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Abstract

The objective of many problems in the applied sciences and engineering is the recovery
of information regarding the structure of a physical medium given a collection of noisy
functionals of this unknown. Such inverse problems are encountered in a variety of fields
including geophysical prospecting, medical imaging, image processing, groundwater hydrol-
ogy, and global ocean modeling. In this thesis, we present and analyze a collection of
techniques based upon multiscale and statistical methods for dealing with the difficulties
arising in consideration of full reconstruction and anomaly detection inverse problems.

The goal of a full reconstruction problem is a detailed map of the spatial structure of
a medium from indirect information provided by a collection of data sets. Multiresolution
and statistical methods allow for the easy handling of problems arising in this context such
as ill-posedness and the need to fuse sparse or irregularly sampled, noisy data available
from multiple observation sources. Regularization is accomplished via the use of multiscale
stochastic models which offer flexibility for capturing prior knowledge and incorporating
constraints. In considering linear problems, we introduce the relative error covariance ma-
trix (RECM) as a tool for quantitatively evaluating the process of multisensor data fusion
and defining the space-varying optimal scale of reconstruction as a function of the resolu-
tion, quality, and coverage of the available data sets. For nonlinear inversions, the relative
Cram6r-Rao bound (RCRB) is used to perform the same tasks as the RECM and forms the
basis for a highly efficient inversion algorithm.

The objective of the anomaly detection problem is the characterization of regions in
which the behavior of the unknown varies from a prior set of expectations. A novel, decision-
theoretic, scale-recursive algorithm is presented for determining the sizes, locations, and
amplitudes of an unknown number of anomalous areas. Analysis techniques are presented
that not only yield overall performance limits but also guide the detection procedure by
providing information for determining when finer scale localization is unwarranted given
the available models and data.

Examples of our approach are presented using first a multichannel deconvolution prob-
lem. Subsequently, we consider an inverse electrical conductivity problem formulated so as
to illustrate many of the features associated with inverse problems arising in fields such as
geophysical prospecting, ultrasonic imaging, and medical imaging.
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Chapter I

Introduction

The underlying objective of many problems in the applied sciences and engineering

is the recovery of information regarding the structure of a physical medium given

a collection of noisy functionals of this unknown. Such inverse problems arise in a

variety of fields including geophysical prospecting [15,16,58,60,61,103,114], medical

imaging [14,69,72,73,97], image processing [801, groundwater hydrology [17-19,85,86],

and global ocean modeling [5, 82, 113]. For example, a common signal and image

processing problem which we explore in Chapter 3 is that of deconvolution where

one observes a blurred version of the signal in additive noise and seeks to recover the

uncorrupted original [56,77,84,95]. Of particular interest in Chapters 4-7 of this thesis

are inverse scattering problems for which the goal is the recovery of characteristics of

a medium based upon observations arising from the interaction of transmitted energy

with the unknown environment.

While it is not difficult to find practical instances of inverse problems, a number

of significant and well-recognized challenges exist which complicate the process of

generating their solutions. In this thesis, we present and analyze a collection of tech-

niques based upon multiscale and statistical methods for dealing with the difficulties

arising in consideration of two classes of inverse problems, so-called full reconstruction

problems and anomaly detection problems. We note that these categories are defined

not so much by the particular application under investigation, but by the nature of

the information one wishes to extract from the data.
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In the case of full reconstruction inverse problems (FRIPs), one essentially is in-

terested in constructing a detailed map of the spatial structure of a medium based

upon a collection of data sets providing some indirect information regarding the un-

known. For example, the goal of the deconvolution problem cited previously is a

pixel-by-pixel reconstruction of the original image. Many inverse scattering problems

arise in the field of geophysical exploration where the objective of a full reconstruc-

tion inverse problem is a 2D image or 3D volumetric rendering of the earth's internal

structure (eg. mass density, electrical conductivity, chemical composition, etc.) based

upon scattered energy collected at a few, irregularly, spaced well-holes using a suite

of measurement devices [37,40].

In other problems however, the detail of a full reconstruction is not needed; rather

one is interested in characterizing the structure of areas in the medium which are,

in some sense, anomalous; that is, regions where the nature of the medium differs

from some prior set of expectations. This anomaly detection problem (ADP) arises,

for example, in geophysical prospecting [401 where, from a perspective different from

the one encountered in the FRIP, one's interest is not in a precise description of

electrical conductivity or mass density at every point in space, but in detecting and

characterizing regions which contain oil or other petrochemical deposits. In many

medical imaging contexts, [511 one is fundamentally interested in localizing tumors.

Finally, describing the structure of cracks or other forms of material failure is the

overriding concern in many nondestructive testing applications [1,41,81].

Roughly speaking, the success of the methods considered in this thesis for ad-

dressing the issues arising in both classes of inverse problems rests on the ability to

control the greed inherent in many reconstruction efforts. By greed we mean the

desire to extract from the data far more information about the underlying quantity

than one has any business attempting to obtain given the observation geometry, the

physics of the problem, and the structure of the noise processes corrupting the mea-

surements. In the case of the full reconstruction problems, our approach is based

on the use of statistical models to describe the state of knowledge regarding the un-

known quantity prior to consideration of any information which may be embedded
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in the observations. Given these models as well as multiscale descriptions of the

data, the operators, and the function to be reconstructed, we develop quantitative

methods for understanding precisely how measurement sources possessing different

resolutions, noise characteristics, and spatial coverages contribute information to a

reconstruction above and beyond that already present in our prior model. Finally, we

combine this ability to pinpoint those degrees of freedom for which the data provides

any substantial information with wavelet transform methods to lower substantially

the computational complexity of the resulting inversion algorithms and obtain con-

siderable insight into the tradeoffs which exist between the accuracy of and resolution

present in the reconstruction.

In the case of the anomaly detection problem, inversion greed is controlled through

the use of a low-order parametric model to describe the geometric structure of anoma-

lous regions. Statistical analysis techniques are used to provide an understanding of

those structures which can be detected with a given level of reliability based upon the

nature of the model relating unknowns to the measurements and the spatial configu-

ration of the data collection process. The results of this analysis then are combined

with the computational and conceptual advantages offered by a wavelet representa-

tion of the problem in the development of an efficient, multiscale-based statistical

decision algorithm for localizing anomalous areas.

The remainder of this chapter is organized as follows. We begin in Section 1.1 with

a detailed discussion of the complications arising in the solution of inverse problems

and indicate how and why an approach based upon multiscale and statistical tech-

niques is of use. In Section 1.2, the specific contributions of this thesis are described.

Finally, the organization of the remainder of the thesis is presented in Section 1.3.

33



An Overview of Inverse Problems

1.1.1 Full Reconstruction Inverse Problems

A first major issue that must be confronted in solving an FRIP is that of the computa-

tional complexity associated with the solution of large dense sets of linear equations.

For the problems of interest in this thesis, such structures arise both when the model

linking the data to the unknown is linear [8,9,761 and in the case of nonlinear inverse

problems where many practical algorithms, including the one considered in Chapter

2, require the solution of a sequence of linear systems [100, 1041. In either case, the

task of solving such systems of equations can be prohibitively expensive especially

for problems involving large amounts of data and a very fine discretization of the de-

sired quantity. Additionally, the complexity of these equations not only makes them

a challenge to solve efficiently, but it also places a major impediment in the way of

other and equally important calculations. For example, in addition to obtaining the

reconstruction, it is often useful to compute a measure of confidence associated with

the inversion. For many problems however, the calculation of such "error statistics"

is a considerably more complex problem than calculating the estimates themselves.

As we will see, the use of the wavelet transform to produce multiresolution represen-

tations for the unknown field, the measurements, and the relationship between these

two quantities simplifies the analysis considerably, making complex calculations sim-

pler and prohibitively complex ones possible. Indeed, the results of Alpert, Beylkin,

and others [2, 3, 1 1] indicate that a wide array of linear operators (including those of

interest in this work) are "sparsified" by the wavelet transform. That is, the action

of the wavelet transform is to take these large dense matrices into large matrices

composed of many insignificant entries and very few large elements. Moreover, these

small entries can be set to zero with known and acceptable errors yielding matrices

which are extremely sparse. Thus, by transforming to scale-space, the inversion prob-

lem requires the solution of large, sparse systems of linear equations which can be

accomplished at a low computational cost using one of the many iterative routines

developed in the last decade [6].
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Additionally, characteristics of the data set available to the inversion algorithm

can create difficulties. In many full reconstruction inverse problems, a large quantity

of data from a suite of sensors is available for the inversion; however, the informa-

tion conveyed by each measurement process may be far from complete so that one

is confronted with the problem of fusing data from several sensors to achieve the de-

sired level of performance in the inversion. Hence, there is a need for understanding

precisely how data contributes information to a reconstruction and the manner in

which measurements from different sources are merged by the inversion routine. By

using multiresolution representations, the information provided by these data sets are

explicitly related to the corresponding scales in the representation of the underlying

field making fusion simpler to perform and transparent to understand.

In addition to the sensor fusion issue, the availability of the data often is limited.

For example, one may be constrained to collecting measurements on the boundary of

a region while the quantity of interest is to be estimated over the interior as is the case

in [14,15,22,114]. Here, multiresolution methods are well suited for the development of

flexible inversion algorithms capable of processing data possessing sparse or limited

spatial distributions. Lastly, our methods explicitly compensate for errors present

in the data which may arise from noise in the measurement apparatus, unknown

quantities associated with the experimental conditions, modeling errors induced by

the simplification of physics and the presence of nuisance parameters in the model.

Another major challenge concerning inverse problems is that they are frequently

ill-posed. Specifically, it is often the case that the spatial distribution of the data

and/or the structure of the operators relating the measurements to the unknown

quantity make exact inversion a mathematical impossibility or, at best, an unaccept-

ably sensitive procedure in which slight measurement errors are greatly magnified

by the inversion process. Traditionally, this difficulty is overcome via the use of a

regularization procedure which serves to stabilize the original inverse problem so that

a unique, physically plausible solution may be computed [9,57,76]. Indeed, even if

the problem is not ill-conditioned, a regularizer may be incorporated as a means of

constraining the reconstruction to reflect prior knowledge concerning the behavior of
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this function [80]. For example, it is common practice to regularize a problem so as

to enforce a degree of smoothness in the reconstruction [57,67,80].

However, use of standard regularization methods such as this is not without its

difficulties. First, the set of linear equations to be solved in order to obtain the regu-

larized solution to the problem are even more complex than the original system. For

the problems of interest in this thesis, the quantity to be reconstructed is related to

the data through a set of integral equations. Combining this model with a differential

penalty acting as a regularizer results in reconstruction algorithms which require the

solution of a system of integro-differential equations. In other words, the mismatch

between the integral measurements and the differential penalties serves to compli-

cate the original inverse problem. Also, as discussed in Section 2.2.1, regularization

techniques such as differential penalties have direct interpretations as specifying prior

statistical models on the phenomenon to be imaged. In principle, this provides a

basis for the calculations of error variances and for considering questions such as the

tradeoff between the resolution of reconstruction and the accuracy of the generated

image, the value of additional measurement sets, etc. However, performing such anal-

ysis using traditional regularization formulations is a formidable and often prohibitive

task.

In contrast, by using a wavelet-based multiresolution framework, we are directly

led to an alternative method for statistical regularization in the wavelet transform

domain that has a number of attractive properties. First, the class of multiresolu-

tion models available to us is extremely rich, allowing us to capture a wide range

of characteristics and constraints in our prior models. In this thesis, we consider

a very special and at the same time highly useful class of multiscale prior models,

the so-called fractal. prior model for the conductivity field. As shown in [80], this

model is loosely related to the traditional smoothness-based statistical regularizers

and, with appropriately chosen parameters, produces estimates with similar charac-

teristics. Moreover, Wornell [112] has shown that this model is useful for representing,

self-similar stochastic processes possessing 1/f-type power spectra of the kind that

are commonly used to describe natural phenomena arising in a variety practical ap-
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plications [421. Such a model is especially appropriate for the problems considered

in this thesis, particularly in contexts such as geophysical exploration [106]. The

fractal prior are exceptionally easy to implement [112], and lead to scale-space algo-

rithms which are orders of magnitude more efficient than those estimation schemes

operating in real-space using a regularizer based upon some differential operator [80].

Additionally, their direct scale-space form facilitates the explicit analysis of the trade-

off between the incorporation of fine scale detail in a reconstruction and the accuracy

in the resulting estimate.

Furthermore, rather than having a mismatch between nonlocal physics and local

differential penalties, the wavelet-based prior models are particularly well matched

to the multiscale representation of the physics of the problem as each provides de-

scriptions which are well localized in scale. The result is that we once again have a

sparse and highly structured set of equations to solve. More importantly, this frame-

work makes it possible for us to take a detailed look at the error statistics associated

with the inverse problem thereby providing a rational basis for dealing with the prob-

lem of reconstruction greed and the explicit analysis of resolution/accuracy tradeoffs

associated with the problem at hand.

1.1.2 Anomaly Detection Problems

Anomaly detection problems present a unique and equally challenging collection of

problems from those found in the full reconstruction context. Specifically, in seeking

to characterize the structure of anomalous areas, one is immediately confronted with

the difficulties of determining the number of such regions along with their spatial

locations, sizes and amplitudes. Conditioned on knowing the first three of these

quantities, the problem of amplitude determination is easily shown to be a variant

of the full reconstruction problem. Unfortunately, the number, sizes, and locations

of anomalous regions are all related to the data in highly nonlinear manners. Our

approach toward these issues is motivated by recently performed work in the area

of geometric reconstruction problems explored in the context of tomographic signal

processing in which the linear operator relating the unknown to the data is the Radon
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transform [73]. In each case, the objective of the problem is to determine the structure

of a collection of regions located in some larger areas of interest based upon a noisy

set of measurements. The general approach used in [13,44,921 to recover these objects

was based on the use of statistical techniques for determining a vector of parameters

describing the geometric structure of the underlying regions. For example, in [921,

Rossi and Willsky described their objects using three parameters: size, location, and

eccentricity, and formulated their analysis methods and reconstruction algorithms

using a Maximum Likelihood framework [105]. This work was later extended by

Bressler and Mackovski [13] and Fessler and Mackovski [44] in the consideration of

3D reconstruction problems.

In this thesis, we consider a parametric model for capturing the geometric struc-

ture of anomalous regions and make use of statistical techniques for the purpose of

performance analysis and as the basis for anomaly detection algorithms. Unlike Rossi

and Willsky, our parametric model is used to generate a multiscale family of possible

anomaly structures. The resulting detection algorithm then uses the tools of optimal

hypothesis testing rather than statistical estimation theory to make a sequence of de-

cisions as to which structures in this family are present in data. This decision process

is inherently multiresolution as it begins by hypothesizing the existence of coarse scale

structures (i.e. large in size) and then uses the results of these decisions to "zoom in"

on the actual anomalous regions. Additionally, because the algorithm is based upon

a statistical framework, we are able to analyze rigorously a variety of issues related

to our ability to detect single anomalies and successfully distinguish between pairs of

anomaly structures as a function of their sizes, locations and amplitudes. The results

of this analysis are then incorporated into the detection algorithm.

Finally, recall that for a given application, the only difference between the FRIP

and ADP is in the nature of the information we wish to obtain from the data. Thus,

the model describing the relationship between the observations and the unknown for

the ADP is identical to that of the FRIP, so that anomaly detection problems share the

difficulty of computational complexity with their full reconstruction counterparts. As

the manipulation of these models can be computationally intensive, we are motivated
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to consider wavelet-based representations of the anomaly detection problem.

L2 Contributions

The primary contributions of this thesis are derived from the use of methods from

the areas of wavelet transforms, multiscale modeling and statistical signal processing

in the development of (1) a collection of analysis techniques which provide significant

insight into the problems and challenges associated with the solution of inverse prob-

lems and (2) efficient algorithms capable of exploiting this information in the process

of performing the actual inversion. Specifically, we identify the following new results

obtained in this work:

1. In Chapter 2, we consider the relationship between traditional methods for

solving full reconstruction inverse problems and statistical estimation theory.

While the correspondence between regularized, linear inverse problems and

least-squares estimation with a prior statistical model is well documented [80],

we present a novel stochastic interpretation of a commonly used method for

solving the regularized, nonlinear least squares problem. Moreover, we utilize

this interpretation in the development of an efficient, reduced order, wavelet-

based inversion algorithm in Chapter 7.

2. In Chapters 3 and 5, we explore the use of multiscale and statistical methods

for analyzing and solving linear, full reconstruction inverse problems. Here, we

introduce a quantity know as the relative error covariance matrix (RECM) as

the primary tool for developing a quantitative understanding of the manner in

which data contributes useful information to a reconstruction. Specifically, the

RECM is shown to be of use in:

(a) Determining the appropriate level of detail to include in a reconstruction

which is

• Space varying

• A function of the physics of the problem
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• A function of our prior knowledge

• A function of the noise structure

(b) Model order selection

(c) Analysis of multi-sensor data fusion

(d) Experimental design

3. In Chapter 7, a multiscale, stochastic approach is used in the solution of the

full reconstruction, nonlinear generalization of the inverse scattering problem

considered in Chapter 5. The nonlinear nature of this problem implies that

the error covariance matrix information is not directly available so that the

RECM cannot be used in the analysis. Thus, the relative error covariance

matrix is replaced by the Relative Cram&-Rao Bound (RCRB) which, like the

RECM in the linear case, is used to pinpoint those degrees of freedom for

which the data provides any significant information beyond that present in the

prior model. Moreover, the algorithm used to perform the actual nonlinear

inversion is iterative in nature ostensibly requiring at each stage the solution

of a large, dense set of linear equation of dimension equal to the number of

pixels in the reconstruction. We utilize the RCRI3 to substantially decrease the

size of this system from iteration to iteration while at the same time allowing

for the calculation of full error-variance bound information at each step in the

procedure.

4. The application of our techniques to the linear anomaly detection problem is

considered in Chapter 6. The work here is divided into analysis and algorithm

development.

(a) In the area of analysis, we utilize the tools of statistical decision theory

in the consideration of two issues: anomaly detectability and distinguisha-

bility. In the former case, we explore how our ability to detect a sin-

gle anomaly is influenced by its structure (i.e. its size, spatial location,

and magnitude). In the latter case, we focus on the ambiguity which ex-
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ists when we attempt to distinguish one anomaly structure from another.

Specifically, we separately explore the effects of the relative amplitudes of

the two structures from their relative geometric configurations (i.e. their

locations and sizes).

(b) Given the above analysis, we formulate and analyze a detection algorithm

for ascertaining the number, locations, sizes and magnitudes of anomalous

regions in the overall area of interest. Our approach is inherently multiscale

in nature as we begin by conjecturing the existence of large-scale anomalous

regions and use a sequence of Generalized Likelihood Ratio Tests to refine

our prediction thereby localizing the true structures.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we present the

mathematical background for the work performed Chapters 3 through 7. Specifically,

we provide a statistical estimation-theoretic interpretation of traditional methods for

formulating and solving full reconstruction inverse problems and discuss elements

of statistical decision theory which are of import in our approach to the anomaly

detection problem. We conclude Chapter 2 with a review of relevant results from the

field of multiscale signal processing. Chapter 3 is devoted to the development of a

multiscale, stochastic framework for the solution of full reconstruction, linear inverse

problems. We show how multiscale methods are used to transform the linear problem

from physical to scale space. We continue with a formal definition of the relative

error covariance matrix and a discussion of its use in addressing a variety of issues

in linear inverse problems. Finally, to illustrate the performance of our methods,

various configurations of a one-dimensional, two-channel deconvolution problem are

considered.

For the remainder of the thesis, we explore the use of our techniques in the con-

text of an electromagnetic inverse scattering problem arising in the field of geophysical

exploration. In Chapter 4, we develop the necessary mathematical background for
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this problem including its derivation from Maxwell's equations and a detailed discus-

sion of a variety of algorithms currently employed to generate a solution to the full

reconstruction problem. Chapter 5 represents an extension of the ideas developed

Chapter 2 to a linearized version of the conductivity problem. Here, we consider

the reconstruction of both one and two-dimensional fields and analyze the problem

under set of different data-collection geometries indicative of other inverse scattering

applications [35,58,60,-13,90,1031.

Chapter 6 is devoted to the anomaly detection problem in the context of the

linearized inverse scattering problem considered in Chapter 5. Given this background

we analyze the issues of anomaly delectability and distinguishability as discussed in

Section 1.2. The results of this effort are used in the synthesis and evaluation of an

algorithm for detecting an unknown number of anomalous regions which exist against

a background of known statistical structure. In Chapter 7, analysis and algorithms

are developed for reconstructing the conductivity profile for the full nonlinear inverse

conductivity problem. We begin by developing the notion of the relative Cram6r-

Rao bound as an analog of the RECM for use in the analysis of nonlinear inverse

problems. Subsequently, a computationally efficient algorithm employing the RCRB

is developed and the performance is analyzed.

Finally, in Chapter 8, we summarize the results obtained in this thesis and indicate

directions for future work.
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Chapter 2

Preliminaries

In this chapter, we provide the mathematical background for much of the work to be

presented in the remainder of the thesis. In Section 2.1, a general form for the obser-

vation model to be used for both the full reconstruction as well as anomaly detection

problems is presented. A stochastic framework for full reconstruction inverse problems

is discussed in Section 2.2 and its relation to more traditional inversion techniques is

made clear. In Section 2.3, we review results from statistical decision theory which

will be needed in our approach to the anomaly detection problem (ADP). Section 2.4

is devoted to coverage of the relevant results from multiscale signal processing which

will be needed in later chapters. We begin in Section 2.4.1 by defining and explaining

the orthonormal discrete wavelet transform which serve as our primary vehicle for

moving from physical to scale space. Finally, in Section 2.4.2, we present a descrip-

tion of the fractal-like multiscale statistical prior models to be used as regularizers

and for capturing prior information in our inversion formulation.

2.1 The Observation Model

In this thesis, we consider inverse problems based upon data from multiple obser-

vation processes. We note that problems such as these arise frequently in practice.

For example, in the deconvolution example, one may have blurred and noisy data

from a collection of sensors (eg. cameras) each providing information about the same
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scene. In the case of geophysical prospecting, different frequencies of electromagnetic

radiation may be used to probe the earth in order to construct a map of the electri-

cal conductivity about a wellbore [4, 58, 104]. Alternatively for a given frequency, a

collection of experiments may be generated by changing the source and receiver con-

figuration. In other cases, data obtained from entirely different observation modalities

may be available for processing. Again, the field of oil exploration provides a typical

example in which electromagnetic information may be available in conjunction with

acoustic scattering data, rock cores, and fluid flow histories over a number of wells in

a particular region of space.

Each observation process is assumed to produce a vector of measurements, yi

where we use K to denote the total number of experimental data sets used. In

general, the model relating yi E Ri to the quantity under investigation takes the

form'

yi = hi(g) + ni (2.1)

where g E RNg is a discrete representation of the unknown, n. is a vector of additive

noise corrupting the data, and h is a mapping from RNg into RNi Finally, it will

often be useful to work with the "stacked" system of equations

y = h(g) + n (2.2)

for which

T= T T ... T]
Y 1Y1 Y2 YK (2.3a)

hT(g) = hT (g) hT(g) ... h T (g) (2.3b)
I 1 2 K

T= T T ... T ].n Inl n2 nK (2.3c)

'In general, (2.1) is obtained from the discretization of an underlying continuous-space model.
We defer until Sections 3.2.1 and 4.5 a detailed description of this procedure at which point the
deconvolution and inverse scattering problems are discussed directly.
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To a large extent the structure of the solution to the inverse problems is driven by

the nature of the hi. If, for all i, we have

zh.(g) - Tig (2.4)

for some collection of matrices Ti, then the inverse problem is labeled linear, otherwise

it is said to be a nonlinear.

2.2 A Statistical Approach For Full Reconstruc-

tion Inverse Problems

2.2.1 Linear Inverse Problems

We being by considering a linear inverse problem in which the data y and the quantity

to be reconstructed, g, are related through the model obtained by combining (2.2)

and (2.4), and (2.3b)

y = Tg + n. (2.5)

Here we are interested in a maximum a posteriori (MAP) approach to inversion for

which the recovery of g is based upon probabilistic models describing the behavior of

both the noise as well as g itself [105]. The statistical description of g is known as

a prior model and is intended to capture all knowledge regarding the structure of g

which exists before the information contained in y is processed.

In this thesis, we assume that both g and n are uncorrelated from one another

and distributed according to

g - Ar(�,Po) (2.6a)

n , A�(O, R) (2.6b)

where the notation x , Ar(a, B) indicates that the random vector x has a normal dis-
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tribution with mean a and covariance matrix B [105]. Moreover, recalling (2.3c), the

noise vector n is comprised of the disturbances from each of the K observation sources

in y. For simplicity. we assume that the ni are mutually uncorrelated and individually

white with intensity r.. Hence, we have that R = diag(rilNi, r2-[N2, rK'NK) with

1, the n x n identity matrix.

The MAP estimate of g based upon y is defined to be that vector, which maxi-

mizes the posterior distribution of g conditioned on knowing y. As discussed in [831,

for models of the form in (2.5), � is defined as the solution to the following optimiza-

tion problem

112 _� + jIg _ gJ12arg min Ily - Tg R 'P-1 (2.7)
9 0

where 11XIIA == X T Ax. Moreover, because (2.7) represents an unconstrained, quadratic

optimization problem, a closed form solution for � is given in terms of the normal

equations [83]

(TTR-'T +P6-1) g) = TTR-I(y - Tg). (2.8)

so that

� = g + (TTR-'T +P�' Y ITTIZ-I(y - Tp). (2.9)

Equation (2.7) is identical in structure to that found in most non-stochastic ap-

proaches to solving the linear inverse problem [28,76,108]. The only difference is that

in a non-stochastic setting, the second term on the right hand side is written as

jIg _ gJ12 _ g)112
LTL = JIL(g 2, (2.10)

As discussed in Section 1.1.1, L often represents a discrete form of a differential

operator and is used to regularize the problem by enforcing some degree of smoothness

in the reconstruction [28,761.
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The connection between these two formulations is made more explicit by noting

that (2.10) corresponds to a prior statistical model for g defined by the equation

L(g - �) - w w - A�(O, 1) (2.11)

so that LT L = 'P6-1. Thus, the differential operator used to regularize the problem in

the non-stochastic approach basically defines the inverse of the prior model covariance

matrix. In most cases, (L TL)-' is a full matrix (as opposed to diagonal, banded, or

otherwise sparse structure) which can be difficult to manipulate especially for large

problems. In Section 2.4.2 we demonstrate that by posing the inverse problem in

scale space, prior models may be specified for the wavelet transform of g which, while

diagonal in the transform domain, roughly correspond to regularization by differential

methods in physical space. Moreover, because we choose to use a stochastic interpre-

tation, these models allow for the computation and analysis of error statistics which

is central both to our analysis of inverse problems and to the synthesis of efficient

inversion algorithms.

In addition to the connection between (2.7) and non-statistical approaches to

linear inverse problems, a few additional remark are in order regarding (2.7) and

(2.8).

1. If one lifts the Gaussian requirement on the noise and prior models and assumes

only that the second order statistics are given by 7Z and 'Po respectively, then

(2.7) no longer corresponds to the MAP estimate of g given y, but, as discussed

in [1111, represents the Linear Least Squares Estimate (LLSE) of the vector g,

that is, the statistically optimal estimate of g which uses the data y in a linear

manner. Nonetheless, we retain the models in (2.6) as Gaussianity is required

in consideration of the anomaly detection problem.

1122. The two terms in (2.7) influence � in different ways. The expression y - Tg 1Z_

enforces fidelity to the data while jjg - g1j.,-1 causes � to reflect the structure of

the prior mean, 9, and covariance, 'Po. Roughly speaking, the relative impor-

tance of the two terms is determined by the structure of the covariance matrices
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'Po and R. High observation noise results in decreased emphasis on the data

term whereas "large" 'Po indicates the absence of reliable information in the

prior model resulting in increased weight on the measurements.

3. As seen in (2.8), the component of � related to the prior mean � is entirely

deterministic and independent of the data. Hence, for convenience, in all future

work we assume that g = 0.

An estimation-theoretic approach toward inversion is especially useful because it

provides a framework for generating not only �, but also an error covariance matrix

(ECM) which is used to evaluate the accuracy of the estimator. Indeed, as seen

repeatedly throughout the remainder of this thesis the ECM, acting as a quantitative

indicator of reconstruction performance, plays a key role in developing a rigorous

approach toward the understanding of the ways in which each observation process

contributes information to estimate of g. For linear inverse problems, the ECM, 'P,

is defined according to

'P E [(g _ �)(g �T)]

(T TIZ- 'T +'pV)-l (2.12)

so that P is the inverse of the matrix on the right hand side of the normal equations,

(2.8). The diagonal components of P, the error variances, are commonly used to

judge the performance of the estimator. Large values of these quantities indicate a

high level of uncertainty in the estimate of the corresponding component of g while

small error variances imply that greater confidence may be placed in the estimate.

2.2.2 Nonlinear Inverse Problems

In the event that the problem under consideration is not linear, then an MAP estimate

may still be defined as the solution to an optimization problem; however, closed-form

expressions for � and 'P as in (2.8) and (2.12) are not available in general. Given

the nonlinear model relating g to y in (2.2) and assuming that both 9 and n are
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distributed according to (2-6), the maximum a posteriori estimate of g is now defined

as the solution to [111]

arg min Ily - h(g)11' -, + jj_q - all' (2.13)R 'Pl�
9

where the two terms again have the interpretation discussed above for the linear case.

Additionally, as in the linear problem,, (2.13) arises in many non-statistically based

inversion methods where 'P�' is taken as L'L with L specified to achieve some type

of regularization.

Equation (2.13) has the structure of a nonlinear least squares problem for which

the Gauss-Newton (GN) algorithm is often used to perform the maximization [78,

100, 104]. Specifically, � is generated iteratively starting from some initial guess

At the k" stage, �k is defined as

�k+l = �k + Sk (2.14)

with s' is the solution to the following linear system

(�k )] TR_, [ (�k) k = (�k T R-I+ [7g h 179 h S [7g h ly - h p�l�k

(2.15)

j)Ihand where V h(g) is the matrix whose t component is 9h-(g)1,9gj- The theo-9

retical issues associated with convergence of the Gauss-Newton iteration to a local or

global minimum of (2.13) may be found in [521. Likewise, we defer until Chapter 7 a

discussion of how we treat the choice of �' and termination of the algorithm.

While explicit expressions for 'P in the general nonlinear estimation problem are

not available, there do exist a variety of easily computable lower bounds which indicate

the best mean square error performance one may hope to achieve from the MAP

estimator. Perhaps the most widely used is the so-called Cram6r-Rao bound (CRB)
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discussed in [1051 which for the problem defined by

y == h (g) + n g - V (0, 'Po) n (0, R)

takes the form [1111

'PCRB = (P�' + [17g h (g)ITR-1 [17g h(g)])-1. (2.16)

Moreover we have that

'PCRB < 'P

T < XT-pX.in the sense that for any vector x, x -PCRBX -

Now, comparing (2.16) to (2.15), we see that 'PCRB is the inverse of the matrix

on the left hand side of the linear system defining the Gauss-Newton iteration which

is similar to the presence of 'P-' on the left hand side of (2.8). This suggests a close

relationship between the MAP approach to the solution of the linear problem and

the Gauss-Newton algorithm for the nonlinear case. To be more precise substituting

(2.12) into (2.8) allows us to write the normal equations for the linear problem, (2.8),

as

T TR- I (Y - Tg). (2.17a)

Similarly, using (2.16) in (2.15) and recalling (2.14) places (2.15) in the form

'P-1 W+1 - �k) - (�k) T'R-I (�k)]
CRB -k 179 h y - h PV�k (2.17b), g I I

where 'PCRB, �k is (2.16) evaluated at g = �k - Aside from the term 'P�-'� on the right

hand side of (2-17b), (2.17a) and (2.17b) have precisely the same form. Specifically,

�k may be thought of as the best estimate of g produced by the GN algorithm up

to the k Ih iteration and thus serves the same purposes as the prior mean � for the

linear case. The matrix 179 h(�k) represents a linearization of the dynamics about �k

and takes the place of T. Moreover, the estimates, j and jk+l, are both obtained by
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operating on the residuals (i.e. the difference between the true data and an estimate

of the data produced by our current best guess as to the structure of g), y - Tg and

y - h(�k) , respectively. Finally, while the true error covariance matrix is used in the

linear case, (2.17b) makes use of the Cram6r-Rao bound evaluated at the point k .

Thus, we interpret the Gauss-Newton procedure as producing a sequence of "local"

linear, MAP estimates where the notion of local is intended to capture the fact that

the normal equations have basically been linearized about �k , and the exact error

covariance matrix. which is not available, is approximated by the CRB. This parallel

structure leads us to suspect (and in fact show in Chapter 7) that much of the insight

gained through the analysis of a multiscale and stochastic approach to solving linear

inverse problems will be applicable to the nonlinear case as well.

2.3 Elements of Statistical Decision Theory

Because only linear anomaly detection problems are considered here, (2-5) represents

the model relating the quantity to be determined to the data; however, to describe

anomalous regions, we interpret (2.6a) in a slightly different manner than in the full

reconstruction context. Specifically, we take 9 to be the sum of two components:

j - ,V(O,'Po), which specifies the expected behavior of the unknown in the absence

of anomalies, and � which captures the structure (i.e. number, position, sizes and

amplitudes) of the anomalous regions. Hence, we still have the model g - Ar(gPo),

but the objective of the anomaly detection problem is to recover the unknown, but

deterministic, g rather than g.

While we could formulate the anomaly detection problem using the tools of Max-

imum Likelihood estimation theory [105], which provides a framework similar to the

MAP approach developed in the previous section, in Chapter 6 we consider a sta-

tistical decision-theoretic methodology for reconstructing g which is based upon a

sequence of M-ary Hypothesis tests as a means of localizing an unknown number of

anomalous regions. The mathematical description of the each such test begins with

the formulation of M hypotheses, Hi for i = 1, 2, ... , M - 1, corresponding to M
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different configurations of anomalous areas. Recalling the measurement model (2.5),

as well as the stochastic descriptions of the noise and prior models we have that each

Hi is defined as

H, : y -- Tgi + T� + n (2.18)

so that under Hi, y - (T�jP,) where, assuming that � is uncorrelated from n,

Py - E [YYT] - TPOTT + R.

The hypothesis test is implemented as a rule which when given the data, indicates

which of the Hi is true. While a full analysis of the M-ary problem for the model in

(2.18) may be found in [105, 1111, in this thesis, we consider the following algorithm

for selecting a hypothesis:

0 maxj Lj (y) < 7
Choose Hi with (2.19)

arg maxi Lj (y) otherwise

where for j = 1, 2, M - I

Lj(y) = 1j(y) - 10(y)

and

T -TT T)p-l(y - Tgj) - 1 log det (PY)1j (Y) (Y _ 9j Y (2.20)2 2

The M - 1 log-likelihood functions, Lj, represent comparisons of the hypotheses

1 through M against the null hypothesis, Ho. Essentially the structure of (2.19)

indicates that Ho represent a "default" choice. In other words, (2.19) implies, if the

largest Lj does not exceed the threshold -r (that is if the data does not provide us

sufficient cause to choose one of the HI-HM-1), we select the default; otherwise, we

take that j with the largest log-likelihood.
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In Chapter 6, it will be the case that the nature of g is not entirely known so that

a straightforward implementation of (2.19) cannot be pursued. In this case however,

we shall write the hypothesized anomaly structure in (2.18) as

gj = Bj v,- (2.21)

where Bj are known matrices and vj are unknown vectors. Given this configuration,

we pursue a solution to M-ary hypothesis testing problem using the Generalized

Likelihood Ratio Test (GLRT) [105] in which the Maximum Likelihood (ML) estimate

of v.. is generated assuming that Hj is correct, and the result is used in the likelihood

ratios, Lj. Based upon the model describing the relationship between the data and

gj in (2.19), the ML estimate of vj is [105]

TrT D- Tp-ly.�j = (B. L L 1TBj)-1B7T (2.22)
3 Y 3 Y

Substituting (2.22) into the definition of 1 in (2.20) and rearranging terms allows

Lj (y) to be written as

L (y) = YTP-i T Tsj T Py- IY (2.23)Y

where

Bj(B P-'TBj)-'Bj - Bo(B TTT T Tp-'TBO)-'Bo. (2.24)
Si i , 'Y 0

While the algorithm for extracting anomaly information is based upon the M-

ary GLRT, much of the analysis of the anomaly detection problem is performed in

the context of the binary hypothesis testing framework in which two alternatives, go

and g-I, are compared. Traditionally, the analysis of the binary hypothesis testing

problem centers around two quantities, Pd, the probability of choosing Hi given that

HI is in fact correct (d detection) and Pf the probability of mistakenly selecting

HI when Ho is true (f false alarm). Generally, one hopes to make Pd as large as
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possible while keeping Pf relatively small; however, the relationship between these

two quantities is not arbitrary. In fact for the linear-Gaussian model considered in

this work, it is shown in [105] that:

7 d
Pf erfc d+ 2 (2.25a)

T d
Pd erfc* - - - (2.25b)

d 2

where

erfc- (x) = 00- 1 60 /2 dt
x 7, 27

and d 2 is defined as

d2 = (g, _ go)T T T Pu-'T(g, - go). (2.26)

Eliminating 7 from (2.25a) and (2.25b) yields the following relationship among d, Pd,

and Pf

d = erfc-*'(Pf) - erfc-*'(Pd) =_ 7r(Pf, Pd). (2.27)

Thus, based upon (2.27) we see that our ability to distinguish between two anomaly

structures is intimately related by the so-called d 2 statistic [105]. In particular, for a

given Pf, we have that larger d 2 results in larger Pd and therefore better performance.

2.4 Elements of Multiresolution Signal Processing

2.4.1 The Discrete Orthonormal Wavelet Transform

As discussed in Chapter 1, the inversion algorithms and analysis techniques described

in this thesis are carried out in the wavelet transform domain. In this section we

describe the primary tool for obtaining a multiscale representation of the functions

and operators of interest that is, the discrete, orthonormal wavelet transform.
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The fundamental idea behind the discrete wavelet transform (DWT) is to decom-

pose a signal, here represented as a vector, into a sequence of increasingly "coarser"

representations while at the same time retaining the information lost in moving from

a fine to a coarse scale. In our case, we will be concerned both with one and two

dimensional signals where for simplicity, we first describe the wavelet representation

and notation for a ID signal vector, a. Following the wavelet literature, the elements

of this vector are termed the finest scale scaling coefficients associate with a, and the

vector a is denoted by a(Ma) indicating that these scaling coefficients represent a

at scale Ma. The scale number reflects the number of elements in a. Typically, we

consider vectors of length 2' for which the scale number is the integer m.

Beginning with a(Ma), a coarser representation (that is, a coarser set of scaling

coefficients), a(M, - 1), is obtained by first passing a(Ma) through a low pass, finite

impulse response (FIR) filter, 1, and then decimating the filtered output by a factor

of two. Thus, a(Ma - 1) is "coarser" than a(IW,) in that the filtering/downsampling

procedure has removed the high frequency structure from the original signal, and

a(Ma - 1) is half as long as a(Ma). The detail lost in moving from a(Ma) to a(Ma - 1)

is extracted separately by first high pass filtering a(Ma) with the FIR filter h and

then downsampling by two. This detail vector is denoted a (Ma - 1). The filtering and

decimation procedure is successively applied to the coarsened versions of a resulting

in a sequence of scaling coefficient vectors, a(m), and a sequence of detail vectors,

a(m), form = Ma - Lawhere La is the coarsest scale at which a is represented.

Thus, at scale m, we have

a(m) = L(m)a(m + 1) (2.28)

a(m) = H(m)a(m + 1) (2.29)

where L(Tn) and H(m) are operators (i.e. matrices) representing the filtering and

decimation operations with the filters 1 and h respectively.

