A DETERMINISTIC AND STOCHASTIC THEORY
FOR
TWO-POINT BOUNDARY-VALUE DESCRIPTOR SYSTEMS

by
RAMINE NIKOUKHAH

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND OOMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1988

(::) Massachusetts Institute of Technology 1988

Signature of Author i

Departﬁenz of Electrical Engineering and Computer Science
Sept. 28, 1988

Certified by < - J

Alan S. Willsky
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students






A DETERMINISTIC AND STOCHASTIC THEORY
FOR
TWO-POINT BOUNDARY-VALUE DESCRIPTOR SYSTEMS
by
RAMINE NIKOUKHAH

Submitted to the Department of
Electrical Engineering and Computer Science
on September 28, 1988,
in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

ABSTRACT

A deterministic system theory is developed for two-point boundary-value
descriptor systems (TPBVDS's). In particular, detailed characterizations of
the properties of reachability, observability and minimaltiy are obtained. In
addition, extendibility, i.e. the concept of considering a TPBVDS as being
defined on a sequence of intervals of increasing length, is defined and
studied. These system-theoretic properties are derived for general TPBVDS's
and then specialized to the case of stationary systems for which the
input-output map (weighting pattern) is shift-invariant.

Next, the deterministic realization problem of constructing a minimal
extendible, stationary TPBVDS that realizes a given weighting pattern is
considered and solved using an original transform technique. This transform
technique is then used in studying the stochastic realization problem, which
consists of constructing a TPBVDS of minimal dimension from its output
covariance.

Finally, the optimal estimation (smoothing) problem for TPBVDS's is
considered. Two solutions to this problem are proposed. The first solution is
based on the fact that the smoothed estimates satisfy a TPBVDS structure and
thus the smoother can be implemented by a two-filter method. This
implementation requires block diagonalization of the smoother dynamics, i.e.
the Hamiltonian-diagonalization problem. This problem is studied and shown to
be related to generalized Riccati equations. These Riccati equations are also
studied. The second solution proposed consists of a generalization of the
Rauch-Tung-Striebel formulation of the smoother for causal systems. For this
approach, a generalization of the Kalman filter is proposed. This filter also
provides probabilistic interpretations for the solutions of the generalized
Riccati equations.
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CHAPTER 1:
INTRODUCTION

In discrete-time, Luenberger [4,5] has shown that descriptor systems
exhibit noncausal behaviour and thus are useful for modeling noncausal
phenomena usually corresponding to spatial processes, i.e. when the
independent variable is space rather than time. Lewis has shown in [19] that
the dynamics of discrete-time, descriptor systems are completely symmetric
with respect to forward and backward time directions. This has led to the
observation [1,2,46] that boundary conditions, specifically two-point
boundary value conditions, are better adapted than initial conditions, to
descriptor dynamics not only because they preserve the symmetry but also
because they can guarantee well-posedness. Descriptor systems with such
boundary conditions are called two-point boundary-value descriptor systems.

A two-point boundary-value descriptor system (TPBVDS) can be represented

as follows

Ex(k+1) = Ax(k) + Bu(k) (1.1)
Vix(O) + fo(N) =v (1.2)
y(k) = Cx(k), (1.3)

where E, A, Vi and Vf are possibly singular, square matrices. TPBVDS'’s are

generalizations of classical causal systems (by letting E=Vi=I. V.=0, and

f
N==, (1.1)-(1.3) reduces to a causal system), descriptor systems and periodic
systems (Vi=—Vf=I, v=0). These systems are particularly useful for modeling
processes defined over finite intervals such as the heat distribution on a
rod or deflection of a beam, since, in such situations, a complete symmetry

must exist with respect to the two ends of the interval as far as the

boundary specifications are concerned. This has been one of the motivations
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for developing system theory for these systems..

Another motivation behind studying TPBVDS has been the fact that finite
interval optimal smoothers for standard causal systems have TPBVDS structure.
Thus, in trying to better underestand the standard causal, finite-interval
smoothing problem, some system—properties of TPBVDS's must first be
investigated. We will show that in fact the optimal smoother of a larger
class of systems, namely TPBVDS's, have TPBVDS structure as well, and so it
makes sense to consider the smoothing problem for this larger class of
systems. This has first been pointed out by Adams, et al. [46] and studied
further in [3]. This investigation is carried even further in this thesis.

TPBVDS’s also arise in the study of 2D systems. In particular, the
solution and linear estimation of 2D discrete processes satisfying local
recursions, such as the nearest-neighbor models or Roesser’s model, have been
studied in [38], and a general solution technique has been proposed based on
converting the 2D system into a 1D TPBVDS of large dimension.

Another motivation for studying system—theoretical properties of TPBVDS
has been the hope to extend the results to the multi-dimensional case since
the natural description of multi-dimensional systems involves boundary
conditions, and moreover, one of the well known properties of these systems
is that they are inherently noncausal. We have not yet considered the
multi-dimensional case in our work; however, it is our hope that our work
will provide the basis for such an investigation. We have made a few comments

regarding this problem in Chapter V.

A system theory for TPBVDS's has been developed in [1.2,16]. These works

have been largely influenced by the works of Krener [6.7]. and Gohberg and
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Kaashoek [11,12,13] on the system-theoretic properties of standard
(non-descriptor) continuous—-time boundary-value linear systems.

In our opinion, the two most important contributions of Krener, to the
study of boundary-value linear systems, have been: (1) the introduction of
the notions of inward and outward processes which correspond to a natural,
causal-anticausal decomposition of the boundary value process; and, (2) the
introduction and characterization of the property of stationmarity, i.e.
shif t-invariance of the weighting pattern or impulse response of
time-invariant (autonomous) systems. Based on the inward and outward
processes, Krener has been able to develop two distinct notions of both
reachability and observability, and relate them to the problem of minimality.
Also, as Krener points out, unlike the causal case, shift-invariance of the
impulse reponse is not implied by the time-invariance of the model. Gohberg
and Kaashoek have also studied boundary-value linear systems and, in
particular, they have considered the time-invariant case which is the focus
of our work as well.

The work described in this thesis builds on our research described in
[1.2]. In these previous studies, we extended many of the continuous—time,
boundary-value linear system results to the case of TPBVDS and also developed
notions of and results on stability that represent original contributions
even in the case of continuous—-time boundary-value linear systems. The work
in [1,2] can also be viewed as contributing to the theory of descriptor
systems. In particular, much of the literature on descriptor systems
[21-24,47-49] has focused on the continuous-time case which has fundamental
differences with the discrete-time case. The results in the literature on the

discrete-time case [4,5,17-20], for the most part, do not deal with boundary
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conditions (and hence system noncausality) explicitly and also do not make

use of the standard form, developed in [1,2], which makes many results and

concepts more transparent.

The results presented in this thesis provide several contributions. In
particular, we have completed the study begun in [1,2] to extend results on
time-invariant, continuous—-time boundary-value linear systems to the case of
TPBVDS's. In particular, we have completely characterized the concepts of
inward and outward processes leading to a complete study of properties of
reachability and observability, and minimality. We have also introduced and
studied extendibility, i.e. the concept of considering a TPBVDS as being
defined on a sequence of intervals of increasing length. The major new
aspects of these results are (1), the correction of the minimality result of
[2] for the class of stationary TPBVDS's (see Chapter II) and (2), the
extension of all of our results and concepts to the complete class of
autonomous TPBVDS's.

Using the concept of extendibility, we have been able to pose and solve
a realization problem for TPBVDS's. In particular, we have considered the
problem of realizing a minimal, stationary, extendible TPBVDS from its
input-output weighting pattern. In solving this problem, we have introduced
an original transform technique, the (s,t)-transform, which is better adapted
to descriptor dynamic than the standard z-transform technique because of the
symmetrical way that the zero and infinite modes of the system are treated.
Using this transform, we have developed a realization method that involves
the solution of a generalized factorization problem and a generalization of

the McMillan degree of a rational matrix. As we will there are some important
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differences with the causal case. This represents one of the most important
results in this thesis.

The concept of extendiblity has also allowed us to consider the
stochastic version of the realization problem for TPBVDS's driven by a white
Gaussian sequences. In particular, we have used this concept to define
stochastic extendibility and pose the stochastic realization problem of
constructing a minimal TPBVDS from its output covariance. It turns out that
the class of covariances that can be realized by stochastically extendible
TPBVDS’s is not larger than the class of covariances realizable by causal
systems. However, we can now characterize a larger class of (possibly
acausal) minimal realizations. This problem is also solved using the
(s.t)-transform technique emphasizing the importance of this transform.

The last part of the thesis, which is devoted to a study of optimal
estimation fbr TPBVDS's includes several results which we feel are of
significance. In particular, we have shown that the optimal smoother for a
TPBVDS has a TPBVDS structure as well, with twice the dimension of the
original system. In implementing this smoother using the two-filter solution
method [46], the smoother dynamics must be decoupled into forward and
backward stable recursions (Hamiltonian diagonalization). We have shown how
this can be done by the use of transformation matrices involving the
solutions of a new type of generalized Riccati equations. A theory
paralleling the existing theory for standard Riccati equations is developed
for these generalized Riccati equations. In particular, we have shown that
the solutions of these equations can be interpreted as error variances of a
generalization of the Kalman filter which we have introduced and studied.

Finally, this generalized Kalman filter has been used to construct a
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generalization, to the case of TPBVDS's, of the Rauch-Tung-Striebel smoothing

algorithm for causal systems.

The outline of the thesis is as follows.

In Chapter II, we review and extend the system—theoretic properties of
TPBVDS's introduced in [1,2]. In particular, we obtain a detailed
characterization of concepts of reachability and observability, and
minimality. We also define and study stationarity and displacement which are
two notions of shift-invariance for TPBVDS's. The concept of extendibility is
also introduced in this chapter. In the last section of Chapter II, a modal
analysis of the TPBVDS is done. This allows us to consider reachability and
observability of individual eigenmodes as it is done in the causal case.

In Chapter III, realization theory for extendible stationary TPBVDS’s is
considered. In particular, this chapter consists of two main sections. In the
first section we consider the problem of deterministic realization, i.e. the
problem of constructing a minimal, extendible, stationary TPBVDS realization
of an input-output weighting pattern. As indicated previously, the most
significant part of this study is the introduction of an original transform
technique called the (s,t)-transform. By studying the properties of this
transform, we obtain results characterizing the dimension of the minimal
realization and an algorithm for its construction. In contrast with the
causal case, in general here we must perform (generalized) factorizations of
more than one rational matrix to obtain the minimal realization.

In the second section of Chapter III, we consider the problem of
stochastic realization. We start by obtaining conditions under which a

TPBVDS, driven by a white Gaussian sequence, has a stochastically stationary
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and extendible output. The final result of this section is that the
stochastic realization problem is related to a spectral factorization problem
just as in the causal case, although we now have more freedom in its solution
since we are not tied to causal realizations.

In Chapter IV, we consider the problem of optimal estimation for
TPBVDS’s driven by white Gaussian sequences and with independent white
Gaussian observation noises. The results of the first section and the first
half of the second section of this chapter can also be found in [3]. There,
it is shown that the optimal smoother for a TPBVDS has also a TPBVDS
structure which can be solved, for example, by the two-filter solution
technique which is described in the Appendix. Applying this technique
requires the block-diagonalization of the smoother, for which,
positive-definite solutions to a new class of generalized Riccati equations
must be found.

In Section 4.2, we study these generalized Riccati equations and develop
a theory for them paralleling the existing theory for standard Riccati
equations. In Section 4.3, we define a generalization of the Kalman filter
which leads to both a probabilistic interpretation of the generalized Riccati
equations of Section 4.2 and to a generalization of the Rauch-Tung-Striebel
smoothing method for causal systems. The actual implementation of this for a
general TPBVDS involves inward and outward recursive computations.

Finally, in Chapter V, we conclude with a list of contributions and a

list of open questions.
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Chapter II:
REACHABILITY, OBSERVABILITY AND MINIMALITY FOR

TWO-POINT BOUNDARY-VALUE DESCRIPTOR SYSTEMS

2.1-Introduction

In this chapter we study the system—-theoretic properties of two—point
boundary-value descriptor systems (TPBVDS’s) and two related classes of

shift-invariant two-point boundary-value descriptor systems namely

displacement systems for which the Green's function is shift-invariant, and
stationary systems for which the input-output map is stationary. We present
detailed characterizations of the properties of strong and weak reachability
and observability introduced in [1] and of minimality as well. Another
property that is studied in this chapter is that of extendibility, i.e. the
concept of considering a TPBVDS as being defined on a sequence of intervals
of increasing length.

Some of the results in this chapter, such as results concerning the
concepts of well-posedness, standard-form, generalized Cayley-Hamilton
theorem, inward and outward processes, and strong reachability and
observability have already been discussed in [1,2] and so we shall simply
revieﬁ them here. Other results, such as those concerning extendibility, weak
reachability and observability, and minimality have only been considered in a
much more restricted setting (essentially in the displacement case). The
attempt to generalize these concepts have generally failed because no
closed-form expressions for the inward process could be found. Here we shall

obtain the necessary closed-form expressions and completely resolve the
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problems of extendibility, weak reachability and observability, and
minimality in the most general case.
In the next section we introduce TPBVDS's, and define and characterize

two notions of shift-invariant systems, namely displacement systems and

stationary systems.
In Section 2.3 we review the notions of inward and outward processes
introduced for TPBVDS’s in [1,2] and characterize these processes. We also

introduce the concept of extendibility and characterize this property.

Section 2.4 discusses the properties of reachability and observability for
TPBVDS’s, while in Section 2.5 we present minimality results. Some extensions

are presented in Section 2.6, and we conclude with a brief discussion in

Section 2.7.
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2.2-Two-Point Boundary-Value Descriptor Systems
A TPBVDS is described by the following dynamic equation

Ex(k+1) = Ax(k) + Bu(k), Ogk¢N-1 (2.2.1)
with boundary condition
Vix(O) + fo(N) =v (2.2.2)
and output
y(k) = Cx(k), k=0,1,...,N. (2.2.3)
Here x and v are n—dimensional, u is m-dimensional, y is p-dimensional, and
E, A, B, Vi' Vf, and C are constant matrices. In [1] it is shown that if
(2.2.1)-(2.2.2) is well-posed (i.e. it yields a well-defined map from {u,v}

to x), we can assume, without loss of generality that (2.2.1)-(2.2.2) is in

normalized form, i.e. that there exist scalars a and  such that
aE+pA = 1 (2.2.4)

(this is referred to as the standard form for the pencil {E,A}) and in
addition |

VE + VAN -1, (2.2.5)
Note that (2.2.4) implies that E and A commute, that E, A and the system have
a common set of eigenvectorsl, and also that {Ek,Ak} is a regular pencil for
all k20 (see[1]). But most importantly (2.2.4) implies that the space of
matrices AKEL, K,L20, is spanned by the n matrices {AkEn_l_k|k=0,..,n—1};

this property has been introduced in [1] as the generalized Cayley-Hamilton

1v is an eigenvector of the system if v#0 and for some o, (0E-A)v=0. o is
called an eigenmode of the system; for descriptor systems o can be ® as well.
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theorem. We assume throughout this paper that (2.2.4) and (2.2.5) hold. We
also assume that the interval of definition of our system is sufficiently
large to excite and observe all system modes. Specifically, we assume that
N22n, unless explicitly stated otherwise.

As derived in [1], the map from {u,v} to x has the following form:
N-1
x(k) = A" 5V + ) G(k. §)Bu(j). (2.2.6)
Jj=0

where the Green's function G(k,j) is given by

ARV Aoy B)EEIRANITITL gy

Gk, §) = | . e (2.2.7)
' (WE-AS(V AvoV E)AN AT
and where w is any number such that
r i gl _ M (2.2.8)

is invertible.

In marked contrast to the case for causal systems (E=I,Vf=0), G(k,j)
does not, in general, depend on the difference of its arguments. Borrowing
some terminology from [11-13], we have the following definition of our first

notion of shift-invariance:

Definition 2.2.1

The TPBVDS (2.2.1)-(2.2.2) is a displacement system if (with the usual

abuse of notation) for O<k<N, O<j<N-1

G(k.j) = G(k-j). (2.2.9)
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A second notion of shift-invariance is the one associated with the
input-output map. Specifically, with v=0 in (2.2.2), we have that

(2.2.1)-(2.2.3) defines a linear map of the form

N-1
y(k) = ) W(k.3)Bu(j). (2.2.10)
j=0
where, obviously
W(k,j) = OG(k.j)B. (2.2.11)

Definition 2.2.2
The TPBVDS (2.2.1)-(2.2.3) is stationary if (again with the usual abuse
of notation)
W(k.j) = W(k-j) (2.2.12)
for O<k<N, O¢j<N-1.

The following results characterize the conditions under which a TPBVDS

is displacement and stationary.

Theorem 2.2.1
The TPBVDS (2.2.1)-(2.2.3) is stationary if and only if
Os[Vi,E]RS = OS[Vi.A]Rs =0 (2.2.13a)

O.[V;.EIR, = O_[V,,AJR_ =0, (2.2.13b)
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where [X,Y] denotes the commutator product of X and Y

[X.Y] = XY - YX (2.2.14)
and
R_ = [A" 'BiEA® 23 E% 1] (2.2.15)
n-2
(2.2.16)

Before proving this result, let us also state a corollary (which will

also require proof) and make several comments:

Corollary
The TPBVDS (2.2.1)-(2.2.2) is a displacement system if and only if

[V,.E] = [V,.A]

[Ve.E] = [V;.A]

0 (2.2.17a)

0. (2.2.17b)

The matrices Rs and 0s in (2.2.15), (2.2.16) are, respectively, the strong

reachability and strong observability matrices of the TPBVDS as discussed in

[1] (see also Section 2.4). Thus (2.2.13) states that Vi and Vf must commute
with E and A except for parts that are either in the left nullspace of Rs or
the right nullspace of Os. For example, if RS and 0s are of full rank - i.e.

if the TPBVDS is strongly reachable and strongly observable - Vi and Vf must

commute with E and A. Turning to the corollary, we see that this is precisely



22

the condition for a TPBVDS to be displacement. Thus as expected from
(2.2.11), a displacement system is always stationary. Furthermore, the only
way in which a TPBVDS can be stationary without being a displacement system
is if the system is not strongly reachable or strongly observable.

The results of causal system theory might then suggest that this
distinction between displacement and stationary is a trivial artifact caused
by the use of possible non-minimal realizations. However, as in the case of
continuous—time boundary-value systems [7], we will see that the story is
different for TPBVDS. Specifically, as will be shown in Section 2.5, a TPBVDS

can be minimal without being strongly reachable or strongly observable.

Proof of the Corollary

Assume that Theorem 2.1 holds. Then, from (2.2.11) we see that the
concepts of stationarity and displacement are the same if C=B=I. Thus from
Theorem 2.1, a TPBVDS is displacement if and only if (2.2.13) holds with Rs
and 0s defined with C=B=I. However, thanks to the generalized Cayley-Hamilton
theorem for pencils in standard form [1], the matrices {AkEn_k-ll k=0,...n-1}

span the same set as {EkAjl k, j20}. Thus RS and Os are of full rank, so that

(2.2.13) is equivalent to (2.2.17).

Proof of Theorem 2.2.1
What we must show is that (2.2.13) is equivalent to

W(k+1, j+1) = W(k,j) (2.2.18)

for O<k<N-1, O<j<N-2. Then, using (2.2.7), the commutativity of E and A, and



performing some algebra we find that (2.2.18) is equivalent to
CAk+1EN_k_1[ViA+wVfE]AN-j_2Ej+1F_1B -
CAEN K[V, Avov EI 1B B, (2.2.19)
Now thanks to the generalized Cayley-Hamilton theorem and to (2.2.4), we have
that the set of matrices
(A*E"¥| k=0,1,....M)
spans the same space as
(A" %1 k-0,1,....n-1}
as long as M>n-1. Thus, since N>2n, (2.2.19) yields
OSA[ViA+wVfE]EF—1RS = OSE[ViA+meE]AF_1Rs. (2.2.20)
The range of the matrix F—IRS is independent of w. To see this, define the

strong reachability subspace

ﬁs = Im(Rs). (2.2.21)
Then the generalized Cayley-Hamilton theorem implies that for all M>0
Mt ca . B oca (2.2.22)
s s s s
which implies A
(BT - Ay - e Ca_. (2.2.23)

Thus %S is I'~invariant which implies that Qs is F_l—invariant. In fact, for
all o such that F_l exists
r'lg -ra =a. (2.2.24)
s s s
Since the range of F_IRS does not depend on w and (2.2.20) must hold for
almost all values of v (i.e. all values for which I is invertible), we can

deduce that (2.2.20) is equivalent to the following pair of equalities

-1
O [AV,E-EV,AJAIR_ = 0 (2.2.25)

-1
O_[AVE-EV AJET R_ = 0. (2.2.26)
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Now, note that (2.2.25) is equivalent to the pair of equalities
-1,N
OS[AViE—EViA]AT
_]'EN
O [AV.E-EV_AJAT R_ = 0. (2.2
st i s
To see this observe that since {EN,AN} is regular
N,
% = In([A'R_ { E'R_]). (2.2

In a similar fashion we have that (2.2.26) is equivalent to the pair of

equalities
. -1.N ,
O_[AVE-EV AJEF 'A'R_ = 0 (2.2.
-1
O_[AV.E-EV AJEr 'E'R_ = 0. (2.2.

Using the commutativity of E and A together with (2.2.5), we see that
(2.2.30) is equivalent to
0 [-AV.E+EV.AJTEIr 1R = 0. (2.2
s i i s
Using the definition of I', we see that (2.2.27) and (2.2.32) imply that
OS[AViE—EViA]Rs = 0. (2.2
In a similar fashion (2.2.28) and (2.2.31) can be shown to imply
OS[AVfE-EVfA]RS = 0. (2.2
Note also that
Erls ca ., arlas ca (2.2
s s s s
so that (2.2.33), (2.2.34) imply and thus are equivalent to (2.2.25),
(2.2.26).

AR =0 (2.2.
S

27)

.28)

.29)

30)

31)

.32)

.33)

.34)

.35)

Finally, note that thanks to the commutativity of E and A, (2.2.13a)

implies (2.2.33) and (2.2.13b) implies (2.2.34). To see that the reverse of

these implications holds, suppose that a#0 in (2.2.4) (if a=0, reverse the

role of E and A in what follows). Then

E=~1+6A , 0. (2.2.36)



Substituting this into (2.2.33) yields

1
e

0_[V,.AIR_ (2.2.37)

and (2.2.36) implies

0_[V,.ER_ = 0. (2.2.38)

Similarly (2.2.34) implies (2.2.13b), and the theorem is proved.

As we shall see, the characterization of the displacement property in
(2.2.13) simplifies many of the computations associated with TPBVDS's. In
particular, it is not difficult to check that the Green’'s function of a

displacement system is given by

v ATIENE k>0
G(k) = _va—kAN+k—1 k<O (2.2.39)
Similarly, the weighting pattern of a stationary TPBVDS is given by
cv AIEVE B k>0
W(k) = _Cva-k.AN+k—1B k<0 (2.2.40)

Before closing this section we consider another problem, namely that of

the degree of freedom in the choice of boundary matrices Vi and Vf.

Theorem 2.2.2
Consider two TPBVDS's with the same matrices C, E, A, and B and
identical weighting patterns. Then, if one has boundary matrices Vi and Vf,

and the other Vi and Gf. we must have

0sviRs

(2.2.41a)

O_VR_ (2.2.41b)
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Conversly if (2.2.41) holds for two TPBVDS's with identical C, E, A, and B

system matrices, then their weighting patterns must be identical.

Proof
By setting
W(k.j) = W(k.J) (2.2.42)
we get that
ov.Ar'lR =ovarlr (2.2.43a)
S 1 S s 1 S
oV E R =oVEIR (2.2.43b)
s f s s f s
which in turn implies that
o v AV IrTlR - o v AN (2.2.44a)
S 1 S S 1 S
o v ANEr 'R = o v ANErIg . (2.2.44b)
s f s s f s

Now using the fact that both systems are in normalized form, we can rewrite
(2.2.44b) as follows:
o v.EVIr g - o v BVl lg (2.2.45)
s'i s s i s
which in conjunction with (2.2.44a) implies (2.2.41a). Equation (2.2.41b) can
be verified similarly.
The converse is easy to see to be true by noting that in the expression

for W, Vi and Vf appear only premultiplied by 0s and postmultiplied by Rs'
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2.3- Inward Processes, Outward Processes, and Extendibility

As discussed in [1] (with motivation from [7]) the process x in a TPBVDS
can be recovered from two processes that each have interpretations as state
processes. The outward process, which expands outward toward the boundaries,
summarizes all that one needs to know about the input inside any interval in
order to determine x outside the interval. The inward process uses input
values near the boundary to propagate the boundary condition inward.

The outward process has a simple definition and characterization [1]. In
Krener’s context the outward process represents the "jump" corresponding to
the difference between x at one end of any interval and the value predicted
for x at that point given x at the other end of the interval and assuming
zero input inside the interval. In our context, we can't predict in either
direction (due to the possible singularity of E and A) and thus we use a
somewhat different definition

z_ (k.3) = ES7%(5) - A1 (x) K<j. (2.3.1)
This agrees with Krener’s definition if E=I but in general in our case
zo(k,j) can only be propagated in an outward direction. Also, it is possible

to write a closed-form expression in terms of the intervening inputs:

j-1
z (k.§) = ) ET A By (r) (2.3.2)
r=k
and to write outward recursions
z (k-1,5) = Ez_(k.5) + AV ™*Bu(k-1) (2.3.3a)
z (k. §+1) = Az _(k.§) + ES ®Bu(j) . (2.3.3b)



Note that zo(k,j) does not involve the boundary matrices Vi and Vf - i.e. it
only involves (2.2.1) - and thus none of the expressions (2.3.1)-(2.3.3b) are

affected if the TPBVDS has the displacement property.

The situation is considerably different, however, for the inward

process. As developed in [1], for any K{L the inward process zi(K,L) is a

function of the boundary value v and the inputs {u(0),...,u(K-1)} and
{u(L)....,u(N-1)} so that the TPBVDS
Ex(k+1) = Ax(k) + Bu(k) (2.3.4)
Vi (K.L)x(K) + V (K.L)x(L) = z,(K,L) (2.3.4b)

yields the same solution as (2.2.1), (2.2.2) for K<k<L. Here Vi(K,L) and
Vf(K.L) are assumed to be such that (2.3.4) is in normalized form, i.e.

v, (K.L)E" + Ve L)AN T -1 (2.3.5)

Theorem 2.3.1

The inwardly-propagated boundary matrices and the inward process can be

expressed as follows:

V,(K.L) EN-L(wE—AK(wVfE+ViA)AN—K)F_IEK (2.3.6a)

V(K.L) —AK(A-EN‘L(wva+viA)EL)r'1AN'L (2.3.6b)

and
z (K.L) = EV A%y + EN_L(wE—AK(meE+ViA)AN_K)F_lzo(0,K)

+ A ov E+v MEN T (L), (2.3.7)
f i o
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Note in particular the starting values
zi(O.N)=V, Vi(O.N)=Vi. Vf(O,N)=Vf (2.3.8)
and the "final values”

z,(k.k) = x(k) for all k. (2.3.9)

Proof

Let Sh be the following hx(h+1) block matrix,

A E O .. O
O -AE .. O
Sh = - : (2.3.10)
0 0 -A E
then (2.2.1)-(2.2.2) can be expressed as
Bu(0)
x(0) )
[ SN ][ : ‘ = BuiN—l) . (2.3.11)
Vi 0...0 Vf x(N) v
Also it is easy to see that
K x(0) (0.K)
o :?¥.9...::::..: O |k Bu(K)
ST ™ SUNEPNN | oo N . (2.3.12)
............... Bu(L-1
0 .. 0 -ANL gL iEﬁ% zu%L,N;
V, 0 ...l 0] Ve v

Now to find Vi(K,L) and Vf(K.L), we need to first construct a full-rank

matrix
[Ti(K,L) Tf(K.L) P(K.,L)]
so that
A o
o EVL
[Ti(K.L) Tf(K.L) P(K,L)] = 0. (2.3.13)
V. ¥V
i f
If we now premultiply both sides of (2.3.12) by
0 I 0 0

Q(K.L) = [T,(K.L) 0 T.(K.L) P(K.L) (2.3.14)
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we obtain
S, [XSK)] ) Bl:l(K)
T (KLES  r L) E] () Ti(K,L)zo(O,K)E¥§%§T2)z°(L,N)+P(K,L)v
(2.3.15)
then clearly,
V,(K.L) = T (K,L)EX (2.3.16a)
Ve(K.L) = ~T,(K.L)A" "~ (2.3.16b)
and
2, (K.L) = T,(K.L)z_(0.K)+T(K.L)z_(L.N}+P(K.L)v. (2.3.17)
It is straightforward to check that
T,(K.L) = EN_L(mE—AK(wVfE+ViA)AN_K)F_l (2.3.18a)
Tp(K.L) = AS(A-E" " (¥ B4V A)E) (2.3.18b)
and
P(K.L) = EV [aK (2.3.18c)

satisfy our requirements. Clearly then (2.3.6) and (2.3.7) can be obtained

from (2.3.18).

Theorem 2.3.1 can be slightly generalized to give us a relationship
between all inwardly-propagated boundary matrices:
V,(K.L) = EJ‘L(mE—AK'I(wvf(I,J)E+vi(1,J)A)AJ'K)FEEIEK'I (2.3.19)
Ve(K.L) = -AK‘I(A-EJ‘L(mvf(I.J)E+vi(1,J)A)EL‘I)rEEIAJ‘L (2.3.19b)
when [K,L] is contained in [I,J] and where

T'M = (.)EM+1 - AM+1.
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Corollary

Suppose that (2.2.1)-(2.2.2) is a displacement system. Then,

vV, (K.L) = VE K (2.3.20a)
Ve(K.L) = VAl K (2.3.20b)
and
z,(K.L) =E A% + VE Tz (0.K) - VA2 (L.N). (2.3.21)
Proof

Equations (2.3.20) and (2.3.21) are easily derived from (2.3.6) and

(2.3.7) using the fact that E and A must commute with Vi and Vf.

An important interpretation of the inward process, or more specifically
the inwardly-propagated boundary matrices (2.3.6) is that the Green's
function for the system (2.3.4) on the smaller interval [K,L] is the
restriction of the Green's function of the original system (2.2.1)-(2.2.2)
defined on [O,N]. A logical question then is whether we can also move the
boundary conditions outward so that the Green's function for the resulting

system, when restricted to [0,N] yields the original Green’s function. This

is roughly the property of extendibility. In particular, it makes a good deal
of sense to consider extendibility when one considers shift-invariance, as
the intuitive notion of shift-invariance includes the idea that there is no
real time origin, while the TPBVDS (2.2.1)-(2.2.2) is defined on an interval

[0.N] of fixed length.
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Ve now make the following precise definitions:

Definition 2.3.1

The TPBVDS (2.2.1)-(2.2.3) is left (right) input—output extendible if
given any interval [K,N] ([0,L]) containing [0,N], there exists a TPBVDS over
this larger interval with the same dynamics as in (2.2.1) but with new
boundary matrices Vi(K,N), Vf(K,N) (Vi(O,L), Vf(O,L)) such that the weighting
pattern W(k,j) of the original system is the restriction of the weighting
pattern We(k,j) of the new extended system, i.e.

W(k.j) = We(k,j), O<k<N, O<j<N-1. (2.3.22)

The TPBVDS (2.2.1)-(2.2.3) is input-output extendible if it is both left

and right input-output extendible.

Definition 2.3.2

The TPBVDS (2.2.1)-(2.2.2) is left (right) extendible if given any
interval [K,N] ([0,L]) containing [0,N], there exists a TPBVDS over this
larger interval with the same dynamics as in (2.2.1) but with new boundary
matrices Vi(K,N), Vf(K,N) (Vi(O,L). Vf(O,L)) such that the Green’s function
G(k,j) of the original system is the restriction of the Green’s function
Ge(k.j) of the new extended system,‘i.e.

G(k.j) = G_(k.§).  OCkeN, OSjN-1. (2.3.23)

The TPBVDS (2.2.1)-(2.2.2) is extendible if it is both left and right

extendible.



33

In order to characterize the conditions under which each of these types
of extendibility hold, let us first define two matrices that will appear on
several occasions. Specifically, with any matrix F we associate the Drazin

Inverse FD and its invertible modification F. To define these, let T be an

invertible matrix such that

M o]
F=T T (2.3.24a)
0 N

where M is invertible and N is nilpotent (e.g. the real Jordan form has this

structure). Then

Mo oo]

P 1L (2.3.24b)
o o

~ M o]

F=T 1. (2.3.24c)
O N+I]

These matrices have a number of important properties:
(1) FD and ; commute with each other and with F.
(ii) If F is invertible, FD=F_1 and ;=F.
(iii) F°F = FOF (2.3.25)
and if p is the degree of nilpotency of N, i.e. Nu—I#O, N*-0, then for kou
D _ K pRF o PR (2.3.26)
(iv) Let G be any matrix, then the conditon
Ker(F") C Ker(G) (2.3.27)
is equivalent to
GFF = G. (2.3.28)
(v) If # is an F-invariant subspace, then FOF# C # and is also
F—invariant.

(vi) Let {E,A} be a regular pencil in standard-form, then

EEC+AAD-AAPEEP = 1. (2.3.29)



34

Properties (i)-(v) can be easily checked. To see why property (vi) is true we

need to first pre and post multiply (2.3.29) by T and T_1 chosen such that

E
-1

TET

1

ed

(2.3.30)

A3

where El' E2, A2 and A3 are invertible (see Section 2.6), in which case

.E_l
_1 1
TEPr 1 -
L
Then clearly
( 0
Al ! -

and

TAAPEEPT ! -

which imply the desired result.

0
BV L
. TEEPT L -
0
I
0

-1
2 (2.3.31)
(2.3.32)

(2.3.33)

Note that without loss of generality, it can always be assumed that the

E and A matrices of a TPBVDS in normalized form are in the block form

(2.3.30). This can always be achieved by a coordinate transformation. The

corresponding boundary matrices, in this coordinate system, must have the

following form

i
B Vi
i
v, = |0 Vi
i
o Vi

This is because the TPBVDS is

1
Vi3

£
11
£
Va1
£

V3

\

f

vi, 0
£

Vi, O (2.3.34)
£ -N

Vg A3

supposed to be in normalized form which means

that V, and V, must satisfy (2.2.5) and E' and A™ have the following block
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structures respectively,

B 0
0 Ay
Theorem 2.3.2
A TPBVDS is left extendible if and only if
Vv, -VEE =0 (2.3.35a)
v, - APAV, = 0. (2.3.35b)
It is right extendible if and only if
V, - EEV, = 0 (2.3.36a)
Ve - VeAPA = 0. (2.3.36b)
It is extendible if and only if
v, - BBV E’E = 0 (2.3.37a)
v, - APAv,A%A = 0. (2.3.37b)

Corollary
For a displacement TPBYDS the following statements are equivalent
(i) The TPBVDS is right extendible.
(ii) It is left extendible.
(iii) It is extendible.

(iv) The following equations hold

v, -VEE =0 (2.3.38a)
v D

¢~ VAA =0 (2.3.38b)
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The corollary follows from the theorem because in the displacement case E,
D

E”, A and AD commute with Vi and Vf.
Proof of Theorem 2.3.2

First we show necessity. Let the TPBVDS be left extendible then it must
be obtained by moving in the left boundary of another TPBVDS. Then from
(2.3.6) it can be seen that

Ker(V,) C Ker(E¥) (2.3.392)
Ker(V;) C Ker[(A¥)"] (2.3.39b)
where k is the number of steps that the boundary has moved. If k is larger
than the maximum of the nilpotency degrees of E and A, then equations
(2.3.39) and (2.3.35) are of course equivalent. If the system is right
extendible then (2.3.36) can be shown to be true similarly. And of course
(2.3.35) and (2.3.36) imply (2.3.37).

To show the sufficiency of (2.3.35) we need to construct matrices
Vi(K,N) and Vf(K,N), for each K<O so that when we move in these boundary
matrices to [O,N] we recover Vi and Vf. Assume then that (2.3.35) holds and
let

Vi (K.N) = [1-(8%) Ky AV K gDV K (2.3.40a)
VoK) = (a0, (2.3.40b)
First we need to make sure that the extended system is in normalized form,
i.e.

V,(KNEY Sy (kNAVE < 1 (2.3.41)
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From (2.3.40) and using the fact that Vi and Vf are in normalized form, we

get that
v, (KNE v (K.NAVE = (1-aaP)EEPan? (2.3.42)
which is equal to the identity matrix (see property (vi)).

Now we have to make sure that by moving in Vi(K,N) and Vf(K,N) to
Vi(O,N) and Vf(O,N) we recover Vi and Vf. This can be verified by
substituting the matrices in (2.3.40) into (2.3.19) with K=0, L=J=N and I=K.

The necessity (2.3.36) for right extendibility can be proven similarly.
Specifically we construct right extended matrices as follows

V,(0.L) = (ED)L'NVi (2.3.43a)
vp(o.L) = [1-EN N Ny Dyt (2.3.43b)

To see the necessity of (2.3.37) for extendibility simply note that

(2.3.37) clearly implies (2.3.35) and (2.3.36).

Theorem 2.3.3

Let a TPBVDS be left (right) input-output extendible. Then we can find
an equivalent TPBVDS using the freedom in its boundary matrices such that

this new TPBVDS is left (right) extendible.

Conversely, every left (right) extendible TPBVDS is left (right)

input-output extendible.

