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Abstract

Knowledge of the parameters describing the scattering and absorption of radiation propagating
through the atmosphere may of practical use in a variety of fields including optical communication,
remote sensing, and position/motion detection. The object of this investigation is the construction
of mathematical models and algorithms for use in estimating of a vector of atmospheric transmission
parameters.

We begin the investigation by defining the operating characteristics of the receiver and transmit-
ter used to generate the data upon which the estimates are based. A multiple wavelength approach
is used to take advantage of information on the transmission processes which is available at differ-
ent frequencies. Subsequently, a single-scatter radiative transfer model is developed to describe the
power incident upon the receiver as a function of time for a given transmitted pulse.

This power function gives rise to observed photocounts which are modeled by a Poisson process.

The rate function associated with this process encompasses the propagation equation of the single

scatter model. Under the assumption that the parameters to be estimated are non-random, the
Maximum Likelihood (ML) estimator and associated Cramer-Rao Lower Bound (CRLB) are derived.

Next, assuming that the parameters may be modeled as functions of time, a state space model is

derived based upon the single scatter propagation equation and the Poisson observation process used

with the ML estimator. This model is utilized in the development and evaluation of an Extended

Kalman Filter (EKF) for use in estimating the parameters of interest.
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Chapter 1

Introduction

Knowledge of the parameters describing the scattering and absorption of radiation

propagating through the atmosphere is of great practical use in a variety of fields.

Information regarding these processes can be used to enhance the performance of

atmospheric optical communications systems as well as remote sensing systems. The

collection of radiation which has been transmitted through the atmosphere can yield

information regarding the concentrations of molecular and aerosol pollutants within

the medium. Finally, radar and other position and motion detection systems would

benefit from an accurate description of the state of the atmosphere.

The object of this investigation is the construction of mathematical models and

estimation algorithms for determining a vector of parameters governing the propa-

gation of radiation through the atmosphere. It is felt that useful estimates must

deviate by no more than 20% from the true parameter values. While this work may

be undertaken with respect to propagation phenomena in most any spectral region,

for the purposes of this thesis, we restrict attention to an atmospheric monitoring

system operating in the middle ultraviolet region of the spectrum. The near total

absorption of solar radiation in this region by the earth's ozone layer means that very

low background noise conditions exist. Thus, optical communications systems em-

ploying a middle UV channel have been explored by Reilly [43], Sperry [51], Linnell
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[28], and Luettgen [27]. Furthermore, the spectral characteristics of species such as

ozone, nitrogen dioxide, and sulfur dioxide in the middle ultraviolet make possible

the use of pollution monitoring systems operating in this region of the spectrum [13].

Finally, the low background noise property of the middle ultraviolet provides an ideal

setting for exploring the feasibility of the estimation techniques developed here in that

additional noise sources would only act to degrade the performance of the estimators.

The transmitter/receiver of interest in this investigation is different from the lidar

systems commonly used to probe the atmosphere. Lidar systems employ coherent

sources and complex optical receivers to determine the structure of the atmosphere

at distances of up to 40 km from the source [36]. Furthermore, the data analy-

sis algorithms are based on inversion methods of the lidar equation [25, 36]. The

algorithms to be used in this thesis assume a portable, monostatic atmospheric mon-

itoring system composed of a low power, incoherent source capable of emitting pulses

at multiple wavelengths and a low-noise, direct detection receiver responsible for con-

verting the optical data (i.e backscattered photons) into electrical signal useful for

computing the estimates. Under these assumptions, it is shown that determination

of atmospheric transmission parameters to within 20% accuracy for regions close to

the transmitter/receiver may be obtained through the use of classical statistical esti-

mation procedures.

The parameters to be estimated in this investigation characterize the scattering

and absorption processes distinctive of middle ultraviolet atmospheric radiative trans-

fer. The first parameter of interest is the aerosol scattering coefficient, ks, , which is

used to describe the magnitude of scattering events associated with relatively large

atmospheric constituents such as dust and hydroscopic particles. The second pa-

ranmeter is the ozone number density, No, , which is a measure of the percentage

of 03 present in the atmosphere. This quantity is important in accounting for the

absorption of middle ultraviolet radiation as it traverses the atmosphere.

The spectral characteristics of the scattering and absorption processes of interest
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suggest that different information concerning the state of the atmosphere is available

based upon the wavelength associated with the transmitted pulse. Specifically, the

ozone absorption process displays a strong wavelength dependence while aerosol scat-

tering is relatively independent of the wavelength of the transmitted pulse. Thus,

pulses whose wavelength lie outside of the ozone absorption band do not suffer sig-

nificant attenuation due to molecular absorption. Instead, they are impacted most

heavily by aerosol scattering. Thus, data collected from pulses whose wavelength is

out of the ozone absorption band should be most useful in ascertaining ka . Alter-

natively, the effect of ozone absorption is most prominent when the wavelength of

the probing pulse is in the ozone absorption band. Even here, the available infor-

mation is affected by the aerosol scattering process thereby creating a certain degree

of coupling associated with separating the effects of ozone from those of the aerosol.

To alleviate this problem as well as take advantage of the information available at

different frequencies, estimates of the atmospheric transmission parameters are based

upon observed backscatter corresponding to multiple wavelengths. Specifically, it is

assumed that the transmitter is capable of emitting pulses at two wavelength: an

in-band wavelength, )y, , and an out-of-band wavelength,At .

This thesis is organized as follows. Chapter 2 is devoted to the derivation of the

atmospheric propagation model to be employed in the estimation procedures. This

model is based on the single scatter model developed by Reilly [43] for a coaxial

source/detector geometry and subsequently generalized by Linnell [28] and Luettgen

[27]. Given the characteristics of the source, receiver, and intervening medium, the

single scatter model allows for the determination of the power incident upon the

detector as a function of time under the assumption that radiation traveling from

the transmitter to the detector is scattered at most one time. Double, triple, and

higher order scattering effects are assumed negligible. Because of the monostatic

arrangement of the source and receiver, the mathematical structure of the propagation

equation in this thesis differs from those obtained by Reilly; however, the motivation
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behind each step in the construction of the model is identical to that found in [44].

In Chapter 3, the estimation algorithms to be used in this thesis are presented.

The chapter opens with a brief review of those elements of probability, stochastic

processes, and statistical estimation theory relevant to the remainder of the thesis.

Subsequently, it is shown that the power incident on the direct detection receiver gives

rise to photocounts which are modeled by a Poisson process where the rate function

associated with this process encompasses the propagation equations derived in Chap-

ter 2. Under the assumption that the parameters to be estimated are deterministic,

the Maximum Likelihood (ML) estimator and associated Cramer-Rao Lower Bound

(CRLB) are derived.

In Chapter 4, the performance of the ML estimator is analyzed. While the equa-

tions of Chapter 2 provide the structure for the propagation model, they provide no

indication as to realistic values for the many auxiliary parameters associated with

the transmitter/receiver system under investigation. Thus, the first portion of this

chapter is devoted to a determination of these quantities such that (1) the specifica-

tions associated with the system are met and (2) the single scatter assumption upon

which the propagation model is based is not violated. Once a base configuration of

the auxiliary parameter set is determined, the performance of the ML estimator is

examined in two ways. First, the matrix CRLB on the variances and covariance of an

unbiased estimator is presented. Additionally, Monte Carlo simulations are used to

obtain "real" bias, variance, and mean square error information. This data indicates

that the ML scheme easily can meet the 20% desired accuracy in the estimates for

most points of interest in the N0 3 - ka plane. For both No, and km. , the bias is

under 10% and the Cramer Rao bound provides an excellent indication as to actual

root mean square error behavior. Second, elements of the auxiliary parameter set are

varied from their base values to explore the manner in which the estimator's perfor-

mance is affected by deviations from the the initial parameter configuration. It is

shown that lengthening the interval over which photons are collected and increasing
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the power in the pulse serve to improve the performance of the estimator over the

base case. The one drawback to the ML estimation technique is its sensitivity to

modeling errors. Even small errors in assumed values for the auxiliary parameter set

cause large degradation in the estimator's performance. Adequate behavior is only

regained through a configuration of the auxiliary parameters which may violate the

single scatter assumption present in the underlying propagation model. Further work

is needed here before strong conclusions may be drawn.

Recursive estimation of the k,, and No, is the subject of Chapter 5. The assump-

tion that No, and k,, are constants is replaced by the supposition that their values

are time varying. Thus, the Maximum Likelihood estimator of Chapter 4 is replaced

by an Extended Kalman Filter (EKF). In the first portion of this chapter, a state

space model necessary for implementing the EKF is constructed. The temporal vari-

ations of No, and k,, are modeled as first order Gauss-Markov processes while the

measurement process is based heavily upon the photodetection theory from Section

3.3. Second, the mechanics of the filtering algorithm are briefly discussed. Derivation

of this algorithm is not presented here but may be found in [12, 61]. Finally, the per-

formance of the EKF algorithm is examined. It is shown that the response time of the

filter to abrupt changes in the parameters can be made rather fast without violating

any modeling or systemic restrictions. Furthermore, in steady state situations where

the parameters assumed constant values, the error in the filter was consistently less

than 20%. Lastly, from a computational standpoint, the EKF was less intensive than

the ML estimator and produced comparable if not better results.

Finally, in Chapter 6, the major conclusions obtained from this investigation are

presented and recommendations are made as to further work which may be performed

relating to the problem addressed in this thesis.
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Chapter 2

An Atmospheric Propagation

Model

2.1 Introduction

The general form of the atmospheric propagation problem of interest in this investi-

gation is as follows:

Given:

1. A device to be called the source or transmitter, which is capable of emitting

electromagnetic radiation,

2. A second device termed the receiver or detector, which collects electromagnetic

radiation,

3. Knowledge of the spatial relationship between the transmitter and receiver,

4. Knowledge of the transmitted signal as a function of time,

5. Knowledge of the intervening medium,
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Determine:

The electromagnetic power incident upon the detector as a function of time.

An exact, quantitative solution to this problem is difficult to obtain in general. First,

one must be able to describe the operating characteristics of the transmitter and re-

ceiver. In the most general case, these models are stochastic in nature [48]. Second,

a description of the medium separating the source and the detector must be available

to account for effects such as scattering and absorption which may take place as the

radiation propagates from the transmitter to the receiver. Because the atmosphere

is composed of a spatially inhomogeneous, time varying distribution of particles, a

model of the medium is itself nontrivial to construct [23, 17, 56, 21]. Even when the

transmitter, receiver, and atmosphere are adequately modeled, an arbitrary geomet-

rical arrangement of the source and detector may make determination of the received

power function difficult to determine [27, 44]. Due to the complexity of the problem

at hand, solutions are often obtained under a variety of simplifying assumptions and

reasonable approximations.

For the purposes of this investigation, the choice of assumptions and approxi-

mations is driven by the desire to develop a propagation model appropriate for the

overall problem of estimating a set of atmospheric transmission parameters. On the

one hand, the model must be of sufficient detail to encompass the parameters to be

estimated. On the other hand, the computational complexity associated with the

model must be such that the incorporation of the model in conventional estimation

techniques allows the estimates to be generated in a timely manner.

The goal of this chapter is the construction of a propagation model which balances

the need for detail with the problems of undo complexity. This derivation is presented

in three steps. First, the nature of the transmitter/receiver system is discussed.

Second, a model for the atmosphere is presented. Finally, the function describing the
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power incident upon the detector is derived.

2.2 The Transmitter/Receiver System

As shown in Figure 2-1, the receiver and transmitter are assumed to be co-located

with coincident fields of view (i.e. it is a monostatic system). The solid angle field

of view of the transmitter is denoted by QT and is related to the half field of view

angle, OT, by the equation

Qr = 27r(1 - cos OT) (2.1)

An analogous equation holds for the receiver's solid angle field of view, QR, and half

field of view angle, OR. The source and detector are assumed to operating in the

middle ultraviolet region of the spectrum (170 - 340 nm).

The monostatic assumption is made for two reasons. First, many lidar systems

used for atmospheric constituent analysis employ this transmitter/receiver arrange-

ment [36, 52, 3]. Because the system in this investigation is to perform the same task,

the monostatic configuration seems reasonable. Secondly, the received power function

to be derived under the monostatic assumption is far simpler than would be the case

for other arrangements [44, 27]. Once the estimation algorithms are evaluated for

this geometry, further work may be pursued to determine if alternate source/detector

arrangements offer improved performance.

The middle ultraviolet has been chosen because its unique background character-

istics make this spectral region ideally suited to a variety of applications. In most

every region of the spectrum, photodetection systems suffer due to background noise

generated by the sun. The near total absorption of radiation in this band by the

earth's ozone layer means that the middle ultraviolet is essentially noise free. Thus,

optical communications systems employing a middle UV channel have been explored

in [44, 27]. Furthermore, the spectral characteristics of compounds such as ozone,
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Figure 2-1: Monostatic Transmitter/Receiver Geometry

nitrogen dioxide, and sulfur dioxide in the middle ultraviolet make possible the use

of pollution monitoring systems operating in this region of the spectrum [12].

For the purposes of determining the received power as a function of time, the

following assumptions are made:

1. The transmitter is capable of emitting incoherent, monochromatic radiation

uniformly over its entire field of view. While a rigorous, statistically based

definition of incoherency is beyond the scope of this thesis, incoherent radiation

is taken as radiation generated by a large number of independent sources. Thus,

incandescent and flourescent light are considered incoherent while laser light is

not. A more detailed treatment of this topic is found in [47]. The assumption

of uniform irradiance over the transmitter's field of view is made to simplify the

derivation of the received power function and follows the approach taken in [43]
and [26]. Monocromicity is also assumed for the sake of convenience.

2. As shown in Figure 2-2, the transmitted signal is taken to be a rectangular
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pulse of magnitude Q, Watts and duration T, seconds. While a more general

signal shape is easily incorporated in the model, the rectangular pulse provides

the most convenient point at which to begin analysis.

3. The receiver has an angular response function, a(6), defined as:

a(6) = cos 9 (2.2)

where 9 is the angle between the incident radiation and the detector's surface

normal. This function represents the effective area of the receiver seen by radi-

ation incident at and angle 9.

2.3 Atmospheric Optics: Particles and Processes

Determination of the received power function requires an understanding of the man-

ner in which propagating radiation interacts with the constituents of the atmosphere.

Indeed, in the monostatic source/detector geometry described in the preceding sec-

tion, there exists no direct path from the transmitter to the receiver. The presence
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of any received signal requires interaction between the transmitted energy and the

atmosphere. Thus, an analytical description of the power present at the detector

must include a mathematical model describing atmospheric interaction processes.

A description of these processes is presented in two steps. First, the particulate

composition of the atmosphere is discussed. Second, models for the two interaction

phenomena of interest in this thesis, scattering and absorption, are constructed.

2.3.1 Atmospheric Particles

In general, the particulate composition of the atmosphere admits no simple descrip-

tion. The concentrations of the constituents is dependent on a wide variety of condi-

tions including altitude above sea level, season of the year, and geographical location

[44]. While a universal model for the makeup of the atmosphere is beyond the scope

of this investigation, certain general characteristics of this medium are relevant.

The atmosphere is composed of two classes of particles: molecules and aerosols.

Molecular constituents include nitrogen, oxygen, water, carbon dioxide, carbon monox-

ide, nitrogen oxide, and ozone. From Table 2.1, it is evident that nitrogen and oxygen

are the most plentiful of these species. The remaining molecular species exist only

in trace amounts. From a physical perspective, the most important characteristic of

molecules is that their sizes are much less than the wavelength of the radiation of

interest in this investigation. This fact plays a major role in describing the manner

in which molecules interact with middle ultra-violet radiation.

In contrast to molecules, aerosol sizes are on the order of or greater than UV wave-

lengths. Typically the mean radius of these particles ranges from 10jpm to 102 Inm.

Aerosols include hydroscopic particles, dust, and organic particles. and are found in

a variety of sizes and shapes. In practice, it is assumed usually that these particles

are spherical and can be described by a size distribution function, N(r). This func-

tion specifies the concentration of aerosols (in number of particles per unit volume),
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Chemical Number
Molecule Formula Density

(molecules/cm 3 )
Nitrogen N2  2.10 x 1011
Oxygen 02 5.63 x 101"
Water
Vapor H2 0 1.17 x 107

Carbon
Dioxide CO 2  8.87 x 10"
Methane CH 4  4.30 x 10"3

Nitrous
Oxide N20 7.28 x 1012

Carbon
Monoxide CO 2.03 x 10"2

Ozone 03 6.70 x 1011

Table 2.1: U.S. Standard Atmosphere Molecular Constituents at Sea Level

[44]

whose radii fall between r and r + dr [44, 57, 33]. For the purposes of this thesis,

the structure of N(r) is not of interest. Only the effects on radiative transfer of the

aerosols present in the atmosphere are of concern where the mathematical description

of these effects does not require knowledge of the underlying size distribution.

2.4 Interaction Processes

The fundamental difficulty in describing the propagation of radiation through the

atmosphere arises from the complexity associated with quantifying the manner in

which the molecules and aerosols interact with the transmitted energy. In princi-

ple, because Maxwell's equations must be satisfied by the propagating electric and

magnetic fields, a solution to this set of coupled partial differential equations could

be generated as a means of solving this problem. In light of the highly complicated

structure of the atmosphere, such an approach is intractable. Furthermore, the level
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of detail resulting from such a solution (i.e. knowledge of the fields) is unneeded in

the present case. All that is of interest is the power transfered from one point in

space to another. A common approach to describing these processes involves solving

Maxwell's equations to determine the way in which radiation is affected by a single

molecule or a single aerosol particle and then generalizing the result to describe the

power transfer process for an agreggation of particles [18, 20].

2.4.1 Scattering

The first interaction process of interest is scattering. Scattering is defined as an event

in which a portion of the energy prior to the occurrence is lost and the remainder is

spatially redistributed (Figure 2-3). Energy which is lost may have been converted to

a different form (heat, rotational, vibrational, etc.), but in any event is unavailable

for detection at the receiver. Energy which has not undergone any scattering events

is said to be in the primary field while energy which has been scattered one or more

times makes up the scattered field.

There are two forms of scattering. For conservative scattering, the wavelength of

the incident energy is identical to the wavelength of the scattered energy. In the case

of nonconservative (also called Raman) scattering, the wavelength of the radiation

is changed as a result of the scattering event. For the purposes of this thesis, only

conservative scattering is of concern. The effects of Raman scattering are ignored.

The scattering process is characterized by two quantities: the scattering coefficient

and the scattering phase function. The scattering coefficient determines the quantity

of radiation which is redistributed rather than lost and is defined as:

k, = ksa + ks (2.3)

where
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Figure 2-3: A Scattering Event

k, is the overall scattering coefficient

ka is the scattering coefficient due to all aerosol components in the atmosphere

kr is the scattering coefficient due to all molecular components in the atmosphere

In the general case of an inhomogeneous atmosphere, k, is a function of position.

It is assumed for the remainder of this thesis that the distance the radiation travels

from the source to the detector are short enough to approximate the atmosphere as

homogeneous (see Section 4.2.1). Hence, k, is merely a constant.

