interval

as N goes to infinity.

Definition 3.8
The stationary TPBVDS (3.1) is strictly stable if as N

goes to infinity the effect of the boundary value v on any x-
near the mid-section goes to zero, i.e.if

lim (VIEN+viAN)-1gN/2,N72 _ 5 (3.86)

N-o o

Now assume that we have block-diagonalized our system
as discussed previously. Then, we obtain the following

stability condition.

Theorem 3.11
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The stationary TPBVDS in block diagonal form
(3.77).(3.82) is strictly stable if and only if
a) Vi is non-singular
b) V; is non-singular

c) the system has no eigenvalue on the unit circle.

This result is shown by replacing E, A and the boundary
matrices in Equation (3.86) by their block diagonal forms.
The result is a block diagonal matrix. Now consider the
first block

lim (Vi+V{A¥)_1A§/2=O. (3.87)

N-o o

This of course means that V; must be non-singular.

Similarly, we can show b) and c).
So, to test the stability of a stationary TPBVDS, we

need to transform the system into the block diagonal form

described above and then apply Theorem (3.11).
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IV-THE STATIONARY TPBVDS: The Stochastic Problem

In this chapter we study the stationary TPBVDS

Exk+1 = Axk + Buk (4.1.1)

Vixg + Vixy = v (4.1.2)
where u is a zero-mean Gaussian random process with
covariance matrix Iaij’ and where v is a zero-mean Gaussian
random vector, with covariance Q, which is independent of Uy
for ke[0,N-1]. The dimensions of all matrices are the same
as in (3.1). In addition system (4.1) is assumed to be
stationary, in standard form and reachable.

The non-descriptor continuous-time version of system
(4.1) was introduced by Krener [1], who called these systems
stationary boundary value linear systems. In [25] Krener
examines the relation between this class of systems and
reciprocal processes, and in particular the problem of
realizing reciprocal processes with stationary boundary
value linear systems driven by white noise. This problem has
not been completely resolved in the continuous time case nor

in the discrete time case.

4.1-Introduction:
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As in the case of causal systems, the deterministic
stationarity of system (4.1), i.e. the fact that the Green’s
function G(i,j) depends only on the difference of the
arguments i and j, does not necessarily imply the existence
of a stationary covariance (stochastic stationarity). In
fact, we know that a causal system has a stationary
covariance only if the initial covariance matrix satisfies
the Lyapunov equation, which in turn requires that the
system be stable. In the general case of TPBVDS, as well,
some conditions must be met in order for the system to have
a stationary covariance. These conditions will be derived in

the next section. In this section we introduce some

preliminary results and establish the notation.

Definition 4.1

The stationary TPBVDS (4.1) is stochastically

stationary if and only if

rei®k = Bpeg o x = Ry

This, of course, is the usual definition of stochastic

stationarity.

It should be clear that if (4.1) is stochastically

A

stationary, the variance matrix Pk=Rk X of Xy is constant.

So, our first step at this point will be to characterize Pk
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as much as possible. By multiplying both sides of Equations
(4.1.1) and (4.1.2) by their transpose and using the Green's
function solution derived in the previous section and taking

the expected value, we can show that P, satisfies the

K
following TPBVDS
Ep, , E'-AP A" = (VIEMBB' (VIEN) - (vIAMymR  (viAYy: (4201
viegviovie vie o (vIEMyo(viEN) o (vEAN)o(vEAY): . (4.2.9)

Now the question is under what conditions does (4.2)
completely characterizes Pk' Fortunately, we have developed
the necessary tools to respond to this question in the
previous chapter. In fact, all we need to do is to apply the
well-posedness test for a TPBVDS; but first we need to
transform (4.2) into a form similar to system (4.1). This

can be done as follows:

(E®E)P, ., -(48A)P =(V'ENev EN)BE - (vEANeviAN)BE' (4.3.1)
(vieviyp -(vievi )P =(v ENeviEN)o- (viaNeviaN)e  (4.3.2)
where ® represents the Kroneker product and F, 6 and BB" are
vectors obtained from the entries of matrices P, Q and BB’

by lexicographic ordering. Note that the right hand sides of

the above equations are irrelevant as far as well-posedness

T



is concerned.
The well-posedness condition in this case reduces to
the invertibility of the matrix
(vievl)(eoE)N-(vievi) (aga)

Thus we obtain the following result.

Theorem 4.1

Equations (4.2.1) and (4.2.2) characterize Pk
completely if and only if Aikj#uiuj for all i and j where Ai
and K; are the eigenvalues of matrices VIEN and VfAN

corresponding to eigenvector vi.

Note that in the causal case the ui’s are all zero and
the Ai’s are all one, so that Pk is always well defined.
This is expected because in the causal case we have the
initial condition P0=Q, and a forward recursion for P, . The

k

condition in Theorem (4.1) can also be written as Ai¢u

J
because Ai+ui=1 (standard form).

Theorem (4.1) basically states that except under very
special circumstances the variance matrix Pk can be uniquely
calculated from Equations (4.2.1) and (4.2.2). Now, it is
clear that if our system is stochastically stationary, the
stationary variance matrix P must satisfy the two algebraic:
matrix equations obtained by setting Pk=Pk+1=P and P0=PN in

(4.2.1) and (4.2.2) respectively. In fact, by analogy with

78



ARACY M-m  oye - smrrm - way oy s o - .

the causal case, one might incorrectly deduce that if
(4.2.1) has a positive-definite solution P then the system
is stochastically stationary. Unfortunately this is not the

case. We derive the correct condition in the next section.

4.2-Stochastically Stationary TPBVDS

In this section we present conditions under which
system (4.1) is stochastically stationary and, in addition,
obtain a complete characterization of the covariance

matrices.

Theorem 4.2

System (4.1) has a constant variance matrix if Q
satisfies the following equation

EQE'-AQA' = viBB'vi'_yfpp vf (4.4)
and in that case the variance matrix P satisfies the
following equation

EPE'-APA' = (VIEM)BB' (VIEN) —(viaAM)BB (viAN) . (4.5)
Proof:

We have to show that Pi=Pi+1 for all i if Q satisfies

Equation (4.4). Let,
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i

m, = ) A'"Ipdpprp- a1t

j=0
Then by using the Green’'s function solution we can show that

Now, writing P,

i+1 in similar fashion and using the fact that

T, = A, A'+EiBB'E'i we can show that P_ =P, is
i i-1 1 7i+1
equivalent to having
ATENT17 (pqp —aqaryE N1l 0
ATEN-178 (yigp yie _yfpp yf g N-1-1, 5 (4.6)
Thus,
A'EN 1T (EQE —aQa -viBB v 4vipp v ) N-1-1, o (4.7)
Clearly (4.7) is implied by (4.4). Q.E.D

Notice that (4.4) and (4.7) are in fact equivalent if
either E or A is invertible. Consequently, if either E or A
is invertible, system (4.1) has constant variance if and

only if Q satisfies (4.4).