Proof
Let a TPBVDS defined over [0,N] be left input-output extendible then
there exist a TPBVDS defined over [-n,N] such that when we move in its

boundaries to [O,N] we get a TPBVDS with weighting pattern identical to the



weighting pattern of our original TPBVDS, possibly with different boundary
matrices. This new representation of our TPBVDS is clearly left extendible
because it has been obtained by moving in the left boundary of another system

n steps. A similar argument can be used for the case of right extendibility.

The converse of the theorem is trivial.

Theorem 2.3.4

A TPBVDS is left input-output extendible if and only if

o_(v, - VEXER_ =0 (2.3.44a)
D
0_(V; - A°AV)R_ = 0. (2.3.44b)

It is right input-output extendible if and only if

0 (V. - EEV.)R_=0 . (2.3.45a)
s''i i’"s
D
OS(Vf - VfA A)Rs = 0. (2.3.45b)
It is input-output extendible if and only if
o_(v, - EDEViEDE)RS -0 (2.3.46a)
D D
OS(Vf - A AVfA A)RS = 0. (2.3.46b)

Corollary
For a stationary TPBVDS the following statements are equivalent
(i) The TPBVDS is right input-output extendible.
(ii) It is left input—output extendible.
(iii) It is input-output extendible.

(iv) The following equations hold

]
o

0_(V, - V,E'E)R_ (2.3.47a)

Il
o

D
O, (Ve = VAAAR_ (2.3.47b)
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Proof of Theorem 2.3.4

Suppose that the TPBYDS is left input-output extendible, then from
Theorem 2.3.3 there exists a TPBVDS with the same weighting pattern which is

left extendible, i.e. there exist matrices V: and V: such that

0 VR

0 V.R (2.3.48a)
S 1S S 1S

¥
OV(R_ = OVR_ (2.3.48b)

and such that they satisfy (2.3.35).

Notice that (2.3.48) implies that
0 V'EPER = 0 vV ECER (2.3.49)
S 1 S s 1 S

0 APAVR = 0 ACav R (2.3.49b)
s f's s f's

because of the invariance properties of the strong reachability and

observability matrices (see Section 2.4). Premultiplying and postmultiplying

(2.3.35) (with V replaced by V*) by 0S and Rs respectively and using (2.3.48)
and (2.3.49) we obtain (2.3.44).

Now suppose that (2.3.44) holds. Let

Vi = (I-AAD)(ED)N+AADV1EDE (2.3.50a)
vy = My, (2.3.50b)
then we have to show that the new system obtained by replacing Vi and Vf with

these boundary matrices is just another representation of the original

system. First we need to make sure that this new system is in normalized

form:

VEWVAN = [(I—AAD)(ED)"+AADviEDE]E"+AAvaAN (2.3.51a)

= (1-AAD) (EED)N+adD - 1. (2.3.51b)
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Equation (2.3.51b) can be checked easily by using the block form (2.3.30).
W¥hat remains to be shown is that (2.3.48) holds for these matrices. Clearly
(2.3.48b) holds from (2.3.50) and (2.3.44b). Showing (2.3.48a) is more
complicated and again we suppose that the system is in the block form

(2.3.30), (2.3.34). The matrix V; in (2.3.50a), is given by

I BN 0 1EL Viz Vis I
Vi = 0 E;N ] + [ I 0 Vg Vo I -
0 0 I] 0 vgz V§3 0
EN 0 0
0 Vi, 0 (2.3.52)
0 Vi, O

i i
where V;z and V32 are (2,2) and (3,2) blocks of Vi.

The strong reachability and observability matrices have a block

structure as well , i.e.

o1
s

02

Os = W. s 3. Rs = s 4 Z (2.3.53)
oS RS

for some invertible matrices Z and W (this is due to the fact that the three

blocks of the system have distinct eigenvalues, see Section 2.6). Also

observe that

0_(V.E+V AN )R =0V ER + 0 AR —oRr . (2.3.54)
s'i f s s i s s f s s's

1

By pre and post multiplying (2.3.54) by W = and Z—l, respectively, and

inspecting the (1,2) block we get that

1,i 2
O_V],EpR> = 0 (2.3.55a)
which, since R§ is E2—invariant (again see Section 2.6), and E2 is
invertible, implies that
1,4 ;2
OSV12Rs = 0. (2.3.55b)
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Also note that (2.3.44a) implies that
i 3
o5vi k2 - 0. k=1,2.3. (2.3.56)
Now by noting the expression for V? in (2.3.52) and equations (2.3.55b) and
(2.3.56) it becomes clear that we must have that
OVR =0VR, (2.3.57)
sis si's
which is the desired result. The other cases can be argued similarly.

The corollary is immediate by noting that E and A and their Drazin

inverses commute with Vi and Vf when premultiplied by 0s and postmultiplied

by Rs'

We shall emphasize the fact that the notions of left and right
extendibility are indeed distinct notions and we could very well have a
system that is right extendible but not left extendible and vice versa. The

following example demonstrates this fact:

Example 2.3.1
Consider the following TPBVDS
0 0]
x(k+1) = x(k) + u(k) (2.3.58a)
0 1)
[0 0]
x(0) + x(N) = v. (2.3.58b)
1 0

This TPBVDS is well-posed and in normalized form. It is easy to check that

for this system (2.3.36b) is violated but (2.3.35a) and (2.3.35b) hold. Thus

this sytem is left extendible but not right extendible.

T O by« ey - vmeg



The input-output extendibility feature is a property of the weighting
pattern of the system and not of any specific representation so that it is

possible to refer to this property as extendibility of the weighting pattern.

The following theorem justifies this:

Theorem 2.3.5

Let 2 TPBVDS's (of possibly different dimension) defined over [0,N] have

identical weighting patterns. Then if one is input-output extendible so is

the other.

We shall prove this result in Section 2.5.

The extendibility property is a very important property because it
allows us to associate to each system a sequence of systems defined over any
desired interval. We present a way of constructing this sequence. But first

we give the following characterization of extendible systems:

Theorem 2.3.6

Let a TPBVDS be extendible and in block form (2.3.30), (2.3.34). Then

the boundary matrices must have the following structure
EI 0O o 0 o0 0

; 92 O - Ve=]0 Vo O (2.3.59)
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which means that the TPBVDS is separated into a purely causal part and a

purely anticausal part, each having nilpotent dynamics, and a non-descriptor

acausal part.

Note that if a system is input-output extendible then it has a

representation of the form (2.3.59).

Proof

The structure in equation (2.3.59) can be easily derived from the

extendibility condition and the fact that the system is in normalized form.

Theorem 2.3.6 allows us to simplify the expression for the Green'’s
function solution of an extendible system. By replacing the Vi and Vf in the
general Green’'s function solution by Vi and Vf in (2.3.59), we obtain the

following expression for the Green's function of an extendible system:

By PRIV (gl pd KDy i

ctk.3) = AEV Ry APATITIET o (1-aaD) (EDyKdpki1 <k
A ~‘k[1—(E"vi)]EEDZ'j‘1EJ - (I-EED)EI KDy IR oy
KEEV )MPAITIET 4+ (1-aaD) (£D) kI pkd- i<k
(2.3.60)

And of course the weighting pattern of an input-output extendible system can

be expressed as:

—C{AYE *[1- WV )IEEA IR - (-mEP)EI R (D) IRy g
CAE (2", )AA D~ TR 4 (1-aAD) (BD)KIpk-ilyp i<k

(2.3.61a)

W(k,j) =
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Note that (2.3.60) expresses the Green's function of an extendible TPBVDS and
all of its extension. Similarly, (2.3.61a) expresses the weighting pattern of
an input-output extendible TPBVDS and all of its extensions. This observation
deserves further comment. Specifically, what we have done is the following.
We begin with a specific extendible TPBVDS defined on [0,N], with boundary
matrices Vi, Vf so that the system is in standard form over this specific
interval. Equations (2.3.60) and (2.3.61a) then provide us with the Green’'s
function and weighting pattern for all extensions of the TPBVDS. Thus we use
the parameters associated with any one of the family of extensions to obtain
G and W for the whole family. These expressions must of course, not depend on
the particular member of the family used in the computation. In particular
(2.3.60) and (2.3.61a) do not depend on N. Rather ENVi is, in a sense, an
invariant of the entire family (remember that Vi also depends on N, as it is
chosen so that the system is in standard form over [0,N]). In the simpler
stationary case this point can be made much more explicit.

Note also that if we are in the basis (2.3.30), then by letting C and B

B
1

equal [C1 02 C3]' t@zl respectively, W(k,j) can be expressed as
B3

2272

yi gyl Jkyk=3-1
CzAgEg kv22E2A2 By, + CiEY kNa B

c AN Kyf pIN\N-J-1p o pkminlyikg gy
Wk.j) = | 2272 ERC R . (2.3.61b)

1 i<k
We can construct the sequence of (inward and outward) extensions (in
standard form) of our extendible or input-ouput extendible TPBVDS as follows
v, (1.3) = EANEV )MPETRT + (1-aaP)ET,
Ve(1.3) = E AT 1- (8%, ) JEE"EIA Y 4 (1-eEP)al (2.3.62a)



In the basis (2.3.30), (2.3.62a) becomes

EI(J-I) 0 0 0 0 0
-J.I.,i I.-I _ J J N N-J
Vi) = | o By TagvaEast o | v = | o Fy WooFs Ay T 0
o o o o 0 A;(J‘I)
(2.3.62b)

In the stationary case the situation is even simpler. The weighting

pattern of an input-output extendible stationary TPBVDS can be expressed as
follows

C(E"v )ED(AED)k I8 o

AV )AL ED) B keo

C(ENV )ED(A‘\ED ally: k>0
= [C[I (ENV )1aP(EAD) B k<o (2.3.63)

W(k) =

Notice that the Green’'s function G(k,j) of an extendible system and the
weighting pattern W(k,j) —-W(k) in the stationary case—— of an input-output
extendible system are completely determined in terms of matrices C, E, A, B
and P0=ENVi. Matrix Po contains the contribution of the boundary conditions
to the Green's function and to the weighting pattern of the system. When P0
is used to describe the contribution of the boundary conditions of an
extendible TPBVDS to the Green's function, PO is unique because in this case
Vi is unique. However, when Po is used to describe the contribution of the
boundary conditions of an input-output extendible TPBVDS to the weighting
pattern, Po is in general not unique because Vi in this case is not unique

(see Theorem 2.2.2). We shall study in detail this degree of freedom in the

choice of PO in the stationary case because it is needed for the realization
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theory of Chapter III. A similar study can be done for non-stationary
systems, although the calculations are significantly more complicated and
unenlightening.

Let us now consider an input-output extendible system. And let us define

the projection matrix P as follows.

Definition 2.3.3

Let P be a matrix such that

cPEC(AED) ¥ 1B k>0
—(1-P)AP(EAD) *B k<0 (2.3.64)
where W(k) is the weighting pattern of the input-output extendible stationary

W(k) =

TPBVDS (2.2.1)-(2.2.2) given by (2.3.63), and such that P satisfies
O (PA-AP)R_ = O_(PE-EP)R_ = 0 (2.3.65a)
0_(P-PEEV)R _ = OS((I—P)AAD-(I—P))RS = 0. (2.3.65b)

Then, P is called the projection matrix of (2.2.1)-(2.2.2).

Every input-output extendible stationary TPBVDS has a projection matrix
P in particular
P=P,=EV,. (2.3.662)
The above choice for the projection matrix is not unique in general. It is
not difficult to see that if P is a projection matrix then so is P+Q where Q
is any matrix such that OsQRs equals zero. In fact, we show later that P is a

projection matrix if and only if it satisfies

O_FR_ = OS(ENVi)RS. (2.3.66b)
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The weighting pattern of an input-output extendible stationary TPBVDS
(C,Vi.Vf.E,A,B,N) and the weighting patterns of all of its extensions are
completely described by (2.3.64). Thus in specifying this system, the
boundary condition (i.e. the contribution of the boundary condition to the
weighting pattern) is completely specified in terms of the projection matrix
P, and since P is independent of N, this TPBVDS and all of its extensions are
completely characterized by the 5-tuple (C,P,E,A,B). The 5-tuple (C.P,E,A,B)
characterizes a family of stationary extendible systems (i.e. one for each
interval length N) but since these systems all have identical weighting
patterns (i.e. W(k) as in (2.3.64) restricted to their domain of
definitions), we shall simply refer to this family of systems as an
input-output extendible stationary TPBVDS (C,P.E,A,B) having W(k), as defined
in (2.3.64), for weighting pattern.

The following results justify this representation of input-output

extendible stationary TPBVDS's.

Theorem 2.3.7

Consider the 5-tuple (C,P,E,A,B) such that {E,A} is in standard form and
such that (2.3.65) is verified. Then for any interval length N, there exist
matrices Vi and Vf such that the TPBVDS (C,Vi.Vf,E,A,B,N) is normalized,
input-output extendible and stationary and its weighting pattern (2.3.63) is

equal to W(k) in (2.3.64).
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Proof
Let
v, = PED)Y + ox(oE"+aM) ! (2.3.67)
Ve = (I-P) (AN + x(oE ANy (2.3.68)
where
X =1~ PEED - (I-P)AAD = (I-P)EED + PAAD - EEPAAD (2.3.69)
and o is any scalar such that
aEN + AN
is invertible. Then with Vi and Vf defined as in (2.3.67)-(2.3.68), we have
that (2.3.63) and (2.3.64) are equal thanks to the following
OSXRs = 0. (2.3.70)
Equations (2.3.65) imply (2.2.13) and (2.3.47). Also by direct calculation we

can see that Vi and Vf are normalized. Thus the TPBVDS (C,Vi,V E,A,B,N)

f!
satisfies the conditions of the theorem.

Theorem 2.3.8

Let (C,Vi,Vf.E,A,B,N) be an input-output extendible, stationary TPBVDS.

Then matrix P is a projection matrix of this TPBVDS if and only if

oV.ER = O_PR_ (2.3.71a)
N
OVA'R_ = O_(I-P)R_. (2.3.71b)

Proof

Suppose that P satisfies (2.3.71). Since the system is supposed to be
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stationary, (2.2.13) must hold. From (2.2.13), we get
o V.EVIR -0 EV.ER . (2.3.72)
s'i s s i s
Also thanks to the E-invariance of Ker(OS). there exists a matrix Z1 such
that
OE =Z2,0_. (2.3.73)
By combining (2.3.72) and (2.3.73), we get
oV.E'R -0EVER =2Z0VER
s'i s s 1 s 17s'i s
= Z,0_PR_ = O_EPR_. (2.3.74)
s s s s

Similarly, Thanks to the E-invariance of Im(Rs). there exists a matrix 22

such that
ER_ = RZ, (2.3.75)
and
0VEVYR —0V.ERZ =0FPRZ, =0 PER . (2.3.76)
s i s si s 2 s s 2 s s
By combining (2.3.74) and (2.3.76), we get
oV EYR - 0FEPR =0 PER . (2.3.77)
s i s s s s s
Similarly, by looking at O VA" 'R_, we find
N+1
o VA IR = 0 A(I-P)R_ = O_(I-P)AR_. (2.3.78)

Expressions (2.3.77) and (2.3.78) clearly imply (2.3.65a). Similarly,
(2.3.65b) follows from (2.3.47). Finally, (2.3.71) clearly implies (2.3.64)
and the if part of the theorem is proven.
To show the only if part note that by setting (2.3.63) equal to (2.3.64)
and using (2.3.65a) we obtain
0 PEPR = 0 V.EVEPR (2.3.7%)
s s s'i s
0 (1-P)APR = 0 v ANADR (2.3.79b)
s s s f s

which thanks to E- and A-invariance of Im(RS) imply that
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o pi’ER_ = O V.EEER (2.3.80a)
s s s i s
D N,.D
0_(I-P)A'AR, = OV A AL R (2.3.80b)
But (2.3.80), using (2.3.65b) and (2.3.47). implies (2.3.71) which is the

desired result.

Thus we have shown that there is complete equivalence between the
boundary representation in terms of the boundary matrices Vi and Vf and the
representation in terms of the projection matrix P. This latter
representation is used in the next chapter which deals with the realization

theory for input-output extendible, stationary TPBVDS’s.

Example 2.3.2

Consider the TPBVDS

x(k+1) = [g ﬂx(k) + u(k) (2.3.81a)
[}, 8]x(0) + [g ?]x(N) =v (2.3.81b)
y(k) = x(k). (2.3.81c)

This TPBYDS is in standard-form, stationary and input—output extendible (in
fact it is extendible). The projection matrix for this system is

P=0 (2.3.82)
(in this case P is unique because (2.3.81) is strongly reachable and
observable). The weighting pattern W(k) of (2.3.81) and its extensions is
given by

0 >0
W(k) = X (2.3.83)
. 0
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Note that (2.3.81) is an anti-causal system. This in fact can be seen
directly from the projection matrix. In general, if P=0, the system is
anti-causal, if P=I, it is causal. If P#0 and P#I, it is not necessarily true
that we have an acausal system. For example if C=0, for any P, W=0 which is
clearly not an acausal weighting pattern. However, for minimal systems (which

are the subjects of Section 2.5), we can deduce acausality if P#0 and Pg#I

(also see Section 3.2).
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2.4-Reachability and Observability
As discussed in [1], there are two notions for both reachability and
observability for TPBVDS’'s. In this section we provide brief reviews of these

definitions and present additional results.

Definition 2.4.1
The system (2.2.1)-(2.2.2) is strongly reachable on [K,L] if the map
{u(k): ke[K,L]} -> zo(K,L) (2.4.1)

is onto. The system is strongly reachable if it is strongly reachable on some

interval.

From (2.3.2) we can write

K
z (K.L) = RS(L—K)[uEL)l)] (2.4.2)
u(L—

vwhere
R (i) = [V 'BiEAT™2B:. . 1EI 1p]. (2.4.3)

Note that Rs=Rs(n). Furthermore a TPBVDS is strongly reachable if and only if
RS has full rank (this is a consequence of the generalized Cayley-Hamilton
Theorem). Furthermore, the strongly reachable spaces have the usual nesting
property, i.e.

ﬁs(k) = Im[Rs(k)] C Im[Rs(k+1)] = ﬁs(k+1). (2.4.4)
We refer the reader to [1] for proofs of these and other results related to
strong reachability. For future reference we define the strongly reachable

subspace

% = Im[R_]. (2.4.5)
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Also in [1] it is shown that the system (2.1)-(2.2) is strongly reachable if
and only if

[sE-tAiB]
has full row-rank for all (s,t)#0. Or equivalently, if no left eigenvector of
the system is orthogonal to the columns of B. Note that this test of strong
reachability can be applied even if the system is not in normalized-form. To
see this, let us suppose that (2.2.1)-(2.2.2) is well-posed, but not in
normalized-form. Now remember that any well-posed system can be put into
normalized-form by premultiplying (2.2.1) and (2.2.2) by some invertible
matrices T and S, respectively. Premultiplying (2.2.1) by an invertible
matrix T means replacing E, A, and B with TE, TA and TB, respectively. Since
the new system is in normalized form, we can test whether or not it is
strongly reachable by testing the full rankedness of [SsTE-tTA!TB]=T[ sE-tAiB].

By noting that T is invertible, we obtain the desired result.

Defintion 2.4.2
The system (2.2.1)-(2.2.3) is strongly observable on [K,L] if the map
zi(K,L)e {v(k): ke[K,L]} (2.4.6)
defined by (2.3.5), (2.3.6), and (2.2.3) with u=0 on [K,L] is one to one. The

system is strongly observable if it is strongly observable on some [K.L].

With u=0, we have

: = 0_(LK)z,(K,L) (2.4.7)
(L) S 1
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where

0,(3) = |77 . (2.4.8)
cal

Note that OS= Os(n—l). Furthermore, a TPBVDS is strongly observable if and
only if 0s has full rank. In addition, the strong unobservability subspaces
have the usual nesting property

Os(k+1) = Ker(Os(k+1)) C Os(k) = Ker(OS(k)). (2.4.9)
Again for future reference we define the strongly unobservable subspace

0s = Ker(Os). (2.4.10)
Again form [1] we have that the TPBVDS (2.1)-(2.2) is strongly

o

has full column-rank for all (s,t)#(0,0), or equivalently, if no right

observable if and only if

eigenvector of the system is orthogonal to the rows of C. Again, as for the
case of strong reachability, this test of strong observability is valid even

if the system is not in normalized-form.

Note that the properties of strong reachability and observability
involve only the matrices C, E, A, and B. As we shall see, the other weaker

set of notions of reachability and observability involve the boundary

matrices as well.



Definition 2.4.3
The system (2.2.1)-(2.2.2) is weakly reachable off [K,L] if the map
{u(k): ke[0,K-1]JU[L,N-1]} -> zi(K,L) (2.4.11)
with v=0 is onto. The weakly reachable subspace ﬁw(K.L) is the range of this
map. The system is called weakly reachable if

A n
ﬁw =U QW(K.L) =R". (2.4.12)

The space Qw is called the weak reachability space.

While it is shown in [1] that for K and L far from the boundaries the
dimension of ﬁw(K.L) is constant, it is not generally true that this space is
fixed or that any nesting of weak reachability spaces occurs as K and L move
inward from the boundaries. That is why we may very well have a system which
is weakly reachable, but where QW(K,L) is not the whole space for any K and
L. In [1] we defined weak reachability differently, specifically we called a
system weakly reachable if ﬁw(K,L) equaled R® for K and L far from the

boundaries. We shall see later that Definition 2.4.3 is more appropriate.

Theorem 2.4.1

The weak reachability space ﬁw can be expressed as

-1-k '
% = U AE" "“Im[VR_ V,R_]. (2.4.13)
w 0<k<n i’s f's



Corollary
For an extendible system, the weak reachability space ﬁw can be

expressed as

g, = U A1y g 4 i_. (2.4.14)
0<k<n

Proof
First we prove the following Lemma which justifies the use of the terms

"strong" and "weak".

Lemma 2.4.1

For any TPBVDS

% C% . (2.4.15)

Proof
We will show a stronger result that

QSC QW(K,L) for K,L€[n,N-n]. (2.4.16)
From expression (2.3.7) for zi(K.L) with v=0, and the fact that the space
reached by zo(O.K) and zo(L.N) is exactly ﬁs, we can easily deduce that

% (K.L) = EN_L(wE—AK(wVfE+ViA)AN-K)F—lﬁs

+ AK(A-EN‘L(mva+viA)EL)r‘las (2.4.17)
By noting that A\ "% C %_ and E'% C %_. (2.4.17) implies that
% (K.L) 2 EN‘L(wE-AK(mva+viA)AN‘K)ELF‘lms + AK(A—EN_L(meE+ViA)EL)AN_KF_lﬁs

=%+ EN‘LAK(mva+viA)AN‘KELr'las (2.4.18)

which in turn implies (2.4.16). Clearly then (2.4.16) implies (2.4.15).



57

To prove the Theorem, observe that

5O+ g % (K.K). (2.4.19)
Using (2.2.7) and the fact that r'lms= %_. this implies that
% o U (AEV K[V E+V.ATR } + & . for all . (2.4.20)
w K f i s s

But thanks to (2.2.5) and the E- and A-invariance of Qs,
QRS + [(.:VfE+ViA]£91s = Viels + mes (2.4.21)

which along with (2.4.19) and Cayley-Hamilton proves that
g > u AFgrlk
0<k<n

The other inclusion is trivial since in expression (2.3.7) for zi(K,L), the

Im[V.R_ VR ]. (2.4.22)

range of the map uz, is essentially the range of matrices ArEsViAtEu and
ATESVATE".
To prove the corollary simply note that we can decompose the system into
3 subsystems as in (3.2.30), in which case Vi and Vf are expressed as in
(2.3.59). Now using the fact that for an extendible system Vf=(I—ViEN)(AD)N,
we can show that
Im[ViRs:Rs] = Im[ViRs:VfRs] (2.4.23)

which yields the desired result.

In the case of displacement systems, expression (2.4.13) simplifies and
ﬁw can be expressed as follows
%, = In[V.R_ VR_]. (2.4.24)
If in addition the system is extendible then ﬁw= ﬁw(K,L) for K and L far from

the boundaries (see [1]).



In analogy with the strong reachability result, we state without proof

the following characterization of weak reachability, which is proved in [2]:

Theorem 2.4.2
A displacement system is weakly reachable if and only if the matrix
[sE—tA:ViBlVfB]
has full rank for all (s,t)#(0,0). If in addition it is extendible, then it
is weakly reachable if and only if
[sE—tA:ViBlB]

has full rank for all (s, t)#(0,0).

As one would expect, there is a dual set of concepts and results for

weak observability:

Definition 2.4.4
The system (2.2.1)-(2.2.3) is weakly observable off [K,L] if the map
zo(K.L)—> {v(k): ke[0,K]JU[L,N]} (2.4.25)
- with v=0 and u(j)=0. je[0,K-1JU[L,N-1] is one to one. The weakly unobservable

subspace OW(K,L) is the null space of this map. The system is called weakly

observable if

o, éKnLow(K,L) = {0}. (2.4.26)

The space Ow is the weak unobservability space.
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By analogy with the weak reachability case we simply present the dual

set of results concerning weak observability.

Theorem 2.4.3

The weakly unobservable space can be expressed as follows

oV,
0 = n Ker[os 1]En_l_kAk. (2.4.27)

¥ 0¢k<n s'f

Corollary
For an extendible system the weakly unobservable space can be expressed

as follows
n-1-k, k

0O =0_N{ N Ker(OV.E A7) }. (2.4.28)
W s 0<k<n s i
Lemma 2.4.2
For any TPBVDS
Ow c Os. (2.4.29)

This Lemma shows that weak observability is a weaker condition that strong

observability.

If the TPBVDS is displacement, (2.4.27) simplifies as follows
Osvi
OW = Ker !0 v ] (2.4.30)
s f
and if in addition it is extendible 0w= OW(K.L) for all K and L far from the

boundaries.



Theorem 2.4.4

A displacement system is weakly observable if and only if the matrix

sE-tA
o

Cvf
has full rank for all (s,t)#(0,0). If in addition, it is extendible, then it

is extendible if and only if

sE-tA
[cv.
i

C

has full rank for all (s,t)#(0,0).

In this section we have introduced two distinct notions of reachability
and observability. In some cases the two notions coincide, for example for
causal systems where V.=E=I and V.=0. In this case # =% and 0 = 0 . In

i f s W S W
general, however, that is not the case. We shall see in the next section that

both of these notions are indeed needed to study minimality.

The following example illustrates the difference between the concept of

strong and that of weak reachability:

Example 2.4.1
Consider the following displacement TPBVDS

1
x(k+1) = x(k) + [ ]u(k) (2.4.31)
0

1 O 0O O
[ ]x(O) + l ‘x(N) =0 (2.4.32)
1 1 -1 0
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where

(2.4.33)

This system is well-posed and in normalized form. The strong reachability

so that the system is not strongly reachable. In fact, we can easily see that

space for this system is just

only X is strongly reachable and X, is not. However, using (2.4.24), we can
check that the system is weakly reachable. In fact, we can check that this
system is weakly reachable off any interval [K.L]., O<K,L<N. To intuitively
illustrate this fact, note that boundary condition (2.4.32) can be rewritten

as follows
31(0) =0 (2.4.34)
x2(0) = xl(N). (2.4.35)
It is clear that xl(k) can be made arbitrary by proper choice of inputs u(j),
J<k. On the other hand, xl(N), and thus x2(0), can also be independently made

arbitrary by proper choice of u(j), k{j<N. But (2.4.31) implies that x,(k) is

)
constant for all k, so that it must equal x2(0) and xl(N). The result is that
xl(k) and x2(k), which form x(k), can be made arbitrary by proper choice of

the input u. This explains why this system is weakly reachable.
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2.5-Minimality

In this section we present minimality results for TPBVDS’s. We also
specifically consider the stationary and extendible stationary cases. These
results are analogous to those in [7] and [12], with differences due to

possible singularity of E and A.

Definition 2.5.1

A TPBVDS is minimal if x has the lowest dimension among all TPBVDS's

having the same weighting pattern.

Theorem 2.5.1

A TPBVDS with N>4n is minimal if and only if

(a) 4 = R® (2.5.1)
(b) 0 = {0} (2.5.2)
(c) OS C %s (2.5.3)

(i.e. if it is weakly reachable and observable, and any strongly unobserved

mode is strongly reached).

As in the causal case, the proof of this result involves the
introduction of Hankel matrices and the description of a method for reducing

the dimension of systems violating any of the conditions (a)-(c). As we will
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see, in the present context we actually have 3 different Hankel matrices and
also, as in [7] we may have a certain level of nonuniquness in minimal
realizations that is not present in the causal case.

The length of the interval here is assumed to be larger than 4 times the
dimension of the system so that all the modes on both sides of a state in the
middle of the interval can be reached and observed (see the proof for details
on where this assumption is needed). If N is not large enough, the conditions

of Theorem 2.5.1 become necessary but not sufficient.

Proof
We begin with the description of reduction procedures if any of the
conditions (2.5.1)-(2.5.3) are not satisfied. Consider first the case in
which %w# R™. Let ﬁz be any subspace such that
% 6% =R (2.5.4)
Then, by performing a similarity transformation on x to represent it in a
basis compatible with (2.5.4) we arrive at a system of the form

(2.2.1)-(2.2.3) with

X
1
X = [xz] X, € Qw’ X, € %2, (2.5.5a)
i i
Al A Bl Ep Yii Vi
A= . E = LoV, = |} 12, (2.5.5b)
0 A22 0 E22 i vi vi
21 Yoo
v, = iz c=[C, {CJ]. B= °1 2.5.5
£ |f £ 0 YTl B o |- (2.5.5¢)
Ve,V

The O-blocks in A and E follow from the A- and E-invariance of ﬂw. The

O-block in B is due to the fact that Im[B] C ﬁs (Cayley-Hamilton) and QSC ﬁw.



In addition, since

ﬁw D Viﬂs + Vfﬁs (2.5.6)
we must have
ik .j _yf Wk i _
V21A11E11B1 = V21A11E11B1 = 0. (2.5.7)

From the form (2.2.7) for the weighting pattern of a TPBVDS we can then

conclude that the weighting pattern of our system is given by

kK, Nk i £ K \ojkN-j-1.-1. .
CiA(A qu (V11411%9Y11E11 BB A" Ty By 32k
N £ Nk, j k-j-1.-1. .
Clqu (WE);-A11 (V11811791 B DA JE AT T By 3k
N+1

where Tl = wE?Il— All , so that we have apparently reduced our system to

W(k.j) = (2.5.8)

Ellxl(k+1) = Allxl(k) + Blu(k)
i f
Vllxl(O) + V11x1(N) =V (2.5.9)
y(k) = Clxl(k)'
Note since E and A are in standard form, so are E11 and All' However, the

boundary matrices Vil and Vil need not be normalized and indeed there is no

f .
11 In

_ - . k N-k -1, N-j
(2.5.8) are pre- and post-multiplied by ClAllEl:1 and Fl AIIETI B1 so that

there may be a degree of freedom in the choices for Vil and Vil that verify

1
s

guarantee that (2.5.9) is well-posed. However, note that Vi, and V

(2.5.8). In fact, if O_ and R; denote the strong observability and

reachability matrices of (2.5.9), since the null space of CiATIET;k includes

1 -1,j N-j . . 1 . i
that of 0S and the range of Fl AHET1 B1 is included in Rs, we can modify V11
1 1

and Vil as long as OSViIRS and O;VilR; remain unchanged and preserve the
weighting pattern (2.5.8). Thanks to the following result, we can modify the
boundary matrices in order to make (2.5.9) well-posed while leaving the

weighting pattern unchanged.
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Consider a (possibly not well-posed) TPBVDS (2.2.1)-(2.2.2), with E and

A in standard form and for which the following holds:

0_(V.E' + VAR, = OR_ (2.5.10)
Then we can find ;i' Gf so that
VE' + VAl =1 (2.5.11)
and
OVR =OVR. . OVR =0VR_. (2.5.12)
Proof
Let
X=1-[VE + VA (2.5.13)
so that
OXR_ = 0. (2.5.14)
Let a and b be any scalars such that (aEN+bAN) is invertible, and then take
V, =V, + aX(aE" + bAY)”! (2.5.15a)
V= Vg + BX(aE" + bAM)! (2.5.15b)

From (2.5.14) and the A- and E-invariance of QS and OS we have that
O AETATESR_ = 0 k.j.r.s0 (2.5.16)
from which we can easily check that (2.5.12) holds. Finally (2.5.11) can also

be checked by direct calculation.

To apply this lemma to (2.5.9) we must show that (2.5.10) holds for this



system. Expressions (2.5.5) and (2.5.7) imply that:

CA¥EIR = CIAI‘I‘EI{B1 (2.5.17a)
r.s Jn _ T s (i J
CATESV,A"EB = C, AT ES VI A KE JB (2.5.17b)
r.s Ja _ r s  f J
CATESV A'EB = C,ATES, Vi A YE B . (2.5.17c)

Therefore, since our original system was assumed to be in normalized form

reseyi o N f , N Jn  _ ~aTpS N J
¢, ATESIVLE v A T1a KE dB. = caTE [v,E+v A" JAETB

1171171
_ caktrojts, k+r.. j+s
=CA" "EY "B = ClAll E11 B1 (2.5.18)
from which we conclude that
1,1 N f N.,1 1,1
OS[V11E11+V11A11]Rs = OSRS (2.5.19)

where O; and R: are the strong observability and reachability matrices for
(2.5.9).

To continue with the proof of the theorem, note that the problem of
reducing the dimension of the realization if (2.5.2) is violated is merely
the dual of the problem that we have just considered. Consequently, we omit
the details. We turn then to the case in which condition (2.5.3) is not
satisfied. In this case, there is a subspace Z#{0} such that

ﬂs 6 Z = RS + Os. (2.5.20)
Let # be any subspace such that # ® Z = R™ and perform a similarity
transformation of the TPBVDS to represent it in a basis compatible with
(2.5.4). This yields a model as in (2.5.5b), (2.5.5c) with the additional
fact that C2=0. To put the reduced system in normalized form we once again
apply Lemma 2.5.1.

What remains to show is that two TPBVDS's with the same weighting
pattern and both satisfying (2.5.1)-(2.5.3) must have the same dimension and

consequently are minimal. To proceed with the proof we need the following

Lemma:
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Lemma 2.5.2
Let {Ei’Ai}’ i=1,2, be two regular pencils so that aEi+BAi=I, i=1,2,
where dim(Ei)=dim(Ai)=ni. Suppose that N22max(n1,n2). Also suppose that for
some matrices {Mi'Ni}’ i=1,2,
MASE) TN = MARENTTTRN, L ocka-1. (2.5.21)
Then for all K, L,

M ASESN) = MOASELN, . (2.5.22)

22

Proof
Note first that for K+L{N-1 we can write
L L N-1-K-L

E(AT = E{AC(aE, +PA,) (2.5.23)
and in this case (2.5.22) follows directly from (2.5.21). For K+L)N, let us
suppose for simplicity that a#0. From what we have first shown for K+L{N-1,
we know that

MATN, = MASN, . OCkN-1. (2.5.24)
From results on the causal partial realization problem [15] and the fact that
N22ni. we can conclude that

MASN, = MASN, . k0. (2.5.25)

Equation (2.5.22) then follows since we can write Ei as (I-BAi)/a.

We note that as discussed in [15] the condition on the size of N is
important here, although slightly smaller bounds on the interval size can be

obtained --(essentially the sum of observability and reachability indices).
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Proceeding with the proof, consider two systems (Cj’Ej’Aj'v;'vg'Bj)’
j=1.2, satisfying minimality conditions (2.5.1)-(2.5.3), and without loss of
generality assume that both are in normalized form with the same a and B.
¥hat we know is that

K, N-koi, . of \okyoj=k,N-j-1 -1
C,AY(A,E] (ViA+ViEDEDE AT 1p
Lk, Nkoud, L ofe ko ik, N-j—1.-1 .
= CoAg(AyEy (VAL +aVEE,JER)ES¥A) r;'By . ik (2.5.26a)
Nk, o kooly o ofc s N-Kypdkej—1-1
C,E) K(uE -AS(VIA +aViE DAY F)EIAN I,

f

Nk, o ki N-k,.j k-j-1--1 .
= CyEy X(uE, A (VoA toVoEo A VESASTITI !B, . ek, (2.5.26b)

272
Let k€[2n,N-2n] (remember that N>4n), then we can apply Lemma 2.3.2 to get
k -k, i f k L.-1
C,AT(A ) (VyA+ViE; JESEIATT] 'B)
k -k, i f k L1
= Cyhg(AyEy “(VaAy+aVAE, JER)ESACTS B, ., for all KL (2.5.27a)
-k ki f N-k L1
ClET (0E -A  (ViA+oVIE A )E§A1r1 By
-k k, i 3 N-k L.-1
= C,Ey (WEy—As (VaAS+OVSE JAS “)ESASTS'B, . for all K.L. (2.5.27b)
By taking K=r, L=N-k+s in (2.5.27a) and K=k+r and L=s in (2.5.27b) and
subtracting the two sides of (2.5.27a) from (2.5.27b) we obtain
r,s r,s
C,E]AJB, = C,E ASB, (2.5.28)
and this for all r,s>O.

Using (2.5.26) and (2.5.28) we can show that

N-k,. i £ i N-j-1 -1, X, i £ ojN-j-1.-1
C ATE) (VA +oViE JEIAT I 1B - CzA;Eg (VoAy+oVeE)EJAS 717 B, .

(2.5.29)

and taking into account Lemma 2.5.2, this implies that

IS, i f t,u—1 TS, i f t,u.—1
CiAE (VA HOV E JEJAIT, "By = CoASES (VoA +wVoES JESAT, B,
(2.5.30)

for all r,s,t,u20. Then using the fact that both systems are in normalized
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form we obtain

it r.Syint

C1A1E1V1E1AL1131 = CoAJESVSE ACB, (2.5.31a)
s, f_t,u ra.s,f.t,u

clA«sI}:llelAIE;1 = C,AJECVSE AB, (2.5.31b)

for all r,s,t,u0.