The mathematical structures of k.m and k.a can be obtained through the use of

of Maxwell's equations for the single particle case and appropriately generalized for

the multi-particle situation. In the case of molecular scatterers where the size of the

particle is much less than the wavelength of interest, Rayleigh theory describes the

scattering process. Here, kr is given by [9]:

87r3(n 2 - 1) 6 + 36
3A 4 N, 6-76

(2.4)

where

n is the index of refraction and is assumed to be 1.0003 [9]
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A is the wavelength of the radiation (m)

N, is the molecular number density (m- 3 ). Following Elterian [91, this quantity is

taken as 2.55 x 1025 m- 3 .

8 is the depolarization factor. For this thesis, S = 0.035 [9]

The form of k,, can be obtained through the use of Mie scattering theory [18].

The resulting closed form expressions for this quantity are given in [18] but are not of

interest here. For the purposes of this investigation, k,, is assumed to be unknown and

is estimated. Furthermore, it is supposed that ksa is independent of the wavelength

of radiation used in the transmitted pulse. While this assumption is not exactly true,

Table 2.2 demonstrates that, relative to km and for medium to high visual rangel,

the aerosol scattering coefficient is influenced only slightly by wavelength. Thus, to

a reasonable approximation, ka is taken as constant with respect to variations in

wavelength across the middle UV.

Table 2.2 also provides an indication as to the range of values for kM. in the middle

ultraviolet under medium to high visibility conditions. The minimum value of the

aerosol scattering coefficient is 2.8 x 10'- m and the maximum value is 1.6 x 10-'

m-1. In an effort to take into account a wider variety of atmospheric conditions, this

bound on ka is loosened for the remainder of this investigation. Specifically, it is

assumed that k,a C [0, 3.0 x 10-3] m 1 .

While k, defines the magnitude of the scattering event interaction, the scattering

phase function determines the manner in which the scattered radiation is spatially

redistributed. This function is denoted by p(9 ,) where 0, is the angle between the

incident and scattered radiation for a differential volume element dV (Figure 2-4).

'Visual range provides an idea of how far one can see under a specific set of atmospheric condi-
tions. A rigorous definition of this quantity may be found in [33].
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Visual
Wavelength kam Range ksa

(nm) (M-1) (km) (M-)
200 9.54 x 10- 23 3.2 x 10-4

5 1.6 x 10-1

250 3.38 x 10-4 23 3.0 x 104
5 1.5 x 10-1

300 1.53 x 10-4 23 2.8 x 104
5 1.4 x 10-3

Table 2.2: Rayleigh and Mie Scattering Coefficients

[44]

as a Function of Wavelength

Incident Radiation

Scattered
Radiation

Figure 2-4: Definition of Scattering Angle (0,)

The phase function is normalized such that:

- p(6,)dw = 1
47r o

where dw is the differential solid angle element having dimension of steradians.

As with the scattering coefficient, the phase function is dependent upon the type

of particle under consideration. From Rayleigh theory, the molecular phase function,

Pm( 9 ,) is [44]:
3

Pm(6,) = 3(1 + cos 2 6,) (2.6)

Mie theory provides a closed form expression for the aerosol phase function, Pa(6s),
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in terms of an infinite sum of Legendre polynomial and Bessel functions [44]. Rather

than using these results, a common approximation to this function is made using the

Heney-Greenstein function [63, 57]:

Pa (0,) = (1 - g2) + f 3cs209(2.7)
(1+ 2 + 2g cos(9,))3/2 2(1 + g2 )3 / 2

where g and f are parameters whose values are chosen based upon the specific atmo-

spheric conditions under investigation.

Finally, the composite phase function is an appropriately weighted and normal-

ized sum of the molecular and aerosol functions. The weighting factors are the corre-

sponding scattering coefficients. To satisfy Equation 2.5, the resulting sum must be

multiplied by (ka + km)-'. Thus:

P(#,) =keapa(93) + ksmpm(9) (2.8)
ksa + k.m

2.4.2 Absorption

The second interaction process of interest is absorption. An absorption event is

defined as one in which a portion of the energy is lost (i.e. transformed in a manner

which makes it undetectable by the receiver). This process is characterized by a single

quantity, the absorption coefficient, defined as:

ka kaa + kam (2.9)

kaa = Ai (A)Ni (2.10)

kam = Aj(A)Nj (2.11)

(2.12)

where
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ka is the overall absorption coefficient (m1).

kaa is the absorption coefficient due to all aerosol species in the atmosphere (m-).

kam, is the absorption coefficient due to all molecular species in the atmosphere (n-).

Ai(A) is the absorption coefficient (m1) due to the i'" species of aerosol under the

assumption that the atmosphere is composed of 100% of that particle and is a

function of the wavelength. This notation and definition follows that of Elter-

man [9].

Ni is the number density of the ith aerosol species. This is a dimensionless quantity

representing the percentage of that species which actually exists in the atmo-

sphere.

A1 (A) is the absorption coefficient (m-) due to the jh species of molecule under the

assumption that the atmosphere is composed of 100% of that particle.

N is the number density of the J'h molecular species.

Other definitions of absorption coefficients in terms of absorption cross sections may

be found in [20].

In this investigation it is assumed that significant absorption is attributed to a

single species: atmospheric ozone. Figure 2-5 shows that A 0 3 in the middle ultraviolet

is strongly dependent upon wavelength. The other factor in the absorption coefficient

No3 , is assumed to be an unknown quantity and, along with ka forms the vector of

parameters to be estimated. Studies of the atmosphere have shown that No, tends

to lie between 0 and 100 ppb [9, 3].
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[18]

2.5 An Atmospheric Propagation Model

Armed with an understanding of both the transmitter/receiver system and the at-

mospheric interaction processes, a useful model of atmospheric transmission may be

constructed. This derivation follows closely that of Reilly [43]. Reilly developed the

single scatter model to describe the received power function of a coaxially arranged

source and detector under the assumption that on its path from the transmitter to

the receiver, the radiation is scattered at most one time. Thus, all collected energy

originated from the primary or the once-scattered fields 2 . Under this model, the at-

mosphere is considered to be a linear time-invariant system. First, the atmospheric

impulse response, h(t) is determined (i.e. the power at the receiver when the trans-

mitted waveform is an impulse.) Next the, response to an arbitrary waveform, PT(t)

is obtained by convolving PT(t) with h(t).

The monostatic geometry of the atmospheric monitoring system allows a spherical

2Bounds on the validity of the single scatter assumption are discussed in section 4.2.1
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coordinate system to be used. From Figures 2-1 and 2-6 the axis of the transmit-

ter/receiver is taken as the z axis of the coordinate system.

Under the single scatter assumption for a monostatic arrangement, only radiation

scattered at an angle of 7r radians is observed at the detector. From Figure 2-7 any

radiation initially scattered at any other angle would require two or more scattering

events to reach the receiver and thus is not observed in a single scatter model. Because

only backscatter is observed, it is assumed that OT = OR = 9 HFOV- If OT > OR then

some fraction of the transmitted pulse has no chance of being detected at the receiver

and therefore is wasted. Similarly, if OT < OR, then a portion of the receiver's field of

view is unilluminated. Thus, to take full advantage of the monostatic geometry, the

fields of view of both the transmitter and receiver are assumed to be identical with a

half field of view angle 9 HFOV-

To begin the development of the single scatter model, consider an impulse of

energy, Q,6(t), emitted by the transmitter at time t = 0, uniformly over its entire

field of view, Qs. Using the Beer-Lambert Extinction Law for diverging beams [44],

the energy density, Ep, at a point P in the transmitter's field of view is:

Qpexp(-ker) Joules
Osr2 square meter

where

ke is the atmospheric extinction coefficient which is defined as the sum of k, and k,.

r is the distance from the transmitter to the point P

A differential volume element, dV surrounding point P can be treated as a sec-

ondary. source of radiation due to scattering of the primary field which occurs in dV.

The quantity of energy, dQs, associated with this source is:

dQs = k, Ep dV Joules (2.14)
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The spatial redistribution of dQs is governed by the scattering phase function given

in Equation 2.8. For this volume element, the quantity of backscatter, dQBs, is given

by:

dQBS= dQP(s ' Joules (2.15)
4r

Utilizing the Beer-Lambert law once again allows the energy density at the receiver

due to the scattering from dV to be calculated as:

dQBS exp(-ker)d ER = 2(2.16)
r2

Q,k, exp(-2ker)( 9  Joules

4ir~sr4  square meter

Recognizing that:

1. The differential volume element in spherical coordinates is given by

dV = r2 sin 0 dr d# d9 (2.18)

2. The impulse response is desired as a function of time, not distance. The time,

t, it takes for the radiation to travel from the transmitter, to the point P and

return to the detector is 2r/c where c is the speed of light. Thus, the following

substitutions are made into Equation 2.17:

r tc/2 (2.19)

dr (c/2)dt (2.20)

which allow dER to be written as:

Q,k. exp(-kect) Joules
dERn - 21rcPOt iq ) sin 0 do dO dt square meter (2.21)
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Carrying out the following steps results in the final form for the differential impulse

response, dh(t), at the detector:

1. The quantity of interest is not energy density, but power density; thus, divide

both sides of Equation 2.21 by dt.

2. Multiply Equation 2.21 by the receiver's angular response function, cos 9.

3. Under the assumption that the receiver is uniformly illuminated by the backscat-

tered power, multiply dER by the area of the receiver, AR.

4. Substituting the relationship ?s = 27r(1 - cos 6HFOV) for Qs

5. Strictly speaking, the impulse response should have dimensions of s-. Thus,

divide Equation 2.21 by Q,

The resulting function is given by:

dh(t) = ARkp(xsin cos d4d secondsep (2.22)
4-2(1 - cos 6HFOV sCt2

The impulse response is calculated by integrating Equation 2.22 over the receiver's

field of view. From Figures 2-1 and 2-6, this involves integrating dh(t) from 4 0 to

= 2,r and 9 = 0 to 9 = 9s. Performing the integration yields:

h(t) = ARk.p8 , =r)(1 - cos 2 6HFOV)exp(-kect)
hi(1t)osH = t2 Watts (2.23)8,r(1 - COS #H FOV )ct2

Finally, the power received at the detector, P(t), due to a transmitted pulse of

the type shown in Figure 2-2 is the convolution of h(t) with a square pulse:

Ank.,p(6, = 1r) 1 - cos 20HFOV eX p -kecr)
PR(t) = 1 9 V 2 d- Watts (2.24)

8,rc 1 - COS H FOV -T,
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2.6 Conclusion

The purpose of this chapter has been the derivation of a middle ultraviolet atno-

spheric propagation model for use in the estimation of No, and kma . First, the

characteristics of the receiver and transmitter relevant to the propagation model were

presented. Subsequently, the composition and interaction processes of the atmo-

sphere were discussed. It was assumed that this medium is composed of molecular

and aerosol particles which conservatively scatter and absorb radiation. Finally, given

the models for the source, detector, and atmosphere, the pulse response of the at-

mosphere was derived by first calculating the impulse response of the medium and

then convolving this function with a rectangular pulse of amplitude Q, Watts and

duration T, seconds.
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Chapter 3

A Maximum Likelihood Estimator

for N0 3 and ksa: Theory

3.1 Introduction

The problem of estimating atmospheric transmission parameters has been widely

explored in a variety of contexts [25, 24, 29, 49, 38, 1, 60, 14, 57]. Much of this

analysis is centered around inversion techniques associated with the laser radar (lidar)

equation [25, 26, 39, 65, 64]. This equation describes the backscattered power incident

upon a detector when a laser source is used to generate the transmitted pulses. As

in Equation 2.24, the lidar equation gives backscattered power, P, as a function of

the atmospheric parameters of interest, x:

Ps = f(x) (3.1)

The goal of these inversion procedures is to find an approximate form of f ' so that the

value of the parameters may be deduced from backscatter observations. While these

techniques have enjoyed a great deal of success, the object of the present investigation
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is to pursue the atmospheric parameter estimation problem from a standpoint which

exploits the stochastic relationship between the backscattered power incident upon

the detector and the observed detector output.

The object of this chapter is to develop a Maximum Likelihood (ML) estimator for

determining the ozone number density and aerosol scattering coefficient based upon

the collection of backscattered radiation in a direct detection system. In a such a

system, photons impinging upon the detector due to a known radiation field result in

short pulses of energy as output from the detector. It can be deduced from quantum

mechanical principles that a probabilistic relationship exists between the incident

field and the number of pulses observed at the output of the detector [32, 31, 30, 48].

The stochastic nature of this relationship allows for techniques such as Bayes Least

Squares, Linear Least Squares, Maximum Likelihood and Maximum A Posteriori

estimation procedures to be employed as a means of determining the unknown model

parameters.

The formulation of the ML estimator first requires the specification of the stochas-

tic process linking the backscattered radiation field to the detector output. The results

of this effort is a probabilistic model encompassing all the parameters of interest from

which any estimator can be formed. Given this probabilistic model, the ML estima-

tor and the associated Cramer-Rao bound on the mean square estimation error are

formally derived. Before pursuing this task, a review of probability and estimation

theory relevant to this thesis is in order.

3.2 Elementary Probability Theory

Probability is that branch of mathematics concerned with the quantification of un-

certainty. For physical systems which are either too complex to model in a deter-

ministic manner or which are inherently non-deterministic, probability theory is used
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to determine the likelihood that the system will be found in a particular state. For

the purposes of this document, it is assumed that the reader is familiar with basic

probabilistic concepts such as random variables, distribution functions, conditional

probability, moments of random variables etc. The purpose of this section is twofold.

First a description of the probabilistic notation to be employed in this document is

presented. Second, the basic characteristics of the Poisson process are discussed.

3.2.1 Notational Conventions

The probability density function (PDF) for a continuous random vector xis defined

by

p(X)dx = Pr[Xi < x1 < X1 +dX 1 , X 2 <x 2 <X 2 +dX 2 ,...,Xn < xn < Xn +dXn]

(3.2)

The subscript x in p.(X) represents the random variable and the dummy variable,

X, is the value which x assumes. The notation Pr[X1 < x 1 < X 1 + dX 1 ] is the

probability that the ith component of x assumes a value between Xi and Xi + dX.

Similarly a discrete PDF is denoted by:

Pr[y = Y] = Pr[y1 = Y1,y 2 = Y2 ,..., yn = Yn] (3.3)

where Pr[y = Y] is the probability that the ith component of the random vector y

assumes a value Y.

The expected value of a function of a random variable z = f(x) is calculated

according to:

E[j] = E[f(x)] = J f()p,(X)dr (3.4)

with an analogous formula for discrete type random variables. Letting f(m) = x gives

rise to the mean of a random variable which is denoted as E[z] or T. Alternatively,

40



E[f(1)] for f(x) = (x - E[z_])(x - E[I])T yields the covariance matrix, A,, of the

random vector x. (The superscript "T" denotes the transpose of a matrix or vector).

The diagonal elements, (A.);,i = o2 are the variances of the components of x and

the off-diagonal elements, (A,)ij = o-ij, are the covariances between the ith and jth

components of x.

Finally, in the event that all components of a random vector, x, are mutually

independent, the joint PDF for x is the product of the marginal density functions for

each xi. Thus for a random vector of n elements,

n

p (_X) = $lp,(Xi) (3.5)

if all elements are mutually independent.

3.2.2 The Poisson Process

The Poisson process is a stochastic process used to describe the distribution of discrete

points over some continuous domain of interest [50]. In this thesis the domain is

temporal. The presence of a Poisson point at a particular time is called an arrival of

the process. The full theory of Poisson processes allows for the description of many

quantities associated with the arrivals including:

1. The probability that a given number of arrivals occur over some fixed time

period,

2. The probability associated with the time from one arrival to the next arrival

(also called the first order interarrival time) or from one arrival to the second,

third or r th next arrival (i.e. the r*1 order interarrival time),

3. The joint probability density for the N - 1 first order interarrival times given

that N arrivals have occurred in some time period,
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ad nauseum. The first item in the above list describes the interval characteristics of

the process (i.e. the number of counts received in some time interval) while the last

two elements of the above list provide information as to the location characteristics

of the process (i.e. information concerning the timing of events) [50]. Of particular

interest here are the interval characteristics of the Poisson process.

The count data of a Poisson process is described using a slightly different notation

from that which was described in section 3.2.1. Specifically, the random variable

representing the number of points observed in a given time interval is denoted using

a capital N and the value of this RV is given y capital Y. The assignment of N to a

Poisson RV and Y to the value of the same random variable will be used consistently

throughout this document and will (hopefully) be the only break with the standard

notation as presented above.

The PDF for the number of points observed from a Poisson process over some

period of time, T,b, is:

Pr[N Y]= eA Y =0,1,2... (3.6)

In Equation 3.6, A is associated with the mean of the Poisson process and is called

the Poisson rate parameter. This quantity may be written as

A = A(r)dr (3.7)

Where T,b = Tf - T, represents the time interval over which the Poisson process

is observed. The function A(t) is called the Poisson rate function and specifies the

instantaneous average arrival rate of Poisson points.

A Poisson random variable has the interesting property that its mean equals its

variance and both equal A. In the case that the rate function A(t) is the constant A,
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the process is termed homogeneous, and the mean and variance are

2 JTfN = = Adr = A(Tf - T.) = AT,,b (3.8)

A homogeneous Poisson process illustrates most clearly how A may be interpreted as

an average arrival rate. In the case where A(t) retains its dependence on time, the

process is termed inhomogeneous.

Another useful feature of the Poisson process is that it possesses independent

increments. This implies that PDF's for the number of arrivals in m non-overlapping

time periods are independent. Thus,

Pr[NAt, =Y1,Nt 2 =Y 2 ,...,NAt=Ym]=lPr[Ni= Y]=f (3.9)
i=1 i=1 2

The quantity Ati = Tf, - T, is the ith observation interval where all such intervals

are mutually exclusive. In the above equation,

ITA
Ai = A(r)dr (3.10)

3.3 The Photodetection Process

Estimates of the ozone number density and the aerosol scattering coefficient will be

based upon data gathered using a monostatic, direct detection measurement system

(see figure 3-1). In such a system (also called a photodetection or photocounting

system) there exists an electro-magnetic field incident upon a receiver which is com-

posed of a photosensitive material, an amplifier and processing electronics [36]. In

response to the photons comprising the incident radiation field, the receiver outputs

voltage pulses. These pulses are referred to as photocounts and represent the mea-

surable quantity which will be used to formulate the estimates of k,, and No, . In
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Figure 3-1: A Direct Detection Measurement System

this section, the stochastic relationship between the incident field and the photo-

counts is explored first assuming an ideal photodetection system and then supposing

a simplified model for a real direct detection system.

3.3.1 An Ideal Photocounting System

In an ideal photodetection system there is no noise or other external processes asso-

ciated with the receiver. As was discussed in the introduction to this chapter, there

exists a non-deterministic relationship between the radiation field incident upon a

photodetector and the photon counts which represent the output of the detector.