Example 4.1
Consider the following system
[1 0 0] 000
00 1]|x =|0 1 O|x, +u (4.8.1)
oo0o] ¥l [00 1]k k
1 0 0] 000
00O X+ 010 XN=V- (4.8.2)
0 0 0] 001

where covariance of v is given by
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101
020]|. (4.9)
1

System (4.8) is in standard form and stationary.
It is easy to check that Q satisfies (4.7) but not
(4.4). Thus system (4.8) has a constant variance matrix P

which can be easily computed. In fact,

100
P=|(0 2 0O]. (4.10)
001
However, system (4.8) is not stochastically stationary
because
- 010
R 4 = XXy .0 = |0 0O (4.11.1)
O,N-1 0"N-1 00 0
is different from
RI.N = XXy = 0. (4.11.2)

Notice also that Equation (4.5) completely
characterizes P as long as aiajfl for all i and j, where o,
is an eigen-mode of the system (i.e. (Eai—A) is singular).
Equation (4.5) clearly reduces to the well-known Lyapunov
equation (see for example [23]) in the causal case. In the
causal case, a reachable system has a constant variance
matrix if and only if A is stable. This means that the
eigen—-modes o of the system are all less than 1. Clearly in
that case aioj#I and we get that Equation (4.5) completely

characterizes the variance matrix P.
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In cases where (4.5) does not characterize P
completely, it is still possible to compute P. In fact, P
can be computed from (4.5) by using perturbation methods.
For example, we can replace A by (A+el) and compute the
corresponding Pe; then we can obtain P by letting € go to
zero in Pe. The reason this method can always be used to
compute P is that, by writing out the expression for Pe
using the Green’s function solution of the system obtained
by replacing A with A+el, it can be seen that the entries of
Pe,are rational functions of e, analytic at e=0. This of
course means that Pe is a continuous function of € in some

neighborhood of e=0.

Example 4.2

Consider the following anticyclic system

xk+1=xk+buk (4.12.1)

(1/2)x0+(1/2)xN=O (4.12.2)
where uy is a white sequence with variance 1. System (4.12)
is in standard form.

Clearly, system (4.12) has a constant variance because
Q=0 satisfies (4.4). However, to determine the constant
variance, Equation (4.5) cannot be used directly because
both sides of it are zero in this case. Thus, we have to use
a perturbation method.

Consider the following system
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xk+1=(1+e)xk+buk (4.13.1)

1x0+1xN=0 (4.13.2)
where 7=(1+(1+e)N)_1. System (4.13) is in standard form for
all e. For e=0, system (4.13) is equivalent to system
(4.12). To compute the variance P of system (4.12), we first
compute the variance Pe of system (4.13). P is then equal to
the limit of Pe as € goes to zero.

Using Equation (4.5) for system (4.13) we get

-2¢P_=-2eNb”/4 + o(e”) (4.14)
so that,

P=lim P_=Nb>/4. (4.15)

e->0

This result can also be obtained directly by using the

Green’s function solution of system (4.12).

Note that, the constant variance matrix P and in
general the variance matrices Pi for ie[n,N-n] are positive
definite if the system is reachable. This can easily be seen
by writing Pi as follows

i N-i

P.=A'EN TQE N TIA Tar ()R (4) (4.16)

where R’ is the reachability matrix defined in Chapter III,

i.e.,
R' (i) = [VIEN r(i) vialr(y-i)7. (4.17)

Since the system is reachable, R’(i) has full rank for

ie[n,N-n]. Which means that R’(i)R’(i)’' is positive definite
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and so Pi is positive definite.

Theorem 4.3

System (4.1) is stochastically stationary if and only

if Q satisfies Equation (4.4).

Proof:
We prove the result for two cases.

Case 1: either E or A invertible

We have to show that Q satisfies (4.4) if and only if

Ri j depends only on i-j. Note first that

ER Exi+1xk’=(Axi+Bui)xk’=ARi'k+Buixk’ (4.18)

Using (4.18) and the Green’s function solution to

i+1,k-

compute u X, we obtain the following equation:

ER AR, , = -BB'[VIEI7KpN-1-(i-K) . iXk. (4.19.1)

i+1,k i,k
Similarly, we can show that

i, i-k-1_N-i+k__,

R E'-R, JA' =V E BB k<i . (4.19.2)

i,k+1 k

Let us first show the "if" part of the theorem. Since Q

satisfies (4.4), Rk k=P is constant (Theorem (4.2)). We want
to show that Rk+s K does not depend on k. Using Equations

(4.19.1) and (4.19.2) and the fact that Rk k=P we obtain the

following equations:
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vrugf AN-1.,
ERk+1,k_AP = -BB'[V A 1 (4.20.1)
. v _ yligN-1
PE _Rk+1,kA = V'E BB' . (4.20.2)
More generally, we have
s-1
s s=j-1,0 . rufN-1-3_.3+.
E Rk+s,k'A P z A BB'[V A EY] (4.21.1)
Jj=
—1
\S_ppsS yigN-1-3,3 »s-j-1
Rk+s,kA =PE E A"]1BB'E (4.21.2)

Since either E or A is invertible, one of the Equations

(4.21.1) or (4.21.2) completely characterizes R and

k+s,k

clearly this matrix does not depend on k. So, Rk+s,k=Rs'

Thus far we have shown that if Q satisfies (4.4) then

Ri,k=Ri—k' But if Ri,k=Ri—k then Rk’k=constant, which,

since either E or A is invertible, implies that Q satisfies

(4.4). Thus Q satisfies (4.4) if and only if Ri k=Ri—k which

is the desired result.

Case 2: E and A singular

In Case 1, we took advantage of the fact that when
either E or A is invertible, Q satisfies (4.4) if and only
if the variance matrix is constant, which in turn was shown
to be equivalent to stochastic stationarity. When E and A
are both singular, however, we could have a constant
variance matrix even when the system is not stochastically
stationary or when Q does not satisfy (4.4). In fact, we

know that the system has a constant variance P if and only
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if Q satisfies (4.7) (which as we said before is equivalent
to (4.4) if either E or A is invertible).

First, we block diagonalize our matrices in the same
manner as in Section (3.4.3) of Chapter III. This is
accomplished by a constant change of coordinate which
clearly does not affect stationarity or the validity of
Equation (4.4).

Thus, system (4.1) can be written as

1 1 5
E, "2 N X 1
E x =| 2 A x2| +|B. |u (4.22.1)
2 N 3 2 5 3 2|k T
e’ "x"'k+1 3° Y7k B3
i x1 x1 v
Vi 4 2 0 2 1
V2 X + V2 el 1% =1vy (4.22.2)
0 3 v 3
x3do 3Ly by

where Ne and Na are nilpotent matrices and E E A

1° Eg: Ag. and
A3 are invertible. Block zeros in Vi and Vf are due to the
fact that the null space of E™ must be included in the null
space of Vi and that the null space of A" must be included
in the null space of Vf.

We can simplify (4.22) by noting that subsystems 1 and
3 are simply causal and anticausal nilpotent systems. That
is because E1 and Na have the same Jordan structure
(remember that aE+BA=I) and thus premultiplying subsystem 1

by EII would result in a nilpotent system (because E11Na is

86



nilpotent); similarly we can show that subsystem 3 is
nilpotent. So, without loss of generality we can assume that

(4.22) has the following form

I x! N x! By
[ E ][xz] =[ 2 A, ][x2] +[B2‘uk (4.23.1)
N 3 1/ 3
e’ "x"k+1 x “k B3

o R R

.(V; and Vg are equal to I because the boundary matrices are

[\

N
< < <

1
5| (4.23.2)
3

in standard form).