As in the case of causal systems, Hankel matrices are extremely useful
in proving our minimality result. In the present context, however, there are

three different Hankel matrices.

H, = olr! = o%2 (2.5.32)
in S W S W
H =oRr! = o%% (2.5.33)
out w s w'Ss
H = o'r! = o%R% (2.5.34)
S S S S S

where R: and Og are the strong reachability and observability matrices of

system j, respectively, and where

J _ pan-1 Jiy pd n-2 Jiy pd n-1 Jiy pd
Rw_[A (Viks.VfRS) EA (VR.VfRs) ... E (ViR APSHNE

]n_
]n_

Ri and Og are the weak reachabilitx and weak observability matrices of system
Jj, respectively. Clearly

I = 1m(rd '
Qw = Im(Rw) (2.5.35a)
Jo_ J
Ow = Ker(Ow) (2.5.35b)
for j=1,2. Equations (2.5.32)-(2.5.34) are direct consequences of (2.5.28)

and (2.5.31). From (2.5.33), we get that

2 1
RS = R_, (2.5.36)
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where
2, 2.-1.2, 1
U = {0w Ow} 0w Ow, (2.5.37)
and where 03 has full rank because of the weak observability assumption.

Similarly we can obtain an analogous expression for R; in terms of Ri. These

allow us to conclude that

rank(R) = rank(R%) = p. (2.5.38)
and in an analogous way we can show that
rank(0,) = rank(07) = o. (2.5.39)
Finally, condition (2.5.3) together with (2.5.34) imply that
p - (n1 - w) = rank Hs =p - (n2 - w) (2.5.40)
from which we see that
n; =n,, (2.5.41)

completing the proof of the Theorem.

Corollary 2.5.1a
Let (Cj’v;’vg’Ej’Aj’Bj’N)' j=1,2, be two minimal realizations of the
same weighting pattern, where {Ej,Aj}. J=1,2, are in standard form for the

same a and B. Then there exists an invertible matrix T so that

B, = TB, (2.5.42a)

Cy=CT (2.5.42b)
o, (vi-TViT)R! = 0 (2.5.43a)
ol (vi-TvinR! = o (2.5.43b)

and
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(A,-T'A,T)R! = 0 (2.5.44a)
(E,-T 'E,T)R; = 0 (2.5.44b)
OL(A-T 'AT) = 0 (2.5.44c)
o;(El—T'lEzT) =0 (2.5.44d)

where R; and 0; are the strong reachability and observability matrices for

system 1.

Proof

From (2.5.36) we have that

R® = tR! (2.5.45)
S S

with U defined as in (2.5.37). While this choice for U is not necessarily

invertible, we can always find an invertible T so that

RZ = TR (2.5.46)

] ]
since ﬁi and ﬂi have the same dimension. In a similar way we can always find
an invertible matrix W so that
oW = ol. (2.5.47)

From (2.5.34) we can then conclude that

Oi[W—T]R; = 0. (2.5.48)
The question, then is whether we can choose W=T. To see that this can be
done, assume that we have chosen a basis for each of the two systems
compatible with the following direct sum decomposition:

0,00 N%] 0 [o. N %_].

The requirement (2.5.46) implies that T must have the form

T=|Ty, T, % (2.5.49)
0 0 x



T2

where Tl’ T2, T3 and T4 are fixed and * are arbitrary. Similarly, (2.5.47)

implies that W must have the form

»* * *
W=|0o w W] (2.5.50)
0 Wy W,

Finally, by direct computation we can check that (2.5.48) implies

Wl = T4 . T3 = W3 =0 (2.5.51)
so that with the indicated degrees of freedom we can take
Ty Ty
W=T=1|0 T4 Wz . (2.5.52)
0O O W4

Proceeding with the proof, note that (2.5.42a), (2.5.42b) follow from
(2.5.47), (2.5.48) plus the fact that {EJ,Aj}. j=1,2, are in standard form
for the same a and B. Also, the equality of the weighting patterns of the two

systems is equivalent to

1,11 1.2

oLvir! = o?vig2 (2.5.53a)

olvir! - o?vig? (2.5.53b)
s 1's s2's

from which (2.5.43a) and (2.5.43b) follow. Finally, recall that RS is A- and

E-invariant. Thus, thanks to Cayley-Hamilton we can conclude that

2 1 2 2
A2RS = TAIRS . E2Rs = TE2RS (2.5.54)

from which (2.5.44a) and (2.5.44b) follow. Equation (2.5.44c) and (2.5.44d)

are verified in a similar fashion.

Corollary 2.5.1b

(a) Every left (right) input-output extendible TPBVDS has a minimal

realization that is also left (right) input-output extendible.

(b) Every left (right) extension of a minimal left (right) input-output

extendible TPBVDS is minimal.
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Proof

Part (a) follows Theorem 2.3.5 which we prove here.
Proof of Theorem_2.3.5

Suppose that we have two realizations (Cj.Ej.Aj.V;.Vg,Bj), j=1,2, of the
same weighting pattern. Then we would like to show that if one of these is
left (right) input-output extendible, so is the other. This result can be
seen to be true as follows. First, it is not difficult to see that the
following genralization of Lemma 2.5.2 holds. Specifically, if (2.5.21)
holds, then for all P,Q,K,L>O,

R

Then not only do we have that

1,i,1 i 2
OLVIR = O2ViR? (2.5.56a)
1,f,1 £f.2
Osles = OS 2RS (2.5.56b)
(since both systems have the same weighting pattern) but also
1,1 1 i 2
OLVIEE R! = °§V2E]2)E2Rs (2.5.57a)
1,D,,f,1 2.D, .2
°sA1AV1Rs = OSA2A2V2RS. (2.5.57b)

Suppose that system 1 is left input-output extendible and thus satisfies
(2.3.44). Then (2.5.56) and (2.5.57) imply that system 2 also satisfies
(2.3.44) which means that it is left input-output extendible. Right

extendibility can be proven similarly.

To show part (b), suppose that an extension of a minimal system defined
on the interval [0,N] is not minimal and thus can be reduced. Reduce the
extension and move in its boundaries to the interval [0,N]. The system
obtained has clearly the same weighting pattern as the original system

defined on [0O,N] but has lower dimension, which is a contradiction.
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Theorem 2.5.2

A stationary TPBVDS, with N)>2n, is minimal if and only if

(2) Im[V,R_IV.R_] = R" (2.5.58)
oV,
s 1

(b) Ker = {0} (2.5.59)
oV
s f

(c) 0 Ca_ (2.5.60)

Proof

First, note that the minimality conditions of Theorem 2.5.1 are
necessary and sufficient for this case as well, even though we have a weaker
condition on the length of the interval. This is because the only place that
the assumption N>4n was used in the proof of Theorem 2.5.1, was in the
derivation of (2.5.28) and (2.5.31). But in the stationary case, as long as
N22n, (2.5.31) immediately follows from Lemma 2.5.2 and the assumption that
the weighting patterns of the two systems must be identical. In addtion,
(2.5.28) follows from (2.5.31) and the assumption that the two systems are in
normalized form. So all we need to show is that conditions (2.5.1)-(2.5.3)

and (2.5.58)-(2.5.60) are equivalent in the stationary case.

Note that since

Im[V,R_{VR ] C & (2.5.61)

oV,
s'i
Ker ) Os (2.5.62)
oV
s f
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condition (2.5.58)-(2.5.60) are sufficient for minimality. To show necessity
let us assume that (2.5.1)-(2.5.3) hold. Suppose also that (2.5.58) fails in
which case there exists a vector q#0 such that
q'[ViRSIVfRS] =0, (2.5.63)
which implies that
q'Rs = 0. (2.5.64)
By noting that condition (2.5.60) is equivalent to
Left-Ker(R ) = #. C 0. = Row-Im(0,) (2.5.65)
(2.5.64) implies that
q' € Row—Im(Os) (2.5.66)
which thanks to the stationarity conditions (2.2.13a) and (2.2.13b) implies
that

q'[ViErAs—ErAsVi]Rs 0 (2.5.67a)
q'[va’As—E’Asvf]Rs =0 (2.5.67b)
for all r and s. Thanks to E and A-invariance of Rs’ there exists a matrix D
such that
E" KA = R D. (2.5.68)
Then (2.5.67) implies
QBN TEANV.R VR ] = a'[V,R_D!V,R D] = 0. (2.5.69)
Since (2.5.69) holds for all k€[0,n-1] we obtain
a'R, =0, (2.5.70)
which violates (2.5.1). Similarly we can show that if (2.5.59) fails, then
(2.5.2) is violated.
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We have shown above that conditions (2.5.1)-(2.5.3) are equivalent to
conditions (2.5.58)-(2.5.60) for stationary systems. However, note that this
does not imply that (2.5.1) is equivalent to (2.5.58), and (2.5.2) to
(2.5.59). As can be seen from the proof of Theorem 2.5.2, condition (2.5.60)
must be true to have (2.5.1) be equivalent to (2.5.58) and for (2.5.2) to be

equivalent to (2.5.59). The following example illustrates this point:

Example 2.5.1
Consider the following stationary TPBVDS in normalized form defined over

an interval of length N

100 00 0O
=[001]. V,=010|V,=[00 0|
101 -1 N -N“/2
0]. (2.5.71)
oo1 0

For this system, the strong reachability space Rs is

[é]
b

and thus does not have full rank. This implies that condition (2.5.58) is not

and so [ViRslVfRs] is equal to

satisfied. On the other hand, we have that
n-k-1.k

% = U  {Im(E A'[V,R_IV.R 1)}
¥ k=0,..,n-1
’ 110
= U {Im( [o 1 1] [ ])} (2.5.72)
k=0,1,2 o001| |1 -1

which means that condition (2.5.1) is satisfied. This example illustrates
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that, if (2.5.3) does not hold, (2.5.1) and (2.5.58) are not equivalent. In
this example, (2.5.3) does not hold since the strong observability matrix 0s
is equal to [0 O 1] which implies that Os equals
10
Im( |0 1))
0 O
which is clearly not included in the strongly reachable space

0
Im( 0‘).
1

In Section 2.3 we examined the family of input-output extendible
stationary TPBVDS's having all identical weighting patterns restricted to
their domains of definition and identical system matrices C, E, A and B. We
showed that this family of systems is completely characterized by its
projection matrix P. We refered to this family of systems as the input-output
extendible stationary TPBVDS (C,P,E,A,B).

Thanks to Corollary 2.5.1a, we can see that if one of the members of the
family of systems (C,P,E,A,B) defined over an interval of length N is minimal
then all the members defined over intervals longer than N are also minimal.
Also it can be verified that by moving in the boundary conditions of a
minimal system (i.e. satisfying (2.5.58)-(2.5.60)) we obtain minimal systems
as long as N2>2n. Thus, either all the members of the family defined over
intervals of at least length 2n are minimal or no member is minimal. This
property allows us to talk about minimality of the input—output extendible

stationary TPBVDS (C,P.E,A,B).
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Theorem 2.5.3

The input-output extendible stationary TPBVDS (C,P,E,A,B) is minimal if
and only if

(a) [sE-tAIPBiB] has full row rank for all (s.t)#(0,0) (2.5.73a)

sE-tA
(b) | CP has full column rank for all (s, t)#(0,0) (2.5.73b)
C
(c) o, C QS. (2.5.73c)

Proof

The proof here is similar in structure to the proof of Theorem 2.5.2,
although a bit more involved. We have to show that conditions (2.5.1)-(2.5.3)
applied to any paticular member (C,Vi.Vf,E,A.B.N), with N22n, of the family
of input-output extendible stationary TPBVDS's (C,P.E,A,B), are equivalent to
conditions (2.5.73). Condition (2.5.73a) is equivalent to

U Im{E" 17¥AK[PBiB]) = R". (2.5.74)

0<k<n
We would first like to show that (2.5.73a) (or equivalently (2.5.74)) and

(2.5.73c) imply (2.5.1). Let v be a vector such that

v'Rw =0 (2.5.75)
where Rw is the weak reachability matrix of any member (C,Vi,VfE,A,B,N) of
(C.P,E,A,B). Equation (2.5.75) implies that

v'RS = 0. (2.5.76)

As argued in the proof of the Theorem 2.5.2, we have that

v' € Row—Im(Os). (2.5.77)
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Using (2.5.77) and (2.3.73a) we get
n-1-k, k

vi[ U Inm{E* 1 %X[pBiB]}] =
0<k<n
vi[ U InfE® KAk VB! v A"B])] = (2.5.78)
0<k<n

which is the desired result. Similarly, we can show that (2.5.73b) and
(2.5.73c) imply (2.5.2). Thus we have shown that conditions (2.5.73) imply
(2.5.1)-(2.5.3) applied to any member of the family (C,P,E,A,B).

Conversely, let v be a vector such that
v'[ U Im(E*17%AK[PBIB]}] = 0 (2.5.79)
0<k<n

which together with (2.5.3) implies that

v'Rs =0 (2.5.80)
which implies (2.5.77). But then (2.3.73a) yields
v'i[ U mmnlkﬁvﬂ%VABn]_o (2.5.81)

0<k<n
where (C,Vi.Vf,E,A.B.N) is any member of the family (C.P,E,A,B). Equation

(2.5.81) using (2.2.13), (2.3.47) and the generalized Cayley-Hamilton theorem
gives us the following

v'(ErAsviEtAFB) = v'(ErAszEtAuB) =0 (2.5.82)
for all (r,s,u,t), which clearly contradicts (2.5.1). Thus we have shown that
(2.5.1) and (2.5.3) imply (2.5.73a). Similarly we can show that (2.5.73b) is

implied by (2.5.2)-(2.5.3) and thus proving the theorem.

Corollary
Let (C Pj j° A .B ) j=1,2, represent 2 minimal input-output extendible
stationary TPBVDS’s realizing the same weighting pattern, where {Ej,Aj},

j=1,2, are in standard form for the same a and B. Then there exists an
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invertible matrix T such that (2.5.42) and (2.5.44) hold and such that
1 -1 1
os(Pl_T P2T)Rs =0 (2.5.83)
where R; and 0; denote the strong reachability and observability matrices of

the system 1.

Proof

i f
Let (Cj’vj’vj j j

then equations (2.5.42) and (2.5.44) must hold thanks to Corollary 5.la. Also

.E.,A.,B_.N), N>2n, be a member of (C.,P.,E_,A_,B.), j=1,2,
J J J J J J

(2.5.43) implies that

1,,i,1 i 2
OSV1 g = 0s 2Rs (2.5.84)
which thanks to Lemma 2.5.2 implies that
1,1 1 i N 2
OVIEIR] = O2VIESR (2.5.85)
which in turn thanks to Theorem 2.3.8 implies that
1 1 2 2
OSPIRS = OSP2RS (2.5.86)

which clearly implies (2.5.83).

Note that what Theorem 2.5.2 says is that one can consider minimality
within the smaller class of stationary systems. One might ask the same
question about the class of displacement systems. This question, however,
remains open. Specifically, if we start with a displacement system and follow
the reduction procedure described in the proof of Theorem 2.5.1, we do not
necessarily end up with a displacement system. Note, however that from
Corollary 2.5.1a we see that there may be a certain level of nonuniqueness in

minimal realizations -- both in the state space isomorphism T and, more
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importantly, in the boundary and system matrices. A conjecture that remains
open is that one can use this freedom to choose a minimal realization that is

also a displacement system.
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2.6-Block Standard and Normalized Forms

A well-known result for causal systems is the following. Suppose that
the A-matrix is block diagonalized with no common eigenvalues among the
blocks. Then reachability and observability of the entire system is
equivalent to the reachability and observability of all of the individual
subsystems defined by the block structure of A. The same type of result is
easily shown to hold as well for stationary TPBVDS'’s once we define

generalized notions of standard and normalized form.

Definition 2.6.1
The regular pencil {E,A} is in block standard form if

(i) for some invertible matrix T, we have

=

diag(E,.E,. . ...Ey) (2.6.1)

diag(Al.A2,...,AM) (2.6.2)

=
3
I

vhere

(ii) each {Ei,Ai} pair is in standard form, i.e. there exist o, ﬁi such that
aiEi + ﬁiAi =I , i=1,....,M (2.6.3)

and furthermore {Ei.Ai} and {Ej,Aj}. i#j., have no eigenmode in common. That

is, for any pair (s, t)#(0,0), |sEi-tAi| = 0 for at most one value of i.

If a system is in block standard form, we can always, by a change of the
coordinate system, transform it such that E and A are block diagonal as in

(2.6.1) and (2.6.2). Thus for simplicity we can assume that if the system is

in block standard form, E and A are block diagonal.
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Note that E and A in (2.6.1), (2.6.2) commute, and from the proof of the
well-posedness result in [1], we can readily check that well-posedness of
(2.2.1)-(2.2.3) when E and A commute is equivalent to the invertibility of
ViEN+VfAN. Cbnsequently, if this is true we can premultiply (2.2.2) by the

inverse of this matrix to obtain a generalization of normalized form:

Definition 2.6.2

The TPBVDS (2.2.1)-(2.2.2) is in block normalized form (BNF) if {E,A} is

in block standard form and (2.2.5) holds.

In general, there is no reason for Vi and Vf to be block-diagonal for a

system in BNF. However, in the stationary case we have the following result:

Theorem 2.6.1

A TPBVDS in BNF is stationary if and only if it has a representation

where Vi and Vf are in the same block diagonal form as E and A, i.e.
1

- i i
TV, T diag(V].....Vy) (2.6.4)

-1 £ £
TV, T = diag(V].....Vy) (2.6.5)

1 f .
and moreover, each of the subsystems (Ck.Vk.Vk,Ek.Ak,Bk,N) is stationary.

As before, we have an immediate corollary:

Corollary
A TPBVDS in BNF is displacement if and only if Vi and Vf are in the same
block-diagonal form (2.6.4), (2.6.5) as E and A, and moreover, each of the

subsystems (Ck.Vi.Vi.Ek.Ak.Bk.N) is displacement.
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Proof of Theorem 2.6.1
Consider a TPBVDS in BNF and assume without loss of generality that E

and A are in block-form (2.6.1), (2.6.2), respectively. We first prove the

following:

Lemma 2.6.1
The strong reachability and observability matrices of the overall system
have the following form

R
s

diag(Rl....RY).¥ (2.6.6)

Z.diag(0;, .. .0%) (2.6.7)

S

where W and Z are invertible matrices and R: and Ot are strong reachability

and strong observability matrices of the kth block of the system.

Proof

We begin by putting the pencil in standard form by premultiplying E and
A by (alEZ+BA)_1 for some a and B. Note that (aE+ﬁA)_1 is block-diagonal, as
are the new E and A matrices. Indeed all we have done is to modify the system
so that (2.6.3) is satisfied with all a, equal to a and all Bi equal to B.
Suppose a#0 (otherwise reverse the roles of E and A). It is not difficult to
check in this case that the condition that no two blocks of E and A have the
same eigenmode now implies that no two blocks of A have the same eigenvalue.
Also in this case

% = In[BiAB:...1A" !B] (2.6.8)

(replace E by (I-BA)/a in RS and use the usual Cayley-Hamilton theorem).



Equation (2.6.6) then follows from the usual causal system result. Equation

(2.6.7) can be verified similarly.

Note that Lemma 2.6.1 demonstrates the equivalence of strong
reachability/observability of the overall system and of all of the
subsystems. Also, since every block is in standard form we can see that the
strong reachability and observability spaces are E- and A-invariant, as when

E and A are in standard form.

An examination of the proof of Theorem 2.2.1 shows that if we simply
assume that E and A commute and that ﬁs and OS are E- and A-invariant, the

necessary and sufficient conditions for stationarity are

O_[EV,A-AV.EJR_ = 0 (2.6.9)

O_[EV A-AV_E]R_

0. (2.6.10)
Consider next the following modification of our TPBVDS. Specifically, we

keep C, E, A, B the same and simply null out the off-diagonal blocks of Vi

and Vf. That is, let

i i
Vi oo Vin
V. = | ¢ : (2.6.11)
i i
Vir - Vi

with the blocks of Vf defined similarly. Then let

i i i
V; = diag(V];. Voo, V) (2.6.12)
> o of f

Ve = diag(V);.Vgo - Vi) - (2.6.13)

What we wish to show is that (C,Vi,Vf.E.A,B,N) is in BNF and has the same

weighting pattern as the original system.
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The fact that it is in BNF follows immediatly since we have not changed

E and A and
VEWVAN - VEWVAN - 1. (2.6.14)
Thus what we need to show is that
OVR =0VR_ (2.6.15)
OVR, =0VR_ (2.6.16)
or thanks to (2.6.6) and (2.6.7) that
o:vijng =0 i#k (2.6.17)
ogvijng =0 i#k. (2.6.18)

We focus on (2.6.17), as (2.6.18) follows similarly.
From (2.6.9) we immediately find that for jzk
k i J_ ok i J
Os[EkajAj]Rs = Os[AkvkjEj]Rs‘ (2.6.19)
Recall that {Ej.Aj} and {Ek.Ak) are in standard form, and indeed by a
block-diagonal transformation we can assume that an+BAj=aEk+BAk=I for a
single, given pair a and B. Without any loss of generality we can assume that

this is true. Furthermore, assume that a#0 (otherwise reverse the roles of E

and A), so that

Ej = 1I+6Aj , Ek = 1I+6Ak. (2.6.20)
Using (2.6.20) in (2.6.19) implies that
K-i J_ oKrx vl qnd
Os[ijAJ.]Rs = OS[Akaj]RS. (2.6.21)

Since %g is Aj—invariant and Oz is Ak—invariant, we have that (2.6.21)
implies that
OX[V, p(A)TRI = ¥[p(a )V TR} (2.6.22)
st 'kj J s s Ak kj- s T
for any polynomial p. Take any generalized eigenvector v of Aj in ﬁg

corresponding to the eigenvalue Rj of Aj. then there is an integer m so that

(AJI—AJ)mv = 0. (2.6.23)
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Let p(x)=(Aj—x)m. Also, let w be any generalized left-eigenvector of Ak in
(02)1 corresponding to the eigenvalue M of Ak' Then, from (2.6.22) we have
that

0= w'Vi.p(A.)v = w'p(Ak)Vi.v = (R.-uk)mw'vi.v. (2.6.24)

k3™ kj J kj
Thanks to (2.6.20) and the fact that {Ej.Aj} and {Ek.Ak} have no eigenmodes
in common, (kj—uk)m#O. so we can conclude that
vl
\ ijv = 0. (2.6.25)

But, since ﬁi is Aj—invariant and 0: is Ak—invariant, the columns of R; and

rows of OE are spanned by such v’'s and w’s, respectively, yielding (2.6.17).

Note that if the overall system (and therefore at least one of the
subsystems) is not both strongly reachable and observable, there is some
freedom in the choices of Vi and Vf. What the theorem says is that we can
always choose these to be block-diagonal. If, however, all of the subsystems
égg strongly reachable and observable then the only possibility is for Vi and
Vf to be block-diagonal. This is what happens in the Corollary (which, as
before. corresponds to the case B=C=I). Note also, that since we can always
take the boundary matrices to be block-diagonal, we have, as in the causal
case, the fact that minimality of the overall system is equivalent to
minimality of all of the subsystems.

There are several other important consequences of this theorem. First,

note that for a stationary TPBVDS in BNF with Vi and V. as in (2.6.4),

f
(2.6.5), Theorem 2.6.1 and Theorem 2.2.1, applied to each subsystem, allow us
to deduce that in fact not only does (2.6.9) hold, but so does (2.2.13). This

in turn allows us to obtain the simple form for the weighting pattern given

in (2.2.40).



Lemma 2.6.1 allows us to study strong reachability and observability of
individual eigenmodes. To see this, consider a TPBVDS transformed into the
following normalized or block normalized form1 where

E

diag(E,. . ...Ey) (2.6.26a)
A

diag(Al....,AM) (2.6.26b)
where {Ei,Ai} has a unique eigenmode o, with ai#aj for i#j. Then we say that
the eigenmode aj is strongly reachable if (Ej'Aj’Bj) is strongly reachable
(i.e. Rg has full rank). It can easily be verified that aj is strongly
reachable if and only if

[ajE-A:B]
has full row rank (aj=0 is strongly reachable if and only if [EiB] has full
row rank). Similarly, we say that an eigenmode aj is strongly observable if

(Cj,Ej,Aj) is strongly observable (i.e. 0: has full rank). Eigenmode 9, is
strongly observable if and only if

o.E-A
J
C
has full column rank (aj=m is strongly observable if and only if [g] has full

column rank). In the displacement case, the boundary matrices are also in

block diagonal form:

<
]

. i i
i dlag(Vl....,VM) (2.6.27a)

<
]

. f f
f dlag(Vl.....VM). (2.6.27b)

1We can always transform any regular {E,A} into the block form (2.6.26).

Assume {E,A} is in standard-form, then we find T such that TA,'I‘—1 and TET—1
are in real Jordan form (thanks to the standard-form, E and A can be put into
Jordan form simultaneously). Then (2.6.26) can be obtained by reordering the

Jordan blocks of TAT ! and TET .
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The BNF (2.6.26)-(2.6.27) allows us to consider weak reachability and
observability of individual eigenmodes. An eigenmode aj is called weakly
reachable (observable) if subsystem j is weakly reachable (observable). Also
Uj is weakly reachable if and only if

[ajE—A:ViB:VfB]
has full row rank; it is weakly observable if and only if

E-A
J
]
Cvf

has full column rank.

We can also use Theorem 2.6.1 to obtain the following result:

Theorem 2.6.2

Consider a minimal, stationary TPBVDS, then any eigenmode of the
strongly unreachable (unobservable) part of the system is also an eigenmode

of the strongly reachable (observable) part of the system.

Proof

Suppose that oy is an eigenmode of the strongly unreachable part of the
system but not of the strongly reachable part. Theorem 2.6.1 allows us to
break-down the system into subsystems each one of which has a distinct
eigenmode. In particular, let Ek = (Ck.Vi.Vi,Ek.Ak.Bk.N) denote the subsystem
associated to eigenmode oy - Then, since Ek is minimal, it has a strongly

reachable part (otherwise, Bk must be zero, the subsystem has weighting

pattern O and the minimal realization has dimension 0). Thus, oy is an



eigenmode of the strongly reachable part of Ek and of the original system.

This, of course, is a contradiction.

Before closing this section, we should mention that the motivation
behind introducing the concepts of block standard form and BNF has been the
usefulness of the following block standard form

E

diag(I,1,A) (2.6.28a)
A

diag(Af,U.I) (2.6.28b)
where the eigenvalues of Af and Ab are all inside the unit circle and the
eigenvalues of U on the unit circle. This particular block standard form has
been used in [2,3,16] and shall be used in the next chapter for studying the
stability and the stochastic realization problem for TPBVDS’s. When {E,A} has
no eigenmode on the unit circle, the block standard form (6.2.28) is called

the forward-backward stable form.
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2.7-Conclusions

In this chapter we have developed some of the system-theoretic
properties of two-point boundary-value descriptor systems. We have derived
detailed characterizations of reachability, observability, and minimality
with particular attention paid to the shift-invariant case. As had already
been noted for continuous-time, non-descriptor boundary-value systems,
minimality for TPBVDS's is a bit more complicated than for causal systems.
Indeed there is a certain degree of nonuniqueness in minimal realizations.
One open problem that we have noted concerns whether one can use this freedom

to guarantee that a displacement system always has a minimal realization that

is also displacement.

Another concept that we have introduced and studied in this paper is
extendibility, i.e. the idea of thinking of a TPBVDS as being defined on a
sequence of intervals of increasing length. Once one introduces such a
notion, it becomes possible to talk about the realization (as opposed to

partial realization) problem and asymptotic properties such as stability (see

[16]). These subjects are studied in the next chapter.
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Chapter III:

REALTZATION THEORY FOR INPUT-OUTPUT EXTENDIBLE, STATIONARY

e e e e ——————— e e e e et e et et e

TWO-POINT BOUNDARY-VALUE DESCRIPTOR SYSTEMS

3.1-Introduction

In this chapter, we consider both the deterministic and the stochastic
realization problem for input-output extendible, stationary TPBVDS’s. In the

previous chapter we saw that to a stationary TPBVDS (C,Vi,V E,A,B,N) which

£
is input-output extendible we can associate a family of input-output
extendible stationary TPBVDS's denoted by (C,P,E,A,B) such that all members
of this family have identical C, E, A and B matrices and identical weighting
patterns restricted to their proper domains of definition. We simply refer to
this family of systems as an input-output extendible stationary TPBVDS
(C.,P,E,A,B). The matrix P is called the projection matrix and contains all
the information about the boundary conditions that is reflected in the
weighting pattern. The weighting pattern associated with this family of
systems, which naturally is defined from —® to +», is completely determined
in terms of the projection matrix P and system matrices C, E, A and B. The
fact that this weighting pattern is defined everywhere allows us to develop a
realization theory (as opposed to a partial realization theory which could
also be very interesting to consider) for input-output extendible stationary
TPBVDS’s.

This chapter consists of two more sections. In the first section, we
consider the problem of deterministic realization and in the second the

problem of stochastic realization.
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3.2-Deterministic Realization Theory

The deterministic realization theory for input-output extendible
stationary TPBVDS's consists of constructing an input-output extendible
stationary TPBVDS (C,P,E,A,B) from its weighting pattern W(k). In the causal
case this problem is usually studied using the z-transform method. In the
case considered here, however, the stationary weighting pattern W is acausal,
i.e. W(k) is in general non-zero for k<O as well as k>0, and no stability
constraint is imposed on W. For these reasons, the classical one-sided or
two-sided z-transform techniques may not be applied to this problem. We shall
use a variant of the z-transform technique to handle this difficulty. Using
this transform technique we are able to obtain the degree of the minimal

realization and construct the minimal realization directly.

In Section 2.3 we saw that the weighting pattern of an input-output

extendible stationary TPBVDS (C,P,E,A.B) can be expressed as follows:

crEP(AE) <" 1p k>0
<(1-P)APEP) *B  keo (3.2.1)

where P, the projection matrix, must satisfy the following equations:

W(k)=

O (PA-AP)R_ = O_(PE-EP)R_ = O (3.2.2a)
o_(P-PEE")R_ = 0, ((1-P)-(I-P)M")R_ = o. (3.2.2b)

We also obtained minimality conditions for this system (see Section 2.5).
Specifically, we showed that an input-output extendible stationary TPBVDS is

minimal if and only if

a) [sE-tAiPBiB] has full row rank for all (s,t)#(0,0) (3.2.3)
sE-tA
b) CP | has full column rank for all (s,t)#(0,0) (3.2.4)
C

c) Ker(Os) C Im(Rs). (3.2.5)



The deterministic realization problem considered in this section can be
formulated as follows: given an infinite sequence of matrices W(k), find
matrices C, E, A, B and P such that (3.2.1) and (3.2.2) hold. We are
particularly interested in realizations (C,P,E,A,B) of lowest dimension i.e.
those satisfying (3.2.3)-(3.2.5). The first problem we consider is under what

conditions the sequence W(k) admits a finite dimensional realization.

3.2.1-Realizability Conditions

In this section we study the conditions under which a given sequence
W(k) is realizable as the weighting pattern of a finite dimensional
input-output extendible, stationary TPBVDS. At the same time we will propose

a method for constructing such a TPBVDS.

Theorem 3.2.1
A sequence of matrices W(k) is the weighting pattern of an input-output

extendible stationary TPBVDS if and only if for some scalars ;. ﬁi’ n, and

1
n2,
|
W(n1+J) = Eaiw(nl—iﬁ) for all j>0, (3.2.6)
i=1
)
W(-n,+j) = zﬁiw(—n2+i+j) for all j<O. (3.2.7)

i=1
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Proof
The only if part is deduced easily from (3.2.1) and the usual

Cayley-Hamilton result. To show the if part note that we can decompose W(k)
as follows

Wf(k) = u(k-1)W(k) (3.2.8)

Wb(k) = u(-k)W(k) (3.2.9)

where u(k)=1 for k>0 and u(k)=0 otherwise. Clearly then

W(k) = Wf(k) + Wb(k). (3.2.10)
Thanks to (3.2.6) and (3.2.7), Wf(k) and Wb(k) can be realized by finite
dimensional causal and anticausal systems, respectively. Let (Cf,Af,Bf) and

(Cb.Ab,Bb) be such realizations, i.e.

We(k) = C,AS "B, for k>0 (3.2.11a)
W, (k) = GAB.  for k0. (3.2.11b)

Then it is clear that input-output extendible stationary TPBVDS

b ol Wb R
(C.P.E.A.B) = ([C; —G]. : : D 3.2.12)
o oflo allo 1f

realizes W(k). This completes the proof of the theorem.

An input-output extendible stationary TPBVDS having a representation of
the form (3.2.12) is called separable. The TPBVDS (3.2.12) can be realized

over any desired interval as follows

I O Af 0] Bf
x(k+l) = x(k) + u(k) (3.2.13)

I B,

0] ff
x(O) + x(N) = (3.2.14)

I Eb

y(k) = €, Ix(k). (3.2.15)



P

The extendible, stationary and separable TPBVDS (3.2.13)-(3.2.15) realizes

W(k)., restricted to the interval [-N+1,N], for any N.

The method described in the proof of Theorem 3.2.1 can be used to
realize any realizable.sequence. The realization obtained, however, is not in
general minimal and must be reduced (the minimal TPBVDS is not in general
separable). In the next section, we will propose another method based on a

transform theory and a factorization problem which yields directly a minimal

realization.

3.2.2-(s,t)-Transform

One problem with using the z-transform in cases where the dynamic of the

system is singular is that the infinite frequencies cannot be handled in the
same way as other frequencies, even though in such systems (at least in the
discrete case) there should be total symmetry between zero and infinite

frequencies. For this reason, we propose the following transform

+m K
H(s.t) = ) H(k)t /5K, (3.2.16)

k=—

Clearly if H(s,t) exists, then it is strictly proper in (s,t) but not
necessarily in s and t separately. Strictly proper in (s,t) means that for

all s and t for which H(s,t) is defined

lim H(~s,vt) = O. (3.2.17)
y-

This can be easily seen by noting that

H(vs,vt) = (1/7)H(s, t). (3.2.18)
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In the case in which we are interested, H(s,t) has rational entries in s and
t, and strictly proper in this case implies that the denominators of these
entries have higher degrees1 than their corresponding numerators. Note that
the z-transform can be obtained from the (s,t)-transform simply by replacing
(s.t) with (z,1), and that the (s,t)-transform is obtained from the
z-transform by replacing z with s/t and dividing the result by t, so that all
rational matrices in z, proper or not, translate into proper rational
matrices in (s,t). Thus the (s,t)-transform is proper for all the cases in
which we are interested.

In the causal case, the z-transform has an important role in the
realization problem. Specifically, the realization problem is reduced to the
following factorization of the z-transform of the weighting pattern (impulse
response) H(z) of the system

H(z) = K(zI-F) ¢ (3.2.19a)
for some matrices K, F and G. Hence the realization problem in the causal
case reduces to the factorization of a proper rational matrix. For the
boundary value systems that we are considering, the situation is more
complex: even though we do need to consider the following factorization of
rational matrices (in s and t this time) .

H(s.t) = K(sD-tF) g, (3.2.19b)
the realization problem and the factorization problems are not identical.

Let Wf and Wb represent the causal and anticausal parts of W(k)
respectively (as defined in (3.2.8)-(3.2.10)), and let W(k) be realized as in

(3-2.1). Then, thanks to (3.2.2b), we can compute the transforms of Wf(k) and

1 By degree of a polynomial p(s,t) we mean the degree in s and t, e.g. st2

has degree 3. Clearly, the degree of p(s.t) is just the usual degree of
p(t.t).



Wb(k) as follows

We(s.t) = ) (7 1/s5)crEP(ae”)< 1B
k=1
= cPEP(sI-tAE") 1B = cP(sE-tA) 1B (3.2.20a)

0
W(s.t) = ) -(71/s%)0(1-P)AP (AD) B

= c(1-P)AP(sEAP-¢1) 1B = C(I-P)(sE-tA)!B. (3.2.20b)
Note that in general Wf(s.t) and Wb(s,t) do not have the same regions of
convergence2. However, we will consider their analytical extensions instead

(while using the same notation). In that case

We(s.t) + W, (s.t) = C(sE-tA) 'B. (3.2.21)
Also observe that
[We(s.t) W (s.t)] = C(sE-tA) '[PB (I-P)B]. (3.2.22)
Wf(s.t) r:P -1
[Wb(s.t)] - C(I_P)](SE—tA) B. (3.2.23)

We shall see that factorizations (3.2.21), (3.2.22) and (3.2.23) are directly
tied to the 3 Hankel matrices: OsRs’ °st and osz' respectively (see Theorem
3.2.2).

Note that given the sequence W(k) we can compute Wf(s,t) and Wb(s,t), so
that it appears (thanks to (3.2.21)) that, as in the causal case, the
realization problem has been reduced to a factorization problem. This is only
partly true, however, because the minimal TPBVDS is not necessarily strongly

reachable or observable and thus the situation is more complex than in the

2 Wf(s.t) and Wb(s.t) have a common region of convergence only when W(k) is

summable (see Section 3.2.5) or when it is left- or right-sided (i.e. there
exists o such that W(k)=0 for k>o or k<o). In that case, Wf(s,t)+Wb(s,t) is

just the (s,t)-transform of W(k).



causal case. In fact we shall see that in general, to construct the
realization, we first need to perform the 2 factorizations (3.2.22) and

(3.2.23).