Such a relationship seems reasonable given that the objects being observed in this

case are photons, which according to the basic principles of quantum mechanics can

only be described in a probabilistic manner. Clearly, because individual quanta of

energy are counted, the random process will be discrete in nature, but determina-

tion of its exact form depends on a variety of exogenous factors. Given the following

assumptions:

1. Atmospheric transmission can be described using an linear, time-invariant im-

pulse response as derived in Chapter 2,
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2. The source itself is deterministic (i.e. the amplitude and duration of each pulse

are not random quantities) and

3. An ideal photodetection system,

it can be shown that a Poisson random process provides an excellent description of

the photon counting problem [48]. The rate function A(t) associated with this process

corresponds to the number of photons per unit time from the incident field impinging

upon the receiver's photosensitive surface.

To obtain the expression for A(t), it is not necessary to have a full description of

the electro-magnetic field. Rather, it is sufficient to start from the function, PR(t),

describing the field's power which is incident upon the detector. Because

1. PR(t) gives the energy per unit time incident upon the detector

2. The energy in a single photon is:

hc
E, = A(3.11)

where

E, = The energy per photon [Joules/count]

h = Planck's constant (6.63 * 10-14 [Joules seconds])

c = the speed of light (3.0 * 108 [meters/second])

A = The wavelength of the radiation.

the rate function for the photodetection Poisson process due to PR(t) is

A(t) = -- PR(t) (3.12)
hc
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The power function corresponding to radiation field of interest in this investigation

was derived in Chapter 2. This function of time, PR(t), determines the quantity of

directly backscattered energy per unit time incident on the detector in response to

an energy pulse transmitted from the same location a short time earlier under the

single scatter approximation. Thus, given equations 2.24 and 3.12, the Poisson rate

function for an ideal monostatic direct detection system is:

= AdA 1 - cos(20HFOV) mkSm±Oaksa t exp(-(ksa + kam + NO3kaO3)cr)d
8,rhc2 1 - COS(OHFOV) Jt- TP2

(3.13)
Where the subscript I indicates that this is the rate function corresponding to the

ideal photon arrival Poisson process.

3.3.2 Non-Ideal Photodetection

In actual direct detection system, there exists noise and other external processes as-

sociated with the receiver which may destroy the Poisson nature of the photocounting

process. A common assumption is that there is a constant quantity known as the de-

tection efficiency, , which represents the ratio of the number of photocounts observed

in the actual system to the number of counts which would be observed in an ideal

detection system. The non-ideal photocounting process may now be redefined using

Figure 3-2. In this figure, a radiation field is incident upon an ideal photodetector.

The output of this system is a Poisson process Nr(t) which serves as the input to

a system H(N, (). The output of H is the number of photocounts observed in the

actual direct detection system. The cascade of the ideal receiver and the system H

represents the non-ideal photodetector.

H operates on its input in the following manner. When an arrival from the process

Ni(t) is input to H a decision is made. With probability ( the input pulse will be

passed through H and appear as an observed photocount. With probability 1 - (
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Figure 3-2: A Non-Ideal Direct Detection Measurement System

the count from N;(t) will result in no output from H (i.e. no observed count will be

registered).

Given this probabilistic interpretation of (, the non-ideal pulse counting process

may be thought of as a Poisson process with random erasures. That is, for each arrival

of the underlying Poisson process (i.e. each photocount from the ideal system), there

is a probability ( that an actual photocount will be observed and a probability 1 - (

that that the underlying arrival will not appear in the observed process. It can be

shown [8] that this type of random process is still Poisson whose rate function, A(t),

is

A(t) = (Aj(t) (3.14)

where AI is the rate parameter of the ideal photodetection process. This conclusion

makes intuitive sense. If, for example, ( = 0.5 then on average, one would expect

to see about half as many counts in the process suffering from erasures as would

be observed in the underlying Poisson process. This is exactly what equation 3.14

indicates is the case.

From equations 3.13 and 3.14, the final form of the Poisson rate function to be
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used in the estimation of No, and k.,a is

A8) 2 1 - cos(20HFoV) (Mks t exp(-(ka + ksm + No 3 Aos)cr)
8,rh C2 1- cos( OHFOV) t-mT P 2

(3.15)

For the sake convenience in dealing with equation 3.15 the following notation is

adopted:

A At 1 - cos(20HFOV) (3.16)
8,rhc2 1 - COS(OHFOV)

k, = ksa + kim (3.17)

ke = ksa + ksm + No3 Ao3  (3.18)

7m= r mkim (3.19)

7 = akia (3.20)

7 = 7m + 7N (3.21)

Incorporating this parameterization into the expression for A(t) yields:

It exp(-k,cr)
A(t) = ayj exP c2 dT (3.22)

With equation 3.15 the statistical model encompassing the parameters to be estimated

is complete. The next task is to use this model as the basis for algorithms which will

extract the values of the atmospheric transmission parameters from observed count

data.

3.4 Statistical Estimation

The object of the modeling process is to obtain a mathematical formulation corre-

sponding to a physical situation such that, given the inputs to the process, the model
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is able to predict in some sense the outputs which will be observed. Regardless of

whether the model is deterministic or statistical, it is often the case that there exist

in the model parameters whose values are not known. These parameters may be non-

deterministic in that their values change randomly over time and space, or it may

be the case that the parameters have fixed values which are unknown a priori to the

modeler. Given the theoretical model which predicts how the system should behave

and observations of the actual process which demonstrate how the system really acts,

estimation techniques are often used to determine those values of the parameters

which do the "best job" of matching the observed data to the form of the model. It is

the formalization of the notion of "best job" which distinguishes different estimation

techniques.

In the case of the pulse counting system, the model is stochastic in nature. Given

a set of inputs to the system, such as pulses of radiation, the model can only predict

statistical quantities associated with the system's output such as mean, variance, kur-

tosis etc. For modeling situations such as these there exist a wide range of parameter

estimation techniques. In all cases the following assumptions hold.

1. There exists a vector of unknown parameters x E )Z"

2. There is a data vector y which is generated from a random process described

by a PDF py:(Y|IX)

3. It is desired to obtain an estimate of x which is as x^(Y) based upon the ob-

servations Y. Where it shall cause no confusion the explicit dependence of the

estimate upon Y will be dropped.

Given these basic commonalities, the various estimation schemes are differentiated

according to assumptions made about the nature of the parameter vector x and the

criterion used for choosing x based upon y. Some common options are:
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1. Bayesian estimation [62] assumes that x is non-deterministic and can be

described by a PDF pa,(X). The estimate ^ is chosen to minimize the expected

value of the cost function

C(I, ) = I -1|| 2  (3.23)

conditioned on knowing y = Y. This basis for selecting an estimate is called the

minimum mean square error criterion. In the Bayesian case, ^B(Y) = E[I|Y]

where E[A|B] is the conditional expectation of A given B. The Bayesian esti-

mate tends to be difficult to find because it requires the explicit determination

of pIl(XiY). Furthermore, Bayesian analysis requires specification of pa(X)

which may not be available.

2. Linear Least Squares Estimation (LLSE) [62] also assumes that x has a

PDF p_(X) and chooses X^ based on the same least squares criterion subject to

the constraint that ; is of the form

Wt(_Y) = AY + b (3.24)

where the matrix A and the vector b are chosen based upon the mean square

error requirement. It can be shown that this estimate requires knowledge only of

the second order statistics (means, variances, and covariances) associated with

x and y rather than their complete joint distribution as would be required in the

Bayesian case. Furthermore, the LLSE is linear by construction and therefore

easier to formulate and work with than the Bayesian estimate. By constraining

the form of X to be linear it can be shown that the error variance of the LLSE can

be no smaller than that of the Bayesian estimate. Thus the reduced complexity

of the LLSE comes at a price of possibly reduced performance.

50



3. A Maximum a Posteriori (MAP) [62] estimator still assumes that x is prob-

abilistic. The choice of XMAP is made according to the following rule:

XMAP(Y) = arg max p .I1(YJj) (3.25)

It can be shown that this manner of choosing an estimate may be derived by

choosing ±MAP to minimize the cost function

C(_) K>O if) =- (3.26)
0 if = z

This estimation technique involves finding maxima of the conditional distribu-

tion of y given x. Assuming that pi,(Y|X) is differentiable in the parameter

vector X and using Bayes' rule for calculating conditional PDF's, the necessary

conditions for KMAP is reduced to finding that X which satisfies the following

set of equations:
an

ax(n pi,(X) + lnp,(X)) = 0 (3.27)

which are called the MAP equations. The use of the log of the PDF is valid in

the maximization procedure due to the fact that the natural logarithm function

is non-decreasing over the set of non-negative real numbers. A solution to

Equation 3.27 is a local maxima of pyij,,(Y|k) if it also satisfies the second order

necessary condition:
892
a2 2P) <0 (3.28)

In the event of multiple maxima, the MAP estimate is taken as the largest of

the maxima.

4. The final statistical estimation scheme to be covered here is the Maximum

Likelihood (ML) [62] estimator. ML estimation is useful when the parameter
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vector, x, is a set of constants whose values are deterministic but unknown to

the modeler. Like the other estimation schemes, the ML method starts with a

set of observations, Y, and a PDF, pi,(YlX) describing the probability that

the observation vector y assumes some value Y when the parameter vector x

has the value X. The ML estimate iML is that value of x which makes the

given observation vector Y, most likely, i.e. that value of x which maximizes

the probability of actually observing _Y. Mathematically, the ML estimator may

be expressed as:

4ML = arg maxpyli,(YIX) (3.29)

or equivalently

XML = arg max In pyi,(I|X) (3.30)

x= arg max f(AI)

where £(X) = Inp, 1 (YX) is called the log-likelihood function.

The ML estimate can be derived from the MAP estimate by assuming that the

PDF for X is constant across its domain. Thus the derivative of p0,(X) with

respect to X is zero and Equation 3.27 reduces to the ML equation:

n pi,(YIX) = 0 (3.31)ax

for the vector x. As in the case of the MAP estimate, a solution, X, of equation

3.31 will be the ML estimate if it also satisfies

a2
8 X (Y|X = X) < 0 (3.32)

In the event that the log likelihood function has multiple maxima, the ML
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estimate is taken as the largest of these extrema.

There are three criteria generally used as indicators of an estimator's performance.

They are the bias, the error covariance, and the mean square error. The bias of an

estimator is defined as:

b(X) = E[X - (y)|I = X]

= E[ex = X] (3.33)

where e is called the error vector and is defined as the difference between the estimated

value and the actual value of the parameter vector.

The error covariance matrix is:

Ae(X)= E{[t - b(X)][e - b(X)] T } (3.34)

The (i, j)th diagonal element of this matrix is the error variance of the ith parameter

in x while the (i, j)h off diagonal entry of Ae is the error covariance between the jh

and jth components of the parameter vector.

Finally the mean square error is given according to:

E[eeT] = Ae(X) + b(X)b(X)T (3.35)

Given that the estimator produces guesses with some bias, the error variance is

a measure of how far from that bias point estimates may be expected to fall. If the

variance is small then it would be unlikely for the estimates to be far from the bias

point. On the other hand, a large variance would indicate that the estimates may be

expected to be spread widely over the domain of interest (i.e not concentrated about

the bias point). Assuming that the bias is small, then equation 3.35 demonstrates that

a small variance would indicate that one may expect small errors in the estimates and
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good performance from the estimator. Alternatively, a large variance would suggest

that large errors and therefore poor performance may be expected.

Given that an unbiased estimator exists for a particular problem, the Cramer-Rao

bound (CR bound) provides a lower bound on the mean square error matrix. This

bound is calculated according to [62]:

Ae ;> Ij'(X) (3.36)

where Iy(X) is called the Fisher information matrix and is given by:

I(X) = E{a['py(_YX)]IxXU 2 (3.37)
= -E E{ a P(Y|X)|x= X

Any unbiased estimator for which equation 3.36 is satisfied with equality is termed

efficient. Furthermore, it can be shown that if an efficient estimator exists then it

must be the ML estimator. Equations analogous to 3.36 and 3.37 can be formulated

for the case of a biased estimator [50]. Such equations require the knowledge of both

b(X) and 'b(X) which in many cases cannot be obtained in closed form. For the

problem of estimating the atmospheric transmission parameters, it will be shown from

Monte-Carlo simulations that

1. The estimator is biased; however the bias is relatively small over the full range

of both the ozone number density and aerosol scattering coefficient.

2. The unbiased form of the CR bound provides substantial information regarding

the actual performance of the biased estimator

Given this situation, the CR bound for a biased estimator is neither presented nor

discussed here.
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3.5 The ML Estimator for ka and No,

Because it is assumed that the ozone number density and aerosol scattering coefficient

are non-random parameters in the atmospheric transmission model, the Bayesian,

LLSE and MAP estimator are not applicable to the problem being addressed in this

thesis. Thus of the four techniques for estimating a vector of unknown parameters

given a stochastic model, the Maximum Likelihood scheme is most appropriate for

the problem to be explored in this thesis.

This section will be devoted to the three facets of the Maximum Likelihood esti-

mator:

1. The observation vector which provides the data used to formulate the estimates

2. The structure of the ML estimator

3. The Cramer-Rao bound on the variance of the estimator

3.5.1 The Observation Vector

The observation vector, Y, contains the photocount data upon which estimates of

ksa and N0 3 are based. This vector is constructed to take advantage of two elements

of the atmospheric model which allow for a wide range of information to be made

available to the estimator: the spectral dependency of the ozone absorption process

and the temporal characteristics of the backscattered power function.

The strong spectral characteristics of the ozone absorption process suggest that

different information concerning the state of the atmosphere is available based upon

the wavelength associated with the transmitted pulse. Pulses whose wavelength lie

outside of the ozone absorption band do not suffer significant attenuation due to

molecular absorption. Instead, they are impacted most heavily by aerosol scattering.

Thus, detector counts collected from pulses whose wavelength is out of the ozone
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absorption band should be most useful in determining ka . Alternatively, the effect

of ozone absorption upon the number of observed detector counts is most prominent

when the wavelength of the probing pulse is in the ozone absorption band. Even here,

the counts are affected by the aerosol scattering process thereby creating a certain

degree of ambiguity associated with separating the effects of ozone from those of the

aerosol.

To alleviate this problem as well as take advantage of the information available at

different frequencies, estimates of the atmospheric transmission parameters are based

upon observed backscatter corresponding to multiple wavelengths. Specifically, it is

assumed that the transmitter is capable of emitting incoherent, monochromatic pulses

at two wavelength: an in-band wavelength, A, , and an out-of-band wavelength,At .

The observation vector is composed of backscattered detector counts arising from a

single pulse at each of the two wavelengths. The choice of the wavelength pairs is a

topic to be discussed in the following chapter.

In addition to the frequency of the probing pulse, the timing of the interval over

which backscattered detector counts are collected may influence the information con-

veyed by the observed counts. From equations 3.7 and 3.14, the count rate parameter

may be written

/TI *exp(-kecr)d
A =_ a(3aksa + /mk.m) J=1f. tik drdt (3.38)

t= T, r=t -Tp r 2

From the above equations, it may be observed that the effects of molecular absorp-

tion on the magnitude of A are dependent upon the length of time the radiation

has spent propagating through the atmosphere. Counts obtained during observation

intervals directly after T, will contain more information regarding the aerosol scatter-

ing process than the ozone absorption process because the radiation collected during

these periods has not propagated sufficient distances through the atmosphere for sig-
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nificant absorption to have occurred. Conversely, more information concerning the

ozone number density will be available from count data collected during observation

intervals long after the falling edge of the transmitted pulse. To obtain the infor-

mation available from different intervals, the observation period for a single pulse is

subdivided into n subintervals where the number of detector counts collected in each

subinterval is placed in the observation vector.

An important issue with regard to the subinterval count collection scheme is the

determination of how the overall observation interval is to be partitioned. One choice

is to divide the interval Tob, = Tf - T, into equal subintervals of length Tb.,/n. Such

a scheme would lead to significant signal to noise problems. Specifically, because

the rate function A(t) falls off faster than exponentially and it is desired to collect

counts for times much greater than T,, the later intervals in an equal length system

would contain few counts. Such a situation would be tolerable except for the fact

that unmodeled detector noise (shot noise, 1/f noise etc) would become an issue.

Up to this point, it has been assumed that the number of counts obtained in any

observation period would be high enough to allow detector noise to be ignored. To

maintain this approximation, an alternative method to equal length subintervals is

required.

Specifically, the length of subintervals is chosen so that the expected number of

counts obtained in all subintervals is the same. Given some initial guess as to the

values of No, and k,, and the starting and ending times, T, and T of the overall

observation period, the expected number of counts for the period T',b is given by

equation 3.38. Thus, the n subintervals are to be chosen such that the expected

number of counts in each is A/n.

The beginning and ending times of the ith observation interval (t, and tij respec-
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tively) are calculated in an iterative manner. Assuming that

t., = tft _

the ending time for the ith interval is found by determining that value of tf1 which

satisfies:

A(t)dt = A/n (3.39)

where the solution is found numerically using Brent's method [40] for determining

roots of equations. As new estimates of the parameters are generated, the expected

number of counts in the overall observation interval will change. Thus it may be

necessary to recalculate the beginning and ending times of the n observation subin-

tervals.

In summary, the observation vector for the problem of determining kma and No, contains

2n elements. The first n are the observed counts for the n subintervals associated

with the pulse of wavelength Ain. Similarly, the last half of the vector contain the

backscattered counts observed from a probing pulse of wavelength A1 1 .

3.5.2 A Poisson ML Estimator

To formulate the Maximum Likelihood Estimator for the problem of determining

atmospheric parameters from backscattered energy, it is necessary to apply the tech-

niques of section 3.4 to the model developed in section 3.2.2.

Given 2n observations, Y, of a Poisson process from mutually exclusive time

intervals, the log-likelihood function may be written as

2n

f(Y) = E(Y ln Ai(x) - Ai(x) - In Y!) (3.40)
i=1
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where this equation may be derived by taking the natural log of equation 3.9. Here,

Ai(x) is the mean of the ith observation interval and is a function of the parameters

to be estimated. Where it will cause no confusion, the explicit dependency of Ai on x

will be dropped. The ML estimate, *ML, is calculated by maximizing f(X) over the

range of x. The necessary condition on ^ are given by equation 3.27. For the case of

a Poisson ML estimator these equations specialize to [50]:

f(_) = 1 Ai = 0 (3.41)

where 9A; is a column vector whose jth element is --- A. In the case of estimating

the two atmospheric parameters ksa and No, , this column vector contains the two

components:

a9 ATf ft exp(-kcr)
aN 0 3  = -cAo3a7 drdt (342)

S( T t exp(-kecr)
At = a - 3 a2 d-rdt+

ksa - =. Ji=t-T 2 r

laTy Jft-T, exP(-kecT)drdt (3.43)
t= T, , f= t--T, 7

Substitution of equations 3.42 and 3.43 into 3.41 would yield the set of equations

which would need to be solved in terms of ka and N0 3 in order to obtain the ML

estimates of these parameters. Because no closed form solutions for k'a and No, may

be obtained easily, the original problem

!ML(Y) = maxlnpy(YI) (3.44)

will be solved using a numerical optimization routine. Specifically, the necessary

equations have been implemented on a VAX 6800 and the optimization problem has

been solved using a quasi-Newton optimization algorithm from the IMSL Fortran
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math library.