Now, suppose that the boundary covariance
1 %2 U3
Q31 Q32 Q33
satisfies (4.4). In that case we know that (4.23) has a

constant variance matrix P. Let

11 12 13

Rik Ry k Ry x
21 22 23 . .
Ri,k = Ri,k Ri,k Ri,k with ik (4.25)

31 32 33
Ri,k Ri,k Ri,k

be the covariance matrix of (4.23). Using equations (4.21.1)
and (4.21.2), as in the previous case, it is easy to see
that, except for (m,n)=(3,1), R??k=R?Ek' This is because
(4.21.1) and (4.21.2) characterize all the entries of R

k+1,k
except (3,1). Notice that this entry is simply the cross
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correlation between subsystem 1 (the nilpotent causal
system) and subsystem 3 (the nilpotent anticausal system).
As shown in Lemma (4.1) to follow, these two subsystems have
stationary cross correlation if and only if

Q13Ne'—NaQ13=O. (4.26)

But (4.26) is implied by (4.4) (in fact (4.26) is the
(1,3) entry of (4.4)). Thus, if Q satisfies (4.4) then
Ri,k=Ri—k' On the other hand, if Ri,k=Ri—k then Rk.k must be
constant which means that Q must satisfy (4.7): Q must also
satisfy (4.26). But the condition imposed on Q by (4.4)
differs from (4.7) only by the fact that (4.7) disregards
the (1.3) and (3,1) entries of (4.4). These entries are
simply Equation (4.26) and its transpose. Thus stochastic
stationarity implies that Q must satisfy (4.4). So Q
satisfies (4.4) if and only if system (4.23) is

stochastically stationary. Q.E.D.

Lemma 4.1

The system

1 1
[I Nz][zz]k+1=[N1 I][:2]k+[§;]uk (4.27.1)

[I 0][zé]o+[o 11[2;]N=[i;] (4.27.2)

where N1 and N2 are nilpotent is stochastically stationary

if and only if
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Qll—N1Q11N1'=B1B1' (4.28.1)
Q22-N2Q22N2'=B2B2'. (4.28.2)
and

QoNy ' =N,Q, . (4.28.3)

Proof:

We would like to find a necessary and sufficient
condition for the stochastic stationarity of (4.27).
Clearly, a necessary condition is that x1 and x2 be

individually stationary.

11 12
Let Q= and Ri =1 21 29 |- Then, clearly
Q,; Q ’ R
21 722 i,k i,k
11 11 22 22 .
Ri.k=Ri-k and Ri,k=Ri—k if and only if (4.28.1) and (4.28.2)

are satisfied. Equations (4.28.1) and (4.28.2) are the usual
Lyapunov equations for subsystems 1 and 2. Note that
regardless of the value of Q12 if Q11 and Q22 satisfy

(4.28), system (4.27) has a constant variance matrix

Q 0
p=[ 1 l. (4.29)
0 Qy

But, existence of a constant variance does not necessarily
imply stochastic stationarity (Equations (4.28.1) and
(4.28.2) are essentially equivalent to equation (4.7)). The
fact that Equations (4.28.1) and (4.28.2) are satisfied

implies that x1 and x2 are individually stationary. Thus

11 .11 22 .22
Ry =Ry, and R7% =RYZ.. (4.30)
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It is also easy to check that for i<k

R21 —x2x1'
i,kT7ivk
vy K-i-1 vy k—i-2 k-i-1 ,
=B2B1N1 +N2B2B1N1 +...+N2 B2B1. (4.31)
The right hand side of (4.31) is only a function of k-i so,
21 21
Ri,k=Ri—k' (4.32)

Thus, the only part of Ri,k that may not be stationary is
R;?k (for i<k). But, clearly

Ri?k=0 for either i or ke[n,N-n] (4.33)
since xi and xi are functions of nonoverlaping intervals of
the white input noise and i and k are far enough from the
boundaries so that the boundary condition terms have

disappeared.

When ie[0.n] and ke[N-n,N], R;zk may not be zero if
vland v, are correlated (i.e. Q12#0). We want Ri%k to be
stationary which means that

12 12
RO.N—1=R1,N (4.34.1)
12 12 12

RO,N—2=R1,N—1=R2,N (4.34.2)
or,

012Né=N1Q12 (4.35.1)

V2 v 2
Q12N2 _N1Q12N2-N1Q12 (4.35.2)

It is clear that if (4.35.1) is satisfied, then all
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Equations (4.35) are satisfied. Thus a necessary and

sufficient condition for Ri2k

Thus system (4.27) is stochastically stationary if and

to be stationary is (4.28.3).

only if Q satisfies (4.28.1), (4.28.2) and (4.28.3) which is
the desired result. Also notice that, these three equations-
are equivalent to equation (4.4). Consequently, we obtain
the expected result: (4.27) is stochastically stationary if

and only if Q satisfies (4.4).

Let R, denote the covariance matrix R . of a
J k+j.k

stochastically stationary system.

Theorem 4.4

If Q satisfies Equation (4.4) then the system is
stochastically stationary and Rj can be computed using the
following second order TPBVDS

ERj+1E +ARj+1A = ARjE +ERj+2A . (4.36)
with appropriate boundary conditions (we discuss boundary

conditions later).

This equation is analogous to the second order
differential equation obtained by Krener [25] for the
covariance of the continuous-time stationary two point
boundary value system.

Proof:
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Equation (4.36) follows from (4.19.1). What remains to
be shown is that (4.36) is well-posed. First, we need to

prove the following Lemma.

Lemma 4.2

The mth order descriptor system

mej+m+Q +Q0xj = Bu, (4.37)

J
is well-posed for some appropriate boundary conditions if

m-1%j4+m-1"

and only if there exists z such that the polynomial matrix

[szm+Qm_1zm_1+ Ce +Qo] is invertible.

Proof:

Using state augmentation, we can rewrite (4.37) as

follows
I 0

I 0
I _ 0 I _ 0
- .= - +| . 4.38
I 1 0 I * 0 ( )
Q “Qp e -, _, Bu

Now, all we need to do is to see under what condition the

two matrices in (4.38) form a regular pencil. It is easy to

show that this happens if and only if the condition in Lemma

(4.1) is satisfied. Q.E.D.

Now using Lemma (4.1) well posedness of (4.36) becomes
equivalent to invertibility of the polynomial matrix

[—22(E®A)+z(E0E+A@A)—A®E]. But, this matrix is equal to
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(zE-A)®(E-zA). Since E and A form a regular pencil, we can
always find a z such that (zE-A) and (E-zA) are both
invertible, which implies that their Kroneker product is

invertible. Q.E.D.

Equation (4.36), of course, does not completely
characterize Rj; we need boundary conditions. One boundary
condition that we already know is R0=P which can be computed
from the Generalized Lyapunov Equation (4.5) either directly
or by the perturbation method described previously. We can
also obtain two more boundary conditions by multiplying
Equation (4.1.2) by Xq and XN respectively and taking

expectations. We obtain the following two equations

f N

viP+viR, = QE' (4.39.1)

pviar vir=ala. (4.39.2)
These conditions are not guaranteed to completely

characterize Rj in conjunction with (4.36); we may have to

find other boundary conditions. For example, consider the
10 f |00 . s s
0 0] and V =[0 1]. In this case, it is clear

that (4.39.1) and (4.39.2) do not completely characterize R

case where Vi=[
N
(only the two main diagonal elements of RN can be computed
from (4.39.1) and (4.39.2)), and clearly the knowledge of
R0(=P) and a partial knowledge of RN do not result in a
well-posed boundary condition.