As described extensively in [30], the filters 1 and h are constructed so that H(m)
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Figure 2-1: Wavelet transform pyramid.

and L(m) satisfy the so-called perfect-reconstruction properties

L(m)L*(m) 1 (2.30)

H(m)H*(m) 1 (2.31)

L*(m)L(m) + H*(m)H(m) = 1 (2.32)

where H*(m) is the adjoint of H(m). Using (2.28), (2.29) and (2.32), we see that

a(m + 1) is obtained from its coarse scale representation and the detail at scale Tn via

a(m + 1) = L*(m)a(m) + H*(m)a(m). (2.33)

Iterating (2.33) provides the mechanism for obtaining the scaling coefficients of a

at scale m for La < 'M <_ Ma using the coarsest scale scaling coefficients a(La) and

intervening detail coefficients a(n) for La < n < m - 1. Specifically:

M-1
a (m) = L (m - 1, La) a (La) + 1: 'H (n, La) a (n) (2.34)

n=La
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where

0 m < n - I

m--n- I
L (m, n)

L* (m) m = n

L* (m) L* (m - 1) ... L* (n) m > n

'H (m, n) L (,rn, n + 1) H* (n).

By choosing rn = Ma in (2.34), we may construct an operator, 2 W,, from H(m) and

L(m) which relates the finest scale scaling coefficients, a =_ a(Ma), to the coarsest

scaling coefficients. a(La), and the full set of detail coefficients a(m) for scales m

La, La + 1, ... , Ma. That is, we may write

a = Waa (2.35)

where a = [a(Ma - 1)' a(La)' a(La)']' and W, satisfies WaWj - I. We call

the vector a the wavelet transform of a. The n" element of a(m) is denoted a(m, n)

and is referred to as the n'h shift of a at scale m. Similarly, a(m, n) represents the

nth element of the vector of scaling coefficients at scale m.

Given this implementation of the DWT, the relationships among the scale space

components in the decomposition of a are graphically represented in the form of a lat-

tice as shown in Figure 2-2 for the case of a wavelet decomposition with I(n) and h(n)

of length 4 (such as the so-called "D4" or Daubechies 4-tap wavelet decomposition

described in [30].) The coefficients at any scale all lie on a common horizontal line

with the finest scale coefficients at the bottom of the lattice and the coarsest at the

top. At the finest scale, the nodes represent the finest set of scaling coefficients. Each

node at all other scales contains one wavelet coefficient except for the top scale where

the nodes contain the coarsest wavelet and coarsest scaling coefficients. Finally, two

2We choose to subscript the wavelet transform operator here as Wa to make explicit that this
is the transform for a. We may (and in fact wilo use different wavelet transforms for the different
variables.
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nodes are connected by an arc if and only if there is a linear relationship between the

contents of these nodes as dictated by the structure of the wavelet transform matrix

W. -

For future reference we define some terminology related to the lattice structure in

Figure 2-2. In particular, a coarse scale node is said to impact a finer scale if there

exists a strictly downward path on the lattice from the former to the latter. Thus,

we define the downward impact set, D* n) associated with node (m, n) (i.e. the

node at scale m and shift n), as the set of finest scale nodes which (m, n) ultimately

impacts. Thus in Figure 2-2, D(O) is comprised of all nodes marked with the symbol

44m)).

The wavelet decomposition of the scaling coefficients of a two dimensional function

is obtained by considering a as a matrix and applying one wavelet transform, Wa,.,, to

the columns and a second wavelet transform, Wa,.,, to the rows. In general, Wa,, and

Wa,., may each use different I and h filters and associated with each transform are a

finest and a coarsest scale of interest which we denote Ma,, and La,, for c EE f X, z

We use )/Va to represent the composition of the operators I/Va,., and Wa,, and write

a =_ Wa a = Wa,, a Wa*,.,. (2.36)

Furthermore, we note

()/Va* I/Va) a)/Va*,. (Wa,. a)/Va*,.,) Wa,.

(1)a(l) -_ a.

so that WaWa = 1. As in the 1D case, we denote a particular element of a by a(M, n).

Here, we understand m and n to be two-vectors indexing the scales and shifts in the

x and z directions, i.e. m = IMX MZ] T and n = [n., n, ]T respectively. Also, we use the

notation a(m) to indicate the collection of wavelet coefficients at all shifts and at scale

M = [Mx Mz]T. As shown in Figure 2-3, in the two dimensional case a is a matrix

composed of four type of blocks representing the different combinations of wavelet and
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0 (X(M-2,n)

(X (M-2)

C�M-1)

< a(M)

a(Mj) j th component of a(M)

Element of a at scale M and shift j

Figure 2-2: A sample lattice structure corresponding to a D4 wavelet transform. The
finest scale is taken as Ma while the coarsest is La.

scaling coefficients in the x and z directions. Unlike the 1D case, the two-dimensional

wavelet transform induces a four dimensional lattice structure in scale space with two

dimensions for scale and two for shift. Nonetheless, we define downward impact sets

in the same manner as was the case in 1D. That is, D(m, n) is the set of nodes in a

which are impacted by a(m, n). Finally, the 2D set of approximation coefficients for

a at scales mx and mz with La,., <_ M, < Max and L,,z < m, < Maz is obtained by

applying (2.34) twice: the first time to the columns of a using the filters laz and haz

and the second time to the rows using lax and ha,.,-

2.4.2 Multiscale Prior Models

A key component in our formulation of the inverse problem is the use of a multiscale

stochastic model for 9. In the case of full reconstruction problem this model serves

both to regularize the problem and as a means of capturing prior information. For

anomaly detection problems, the prior model describes the expected background be-

havior of g against which we will wish to isolate anomalies. To motivate the particular

choice of prior model used here, consider a one dimension problem and (2.11) with

L representing first order differentiation. In this case, g is a Brownian motion. As
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Figure 2-3: Two dimensional Wavelet transform matrix, a Waa.

discussed in [80], Wornell and others [32,45, 101] have demonstrated that Brownian

motions and other related fractal processes can be closely approximated via a statis-

tical model in which the wavelet coefficients, -y, of g are independent and distributed

according to

-�(m, n) - (0,,7'2-1m). (2.37)

where -y(m, n) is the wavelet coefficient of g at scale m and shift n. In (2.37), a 2

controls the overall magnitude of the process and the parameter A determines the

fractal structure of sample paths. The case p = 0, corresponds to g being white noise

while as p increases, the sample paths of g show greater long range correlation and

smoothness.

In addition to defining the scale-varying probabilistic structure of the wavelet

coefficients of g, we also must provide a statistical model for the coarsest scale scaling

coefficients. Roughly speaking, these coarse scale coefficients describe the DC and

low spatial frequency structure of g. In the applications we consider here, we assume
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that we have little a priori knowledge concerning the large-scale average value of g.

Consequently, we take 9 (Lg) - (0, PL9 1) where PL9 is some sufficiently large scalar. By

choosing PLg in this manner, we avoid any bias in the estimator of the low frequency

structure of g. Finally, we note that for these models, the resulting matrix Po in (2.6a)

is diagonal with nonzero entries corresponding to the variances associated with each

component of the -y-

For the case where g is a two dimensional function, we consider the separable

representation with

-y (m, n) - (0, a2U22-(/""m-+/L'm-))X Z

for L9,x < m < Mgx - 1 and Lgz < m < Mgx - 1. For elements of -y corresponding to

the x-oriented scaling function coefficients at scale mx = Lgx and z-oriented wavelet

coefficients at scale mz, we take -y(m, n) - (0, PL9'. 922-(P,'�mz)) with analogous results

holding when n = LgIZI

Clearly, other choices of statistics for the components of -Y may be appropriate

in specific applications, and our methodology can readily accommodate these. The

specific choice we have made, leading to a Ilf -like fractal model, is particularly well-

adapted to the multiscale formulation of many inverse problems. Specifically, in addi-

tion to the utility of these models for capturing natural phenomena, the successively

decreasing variances of the fine scale wavelet coefficients control the incorporation of

high frequency information into the reconstruction. As will be seen in Chapters 3

and 5 the smoothing action of many integral kernels implies that the data has suc-

cessively decreasing sensitivity to finer scale variations in g. The value of this fine

scale sensitivity, of course, depends not only on the sensitivity of the measurements

to fine scale fluctuations in g, but also on the expected size of fine scale detail in rela-

tion to the corresponding scale of noise fluctuations. The particular choice of a fractal

model provides us with one physically meaningful way in which to specify the tradeoff

which in turn determines the way in which the resulting estimation algorithm makes

effective use of the data only over those scales where useful information is present.
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Chapter 3

A 1\4ultiscale, Stochastic

Framework for the Solution of

Linear Inverse Problems

3.1 Introduction

In this chapter, we explore the use of an estimation-theoretic approach to the solution

of full reconstruction, linear inverse problems based upon multiresolution descriptions

of the data, the underlying unknown and the operators linking these two quantities.

In particular, the methods of Section 2.2.1 and 2.4.1 are employed in the construction

of a maximum a posteriori estimator for determining the components of the wavelet

transform of the desired quantity given scale-space representations of the different

data sources. The combination of these two techniques proves to be quite useful in

addressing many of the difficulties discussed in Chapter I which arise in the consid-

eration of problems of this type.

First, the algorithms developed in this chapter are unique in their ability to over-

come many of the data-oriented difficulties associated with full reconstruction inverse

problems. Specifically, they are designed for the processing of information from a

suite of sensors where the sampling structure of each observation process may be
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sparse or incomplete. Given this ability to merge data from a variety of sources, we

develop a quantitative theory of sensor fusion by which we are able to understand

how information from a collection of observations is merged to form the reconstruc-

tion. The insight provided by our analysis is used to define the optimal scale of

reconstruction as a function of (1) the physics relating the unknown quantity to the

measurements and (2) the spatial coverage and measurement quality of the data each

observation source provides. In general, such an approach leads to a space-varying

optimal scale of reconstruction which allows for the recovery of fine scale detail only

where the data supports it. At other spatial locations, a coarser approximation to the

function is generated. In the multisensor case, not only can a space-varying optimal

scale of reconstruction be defined, but at any point in space and scale, only data

from those sources contributing significant information need be processed. Thus, the

computational burden associated with performing the inversion can be reduced. Also,

our techniques are useful for capturing the incremental benefits associated with the

addition of information from a set of observations to a reconstruction based upon

data from a different group of sensors.

The remainder of this chapter is organized as follows. In Section 3.2 we formulate

the multisensor linear inverse problem and discuss its transformation to scale space.

Section 3.3.2 is devoted to a presentation and discussion of the relative error covari-

ance matrix which serves as the primary tool for the analysis of the full reconstruction

linear inverse problem. A set of examples highlighting the contributions of this work

are presented in Section 3.4. Finally, conclusions are given in Section 3.5.

3.2 Problem Formulation

3.2.1 The Measurements Model

In this chapter and in Chapters 5 and 8, we are concerned with inverse problems

for which the data upon which the inversion is to be based, yi(r), is related to the

function to be reconstructed, g(r), via a system of linear integral equations embedded
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in additive noise. Moreover, the measurements are available only at a finite number

of points in space rj for 1, 2, Ni and a reconstruction of g(r) is desired over

a bounded region labeled A. Hence the observation model takes the form

yj (rj) - f Tj (rj, r') g (r') dr' + ni (r i - 1, 2.... K. (3.1)

where the integral kernels, Tj (r, r'), and the characteristics of the noise processes ni (r)

are known. The variable r could represent one, two, or three spatial dimensions. As

a first step in understanding the advantages and utility of a multiscale, stochastic

approach to the solution of systems of equation of the form given in (3.1), 1D problems

are considered in this chapter although in later work, we explore the reconstruction

of two dimensional functions.

The noiseless version of (3.1) is known as a first kind Fredholm integral equation

[66, 76]. This type of structure arises frequently when considering physical systems

described by ordinary or partial differential equations [54,91]. Additionally, as we shall

see in Chapter 4, such relationships may be encountered as a result of linearization of

a second kind integral equation [68, 70, 99]. When Tj (r, r') = Tj (r - r'), the problem

of obtaining g based upon yj is known as a deconvolution problem and is encountered

widely in practice [56,71,77,84]. Thus, the mathematical structure to be considered

in this thesis is quite general and may be used to describe a wide variety of practical

problems.

A key feature of the linear integral equation modeling structure is its flexibility. By

specifying the structure of the kernels, multisensor fusion problems can be described

wherein the data from individual sources conveys information about 9 at a variety

of spatial scales. For example, in Section 3.4, a two channel problem (i.e. i =

1, 2) is considered. The kernel functions in this case satisfy Tj (r, r') = Tj (r - r') =

Tj(�) for' i E If, cl and are plotted in Figure 3-1. The kernel labeled Tf gives

essentially pointwise observations thereby supplying fine scale data for the inversion.

'Note that throughout this chapter the subscript f is used to denote quantities associated with
the fine scale observation process while the subscript c is used for the coarse scale measurements.
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Figure 3-1: Convolutional Kernel Functions

Alternatively, T, performs a local averaging of the function g so that y, provides

coarse scale information regarding the structure of g.

The manner in which information from each of these data sources is used in an

inversion is affected by both its quality and quantity. The quality of the data is de-

termined by the level of noise, n., present in the signal (3.1). Generally, the larger

the noise intensity, the less reliable will be the data. The quantity of data refers to

the number and spatial distribution of samples available to an algorithm. Clearly,

altering the number or locations of the points rj changes the nature of the information

conveyed by the data thereby impacting the way in which a particular observation

process contributes to a reconstruction. In Section 3.4, we illustrate several variations

of data quality and spatial distribution for the two channel problem mentioned previ-

ously which are illustrative of physically meaningful measurement configurations and

which allow us to demonstrate the capabilities of our formalism both in exposing the

resolution tradeoffs in multisensor fusion and in dealing with nonuniform sampling

patterns to which standard Fourier-based deconvolution methods are inapplicable.

Finally, implementation of any inversion algorithm requires a discrete representa-

tion of (3.1). This task is accomplished here using a method of moments approach as

described in [64,1041. In particular, g(r) is expanded using a pulse-type basis in which

this function is assumed to be constant over a regular grid covering the region A. For

1D reconstructions, this grid takes the form of a collection of equally-sized intervals

while in two dimensions we have a collection of square pixels. Mathematically, g(r)
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is represented by the sum

Ng

g(r) E gkXk(r) (3.2)
k=1

where Xk (r) is the characteristic function over Ak, the k Ih element in the discretization

of A. Denoting yi, y (rj), nij = n (rj), and substituting (3.2) into (3. 1) yields for

j = 1, 2, Ni

Ng

Yij E [Tiljk A + nij (3.3)
k=1

with

[Tilik Tj (rj, r/) dr/.

Collecting together the Ni equations defined by (3-3) yields the matrix-vector rela-

tionship

yj = Tig + ni (3.4)

where as described in Section 2.2.1, ni - Ar(O, ril). The matrices Tf and T, cor-

responding to the two convolutional kernel functions of Figure 3-1 are displayed in

Figures 3-2(a) and 3-2(b).

3.2.2 Transformation to Wavelet Space

Per the discussion in Section 2.4.1, we think of (3-4) as relating a collection of finest

scale scaling coefficients of g and samples of the noise processes to the samples of the

observation process yi. For the purposes of inversion, we desire a relationship between

the wavelet transforms of g and ni and the transform of the data. Toward this end,

we use the results of Section 2.4.1 to define discrete wavelet transform operators, I/Vi
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Figure 3-2: Grayscale plots of the convolution matrices Tf and T,. Darker coloring

indicated larger magnitudes. The concentration of Tf near the diagonal implies that

yf = Tf g + nf represents close to pointwise observation of g and therefore will convey

"fine scale" information regarding the structure of g. Alternatively, T, essentially

conveys "coarse scale" information about g as much of the fine scale variation in g is

removed under the averaging action of this operator.

and )IV,, that take yi and g into their respective wavelet representations:

ni = I/Vi Yi (3.5a)

7 = )Ivgg (3.5b)

In Table 3.1, we have summarized the notation that we will use. For example, for the

data yi, the corresponding wavelet transform qi consists of wavelet coefficients qi(M),

Li < m < Mi - 1, and coarsest scale scaling coefficients yi(Li). Also, if we form only

partial wavelet approximations from scale Li through scale M, the corresponding

scaling coefficients (which are obtained from y-(Li) and 77i(k), L. < k < m - I using

(2.34)) are denoted by yi(m). We adopt the analogous notation for the function g

and the noise ni where in general we use the letters (y, g, n) for the original data

and scaling coefficients and their Greek counterparts (77, -y, v) for the full wavelet

transforms and the wavelet coefficients.

In our analysis of (3.4), Wi and Wg are used to move from physical to scale space
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Wavelet Wavelet Scaling Finest Coarsest
Quantity Transform Coefficients Coefficients Scale Scale

Data yj 77i Vviyll qi (M) Yi (M) Mi Li
Function g(x) -� Wgg -� (Tn) g(m) mg L9

Noise ni vi )/Vini vi (m) ni (m) Mi Li I

Table 3. 1: Notation for wavelet and scaling coefficient vectors

in the following manner

-qi = Wi y (Wi Tj Wg*) (Wg g) + Wi ni

E)i-y + vi (3.6)

where Wg*Wg _- I follows from the orthonormality of the wavelet transformation.

Finally, it is often useful to work with the scale-space analog of (2.5)

,q = O-y + v (3.7)

where

T = [,qT T ... T]
T/ 1 IR2 77K

T = J(T E)T ... E)T
1 2 K

T_ T T T]
V [VI 1/2 ... VK

with v (0, R), R = diag(RI, R2 ..... . RK), and Ri = ril.

3.3 Multiscale, Statistical Inversion Algorithms

3.3.1 Scale-Space MAP Estimation

In analogy to the discussion in Section 2.2.1, (3.7) allows us to define a regularized in-

verse problem, or equivalently, an MAP estimation problem, in the wavelet transform

domain. Specifically, we wish to reconstruct y based on a prior model (i.e. regular-
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izer) of the form -y - (0, Po), together with the noisy measurements (3-7). That is,

the estimate, �, is defined as

arg min 11,q - 8-�Jj' _� + 11-y1j'P�-1 (3.8)

and satisfies normal equations of the form

((9T R-'O + P�-')� = (9T R-'i7 (3.9)

with the corresponding error-covariance matrix given by

P = E[(-y _ �)T(_� _ q

= (oT R-18 + P6-1)-l. (3.10)

Comparing (3.8) (3.9), and (3.10) to (2.7), (2.8), and (2.12), we see that the

wavelet transformation has left us with a formulation for the full reconstruction inverse

problem of exactly the same structure as we had in physical space. The advantages of

this transformation come from two important facts. First, the measurements operator

E) in the wavelet domain is far more sparse than the operator T. Second, as we saw

in Section 2.4.2, the inverse of the prior covariance P6-1 can be taken to be diagonal.

As a consequence of the sparsity of 8 and the diagonal nature of P(T1, not only can

(3.9) be solved efficiently, but also the the matrix to be inverted in (3-10) is sparse

with diagonal regularization provided by PC' thereby facilitating the computation of

the inverse and in particular of the diagonal elements of P corresponding to the error

variances in each of the wavelet coefficients in our multiscale representation of g.

In fact, the sparse structure of (3.9) makes this system ideally suited for solution

using one of the iterative matrix solvers recently developed [6,53,87,881. In general,

these methods are quite useful for obtaining y without explicitly inverting the left

hand side of (3.9); however, they are incapable of computing the error-variances

(i.e. the diagonal elements of P) in a numerically stable manner. In Appendix A,

we present a new iterative procedure based upon the LSQR algorithm of Paige and
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Saunders [87,88] designed to solve the normal equations for � and compute the error

statistics required in our analysis of the inverse problem.

3.3.2 The Relative Error Covariance Matrix

A key advantage of the use of statistical estimation techniques is the ability to produce

not only the estimate of -y but also an indication as to the quality of this reconstruction

in the form of the error-covariance matrix P defined in (3.10). While the information

contained in P is certainly important for evaluating the absolute level of uncertainty

associated with the estimator, in many cases, it is more useful to understand how

data serves to reduce uncertainty relative to some reference level. That is, we have

some prior level of confidence in our knowledge of -y and we seek to comprehend how

the inclusion of additional data in our estimate of -y alters our uncertainty relative to

this already established level. In this section we define the relative error covariance

matrix (RECM) and demonstrate its utility as a tool for capturing such changes in

uncertainty. The analysis of the RECM in the wavelet domain is especially inter-

esting because it allows for a localized characterization of the manner in which data

impacts a reconstruction. Hence, we show how the RECM provides a natural means

of evaluating the appropriate level of detail as a function of position which can be

supported in a reconstruction based upon a given set of data and also leads directly

to a quantitative, multiscale theory of sensor fusion.

The definition of the relative covariance matrix is motivated by the definition of

the relative difference between two scalars a and b given by

b
(3.11)

a

The matrix analog to (3.11) to be considered in this thesis is constructed as follows.

Let f 1, . . . , K I denote the index set for the observations sets yj - For any subset A of

11, ... , KI let PA denote the estimation error covariance as in (3.10) resulting from

the estimation of -y based upon the data sets corresponding to A (i.e. f yj I i G Al

where for A = 0, the empty set, Pfo} = Po, the prior covariance.) The RECM provides
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a measure of the relative quality of the estimate based upon data in two sets A and

B and is given by

I _ p�lllpBp;112n (A, B) - (3.12)

The definition of rI(A, B) in (3.12) possesses many useful properties. First, like

an error covariance matrix, it is symmetric. Also if rl(A, B) represents the relative

error covariance matrix for the estimation of g, i.e. the physical-space representation

of the conductivity, then this is directly computable from rI(A, B) using the wavelet

transform
T

11 (A, B) = W ri (A, B)'YV.

Moreover, it is not difficult to show that H(A, B) is normalized to the extent that for

A c B,

0 < rI (A, B) < 1.

We note that I-I(AB) = 0 iff PB -_ PA which indicates no additional reduction in

uncertainty from augmenting A with the data sets in B - A. Also, rI(A, B) = I if

and only if PB = 0 i.e. only when all uncertainty in -y has been removed when we use

the additional information in B relative to A.

In the event PA is diagonal, the diagonal components of rI(A, B) are particularly

easy to interpret. Let o7'(A) be the error-variance of the i1h component of -/ arising

from an estimate based upon data from set A. Then, the i1h component of the

diagonal of rl(A, B) is just

(3.13)

which is nothing more than the relative size difference of the error-variance in the

-thZ component of -y based upon data from sets A and B. Note that the diagonal

condition on PA is met in this work when PA = Po, since the wavelet and scaling

coefficients are uncorrelated for the fractal 11f priors used here. Thus, the diagonal

elements of 11(�01, B) represent the decrease in uncertainty due to the data from set
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B relative to the prior model. Finally, as rl(�Oj, B) will be of interest frequently in

the remainder of this work, we shall abuse notation and write r1(f 01, B) as 11(B) in

cases when there will be be no confusion.

The matrix H(A, B) represents a useful tool for quantitatively analyzing the re-

lationship between the characteristics of the data (as defined by 8 and R) and the

structure of the estimate �- Consider, for example, the case in which we wish to assess

the overall value of a collection of observation vectors. Let 11'(B) denote the diago-

nal element of the matrix 11(B) corresponding to the wavelet coefficient at scale/shift

n)'. Because Po is diagonal, (3.13) indicates that IT-(B) represents the relative

decrease in the error variance associated with the component in the wavelet transform

of g at scale/shift (m, n). Thus, �H' (B) I provide us with a natural way in which

to define m*(j), the appropriate level of detail which should be included in a recon-

struction of g(M,) at shift j. Specifically, for each location j, m*(j) is determined

by examining examine the quality of the information present at this point and at all

coarser scale "ancestors" of j. Using the terminology introduced in Section 2.4.1, we

say that the data supports a reconstruction of g(Mg, j) at scale m if there exists some

node in the wavelet lattice of g at scale m which satisfies the following

1. The node impacts g(Mg, j) (i.e. for some shift n, g(Mg, j) Cz 'D(m, n)) so that

* n) is an ancestor of (Mg, j).

2. The data provides a sufficiently large quantity of information regarding the

structure of g at node (m, n) (i.e. H-(B) is in some sense large).

Clearly, m*(j) is the finest scale for which a node (m, n) may be found that satis-fies

the above two criteria. The precise quantification of "sufficiently large" will depend

upon the nature of the particular inverse problem under investigation.

For the problems considered here, the diagonal structure of Po imply that 0 <

2At scale m = Lg, we are interested in both the wavelet and scaling coefficients of g. To avoid
ambiguity, we use the notation Ii:11 to refer to the RECM information for the coarsest scaling
coefficient of g at shift n. In the case of a two dimensional g, where there is confusion, we shall
explicitly write m = (m,,,m,,) placing a bar over that scale index (those scale indices) associated
with coarsest scaling coefficient.
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11'(B) < 1 so that determining whether 11'(B) is sufficiently large is accomplishedn n

by comparing this quantity to some threshold, -r, between zero and one. The pro-

cedure described in the preceding paragraph for determining the optimal scale of

reconstruction suggests that the only elements of -y which need be estimated are

those for which 11'(B) > -F. Hence, we are led to define �,, a truncated version of

as follows:

0 II- (B) <n (3.14)

otherwise

where (,nn) is the component in the vector � at scale m and shift n. Defining

in this way ensures that �, = )IVT�, is in fact the reconstruction of g which at each

shift n contains detail information at scales no finer than rn*(n).

In addition to its use in assessing the scale of reconstruction supported by the

information from a set of measurements, if we consider the case in which neither A

nor B is empty, we find that there are several ways in which II(A, B) may be of use

in assessing the fusion of information from multiple data sets and in identifying how

this fusion takes place. For example, if A c B, then roughly speaking, if II(A, B) is

significantly larger than 0, there is a benefit in the additional information provided by

the observations in B - A. Moreover, Hm (A, B) can be used to pinpoint the scales and

locations at which this fusion has significant benefit' i.e., those scales and shifts at

which active sensor fusion is taking place. Furthermore, by varying the sets A and B,

we can identify not only the optimal scale for reconstruction at each point but can also

identify which data sets are actively used to obtain that estimate. That is, for each

n), we can in principal find the set A C � 1, KI so that rIm (A, � 1, Kj)

is small (indicating that sensors not in A provide little additional information to the

reconstruction of wavelet coefficient (m, n)) and so that for any C C A, 11m (C, A) is

'In this case, because PA is not in general diagonal, the diagonal elements of II(AB) do not
have the exact interpretation as the relative size difference of the error variance of -y based upon
data from A and B; however the size of these diagonal components of H(A, B) still provides useful
insight as to the scales and shifts where the observations from set B provide information not found
in the data from set A.
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of significant size (so that all of the sensors actively contribute to the reconstruction

at this scale and shift.)

3.4 Examples: Multichannel Deconvolution

The vehicle for illustrating the MAP estimator and associated analysis techniques de-

veloped in Section 3.3 is a two channel, deconvolution problem configured in several

ways to illustrate a variety of different facets of our approach. Here, we consider de-

convolution problems in a stochastic setting where the objective is the recovery of the

input to a linear shift-invariant (LSI) with known structure (i.e. impulse response)

given noisy output data and statistical descriptions of both the input as well as the

corrupting noise. Often, the stochastic processes encountered in these problems either

are or are assumed to be wide-sense stationary so that frequency-domain techniques,

such as the Wiener filter, represent the most commonly used methods for performing

the deconvolution [1051. Nonetheless, in a variety of practical circumstances, there

exist difficulties with the use of this approach. Indeed, Fourier transform techniques

require that the data be sampled at regular intervals while in many applications, one

must contend with sparsely or irregularly sampled observations. Moreover, many nat-

urally occurring phenomena are not well described by wide sense stationary processes.

For example, in geophysical problems, much recent work has focussed in the use of

fractal-type of descriptions for certain quantities of interest [42,55,1061. Based upon

the discussion in Section 3.1, we propose the use of multiscale methods both as a

means of addressing these problems and because our techniques provide new and use-

ful insight, not readily available from a frequency-domain approach, into the tradeoff

between reconstruction resolution and accuracy as well as the process of multisensor

data fusion.

We do note that in [109] Wang et al. also consider a multiscale deconvolution

scheme and apply it to both one and two dimensional problems. The algorithm

in [109] employs a wavelet representation of the data, the operator, the noise, and

the prior model. These authors focus their attention on the recovery of a signal
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from a single, noise corrupted, blurred version of the original and in using their

multiresolution representations for the purpose of edge detection. The issue of multi-

sensor data fusion is not explored by Wang et al. Nor are these authors concerned

with processing sparse or irregularly sampled data sets. Finally, no explicit attempt

is made in [109] to understand and quantify the manner in which the data supports

but a limited level of detail in the reconstruction.

For the examples of interest here, we consider the problem of inversion given two

sets of measurements generated by the kernel functions illustrated in Figure 3-1. The

two kernels used in the examples here are plotted in Figure 3-1 and the operator

matrices Tf and T, are shown in Figure 3-2. Finally, the function to be reconstructed

is taken to be a 11f type of process defined by the parameters in Table 3.2 and the

particular sample path of this process used in our examples is displayed in Figure 3-3.

The ability of the wavelet to compress the information in these operators is illus-

trated in Figure 3-4. Because the wavelet transform is orthonormal, the energy in Tj

and E)j, is the same for i E If, cl (i.e. 11TAF = jjE)jjjF where 11 0 JIF is the Frobenius

norm); however, this energy is concentrated in fewer entries in the wavelet domain

operators than in their space domain counterparts. To illustrate this property, define

the quantity Ei(n) (resp. 'Ej(n)) as the energy in the first n largest (in magnitude)

components of Tj (resp. O-). Further, assume that Ei(n) and '-::'.i(n) are normalized

by the total energy in the respective operators. In the case of the two operators

considered here, we plot Ef (n) and --:-'f (n) in Figure 34(a) and E,(n) and -7,(n) in

Figure 34(b). Note that as with the operators considered by Beylkin et al. in [11],

for both operators of interest in this work, any given level of energy is contained in

far fewer coefficients in the transform domain than in the physical space domain. In

fact, to capture 95% of the energy in Tf requires 2150 elements while only 712 need

be retained in Of; a factor of three difference. In the case of T, roughly 14,000 com-

ponents are required to retain 95% of the energy while only 149 elements are needed

for 6, which is savings of almost two orders of magnitude. This suggests that the

transform domain matrices may be well approximated by sparse matrices obtained by

setting their negligible components to zero so that computationally efficient, sparse
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Property Value

Wavelet Daubechies 6-tap
Finest scale (Al1g) 7

Coarsest Scale (L9) 3
A 2.0
(72 10

PL9 0.25

Table 3.2: Parameter values for g

matrix routines can be used to solve the normal equations. We note that the use of

higher order wavelets (here we use the Daubechies 6-tap) would result in even sparser

(i.

3.4.1 The Full Data Case: Equal SNRs

As a first example, we consider the case where a full set of data is available from both

sensors and the signal to noise ratio of each observation is the same and equal to 1.

In this work, the signal to noise ratio of the vector -qj = E)i-y + 1/i with vi - V(O, r?1)

and -y - Ar(O, PO) is defined as

Power per pixel in Oi-y tr (8,pOOT)
SNR' (3.15)

Power per pixel in vi Ng r?71

where Ng is the length of the vector -y and tr is the trace operation. The noiseless and

noisy data sets are shown in Figure 3-5. In Figure 3-6(a), �fff, cl) is graphed against

g while Figs. 3-6(b) and 3-6(c) display �(�f, cl) vs. �(f f 1) and �(�cj) respectively.

These plots demonstrate that given data of equal quality (i.e. equal SNRs), the MAP

estimator bases the overall reconstruction primarily on the fine scale data source yf.

In Figure 3-6(d), we compare two versions of �. The solid line is a graph of � in which

all coefficients, �(m), are used at all scales in forming �(Mg) while the dashed line is

a reconstruction in which �(m) for m > 4 are set to zero. This picture indicates that

y, and yf convey no useful information regarding g at scales finer than 4.

Analysis of the relative error covariance matrices provide much additional insight
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Figure 3-3: Fractal function to be reconstructed. Approximation coefficients at scale
Mg -- 7.

into the manner in which the data are used to form �. Due to the full data condition

and the fact that Po is a function only of scale, the RECM information is basically a

function only of scale and does not vary considerably from shift to shift over any given

scale. Thus we define r1m (A, B) as the average value of 11' (A, B) taken over all shifts

n at scale m. In Table 3.3, the values of 11m(f f, cl), rIm(If 1), and r1m(jcj) are given

in percent for all m defined in the wavelet transform of g. Hence the first column

indicates the percent reduction in variance as a function of scale for an inversion based

upon yf and y, where this reduction is taken relative to the prior model. Similar

interpretations hold for the second and third columns. The last column in Table 3.3

is the average value at each scale of the RECM obtained when the coarse scale data,

y,, is added to an inversion based upon yf, i.e. Hm(tf 1, �f, cl). Finally, note that the

last row of this table provides the RECM information associated with the estimates

of the coarsest scaling coefficients of g.

Comparison of the data in the first three columns indicates that, given both sets

of data, the bulk of the variance reduction is attributable to the information present
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Figure 3-4: Plots of normalized energy in the largest n component of Tj and Oi as a

function of n. Note that for both the fine and coarse scale operators, energy is more

concentrated in the transform domain than in the space domain in that any given

level of energy is contained in far fewer coefficients in (9i than in the corresponding

Ti
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in yf. Moreover, the information in the observations at scales 5, 6., and 7 is negligible.

In the first column of Table 3.3 (where both y, and yf are used in the inversion) we see

a 20% and 63% varia nce reduction in the estimates �(4) and �(3) respectively and a

98% reduction in the estimates of the coarsest scaling coefficients, �(3)- In the second

column (where only yf is used to determine fl, we again see that most of the variance

reduction is associated with the coarsest scale scaling coefficients and the coarsest two

scales of detail coefficients. From column three of Table 3.3 (where only y, is used),

we conclude that the noisy, coarse scale data is useful only in reducing the variance

for the components of -y at scale 3. Lastly, column four shows that the addition of

the coarse scale data to an estimate based upon yf only provides incremental benefit

in the estimates of the coarsest scale scaling coefficients, g(3).

From this analysis, we observe that there is no sensor fusion taking place in an

estimate based upon both yf and y, That is, under this particular full data, equal

SNR scenario, the information in y, is largely ignored in constructing �(ff, cl). The

data in Table 3.3 also implies that there is a limit to the level of detail supported in a

reconstruction of g based upon yf and y, In fact, the values of rl' are considerably

smaller at the finer scales (5, 6, and 7) than at the coarser scales (3 and 4). From this,

we conclude that neither set of data alone or together provides sufficient information

for the reconstruction of detail in g finer than that found at scale 4.

We note that the information provided by the relative error covariance matrices is

consistent with the actual estimates graphed in Fig. 3-6 where we saw that � (f f , cl)

essentially is the same as �(Jf 1), and that �(tf, cl) does in fact contain little detail

at scales finer than four. The use of the RECM is significant because it allows for

the formulation of these conclusions before any data are obtained. Thus, the RECM

represents a useful tool for the design and evaluation of experiments where multiple

sensors are to be used in the recovery of some underlying quantity. In this example,

one would conclude that the coarse scale sensor is of little or no use in the recovery

of g and that additional observation processes are required to resolve very fine scale

structure in g.

Additionally, the relative error covariance matrix analysis can be used to evaluate a
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Figure 3-5: Data sets for use in full data reconstruction with the SNRf -- SNR, I

particular parameterization of g. Given the structure of the observation processes, we

see that g is overparameterized as the data provide little useful fine scale information

relative to that found in the prior model. Any attempt to recover these components

of g is effectively a waste of time and computational resources. Rather, the RECM

suggests that a more parsimonious description of g is warranted and even indicates

how such a model should be constructed based upon the information available in

the data. That is, given the structure of the observation processes, the original

parameterization of g involving 256 degrees of freedom is clearly excessive. Rather,

the data dictates that at most only 32 parameters (the coarse scaling coefficients and

the detail coefficients at scales 3 and 4) can be accurately recovered for savings in

complexity of 87%.

3.4.2 The Full Data Case: Unequal SNRs

As a second example, consider the case where again full data are provided for both

observation processes, but the level of noise in yf is much greater than that of y,.

Here we take the SNR, = 4 while SNRf = 1. Inversion problems with these charac-

teristics arise quite frequently in practice. For example, in geophysical prospecting,
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(c) �(Jf, cj) (solid) versus �(f cl) (d) �(f f, cl) constructed using detail
(dashed) at all scales (solid) versus �({f, c})

comprised of only �(3), �(3), and �(4)
(dashed)

Figure 3-6: Estimates of g using various combinations of fine and coarse scale data
for the equal SNR experiment. From (b) and (c) we observe that given both sets of
equally noisy data, the estimator uses primarily the information from the process yf.
In (d), g is reconstructed ignoring any detail estimates, ffrn), at scales finer than 4
and compared to the estimate � in which all available detail is used. In this case we
observe that yf and y, provide little useful information at scales 5 through 7.
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Scalem 100*11'(�fcj) 100*H'(ffJ) 100*1-1-(W) 1OO*rIM(Wff'CP-
7 0.0048 0.0047 0.0001 0.0001

6 0.0622 0.0600 0.0020 0.0023

5 1.2246 1.1785 0.0475 0.0496

4 19.0872 18.4934 0.9166 0.7705

3 62.7417 60.5813 10.9863 5.7320

98.1754 96.7171 90.8045 45.8975

Table 3.3: Percent relative error variance reduction for full data inversion with
SNRf = SNR, -- L Comparison of the first through third columns indicates
that the fine scale data provides most of the variance reduction. The fourth column
demonstrates the the incremental information provided by the coarse scale observa-
tion process is seen primarily in the estimates of the coarsest scaling coefficients.

the fine scale process may arise from an electrical measurement using high frequency

electromagnetic fields to probe the structure of the earth. These fields tend to suffer

attenuation due to the lossy characteristics of the medium giving rise to low signal

to noise ratios. Alternatively, the coarse scale observation processes are associated

with low frequency observations for which either attenuation is small or energy is

high resulting in higher SNR. The function g to be recovered is the same as in the

first example and the estimates themselves are shown in Fig. 3-7. As in the previous

case, it is clear just from these plots that very fine scale detail is not supported by

these data sets; however, it is less obvious as to the manner in which data from each

set contributes to the overall reconstruction.

Consider the RECM information in Table 3.4. As with the previous case, the

structure of the prior model and the measurements processes imply that little is lost

in examining averages of RECM components over all shifts at a given scale. From the

data in the last row of Table 3.4 it is clear that for the coarsest scaling coefficients,

both yf and y, provide comparable and close to full information relative to that of

the prior model. For the estimates of the wavelet coefficients at scales 3 and 4, we see

a significant amount of sensor fusion taking place. In particular, at scale 3, the use of

yf (resp. y,) alone provides a variance reduction of about 60% (resp. 59%); however,
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given both sets of data, this statistic jumps to 75%. Thus, the ability to resolve the

wavelet coefficients of g at scale 3 is significantly improved when both sets of data are

available to the inversion than is the case when either acts alone. A similar argument

holds for the information contained in the observations regarding the structure of g

at scale 4. Table 3.4 indicates that fusion also occurs at scale five although the data

at this scale are obviously less reliable than at coarser scale. It is clear that neither

data source provides significant information at the finest scales: 6 and 7.

Unlike the full data, equal SNR example in Section 3.4.1, the RECM here provides

significant information not readily obtained by examination of only the estimates.

Specifically, we are able to pinpoint exactly where in scale active space sensor fusion

is occurring and quantify its magnitude. Moreover, our analysis is of great use in

capturing the effects of noise on the level of detail supported by a given source of

data. Comparing the results of this experiment with those of the preceding section,

we see from the fourth columns of Tables 3.3 and 3.4 that the higher SNR, alters

where in scale space y, contributes information relative to that found in yf. In Section

3.4.1, the coarse scale process contributes only to the estimates of the coarsest scaling

coefficients while in this case, y, provides additional information regarding g(3) and

the wavelet coefficients at scale 3 (and to a lesser extent the wavelet coefficients at

scale 4.)