In addition to the estimate itself, it is not possible to obtain closed expression

for the bias and error covariance matrix associated with the estimator. Instead, as

will be detailed in the following chapter, Monte-Carlo simulations have been used to

obtain approximations of the mean square error and average bias of the estimator as

the parameters vary over their full ranges.

While the statistics for the ML estimator cannot be obtained directly, the Cramer-

Rao bound may be calculated easily. From equation 3.36 the Cramer-Rao bound is:

Ae(X) > Ijj(X) (3.45)

where Ae(X) is the error covariance matrix of an unbiased estimator and Iy(X) is

the Fisher information matrix which may be calculated according to equation 3.37.

While it is impossible to determine a priori whether the estimator for k'a and No, will

be biased, calculation of the CR bound will still give a "best case" indication as

to the performance of the estimator. A poor bound may indicate that a different

measurement procedure is required to solve the problem. That is, it may be necessary

to collect information regarding the transmission parameters in a different manner

from the one considered here in order to obtain accurate estimates. Favorable results

from the CR bound would suggest that the ML estimator may be sufficient to handle

the problem and further investigation is warranted.

For a Poisson ML estimator, the Fisher matrix is [50]:

m r T, 91[ T1 . i?
Iy(X) = (Aj)- f1 A (1, t) dt h A(j, t)dt (3.46)

where the index i refers to counts from the ith observation interval. Interchanging the

order of integration and differentiation in the summation, allows the Fisher informa-
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tion matrix to be rewritten as

Iy(X) = -' a)- Ai(j) a Ai (1) (3.47)

For the specific problem at hand, where the parameter vector is x = [No3 kea]T, the

Fisher information matrix is:

( A A) 1--A I
Iy(X) = E(A()-1 19No (3.48)

where the partial derivatives are given in equations 3.42 and 3.43.

3.6 Conclusion

The goal of this chapter has been the development of a Maximum Likelihood Esti-

mator to be employed in the determination of the two transmission parameters of

interest. After a brief review of probability theory, a statistical model was developed

to describe the photodetection process. This model provides the link between the

transmitted pulse and the observations upon which the estimates are to be based.

Subsequently it was shown that a Maximum Likelihood method is an appropriate

estimation technique for the problem at hand. Finally, the analytical equations as-

sociated with the estimator and the Cramer-Rao lower bound were derived from the

single scatter propagation model and photodetection model presented in Chapters 2

and 3.
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Chapter 4

Performance Analysis of the

Maximum Likelihood Estimator

4.1 Introduction

The mathematical structure of the Maximum Likelihood estimator developed in

Chapter 3 says little about how this algorithm actually performs in estimating the

ozone number density and aerosol scattering coefficient. The quality of the estimates

obtained using the the ML scheme is dependent upon a variety of factors. On the one

hand, the ability to determine No, and k,, is dependent upon the actual quantity of

ozone and aerosol present in the atmosphere. Additionally, there are a variety of aux-

iliary parameters associated with the single scatter model which have an effect upon

the accuracy of the estimates. In some cases, these parameters may be set to known

quantities. In other cases, it is necessary to assume nominal values for parameters

whose actual values are determined exogenously. While it is possible to build an ML

estimator for this latter set of quantities, it may be the case that uncertainty in their

exact values has little or no impact on the estimator or that the negative effects of

this uncertainty may be offset through actions which are under the user's control.
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In such cases, the added complexity of a larger dimension ML estimator would be

unwarranted.

The goal of this chapter is to explore the performance of the estimator under a

variety of configurations of the auxiliary parameter set. This evaluation is carried out

in two steps. First, a base configuration is determined in a manner which is consistent

with (1) the requirements of the atmospheric monitoring system of which the estima-

tion algorithms are to be a part and (2) the constraints imposed on the values of these

parameters by assumptions present in the single scatter model. Second, performance

data for the base case and a variety of deviations from this standard are presented

and analyzed. This performance information is obtained through calculations of the

matrix Cramer Rao lower bound (CRLB) as well as through Monte Carlo runs in

which simulated data is fed into the ML algorithm.

4.2 A Base Configuration of the Auxiliary Pa-

rameter Set

Evaluation of the ML estimator can only be carried out after numerical values have

been chosen for the auxiliary parameters associated with the single scatter pulse

response. From equation 3.15 this parameter set is composed of:

1. The transmitter half field of view angle: 9 t (rad)

2. The receiver half field of view angle: 0, (rad)

3. The duration of the transmitted pulse: T, (seconds)

4. The power of the transmitted pulse: Q, (Watts)

5. The start time of observation: T, (seconds)
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6. The end time of observation: Tf (seconds)

7. The area of the receiver: A (m 2 )

8. The number of subintervals into which the overall observation time is divided.

9. The wavelengths of the two probing pulses

(a) The pulse whose wavelength is in the ozone absorption band, A (m)

(b) The pulse whose wavelength is out of the ozone absorption band, )'ut (m)

10. The detection efficiency: ( (dimensionless)

11. The parameters of the Heney-Greenstein aerosol phase function: f and g (di-

mensionless)

Selection of numerical values for these quantities affects the information (the number

of photocounts) upon which the estimates are based thereby impacting on the ability

of the ML estimator to determine the values of No, and k,0 . While the formulae

presented in Chapters 2 and 3 describe the manner in which the the set of auxiliary

parameters influences the backscatter, these mathematical constructions provide no

information regarding realistic values these parameters may to assume.

Two standards are to be employed in the determination of the base set of param-

eter values. First, they must be chosen in a manner consistent with considerations

associated with the type of atmospheric monitoring system in which the estimation

algorithms are to be a used. Second, the auxiliary parameter values are to be deter-

mined so as to be compatible with the assumptions associated with the single scatter

model of atmospheric propagation which lies at the heart of the ML estimator. The

remainder of this section is devoted to the choice of a set of auxiliary parameter values

which are consistent with these two criteria.
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4.2.1 Systemic Restrictions

Systemic restrictions on the values of the auxiliary parameters arise from considera-

tions associated with the form and functionality of the overall system to be used in

the estimation of atmospheric transmission parameters. Specifically, the estimation

algorithms are to be part of a system whose overall goal is the acquisition of local

estimates of the ozone number density and aerosol scattering coefficient using a low

energy, pulsed, narrow field of view monostatic receiver/transmitter system operating

in the middle ultraviolet. Such a system is similar to light radar (lidar) systems except

that the source of radiation is to be incoherent rather than laser. Thus, the parameter

values used in typical lidar systems provide a reference point for the corresponding

quantities to be defined here.

From the general description of the sensing system of interest, numerous con-

straints on the values of the auxiliary parameters are apparent:

1. The idea of locality must be quantified. For the purposes of this investigation,

it is assumed that local estimates correspond to distances of up to 1 km from

the transmitter/receiver. One kilometer has been chosen to satisfy assumptions

concerning the homogeneity of the atmospheric constituents. In typical prop-

agation models, the atmosphere is assumed to be a layered medium where the

composition of the medium is constant in any given layer and the thickness of

each layer is on the order of 1 km [11].

Given this 1 km constraint, the maximum round trip path of any photon from

the transmitter to the receiver is 2 km and the observation interval can last at

most
2000 m

Tf,max 300 6700 ns.
3.0 x 108 m/s

This definition of locality may be compared to typical, ground based lidar sys-

tems which are used to measure atmospheric characteristics corresponding to
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System Q, (MW) T, (ns) E, (mJ)
Quantel Model 482 [36] 23.3 15 350

Lambda Physik Model 202-MSC [36] 19.1 35 670
XeCl Excimer [37] 1.4 16 50

Table 4.1: Transmitted Pulse Parameters from Typical Lidar Systems

distances up to 40 km from the receiver/transmitter [36].

2. Low energy pulses are assumed to be less than 10 mJ. Because the pulses are

rectangular, the energy in each pulse, E,, is given by E, = QT,. Typical

figures for lidar systems are given in Table 4.1.

Because the system to be employed in this investigation is concerned with mea-

surements over a smaller distance from the transmitter/receiver, pulses of rela-

tively small energy are used. Specifically, the initial configuration is:

T = 100 ns

Q = 1 X 104 W

E = 1.0 mJ

3. A narrow field of view system is assumed to have a maximum solid angle field

of view of 100 mrad. From Equation 2.1 the relationship between solid angle

field of view Q and half field of view angle, 0, is Q = 27r(1 - cos 9). Hence

the maximum half field of view angles for the receiver and transmitter for this

investigation are 0,,,,, =t,max = 9 HFOV ~ 100. For the sake of comparison,

lidar systems have typical solid angle fields of view of less than 2 mrad [36]. It

is believed that the larger field of views to be considered in this investigation

may be used to collect more backscattered photocounts without violating the

single scatter assumption which will be shown to depend upon field of view (see
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section 4.2.2).

4. Operation of the system in the middle ultraviolet restricts the wavelengths of

the probing pulses to be in the range 230 nm to 350 nm.

5. Overall detection efficiency for photocounting systems tends to be in the 1 to

10 percent range [10]. A value of ( = 0.01 is assumed for this investigation.

6. The area of the receiver is taken to be 1 cm 2.

Additionally, constraints upon the values of the auxiliary parameter set arise due

to limitations associated with the photon counting processes. For incident photon

rates much above 1010 photons per second, counting systems will saturate [16] thereby

losing their ability to accurately determine the number of photons observed over

a given time interval. The monostatic, single scatter pulse response developed in

Chapter 2 predicts photon arrival rates on this order of magnitude for times close

to the falling edge of the transmitted pulse. To avoid problems with saturation, the

start time of the observation interval will be delayed from the falling edge of the

pulse. A delay of Td seconds corresponds to collecting photons which have traveled a

minimum distance of cTd/2 meters from the transmitter where c is the speed of light.

Typically, ground based lidar systems choose such delay distances to be on the order

of 1 km which is about 1 / 4 0th of the overall path length [36]. For this system, the

maximum path length is 1 km. Thus a reasonable range delay is 25 m corresponding

to a minimum time at which to begin observation of 80 ns after the falling edge of

the pulse. The choice of Td,min = 80 ns does not guarantee count rates sufficiently

low so as to avoid saturation, but it has been chosen in a manner consistent with

present lidar practice thereby providing a reasonable starting point for more rigorous

analysis.
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4.2.2 Modeling Constraints

A more subtle set of constraints on the configuration of the auxiliary parameter

set arises from issues associated with the single scatter assumption of atmospheric

transmission. The validity of the single scatter model is dependent upon the state of

the atmosphere, the geometry of the receiver/transmitter system, and the observation

time interval. Specifically, two quantities, the optical depth, r, and the receiver field

of view, ,., have been used as benchmarks for gauging the validity of the single

scatter model [45].

The optical depth is a dimensionless quantity defined as the product of the at-

mospheric extinction coefficient, ke, and the distance, r, a photon travels from the

transmitter to the receiver:

r - ker (4.1)

where ke is defined as

ke = k, + ka (4.2)

Van De Hulst [18] specified that in a conservative scattering medium, the single

scatter approximation should hold for optical depths less than 0.1. For 0.1 < r < 0.3,

the single scatter model may be valid but would probably need to be supplemented

by consideration of second and third order scattering effects. Finally for r > 0.3, a

multiple scatter model would be required to accurately describe atmospheric radiative

transfer. When the medium displays absorption processes in addition to scattering

effects, the Van de Hulst bound may no longer be a valid limit for the single scatter

approximation. For example, typical monostatic lidar systems which employ a single

scatter approximation in their calculations may examine photocount returns from

up to a 40 km range (or an 80 km round trip path length). Under the following

assumptions:
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1. The probing pulse is at 275 nm

2. The ozone number density is a constant 20 ppb

3. No aerosol is present

4. Molecular scattering is ignored

according to Equation 4.2 the extinction coefficient is

ke = No,kA,0 3 ,PURE = (20 x 10~9)(1.56 x 107 km-') = 0.312 km~ 1  (4.3)

for a total optical depth of T = (80 km)(0.312 km-1) = 24.96 which is clearly greater

than 0.1. Nevertheless, the calculations and estimates made using the single scatter

lidar equation produce accurate results [25, 36, 3, 35]. Thus, the validity of the single

scatter model must be determined by more than optical depth considerations.

These additional considerations are related to the geometry of the transmitter and

receiver system. Most lidar systems as well as the system under consideration here

are of the monostatic, narrow field of view photon counting variety. Photons collected

in a monostatic system have either:

1. Been scattered exactly once at a scattering angle of 7r radians (see Figure 4-1)

or

2. Been scattered multiple times such that the final scattering event occurs in the

receiver's field of view and in the appropriate direction (see Figure 4-2)

Consider Equation 2.8, the composite phase function when both aerosol and ozone

are present in the atmosphere. Even for the case where the ozone number density

is high (90 ppb) and the aerosol scattering coefficient is relatively low (0.1 km-'),

Figure 4-3 demonstrates that the phase function is strongly forward-peaked. Thus,
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Figure 4-3: Single Scatter Phase Function: High Ozone and Low Aerosol

the vast majority of scattering events result in photons which are redirected into the

forward hemisphere relative to their line of motion before the scattering event. Very

few are scattered into the rear hemisphere and even fewer are directly backscattered.

Furthermore, as the field of view of the system becomes narrower, it will be less

probable that multiply scattered photons are detected by the receiver. Even as the

extinction coefficient rises and the corresponding optical depth becomes greater than

0.1, it is reasonable to suppose that the forward nature of scattering process will

minimize the effects of multiple scatter on a narrow FOV, monostatic photocounting

system. Reducing the FOV to limit the number of collected photons does imply

lowering the efficiency of the detection system; however it is expected that such action

will not have too large an effect on the performance of the estimation algorithms.

The above argument is admittedly non-rigorous, but it is not the purpose of this

investigation to examine the conditions under which a single scatter approximation

to the radiative transport equation may be considered valid. Rather, the previous

discussion, coupled with the nominal optical depth data associated with lidar practice
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are to be taken a justification for using the single scatter model for returns correspond-

ing to optical depths greater than 0.1. Specifically, it is assumed for the remainder of

this investigation that single scatter approximation holds for monostatic system with

a field of view less than 100 mrad and optical depths less than 5.0. Validation of this

assumption could be carried out by either

1. Comparing the results of the single scatter model for the transmitter/receiver

geometry of interest here to those obtained using a valid multiple scatter model

(LOWTRAN or FASCODE) for the same geometry

2. Constructing of a narrow field of view, monostatic, middle-ultraviolet system

and measuring actual backscattered photocounts

Unfortunately, neither of these techniques is available at the present time.

Additional modeling considerations arise from the use of the modified Heney-

Greenstein phase function to describe the aerosol scattering processes. Specifically,

this approximation to the Mie phase function is specified by two parameters, com-

monly referred to as g and f. Following Zachor [63] initial values for these quantities

are:

g = 0.72

f = 0.50 (4.4)

4.2.3 A Reasonable Initial Configuration

Based upon the considerations presented in Sections 4.2.1 and 4.2.2, the initial values

assigned to the auxiliary parameter set are given in Table 4.2 where all parameters

have been assigned values except Tf, A , and Aout
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t = 10' O= 100 Q= 10, 000 W
T, = 100 ns T, = 180 ns = 0.01

g = 0.72 f = 0.5 Area = 1 cm 2

Table 4.2: Initial Values for the Auxiliary Parameter Set

Choosing Tf

While it is certainly desirable to collect photocounts for as long as possible so as to

maximize the data available to the estimator, long observation intervals correspond

to higher optical depths and decreased validity of the single scatter model. In the

interest of avoiding such difficulties, Tf is chosen such that the minimum required

observation interval is used in order to obtain a given level of photocount return.

Specifically, consider the Equation 3.38 as a function only of Tf. This equation gives

the expected number of photocounts, A obtained over a given observation interval.

Of interest here is the the form of the integral portion of this equation as a function

of its upper limit:
lb ft e-aT

I(b) = 2 dr (4.5)
t=a =t-1 T2

In Figure 4-4 the function I(b) is plotted for a = 2, a = 1, y = 0.5. It appears that

after some value of b, there is no significant increase in I(b). Turning to the case

where I(b) represents the integral in Equation 3.38, one may interpret the asymptotic

behavior of I as an indication that there exist some value of T1 , to be called Tf,1oo,

such that the additional photocounts obtained by extending the observation interval

beyond T, 1 oo is negligible (the subscript 100 indicated 100% photocount return.)

That is there is a maximum length of the observation period such that all the useful

data which may be obtained from a given transmitted pulse has been obtained. The

object of this section is to find the value of Tf,100 as a function of No, and ka according

to the following procedure.
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Figure 4-4: Exponential Integral as a Function of Upper Limit of Integration

1. First, it is impractical to find T, 1 oo for all points in the (No3 , ka) plane. Rather,

this parameter space is divided into an evenly spaced, 10 by 10 grid for N 0 3 E

[0,100] ppb and ka E [0, 3] km-1. The values of T, 1 0 0 are found for the points

corresponding to the vertices of the grid.

2. Given the values of N 0 3 and ka , it is desired to determine that value of T such

that A(T 1 ) and A(T + St) differ by a to-be-specified negligibly small amount,

where the function A(T 1 ) is the expected number of photocounts observed over

a specified time interval ending at time T and is given by Equation 3.38. In

other words, we wish to find an end time of the observation interval such that

the number of additional photocount seen by increasing T some small amount

is negligible.

3. Before finding T,1oo it is necessary to specify St and the notion of negligible

stated in the above paragraph. For this investigation, St is taken as 100 ns.

This provides a rather course increment but the object of this analysis only is

to gain a rough idea of the time scale over which the pulse response yields useful
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data. Further, the notion of small is taken to be 10-4 photocounts. Given that

the total number of photocounts observed over the intervals of interest will be

shown to be on the order of thousands, 10-4 seems small. Given these quantities,

Tfioo is that value of Tf for which the following holds:

A(Tf + 8t) - A(Tf) < 10-4 (4.6)

4. To find T, 100 for a given point in (No 3 , ka) space the algorithm in Figure 4-5

is used.

5. To express its dependency on No, and ka , the value of T, 1oo found using

the above algorithm is denoted Tf,1 oo(No3 , k,). Also, the expected number

of observed photocounts for T = Tf,1oo(No3 , ka) is given as N100(N 0 3 , ksa).