Note, however, that the boundary for system (4.36)
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consists of Ry: Ry RN-l and Ry, andbif we know these 4
values we certainely have (probably more than) enough
boundary conditions to solve (4.36). We can of course always
find these directly from the Green’s function solution for
x. We do not explore the problem of obtaining appropriate
boundary conditions any further because (4.36) is probably
not the best method for computing the Ri’s, anyway. A better
method is based on the following two recursions obtained
directly from (4.19.1) and (4.19.2):

ER.,, = ARj—BB'[VijAN_l_j]' (4.40.1)

R, A" = RjE'—ViAjEN_l_jBB'. (4.40.2)
Note that both of these recursions start from R0=P which as
we have seen can be easily computed. When E is non-singular,
we use (4.40.1) and when A is non-singular, we use (4.40.2).
However, when E and A are both non-singular, (4.40.1) and
(4.40.2) can only partially characterize Rj' It is easy to
show that the part of Rj that cannot be characterized by
these equations corresponds to the cross-correlation between
the forward nilpotent and the backward nilpotent subsystems
(we have already encountered this problem in the proof of
Theorem (4.3)). However, we have already derived a simple
expression for this cross-correlation (see Equation (4.31)). -

Of course, in order to use this equation we have to first

- decompose our system into a form similar to (4.22).
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Example 4.3

We would like to obtain the covariance matrix R. with
je[O,N] for system (4.12). We have already computed the
variance matrix (see Example (4.2))

2

R,=P=Nb“/4. (4.41)

From Equation (4.36), we obtain the following recursion
for R;:
J

R =2R

j+2=2R 1R, (4.42)

J
for which we need Rl as well as RO to start the recursion.
R1 can be easily computed from (4.20.1):
R,=R,-b>/2=(N-2)b/4 (4.43)
So,
2
R2=2R1—Ro=(N—4)b /4 (4.44)

and in general,

Rj=(N—2j)b2/4. (4.45)

4.3- Stability

The relationship between the existance of a positive
definite solution for the Lyapunov equation and stability
for causal systems is well-known. In this section, we
investigate this relationship in the more general case of
stationary TPBVDS’s. We know that for causal and reachable
systems, the Lyapunov equation has a positive definite

solution P if and only if the system is strictly stable. In
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the case of TPBVDS's, the generalized Lyapunov equation

(Equation 4.5) is explicitly a function of N, the length of

the interval. This implies that an unstable, strongly
reachable system may be stochastically stationary and thus
have a constant matrix variance P (see Example 4.2), so the
existance of a positive-definite solution to the generalized-
Lyapunov equation does not in general imply strict
stability. As we will see the matrix P, in this case,

diverges as N goes to infinity. This, does not happen in the

causal case because P is independent of N. Considering these
differences, it should be expected that our results may not
be as simple as they are in the causal case.

First,

notice that in the case of TPBVDS, the

generalized Lyapunov equation may have a positive definite

solution even when the system
proper choice of the boundary
may be a nonnegative solution

nonnegative solution for Q to

cannot be made stationary by
value covariance Q -i.e. there
to (4.5) when there is no

In this case the

(4.4).
solution for P is not the constant variance matrix. However,
we will show that as N goes to infinity, for any strictly
stable stationary TPBVDS (as defined in Chapter III), the
covariance matrices of the x’'s near the center of the

interval approach a constant matrix P which is a solution to -
the generalized Lyapunov equation with N set to infinity. We

will also show a partial converse.

Specifically, we will
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prove that if, for any N20O, the generalized Lyapunov
equation of a reachable system has a positive semi-definite
solution P with unique main-diagonal elements, then the
system is stable.

Let us now consider the uniquness of the solution of
the generalized Lyapunov equation. It follows from (4.3.1)
that the generalized Lyapunov equation has a unique solution
if and only if the matrix

A = EGE - A®A (4.46)
.is invertible. Since E and A have identical Jordan

structure, the eigenvalues of A are of the form Aikj—uip

J
where ki’s and ui’s are the eigenvalues of E and A

respectively, corresponding to the eigenvector AR Since Ai
and My cannot be both zero because of regularity of the
pencil {E,A}, A is singular only in the following two cases:
(1) There exists an eigenmode g, on the unit circle.
(2) There exist eigenmodes o, and 9, such that aiaj=1, or
ai=0 and aj=w.
The second statement can be easily shown by noting that
ai=7\i/ui (4.47)
which implies that the eigenvalues of A can be written as
aiaj-l. ¥hen ai=0 and aj=°° then E and A are both singular, a
case where we already know that the Lyapunov equation does
not uniquely specify P. The first statement is also easy to

see because if there is a non-real eigenmodeui on the unit
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circle, then its complex conjugate aj=a: is also an
eigenmode in which case clearly aiaj-1=0. And if o equals 1
or -1, then aiai—1=0 which means that A is not invertible.
It is easy to show that in the first case where there is an
eigenmode on the unit circle, the generalized Lyapunov
equation does not characterize all the main-diagonal
elements of P. Whereas, in the second case the main-diagonal
elements of P are completely characterized by the
generalized Lyapunov equation (although the off-diagonal
elements are not). The reason this distinction is important
is that in the first case (the case where the system has
eigenmodes on the unit circle) clearly the system is not
stable, however, in the second case the system could very
well be stable eventhough the generalized Lyapunov equation

does not have a unique solution.

Theorem 4.5

Let system (4.1) be reachable, then, if, for any N, the
generalized Lyapunov equation has a positive semi-definite
solution P with unique main-diagonal elements, then system

(4.1) is strictly stable.

Proof
Notice first that since the main-diagonal elements of P

are uniquely determined by the generalized Lyapunov
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equation, system (4.1) does not have any eigenmodes on the
unit circle. Thus, by making a change of coordinate, we can

decompose the system as follows:

[ ) b gl el g o]

where the eigenvalues of Ab and Af are within the unit
circle. To show stability we need to show that V} and Vi are-
invertible. Using the above decomposition, we can decompose

the generalized Lyapunov equation as follows

i P ST N ' vy Ny,
Pf—AfPfAf=VfoBfVf Vf(Af) Bfo(Af) Vf (4.48.1)
i N . Nyl _f vof
AbeAb—Pb=Vb(Ab) BbBb(Ab) Vb VbBbBbVb (4.48.2)
. gl , Nyl _uf N N
beAb Afbe—vafBb(Ab) Vb Vf(Af) BfBbvb (4.48.3)
where
P P
P= Pf be . (4.49)
bf b

Clearly, if P is positive definite, so is Pf. Since we
also know that Af is strictly stable, from (4.48.1) we can

deduce that

Croln eyl of Ny oo rq o Ny E,
Vi (VB BV Vo (A ) BBL(AL) Ve )vy 20 (4.50)

where Vi is any left eigenvector of Af. What we would like

i

to show is that Vf is invertible for which we need the

following lemma.

Lemma 4.3
Let A and V be nxn matrices such that

AV=VA (4.51)
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then if V is singular, there exists a right (left)

eigenvector of A in the right (left) null space of V.

Proof
We will prove this result for the right eigenvector of

A, the proof for the left eigenvector is similar.

Let

EeKer (V) (4.52)
then

VE=0. (4.53)
So,

VAE=AVE=0 (4.54)

which implies that
AfeKer (V). (4.55)
Thus Ker(V) is A-invariant, which implies that A has at

least one eigenvector inside the null space of V. Q.E.D.