The factorization problem in the case where E is invertible is simple.
Many ways of constructing the minimal factorization exist (see [17]). The
dimension of the minimal factorization has also been studied and it is shown
(e.g. [18]) that this dimension is equal to the McMillan degree of the
rational transfer matrix. We shall see in the next section that similar

results can be obtained for the case where E is not necessarily invertible.

3.2.3-Factorization of Rational Matrices in s and t
From causal realization theory, we know how to construct a minimal
factorization of a strictly proper rational matrix H(z), i.e. finding
matrices K, F and G with F having smallest possible dimension such that
H(z) = K(zI-F) lG. (3.2.24)
In that case, F, K and G are unique (except for similarity transformations).
The singular factorization problem is more complex: we want to find K,
D, F, and G of lowest possible dimension such that a given rational matrix
H(s,t) can be expressed as
H(s.t) = K(sD-tF) . | (3.2.25)
Clearly, even with the assumption that (D,F) is in standard form i.e.
for some a znd B, aD+BF=I, D and F are not unique. To insure uniqueness we
must also choose a and § a priori. In essence, in the causal case we have
done that by forcing D to be equal to I which corresponds to a=1 and p=0. Any

pair (a,B) is acceptable as long as H(a,-B) is defined.
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Theorem 3.2.2

a) Let H(s,t) be a rational matrix in s and t, then H(s,t) is
factorizable if and only if (3.2.18) holds for all 7#0 and for all s and t
such that H(s,t) is defined.

b) Let H(s,t) be factorizable, and let (a,B) be a pair of scalars such
that H(a,—B) exists. Then there exists a unique minimal factorization of
H(s,t) (except for similarity transformations) such that

aD + pF = 1 (3.2.26)
H(s.t) = K(sD-tF)1G. (3.2.27)
Moreover, the dimension p of this minimal factorization is given by
p[H(s,t)] = v(H(az,1-Bz)) (3.2.28)
where v(.) denotes the usual McMillan degree, and where H(az,1-Bz) is a

strictly proper rational matrix in z.

Corollary
The factorization
H(s.t) = K(sD-tF)"'G (3.2.29)
is minimal if and only if (D,F,G) is strongly reachable and (K.D,F) is
strongly observable. Moreover, the dimension of the minimal factorization is
equal to the rank of the Hankel matrix OsRs where Os denotes the strong

observability matrix (K,D,F) and RS the strong reachability matrix (D,F,G).
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Proof of Theorem

To show part a), notice that the only if part is clearly implied by
(3.2.25). To show the if part, we need to construct a realization. For this
let a and B be such that H(a,-B) exists. Now consider the rational matrix
H(az,1-Bz). This matrix is strictly proper in z because

Lim H(az,1-pz) = Lim (1/z)H(a,-B) = O. (3.2.30)

Z—50 Z-50

Thus it can be realized as
H(az.1-Bz) = K(zI-F) 6. (3.2.31)

Now assume that a#0 (otherwise reverse the role of D and F) and let

w = a/(at+Ps) (3.2.32a)
z = s/(at+fs). (3.2.32b)
In this case
s = az/w (3.2.33a)
t = (1-pz)/w, (3.2.33b)
which implies that
H(s.t) = wi(az.1-Pz) = WK(zI-F) G = K(sD-tF)"’G, (3.2.34)
where
D = (1/a)I-(B/a)F. (3.2.35)

This is the desired realization, completing the proof of part a).

For part b), we have already done most of the work. Notice simply that
the factorizations (3.2.31) and (3.2.34) with D defined in (3.2.35) are
different only by a scalar mutiplication so that we can construct one from

the other and thus the dimension and uniqueness property of the two must be

identical.



102

Proof of Corollary

Note that factorization (3.2.31) is minimal if and only if (K,F) is
observable and (F,G) is reachable, which since a is assumed to be nonzero,
are equivalent to (K,D,F) strongly observable and (D,F,G) strongly reachable,
respectively.

Also note that we have shown that, when a#0, p(H(s,t)) is equal to the
McMillan degree of H(az,1-Bz) as defined in (3.2.31). From results on causal
realization theory (see e.g. [27]) we know that this McMillan degree is equal
to the rank of the Hankel matrix

H=0.R (3.2.36)
where 6 and ﬁ are the observability matrix (K,F) and the reachability matrix
(F.G). But with a#0, the nullspace of 6 coincides with that of 0s and the
image of ﬁ with that of Rs. Thus, the rank of ﬁ must equal the rank of osRs'

This completes the proof of the theorem.

In the proof of Theorem 3.2.2 we have developed a factorization method
for the factorizable matrix H(s,t). Namely, first choose a and B for which
H(a,-B) is defined. Then form H{az,1-Bz) which is a strictly proper rational
matrix in z. Factorize this matrix in the regular form (3.2.31) which gives
us K, F and G. Finally compute D from (3.2.35).

The dimension p of the minimal factorization can also be obtained

directly from the matrix H(s,t).
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Theorem 3.2.3
The dimension of the minimal factorization of a factorizable H(s,t) is

equal to the degree of the least common multiple of the denominators of all

the minors of H(s,t).

Proof

First note that all the polynomials that appear in the numerators and
the denominators of the entries and thus the minors of H(s,t) are

homogeneous, i.e. they have the following form

k
p(s.t) = 2 a,s
i=0

where k is the degree of p. This follows from condition (3.2.18). Moreover,

k-ipd (3.2.37)

thanks again to (3.2.18), the degree of the denominator of each entry of
H(s,t) is always one plus the degree of the numerator. Therefore, for the
minors of H(s,t) the degree of the denominator is the order of the minor plus
the degree of the numerator.

Proceeding with the proof, suppose that K(sD—tF)_lG is a minimal
factorization of H(s,t). Without loss of generality we can assume that k, D,

F and G have the following form (this can always be achieved by a similarity

transformations):

D, © F, © G,
K=[K KJ D= , F = , G = . (3.2.38)
2

0 N 0 F2

where N is nilpotent, and D1 and F2 are invertible. Now consider the rational

Since {D,F} is in standard form, D and F can be simultaneously be put into
real Jordan form. Reordering the eigenstructure of this real Jordan form
yields (3.2.38).
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matrix

H,(s.t) = K (sD,~tF,)7'G,. (3.2.39a)
Note that
H(s.t) = (1/8)K (2D,-F,) 7’6, = (1/t)H, (2) (3.2.39b)
where z=s/t. Since Hl(s.t) can be obtained from ﬁl(z) and vice versa, the
dimension of the minimal factorization of Hl(s.t) and ﬁl(z) must be equal.
But ﬁl(z) is a strictly proper rational matrix in z and thus the dimension of
its minimal factorization is equal to its McMillan degree, i.e. the degree of
al(z). the least common multiple of the denominators of the minors of ﬁl(z)
(see Chapter 3 of [45]). Also note that since D, is invertible
Hl(s,O) (o (3.2.40)
and thus t is not a factor of the denominator of any of the entries and
consequently minors of Hl(s,t). Let pl(s,t) denote the least common multiple
of the denominators of the minors of Hl(s,t). then t is not a factor of
pl(s,t) and consequently the degree of pl(s.t) is just the degree (in z) of
pl(z,l). But
pl(z.l) = al(z) (3.2.41)
so that the degree of pl(s.t) equals the McMillan degree of ﬁl(z) thus it
corresponds to the dimension of D1 and Fl (see e.g. [27]).
For block 2 we proceed similarly: let
Hy(s.t) = K (sN-tF,) ', (3.2.42)
Then
H2(O,t) (= (3.2.43)
because A2 is invertible. So s is not a factor of the least common multiple
of the denominators of the minors of H, denoted by p2(s.t). Thus, the degree

2
of p2(s,t) is just the degree in t of p2(1,t) which, by analogy with the
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previous case, is just the dimension N and F2. Also note that H2(s,t)=°° only

at t=0 thanks to nilpotency of N and the fact that N and F. are in standard

2
form (which imply that the eigenvalues of sN—tF2 are just tAj where Aj is an
eigenvalue of F2). Thus,
p2(s.t) = p2(1,t) = tn2 (3.2.44)
where n, denotes the dimension of N and F2.
Noting that
H(s,t) = Hl(s,t) + Hz(s,t) (3.2.45)

and the fact that pl(s,t) and p2(s,t) have no common factors, we can easily
deduce that the least common multiple p(s,t) of the denominators of the

minors of H satisfies

p(s.t) = pl(s,t).pz(s.t), (3.2.46)
which proves the theorem.
Example 3.2.1
Consider the following sequence
-1 k=0
H(k) = 1 k=1 . (3.2.47)
0 elsewhere

The corresponding (s, t)-transform is

H(s.t) = 1/s - 1/t (3.2.48a)
and the z-transform is

H(z) = -1 + 1/z. (3.2.48b)
Already we can see the advantage of using the (s,t)-transform; H(s,t) has
poles at s=0 and at t=0 which means that the sequence has a zero and an

infinite mode whereas H(z) has a pole only at z=0.
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Applying Theorem 3.2.3 we can see that the degree of the minimal
factorization must be 2 (= degree of st). To construct the minimal

factorization simply choose a=p=1 and perform the following factorization

H(z.1-z) = I/z - 1/(1-z) = (1 1)(zI- ])'1[ ] (3.2.49)
0 1 1

which implies that

1 O 0 O] 1
K=( 1), D= [ ]. F = [ . G = []. (3.2.50)
0O O 0 1] 1

3.2.4-Direct Realization Method

In previous sections we have defined the minimal factorization and
minimal realization problems. From (3.2.21)-(3.2.23) we can see that the
minimal realization problem involves factorization - in fact several
factorizations - but, unlike for the causal case, the 2 problems are not
identical. In this section, we make the relationship between these clear as
we use the (s,t)-transform and the factorization method discussed in the
previous sections to obtain the degree and construct a minimal realization of

the realizable weighting pattern W(k).

Theorem 3.2.4

The dimension n of a minimal realization of W(k) is given by

W (s t)
B = (D5 0) Wy(s D) + mCfy o)) - (s 04 (5. 0))

(3.2.51)

where p(.) denotes the degree of the minimal factorization.
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Proof

Let (C,P.E,A,B) be a minimal realization of W(k) and let p, w and T be

defined as follows

= u(C(sE-tA) '[PB (I-P)B]) = w([¥e(s.t) W (s.t)]) (3.2.52a)

W (s t)
= p( Cc(I- P)](slit tA)” B) = u([ W (s. t)]) (3.2.52b)
= u(C(sE-tA)"1B) = n([We(s.t) + W, (s.t)]). (3.2.52c)

From the corollary of Theorem 3.2.2, it follows that p, w and T are Jjust the

rank of Hankel matrices Ost. Osz and OSRs respectively, where

R = [E*(PB (1-P)B):...: n-l(PB (I-P)B)] (3.2.53a)
\[cu P)]

(3.2.53b)
C(I P)]

Then from the minimality conditions (3.2.3)-(3.2.4), Rw and Ow have full rank
which means that p and v are the ranks of the strong reachability RS and the

strong observability matrices 0S respectively. Expression (3.2.51) then

follows from (2.5.40).

Example 3.2.2
Consdier the following weighting pattern
k
_ | a k21
W(k) = [ Bak k<1 (3.2.54)

where a and B are scalar parameters and a<l. Using Theorem 3.2.1, it is
straightforward to verify that W(k) is realizable. From Theorem 3.2.4, we can

compute the dimension of minimal realizations of W(k):
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n = w(lar(s-at) ap/(at-s)]) + u( [0 1) - wL(1-par(s-at)]

aff/(at-s)
_l1+1-1=1 for B#1
'[1+1—o=2 for B=1 ° (3.2.55)

When B#1, a minimal realization (C,P,E,A.B) of W(k) is
(/(1-B),1/(1-B),1,a.1).
The causal part Wf(s,t) and the anticausal part Wb(s,t) of W have the same
pole, namely s/t=a, that is why we can realize them both with just one
eigenmode. The resulting realization is strongly reachable, strongly
observable and non-separable. In general, any time a minimal realization is
not separable, the causal and anticausal parts of W must share a common pole.
On the other hand, if the causal and anticausal parts of W do not share any
common pole, then all cooresponding minimal realizations are separable. In
particular, this is the case when W(k) is summable which means that the
causal part of W has poles inside the unit circle and the anticausal part of
¥ has poles outside the unit circle. We shall further study this case later
in this section.
When B=1, a minimal realization of W is
.9 L)
This separable realization is not strongly reachable and it is not strongly
observable. Notice that in the previous realization (for B#1), as B approachs
1, the system matrices tend to infinity. Thus, in a sense, B=1 is a
singularity point and we can see indeed that the dimension of minimal
realizations of W is 2 only when B is exactly equal to 1. Minimality in this
case is not a generic property. Gohberg and Kaashoek in their works [11,13]
have studied conditions under which minimality is a generic property for

boundary value linear systems. They call systems satisfying these conditions

stably minimal.



109

In the proof of Theorem 3.2.4 we have seen that in computing n, we
obtain the dimension of the strong reachability and observability matrices
which allows us to determine whether the minimal realization is strongly
reachable or strongly observable. Thus to do the actual realization, we need

to consider three different cases:

a-The minimal system is strongly reachable

What this implies is the following. If we have a minimal realization

(C,P,E,A,B) of W(k), of dimension n=p, then

CP -1 [Wf(s,t)]
(sE-tA) B = (3.2.56a)
C(I-P)] Wb(s,t)
Wf(s.t)]
is a minimal factorization of . Thanks to the corollary of Theorem
LAER)
!Wf(s,t)]
3.2.2, we can conclude that any minimal factorization of yields a
W (s.t)
b

minimal realization of W(k). Note also that since p=n, any such minimal
realization is strongly reachable. Thus our construction is as follows: for

any fixed a and B such that Wf(a.-ﬁ) and Wb(a,-B) are defined construct a

minimal factorization
W (s t)
b(s t)] [Zb(sE—tA) B (3.2.56b)

such that aE+BA=I. From (3.2.56a), the matrix C is given by
C=¢; +C. (3.2.57a)
To find P note from (3.2.56a) that P must satisfy

CP = C,. (3.2.57b)
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Also since Rs has full rank, condition (3.2.2a) becomes
OS(PE-EP) = OS(PA—AP) = 0. (3.2.58)
From (3.2.57b) and (3.2.58) we can see that P can be chosen to be any

solution to

op = of, (3.2.59)
where
n-1
fA n-2
of = (c;.E.A) = %4 . (3.2.60)
n-1
(E

Of course we are guaranteed that there exists a P satisfying (3.2.59).
Furthermore, the part of P which is not determined from (3.2.59) is exactly

the degree of freedom that exists in the selection of P (see the corollary of

Theorem 2.5.3).

b-The minimal system is strongly observable (w=n)

By analogy with the previous case we construct the factorization
-1
[Wf(s.t) Wb(s.t)] = C(sE-tA) [Bf Bb]’ (3.2.61)
Then
B = Bf + Bb' (3.2.62)
and P is any matrix satisfying

PR =R (3.2.63)

where

R = (E.A.B;) = [A" 'B_{EA™ 2B to.EMTIB] (3.2.64)
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c-The minimal system is neither strongly reachable or strongly observable

This case is slightly more complicated because E and A cannot be

directly obtained from a minimal factorization; this can be seen by noting
that E and A are not even uniquely determined in this case (see Section 2.5).
The factorizations that we have discussed, in this case only partially
characterize the system matrices. To see this, suppose that (C.,P,E,A,B) is a
minimal realization of W(k) and let us do a 4-part Kalman decomposition of
it. Thanks to Theorem 2.6.2, this realization has no strongly unreachable and
unobservable part. Thus, it can be represented as follows

Ay Ay Ag

A= [0 A, A (3.2.65a)

tm
I
o m o
[
M m O
S
7 o o

(3.2.65b)

N

(<)

B = [B, (3.2.65¢)

C=[0 C, C] (3.2.65d)

P11 P1a i3

P = [Py Poy Posl. (3.2.66)

P31 P3p Pyg

By direct calculation we can show that
[wf(s.t) _
Wb(s.t)

2P21 3P31 C2P22 3P32 El E4 A1 A4 -1 Bl
(s -t ) .
0 E2 0 A2 B2

- (3.2.67a)
~CoPo1=CaP3;  Co(I-Pyy)—CaPa,

[Wf(s,t) Wb(s,t)] =

E, Eg A2 As -1 P21B1+P22B2 —P2131+(1—P22)B2

[Cy Gl(s|o” E_|-t]o ) "|p..B +P..B -P,.B.-P..B . (3.2.67b)
3 A 317173272 311 3272
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and

We(s.t) + W (s,t) = C(sE-tA) 'B = Cy(sE,-tA,) 1B, . (3.2.67c)

Factorizations (3.2.67) are minimal and thus if we perform minimal

factorizations
[We(s.t) W, (s.t)] =E(sE—tX)'1[§f B,1) (3.2.68a)
W (S,t) PN PN A
£ Ct -1
[Wb(s,t)] - rcb](sE—tA) B (3.2.68b)

for the same a and B (i.e. aE+BA=aE+PA=I), thanks to part b) of Theorem

3.2.2, we must have that matrices (C.E.A,[Bf Bb]) are related to the

matrices

([C. C.] [Ez E5] Ay As] [P2131+P2232 'P2131+(I'P22)P’2]
2 3710 E5l*10 A4)"|Py B +Py B, -Py B -Po B,

by a similarity transformation. Similarly, matrices (Eg;],E,A.B) are related

to
( oP21*C3P3;  CoPogtCqPsg ] [El E4] [A1 A4] [Bl])
~CoP91C3Py; Co(I-Py5)-C3P3o]" [0 Eyl" |0 A5l |B,

by a similarity transformation. Specifically, there exist invertible matrices

YV and W such that

. e Eo Ecr_in A
oV = [C 03].v1EV=[2 5].V1AV=[0 5

2 0 E, Al
1 Po1Bi*PooBy  —Py B +(I-Py,)B,
VB BJ=|p B+ B, -P,B-P.B, |- (3.2.6%)
3181*P3289 31817398y
and
Ff]w _ [F21*C3Pa;  CoPos*CaPay ]
% ~CoP91C3P3;  Co(I-Pyg)-C3Py,
E E A, A B
_1A 1 B4 _q- 1841 14 1
wlEw = [ ] v law - [ ] Wi - [ ]). (3.2.69b)
0 E, 0 A, B,
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Now let
B = Bf + Bb (3.2.70a)
C=C, +C (3.2.70b)
then it can be seen that (C,E,A,B) and (C,E,A,B) are related respectively to
([C, Cjl. [ﬁz §5 .[22 A5]. [ﬁz]) and ([0 C,]. [];1 24]. [31 A4], [31])
3 A3 2 Al 1By

by similarity transformations V and W as well.

~ oo A

Note that factorizations (C,E,A,B) and (C,E,A,B) are strongly observable
and strongly reachable respectively. Thus by performing a 4-part Kalman

~ o~

decompositions of (C,E,A,B) and (C,E,A,B), we obtain:

C [1 A2],E: 1 ~2,B=[1 (3.2.71a)
1 &
E, 0

I
_—
O
@]
A
>
i

0 A, 0

PN A A A A E E A B

C=(0 Cp). A= [1 ‘:2] E = [1 Az], B = [Al]. (3.2.71b)
o A, o E, B,

Note that

We(s.t) + W(s.t) = C(sE-tA) 'B = Cy(sE,~tA,) B, =

C(sE-tA) !B = C(sE-tA)1B (3.2.72)
which implies that

C,(sE,~tA;) "B, = Cy(sE,~tA,) 'B,. (3.2.73)

But (Cl.El,AI,Bl) and (C2,E4.A4.B2) are both strongly reachable and
observable which implies that they must be related by a similarity

transformation, i.e. for some invertible matrix T,

C2T = Cl' TA4T = Al’ TE4T = El' T32 = Bl' (3.2.74a)
The matrix T can be computed as follows
~ Al ”~ A' _1
T = RSRS(RSRS) (3.2.74b)

where Rs and Rs denote, respectively, the strong reachability matrices of

(E;.A .By) and (E .A .B)).
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Thus, the C, E, A and B matrices of the minimal realization are given by

RAg ] BEr «] R
C=(0 C1 C2), A= 0 A . E= 0 E E . B= B (3.2.75)
0 A4 0 0 0

where % indicates an arbitrary matrix. Finally, to solve for P, let
(C.Vi,Vf,E,A,B,2n-1) be a realization of W(k) over an interval of length

2n-1. Then the boundary matrix Vi satifies

OPR =0VE™IR (3.2.76)
s s s'i s
From (2.2.40) we get that
OV.R_ = [ (W) ] (3.2.77)
where
wkj = We(2n-1-[k-4[). (3.2.78)

Thus we can first compute a Vi from (3.2.77). Then P is obtained from
(3.2.76). Note that the nonunicity in the choice of P corresponds exactly to
the amount of freedom which is available in choosing P (see (2.5.83)) and so
any P satisfying (3.2.76) is a projection matrix. An alternative to (3.2.76)
for solving for P can be obtained as follows. Note that since Im(Rs) is

E-invariant, there exists a matrix Z such that

ER_ = R Z (3.2.79)

and thus

2n-1 2n-1

E"'R =R Z (3.2.80)
S S

which along with (3.2.76) and (3.2.77) yields

2n-1
OSPRS = [ (ij) ]Z . (3.2.81)
In summary, to construct a minimal realization in this case we have to
proceed as follows. First, perform factorizations (3.2.68) and use (3.2.70)

~ N oo A A A A

to construct (C,E,A,B) and (C,E,A,B). Then perform the decompositions
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(3.2.71) and compute T from (3.2.74b). System matrices C, E, A, and B are

then given by (3.2.75). Finally, compute P from (3.2.76) or (3.2.81).

Example 3.2.3
Let
2 k=1
W(k) = (3.2.82)
1 elsewhere
then
Wf(s,t) = 1/s - 1/(s-t) = -t/[s(s-t)] (3.2.83a)
Wb(s,t) = 1/(s-t). (3.2.83b)

Applying Theorem 3.2.4 gives us the dimension of the minimal realization:

n=2+2-1=3. (3.2.84)
It also tells us that the minimal realization is neither strongly reachable
or strongly observable. Thus to obtain a minimal realization we follow

procedure c) described above. First we perform the following 2 factorizations

W, W1 =[-t/[s(s-t)] 1/(s-¢)] = [1 1](sI—t[g (1’])‘1[ 1 °] (3.2.85a)

11
W] [Fe/[s(s-6)] .
£ 11 1 0],-1[-1
) = I-t - 3.2.85b
[wb‘ [ 1/(s-t) ‘ ['1 O](s 0 0]) [ 1] ( )
We also find that
~ _ '1
X B = Lo] (3.2.86a)
¢=1[10] (3.2.86b)

In this case we can verify that T can be chosen to be just the identity
matrix and the minimal realization is

1 0 1 O » -1 % ¥ M
C=[011],E=|010|], A= |000|, B = 1|, P= |01 %= (3.2.87)
001 001 0 1 0

where * indicates entries that can be chosen arbitrarily. However, if we want

the system (3.2.87) to be in normalized-form we must pick the % in E equal to

Zero.
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The above approach to the construction of a minimal realization is
worthwhile only if the resulting realization is not separable. The reason for
this is that in the separable case, we can easily perform the realization as
was done in the proof of Theorem 3.2.1. The problem is to find a way of
recognizing that the minimal realization is separable before actually

constructing this realization. The following result solves this problem:

Theorem 3.2.5
W(k) has a separable minimal realization if and only if

n = p(We(s,t)) + u(W (s.t)). (3.2.88)

Proof

First assume that W has a separable minimal realization, in which case
clearly (3.2.88) holds. On the other hand suppose that (3.2.88) holds and
realize Wf and Wb separately. Then putting the realizations for Wf and Wb in
parallel clearly realizes W which must be minimal because n is the degree of

the minimal realization.

In the next section, we consider another class of weighting patterns for
which the realization procedure is simple. Namely, we consider stable
systems, i.e. systems whose impluse response W(k) is summable. As will be
shown below, these systems admit separable realizations where the forward and

backward subsystems are forward and backward stable.
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3.2.5-The Class of Stable TPBVDS's

In the case where the sequence W(k) is summable, i.e. when

[+ ]

z W(k)| < o, (3.2.89)

k=—cw

it turns out that the realizability condition, as well as finding the degree
of the minimal realization and the realization procedure, are simpler than in

the general case.

Theorem 3.2.6

a) A summable sequence W(k) is realizable if and only if the
(s,t)-transform of W(k), W(s.t), is rational in s and t.

b) A summable and realizable sequence W(k) has a minimal realization
which consists of a separable TPBVDS where the forward and backward
subsystems are forward and backward stable respectively. Moreover, this
realization is strongly reachable and observable and thus has the

displacement property.

Proof
To show part a) suppose that W(s,t) is rational. Note that

W(s.t) = 2= W(k)tk-l/sk

=—00

(3.2.90)

is well-defined (i.e. has a region of convergence) thanks to (3.2.89). Also

note that

W(s.t) = Wf(s.t) + wb(s,t). (3.2.91)
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Since W(s,t), Wf(s,t) and Wb(s.t) have a common region of convergence (which
includes |t/s|=1), Wf(s,t) and Wb(s.t) must be rational as well. Note that
Wf(s.t) is analytic for |s|>|t| and Wb(s.t) for |t]|>]|s|. thus Wf(s,t) and
Wb(s,t) have the following minimal factorizations
We(s.t) = Cf(sI-tAf)_le (3.2.92a)
W, (s.t) = C (A -tI)T'B_ (3.2.92b)
where Af and Ab have eigenvalues inside the unit circle. Now consider the
TPBVDS (3.2.13)-(3.2.15) with Ce. Af, Bf, Cb' Ab and Bb as defined in
(3.2.92). It is easy to check that the weighting pattern of this system is
just W(k) proving that W(k) is realizable. The only if part is trivial.
To show part b) simply note that the realization constructed above is

strongly reachable and observable and thus it is minimal.

Next, let us introduce the notion of stability for input-output

extendible stationary TPBVDS's.

Definition 3.2.1

The input-ouptut extendible stationary TPBVDS (C,P,E,A,B) is called

stable if it has a summable weighting pattern.

Essentially a stable system is a separable system where the forward and
backward subsystems are forward and backward stable. A stable system has a

number of interesting properties:
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a- it has a stable minimal realization which is strongly reachable and
observable,

b- let (C,Vi,Vf,E,A,B,N). N22n, be any finite interval minimal
realization of a stable minimal TPBVDS (C,P,E,A,B) then (C,Vi,Vf,E,A,B,N) is
strongly reachable and observable, extendible and separable. If in addition

we assume that {E,A} has been put in forward-backward stable form (see

[I o‘ [Af o]
E = , A= (3.2.93)
0 A, 0 1

with Af and Ab having eigenvalues inside the unit circle ({E,A} cannot have

Section 2.6),

any eigenmode on the unit circle because W(s,t) has no poles on the unit

circle), then the projection matrix P is given by

I o
P= [ ] (3.2.94)
0 o

and the boundary matrices Vi and Vf are equal to P and I-P, respectively,
regardless of the length of the interval N,

c- There exists a realization of the stable TPBVDS (C,P,E,A,B) defined
on [-»,+©]. This realization denoted by (C,Vi,Vf,E,A,B,m) has W(k) for
weighting pattern,

d- the projection matrix P of a stable TPBVDS (C.P,E,A,B) is completely

determined in terms of the pencil {E,A}, in fact,

P=E (3.2.95)

if the system is in the forward-backward stable BNF (3.2.93)-(3.2.94).

From property c- we can see that the realization procedure for summable

sequences just consists in performing the factorization

W(s.t) = C(sE-tA) 1B (3.2.96)
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and transforming {E,A} into the forward-backward stable block standard form
(3.2.93). In Section 3.3 we will see that for the problem of stochastic

realization, we need only consider stable TPBVDS'’s.

3.2.6-Conclusion

In this section we have studied the problem of deterministic realization
for input-output extendible, stationary TPBVDS’s. We have obtained
realizability conditions and proposed a method for realizing any realizable
weighting pattern with a separable realization. This method however does not
always yield a minimal realization. We then proposed a new transform
technique, which is well adapted to handling noncausal weighting patterns.
This allowed us to obtain a direct method for computing the degree of a
minimal realization and for constructing such a realization. This approach
generalizes the classical realization theory for causal systems.

In the next section, we shall consider the stochastic realization
problem. As in the causal case, it turns out that there are strong ties

between the two problems of deterministic and stochastic realization.
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3.3-Stochastic Realization Theory

In this section we consider the problem of stochastic realization for
extendible stationary systems driven by white noise that have stochastically
stationary outputs. In particular, we first study conditions under which a
stationary system is stochastically stationary (i.e. it has a stochastically
stationary output) and stochastically extendible (i.e. it has an extendible
output covariance). Then we show that the stochastic realization problem
reduces to a factorization problem and finally we present minimality

conditions for stochastic realizations.

Throughout this section we consider minimal, input-output extendible,

stationary TPBVDS's in normalized form or block normalized form (BNF):

Ex(k+1) = Ax(k) + Bu(k) (3.3.1a)
V;x(0) + Vx(N) = v (3.3.1b)
y(k) = Cx(k) (3.3.1¢)

where u(k) is a white, zero-mean, Gaussian unit-variance sequence and v is a
zero mean, Gaussian random vector, independent of u(k) for all k, with
variance matrix Q. This stochastic TPBVDS is a generalization of the usual
causal stochastic systems. Note however that in this case, unlike the causal
case, even though v is assumed to be independent of u(k), x(k) is not a
Markov processl.

In [16] we have studied stochastic stationarity of the "state process"

1 The process x(k) satisfying (3.3.1a)-(3.3.1b) is a reciprocal process [44].
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x. In particular we have shown that x is a stochastically stationary process
if and only if Q, the boundary variance matrix, satisfies the following

generalized Lyapunov equation

EQE' - AQA' = ViBB'Vi - VfBB'V%, (3.3.2a)
in which case, the variance matrix of x, Px' satisfies
1, L] — L] L) — N 1] N L}
EPE' - AP A" = V,E'BB'(V,E')' - VA"BB vy (3.3.2b)

We have also shown the following lemma:

Lemma 3.3.1

If the pencil {E,A} has no reciprocal eigenmodes (i.e. if o is an
eigenmode, 1/0 is not) and no eigenmodes on the unit circle, then (3.3.2a)

and (3.3.2b) have unique solutions.

The proof can be found in [2,16] and consists of first showing that if
pencil {E,A} is in standard form and satisfies the conditions of the lemma,
then EBE-A®A, where ® denotes the Kronecker product, is invertible. Then,
noting that if we form a vector £ from the entries of Q (or Px) by

lexicographic ordering. the left hand side of (3.3.2a) (or (3.3.2b)) is just
(E®E-ABA)E.

If the system does have reciprocal eigenmodes or eigenmodes on the unit
circle, the "state" variance matrix Px of a stochastically stationary system
is not uniquely determined by (3.3.2a) and other methods must be used for the
computation of Px’ Note that (3.3.2a) and (3.3.2b) both reduce to the

standard Lyapunov equation in the causal case.
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The problem that we are considering in this section is slightly
different in that we are interested in studying systems that have a
stochastically stationary output y and not necessarily a stochastically
stationary x. In the causal case, since minimal systems are strongly
observable, the two problems are exactly the same problem. In the TPBVDS
case, however, as we have seen in Chapter II, minimdl systems are not
necessarily strongly observable. Thus, stochastic stationarity of the output
in this case is a strictly weaker condition than stochastic stationarity of
the "state”. In the following section, we obtain necessary and sufficient

conditions for stochastic stationarity of the output y.

3.3.1-Stochastic Stationarity and Extendibility

The first problem that we shall consider consists of determining
conditions under which the output of (3.3.1) is a stochastically stationary

process, in which case (3.3.1) is called a stochastically stationary TPBVDS.

Definition 3.3.1

The TPBVDS (3.3.1) is stochastically stationary if (with the usual abuse

of notation)

y(k+j)y(k)' = A(k+j.k) = A(j) for O<kEN, O<j<N-k.

In the causal case, the stochastic stationarity of a system is tested by

examining whether Q, the variance matrix of the initial condition, satisfies
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a Lyapunov equation. In the case of system (3.3.1), we shall see that a

similar test exists.

Theorem 3.3.1
The TPBVDS (3.3.1) is stochastically stationary if and only if Q
satisfies
OS(EQE'—AQA"ViBB'V£+VfBB'V%)0; =0 (3.3.3)

where 0s is the strong observability matrix.

Note that if the system is observable, we can replace Os in (3.3.3) with
I and obtain the generalized Lyapunov equation (3.3.2a). If the system is

causal as well, (3.3.3) reduces to the usual Lyapunov equation.

Proof

It is clear that (3.3.1) is stochastically stationary if and only if
A(k+1,i+1) = A(k,i)  k,ie[O,N-1]. (3.3.4)
By writing out y explicitly in terms of u and v using (2.2.6) and (2.2.40),

we find that for j>m,

m-1
A(j.m) = cAdENdqa e Mo | s CViAj-p-lEN_(J_p)BB'A'm_p_lE‘N_(mPp)V£C' -
p=0

1 . .
CviAJ_q—lEN—(J_q)BB 'A'N+(m—q)_1E '_(m_q)v%C' +

j_

b)
q=m

N-1 N+(j-r)-1_~(j-r) N+(m-r)-1
3 CVA E W T)gp p"

e ™vc,  (3.3.5)
r=j
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from which we obtain
A(k+1,i+1)-A(k,i) =
CAkEN_k—l(EQE'—AQA'-ViBB'V£+VfBB'Vf'.)(AiEN_i_l) 'cr. (3.3.6)
Now, taking into account expression (2.2.16) for Os, we see that thanks to
the generalized Cayley-Hamilton theorem, (3.3.6) and (3.3.3) are equivalent,

thus completing this proof.

Equation (3.3.3) can in general have many positive semi-definite
solutions. This situation arises in the causal case when the system has
eigenmodes on the unit-circle. The case that we consider here is more
complicated; Q is of course not unique when the system has eigenmodes on the
unit circle, but there is also nonuniqueness when the system has reciprocal
eigenmodes (i.e. if o and 0—1 are both eigenmodes). Furthermore, the fact
that minimal systems are not necessarily strongly observable is another

source of nonuniqueness.

Theorem 3.3.2

Any TPBVDS obtained by moving in the boundaries of a stochastically
stationary TPBVDS is stochastically stationary and the two systems (the
original and the one that has been obtained by "moving-in") have identical
output covariance sequences (where both are defined). In addition, if the

systems are strongly reachable and observable, then the boundary variance
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matrix of the "moved-in" system is uniquely determined in terms of the length

of the interval over which it is defined.

Proof

Let TPBYDS (3.3.1) be stochastically stationary and let

Ex(k+1) = Ax(k) + Bu(k) (3.3.7a)
Vi(K,L)x(K) + Vf(K,L)x(L) = zi(K,L) (3.3.7b)
y(k) = Cx(k) (3.3.7¢c)

be the system obtained by moving in the boundaries of (3.3.1) to the interval
[K.L]. Moving in the boundaries, does not affect the mapping from {u,v} to y
inside [K,L] (the contribution of u’'s outside [K,L] and v to y’s inside [K,L]
are through zi(K,L)) and thus the output covariance of (373.7) over its
domain of definition is identical to that of (3.3.1).

To show that when the TPBVDS (3.3.7) is strongly reachable and
observable, its boundary variance matrix is uniquely determined in terms of
L-K, note in this case, that Vi(K.L) and Vf(K.L) are uniquely determined in
terms of L-K (see Section 2.3). Also note that, thanks to the first of part

of the theroem and the assumption of strong observability, x(k) is

stochastically stationary. Therefore, x(K)x(L)' is only a function of K-L and

thus (3.3.7b) implies that the variance of zi(K.L) only depends on K-L. This

proves the theorem.



127

Note that the boundary variance matrix for (3.3.7) is just the variance
of zi(K,L) which can be obtained using the expression (2.3.7) for the inward
process z..

In analogy with the determinitic extendibility concept studied in
Chapter II, a natural question to ask here is under what conditions can we

extend outwards the boundaries of a stochastically stationary TPBVDS.

Definition 3.3.2
The TPBVDS (3.3.1) is called stochastically extendible if for any M)N,
there exists a stochastically stationary TPBVDS EM defined over an interval

of length M such that TPBVDS (3.3.1) can be obtained by moving in the
boundaries of ZM.

Stochastic extendibility is a concept similar to deterministic
extendibility for stationary systems: we want to be able to extend the domain
of the system without modifying the statistics of its output. This allows us
to associate an output covariance sequence A(k), defined everywhere, to any
stochastically extendible TPBYDS. Just as in the deterministic case, where we
used W(k) to study the problem of deterministic realization for input—-output
extendible stationary TPBYDS's, we shall use A(k) to study the problem of

stochastic realization for stochastically extendible TPBVDS's.
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Example 3.3.1

Consider the following minimal, input-output extendible stationary

TPBVDS
x(k+1) = x(k) + u(k) (3.3.8a)
(172)x(0) + (1/2)x(N) = v (3.3.8b)
y(k) = x(k) (3.3.8¢)

where u(k) is a white Gaussian sequence of variance 1, and v is independent
of u(k) and has variance q. It is straightforward to verify that this system
is stochastically stationary. Now let us check whether it is stochastically
extendible. For that, let M be some integer such that M)N. Suppose that there
exists a stochastically stationary TPBVDS defined over an interval of length

M, such that by moving in its boundaries we can recover (3.3.8). This TPBVDS

must have the form

x(k+1) = x(k) + bu(k) (3.3.9a)
(172)x(-J) + (1/72)x(M-]) = VM (3.3.9b)
y(k) = x(k) (3.3.9¢)

where [-J.M-J] contains [0O,N] (this is because the system matrices of a
stochastic extension are the same as that of a deterministic extension and
since in this case E=A-=1, Vi and Vf do not change as we move in and out the
boundaries) and we must also have that the inward process for this system

must satisfy

zi(O,N)zi(O.N)' = q. (3.3.10)
Noting that (3.3.9) has the displacement property and using expression
(2.3.21), we can show that
zi(O,N) =Vt (172) (u(=-J)+u(-J+1)+...+u(-1))

- (1/2)(u(N)+u(N+1)+. ..+u(M-J-1)). (3.3.11)



129

Using the fact that the u(k)’s are independent and have unit variance, we get

zi(O.N)zi(O,N)' = vJMv"]M + (1/4)(M-N). (3.3.12)
But from (3.3.10) and (3.3.12) we get

VJMVjM =q - (1/74)(M-N) = (q+N/4) - M/4 (3.3.13)
which since the left hand side of (3.3.13) must be non-negative, implies that
M < 49 + N. (3.3.14)
Thus this system can be statistically extended only up to a point but not

indefinitely. This system is not stochastically extendible.