3.4.3 The Incomplete Data Case: Boundary Measurements

A common characteristic of linear inverse problems is the desire to estimate g over

some closed and bounded region based upon measurements some of which are available

only at or near the boundary of this region [14,27,48,49,69,751. Such a situation may

arise, for example, in a geophysical setting. Indeed, in subsequent chapters of this

thesis, we examine problems of this type where electromagnetic measurements taken

at a pair of wellbores are used to determine the electrical conductivity structure of the

entire interwell area. This type of observation configuration leads to both theoretical

as well as computational difficulties. From a theoretical perspective, problems of

this class tend to be extremely ill-posed in that solutions to these inverse problems
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Figure 3-7: Estimates of g using various combinations of fine and coarse scale data
for the unequal SNR experiment. From (b) and (c) we observe that some form
of active sensor fusion is taking place as the estimate given both sets of data is
clearly different from that obtained when either data set is used alone. In (d), g is
reconstructed ignoring any detail estimates, �(m), at scales finer than 4 and compared
to the estimate � in which all available detail is used from which we observe that yf
and y, provide little useful information at scales 5 through 7.
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Scalem 100*11'(�fcj) 100*nm(W) 100*1_Im(W) 100*11MWWA)
7 0.0057 0.0047 0.0010 0.0011

6 0.0871 0.0600 0.0267 0.0279

5 1.7835 1.1785 0.6457 0.6431

4 25.3244 18.4934 10.1778 8.7822

3 75.9424 60.5813 59.1247 39.6413

-a 99.4718 96.7171 98.9946 84.8110

Table 3.4: Percent relative error variance reduction for full data inversion with
SNRf = I and SNR, - 4. Unlike the first example, the high quality, coarse
scale data now provides significant information to the inversion. From the first
three columns, the bold faced values indicate where active sensor fusion taking place.
Specifically, at scales 3 and 4 the percent variance reduction is significantly higher
given both sets of data than is the case when either yf or y, is used alone. The
fourth column shows that the incremental information provided by the coarse scale
observation process is seen at the coarsest two scales.

are very sensitive to perturbations in the data. Upon linearization, these theoretical

difficulties are reflected in discretized linear systems with very high condition numbers

so that regularization is required. Additionally, as discussed previously for problems

with a convolutional structure, the sparse and "gappy" distribution of data points

makes the use of Fourier-based techniques problematic.

In contrast, the multiscale, statistical MAP inversion algorithm we have described

is ideally suited to handling such problems. To illustrate this, we consider a variation

on the two channel deconvolution problem with SNRf = SNR, = 3; however, we

assume that yf is available only near both ends of the interval. In this case, the

data sets are shown in Figure 3-8. In solving the inverse problems, regularization is

provided by t he prior model as discussed in Section 2.4.2. Moreover, this sampling

structure is handled quite easily using wavelet transforms. Specifically, we split yf

into its left and right components, yfl and Yfr, and treat each separately. In effect,

this is equivalent to windowing yf and applying )lVf individually to each windowed

version of the data. We note that unlike Fourier techniques where space-domain

windowing can cause significant distortion of the signal in the frequency domain, no
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4significant distortion is present here

The estimates of g are displayed in Figure 3-9. We see that over the middle of

the interval, �(f f, cl) is roughly the same as �(f cl) while at either end, information

from yf is used almost exclusively in the inversion. Additionally, Figure 3-9 shows

that given only yf, the estimator does make an attempt to recover g over the interior

of the interval, but such an estimate is increasingly in error the farther one proceeds

toward the middle.

In Figure 3-10(a)-(c), the diagonal components of H(B) are plotted for B C

I I f 1, f cl, f f , cl I and for scaleS5 3 and 4. We observe that for scale-shift pairs (m, n)

interior to the boundary region in which fine scale data are available, 1-11(�f 1) isn

essentially zero indicating the almost complete lack of information in yf about g

over these shifts. However, for pairs (m, n) corresponding to locations near either

boundary, the story is different. Here, information in yf almost completely dominates

that in y, as was the case in the first example. In Figures 3-10(d), the utility of adding

y, to an estimate based upon yf is illustrated by displaying rff(�f 1, �f, cl). Again the

contribution of the coarse scale data is greatest away from the end of the interval. In

Figures 3-10(a) and (b), we observe the presence of active sensor fusion over selected

shifts at these scale. That is for certain n and for j E f 3, 4 1, Hi (� f , cl) is significantly

larger that both Hi (JcJ) and Hi (f f 1). Thus, the RECM is able to localize both in

scale and in shift the precise locations where the presence of both data sets yields

significantly more information than either alone. Finally, for scales other than 3

and 4, the two observation sources provide little if any significant information to the

reconstruction of g.

Unlike the previous examples where both data sets were available over the entire

interval, for the case considered here, we are quite justified in analyzing the shift-

4The only distortion is caused by the edge effects arising from the circulant implementation of the
wavelet transform as discussed in Section 2.4.1 and as we have discussed, these effects are generally
negligible or can be overcome completely through the use of modified wavelet transforms obtained
over compact intervals. Indeed, the so-called Daubechies wavelets adapted to the interval [26] are
used in Chapter 5 of this thesis when we address the full reconstruction, linearized inverse scattering
problem.

5The unusual activity at the right hand edge of these plots is an artifact of the circulant imple-
mentations of the H and G filters [231
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varying optimal scale of reconstruction as defined in Section 3.3.2. In Figure 3-11,

we plot the finest scale supported in a reconstruction of g using both noisy data sets

in Figure 3-8 for -r - 0.45. Here we see that near the boundaries, the presence of

fine scale data allows for higher resolution in the reconstruction of g while in the

middle of the interval, we must settle for a coarser estimate. From Figure 3-12 we

see that there is little difference between the optimal estimate, j, and its truncated

version, N.45 except that jO.45 is composed of only 24 nonzero wavelet coefficients

for a decrease in model complexity of about 90%. This provides further evidence

that the RECM is the right tool for precisely evaluating the manner in which the

data contribute information to the reconstruction of g. Finally, in Figure 3-13, the

finest scale supported in a reconstruction as a function of both position and threshold

is displayed. Here, the horizontal axis represents the shift, n, at the finest scale,

Mg = 7, the vertical axis is the value Of T, and the grey tones represent the finest

scale of resolution supported by the data at shift n using threshold T with darker

shades indicate finer scales. Increasing T implies that we require more information

from the data to say that the observations support reconstruction at finer scales.

Hence, for the problems here, with -r greater than about 0.7, we conclude only the

coarsest information in g may be recovered given the data. For -r less than 0.7, the

situation is much the same as was seen in the analysis of Figure 3-11 with fine scale

detail recoverable near the boundaries and a coarse reconstruction near the middle

where only y, is present.

3.4.4 The Incomplete Data Case: Coarse Scale Data Sam-

pled Coarsely

In the preceding example, the coarse scale data not only had complete coverage

over the entire interval of interest, but they also were available at the finest scale

of resolution i.e. a coarse measurement y, was available for every shift, n, at the

finest scale of our representation. What is more realistic in practice, of course, is to

have coarse-resolution data available at a sampling interval commensurate with the
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Figure 3-8: Data sets for use in reconstruction with the SNRf SNR, -- 3 and yf
available only near the end of the interval.
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Figure 3-9: Estimates of g using various combinations of yf and y, for the case where
SNRf - SNR, = 3 and yf is available only near the edges of the interval. We see
that at the boundaries, the estimate given both yc and yf essentially makes use only
of yf. Over the center of the interval where yf is absent, �(Jf, C'j) follows �(f cl)
closely.
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Figure 3-10: Relative error covariance information for the case of SNRf = SNR, 3

with yf available only near the ends of the interval. For scales 3 and 4, (a)-(c) indicate

that at the ends of the interval, the variance reduction given both yf and y, is equal

to that given only yf. Alternatively, y, impacts the RECM data primarily in the

middle of the interval. In (a)-(c), there is some active sensor fusion taking place as

there exists shifts at these scales for which rff (f f , cl) dominates both I-ff f 1) andn n

H' (f cl). From (d), it is observed that y, has significant impact relative to yf in
n

lowering the variance of the coarsest scaling coefficient estimates at shifts away from

either end of the interval.
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Figure 3-13: Space-varying optimal scale of reconstruction as a function of 'r. The
horizontal axis represents the shift n at the finest scale, Mg = 7 , the vertical axis is
the value of r, and the grey tones represent the finest scale of resolution supported
by the data at shift n using threshold T. Darker colors indicate finer scales.

resolution of the data. In this last example, we demonstrate that our methodology

can be directly applied to such problems as well. Here we consider basically the

same measurement configuration as in Sections 3.4.1 and 3.4.2 except in this case the

coarse-resolution measurement process, y, is available only on a sparsely sampled grid

covering the interval of interest. In particular, for this example we assume that the

observations y, are available on a grid that is decimated by a factor of 8 compared to

that used in the previous section. We also assume that the fine scale data is available

over the entire interval at the original, finer sampling rate and that SNRf = 1 and

SNR, = 4. Note that the difference in sampling grids for our two measurement

sets is of no consequence for the applicability of our methodology, as we simply use

DWT's appropriate to each. The substantive difference, of course, is that the smaller

number of measurement point in y, has fewer scales of decomposition, but this is

automatically accommodated in our formulation.

In Figure 3-14, �(Jcj) and �(Jf, cl) are compared for this example as well as for

the corresponding case in which a full set of coarse-resolution data (at SNR, = 4)

is available on the original, dense sampling grid (i.e. the case considered in Section
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3.4.2.) Although not exact matches, the lose of information incurred by the sparse

availability of y, obviously is not severe. The RECM data for this experiment are

provided in Table 3.5. It is useful to compare this information with the corresponding

results for the example considered in Section 3.4.2 where we had the same SNR

structure but full data for both y, and yf. At fine scales, the story for this case

is much the same as in that previous example with the data providing little useful

information at scales 5 and finer. At scales 3 and 4 a comparison of Tables 3.5 and 3.4

indicate that the sparse availability of y, is reflected in smaller values of rI- (f cl) and

H-(�f, cl). From the first columns of these tables we see that the presence of both yc

and yf results in comparable ability to recover detail at these coarser scales regardless

of whether the coarse resolution data are available at a high or low sampling rate.

When y, is the only source of information, the relative reduction in variance drops

rather sharply for the sparse data scenario as is seen by examining the third column

of Tables 3.5 and 3.4.

Roughly speaking, what these results show is that having either densely or sparsely

sampled coarse-resolution data results in the same resolution at which reconstruction

can be performed, but the additional data points from the densely sampled strategy

obviously allow for more averaging thereby leading to increased variance reduction as

seen in Table 3.4. That is, if we have several essentially redundant measurements at

an SNR of 4, their combined effect is to enhance the apparent SNR as compared to the

coarsely sampled case. In this sense, a fairer comparison is that between the example

introduced in this section, with high quality, but sparsely sampled coarse resolution

data with the example considered in Section 3.4.1 which involved lower quality, but

densely sampled coarse resolution data (in both cases full-coverage, densely sampled

fine scale data with SNRf = 1 are available). In particular, by examining the values

of 11m(f cl) in Tables 3.5 and 3.3, we see that the value of the high SNR, sparse

data set y, is about equal to that of the low SNR, full data set as measured by the

information in the RECM. In other words, the primary benefit of the densely sampled,

coarse resolution data is to improve the variance reduction at coarse scales in the case

where the SNR was low, but not to change the resolution at which the data provide
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Figure 3-14: Estimates of g using various combinations of data sets for the decimated

data experiments

information to a reconstruction. Thus, we conclude that in exploring the tradeoff

which exists between the number of observation points required in an inversion and

the SNR of the measurements, one should sample the coarse scale process at a rate

commensurate with the level of noise in the data.

3.5 Conclusions

In this chapter, we have presented an approach to the solution of linear inverse prob-

lems based upon techniques drawn from the fields of multiscale modeling, wavelet

transforms, and statistical estimation. We begin with a system of noisy, linear in-

tegral equations describing the relationship between several sets of observed data,

yi, and the function to be estimated, g. This formulation is particularly useful in

describing the situation where there exists a suite of measurements each of which

conveys information about the behavior of g on different scales. After discretization,

wavelet methods are used to transform the problem from real-space to scale-space.

A maximum a posteriori(MAP) estimator serves as the inversion algorithm and pro-

duces an estimate not of g, but of its wavelet transform, -y. Regularization is achieved
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Scale m H' (t f , cl) H- (f f 1) H- (I cl) rI- (I f I I f , cl)

7 0.0049 0.0047 0.0002 0.0002

6 0.0618 0.0600 0.0016 0.0020

5 1.2653 1.1785 0.0857 0.0919

4 19.6851 18.4934 1.8335 1.5399

3 64.4081 60.5813 18.9536 10.0784

-a 1 98.5868 96.7iiiT94.4320 58.5045

Table 3.5: Percent relative error variance reduction for the inversion with SNRf -_ 1,
SNR, = 4 and y, sparsely sampled. Here the sparse availability of y, serves to offset
the information content generated by its high SNR. The overall utility of the coarse
data set here is about the same as was the case in the densely sampled, low SNR
experiment. Based upon the data in the first three columns, we do see some degree
of active sensor fusion taking place for the coarsest scaling and wavelet coefficients;
however, the value of y, alone is practically nil at scales finer than I

via a statistical model of -� which also provides a means of capturing any available

prior information regarding the structure of g. The structure of this model allows

us considerable flexibility in capturing the statistical structure of g, including the

incorporation of scale-varying statistics. To illustrate our methods, we have used

one of many possible statistical models, namely one that has the 1/f-like fractal

structure that is often posited as a meaningful model for natural phenomena. More-

over, this model leads to regularization that is quite similar in nature to traditional,

smoothness-based regularization approaches.

Our approach makes extensive use of scale-space in the analysis of linear inverse

problems. By introducing the notion of a relative error covariance matrix (RECM),

we have developed a quantitative tool for understanding quite precisely the various

ways in which data from a multitude of sensors contribute to the final reconstruction

of g. We demonstrate a method for determining the optimal level of detail to include

in the estimate of g as a function of spatial location. The RECM explicitly provides

a means of capturing the way in which this level is affected by changes in the noise

intensity affecting the different sources of data and the sampling structure defining

how the data is distributed in space. Also, the incremental benefits associated with the
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addition of data from another sensor is readily explored using the RECM, and we have

shown the use of this quantity in describing the process of multisensor data fusion in

a wavelet setting. Moreover, having settled on the characteristics of the data sources,

the RECM can be used to understand precisely where in a parameterization of g (i.e

for which degrees of freedom) the data contributes useful and significant information.

Indeed, the relative error covariance provides a useful method for pruning a multiscale

model of g in response to the information present in the data.

The vehicle for demonstrating our techniques has been a two-channel deconvolu-

tion problem configured to mirror many of the characteristics associated with more

general linear inverse problems. In addition to performing the RECM analysis, our

examples highlight the ability of a wavelet-based approach to handle non-full data

sets. Specifically, we have considered the case where one source of information was

available only near the boundaries of the interval. Additionally, we show how wavelet

techniques are a natural means for coping with a sparsely sampled data set.
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Chapter 4

Elements of Electromagnetic

Inverse Scattering Problems

4.1 Introduction

For the remainder of this thesis, we explore the application of multiscale and stochastic

techniques the solution of inverse scattering problems. In this chapter, we introduce

and formulate the particular problem of interest and examine a collection of methods

currently used to perform the inversion. In particular, the model problem considered

in this work is a two-dimensional inverse electrical conductivity problem illustrated

in Figure 4-1 similar in structure to problems considered in [58-60,104]. Here, we

have a set of electromagnetic line-sources oriented perpendicularly to the page emit-

ting time-harmonic, cylindrical waves into a medium. The electrical properties of

this environment are assumed to be decomposed into the sum of two parts: (1) an

infinite, known, and constant background and (2) a conductivity anomaly, g, which

is a function only of the two variable x and z and which is known to lie in a closed

and bounded area of the plane, denoted as A and indicated by the darkly shaded re-

gion in Figure 4-1. Upon interaction with the medium, the electromagnetic energy is

scattered and the resulting field is measured by one of two arrays of receivers located

on either vertical edge of the conductivity perturbation. Each array is composed of

a set of line receivers all of which extend infinitely in the direction perpendicular to
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the page. The objective of the problems which we consider is to characterize the

structure of the conductivity perturbation based upon noisy observations of scattered

fields from a total of K experiments which we index i = 1, 2, - - -, K. Each such

experiment produces a vector of measurements, labeled yi as in (2.1), comprised of

the observed scattered field obtained over a single receiver array due to energy put

into the medium from one of the sources operating at a particular frequency.

The remainder of this chapter is devoted to a review of the electromagnetic inverse

scattering problem. The mathematical formulation of this problem from Maxwell's

equations is developed in Section 4.2. Subsequently, we focus on issues surrounding

the solution of the full reconstruction form of the inverse scattering problem. In Sec-

tion 4.3, a nonlinear least-squares approach is examined and the difficulties associated

with such an inversion effort are discussed. In Section 4.4, we derive and evaluate a

collection of recently developed algorithms based upon the so-called Born lineariza-

tion for reconstructing the unknown structure of the medium. Section 4.5 concerns

the procedures for obtaining finite-dimensional representations of these models. Fi-

nally, as the analysis and algorithm development in the remaining chapters of this

thesis are carried out in scale-space, the transformation of the discrete representations

obtained in Section 4.5 from physical to wavelet space are presented in Section 4.6.

4.2 ' Maxwell's Equations

Under the geometric configuration shown in Figure 4-1 and as discussed in Section

4.1, all field quantities and material parameters are functions only of the two space

coordinates, r = (x, z). Hence, for the current source associated with the i1h experi-

ment, Ji(r), operating at frequency fi - wiI27r, the electric field, Ei(r), defined over

the entire (x, z) plane is given by the following partial differential equation with a

Sommerfeld radiation condition at infinity [59]

17'Ej (r) + W2ttoE, (r)Ei(r) = -twi[toJi(r) (4.1)

97



ZAN,
O

;optimized,,'

aac UM
vN

X
's

iF. X

analyzing

T

Siburce r.__7

t "W" e�?�

XI

R�

Q,- MM
'x 41

0.
UIK 10 0 1O_

4ft �! TRMU, Wet

Figure 4-1: Configuration of inverse conductivity problem. The electromagnetic

sources (indicated by the black circles) emit time-harmonic waves into a lossy medium

which subsequently are scattered by conductivity inhomogeneities located in the

darkly shaded rectangle, A. The secondary fields are observed at one or both re-

ceiver arrays located on either vertical edge of region under investigation. Based

upon these observations, the objective of the inverse problem is the reconstruction of

the conductivity perturbation.
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where go is the magnetic permeability, and 6-(r) the complex permittivity defined as

Eo + z gt (r

with Eo the constant background permittivity and gt(r) the electrical conductivity

of the medium. In this thesis, the parameters Eo and po assume their free-space

values [74].

The first step in the formulation of the inverse conductivity problem is the de-

composition of Ej into the linear combination of a known, constant background Ej and

an unknown, space-varying perturbation Ej(r) as follows

Eo + t go (4.2a)
Wi

�j(r) g(r) (4.2b)
Wi

so that gt(r) = go + g(r). By the superposition principle, the electric field may be

decomposed into the sum of a background and a scattered field, denoted as Pi(r)

and ki(r) respectively, each of which is defined in terms of the constant-background

Greens function Gi (r, r') according to [581

Ei(r) = twitto j Gi (r, r') Ji (r') dr' (4.3)

Ei(r) = zwitLo fA Gi (r, r') g (r') Ej (r') dr' (4.4)

where Gi(r, r') satisfies the partial differential equation [58]

V2Gj(r, r') + W 2[to i�j Gi (r, r') 6 (r - r'). (4.5)

Using (4.4), the integral equation relating Ei(r) to the conductivity perturbation is

then

Ei(r) = Bi(r) + twi go JA Gi (r, r') g (r') Ej (r') dr' (4.6)
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so that upon discretization (see Section 4.5), the electric field satisfies the linear

system of equations

[I - GiEl(g)]Ei = Pi (4.7)

with Ei (resp. Bi) a vector of coefficients obtained by expanding Ei(r) (resp. Bi(r))

in an appropriate set of basis functions, Gi a matrix representation of the integral

operator defined by (4.6), and D(x) the diagonal matrix whose (i, i)lh element is the

i1h component of the vector x.

The observations, yi, which comprise the data to be used in the reconstruction

process are taken to be noisy versions of the scattered field obtained at a collection

of point f rj I for j = 1, 2 . . ., Ni. Hence we have,

yi (rj) = ki (rj) + ni (rj)

= twi[to I Gi (rj, r') g (r') Ei (r') dr' + ni (rj). (4.8)
A

Thus, in discrete form, the vector of observations, yi, whose /h element is yi (rj), is

related to the electric field and the conductivity through the equation

yi = Gi,,D(g)Ei + ni (4.9)

where Gi,, represents the integral operator in (4.4) sampled in r at the points rj.

4.3 An Optimization Approach to the Full Recon-

struction Inverse Scattering Problem

The objective of the full reconstruction inverse scattering problem of interest in this

work is to recover the structure of the conductivity perturbation, g, given a collection

of observation vectors, yi, obtained from a total of K different scattering experiments.

The explicit relationship between the data and g is obtained by formally solving for
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the electric field in (4.7) and substituting the result in (4-9) to obtain

yi = Gi,,D [(I - Gj'D (g)) -'Bil g +nj (4.10)

hi (g)

Because (4-10) is precisely of the form considered in Section 2.2.2, we examine first a

reconstruction of g defined as the solution to the nonlinear least squares problem'

arg min Ily - h(g) 112 _I + 11gJ12 (4.11)R LTL
9

where y, h, and n are defining in (2.3a) through (2.3c) and as discussed in Section

1.1.1, L is usually taken to be a discretized differential operator used to regularize

the inversion.

As (4. 1 1) is a nonlinear least squares optimization problem, we consider a solution

based upon the Gauss-Newton (GN) algorithm discussed in Section 2.2.2. Recalling

(2.15), this approach constructs � iteratively where at each step of the process both h

as well as 179 h need to be evaluated at the current estimate �k - Given the structure

of h(g) in (2.3b), computation of h (�k ) and Vg h (�k) is accomplished by evaluating

hi (�k ) and V9 hi (�k) for i = 1, 2, ... , K. Now, from (4.9) and (4.10) we have

hi (�k) = Gi,,D (Eik )�k (4.12)

where the electric field E� satisfies (4.7) with g = �k and where D(Eik) is the diagonal

matrix whose (j, j)lh element is the j1h component of Eik. Thus, the computational

burden of calculating h (�k) is dominated by the need to solve a total of K linear

systems in order to find the electric fields associated with each observation process.

Similarly, V9 h(g) is constructed from each of the Vg hi(g) which by virtue of

'For completeness, the optimization problem should include a constraint to ensure that the
conductivity, gt(r), be greater than or equal to zero. While such a positivity condition can certainly
be incorporated into the discussion in this chapter, it is not central to the issues of interest and
has therefore been put aside. In Chapter 7; however, we do consider the issue in the context of the
analysis and implementation of a multiscale algorithm for the nonlinear inverse scattering problem.
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(4.10) and some algebra is written as

179 hi(g) -_ Gi,,E'(Ei) + Gi,,D(g) 17g Ej. (4.13)

The gradient matrix of the electric field with respect to g is constructed one column

at a time by operating on both sides of (4-7) with Oj =_ 01,9gj which, when acting

on a vector (resp. matrix) takes the partial derivative of each element of the vector

(resp. matrix) with respect to gj. Thus we have,

[I - GjEI(g)](,9j Ej) = Gi [,9jD(g)] Ei

= Gi [D(ej)] Ei

= GiD(Ei)ej (4.14)

where ek is a column vector of zeros with a one in the k" location. Hence, 19j Ei is

,9j Ei = [I - GiD(g)]-1GjD(Ej)ej (4.15)

and Vg Ei is

17 g Ei 91 Ei : 192 Ei

[I - GiD(g)]-1Gi-D(Ei). (4.16)

Substituting (4.16) into (4.13) yields

17 hi (�k) = Gi,,D(E k) + G -,,D(g) (I - GiD (�k) )-'GiD(Eik) (4.17)9 i

where Eik is given as the solution to (4.7).

IhThus, at the k iteration of the Gauss-Newton algorithm, a total of K + 1 linear

systems of the form given by (2.15) must be solved in order to evaluate h(� k) and find
kS . While these problem can be solved efficiently given the recent advances in the

development of iterative algorithms for solving linear systems [6,46,47,88,93,94], the
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fact that K such systems must be solved can be a burden for large scale inversions. In

addition to this problem, as is seen in (4.170 179 h(�') requires the explicit knowledge of

the matrices (I - Gj'D (g)) -'. Because (I - GiD (g)) is dependent only on the frequency

of the probing radiation and not the particular source/receiver pair, only one such

matrix need be computed per frequency- however even for moderately sized problems,

this computation can be prohibitively expensive. Thus, rather than formulating the

inverse scattering problem in an optimization framework, there has been considerable

effort in the past decade on the development of a hierarchy of algorithms built around

the so-called Born approximation to Maxwell's equations [7,61,102].

4.4 The Born Methods

The first order Born approximation (or simply the Born approximation) is based upon

the assumption that the conductivity perturbation g is small both in size relative to

A and in magnitude relative to go [61]. In this case, the approximation is obtained by

formally expanding the operator (I - GiD(g))-' in (4.10) in a power series (known

as the Born or Neumann series) and keeping only the leading order term. That is,

yj Gi,,D [[I + GjD(g) - Gj'D(g)GjD(g) + ... ].Eil g + ni

Gi,,D(Bi)g + ni. (4.18)

From a physical perspective, each term in the power series expansion represents what

is called a "scattering interaction" of the input energy, ri with the conductivity

inhomogeneity, g. Thus, by keeping only the first term in the series, the Born ap-

proximation is also known as a "single scatter" approximation. From a computational

perspective, (4.18) represents a linear inverse problem for which many of the compu-

tational difficulties described in Section 4.3 no longer apply; although, the problems

of ill-posedness and data fusion certainly remain. Additionally, an important disad-

vantage of the Born approximation is its restricted practical utility due to the size

limitations on g. One proposed method for circumventing this problem is the Born
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iterative [21, 110] approach.

4.4.1 The Born Iterative Methods

The Born iterative method (BIM) improves upon the linearization of (4.18) by alter-

nating between the use of (4.9) to obtain an estimate of g given some Ej and (4.7)

to update Ej using the most recently computed estimate of g. This process repeats

until 9 does not change significantly from one iteration to the next [1101. The BIM

begins by generating a reconstruction of g from (4.9) with Ej = Bi (i.e. using the

first order Born approximation).

At the k 1h iteration, determining g from yj and the current estimate of the electric

field, Eik is an ill-posed problem of the type considered in Section 2.2.1. Typically

[58, 1 10] this difficulty is overcome by via the use of a regularization technique so that

�k is given as

�k arg min y - GD (E k)glll _1 + IlLgil' (4.19)R 2
9

where

G, = diag (GI,,, G2,s, GKs) (4.20)

-D (E k)1

D(E k)D (E k) 2 (4.21)

-D (E k j
L K

The solution to (4.19) is defined by the normal equations

k) T IZ-1 k) T �k k) T 'R-I
IG,'D (E I IGD(E I +L L IGE)(E I Y. (4.22)

As discussed in Section 2.2.1, L is often taken to be a differential operator used to

enforce some degree of smoothness in �k and R` is chosen to reflect the relative

quality of each observation point. Finally, in the second stage of a BIM iteration
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k1l �kE. is computed based upon the new using (4.7).

While the Born iterative method was originally derived in [21, 1 10] from "physical

insight," in fact there exists a close connection between this algorithm and the Gauss-

Newton method described in Section 2.2.2. Upon substituting (4.17) into (2.15), and

making use of (2.14), we have for the GN algorithm the relationship

G,'D(Eik) + G, M(�k) T R-1 GD(E k) + G, M(�k) + L TL W+1 - �k)
I I I i I

IG,'D(Eik) + G, M(�k)] T R-'(y - GD(Eik)�k) - L T L�k (4.23)

where M = [MT M2T ... WT ] T and M,(�k) - Gi,,D (�k),7g (Eik) from (4.12). Now,

after a little algebra, we see that (4.22) is recovered from (4.23) by taking M equal

to zero. Thus, the BIM may be viewed as an approximate implementation of the

full nonlinear optimization approach toward solving the inverse scattering problem.

Specifically, (4.22) indicates that the approximation made in this case is to ignore the

dependence of D(E k) on �k in computing the gradient matrix, 17g h(�k).

In addition to the BIM, there exists an algorithm known as the distorted Born

iterative method which not only updates the electric field at each iteration, but the

Green's functions as well [20,21]. In particular, at each iteration, the new estimate of

the conductivity is used to construct a Green's function for a nonconstant background

which is defined as the sum of the constant background go from (4.2a) and the current

best guess of the conductivity perturbation, �k . As discussed in [21], the equation

governing the i1h inhomogeneous Green's function at iteration k, G k is

I - GjoE1(gO + �k) G k= Gio (4.24)

where Gio is the constant background Green's function used in the Born and Born

iterative methods. Note that (4.24) is essentially identical to the equation governing
kthe electric field, (4.7), except that the column vectors Ei and Pi are replaced by

matrices G k and Gio respectively.i

The performance of the BIM and DBIM is analyzed in [20,21]. In theory, the dis-
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torted Born iterative method is shown to converge to an estimate of the conductivity

faster than the Born iterative method. In practice; however, the BIM tends to be

more robust to noise present in the observations. In neither case however, is one guar-

anteed that the conductivity profile generated by the BIM or DBIM routine is in any

sense optimal as these algorithms are not attempting to optimize any cost function

although the BIM does have the interpretation as an approximate implementation of

a nonlinear least squares optimization routine. From a computational perspective,

neither of these algorithms is especially appealing. Indeed, in both cases one is faced

with the problem of having to compute at each iteration the solution to one forward

problem as specified by (4-7) per sources/receiver pair. Additionally, each requires the

solution to a quadratic optimization problem in order to generate the estimate of the

conductivity perturbation. For the DBIM, updating the Green's function in (4.24)

would require either the explicit calculation of the matrix for 11 - GiOEI(go + �')] 1

or that an iterative method be used to generate a solution to (4-24) one column at

a time. In either case, this algorithm represents a considerably larger computational

burden than the Born iterative method.

4.4.2 The Extended Born Approximation

In contrast to the Born iterative methods which attempt to use the exact physical

models developed in Section 4.2 to approximately solve an optimization problem, the

extended Born method is based upon a new approximation to Maxwell's equations

which allows for the reconstruction of a conductivity profile which exactly satisfies an

optimization problem. The utility of this method to a large extent rests upon the fact

that the approximation has been shown to be valid over a wide range of perturbation

sizes, magnitudes, and probing frequencies [61,103,104]. Moreover, the functional

form of the approximation makes it easy to use in computations so that solutions to

(4.11) may be obtained using highly efficient implementations of traditional nonlinear

optimization methods [104].

The derivation of the extended Born approximation to Maxwell's equations be-

gins with the observation that the constant background Green's function in (4.31) is
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singular at r == r' so that most of the contribution to the integral on the right hand

side of (4-6) comes in the area of this singularity [104]. Now, adding and subtracting

fA Gi (r, r') Ej (r) dr' from the left hand side of (4.6) we arrive at

Ej (r) = Ej (r) + zw,410 G (r, r') g (r') dr' Ej (r)

+ IWWO Gi (r, r') g (r') [Ei (r') - E (r) ] dr'. (4.25)
JA

As discussed in [1.04] the second integral in (4.25) is zero at r - r' so that the

first integral should capture most of the important information embedding in (4.6).

Rearranging (4-25) and assuming that the second integral is in fact negligible yields

the approximation

Ei(r) -_ Xi(r)Ei(r) (4.26)

with

Xi (r) -_ 1 - u,)i tto Gi (r, r') g (r') dr' (4.27)

Finally, upon substituting (4.26) back into (4.6) and discretizing (see Section 4.5), we

obtain the extended Born approximation to the two dimensional problem as

E, = Ej + Gi'D(E,)D(X,)g (4.28)

with the associated observation equation

yj -_ Gj,,,D(Ej)'D(Xj)g + ni (4.29)

where again, for a vector z, D(z) is the diagonal matrix with z on the diagonal.

We defer a description of the use of the extended Born approximation in an in-

version algorithm until Chapter 7; however, note the similarity in structure between

(4.29), defining the extended Born approximation, and (4.18), the first order Born ap-
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proximation. We see that up to the diagonal operator D(Xi) the two are identical. As

discussed in [104], 'D(Xi) takes into account much of the physics governing the multi-

ple scattering of the input radiation by the conductivity perturbation which is ignored

in the first-order Born approximation. Moreover, the relatively simple functional form

of X, implies that (4.29) is very well suited for use in a nonlinear optimization routine

of the type discussed in Section 2.2.2. Specifically, (4.27) indicates that evaluation of

XI, for a given g does not require the solution of a forward problem. Moreover, Xi is

dependent only on the particular frequency used in the scattering experiment and not

upon the source/receiver geometry. Hence, this quantity need only be evaluated once

per frequency. Finally, as will be discussed in Chapter 8, constructing the gradient

matrix needed in a nonlinear optimization routine requires very little computational

effort under the extended Born approximation to Maxwell's equations.

4.5 Discretization procedures

In the remainder of this thesis, we consider inverse scattering algorithms based upon

the Born and the extended Born approximations to Maxwell's equation. Additionally,

the analysis of the nonlinear inverse scattering problem presented in Chapter 7 is

based upon the exact physical models discussed in Section 4.2. Implementation of

such routines on a digital computer requires that the integral equations defining the

physics of the problem be discretized. This task is accomplished here using a method

of moments approach as described in [64,1041. In particular, g(r) is expanded using

a pulse-type basis in which this function is assumed to be constant over pixels in an

Ngx x N.,;, grid covering A. Mathematically, we have

Ng,.*Ng,�

g(r) = E gj Xj (r) (4.30)
3.=I

where Xj (r) is the characteristic function over Aj, the j1h rectangle in the discretiza-

tion of A.
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4.5.1 The Born and Extended Born Approximations

In the case of the Born approximation, the observations are governed by (4.8) with

Ei(r) replaced by the background electric field, Ei(r). For the two dimensional,

constant background problems of interest in this thesis, closed form expressions exist

for both Gi (r, r') and Ei (r). First, the solution to (4.5) is given by [74, 104, 104]

Gi (r, - H(l) (k -,O I r - r'j) (4.31)4 0 Z

with 7(i)(r) the zeroth order Hankel function of the first kind and Oo - WPo��i. To

determine Pi(r) we use the fact that the current sources used to probe the medium,

Ji(r), are taken to be infinite line sources oriented perpendicular to the x-z plane, of

strength 1i located at r = r- = (xi, z.). Mathematically, we have Ji(r) = 1j6(r - ri).

Using this expression in (4.8) yields

Ei (r) - zwjtoli f Gi (r, r') 6 (r - rl) dr'

liwigo-� �] 01(')(k-ojr - r-1). (4.32)
4 2

Substituting (4.31), (4.32), and (4.30) into (4.6) results in

2 2 Ng,. *Ng,.

Yi (rj) locii /to A H(') (k r r'l).,T-"TO(') (kio I r' - ri g (r'),Xk (r') dr'
1 6 E fA 0

k=1

+ni (rj)
Ng,-*Ngz

E [Tiljk 9k + ni(rj) (4.33)
k=1

where

lo(A) 2A2i 0
i1jk = f HO(') (kio I r.- - r'j) HO(') (kio I r' - ri dr'. (4.34)IT 1 6 A

Collecting the equations in (4.33) together, we have the matrix-vector relationship
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defining the measurements process under the Born approximation:

yi = Tg + ni. (4.35)

In the case of the extended Born approximation, use of (4-31) and (4.32) in (4-28)

results in

iow? 2 Ng,.*Ng'.

Yi (rj) z /lo H(1)(kiojrj - r'j)_'1-.'1(')(k..ojr' - rij)g(r')X.(r')Xk(r/)dr'16 E fA 0 0
k=1

+ n-(r (4-36)

Now, from the definition in (4.27) Xi (r) is itself a function of the conductivity g(r). To

obtain a fully discrete, computationally tractable representation of (4-36), we assume

that Xi(r) is constant over the region Ak- Moreover, this value is taken as Xi(r)

evaluated at the geometric center of Ak which we label rk. Thus, making use of this

approximation as well as (4.30) allows (4.36) to be written as

Ng,..Ng,.

Yi (rj) = 1: [Tiljk Xi(rk)gk + ni(rj)
k=1

which as in the Born case is gathered into the matrix-vector form

yi -_ TiD (Xi) g + ni (4.37)

where Ti is the same as for the first-order Born approximation and

Xi = [Xi(ri) Xi(r2) ... Xi(rNg,..N,,. )]T

To complete the discrete system defining the extended Born approximation, (4.30) is
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substituted in (4.27) so that the k" component of Xi is written as

N *N'.

[Xi], - I + '40 ,E 9,,,, f LLLTO(') (kio I r - rk (r) dr
4 M=1 A

[1 + UTk_q] (4.38)

with Uik the column vector whose m'h elements is

HO(')(k-,oJr - rkl)dr.
4 A

4.5.2 The Exact Physical Model

Finally, a method of moments discretization of (4.6), is obtained by expanding g(r) as

well as Ei(r) and Ei(r) using the pulse basis functions. Substituting these expans ions

into (4.6) yields

Eii xi (r) E Eij XI (r)+ EEikgj fA Gi (r, r') xj (r') Xk (r') dr'
1 Jk

Pi,, Xi (r) + Eij gj fA Gi (r, r') Xj (r') dr' (4.39)

where the second equality follows from the first by the fact that the Xj (r) are nonzero

on disjoint regions in A. Now multiplying each side of (4.39) by X,(r), integrating

over A and make using the fact that the Xj(r) are an orthogonal set of functions

yields

[Ei], m + [Gi],,j gj [Ei]j (4.40)

with

[Gilr,,,j - Gi(r, r')drdr'. (4.41)
Area Aj fAj fA-



Finally, (4.40) is gathered into the linear system representation

E, = EP, + Gi'D(g)E,. (4.42)

An analogous procedure is used to obtain (4.9).

4.6 Transformation to Wavelet Space

The remaining chapters of this thesis will concentrate on the development and analysis

of multiscale, statistically-based algorithms for solving the inverse scattering problem

discussed in Section 4.1. In this section, the transformations to wavelet space are

presented for the equations governing the physics of the problem, the observations

processes, and the various approximations upon which the algorithms are to be based.

4.6.1 The Born and Extended Born Approximations

We begin by considering the transformation of the observations describing the Born

approximation. Because the measurements in this case are linearly related to the

conductivity perturbation, the methods used in Section 3.2.2 for the deconvolution

problem may be applied here as well. Thus, we use Wi and W. to move from physical

to scale space in the following manner

77i = I/Vi y ()/Vi Tj I/V,*) ^ g) + )/Vi ni

ai-Y + Vi. (4.43)

In Chapter 7, an algorithm for performing the nonlinear inversion in the wavelet

domain is derived and analyzed. This procedure is based upon a multiscale represen-

tation for the equations defining the extended Born approximation. Now, recalling
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(4-37), we have in the transform domain

[VVi,,TiWT 3Xi)WT] W_qg + Wjjnj

(4.44)

(DiA(-Y)

where Wjj for j 1, 2, 3 are arbitrary orthonormal wavelet transform operators

and E"i is the wavelet transform of the vector Xi defined in (4.38). Additionally, with

� = IlVx, the operator A(�) in (4.44) may be regarded as the standard form wavelet

transform [111 of the matrix D(x) written explicitly in terms of �, rather than x. The

definition of A in this manner facilitates analysis as it allows all equations of interest

to be written only in term of scale-space quantities.
In Chapter 7, we require 17 the gradient matrix Of 4)-,A(-Y) with respect

-Y (DiA(-Y), 71

to -y. From the definition Of �DiA(_Y) in (4.44),

17'Y '�DiA(_Y) 17-y [E)iA(E:7i)-y]

E)i [A(-=i) + A4i(-y)] (4.45)

where some linear algebra shows that the matrix A4i(-y) is

M A(=.) A (E (4.46)19-Y, -Y '9-Y 'Y a-YNg22

Next, from (4.44),

a A a [Wi,2D(Xi)W T
19-yj 19-Y - 93

(9 WT
Wi12 - D(Xi) (4.47)a-yj 9

Because D(Xi) is a diagonal matrix, its derivative with respect to -Yj will also be

diagonal with the (k, k) 1h element satisfying

D(Xi) [Xilk (4.48)&Yj '91V -kk '3
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where from (4.38). may be expressed in terms of as follows:[Xilk

[Xi] k [1 + UTkg]

[ 1 + UT, k IlVgT W9 9]

[I+ yT
(4.49)

so that

19 [Xilk [^f iklj (4.50)
1 + ^fT Y)2

ik

Finally, eqs. (4.45) through (4.50) taken together define the matrix V'Y'Dz-,A(-Y).