Finally, corresponding to each Tf,1 oo(N 0 3 , ka) the optical depth, rioo(No,kea)

is calculated according to

rioo(No3 , ksa) = CT,1OO(No3, ksa)ke(No3 , ka) (4.7)

where

e c = The speed of light (3.0 x 108 m/s)

* k,(No3 , ka) is the extinction coefficient calculated according to Equation

4.2

6. While, Tf,1 0 0(N 0 3 , ksa) gives the longest reasonable time to wait in the collection

of photocount data, it may be the case that such observation periods violate

the single scatter assumption or perhaps the performance of the estimator will

not suffer for intervals corresponding to Tf < Tf,1 00(N 0 3 , ka). To explore such

possibilities in an organized manner, observation end times and corresponding
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(* Initialize tf to some value slightly larger than ts *)
tf := ts+ 1

(* Iterate through successive values of tf until the
condition on the function A is met at which point exit the loop *)

DO WHILE ( A(tf + 100) - A(tf) < 10 - 4)
tf:=tf+ 100

END DO

(* The final value of A is assigned to the variable
"fullcount" for later use. *)

fullcount := A(tf)

(* Return the two values of interest *)
RETURN(tf , fullcount)

Figure 4-5: Algorithm for Determining Tf, 1 oo

(* Initialize tr to some value slightly larger than ts *)
tf,95 := ts+ 1

(* Iterate through successive values of tf,95 until the
value of A is 95% of fullcount *)

DO WHILE (A(tf,95) < 0.95*fullcount)
tf,95 tf,95 + 1

END DO

(* Return tf,95*)
RETURN(tf,95 )

Figure 4-6: Algorithm for Determining Tf,,, p e {50, 95, 99}

optical depths are computed such that the expected number of received pho-

tocounts is 50%, 95%, and 99% of that obtained for an observation interval

with Tf = T, 1oo (i.e 0.5N 1oo70.95N 100,and 0.99Noo respectively). For a given

fraction of expected return, p E (50, 95, 99), and given point (No3 , k,,) the re-

spective end time of observation and optical depth are given by Tf,,(No 3 , ka)

and r,(N0 3 , ka) respectively. The algorithm for calculating Tf,,(No 3, k.,) is

given in Figure 4-6.
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The above procedure was carried out for A = 255 nm and for A = 315 nm. These

two wavelengths were chosen to provide information as to the behavior of the single

scatter pulse responses for wavelengths in and out of the ozone absorption band. The

peak of this band occurs at 255 nm. By 315 nm, the ozone absorption cross section

is less than 1% of its value at 255 nm.

The results of these calculation are displayed in Figures 4-7 and 4-8 and Tables

4.3, 4.4, and 4.5. The graphs are surface plots showing how T, 99 and r99 vary as a

function of No, and k,, . Corresponding figures for the 50%, 95% and 100% cases

display similar characteristics and are not presented here. Tables 4.3 and 4.4 give

the minimum, mean, and maximum values of Tf,, and r, for the cases of interest

here. Table 4.5 summarizes the minimum, mean, and maximum number of expected

photon counts observed for 100% returns at the two wavelengths of interest.

For the A = 315 nm cases:

1. The end times and optical depths are relatively insensitive to the quantity of

ozone in the atmosphere. Such a situation is to be expected given the weak

absorption properties of 03 at this frequency.

2. The observation period ending times is inversely proportional to the size of the

aerosol scattering coefficient. Because ksa appears both as a multiplicative fac-

tor and in the exponent of equation 3.15, higher aerosol implies more scattering

and a faster pulse response; therefore, less time is required to collect any given

percentage of photocounts.

3. The optical depth is directly proportional to k,.a for a given percent return and

value of No, . From equation 4.1, optical depth varies directly with both the ex-

tinction coefficient and the time of observation. Furthermore, rising ksa results

in a falling T1 and hence a shorter observation interval. Apparently, the rise

in the extinction coefficient caused by the change in the aerosol is sufficient to
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Percent Minimum Mean Maximum
A nm Return T1 (ns) T1 (ns) Tf (ns)
255 50 247 261 290
255 95 632 847 1613
255 99 1035 1531 3745
255 100 2030 2675 6379
315 50 260 274 294
315 95 818 1124 1785
315 99 1424 2278 4313
315 100 2230 3848 7229

Table 4.3: Calculated
Return Percentages

Values for Tf at A = 255 nm and A = 315 nm for Various

Percent Minimum Mean Maximum
A nm Return r, r, r,_
255 50 0.02 0.26 0.47
255 95 0.13 0.78 1.26
255 99 0.31 1.37 1.98
255 100 0.52 2.43 3.88
315 50 0.01 0.13 0.24
315 95 0.06 .047 0.77
315 99 0.15 0.88 1.33
315 100 0.26 1.44 2.09

Table 4.4: Calculated Values for -r at A = 255 nm and A = 315 nm for Various Return

Percentages

Percent Minimum Mean Maximum
A nm Return Counts Counts Counts
255 100 1536 2768 4017
315 100 1151 2694 3987

Table 4.5: Expected Photocount Returns
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offset the decreasing Tf,, thereby driving up the value of r,.

4. As the expected return percentage, p, increases, both Tf,, and r, increase for

any given pair (No 3, k,,). Even for 100% return, the overall optical depth is

only about 2 which is still considered to be in the single scatter regime.

When A = 255 nm the following observations hold:

1. Due to the strong absorption characteristics of ozone at this wavelength as

well as the wavelength-independent aerosol effects, both the end time of the

observation interval and the optical depth display dependencies on the aerosol

scattering coefficient and the ozone number density.

2. Observation end times are inversely related to the quantity of ozone and aerosol

in the atmosphere. The reasoning presented for the A = 315 nm case holds here

as well.

3. Optical depths vary directly with No, and k,, for the same reason as in the 315

nm case.

4. The maximum optical depth required to obtain 100% returns is just under 4.

While this figure may be somewhat high to guarantee the validity of the single

scatter assumption, the corresponding maximum optical depth for 99% is only

about 2.

From the observations presented above, a value of T = 1200 ns is used in the

base configuration of the auxiliary parameter set. This value should allow for expected

returns within the 95% to 99% range over most combinations of aerosol and ozone.

Finally, the data in Table 4.5 is useful in obtaining a first order estimate of the

average photon arrival rate for the auxiliary parameter configuration under consider-

ation. Define the average arrival rate as the total number of photons collected in a
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given time interval divided by the length of the interval. Assuming that the interval is

about 1000 ns long and from Table 4.5, the average number of counts is on the order of

2000, then a rough estimate of the average photon arrival rate is 2.0 x 10' counts/sec.

This result may pose a problem for two reasons:

1. Because present-day photodetectors saturate at roughly 1010 counts/sec, an

average arrival rate of 2 x 10' counts/sec is pushing the limits of the state of

the art in direct detection receivers.

2. Because the pulse response is exponential in nature, the instantaneous arrival

rate of photons at the beginning of the interval will be much greater than 2.0 x

10' counts/sec. Thus, the likelihood of constructing a photodetector capable of

resolving photocounts obtained in subintervals of the overall observation period

is relatively small.

Despite these two results, the configuration of the single scatter parameters developed

in this section satisfy all other constraints imposed both by the nature of the detection

system and the single scatter model and will be used as the base configuration for

analysis of the ML estimator.

Wavelength Selection

A final issue to be resolved before analysis of the estimator may be undertaken is

the choice of the two wavelengths to be used for the investigation. The atmospheric

analysis presented in Section 4.2.3 was carried out using A2, = 255 nm and A, = 315

nm. It is not clear however that this selection yields better performance from the

estimator than other wavelength pair options.

As discussed in Section 3.5.1, a dual wavelength approach is taken as a means

of providing a diversity of information to the estimator concerning the state of the
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atmosphere. The strong spectral characteristics of the ozone absorption process indi-

cate that a pulse whose wavelength is far from the peak of the absorption curve (i.e.

an "out of band" wavelength) is affected little by the absorption process and more

by scattering from aerosols. Thus, the backscattered photocount data from such a

pulse conveys much information regarding k.,a and relatively little information about

No, . Alternatively, because an in band pulse is attenuated by both absorption and

scattering, backscattered data may say much about the absorption characteristics of

the atmosphere; however, this information may be masked by the effects of the aerosol

also present at this frequency. Hence, in an effort to determine parameters associated

with both ozone absorption and aerosol scattering, an out of band wavelength is used

to isolate the effects of the aerosol so that data from an in band wavelength may pro-

vide estimates of the molecular absorption parameters. The final choice of a useful

wavelength pair reflects a tradeoff between the amount of in band and out of band

information necessary to achieve a given level of performance from the estimator.

The exact selection of Ai and At is made by examination of Cramer Rao lower

bound (CRLB) data for a variety of pair possibilities. Specifically, CRLB results for

all pairwise combinations of pulses whose wavelengths are 255 nm, 275 nm, and 315

nm are investigated. The ozone absorption profile is maximum at 255 nm. At 275

nm, the absorption cross section is at 50% of its peak values and at 315 nm, is less

than 1% of its 255 nm value. The analysis of the CRLB for the six possible pairings

should provide some insight as to how the estimator performs given different degrees

of information from in and out of the ozone absorption band.

The following notation is used for CRLB bounds of interest here:

N 0 3 ,CR The lower bound on the variance of the ozone number density estimate

2aCR The lower bound on the variance of the aerosol scattering coefficient estimate

(rNo,CR The lower bound on the standard deviation of the ozone number density
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estimate

O'k,,,CR The lower bound on the standard deviation of the aerosol scattering coefficient

estimate

PCR The lower bound on the correlation coefficient between the estimates of No, and

k.a

The evaluation of possible wavelength pairs is carried out by examination of the

minimum, mean and maximum values of TNo3 ,CR and ok,.,CR as No, is varied between

0 and 100 ppb and ka assumes values between 0 and 3 km-1.

From Table 4.6, it is evident that the CRLB on the estimate of No, is lowest when

the in-band pulse is at 255 nm. As the choice of in-band wavelength increases (and

the ozone absorption cross section decreases), cNo,CR rises. Thus, the theoretical

accuracy of the estimate of the ozone number density appears to be inversely related to

the magnitude of the pure absorption coefficient, Ao3 , associated with the wavelength

of the in-band probing pulse. This conclusion makes much sense especially when one

considers an alternative problem to the estimation of both No, and k.a . If it is

assumed that the ozone number density is the only unknown and is to be estimated

using a single wavelength system then 0 No3 ,CR 2 is given by:

sC2 12 (4.8)'N 0 3,CR -ycA

where
T1 t-T ep(-k, cr)

I1 = drdt (4.9)
T. t

r Tirt-T eX p( -k,c)

I2 = 2 drdt (4.10)
T, t 72

Hence, the lower bound on the variance varies inversely with A 0 3 . In this case the

logical choice for the wavelength is 255 nm. Because the inverse relationship evidently
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Minimum Mean Maximum

Ai, (nm) "out (nm) ONo3 ,CR (ppb) aNo 3,CR (ppb) ONo 3 ,CR (ppb)

255 255 4.93 7.07 10.53
255 275 6.04 8.19 11.50
255 315 5.90 7.37 9.57
275 275 10.21 14.02 20.64

275 315 12.08 14.77 19.30
315 315 1478 2017 3123

Table 4.6: Minimum, Mean, and Maximum Values of TNo 3 ,CR

Pairs
for Various Wavelength

Minimum Mean Maximum

Ai.(nm) Ao. (nm) Ok,,,CR (ppb) k..,CR (ppb) Cr,.,,C (ppb)
255 255 0.055 0.087 0.122
255 275 0.043 0.073 0.106
255 315 0.025 0.049 0.076
275 275 0.045 0.074 0.103
275 315 0.024 0.048 0.073
315 315 0.032 0.058 0.082

Table 4.7: Minimum, Mean, and Maximum Values of Ok,,,CR

Pairs
for Various Wavelength

carries over to the two parameter/ two wavelength problem, the in-band wavelength

for this investigation is fixed at 255 nm.

The data in Table 4.7 demonstrates that the value of ka may be estimated with

relatively high accuracy regardless of the choice of wavelengths. While the lower

bound on the variance of k,, is not overly sensitive to wavelength selection, better

performance may result as the distance of the out of band wavelength from 255 nm

is increased. Hence, Aout = 315 nm will be the initial choice for the second element

of the wavelength pair. From Table 4.8, the use of (Ai,, AGsu) = (255,315) produces

estimates for which the lower bound on the correlation coefficient is lowest of all pairs

tested.
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Minimum Mean Maximum

A, (nm) Aout (nm) PCR (ppb) PCR (ppb) PCR (ppb)

255 255 0.61 0.72 0.80
255 275 0.58 0.67 0.72
255 315 0.34 0.38 0.40
275 275 0.65 0.74 0.80
275 315 0.42 0.45 0.46

315 315 0.69 0.76 0.82

Table 4.8: Minimum, Mean, and Maximum Values of pOCR for Various Wavelength

Pairs

4.3 Maximum Likelihood Performance

4.3.1 Introduction

Having established reasonable values for the plethora of auxiliary parameters associ-

ated with the single scatter propagation model, evaluation of the actual performance

of the maximum likelihood estimator may be undertaken. This assessment is made

using two tools:

1. Cramer-Rao lower bound data on the variances, standard deviations and corre-

lation coefficient associated with an unbiased ML estimator

2. Data obtained from Monte Carlo simulations using the Maximum Likelihood

estimator.

The Cramer Rao lower bound provides an easy to calculate indication of performance

under the assumption that the estimator is unbiased. CRLB information is obtained

by evaluation of the inverse Fisher matrix, 3.48, for the same grid of points in the

(No 3 , ka) plane used to evaluate Tf in section 4.2.3. This calculation is completed

in under 2 minutes of computer time on a Vax 6800. Alternatively, the Monte-

Carlo approach involves use of the ML algorithm in generating actual estimates of

the parameter vector base upon computer generated Poisson data points. For the
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set of (No3 ,k,,) points used above, slightly more than 24 hours of computer time

is needed to generate the Monte-Carlo data. The advantage of the Monte Carlo

approach is its ability to demonstrate the "real" performance of the estimator. Bias

information is generated so as to justify any conclusions which may be based upon

the CRLB calculations which provide information about the performance of unbiased

estimators. Furthermore, actual mean square error and correlation data is generated

against which the Cramer Rao bound results may be compared.

In addition to the statistical information obtained via the CRLB and Monte-Carlo

programs it is useful to define an additional performance measure: relative accuracy.

This quantity is defined as the ratio of the standard deviation in the estimate to the

actual value of the parameter. The relative accuracies in the estimates of No, and

ksa are given by:

No o(4.11)
N 0 3

and

6ka = ks (4.12)
ka

where

" 6No3 is the relative accuracy in the estimate of N0 3

" ONo 3 is the standard deviation in the estimate of N0 3

" N0 3 is the real value of the ozone number density

* Sk,a is the relative accuracy in the estimate of ka

* Ok.. is the standard deviation in the estimate of ka

* k.a is the real value of the aerosol scattering coefficient

This calculation normalizes the standard deviation information to the true value of the

parameter being estimated in an effort to provide an indication as to the percentage
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error one may expect from the estimator. Values of 8 N, and 64,. obtained from

CRLB data are denoted by SNo,,CR and 6 S..,CR respectively.

The remainder of this section is devoted to examination and analysis of CRLB

and Monte-Carlo data obtained using a variety of configurations of the auxiliary pa-

rameter set. First, the values of the parameters determined in Section 4.2 are used

as a reference point against which the performance may be compared for alternative

configurations of the parameter set. After this preliminary investigation, some para-

metric analysis is presented. Here, elements of the auxiliary parameter set are varied

from their base values to explore the manner in which the estimator's performance is

affected by deviations from the the initial parameter configuration.

4.3.2 The Base Case: A Nice Place to Start

Recall that the base configuration of the auxiliary parameter set is:

ot=l 100 t = 10' Q= 104 W

T, = 100 ns T., =l180 ns T= 1200 ns

Ain= 255 nm A = 315 nm ( = 0.01

g = 0.7 2  f = 0.5 Area = 1 cm 2

Figure 4-9(a) shows that the value of O-N,,CR is relatively constant regardless

of variations in N0 3 and k.,, . Furthermore, for a wide variety of actual atmospheric

conditions, Figure 4-10(a) demonstrates that the lower bound on the relative accuracy

in the estimates of N0 3 is well below 20%. This happy state of affairs is repeated

in Figures 4-9(b) and 4-10(b) where the same information regarding the estimates of

the aerosol scattering coefficient is presented.

The Monte-Carlo simulations support the conclusion drawn from the Cramer Rao

lower bound calculations. The bias surfaces shown in Figures 4-11(a) and 4-11(b)

show that the ML estimator is only slightly biased. From comparison of the RMS
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error results in Figures 4-12(a) and 4-12(b) to the CRLB on the standard deviations

(Figures 4-9(a) and 4-9(b)) it is evident that the ML algorithm produces estimates

which are close to the Cramer-Rao bound. In some instances, the mean square

error of the ML estimator is slightly less than that predicted by the CRLB. This

situation arises due to the bias of the estimator. While the CRLB assumes an unbiased

estimator, the ML estimator in this problem does possess some small bias. Thus, there

exists points in the (No, , k,, ) plane where the unbiased-CRLB may not provide an

exact lower bound.

Finally, in Figures 4-13(a) and 4-13(b), the variation in the value of the correlation

coefficient is graphed as a function of No, and k,. . The relatively small values

obtained from both the Cramer-Rao bound and the simulation indicates that the

choice of using A, = 255 nm and Ae = 315 nm is useful in decoupling the effects of

ozone absorption from those of aerosol scattering.

4.3.3 Parametric Analysis: Variations on a Theme

While the performance of the maximum likelihood estimator under the base setup of

the auxiliary parameter set is encouraging, it is important to understand how vari-

ations from these initial values affect this behavior. Such variations may arise from

one of two sources. First, the parameters may be set deterministically by the user of

the system to values which yield improved performance over the base set of values. It

is assumed that all quantities associated with the transmitter/receiver (T,, T,, T1 , (,

etc.) fall into this category. Alternatively, it may be the case that the user assumes

nominal values for some parameters whose actual values are determined by external

forces. For example, the values of g and f of the Heney-Greenstein phase function are

assumed so as to obtain some approximation to the actual aerosol scattering phase

function. In reality, the shape of this function may be better described by different

choices for g and f. This incorrect choice in the parameterization of the phase func-
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tion may affect the ML estimator's performance; however, the errors which result may

be overcome without adding the unknown quantity to the vector of parameters being

estimated. Such a situation would indicate some robustness in the ML estimator.

In this section, the impact of both forms of auxiliary parameter alteration is

explored. Undertaking this analysis for all of the quantities in the auxiliary parameter

set is beyond the scope of this thesis. Rather, the effects of changing T,, T,, T1 , and

g to the values listed in Tables 4.3.3 are presented: From Equation 3.15, the expected

Parameter Low Value Base Value High Value Units

T, 16 80 260 ns
Tf 270 1200 3000 ns
T, 10 100 1000 ns
9 0.66 0.72 0.74 -

Table 4.9: Alternate Values for Auxiliary Parameter Set

number of backscattered photocounts is directly proportional to quantities such as

the area of the receiver and the detection efficiency. Variations in these parameters

would have somewhat predictable results and are not included in this investigation.

The effects of changes in the three timing parameters (T,, T,, and T1 ) are not quite as

clear due to the exponential nature of the atmospheric pulse response. Furthermore,

the variation of the Heney-Greenstein g parameter with atmospheric conditions makes

it a likely source of error.