Suppose that V; is not invertible, then using Lemma
(4.3) we can deduce that there exists a left eigenvector of

A v such that

£f' 'k’
vyl
kaf=O. (4.56)
We also know that the system is reachable so
—1 f
vk[vaf Vfo]#O. (4.57)
Thus,
vuf
kafofo (4.58)
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which since
N f

Ker(Af)CKer(Vf) (4.59)

implies that
f N

Vf(Af) Bf#O. (4.60)
Clearly, (4.56) and (4.60) are inconsistent with (4.50)
which implies that V} is invertible. Similarly we can show

that V£ is invertible. Q.E.D.

Notice that the converse of Theorem (4.5) is not in
general true. For example consider a strictly stable system
which is reachable but not strongly reachable. We have seen
in Chapter III that the part of the system which is
reachable but not strongly reachable corresponds to an
undriven system (this part is "reached” through the boundary
condition just as an undriven causal system can be reached
through the initial condition, however, in this case, the
boundary condition is a function of the inputs reflected
through the boundary condition as well as the boundary
value). The only way in which an undriven system can have
constant covariance is if the state of this system is
constant. So, it is clear that a reachable but not strongly
reachable system can be stochastically stationary only if
the system has an eigenmode on the unit circle (in fact all
the eigenmodes of the reachable but not strongly reachable

part of the system must be on the unit circle if the process.

101



is stochastically stationary). This of course is not
consistent with our defintion of strict stability. However,
this is not a problem if we only consider strongly reachable
systems.

But then there is another problem. Equation (4.48.3) is
not always consistent for strictly stable systems. In fact,
- consider the case where Af and Ab are the same scalar,
clearly then except for special cases of the input matrix B
and/or the boundary matrices V, (4.48.3) is never satisfied.
In general, this happens when Ab and Af have a common
eigenvalue which means that the system has eigenmodes o, and
aj such that aiaj=1. Considering these problem, we obtain

the following theorem.

Theorem 4.6

Let system (4.1) be strongly reachable and its
eigenmodes aj satisfy

ajak¢1 (4.61)
for all j and k. Then, there exists N*>O such that the
generalized Lyapunov equation has a positive definite

solution P for all N)N*.

Proof
We first show that for N large enough (including

infinity), the solutions of (4.48.1) and (4.48.2), Pf and
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Pb' are positive definite and that the solution Pf of

b
(4.48.3) goes to zero as N goes to infinity.

Note that the right hand side of (4.48.3) goes to zero
as N goes to infinity. Since Af and Ab do not have any
common eigenvalues (thanks to (4.61)), be must also go to
zero as N goes to infinity.

Now, note that (4.48.1) can also be written as

Po-APoA =B .B:-Vi(A;) BB

Since the system is stable, Vg(Af)N goes to zero as N goes

1 1] 1, N f 1
s BB (AL) VL. (4.62)

to infinity and clearly for large enough N the right hand
side of (4.62) is positive semi-definite. Moreover, (Af,ﬁ)
is reachable in the causal sense for large enough N where

BB'=B B.-VL(A.)"B.B;-B.B:(A) VE". (4.63)
This is true because for large enough N,

vﬁ(BfB%—Vg(Af)NBfBi—BfB%(A%)Nvf')vk > 0 (4.64)
since the system is strongly reachable, i.e.

VﬁBfoVk > 0. (4.65)
Now combining (4.62) and (4.63), and the fact that (Af,ﬁ) is
reachable in the causal sense, we get the standard causal
Lyapunov equation which we know has a positive definite
solution. Notice that even at N=», (4.62), and thus
(4.48.1), has a positive definite solution. Similarly, we
can show that (4.48.2) also has a positive definite solution

for large enough N (including N==).

So far, we have shown that as N becomes larger, Pf and
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Pb approach positive definite matrices and be approachs
zero. Thus, as N becomes larger, the eigenvalues of P
converge to the eigenvalues of Pf and Pb which are all
strictly greater than zero. This means that for N larger
than some N*, the eigenvalues of P are all positive. This of

course is what we wanted to show. Q.E.D.

Example 4.4

Consider the following system

xk+1=(1/2)xk+uk (4.66.1)
rxo+4rxN=v (4.66.2)
where
N,-1
r=(1+4(172)) . (4.67)

System (4.66) is in standard form and stable. The

generalized Lyapunov equation in this case is given by
(3/4)p=r2(1-16(1/74)Y). (4.68)

Clearly, (4.68) has a positive solution p only if N is

larger than 2. So, in this case

N¥=2. (4.69)

The strong reachability assumption of Theorem (4.6) was

needed to show that (4.64) holds. Notice that for N=o,
without the strong reachability assumption, (4.48.1) and
(4.48.2) have positive semi-definite solutions and (4.48.3)

has a zero solution. So that, the Lyapunov equation in this
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case has a positive semi-definite solution. Also, note that
since the right hand side of (4.48.3) is zero for N=», we do

not needed the assumption that ajak is different from 1.

Corollary

Let system (4.1) be strictly stable. Then the
generalized Lyapunov equation with N=» has a positive
semi-definite solution P . In addition, if system (4.1) is

%
strongly reachable, then P 1is positive definite.

The generalized Lyapunov equation at N=» for a strictly

stable system is given by

EPE'-APA'=R (4.70)
wvhere
B.B
f°f
R=[ _ ]. (4.71)
BpBy
The solution to (4.70) is
*
P*=[Pf P*] (4.72)
b

where P? and P: are solutions of the following Lyapunov

equations

P.~A P A =B B, (4.73.1)

and
Pb_AbeAﬁ=BbB$' (4.73.2)

Theorem 4.7
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Let system (4.1) be strictly stable. Then for any
choice of the boundary covariance Q, the variance matrices
of the x’s near the center of the interval [O,N] converge to
P* (solution of the generalized Lyapunov equation with N=«)

as N goes to infinity.

Proof

Let Pk N be the variance matrix of the solution xk of

system (4.1) defined over the interval [O,N]. Then what we

have to show is that

»

;iﬂ P(N/2)+j.N = P (4.74)

for all constant j (independent of N) where for simplicity
we have assumed that N is even.

From the Green’'s function solution of (4.1) we can show

that
P /2y N=A(N/2)+jE(N/2)—jQE.(N/Z)—jA.(N/2)+j+
+].,
(VIE(N/2)—J)H(N/2)+J 1(‘,1E(N/2)-.J).+
(va(N/2)+J)H(N/2)_j_1(VfA(N/2)+J), (4.75)
where
k
m = ) AKT"E"BB'E"A' K™, (4.76)
m=0

Assuming that the system is decomposed as before, it is easy"
to show that

lim Py oysi.8 = [é 8]"m[é g] * [8 ?]"w[g ?]' (4.77)

N—w
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But since [é 8] and [g ?] commute with E and A, we get

X BB
. iy k-m_m| £°f ym, k-m
Lim Py oy, s y=lim ) AKX e [ Bng]E AT (4.78)
m=0

N ko
So,
lim P . =
Nosoo (N/2)+j.N
[+
m crar M
[ z (Af) Bfo(Af) © ] _
m=0 m . m -
z (Ab) BbBb(Ab)
m=0
Py N
p¥| = P . (4.79)
b
This completes the proof of Theorem (4.7). Q.E.D.

Theorem (4.7) essentially means that any strictly
stable stationary TPBVDS, regardless of the boundary value
covariance, converges to a stochastically stationary system
as N goes to infinity. This stochastically stationary system

is separable, with independent forward and backward

subsystems.