4.6.2 The Exact Physical Model

Transformation of the discretized dynamics describing the inverse scattering problem

is considered. From (4.9), we have that each observation vector y- is related to the

unknown conductivity perturbation, g through the relation

y- = Gi,,D(Ei)g + ni

and from (4.7), the electric field, Ei, satisfies

[I - GiEl(g)]Ei = Ei.

Using the same method as in (4.44) for moving from physical to scale space, the

transform domain representations of (4.9) and (4.7) are written as

77i = I'-,, A (-Ii) -y + vi (4-51)
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and

riA(,/)] S- - ej. (4.52)

respectively. In (4.51) and (4-52), Si and ej are the wavelet transforms of Ej and Pi

respectively and A(Sj) and A(-y) are defined analogously to A(E-Ej) in (4.44).

Finally, in considering the analysis of multiscale methods for solving the nonlinear

inverse scattering problem, we shall require V,, �D Making use of the same proce-

dure used to derive (4.51) and (4.52), we have the transform domain representation

of (4.17)

ri,,A(si) + ri, [i - riA(-y)i-I rjD(Sj). (4.53)
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Chapter 5

1\4ultiscale, Stochastic Inversion

Procedures for the Linearized

Inverse Scattering Problem

5.1 Overview

As a first step in understanding the difficulties inherent in the inverse electrical con-

ductivity problem developed in Chapter 4, we begin by considering the formulation of

this problem using the first Born approximation. From the discussion in Section 4.4,

we know that this approximation linearizes the relationship between the data and

the conductivity perturbation so that the resulting inverse problem is precisely of

the form considered in Chapter 3. Moreover, because the inverse scattering problem

exhibits all of the difficulties commonly found with linear, full reconstruction prob-

lems, a multiscale, stochastic approach to its analysis and solution proves to be quite

useful. Indeed, unlike the deconvolution problems examined in Section 3.4, (4.34)

indicates that the matrices associated with the Born inverse scattering problem do

not have a Toeplitz structure thereby negating much of the incentive for a Fourier-

based approach to the problem. In Section 5.4 however, we show these kernels are

made sparse under the action of the wavelet transform so significant computational
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savings may be expected by employing a scale-space approach to inversion. Addi-

tionally, the physics governing the observation process combined with the restrictive

observation geometry cause this to be an extremely ill-posed problem. Thus we are

led to consider the use of a 1/f-type of prior model for regularization. Such models

are especially appropriate given the geophysical roots of this problem combined with

the recent work in the use of fractals structures for modeling many natural phenom-

ena [42,106]. Finally, as we shall see throughout this chapter, information conveyed

by the data from each observation process varies considerably both in spatial scale as

well as position. Thus, there is incentive for a RECM-based approach to the analysis

of the linearized inverse scattering problem.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

the general problem structure of interest in this chapter. Subsequently, we explore

the utility of our multiscale methods in the analysis of three particular problems

each defined by the configuration of sources and receivers used to provide data to the

inversion routine. Section 5.3 is devoted to the analysis of the radial profiling problem

similar in nature as that consider by Habashy et al. in [58]. Subsequently, a so-called

cross-well tomography problem is analyzed in Section 5.4. In both of these problems,

an estimate of the conductivity is generated based upon observations obtained at the

boundaries of the medium. However, motivated by the work in [90], in Section 5.5,

we examine the benefits of supplementing these boundary observations with a small

number of high-quality point-like observation collected inside the medium.

5.2 Problem Formulation

The specific geometry of interest here is a two-dimensional configuration illustrated

in Figure 4-1. Electromagnetic sources (indicated by the black circles) emit time-

harmonic waves into a lossy medium. These primary fields are scattered by con-

ductivity inhomogeneities located in the darkly shaded rectangle and the secondary

fields are observed at one or both receiver arrays located on either vertical edge of

the region under investigation. Based upon observations arising from a collection of
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Experiment Source Frequency Receiver
number Position of source (Hz) Array

1,2,3 TMB fH1 398 Left
4,5,6 TMB fWID 119 Left
7,8,9 TMB fLO 6 Right

Table 5.1: Data set definitions for observation processes of interest in the chapter.
The abbreviations in the column labeled "Source Position" correspond to the Top,
Middle, and Bottom line sources in Figure 4-1

experiments corresponding to different source/receiver array combinations, the objec-

tive of the inverse problem is the full reconstruction of the conductivity perturbation.

The inversions in this chapter are based upon the data obtained from a number

of scattering experiments. Each such experiment produces a vector of measurements

comprised of the observed scattered field obtained over a single receiver array due to

energy put into the medium from one of the three sources operating at a particular

frequency. In Sections 5.3 through 5.5 we consider problems for which the data

corresponds to different subsets of the nine experiments defined in Table 5.1. Here

each source is capable of operating at a high, middle and low frequency labeled fHr,

fMID and fLO respectively.

As shown in Section 4.4, the first Born approximation yields a linear relationship

between the vector of observation associated with the i1h scattering experiment, yi,

and a discrete representation of the conductivity anomaly, g. Thus, the observation

model takes the form

yi = Tzg + ni (5.1)

where Ti is a matrix encompassing the (linearized) physics (see Section 4.5.1) and ni

is an additive, zero-mean, uncorrelated, random vector representing the noise in the

data.

As discussed in Section 4.6.1, because (5.1) is a linear model, its scale-space rep-

resentation, given in (4.43), is of the same form as that considered in Chapter 3 and
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Parameter Valu

Wavelet Daubechies 6-tap

mg 6
L9 3

2

PL, 0.5
SNR2 for DHI 200

2S R for DmID 400
Background conductivity I S/m

Table 5.2: Parameters for radial profiling problem.

is repeated here for convenience as

77i (i'Y + Vi (5-2)

Additionally, the MAP estimator for �, the wavelet transform of the conductivity

profile, is defined by the normal equations in (3.8), the associated error covariance

matrix is given by (3.9), and the analysis based upon the RECM described in Section

3.3.2 may brought to bear directly on this problem.

5.3 A One Dimensional, Radial Profiling Problem

We begin by considering a radial profiling problem similar to that analyzed by

Habashy at. al in [58, 60]. Here, g is assumed to vary only in the horizontal di-

rection in Figure 4-1 with the specific true conductivity profile g to be used in this

example shown as the solid line in Figure 5-2. The numerical values specifying the

prior model and the parameters describing the background medium are given in Table

5.2.

The objective of this example is to illustrate the utility of the RECM in analyzing

the various ways in which the data available to the inverse scattering reconstruction

impacts the estimate. Specifically, we explore inversions using data from the following
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three different combinations of the high and middle frequency scattering experiments

described in Table 5.1:

DHI Data collected at the left receiver array in response to all three sources operating

at the the highest frequency (i.e. information from experiments 1-3 in Table

5.1).

DMID Data collected at the left receiver array in response to the three sources oper-

ating at the middle frequency (i.e. information from experiments 4-6 in Table

5.1).

DHIMID Data from DHI U DmID

The information regarding the structure of 9 supplied by DHI and DMID is illUS-

trated in Figure 5-1. Recall from (5-1) that at the jth observation point of the ith

data set,

Ng

Yi (j) E Tj (j, k) g (k) + ni (j) (5.3)
k=1

so that the 3 th row of Tj represents the map which takes conductivity, g, into the jth

element of the ith observation vector. In Figure 5-1(a) (resp. 5-1(b)), a single row

from kernels associated with high (resp. middle) frequency scattering experiments are

shown. Specifically, we plot the maps associated with the observation point in the

middle of the left receiver array for experiments whose source is the middle of the three

line sources. From these illustrations, we see that the high frequency observations are

most sensitive to variations in g close to x = 0 but provide essentially no information

regarding the structure of g far from the origin. The data corresponding to middle-

frequency sources better reflect the behavior of g away from x = 0 but still are

comparatively insensitive to the conductivity far from the point of observation. Thus,

in general we expect to obtain a relatively accurate reconstruction of g near x = 0

with decreasing fidelity as a function of radial position.

In Figure 5-2(a), the estimate obtained using data sets 1-12, �(DHIMID), is COM-

pared with the true function. Clearly, we are able to resolve the left edge and to a
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(a) Typical structure associated with (b) Typical structure associated with
high frequency kernel middle frequency kernel

Figure 5-1: Typical structure of kernel functions used in the reconstruction of g for
the radial profiling example.

lesser extent the magnitude of the conductivity anomaly located closest to the ori-

gin. However, the information provided by DHIMID is sufficient to recover accurately

only the coarsest detail regarding the structure of the rightmost block. As a means of

understanding how both DHI and DMID contribute information to this estimate, in

Figures 5-2(b)-(c), �(DHIMID) is graphed against �(DHI) and �(DMID) respectively.

Again, we see that individually, the data from the high and middle frequency sources

provide information about g close to x = 0. Further from the origin, �(DHIMID)

follows neither �(DHI) nor �(DmID) so that some level of data fusion must be taking

place to the extent that the presence of both data sets together yields an estimate of

g over this region which is substantially different from that obtained from either set

alone.

A more accurate assessment of the manner in which this information is merged is

obtained by analysis of the diagonal elements of the relative error covariance matrices,

II(B) for B E JDHI, DmID, DfrjMIDj- In Figure 5-3 these quantities are plotted for
scales 3, 4, and 6. In each of these graphs, II' (DHI-) is marked with a o, rI'(DMID)

n n

with a x, and r1'(DHIMID) with a +. As there is strictly more information inn

DHIMID, than in either DHI or DMID alone, it is the case that all +'s must lie
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(a) g (solid line) versus �(DHIMID) (b) �(DHIMID) (solid line) versus
(dashed line) �(DHI) (dashed line)

Both vs. middle freq.
3
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2 -

1.5

1

0.5

0

-0.5; 2.0 410 6.0 80 100
Distance from borehole

(c) �(DHIMID) (solid line) versus
�(DMID) (dashed line)

Figure 5-2: Estimates of g using various combinations of high and middle frequency
data. We note that in all cases, the measurements provide sufficient information to
reconstruct only those features of g near x = 0. At points further from the origin,
only the coarsest scale characteristics of g are resolvable. Moreover, as �(DHIMID )

is significantly different from both �(DHI) and �(DmID)we conclude that some type
of sensor fusion is occurring over the region far from x = 0.
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above the other two symbols. In those cases where n'(DHIMID) is significantly

larger than both nn(DIII) and rlm(DmID), we say that active sensor fusion is taking

place. Indeed, in Figure 5-3(a), this is the case for the estimates of elements 5 - 8 of

g(Lg). Moreover, examination of Figures 5-3(b)-(d) shows that active sensor fusion is

occurring with respect to the estimates of the wavelet coefficients of g near the origin

at scales 3, 4, and 6. We have omitted the RECM plot at scale 5 as no such fusion

occurs at that scale in this example. Finally, Figure 5-3 is instructive to the extent

that it demonstrates where the data do not support a reconstruction. The fact that

Hm is close to zero at all scales and for all wavelet coefficients corresponding to shifts

far from x -_ 0 indicates that the information in DHI and DMID either alone or in

combination is insufficient to reconstruct any detail in g over this domain.

This notion can be made more precise by considering the space-varying optimal

scale of reconstruction, m*(j), defined in Section 3.3.2. In Figure 54(a) and (b), the

optimal scale as a function of position is plotted forr = 0.05 and T = 0.5 respectively

using data from DHIMID. For the smaller value of T, we see that as the x grows large,

the optimal scale drops from 6 to 3 in a manner quite consistent with the intuition

developed by examination of the kernel functions. That is, for a rather narrow region

near the origin, the RECM information dictates that a fine scale reconstruction of g

should be possible. As x increases, the scale of detail to be included in �(DHIMID)

decreases. For T = 0.50, Figure 54(b) shows similar characteristics to the -F = 0.05

case; however, the more stringent threshold results in a more rapid decrease in scale

as a function of distance. Finally, in Figures 5-4(c)-(d) the truncated estimates,

�,(DHIMID), defined by (3.14), are compared against �(DHIM'D) for T = 0.05 and

,r = 0.50 respectively showing that there is little difference between the optimal

estimate and its truncated versions.

As discussed in Chapter 3, the relative error covariance matrix also represents

a useful tool for analyzing the incremental benefits associated with the addition

of data to an already-formed estimate. In Figure 5-5, the diagonal elements of

rI(DHI, DHIMID) are displayed for the coarsest scaling coefficients and the finest

wavelet coefficients. These plots illustrate that the middle-frequency data sets con-
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(a) RECM information for coarsest (b) RECM information for wavelet
scaling coefficients (i.e. scale 1) coefficients at scale 3

RECM for Wavelet Coef. at Scale 4 RECM for Wavelet Coef. at Scale 6
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(c) RECM information for wavelet (d) RECM information for wavelet
coefficients at scale 4 coefficients at scale 6

Figure 5-3: Diagonal elements of relative error covariances for three radial profiling
experiments. In all cases, the symbol "+" corresponds to r1(DHjM1D), "o" to H(DHI)

and "x" to rl(DMID). From (a) we see a significant level of sensor fusion taking place
with respect to the estimates of the coarsest scale scaling coefficients far from the
origin x = 0. From (b)-(d), we conclude that accurate reconstruction of the detail
components of g is limited to shifts close to x = 0.
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Reolution map at tau=0.05 Resolution map at tau 0.50
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Mg = 7 for a threshold value of Mg = 7 for a threshold value of
7- 0.05. 7 0.50.
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(c) (solid line) VS �0.05 (dashed line) (d) (solid line) VS �o.5o (dashed line)

Figure 5-4: Maps of the optimal scale of reconstruction and the associated estimates

of g for threshold values T G fO.05, 0.501. These illustrations provide a quantitative

verification of the intuition that resolution in the inversion should drop as a function

of distance from the origin. In (c) and (d), the plots of � against NM and NM respec-

tively show that little is lost in reducing the complexity of the model by eliminating

degrees of freedom about which the data provides little or no information.
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tribute new information to an estimate based upon the high-frequency observations

in two locations:

1. At the coarsest scale away from the origin

2. At the finest scale, closest to the origin.
For all other scales and shifts, IP"' (DHI, DHI e

n MID) is essentially zero. W note that

the RECM information is in accord with the plots of the estimates in Figure 5-2

where we saw little difference in the actual estimates based upon the different data

sets near the origin while farther from x = 0, the estimate generate from both DHI

and DmID differed significantly in a very coarse scale manner from those obtained

using either the high or the middle frequency data.

As in the deconvolution problem, we see that the relative error covariance ma-

trix provides new and useful insight not obtainable by analysis of either the kernel

functions or the estimates. In particular, for the radial profiling problem considered

here, one would conclude that the data from the high and middle frequency data sets

is useful for the recovery of the detail structure of the conductivity profile near the

origin; however, additional observations are required to recover all but the coarsest

scale information regarding the behavior of g far from x = 0.

Additionally, the relative error covariance matrix analysis can be used to evaluate a

particular parameterization of g. Given the structure of the observation processes, we

see that g is overparameterized as the data provide little useful fine scale information

relative to that found in the prior model. Any attempt to recover these components of

g is effectively a waste of computational resources. Rather, the RECM suggests that a

more parsimonious description of g is warranted and even indicates how such a model

should be constructed based upon the information available in the data. That is, given

the structure of the observation processes, the original parameterization of g involving

128 degrees of freedom is clearly excessive. Rather, at a threshold of T -_ 0.50, the

data dictates that only 9 elements of -y (the nonzero elements Of %.50(DHjMID)) can

be accurately recovered representing a 93% reduction in complexity of the inverse

problem.
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Figure 5-5: The incremental reduction in uncertainty obtained by adding data from

the middle frequency observation to an estimate based upon the high frequency mea-

surement sources. In accordance with Figure 5-3(a) we see significant benefits associ-

ated with determination of both the coarsest scale structure of g far from the origin

as well as the finest scale structure closest to x = 0.

5.4 A Two-Dimensional, Cross-Well Tomography

Problem

We next consider improving resolution near the right side of the conductivity anomaly

by using observations obtained from sources located at the left and receivers on the

right side of A. This observation configuration arises quite frequently in practice

especially in the fields of medical imaging and geophysical prospecting [33-36,73,103]

and we term inverse problems with this measurement geometry cross-well tomography

problems as they model the case where the lines x = 0 and x = 100 are taken to

be oil boreholes [103]. In addition to these changes in the observation configuration,

we now assume a full 2D problem so that g is free to vary both in the x and the

z directions. The true conductivity anomaly to be reconstructed in this example is

displayed in Figure 5-6 and the various parameter values needed for this experiment

are given on Table 5.3.

As seen in the radial profiling problem, to obtain information regarding the be-
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Parameter Value Parameter Value:::::]

Z, Wavelet Daubechies 6-tap- x Wavelet Daubechies 2-tap
Mg'. 4 jW9,- 2
L91Z 2 L9IX I
Az I /TX 1

2 2
z O'X 1

PL,,z V-2 PLgX v'_2
SNR 2 for Dff I 250 SNR 2for DmID 500
SNR 2 for DLO 1000 Background conductivity 10 S/

Table 5.3: Parameters for cross-well tomography problem

True conductivity

3-

2-

1 -

0

-1
0

100
60

100 0 20
z X

Figure 5-6: Finest scale representation of conductivity anomaly to be reconstructed
for 2D examples.
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havior of g far from x = 0 it is necessary to probe the medium with low frequency

energy. Hence, for this problem, we consider augmenting DH.TMIDwith data sets

9-12 from Table 5.1. These data are generated by low frequency sources located near

the left side of the region of interest and measured by the receiver array located at

right side. We denote this additional collection of observations DLO. The structure

of the kernels associated with this problem is seen in Figure 5-7. In particular re-

calling the configuration of sources and receivers in Figure 4-1, the plots in Figure

5-7 correspond to the maps taking g into the observation at the mid-point of the left

(in (a) and (b)) or right (in (c)) receiver array in response to input energy from the

middle source. Also, as g is a 2D function, so too are these maps; hence, each pixel

in Figures 5-7(a)-(c) represents the weight placed on the corresponding element of

g in the sum (5.3) with darker colors indicating larger magnitudes. As in the 1D

example, the high and middle frequency scattering experiments are most sensitive to

variations in 9 near the left side of the square. The structure of the low frequency

kernel with areas of sensitivity near both the left and right vertical edges suggests

that the addition of data from DLOwill improve the estimate of g near x = 0 and

allow for the determination of at least some structure at the far side of the region.

In Figure 5-8, we plot the cumulative distribution of energy (i.e. the two-norm

of the largest n elements in Tj and Oi versus n) for the physical and scale space

representations of the kernels in Figure 5-7. As in the deconvolution example (Figure

3-4), the energy tends to be concentrated in far fewer elements in the wavelet domain.

Here, the compression is greatest for the low-frequency kernels with 95% of the energy

contained in about 375 entries of E)i as opposed to 14430 in Ti. This effect is smaller

for the high frequency observation matrix where the 95% mark is achieved with 2120

elements of Tj and 449 of E)j. This is explained via analysis of Figure 5-7(a) which

indicates that the area of sensitivity Tj is already highly localized in physical space so

that one would expect a smaller degree of compression in wavelet space. Nonetheless,

for each of the three kernels, fewer than 500 nonzero entries are required to capture

95% of the energy, representing a 97% compression ratio. Thus, the use of algorithms

which exploit this sparse structure, such as POLSQR described in Appendix A, leads
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to highly efficient implementations of the inversion and analysis techniques employed

in this chapter.

In Figure 5-9, we see that the addition of the low-frequency, cross-well data does

significantly improve the resolution on the right side of A . Figure 5-9(a) (resp. (b))

is a display of �(DHIMID) (resp. �(DHIMIDLO)). Given only the high and medium

frequency information, the anomaly near x = 100 is almost completely undetected;

however, the addition of the low frequency data clearly improves the ability to resolve

this second structure. We do note that while both conductivity perturbations are

reflected in the estimates of g, the nature of the physics of the problem allows for only

a comparatively coarse-scale or blurred reconstruction near the right vertical edge of

the anomaly. In general, for inverse scattering problems of the type considered here,

one requires data at more frequencies and/or from many source/receiver combinations

in order to obtain significantly higher resolution estimates of such anomalies (e.g. in

the next section).

Given the sets of data considered in this experiment, more detail can be obtained

on the right side of the conductivity anomaly by alteration of the prior model, Po.

Because each wavelet coefficient in -y impacts g over a limited area, we have extensive

flexibility for choosing both the spatial scale and physical location over which we

desire to modify the manner in which the data impacts the reconstruction. In the

cross-well example, the estimate �(DHIMIDLO) shown in Figure 5-9(b) indicates that

near the right vertical edge, there exists some structure; however we clearly have only

the coarsest information about that anomaly. In order to explore the possibility of

improving the resolution in that area, we increase the variances in Po associated with

the finest scale wavelet coefficients that impact g near the location of the suspected

perturbation. The result is shown in Figure 5-10 where we clearly have an improved

picture as to the true nature of g near the left side of the region of interest.

As in the radial profiling problem, the relative error covariance matrix is a useful

tool in understanding this sensor fusion problem. In the cross-well case however

we have the additional ability to analyze the detail information in both the x and z

directions. For this experiment, we have dense observations on either vertical edge and
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Figure 5-7: Typical structure of kernel functions used in the reconstruction of g for the
cross-well tomography example. Each image corresponds to map taking conductivity
to the measurement obtained at the center of the left (in (a) and (b)) or right (in (c))
receiver array in response to excitation from the middle source with darker shades
indicating larger values. As in the radial profiling example, the high and low frequency
kernels are most sensitive to variations in g near the left edge of the square. The low
frequency data should aid in the reconstruction of g near the either vertical edge.
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Figure 5-8: Percentage of total energy contained in the first n largest elements of Tj
(solid lines) and E)i (dashed lines) for typical high, middle, and low frequency kernel

functions associated with the cross-well tomography inversion.
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Figure 5-9: Estimates of g using various combinations of high, middle and low fre-
quency data. From (a), the high and medium frequency information provides insuf-
ficient information to reconstruct the anomaly near x = 100. As seen in (b), the
addition of the low frequency, cross-well data sets clearly improves the ability to
resolve this second structure.

Modified Estimate based upon D(HI, MID, LO)
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Figure 5-10: Estimates of g using high, middle and low frequency data. Here, the
variances associated with the fine scale wavelet coefficients governing the behavior
of g near the anomaly on the right side have been increased so as to allow more
information from the data to be reflected in the estimate
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a rather sparse horizontal sampling. Thus, we anticipate that our ability to resolve

detail in these two'directions will be significantly different and this difference should

be captured via the RECM analysis. In Figure 5-11, the finest scales supported in the

reconstruction in both the x and z directions are plotted as a function of position for

,T = 0.50 for the two cases where data from DHIMID and DHIMIDLo respectively are

available for the reconstruction. From Figure 5-11(a)-(b) we see that given only high

and middle frequency information, detail in the reconstruction is limited to the region

near x = 0 in both x and z which is consistent with the actual estimate in Figure

5-9(a). Figure 5-11(c)-(d) shows that the addition of the low-frequency measurements

significantly raises the level of detail to include in a reconstruction over the right half

of the region of interest which is in accord with the intuition developed in the analysis

of the kernel functions associated with these observations. Specifically, we note that

the minimum level of z oriented detail increases from 2 in Figure 5-11(a) to 3 in

Figure 5-11(c). Moreover, the finest scale of horizontal detail moves from I to 2 in

the area near the right vertical edge.

Finally, N.5(DHIM1_DL0), the truncated estimate of 9 is plotted in Figure 5-12.

In this case N-5(DH1,MIDL0), is composed of only 79 nonzero wavelet coefficients as

opposed to the 256 in the original corresponding to a 69% reduction in inversion com-

plexity. Visual comparison of this reconstruction with the full, untruncated estimate

indicates that all of the features captured in the optimal estimate are in fact present

in the truncated version as well.

5.5 The Value of Localized Observations

As a last illustration of the utility of our approach, we consider a problem in which

we augment DHIMIDLO with information from a small collection of closely-spaced

source/receiver pairs located internal to g. The scattered field from each source

is observed by one receiver thereby providing a collection of essentially point-like

observations of the conductivity perturbation. For this example, we consider the

nine internal point measurements located near the lower right corner of the square
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Figure 5-11: Maps of the optimal scale of reconstruction for the z and x components

of detail for the threshold value r = 0.5. The maps verify of the intuition that the

low-frequency, cross-well data provides improved resolution especially in the vicinity

of the right vertical edge.
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Truncated estimate of g given D(HI, MID, LO) (tau 0.50)
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Figure 5-12: The truncated estimate N.50(DH1,MrDL0). Note that there is little
difference between this function, composed of 79 non-zero elements in the wavelet
transform domain and the optimal estimate �(DHIMIDLO)which has 256 degrees of
freedom.

as seen in Figure 5-13. These data are denoted DPT, the subscript PT standing

for point observations. This particular configuration is motivated by the work of

Paulsen et al. in [90] where the authors considered the addition of a small number

of internal measurement points as a means of locally improving the reconstruction

in an electrical-impedance tomography problem. Aside from the examination of the

decrease in the error in the reconstruction attributable to these extra sources of

information, Paulsen et al. perform no quantitative analysis toward understanding

exactly how these internal observation points contribute to the improvement of an

inversion.

For this case, we assume the same conductivity anomaly used in the previous

example with all other quantities specifying this experiment given in Table 5.4. In

Figure 5-14(b) we plot the structure associated with one of the point-observation ker-

nels. Here we see that the internal source/receiver transfer function is highly peaked

near the position of the observation so that the measurements from these observation

points should be of use in recovering local detail structure in g. In fact, comparison

of Figures 5-15 and 5-9(b) demonstrates that the addition of the measurements from

the internal source/receiver pairs greatly improves the ability to resolve the second

conductivity anomaly.
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Figure 5-13: Configuration of inverse conductivity problem. Here we have two type
of measurements. In the first, the receiver arrays located on the vertical edges of
the inhomogeneity observe scattered signal arising from the fields created by the
sources located on the left side. In the second case, closely spaced source/receiver
pairs located in the inhomogeneity are used to obtain point-like observations of the
conductivity distribution.
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I Parameter F Value �j Parameter __F� � Value

z Wavelet Daubechies 6-tap x Wavelet Daubechies 2-tap

mg, �_ 4 Mg'. 2
L91Z 2 LgIX 1
Az 1 AX 1

2 2
z X

PL,,z V2_ PLq'X VI-2-
SNR 2 for DHI 250 SNR 2 for DMID 500
SNR 2 for DLO 1000 SNR 2 for DPT 500

go I 1 S/m

Table 5-4: Parameters for example using sparse, internal data.

Structure of Point Kernel
0 0.4

10 - 0.35

20 -
0.3

30 -

40 - 0.25

50 - 0.2

60 - 0.15
ME.,

70
0.1

80 -

90 .05

100� 0
20 40 60 80 100

Figure 5-14: Typical structure of kernel functions associated with internal obser-
vations. These source/receiver pairs provide nearly pointwise observations of the
structure of g in the vicinity of the measurement point.

Estimate based upon D(HI)

3-

2-

1

0-

-1 �.
0

100

100 0

Figure 5-15: Estimates of g based upon DHrMIDL0,PT-
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Vertical detail map given D(HlMlDL0,PT) (tau 0.50) Horizontal detail map given D(HQ (tau 0.50)
4 2

1: 3.9 1.9

20 3.8 1.8

30 3.7 30 1.7

3.6 1.6

3.5 1.5

60 3.4 60 1.4

70 3.3 70 1.3

3.2 1.2

3.1 1.1

3 1 1
0 20 40 60 80 100 0 20 40 60 80 100

(a) The finest scale of to which z- (b) The finest scale of to which x-
oriented detail can be reconstructed oriented detail can be reconstructed
at r = 0.5 given DHjM1DL0,PT- at r = 0.5 given DH1,A1IDL0,PT-

Figure 5-16: Maps of the optimal scale of reconstruction for the z and x components
of detail for the threshold value r = 0.5.

A precise understanding of how and where these data improve the reconstruction is

seen in Figure 5-16 where the finest z and x detail maps are shown for DH1,MjDL0,PT

at a threshold of F= 0.5. By adding the data from the internal measurements we see

by comparing Figures 5-16 to Figures 5-11(c)-(d) that improvements in resolution

are limited to the spatial region near where these data are collected. Finally, as

in Sections 5.3 and 5.4, we see by comparing Figures 5-15(b) and Figure 5-17 that

N.50(DHIMIDL0,PT) conveys basically the same information �(DHIMIDILOPT)except

the former requires the reconstruction of only 92 nonzero wavelet coefficients for a

64% savings in complexity.

5.6 Conclusions

In this chapter we have considered the inverse conductivity problem formulated under

the first Born approximation. Because this problem possesses input-output structure

and practical difficulties similar to those discussed in Chapter 3, we were motivated

to explore the use of multiscale and statistically-based analysis techniques and inver-

sion algorithms in the context of this inverse scattering problem. In particular, an
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Truncated estimate given D(HI, PT) (tau = 0.50)

3-

2-

1 -

0-

-1 �.
0

100
50 60

2
100 O

Figure 5-17: The truncated estimate N.50(DHIMIDL0,PT). As in Section 5.4 we see
that there is little difference between this function, composed of 92 non-zero elements
in the wavelet transform domain and the optimal estimate �(DHIMIDL0,PT) which
has 256 degrees of freedom.

MAP approach is taken to obtain a multiresolution estimate of the conductivity field,

and the problem of ill-posedness is addressed through the use of a fractal-type of

statistical prior model which captures many of the self-similar characteristics of nat-

urally occurring phenomena. Moreover, issues of computational complexity arising

from the manipulation of large, dense matrices were ameliorated through the use of

wavelet representations of the linear operators relating the data to the conductivity.

Here it was observed that for typical matrix kernels over 95% of the energy in the

transform-domain matrices was concentrated into fewer than 3% of the elements.

As in the deconvolution problems considered in Section 3.4, multiscale methods

in general, and RECM-based analysis in particular, provide significant insight into

the manner in which the data convey information to a reconstruction. In particular,

three measurement configurations indicative of inverse scattering problems arising

in fields such as geophysical exploration, ultrasonic imaging, and medical imaging

were examined. For example, in considering the radial profiling problem, the relative

error covariance matrix was useful in quantifying the manner in which reconstruction

resolution decreases as a function of the distance from the source/receiver arrays

and in understanding issues of sensor fusion. Extension of these methods to two

dimensional, full reconstruction problems yielded information regarding the detail
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structure in both the horizontal and vertical directions. This allowed for an explicit

understanding of the benefits to the reconstruction offered by low-frequency, cross-

well data sets as well as a sparse collection of high quality internal observations.

Additionally, because each wavelet coefficient impacts the final reconstruction over

a limited spatial area we were able to modify the structure of the regularizer to

allow for increased sensitivity over selected scales and positions. Finally, in all three

examples, the RECM was useful in localizing where in scale space the data provided

significant information for a reconstruction thereby allowing for the reduction in model

complexity of well over 60% for both the one and two dimensional reconstructions.
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Chapter 6

1\4ultiscale 1\4ethods for Anomaly

Detection, Localization, and

Estimation Problems

6.1 Introduction

In this chapter the anomaly detection problem is examined in the context of the lin-

earized inverse conductivity problem discussed in Chapter 5. Recalling the discussion

in Chapter 1, the goal of this problem is to extract from the data the structure of re-

gions in the medium for which the behavior of the conductivity differs from some prior

set of expectations. In theory, one could approach the anomaly detection problem

by first solving the full reconstruction inverse problem and subsequently postprocess-

ing the results to determine the nature of anomalous structures. Based upon the

results of the previous chapter, we would only expect such an approach to work well

in the event that we were able to generate an accurate, high resolution image of the

conductivity field. The RECM analysis of Chapter 5, however, indicates that even

under high SNR conditions, such resolution is not available for the inverse conductiv-

ity problem of interest in this thesis. Additionally, postprocessing the output of the

linear least squares estimator (LLSE) is clearly a statistically suboptimal approach to-
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ward detection and localization of anomalous regions. With this motivation in mind,

we demonstrate the utility of a multiscale framework for directly solving the spatial

anomaly detection problem.

The basis for the approach described in this chapter is the use of wavelet trans-

forms and the statistical theories of optimal estimation and detection to develop

both efficient algorithms for anomaly detection and localization and analytical in-

sight into the nature of the problem and the limits of performance that result from

the fundamental physics relating the conductivity to the observations. The methods

described here build on the multiresolutional statistical foundation developed in the

previous chapters of this thesis to construct both new, scale-recursive algorithms for

space/scale localization of anomalies and statistical measures of performance that

guide off-line performance analysis and measurement design as well as the on-line

decision process in our anomaly detection algorithm.

The consideration of the anomaly detection problem raises a variety of questions

and challenges beyond those arising in the full reconstruction inverse problem. How

many anomalies are there? Where are they located? What are their sizes? What are

their amplitudes? Given answers to the first three of these problems, the fourth is

a variant of the full inverse problem in which we focus our attention on determining

the magnitudes of only the previously identified anomalous regions rather than a

pixel-by-pixel reconstruction of the entire conductivity field. The determination of

the number, sizes and locations of the anomalous regions is, however, a potentially

daunting collection of tasks as a result of the vast number of combinations of anomaly

structures which, in principle, must be explored in the generation of a solution.

In this chapter, we present an efficient, scale-recursive approach to answering these

questions in which we use the tools of optimal hypothesis testing to make a sequence

of anomaly detection and localization decisions starting at coarse scales, thereby al-

lowing for the detection of spatially large anomaly structures and providing coarse

localization of finer scale anomalies, and then moving to finer ones. In addition, by

using these same statistical techniques, we provide analysis of the anomaly detection

problem that not only yields overall performance limits, but also guides the detection
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procedure. For example, we are able to define and determine the statistical distin-

guishability of a fine scale, large amplitude anomaly from a larger scale, but smaller

magnitude structure or a pair of closely spaced anomalies from a single, broader

anomalous region. The use of the results from this analysis can then tell us at what

scale and in which regions to terminate our detection procedure, i.e. when finer scale

localization is unwarranted given the available data.

In the next section, we formally define the anomaly detection problem while in

Section 6.3 we take a closer look at one basic form of the problem in which we seek

to distinguish two known anomaly structures using the tools of statistical decision

theory. The analysis in Section 6.3 serves as the foundation for the work in Sections

6.4 and 6.5 where we develop the methods for analyzing anomaly detection perfor-

mance. In particular given the physics of the problem, the experimental setup, and

the models describing the background conductivity and the anomaly structures, it

is not obvious what type of information about anomalies one can reasonably expect

to extract from the data. In Section 6.4 we demonstrate the utility of our frame-

work in characterizing the delectability of an anomaly as a function of parameters

such as anomaly size and location. Section 6.5 is devoted to the question of the dis-

tinguishability of anomalies as a function of their relative location and size. Then,

using the insights and analysis from Section 6.4 and 6.5, in Section 6.6 we develop

a scale-recursive algorithm for anomaly detection, localization, and estimation, and

present the results of its performance under a variety of experiment conditions and

configurations. Finally, conclusions reached in this chapter are presented in Section

6.7.

6.2 Problem Formulation

Because the objective of the anomaly detection problem is the the determination of

those regions in A where the behavior of g differs from some prior set of beliefs, we
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consider the conductivity g as being composed of the sum of two parts

g = j + 9 (6.1)

where j represent that portion of g consistent with our prior statistical assumptions

and g encompasses the anomalous behavior of the conductivity. We note that (6.1)

is equivalent to a model for -y, the wavelet transform of the conductivity, of the form

-Y )/Vgj + VV99

� +'�- (6.2)

As in previous chapters, we use the fractal-type of a prior statistical model specified

directly in scale-space to describe the nature of j so that

� - Ar(O, Po) (6.3)

where Po is defined as in Section 2.4-2.

While the prior model for the conductivity is most conveniently constructed in

scale-space, physical space proves to be most appropriate for defining the structure of

g. As will be seen in Sections 6.4 and 6.5, considerable insight into the anomaly de-

tection problem is obtained through performance analysis carried out using anomaly

structures of varying sizes (i.e. spatial scales) which are located in different regions

of A. Thus, we are naturally lead to consider a representation in which anomalous

regions are defined to be superpositions of scaling functions associated with a par-

ticular wavelet transform with each such function localized at a different shift and

scale. To simplify matters in this chapter where there is the additional constraint

that the overall conductivity field must be positive, we restrict our attention to the

use of Haar-type scaling functions for representing the anomalies. Specifically, we

generalize the standard, dyadic Haar decomposition of A by allowing an anomaly to

have support over arbitrarily sized rectangular subsets of A. Note that for other ap-

plications where this positivity constraint is not required, it may be useful to consider
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Region A

Anomaly I

Anomaly 2

(X 2 1Z2)

XS

Figure 6-1: General structure of anomalous regions of interest in this chapter. The
magnitudes, a, and a2 of the two anomalies shown here are proportional to the color
of the corresponding rectangles.

higher-order scaling functions in the representation of anomalous areas.

Referring to Figure 6-1, the i1h anomalous rectangular region is defined by five

quantities: its weight (or magnitude), ai, its size in the x and z directions, (si'X, Si'Z) I

and its location in A as defined by the x and z position of its top left corner (xi, zi).

The quintuple of numbers (ai, six, siz, xi, zl,) we term the structure of the i1h element

of the anomaly superposition. Additionally, the geometry of the i" element of the

anomaly superposition is given by the quadruple (sx, sZ'i' Xi, Zi) or equivalently the

rectangular region over which this element is nonzero. We also consider sxi and szj as

defining the scale of the particular structure under consideration in that small scale

anomalies have correspondingly small values for sxi and sz,. and likewise for larger

scale anomaly structures.

Mathematically, the form for the anomalous behavior of the conductivity over the
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region A is then

"V.
9 = bjaj

= Ba. (6.4)

Here, N,, is the number of anomalous regions located in A, aj is a scalar defining

the magnitude of each anomaly, and bj represents the discrete indicator function over

the j1h rectangular region in g. That is, bj is an N,,,x * Ng,, column vector obtained

by lexicographically ordering the pixels associated with the pulse-discretization of

region A. An element of bj is one if the pixel is part of the Ph anomaly structure and

zero otherwise. In (6.4), the column vector a represents the collection of anomaly

amplitude coefficients while B is the matrix whose j1h column is bj - In the wavelet

transform domain, the anomaly structure is then

N.

E (W. bj) aj
j=1

Sa (6.5)

where 8 = [Wgbl Wgb2 ... IlVgbN,,]. Finally, substitution of (6.5) into (5.2), the obser-

vation model under the Born approximation, yields the following relationship among

the anomaly structures, the background � or �, and the data

E),zy + E)� + v (6.6)

E)Ba + 8� + v (6.7)

where, because � and v are taken to be uncorrelated,

[,OqT] = E)pPn = E OE)T + R. (6.8)

To provide a normalized notion of the overall size of an anomaly, we define an

SNR-type quantity called the anomaly-to-backgroundratio (ABR) which provides a

147



measure of the size of an anomaly relative to the expected behavior of the conductivity

perturbation in A. i.e., relative to �- Mathematically, we have for an anomaly

composed of asingle rectangular region specified domain by the indicator function b

with amplitude a

Power in a2 (bTb)
ABR' (6.9)

Expected power in tr GPO)

where tr(M) is the trace of the matrix M and Po 9 0 W 9 is the covariance matrix

of j, the physical space representation of �.

As described in Section 4.2, under the Born approximation used to obtain (6.6),

g = WTg -y represents a perturbation about a known, constant background conduc-

tivity, go. From physical principles, the overall conductivity, go + g = go + � + Ba

must be greater than zero. Thus, in principle the elements of a may assume both

positive as well as negative values so long as the positivity constraint is satisfied. To

simplify matters, in this chapter we assume that the ai are strictly greater than zero

corresponding to regions of locally higher conductivity than the background. In an

exactly parallel manner we can consider detecting regions of lower conductivity, and

at the end of this chapter we indicate how the work here may be extended to account

for resistive anomaly structures.