Theorem 3.3.3

The stochastically stationary TPBVDS (3.3.1) is stochastically

extendible if and only if

a) (C.P,E.A,B), where P is a projection matrix of (3.3.1), is stable (as
defined in Section 3.2.5),

b) its boundary variance matrix Q is invertible and satisfies

v:aTlv, = o. (3.3.15)

Proof

First we prove the only if part. Assume that the TPBVDS (3.3.1) is
stochastically extendible. Then for any M>N, there exists an extension of
(3.3.1) over an interval of length M having output covariance A(j) identical
to the output covariance of (3.3.1) for -N+1<j<N. Let WM(j) denote the

weighting pattern of ZM and i its boundary value vector having covariance
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QM' Then

-1
yave) = VBV, 4 s WL v2)-i) e (3.3.16)
§=0
which implies that

A(0) = y(M/2)y(W/2)’

w2
- AMlenlz'lqMA'Mle'”’2'1C' .03 W (W, (K) . (3.3.17)
k= (W/2)+1
But
Wy(k) = W(K), for -Mr1gkeM (3.3.18)

where W(k) is the weighting pattern of (C,P.E,A,B). Thus using the fact that
CAM/2EM/2-1QMA|W2-E.M/2-1C| 2 O. (3.3.19)

and that A(O) does not depend on M., (3.3.17) implies that

[+ ]

S WK)W(K)' < @ (3.3.20)

k=—w

which implies the a) part of the theorem.

To show part b), observe first that since (C,P.E,A,B) is stable and
minimal, it is strongly reachable, strongly observable and has displacement
property (see Section 3.2.5). Thus we can assume that E, A and P have the

following block forms (see (3.2.93)-(3.2.94))

I O Af 0 I 0
E = 0 A.b . A= 0 I R P = 0 0 (33.21)

where Ab and Af have eigenvalues inside the unit circle. Moreover, the

boundary matrices Vi(K.L) and Vf(K,L) of all the elements of (C,P,E,A.B) are

5 8] e [2 5]

given by

respectively.
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Let us now move in EM one step, two ways: once by moving in the left
boundary and once by moving in the right boundary. By doing so, thanks to
Theorem 3.2.2, we should obtain the same boundary variance matrix for the
"moved-in" systems. Using expression (2.3.21) for the inward process of a
displacement TPBVDS, we can show that if QM—l denotes the boundary variance

matrix of » then by moving in the right boundary we get
-1

., [0 0]lye.[0 ©
QM_1 = EQME + o IJBB o I]' (3.3.22)
By moving in the left boundary, we get
v, [T 0]ye.[T O
QM—] = AQMA + o O.BB o ol (3.3.23)
If we now let
S i P U % Q_, = K1 % (3.3.24)
- M T 1,2,, 2,21 "M-1 T 1,2,, 2,2 e
Bb (QM ) QM (QM—I) QM—I
expressions (3.3.22) and (3.3.23) imply that
1,1 _ 1,1 _
where Qf is the solution of the following Lyapunov equation
and
2,2 _ 2,2 _
QM = QM_1 = Qb (3.3.26a)
where Qb is the solution of the following Lyapunov equation
Q, ~ A, QA = B,B;. (3.3.26b)
They also imply that
1,2 _ 1,2 _ 1,2,
QM—I = AfQM = QM Ab (3.3.27)
which in turn implies that
1,2 M-N_1,2
Q =Af QM (3.3.28)

where Ql’2 is the (1,2) block of Q, the boundary variance matrix of the



132

original TPBVDS (3.3.1). Note that since Af is stable, if Ql’2 is not zero,
Q;'z must grow unbounded as M grows. But we have shown that Q;’l and Qﬁ’z are
constant which means that if 01'2 is not zero then QM cannot remain positive

1,2

semi—definite as M grows. Thus Q must be zero which proves part b) (note

that if {E,A} has no reciprocal eigenmodes, (3.3.27) directly implies that

Q;'z is zero for all M).

To show the if part, note that thanks to a) and b), we can suppose that

the system is in the form (3.3.21) with

Q= 0 Q (3.3.29)
b
where Q, and satisfy (3.3.25b) and (3.3.26b). Then any element of
f

(C.P.E.A,B) with boundary variance matrix given by (3.3.29) is a stochastic

extension of (3.3.1). This implies that (3.3.1) is stochastically extendible

and the theorem is proved.

Corollary
Let (3.3.1) be stochastically extendible, then there exists a family of

stochastically extendible TPBVDS's (C,Vi(M),Vf(M),E,A,B,M) for all M>0 such
that

(a) TPBVDS (3.3.1) is a member of this family
(b) If EM1=(C,Vi(M1).Vf(Ml),E,A,B,Ml) and EM2=(C,Vi(M2),Vf(Mz),E.A,B,Mz) are
any two members of this fémily and M2>Ml then EM is obtained by moving in

1

the boundaries of EM2.
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Proof

We have already constructed this family of systems. In particular, we
have shown in the proof of the theorem that, without loss of generality, we
can assume that (3.3.1) is in the form (3.3.21). It is not difficult to see
in this case that all the deterministic extensions of (3.3.1), i.e. all the
members of (C,P.E,A,B), with Q given by (3.3.29) are stochastically
extendible regardless of the length of the interval over which they are
defined. Also as we have shown in the proof of the theorem, that the boundary
variance matrix Q remains unchanged as we move in the boundaries. Thus, the
family of systems formed from the members of (C,P,E,A,B) with Q given by

(3.3.29) satisfies the conditions of the corollary.

Corollary
The output covariance A(j) associated to the stochastically extendible

TPBVDS (3.3.1) is given by

A(G) = 3 W(k+j)W(k)'. (3.3.30)

k=—o
Proof
Suppose, without loss of generality, that the system is in the
forward-backward stable form (3.3.21). Let M/2>|j|, then if ZM denotes the

stochastic extension of (3.3.1) to the interval [0,M] with QM and Wﬁ

representing the boundary variance matrix and the weighting pattern of EM'
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respectively, we get

A(J) = y(i+M2)y(M/2)" =

. . M-1
AJ+M/2EM/2_JQMA'M/2E'M/2 "4 2 WM( j+M/2_m)wM(M/2_m) -
m=0

M-1
AWM 230, W20 W20 | s W(j+M/2-m)W(M/2-m) " (3.3.31)

m=0

where Q is given by (3.3.29) and W(k) is the weighting pattern of
(C,P,E,A.B). Then as M grows Aj+M/ E 2_jQA'M/2E'M/2 ' tends to zero and thus
in the limit as M goes to infinity, by letting k=M/2-m inside (3.3.31); we

obtain (3.3.30).

Thus we see that to every stochastically extendible TPBVDS (3.3.1), we
can associate a family of input-output extendible stationary TPBVDS's having
identical output covariance restricted to their domain of definitions. We
refer to this family of systems as the stochastically extendible TPBVDS
(C.P,E,A,B) having A(j) for output covariance. To see that the output
covariance A(j) is completely determined in terms of the matrices C, P, E, A
and B, simply note (3.3.30) and (3.2.1).

Before ending this section, we shall demonstrate by the following

example that condition b) of Theorem 3.3.3 is indeed needed to guarantee

stochastic extendibility.
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Example 3.3.2

Consider the minimal, extendible, displacement TPBVDS

x(k+1) = [(2) 192]x(k) + u(k) (3.3.32a)

[0 O]x(O) + [1 o]x(N) =v (3.3.32b)

0 1 0 0 -3
y(k) = [1 1]x(k) (3.3.32c)

where u(k) is a white sequence of variance 1, and v is independent of u(k)

and has variance Q. It is easy to check that this system is stochastically

stationary, if

173 ¢
where c is any scalar smaller than 4/9. The nonuniqueness of Q is due to the
fact that the system has reciprocal eigenmodes, namely 1/2 and 2 (see Lemma

3.3.1). By applying Theorem 3.3.3, we can see however that (3.3.32) is

stochastically extendible if and only if c=0.

3.3.2-Characterization of the Output Covariance Sequence of Stochastically

Extendible TPBVDS's

In the causal case, the covariance sequence of a finite dimensional
stationary Gauss-Markov process is deterministically realizable and in fact,
the first step in stochastic realization consists of performing a
deterministic realization of the covariance sequence (see for example [40]).
In this section we develop similar results for the case of TPBVDS’s. In
particular, we show that the class of output covariance sequences that are

stochastically realizable by stochastically extendible TPBVDS's is the same
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as the ones that are realizable by causal systems; however, the class of
realizations is clearly larger. Constructing the realizations as in the

causal case reduces to a spectral factorization problem.

Theorem 3.3.4

The output covariance A(k) of the stochastically extendible TPBVDS
(3.3.1) of dimension n is deterministically realizable and has a stable,

minimal realization of dimension at most 2n.

Proof

Since W(k) is summable, thanks to (3.3.30), A(j) is summable as well. To

see this, note that

T A < 3 WeeED W) = (2 WD W) < .

j=— k, j=— k= k=—»
(3.3.34)
Thus we can use Theorem 3.2.6 to test the realizability of A(k). Let
- k-1, k . k-1, k
A(s.t) = 3 A(J)t /s = 3 W(k+j)W(k)'t™ /s

J:—w k, j:—m
@

= (3 Wm)™ g™y s W(k) e s KMy ogwes, )W(e. )
m=— k=—o
(3.3.35)
where m=k+j. Expression (3.3.35) clearly indicates that A(s,t) is rational
and thanks then to Theorem 3.2.6, all that remains to be shown is that the
dimension of the minimal realization of A(j) is at most twice that of W(k).

To see this, simply note that we can construct a factorization for A(k) of

dimension 2n (see the following Lemma).
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Lemma 3.3.2

Let (3.3.1) be stochastically extendible. Then A(s,t), i.e. the

(s.t)-transform of its output covariance, can be expressed as follows

A(s.t) = €(sé-td) La, (3.3.36)
where
E -BB’ A 0 0
€=[-C 0], & = , d = , B = . (3.3.37)
0 A’ 0 E' )
If in addition, the equation
EOE' = ATA' + BB' (3.3.38)
has a solution II. Then, A(s,t) can be expressed as follows
A(s.t) = €(sé-td) 1% (3.3.39)
where
~ A E 0 A A o ~ _AHC'
€=[-C -COE'], & = , d = , B =
0 A’ 0 E' c
(3.3.40)

Note that Equation 3.3.38 resembles the generalized Lyapunov equations
(3.3.2) introduced previously. Since the I-dependent part of (3.3.38) is the
same as in (3.3.2), the existence and uniqueness conditions, namely Lemma
3.3.1, hold. Specifically, (3.3.38) has a unique solution I if {E,A} has no
reciprocal eigenmodes. However, this condition is not necessary for existence
of a solution. For example consider the TPBVDS (3.3.32). This system has a

pair of reciprocal eigenmodes namely 2 and 1/2, and expression (3.3.38) for
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this system has a solution as well, namely

-1/3 0
I = [ o 4/3]. (3.3.41)

Note that I here is not positive semi-definite (emphasizing in fact that
(3.3.38) is not the equation for the variance of any statistic of the TPBVDS.
However, for our purposes, we simply need some solution and not necessarily a

positive-definite one.

Factorizations (3.3.36) and (3.3.39) are generalizations of the results
in [39] where similar factorizations are obtained in the continuous-time,
non-descriptor causal case. By analogy with the causal case, we say that
(3.3.36) is a cascade realization of A(s.t) and (3.3.39) a parallel
realization (thanks to the summability of A, a realization of A(s,t) can be

obtained from the above factorizations).

Proof
Thanks to (3.3.35), we can express A(s.t) as follows
A(s.t) = sW(s.t)W(t,s)' = sC(sE-tA) !BB'(+E'-sA')"Ic'  (3.3.42)
which is exactly what we obtain from (3.3.36).

The form (3.3.39) is simply obtained by replacing €, &, o, % with €T,

I OE' I -An
T [ ] - [ ] (3.3.13)
0 I 0

SET, SAT and SB where

I
and by noting that

@(sé-td) % = €T(sSET-tS4T) 59 (3.3.44)
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A realization of A(k), thanks to the summability of A(k), is given by
(3.3.37). However, this realization is not in normalized, or block normalized
form. For this reason, and also to construct the projection matrix #, we

transform € and § into the forward-backward stable block form

[1 0 ] [Af o]
LeR = |, Al LR = | I (3.3.45)

vwhere Af and Ab have eigenvalues inside the unit circle (notice that {§,«}

has no eigenmodes on the unit circle because {E,A} has no eigenvalue on the

I o
$ = [ ]. (3.3.46)

If {E.A} has no reciprocal eigenmodes, then A(s,t) can be factorized as

unit circle), in which case

in (3.3.39) and the two blocks of {&,4} have no eigenmode in common, so that

the realization (3.3.40) is in BNF and the corresponding projection matrix %

P 0
® = [ ] (3.3.47)
o (I-pP)’

where P is the projection matrix of (3.3.1). Factorizations (realizations)

is simply

(3.3.36) and (3.3.39) may not be minimal even if (3.3.1) is minimal. This
corresponds to the well known result in the causal case that a
~ deterministically minimal realization is not necessarily a minimal stochastic

realization (see for example [41]).
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Example 3.3.3

Consider the stochastically extendible TPBVDS (3.3.32). This system is
deterministically minimal (because it is strongly reachable and observable).
The output y(k) of this system is the sum of two statistically independent
forward and backward subsystems which have identical dynamics (of course one
is in the forward direction and the other in the backward direction but that
does not affect the output covariance). The output covariance sequences of
these 2 subsystems are related by a scalar multiplication (specifically, the
output covariance of the backward system is 4 times that of the forward
system). Thus the output covariance sequence of this system equals the sum of
the output covariances of the two subsystems and thus equals the output

covariance of the following system

x(k+1) = (1/72)x(k) + u(k) (3.3.48)
x(0) = v (3.3.49)
y(k) = vV 5/2 x(k) (3.3.50)

where u is a white, unit-variance sequence and v has variance 4/3. This
example illustrates that a deterministically minimal system is not

necessarily stochastically minimal.

3.3.3-Stochastic Realization for Stochasticallx Extendible TPBVDS'’s

The stochastic realization problem in this case consists of constructing
stochastically extendible TPBYDS's of minimum dimension from their output
covariance A(j). In the previous section we showed that if A(j) is the output

covariance of a stochastically extendible TPBVDS (i.e. A(j) is stochastically
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realizable), then

A(s.t) = sW(s,t)W(t,s)’ (3.3.51)
where A(s.t) is the (s,t)-transform of A(j) and W(s.t) is the (s,t)-transform
of W(k), the weighting pattern of the TPBVDS. From (3.3.51) we can obtain the

following result:

Theorem 3.3.5

A sequence A(j), —»{j<w, is stochastically realizable if and only if
a) it is summable,

b) its (s,t)-transform, A(s,t) is rational,

c) tA(s,t) = sA(t,s)’ (3.3.52)
d) Ae3®.1) 2 0 for all w. (3.3.53)
Corollary

A sequence A(j), —®<j<w, is stochastically realizable if and only if it

is stochastically realizable by a causal system.

Proof
The only if part clearly follows (3.3.51). To show the if part, we have
to show that given that conditions a)-d) are satisfied, (3.3.51) is also

satisfied for some W(s,t). Note that

A(s.t) = (1/t)A(s/t.1), (3.3.54)
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and A(z,1) satisfies
A(z.1) = A(z" L, 1) (3.3.55)
Ae3®.1) > 0. (3.3.56)
Using classical spectral factorization results (see [39,40,41,42]), there

exists a H(z) such that

A(z.1) = H(z)H(z })". (3.3.57)
Thus we get
A(s.t) = (1/t)H(s/t)H(t/s)", (3.3.58)
which implies (3.3.51) for
W(s.t) = (1/t)H(s/t). (3.3.59)

Also note that we can always choose W(s.,t) satisfying (3.3.51) which has no

poles (s,t) such that |s|<|t|. Such a W(s,t) yields a causal system and thus

the corollary is proven.

So we see that to every W(s,t) that satisfies (3.3.51) corresponds a
stochastic realization of the sequence A(j). The degree of freedom in

choosing W(s.,t) is larger than in the causal case; in the causal case we can

switch zeros between H(z) and H(z_1

)'. here we can switch zeros and poles
between W(s,t) and W(t,s)"'.

Also note that to every W satisfying (3.3.51) corresponds an H
satisfying (3.3.57) (see 3.3.59). Thus the factorization problem of A(s,t)
reduces to the standard factorization problem (3.3.57). Note however that the

standard factorization problem usually consists of finding all proper and

stable (i.e. with poles inside the unit circle) H(z)'s satisfying (3.3.57)
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whereas, in our case, every H(z) satisfying (3.3.57) yields a
deterministically realizable W(s.t). But of course not all W(s,t)’s

satisfying (3.3.51) are of interest because many do not yield minimal

stochastic realizations.

Example 3.3.4
Let
A(s.t) = 1/¢, (3.3.60)
which can be expressed as
A(s,t) = sWi(s.t)Wi(t,s)' (3.3.61)
where
W(s.t) = /st (3.3.62)

Each Wi(s,t) can be realized and the result is a stochastic realization of
(3.3.60). However, the dimension My of the minimal realization of Wi(s.t)
which is just the degree of the denominator of Wi(s,t) (see Theorem 3.2.3) is
given by

i for il
i [ 1-i for i<0 (3.3.63)

vwhich implies that the dimension of minimal stochastic realizations of A is
1. A minimal stochastic realization can be constructed by either

(deterministically) realizing Wl(s,t) or Wo(s,t).



144

Theorem 3.3.6

The dimension of the minimal stochastic realization of A(j) equals one
half the degree, p(A(s.t)/s). of the least common multiple of the

denominators of all the minors of A(s,t)/s.

Proof
Let W(s,t) be the weighting pattern of any stochastic realization of
A(s,t). Then thanks to (3.3.51) and the fact that
u(HH,y) < p(H)) + p(Hy) (3.3.64)
for any H1 and H2, we can deduce that p(W(s,t)) cannot be less than
(172)u(A(s.t)/s). Now we need to show that we can find a W(s,t) that has a
minimal realization with exactly this dimension. Note that we can choose,
without loss of generality, a W(s,t) that has no poles and zeros outside the
unit circle (this is just the minimum phase, causal stochastic realization).
In this case, there can be no pole-zero cancellation in the product
W(s.t)W(t.s)' = A(s,t)/s, (3.3.65)
which means that pu((A(s,t)/s)) equals 2u(W(s,t)). Then, from Theorem 3.2.3,
we can deduce that the minimal realization of this W has exactly dimension

n = p(W(s.t)) = (1/72)u(A(s,.t)/s). (3.3.66)

Example 3.3.5

Consider the following matrix sequence

0o 1
A(0) = I, A(1) = A(-1)' = [ ] A(k) = 0 for |k|>1. (3.3.67)
0 o
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Clearly, A(j) is summable and

1/t 1/s
(3.3.68)

Meet) = [s/t2 1/t

satifies (3.3.52) and (3.3.53) and thus A(j) is stochastically realizable.
The dimension of the minimal stochastic realization of A(s,t) is equal to one

half the degree of s2t2 which is just 2. Matrices

[t/szl
W(s.t) = (3.3.69)
[1/s
and
1/s
W(s.t) = ] (3.3.70)
1/t
satisfy (3.3.51).
Realizing (3.3.69) yields the causal system
0] 1 0
x(k+1) = [ ]x(k) + [ ]u(k) (3.3.71)
0 0 1
x(—) = v (3.3.72)
y(k) = x(k) (3.3.73)
and (3.3.70) yields
1 o o} 0 1
[ ‘x(k+1) = [ ‘x(k) + [ ]u(k) (3.3.74)
0 0 o 1 1
1 0 0 0]
[ ‘x(—w) + [ ‘x(w) =v (3.3.75)
0 (0} 0 1
y(k) = x(k). (3.3.76)

Note that in the first realization we have a double pole at zero and in the

second realization we have one pole at zero and one at infinity.
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In the next chapter, we study the problem of optimal smoothing for
TPBVDS's; we extend the results on fixed interval smoothing for causal
systems to the case of TPBVDS's. But before ending this chapter, as a preview
to the next chapter, we consider the optimal smoothing problem for the class
of stochastically stationary TPBYDS's considered in this section and show
that in this case, as in the causal stationary case, the optimal smoother can

be easily derived using transform methods.

3.3.4-0Optimal Smoother for the Infinite-horizon Stable TPBVDS

In this section we consider the optimal smoothing problem for the
following deterministically minimal, stable TPBVDS defined over the interval
(—=.+»),

Ex(k+1) = Ax(k) + Bu(k) (3.3.77a)
y(k) = Cx(k) + r(k) (3.3.77b)
where u(k) is a white Gaussian sequence of variance I and r(j) is a white
Gaussian sequence of variance R, with R > 0, and, u(k) and r(j) are
independent for all k and j. The boundary conditions for (3.3.77) need not be
specified explicitly because they are uniquely specified in terms of the E
and A matrices (see Section 3.2.5).

The optimal smoothing problem consists of finding the optimal estimate

;(k) of x(k), given by

x(k) = [x(K) [y(3)—=<j<+], (3.3.78)

and the corresponding smoothing error

P, = x(k)x(k)" = [x(k)-x(k)I[x(k)—x(k)]" . (3.3.79)
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By letting
A (]
x(k) = 3 K(k-m)y(m), (3.3.
m=—o
and using the fact that the estimation error is orthogonal to the
observation, i.e.
[x(k)=x(k)]y(j)' =0, for all k and j (3.3.
we deduce that
[++]
A (k) = 2 K(k—m)A 3.3.
() = 2 Klkem)Ay (m) (

where Axy denotes the cross-correlation sequence of x and y, and A the

auto-correlation sequence of y. Taking the (s,t)-transform of both sides

(3.3.82) we obtain

Axy(s,t) = tK(s,t)Ayy(s.t). (3.3.

~

Thus the mapping from the output y to the optimal estimate x is given by

K(s,t) where

K(s.t) = (I/t)Axy(s,t)A;;(s,t). (3.3.

If we are able to realize this transfer function, the estimation problem
resolved. Note that
A (s.t) = s[C(sE-tA) BB (tE'-sA') " Ic' + R/st] (3.3
Ay (s.t) = s(sE-tA) 1BB' (tE'-sA') lc" (3.3
so that
_l ] [ ' -1 ' -1 ' . . _1 ' —1
K(s.t) = s(sE-tA) "BB'(tE'-sA') "C'[R+stC(sE-tA) "BB'(tE'-sA') C']
s(sE-tA) IBB' (tE'-sA') 7! x
. _1 -1 ' ' _1 _1 ' ’ ' —1 ] _1
[I-stC'R "C(sE-tA) "BB'{stC'R "C(sE-tA) "BB'+tE'-sA } "JIC'R " =

s(sE-tA) "1BB'[stC'R™lc(sE-tA) "!BB'+tE'-sA" JC'R L. (3.3

80)

81)

82)

of

83)

84)

is

.85)

.86)

.87)
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Thus

K(s.t) = €(sé-tod) % (3.3.88)

where

E -BB' A 0 0
€e=[1 0], &= [ ]. d = [ . ], % = [ _1]. (3.3.89)
0 A C'R™'C E' —C'R

Thus, we have the desired factorization of K(s,t) given by (3.3.88)-(3.3.89).
The realization problem is then almost solved. Note first that the weighting
pattern of the optimal smoother, K, is summablez. Thus, the smoother is
stable, so that all that remains to be done is to transform {&,#4} into the
forward-backward stable form.

For the smoothing error, we can proceed similarly. Since x(k) and y(k)

are elements of the Hilbert space spanned by the r(k) and u(k), for some
L(k,m),

x(k) = x(k) - x(k) 2 L(k,m)
m=— r(m)

Thanks to the stationarity of the problem (no absolute time origin), L(k,m)

® u(m)
(3.3.90)

is only a function of the difference k-m and by abusing notation we shall

refer to it as L(k-m). Now we multiply both sides of (3.3.90) by r(j)' and

take expectation. Noting that x and r are independent and that r(j) and y(m)

are independent for m#j, and using (3.3.80) we obtain,

0
K(k-j)R = L(k—j)[ ] (3.3.91)
R

2 Note that A (k—j):CAxx(k—j)C'+R6kj and that for some a>0, Rdal. Thus,

—A'H” +00 +o +
x(0)x(0) '= 3 KA (k-3)K(5)' 2 3 K(RK(K)' > a3 K(k)K(K)'.
—mJ—m k=—o k=—00

Since x(0)x(0)' is bounded (by the variance of x), K(k) must be summable.
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vhich since R is assumed to be positive definite, implies that

0
K(s.t) = L(s,t)[ ‘. (3.3.92)
I
Now multiplying (3.3.90) by u(j)' and taking expectation we get that
I ©
L(k-j)| | = G(k-§)B - = K(k-m)OG(m-j)B (3.3.93)
0 m=—w
where G is the Green’'s function of the system. Noting that
G(s.t) = (sE-tA)” L (3.3.94)
and K(s,t) is given by (3.3.88), after some algebra we find
I -1 B
L(s,t) = €(sé-td) . (3.3.95)
0 0
Combining (3.3.88), (3.3.92) and (3.3.95) yields,
L(s.t) = €(sé-t) '8, (3.3.96)
where
~ B 0
B = 1 (3.3.97)
0O —C'R

Noting that the smoothing error is stable, from the factorization (3.3.96) we
can construct a realization for it. The smoothing error variance Pe is just
the variance matrix of the output of this realization so that it can be
obtained from the solution of a generalized Lyapunov equation as follows. Let
(%s'gs'gs'ds'gs) denote a forward-backward stable realization of L. Thus for
some invertible ¥ and 7,

1 -1 o

¢ =, & =99, d =95, & - 98 (3.3.98)
S S S S

As seen in Section 3.2.5, in this case,

95 =& (3.3.99)
The variance of the "state” of this realization I must then satisfy (see
(3.3.2) and note that V1=ViEN=3‘s for stable systems in forward-backward form)

eIE, - A ld. = F BB - (1-9 )88 (-9 ). (3.3.100)
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Then

P =¢eme. (3.3.101)
e s s

Thus we see that we need to transform {&,d} into the forward-backward stable
form. This problem is treated in depth in the next chapter, where dynamics
(3.3.88) and (3.3.96) are rederived for the smoother and smoothing error

corresponding to a general TPBVDS (the corresponding boundary conditions are

of course more general in that case).

3.3.5—Conclusion

In this section, we have defined and characterized the class of
stochastically extendible TPBVDS's and have studied the problem of stochastic
realization for this class of systems. In particular, we have obtained
conditions for a sequence of matrices to be stochastically realizable which
in fact are exactly the same conditions that are needed for a sequence of
matrices to be realizable by a causal system, so that the class of covariance
sequences that can be realized by stochastically extendible TPBVDS'’s is
exactly the same as the class of sequences that are stochastically realizable
by causal systems. The difference is that there are more TPBVDS realizations
than just causal realizations for any given output covariance. We have also
shown that as in the causal case, the stochastic realization problem for
stochastically extendible TPBVDS's reduces to a spectral factorization
problem and we have derived necessary and sufficient conditions for
minimality of the stochastic realization. Finally, as a preview to the next
chapter where we consider the smoothing problem for TPBVDS's, we have derived

some results concerning the smoother for a stochastically extendible TPBVDS.
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CHAPTER 1IV:
ESTIMATION FOR TWO-POINT BOUNDARY-VALUE

DESCRIPTOR SYSTEMS

In this chapter, we develop an estimation (smoothing) theory for
TPBVDS's. In Section 4.1, we show that the optimal smoother for a TPBVDS can
be obtained by solving a TPBVDS of twice the dimension of the original
system. We then propose solving this TPBVDS by the two-filter solution method
described in the Appendix. The two-filter solution requires that the
descriptor dynamics be transformed into forward-backward stable form and thus
in Section 4.2, we develop a method for such a transformation. In particular,
we show that this transformation is related to solutions of generalized
Riccati equations. These Riccati equations are studied, and a theory
paralleling the existing theory for standard Riccati equations is developed
for these equations. In Section 4.3; a different approach to the smoothing
problem is proposed. This approach is essentially a generalization of the
Rauch-Tung-Striebel formulation [34] for smoothing causal systems. For this
purpose, we propose a generalization of the Kalman filter which turns out to
be directly tied to the generalized Riccati equations of Section 4.2. We end

Section 4.3 with an analysis of the limiting behaviour of the smoother.
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4.1-Smoother for TPBVDS's
In this section we consider the smoothing problem for the TPBVDS
Ex(k+1) = Ax(k) + Bu(k) (4.1.1a)
Vix(O) + fo(N) =v (4.1.1b)
where u(k) is a zero-mean, white, unit-variance, Gaussian sequence defined on
the interval [0,N-1], x(k) is the boundary value process, and v is a
zero—mean Gaussian random vector with variance Q and independent of u(k). We
are given the interior observations
y(k) = Cx(k) + r(k) , k=1,...,N-1 (4.1.2a)
and the boundary observation
Yy = Wix(O) + fo(N) + Ty (4.1.2b)
where r(k) is a zero-mean, white, Gaussian sequence of variance R>0 defined
on the interval [1,N-1] and independent of u(k) and v. Also r, is a Gaussian
random vector with variance II and is independent of r(k), u(k) and v. We
assume that the TPBVDS (4.1.1) is well-posed (but not necessarily in
normalized or block normalized form).
We can rewrite (4.1.1) as a single equation
¥x = Bu ‘ (4.1.3)
where
x' = (x'(0),...x"(N)) (4.1.4a)

u' = (u'(0).....u" (N-1),v") (4.1.4b)



-A E O ..oovvvnnnn... 0 ]
0 -A E O .......... 0
¢ = (4.1.5a)
(o 0O -A E
A (o U 0 V.
% = diag (B,...,B, I) (4.1.5b)

Similarly, (4.1.2) can be expressed as

y=e+r (4.1.6)
where

v' =[y'(1). y'(2),....y'(N—1),yb'] (4.1.7a)
r' = [r'(1), r'(2).....r'(N—1),rb'] (4.1.7b)

C O........ 0O O

0O C . 0]
€ = X ; (4.1.7¢)

0o o cC O

0 O........ 0 Wf

Also, the covariances of u in (4.1.4b) and r in (4.1.7b) are given by
€ = diag(I....,I,Q) (4.1.8a)
% = diag (R,...,R.0) (4.1.8b)
Our problem, then is to estimate x given y. In [3] we have approached
this problem using the method of complementary processes. Here, we shall
approach this problem via the maximum likelihood philosophy. Let us rewrite

(4.1.3) and (4.1.6) as one observation of the unknown vector x as follows

-]

imm s me s mms e
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then it is not difficult to see that maximizing p(Eg]lx) is equivalent to
minimizing
J= (1/2)[w'e tu + ra ] (4.1.10)
subject to constraint (4.1.9). We can solve for r as a function of y and x
using (4.1.9) and thus the optimization problem to be solved is the
following:
minimize
J = (172)[u'@ tu + (y-cx) "% L (y-cx)] (4.1.11)
subject to the constraint
Ix = %u. (4.1.12)
This is a standard problem which can be solved using the Lagrange multiplier

technique. Let

H=J+ N\ ($x%u). (4.1.13)
Then
SH| . =€% (e-y) +#N=0 (4.1.14)
ox |x=x
sH| ~=20'0-8x=0 (4.1.15)
éu ju=u
which implies that
u = QB'\. (4.1.16)
Equation (4.1.16) and (4.1.12) imply that
Px - BQE'N = O (4.1.17)
and (4.1.14) implies that
ed lex + A = e ly. (4.1.18)

Expressions (4.1.17)-(4.1.18) can be expressed as follows

¢ 503" §] 0
eale o9 | g'a ly

~

4.1.19)
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The matrix on the left-hand side of (4.1.19) can be shown to be invertible as
follows. Since ¥ is invertible (thanks to the well-posedness condition), we

need only show that the Schur complement

D=9 +ed e lagy (4.1.20)
of the (1,1) block is invertible. Note that
D) =1+M (4.1.21)
where
M=edle)o (4.1.22a)
and
L = ¢ laes ()71 > o. (4.1.22b)

The invertibility of D then follows from the fact that ML cannot have
negative eigenvalues.

Equation (4.1.21) defines a well-posed TPBVDS, but to obtain the most
illuminating form of this system requires a permutation of the equations and
variables in (4.1.21). Specifically, let

A= [N (1)... . A (N).A(0)] (4.1.23)
(the reason for our particular choice of labeling of components in (4.1.23)
will be made clear shortly), then it is straightforward to verify that

(4.1.19) is equivalent to

FE = 7. (4.1.24)

where

E' = [(x'(0). A'(0)). (X'(1). A'(1)),....(x'(N).A'(N))] (4.1.25a)

1Suppose MLv=Av. Then v'L'MLv=Av'L'v, so that A=(v'L'MLv'/(v'L'v)>0.
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P O W |
n = _ . _ seees _ . _
Wor | ey (1) cRy(-1)] W, m 'y,

(4.1.25b)
1, € 0 O0....... o 7,
0O -4 & O ....... 0 0
g=10 0 -4 €&....... 0 O (4.1.26)
0O 0 0 o oA &
V21 0 0 O.ocon... 0 1/22‘
with
E -BQB' A 0 ]
& = , o= -1 (4.1.27)
o A -C'R'C  -E'
-A 0 0 0
'l = _ , ¥ = _ (4.1.28a)
Uy rly, oy, 25 yrly., o
L i i J i f )
v, -Q Ve 0
V. = , Yoo = (4.1.28b)
21 . _1 ' 22 ' _1 '
wan LA vf‘ W'l W, E‘

Comparing the form of ¥ in (4.1.26) to that of ¥ in (4.1.3) we see that
(4.1.24) is almost a standard TPBVDS except for the top row of equation
(4.1.24), i.e. the fact that 111 in (4.1.26) appears rather than -« and that
112 is present at all. This is a consequence of the discrete nature of the
time index and the intrinsic asymmetry of the model (4.1.1)-(4.1.2). We can,
however, reduce these equations to a standard TPBVDS by means of a basic
technique in the analysis of boundary-value systems. Specifically, we can

think of (4.1.24) as a TPBVDS with boundary values consisting of
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(;'(0).i'(0))' and (;'(N),i'(N))'. Because of the well-posedness of (4.1.24)
it is possible to eliminate some of the variables from (4.1.24) by solving
for them in terms of the remaining variables. More specifically, it is
possible to move the boundary values inward by eliminating boundary values at
one end of the interval, the other, or both. One can iterate this process,
and in fact this type of recursion forms the basis for a notion of state for
boundary value systems (see Section 2.2). For our purposes here, however, we
need only to consider a single step of this type.
Specifically, the invertibility of % implies that

»

To1
has full column rank and thus that we can eliminate (2'(0),&(0))' as follows.

We construct matrices Ml and M2 such that [Ml M2] has full row rank and

(4T
[M1 M2] = 0. (4.1.29)
o1
If we then premultiply (4.1.24) by the following full-rank matrix

0 I 0... 0 0]

0O 0 I... 0 O

0 0 0... 1 0

Fl O 0... 0 Mz.

we obtain a TPBVDS of a form exactly as in (4.1.1). Specifically, this

computation yields

”~ rA h
x(k+1) x(k) 0
¢ |. =d |. + 4 . k=l,....N-1  (4.1.30a)
A(k+1) A(K) C'R 'y(k)
with boundary condition
A A o 0 O
M, ¢ x( [M, ¥, +M_¥ ](X(N) M 1 (4.1.30b)
~ + +. A = X, + . -1 - 4.1. Ob
i) 17125799 AL alw, m v,
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By construction we know that this system is well-posed. Also, once we have
computed x(k), A(k). k=1,...,N, we can determine the previously eliminated

boundary values x(0), A(0):

ISR P P g R
R = DY! } ‘1 _ -y el
A(0) 1 W'D lyb 21 W'l lyb 117X

%(N)
- [V, ¥, 4V, 11~ (4.1.31a)
11'12 "21 "22 A(N)
where
[ » _1
D = [111 111 + 121 121] . (4.1.31b)

Note that on examination of (4.1.30) and the form of & and « in
(4.1.27), we see that what we have derived is a generalization of the
Hamiltonian form of the optimal smoother for causal systems (see, e.g. [10]).
This immediately suggests the possibility of generalizing methods for solving
smoothing equations such as diagonalization of the Hamiltonian dynamics [10]
to produce forward and backward recursions. Such an approach is described in

the following sections.