The low and high values of the parameters are motivated by the following consid-

erations:

1. The start time of observation was initially chosen to avoid swamping the de-

tector with radiation that has scattered from distances relatively close to the

transmitter/receiver as is often done in lidar systems (Section 4.2.1). Changing

T, to 116 ns corresponds to a delay range of 5 m rather than 25 m for T, = 100
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ns. In this case the initial count rates will be very high, but many more counts

will be collected. On the other hand, doubling T., to 260 ns should drive down

count rates thereby easing the burden on the receiver but forcing the estimator

to work with less data.

2. The changes in T1 are suggested by the analysis presented in Section 4.2.3.

For T1 = 270 ns, around 50% of the expected photocounts should be collected

under most atmospheric conditions. The high value of Tf = 3000 ns should

ensure a 99% collection figure for most values of No, and ka of interest in this

investigation.

3. The high and low values for T, are chosen to see how order of magnitude changes

in this parameter affects the estimator

4. The low value of the Heney-Greenstein g parameter corresponds to the phase

function found in a rural haze while the high setting represents maritime con-

ditions [63].

The remainder of this section is devoted to the analysis of the many and varied

arrangements of the auxiliary parameter set presented in Table 4.3.3. For all changes

except those to the phase function parameter, data from both CRLB and Monte-

Carlo simulations are available. Alterations in the g parameter are meant to simulate

the case where the assumed value of a modeled parameter differs from its real world

value. In this case, only Monte-Carlo simulations are performed. The simulated data

upon which the ML estimator operates is generated using the high or low values

of 9. The estimator uses this data but assumes that the values of the auxiliary

parameters correspond to the base configuration where g = 0.72. Finally, the surface

plots of p and PCR do not vary significantly from the base case for the changes in

the auxiliary parameter set to be considered here. Hence, detailed analysis of these

quantities is not presented.
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Changing T,: Starting things off right

Because the atmospheric pulse response is singular at time t - 0, unusually high

numbers of counts may be observed for periods close to this time origin. Alteration

in the start time of the observation interval determines how much of this initial surge

is made available to the estimator. It would seem that increasing the number counts

should yield improved performance of the estimator. Similarly, waiting longer periods

of time should produce poorer results.

From Figures 4-14(a) and 4-15(a) it is evident that the CRLB on the standard

deviation of the estimate of No, is not noticeably affected by alterations in T,. In both

cases, the error surfaces are roughly identical to the base case (Figure 4-9(a).) On the

other hand, 0 k..,CR demonstrates greater sensitivity to selection of T,. Comparing

Figure 4-14(b) to Figure 4-9(b) indicates that starting the observation interval 16

ns after the falling edge of the pulse improves the CRLB on the estimate of the

aerosol scattering coefficient. Likewise, doubling T, to 260 ns has a negative impact

on Ok.a,CR (Figure 4-15(b)).

The Monte-Carlo simulations show little difference in the performance of the esti-

mator from the base case as T, varies. In both cases, the estimator remains relatively

unbiased (Figures 4-16 and 4-17). Moreover, the RMS error data in Figures 4-18 and

4-19 show little change from the corresponding information generated using the base

configuration.

The small degree of sensitivity in the CRLB to changes in T, is understood best

in light of the time dependency of the information contained in the backscattered

radiation. In Section 3.5.1, it was noted that photocounts collected for times close to

the falling edge of the pulse would have suffered little molecular absorption. Instead,

they would bear more information concerning the state of the aerosol in the atmo-

sphere. Therefore, modulation of T, is equivalent to changing the quantity of data

relating to k,, available to the estimator. Low values of T, result in more "aerosol
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photocounts" in the observation vector and better estimates of this parameter. The

converse holds true as T, is increased.

While Ok..,CR is sensitive to changes in the start time of the observation interval,

9N 0 3 ,CR is not affected by alterations in T,. Again, from Section 3.5.1, information

regarding atmospheric ozone is obtained by collecting photons for periods long after

T,. Keeping T1 fixed as T, changes ensures that about the same quantity of ozone

information was available in this case as in the base case. Hence, variations in T, had

little impact on ability to estimate No, .

Lowering T, may improve the performance of the estimator, at the price of a

greater burden on the detection capabilities of the receiver. The choice of T, was

motivated initially by a desire to avoid saturating the receiver with photocounts for

times close to the falling edge of the probing pulse. Using the definition for mean

count rate presented in Section 4.2.3, Table 4.10 presents the minimum, mean, and

maximum count rates for the base case, low T,, and high T, configurations of the

auxiliary parameter set as No, varies between 0 and 100 ppb and k,, assumes values

from 0 to 3 km-1. In most cases, expected counts rates are in the range of 10' to 1010

counts per second. These figures are pushing the limit of existing detector technology

but are not outrageous. Thus, lowering T, in order to improve the estimates of k,, may

be accomplished at a reasonable price with respect to detector requirements.

Alterations in T1 : When will it all end?

In addition to varying T,, modification of Tf may be used to alter information available

to the estimator. Increasing the value of this parameter increases the number of

collected photocounts and should improve the quality of the estimates. Alternatively,

shorter collection times are likely to result in poorer performance. These anticipated

results are borne out by both the CRLB calculations and Monte-Carlo simulation.

Figure 4-20 demonstrates that decreasing Tf negatively impacts the CRLB on the
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Minimum Mean Maximum
T. (ns) A (nm) Rate Rate Rate

1010 counts/sec 1010 counts/sec 1010 counts/sec
116 255 0.15 0.27 0.39

315 0.10 0.25 0.38
180 255 0.42 0.76 1.11

315 0.26 0.68 1.08
260 255 0.08 0.14 0.20

315 0.06 0.14 0.20

Table 4.10: Counts Rate Data For Different Values of T,
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estimates of both No, and ka . The standard deviation in the estimate of the ozone

number density roughly triples from the base case. While the corresponding bound

on ka is not as severely affected, it is worsened by the short observation interval.

Comparison of Figure 4-21 to 4-9(a,c) show that increasing T to 3500 ns improves

the ability to estimate No, but has relatively little effect on the aerosol estimates.

As expected, Monte-Carlo simulations demonstrate that lowering the value of T

has an adverse effect upon the performance of the estimator while the higher value of

this parameter leads to both lower bias as well as a decrease in the root mean square

error. From Figure 4-23, setting Tjto 270 ns increases the bias of the No, estimates as

much as fivefold over the base case while leaving the aerosol bias relatively unchanged.

Similarly, the root mean square error in the ozone number density estimate (Figure 4-

24(a)) is doubled in comparison to the base case for the low value of Tf. Furthermore,

lowering the end time of the observation interval has significant effects upon the RMS

error in the estimate of the aerosol scattering coefficient. Comparing Figure 4-24 to

4-12 and 4-20(b) clearly shows that for higher values of ka :

1. The error in the estimate of this quantity increases in comparison to the base

case

2. The efficiency in the estimate of ka suffers

Shortening the observation interval results in less data being made available to the

estimator. This effect in conjunction with the higher extinction coefficient associated

with larger values of ka appears to have a larger impact on the error in the esti-

mates of the aerosol scattering coefficient than any seen in the preceding analysis and

experiments.

For the higher value of T1 , the Monte-Carlo simulations show some improvement

in performance over the base configuration of the auxiliary parameter set. The bias

data in Figure 4-23 is about the same in this case as in the base case. Moreover, the
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root mean square error results generated by the simulations is slightly better as Tjis

increased to 3000 ns (compare Figures 4-12 an 4-25.)

The effects of changing T1 on the estimates of No, and k,, are somewhat dual

to those of changing T,. Altering the start time of the observation was tantamount

to changing the quantity of aerosol information available to the estimator. Similarly,

changing Tf may be viewed as a way of controlling the quantity of ozone-related infor-

mation contained in the observation vector while keeping the data about k,, relatively

constant. Lowering T results in fewer ozone photocounts and worse estimates of the

number density. The converse holds true as T is raised.

As was discussed in Section 4.2.3, the observation interval needs to be kept short

enough to guarantee the validity of the single scatter assumption. Higher values of Tf

mean that more multiply scattered photons are collected. Because these additional

counts are not factored into the ML estimator's propagation model, the estimates

may be negatively impacted. To avoid analysis of this situation, it was assumed that

the single scatter model could be considered accurate for optical depths less than 5.

Increasing T to 3000 ns results in a maximum optical depth of just under 1.5 as

No, and k,, are varied over their respective domains of interest. From this, it may

be concluded that values of T greater than 1200 ns may be used without worry as

to compromising the validity of the single scatter assumption.

Variations in T,: A Probing Investigation.

Changing the length of the transmitted pulse affects the estimator in two ways. First,

because the number of transmitted photons is dependent upon T,, the absolute quan-

tity of collected backscattered photons rises and falls with variations in the duration

of the pulse. More subtly, changing T, requires alterations in both T, and T1 . If

T, = 1000 ns, then assigning values of 180 ns and 1200 ns to T, and Tf would not

be possible in the first case nor prudent in the second. Thus, variations in the pulse
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length require that the observation interval also be adjusted.

From Section 4.2, the choices of T, and T1 were influenced by the choice of T,.

The start time was chosen so that transmitted photons could travel a distance of at

least 25 m from the transmitter/receiver. Furthermore, Tf was selected to ensure that

approximately 95% of the backscattered photons that would arrive at the receiver as

t -+ oo actually were collected. To achieve these two criteria as T, is varied above

and below its base values, T, and T1 are altered according to Table 4.11.

T, T, T1

10 90 10
1000 1080 3500

Table 4.11: Configurations of T, and T as T, Is Varied

When T, is shortened to 10 ns, the ability to estimate No, and k," deteriorates

as shown in Figure 4-26. This degeneration is attributed to two causes. First, as was

put forth previously, fewer photons are available for collection. Second, by waiting

the full 80 ns to start the observation interval, the pulse response has dropped to

a much lower point than was the case for the initial configuration of the auxiliary

parameters. Further investigation using a shorter delay time with shorter pulses may

result in a (T,, T,) combination for which performance measures are not so badly

affected. In this case, sufficiently accurate estimates could be generated using a lower

power transmitter.

Figure 4-27(a) demonstrates that increasing T, to 1000 ns greatly aids in estimat-

ing No, . Comparison of Figures 4-21(a) and 4-27(a) show that greater improvement

in estimating No, results from altering both T, and T than is seen when only T

was raised. This result may be attributed to the higher number of backscattered

photocounts obtained by raising T, as well as increasing the length of the observation

interval by elevating T1 . Table 4.12 provides photocount statistics for the base case as

well as the situations where only T1 is raised and when both Tf and T, are increased.
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Minimum Mean Maximum
Configuration A (nm) Counts Counts Counts
Base 255 1509 2714 3999

315 1053 2600 3917
Only Tf increased 255 1536 2769 4073

315 1126 2689 3994

Both Tf and T, 255 3320 6038 8854

increased 315 3236 6519 8776

Table 4.12: Counts Rate Data For Different Values of T,

A higher value of T results in a slightly greater number of backscattered photocounts

than in the base case. This was reflected in a modest improvement in the estimate of

the ozone number density when Tf was elevated. When both T and T, are increased,

roughly, a threefold increase is seen in the expected number of collected photocounts

resulting in ONos dropping to about one third of its initial value. Thus, collecting

backscattered photons for longer periods of time (by raising T1 ) and having more

counts collected in these intervals (by augmenting T,) is a most effective means of

improving the estimates of the ozone number density.

Figure 4-27(b) indicates that the estimate of k,, is affected only marginally by

raising T,. Apparently, no significant increase in information regarding the state of

aerosol results when the duration of the pulse is increased. As seen in Section 4.3.3,

the aerosol estimate is most sensitive to changes in the delay between T, and T,. As

T, was altered, T, was set so that a constant 80 ns delay existed between the falling

edge of the pulse and the start of the observation interval. Perhaps decreasing the

delay while increasing T, would yield improved performance in the estimate of the

aerosol scattering coefficient.

The Monte-Carlo simulations for the two parameterizations considered here both

support the conclusions drawn based upon the CRLB analysis. Figures 4-28 and 4-29
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show that the bias in the estimates of both No, and ka is inversely proportional to the

pulse length. As has been the case before, the statistics for the ozone number density

seem to be more sensitive to the changes in the parameter configuration than those of

the aerosol scattering coefficient. The root mean square error results shown in Figures

4-30 and 4-31 demonstrate that alterations in the pulse length yield an estimator with

fairly small root mean square error. The only exception to this observation is in the

RMSE of the ka estimate in the case of the low T, parameterization. Under these

circumstances, the error in the estimate of k,, is much higher than the CRLB. This

phenomenon was seen previously when T1 was decreased. It is assumed that the

same explanation described in the low Tf case holds here as well.

The Heney-Greenstein Phase Function Parameter

The above three sections have dealt with deliberate variations of parameter values so

as to achieve improved performance from the estimator. A different situation may

occur for those parameters whose values are determined by forces other than the will

of the user. Here, the nominal values assumed in the model may differ from the

true value as they exist in nature. In this case, the photocount data upon which

the estimates are based is generated from a process defined by the correct parameter

values. The ML algorithm uses this data in conjunction with a model parameterized

by false values. Thus, this test is intended to examine the robustness of the ML

estimator to unavoidable modeling errors.

To be explored here is the case when an incorrect choice of the g parameter in

the Heney-Greenstein phase function is assumed. In the case of the single scatter

model, the Heney-Greenstein function is used as an approximation to the aerosol

phase function for a variety of atmospheric conditions. Throughout this investigation,

g has taken the value of 0.72 which corresponds to atmospheric conditions between

rural and maritime hazes [63]. Rural hazes are best described by g = 0.67 while
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maritime hazes correspond to g = 0.78 [63].

The performance of the estimator for an incorrect choice of g is carried out through

the use of Monte Carlo simulations. The photocount data upon which the ML estima-

tor operates is generated using the high, 0.78, or low, 0.67, values of g. The estimator

uses this data but assumes that the values of the auxiliary parameters correspond to

the base configuration where g = 0.72.

Even the relatively small deviations in g from is true value cause the estimator to

fail miserably using the initial configuration of the auxiliary parameter set. To obtain

decent results, the values is Table 4.13 are employed. The differences between the

6t = 10' 6= 100 Q, = 10 x 104 W
T= 100 ns T, =3000 ns T= 6000 ns
A 255nm Ao = 315 nm = 0.01

g =0.72 f = 0.5 Area = 1 cm 2

Table 4.13: Values for the Auxiliary Parameter Set for Variations in g

values in Table 4.13 and those of the base case are as follows:

* The power in the transmitted pulse, Q, has been increased from 104 Watts to

10 x 104 Watts.

* The beginning of the observation interval has been increased from 180 ns to

3000 ns.

* The ending time of the observation interval has been extended to 6000 ns from

1200 ns

The results of the Monte-Carlo simulations for g = 0.67 are presented in Figures

4-32 through 4-35. The bias data is still small and the RMS error results demonstrate

that the estimator can be made somewhat robust in the face of unmodeled uncertainty.
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Similarly, the results for the g = 0.78 case (Figures 4-33 and 4-35) show small bias

and acceptable values for the root mean square error in estimates of both No, and

ksa .

More interesting than the results of the simulations are the required values of the

auxiliary parameters needed to obtain these results. First, it is necessary to increase

the height of the transmitted pulse by an order of magnitude. Thus, a 10 mJ rather

than a 1 mJ pulse is needed. Second the timing of the observation interval is very

different from the base case. The observation interval is constructed so as to ignore

the initial high rate of backscatter produced by the singularity in Equation 3.15.

Furthermore, the the end time of the interval has been greatly extended.

In essence, performance has been maintained by adjusting the content of the

observation vector. Photocount data from times close to T, have been replaced by

data from times far from T,. In other words, the observation vector has been biased

in favor of that data which contains the most information about the ozone absorption

process. Given the results presented for the other configurations of the auxiliary

parameter set, this conclusion is not surprising. The estimates of k. have been more

accurate than those of the ozone number density. Furthermore, altering the values of

the auxiliary parameters consistently has had a greater impact (both negatively and

positively) on the estimates of No, than on the estimates of ka . Thus, because the

estimate of the ozone number density is more sensitive to auxiliary parameter values

than the estimates of the aerosol scattering coefficient, it is logical that incorrect

choices in these parameter values should require that more information be presented

to the estimator concerning the state of the ozone as opposed to the aerosol.

111



b 0.2
ksa(

-0.

ksa

(a) (b)

Figure 4-32: Monte Carlo Bias Results for gtre = 0.67

0.3

bks 0. 2,sa
00

00

k
sa

0-0

(b)
Figure 4-33: Monte Carlo Bias Results for 9true = 0.78

112

b N0 3

ksa

bN 
03

ksa

(a)



N 03 RMSE

(Ppb)
k sa RMSE

(km -1)

0.5
0.-4
0.3 ;-7 .. ...
0.2
0.1

13 100

k
sa

(a)

(b)

Figure 4-34: Monte Carlo RMS Error Results for gt,u, = 0.67

25
2 0 N RMSE
15 03
10 (ppb)

k saRMSE

(km ~1)

(a)
Figure 4-35: Monte Carlo RMS Error Results for gtrue = 0.67

113

(b)

k

ksa (ppb)

00



4.4 Conclusions

Issues associated with the performance of the Maximum Likelihood estimator have

been explored in this chapter. Before formal analysis could begin, values for a set

of auxiliary parameters associated with the single scatter propagation model were

specified. Given this initial configuration, Cramer Rao lower bound and Monte Carlo

data were generated and examined as a means of gauging the ability of the ML

estimator to ascertain the ozone number density and aerosol scattering coefficient.

Finally, the estimator's performance was investigated as the auxiliary parameters were

altered in a systematic manner from their base values. While the overall behavior

of the ML algorithm was encouraging, further study is warranted to determine the

sensitivity of the estimator to unmodeled noise and error sources.

Choices for the initial auxiliary parameter values were motivated by two concerns.

On the one hand, the nature of the atmospheric sensing system of which the algo-

rithms are to be a part was the source of some restriction. Additionally, care was

taken to ensure that the single scatter assumption was not violated as a result of

the chosen parameterization. The resulting configuration had but one difficulty: the

expected photocount arrival rate of roughly 10' counts/sec may be somewhat high

for present detector technology.

Having settled upon a reasonable set of auxiliary parameter values, the perfor-

mance of the ML estimator was examined. The Cramer Rao lower bound and Monte

Carlo data indicated that the ML scheme could easily meet the 20% desired accuracy

in the estimates for most points of interest in the N0 3 - k.a plane. For both N0 3 and

ksa , the bias was relatively small and the Cramer Rao bound provided an excellent

indication as to actual root mean square error behavior.

In Section 4.3.3, two types of parametric analysis were examined. In the first case,

auxiliary parameters whose values are controllable by the user were altered from their
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base assignments. In the second case, the effects of modeling error on the estimator

were explored by creating a discrepancy between the value of an auxiliary parameter

assumed in the model and the value used to create the simulated data which acted

as input to the ML algorithm.