As in the previous chapter, we are interested in detection problem based upon data

collected from a variety of scattering experiments corresponding to source/receiver

configurations similar to those illustrated in Figure 4-1. In this work however we use

six line sources, equally spaced along the left side of region A to generate data some

of which are collected on the left side and some by an array on the right side of region

A. The resulting set of low, middle and high frequency scattering experiments are

summarized in Table 6.1.
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Experiment Source Frequency Receiver
number Position of source (Hz) Array

I - 6 0:20:100 fHI = 10000 Left
7 - 12 0:20:100 fMID = 1000 Left

13 - 18 0:20:100 fLO = 100 Right

Table 6.1: Data set definitions for observation processes of interest in the anomaly
detection problem. The notation x : y : z indicated that the sources are distributed
in y increments along a line from x to z.

6.3 A Closer Look at the Anomaly Detection Bi-

nary Hypothesis Test

In this section we examine the structure of a binary hypothesis test (BHT) the object

of which is to distinguish between two anomalies, go and pl, or equivalently, their

respective wavelet transforms, �yo and,;::yl. This particular problem is of direct interest

in the subsequent two sections where we analyze issues of anomaly delectability and

pairwise distinguishability as a function of the locations, spatial scales, and amplitudes

of the anomaly structures.

Recalling the form of the BHT discussed in Chapter 2 as well as the observation

model given by (6.6) and (6.7), the mathematical form of the two hypotheses in the

transform domain is:

Ho E)`% + 6� + (6.10a)

Hi: &�i + 6� + (6.10b)

As discussed in Section 2.3, the so-called d' statistic [105] plays a central role in

evaluating the performance of the resulting likelihood ratio test for distinguishing '%

from �,. For the problem defined by (6.10), eq. (2-26) indicates that in scale-space

2 = (,�J _,�O)TE)Tp-IE)(,�, _,�O)

'17 (6.11)
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where the observation covariance matrix P. is given by (6.8). Finally, we recall from

Section 2.3 that d 2 is related to Pd, the probability of detection (i.e. the probability

of selecting H, when H, is correct) and Pf, the probability of false alarm (i.e. the

probability of choosing Ho when H, is true) through the relationship

d = erfc-*'(Pf) - erfc-*'(Pd) -= T(Pf, Pd) (6.12)

where

erfc* (x) = 00 1 e 012 dt.
72 7=r

To gain additional insight into the d 2 statistic, we note that (6-11) may also be

written

d2 ;zyo)Tp�-11211 (B) p�-112(,�j _ YO) (6.13)

where H(B) is the relative error covariance matrix introduced in Chapter 3 which for

the detection problem takes the form

TI(B) = p�-1'2(po _ pB)p�-112 (6.14)

with PB the error covariance matrix associated with the LLSE of � when no anomaly

is present and based upon data sets qj for 2' E B C f 1, 2, KI - To prove (6.14),

we note, dropping the B dependence, that the error covariance matrix, P, may be

written as [111]
po pOE)Tp-lE)p

so that
OE)Tp -1E)p0

_1/2

which upon multiplication on the left and right by P� yields (6.14).

In Chapter 2, it was observed that d 2 is interpreted as the statistical distance

between the anomalies �7yj and �y-o where a larger distance results in an improved

ability to distinguish one anomaly from the other and therefore better performance
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for the overall detection problem. Equation (6.13) is of interest because it indicates

that this distance is in fact, directly related to the quantity of information present in

the data above and beyond that of the prior model. Specifically, from Section 3.3.2

we know that the RECM satisfies

0 < rl (B) < I

so that we immediately have the following bound on the size of the d 2 statistic for

our problem

d' < (�, _;�10)Tp�-I(,�Yl _ �0) (6.15)

that is, d 2 is less than or equal to the energy in the difference between the two

hypotheses normalized by the inverse of the prior covariance matrix.

Based upon the anomaly model `:'yj -- Siai defined in (6.5) for i = 0, I as well as

the structure of the d 2 statistic in (6.11), the performance of the binary hypothesis

test is seen to be a function of both the geometric configurations, as captured in the

matrices Bi, and the magnitudes, aj, of the two candidate anomaly structures. To

better understand the manner in which the two factors of magnitude and geometry

affect the performance of the likelihood ratio test (LRT) solution to the hypothesis

testing problem defined by (6.10), we consider the case in which each ;::Yi corresponds

to a single rectangular region in A. Thus, B- is a column vector representing the

wavelet transform of the characteristic function of a given rectangular area and ai is

a scalar defining the amplitude of the anomaly. The impact of anomaly geometry and

magnitude on performance, i.e. on the d 2 statistic, is made explicit by substituting

(6.5) into (6.11), expanding the quadratic, and making use of the fact that ai is scalar

to arrive at the relation

62a2 - 261,oala( + 6'a' _ 7r(pf, pd)2 = 0 (6.16)1 1 0 0
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a0

arnin

Figure 6-2: The structure of the ambiguity ellipse. The axes represent the magnitudes
of anomaly structures in a binary hypothesis testing problem. Here a* is the minimum
amplitude of -yi required to detect this structure when the alternate hypothesis is
,�'yo = 0 for a BHT with prespecified Pd and Pf. The value a"' is the minimum size
of,�, required to ensure that for any -yo the performance of the resulting BHT meets
or exceeds that defined by Pd and Pf.

where

6� = L3TE)p-1E)TI3. for j = 0, 1 (6.17)
3 J ' ?7 1

61,0 = L3TE)p'7-18TBO (6.18)
1

and 7r(Pf, Pd) is defined in (6.12). In Section 6.A, it is shown that when viewed as

a function of ao and a,, (6.16) defines an ellipse the form of which is illustrated in

Figure 6-2. As discussed in Section 6.2, ao and a, are taken here to be nonnegative

so that only the first quadrant is shown in this illustration. For illustrative purposes

only, in Figure 6-2, it is assumed that the major axis of the ellipse is oriented at

an angle less than 90' from the ao axis. While this is not necessarily the case, the

analysis which follows is independent of which axis is the major and which the minor.

Figure 6-2 is significant because it indicates that, given the parameters Pd and Pf
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as well as the geometry of the candidate anomalies, 80 and S1, there are only certain

combinations of ao and a, which will result in performance below that level dictated

by Pd and Pf. In fact, these points are precisely those that lie inside the plotted

ellipse. Moreover, from Figure 6-2 we see that there exists a minimum level, a"'

such that for 81a, with a, > a"', the binary hypothesis test will achieve or

exceed the performance defined by Pd and Pf independent of the magnitude ao. Based

upon these observation, we call the curve plotted in Figure 6-2 the ambiguity ellipse

associated with the binary hypothesis testing problem defined by '%, ';�Yi, Pd, and Pf.

In the following sections we explore more extensively the use of the ambiguity ellipse

in understanding the issues associated with the anomaly binary hypothesis testing

problem.

6.4 Detectability Analysis

The first issue we address in conjunction with the anomaly detection problem is

that of the delectability of an anomaly as a function of location, spatial size, and

amplitude. Specifically, we consider the basic case where at most a single anomaly of

known size and location exists in region A. After defining a particular collection of

anomaly structures, we consider a set of binary hypothesis testing problems in which

Ho corresponds to there being no anomaly in the region while under H1, a particular

member of our anomaly collection is assumed to be present. The objective of the

delectability analysis is to determine the minimum magnitude each such structure

must possess in order to guarantee a prespecified level of performance as defined by

the probability of detection, Pd, and the probability of false alarm, Pf (see Section

6.3) from the corresponding binary hypothesis test.

This particular problem is of interest due to the physics governing the relation-

ship between the observations, i7, and the conductivity, -y, as well as the constrained

experiment conditions in which data is collected only along the vertical edges of A.

Following the intuition developed in Chapter 5, because of the lossy nature of the

medium, it is not expected that arbitrarily small (in scale and magnitude) anomalies
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will be detectable with arbitrary precision throughout A. Rather, we anticipate that

small anomalies should be readily detected only close to the observation points while

interior to region A small scale structures would require significantly larger magni-

tudes to be as detectable as their counterparts closer to the edges. Alternatively

because the kernel functions primarily reflect the coarse scale behavior of the con-

ductivity, larger sized anomalies should leave more of a signature in the data thereby

requiring smaller magnitudes to obtain a specified level of performance.

With this intuition in mind, we consider a family of anomaly structures generated

by a set of dyadic tesselations of A. As seen in Figure 6-3, with N.,,, = Ng,, - Ng == 16,

we take as J, the set of N' indicator functions which are one over single pixels in A9

and zero elsewhere. Analogously, 72 is the collection of N 2/4 characteristic functions9

over disjoint 2 x 2 sized region of A. Thus, in general J, (for m an integral power

of 2) is the set of (Ng/m)' nonoverlapping square regions of size m x m completely

covering A. Finally, we define J as the union of all 7m.

To begin our analysis of delectability, for each anomaly structure in J, we consider

a separate detection problem in the form of binary hypothesis test described in Section

6.3. In particular, the two hypotheses in the j" problem correspond to the situations

in which no anomaly is present in A or a scaled version of the j" element of J is in

A. Thus, recalling (6.10), these alternatives take the form

Ho 8 � + (6.19a)

Hlj OBjaj + 6� + v. (6.19b)

In (6.19), the vector Bj contains the wavelet transform of the characteristic function

over the j1h region in J with aj the magnitude of that anomaly. The goal of our

delectability analysis then is to determine for each anomaly in J, the minimum value

of aj, which we denote a*, such that the above hypothesis test attains a certain level

of performance as specified by the probability of detection, Pd, and the probability of

false-alarm, Pf.

The primary quantity used to characterized the performance of the binary hy-
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Figure 6-3: Composition of the geometric structures for the anomaly family Each

member of J is a weighted indicator function over one of the square regions in (a) -

(d)
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pothesis test in (6-19) is the d' statistic discussed in the previous section which here

takes the form

d' = a'(L3TE)Tp-1E)j3�) a 2 62 (6.20)

62where is defined in (6.17) and represents the d 2 statistic for the unit amplitude

anomaly over the 3-th member of J. Now, for a given Pd and Pf, (6-12) and (6.20)

are combined to give the following expression for a*:

7r (Pf , PO
a* (6.21)J 6j

where 7r(Pf, Pd) is defined in (6.12).

For the analysis of a*, three specific problems defined by the experimental con-
3

ditions in Tables 6.2 and 6.3 are considered. The motivation for these choices is

based upon the structure of the problem as defined in (6-19) through (6-21) where

we see that three fundamental processes affect the performance of the hypothesis

testing problem: the additive noise corrupting the observations, the nature of the

background conductivity as specified by Po and the structure of the anomaly itself

which is given by Bj and a,.. In this section, we examine the effects of these pro-

cesses in a parametric manner, For all problems of interest, we begin by fixing the

structure of the covariance matrix Po using the parameters in Table 6.2. To explore

the effects of noise on the delectability of anomalous regions, we examine a* under

different SNRs. Specifically, for a given signal-to-noise ratio and Po matrix, (3.15) is

used to determine the noise covariance matrix, R, which in turn impacts a* through
3

6j. Additionally, the dependence of 6j on Bj in (6-17) allows (6.21) to be used in the

examination of the manner in which a* is dependent upon the geometric structure

(i.e. size and location) of the underlying anomaly. Finally, we note that from (6.9),

for a given structure in J the associated amplitude, a*, can be translated directly

into an equivalent anomaly-to-background ratio which reflects both the geometric

structure of the anomaly as well as its magnitude. In the analysis which follows, we

express our results in terms of both the amplitude of an anomaly structure as well as
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Parameter Value

Constant Background
Conductivity I S/m

z Wavelet Daubechies 2-tap
x Wavelet Daubechies 2-tap

M9'z Mg'. 4
L91Z L91X 2

Az /TX I

PL,,z PL9'X 16
Pd 0.95
Pf 0.05

07 2 2 1
z X

Table 6.2: Common parameters for all detection problem of interest

Limited Data Full Data Full Data
Parameter High SNR High SNR Low SNR

SNR 10 10 I
Data sets used 1 - 12 all all

Table 6-3: Parameters defining delectability analysis experiments

the corresponding ABR depending upon the particular issue under investigation.

In Figure 6-4, a* are plotted for all anomalies in J for the case in which low and

medium frequency data at an SNR of 10 is available and where Pd is set to 0.95 and

Pf is 0.05. Thus, each I x I pixel in Figure 6-4(a) corresponds to a particular anomaly

in J, with the intensity of that pixel proportional to a�. An analogous interpretation
3

holds for each 2 x 2 square region in Figure 6-4(b), and similarly for Figure 6-4(c)-(d).

In all four cases, we see that as x increases i.e. as we move away from the left hand

edge where the sources and one receiver array are located, the magnitude required to

obtain the desired level of performance in the binary hypothesis test increases with

a significant jump occurring for x > 50. Note that for vertical values roughly in the

range 40 < z < 60, this effect is somewhat smaller. Finally, we see that as the areas

of the anomalies increase, the required magnitudes decrease. This coincides with the

intuition that large scale structures should be easier to detect than their fine scale
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Anomaly Minimum Median Maximum
Dimensions (pixels) ABR ABR ABR

I X 1 0.0796 1.3842 3.9379
2 x 2 0.1490 0.7176 1.8737
4 x 4 0.2967 0.4431 0.8464
8 X 8 0.6685 0.6733 0.6782

Table 6-4: ABR statistics as a function of anomaly size for delectability analysis
using high and medium frequency measurements each at an SNR of 10. Here, we
have Pd -- 0.95 and Pf = 0.05. The relatively small size of these quantities provides
evidence that a statistical approach to the anomaly detection problem should be quite
effective in practice where common ABRs can be orders of magnitude larger than the
figures in this table

counterparts.

To explain the behavior of a*, recall from the discussion in Section 5.4 and Figure

5-7 that the low and medium frequency kernels provide most of their information

over the horizontal range 0 < x < 50 so that the required magnitude for an anomaly

to be "seen" in this area should be relatively low. The smaller values of a* in the

region 40 < z < 60 are due primarily to the combined coverage of this region by more

observation kernels, Ti, than is the case for the top and bottom edges.

In Table 6.4, we summarize the maximum, median, and minimum ABRs as a

function of scale which are implied by the images in Figure 6-4. Thus, for example,

the entry 0.6782 in the bottom of the third column is the maximum ABR associated

with the four 8 x 8 anomalies shown in Figure 64(d). Of particular interest in Table

6.4 is the fact that the required anomaly-to-background ratios are quite small with

the median values all less than 1.5. This situation, combined with the information

in Figure 6-4, implies that our statistical approach toward anomaly detection should

prove quite advantageous particularly in light of the fact that many practical appli-

cations are characterized by conductivity perturbations which can be many orders of

magnitude larger than the background.

While the high and middle frequency data allowed for the detection of relatively

small anomalies on the left side of A, resolution of such regions on the right side
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Figure 6-4: Value of a� for all anomalies in j in the experiment where high and
medium frequency measurements each at an SNR of 10 are used as input to the
likelihood ratio test. Here, we have Pd = 0.95 and Pf = 0.05. Note that the scales
in these images are all different with a* decreasing significantly as the size of the
anomalies increases.
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Anomaly Minimum Median Maximum
Dimensions (pixels) ABR ABR ABR

I X 1 0.0796 0.8470 2.1026
2 x 2 0.1489 0.4610 1.0684
4 x 4 0.2940 0.3319 0.4768
8 X 8 0.6679 0.6690 0.6701

Table 6.5: ABR statistics as a function of anomaly size for delectability analysis
using high, medium, and low frequency measurements each at an SNR of 10 where
Pd - 0.95 and Pf = 0.05.

required that they be comparatively large. In Figure 6-5, we explore the effects

of adding to the high-SNR, high and middle frequency data, measurements obtained

along the right receiver array in response to low frequency sources operating on the left

vertical edge. Here, in comparison to Figure 6-4, we note first that the delectability

of anomalies near the right edge has improved dramatically. For anomalies in J1, the

required magnitude of a 1 x 1 anomaly in the region 90 < x < 100 has dropped from

around 25 in Figure 6-4 to less than five with the addition of the low frequency data.

Similar results hold for J2 through J4 as well. As was the case in Figure 6-4, a* is

smallest in the vertical region near 40 < z < 60 where many of the observation kernels

overlap. Finally, the minimum, median, and maximum values of ABR as a function

of scale for this problem are shown in Table 6.5 where we see that relative to the

same information in the previous problem (Table 6.4), the anomaly-to-background

ratio statistics have either fallen or remained the same for each of the four anomaly

sizes. In particular, the median ABR value for all structures is now below one and the

maximum ABR over all members of j required to meet the performance of Pd -_ 0.95

and Pf = 0.05 is only about two.

In Figure 6-6, the ability to detect anomalies with low signal-to-noise ratio envi-

ronments is displayed. Specifically, for the same Po as specified in Table 6.1, the noise

variances are increased according to (3.15) such that the resulting data is consistent

with an SNR of I rather than 10 as was the case in the previous two experiments.

Also we note that here the data from all three frequencies is used. Although qualita-
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Figure 6-5: Value of a* for all anomaly structures in in the experiment where high,

medium, and low frequency measurements each at an SNR of 10 are used as input

to the likelihood ratio test. Here, we have Pd = 0.95 and Pf = 0.05. Note that the

scales in these images are all different with a* decreasing significantly as the size of

the anomalies increases.
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Anomaly Mi 'nimum Median Maximum
Dimensions (pixels) ABR ABR ABR

I X 1 0.1141 1.7671 4.3687
2 x 2 0.1714 0.8428 2.0510
4 x 4 0.3347 0.5031 0.8889
8 X 8 0.6733 0.6772 0.6812

Table 6.6: ABR statistics as a function of anomaly size for delectability analysis using
highmedium, and low frequency measurements each at an SNR of 1 with Pd == 0.95
and Pf = 0.05.

tively similar to Figure 6-5, as expected the lower SNR basically results in significantly

larger value for a* for all anomaly structures in J. This effect is seen in Table 6.6 as

well where the ABR statistics for this problem are in fact larger than those seen in

both high-SNR cases. Nonetheless, we do note that even here, the maximum required

anomaly-to-background ratio in this case is still less than 4.5 which may well be met

in many applied settings.

6.5 Distinguishability Analysis

While the delectability analysis in Section 6.4 provides insight into our ability to

localize single anomalous structures in A, in any practical application it is necessary

to address the problem of characterizing the structure of an unknown number of

anomalies. In this section we explore issues associated with our ability to successfully

distinguish between pairs of candidate anomaly structures which, in Section 6.3, was

shown to be determined by two factors: the geometric structures of the two anomalies

as well as their relative amplitudes. In Sections 6.5.1 and 6.5.2, the impact of these

factors is explored in greater quantitative detail by considering two problems designed

to separate the effects of anomaly geometry from those of anomaly amplitude. Finally,

we note that in all numerical example considered here, we use the high SNR, full data

set defined in Table 6.3 with the various parameters as given in Table 6.2.

162



0 30 O., 7

1 0 10
6

0 25 20

30 30
20

40 40

5 50 4
0

60 60
3

70 I 0 70

80 80 2

5 90.90

100 100�.

0 20 40 60 80 100 0 20 40 60 80 100

(a) a* for anomalies in 71 (b) a* for anomalies in J2

0 0 0.596

10- 10-
1.4 0.595

20 20-

30- 30- 0.594
1.2

40- 40-
0.593

50 50-

60- 1 60- 0.592

70- 70-
0.591

80. 0.8 80-

90 90- 0.59

100 0.6 100�'
0 20 40 60 80 100 0 20 40 60 80 100

(c) a* for anomalies in J4 (d) a* for anomalies in J8
i i

Figure 6-6: Value of a� for all anomaly structures in j in the experiment where high,
medium, and low frequency measurements each at an SNR of I are used as input
to the likelihood ratio test. Here we set Pd= 0.95 and Pf = 0.05. Note that the
scales in these images are all different with a* decreasing significantly as the size of
the anomalies increases.
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6.5.1 Equally Detectable Anomalies

As a baseline for understanding the nature of the ambiguity associated with the full bi-

nary hypothesis testing approach toward anomaly detection, we begin by comparing

anomalies of differing geometries whose magnitudes are fundamentally normalized.

Specifically, we choose the amplitudes ao and a, according to (6-21) so that relative

to the an anomaly-free background, �o and �j are equally detectable (i.e. they indi-

vidually have the same d 2 value as defined in (6.20)). Examination of the resulting

LRT performance allows us to understand how the relative geometric structures of �-Yo

and ;:yl affect our ability to distinguish one from the other.

The mathematical formulation of our analysis method follows directly from Section

6.3. We begin by fixing the geometries of the two anomalies to be compared in the test

through the choice of two members of J, which we denote Bj and Bi with i :A j. Next

for each of these two anomaly geometries, (6.20) is used to compute the amplitudes

aj and ai where the parameters Pd and Pf required in this formula are set to 0.95 and

0.05 respectively for all i and j. This ensures that the two structures of interest are

equally detectable. Finally, we formulate the following hypothesis testing problem in

which the anomaly defined by 8jai is compared to that specified by Bjaj:

H3 E)Baj + E)� + v (6.22a)

H, OBaj + 0� + v. (6.22b)

Our analysis of the distinguishability of two equally detectable anomalies is based

upon examining the manner in which the probability of successfully detecting anomaly

i when the alternate is anomaly j, that is Pdij, changes as a function of j for a fixed

i. In other words we wish to explore how the ability to detect a particular structure

depends on both the scale as well as the position of the second anomaly in the BHT.

To calculate Pd,-,j we require from (6.11) first the d 2 statistic for the problem in

(6.22), which we denote by d 2j, and then the associated probability of false alarm,

Pf'jj, which is the probability of wrongly choosing anomaly i in a test comparing

structures i and j. Note that for a given test, (i.e. a given i and A, having settled on
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the geometric structures of the two anomalies and having computed their amplitudes

2from (6.20), dij. is in fact determined from (6-11). Moreover, for the analysis here,

we set Pf,-,j equal to 0.05 for all i and j.

In Figure 6-8, the probabilities of detection as j ranges over all members of J is

shown for the 2 x 2 anomaly located near the center of region A, Bi, illustrated in

Figure 6-7. Here we see that at all four scales of interest in this problem, the proba-

bility of detection is basically one for spatial regions far removed from the location of

,�j = Biai. The probability of successfully distinguishing '�Yj from its closest neighbors

at the finest two scales falls to about 60%. When comparing,�yj to equally detectable,

coarse-scale anomalies however, Pd,-,j is generally above 70% thereby providing us

with statistical limits as to our ability to successfully localize anomalous behavior in

both space and scale. Additionally, note that the scales on each of these four figures

is different. In particular, the values in Figure 6-8(d) are all well above the 99% level.

Thus, we see that the level of ambiguity associated with attempting to distinguish

equally detectable anomalies is highest for structures located in the same spatial area

as our target anomaly. Specifically, referring to Figure 6-8(c), the probability of de-

tection is substantially lower for those coarser scale structures which directly overlap

the 2 x 2 region in Figure 6-7.

We next consider the ability to differentiate appropriately scaled members of J

from the anomaly illustrated in Figure 6-9 which is located closer to the left side of

A than the structure in Figure 6-8. This example displays similar behavior in Pdij

as was seen in Figure 6-8. Specifically, in Figure 6-10 the lowest values of Pdij are

always encountered for anomalies which are positioned close to'%. Unlike Figure 6-8,

however, here we see that overall probabilities of detection are much higher. Indeed

noting that the scales for the four images comprising Figure 6-10 are different, we

see that with the exception of Figure 6-10(a), the smallest value of Pd,-,j is 97%. In

light of the analysis in Section 6.4, such behavior is to be expected. In particular, it

was observed that the experimental setup as well as the physics of the problem imply

that the ability to perform anomaly detection is greatest in the region close to x = 0.

Thus, not only is delectability greatest in this area, but the ability to successfully
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Figure 6-7: First anomaly structure to be analyzed in distinguishability problems

distinguish between two equally detectable candidate anomalies is also highest near

the left vertical edge. Thus, we are able to localize anomalous behavior to a finer

level in both space as well as scale for that region of A close to the left vertical edge.

6.5.2 Relative Size Analysis

In practice, the amplitudes of the two anomalies in (6.22) will not be set so as to make

,zyj = 8, aj and % - Si ai equally detectable. Thus, there is a need to understand how

the ability to distinguish between two anomalies at different locations and of different

scales is affected by their relative magnitudes. The primary tool for carrying out this

analysis is the ambiguity ellipse developed in Section 6.3. Specifically, we look at

two problems. First, motivated by the fact that equally detectable, spatially close

anomalies are the most difficult to discriminate, we examine the ambiguity ellipses

generated when the anomalies displayed in Figures 6-7 and 6-9 are compared to four

of their nearest neighbors. Subsequently, to gain a broader overview of the manner in

which the relative heights of two anomalies affects the success of the LRT, we examine

aT�' which is defined as in Section 6.3 to be the smallest value of ai such that the1,3
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Figure 6-8: Probability of detection for hypothesis tests in which the 2 x 2 anomaly

located near the center of region A and illustrated in Figure 6-7 is compared to the

members of J. Note that the scales on each of these four figures is different. In

particular, the values in (d) are all well above the 99% level. Finally, note that for

visual purposes only, we have set the value of the 2 x 2 anomaly in Figure 6-8(b)

corresponding to B, equal to the average value of all other pixels in this image.
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Figure 6-9: Second anomaly structure to be analyzed in distinguishability problems

performance of the binary hypothesis test in (6.22) meets or exceeds that defined by

Pdi,,- and Pfjj independent of the size of aj. Thus in contrast to the last section,

our analysis here requires that we fix Pdij and Pfij in order to examine a variety of

relationships between ai and aj. In fact, we take for all experiments and for all i and

j, Pdj, equal to 0.95 and Pfij = 0.05.

In Figure 6-11(b) (resp. 6-12(b)), the ambiguity ellipses are plotted for the four

hypothesis testing problems where the anomaly displayed at the center of Figure 6-

11(a) (resp. Figure 6-11(a)) is compared successively to is top, left, bottom, and right

nearest neighbors. For both anomalies, we see that the largest of the four ellipses is

associated with the right case followed by the top and bottom and lastly the left

neighbors. Thus, it is easiest to distinguish a given anomaly from another which

is closer to the left side region A and most difficult when the alternative is farther

toward the right. Moreover, noting that the scales on the Figure 6-11(b) and 6-12(b)

are different, we see that the sizes of the corresponding ellipses are smaller in the

example for which the anomaly is closer to the left edge. As in the delectability

analysis, these observations are consistent with the physical intuition regarding the

problem. Because sensitivity to conductivity anomalies decreases as a function of
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Figure 6-10: Probability of detection for hypothesis tests in which the anomaly shown

in Figure 6-9 is compared to the members of J. Note that the scales on each of these

four figures is different. In particular, the values in (b)-(d) are all well above the 95%

level.
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distance from the left side, we expect that the ability to distinguish between pairs

of structures would decline similarly and that the overall level of ambiguity would

be smallest for hypothesis testing problems involving anomaly structures close to the

left side of A.

Indeed this intuition is verified by examining, for specific L3j and L3j in (6.22),

the minimum ai required to guarantee that for any value of the amplitude aj, the

performance of the BHT meets or exceeds that defined by Pdij 0.95 and Pfij -

0.05. As is discussed in Section 6.A this quantity, which we call a"', is well defined

for the problems of interest in this work. In Figures 6-13 and 6-14, aT�' is shown

for the two anomalies considered previously and for all j G J. For both cases, we

see that the largest values of a"' are associated with hypothesis tests in which ;:Y-i is

compared to a second, relatively close-by anomaly structure.

In Table 6.7, the ABRs corresponding to the largest and smallest values for aT�''1,3

in Figures 6-13 and 6-14 are shown. That is for i fixed, the entries in the first column

of Table 6.7 are the anomaly-to-background ratios generated by

maxmin m?,na max a.
i i W

while those of the second column are associated with

minmin mm
ai min aij

maxminNote that if ai is greater than ai ,a BHT with the anomaly,��/j given by Bjaj will

meet the Pdij and Pfi,3- specification regardless of both the amplitude as well as the

location of -yj, i.e. the performance will be independent of j. On the other hand if ai is

less than a min,,in then for every j there will be some range of amplitudes aj for which

the performance specifications will not be achieved. Now, from the first row of Table

6.7, we see that for an anomaly with geometric structure in Figure 6-7, an ABR of

0.63 ensures that any binary hypothesis test in which this structure is compared to a

member of J will meet the performance specifications of Pdij - 0.95 and Pfij = 0.05.

Alternatively, if the ABR falls below 0.32 then for all structures in J, (i.e. all Bj) the
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Figure 6-11: Ambiguity ellipses in (b) are obtained from the hypothesis tests in which
the anomaly in the center of (a) is compared to it top, right, bottom, and left nearest
neighbor.
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Figure 6-12: Ambiguity ellipses in (b) are obtained from the hypothesis tests in which
the anomaly in the center of (a) is compared to it top, right, bottom, and left nearest
neighbor. Note that by comparing the scales on the ellipse axes for (b) here and for
(b) in Figure 6-11, we see that the sizes of the corresponding ellipses are smaller in
this example where the anomaly is closer to the left edge.
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Anomaly Maximum Minimum
ABR ABR

Rightmost (Figure 6-7) 0.63 0.32
Leftmost (Figure 6-9) 0.29 0.20

Table 6.7: Minimum and maximum anomaly-to-background ratio associated with the
smallest and largest values for a"' for the anomaly structures in Figure 6-7 and 6-9.ZIj

performance of the BHT will fail to meet the Pdij and Pfij requirements for some

range of aj. Similar results hold for the second anomaly structure located closer to

the left side except that in this case, the required values of the ABR are smaller.

We show in Figures 6-15 and 6-16 respectively the ABRs associated with a""'in

and a'inmin as �j in (6.10) varies over all anomaly structures in J. These images

display the same structure as those for a* in Section 6.4. Specifically, the values

for these quantities are smallest near either vertical edge and grow as one proceeds

toward the middle of region A. For most anomaly structures of dimension 2 x 2 or

larger, the minimum ABRs are all less than 2 while the maximum values are 3.5 and

smaller. Thus, we see that the ability to successfully distinguish one structure from

another, independent of both the size as well as position of the second anomaly in

most cases requires anomalies with less than twice the power of the background field.

For structures located close to either receiver array, this requirement drops to an ABR

of around I. Again we note that for many practical applications, such a situation is

not at all uncommon.

Finally, we note the machinery of statistical decision theory is certainly powerful

enough to allow us to extend the work in this and the previous section to explore

situations involving multiple anomalies in region A. Through our analysis of de-

tectability and distinguishability; however, we have obtained significant insight into

the anomaly detection problem. Thus, we turn our attention to using the tools devel-

oped here in and Section 6.4 in the derivation and analysis of a multiscale anomaly

detection algorithm designed to handle the multiple anomaly situation.
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Figure 6-13: Images of the minimum magnitude of the anomaly in Figure 6-7 to
guarantee a Pd= 0.95 and Pf = 0.05 in binary hypothesis tests involving this anomaly
structure and elements of J. Note that while the scales in these images are different
the magnitudes are all less than 2.5.

174



0 0

10 0.96
1.25

20 20 REM
1.2

30 30 0.95

40 1.15 40

so.,."... 50 0.94

60. 60

70 - 1.05 70. 0.93

80 1 80

90 90-0.95 0.92

1001, L-j .'M , I I �
0 20 40 60 80 100 0 20 40 60 80 100

(a) aT�' for anomalies in Ji (b) aT�' for anomalies in J2

0
0.917......... 0.93

10
0.9168

20 20

0.9166
0.926

0.9164

0.924
0 0.9162

0.922 60-
0.916

70-
0.92

0.9158
80 80-

0.918 .91560
90 90

0.916 0.9154
100 100

0 20 40 60 80 100 0 20 40 60 80 100

(c) a`n for anomalies in 74 (d) am" for anomalies in J8ij ij

Figure 6-14: Images of the minimum magnitude of the anomaly in Figure 6-9 to
guarantee a Pd = 0.95 and Pf = 0.05 in binary hypothesis tests involving this anomaly
structure and elements of J. Again, the scales in (a) through (d) are all different;
however the overall range of values is between 0.9 and 1.3.
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Figure 6-15: The anomaly-to-background ratios associated with the minimum value
(taken over j) of a'in as wyj varies over all structures in J. Note that the scales inij
each image are different with the ABR values decreasing in general as the size of the
anomalies increases.
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Figure 6-16: The anomaly-to-background ratios associated with the maximum value
(taken over j) of a'in as �j varies over all structures in J. Note that the scales inij
each image are somewhat different with the ABR values decreasing in general as the
size of the anomalies increases.
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6.6 A Multiscale Algorithm for Anomaly Detec-

tion, Localization, and Estimation

In this section we describe and analyze a multiscale, decision-theoretic algorithm

designed to determine the positions, sizes and magnitudes of an unknown number

of anomalous structures in region A. While we could base our formulation of the

problem on a single, large M-ary hypothesis test with each hypothesis corresponding

to an individual anomaly in J, the results of our analysis in the previous two sections

suggests a scale-recursive approach where we begin with a small collection of relatively

large rectangular areas in which anomalies may be located. Each of these regions

represents a top-level node in a tree of finer-scale subdivisions of A. Given this

coarse subdivision, we use a decision-directed procedure for growing the tree, that

is, for determining how best to move from one level of the tree, corresponding to a

collection of coarse-scale hypotheses regarding the structure of anomalous regions, to

the next level, in which anomalies are better localized using smaller-scale (i.e. smaller

sized) rectangles. The result of this procedure is a collection of rectangular areas of

varying sizes and positions where we believe anomalies exist. To limit the number of

false alarms (i.e. targeted areas which in fact contain no anomalies), the algorithm

concludes with a pruning step in which we also estimate the magnitudes associated

with the final group of chosen anomaly structures.

An example of the steps taken by our algorithm in the multiscale subdivision

process is illustrated graphically in Figure 6-17 where at the top of the tree, we

have an undivided region A. After the first stage of our decision procedure we have

identified two coarse regions where anomalies may exist, that is, in the top half and

in the vertical strip in the middle of A. For each of these separate regions, another

round of hypothesis testing is performed in which we spatially refine our idea as to the

locations of possible anomalies. Note here that within the top half of A, two distinct

regions are identified for further processing while for the vertical strip, the algorithm

localizes anomalous activity only in the bottom half. In the third step, the algorithm

chooses to pursue no further subdivision of the middle region, while the other two are
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split once more. After this stage, this portion of the algorithm terminates with the

three rectangular areas of interest representing the finest scale collection of regions

where we believe anomalies may be located. These areas are then passed to the

final pruning component of our method as mentioned in the previous paragraph and

discussed later in this section. Note that the subdivision process described here is

quite flexible allowing for the identification of a larger collection of rectangular regions

than would be obtained by the use of a more standard quadtree decomposition of A

in which only square shaped regions would be identified. In fact, as seen in first stage

of localization in Figure 6-17 (and from (6.4)), it is possible that an overall anomaly

structure is identified in which the various rectangles overlap to some extent.

The utility of this scheme is based primarily upon the ambiguity observed in Sec-

tion 6.5 associated with distinguishing a small-scale anomaly from an overlapping

larger scale structure. For example in Figures 6-8 and 6-10, the probability of distin-

guishing the 2 x 2 anomalies studied in Section 6.5 from 4 x 4 and 8 x 8 members

of J was smallest for those alternate anomalies which occupied the same area as the

original 2 x 2 structure. Similarly, for the same pair of 2 x 2 anomalies, Figures 6-13

and 6-14 showed that the largest values of aT�' corresponded to those j in J which

overlap anomaly i. From these observations, we conclude that small-scale anomalies

"look" significantly more like large-scale counterparts located in the same region of

A. Hence, we can use this scale-based ambiguity to advantage as suggested in our

hierarchical algorithm. That is, if a fine-scale anomaly is present, the coarser stages

of our algorithm are much more likely to identify regions for further decomposition

that contain the true anomaly than non-anomalous, coarse-scale regions. Indeed, we

verify this intuition through a collection of examples in Section 6.6.3.

6.6.1 A Scale Recursive, Decision Driven Detection Algo-

rithm

The first step in our detection algorithm involves an M-ary Hypothesis test in which

we consider 10 ways to subdivide A in order to better localize anomalous structures.
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Figure 6-17: Scale-recursive localization of anomalous region in A. The darkly shaded
regions correspond to areas of interest.
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As seen in Figure 6-18 the first configuration corresponds to the presence of a coarse

scale anomaly with support over all of A. This particular structure indicates that

no further decomposition is warranted. The next four possibilities each allows for a

single anomaly localized to the top, bottom, left and right halves of A respectively.

Because it is possible that anomalies exist whose structures lie both in the left/right

as well as the top/bottom halves, the sixth and seventh structures in Figure 6-18

are included. To take into account the fact that multiple anomalies may be present

in the region, the eighth configuration corresponds to the presence of one anomaly

located in the left half and one in the right while the ninth presents the analogous

situation but for the top and the bottom. Finally, for this initial decomposition only,

we consider the last case where we conjecture that no anomalous regions exists in A.

In either this last case or the first case (in which we conclude that only a coarse scale

anomaly over all of A exists) the procedure would terminate at this level. While these

ten structures are certainly not the only possible subdivisions which may be used,

they are sufficiently flexible to allow for the representation of a great many anomaly

structures and the relatively small number of elements in this family do not unduly

add to the computational complexity of the resulting detection algorithm.

The motivation for choosing the family in Figure 6-18 is provided by the analysis

in Section 6.4 and 6.5. While it is not necessarily the case that an actual anomaly

will have the geometry exactly matching one of the nine shown in Figure 6-18, by

hypothesizing the existence of anomalies with such structures, it is expected that we

should be able to determine in which subregion anomalous behavior actually exists.

The validity of such an expectation is supported by the results in Sections 6.4 and

6.5 as discussed in the opening portion of this section where we saw that scale-based

ambiguity between co-located small and large scale anomaly structures can be used

to our advantage when searching for anomalous activity in A.

Given the 10 choices in Figure 6-18, we formulate a 10-ary hypothesis testing

problem the solution of which is obtained using a method motivated by the General-

ized Likelihood Ratio Test (GLRT) discussed in Chapter 2. Specifically, we begin by

forming the values of the generalized log-likelihood function for each of the hypothe-
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Figure 6-18: Geometric structures of nine possible decompositions used at each stage
of our decomposition of A. The darkly shaded regions indicated the areas where
anomalous structures are hypothesized to exist. While the figure illustrates the de-
composition of a square region, analogous subdivision schemes are used for rectangular
areas as well with the fundamental idea being the presence of anomalies in the top
half, bottom half, left half, right half, etc.
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ses under consideration. According to (2-19), the GLRT corresponds to choosing

that hypothesis with the largest log-likelihood value. For the case of interest here,

we wish to avoid selecting the wrong area or areas of A for further refinement at

this early stage of processing. Thus, rather than accepting that single hypothesis

with the largest log-likelihood, we consider further refinement of A based upon those

hypotheses corresponding to the three largest log-likelihood values.

Our scale-recursive decomposition of A continues by essentially repeating the hy-

pothesis testing procedure for each of the subregions indicated by the initial 10-ary

hypothesis test as being of interest. For example, consider the case where H3 is one

of the chosen hypotheses. Referring to Figure 6-18, this selection corresponds to an

anomaly located in the left half of A. In an effort to better localize the anomalous ac-

tivity in this region, we consider an M-ary hypothesis test similar to that described in

the previous paragraph but where the underlying area involved in the decomposition

is now the left half of A rather than all of A. In particular, while the subdivision is

of a rectangular region as opposed to a square area, the form of the hypotheses fun-

damentally remains the same as in those displayed in Figure 6-18 in that we consider

the possibilities of anomalies located in the top, bottom, left, and right halves, etc.

of this long and thin structure. We note that the first of these nine hypotheses, Ho,

corresponds to the case where no further decomposition of the left half is warranted

and thus serves as a means of terminating the scale recursive search over this region

of A. Moreover, instead of ten, there are only nine hypotheses in the decomposition

of the left side as we no longer include the possibility that no anomaly exists in the

left half of A (i.e. hypothesis H9 is excluded) since the previous iteration indicated

that somewhere in the left side there exists an anomaly. Finally, while we could

consider further decomposition of regions associated with hypotheses possessing the

three largest log-likelihoods as described previously, for simplicity, we implement at

this and all other stages of our algorithm a genuine GLRT in that only the single

most likely hypothesis is accepted.