Example 4.5

Consider system (4.66). This system cannot be made
stationary by proper choice of the boundary value covariane
q. That is because the stochastic stationarity test is that

q satisfies (4.4) or,
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(3/4)q=r2(-15) (4.80)
which clealry cannot be satisfied by any non-negative q. Now
consider the generalized Lyapunov equation with N=o:

(37/4)p =1 (4.81)
which implies that

p =4/3. (4.82)
Now, we compute the variance of XN/92 PN/2+k’ as N goes to

infinity,

N/2-1+k N/2-1-k
Py, o=(172)Na+r® ) (174)"+16(1/2)V 22K Y (1/4)™. (4.83)
N/2
m=0 m=0
So,
lim P = 4/3 =p 4.84
mOUN/2+4k T =P (4.84)

Noow

which is the expected result.
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V- Conclusion

5.1- Contributions

In this thesis, we have developed a system theory for
two point boundary value descriptor systems (TPBYDS). We
‘have first considered the deterministic problem (Chapter
III) and then the stochastic problem (Chapter IV). The major

contributions of our work in the deterministic case are:

(1) The derivation of a simple necessary and sufficient
condition for well-posedeness and the concept of standard
form which played a key role in deriving the Green’s
function solution for the TPBVDS.

(2) The derivation of a Generalized Cayley-Hamilton theorem.
(3) The extension of the concepts of inward and outward
boundary processes introduced by Krener for his
continuous—-time boundary value linear systems to the case of
the TPBVDS’s.

(4) The study of various concepts of reachability and
observability and their characterization in terms of
reachability and observability spaces, which were then used
to obtain reachability and observability tests.

(5) The characterization of stationary TPBVDS’s and "almost
stationary" TPBVDS’s.

(6) Obtaining necessary and sufficient conditions for
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minimality of stationary TPBVDS’'s and a procedure to reduce -
any non-minimal stationary TPBVDS to a minimal stationary
TPBVDS.

(7) The study of different concepts of stability for

stationary TPBVDS’s.

In the stochastic case, our contributions are:

(8) The derivation of a necessary and sufficient condition
for stochastic stationarity of stationary TPBVDS driven by
white noise.

(9) The derivation of the Generalized Lyapunov equation
which must be satisfied by the variance matrix (covariance
matrix evaluated at zero) of any stochastically stationary
TPBVDS.

(10) The development of a perturbation method that
guarantees that the variance matrix of a stochastically
stationary TPBVDS can always be computed from its
Generalized Lyapunov equation.

(11) The derivation of various recursions for the covariance
matrices of stochastically stationary TPBVDS.

(12) The study of the relationships between the notion of
stability and the existance of a solution for the

generalized Lyapunov equation.
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5.2- Suggestions for Further Research

The followings are some open questions and possible
topics of future research:

(1) The study of time varying TPBVDS.

The general case of time varying TPBVDS is probably not
of much interest, however, it is possible that there may be
interesting structures if we consider some special classes
of time varying TPBVDS’s, e.g. time-varying models
equivalent to autonomous but non-stationary TPBVDS’s.

(2) The study of the relationship between TPBVDS with
stationary weighting patterns and stationary TPBVDS's.

We know that a minimal non-stationary TPBVDS could have
a stationary weighting pattern. We suspect that such a
TPBYVDS can be realized by a stationary TPBVDS of the same
dimension. Moreover, we believe that such stationary TPBVDS
can be constructed by modifying the strongly unreachable and
strongly unobservable parts of the system (remember that any
strongly reachable and strongly observable TPBVDS with
stationary weighting pattern is stationary).

(3) Further studies of the problem of stability.

We have shown that there are connections between the
concept of stability presented in Chapter III and the
Generalized Lyapunov equation derived in Chapter IV. Further

research is needed to fully understand these connections.
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(4) The development of a stochastic realization theory.

Krener has considered the problem of realizing
continuous—-time Gaussian reciprocal processes as outputs of
stationary boundary value linear systems. A natural
extension of this problem would be to realize discrete
Gaussian reciprocal processes with stochastically stationary
TPBVDS since the non-causal structure of these models fits
perfectly the non-causal nature of reciprocal processes.
(5) The development of numerically stable algorithms to
compute the solution of TPBVDS.

This problem has not beén considered in our work.

However, we suspect that our study of stability is crucial

for the development of stable algorithms.
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APPENDIX A: The Inward-Boundary Value Process z’

In this section, we present a recursive method for
computing the inward-boundary value process z’'. Then we show

that z’ has all the properties discussed in Chapter III.

Finally, we consider the special case where E and A are both -

invertible.

A.1-Introduction

In Chapter III, we defined the inward-boundary value
process z’'. We claimed that z’' always exists and that system
(3.14) has the same solution as system (3.1) over its domain

of definition.

We have seen that the outward process z(j.,k) is

obtained by eliminating xj+1 through Xp_1 in Equation

(3.2.1). The process z’(j.k) is obtained in a similar

fashion; in this case however, we eliminate Xq through x,

and Xpe1 through XN by performing row cancellations on the

1

system matrix S (defined in Section 3.1 of Chapter III).

A.2-Recursive Method to Compute z'

As seen in Chapter III, our TPBVDS can bé written as
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0 0
X H
S|71] = (A.1.1)
. BuN_1
XN v
where S is the system matrix given by
-A E
-A E »
S= .. . (A.1.2)
i “A Eg
A \'

We know that the outward boundary value process zZ can
be computed by performing elementary row operations on the
matrix S. In fact by simply premultiplying (A.1.1) by

T =[0...0 Ad7171 gpd=i=2 pi-i=l 5 = g (A.2.1)
we obtain

a3 —pITIx -
i J
j-i-1 j-i-2 j-i-1 s s

A Bui+EA Bui+1+...+E Buj_i—Z(l.J) (A.2.2)
where z(i,j) is the outward process on [i,j].

The computation of the inward process z’ is more

complicated but similar to that of the outward process z. In

this case we premultiply both sides of (A.1) by

0
I
Q = . (A.3)
I
T P
where [T P] has full row rank and
[T P][_?]=O. (A.4)
\

T and P always exist because [—?] has full column rank
\)
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(otherwise the matrix S would not be invertible). This gives

O +« « « O X4 0
« -A E x Bu1
. . . 1 — éu (A-S)
. -A Ef : N-1
0O TE PV Xy Pv+TBu0
which can be written as
x1 Bu1
s |¥2| = | oF (A.6)
. BuN__1
XN Pv+TBuO_
where
-A E
-A E
S’'= . (A.7)
-A Ef
TE PV ]

The matrix S’ has full rank because S has full rank and
rank(Q)=rank(S)-n (A.8.1)
wvhich means that
rank(S’ )=rank(S)-n (A.8.2)
and S’ has n less columns and n less rows than S. Thus S’ is
the system matrix of the following well-posed system

E =Ax, +Bu,_ (A.9.1)

Xk+1

TEx, +PV x =Pv+TBu (A.9.2)

0
Notice that (A.9) is defined over [1,N]. The boundary
matrices of (A.9) are not necessarily in standard-form so
that we need to premultiply (A.9.2) by

A=(TEN+pvEaAN-1)-1 (A.10)

It should be clear that
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WiN=ATE (A.11.1)

Wi =apv’ (A.11.2)
are the boundary matrices which appear in Equation (3.13) of
Chapter III, and

z’(l,N):APv+ATBuO. (A.11.3)
Thus, we have shown how to move the left boundary inward by
one step. Clearly, we can apply the same method again and
move the left boundary inward to any point on the interval
[0O,N]. Similarly, we can move the right boundary inward. All

we need to do is to premultiply (A.1) by

I
0’ = I (A.12)
0
0 TP’
where [T’ P’] has full row rank and
[T P-][‘§]=o. (A.13)
v

The boundary matrices W and z' can be computed as in the

previous case.