Variations in the three timing parameters, T,, T1 , and T,, yielded results which

were interpreted easily in light of the physics behind the single scatter propagation

model. In general, performance tended to improve as the observation interval was

lengthened. The use of a smaller value for the start time of this period aided slightly

in the estimation of k,, as increased information concerning the state of the atmo-

spheric aerosol was included in the observation vector. Alternatively, extending T

lowered the standard deviation in the estimate of No, by increasing the quantity of

data relating to the ozone. Finally, lengthening both the duration of the pulse and

observation end time caused a factor of three improvement in the estimation of the

ozone number density.

The effects of modeling error on the estimator were much less encouraging than

previous results. Creating a difference between the assumed and true values of the g

parameter in the Heney-Greenstein phase function produced disastrous results using

the initial configuration of the auxiliary parameter set. Adequate performance could

be obtained only by increasing the energy in the transmitted pulse to 10 mJ and

extending the observation interval to 6000 ns. While neither of these difficulties are

catastrophic', the fact that such radical alterations from the initial parameterization

were required for a relatively small error in modeling points to problems with the ML

estimator.

The sensitivity of the ML estimator to modeling errors may be indicative of diffi-

1The 10 mJ pulse is at the high extreme of the energy desired for this atmospheric monitoring
system. Further, the optical depths associated with a 6000 ns photon collection period may be
pushing the limits of the single scatter model.
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culties with the overall system under consideration in this thesis. It may be the case

that any estimation scheme utilizing data from a low-power, direct-detection moni-

toring system is not robust to the type of situations analyzed here. In addition to

the phase function parameters, it is often the case that the detection efficiency, (, is

known with only low precision. Furthermore, because photocount noise sources have

been absent from the present investigation, the effects of detector shot noise, multiple

scatter noise, etc. on performance are unknown. Inclusion of these error factors may

require alteration of the estimator in one or both of the following ways:

1. Use of a multiple scatter model to describe atmospheric propagation

2. Expansion of the vector of parameters to be estimated

Only after these additional scenarios have been explored utilizing one or more es-

timation techniques may a final conclusion be drawn as to the success or failure of

the atmospheric monitoring system in determining the transmission parameters of

interest in this investigation.
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Chapter 5

Recursive Estimation of

Atmospheric Transmission

Parameters

5.1 Introduction

While the Maximum Likelihood technique provides an effective means of determining

model parameters whose values are constant, a rich body of algorithms exists for

estimating parameters which are functions of time and space. Recent works by Rye

and Hardesty [46, 47] have focused on the application of recursive techniques to

problems of Doppler lidar velocity estimation and the determination of the power

collected at the receiver of a monostatic lidar system in the presence of additive and

multiplicative channel noise. In [58], Warren constructs an adaptive, recursive filter

to estimate transmission parameters based on lidar returns in the case where the

atmosphere is modeled as an inhomogeneous medium. The goal of this chapter is to

explore how one recursive estimation algorithm, the Extended Kalman Filter, may be
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applied to the problem of estimating k,, and No, when variations of these parameters

are strictly temporal.

As in preceding chapters, the atmosphere is assumed to be spatially homogeneous.

Thus, the single scatter model developed in Chapter 2 and used in the ML estimator

may be employed here as well. Clearly, it is highly unlikely (if not impossible) for the

transmission parameters to vary with time and not space. A more realistic situation

would have temporal changes accompanied by spatial variations as would arise in the

event of a cloud entering and then leaving the atmospheric monitoring system's field

of view. In this case however, the assumption of atmospheric homogeneity is removed

and modifications to the single scatter model would be required in order to accurately

describe the radiative transfer process. Such effort may be of value should the EKF

algorithm prove useful in determining No, and k.a under the supposition that these

parameters vary only with time.

In the instance of time-varying parameters the Maximum Likelihood Estimator

still could be used. Assume that pulse pairs are transmitted once every T seconds.

The collected photocounts from the ith pair result in a new estimate of the parameter

vector, i where each new estimate is made without regard to previous estimates.

Over time, it is expected that these estimates would reflect the temporal variation

in the actual parameters. While such a system would work, there exist numerous

algorithms specially tailored for solving time-varying parameter estimation problems

which exploit the relationship between x at time i and x at times less than i.

These techniques are based upon models (called state-space models) which capture

the manner in which the parameter vector evolves over time. The consequence of this

modeling paradigm is that estimator possesses a recursive structure in that the ith

estimate is based upon past estimates as well as data collected during the i'h time

interval. The most celebrated of these algorithms is the Kalman Filter which is used

when the parameter vector of interest is the state vector in a linear state-space model
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of the system under consideration. For the problem to be faced in this chapter, the

parameter vector is composed of No, and k,, which is incorporated into a nonlinear

model describing atmospheric transmission. The estimation algorithm to be used in

this case is the Extended Kalman Filter (EKF) which is a Kalman Filter built around

a linearized form of the non-linear state-space model.

In this chapter, both the theory and performance of the Extended Kalman Filer

are examined. First, the state-space model necessary for implementing the EKF is

constructed. The temporal variations of No, and k,, are assumed to be those of in-

dependent first order Gauss-Markov process while the measurements process is based

heavily upon the photodetection theory from Section 3.3. Second, the mechanics of

the filtering algorithm are briefly discussed. Derivation of this algorithm is not pre-

sented here but may be found in [12, 61]. Finally, the ability of the EKF algorithm

to determine No, and k,, is examined.

5.2 The State Space Model

The implementation of a Kalman Filter or any of its derivatives requires that the

parameter vector to be estimated corresponds to a subvector of the state vector

in a state-space model of the system under investigation. (It is assumed that the

reader is familiar with state-space formulations. Detailed treatments of this topic

are found in [12, 61].) For the problem to be addressed here, the state vector, x, is

composed of two elements, No, and k,, . In this section, the dynamics equation and

observation equation for the state-space model describing the evolution of No, and

ka is presented.
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5.2.1 The System Dynamics Equation

Under that state-space paradigm, the evolution of the ozone number density and

aerosol scattering coefficient is modeled by a state dynamics equation. As discussed in

Chapter 2, the state of the atmosphere is dependent upon a host of conditions making

exact models of this medium difficult to obtain. For the purposes of implementing a

recursive estimation algorithm, such detailed descriptions are unnecessary. In [46] and

[47], Kalman filters were designed for Doppler lidar velocity estimation and estimation

of lidar power returns using first order Gauss-Markov processes to describe the system

dynamics. This model was deemed to be useful due to its simplicity and statistical

properties [46]. The first order Gauss-Markov model provides a simple model for

describing phenomena where correlation between the variables of interest at times t

and s (s > t) is only significant for s - t < rc where r, is a constant known as the

correlation time. Intuitively it seems logical to believe that to first order, the values

of No, and k.,, at some time s are correlated significantly with previous values only

so far into the past. Thus, first order Gauss-Markov models are used to describe the

time evolution of the atmospheric transmission parameters.

The dynamic equation for a continuous time first order Gauss-Markov model is of

the form:

.(t) = -ax(t) + bn(t) (5.1)

where

x(t) is a 1 dimensional state vector

n(t) is a zero-mean, unit variance, white Gaussian noise process.

a and b are two constants related to the correlation structure of the process x(t)

It can be shown [12] that x(t) is a zero mean process with correlation function given
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by:

E[x(t + r)x(t)] -K(r) = -e-"a (5.2)
2a

From Equation 5.2 the constant 1/a is taken as the correlation time of the process

and L is the steady state variance of x(t).

For the problem of determining No, and ka in this thesis, No, and ka are mod-

eled as first order Gauss-Markov processes evolving according to the matrix equation:

Noa3(t) -aNo, 0 Noa(t) + bNon~) (53

[ ksa(t) [ 0 -a ksa(t) bk,. )

x'(t) = Acx(t)+ Ben(t) (5.4)

where the components of Ac and Be are constants whose values are to be specified at

a later point. Because the off-diagonal elements in the A matrix are 0, the two state

variables evolve independently of one another.

While the model in Equation 5.4 is given in continuous time, implementation of the

EKF requires a discrete time version of this system. Assuming that x(t) is sampled

once every T seconds, the variations of constants solution to the state dynamics

equation for a continuous time, linear, time invariant system gives the state vector

at time (k + 1)T in terms of the state at time kT for k = 1,2,3,... [61]. Letting

j(kT) = x(k) represent the discrete time state vector at time k results in the following

first order difference equation:

x(k + 1) = e AcTX(k) +] eAdT(k+-r]Bcn(-r)dr (5.5)
(k T

Ax(k) +_w(k) (5.6)
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where

e-aNO3 T 0

A0= 0 e-ak.T

and w(k) is a discrete time, zero mean white Gaussian noise process with

2
aNO3 (1 -- 2aNO3T)

0 b2 (1 - e -2a saT) J - ln ) (5.8)
-a-(529

(5.9)

= Q(m - n)

where 6(k) is the Kronecker delta function.

5.2.2 The Measurement Process

In addition to the state dynamics equation, a state-space model requires an equation

describing the measurement, or observations, process which provides the relationship

between the state variables and the output of the system. For a discrete time system,

a general form of this equation is:

(5.10)

where

y(k) is the p dimensional vector of observations

h(j(k)) is a p dimensional nonlinear function of the state variables

_(k) is a p dimensional discrete white Gaussian noise process with covariance matrix

R(k)
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As with the Maximum Likelihood estimator, the Extended Kalman Filter is to

generate estimates of No, and k,, based on observations of backscattered photocounts

from the atmospheric monitoring systems described in Chapters 2 and 3. Thus, the

observations process from Section 3.5.1 provides a basis for constructing the measure-

ment equation to be used here.

From Section 3.5.1, the vector of observations contains 2b elements representing

the photocounts collected in each of b time intervals associated with 2 transmitted

pulses. Furthermore, all members of the observations vector are mutually indepen-

dent, Poisson random variables with rate parameters given by:

Ai,j = j '" A;(t)dt (5.11)

where

A;,1 is the mean and variance of the Poisson process corresponding to the jt' obser-

vation interval of the it' pulse (j = 1, 2,..., b and i = 1, 2)

t,g and tfi, are the starting and ending times for the jth observation interval of the
ith pulse

Ai is the Poisson rate function for the ith pulse given by Equation 3.15

To obtain the measurement equation for the state-space model, it is assumed that

the Central Limit Theorem may be used to approximate the Poisson random variables

described above as Gaussian random variables with equal means and variances. This

assumption holds if the number of counts collected in each subinterval is sufficiently

high. From the expected count rates for the base configuration of the model given in

Table 4.5, it is evident that the CLT approximation is valid. The resulting output
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Figure 5-1: Timing Diagram for the Measurement Process

equation is:

y1,1(k)

y 1,2 (k)

Y1,b(k)

y 2,1(k)

y 2,2(k)

y2,b(k)

A1,1(z(k))

A1,2(z_(k))

Al,b(z(k))

A2,1(z(k))

A2,2(_(k))

A2,b(z (k))

+

v1,1(k)

V1 ,2(k)

Vl,b(k)

v 2 ,1(k)

v 2 ,2 (k)

vdots

V2,b(k)

(5.12)

(5.13)

y = h(x(k)) + v(k)

where Figure 5-1 is useful in visualizing the physical significance of the following

quantities:
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yij, is the number of photocounts observed in the jth observation interval of the ith

pulse (j - 1, 2 ... , b and i = 1,2)

Aij, is the expected number of counts for the (i,j)"h time interval

K(k) a 2p dimensional, zero-mean, white Gaussian noise process with a covariance

matrix given by:

E[L(m)v(n)f] = diag[A1,1(x(k)),... , A2,b(x(k))]5(m - n) (5.14)

= R(m)S(m - n) (5.15)

The only difficulty with this observations model is that the covariance of the obser-

vation process depends on the state vector; however, _1(k) is an unknown quantity,

To overcome this problem in the implementation of the Extended Kalman Filter,

when R(k) is required in a calculation, it is evaluated using the best estimate of _(k)

available at time k.

5.2.3 Summary

In summary, the state-space model to be used here is given by the following two

equations:

x(k + 1) = Ax(k) + w(k) (5.16)

y(k) = h(x(k)) + v(k) (5.17)

where the matrices A and A(k) are given in Equations 5.7 and 5.12 respectively. The

noise process w(k) is a zero mean, white, stationary, Gaussian process with covariance

matrix Q specified in Equation 5.10. The process v(k) is a zero mean, white, non-

stationary, Gaussian process with covariance matrix R(k) given by Equation 5.15.

125



The initial state of the system, _(O) is drawn from a Gaussian distribution with mean

xo and covariance Po. Finally, it is assumed that w(k), p_(k), and x(O) are mutually

independent.

5.3 The Extended Kalman Filter Algorithm

Using a white-noise driven state-space model, the Extended Kalman Filter algorithm

is used to generate estimates of the state vector at time k based upon the observations

made at time k and the estimate generated at time k - 1. When the system is mod-

eled by a pair of linear state-space equations, the Kalman Filter produces minimum

variance estimates of the state vector with the estimate at any time embodying all

of the information available from the observations collected from time k = 0 to the

present. For a nonlinear model, as is the case in this thesis, the Extended Kalman

Filter may be viewed as a regular Kalman Filter operating upon a linearized form of

the non-linear state-space model. As such, the estimates produced by the EKF are

suboptimal in the sense that they do not possess the minimum variance property of

the linear Kalman Filter. Despite these characteristics, the Extended Kalman Filter

has been chosen for use in this investigation because it is computationally efficient

and has been applied successfully to a variety of problems in the fields of guidance

and control [27] as well as in the estimation of lidar power returns [47].

The mechanics of the EKF algorithm are best understood by considering Figure

5-2 in conjunction with the following discussion. It is assumed that just after time k,

an estimate of the state exists which is based upon the previous k - 1 measurements.

This estimate is denoted as ±(kfk - 1)1. Furthermore, assume that at the same time,

'In this thesis, the notation for an estimate at time i based upon data collected through time j
is i(ili)
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the EKF has computed the one-step error covariance matrix, P(klk - 1) given by

P(klk - 1) = E[(_(k) -- (kjk - 1))(z(k) - £i(kjk - 1))T] (5.18)

The Extended Kalman Filter takes these two one-step predicted quantities and uses

them in a two step procedure. The first step incorporates the new measurement into

the estimate and the error covariance matrix and is given by the following formulae:

,.(kIk) = 5(kjk - 1) + K(k)[y(k) - h(k)] (5.19)

P(klk) P(klk - 1) (5.20)

-P(kk - 1)CT (k)[C(k)P(klk - 1)CT (k) + R(k)]- 1 P(klk - 1)

where

9 The matrix K(k) is the Kalman gain matrix to be described below
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" The vector y(k) is the observation obtained at time step k.

* The vector h(k) is the expected value of the observation vector at time k based

upon the .(kfk - 1) and is given by:

h(k) = h(x(k))|=(klk-1) (5.21)

e The Jacobian matrix, C(k), associated with the function h(x) is given by:

C(k) =

BA1 1
ON 0 3

OAlb
ON 0 3

8A2 1
aN 0 3

OA2b
,N 0 3

8A 11

8k,,,

Ok..

OA2 b
Okaa

(5.22)

The explicit formulae for the partial

3.43.

derivatives are given in Equations 3.42 and

The formula for the gain matrix, K(k), is

K(k) = P(klk - 1)C(k)T [C(k)P(klk - 1)C(k)T + R(k)]-' (5.23)

where the matrix R(k) is the covariance matrix of the observation noise process

After incorporating the new measurements, the second step in the algorithm pre-

dicts ahead one time unit so that the filter will be ready to utilize the next measure-

ment. The equations for the prediction step are as follows:

x-( k + Ilk)

P(k + 1|k)

= A (kjk)

- AP(klk)A T +Q

(5.24)

(5.25)

128



where A is the matrix specified in Equation 5.7 and Q is the covariance matrix of the

white noise driving the state dynamics equation.

Finally, this recursive algorithm is begun with initial estimates of the state and

error covariance at time k = 0. That is, the user starts by specifying the two quantities

X (0| - 1) and P(0| - 1).

5.4 EKF Testing Procedure

5.4.1 Introduction

As with the Maximum Likelihood estimator, the Extended Kalman Filter is evaluated

under a variety of configurations of the auxiliary parameter set. In addition to the

parameters described in Section 4.2, the EKF algorithm requires specification of the

following parameters found in in the state dynamics model, Equation 5.7:

1. The pulse repetition period: T

2. The parameters aksaand bkafound in the state space description of the aerosol

scattering coefficient

3. The parameters aNo and bNosfound in the state space description of the ozone

number density

The initial configuration of the auxiliary parameters used in Chapter 4 as specified

in Table 4.2 is used in the evaluation of the Extended Kalman Filter. The remainder

of this section is devoted to (1) specification of the auxiliary parameters given in the

above list and (2) a description of the procedure used in the evaluation of the EKF

as a tool for estimating atmospheric transmission parameters.
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5.4.2 EKF Auxiliary Parameters

In this thesis, the values of the free parameters in the state dynamics equation are

determined based on a desire to tune the EKF. Under the assumption that the atmo-

spheric parameters are described accurately by Equation 5.4, rigorous determination

of the ai's and bi's for i E {N 0 3 , ksa} would require a careful investigation of the true

dynamics of the atmosphere. Such an undertaking is beyond the scope of this thesis.

Furthermore it is not clear that the the true, detailed dynamics are reflected by the

first order Gauss-Markov approach. However, it is hoped that values of aN0 3 , aksa,

bN 0 3 , bk,, and T can be chosen so as to achieve adequate performance from the filter.

To simplify matters, the following, arbitrary assignment is made:

aNo3 = aksa = 1 (5.26)

Furthermore, restrictions imposed by the nature of the transmitter provide an upper

bound upon the value for the sampling rate T. It is assumed that the pulse repetition

rate of the source used in the transmitter is on the order of kilohertz. Thus, the low

value for T is 0.001 seconds. The high value for T is taken as 0.01 seconds in an effort

to see how an order of magnitude change in this quantity affects the performance of

the estimator.

The choices of bNo3 and bk. aare motivated by a desire to establish the steady state

variance of N 0 3 and ksa . Given that aN0 3 , aksa, and T have been determined,

Equation 5.10 indicates that the standard deviation of the noise for each component

of the state vector is directly proportional to the value of the associated b parameter.

The values for bN0 3 and bk,.aprovide the filter with a priori knowledge concerning the

expected behavior of the parameter vector. Because the Equation 5.4 is zero mean,

small values for the bi are interpreted by the filtering algorithm as an indication that

the actual value of the state varies little from its mean of zero. Alternatively, large
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Parameter Low Value High Value Units

bNo3 1.0 10.0 ppb
bk.. 0.03 0.30 km'

Table 5.1: Low and High Values for bN03 and bk..

values of bi suggest to the filter that the parameters are not necessarily restricted to

values close to zero.