This nine-hypothesis GLRT is repeated for all regions selected in the initial de-

composition of A thereby producing yet another collection of now smaller-scale areas
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where anomalies may be located. At this point, the same decomposition procedure

described in the preceding paragraph is applied recursively to each of these newly

identified areas. This decision-theoretic localization process continues until we have

exhausted the regions available for decomposition. This situation occurs either be-

cause no further subdivision in a particular region is warranted based upon the se-

lection of the Ho hypothesis at some stage of the process or because no addition

refinement is possible because the structures under consideration are too small. Thus

at the end of our scale-recursive decomposition of A we have a collection of rect-

angular regions where anomalous structures are likely to exist. We then collect the

wavelet-domain representations of these rectangles as columns in a matrix labeled

13leaf -

To limit the number of false alarms generated by our detection algorithm a con-

strained optimization problem is solved in which the magnitudes of the regions in

Bleaf are estimated from the data. In particular, we consider the following problem

2a* = arg min I Jq - OB1,af a P�- (6.23)
a

subject to a > ri

IIX112 = XTwhere M Mx and a is the vector of amplitude coefficients associated with the

anomaly structures in Blaf. Thus, (6.23) corresponds to a constrained linear least

squares estimate of the magnitudes associated with the rectangles in Bte," where the

constraint requires that each element of a* be greater than -rl. The final estimate of

the anomaly structure generated by our algorithm is composed of those columns of

Bt, for which the associated element of a* is strictly greater than a second threshold,

-r2 > T1 along with the values of these magnitudes. We denote these quantities as

and & respectively. In this work we take -rl = 0.3 and 72 = 0.8.

6.6.2 The M-ary Anomaly Detection Hypothesis Test

The fundamental component in the scale-recursive decomposition of A described in

the previous section is an M-ary hypothesis test designed to allow for localization of
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anomalous areas at a variety of spatial scales and positions in the overall region of

interest. For the purposes of illustration, let us consider one such hypothesis testing

problem for which the underlying region is not all of A so that H9 in Figure 6-18

corresponding to the hypothesis associated with the "no anomaly in A" case may be

disregarded. Modification of the procedure to include this case is then straightfor-

ward.

Given the structures in Figure 6-18, nine hypothesis are formulated according to

the models described in Section 6.2. Thus, for j = 0, 1, ... , 8 we have

H3 : -q = E)Baj + O� + 1/. (6.24)

Here as in previous sections, Sj represents the wavelet transform of the indicator

functions over the appropriate shaded areas displayed in Figure 6-18 and aj are

the corresponding magnitudes. Note that for j = 0, 1, ... , 6, Bj contains a single

column and aj is scalar as each of these hypotheses is associated with an anomaly in

only one subregion of the "parent" structure. In the cases of H7 and H8 however, we

are testing to see if two separate anomaly structures exist in the coarser scale region.

Thus, for example, B7 contains two columns, one for the indicator function over the

left half of and one for the indicator function over the right half. Correspondingly, a8

is now a two-vector.

Given the dataq as well as the nine possible hypothesis defined by (6.24), a gen-

eralized likelihood ratio test of the type considered in Section 2.3 is used to determine

how to best subdivide the region under consideration. In this application, we employ

the following form of the test

0 maxj Lj (q) < To
Choose Hi with (6.25)

arg maxj Lj (q) otherwise
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where for j = 1, 2, 8

TP-1 TsjE)P-lL3. (,q) = -q n E) n 77 (6.26)

SI = L3j(L33TE)Tp-1(L3j)-1L3j _ L3P(L3PTE)Tp-1 -'Bp- (6.27)

Here Bp represents the geometric information associated with the "parent structure"

responsible for the consideration of Bj. In particular for hypotheses one through six,

the parent region is exactly the indicator function over the region specified in Bo. For

hypotheses seven and eight, the situation is somewhat more delicate. For the sake of

argument let us assume that we are assessing the decomposition of the left half of an

H7 anomaly structure. Now, Figure 6-18 indicates that at the previous iteration of

the algorithm, some larger-scale region in A was decomposed into two structures (in

this case a left/right configuration) for further refinement where our left-half structure

was one of the pair. Thus, at the current stage of the algorithm, we regard the parent

structure to be composed of both the left and right half members of the original pair

so that Bp in this case is a matrix composed of two column, one each for the two

pieces of the H7 structure. A similar interpretation holds in the case where we are

looking to decompose the right half of H7 or either element of an H8 configuration.

In (6.25), the eight log-likelihood functions, Lj, represent comparisons of the eight

subdivisions HI through H8 in Figures 6-18 against the possibility of not dividing the

area under investigation. If the largest Lj does not exceed the threshold, 'To, no further

decomposition takes place. Otherwise, we choose to divide the region according to

that hypothesis with the largest log-likelihood. Because we know from Sections 6.4

and 6.5 that our ability to detect fine scale structures is limited, the threshold To is set

so that finer-scale anomalies corresponding to any of the eight subdivisions in Figure

6-18 are chosen only if there is statistically significant evidence for such a selection.

In particular, -Fo is defined according to

-ro = T3 [ N' _ L3TL30]9 0
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so that as the area of Bo, here given by B'BO, decreases from scale to scale (as

compared to the area N' of the entire region A), the resulting threshold increases9

according to a rate determined by the parameter T3 > 0. In this thesis we take

,F3 = 10-3 and N. = 16 so that To ranges from 0 to approximately 0.3 as we move

from coarser to finer scales.

6.6.3 Algorithm Analysis

We undertake three forms of analysis for algorithm described in Sections 6.6.1 and

6.6.2. First, conditioned on knowing the structure of the anomalous regions in A, we

execute the algorithm "in the mean." That is, during the GLRT stage, rather than

choosing the subdivision based upon likelihood ratios, we use the expected values of

the Ljkl(,q) given that � is known. Specifically, it is shown in Section 6.13 that the

expected value of Ljkl(,q) given that ;y- is

- = �.] = �TeTp-IE)T P-Io�*E[Ljkl('O) 1'�Y q SiklE) n (6.28)

where Sjkl is defined in (6.27). Similarly, for the pruning step in the detection

algorithm, we replace q by its expected value, E)�*.

Additionally, we use Monte Carlo analysis to verify the ability of this approach

to detect anomalous structures. The two quantities of interest here are the sample

probability of detection, Pd, and the sample average value of the number of false

alarms per pixel Pf. We say that a particular rectangular anomaly, �* has been

detected if there exists a column in )� which is sufficiently close to �*- In particular,

as shown in Figure 6-19, the region corresponding the column of 9 must lie within a

two pixel radius of �y* and the area of intersection between the estimated rectangle and

the two-pixel expansion of �y. must be at least a quarter of the area of the estimated

structure. Such a definition implies a constraint on the localization of an estimated

anomaly in both space and scale before we will call it a detection. Elements of 9 which

do not correspond to detections are taken to be false alarms. Here, the statistic of

interest is the per-pixel false alarm rate, denoted as Pf, which we define as total
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Figure 6-19: Geometry required for an estimated anomaly structure to be considered
a detection. While the estimated structure labels "Detection" does not intersect the
anomaly, it does provide sufficient localization to be considered a successful detection.
Alternatively, the "False Alarm" fails to provide such localization and is thus not
considered a detection.

number of false alarm pixels divided by the number of pixels in region A.

Finally, the results of our detection algorithm can be especially useful in improving

upon the solution to the full reconstruction inverse problem. From our model for -Y in

(6.2), the estimate of the overall conductivity perturbation is the sum of the estimates

of Ty and �, denoted '� and ;�� respectively, where y = Ba is provided by our scale-

recursive detection algorithm. Now, the linear least-squares estimate (LLSE) of

developed in Chapter 3 is based upon the assumption that no anomalies exist in the

data; however, the output of the detection algorithm provides additional information

through '� as to the structure of the conductivity field. To make use of the information

in order to improve the estimate �, we define ;�, as the USE of � based upon a

"corrected" data set in which the effects of '� have been removed. Mathematically
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this corrected estimate takes the form

2� = p(9T
IYC R-' Iq (6.29)

where P is the error covariance matrix for nominal LLSE. Thus, the estimate of the

overall conductivity field is

�c + 'Y

pE)T R-'

pE)T R-' q + [I _ p(9T R-'E)] L�& (6.30)

where we recognize the first term on the right hand side of (6.30) as the uncorrected

USE estimate examined in the previous chapter.

We begin by considering the performance of the scale-recursive detection algo-

rithm in the case where the true underlying anomaly is shown in Figure 6-7. In this

and all subsequent experiments considered in this section, the parameters governing

the problems are defined in Table 6.2 and we use data at an SNR = 10 from all 18

observation processes defined in Table 6.1. In Table 6.8, the results of executing the

detection algorithm "in the mean" are presented for various values of the anomaly-

to-background ratio. The column labels "True Anomaly Amplitude" indicates the

magnitude of the underlying anomaly and was computed using (6.9) for the given

ABR, anomaly geometry vector b, and background model, Po. For all eight values

of ABR, the anomaly in Figure 6-7 was in fact detected. In Tables 6.8, the mean

estimated amplitude refers to the average magnitude of all rectangular regions which

were considered detections. In general this estimate is fairly close to the true ampli-

tude of the anomaly. Finally, we notice that the number of false alarm pixels is quite

low.

In Figure 6-20 we show the sample probability of detection, Pd, and per-pixel

false alarm rate, Pf as a function of anomaly-to-background ratio obtained after 500

Monte-Carlo iterations for the anomaly in Figure 6-7. Even for the low ABR of
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True Mean Number
Anomaly Estimated False Alarm

ABR Amplitude Amplitude Pixels
0.05 0.7826 0.9102 0
0.10 1.1068 0.6048 0
0.15 1.3555 1.7842 2
0.20 1.5652 2.1209 2
0.25 1.7500 4.4579 0
0.30 1.9170 1.5395 0
0.40 2.2136 3.7707 0
0.50 2.4749 4.2533 0

Table 6.8: Results of executing scale-recursive detection algorithm in the mean for
the underlying anomaly shown in Figure 6-7.

0.2, the detection probability is above 50% and rises to 70% at 0.5. Moreover, Pf

remains relatively constant at around 10% with a slight decrease as the anomaly-to-

background ratio rises. In Figure 6-21(a) we display one realization of g - j + �

obtained in our Monte-Carlo process at an ABR of 0.30. Using the linear least

squares estimator to perform the full reconstruction as in Chapter 5 results in the

image in Figure 6-21(b). By incorporating the results of our detection algorithm in

the inversion procedure through the use of (6.30), we obtain the estimate of the overall

conductivity field shown in 6-21(c). In particular, we see that the use of the detection

results allows for the successful localization in space, and scale of the anomaly located

in the middle of the region and the GLRT procedure yields an accurate estimate of

the structure's amplitude. Additionally, the details in the remainder of the estimate

do in fact reflect the coarse scale, fractal features of the conductivity profile in Figure

6-21 (a).

We next examine the performance of the detection algorithm in the case where the

true anomaly is given in Figure 6-9. Based upon the analysis in previous sections, we

expect that the performance of the algorithm should improve here over the case where

the anomaly is located further into the medium. As shown in Table 6.9, this is in

fact the case when the scale-recursive algorithm is executed in the mean. Specifically,

we see that for all eight values of ABR, the anomaly was detected and there were no
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Figure 6-20: Performance curves obtained after 500 Monte-Carlo iterations of scale-
recursive detection algorithm for the anomaly in Figure 6-7. The top curve represents
the sample probability of detection, Pd while the lower curve is a plot of the sample

per-pixel false alarm rate, Pf.
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(b) Reconstruction of conductivity in (a) (c) Reconstruction of conductivity in (a)
using LLSE of Chapter 5 using (6-30)

Figure 6-21: Comparison of reconstructed conductivity profile using the USE of

Chapter 5 and an estimate based upon the output of the scale-recursive anomaly

detection algorithm. The true conductivity is shown in (a) and contains a single

anomaly near the center of the region. The USE is shown in (b) and the estimate

obtained from. (6.30) is illustrated in (c). Here we see that the use of the information

from the detection algorithm allows for the successful localization of the anomaly in

space and scale without sacrificing our ability to resolve the fractal features of the

conductivity profile in (a). Additionally, the GLRT procedure results in an accurate

estimate of the anomaly's amplitude.
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True Mean Number
Anomaly Estimated False Alarm

ABR Amplitude Amplitude Pixels
0.05 0.7826 1.0152 0
0.10 1.1068 1.2093 0
0.15 1.3555 1.2777 0
0.20 1.5652 1.7154 0
0.25 1.7500 1.7880 0
0.30 1.9170 2.1842 0
0.40 2.2136 2.5795 0
0.50 2.4749 2.7541 0

Table 6.9: Results of executing scale-recursive detection algorithm in the mean for
the underlying anomaly shown in Figure 6-9.

false alarm pixels generated. Moreover, comparing the Mean Estimated Amplitude

column of this table and Table 6.8, it is evident that we are able to better determine

the amplitude of the anomaly located closer to the left side of region A.

In Figure 6-22, the A and Pd curves are shown for a 500 trial Monte-Carlo ex-

periment. In comparison with Figure 6-20, the probability of detection curve has

clearly risen so that at for all ABRs above 15%, Pd is greater than 50%. We also

note that the per-pixel false alarm rate is again around 10% with a slight decrease

for higher anomaly-to-background ratios. Lastly, the images associated with the full

reconstruction of the conductivity field for one trial of the Monte-Carlo are displayed

in Figure 6-23 for an ABR of 0.30. Again in comparison to the LLSE, the use of

(6.30) dramatically improves out ability to localize of the anomaly structure near the

left side of the region. In addition, we note that the detection algorithm has falsely

identified a second anomaly structure in this Monte-Carlo trial.

We now turn our attention to the case where multiple anomalies exist in region

Al. In particular, we explore the configuration in Figure 6-24 which is quite similar to

that considered in the full reconstruction linear inverse problem analyzed in Section

'Note that in this multi-anomaly case, the ABR is used to determine the magnitude of each
structure individually. For example referring to Table 6.10, at an ABR of 0.10, the amplitude of the
left anomaly, 0.5534, is set so that if it were the only structure in the medium, the ABR would be
0.10.
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Figure 6-22: Performance curves obtained after 500 Monte-Carlo iterations of scale-
recursive detection algorithm for the anomaly in Figure 6-9. The top curve represents
the sample probability of detection, Pdwhile the lower curve is a plot of the sample
per-pixel false alarm rate, Pf -

5.4. The results of the in-the-mean analysis are shown in Table 6.10 for the larger

of the two structures located close to the left vertical edge and are comparable to

those seen in Table 6.9 in that this structure is successfully detected for each ABR

and no false alarm pixels are generated for any of the runs. For each anomaly-to-

background ratio, it was the case that the second anomaly failed to be detected. This

observation is not surprising in light of the small values of ABR under consideration

and the location of this second structure. From the delectability analysis of Section

6.4, Figure 6-5 indicates that the smaller anomaly structure for this problem lies in

the region of A where detection is most difficult. Referring to Table 6.5, we see that

an ABR of 1.06, twice that considered in this Monte-Carlo experiment, is required to

achieve a Pd of 0.95 and Pf of 0.05.

The Monte-Carlo performance of this anomaly configuration is displayed in Figure

6-25 where the top two curves correspond to the Pd statistic for the left and right
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LLSE method of Chapter 5 (6.30)

Figure 6-23: Comparison of reconstructed conductivity profile using the USE of

Chapter 5 and an estimate based upon the output of the scale-recursive anomaly

detection algorithm. The true conductivity is shown in (a) and contains a single

anomaly near the left side of the region. The LLSE is shown in (b) and the estimate

obtained from (6.30) is illustrated in (c). In addition to locating the true anomaly

a sin-le false alarm is also present in the reconstruction. Note that this structure is

most likely caused by the large-amplitude 4 x 4 region in the lower-right portion of

(a)
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Figure 6-24: Two-region anomaly structure

True Mean Number
Anomaly Estimated False Alarm

ABR Amplitude Amplitude Pixels
0.05 0.3913 0.8222 0
0.10 0.5534 2.5159 0
0.15 0.6778 3.1509 0
0.20 0.7826 1.6807 0
0.25 0.8750 1.9227 0
0.30 0.9585 1.2661 0
0.40 1.1068 1.5115 0
0.50 1.2374 2.9588 0

Table 6.10: Results of executing scale-recursive detection algorithm in the mean for
the leftmost anomaly shown in Figure 6-24.
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anomaly structures respectively while the lowest of the three curves is a plot of Pf

Here we see that the large structure located close to the left vertical edge is quite

easily detected with an Pd of well over 70% even at the low ABR of 0.15. The middle

plot in Figure 6-25 supports the results seen in the previous paragraph indicating

that isolation of the smaller anomaly near the right edge is difficult for small ABR

values. Finally, the per-pixel false alarm rate here is less than half that of the previous

two experiments. Most likely, this result is attributable to two facts. First, because

the anomalies in this example are larger in area than the two structures in Figure

6-7 and 6-9 we know from Sections 6.4 and 6.5 that they should be easier to detect.

Second, for a given anomaly to background ratio, there is more anomaly energy in

the medium here than in the previous two cases because there are a pair of structures

in region A. Thus, the improved delectability due to size as well as the increase

in overall energy most likely helps the scale-recursive algorithm to "lock onto" the

true anomaly structures and reject areas where no anomalous activity is occurring.

Finally, in Figure 6-26, we compare the full reconstruction results obtained from the

USE to those where (6.30) were used to estimate the underlying conductivity for one

run of the Monte-Carlo at an ABR of 0.30. From Figure 6-26(b) we see, as in Chapter

5, that the USE is successful in reconstructing the structure on the left; however, the

smaller anomaly is almost completely undetected. Figure 6-26(c) indicates that the

incorporation of the information from the anomaly detection algorithm significantly

improves the localization in space as well as scale of this second anomaly.

As a final experiment, we examine the performance of the scale recursive algo-

rithm in the case where the ABR is equal to one which from Tables 6.4 through 6.6

corresponds to that anomaly-to-background ratio where delectability for structures

of size greater than 2 x 2 meets or exceeds a Pd - 0.95 for a Pf = 0.05. In Table

6.11, the sample probabilities of detection and false alarm rates for the three anomaly

structures in Figures 6-7, 6-9, and 6-24 are shown. Because the hypothesis testing

problem used to study delectability incorporated exact information regarding both

the size and location of target anomalies, information that is not available to the

detection algorithm, we expect that the performance of our scale-recursive approach
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Figure 6-25: Performance curves obtained after 500 Monte-Carlo iterations of scale-
recursive detection algorithm for the anomaly in Figure 6-24. The top curve is Pd for
the larger anomaly located on the left while the middle curve is Pd for the smaller
structure in the lower right. Finally, a plot of the sample per-pixel false alarm rate,
Pf, is shown in the lowest curve.

will fall below the 95% Pd and 5% Pf marks; however, Table 6.11 demonstrates that

in general this degradation is rather small. In the case of the 2 x 2 structure in Figure

6-7, the probability of detection is above 87% with an Pf of only about 6% which

compares quite favorably to the 95% detection rate and 5% false alarm percentage.

For the two anomalies located close to the left vertical edge in Figures 6-9 and 6-24,

the probabilities of detection are both above 90% with corresponding Pf well below

5%. Finally, at an ABR = 1, the ability to detect the smaller structure located in

the lower right corner of Figure 6-24 is just over 50%. In all but the last case, these

statistics compare very favorably with the Pd = 0.95 and Pf = 0.05 used in the study

of delectability where the problem formulation encompassed far more information

regarding the underlying anomaly structure than is made available to the detection

and localization algorithm.
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Figure 6-26: Comparison of reconstructed conductivity profile using the LLSE of

Chapter 5 and an estimate based upon the output of the scale-recursive anomaly de-

tection algorithm. The true conductivity is shown in (a) and contains a two anomalies.

The LLSE is shown in (b) and the estimate obtained from (6.30) is illustrated in (c).

Here we see that the use of the detection information allows for the successful lo-

calization of both anomaly structures and offers a significant improvement over the

LLSE in localizing the smaller anomaly in the lower right.
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In Table 6.12, we present statistics associated with the computational complexity

of our scale-recursive anomaly localization procedure for each of the three experiments

considered in the previous paragraph. Recall that at the beginning of this section we

described an alternate method for generating a collection of candidate anomalous

regions based upon a single, large M-ary hypothesis testing problem where each hy-

pothesis corresponds to a member of the family J defined in Section 6.4. The primary

computational burden of this scheme would be the evaluation of the generalized like-

lihood ratios (GLRs), Lj(,q), defined in (6.26) and (6.27), associated with each of the

hypotheses. In fact, for a region composed of N 2 finest-scale pixels, it is not difficult

to show that the number of GLRs required in an exhaustive search over J is upper

bounded by 4N 2/3 which for the 16 x 16 case considered in this thesis is about 341.

While we leave the actual Pf and Pd performance analysis of such a detection method

for future work (see Section 8.2-2), in Table 6.12, we present the mean, median, min-

imum, and maximum number of GLR evaluations required by our scale-recursive

approach for the three problems discussed in conjunction with Table 6.11. While the

extremes are respectively much lower and much higher than the 341 GLRs required

in an exhaustive search, on average, the complexity of our approach is between 73%

and 85% of that required in a search over all J. In particular, for the two problems

in which there exists an anomalous structure close to the left side of region A, our

approach is about as expensive as a search over just the 256 finest scale pixels while

at the same time yielding substantially more information in terms of the scale and

location of the underlying anomaly structure. Overall, these computational results

are particularly promising in light of the relatively small sized problem examined in

this chapter. Given the fundamental resolution limits imposed by the physics of the

problem as well as the manner in which our algorithm is able to take advantage of

this information, we anticipate that the complexity of the scale-recursive detection

scheme should increase at a rate less than the 4N 2/3 associated with the full search

approach to the problem. Verification of this conjecture would be an interesting and

important topic for further work.
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Anomaly
�I A Pf

Figure 6-7 0.8724 0.0602
Figure 6-9 0.9080 0.0370

Figure 6-24(left) 0.9900 0.0307
Figure 6-24(right) 0.5140 0.0307

Table 6.11: Probabilities of detection and per-pixel false alarm rates for the three
anomaly configurations shown in Figures 6-7, 6-9, and 6-24 at and ABR of 1

Anomaly GLR Statistic
'Y1 Mean Median Minimum Maximum

Figure 6-7 292 280 40 808
Figure 6-9 262 256 40 656
Figure 6-24 251 240 40 576

Table 6.12: Statistics associated with the number of generalized likelihood ratios
(GLRs) computed for each of the 500 run Monte-Carlo experiments considered in
Table 6. 1 1. For comparison, note that a detection algorithm based upon an exhaustive
search over all members of J would require a total of 341 GLR evaluations.
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6.7 Conclusion and Future Work

In this chapter we have presented a framework based upon techniques from the ar-

eas of multiscale modeling, wavelet transforms, and statistical decision and estimation

theory for addressing a variety of issues arising in anomaly detection problems. Given

the scale-space representation of the linearized scattering model used in Chapter 5

to explore full reconstruction inversions, the problem of characterizing the number,

positions, and magnitudes of anomaly structures over the region of interest was for-

mulated using the tools of statistical decision theory. In an effort to understand how

the physics of the problem as well as the constraints on the geometry of the data

collection process affect our ability to isolate anomalous regions, we defined and ex-

plored the issues of anomaly delectability and distinguishability. The insight gained

through this analysis led to the development of a scale-recursive algorithm employing

a sequence of Generalized Likelihood Ratio Tests for extracting anomaly information

from data.

The binary hypothesis testing framework was used to examine anomaly detectabil-

ity and distinguishability. Here we saw that the ability to distinguish a single given

anomaly from the case where no anomalous regions exist in A requires for most struc-

tures of size 2 x 2 pixels or larger an anomaly-to-background ratio of around one or

less. Additionally, the performance of the anomaly detection, binary hypothesis test

was shown to be closely related to the relative error covariance matrix introduced in

the context of the full reconstruction inverse problem in Chapter 3. Finally, the use of

the ambiguity ellipse allowed us to capture explicitly the different ways in which the

relative geometric structures and relative amplitudes of the two candidate anomaly

structures impact the performance of an LRT aimed at distinguishing between them.

Given the results of the delectability and distinguishability analysis, we formu-

lated a scale-recursive, decision-theoretic algorithm designed to determine the posi-

tions, sizes and amplitudes of an unknown number of anomalous areas in the region of

interest. Examination of the performance of this method "in the mean" demonstrated

that small anomalies located near the center of the region of interest would, on aver-

202



age be localized quite well and their magnitudes estimated with acceptable accuracy.

These results were supported though the use of Monte Carlo simulations where we

observed typical probabilities of detection above 70% at low anomaly-to-background

ratios with a per-pixel false alarm rate less than 10% for problems in which single

as well as multiple anomaly structures were present in region A. For ABRs of one,

we observed that our scale-recursive algorithm showed little degradation in perfor-

mance relative to that predicted in the delectability analysis in which significantly

more prior information was incorporated into the problem statement. Moreover, the

computational complexity of our algorithm was shown to be superior to that asso-

ciated with an approach based upon an exhaustive search over all elements in the

multiscale family of anomaly structures, J, defined in Section 6.4. Finally, we note

that in practical applications, ABRs significantly larger (even orders of magnitude)

than those considered in this chapter are commonplace. Under these circumstances,

we anticipate significant improvement in our detection and false alarm statistics even

for anomaly structures located closer to the right side of the region; however we save

verification of these claim for the future.

Finally, while we restricted our attention in this chapter to the search for anoma-

lies which are more conductive than the background, the methods presented here

are equally useful in the search for resistive structures as well. In the case of the

delectability analysis, no alterations in our approach are required because (6.20) and

(6.21) indicate that it is not the anomaly amplitude itself, but rather the square of

this quantity which is of import. When considering delectability and the anomaly

detection algorithm, we need only modify our techniques through the explicit incor-

poration of a nonzero lower bound, ai,, into the problem formulation where this

quantity represents the most resistive anomaly amplitude expected in A. Because

the total conductivity field is the sum of �, g, and the background, go, by taking

-go < amin < 0 the zero mean assumption on � ensures that, on average, the posi-

tivity requirement discussed in Section 6.2 will be satisfied.
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6.A The Ambiguity Ellipse

To begin our analysis of (6.16), we rewrite the equation as

2 2 _ F(pf' pAlla, - 2Aoalao + Aooao d) = 0 (6.31)

where

L3T E)Aij i E) Bj (6.32)P77

7(Pf, Pd) erfc-*'(Pf) - erfc-*' (Pd). (6.33)

First, it is claimed that (6.31) defines an ellipse when viewed as a function of ao

and a,. From [10], the necessary and sufficient conditions for this to be the case are

1. All + Aoo > 0

2. A 2 - A1IAoO < 010

For the first condition, we note that all observations in q are assumed to be

corrupted by some noise so that the matrix R is positive definite. This in turn

implies that P,, and its inverse are positive definite as well. Hence the scalars A00 and

All are both strictly greater than zero.

We will only be able to prove the second of the above two conditions with

replaced by ">". However, as will be described below, for all cases of interest in this

work, the equality conditions never arise. Note that if A 2 - AIIAOO = 0 then (6-31)

defines either a pair of complex conjugate intersecting lines or a pair of coincident

lines (see [10]). The proof of the second condition follows from the lemma

Lemma 1 For any positive semi-definite n x n matrix A and vectors x and y

(X'Ax)(y'Ay) - (x'Ay)2 > 0. (6.34)

Proof Without loss of generality we assume that A = diag(sl, S2, Sn) with

si > 0. This follows from the fact that A may always be written as the product U'SU
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with U orthonormal and S diagonal. Now, expanding the left hand side of (6.34) and

collecting terms yields

(X' Ax) (y' Ay) - (x' Ay)' si s -(x' yj - xixjyiyj) (6.35)
ij

S-Sj(X 2 2x x y.yj + X2Y2 ). (6.36)E i Yj j i
Combinations
(ij) with i:�4_3-

As the positive semi-definite structure of A guarantees that si > 0, (6-36) will be

greater than or equal to zero if each term in the parentheses is greater than or equal

to zero. By rewriting one such term we see that it is greater than or equal to zero if

and only if for all yj and yj

X? -Xixj Yi
lyi yj] > 0 (6.37)

-Xixj x2
i J L YJ j

which is true if and only if the matrix in (6.37) is positive semi-definite. This condition

is in fact met as the determinants of the two principal minors of the matrix in (6.37)

are easily seen to be greater than or equal to zero. QED.

Taking the A in Lemma 1 to be the positive definite matrix and letting OBIP17

and OBO be x and y respectively ensures that the second condition for (6.31) being

an ellipse is satisfied with ">" replaced by ">."

Examination of the right hand side of (6.36) shows that that Lemma I can be

strengthened to remove the possibility of equality if A is positive definite and if it is

not the case that x and y are scaled versions of one another. Under these conditions

we have that at least one element of the summation in (6.36) is in fact greater than

zero. In terms of the parameters for the ambiguity ellipse, these two conditions require

first that P,7-1 > 0 and second that the two vectors E)Bi for i = 0, I are not multiples

of one another. Now, as described previously, the condition on P,7-' is satisfied. The

requirement on OBj is best interpreted in physical space where these vectors are TBj.

The Bi represent indicator functions over rectangular regions of A. Thus, we have

that (6.31) is an ellipse if the sums of the columns of T corresponding to each anomaly
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structure are not constant multiples of one another. In general we cannot guarantee

that this condition is met; however, for all numerical experiments in this thesis, such

an equality has not been seen. Hence, we conclude that for all practical purposed,

(6.31) defines an ellipse.

Given the elliptic nature of (6.31), it is relatively easy to define the relevant

geometric quantities describing this object. Based upon [101, we notice first that this

ellipse is centered at (0, 0). Next, defining the stretched coordinates ci -_ VI-A-ijai

allows (6.31) to be written as

C2 - 2Ccco + C2 _ 6 = 0 (6.38)1 2

with C = A,O/V'A�11AOO�. Based upon Lemma 1, we see that C2 < 1. From [101, it is

straightforward to show that in this coordinate system, the length of the semi-major

and semi-minor axes are given by

and (6.39)
C C

where the correspondence between these two expressions and the semi-major and

semi-minor axes is determined by the sign of B. Finally, we see that by returning to

the original a,-ao coordinate system, these lengths are defined according to

6 1 1 1/2 6 1 1 1/2
- + and - + - (6-40)V1 - C A00 11 V'1 + C Aoo All

Finally, the angle, d, between the a, axis and the axis of the ellipse in the first

quadrant is defined as arctan(m) where m is the positive root of [10]

- A JOM2 + (Aoo - A11)m + Alo = 0. (6.41)
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6.B Expected Value of the Generalized Likelihood

Ratio

Here we are concerned with evaluating the expected value and variance of (6.26)

conditioned on the fact that 7y- = �*. For convenience, we write Lj(n) from (6-26) as

Lj(q) -_ q'(Ql - QO),q = q'(AQ),q (6.42)

where for i = 0, 1,

Q, = P-1E)L3,(sTE)TP-1E)L -IL - 1. (6.43)

,r7 t, 3,) 3TE)T
i i P17

The expected value of (6.42) given is computed in the following manner

E[Lj(q)j� E [,qT (A Q),q 1,� (6.44)

E[tr((AQ),qq T) (6.45)

tr((AQ)E [7771TJ� =;7y.]) (6.46)

tr((AQ)Pqj;�=;�.) + tr((AQ)E[,qj,� -�*]E (6.47)

tr '7) +,�T(T(AQ)O�* (6.48)

TE)T(AQ)E),zY*. (6.49)'��Y*

where tr is the trace operation and P,7 = (E)Po OT + R). Additionally, (6.49)

follows from (6-48) due to the fact that for i = 0, 1,

(p-IE)L3,(L3TOTp-IE)L3,)-li3TE)Tp-lptr(QiP,7) = tr '7 i '7 i ,7) (6.50)
(p - I E) L3, (L3TE)Tp-I(qL -IL

tr '7 '7 3.) 3TE)T) (6.51)7 i

(L3TE)Tp-lOL3,)-IL3TE)Tp,,-leL3,)= tr( i (6.52)

= tr M (6.53)

so that tr((Ql - QO)P,7) = 0. Note that we have made extensive use of the easily
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proved relation tr(AB) - tr(BA) for all conformal matrices A and B.
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Chapter 7

A 1\4ultiscale Stochastic Solution

to the Nonlinear Inverse Scattering

Problem

While considerable insight into the difficulties associated with solving linear inverse

problems is provided by the RECM-based techniques in Chapters 3 and 5 as well

as the anomaly detection methods developed in Chapter 6, many practical problems

are not accurately described by a linear map relating the data to the unknown. For

example, the first Born linearization, which underlies the models used in the previous

two chapters, is limited in its utility by the requirement that both the amplitude as

well as the spatial extent of the conductivity perturbation, g, be small [61]. Thus, in

this chapter we extend our multiresolution, statistical inversion methods to the case

of nonlinear problems with specific attention directed toward the solution of the full

reconstruction, nonlinear inverse conductivity problem.

Like its linear counterpart the full reconstruction, nonlinear problem is character-

ized by a variety of difficulties including the problems of ill-posedness and the need to

perform multi-sensor data fusion based upon sparsely sampled, noisy observations. In

addition to these issues, we know from Chapter 4 that the move from the linearized in-

verse scattering problem to the full nonlinear case is accompanied by the introduction

of significant complexity to the modeling structure defining the relationship between

209



the observed data and the conductivity. This complexity is manifest in two ways.

First. there is an increased computational burden in generating the estimate and in

performing error analysis. Specifically, because we wish to use the Gauss-Newton

(GN) method to recover the conductivity profile, the discussion in Section 2.2.2 sug-

gests that the nonlinear inverse problem basically requires the solution of a sequence

of linear systems each of which possesses virtually the same structure as the normal

equations arising in the context of linear least squares estimation (LLSE). Second,

in constructing the matrices defining the LLSE-like system at each iteration of the

Gauss-Newton algorithm one must evaluate both the nonlinear function relating the

conductivity to the data as well as its gradient matrix at the current value of the

estimated conductivity profile. From Section 4.3, this task can be as intensive if not

more so than solving the resulting least-squares problem.

The interpretation of the nonlinear inversion as a series of linear problems is

exploited here as we extend the multiscale, statistical methods used in Chapter 5 for

the analysis of the linear inverse problem to address the difficulties inherent in the

nonlinear inverse scattering problem. The 1/f -type prior model used throughout the

previous chapters of this thesis is again employed here for the purposes of capturing

prior information and regularizing the problem. Additionally, an analog of the relative

error covariance matrix, called the relative Cram6r-Rao bound (RCRB), is defined and

is shown to provide similar information for the nonlinear problem as the RECM did

in the linear case. Finally, we present an efficient, multiscale Gauss-Newton inversion

method based upon the Extended Born Approximation (EBA), used to reduce the

complexity of the forward problem, and the RCRB, employed to lower the burden of

solving the least squares problem.

The remainder of this chapter is organized as follows. In Section 7.1 we briefly

review the formulation of the inverse scattering problem of interest in the remainder

of the chapter. The Cram6r-Rao bound and RCRB are described in Section 7.2.

Section 7.3 is concerned with the derivation and discussion of the multiscale inver-

sion algorithm used to reconstruct g from a collection of observation vectors. A set

of examples based upon the inverse conductivity problem of Chapters 4 through 6
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designed to highlight both the utility of the RCRB as well as the performance of the

inversion algorithm are presented in Section 7.4. Finally, the conclusions to be drawn

from this work are provided in Section 7-5.

7.1 Problem Formulation

As in previous chapters, we are concerned with the inverse conductivity problem

illustrated in Figure 4-1 in which the conductivity in region A is to be recovered based

upon data from K scattering experiments. Each such experiment is associated with

a particular source/receiver array combination with those experiments of interest in

this chapter summarized in Table 7.1. Note that experiments 1-18 correspond to the

same configuration of sources and receivers considered in the previous two chapters.

Additionally, experiments 13-30 are used in the analysis of a variant of the cross-

well problem similar to that considered in [103,104] in which the data from all three

frequencies is obtained from the receiver arrays on the right side of region A.

An important difference between problems considered in this chapter and those

addressed earlier in the thesis is in the mathematical models used to describe the

relationship between our multiscale representation of the conductivity, -Y, and the

wavelet transform of the 2"h observation process, 77j. In the analysis based upon the

relative Cram6r-Rao bound discussed in Section 7.2, the exact physical relationship

obtained from the discretization of Maxwell's equations as discussed in Section 4.5.2

is employed. The functional form of this model in the transform domain is given by

(4.51) repeated here for convenience

ni +vi (7.1)

i (-Y)

where Si satisfies the linear system

[I FiA(-Y)] Si = ej. (7.2)
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Recall from Section 4.6.1 that Si and 9i in (7.1) and (7.2) are the wavelet transforms

of the electric field and the background electric field respectively. Similarly, ri and

r'i,, are the transform domain representations of the Green's kernels for the forward

problem and the observations processes. Finally, for the transform pair x = W T �, the

matrix A(�), defined in (4.44), is the standard form wavelet transform of the diagonal

matrix whose (k, k )th element is Xk, the k Ih component of x.

Additionally, for the wavelet-based version of the Gauss-Newton algorithm, the

Extended Born approximation (EBA) is used to describe the dependence of qj on -y.

This model, specified in (4.44), is restated here as

,qj - E)jA(_',:'-j)-y +1,,i (7.3)

where E)i is the wavelet domain form of the Born kernel function used in the pre-

vious two chapters and which itself is a function of -y, is the transform of the

depolarization vector Xi defined in (4.38).

Finally, for future reference, the stacked versions of (7.1) and (7-3) are given as

,q = 4)(-Y) + V (7.4)

'q = A (-Y) + V (7-5)

respectively with

q q,

1 2 K

V [VT VT T]T
1 2 ... VK

(DT(_Y) (DT(_Y) ... 4,T (_Y) T
4� (-Y) 1 2 K I

,i)T I�T �T T
(DA(-Y) IA(-Y) 2,A(-Y) ... K ,A (701
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Experiment Source Frequency Receiver
number Position of source (Hz) Array

I - 6 0:20:100 fH1 = 10000 Left
7 - 12 0:20:100 fMID = 1000 Left
13 - 18 0:20:100 fLO = 100 Right
19 - 24 0:20:100 fHI - 10000 Right
25 - 30 0:20:100 fMID = 1000 Right

Table 7.1: Data set definitions for observation processes of interest in the nonlinear,
full reconstruction problem. The notation x : y : z indicated that the sources are
distributed in y increments along a line from x to z.

7.2 The Relative Crame'r-Rao Bound

The work in Chapters 3 and 5 has demonstrated that multiscale and stochastic tech-

niques provide considerable insight into the tradeoffs which exist in the design of

algorithms for solving linear inverse problems. In particular, the use of the relative

error covariance matrix allowed for the quantitative analysis of a variety of issues

related to the manner in which the data and the linearized physics of the problem

impact the structure of the reconstructed conductivity profile. Based upon the utility

of the RECM in the context of the first Born approximation, we consider here a gen-

eralization of this quantity for use in the context of the nonlinear inverse scattering

problem.

The fundamental motivation governing our definition of the relative error covari-

ance matrix in Section 3.3.2 was a desire to obtain a quantitative tool for evaluating

the reduction in uncertainty provided by a data set relative to some pre-existing level.

To accomplish this task, we required explicit knowledge of the error covariance matrix

associated with the linear least squares estimate of -y based upon a collection of the

observation vectors qj. Unfortunately, as has been discussed in Section 2.2.2, closed

form expressions for error covariance matrices associated with nonlinear estimation

problems in general, and the inverse scattering problem in particular, do not exist.