Example 4.1.1
Consider the smoothing problem for the following stochastic TPBVDS
1 0 0O o 1
x(k+1) = x(k) + u(k) (4.1.32a)
O o0 o 1 1
x(0) + x(N) = v (4.1.32b)
01 01

where Q, the variance of v is equal to I, and the observations are given by
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y(k) = x(k) + r(k) (4.1.33a)
1 o 0 0

v, = |0 Hxeo) + [0 Ok + ry. (4.1.33b)
0 0 1
0o o 0 1

where the variance of r(k) is equal to that of ry and equals to I. Referring
to (4.1.30a), we can see that the optimal estimate x(k) satisfies the

dynamics equation

1 0 -1 0O 0 00 00
(k+1) x(k)
0 0 -1 0 1 00 0 Oy,  (4.1.34)
00 O A(k+1) -1 0 -1 0 A(k) 1 0
00 O 0 -1 00 0 1

To obtain the boundary condition for this system, we need to compute Ml amd

M, defined in (4.1.29). Note that we have

2
0 0O o0 o
1,20 7% %, =0 (4.1.35a)
1 O 1 O
0 o 1
1 0 -1 o 0O 0 0 o
1, = 0 1 o -1 Voo = 0 1 0 of (4.1.35b)
0O O 0 o 1 o0 1 o0
o 0 0 1 0O 1 o0 o
We can then compute Ml and M2 satisfying (4.1.29):
[
1 0 0 O 0O O o 0
m = % % O w0 0 1 Of (4.1.36)
0O 1 o0 1 0O 0O o0 -1
o o o0 1 0 -1 0 -2

The boudary condition for system (4.1.34) can now be computed from (4.1.30b):

-

1 0-1-1 0 00O 0 0 0
x(1) X(N)
0 00O L1 o1o _ 010 yy. (4.1.37)
0 0 -1-2{|x1) 0-1 0 0 A(N) 01 0-1
0 0 0 -1] 0-3 0 0 01 0-2
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The estimate ;(k) can now be computed by solving the TPBVDS (4.1.34),

(4.1.37) using the two-filter solution method.

Example 4.1.2

In this example we introduce the class of cyclic TPBVDS's for which the
boundary condition (4.1.1b) takes the special form
x(0) = x(N). (4.1.38)
Equivalently we can think of a cyclic system as being defined on [0,N-1] with
the boundary condition
Ex(0) - Ax(N-1) = Bu(N-1) (4.1.39)
(so that ¥ in (4.1.5a) is block-circulant).
Consider the smoothing problem for such a system when the boundary
observation is
Yp = Cx(0) + ry (4.1.40)
with I=R. it is not difficult to check that in this case ¥ is also
block-circulant (i.e. 111 = 722 = -4, 712 =0, 121 = &) so that the smoother
is also a cyclic TPBVDS over [0,N-1] (with no need to move the boundary in
one step as in (4.1.29)-(4.1.31)). The optimal estimate in this case can be
obtained from solving the cyclic TPBVDS
x(k+1) x(k) 0
& |A =9 |a + -1 . k mod N (4.1.41)
A(k+1) A(k) C'R "y(k)

with y(0) defined as Yy,
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Before ending this section we show that the smoothing error
;(k)=x(k)—;(k) can also be expressed as a part of a boundary value process.
Specifically let

x' = [x(0)".....x(N)'] = x' - %' (4.1.42)

then using (4.1.12) we can see that
9x = x - 9x. (4.1.43)
Replacing x with #¢8'A (using (4.1.17) and (4.1.19)) in (4.1.43) yields the

following expression

¥x = Bu - BQB'A. (4.1.45)
From (4.1.16), (4.1.18), (4.1.19) and (4.1.42) we get that
e lex - 9'A = —@'d Ir. (4.1.46)
Finally, by combining (4.1.45) and (4.1.46) into a single equation, we obtain
¢ g3 )(x] (@ 0 [
-1 Al = -1 . (4.1.47)
€e'R ¢ g -A 0o -¢'% r
Proceeding in the same way as for (4.1.21), we can show that (4.1.47) is
equivalent to
x(k+1) x)) B 0 )fuk)
&l =d| . + -1 (4.1.48)
-A(k+1) -A(k) 0O C'R r(k)
with boundary conditions
x(1 *(N) Bu(0) v
M.&| . + MY MY ]| .~ =M _ + _ . (4.1.49)
VS R v Wt ¥ Wl

Examining (4.1.48)-(4.1.49), we see that the evaluation of the
covariance of the estimation error ;(k) corresponds to the computation of
(the upper left-hand block of) the covariance of the TPBVDS (4.1.48)-(4.1.49)
driven by white noise (u'(k), r'(k)) and with independent boundary conditions

(see [16], [3] for a discussion of this type of computation for general

TPBVDS's).
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In this section, we have shown that the optimal estimate for the TPBVDS
(4.1.1)-(4.1.2) can be obtained by computing the solution of the TPBVDS
(4.1.30). For this purpose, we can use the two-filter solution for which we
have to transform the dynamics of TPBVDS (4.1.30) into the forward-backward

stable form. We shall discuss such a transformation in the next section.

e A S———————
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4.2-Hamil tonian Diagonalization and Generalized Riccati Equations

In this section, we first consider the problem of Hamiltonian
diagonalization, i.e. the problem of transforming the smoother dynamics
obtained in the previous section into forward-backward stable form. This block
diagonalization is useful for the implementation of the two-filter solution to
solve the smoothing problem. In particular, we show that if the system is
strongly reachable and observable, the problem of Hamiltonian diagonalization
reduces to the problem of obtaining positive definite solutions to some
algebraic generalized (or descriptor) Riccati equations. These algebraic
generalized Riccati equations are studied and a method for constructing their
solutions is proposed.

In the second part of this section, we study further these generalized
Riccati equations. In particular, we consider the convergence properties of
these equations and obtain weaker conditions for the existence of a solution
to these algebraic equations. The results of this part are used in the next

section to obtain a direct method for the computation of the smoothed estimate

for the TPBVDS (4.1.1)-(4.1.2).

4.2.1-Hamiltonian Diagonalization

In the previous sections we have seen that the optimal smoother for the
TPBVDS has the following dynamics

[;(k+1)‘ [;(k)]
el =d|. + By (k) (4.2.1)
A(k+1) A(k) :

and the corresponding smoothing error x satisfies



~

[x(k+1) ] [;(k) ' ~[u(k) ]
el . = d + % (4.2.2)
-A(k+1) r(k)

where

E -BB' A 0 ) ~ B O
é = , 4 = -1 , B = -1} 3 = -1l (4.2.3)
0 -A -C'R 'C -E' IC'R 0O C'R

In this section we consider the problem of Hamiltonian diagonalization,

i.e. finding a sequence of invertible matrices ¥, and 7, such that

K k
4 I 0
g 890 = (4.2.4)
k" k+1 0 Az
and
£
0
ykdyil = [Ak ] (4.2.5)
0 I

for some matrices Ai and AE. We shall suppose that the system is strongly

reachable and observable.

Let
I ATI'{1
%, = o (4.2.6)
ast oo
E -y
7, = (4.2.7)
® E'
X
where
-1 -1
®, = A'S_'A+ CRIC (4.2.8)
S, = E8,, E' + BB' (4.2.9)
—1 1] ,
¥, = AT_'A" + BB (4.2.10)
-1 -1
T, = B E + cR lc. (4.2.11)

Then by substituting the expressions in (4.2.6) and (4.2.7) into (4.2.4) and

(4.2.5), and using (4.2.8)-(4.2.11), we get

£ -1, .-1

A, = AT_E'¥ (4.2.12a)
b S W | ,
Apep = A'S_ B8, . (4.2.12b)
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A sequence of matrices @k’ Sk satisfying (4.2.8)-(4.2.9) can easily be
constructed by arbitrarily choosing a positive definite ON and performing the
backward recursion (4.2.8)-(4.2.9). Note that thanks to the strong
reachability and observability assumptions (inlfact all that is required is
that the zero and infinite eigenmodes be strongly reachable and observablel),
all Qk and Sk obtained from this recursion are positive definite. To see this,
suppose that Sk is not positive definite but @k+1 is. Then there exists a

vector v such that

. L] —1 . L] .
v Skv =v E®k+1E v + v'BB'v = 0. (4.2.13)

But since BB' is positive semi-definite and 0;11 positive definite, we must
have that v'E=v'B=0 which contradicts the assumption that the infinite
eigenmode is strongly reachable. The positive definiteness of @k can be shown
in a similar fashion.

Similarly, Wk and Tk can be constructed by picking a positive definite T0
and performing the forward recursion (4.2.10)-(4.2.11). Finally, the
invertibility of $k and 3k can be checked by noting that their Schur
complements of there (1,1) and (2,1) blocks are given respectively by

IA'S AT and v spe] 'E-
which are both invertiblez.

1 As defined in Chapter II, an eigenmode o is strongly reachable if for some
(s.t). o=s/t and [sE-tAiB] has full rank. Similarly, an eigenmode o is
strongly observable if for some (s,t), o=s/t and [sE'-tA"iC'] has full rank.
These tests of strong reachability and observability do not require that
{E.A} be in standard or block standard form.

2 -1, -1,
Note that Wk>0 and E@k E'20, thus Wk+E®k E'>0. Also,

va—1l,—1 S B | e | -1 va—la—1 .
I+A Sk ATk =(Tk+A Sk A)Tk vhere Tk+A Sk A>0 and Tk >0, thus I+A Sk A.Tk is
the product of two invertible matrices and must be invertible.
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¥We can simplify recursion (4.2.8)-(4.2.9) by eliminating Sk and obtaining

a direct recursion for @, :

k
’ _1 L] L] —1 L) _1
Gk = A (E®k+1E +BB') "'A + C'R "C, (4.2.14a)
or eliminating @k and obtaining a direct recursion for Sk:
. -1 L] —1 -1 1] L]
Sk = E(A Sk+1A+C R 'C) 'E' + BB'. (4.2.14b)
Similarly for Tk and ¥, , the following forward recursions can be obtained
. -1,. 1 -1
Tk+1 =E (ATk A'+BB') 'E + C'R "C (4.2.15a)
| p—1—1,, .
Wk+1 = A(E Wk E+C'R 'C) "A' + BB'. (4.2.15b)

We shall refer to (4.2.14)-(4.2.15) as generalized Riccati equations. Note
that by replacing E with the identity matrix in (4.2.15), we obtain the usual
Riccati equations associated with the forward Kalman filter for a causal
system. Replacing E with the identity matrix in (4.2.14) yields the usual
Riccati equation associated with the backward Kalman filter for a causal
system. The Riccati equation (4.2.15b), with E=I, is commonly expressed in a

different form. Specifically, using the ABCD matrix inversion formula

(a+BD) ! = A lA A B+ ) Ipa L, (4.2.16)
(4.2.15b) with E=I can be expressed as follows
L] -— L) L] —1 . .
Vo1 = ABAT - AU C'(OLC'+R) OB A" + BB'. (4.2.17)

In the standard Kalman filtering problem, Wk obtained from (4.2.17) or
(4.2.15b) with E=I, corresponds to the predicted error covariance i.e. the
covariance of the estimation error of x(k) based on observations up to k-1.
The initial condition for this recursion, i.e. WO' is just the a priori
covariance of x(0). The advantage of using expression (4.2.17) is that Wk need
. not be necessarily positive definite. For example, we could very well have
complete knowledge of the initial state x(0). In this case, WO is zero and

recursion (4.2.15b) cannot be used whereas, (4.2.17) can be used to update the
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predicted error covariance. For the case of TPBVDS'’s, with E singular, we do
not know of any matrix inversion formula that can be used to express (4.4.15b)
in a way such that W;l does not appear explicitly in the expression. In
Section 4.2.2, we present an alternative expression that can be used in the
case where Wk is not necessarily positive-definite, and which requires
computation of a limit.

Naturally, for the implementation of the two-filter solution for the
smoothing problem, we are interested in the case where the sequences of
matrices Sk’ Q ., Tk and Wk can be chosen to be constant sequences and Ai and
AE are stable. For this, we need to study the algebraic generalized Riccati
equations (i.e. (4.2.14)-(4.2.17) without the subscripts k and k+1). We
consider two of these equations (the other two are trivially related to these
two), namely

1

v =AEYE+crR Iy + 8B, (4.2.18a)

S 1

E(A's A + cRI0)7IE + BB, (4.2.18b)
We will show that under the assumption of strong reachability and
observability, (4.2.18) have unique positive-definite solutions ¥ and S. In
the process we will also construct a method for computing ¥ and S. Our
approach is similar to the approach which is used to analyze standard

discrete-time Riccati equations [31]. But first we shall investigate some

properties of the smoother descriptor dynamics.
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Theorem 4.2.1

Let the system be strongly reachable and observable then the smoothing

error dynamics (&,4,%8) is strongly reachable.

Proof
Recall from Section 2.4 that (&,4,%) is strongly reachable if and only if
[sé-t#i®B] has full rank for all (s.t)#(0,0). Thus, using expressions (4.2.3)
we see that (&,4,8) is strongly reachable if and only if
sE-tA -sBB' B 0
«Rlc -sA'+tE' 0 CR
has full row rank for all (s,t)#(0,0). Multiplying on the right by the

1

invertible matrix

I 0 0 o
o I o0 o0
0 sB' I 0
t«C 0 0 I
yields
SE-tA 0 B 0
0 ~sA'+tE' 0 c'r!

from which the theorem follows immediately.

Theorem 4.2.2

If (so.to) is an eigenmode of the pencil {&.4} then so is (to.so).
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Proof

Note first that if (so,O) is an eigenmode, i.e. if

E -BB'
det(é) = det =0 (4.2.19)
o -A
then (O,SO) is also an eigenmode, i.e.
A 0
det(od) = det -1 = 0. (4.2.20)
—-C'R 'C -E'

Consider then any eigenmode (so.to) with so,to¢0. The following

computation shows that (to,so) is also an eigenmode:
det(toé-sod) = det(tos'—sod') =

0 (1/t)]I 0 1
det([ (17%0) ](tos'—sod')[ "o ]) -

(1/5)1 0 tol 0

det(soﬁ—tod) = 0. (4.2.21)

Note that this is the generalization of the usual reciprocal symmetry of

Hamiltonian eigenvalues for causal systems.

Theorem 4.2.3

The pencil {&.4} has no eigenmode on the unit circle if and only if the
eigenmodes of {E,A} that are on the unit circle are strongly reachable and
observable, i.e. [sE-tAiB] and [sE'-tA'!C'] have full row rank for all

eigenmodes such that |s/t|=1.

The following proof is just a generalization of the proof of Theorem 3 in

[28] to the descriptor case.
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Proof

Assume that

E -BB* z A 0 z;
=2 . (4.2.22)
0 -A' z, -C'R 'C -E' z,
with |A|=1. Then
Ez, - BB'z, = Mz, (4.2.23a)
1] L] _1 1]
A'zy = NC'R°Cz + AE'z,, (4.2.23b)
so that
3 2 , _ 2 H
Nz, Ez, - N zy BB'z, = [A| 2y Az, (4.2.24a)
H % H., -1 %
7, Az) = N'z"C'R'Cz, + Nz, PEz . (4.2.24b)

Since |A|=1, the above identities imply that
. _1 . -
z,"C'R Cz, + z,BB zy = 0. (4.2.25)

H

cr!

Noting that both z Cz1 and zzHBB'z2 are non-negative we deduce that

Cz1 = B'z2 = 0. (4.2.26)
But (4.2.23) and (4.2.26) imply that
(E—?\A)z1 = (A‘—?\E')z2 = 0. (4.2.27)
Combining (4.2.26) and (4.2.27) yields the following expression
L;imA z, = z)[A-AEIB] = O, (4.2.28)
vhich thanks to the strong reachability and observability of eigenmodes on the
unit circle implies that
zZ) =25 = 0, (4.2.29)

which completes this proof.

Note that Theorem 4.2.3 holds in particular when (E.A,B) and (C,E,A) are

strongly reachable and observable.
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Now we return to the analysis of the algebraic generalized Riccati
equations. The following result generalizes one of the well known results
concerning the existence of a positive-definite solution to the standard
algebraic Riccati equation under reachability and observability assumptions

and proposes a method for constructing the solutions.

Theorem 4.2.4

If (E.A,B) and (C,E,A) are strongly reachable and observable,

respectively, then (4.2.18) has positive-definite solutions ¥ and S.

Proof

Because of the symmetry, we shall only show the result for (4.2.18a).
Since the system is assumed to be strongly reachable and observable, the

smoother dynamics

[ ][ N 1)] [ B ][ ( )]
By (k) (4.2.30)
A(k+1) —C'R C E' | [A(k)

has no eigenmode on the unit circle (in fact from the previous theorem we know
that strong reachability and observability of eigenmodes on the unit circle is

sufficient). We also know that if o is an eigenmode so is 1/0. Thus we can

Ry P

where J is in Jordan form and is strictly stable (its eigenvalues are inside
F
the unit circle) and is formed from the eigenvectors and generalized
G

write




172

A 0 E -BB'
eigenvectors of the pencil { -1 , } corresponding to
-C'R 'C -E' 0o A
stable eigenmodes. We shall first show that if F is invertible, then GF_1 is
real-valued.

Note that the Jordan blocks of J that correspond to complex eigenmodes,
are in complex-conjugate pairs and thus J and J* (where % denotes complex
conjugate) are similar, i.e. there exists an invertible matrix W such that
J=W_1J*W. Thus by using this fact and taking the complex-conjugate of both

sides of (4.2.31), we obtain

[ E -BB'][F*WT [ A 0 [F*w
- _ J (4.2.32)
o -a' Jlw] |<rlc =& |lc*w

- 36 -
Fw
which implies that the columns of x | are formed from the eigenvectors and
G W]

E' o -A
W

corresponding to stable eigenmodes. Thus the range of %
G W]

A 0] E -BB'
generalized eigenvectors of the same pencil { -1 . }
-C'R 'C -

must equal that of

%
F Fw F

[ ] vwhich implies that for some invertible matrix V, [ » ]V:[ ], from which we
G GW G

-1 3¢ _3

can deduce that GF ‘=G (F*) =(GF"1)*. Thus, if F is invertible, GF ! is

real-valued.
Continuing with the proof, let us rewrite (4.2.31) as
EF-BB'G = AFJ (4.2.33a)
A'G = C'R™ICFHE"GJ, (4.2.33b)

we get

J'eF = ceB'c + Har (4.2.34)
Jae = e R ergs B g, (4.2.35)
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where H denotes conjugate-transpose. By adding (4.2.35) to the
conjugate-transpose of (4.2.34), we get
FE 6-J'FE ¢y = B¢ + JHFc R IcFy. (4.2.36)
Note that the right-hand side of (4.2.36) is Hermitian positive semi-definite.
Equation (4.2.36) is a Lyapunov equation and since J is strictly stable FHE'G
must be also Hermitian positive semi-definite.
Now we would like to show that F is invertible. Suppose that it is not

invertible, and let ¥ represent the null-space of F. Then if v is a vector in

N, we have
Fv = 0. (4.2.37)

By multiplying both sides of (4.2.36) on the left and on the right by v and vH

respectively we get

e 6y + deere + PR Icrg)y = 0. (4.2.38)
This implies that
B'Gv=0 (4.2.39)
CFJv =0 (4.2.40)
and by multiplying (4.2.33a) on the right by v and using (4.2.39), we get that
AFJv = 0. (4.2.41)
Since the system is strongly observables, (4.2.40) and (4.2.41) imply that
FJv =0 (4.2.42)
and thus ¥ is J invariant. Then, there must be at least one eigenvector of J
in N. Let w be such an eigenvector, and let pu be the corresponding eigenmode.

Then,

B'Gw = 0. (4.2.43)

In fact, all we need here is that the zero eigenmodes be strongly
observable, i.e., [C'iA'] have full rank.
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Also from (4.2.33b), we get that
A'Gw = E'GJw = uE'Gw. (4.2.44)
Combining (4.2.43), (4.2.44) and the fact that the system is strongly

reachab1e4, we get that

Gw = 0. (4.2.45)

But
Fw = 0 (4.2.46)
F
which is a contradiction because cannot then have full rank. Thus we have
G

shown that F is invertible.
Using the fact that F is invertible, we can rewrite (4.2.33b) as

1y crloyry = ave. (4.2.47)

(E'GF~
Now we need to show that (E'GF_1+C'R—1C) is positive-definite. The matrix
E'GF_1=(F-1)H(FHE‘G)F—1 is real-valued and positive semi-definite since, as we

have shown, FHE'G is Hermitian and positive semi-definite, and GF_1 is

1

real-valued. Thus all we need to show is that (E'GF +C'R_1C) is invertible.

To show this we will first show that a vector v satisfies
Fly =0 (4.2.48)
if and only if it satisfies
Ev = 0. (4.2.49)
First we show the only if part. Let (4.2.49) be true, then
FYHeEy = 0 = B'eF v (4.2.50)

because E'GF-1 is symmetric and real-valued. Multiplying (4.2.36) on left and

4 In fact, since |u|<1, all that is needed is that the stable eigenmodes be
strongly reachable.
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right by (F_lv)H and F_lv respectively, we obtain
VEGF hv-(F )M ety = (6 lv)HBB oF Lve (cruF vy R lorF Ly
(4.2.51)
Note that thanks to (4.2.50) the left hand side of (4.2.51) is non-positive on
the other hand the right hand side is non-negative and thus both sides must be

zero which implies that

B'GF lv = 0. (4.2.52)

Combining (4.2.50), (4.2.52) and the fact that the system is strongly

reachables. we get that

cFlv=o0 (4.2.53)

which is what we wanted to show.

Now we show the if part. Let A be the null-space of GF_l, and let v be
any element v of A, then we want to show that Ev=0. By multiplying (4.2.37) on
left and right by (F_IV)H and F_lv respectively we obtain (4.2.51), both sides

of which must be zero thanks to (4.2.48). And so,

VF O EE ) Yy = o, (4.2.54)
which since FHE‘G is positive semi-definite, implies that
E'GF Av = 0 (4.2.55)
where
A =FJF L (4.2.56)

Also since both sides of (4.2.51) are zero we must have that
CAv = 0. (4.2.57)
Since E'GF_1 is positive semi-definite and from the only if part, we get that

Ker(E) C Ker(GF 1) (4.2.58)

5 All we need here is that the infinite eigenmodes be strongly reachable,
i.e., [EiB] have full rank.



176

and thus there exists a positive semi-definite matrix Z such that
= ZE. (4.2.59)
By replacing GF_1 in (4.2.55) with ZE and using the fact that the null-space
of E'ZE and ZE are identical, we get that
ZEAv = 0, (4.2.60)
or
GF lav = 0. (4.2.61)
This of course implies that A is Z invariant. From (4.2.33a) and since
B'GF-1v=O, which follows the fact v€#=Ker(GF_1), we get
Ev = AKV (4.2.62)
and so what we need to show is that AXV:O (in fact we will show that XV:O).
Assume that X has an eigenvector w in M associated to an eigenvalue p. Then
EAw = uEw = pAAw (4.2.63)
so that Xw is an eigenvector of {E,A}. But thanks to (4.2.57),
CAw = 0 (4.2.64)
which thanks to (4.2.63) and the strong observability assumption6 implies that
Aw = 0. (4.2.65)
which means that u can only be 0. Thus any eigenvector of X in A must
correspond to a zero eigenvalue. This and the fact that i is X—invariant imply

that the eigenvectors and the generalized eigenvectors of A in M corresponding

6 In fact, since |u|<1, all that is needed is that the unstable eigenmodes be
strongly observable.
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to the eigenvalue O, span #.7 But matrix A cannot have a generalized

eigenvector associated to eigenvalue O in A because then there exists r€d such

that

A%r = 0 (4.2.66)
and

Ar # 0. (4.2.67)
From (4.2.62) and the fact that r,Xreﬂ, we get that

FAr = AA’r = 0. (4.2.68)

But from (4.2.57) we get that,

CAr = 0 (4.2.69)

so thanks to the strong observability assumption8

Ar = 0 (4.2.70a)
which contradicts (4.2.67). Thus A is spanned by the eigenvectors of X in M
corresponding to eigenvalue O. And since v€M, we must have that

Av = 0. (4.2.70b)
Using (4.2.62) we get the desired result that

Ev = 0. (4.2.71)

Using the fact that we have now proven that E and GF_1 have exactly the

same null space, we have that (4.2.59) holds with Z>0. Also noting that
Lerle - Bz e = B C'][Z R—1] [g] (4.2.72)

E'GF "+C'R

7 Let X be a matrix and S an X-invariant subspace. Then the eigenvectors and

their associated generalized eigenvectors of X that are in S, span S. To see

this suppose that we are in a coordinate system such that S=Im[é] in which

case X=Eg 3]. The eigenvectors and generalized eigenvectors of T clearly

span S and also they are the eigenvectors and the associated eigenvectors of
X in S.

8 Matrix [E' C'] has full rank if and only if the infinite eigenmodes of the
system are strongly observable.
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and using the fact that [E' C'] has full rankg, we get that

E'cF lc'rlc

is positive-definite. Now from (4.2.47) and (4.2.33a) we get that

1 1

(AE'GF !+ crR ey A + BB )oF ! - E. (4.2.73)

Let
v = AE'GF ! + cr Iy Ar + BB, (4.2.74)
then thanks to the strong reachability assumption (in particular of the

zero-eigenmode), ¥ is positive definite and

or ! = vlg. (4.2.75)
By combining (4.2.75) and (4.2.76), we get
v =AEVIE+crR )y A + BB, (4.2.76)

This, of course, completes this proof.

Note that in the above proof, we did not use the assumption that the
eigenmodes of the system that are inside the unit circle are observable
(except for the zero eigenmode and in the next section we will see that this
is not needed either). Also the assumption that the eigenmodes that are
outside the unit circle are reachable was not used. In fact these assumptions
are not needed for the existence of ¥ (they are needed to show the existence
of S however). All what is needed for the existence of a positive-definite

solution ¥ is that the system be forward detectable (i.e. eigenmodes on and

outside the unit circle, ® included, be strongly observable) and backward

stabilizable (i.e. eigenmodes on and inside the unit circle be strongly

2 Matrix [E' C'] has full rank if and only if the infinite eigenmodes of the
system are strongly observable.



179

reachable). Backward stabilizability guarantees that the solution to the
algebraic generalized Riccati equation (4.2.18a) is positive-definite. For
standard systems this is not a major concern because the standard algebraic
Riccati equation can have a positive semi-definite solution. On the other hand
the condition that is commonly required is that the associated Kalman filter
be forward stable for which we need to have forward stabilizability (i.e.
eigenmodes on and outside the unit circle be strongly reachable). The
following example illustrates the fact that the algebraic generalized (or
standard) Riccati equation could have a positive-definite solution even if the

system is not forward stabilizable.

Example 4.2.1
Consider the causal system
x(k+1) = ax(k) (4.2.77a)
y(k) = x(k) + r(k) (4.2.77b)
where r is a white unit variance Gaussian sequence. By direct calculation, we
can show that the generalized algebraic Riccati equation (4.2.18a) has a
solution W=a2-1 which means that the system has a positive-definite solution

if |a|>1. If we use the alternate form (4.2.17) of the Riccati equation, we

see that ¥=0 is also a solution.
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We do not worry too much about these conditions in this section since we
have a "forward" equation (4.2.18a) and a "backward” equation (4.2.18b). By
symmetry, we can show that in order to have a positive definite solution S to
(4.2.18b) we must have backward detectability (i.e. eigenmodes on and inside
the unit circle are observable) and forward stabilizability and thus if we
want to have positive-definite solutions to both algebraic generalized Riccati
equations (in fact all 4 algebraic generalized Riccati equations), we must
have strong reachability and strong observability. These conditions also
guarantee the stability of the forward and backward generalized Kalman filters
(this will become clear in the next section). The conditions for existence of

a solution to an individual algebraic generalized Riccati equation are studied

in the next section.

Example 4.2.2

Consider the generalized Riccati equation (4.2.18a) associated with the
TPBVDS of Example 4.1.1. To find the solution to this equation, we need to

find the eigenvectors and generalized eigenvectors of the pencil
0O 0 0 O] |1 0-1-1

{ 01 0 O] [0 0-1-1 }

-10-1 O|’|0 O O O

0-1 0 0] |0 O 0-1

corresponding to stable eigenmodes. In this case there is only one stable

eigenmode which is zero. The eigenvector and the generalized eigenvector

i

associated to eigenmode O are
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Now we can use expression (4.2.75) with F=I and G=Lé g] to obtain V¥:

1 1
v - [1 2]_ (4.2.78a)
It can be verified that ¥ is indeed a solution of the algebraic generalized

Riccati equation (4.2.18a).

Theorem 4.2.5

Let (E,A,B) and (C,E,A) be strongly reachable and observable respectively
and let ®, S, ¥, and T denote positive-definite solutions to the algebraic

generalized Riccati equations. Then matrices

Af 1

Ab

E'v ! (4.2.79a)

lpg~1. (4.2.79b)

AT

A'S”

are strictly stable.

Proof

Let us perform the following change of coordinates on (4.2.2):

v(k)] [Q(k) ]
=7| . (4.2.80)
6(k) -AMk)
where
E -y
g = [ ] (4.2.81a)
® E’

and premultiply (4.2.2) by

I ar!
g = o . (4.2.81b)
a'sTl g
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The result is the following

1 o] @A ol B AT 'CR I [u(k)
b = + _ (4.2.82)
0 A’ |5(k+1) o 1)|8(k) asTB R e
Thus v and & satisfy the following recursions
5(k) = AP5(k+1) - A'S'Bu(k) + C'R r(k) (4.2.83)
1(k+1) = Afv(k) + Bu(k) + AT IC'R Lr (k). (4.2.84)
Note that thanks to the strong reachability of (8.&,%), 6(k) and v(k) are

strongly reachable. Now consider the Lyapunov equation associated to (4.2.83)

and (4.2.84):
A's lpprs!
-1

A+cCrRC (4.2.85)

b, ,b,
P6 - A P6A

P - afp A" cRler lar. (4.2.86)

BB' + AT
Thanks to the strong reachability of (4.2.83) and (4.2.84) all we need to show
is that (4.2.85) and (4.2.86) have positive definite solutions. Indeed by
direct calculation we can show that

Ps=8. P =¥ (4.2.87)

are solutions which proves the theorem.

Theorem 4.2.6

If (E,A,B) and (C,E,A) are strongly reachable and observable
respectively, then (4.2.18a) and (4.2.18b) have unique positive-definite

solutions ¥ and S.
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Proof

We show the result only for (4.2.18a). Let Wl and W2 be two positive

solutions of (4.2.18a). Also let

T, =EW'E + C'R7IC for i=1,2. (4.2.88a)
Then
¥, = AT;IA' +BB' for i=1,2. (4.2.88b)
Now let
M =Y - (4.2.89)
and
AT =T, - T, (4.2.89b)
From (4.2.88b), and (4.2.89), we get that
AV = —ATIIATT;IA‘ (4.2.90)
and
=1 ,g0-1
AT = -E'V AV, E. (4.2.91)
By combining (4.2.90) and (4.2.91), we get
“1o.g=1,,.-1. -1, ,
AV = AT "E'¥ AW, ET,A". (4.2.92)
Equation (4.2.92) can be expressed as
[I - (ATIIE'WII)Q(WEIETQIA')']Ag -0 (4.2.93)

where ® denotes the Kronecker product and A¥ is the vector obtained from the
entries of A¥ by lexicographic ordering. Matrices ATIIE'WII and (W;lEIEIA')'
are strictly stable (see Theorem 4.2.5) and so their Kronecker product is
stable. This implies that (4.2.93) has a unique trivial solution O. Thus,

(4.2.92) has unique solution A¥=0. This completes the proof of Theorem 4.2.6.
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In this section, we have shown how the smoother dynamics can be
transformed into forward-backward stable form (assuming strong reachability
and observability) so that the two-filter solution can be used to solve the
smoother TPBVDS derived in the previous section. The two-filter solution has
the advantage of being composed of time-invariant filters, however, it has the
disadvantage of requiring the computation of a posteriori correction term (see
Appendix A). In Section 4.3 another method for smoothing the TPBVDS's is
proposed. This method is closely related to the generalized Riccati equations
obtained above, which we study further in the next section. In particular, we
shall be interested in obtaining conditions under which the time-varying

generalized Riccati equations converge.

However, before ending this section, remember that in Section 3.3.4 we
derived the optimal smoother for a stochastically stationary TPBVDS (see
equation (3.3.88)) and showed that the estimation error variance can be
obtained from solving the following generalized Lyapunov equation

EME —ANd’ =P B BP - (I-% )% %' (I-9 )’ (4.2.94a)
s s s s s's's's s’7s"s s
where
1 ~o

€ =€ .8 =9 . d =97, & =95 5 =& (4.2.94)
S S S S S S

and where ¥ and 7 must be chosen so that {8s.ds} is in forward-backward stable

form. We also showed that the variance matrix Pe of the smoothing error x is

then given by

P =¢eme'. (4.2.95)
e s s
In the previous chapter, however, we did not have an expression for ¥ and J;
we do now. Note that transformation (4.2.94b) is just the Hamiltonian

diagonalization and thus matrices ¥ and J are given by (4.2.81a) and
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(4.2.81b), respectively. Also 85, ds and Qs, all appear in (4.2.82) and the
projection matrix 95 is clearly [I 0]. Thus the generalized Lyapunov equation

(4.2.94a) can be expressed as

Y R A

[1 o] BB’ +AT 1C'R lor 1A BB'S—IA'—AT-IC'R_ZC] 1 o]

as7lB'c'R%cra' a'sTleB'slasc'rlC

o o
o o][eB+aT lc'rR ler lar me'sTIAraaT R 2C1l0 o
- S W Ut S R S (4.2.96)
o 1flas™'BB'c'rRZcr At a'sTlBB'sTlasc'r7Ic] [o

The (1,1) and (2,2) block entries of (4.2.96) yield equations (4.2.85) and
(4.2.86), respectively. The (1,2) and (2,1) block entries of (4.2.96) imply
that I is block diagonal. Thus the solution II of (4.2.96) is equal to Eg g]

where ¥ and ® are solutions to the algebraic generalized Riccati equations.

Since Pe=ﬂsﬂﬁs. (4.2.95) implies

-1[¢ 0], .-1[1
P, = [I 0]9 [0 0]9 [o]' (4.2.97)
Noting that
4 [AE a7t
g1 = _ 1 .l (4.2.98)
1 rlggl
where
A =0+ B iE (4.2.99a)
r=v+©e g, (4.2.99b)

we see that the smoothing error variance Pe is simply equal to A~
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4.2.2-A Study of Generalized Riccati Equations

In this section, we generalize the existing results concerning the
convergence properties of the standard Riccati equation under the
detectability and stabilizability conditions to the case of descriptor
systems. We shall consider the generalized Riccati equation

> L] _1 L] _1 _1 1] L]
Yol = A{t:g+(E (¥ +eQ) "E+C'R 'C) " }A’ + BB (4.1.100)

where Q is any positive semi-definite matrix for which (4.2.100) is defined
—i.e., Wk+eQ is invertible for e>0-- with the assumption only that the
infinite eigenmodes of (C,E,A) are strongly observable. We will show that the
limit in (4.2.100) exists and moreover, that it does not depend on the
particular choice of Q. But before that, note that if Wk is positive-definite,
then (4.2.100) reduces to (4.2.15b). Thus (4.2.100) is a generalization of
(4.2.15b) which allows us to use positive semi-definite matrices in the
recursion.

Thus, we must show that the following limit exists and is independent of

the choice of Q (as long as QX0 and Wk+eQ is invertibe for e>0):

-1
Fk = Lim+Tk (e) (4.2.101a)
e-0
where
T (€) = E' (¥ +eD) 'E+C'R . (4.2.101b)

This result follows from the following lemma:

Lemma 4.2.1

Let L be a full column rank matrix and let X be a positive semi-definite

matrix, then
Z = Lim, (L' (X+eY) " 11) 7L, (4.2.102)
e-0

where Y is a positive semi-definite matrix such that X+eY is invertible for

€>0, exists and is independent of the particular choice of Y.
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Proof

See Lemma 4.3.1.

To apply this lemma to (4.2.101), simply let

E v. 0
L = [C] X = [Ok R] (4.2.103)
and
Q O
Y = 0 0]' (4.2.104)
It is then easy to see that
Z = Fk. (4.2.105)

In what follows, for simplicity, we shall assume that Q equals I.

Theorem 4.2.7

Let (C.E,A) and (E,A,B) be forward detectable and stabilizable. Then for

any W020, as k goes to infinity, the sequence Wk satisfying (4.2.100)

converges to a positive semi-definite matrix ¥ exponentially fast.

We shall prove this result by extending the approach used in the
non-descriptor case [31]. First, we will show that Wk as k goes to infinity is

bounded above. Then, we will show that for a particular initial condition WO’

Wk is increasing, thus guaranteeing the existence of a limit for Wk as k goes

to infinity. This result is then extended to the case of an arbitrary initial

condition WO' Finally, we show that the convergences is exponentially fast.
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Before starting the proof, we need the following result:

Lemma 4.2.2

Let (C.E.,A) be forward detectable and let R be any positive-definite
matrix then there exists a positive-definite matrix ¥ such that the matrix A
given by

N -1., -1
A=At 'E'y (4.2.106)
where

r=EvE+crR (4.2.107)

has all of its eigenvalues inside the unit circle.

Proof

First, note that forward detectability of (C,E,A) means that all the
eigenmodes of the pencil {E,A} outside the unit circle and, in particular, the
infinite eigenmodes, are strongly observable. Thus, [E' C'] has full rank,
which, since y is assumed to be positive-definite, implies that T is
positive-definite and thus expression (4.2.106) is well defined.