By determining the steady state variances, the values of bN, and bk.aalso influence

the bandwidth of the Extended Kalman Filter. Higher values of the bi (i.e. higher

steady state variances) should make the filter more responsive to changes in state

than lower values because the filter would expect large variability. With this increased

responsiveness should come somewhat noisier estimates because the EKF would be

more accepting of high frequency noise as honest to goodness signal. On the other

hand, lowering the b; parameters would clamp down on the bandwidth. The filter

would reject rapid state changes because it expects the state to remain close to the

zero mean value of the Gauss-Markov model. This lower bandwidth leads to smoother

estimates but somewhat slower response times due to the fact that high frequency

noise as well as high frequency signal components is effectively ignored in a low pass

situation.

The values of the bi parameters are given in Table 5.1. The low value of bi is

taken as 1% of the maximum value of the ith component of the state vector and

the high value of bi is 10% of the maximum value of the i't component of the state

vector 2. Furthermore, these choices for bN,and bk,.yielded interesting behavior from

the simulations.

2 From Chapter 2 it should be recalled that the maximum assumed value for No, is 100 ppb and
for ka is 3 km'
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Run T bNo 3  b&k, Number of Total Time
Number (s) (ppb) (km') Iterations Simulated (s)

1 0.01 1.0 0.03 450 4.5
2 0.01 10.0 0.3 450 4.5
3 0.01 1.0 0.3 450 4.5
4 0.01 10.0 0.03 900 0.9
5 0.001 1.0 0.03 900 0.9
6 0.001 10.0 0.3 900 0.9
7 0.001 1.0 0.3 900 0.9
8 0.001 10.0 0.03 900 0.9

Table 5.2: Auxilary Parameter Configuration for EKF Testing

5.4.3 EKF Testing Procedure

The Extended Kalman Filter is evaluated via simulations involving a variety of con-

figurations of the parameter values specified in the Section 5.4.2. Specifically, there

are eight unique combinations of the high and low parameter values for the set

{T, bN03 , b}k.}. Thus, there are eight simulations used to examine the performance of

the Extended Kalman Filtering algorithm. The configuration for each of these runs is

given in Table 5.2. Note that for the runs where the sampling rate is 0.1 kHz a total

of 4.5 seconds of simulation is examined. In the case where the rate is 1 kHz only 0.9

seconds of simulation is presented. Despite these differences, both cases adequately

allow for evaluation of the algorithm.

The time functions for the parameters N0 3 and k,, are taken to be the step

functions as shown in Figures 5-3(a - d). Such profiles permit examination of the

filter's performance for steady state situations as well as in the case of sudden changes

in the state.

For each of the eight configurations of the parameters, the filter was run 100 times

using different photocount data for each iteration. The state estimate at time k is
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the average of the estimates generated for each of the 100 iterations:

1 100
^(k) = 100 E ^(k)(5.27)

10i=1 
(.7

Finally, the performance is evaluated by examination of the averaged root mean

square error of the estimates generated by the algorithm. That is, the quantity

ERMs(k) defined as

100

ERMS =(k) - z-(k))2 (5.28)

is of interest.

In all cases, the filter was initialized according to the following procedure. The

initial estimate of the state vector was determined randomly. Specifically, No3 (01 - 1)

and k,(O - 1) were drawn from a Gaussian distribution with mean vector

20 ppb (5.29)
1 km-'

and covariance matrix

P[ 40 ppb2 0m 2  (5.30)
0 1 km-

Finally, P(0| - 1) was set equal to P in Equation 5.30. This initialization procedure

is far from standard and should be altered for future analysis. Most importantly, it

may be of use to make the diagonal entries of P(01 - 1) much larger. As it stands, the

initialization procedure used in this investigation starts the filter with a good guess

as to the actual state of the atmosphere.

134



5.5 Extended Kalman Filter Performance

This section is devoted to analysis of the data obtained from the eight simulations of

the EKF under the various configurations of the auxiliary parameter set. The root

mean square error results are displayed in Figures 5-4 through 5-11. In examining

these cases it is useful to break the eight runs into two groups of four where the first

group corresponds to the case of T = 0.01 seconds and the second group corresponds

to T = 0.001 seconds.

For the cases where the sampling rate is 100 Hertz, a few general remarks are

in order. From Figures 5-4 through 5-7, some overall trends exist regardless of the

exact values for the auxiliary parameters. First, for times sufficiently far after the

start of the simulation and sufficiently far after the step, the RMS error settles to

a steady state value and this settling process occurs with an exponential-type time

dependency. In some sense, the EKF is acting like a low pass filter.

Secondly, in most every case, there exists some degree of coupling between the

estimates of No, and ka . This phenomenon is most clearly seen in the estimates of

one variable at the time when the other steps. In all cases, the step in one variable

causes some disturbance in the estimate of the other variable. The magnitude and

duration of the disturbance is dependent upon the exact run.

Finally, bNo0 and bk..do seem to affect the bandwidth of the EKF in the manner

predicted in Section 5.4.2. The lower the value of the bi, the smoother is the RMS

error curve and the slower is the response of the filter to the step. If the filter were

a simple one pole low pass filter, such behavior would be indicative of a narrow

bandwidth centered about DC. Alternatively, as bi is raised, the RMS error curves

become noisier; however, the decay times after the steps is sharply reduced. Again,

in the one pole filter case, this response would indicate a wider bandwidth centered

about DC.

135



Given the above general observations, it is useful to compare Run 1 to Run 2 and

Run 3 to Run 4. In Run 1, both bN, and bk,.are set to their low values while in Run 2

both parameters are set to their higher values according to Table 5.2. In these cases,

differences in the b values affects the steady state RMS error of the filter. While it

was observed that the filter does in fact settle to a steady state after the step, this

steady state is not necessarily the true value of the parameter being estimated. For

example, in Run 1 the steady state error in ka is about 0.2 km' while in Run 2, this

value drops to about 0.03 km'. Similarly, the RMS error in No, falls from slightly

above 10 ppb to slightly below 2.5 ppb from Run 1 to Run 2. Thus, turning up the

magnitude of the white noise driving he state dynamics equation has the effect of

increasing, on average, the accuracy of the steady state estimates (at least for the

step function case). The only drawback to this is that the RMS error curves for Run

2, are much noisier than their counterparts for Run 1. In both cases however, the

steady state error is within 20% of the true value of the corresponding parameter.

The steady state bias effect may be understood by considering the information

provided to the filter through the choice of the bi. The filter believes that both

No, and k,, are first-order Gauss-Markov processes with means equal to zero and

steady state variances given by b?/2ai. Because the ai = 1, the values of bNo,and

bk,.determine the steady state variances of No, and ka . The variance of a random

variable or stochastic process may be interpreted as a measure of inverse information.

That is, high variance indicates a certain lack of knowledge concerning the behavior

of the process while low variance suggests that the process varies slightly from its

mean. Thus, the low values of the bi cause the EKF to believe that the parameters

should be found close to the mean of the first order Gauss Markov models (i.e. close

to zero). Information from the observation vector regarding the true, non-zero mean

values of No, and ka then is discounted because it contradicts the prior expectation

built into the filter via the low bi. The steady state bias arises as a compromise
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between the weights placed on the observations (which tend to increase the values of

the estimates) and the prior expectation that the state should be close to zero (which

tend to lower the estimates). Alternatively, the higher values of the bi parameters

ameliorate the bias because they are taken by the algorithm as an indication that

little is actually known about how No, and ks vary with time. Because the filter is

more responsive to the information in the observation vector which conveys the true

values of the transmission parameters, the steady state bias is reduced.

For Runs 3 and 4, Figures 5-6 and 5-7 show that mismatching of the bNoand

bkacan severely degrade the performance of the Kalman Filter. In each of these runs,

one of the b parameters assumes its high value while the other takes on its low value

(see Table 5.2). In general, comparison of these plots with the corresponding figures

for Runs 1 and 2 show that mismatching the bi's corrupts performance in the following

ways:

1. Increased coupling between the estimates of No, and k,. . Compare Figures

5-5(a) and 5-7(a) for an example of this phenomenon.

2. Worsened steady state error (especially for the high b simulations.) Compare

the steady state values of ksa in Runs 2 and 3 or the estimates of No, in Runs

2 and 4.

While the degradation in the steady state error is not terrible in that the estimates

remain within the 20% bound, the increased coupling is rather marked. Thus, based

upon these simulations it seems reasonable to conclude that the EKF is best used in a

configuration where the noise driving each of the states is of comparable magnitude.

For those simulation corresponding to T = 0.001 seconds (Figures 5-7 through

5-11), the results parallel the observations made above for the T = 0.01 second case.

Qualitatively, the shape of the plots corresponding to identical values of bN, and

bk..are roughly identical although the time scales are distinct (the T = 0.001 runs
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correspond to 0.9 seconds of time while the T = 0.01 runs simulate about 4.5 seconds

of data.) Thus, the lower T results in faster filter response. Furthermore, the steady

state error values are somewhat lower when the sampling period is reduced. The only

drawback to the faster sampling rate is that the error at the time of the steps is higher

in the cases where T = 0.001 seconds.

The improvement in performance due to the faster sampling arises from the fact

that more data is made available to the EKF over any given length of time as T

decreases. Thus, the time required for the filter to converge to the steady state also

will decrease. Finally, aside from the hardware limitations discussed in Section 5.4.2,

the sampling rate could not be made arbitrarily small. At some point, the number

of photocounts collected in an observation interval would be reduced sufficiently to

violate the Central Limit Theorem approximation to the Poisson process used in the

construction of the EKF.

5.6 Conclusions

Issues associated with the use of an Extended Kalman Filter as a tool for estimating

atmospheric transmission parameters have been explored in this chapter. The chapter

began with the construction of a state space model describing the time evolution and

method of observation of the parameters No, and ksa . Using this model, the recursive

algorithm known as an Extended Kalman Filter (EKF) was described. As in the case

of the ML Estimator, before actual testing of the EKF could begin, values for a

set of auxiliary parameters were determined and a testing procedure was described.

Finally, the EKF's performance was investigated via the examination of root mean

square error results from each of eight simulations.

The state space model for use with the EKF algorithm consisted of two equations.

The state dynamics equation described the manner in which the state vector evolve
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with time. Given no a priori model specifying the time dependency of No, and k.a and

due to the success of other researchers working on related problems, a discrete time

first order Gauss-Markov state dynamics equation was developed. The second portion

of the model consisted of the measurement equation which determined how the state

variables are observed. In this case, a Central Limit Theorem approximation to the

Poisson photodetection process explored in Chapters 3 and 4 was employed.

Because the measurement equation is nonlinear in the variable No, and ka , a

regular Kalman Filter could not be employed as an estimator. Thus, the Extended

Kalman Filter was chosen. While a brief description of the algorithm was presented

in this chapter, a more extensive treatment of the EKF can be found in [12, 61].

The auxiliary parameter set for the EKF consisted of the same parameters used in

the ML algorithm as well as some additional quantities. Where possible, parameter

values used in the initial configuration of the ML estimator were employed in the

EKF as well. Where new values were chosen, one of two motivations influenced their

specification. In the case of the sampling period, system restrictions associated with

the nature of the transmitter placed an upper bound on the pulse repetition rate. For

the parameters aN,, bN0 3, aksa, and bk.detailed knowledge of atmospheric processes

would be needed to obtain accurate values. Lacking such resources, "reasonable"

assumptions were made regarding the numerical values assigned these quantities.

Clearly, more analysis in this area may useful.

The testing of the Extended Kalman Filter yielded rather encouraging results.

In the case where the parameters N0 3 and k.a were constant over a long period of

time, the steady state values of the estimates were within the 20% desired accuracy.

Moreover, abrupt changes in either of the transmission parameters (i.e. step-like vari-

ations) resulted in exponential-type responses from the estimator where the decay rate

of the exponential can be made quite fast. Finally, the complexity associated with

calculating the estimate from the EKF was much lower than was the case with the
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ML estimator. Rather than minimizing a complicated non-linear function of No, and

ksa , each iteration of the EKF required a relatively small number of matrix multi-

plications and additions as well as a number of function calls to evaluate quantities

such as the Jacobian matrix and h(5z), the measurement function evaluated at the

current estimate. In the case here of a two dimensional state vector and a ten di-

mensional observation vector, the most costly matrix vector multiplication required

40 operations (20 multiplies and 20 additions). Alternatively, just to evaluate the

log-likelihood function once during the minimization procedure, the ML estimator

had to perform a numerical integration which required more computations than the

matrix-vector operation described above.

In some respects the performance advantage of the EKF arises from the fact that it

is given an inherently less burdensome task than that of the ML estimator. First, the

Gaussian approximation to the Poisson process would have reduced the complexity of

the optimization problem solved by the ML estimator. Furthermore, each iteration of

the EKF is analogous to a single gradient step in an optimization routine so that the

very structure of the EKF algorithm makes it inherently less intensive than a single

iteration of the ML estimator. Still, given its acceptable performance and its low

computational overhead, the Extended Kalman Filter seems to be a better candidate

for use in determining the state of the atmosphere than the ML estimator.

Before any solid conclusions may be draw regarding the EKF, additional work is

required. First, the performance of the EKF should be examined using more realistic

profiles of the parameters No, and ks . Second, the EKF should undergo some

robustness analysis similar to that carried out for the ML estimator in Chapter 4.

It may be the case here as it was in Chapter 4 that this algorithm is sensitive to

modeling errors. Finally, should the EKF still be considered a viable tool it may be

useful to consider developing a more accurate dynamics equation in the state space

model which may incorporate spatial as well as temporal variation of No, and k,.a
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Chapter 6

Conclusion

This thesis has explored the application of a variety of statistical estimation techniques

to the problem of determining a vector of parameters whose values govern the manner

in which propagating radiation interacts with the atmosphere. The investigation was

motivated by the belief that knowledge of the state of the atmosphere would have

wide application in a variety of contexts including optical communication systems,

remote sensing systems, and some position/motion detection systems. The purpose

of this chapter is to summarize the results obtained in the body of the thesis and

indicate some directions for future effort.

6.1 Thesis Contributions

The first task addressed in this thesis was the construction of an analytical model

describing the propagation of radiation through the atmosphere. First, the nature

of the atmospheric monitoring system (i.e. the characteristics of the transmitter

and receiver) as well as the atmospheric physics relevant to the middle ultra-violet

waveband were defined. Next, the propagation equation was formulated where this

equation described the power incident upon the receiver as a function of time and
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encompassed the set of parameters to be estimated. The form of this model drew

heavily upon previous work done by Reilly [43] and Luettgen [27] in the development

of single scatter atmospheric pulse responses.

The power incident upon the detector yields a series of voltage pulses as the output

of the receiver. The number of pulses observed over a set time interval formed the data

set upon which the estimates of the transmission parameters were based. The output

of the receiver was modeled as an inhomogeneous Poisson process with a rate function

proportional to the power function previously discussed. Given the stochastic model

parameterized by the quantities to be estimated, a Maximum Likelihood estimator

was explored.

Having settled on a reasonable set of auxiliary parameter values (i.e values for

quantities found in the model which were not being estimated), the ML estimator

was evaluated based upon Monte Carlo simulations and Cramer-Rao lower bound

analysis. It was shown that the bias of the ML estimator was reasonably small in

most situations. The Maximum Likelihood estimator also proved to be fairly efficient

in that its mean square error was close to the CR lower bound over a wide range

of transmission parameter values and configurations of the auxiliary parameter set.

Moreover, the RMS error was often well within 20% of the true parameter values.

The one drawback to this estimation technique was its sensitivity to modeling errors.

Even small errors in assumed values for the auxiliary parameter set caused large

degradation in the estimator's performance. Adequate behavior was only regained

through a configuration of the auxiliary parameters which may violate the single

scatter assumption present in the underlying propagation model. Further work is

needed here before strong conclusions may be drawn.

Next, a recursive estimation scheme for estimating the transmission parameters

of interest was developed and analyzed. Rather than being mere constants, these

quantities were assumed to be functions of time. Their behavior was described via
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a state space formulations where the state dynamics equations was taken to be a

discrete-time first-order Gauss Markov process and the measurements equation was

a Central Limit approximation to the Poisson process developed earlier in the thesis.

Given that the observation equation was non-linear in the parameters of interest, an

extended Kalman Filter (EKF) was chosen as the recursive estimation algorithm.

The results of the EKF were quite encouraging. The response time of the filter

to abrupt changes in the parameters could be made rather fast without violating

any modeling or systemic restrictions. Furthermore, in steady state situations where

the parameters assumed constant values, the error in the filter was consistently less

than 20%. Finally, from a computational standpoint, the EKF was less intensive

than the ML estimator and produced comparable if not better results. Thus, this

recursive technique would probably be a better choice than the static scheme for

actual implementation.

6.2 Future Work

Additional effort on this project is needed in a variety of areas. A multiple scatter

propagation model would be beneficial for two reasons. On the one hand, it could

be incorporated directly into the estimation schemes. Also, such a model would

provide a useful tool for verification of the single scatter model under the variety of

circumstances of interest in this thesis.

The vector of estimated parameters should be expanded. This thesis has focused

upon the determination of but two quantities describing atmospheric transmission

processes: the ozone number density and the aerosol scattering coefficient. As was

discussed in Chapter 4, the parameters associated with the aerosol scattering phase

function also may be unknown. Thus, it may be useful to estimate the f and g

parameters of the Heney-Greenstein phase function. Alternatively, a series represen-
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tation of the Mie phase function may be employed so that the first n coefficients

are included in the parameter vector. In an effort to gain information regarding the

aerosol scattering process at a variety of scattering angles, it may prove advantageous

to alter the structure of the receiver/transmitter system and the atmospheric model

in the following ways

1. Utilization of a bistatic monitoring system

2. Construction and use of a multiple scatter model

3. Subdivision of the receiver's field of view into an array of pixels and counting

photons in each of these spatial bins

Additional scattering and absorption effects may be analyzed. While ozone is

the prominent absorber in the middle UV, absorption effects due to other molecular

species and aerosols exist and have been ignored throughout this thesis. Further, it

may be necessary to explore the properties of specific aerosols rather than settling for

knowledge of their composite effects. These additional transmission processes may

be most prominent in describing observed photocounts for pulses whose wavelengths

lie outside of the ozone absorption band. As with the aerosol phase function, the end

result of this analysis may be the expansion of the parameter vector.

Construction of the actual monitoring system would be necessary to obtain real

data upon which the algorithms could operate. While the simulations have shown

that the performance of the various estimators is encouraging, for the most part,

these tests have been performed under the assumption that all facets of the model

are correct. As was shown with the ML estimator, errors in modeling can sharply

affect the estimator. Thus, real data needs to be obtained for proper verification of

the algorithms under investigation.

More extensive evaluation of the EKF algorithm is warranted. Preliminary results

have shown that this particular scheme may be a very viable option for actual imple-
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mentation; however a firm conclusion cannot be drawn at least until some robustness

analysis has been performed. It could be the case here as it was with the ML estimator

that modeling errors severely degrade performance in which case some remedy would

be required such as inclusion of a subset of the auxiliary parameters in the vector

to be estimated. Additional variations on the EKF may include (1) a revised state

space model which better reflects the nature of the underlying atmospheric physics

including spatial variations of the parameters of interest (2) a second order Kalman

filter, (3) an adaptive filter along the lines of Warren [58].
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