Thus, the statistical analysis of these problems centers around the examination of

lower bounds on the error covariance matrix. Here, we consider the Cram6r-Rao
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lower bound (CRB) defined in Section 2.2.2 which for the model given by (7.1), is

PCRB(-Y) = (T'(-y)R-'T(,y) + P(�')-' (7.6)

where

T(-y) 17_� 4,(-y)

2 (_Y) (7.7)

177 'D K (-Y)

with 17', 4bi(-y) given in (4.53). The CRB provides a lower bound on the error co-

variance matrix for the nonlinear estimation problem in that the following matrix

inequality holds

PCRB(-Y) < P = E [(_y �)T] (7.8)

and in addition, it is shown in [105] that the diagonal elements Of PCRB also lower

bound the error variances.

Absent explicit knowledge of the error covariance matrix associated with the non-

linear inverse scattering problem, we use PCRB(-Y) in the following definition of the

relative Cram6r-Rao bound matrix (RCRB)

11CRB (B, -y) = P�_T/2 [PO - PCRB(B, -y)] p�-1/2 (7.9)

where PCRB(B, -y) is the CRB associated with an estimate of -y based upon dataqi with

i E B C f 1, 2, . .. Kj. For the purposes of this chapter, we are concerned with analysis

relative to the prior model; however, one could consider a more general form of (7.9)

analogous to rI(A, B) in (3.12) in which the "ratio" of two CRB matrices is examined.

Indeed, such a definition would be most useful in comparing the information content
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of two different sets of data vectors. Finally, for those cases where there will be no

confusion, we abuse notation and drop the explicit dependence of both PCRB and

HCRB on the underlying data set, B.

As with the RECM defined for the linear case, rICRB possesses a variety of useful

properties. From its definition in (7.9), HCRB is a symmetric matrix. Also, using

(7.8), it is easily shown that the following inequalities hold

0 < rI(B,-y) < HCRB(B,-�) < 1 (7.10)

so that 1ICRB is an upper bound on the relative error covariance matrix and thus

provides an indication as to the maximum amount of uncertainty reduction which

may be obtained from a given data set relative to that level found in the prior model.

Finally, if fICRB (B, -y) is the RCRB for the estimate of the physical space represen-

tation of the conductivity, then this matrix is directly computable from rICRB using

the wavelet transform

1VT
nCRB (B, 9 r1CRB (B, -y))IV_,.

In Section 7.4 we consider the use Of rICRB in analyzing the performance of nonlin-

ear estimation problems. Because the definition of the RCRB so closely mirrors that

of the relative error covariance matrix, rICRB can be used to perform the same tasks in

the context of the nonlinear inverse problem which the RECM addresses in the case

of linear inversions, i.e. optimal detail analysis, sensor fusion analysis, model order

selection, and experiment design. We do note that unlike the RECM, the RCRI3

provides only a bound on these quantities. For example, the finest level of detail to

include in a reconstruction as indicated by the relative Cram6r-Rao bound may in

fact be finer than analysis using the RECM would suggest in the event that the error

covariance were available. As in the traditional use Of PCRB, the tightness of this

bound for a particular problem requires additional work such as Monte-Carlo trials;

however, we show through our numerical examples in Section 7.4 that for the inverse

conductivity problem the RCRB does in fact provide useful information regarding the
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nonlinear inverse problem.

7.3 A Wavelet-Based Gauss-Newton Inversion Al-

gorithm

In this section, we consider an implementation of the Gauss-Newton algorithm in

which the computational difficulties discussed in Section 4.3 are substantially re-

duced. The use of the Extended Born approximation (EBA) obviates the need to

solve one forward scattering problem for each observation vector yi. Moreover, as

shown in Section 4.6.1, the gradient matrix associated with this approximation to

Maxwell's equations requires little computational effort to construct relative to the

work required for an implementation of the Gauss-Newton algorithm using the ex-

act physical model. By implementing our algorithm in the wavelet domain, at each

iteration we use the RCRB to identify those degrees of freedom in the least-squares

normal equations for which significant information exists in the data thereby reducing

the computational complexity of solving this linear system. Finally, the estimation-

theoretic framework providing the basis for our approach allows for the use of the

same fractal-type statistical model for the transform of the conductivity which has

been used previously in this thesis for regularization and capturing prior information.

Based upon (2.14) and (2.15), at the (k+1)" step in a scale-space implementation,

the Gauss-Newton algorithm is defined by the equation

�.k+l = �k + �k . (7.11)

In (7.11), �,,k,+' is the estimate of the wavelet transform of g prior to taking into account

the fact that the total conductivity field must be positive. We defer discussion of the

positivity constraint instead choosing first to consider the computation of ; k which is

given as the solution to the following system of equations

[TT (�k - " (�k) + p k = TT (�k )R-1 -'�DA (�k)] _ p6-1�k

rA A (7.12)
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which we write in a more compact form as

Fk + PV k = v k. (7.13)

VkIn (7.13) EA '77 (DA (-Y) is constructed in Section 4.6. 1, is the vector defining
- TT(�k -1T (�k).

the right side of (7.12), and Y' A )R ,,

As discussed in Section 2.2.2, (7.12) is close in structure to the normal equations

arising in the LLSE approach to solving linear inverse problems. In Chapter 3 the

diagonal components of the relative error covariance matrix were used to identify those

elements of -y for which the data provided "substantial" information. Subsequently,

we demonstrated that the truncated estimate, �,, obtained by reconstructing only

these significant elements of 7 was in close agreement with the exact LLSE estimate,

but contained many fewer degrees of freedom. For the nonlinear inverse scattering

problem of interest here, we consider the following, modified form of this procedure

in which the complexity of solving (7-13) is reduced by employing the RCRB in the

identification of those elements in ;k for which significant information exists.

At the k 1h step of the Gauss-Newton algorithm, we would like to use the diagonal

components of PCRB(� k) and Po to construct the diagonal elements of the RCRB and

then define an analog of �, using �k . The difficulty here is that we only have access

to the inverse Of PCRB(�') (i.e. the matrix on the left hand side of (7.12)) and our

desire is to avoid explicitly inverting this matrix. Thus, we make two assumptions.

First, at step k we assume that we know the diagonal elements Of PCRB (� k-1), i.e.

the diagonals from the Cram6r-Rao bound matrix of the previous iteration of the

algorithm, from which we are able to construct the diagonal elements of HCRB (� k-1)

using (7.9) (since Po is diagonal). Second, we assume that I is close to

I_1CRB (�k), that is, the bounds at successive iterations do not change dramatically.

Now, as in Section 3.3-2, we let r"CRBn be the component on the diagonal of
-ICRB(�i'_') corresponding to scale m and shift n. Using rI' n (�k-l), we partition
I CRB

k into two sub-vectors, �k and �2, where the component of �k at scale m and shiftI

,�k is greater than some threshold T E [0, 1). If this1 Bnis included in if 1 CR
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condition is not met, then that element of �' is placed into (;2'. Thus, is the analog

to the nonzero subvector of �, defined in (3.14) in that it contains those components

of,�' for which significant information is available relative to that of the prior model

where the level of significance is defined by the threshold -F.

Based upon this decomposition of �k' the rows and columns of (7-13) are appro-

priately permuted so that the linear system at step k of the Gauss-Newton algorithm

takes the block-partitioned form

y7k + R-1 -rk k Vk
1,1 O'l 1,2 1 - (7.14)

jrk I k
, -F -L 0, 2 (;2

2,1 2,2 J J

which we invert directly using the block matrix inversion formula [10] to obtain

k Qk + Qkj7k 4Z-k 17k Qk _ Qk jrk - k k
(;1 1,2- - 2,1 1'2S V I (7.15)

kJ _s-kg7,k nk s-k Vk
L '�2 2,1 te- J 2 J

In (7.15) Qk and the Schur complement, Sk , are defined as

Qk = prk V 1 (7.16)
i'l +

Sk = p-1 + j7k _ y:k Qkjrk (7.17)0,2 2,2 2,1 1,2

and S-k = (Sk)-1.

The utility of (7.15) through (7.17) arises from two observations. First, we antic-

ipate from the work on linear inverse problems that the dimension of '� k should be

much smaller than the dimension of the full vector 1; k . Hence, the cost of computing

the inverse in (7-16) will be small. Second, as we justify below, the Schur complement

matrix is well approximated by only its diagonal components so that evaluation of

S-k requires little computation. Thus, under our approximation, the (i, p1h element
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of S' is taken to be,

'T"k k ksk [P�,2' + -_2,2 _F2,1 Qk -FI,2] 3 (7.18)

0 otherwise.

Taken together, these facts imply that ; k may be obtained from v k using the first

block row of (7-15) with far fewer computations than direct inversion of F k . Moreover,

rather than setting �2k to zero, the presumed diagonal structure of Sk and the small

size of Q' implies that the second block row of (7.15) can be applied to Vk with little

computational overhead. Finally, because the matrix on the right hand side of (7.15)

has the interpretation of a row and column permuted form Of PCRB (� k) , eq. (7.15)

provides an efficient method for computing the diagonal elements of the RCRB to be

used in the next iteration of the Gauss-Newton method. Specifically, the diagonals

Of PCRB (�k ) are obtained by inverting the diagonal matrix on the right hand side of

(7.18) and by computing the diagonal elements of the upper left block of the matrix

in (7.15) which is small in dimensions

To justify the diagonal approximation of Sk, we argue that in its capacity as a

regularizer, P6-1 is intended to provide information to the inversion algorithm which

is not available from the data by "boosting" the diagonal elements of the matrix F k.

Indeed, setting P6-1 -_ al has the direct interpretation of adding a to the eigenvalues

of T thereby lowering the condition number of the unregularized normal equations

and stabilizing the inversion procedure. Now by construction, the components of

k are selected based upon the expectation that little information regarding these';2

elements was available from the right hand side of (7.13). We claim this condition

implies that the addition of 1--,-l to Fk _ Fk Qk.Fk in (7.17) yields a diagonally0,2 2,2 2,1 1,2

dominant matrix which is well approximated by (7.18). Note that the validity of

this approximation depends upon the value of T used in the construction of (;2k and

on the assumption that rICRB (�k-l) (as opposed to IICRB (�k)) provides an accurate

decomposition of (;k into those components for which the data does and does not

provide sufficient information. In Section 7.4, we demonstrate that for a wide range
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Of T, (7-18) is valid for 4 constructed using the information in IICRB

One issue of import in solving the nonlinear inverse scattering problem is that

of maintaining the positivity of the overall conductivity field which is equal to the

sum of the background, go, and the conductivity perturbation, g. That is, we require

g > -go. The positivity condition is particular important in this context because at

each iteration of the Gauss-Newton algorithm the current estimate of the conductiv-

ity perturbation is input to the Extended Born model. Thus, to ensure physically

meaningful results from the EBA, we take steps to guarantee that the scale-space

estimate of the conductivity corresponds to a g which is greater than -go. While

many methods exist for incorporating this type of constraint into a nonlinear op-

timization routine [52, 79], here we pursue the following. Given �k+l in (7. 1 1), weU

compute its inverse wavelet transform, �k+l' set to zero all elements of this vector

which are less than -go and take as �k+l the wavelet transform of this truncated

quantity. Mathematically we have

�kj = Wg trunc(WT - k+1' -90) (7.19)
1 9 YU

where trunc(x, -r) sets to zero all elements of the vector x which are less than the

scalar T.

Another requirement in the description of our nonlinear inverse scattering algo-

rithm is initialization. Unless noted otherwise, for all problems considered here, we

take �' = 0. While certainly not the only means of starting the algorithm, it is

not difficult to show this particular choice of �' implies that the first iteration in

the algorithm is mathematically equivalent to an inversion based upon the first Born

linearization. In particular, (4.45) indicates that for TA(�' = 0), the relative Cram6r-

Rao bound matrix is identical to the corresponding relative error covariance matrix

so that in constructing 1�1 and,�2, we may use the standard RECM information which

may be calculated off line.

Finally, the matrices defining the extended Born approximation are of the variety

which are sparsified by the wavelet transform. Specifically, E)i defined in (4-44) is
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identical to the observation matrix arising in the first Born approximation which

from Chapter 5 is known to be sparse in the transform domain. Additionally, Ti,

obtained by stacking the row vectors y T for k - 1, 2, ... , Ng,., * Ng,, in (4.49), can

be shown to be composed of few significant entries. Thus, in the examples considered

in Section 7.4, we explore the effects of truncating the small elements of these matrices

on the performance of the inversion algorithm.

We follow the strategy of Alpert et al. in [2] for determining those components to

set to zero. The fundamental idea behind their approach is to decompose a matrix A

of dimension m x n into the sum of two matrices A' and E where E is in some sense

small. In particular, for E E [0, 1), a threshold -r is defined as

6
_11AII. (7.20)
n

and A' is given by

[A'] [Aljk if I [Alik I > (7.21)
Jk

0 otherwise

Taken together (7.20) and (7.21) assure that for E = A - A',

JJEJJ. < elIA1100.

Applying this truncation approach to E)i and Tj yields the matrices EY and T' which

are used in computing the estimates of the conductivity structure in the next section.

7.4 Examples

For each of the problems examined in this section, we are concerned with the analysis

of three general issues. First, we are interested in the use of the RCRB for mapping

the appropriate level of detail to include in a reconstruction under a variety of exper-

imental conditions. This detail analysis is accomplished via the same thresholding
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procedure described in Chapter 3 for the linear case, except here we use the diagonal

components of the RCRB rather than the RECM. Unlike the linear inverse problem

in which the RECM was independent of the underlying conductivity field, in the

nonlinear case, the RCRB is a function of the particular conductivity profile used in

the evaluation Of PCRB(-Y) in (7.8). To simplify our analysis, we consider the recon-

struction of conductivity distributions which, like in the anomaly detection problem,

are nonzero over rectangular regions of A. The RCRB is then used to determine how

varying the amplitudes as well as the locations of these structures impacts the level of

detail to include in a reconstruction. Additionally, we examine the effects of altering

the signal-to-noise ratio (SNR) on the structure of the space-varying, optimal detail

maps. In this chapter, a slightly different definition of SNR is used than was employed

in the linear analysis. In particular, for the model qi - 4)-(-y) + vi with 'qi E RNi and

vi - Ar(0, r 21), the signal-to-noise ratio is defined as

SNR 2 �D'i(-Y)'DiW. (7.22)
Ni r?

The second issue of interest is verification of the approximation in (7.18) for each

inversion example. Rather than examining the CRB matrix for each iteration of the

Gauss-Newton (GN) algorithm (i.e. PCRB (�k))' we consider the use of (7.18) in ap-

proximating the Cram6r-Rao bound matrix evaluated at the true conductivity profile,

-y. Using a collection of matrix norms we show that the dimensions of the matrix Q

in (7.16) can be made quite small with acceptable error in the resulting CRB matrix.

Additionally, we provide further justification of our approach by demonstrating that

the Schur complement matrix is essentially diagonally dominant as claimed in the

previous section.

The final issue to be examined for each problem is an evaluation of the actual

Gauss-Newton inversion routine. Here, our first concern is in ascertaining that we

can in fact obtain an accurate reconstruction from our method. Subsequently, we

quantitatively explore the effects of the CRB-approximation as well as the sparsifi-

cation of the various system matrices on the quality of the reconstruction. Finally,

222



Parameter Value

Constant Background
Conductivity 1 S/m

z Wavelet Daubechies 2-tap
x Wavelet Daubechies 2-tap
Ng,. = Ngx 16

Mg,. = mg,. 4
L91Z = L91X 2

A Z= AX 1

PLgZ = PL9,X 16
U 2= (72 1Z -_ X -_

Table 7-2: Common parameters for full reconstruction problems of interest

while the inverse algorithm is based upon the Extended Born approximation, the

exact, discretized physical model derived in Section 4.5.2 is used to generate the data

77i -

Before turning to the examples, we note that the effects on the reconstruction

of using the Extended Born approximation (EBA) rather than the exact physical

model will not be discussed in this work. Rather, the reader is referred to [103, 104]

where Torres-Verdfn and Habashy compare the performance of the EBA as a forward

solver against more commonly used finite-difference codes used for the numerical

solution of Maxwell's equations. In particular, the authors demonstrate that the

EBA requires about 1/701h the time and results in little loss in accuracy relative to the

finite-difference approach over a wide range of probing frequencies and conductivity

contrasts.

As a first example, we examine the inverse problem for which the geometric struc-

ture of the underlying conductivity field is shown in Figure 7-1 based upon data from

experiments 1-18 in Table 7.1. The remaining parameters defining this problem are

listed in Table 7.2.

We begin by examining in Figure 7-2 the optimal horizontal detail structure for

the case where the amplitude of the structure in Figure 7-1 is one (which is the

same as the background conductivity, go) and the SNR is ten. This illustration is
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Figure 7-1: Geometric structure of the conductivity perturbation to be examined in
the first example of this chapter.

obtained by evaluating the RCRB at the true conductivity profile and, as discussed

in Section 7.2, provides an upper bound on the space varying optimal level of detail

to include in the reconstruction. Moreover, in constructing Figure 7-2 a threshold,

-r, of 0.3 is used to determine those elements on the diagonal of the RCRB which

are significant. The motivation for this value Of T is explained shortly. For this

particular example, the appropriate level of vertical detail is three over all of region

A. Of particular interest in Figure 7-2 is that the horizontal detail structure is rather

similar to that obtained in consideration of the analogous linear problem in Chapter

5. Specifically, the highest resolution is obtained along the left vertical edge where

It the high and middle frequency data are collected. Also, the low frequency, cross-well

observations allow for some detail near the right edge. This correspondence with the

linear problem is not surprising given that amplitude of the conductivity block for this

problem results in an overall conductivity field which is at most only twice as large as

the the background. Thus, we anticipate that for this case the Born approximation

will be valid so that the resulting detail structures should closely match.

The effects of increasing the amplitude of the conductivity perturbation to 50 are
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Figure 7-2: Optimal level of horizontal detail for a perturbation of the form in Figure
7-1 of amplitude I at an SNR of 10. Here a threshold of 0.3 is used to determine
those diagonal elements of the RCRB which are "significant."

seen in Figure 7-3 under the same signal-to-noise ratio and again using a threshold of

0.3. In comparison to Figure 7-2, we see that the level of detail has decreased rather

significantly. Specifically, the finest level of detail which is resolvable over the right

half of A has dropped to one both in the vertical as well as horizontal directions. This

effect is explained by the fact that, given a fixed applied electric field, the dissipation

of electrical energy in a medium is directly related to the level of the conductivity

with larger values corresponding to greater loss. Thus, increasing the amplitude of

the conductivity structure from I to 50 results in an inability of the probing energy

to penetrate the medium thereby decreasing the level of detail which can reasonably

be reconstructed.

Finally, we examine the manner in which a low SNR impacts the detail structure

in a reconstruction. For an anomaly amplitude of 50 and a threshold of 0.3, we show

in Figure 7-4 the horizontal and vertical detail maps corresponding to the case where

the SNR for all observation sources is equal to one. As is expected, relative to Figure

7-3, the scale of detail has in general declined. Here we note that the decrease is
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(a) Horizontal detail (b) Vertical detail

Figure 7-3: Optimal level of horizontal and vertical detail for a perturbation of the
form in Figure 7-1 of amplitude 50 at an SNR of 10. Here a threshold of 0.3 is used
to determine those diagonal elements of the RCRB which are "significant."

limited to the region near the location of the underlying conductivity perturbation,

i.e. the top left corner. The remainder of this figure is identical to that of Figure 7-3.

In Figures 7-5 through 7-7 we verify that the matrix PCRB(-Y) is in fact well

approximated using (7.18). The solid line in Figure 7-5(a), is a plot of the matrix two

norm of the difference between the exact CRB and the approximate CRB obtained

using (7.18) normalized by the two-norm of the exact CRB. Each point on this graph

corresponds to a different value of the truncation parameter, 'r, used to define the

structure of the blocks in (7.15). Thus, the solid curve in Figure 7-5(a) is a graph of

PCRB (-Y) - PCRB (-Y, T) 1 1'2
112

IIPCRB(-Y) 2

where RCRBb) is the exact Cram6r-Rao bound matrix (i.e. no diagonal approxima-

tion) and PCRB(-Y, _0 is the appropriate form of the CRB matrix obtained using (7.18)

with a threshold of r. Similarly, the dashed line in Figure 7-5(a) is a plot of trace

Of PCRB (-Y) - PCRB (-Y, T) divided by the trace Of PCRB (7). Note that for this analysis

-y is taken as the wavelet transform of the true conductivity field show in Figure 7-1

with an amplitude of 50. Finally, in Figure 7-5(b), we examine the degree to which
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Figure 7-4: Optimal level of horizontal and vertical detail for a perturbation of the
form in Figure 7-1 of amplitude 50 at an SNR of L Here a threshold of 0.3 is used to
determine those diagonal elements of the RCRB which are "significant."

the model complexity is reduced by plotting as a function of -r, the number of rows

in the square, upper right block in (7.15) divided by the number of rows in PCRB('Y)

(256 in this case).

From the illustrations in Figure 7-5, we see that for all 7 less than 0.4, the diagonal

approximation of the Schur complement does little to alter the trace of the CRB

although the normalized error matrix two-norm rises to 0.20. Additionally, Figure

7-5(b) indicates that for 0.2 < T < 0.4, the size of the matrix which we must actually

invert in (7.15) is only about 15% of the overall size of the problem, i.e. of dimension

about 39 x 39 rather than 256 x 256. Moreover, for T greater than 0.4, there is

little decrease in the size of the matrix to be inverted; however, the divergence of the

plots in Figure 7-5 demonstrates that the CRB approximation is losing its validity.

Hence, we conclude that for this example a value of Tin the range 0.2 < r < 0.4

should provide substantial computational savings without undue loss in accuracy in

our implementation of the Gauss-Newton algorithm. In particular we take r = 0.3

for all simulations and discuss the resulting performance issues associated with this

truncation strategy shortly.
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In Figure 7-6, greyscale images are displayed of the diagonal blocks of (7.15) for

both the exact Cram6r-Rao matrix (i.e. the CRB evaluated using (7-8) with -y as in

Figure 7-1 at an amplitude of 50) as well as the approximation of the same matrix

obtained at T = 0.3. Clearly, from Figure 7-6(a)-(b), we see that the structure of the

upper left block is basically identical from one image to the next. Additionally, it

seems from the bottom two images that the diagonal approximation to the lower left

block is justified. Further proof of this is seen in Figure 7-7 where we show that the

matrix in Figure 7-6(c) is effectively diagonally dominant. Strictly speaking, diagonal

dominance requires that for all rows in a matrix, the absolute value of the diagonal

element be greater than or equal to the sum of the absolute values of the off-diagonal

components [107]. Now, the solid line in Figure 7-7 is a plot of the magnitude of

the diagonal elements of the matrix in Figure 7-6(c) while the dashed line represents

the sum across each row of the absolute values of the off diagonal components of the

matrix shown. In general the diagonal terms are much larger than the corresponding

sums. In fact, there are only six out of a total of 221 rows for which the off-diagonal

sum exceeds the size of the diagonal element and in those cases by only a small

amount. Finally, recall that the matrix in Figure 7-6(c) corresponds to that portion

of the CRB for which the data does not supply significant information. This fact

along with (7-6) implies that the matrix in Figure 7-6(c) will primarily reflect the

structure of P6-1, which is diagonal. Furthermore, with the particular lexicographic

ordering of the elements of -y which we have used, the finer scale components are

not ordered consecutively in -y, but rather appear at periodic locations in the vector.

Since the finer scale elements have the smallest variances, the corresponding elements

of P6-' are much larger than the others, leading to the "spiky" appearance of Figure

7-7.

We now turn our attention to examining the performance of the Gauss-Newton

algorithm in the case where the true conductivity structure is given in Figure 7-1 with

the amplitude set to 50. For T = 0 (i.e. no approximation to the normal equations

defining the Gauss-Newton iteration), the reconstruction obtained after 10 iterations

is shown in Figure 7-8. In this case, the parameter c used to determine the sparsity
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Figure 7-5: Analysis of our approximation to the CRB matrix associated with the
conductivity perturbation in Figure 7-1 with an amplitude of 50. In (a), relative
matrix norms for the approximation of the CRB as a function threshold parameter
are displayed. Each plot is normalized by the appropriate norm of the exact CRB
matrix. The solid line corresponds to the matrix two-norm and the dot-dashed is the
trace. In (b) we shown the length of one side of the square, upper-left block matrix in
(7.15) expressed as a percent of the maximum length (256 in this case) as a function
of 'r
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block matrix in (7-15) for the exact CRB block matrix in (7-15) for the approxi-
at r = 0.3 mate CRB at 7 = 0.3

Figure 7-6: Images of the upper-left and lower-right block matrices in (7.15) associated
with the exact CRB and the approximate CRB at T = 0.3 for the conductivity
perturbation in Figure 7-1 at an amplitude of 50.
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Figure 7-7: Plots demonstrating that the matrix in Figure 7-6(c) is basically diago-
nally dominant for the first example corresponding to the structure in Figure 7-1 at
an amplitude of 50. The solid line is a plot of the magnitude of the diagonal elements
while the dashed line represent the sum across each row of the absolute values of the
off diagonal components of the matrix shown in Figure 7-6(c). In total, there are
only six of a possible 221 rows for which the off-diagonal sum exceeds the size of the
diagonal element. As discussed in the text the "spiky" structure of this plot is caused
by the dominance of P�-' in the matrix corresponding to Figure 7-6(c).
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of the matrices is set to 10-5 so that the matrices defining the EBA for all scattering

experiments are on average more than 99% full. Finally the algorithm was initialized

with = 0.

In Figure 7-9, we display the reconstruction after the first iteration of the algo-

rithm. Because �' = 0, this estimate represents the reconstruction obtained using

the first order Born approximation in an inversion based upon data computed using

the exact physical model. Clearly, under the Born linearization, the conductivity per-

turbation is not well localized and a variety of artifacts are produced, that is regions

of nonzero estimated conductivity where in truth no perturbation exists. Compar-

ing Figure 7-8 and 7-9, we see the considerable enhancement in performing iterative

nonlinear estimation using the EBA for the nonlinear physics.

The sufficiency of using 10 iterations of the Gauss-Newton algorithm is demon-

strated in Figure 7-10 where the value of the cost function in (2.13) is displayed for

each iteration of the algorithm relative to the initial cost. By the tenth step, the algo-

rithm has converged to at least a local minimum of the cost function. The claim that

this particular reconstruction is close to the globally optimal solution is supported by

Figure 7-11 in which an image of the reconstruction is shown for an iterative solution

initialized with �' equal to the true conductivity perturbation. We see from these

images that the conductivity perturbation is relatively well localized using this full

reconstruction approach although the amplitude of the estimated structure is only

about 60% of the true magnitude of 50. Moreover, we note that the reconstruction

obtained here is structurally similar to that obtained using the Born approximation in

Chapter 5 for a conductivity perturbation possessing a comparable geometric struc-

ture as that in Figure 7-1 but smaller amplitude so that the linearization is valid.

Thus, while the nonlinear model has allowed us to consider problems for which the

restrictive assumptions of the Born approximation do not hold, the fundamental res-

olution structure of the inversion is about the same from one model to the next.

Finally, in Tables 7.3 through 7.5, the performance of the inversion is examined

as we vary the parameters E and T. In all cases, the Gauss-Newton algorithm was run

for ten iterations achieving similar convergence behavior as was seen previously. In
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Figure 7-8: Reconstruction of conductivity perturbation in Figure 7-1 at an amplitude
of 50 and an SNR of 10 with an initial guess of 0. Here, T 0 and ten iterations of
the Gauss-Newton algorithm were used.
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Figure 7-9: Reconstruction under the first Born approximation of conductivity per-
turbation in Figure 7-1 at an amplitude of 50, an SNR of 10, an initial guess of 0 and
with T = 0.
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Figure 7-10: Value of Gauss-Newton cost function relative to the initial cost at each
iteration for the conductivity perturbation in Figure 7-1 with amplitude 50 and T 0.
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Figure 7-11: Reconstruction of conductivity perturbation in Figure 7-1 at an ampli-
tude of 50 and an SNR of 10 with an initialization of the true conductivity. Here,
'r = 0.
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Figure 7-12: Reconstruction of conductivity perturbation in Figure 7-1 at an ampli-
tude of 50 and an SNR of 10 with an initial guess of 0. Here, -r = 0.3 and E - 10-1.

Table 7.3, the average length of the vector ;, is shown as a percent of the maximum

size of 256. Here, the mean is taken over the 10 iterations of the corresponding Gauss-

Newton run. We notice first that this statistic is relatively insensitive to the value of

e used in the matrix sparsification process. Moreover, significant reduction in model

complexity obviously can be obtained with little additional increase in mean-square

error. In particular, forT= 0.3, on average only 11% of the elements of � k are deemed

important at each stage of the optimization routine. From Table 7.4, the resulting

change in the mean square error is, for all E and r, negligible relative to that obtained

when no truncation is employed. As an illustration, the reconstruction obtained with

-r = 0.3 and c = 10-1 is shown in Figure 7-12 and is practically identical to the

untruncated reconstruction in Figure 7-8. Finally, we see in Table 7.5 that truncation

of the EBA matrices results in significant sparsification which, from Tables 7.3 and 7.4

as well as Figure 7-12, has little impact on the overall performance of the algorithm.

We next consider the inversion of a conductivity perturbation whose structure,

shown in Figure 7-13, is similar to the two-block profile considered both in the context

of the linear full reconstruction problem of Chapter 5 as well as the anomaly detection
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The Mean Length of �,
,E = 1011��_, 6 = lo-, lo-,

0 100.0000 100.0000 98.75
0.1 22-2266 22.1875 22.8906

,T 0.3 11.4844 11.5234 11.7188

Table 7.3: The mean length of �, expressed as a percent of the maximum length (256
in this case) as a function of T and c for the inversion of the structure in Figure 7-1
with amplitude 50. Each entry is this table is obtained as an average over the 10
iterations of the Gauss-Newton method. Note that the value of 98.75 in the top right
corner of this table is attributed to numerical issues resulting from the truncation of
the EBA matrices which cause the dimensionality of q to drop from 256 to 224 for
one iteration of the routine.

Relative Change in Mean Square Error
6 = 10-5 E = 10-2 E = 10-1

0 1.0000 0.9999 0.9994
,r = 0.1 1.0001 1.0000 0.9996
,r = 0.3 1.0056 1.0025 1.0018

Table 7.4: The relative mean square error in the final reconstruction of the structure in
Figure 7-1 with amplitude 50 as a function of r and E - These quantities are computed
with respect to the unapproximated solution corresponding to 7 = 0 and E = 10-5,

i.e. the top left entry in this table.

E = 10-5 f = lo- E = lo-'

99.0769 31.4290 10.1975

Table 7.5: Percent of nonzero elements as a function of E averaged over all matrices
defining the Extended Born Approximation for observation processes 1-18 in Table
7.1.

236



problem in Chapter 6. For the case examined here, the amplitudes of the structures

in Figure 7-13 are both set to 50. Additionally, the reconstructions are based upon

data from experiments 1-18 in Table 7.1 where the signal-to-noise ratios for each

observation process is equal to ten. All other parameters defining this problem are

given in Table 7.2.

For this particular problem, Figure 7-14 indicates that the optimal detail that

should be included in both the horizontal and vertical directions in the reconstruction

is identical to that of the previous example shown in Figure 7-3 where as before a

threshold of T = 0. 3 is used in the generation of these maps and the CRB is evaluated

at the wavelet transform of the true conductivity profile. Thus, the inclusion of the

smaller structure in the lower right corner of region A has no appreciable impact on

the detail components we may expect for this inversion. More importantly, because

the level of detail indicated in Figure 7-14 over the right half of A is only one for

both the horizontal as well as vertical directions, it is not anticipated that we shall

be able to recover a highly accurate representation of this second perturbation. Note

that this resolution structure is in fact different from that seen in the linear work of

Section 5.4 where more detail near the right vertical edge was expected. As discussed

in the context of the previous experiment, the loss of reconstruction resolution is most

likely caused by the large amplitudes of the conductivity structures which result in

increased dissipation of the energy used to probe the medium thereby decreasing the

level of detail in the inversion. Thus, once again we see the improvement, this time

in performance assessment rather than the estimates themselves, in using a nonlinear

electromagnetics model.

Before turning our attention to the reconstruction, the results in Figures 7-15

and 7-16 indicate that our diagonal approximation in (7.18) is justified at a value

of T = 0.3. Specifically, Figure 7-15(a) indicates that the relative trace of the the

CRB matrix is- altered very little at this threshold although the relative difference

in the matrix two-norm is about 0.2. In the inversion examples we discuss next,

this two-norm error is shown to have little impact on the final reconstruction. From

Figure 7-15(b) we see that the size of the upper left block in (7-15) is approximately
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Figure 7-13: Geometric structure of conductivity perturbation to be considered in
second and third examples. Here we set the amplitude of both structures equal to 50
for all RCRB analysis and Gauss-Newton inversion examples.
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Figure 7-14: Optimal level of horizontal and vertical detail for a perturbation of the
form in Figure 7-13 of amplitude 50 at an SNR of 10. Here a threshold of 0.3 is used
to determine those diagonal elements of the RCRB which are "significant."
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15% of it maximum possible value, thereby indicating that a significant reduction in

model complexity should be available at each iteration of the inversion. Finally, the

diagonally dominant structure of the Schur complement matrix is observed in Figure

7-16 where the solid line is a graph of the diagonal elements of this matrix while the

dashed represents the sum of the absolute values of all off-diagonal components for

each row.

The actual reconstruction of the conductivity after ten iterations of the Gauss-

Newton algorithm is displayed in Figure 7-17 for -r = 0. A plot of the cost as

a function of iteration number for this problem is essentially identical to that of

Figure 7-10 showing convergence of the algorithm to at least a local minimum. The

particular estimate in Figure 7-17 is remarkably similar to that seen in the analysis

of the corresponding linear full reconstruction problem in Section 5.4. Specifically,

the location of the larger anomaly in the upper left portion of region A is resolved

rather well, but the amplitude is only about half that of the true profile. Additionally,

as suspected from the detail analysis of Figure 7-14, the second structure is almost

entirely unresolved. The best that we can say in this case is that some perturbation

exists in the lower right corner. Inversion using a different prior model (perhaps

altered as in Section 5.4 to allow for greater detail in the lower right corner) or

different observation geometry (as discussed next) would be required to improve the

resolution of this structure.

Finally, in Tables 7.6 and 7.7 the average size of and the mean-square error in

the reconstruction are shown as a function of the RCRB threshold parameter T and

the matrix sparsification parameter E. As suspected from Figure 7-15, the dimension

of (;, over the ten iterations of the Gauss-Newton algorithm was only about 11% of

its maximum possible length of 256 for -F = 0.3 and for all E of interest. Additionally,

the savings obtained from matrix sparsification as well as the Schur complement

approximation had less than a 1% impact on the resulting mean-square error of the

reconstruction. Lastly, because the scattering experiments used in this problem are

the same as those from the previous examples, Table 7.5 again provides the average

sparsity results as a function of E for the EBA system matrices.

239



0.
Rel. 2-norm

0.7 - ........ Rel. trace

0.6 -

0.5

0.4 -

0.3 -

0.2 -

0.1 -

-0.1 -

-0.2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

(a)

1

90

80

0
70 -

60 -

Z 50 -

40 -

30 -
Cr

20 -

10 -

01
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

(b)

Figure 7-15: Analysis of our approximation to the CRB matrix associated with the
conductivity perturbation in Figure 7-13 with amplitudes of 50 using data from ex-
periments 1-18. In (a), relative matrix norms for the approximation of the CRB as
a function threshold parameter are displayed. Each plot is normalized by the ap-
propriate norm of the exact CRB matrix. The solid line corresponds to the matrix
two-norm, the dashed to the matrix infinity-norm, and the dot-dashed is the trace.
In (b) we shown the length of one side of the square, upper-left block matrix in (7.15)
expressed as a percent of the maximum length (256 in this case) as a function0f T
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Figure 7-16: Plots demonstrating that the diagonal dominance of the Schur com-
plement matrix associated with the conductivity perturbation in Figure 7-13 with
amplitudes of 50 using data from experiments 1-18. The solid line is a plot of the
magnitude of the diagonal elements while the dashed line represent the sum across
each row of the absolute values of the off diagonal components. In total, there are
only six of a possible 223 rows for which the off-diagonal sum exceeds the size of the
diagonal element. As discussed in the text the "spiky" structure of this plot is caused
by the dominance of P6-' in (7.17).
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W'e conclude from this and the previous example that use of the nonlinear physical

models offers significant improvement over the Born approximation both in terms of

our ability to predict the performance of the inversion routine through the use of the

RCRB as well as in our ability to implement efficient reconstruction algorithms using

the EBA and the relative Cram6r-Rao bound matrix. Indeed, unlike the linear case,

the RCRB was able to capture explicitly the dependence of the reconstruction detail

structure on the nature of the underlying conductivity perturbation. Moreover, use

of the Extended Born approximation and the RCRB in our Gauss-Newton method al-

lowed for the computationally efficient inversion of a conductivity perturbation which

was fifty times larger than the background, a physical situation far outside the range

of the validity for the Born approximation. The limited resolution of detail in the

final reconstructions using these nonlinear methods, however, suggests that there is

something of a fundamental limit to the resolution which we can hope to attain in

the reconstruction for the type of inverse scattering problems considered in this work.

In turn, this observation suggests an interesting line of future research.

Specifically, we may regard the EBA model as overparameterized in that it en-

compasses far more degrees of freedom for the conductivity than can be accurately

recovered from the data. Ideally, one would like a reduced-order physical model for

use in an inversion routine which is a function of only those elements of -Y for which

significant information exists in the measurements. In this sense, the use of the

RCRB represents a first step in adaptive multiscale model structure determination

for inverse problems. Specifically, by decomposing (;k at each step of the algorithm

we identify precisely those elements of -y for which there is information in the data.

Moreover by updating the RCRI3 from one step to the next, the nonlinearity inherent

in the problem is allowed to influence the structure of �; k. Thus, as new informa-

tion regarding the conductivity perturbation enters �k' some elements of the wavelet

transform previously considered significant may well leave '�k while new components

of -� may enter. The results of this process are observed using the two-block example

by comparing the output of the first iteration of the Gauss-Newton method in Figure

7-18(a) with those of the tenth shown in Figure 7-18(b) for the true conductivity
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Figure 7-17: Reconstruction of conductivity perturbation in Figure 7-13 at an am-
plitude of 50 and an SNR of 10 with an initial guess of 0. Here we use data from
experiments I - 18 in Table 7.1 and set -T = 0.

given in Figure 7-13 and with T set to 0.3. Clearly, the structure of these estimates

is significantly different indicating that over the course of the algorithm the elements

in �j must change from iteration to iteration. Lastly, note that as in the previous

example, the close correspondence between Figure 7-18(b) where T = 0.3 and the

estimate in Figure 7-17 obtained at a value Of T = 0 suggests that the approximation

of the CRB matrix at each stage of the algorithm does little to degrade the overall

quality of the reconstruction.

In Chapter 5, we observed that one way to improve the resolution in a reconstruc-

tion was by altering the structure of the data collection geometry. In that case, we

added a collection of cross-well, low-frequency data sources to our high and middle

frequency measurement sets in order to improve the reconstruction of g far from the

left vertical edge. In an effort to accomplish the same task here, we consider yet

another set of experiments for better resolving structures located in the right half of

region A. Specifically, a full cross-well problem similar to that explored in [103,1041

is addressed in which the receivers for all three frequencies are situated along the
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Figure 7-18: In (a) we show the results of the first iteration of the Gauss-Newton
algorithm in processing the data corresponding to the perturbation in Figure 7-13
with an amplitude of 50. Here the parameters T = 0.3 and E = 10-5. In (b), the
output of the tenth iteration of the algorithm is displayed. The differing structure
of the reconstructions in these two figures suggest that the composition of '�j is in
fact changing from iteration to iteration, in effect adapting to the new information
regarding the composition of -y obtained at each stage of the process.
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The Mean Length of
,E = lo-, E = 10-2 6 = 10-1

T = 0 100.0000 100.0000 98.7500
0.1 20.7812 20.7812 21.2500

-F 0.3 11.1328 11.0938 11.5234

Table 7.6: The mean length of �, expressed as a percent of the maximum length (256
in this case) as a function of -r and E for the inversion of the structure in Figure 7-13
using data from experiments 1 - 18 in Table 7.1. Each entry is this table is obtained
as an average over the 10 iterations of the Gauss-Newton method. Note that the
value of 98.75 in the top right corner of this table is attributed to numerical issues
resulting from the truncation of the EBA matrices which cause the dimensionality of

to drop from 256 to 224 for one iteration of the routine.