We shall first prove Lemma 4.2.2 in the case where (C.E,A) is strongly
observable. Let G be a matrix such that (E,A,G) is strongly reachable. Then
from Theorem 4.2.4 we know that the generalized Riccati equation

1

v = AE'Y ExcR I)A + o (4.2.108)

has a positive-definite solution ¥ and from Theorem 4.2.5 we know that
Af carlpy! (4.2.109)

where

T=EVv!E+crR (4.2.110)
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1s strictly stable. Clearly then we can take Y to be ¥, in which case T
becomes T and A becomes Af.

Now suppose that the (C,E,A) is not strongly observable. Let us first
consider the special case where the system matrices have the following special
structure

E. O A, O H'H 0
E=| 1 [La= | ] erle- (4.2.111)
0 I O o
1
where (H’Ell’All) is strongly observable and A22 is strictly stable. We shall
show later that any forward detectable (C,E,A) can be put into the form

~

(4.2.111). Since (H'EII’AII) is strongly observable, from the first part, we

know that there exist matrices wll and Tll such that
~ . -1~ ~l~
Ty = EHWHE11 + H'H (4.2.112)
is positive-definite and such that
~ ~ _lf\l' -1
All = A11111E11w11 (4.2.113)
is stable.
Now let
v = wél wo (4.2.114)
22
where ¢22 is any positive-definite matrix. Then
-~ A11 0
A= (4.2.115)
21 11E11*11 A22

The matrix A is stable because All and A22 are both stable.
Thus all that remains to be shown is that any forward detectable (C.E.A)
can be put into the form (4.2.111). Transforming (C,E,A) into the form

(4.2.111) corresponds to separating the strongly observable and unobservable

parts of the system. In particular,
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there exist invertible matrices L and Q such that
E 0 A 0 H'H
Q= [0 | wae= |12 o |- @cr o =
21 Eop Ao1 Ao 0

for some invertible matrix H (see Section 2.5). If the system is in standard

0
‘ (4.2.116)
0

form and Os denotes the strong observability matrix (C.E.A), Q is any
invertible matrix such that
0. = [0, 0] (4.2.117)

where 0; has full column rank. In this case L equals Q_l. If {E.A} is not in
standard form, the system must be transformed into standard—form first. In
this case, L is no longer equal to Q_l but Q-l(aE+BA)_1 for some a and B such
that aE+BA is invertible.

Note that thanks to the forward detectability assumption, E22 is
invertible. Let then

~ I 0
Q= . (4.2.118)
S O g
22721 T22
By direct calculation, we can show that
~ E 0 ~ A 0
o 1 17A20F00F01  AgoFoy
~ 1~ HH O
Q'Q'C'R 'O)Q = (4.2.119)
0 0

which is the desired form. Thus, the lemma is proved.

Proof of Theorem 4.2.7

The first thing we show is that Wk (obtained from recursion (4.2.100)) is

bounded. For this, we shall first show that Wk is bounded above by Ek
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satisfying

A

¥ = ¥, (4.2.120a)
~ _1 g -~ -1 ' _1 ’ _1 ' _1 —1 [ ]
Yop = (ATE'W ) (ATTE'YT) + A7 CR Ior A+ BB (4.2.120m)

vwhere ¥ is any positive-definite matrix and

T =E'vE + cR L. (4.2.121)
We shall prove this result by induction. Note that thanks to (4.2.120a)
Wo 2 WO' (4.2.122)
Now suppose that
e 2 Y (4.2.123)
then we have to show that
Wk+1 2 Wk+1' (4.2.124)

Let
¥, 1(e) = AT, ()E' (¥, +e1) " (¥ +eT) (AT 1(e)E" (9 +e1) )" +
k+1 - Tk k k k k
AT;l(e)C'R_ICTil(e)A' + BB’ (4.2.125a)
where Tk(e) is defined in (4.2.101b). Then some algebra yields
Wk+1 = Lim+Wk+1(e). (4.2.125b)
e0
Also let
-~ -1.,,-1,2 -1..,-1,, -1..,-1. -1,, .
Yp1(€) = AT E'y (Y +el)(AT E'Y)' + AT C'RCrA' + BB' (4.2.126a)
then
Yo = Lim¥ . (e). (4.2.126b)
e
Equation (4.2.123) implies that for some A0,

Y =¥ + A (4.2.127)

S mm W - mpem s v
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Then
e ™ Yiar = LI () - ¥ (e)]
e-0
= Lim+[AT_1E'W—l(‘l‘k+e1)(A-r'1E-\p'1)-
e=0
-1..5-1~-1,, -1 . -1 -1 , -1,
+ AT 'C'R "Cr "A' - ATk (e)E (Wk+eI) (Wk+eI)(ATk (e)E (Wk+61) )
Let

P(e) = AT—IE'w_l(Wk+eI)(AT_1E'¢—1)' + ar lor e A -

AT;l(e)E‘(Wk+eI)_l(Wk+eI)(AT;I(e)E'(Wk+e1)_1)' - AT (e)eR e (e)ar.

(4.2.129)
Then (4.2.128) can be expressed as
= -1..,-1 -1..,-1,,
Wk+1 - Wk+1 = tig+P(e) + At 'E'y "A(AT 'E'y 7). (4.2.130)

since Ar 'E'y IA(ArTIE'W 1) 50, 1f we show that P(e)30, (4.2.124) follows.
Using expressions (4.2.125a) and (4.2.126a), and after some algebraic
manipulation we can show that
P(e) = AT_IE‘V(e)[Wk+eI—ET;1(e)E']V(e)ET_lA' (4.2.131)
where
V(e) = (gren)h - y7L, (4.2.132)
Thus, if we can show that
W(e) = ¥+ el - ET; (e)E" (4.2.133)
is positive semi-definite for e>0, thanks to the fact that V(e) is symmetric,
we obtain the desired result i.e. that P(e)>0. Let us perturb W as follows
W(e.e’) = ¥ (e) - E[T,(e)+e'I] E" (4.2.134)
where e’ is a small positive number. Then using the AECD matrix inversion
formula and (4.2.101b), (4.2.134) yields the following expression
We.e) ! = (wk+el)‘1+(wk+el)‘1E(e'1+C'R'10)‘1E'(wk+ex)‘1 (4.2.135)

which means that W(c—.,e')—1 is positive-definite for e’>0. Thus
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We.e') ! W;l(e) >0 (4.2.136)
vwvhich implies that
W(e.e’) > 0. (4.2.137a)
Note that since for >0 we have that Tk(e)>0, W(e.e’) is continuous in €' for

e’20. Thus

W(e) = Lim W(e,e’) > O. (4.2.137b)
e’=0

Thus we have shown that P(e)>0 which implies (4.2.124). Thus for all k,

Y2 (4.2.138)

Note that (4.2.120b) can also be expressed as follows

v = AV A' + AT

L] _1 - 1 1
k+1 K C'R 'Cr "A' + BB (4.2.139)

where

" -1, -1

A=At 'E'y ". (4.2.140)
Thanks to Lemma 4.2.2, ¢ can be chosen so that A is stable which implies that
(4.2.139) is a stable recursion and is bounded and indeed converges. Thus

thanks to (4.2.138) Wk is bounded which is the desired result.

The next step in the proof consists in showing that for some choice of
initial condition WO' Wk is monotone increasing and thus establishing the fact
that a limit exists. The procedure is inducfive, it is shown that Wl is larger
than Wo and then assuming that Wk is larger than Wk—l' it is shown that V¥ +

k+1
is larger than Wk. In particular, let

0 =0 (4.2.141)

then clearly

2 ¥ (4.2.142)
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Now suppose that

Wk 2 wk-l (4.2.143)
then
(freD) ! g (%, +eD) ! (4.2.144)
and thus using expression (4.2.100) we can see that
Wk+1 2 Wk. (4.2.145)
Expression (4.2.142), (4.2.143) and (4.2.145) imply that Wk is monotone

increasing. But we have already shown that ¥, is bounded which means that if

k
Wo =0 (4.2.146)
then
Lim Wk =V (4.2.147)
k-0

where ¥ is a positive semi-definite matrix satisfying the algebraic

generalized Riccati equation

¥ = A{ Lim (E'(#+eI) 'Esc'R Ic)™1jA" + BB, (4.2.148)
e-0

If ¥>0, (4.2.148) reduces to the algebraic generalized Riccati equation

(4.2.18a).

Thus we have shown that if W0=0 then Wk converges to a positive

semi-definite matrix ¥ satisfying (4.2.148).

The next step in the proof consists of extending the convergence result
obtained above to the case of arbitrary initial condition Wo. To do this,
however, we need another result, roughly that the "closed-loop"” matrix is
stable under our assumption of forward stabilizability.

Expression (4.2.148) can also be expressed as follows

¥ = Lim {AT(e)(wreD)af(e)" + K(e)RK(e)" + BB') (4.2.149)
e-0
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where
Af(e) = AT (e)E" (wren) ™! (4.2.150)
K(e) = AT }(e)c'R™] (4.2.151)
T(e) = E'(#+eI)"IE + c'R lc. (4.2.152)

Since T_l(e) converges to some positive semi-definite matrix F as e goes to

zero, we can see that the following limit exists

Lim K(e) = K = AFC'R™ L. (4.2.153)
e-0
Also note that
Af(e)(wrel) = AT ()E" (4.2.154a)
and
Af(e)E = A - K(e)C (4.2.154b)
But
W+el > ¥ 3 BB' (4.2.155)

which thanks to the forward stabilizability assumptionlo, implies that
[¥+el E] has full rank. Thus Af(e) is completely determined by (4.2.154). In

fact, we can express Af(e) using (4.2.154) as follows

Af(e) = [AT !(e)+A—K(e)CIE' [w+e+EE 17!, (4.2.156)
The limit as e goes to zero of (4.2.156) exists and is given by
A" = Lim Af(e) = (AFsAkC)E’ (eEE") 7). (4.2.157)
e-0
Thus ¥ satisfies the following equation
v = AfWAf' + KRK' + BB' (4.2.158)
where
ATE = A - kC. (4.2.159)
10

All we need here is that the infinite eigenmodes be strongly reachable,
i.e., [EiB] have full rank.
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Let us show now that Af is stable. Suppose that A is an eigenvalue, and

vaf = av. (4.2.160)

Then from (4.2.158) and (4.2.159)

(- 1APyvivt = vkre 'V + vBB'VE. (4.2.161)

If |\|21, then the non-negativity of the right hand side of (4.2.161) implies

that both sides must be zero. Thus

vB =0 (4.2.162)
and
vK =0 (4.2.163)
which thanks to (4.2.159) implies that
AVE = vA. (4.2.164)

But (4.2.162) and (4.2.164) imply that A is not strongly reachable, which

contradicts the forward stabilizability assumption and thus Af is stable.

Now we must show that for any arbitrary positive semi-definite WO,

(4.2.147) holds. We shall first prove this result for the case where Wo is

positive-definite. Note that (4.2.100) can be expressed as

b= tig+{A£(e)(Wk+eI)A£(e)‘ + AT;I(e)C'R_ICTil(e)A‘ + BB'}

(4.2.165)

where
Ai(e) - ATk(e)_lE'(Wk+eI)_1 (4.2.166a)
T (e) = E'(+eD)'E + cR7lc, (4.2.166b)

Note that as always, T;l(e) converges as € goes to zero, and in a manner

analogous to that used for Af(e) in (4.2.157) we can show that Ai(e) does as
well. Thus

= Aikai- + KRK + BB’ (4.2.167)
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where
A = tig+A£(e) = (AF, +A-K C)E’ (¥ +EE") "] (4.2.168a)
K = LinK (e) = ARC'R -1 (4.2.168b)
and where
F, = Lin, T (). (4.2.168c)
e0

From (4.2.167) we get

f . f f f ,f f\. :
= (Ak_lAk_z...AO)WO(Ak_lAk_Z...AO) + non-negative terms. (4.2.169)
But Wk is bounded thus thanks to the fact that Wo is positive-definite, we get

that
f . f f
Gk = Ak—lAk—2"'A0 (4.2.170)
is bounded. Now let ¥ be the solution to the algebraic generalized Riccati
equation (4.2.148) obtained from (4.2.147), then using expression (4.2.165)

and after some algebra we can show that

f f,
Wk+1 -¥ = Lim+{A (e)(Wk-W)Ak (e)} (4.2.171)
e-0
(Af(e) 1s defined in (4.2.157)) which means that
f f.
Wk+l -¥=A (Wk—W)Ak . (4.2.172)
Thus
fik+1 .
Wk - ¥ =(AY) (WO—W)Gk+1, (4.2.173)
but Gk is bounded and Af is stable, which mean that Wk converges to V.

To extend this result to the case where Wo is a positive semi-definite
matrix, simply let Wi represent the sequence of matrices satisfying the
generalized Riccati equation (4.2.100) with Wl=0 and Wz the sequence of
matrices satisfying the same equation with W2>W and W2>0 Then Wi(Wk<W§

(where Wk denotes the solution to (4.2.100) with initial condition ¢0) and

since Wi and Wﬁ converge to ¥, so does Wk.
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Finally, we have to show that Wk converges exponentially fast for any
initial condition wozo. For this, we shall show the result for the case where
W0>0 and the case where W0=O. These results can then be extended to the
general case by an argument similar to the one used to show convergence,

Let that Wo be positive-definite, then Gk is bounded. Thus, since Af is
stable, from (4.2.173) we can deduce that Wk converges to ¥ exponentially fast
at a rate determined by the magnitude of the largest eigenvalue of Af (see
Section 4.4 of [31]).

Now let WO be zero. If for some k, Wk becomes positive-definite then
exponential convergences follows immediately from the result of the previous
case. If Wk never becomes positive-definite, using the fact that Wk is
monotone-increasing (showed in the first part of this proof), it can be
deduced that

Im(Wk) Cc Im(@k+1), for all k>O. (4.2.173)
Thus for some j>O0,
Im(Wk) C Im(Wj), for all k>O. (4.2.174)

Let us now block diagonalize ¥, as follows

J

11
v, =1|% Ol (4.2.175)
J 0 o

where W}l is positive-definite. Then, by pre- and post-multiplying (4.2.100)
by T and T', respectively, we obtain the following
k+1 = A{Lim+(E'( k +el) "E+C'R "C) "}A' + BB’ (4.2.176)
0 0 e-0 0 0

where

E=TE, A=TA B = TB. (4.2.177)
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It is not difficult to see that B must have the following block form
> B
B=|"1]. (4.2.178)
0
Using the fact that the infinite eigenmodes of the system are strongly

reachable and using an argument similar to the one used in the proof of Lemma

4.2.2, we can show that, by a change of coordinates S, E can be transformed as

follows
E=Es = [F11 Eqgl. (4.2.179)
0 I
Expression (4.2.176) can then be expressed as
wll o - ~ et ool c1a 1 oA e
k+1 = A{Lim+(E'( k +eI) "E+C'R "C) "}A' + BB' (4.2.180)
0 0] e=0 0 0
where
A = AS. (4.2.181)

Using (4.2.180) and the structure of E, after some algebra, we can show that

A A

A= A1 A (4.2.182)
0 Ay

and that if R11 denotes the (1,1)-block of C'R-lC, then the (1,1) block of

(4.2.180) can be expressed as follows

¢11

A. 11 _14\ _1 A' ~ ~.
kel = All{t:g+(E11(wk +el) E11+R11) }A11 + BlBl' (4.2.183)

It is not difficult to see that (Rll'Ell’All) is forward detectable and thus
since for some j, W}l is positive-definite, Wil converges exponentially fast.

Since Wil is the (1,1)-block of Wk and other blocks are zero, we have shown

that @k converges exponentially fast. This completes the proof of the theroem.
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Example 4.2.3
Consider the generalized Riccati equation associated to system

(4.1.32)-(4.1.33):
s 00|,]10 -1|11 0 -1{0 0 11
tor = 1 ([0 O] Jongen [ e 2 9 [ 1] cansse
e-0
It can easily be verified that regardless of the value of Wo, Wk for k21

equals W:[i ;]. This is consistent with the result of Example 4.2.2.

In the next section, we interpret Wk as the error variance matrix of some
estimation problem and use the matrices Aﬁ and Tk to derive a generalization
of the Kalman filter. These results are then used to obtain another approach

to the smoothing problem for TPBVDS's.
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4.3-A Smoothing Algorithm for TPBVDS’s

In Section 4.3.2 we present a generalized Kalman filter formulation of
descriptor systems. This formulation allows us to associate the solution of
the generalized Riccati equation studied in the previous section with the
error covariance of a particular estimation problem. This formulation is then
used in Section 4.3.2 to generalize the Rauch-Tung-Striebel formulation of the
smoother for causal systems to the case of TPBVDS's. Finally, in Section
4.3.3, we examine the limiting behavior of the smoother.

But before starting this study, in the following section, we shall
present some of the results concerning the maximum likelihood estimation

technique which we will be needing later in this chapter.

4.3.1-Maximum Likelihood Estimation
4.3.1a-Maximum Likelihood versus Bayesian Estimation
Let x be unknown constant parameter vector and let z be an observation of
x. Then if p(z|x) denotes the probability density function of z parameterized
by x, the maximum likelihood (ML) estimate ; based on observation z satisfies
p(zIQML) > p(z|x) for all x. (4.3.1)
In the linear Gaussian case, i.e. when
z=Ix+v (4.3.2)
where v is a zero-mean, Guassian random vector with variance R, and L a full

column-rank matrix, Xy can be obtained by noting that

8 (In[p(z|x)])| .~ =o0. (4.3.3)
ox x=xML
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Since v is Gaussian, so is z and
p(z]x) = aexp[-(z-Lx) 'R !(z-Lx)/2] (4.3.4)

where a is a normalization constant. From (4.3.3) and (4.3.4), we can see that

xg = LRI LR, (4.3.5)

The error covariance associated to this estimate is given by

Py = (x—;ML)(x—;ML)' = (LR )L (4.3.6)

To see how the ML estimation method ties in with the Bayesian estimation
method, consider the observation (4.3.2) and suppose that x is not an unknown
vector but a Gaussian random vector with known mean X and variance Px' Then

the Bayesian estimate Xp of x based on observation z is

~

xg = Pp(L'R z+P] %) (4.3.7)

where PB is the covariance of the estimation error:

~ ~ s | -1,-1
PB = (x—xB)(x—xB) = (L'R L+Px ) . (4.3.8)
Note that if we let
-1
Px =0, (4.3.9)

the maximum likelihood and the Bayesian estimates and estimation errors are
identical.

The maximum likelihood estimation technique can also be used when an a
priori estimate of x exists. Specifically, any linear Gaussian Bayesian
estimation problem can be formulated as a maximum likelihood estimation
problem. Consider the Bayesian problem stated above. This problem can be
converted into a maximum likelihood estimation problem if we consider the a

priori statistics of x as an extra observation, i.e. consider the following ML
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estimation problem

E] - [I;]x * [:] (4.3.10)

where w is a zero-mean, Gaussian random vector, independent of v and with

variance Px' Applying expression (4.3.5) and (4.3.6) to this problem, we

obtain the following

" 1

X = Py (L'R 24P 1%) (4.3.11)

where
S e A |
PML = (L'R L+Px ) (4.3.12)
which are exactly the Bayesian estimate and estimation error covariance
(4.3.7) . (4.3.8). Thus it is possible to transform any linear Gaussain
Bayesian estimation problem into a ML problem by transforming the a priori

estimate of x into an observation.

4.3.1b-The Case of Perfect Observation

In the previous section, we considered the case where R, i.e. the
variance of the observation noise, is positive-definite. If R is not
invertible, it is clear that (4.3.5) and (4.3.6) cannot be used. In this case,
there is a projection of z which is known perfectly, and to obtain the ML
estimate, we have to identify this projection.

Consider the ML estimation problem (4.3.2). Let T be a matrix such that

0
TRT' = B E] (4.3.13)

where R is a positive definite matrix. Then (4.3.2) can be expressed as

E;] - [:]x * ﬁ] (4.3.14)

follows
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where

[:;] = Tz, [11:;] = TL, (4.3.15)

~

and v is a zero-mean, Gaussian random vector with invertible variance R. Now

~

let S be an invertible matrix such that

-1
L,s™ =[L,, 0] (4.3.16)

where L11 has full column rank. Then if we let

[z;] = Sx, (4.3.17)

(4.3.14) can be expressed as

r] [21 Lo :;] + E] (4.3.18)

11 has full rank, it has a left inverse. Let L_L

Finally note that since L 11

denote a left inverse of Lll’ then by premultiplying (4.3.18) by

I 0
V= [ -L ] (4.3.19)
Totlir I
we obtain the following
L 0
L= [ Rl B (4.3.20
2 224 ¥72
where
Zo = 7o - Lo L1z (4.3.21)
2~ % 21-11%1" T

The vector Xq is the portion of x which is perfectly observed. Clearly,

(xl)ML = Lllzl’ (4.3.22)
and X, can be estimated from the results of the previous section,
(x2)ML = (P2)HL 22R Zy, (4.3.23)
where
-1
(P2)ML = (L R L22) . (4.3.24)
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By combining (4.3.22) and (4.3.23), we see that

< LT 0
AR
= S RS . (4.3.25)
Lﬁz M. L0 (LR "Loo) "LyoR “flz,
The ML estimate X is then given by
~ -1 ;1
=S [* ] . (4.3.26)
xML x2 ML

The above procedure allows us to compute the ML estimate when R is not
invertible. However, it does not allow us to express this estimate in a simple
closed from expression. The following result allows us to express this
estimate in terms of a limit which, even though it is not useful for computing

the ML estimate, it is useful in our analysis (see Section 4.2).

Lemma 4.3.1

Consider the ML estimation problem (4.3.2) with R possibly singular, then

Py = Lim (L' (R+eQ) L) (4.3.27)
e0
xq = Lim [(L' (R+Q) L) 1L’ (R+eQ) 112 (4.3.28)
e-0

where Q is any positive semi-definite matrix for which the inverses in

(4.3.27) and (4.3.28) are defined.

Proof
First note that the lemma holds when R is non-singular. Now suppose that
R is singular and assume without loss of generality that (4.3.2) has the

following structure (as seen above this can always be achieved by a coordinate
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transformation and premultiplication of (4.3.2) by some invertible matrix),

-0 16+ B (4.3.29)

where L11 has full column rank and v has an invertible variance denoted by ﬁ.

Let
Q
11 “12
Q= ]. (4.3.30)
W1 Lo
then, since
0
LY (3.

and thanks to the assumptions that QX0 and R+eQ is invertible, we can see that

Q, > 0. (4.3.31)

Expression B.27 can now be expressed as follows
o
11 -1

P, = Lim ( ] r) ]+er ])

M ot 1 °22 ° Lo
11 ~ 217ty -1

=Lim([ Ve g O
et L0 Lo  Rredp] [0 Los

To evaluate the above expression, we need the following identity (see the
Appendix of [27]):

A 1F A (4.3.33)

where A=B—CA-1D, E=A-1D and F=CA—1. The (1.1)-block entry of (4.3.33) can also

-1 A LEalF oma?
A D] _ i 1]
C B

be expressed as (A—DB_IC)—I. Using (4.3.33) with the alternate expression for

its (1,1)~block entry, we get that

Q 5‘312]'1 )

€Qy; RteQyy
(eQ,,-¢%Q ,(R+e,,) 1o, )1 -q7lq, (Reeq, -eq..q 10, )]
€Q;17e Q p(R+eQy5) "Qy, 11%2(R+eQy5-€Q,,Q,,Q,, (4.3.30)
~ 1. -1, -1 ~ -1, -1 |- (4.3,
~(R+eQyy-eQ,10Q1,Q;5) Qy;Q;] (R+eQyy-eQy,Q,1Q;5)

We can simplify the above expression by separating terms of order e or higher.
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The result is

-1 1.~
Q; . ol Q7€ —Q;199R
e R+e = |~ -1 ~_1 + o(e). (4.3.35)
Q) ReeQy, R "o .0}

Thus we get

—l
L:.Q /e Q, Q
PML - Lim+( li il 11 11 22] + o(e)) -1
e0" [-LyR Q21Q11 11 L22R L,
-1 -1
11Q11L11/e B 11Q11Q R L22]
L1m+
0" [-L R Q21°11 1 LagR L22
A X/e Y -1
2 Lim, (4.3.36)
e0 Y Z
where X and Y are both positive-definite since L., and L__. have full rank.

11 22
Applying the identity (4.3.33) to (4.3.36) we get

X LeeXx v (z-ev 'z ly) Yy x! —eX—IY(Z-eY'Z_lY)_ll

= Lim ( 1 _ 1
= o —e(z-eY'z )y x71 (z-eY'Z vyl
[} o
= e (4.3.37)
0 Z
Thus,
0 O
PML = lo (L R L )—1 . (4.3.38)
22
By a simialr argument, expression (4.3. 28) yields
(L1,9:L11) L Q7 0
xML [ 11 11 11 11 11 . . z. (4.3.39)
(L22R L22) L

By noting that

(L{19381) L1,
is a left inverse of Lll' we can see that (4.3.39) is consistent with (4.3.25)
and thus the lemma is proved. Note that the non-unicity in the expression |
(4.3.31) which is due to the fact that Q11 can be any positive-definite
matrix, is related to the non-unicity of the left inverse of L11 when L.. is

11

not square, i.e., when redundant, perfect observations are available.
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We end this section with the following result, which we will need in the

next section:

Lemma 4.3.2

Let x and z be unknown parameters and let ;ML and ;ML be their ML
estimates based on some observations with ML estimation error variance Px and
Pz’ respectively. Then,

(a2) the ML estimate of the sum of x and z is the sum of ML estimates of x

and z, i.e.,

(x+z)ML =X * Zy - (4.3.40)
If X and zy; are based on independent observations, then
Px+z = Px + Pz (4.3.41)

o)

where Px+z denotes the ML estimation error variance associated to (x+z)ML.

(b) Let D be a known constant matrix, then

(Dx)y = Dy (4.3.42)
PDx = DPxD'. (4.3.43)

This Lemma follows easily from (4.3.5) and (4.3.6).
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4.3.2-Generalized Kalman Filter

Consider the standard Kalman filtering problem for a causal Gauss-Markov
process:
x(k+1) = Ax(k) + Bu(k), k=0,1,... (4.3.44a)
y(k) = Cx(k) + r(k), k=1,2,...... (4.3.44b)
where u(k) and r(k) are independent, white Gaussian sequences with variance I
and R>0, respectively. The initial state x(0) is also Gaussian with an a
priori mean §0 and variance Fo. The Kalman filter for this problem consists of
sequentially computing the optimal estimate ;f(k) of the state x(k) based on
observations up to time k. The Kalman filtering equations are of course well
known, but we shall rederive them here using a slightly different approach,
namely by using the ML formulation, because this method can then be extended
to the descriptor case.
In the ML formulation of this problem, we consider x(k) to be an unknown
paramemter and convert all the dynamics equations (4.3.44a) and the a priori

information on x(0) into observations. The ML estimation problem is then

0 = x(k+1) - Ax(k) - Bu(k), k=0.1,... (4.3.452)
y(k) = Cx(k) + r(k), k=1,2,...... (4.3.45b)
?:0 = x(0) + v (4.3.46)

where v i; a Gaussian random vector, independent of u and r, with variance Fo.
Here, all of the right hand sides of (4.3.45), (4.3.46) should be considered
as measurements, with -Bu(k), r(k) and v playing the roles of measurement
noises. A question that arises at this point is that whether ;f(j) is the ML
estimate of x(j) based on (4.3.46), (4.3.45b) for 1<k<j and (4.3.45a) for all
k, or, (4.3.46), (4.3.45b) for 1<k<j and (4.3.45a) for O<k{j-1. The answer is

that both of these ML estimates yield the same result. It is straightforward
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to check, using the results of Section 4.3.1, that future dynamics, given
observations up to the present time, do not supply any information regarding
the present state. To see this, consider the "one step in the future” dynamics
equation for x(j):

0 = x(j+1) - Ax(j) -Bu(j). (4.3.47)
Given observations only up to time j, x(j+1) is completely unknown which
clearly implies that (4.3.47) cannot supply any information regarding the
value of x(j). Since (4.3.47), with j replaced with j+1, does not contain any
information regarding x(j+1) either, then by induction we can see that no
future dynamic contains information regarding x(j). This, in fact, is closely
related to the Markovian nature of the process x in the original formulation
of the problem.

Let ;f(j) be the ML estimate of x(j) based on (4.3.46), (4.3.45b) up to j
and (4.3.45a)vup to j-1, and let Fj denote the associated error variance. Let
us start recursively estimating x(j). For j=O, thete is no dynamics and no
observation equations (4.3.45) and clearly

<fo) 4 X (0) = % (4.3.48a)
PML(O) = FO. (4.3.48b)
At the next step, we have additional observations
0 = x(1) - Ax(0) - Bu(0) (4.3.49a)
y(1) = Cx(1) + r(1). (4.3.49b)
We claim that previous observations, (at this step there has only been one,

namely (4.3.46)) can be summarized into the following equation

~

x£(0) = x(0) + x(0) (4.3.50)
where x(0) is the ML estimation error associated to estimation xf(O) and thus

has variance FO and is independent of u(0) and r(1). The consistency of this
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claim is verified later when we obtain the well known Kalman filtering
equations. By combining (4.3.49a) and (4.3.50), and using (4.3.49b) we can
formulate the ML estimation problem of x(1) based on past observations,

dynamics and the a priori information as follows

[A;f(o)] [1] Ax(0)~Bu(0)
= C x(l) +

v(1) @y | (4.3.51)

Using Lemma 4.3.1, we get
s AFA'+BB' O] [I]
F, 2P (1) = Lim ([1 (| Rl+e1) .Cl) (4.3.52a)
(1) e (1) =
AFA'+BB' O] 1] a AFA'+BB' O] . [Ax'(0)
Lim, ([1 C']([ o R]+e1) L: )1 c'](\ o gD [ o1y |-
(4.3.52b)

Thus we get that,

F) = Lim [(¥#+I) e 077! = ¥, - ¥,C'[O,C'+R] 0¥, (4.3.53a)
e-0
~f -1 o=l -1 -1,°f -
x' (1) = Lim [(¥;+e1) T +C'RTCI [ (v +eD) " axf (0)4c'R 7Ny (1)] =
e-0 :
(1-¥,c'[ov,c +R] To)axf (0) + F,C'R y(1) (4.3.53b)
where
W, = AFA' + BB'. (4.3.53c)

Now, in anticipation of the extension to descriptor systems, let us write
the general update step in a particular way. Specifically, what we claim is

that xf(j) is also equal to the ML estimate of x(j) based on the following two

"measurements'

y(J)
Z (1)

where zf(j) is independent of r(j), and has variance Wj. In turn, ;f(j) is the

Cx(J) + r(J) (4.3.54a)

x(J) - ;f(j) (4.3.54b)
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ML estimate of

z(§) = Ax(j-1) + Bu(j-1) (4.3.55)

based on the two "measurements"
x' (3-1) = x(4-1) - X (5-1) (4.3.56a)
0 = u(j-1) + u(j-1) (4.3.56b)

where ;f(j-l) is the estimation error associated with xf(j—l) with variance Fj
and where :(j-l) is a unit-variance Gaussian vector, independent of xf(j—l).
Let us assume this is true. Then, using Lemma 4.3.1 and Lemma 4.3.2, we can
solve these two estimation problems. First, we find that
2 (3) = af(5-1) (4.3.57a)
V. =AF. _A' + BB'. 4.3.57b
J J-1 ( )
Then, we have that
°f . -1, p-1.9-1 -1°f . .
x (J) = Lim [(¥ +el) "+C'R 'C] "[(¥+el) "z (§)+C'R "y(4)] =
e-0 J J
(I-WJC'[CWjC'+R]_IC)z () + ch'R‘ly(j) (4.3.58a)
F. = Lin [(¥+eI) +C'R T = v, - v c'[ov.c+rT lov..  (4.3.58b)
37 ot d i i j
Expressions (4.3.57)-(4.3.58) are just the standard Riccati equations.
Matrices Wk and Fk are the predicted and the filtered estimation error
variances of x(k), and xf(k) is its filtered estimate. It is straightforward
to verify that Wk satisfies the (generalized) Riccati equation
3 -1, -1 -1, .
Wk+1 = A{L1m+((wk+eI) +C'R 'C) "}A' + BB' =
e-0
L] . . _1 ' L]
AWkA - AWkC (R+C WkC) CWk)WkA + BB'. (4.3.59)
Note that all the simplifications, i.e. elimination of the limits, in the

Kalman filter equations (4.3.57)-(4.3.59) is done by using the ABCD matrix

inversion formula.



213

We can extend the above formulation of the optimal filtering problem
(Kalman filter) to the descriptor case. In particular, consider the following
system,

Ex(k+1) = Ax(k) + Bu(k), k=0,1,... (4.3.60a)

y(k) = Cx(k) + r(k), k=1,2,..... (4.3.60b)
where we have an a priori estimate x(0) of x(0) with a corresponding Gaussian
estimation error variance FO. Sequences u(k) and r(k) are independent, white
and Gaussian, and they are also independent of v. As in the causal case, we
would like to sequentially estimate x(k) based on previous observations.

Throughout this section, we assume that the infinite eigenmodes of the
system are strongly observable, i.e. [E' C'] has full rank. We shall see that
this condition is needed to guarantee that the estimation error variances

associated with the generalized Kalman filter are finite.

Let us convert this problem into a ML problem. As before, we consider
x(k) to be an unknown paramemter and convert all the dynamics equations
(4.3.60a) and the a priori information on x(0) into observations. The ML

estimation problem is then

0 = Ex(k+1) - Ax(k) - Bu(k), k=0,1,... (4.3.61a)
y(k) = Cx(k) + r(k), k=1,2,...... (4.3.61b)
’_‘o = x(0) + v (4.3.62)

where v is a Gaussian random vector, independent of u and r, with variance FO.
The difference here with the previous case is that the dynamics

(4.3.61a), k=j, does indeed contain information about x(j) when E is not

invertible even if x(j+1) is completely unknown. Specifically, (4.3.61a)

contains information about the projection of Ax(j) which lies in the
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null-space of E. Thus, the optimal estimate of x(j) based on observations
(4.3.61b), up to j, and observations (4.3.61a) up to j-1, in general differs
form the optimal estimate of x(j) based on observations (4.3.61a), up to j,
and observations (4.3.61b), for all k. For example consider the case where

E=B=0,A=C=1 (4.3.63)
with an a priori estimate ;f(O) of x(0) with an associated positive-definite
error variance Fo. In this case, clearly the only possibility is that x(j)=0
for all j, however, based on the observations (4.3.61a) up to j-1 and
observations (4.3.61b) up to j, one can check that

(3 = v(3). (4.3.64)

So in formulating the Kalman filter for descriptor systems, we have to decide
what we mean by the filtered estimate ;f(j) of x(j). We have decided, for
reasons that will become clear later, to define ;f(j) as the optimal estimate
of x(j) based on y, up to j, and dynamics (observations (4.3.61a)) up to j-1
(and of course the a priori information, i.e. (4.3.62)). We shall denote the
error variance associated with ;f(j) as Fj‘

Thus, the generalized Kalman filtering problem consists of sequentially
estimating the sequence of unknown parameters x(j) based on observations y
(4.3.61b), up to j, and dynamics equations or observations (4.3.61a), up to
j-1 (and the a priori information). It turns out that the steps to follow are
very similar to those obtained in the standard causal case.

Clearly, as in the causal case ;f(O) is just ;O with an associated
estimation error variance Fb. What we now claim is that ;f(j) can be viewed as
the ML estimate based on the following two measurements:

y(J)
2' (3)

Cx(3) + r(J) (4.3.65a)

Ex(j) - z (§) (4.3.65b)
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vwhere ;f(j) is independent of r(j) and has variance Wj. Here, zf(j) is the ML

estimate of

z(J) = Ax(j-1) + Bu(j-1) (4.3.66)
based on "measurements"
xF(3-1) = x(3-1) - =L (§-1) (4.3.67a)
0 = u(j-1) - u(j-1) (4.3.67b)

where xf(j—l) is the estimation error assciated with xf(j—l) and thus has
variance Fj—l and u(j-1) is a unit-variance Gaussian vector, independent of
~f, .
x (j-1).

Now let proceed as we did in the causal case. Using, lemma 4.3.1 and

Lemma 4.3.2, we can see that

2 (1) = axf(0) (4.3.68a)
Wl = AFOA' + BB'. (4.3.68b)
In general, we get
2L (5+1) = axt(y) (4.3.692)
¥, = AF A" + BB’ (4.3.69Db)
and
°f -1 . -1°f . S P
x (j) = Lim+(Tj (e)(E (Wj+eI) z (J)+C'R “y(i))} (4.3.70a)
e=0
where Tj(e) is given by
T (e) = E'(WJ+eI)—1E + crR le. (4.3.70b)
The estimation error variance matrix associated to ;f(J) is
F, = Lim+T31(e) = Lim {E' (¥ +eI) E+c'R7cy. (4.3.70c)
I e e-0 J
Note that by replacing Fj in (4.3.69b) with the above expression, we get that
¥, . = A{Lim (E'(¥ +eI) E+c'RIc)"1jA" + BB (4.3.71)
j+1 640+ J

which is just the generalized Riccati equation (4.2.100) introduced and

studied in Section 4.2.
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In analogy with the standard Kalman filter, here, ;f plays the role of
the predicted estimate and ;f that of filtered estimate. Note however that
;f(j) is not a predicted estimate of x(j) but of Ex(j).

If E equals the identity matrix, (4.3.69)-(4.3.71) reduce to the standard
Kalman filtering equations. As stated before, in this case, x(Jj) and thus the
estimate of x(j) is not affected by future dynamics of the system so that we
can say that xf(j) is the best estimate of x(j) based on observations up to
time j. Otherwise, we should emphasize that ;f(j) is the ML estimate of x(j)
based on observations y, up to j, and dynamics, up to j-1 (and of course, the
initial information).