By using the recursive method described above, we can
compute w?k, wgk and z'(j.k) for all j.ke[O,N]. It should
also be clear that (3.14) has the same solution as (3.1)

over its domain of definition.

A.3-Reachable Space of z'

In this section, we derive an expression for %’(j,k)
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(the reachable space of z'(j,k)) and prove Theorem (3.5).
In the previous section, we described a method for
recursively computing the boundary matrices W and the
process z’' at any two point on [O,N]. In fact, it is
possible to directly compute these boundary matrices W and
and z’ as follows.
Using the expression (3.11) for the outward process z

and Equation (A.1), we can obtain the following expression

-Ad gJ %01 [z(0, j)
k-j k-j
- e RINERY (A.14.1)
. -aNTE g X 2 (k. )
v! Xy
Premultiplying (A.14.1) by
0 I 0 0
Q.= |.i £ (A.14.2)
jk Tjk 0 Tjk ij
i f
where [Tjk Tjk ij] has full rank and
_pl o a\d i_ _
T A +P V=0 (A.15.1)
f N-k f
TjkE +ijV =0, (A.15.2)

we get
_pk-i gk
ij _f ,N-k
[TjkE TjkA

From (A.16), we see that the boudary matrices at j and k are

z(Jj.k)

= . f (A.16)
T kz(O,J)+Tjkz(k,N)+ijv

given by

WJk-AJkTJkEJ (A.17.1)
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£ f ,N-k
Vi AT h (A.17.2)

where
el gk_of N-j,\-1

Ajk_(SjkE SjkA ) . (A.17.3)
The identity (A.16) also shows that the inward boundary
value process is given by

s q s _ i . f .

z (J,k)—Ajk(Tij(o,J)+Tij(J,N)+ijV). (A.18)
Notice that the introduction of Ajk is necessary to
guarantee that the boundary matrices are in standard form.

It is clear from (A.18) that the reachable space of
z'(j.k) is

s uao i £

R (J,k)_Ajk(Tjkm+Tjk%) (A.19)
for j and k far enough from the boundaries (so that z(0,1i)
and z(j.N) can be arbitrary elements of %).

Now, assume that j-1 is far from the boundaries as
well. We would like to show that in this case %’(j-1,k) has
the same dimension as %’ (j.k). The first thing we do is to

. i f
find Tj—l,k’ Tj—l,k and Pj—l k- In fact we show that a
f

possible choice for T;—l,k’ Tj—l,k and Pj—l.k is
T;_l'k=T§kz (A.20.1)
Tg_l,k=T§k (A.20.2)
Pj—l,k=ij' (A.20.3)

where A has the same eigenstructure as A except that its
zero eigenvalues have been replaced by 1. A can be obtained

by transforming A into Jordan form by using some
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transformation U, then replacing all the zero diagonal
elements (eigenvalues) with one and finally transforming
back this matrix using U_l. The result is X. Clearly, if A
is invertible X:A.
What we need to show is that [Té—l,k Tg—l,k Pj—l,k] has
full rank (which is clearly true since X is invertible) and
f

i .
that Tj—l,k’ Tj-l,k and Pj—l,k satisfy (A.15.1) and
(A.15.2). Equation (A.15.2) is clearly satisfied. Thus, we
have to show that
S SR b ¢ i_
TjkAA +ijV =0 (A.21)
when we know that
TS S i_
TjkA +ijV =0. (A.22)
Suppose that A has been transformed into the following
Jordan form by using some transformation U (this corresponds
to a change of coordinate which clearly does not affect the
rank of the reachability matrix)
_|J
A_[ N] (A.23)
where J is invertible and in Jordan form and N is nilpotent
and in Jordan form. Then clearly
N_J h
A_[ N+I) (A.24.1)

Since j-1 is far from the boundaries, NJ—1=O. So,

Y j-1 - .

-1y _|(J J —AJ
A A-[ O]L N+I]_A (A.24.2)
which directly implies (A.21)., which is the desired result.

Thus, we can write the reachable space of z’(j-1,k) as

119



. _ i 7 f
R*(J] l,k)_Aj_l,k(TjkA%+Tjk%). (A.25)
Notice that if either j-1 or k is not far enough from the
boundaries, the reachable space of z(0,j-1) or the reachable
space of z(k,N) may not be the whole space % and thus (A.25)

may not hold.

Now, we prove that
A%=3%. (A.26)
This of course implies that the dimension of %’ (j-1,k)
equals that of #’(j.k) because all A’s are invertible.
To prove (A.26), again we assume that A is in the

Jordan form (A.22). Since

A=A+[0 1] (A.27)
all we need to show is that

[0 I]mcm. (A.28)
We know that

B, JB, ....... 1
m_Im[Bl B 1l o é] (A.29)
2 2 7 2

where p is the nilpotency degree of N. Let J be n;xn, and N

be nyXn, | then clearly n,+n,=n and pgnz. The inclusion

(A.28) is equivalent to the following statement:

§
if [ l]eﬁ, then [O ]eﬁ.
P £

§
But if [El]eﬁ , there exist vectors u, where 0<{i{u-1 such
2

that
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u—-1
i
E,= ) N'Bju.. (A.30)
i=0
We would like to show that we can find u, where p<i{n-1 such
that
n-1

i
) J'Bu, =0, (A.31)
i=0
which means that

n-1 p-1
i i
> J Blui=—§ 3B u, (A.32)
i=p i=0
or equivalently,
n-1 n-1
i- - i
z J7VB u =g ”(—z J'Biu.). (A.33)
i=p i=0

p-1
Clearly 2 JlBlui is in the reachable space of (J’Bl)’
i=0

and since J is invertible the right hand side of (A.33) is
in the reachable space of (J’Bl)' Thus, since n—1—u>n2—1, we
can easily deduce from the Cayley-Hamilton Theorem that we
can always find u, where p<i{n-1 such that (A.33) is
satisfied. This, of course, is the desired result.

So far, we have shown that %’'(j-1,k) has the same
dimension as #’'(j,k). Similarly, we can show that %' (j.k+1)
has the same dimension as #%'(j.k) where j,k+le[n,N-n]. It is
clear then that %#'(j,k) has the same dimension for all

j.ke[n,N-n]. This completes the proof of Theorem (3.5).
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A.4-Case of Invertible E and A

When E and A are both invertible, we obtain simple
expressions for the inward process z' and the boundary
matrices W. We also obtain a simple expression for the
Green’s function solution of system (3.1).