If we consider the sequence x to be a finite sequence, i.e. if there
exists N such that x(N) is the last element of the sequence, then ;f(N) is
really the ML estimate of x(N) based on all the available information.

At this point, we have not really shown that the generalized Kalman
filter yields the estimate that we had in mind (remember that we had to make a
claim in deriving the generalized Kalman filter). To show that the generalized
Kalman filter does indeed give us the desired estimates, let us reformulate
the problem.

Let

?x(3) = 3,u()) (4.3.72a)
(i) = ?jx(j) + r(Jj) (4.3.72b)

where x(j) is an unknown vector,
x(3)' = [x(0)'.x(1)",....x(§)']". (4.3.73a)

¥(j) is the vector of observation,

¥()' =[x .y(1) .. y(9)']" (4.3.73b)
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u(j) is a Gaussian random vector with variance I,

u(§)’ = [u(0)'....,u(j-1)']", (4.3.73c)

r(j) is a Gaussian random vector, independent of u(j),

r(j)' = [v'.r(1),...,r(3)']". (4.3.734)
with variance
1!
R
% = R (4.3.74)
. N
and,
A E
-A E
9j = -A E (4.3.75a)
IAE
I
C
€ = C (4.3.75b)
T oc
B
B
QJ = B N (4.3.750)
.. 5
Then consider the maximum likelihood estimate of x(j) denoted by
x(3l3) = [x(0l3)".x(113)".....x(il§)']". (4.3.76)
This estimate is given by (see Lemma 4.3.1)
- s | o . _1 .
x(ilj) = Zj‘ejﬂj x(J) (4.3.77)
where Zj is the estimation error variance matrix given by
-1 -1, -1
Z. =Lim [9. (3.8 +el) ¥ +€'%. €.7 . 4.3.78
J e::)""[.i(JJe) 5% 4 ( )

P
The limit in (4.3.78) exists if [eJ] has full column rank, which is the case
J

if the infinite eigenmodes of the system are strongly observable. To see why

this is true note that, the infinite eigenmodes of the system being strongly
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observable means that [g] has full rank. But then there exists an invertible

matrix Y such that

. -AE E
A= Y[eJ] = " E . (4.3.79)
"C

Clearly, A is invertible and thus j] has full rank.

What we claim is that X(JIJ) is just x (J) obtained in (4.3.70a). The
proof is by induction. First note that for j=0, 9j has dimension zero and thus
(4.3.77)-(4.3.78) yields

x(0]0) = x£(0). (4.3.80)

Now suppose that
Srals ~f
x(ili) = x (4) (4.3.81)

with Fj for error variance. Then we would like to show that

x(§+1]§+1) = xF(4+1). (4.3.82)
Note that
. " -1 o a1
Zi41 = t:g [F 501 (By013ju1rel) 95, %€, %, J+1] (4.3.83)
where
¢ 0
#ia1 = J (4.3.84a)
(00 ..0-A) E
S
®u1 = |4 (] (4.3.84b)
ER T
Qj'i'l = - J BJ (4.3.84c)
rm 1
.= 1 g (4.3.84d)

Also, since Zj is the estimation error variance associated with x(j|j). its
k-th block-diagonal entry, k{j, equals the estimation error variance

associated to the estimate x(klj). In particular, its last block-diagonal
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entry corresponds to the estimation error variance associated to x(jlj), i.e.,

x

Zj = [* F ] (4.3.85)
J

where % denotes "don’t care" entries.

From (4.3.83), using (4.3.84) and (4.3.85), follows that

Z. . =Li
#1Tlor
g o]’ -1 o, 0 -1 -1
Jj B3 +el j €. |['[%, €. _
[[(o 0..0 -A) E‘ [ i BB'+6I] [(o 0..0 -A) E]+[ ’ C] [ ! R] [ ’ C]] ] B
Ly
5 - e [o ... 0 0 ] [ ‘
(B B +el 9 +€ @ + : :
§05%5reD) 33 . 0 A'(BB'+eI) 1A |a’ (BB +e1) " lE ‘
[0 ... 0 E'(BB'+eI) 1A] E'(BB'+eI) IE
(4.3.86)

If we now use the matrix inversion formula (4.3.33), and expressions (4.3.78)

and (4.3.85), after some algebra we get that

»* *
Z, . =Lim | _ _ _
Lot Tjil(e)[o...o E'(cI1+BB'+AF ; A') IA]Zj(e) Tjil(e)]
(4.3.87)
where Tj+1(e) is defined in (4.3.70b) and
Z(e) = [93(%jﬁj+el? 9j+ejﬁ lg ] (4.3.88)

Thus,

* ]
z ]. (4.3.89)

1° [ -1 . -1
I+ t:3+([o...o T1(OE (eI ) TATZ ()} F,

Since both Tgil(e)E'(eI+WJ)_1A and ZJ(e) converge as € goes to zZero, we get
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that
»* %
Zj+1 = ) -1 ' -1 . (4.3.90)
[0...0 t:g+{Tj+l(e)E (eI+Wj) A}Zj] Fj+1
and thus from the fact that
i . ' -1 .
x(j+1]j+1) = zj+1@j+lmj+11(3+1) (4.3.91)

and (4.3.77), we get that

X(4+1l1) = Lin (170 ()" (4 reT) x3 1Ry () (4.3.92)
with estimation error variance Fj+1' But (4.3.92) is consistent with the
update equation (4.3.70a) and thus

x(3+1]3+1) = xf(5+1). (4.3.93)

which is what we wanted to show.

4.3.3-Smoothing Algorithm for TPBVDS's

In this section we propose a generalization to the case of TPBVDS
(4.1.1)-(4.1.2) of the Rauch-Tung-Striebel formulation of the smoother for
causal systems. We shall first consider the case where the TPBVDS is
stochastically separable and then extend the result to the general case.

For the stochastically separable case, we shall make the following
assumptions:

(a) infinite eigenmodes of the system are strongly observable,
(b) zero eigenmodes of the system are strongly reachable,
(c) the estimation error variance associated with estimating x(0) based on the

boundary conditions and measurements is finite and positive—-definite.
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We shall express condition (c) explicitly after we define stochastic
separability. As we will see, in the non-separable case, we will need somewhat

stronger assumptions than (a)-(c).

Definition 4.3.1
The TPBVDS (4.1.1)-(4.1.2) is called stochastically separable if the
information available through the boundary condition and boundary observation

about x(0) is independent of the information available about x(N) i.e., the
(0)
(M)

X
estimation error variance matrix Pb associated with the estimation of [x

based on boundary observations (4.1.1b) and (4.1.2b) is block-diagonal.

It is not difficult to see that TPBVDS (4.1.1)-(4.1.2) is stochastically

separable if and only if

Lim, (V; (Q+eI) 1V, + wrlv) = o. (4.3.94)

e
We can now make explicit our assumption about the information available on
x(0) through the boundary informations. The error variance associated with
this estimate is just the (1.1)-block entry of Pb (defined in Definition
4.3.1). Thus the assumption is that

, -1 . |
FO = tig+(vi(Q+eI) Vi + Wiﬂ Wi) (4.3.95)

is finite (this is the case if and only if [;i] has full rank) and
i

positive-definite. If Q is positive-definite, then FO ——assuming that it is

finite-— is also positive-definite. However, Fo may be positive-definite even

erensm e v e n wn =« aiwr e m e eae e
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if Q is not. In the following derivation, we will, for simplicity, assume that
Q is in fact positive-definite. The extension to the case of Q singular is
straightforward although it involves limits as in (4.3.95). At the end of the
derivation, we will state the result in the general case, i.e. for possibly

singular Q.

In Section 4.1, we showed that solving the smoothing problem for TPBVDS
(4.1.1) is equivalent to solving the linear system (4.1.24). This system can

be expressed as follows

Qp =W (4.3.96)
where
- B S T
V! W.IT "W, A O w.rw
i i i i f
0 A BB’ -E (0] 0
E' C'Rlc -ar
A BB' -E
Q= E' CRIlc -A
.............. A.....ﬁﬁ‘ .
1] 1] _1 . L] _1
Vf Wfﬂ Wi E Wfﬂ Wf
1—Q V:i 0 Vf
(4.3.97)
p' = [A(0)'.x(0) ", A(1)" ., x(1)",....A(N)',x(N)"] (4.3.98a)
1] 1] _1 1] L] —1 . L} -1 1] L] _1 ]
o' = [(Wi "y)".0.(C'R "y(1))".0.....(C'R"y(N-1))",0, (W;II 'y, )",0].
(4.3.98b)

In Section 4.1, we eliminated (by moving in a boundary condition) A(0) and
x(0) from this system of equations and showed that what remains has a TPBVDS
structure. Here, we shall only eliminate A(0). We can eliminate A(0) by

premultiplying (4.3.96) by



I 0 ......... 0O O ViQ_
0 I 0 .. 0
I
I
o ......... 0 I 0 0
o 0 ......... 0 I VEQ
vwhich yields the system
p* _ Q*w*
where
[ T, -A
A BB’ -E
E' C'RIC -A'
Q* _ A BB' —E_1
- E' C'R 'C -A'
0 A
- vfi

BB'
El

P = [x(0) " A(1)".X(1)" ... A(N) " x(N) ']

Ed

with
T, = wirlw +v:qgly
0 i i i i
S T
Oy = W1 WV 07l
S B
Vip = W WVl

| a1
Vfi = Wfﬂ Wi+VfQ Vi'

(4.3.99)

if

(4.3.100)

(4.3.101a)

o = [(Wiﬂ—lyb)',0.(C'R_1y(1))'.0,....(C'R_ly(N-l))',0,(WéH—1yb)']

(4.3.101b)

(4.3.102)
(4.3.103)
(4.3.104)

(4.3.105)

 Matrices T0 and QN are information matrices associated with estimating

respectively x(0) and x(N) based on boundary information. Thanks to the

S S e
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stochastic separability assumption,

Vif = Vfi = 0. (4.3.106)
In this case, the system (4.3.99) becomes block tri-diagonal and can be solved
by simple Gaussian elimination techniques. We can either start upper block
diagonalizing from the left side of Q" and simultaneously lower block
diagonalizing from the right side, thus obtaining a generalization of the
forward-backward filter formulation for causal systems [34], or we can start
upper block diagonalizing o from the left all the way to the end and solve
for ;(N) and then run backward solving for the other unknowns by substitution,
and thus obtaining a generalization of the Rauch-Tung-Striebel method. We
consider here the latter approach. Thus we first upper block diagonalize the

following system

r A 11011 Twi ]
T, A x(0) (wiu '
A BB -E A(1) 0
E' CRlc -a x(1)] |er y)
A BB -E A2) 0
A BB -E |[a) 0
. > 0 _1
i E @N JIx(N) | _Wfl'[ Yy
(4.3.107)

Since T0 is invertible (thanks to the assumption that E;i] has full rank), we
i

can premultiply (4.3.107) by



and obtain

In the next
_1'
—To A

Y

0

—

To 0
-1
—ATO I
0 o I
| O
A'
-E
1 _1 1]
C'R 'C -A
A BB' -E
A
step we get
-E
_1 .
T1 -A
A BB' -E
A BB' -E
E ON_
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and at the final step we get

BB*
El

'§(0)7
(1)
x(1)
A(2)

A(N)

x(N) |

07

0

I-

1x©@7 [ Tiwrly,
~ 0_11 —lb

ALY [-AT, VT

x(1) C'R “y(1)

A(2) 0

-E|[A(0) 0
~ -1
8] x(v) W, ly,
(4.3.108)
S :
TO Wiﬂ _¥b .

AT Wty
ity oyl 1)
1 YoMt Yy ¥(

0

0

-1
Wfﬂ ¥y |
(4.3.109)
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1 -TglA M}(oﬂ <P (0) ]
o ¥ £ A(1) —zi(l)
0 1T A x| | =)
o ¥, -E a2) ! |-zf @)

= (4.3.110)

0 ¥, -E E(N) ~=f ()

L] . _1
E oyl lxm] | Wy, |

where matrices T and ¥, and vectors xf and zf are parameters of the
generalized Kalman filter, defined in the previous section, with

1W£H-1yb. Thus the first stage of the algorithm consists in applying a

x' (0)=Tg
generalized Kalman filter. The last predicted estimate obtained, i.e. zf(N),
can be used to solve for x(N) using the two last block rows of (4.3.110) as
follows
x(N) = (EvolEre ) YE v yenrly, ) (4.3.111)
B N N N f b’" I
Now that we have solved for x(N), we can start the second phase of the

algorithm, i.e. back substitution. We have

1 -ToA [k ][x© ]
o ¥ E A(1) -zf )
0 1 -1 A x(1) < (1)
o ¥, -E a2 | |-l

- , (4.3.112)
I -TﬁflA' (-1 | [Fv-1)
- £
o vy -E|pm | [|-='m
o 1llx | |xm

so we can solve for A(N) as follows
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T -T; A" "%(0) 11 =
o ¥, -E A1) -zf (1)
0 1 -1 A <(1) (1)
o v, -E O EERD
1 -TlA x-1) | | xfv-1)
~ 1, 8 f
0 I o[y | [ogtExan-2f )
0 IJ[x(N) ] | x(N)
(4.3.113)
which implies that
X(N-1) = x'(N-1) + 1l At Em)-2f () (4.3.114)
and in general
x(k) = xt(k) + T A L (Ex(k+1)-2" (k+1)). (4.3.115)

For computing the smoothing error we can proceed similarly. Using the

expression (4.1.49) we can show that

’ h [ ~ h R . —1 . _1 h
[To -A §(0) W.I Tr+ViQ v
A BB -E A(1)| | -Bu(0)
E' CRlc -A" x(1)| [er (1)
A BB -E @) | -Bu(1)

.....

A BB' -E [[-A(N)| [-Bu(N-1)
. - w1 e |
E @N I x(N) | waﬂ rb+VfQ v

(4.3.116)

where x(k) is the smoothing error, i.e.

x(k) = x(k) - x(k). (4.3.117)

The covariance error Pk is given by

P, = x(K)x(k)". (4.3.118)
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Following the same upper block diagonalization procedure that we used to

compute x(N) we can compute x(N) and show that

| -1
PN = (E WN E+®N) . (4.3.119)
Then, by back-substitution we get
- 1
Pk = Tk + Tk A W 1[E k+1 k+1] k+1 k . (4.3.120)

The assumption of invertibility of Q is not necessary for this algorithm
if we are willing to compute limits. A summary of the equations for the
generalized Rauch-Tung-Striebel method (allowing for possibility of singular

Q) is given below:

Initialization of the Generalized Kalman Filter

£ -1
2 (1) = aFgwr Ny, (4.3.121a)
¥ = AFA" + BB’ (4.3.121b)
Fo = Lim (W0 lw +V;(Qren) v ) (4.3.121¢)
e-0

Generalized Kalman Filter Update Equations

2f (k+1) = Af2f (k) + K, y(k) (4.3.122a)

", —1 1] _1 —l . 1]
Vo1 = A€ B R I0) A" + BB (4.3.122b)
AL = A(E'w;1E+C'R_IC)—1E'W;1 (4.3.122¢)
K, = A(E'¥ 'E+c'R 0y Ter] (4.3.1224)

Backward Smoother Initialization

X(N) = P (EW_lzf(N)+W%H_1yb) (4.3.123a)
Py = Lim (E"¥ ' EAWI W 4 (Qre) "ty ) 7! (4.3.123b)
n = Lin g1 WetVe £
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Backward Smoother Equations

x(k) = x (k) + T Q" (Ex(k+1) z (k+1)) (4.3.124a)
’ L 1
Tk =E Wk E+C'RC (4.3.124b)
Smoothing Error
- 1
Pk = Tk + T 1y Wk+1[EPk+1 k+1] k+1 k . (4.3.125)

In the causal case, (4.3.121)-(4.3.125) reduces to the well known

Rauch-Tung-Striebel algorithm.

Let us comment on the assumption that
Vi
W,
i
has full rank. In general, for an acausal system, Vi may or may not by itself
have full rank. The presence of a boundary observation to augment this may
appear to be artificial, but in fact it is not. In particular, note that while
x(k) is defined for k=0 through N, our "interior observations” y(k) are
defined only for k=1 through N-1. Thus, a natural model would be to have
"boundary measurements” _
_ [v(0)] _ [c o][x(0) r(0)

A ) I ] i R R (4.3.126)
so that our condition becomes one that
V. ]

i
[C |

has full rank. Thus, while we still must make an assumption of this type, it

is at least reasonable to assume that we do have boundary measurements.

Obviously if [vf] has full rank, we can do the analogous operations in the

reverse direction.
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If [vi] doesn’t have full rank, one might consider the information filter
C

form of our filters. The development of these equations hasn’t been done but

should be straightforward. Note finally that if neither Q nor [Vi] are full
V.
i

rank, then part of x(0) may be known perfectly and part of it not at all. Such
a problem, of course, could also arise in the causal case, in which case one
would need some hybrid Kalman filter and information filter in order to

propagate finite-valued quantities.

4.3.3-Case of Non-separable TPBVDS

To apply this solution method to the case of TPBVDS's that are not
stochastically separable we can use the fact that TPBVDS (4.1.1)-(4.1.2) is
equivalent to a stochastically separable TPBVDS of twice the dimension and
defined over an interval of length one half the length of the original TPBVDS.

Specifically, let

s(k) = [’;?glk) . (4.3.127)
Then (4.1.1) can be expressed as
[g g]s(kﬂ) = 16 9fstx) + [g _g] [u?l(ilfl?:—l)] (4.3.128a)
with boundary condition
[Xi velsco) + 9 _‘I’]s(wz) = [‘6] (4.3.128b)
if N is even or
[Xi Xf]s(O) + [_g g]s[(N—l)/Z] = [BuE(N—l) /2]] (4.3.128¢)
if N is odd. Expression (4.1.2) becomes
(k c o k
B’(Nzk)] - [0 C]s(k) + [§§N3k) (4.3.129a)
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with boundary observation

L}(’;/z) = [gi gf]s(o) * [8 g]S(N/2) + [:l()N/Z)] (4.3.129b)

if N is even and

k[tﬁ_l)m]] = [gi gf]s(O) + [g g]s(le) + [r[(;'jl)/zl] (4.3.129¢)
[(v1)2]) o o 0 C r[(N+1)/2]

if N is odd.

It is not difficult to see that (4.3.128)-(4.3.129) is stochastically
separable and thus we can use the Rauch-Tung-Striebel method derived
previously. In this case, the assumptions of infinite eigenmode observability
and zero eigenmode reachability of our 2n-dimensional model are equivalent to
the assumptions of observability and reachability of both zero and infinite
eigenmodes of the original system. Furthermore, the finite variance of our

estimation error associated with the estimate of s(0) based on boundary

observations now becomes

V. V. |' |[Q © V, V
i'f 111 "f|.-1

P =Lim [ ( +el) ] (4.3.130)

b | wf] [o n] [wi wf]
exists and is positive-definite. A necessary and sufficient condition for

Vi \'f
existence is that W, w.| must have full column rank which means that a finite

i'f

error variance estimate of both boundary points of our original model can be
constructed based solely on the boundary information. The positive-
definiteness of Pb implies that no projection of x(0) and x(N) is observed
perfectly. If Q is positive-definite, Pb is also but this is not a necessary
condition. In what follows, for simplicity, we shall also assume that Q is
also positive-definite. If Q is not positive-definite, a limiting expression,

like the one used above or in previous sections must be used.
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In this case, the first part of the algorithm which consists of the
generalized Kalman filter, essentially estimates x(k) and x(N-k) based on the
boundary information, the observations y(j) and the dynamics outside the
interval [k,N-k]. Thus the algorithm starts at the boundaries and moves inward
towards the center where x(N/2) is estimated. The second part of the algorithm
consists of moving outward from the center towards the boundaries.

In the next section, we study the limiting behaviour of the smoother in
the general (non-separable) case. In particular, we are interested in the
limiting error variance associated with a point at the center of the interval
as the length of the interval tends to infinity. Our formulation of the
smoother in the general case can easily be used to study this limit, because,
the end result of the first stage of our smoothing algorithm, i.e., the

generalized Kalman filter, yields the smoothing error variance associated with

the center point.

4.3.4-Limiting Smoothing Error

In Chapter II and Chapter III, we studied one notion of extending the
domain of a TPBVDS. In particular, we extended the domain by preserving the
weighting pattern. There is another notion of extending the domain of a system
[2,16] where we consider the boundary conditions as being physical constraints
of the problem. In that case, the dynamic equations and the boundary
conditions are conserved, simply N changes. Using this notion of
extendibility, we have defined a concept of stability called internal

stability. A TPBVDS is essentially called internally stable if the
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contribution of the boundary value v to the point at the center of the
interval as the length of the interval goes to infinity approachs zero.

In this section, we shall consider the limiting behaviour of the
smoothing error variance as N goes to infinity while the dynamics and the
boundary matrices remain the same.

Let us suppose that the system is strongly reachable and observable, and
that N is even. We would like to find an expression for the smoothing error
variance P(N/2) of x(N/2) as N goes to infinity.

Note that in applying the generalized Kalman filter to
(4.3.128)-(4.3.129), at the end stage, we obtain the optimal estimate of
x(N/2) and the associated estimation error. Using expression (4.3.123b), we

get that

sv2) = Lim([5 2 Jals B STE &) Sl e[

(4.3.131)
where $(N/2) is the estimation error variance of s(N/2) and WN/2 is obtained
from the following recursion (this is just the generalized Riccati equation
for (4.3.128)-(4.3.129))

hor = o2l R SHECTES 0l ] - P

(4.3.132)

Thanks to strong reachability and observability assumptions, from the results

of Section 4.2, we know that

Lim wk =y (4.3.133a)

ko

From (4.3.132) we can deduce that

v = [g (s)] (4.3.133b)

where ¥ and S are unique solutions of generalized Riccati equations (4.2.18a)
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and (4.2.18b). Thus

L1m #(N/2) =
ot Y| ][-1 w12 o [0 ]y -
Ev EfcR lorize  -17e 170
s -L/e A's'1A+1/e] (2.3-13%

The (1,1) block entry of (4.3.134) can be expressed as

Lim (E'¥ TE+C'R I+ I/e-(A's A 1re) /eyt o (E ¥ R o s 1) 7!
eﬂO

(4.3.135)
Noting that

_ |x(Ns2)

s(N/2) = [x(N/2) (4.3.136)
we deduce that the variance of the estimation error P(N/2) associated with the
optimal estimate of x(N/2) as N goes to infinity is

-1

Lim P(N/2) = (E'¥ 'E+c'R lcea's™Ia)7! =

N—xo
w1 -1 S P |

(E'Y "E+®) ~ = (T+A'S "A) (4.3.137)
where ® and T are respectively solutions of algebraic generalized Riccati
equations (4.2.14a) and (4.2.15a). Thus we see that the solution of
generalized Riccati equations provide us directly with the limiting error
variance. In the causal case (E=I), these are the formulas that arise in the
two-filter form of the optimal smoother. Specifically, in the causal case, the
limiting smoothing error Pe satisfies
e P Pb (4.3.138)
where Pf is the forward predicted error variance, i.e. ¥ in our notation and

Pb the backward filtered error, i.e. 0_1.



So far, we have shown that under the assumptions of strong reachability
and observability, the smoothing error variance of the "state" at the center
of the interval does not grow unbounded as we let the length of the interval,
N, go to infinity, i.e. the smoother is stable (we have in fact shown more,
specifically we have shown that this smoothing error variance converges). The
assumptions of strong reachability and observability, however, are not always
necessary for the stability of the smoother. Consider for example the case of
stable, causal systems. If a causal system is stable, the smoothing error
variance does not grow unbounded regardless of whether or not the system is
reachable or observable. It is not difficult to see that the same result also
holds for TPBVDS's. Specifically, if a TPBVDS is internally stable, then the
smoothing error variance associated with its "state" near the center of the
interval as N goes to infinity does not grow unbounded (in fact, this error
variance is upper bounded by the variance of the "state" at the center of the
interval, which due to the stability assumption does not grow unbounded). This
result holds even if no boundary observation Yy exists.

If a boundary observation does exist such that [vi vf] has full column

Wi Wf
rank, then as long as the system has no eigenmode on the unit circle, the
smoother is stable. To see why this must be the case, first note that in this
case, we can use boundary information alone to construct estimates of the
initial and final "states" of the system, respectively denoted by ;(Olb) and

x(N|b), having finite error variances based on boundary information. Now let

us transform the system into forward-backward stable form

C=1[C Gl E-= [(I) gb.A= [gf (I)].B= [g{]
x(k) = [,’%83 , (4.3.139)

where Af and Ab are strictly stable and let ;f(k) and ;b(k) be defined as
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follows
x¢(0) = x;(0[b) (4.3.140a)
xg(3+1) = Agxe(3) + Bpu(3). (4.3.140b)
and
X, (N) = x, (N |b) (4.3.141a)
;b(.i-l) = A,,;(j) + B u(j-1). (4.3.141b)

If we now consider xf(k) as an estimate of xf(k), it is not difficult to see
that this estimate has a finite error variance that converges as k goes to
infinity. Similarly, if we consider xb(k) as an estimate of xb(k). its

associated error variance converges as N goes to infinity. Thus, if we let

. %, (K
x(k) = ["f (k)]. (4.3.142)

then ;(k) is an estimator of x(k) such that its error variance for the "state"
at the center of the interval converges as N goes to infinity. This estimator
is clearly, in general, not optimal since it only uses the boundary
measurements. Thus, the error variance of this estimator bounds the error

variance of the optimal smoother and thus the optimal smoother is stable.

The cases considered above are extreme cases: first we showed smoother
stability when the system is strongly reachable and observable, then we showed
smoother stability when boundary measurements are enough to form a finite
variance estimate of the endpoints. An interesting problem to consider, is the
general problem of stability, i.e. when the system is only partially
observable and reachable, and the boundary measurements provides an estimate

of just a projection of x(0) and x(N).
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4.4-Conclusion

In this chapter, we have studied the estimation problem for TPBVDS'’s.
First, we have shown that the smoothed estimate of a TPBVDS can be obtained by
solving a TPBVDS of twice the dimension of the original system. To solve this
TPBVDS, we have proposed using the two-filter method for which we had to study
the transformation into forward-backward stable form of the smoother. This
transformation, which is a generalization of the Hamiltonian diagonalization
for causal systems, has been shown to tie in with the solutions of generalized
Riccati equations which have been studied.

Then, we have introduce another approach to the smoothing problem. In
particular, we have derived a generalization of the Kalman filter for the case
of descriptor systems and used it to derive a generalization of the
Rauch-Tung-Striebel formulation of the optimal smoother for TPBVDS's. Finally,
we have derived an expression for the limiting error variance of the smoothed
estimate x at the center of the interval as the length of the interval tends
to infinity and in general considered the problem of smoother stability. We
have seen that the solution of our generalized Riccati equations arise in
these contexts as well, and in fact these results provide precise

probabilistic interpretations for these Riccati equations.



CHAPTER V:
COONCLUSIONS
5.1-Contributions

In this thesis, we have developed a deterministic and a stochastic
system theory for two-point boundary-value descriptor systems (TPBVDS’s). A
part of this work consists of generalization of our previous
system-theoretical results for shift-invariant TPBVDS's to the case of
arbitrary TPBVDS's (Chapter II). Chapter III contains a realization theory
for a special class of TPBVDS's. The results of this chapter are all new. In
Chapter IV, an estimation theory is developed for TPBVDS’s. In particular,
well-known estimation methods for causal systems such as the Kalman filter
and the Rauch-Tung-Striebel formulations of the optimal smoother are extended

to the case of TPBVDS’s.

The major contributions of Chapter II are:
(1) Derivation of a closed-form expression for the inward process resulting
in a complete characterization of the concepts of weak reachabiltiy and
observability.
(2) Characterization of properties of extendibility and input-output
extendibility.
(3) Introduction of the projection matrix in the description of input-output
extendible, stationary TPBVDS's. The projection matrix simplifies
significantly the description of the contribution of the boundary conditions

to the weighting pattern of an input-output extendible, stationary TPBVDS.
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(4) Obtaining minimality results for TPBVDS's, and characterizing minimal
realizations.
(5) Generalizing the concept of standard-form and developing a modal

analysis technique for TPBVDS's.

Chapter III contains a realization theory exclusively for input-output
extendible, stationary TPBVDS's. The major contributions of Chapter III are:
(1) Obtaining deterministic realizability conditions and a simple
realization technique (not always yielding minimal realizations).

(2) Introduction and characterization of the (s,t)-transform, in particular,
development of a factorization theory for rational matrices in s and t
including a generalization of the McMillan degree.

(3) Obtaining an expression for the dimension of a minimal deterministic
realization using the (s,t)-transform and developing a deterministic
realization method using factorization techniques yielding directly minimal
realizations.

(4) Introducing the concept of stability for input-output extendible,
stationary TPBVDS’s and studying its properties.

(5) Obtaining necessary and sufficient conditions for stochastic
stationarity in terms of a generalized Lyapunov equation.

(6) Characterization of stochastic extendibility and in particular showing
that deterministically minimal, stochastically extendible systems are
necessarily stable.

(7) Obtaining necessary and sufficient conditions for stochastic

realizability.
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(8) Proposing a method for testing minimality of a stochastic realization
and an expression for its dimension in terms of the (s,t)-transform of its
output covariance.

(9) Showing that, as in the causal case, the stochastic realization problem

is equivalent to a spectral factorization problem.

Chapter IV is devoted to a study of optimal filtering for TPBVDS’s. The
major contributions of this chapter are:
(1) Generalization of the Hamiltonian form of the optimal smoother for
causal systems.
(2) Generalization of the notion of Hamiltonian diagonalization involving
generalizations of standard Riccati equations.
(3) Development of a theory for generalized Riccati equations paralleling
the existing theory for standard Riccati equations.
(4) Formulation and characterization of generalized Kalman filters for
descriptor systems.
(5) Generalization of the Rauch-Tung-Striebel smoothing method for causal
systems to the case of TPBVDS's.
(6) A study of the limiting behaviour of the error variance matrix
associated to the optimal smoothing of TPBVDS's and the relationship to

solutions of the generalized Riccati equations.
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9.2-Suggestions for Further Research

The following are some open questions and possible topics of future
research:
(1) In Chapter II, we have shown that there exists some degree of freedom in
the system matrices of minimal TPBVDS's when the system is not strongly
reachable and observable. Since, when a stationary system is strongly
reachable and observable, it also has the displacement property, a natural
question to ask is: can we use the freedom in the specification of a minimal
stationary system to transform it into a displacement system?
(2) In Chapter III, we are able to develop a realization theory (as opposed
to a partial realization theory) for input-output extendible stationary
TPBVDS’s because the weighting patterns associated with such systems are
defined form -» to +©. Thus, it should be possible to generalize this theory
to the case of non-stationary extendible TPBVDS's. The difficulty in this
case is that the weighting pattern is a function of two time indices.
(3) In this thesis, we have mostly considered one of the two notions of
extendibility, namely extendibility by preserving the weighting pattern. In
[1,16], the other notion of extendibility, i.e. extending the system by
preserving the boundary conditions, has been shown to yield interesting
mathematical structures. In particular, this notion of extendibility allows
us to define an internal stability property and relate this property to the
existence of positive-definite solutions to generalized Lyapunov equations.

There are a number of interesting problems that arise based on this notion of

extendibility:
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(3a) By extending TPBVDS's this way, i.e. by conserving the boundary
conditions, system properties such as stationarity are not conserved. Thus,
it would be interesting to study conditions under which all such extensions
of a stationary system are stationary, i.e. conditions under which, if
(C,Vi.Vf,E,A.B.N) 1s a TPBVDS in normalized form, then for all M,

(C.TyV, TV, .E.A,B.M) where

M. M.-1
Ty = (VESV AT, (5.2.1)

is stationary. We call such a system globally stationary (in general, we
propose calling properites that hold for all such extensions of a TPBVDS
global).

(3b) It can also be shown that the weakly reachable and observable spaces,
even though they keep constant dimension, may rotate as we extend the system.
Thus, naturally, we are interested in finding necessary conditions for global
weak feachability and observability, and maybe relating these notions to that
of global minimality.

(3c) Another interesting problem is the realization problem, both
deterministic and stochastic. When we extended TPBVDS's while conserving
their weighting patterns, we obtained a single weighting pattern defined
everywhere which we used for deterministic realization. Specifically, we
considered the problem of realizing a TPBVDS from its (extended) weighting
pattern. When we extend TPBVDS's while conserving their boundary conditions,
we obtain a sequence of different weighting patterns defined over various
intervals. Thus, the realization problem is more complex and can be posed as
follows: given a sequence of weighting patterns WM defined over various
intervals, find a TPBVDS such that, if we extend it while conserving its

boundary conditions, we obtain TPBVDS's having weighting patterns WM'
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(3d) The stochastic realization problem can be posed in a similar manner,
i.e., given a sequence of covariances A,, find a TPBVDS such that the output
covariance of its extensions match AM' It is not difficult to verify that
stochastic stationarity is conserved when TPBVDS’s are extended while
conserving their boundary conditions. For this reason, we suspect that the
class of stochastically realizable sequences is richer than the one studied
in Section 3.3.

(4) In the causal case, the stochastic realization theory ties in very
nicely with the estimation problem. In particular, it is shown that the
Kalman filter is just the minimum variance realization of the output process,
and that the "reversed-time realization” of the backward Kalman filter is the
maximum variance realization of the output process (see for example [40]).
Similar realtionships may exist in the TPBVDS case.

(5) In Chapter IV, we have obtained a generalization of the Kalman filter
and Riccati equations. The expressions associated to this filter, in general,
contain limits; this of course is not desirable. There may be two ways of
eliminating these limits: the first one is to find equivalent expressions not
involving limits, i.e. finding a generalization of the ABCD inversion lemma.
The second one is to use another implementation of the filter, for example a
generalization of the square-root Kalman filter for causal systems.

(6) The innovation process plays an important role in causal filtering
theory. It would be valuable to see whether a similar concept can be found
for the TPBVDS case. This may be accomplished by studying how the generalized
Kalman filter of the first phase of the generalized Rauch-Tung-Striebel
algotrithm, which moves from the boundaries to the center, relates to the
inward process z;- In particular, we may be able to construct an innovations

process for z,. Similarly, an innovations process for z, may be found.
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(7) The problem of system identification is an intersting problem to
consider in the case of TPBVDS's. The system theoretical properties studied
in this thesis should provide a solid basis for this study.

(8) One of the motivation behind studying TPBVDS’s has been the possibility
of extending its theory to the multi-dimensional case where boundary
conditions arise naturaly in the specifications of problems. So far, we have
not considered the multi-dimensional case, however, we suspect that some of
our results can be extended to that case. In particular, the notions of
inward and outward processes may easily be extended to the mul ti-dimensioanl
case. However, since the size of the boundary in 2D depends on the sze of the
domain, the dimension of these processes must change as they move in and out,
and thus concepts of reachability, observability, etc., cannot be defined as

easily as in the 1D case.
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APPENDIX:

THE _TWO-FILTER SOLUTION

Adams [46] formulates the general solution of TPBVDS (2.2.1)-(2.2.2) as
a linear combination of two stable recursions, one forward and the other
backward. His formulation is presented below as it appeared in [46], with
only a few changes in the notation.

Since {E,A} comprise a regular pencil, there exist nonsingular matrices

F and T such that

-1 _[I o]laAz
FET ' = |3 Al fE (A.1a)
and
AT ! = [A SN (A.1b)

where all eigenvalues of Af and Ab lie within the unit circle (we assume that
the system has no eigen-mode on the unit circle). The above decomposition

splits the system into two subsystems:

xf(k+1) = Afxf(k) + Bfu(k) (A.2a)
and
xb(k) = Abxb(k+1) - Bbu(k) (A.2b)
where
e (k)
[xb(k) = Tx(k) (A.3a)
and
By
[Bb = FB. (A.3b)

Given the above transformation, the boundary condition (2.2.2) takes the form

) (0) X (N)
vyl f f,f f
[v;.vb][x (0)] + [V b][ (N)] =v (A.4)
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where
i, i -1 A
[Vf.Vb] = ViT = Vi (A.5a)
f,f -1 A §
[Vf. b] = VfT = Vf. (A.5b)

Define x?(k) as the solution to (A.2a) with zero initial condition and

xg(k) as the solution to (A.2b) with zero final condition. Then it is easy to

see that
xg (k) =(Ag)%(0) + xQ(k) (A.62)
(k) = ()" e (k) + x)0). (A.6b)
Substituting for x.(N) and x, (0) from (A.6a) and (A.6b) into (A.4) and

solving for xf(O) and xb(N) gives

x;(0) _ ,
[x:;(N) = (Fy) " Iv-vpdm)-vE2(0)] (A.7)

where
A A ~ AN
Fy = VE + VA (A.8)
Finally, substituting for xf(O) and xb(k) from (A.7) and (A.8), it can be
shown that the solution to (A.2) is given by
(0]
Xe(K)1 an 1~ x¢ (k)
f -k7k -1 f 0 i 0 f
[ ]=EN A (Fy) 7 [v-Vpx (N)-VixO(0)] + ! . (A.9)

xb(k) xg(k)

Applying the inverse of the transformation in (A.3a), the original process

x(k) is recovered by

g (k)

_1 .
x(k) = T x ()] (A.10)

In this way, Adams has constructed a stable forward/backward two filter
recursive implementation of the general solution of a TPBVDS. Notice that the

invertibility of the matrix FN is not an issue, since FN is invertible if the

system is well-posed (in fact invertibility of FN is our test for

well-posedness).
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