The first step is to find T;k’ Tgk and ij satisfying
(A.15.1) and (A.15.2). It is easy to see that a possible

choice is given by

T§k=ViA_j (A.34.1)

T§k=—VfEk_N (A.34.2)
and

Po=l- (A.34.3)

Then by computing Ajkand using (A.16.1), (A.16.2) and
(A.17), we can show that the boundary matrices W and the

inward process z’ can be written as

W§k=AjEN_kVi(EA_1)j (A.35.1)

W§k=—AJEN—ka(AE—1)N_k (A.35.2)
and

2' (5. k)=ATEN K(vaviaTIz (0, 5)+vIER N2 (k. M)) . (A.36)
Since

xj=z’(j,j) (A.37)
we obtain the following simple expression for the Green’s

function solution

122




_pdpN-dyfpk-N,N-k-1 K3 1

G(j.k)= ol )
kA k-1

o (A.38)
AJgN-dyig k.
This expression can also be derived directly from Equation

(3.9); its derivation, however, is not trivial.
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APPENDIX B: Recursive Solutions for TPBVDS's

Unlike for causal systems, the solution of a TPBVDS
cannot be computed using a simple recursion. This of course .
is expected since the solution x at any time k is a function -
of the inputs over the whole interval [O,N]. In this
section, we present two algorithms to compute the solution
of TPBVDS’s and propose ideas on how a third algorithm can
be constructed.

The first algorithm we discuss, the two-filter
solution, was proposed by Adams [24]. His algorithm
processes the inputs from left to right and from right to
left. The second algorithm presented in this section
processes the inputs starting from the center and going
outwards to the boundaries and then starting from the
boundaries and moving in toward the center. Finally, we
discuss an algorithm based on the computation of the inward

and outward processes z’ and z.

B.1- The Two-Filter Solution

Adams formulates the general solution of a TPBVDS as a
linear combination of two stable recursions, one forward and
the other backward. His formulation is presented below as it
appeared in [22], with only a few changes in the notation.

Since {E.A} comprise a regular pencil, there exist

124




nonsingular matrices F and T such that
A
-1 I O ,
FET = [O A ] = E (B.1.1)
b
and
-1 _[a, o}
FAT = [Of I] = A’ (B.1.2)

where all eigenvalues of Af and Ab lie within the unit
circle (we assume that the system has no eigen-mode on the
unit circle). The above decomposition splits the system into

two subsystems:

Xe ke1=Ae%e kB (B.2.1)
and
Xb, k=Ab*b, k+1 7 BpUk (B.2.2)
where
X
[xf'k]=Txk (B.3.1)
b.k
and
By
[B ]=FB° (B.3.2)
b

Given the above transformation the boundary condition takes

the form

X X
i,.i-[%f,0 £,06,[%F,.N
[vl:v‘][ ’ ]+[v 'V ][ ' ] (B.4)
f b xb’0 f b xb,N
where
i,y1 i.-1 4 i
[VeiVpl = VT~ =V (B.5.1)
and
£, f f-1 4 g
[Veivyl = VT~ =V (B.5)
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Define x? x 2S the solution to (B.2.1) with zero
initial condition and xg k 2S5 the solution to (B.2.2) with

zero final condition. Then it is easy to see that

k 0]
xf,k=(Af) xf,0+xf,k (B.6.1)
and
N-k 0
xb,k=(Ab) Xp 1kt Xp k- (B.6.2)

Substituting for Xe N and Xy 0 from (B.6.1) and (B.6.2) into

(B.4) and solving for Xe 0 and Xp N gives
X
£,0] _ -1, .0 _,0.0
[x ] = (Fy) "[v-Vexe n"Vp%p, 0] (B.7)
b.N
where
Fy = V! EHN + vE N, (B.8)

Finally, substituting for Xe o and Xy from (B.7) and
(B.8), it can be shown that the solution to (B.2) is given
by

xO
f.k

5 ]. (B.9)
*b,k

Applying the inverse of the transformation in (B.3.1), the

X
f:k - ) N_k » k _1 _ f 0 _ O O
[xb k]'(E )7 (AT (Fy) TLvoVexge NVxp ol*

original process Xy is recovered by

bd
X =T—1 f.k . (B.10)
k X

b,k

In this way, Adams has constructed a stable forward/backward
two filter recursive implementation of the general solution
of a TPBVDS. Notice that the invertibility of the matrix FN

is not an issue, since FN is invertible if the system is

well-posed (in fact invertibility of FN is our test for
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well-posedness). The stability of (FN)—I, however, is an

issue. If (FN)—1 grows unbounded as N goes to ®, the two
filter solution is not stable. But, if (FN)-1 grows
unbounded so does the solution x which means that the system
‘is unstable. Of course, we cannot expect to find a stable
algorithm to compute the solution of an unstable system.
This concept of stability, by the way, is consistent with

our previous concept of stability (Definition 3.8 in Chapter

I11).

B.2- The Outward-Inward Solution

The idea behind this algorithm is to first compute the
outward process z by starting from the center of the
interval and then stepping outward one step at the time.
Once we reach the boundaries, we use z(O,N) and the boundary
condition to compute Xq and XN- and finally, we use backward
substitution starting from Xq and XN and moving inward one
step at the time to compute all the x’s.

For simplicity, we assume that N is odd and that E and
A commute. In this case our outward recursion starts from
z((N-1)/2,(N+1)/2) and is given by

z([(N-1)72]-k-1,[(N+1)/2]+k+1) =

EAz([(N-1)/2]-k.[(N+1)/2]+k) +

2k+2 2k +2
A By (vc1ys21-k-1 P BT B (1) /270 (BH1D)

with the initial condition
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z((N-1)/2,(N+1)/2) = Bu y 1y o (B.12)

Using the above recursion, we compute z(j,N-j) for

j=0,...,(N-1)/2. Now we can use z(0O,N) to solve for Xq and
Xy as follows:
N N
-A ' x +E x,.=z(0,N) (B.13.1)
0] N
and
vix +vix v (B.13.2)
0 N~ oY
so that,
N .N]7!
*0] |-A" E z(0,N)
<« =15 £ v . (B.14)
N \' \'
N N

-A E
vi oy
if and only if the system is well-posed, i.e. VE

It is easy to show that the matrix [ f] is invertible

N+VfAN is
invertible.

To construct the inward stage of the solution, we note

that

N2y =2 (3. N-1) (B.15.1)

-J

and
6jExj+AxN_j=6ijj_1+ExN_j+1+5jBuj_1—BuN_j (B.15.2)

for all je[1l,(N-1)/2] and all scalar 6j. Equation (B.15.2)

follows simply from the descriptor dynamics. Using (B.15.1)

and (B.15.2) to solve for X5 and XN-j ¥e get
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-1
. N-2j N-2j . .
XN-3 5jE A 6ijj_1+ExN_j+1+6jBuj_1—BuN_j

_AN-2j N-2;

where 6. is chosen such that
J 5 E A

] is invertible

(if the system has no eigenmode on the unit circle, bj can
be taken equal to 1). Of course (B.16) is the desired
recursion which starts from the values of Xq and XN computed
previously. Notice that both the outward and the inward

recursions are time-varying.

A variation of the above algorithm can be constructed
by noting that the solution x can be constructed from the
outward process z and the inward process z’. More precisely,
we can compute z(j,N-j) as done in the outward-inward
algorithm and z’(j,N-j) from the recursive solution
described in Appendix A. Then the solution x can be computed
as

X N-2j N-2j 17 ;. o .

J - -A E [Z(J’N-J) (B.17)
xN—j wi wf z'(j.N-j)l° :
j.N-j J.N-j

Notice that this algorithm resembles the two-filter solution
because the inward and outward boundary processes z and z’
can be computed independently. The outward-inward solution,
however, requires that the outward recursion be completed

before the inward recursion can start. The reason for this
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is that the final state of the outward recursion is used to

compute the initial state of the inward recursion.
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