Relative Change in Mean Square Error
,E = 10-5 JE = 1 6�w�_2 E = lo-'

0 1.0000 1.0000 0.9988
,r = 0.1 1.0001 1.0001 0.9989
7 = 0.3 1.0017 1.0017 0.9994

Table 7.7: The relative mean square error as a function of r and E for the reconstruc-
tion of the structure in Figure 7-13 with amplitude 50 using data from experiments
1-18. These quantities are computed with respect to the unapproximated solution
corresponding to -r = 0 and E = 10-5, i.e. the top left entry in this table.
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right vertical edge of A. Thus, for this problem, data sets from experiments 13-30

in Table 7.1 are used in the recovery of the conductivity perturbation. The true,

underlying conductivity structure is again given in Figure 7-13 where both anomalies

are of amplitude 50.

With one exception, the remaining parameters of interest in this problem are de-

fined in Table 7.1. The exception here is that the quantities a 2 and o-2 used in thex Z

construction of the prior covariance matrix Po are changed from one to ten. Essen-

tially, this alteration reflects the fact that the nature of the ill-posedness associated

with the full cross well problem requires a different degree of regularization than that

of the previous problem. To demonstrate that improvement in reconstruction reso-

lution using data from experiments 13-30 is attributable to the altered observation

configuration rather than this change in Po, in Figure 7-19 the reconstructed con-

ductivity field is shown for the case in which data from experiments 1-18 are used

(as in the previous problem), where a 2 = a2 = 10, and for -r = 0. Here, we see no

appreciable improvement from Figure 7-17 in our ability to resolve the perturbation

in the lower right area of region A.

In Figure 7-20, we show the RCRB-based maps of optimal horizontal and vertical

detail for a reconstruction based upon data from experiments 13-30 in the case where

the underlying conductivity profile is as shown in Figure 7-13. In comparison to Figure

7-14, we see that there is some loss of horizontal resolution near the left vertical edge,

caused by the absence of receivers along the left side in this cross-borehole example,

with a corresponding increase near the right side. Additionally, the resolution of

vertically oriented detail has increased over the entire region. Thus, based upon this

analysis we anticipate an improved ability to reconstruct the conductivity structure

located closer to the right vertical edge of region A.

Figures 7-21 and 7-22 show that the diagonal approximation to the Schur com-

plement matrix in this case produces a slightly larger change in the structure of the

CRB matrix than was seen in the previous two examples. In particular, Figure 7-21

indicates that, at a threshold of -r = 0.3 there is a relative change in the matrix two

norm of about 25% while the relative trace of the difference between the true and
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Figure 7-19: Reconstruction of conductivity perturbation in Figure 7-13 at an ampli-
tude of 50 and an SNR of 10 using data from experiments 1-18 in Table 7.1 and with
-r = 0. Here, the values of u2 and a 2 defining the structure of the prior covariance
matrix are both set to ten as opposed to the case seen in Figure 7-17 where these
parameters were both equal to one.

approximated CRB matrices is still negligible. Additionally, in Figure 7-22, we see

that there are an increased number of row indices for which the diagonal component

of the Schur complement matrix is no longer larger than the sum of the off-diagonal

components.

Despite these changes from the previous examples, Figure 7-23 indicates that the

quality of the reconstruction obtained from this full cross-well observation configu-

ration is visually superior to that obtained from data sets 1-18. In fact, both the

magnitude as well as the location of the left most structure are in closer agreement

with reality relative to the reconstruction in Figure 7-19. Moreover, the localization

of the second, smaller structure on the right side of region A is somewhat improved

over the previous example although the overall amplitude is still smaller than ground

truth. Finally the locations of both estimated structures are somewhat closer to the

center of the region than the true perturbations.

The performance of the Gauss-Newton algorithm is further explored in Figure

247



Horizontal detail, large amp, high SNR Vertical detail, large amp, high SNR
2 30 0 �

I 0 10 -

20 1.8 20 - 2.8

30 30 -

40 1.6 40 2.6

50 50

60 1.4 60 2.4

70

80 1.2 80 - 2.2

90 90 -

100 I 100 - 2
0 20 40 60 80 100 0 20 40 60 80 100

(a) Horizontal detail (b) Vertical detail

Figure 7-20: Optimal level of horizontal and vertical detail for a perturbation of the
form in Figure 7-13 of amplitude 50 at an SNR of 10 using data from experiments 13-
30 in Table 7.1. Here a threshold of 0.3 is used to determine those diagonal elements
of the RCRB which are "significant."

7-24 and Tables 7.8 through 7.10. Unlike the previous two examples, Figure 7-24

indicates that we do not see clean convergence of the value of the cost function

in this case. While there is a general downward trend, even after 15 iterations of

the algorithm the cost is still oscillating. Moreover, the fact that the plot is not

strictly decreasing indicates a need to alter our implementation of the Gauss-Newton

procedure, perhaps as in [104], to assure that each step of the algorithm corresponds

to a decrease in cost. In Section 8.2.1 we indicate a couple of possible alterations to

the basic GN iteration described by (7.11), (7.13), and (7.19) which may be useful

in improving the convergence of the algorithm. Additionally, it is anticipated that

such changes will result in an improved reconstruction over that seen in Figure 7-23

thereby lending more supporting to the utility of the full cross-well data sets.

While convergence may be something of an issue for this example, we still believe

that the estimate shown in Figure 7-23 is close to optimal. Indeed, as in the first

example considered in this section, we show in Figure 7-25 the estimated conductivity

field for the two-block, full cross-well problem when the inversion algorithm is ini-

tialized with the true underlying g. Comparison of this image to that in Figure 7-23
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Figure 7-21: Analysis of our approximation to the CRB matrix associated with per-
turbation of the form in Figure 7-13 of amplitude 50 at an SNR of 10 using data from
experiments 13-30 in Table 7.1. In (a), relative matrix norms for the approximation
of the CRB as a function threshold parameter are displayed. Each plot is normalized
by the appropriate norm of the exact CRB matrix. The solid line corresponds to the
matrix two-norm, and the dot-dashed is the trace. In (b) we shown the length of
one side of the square, upper-left block matrix in (7.15) expressed as a percent of the
maximum length (256 in this case) as a function of -r
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Figure 7-22: Plots demonstrating that the diagonal dominance of the Schur comple-
ment matrix associated with the third example in this chapter. The solid line is a
plot of the magnitude of the diagonal elements while the dashed line represent the
sum across each row of the absolute values of the off diagonal components. In total,
there are only 35 of a possible 222 rows for which the off-diagonal sum exceeds the
size of the diagonal element. As discussed in the text the "spiky" structure of this
plot is caused by the dominance of P�-' in (7.17).
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Figure 7-23: Reconstruction of conductivity perturbation in Figure 7-13 at an ampli-
tude of 50 and an SNR of 10 using data from experiments 13-30 in Table 7.1 with
'r 0.
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Figure 7-24: Value of Gauss-Newton cost function relative to the initial cost at each
iteration for the conductivity perturbation in Figure 7-13 using data from experiments
13-30 in Table 7.1.
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Figure 7-25: Reconstruction of conductivity perturbation in Figure 7-13 at an am-
plitude of 50 and an SNR of 10 using data from experiments 13-30 in Table 7.1
with -F = 0. Unlike Figure 7-23, here the algorithm was initialized with the true
conductivity.

shows little difference in the two estimates. Additionally, for purposes of comparison,

we plot the relative value of the cost function at each stage of the inversion process

in Figure 7-26. As before, we notice the same general downward trend with some

oscillation after about seven iterations. Note that while the relative cost in the case

where the algorithm was initialized with truth is lower than that seen when �' = 0,

comparison of Figures 7-23 and 7-25 demonstrate that the final estimates are virtu-

ally indistinguishable. Indeed, the absolute values of the costs associated with each

of these reconstructions differ by only about 15% with the estimate obtained using

truth as the initial guess being slightly lower in cost.

Finally, in Tables 7.8 through 7.10, the reduction in model complexity, effects of

truncation on mean square error, and the sparsity of the EBA system matrices are

examined as a function of T and E for this problem. In comparison with the previous

example, the mean length of �k and the relative change in mean square error are

slightly larger as we change the two parameters. Interestingly, for C = 10', the

mean square error actually falls about 20% at large -r. In Figure 7-27, the image of
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Figure 7-26: Value of Gauss-Newton cost function relative to the initial cost at each
iteration for the conductivity perturbation in Figure 7-13 using data from experi-
ments 13-30 in Table 7.1 when the algorithm is initialized with the true conductivity
perturbation.

the reconstruction is displayed for the parameter values E = 10-1 and -r = 0.3. The

primary difference between this image and that in Figure 7-23 for which E = 10-5 and

7 = 0 is a loss in resolution regarding the position and amplitude of the right most

of the two conductivity perturbations. Thus, the lower MSE reconstruction actually

corresponds to the less visually appealing representation of the conductivity profile

in region A.

The Mean Length of �j
E = lo-, E = 10' 6 = 10-1

0 100.0000 100.0000 100.0000
0.1 26.7188 26.9792 31-4583
0.3 14.0104 14.3490 16-0417

Table 7.8: The mean length of,;, expressed as a percent of the maximum length (256
in this case) as a function of r and c for the inversion of the structure in Figure 7-13
using data from experiments 13-30 in Table 7.1. Each entry is this table is obtained
as an average over the 15 iterations of the Gauss-Newton method.
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Figure 7-27: Reconstruction of conductivity perturbation in Figure 7-13 at an ampli-
tude of 50 and an SNR of 10 using data from experiments 13-30 in Table 7.1 with
-r = 0.3. The image here is constructed using a value of E = 0.1 as opposed to previous
images where E was set to 10-5.

Relative Change in Mean Square Error
,E = 10-5 = 10-2 = 10-1

0 1.0000 1.0335 0.9056
,T= 0.1 0.9973 1.0012 0.8112
,r = 0.3 0.8246 1.0560 0.8325

Table 7.9: The relative mean square error as a function of r and E in the final recon-
struction of the structure in Figure 7-13 using data from experiments 13-30. These
quantities are computed with respect to the unapproximated solution corresponding
to -r = 0 and 6 = 10-5, i.e. the top left entry in this table.

E = 10-5 E = lo- 'E = lo-,

99.9477 38.2824 11.1857

Table 7. 1 0: Percent of nonzero elements as a function of 6 averaged over all matrices
defining the Extended Born Approximation for observation processes 13-30 in Table
7.1.
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7.5 Conclusions

In this chapter we have extended our multiscale, statistical approach to inverse prob-

lems from the linear to the nonlinear case. We began by introducing the relative

Cram6r-Rao bound (RCRB) matrix as a natural generalization of the relative error

covariance matrix. The relation between the definition of the RCRB in (7.9) and the

relative error covariance matrix in (3.12) suggests the utility Of IICRB in addressing

issues such as optimal detail analysis, multisensor data fusion, and experiment design.

For the examples considered in Section 7.4 we observed that, conditioned on knowing

the structure of the underlying conductivity profile, the RCRB provided useful infor-

mation regarding the ability of our Gauss-Newton algorithm to localize block-shaped

conductivity perturbations. Moreover, the RCRB explicitly indicated the resolution

tradeoffs encountered in moving from an inversion based upon data collected over

both vertical edges to the full cross-well problem.

These observations suggest that an analysis of the type considered in the context

of the anomaly detection problem may prove to be quite useful in understanding the

manner in which reconstruction detail in a nonlinear inverse problem is dependent

upon the structure of the underlying conductivity profile. Specifically, we might

consider the use of the dyadic anomaly family, J, in Figure 6-3 for exploring the

information embedded in the RCRB as a function of the size (i.e. scale), location in

A, and amplitude of conductivity perturbations.

In addition to its use in the analysis of the nonlinear inverse problem, the RCRB

plays a central role in reducing the complexity of our Gauss-Newton based inversion

algorithm. As discussed in Chapter 2 the Gauss-Newton iteration for solving the

nonlinear least squares problem is interpreted as a sequence of LLSE-like problems in

which the system matrices depend upon the current best estimate of the conductivity

field and where the matrix to be inverted in the solution of the normal equations is

exactly the inverse of the Cram6r-Rao bound matrix evaluated at our current esti-

mate of the conductivity. Here, we make use of the RCRB as a tool for pinpointing

those degrees of freedom in scale space for which the current LLSE problem provides
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substantial information relative to the prior model. The resulting block partitioned

form of the normal-type equations are then directly inverted in an efficient manner

yielding not only the solution to the linear system, but also the Cram6r-Rao bound

information required to compute the partition at the next step of the algorithm. The

computational difficulties associated with solving the so-called forward problem at

each Gauss-Newton step are significantly reduced through the use of a scale-space

form of the Extended Born approximation discussed and derived in Chapter 4. While

we did not carefully study the tradeoffs which exist between the computational sav-

ings and the accuracy of the extended Born approximation, these issues have been

addressed in some detail in [103,1041-

As in previous chapters, the application used to illustrate our methods has been a

two dimensional inverse conductivity problem. In addition to highlighting the utility

of the RCRB both in analysis as well as in the actual inversion, we have examined

effects of matrix sparsification in the wavelet transform domain on the reconstruction

process. In the case of the first two examples, the matrices defining the structure

of the nonlinear model relating the conductivity to the observations could be made

up to 90% sparse with negligible impact on the resulting mean square error. When

considering the full cross-well problem however, this level of sparsification resulted in

a significant change in the nature of the reconstruction. In addition, analysis of the

convergence of the algorithm indicated that refinement of the Gauss-Newton method

may be required in order to avoid oscillations in the iterative procedure. Nevertheless,

with the modest level of fluctuations observed in this case, a reconstruction that is

near to the best possible for this example was achieved. In Chapter 8, we discuss

some possible modifications to our implementation of the Gauss-Newton algorithm

designed to remove these oscillations entirely.
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Chapter 8

Contributions, FutureVVork, and

Conclusions

We begin this chapter by highlighting the primary contributions made in this thesis

with respect to the application of multiscale and stochastic methods to the solution

of full reconstruction and anomaly detection inverse problems. The results obtained

in Chapters 3 through 7 suggest a variety of interesting avenues for further research

which are discussed in Section 8.2. The final conclusions to be drawn from this work

are presented in Section 8.3.

8.1 Contributions

The fundamental objective of our effort in this thesis was to explore an approach

to the study of inverse problems combining recently-developed multiscale analysis

and modeling methods with classical elements of statistical estimation and detec-

tion theory. As discussed in Chapter 2, the motivation for a stochastic approach

followed naturally upon examination of the deterministic least-squares with regular-

ization framework often employed in the solution of these problems. Moreover, an

estimation-theoretic framework provided additional benefits in terms of

The availability of error statistics useful in the analysis of these inverse problems

and in the synthesis of efficient reconstruction algorithms
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The interpretation of the regularizer used in more traditional inversion schemes

as a statistical prior model thereby allowing for increased flexibility in capturing

the information we may possess regarding the behavior of the unknown before

consideration of the data.

Our interest in bringing the tools of multiresolution analysis to bear on inverse

problems was founded upon a number of considerations including the availability of

a rich class of prior statistical models specified directly in scale-space possessing the

following properties:

• These models are especially useful in their ability to describe non-stationary,

fractal-like stochastic processes similar to those found in practical applications

such as the inverse conductivity problem examined in Chapters 4 through 7.

• As discussed in [80], under appropriate parameterization, these models possess

a close correspondence with more traditional smoothness-based regularization

methods while at the same time offering increased flexibility in the modeling of

naturally occurring phenomena.

• Because the mathematical description of these models requires only a single,

diagonal matrix, there is little overhead associated with their use in inversion

algorithms. Moreover, as seen by the work in Chapters 3, 4, and 7, incorpora-

tion of the analysis results based upon these models into our inversion routines

actually decreases the computational burden of obtaining a reconstruction.

Additionally, a multiresolution approach was especially appropriate in light of the fact

that many practical problems are characterized by the need to fuse data sets from

a variety of sources where each source may convey space-varying, "scale-limited" in-

formation regarding the structure of the unknown. Problem analysis and algorithm

synthesis in the wavelet domain provided a means of making this information content

issue transparent and easily incorporated into the inversion procedures. Finally, a

wavelet-based approach to the solution of these problems was shown to be attrac-

tive from a computational perspective in that the matrices defining the relationship
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between the data and the unknown were of the type that were "sparsfied" in the trans-

form domain. Thus, iterative algorithms, such as POLSQR presented in Appendix

A, can be used both for performing the inversion as well as obtaining error-statistic

information crucial in the multiscale analysis of the problem.

Roughly speaking, two complementary avenues of inquiry were pursued as we ex-

plored the use of multiscale and stochastic methods in addressing the issues arising in

the field of inverse problems. First, we considered the application of these methods

in the development of analysis techniques designed to lend quantitative insight into

many common difficulties associated with inverse problems. Second, the information

from such analysis was used as the basis for the synthesis and performance study

of a collection of algorithms for obtaining both the reconstruction as well as error

statistics. In particular, we identify three broad categories where the majority of

contribution from our efforts have been made: linear full reconstruction problems,

anomaly detection problems with linear observation models, and nonlinear full recon-

struction inversions, each of which are discussed below.

8.1.1 Linear, Full Reconstruction Problems

In Chapters 3 and 5, we considered the application of multiresolution and stochastic

methods to the solution of the full reconstruction inverse problem in which a lin-

ear model related the unknown to the data. In particular, a discretized first kind

Fredholm integral equation embedded in additive noise provided a flexible means

of representing a variety of practical problems in which a reconstruction was desired

based upon possibly sparsely or irregularly sampled, noisy data from a suite of sensors

each providing information on different spatial scales.

Our primary contribution in this thesis in the area of full reconstruction linear

inverse problems was the introduction of the relative error covariance matrix (RECM)

as a tool for the quantitative analysis of the information content in a collection of

data sets. Specifically, the RECM was useful in performing the following tasks:

0 The definition of the optimal level of detail to include in a reconstruction as a
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function of spatial position, the physics of the problem, our prior information,

and the observation geometry.

• Model order reduction based upon a simple thresholding procedure in which

the RECM was used to determine those elements in the wavelet transform for

which the data provided significant useful information above and beyond that

of the prior model.

• Sensor fusion analysis where the relative error covariance matrix allowed us to

identify as a function of space and scale those regions where the information

from a set of sources contributed to the reconstruction as opposed to other

locales where the estimate was fundamentally determined by the observations

from a single measurement process.

The utility of the RECM was demonstrated through the consideration of two

particular applications. In Chapter 3, we examined a two-channel deconvolution

problem where we saw that our wavelet-based methods were especially useful under

circumstances where more traditional Fourier techniques had difficulty such as in the

processing of irregularly sampled data and the modeling of nonstationary stochastic

processes. Even in those circumstances where a frequency domain approach could be

applied, such methods are unable to provide the same insight as that of the RECM

in terms of model order selection, explicit sensor fusion analysis, and optimal detail

determination.

In Chapter 5, a linearized inverse scattering problem was examined for three

sensor geometries each characteristic of a configurations found in a variety of practi-

cal applications. We note first that unlike the deconvolution problem, the matrices

defining the measurement model here are not Toeplitz so that there is no incentive

for employing a Fourier approach. In the case of the radial profiling problem, the

RECM provided a quantitative means of describing the manner in which reconstruc-

tion resolution decreases as one proceeds radially away from the source and receiver

arrays. For the cross-well tomography problem, we were able to capture the manner

in which the use of receiver arrays located far from the sources of probing radiation
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allowed greater fine scale, high quality detail to be incorporated into a reconstruc-

tion. In Section 5.5, we built upon the work of [90] in examining the benefits of

using a few, internal point-observations as a means of locally improving the quality

of a reconstruction. Additionally, local alteration of the detail in the conductivity

estimate was achieved by selectively modifying the structure of our prior model over

those spatial locations and scales where additional resolution was desired. Finally, in

the area of model order reduction, the RECM was successfully employed in reducing

the complexity (i.e. dimensionality) of the conductivity model by at least 60% for all

three measurement configurations with little change in the visual appearance of the

resulting estimate.

8.1.2 The Anomaly Detection Problem

The issues of anomaly detection, localization, and estimation were addressed in Chap-

ter 6 in the context of the same linearized inverse scattering problem explored in

Chapter 5. The fundamental goal of the problem considered here was quite different

from the full reconstruction case as were the nature of the difficulties encountered in

generating its solution and in performing our multiscale analysis. Specifically, rather

than a detailed pixel-by-pixel reconstruction of the conductivity perturbation, the ob-

jective of this problem was the characterization of regions which differed from a prior

set of expectations concerning the nature of the conductivity perturbation where the

fractal statistical model was used to capture this prior knowledge. The difficulties

associated with the detection problem include the need to determine the number,

sizes, locations, and amplitudes of the anomalous regions each of which are related

to the data in a highly nonlinear manner. The examination of these issues led to the

development of an extensive multiscale, decision and estimation-theoretic framework

for addressing the problems arising in anomaly localization. The highlights of this

approach include the following

The basic tool used in the analysis portion of Chapter 6 was a binary hypoth-

esis test (BHT) in which we sought to distinguish between one of two possible
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anomaly structures. We demonstrated that the performance of this test, as

described by the d 2 statistic, is directly related to the RECM developed in our

work on the linear full reconstruction problem. Thus we were able to precisely

define the manner in which the level of information in the data impacts on our

ability to detect regions of localized anomalous behavior.

0 The ambiguity ellipse was introduced as a tool for separating the effects on the

performance of the BHT of the relative amplitudes from those of the relative

geometric structure (i.e. sizes and locations) of two candidate anomalies.

9 The first issue considered in our analysis using the BHT was anomaly detectabil-

ity which refers to the ability to successfully distinguish a single structure of

known size, location, and magnitude from a background in which no anomalies

are present. Our primary interests here were in determining as a function of

scale and location, the minimum anomaly amplitude required to obtain a certain

level of performance (defined in terms of the probabilities of detection and false

alarm) from the associated BHT and exploring how this amplitude changed as

we varied both the noise level in the observations and our observation geometry.

In general, under the conditions considered here, the required magnitudes were

quite small relative to the contrasts often observed in practical applications.

0 Subsequently, we examined the distinguishability of two anomaly structures.

First, we considered the probability of discriminating between two structures of

differing geometries whose amplitudes were normalized. Here it was observed

that the greatest degree of ambiguity existed when attempting to distinguish

a small scale anomaly from an overlapping larger scale structure. In general,

however, detection probabilities of well over 70% were observed for most BHTs-

Second, the ambiguity ellipse was used extensively in our analysis of distin-

guishability for anomalies whose amplitudes were not normalized. Here we saw

that relatively small amplitudes in the first anomaly were required to guarantee

a certain level of performance from a BHT independent of both the magnitude

as well as the geometry of the alternate structure in the hypothesis test. As
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with the delectability analysis, this provides further support for the utility of

our method in practical applications.

Motivated bv both the delectability and distinguishability results, we next de-

veloped a scale-recursive algorithm for detecting, localizing and estimating the

structures of an unknown number of anomalous areas. The fundamental idea

behind our approach involved a decision-directed decomposition of the overall

region of interest. Beginning with some coarse-scale (i.e. large in size) collec-

tion of areas representing hypotheses as to where anomalies may be located, a

sequence of Generalized Likelihood Ratio tests were used as the basis for better

localizing actual anomalous structures. To maintain a low false alarm rate, the

results of this decomposition procedure were pruned by a second stage of the

algorithm in which we also generated estimates of the magnitudes of the final

collection of anomalous regions. The performance analysis of our detection and

localization algorithm lead to these conclusions:

- We commonly observed probabilities of detection over 60% in cases of

anomaly-to-background ratios (ABR) less than 0.5 with this statistic im-

proving to well over 90% in most examples with an ABR of one. These

results are especially encouraging in light of the fact that practical con-

ductivity contrasts are typically orders of magnitude greater than unity.

- We observed only a small drop in performance, less than 10%, both in terms

of detection and false alarm rates between the delectability analysis where

we assumed knowledge of the number, size and location of the anomalies

and the Monte-Carlo results from our detection algorithm in which none

of this prior information was available.

- Even in low ABR environments we were able to successfully detect and

localize multiple anomalies.

- Incorporating the results of the detection algorithm into a full reconstruc-

tion of the conductivity field significantly improved the resulting charac-

terization of the underlying conductivity distribution over that obtained
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using the nominal LLSE approach described in Chapter 5.

- The computational complexity of our scale-recursive method was shown to

be superior to that associated with an approach based upon an exhaustive

search over all elements in the multiscale family of anomaly structures,

8.1.3 Nonlinear, Full Reconstruction Problems

The final class of problems considered in this work were full reconstruction inversions

where a nonlinear model related the data to the unknown. Once again, the conduc-

tivity inverse problem served as the basis for the analysis and algorithm development.

In most regards the nonlinear problem presented the same collection of difficulties as

that of the linear full reconstruction problem including the need to address the issues

of ill-posedness and the fusion of noisy, perhaps sparse data from a suite of observa-

tion sources. Additionally, the nonlinear model resulted in a significant increase in

the computational burden associated with computing the estimate and prohibited the

analysis of exact error statistics, as no closed form expressions existed for quantities

such as the error-covariance matrix. Thus, the focus of our work involved extending

and adapting the techniques developed in consideration of the linear inverse problem

to understand the reconstruction resolution limits for the nonlinear case and to reduce

the overall complexity of the resulting inversion scheme. The major contributions in

this effort are as follows:

• We introduced the relative Cram6r-Rao bound (RCRB) as an analog to the

relative error covariance matrix and demonstrated that this quantity provides

and upper bound as to the level of information in a data set relative to that of

the prior model.

• An inversion algorithm of low computational complexity was developed which

included the following features:

- The algorithm itself was based upon the Gauss-Newton (GN) method for

solving the nonlinear least-squares problem.
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- A scale-space implementation of the extended Born approximation was

used to lower the computational burden associated with the forward mod-

eling portion of each GN iteration.

- At each stage of the Gauss-Newton process, the RCRB was employed to

identify those elements in the transform representation of the conductivity

for which significant information existed. Based upon this knowledge, we

constructed an approximation to the normal equations associated with the

update vector in the GN algorithm. The approximation allowed for the

efficient computation of the solution to the linear system as well as the

CRB information required at the next iteration of the algorithm.

The utility of the RCRB and the performance of the inversion algorithm were

examined using configurations of the inverse conductivity problem similar to

those examined in the context of the linear, full reconstruction work. The

results of this effort produced the following conclusions:

- The relative Cram6r-Rao bound matrix was used to assess the optimal

level of detail to include in an estimate. For a variety of perturbation

structures, we observed that the detail content for the nonlinear problem

was similar to that seen in the linear case in that the highest resolution

tended to localized to areas near the source and receiver arrays. Unlike

the linear problem, however, the amplitude of the conductivity was shown

to impact the detail maps with higher conductivity structures resulting in

the ability to recover only coarser scale features of the conductivity profile.

- Use of the RCRB in the inversion routine allowed for a dramatic decrease

in model complexity, on the order of 80%, with negligible increase in recon-

struction error for many of the problems examined in Chapter 7. Addition-

ally, in exploring the effects of sparsifying the transform-domain matrices

defining the extended Born approximation, we observed that up to 90%

of the elements of these matrices could be neglected with less than a 5%

change in the mean square error of the reconstruction relative to that ob-
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tained using full matrices.

- A full cross-well observation geometry with all sources on one vertical edge

and all receivers on the other was demonstrated to improve our ability to

localize regions of large conductivity perturbation in comparison to the

case where the low frequency measurements were collected in a cross-well

configuration with the high and middle frequency observations taken along

the left vertical edge.

While the use of a nonlinear model does permit consideration of a wider range

of physical phenomena than that for which the Born approximation is valid,

the similarity in the optimal detail analysis as well as the actual reconstruc-

tions obtained in the linear and nonlinear full reconstruction examples suggests

that there is something of a fundamental limit to the resolution available in an

inversion which is not dramatically improved though the use of a more com-

plex modeling formulation. In this sense, we view the model order reduction

performed using the RCRB as a means of adapting the fidelity of the physical

model to match the level of information/detail present in the reconstruction.

8.2 Future Work

While the work presented in this thesis provides interesting insight into the nature of

inverse problems, the issues touched upon suggest a plethora of additional ideas for

future efforts revolving around the application of multiscale and stochastic methods

to inverse problem. In this section, we provide an overview of some of these areas of

interest as well as possible methods which may be used in their exploration.

8.2.1 Full Reconstruction Problems

In the area of full reconstruction inversions, we feel that the following lines of inquiry

are of interest

266



Reduced-order modeling. Perhaps the most interesting observation related

to the full reconstruction problem is that the resolution of the reconstruction is

essentially unaltered as we move from the linear to the nonlinear problem. As

observed in Chapter 7, this situation implies that the nonlinear models obtained

using either the exact physics or even the extended Born approximation, are in

some sense overly complex in that they are parameterized by far more degrees of

freedom than will ever be recovered in the inversion process. Ideally, one would

like to construct reduced-order models describing the physics of the problem

which reflect this type of scale-space information and which may be used in

inversion algorithms. The fundamental idea here is that we wish to use only

as much of the physics as is required to adequately estimate those scale-space

elements of the conductivity for which useful information exists in the data.

The use of more complete physics in the form of a more complex physical model

(linear or nonlinear) ultimately represents a waste of computational resources.

From this perspective, we view the use of the RCRB in the Gauss-Newton

method as a first step in this procedure. Obviously, further work is requires to

make precise the notion of "enough physics."

0 Application of reduced-order modeling to the linear problem. In our

analysis of the linear full reconstruction problem, we used the RECM to de-

fine a truncated form of the reconstruction obtained by setting to zero certain

elements in the multiscale estimate of the unknown. We may equally well con-

sider a reconstruction algorithm which takes this error-variance analysis into

account when computing the scale-space estimate of the conductivity profile,

�. One possibility would be an adaptation of the approach taken in the non-

linear reconstruction scheme in which the normal equation defining the LLSE

are partitioned and inverted directly under the diagonal approximation used in

Chapter 7. An alternate to this approach would be the use of a reduced order

model. Specifically, consider a partition of � into �1, containing those elements

of � for which "significant" information exists and �2, containing the remainder
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of �. This partition allows the linear model to be written as

[81 821 + 1/.

L 'Y2 J

Assuming that �2 = 0 an approximate, reduced order model used in the esti-

mation of �, would take the form

77 -_ 01,yi + i/

resulting in a significantly reduced size set of normal equations required both

for generating the estimate as well as computing error-statistics. Analysis of

the effects upon performance of these schemes as well as computational savings

would be particularly interesting.

Improved implementation of the Gauss-Newton Method. As seen in

the third example of Chapter 7, we encountered some difficulties with the con-

vergence of the Gauss Newton method. Here, two methods are presented for

improving the performance of this algorithm in terms of reaching a local mini-

mum of the cost function.

- First, the variation on the basic GN procedure, known as the Levenburg-

Marquardt, method may be employed. As described in [52,79], the fun-

damental iteration is defined by the modified forms of (7.11), (7.13), and

(7.19):

�.k+l = �k + �k (8. 1 a)

,T-k P6- 1 k i k = k1, + + a I 1; V (8. 1 b)

�ki = Wg (W - k+1Itrunc g ly� , _90)] (8. IC)

Recall from Section 7.3 that (8.1a) defines the basic Gauss-Newton iter-

ation where the current estimate of the the conductivity �k is adjusted
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by �k which in turn is the solution to a set of normal equations given by

(8. lb). Equation (8.1c) is used to ensure the positivity of the reconstructed

conductivity profile. Unlike (7.13), eq. (8.1b) contains an additional pa-

krameter, a , whose value at step k is selected to ensure that the cost, as

defined by the scale space form of (4.11), decreases by a set amount from

one iteration to the next. In general, one must implement some type of

kline search procedure to determine an acceptable value a . In this case,

k kone specifies a value for a , computes ; , uses the resulting �k+l to eval

uate the cost and if necessary, adjusts a kaccordingly. For the algorithm

considered in Chapter 7, this procedure would be simplified under the di-

agonal approximation to the left hand side of the normal equations. In

fact, implementation of the Levenburg-Marquardt method would only al-

ter the definitions of Qk and Sk in (7.16) and (7-17) respectively which

now assume the form

Qk = (,,,r:-k + R-1 + Cekirl
1,1 O'l

sk + j* k k kiR-1 Fk0,2 2,2 2,1 Q �71,2 +

so that the most intensive step in computing each new ;k in the line search

routine is the inversion of the matrix Qk which we have shown to be of

small size for the inverse conductivity problem considered in this work.

A second proposed approach to stabilizing the GN algorithm is to alter

the iteration in the following manner:

^ k+1 k + ok(;k,Yu

P7k + P�- 1 k = Vk

�ki = Wg (wT - k+1Itrunc g Yu , _90)]

where 0 kis a scalar again chosen to reduce the value of the cost function

at each iteration. Again, a line search is required; however unlike the pre-
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vious case, here we need not recompute a value for ;' at each step in the

search procedure. Rather, only the cost function must be evaluated as 0 k

is changed. Thus, it is anticipated that this method would be more effi-

cient than the Levenburg-Marquardt procedure. A detailed performance

analysis of both these approaches would be warranted.

A decision directed LLSE procedure for the full reconstruction prob-

lem. Here we propose one method for adapting the scale-recursive subdivision

scheme used in the anomaly localization problem to the full reconstruction case.

The basic idea is illustrated in Figure 8-1 where we begin with an undivided

region A. At the first stage of the algorithm we consider four linear least squares

estimates of the conductivity field: the first under the assumption that the field

in constant over the top and bottom halves of A, the second under the assump-

tion that the field is constant over the right and left halves, the third under the

assumption that a four way split is best, and the fourth assuming that no split is

required. Thus, for example, the first estimate produces a two vector where the

first component is the LLSE of the conductivity field over the right half of A and

the second element is the left half estimate. Given these three, "coarse-scale"

reconstructions, we perform a hypothesis test to determine which configuration

is in some sense best. In Figure 8-1, we have chosen the top/bottom split.

At the next stage a quadruplet of linear least squares estimates are computed

in which we further subdivide the top half of A. Here, the dimensionality of

the estimates is three for the first two estimates five for the third, and two for

the last. For examples, the state vector for first USE of the second stage is

composed of the constant values over the two pieces into which the top half is

split along with the amplitude associated with the bottom half with a similar

explanation holding for the other two estimates. In other words, at this stage

we re-estimate the amplitude of the bottom half of A in light of the the de-

compositions under consideration for the top half. After the estimate, another

hypothesis test is executed and the recursion continues with the subdivision of
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the upper left quarter of A. Note that we may well want to consider a larger col-

lection of decompositions at this stage of the procedure than the four discussed

here, including some in which the bottom and top halves of A are simulta-

neously partitioned. As discussed shortly, the development of an appropriate

subdivision strategy would be an integral part of the research associated with

this reconstruction algorithm.

When the decomposition of the upper left region of A is concluded by choice

(i.e. we have selected the no further decomposition option) or by fiat (i.e. the

region under consideration is too small), we then "pop-up" to that level of the

tree for which there exists an undecomposed region and recursively consider its

subdivision. In Figure 8-2 we show the case where the upper left quarter of A

has been decomposed into two vertical strips. At this point, the rectangular

structures into which the upper quarter of A has been divided remain fixed;

although, for each LLSE associated with the decomposition of the upper right

quarter (and every other LLSE considered in the overall subdivision of A), we

will re-estimate the amplitudes of these smaller-scale structures. It is not diffi-

cult to see that using this scheme we will eventually consider the decomposition

of all areas of A identified in the first stage of the algorithm.

Under this proposal, we essentially have a scale-recursive, combined estimation

and decision-directed method for generating the full reconstruction of the con-

ductivity over A. Here, as in the anomaly detection case, the hypothesis testing

portion of the algorithm can be used to keep the dimensionality of the model

low by penalizing again small area structures. Moreover, under the assumption

that a reasonably small number of rectangles are present in the decomposition,

each step requires the evaluation of a collection of low order LLSEs. In this

discussion, we have described what amounts to a "depth-first" search of the

subdivision tree; however one could imagine a "breadth-first" implementation.

Indeed, the effects of ordering the decomposition procedure would need to be

studied carefully as it is not at all clear how they can impact the nature of the

271



First stage of
decomposition

Second stage of
decomposition

Third stage of
decomposition

Figure 8-1: Illustration of first stages of proposed decision directed estimation proce-
dure. We begin with an undivided region A. At the first stage, the amplitudes are
estimated for four subdivisions of A each corresponding to an assumption that g is
constant over the different subregions. A hypothesis test is used to determine the
"best" division (in this case the horizontal-split), four new hypotheses are generated,
and the process continues. Darkly shaded regions correspond to those areas to be
further refined at the next step.

reconstruction. Moreover, we could enlarge the number of LLSE's considered

at each step to allow for the possibility that rectangular regions are divided

in some manner other than halves or quarters thereby getting away from the

dyadic-type of decomposition seen in Figures 8-1 and 8-2. Perhaps one could

examine the issue of finding the "optimal" dividing lines both horizontally and

vertically at each stage of the algorithm.

8.2.2 Anomaly detection

In the area of anomaly detection, we identify the following areas for future research

efforts
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Begin processing
upper right section

Conclude upper half
and start decomposition
of lower portion

Figure 8-2: After completing the decomposition of the upper left quarter of A into

two vertical sections, the subdivision process continues by considering the refinement

of the upper right quarter. Here, a four way split is selected after which we begin

consideration of how best to decompose the bottom half of A. Darkly shaded regions

correspond to those areas to be further refined at the next step. Lightly shaded region

corresponds to finest scale structures which have been fixed during prior stages of the

algorithm.

Extensions to the linear problem There are a variety of changes which may

be made to the formulation of the linear anomaly detection problem of Chapter

6 including the following

- A more natural definition of the anomaly-to-background ratio than the one

presented in (6.9) would be

ABR' = a' L3T pC 1 13

where a is the amplitude of the anomaly and B is the column vector rep-

resenting the wavelet transform of the rectangular region over which the

structure is nonzero. This definition is particularly useful in that it allows

the upper bound on the d' statistic in (6.15) to be written as

2 , = �J) T p6-1 �Yj)
d' < ABRA -
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where ABR' is the anomaly to background ratio of the difference betweenA'Y

the two structures -yj and -yo. Thus, the performance of the hypothesis test

is directly and simply related to the anomaly-to-background ratio.

- The constrained optimization method used in the final pruning stages

of the scale-recursive detection algorithm can be replaced by an uncon-

strained USE after which we shall accept only those anomalies whose

amplitudes exceed the "a" value associated with their particular geom-

etry. This provides a mechanism for linking the delectability work with

localization procedure.

- One could imagine altering the two-pixel radius rule for defining the area

of a detection to reflect the distinguishability of the true anomaly relative

to the members of J. For example, the detection area for a given anomaly

could be defined as the union over all anomaly structures in J for which

the probability of successfully discriminating these anomalies from the one

under investigation is less than some percent (95% or 90% most likely).

- As discussed previously in this thesis, it would be useful to analyze the

performance of our test under more realistic anomaly to background ratios

than those examined in Section 6.6.3.

- It would be useful to continue the work described at the end of Chapter 6

with a more extensive comparison of the performance of our scale-recursive

localization algorithm against the approach in which a single, large M-ary

hypothesis testing problem is solved where each hypothesis corresponds

to a particular member of the anomaly family J introduced in Section

6.4. Specifically, we know from Section 6.6.3 that for the 16 x 16 problem

considered in this thesis the complexity of our algorithm is more favorable

than that of the exhaustive search technique. Of interest now is charac-

terizing the Pd and Pf performance of this later method. Additionally,

we could compare and contrast the manner in which the detection per-

formance and the complexity of our method and the full search approach
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vary as a function of the size of the problem, the anomaly to background

ratio, the number of anomalies located in region A, etc.

Finally, we might consider the effects of altering the structure of the sub-

division scheme illustrated in Figure 6-18 on the performance and com-

putational burden of our detection and localization scheme. For example,

rather than the nine-way decomposition considered in Section 6.6.1, we

could employ a scale-recursive quadtree-type decomposition of A. Such

an approach would begin by splitting A into quarters and testing each

section for the presence of an anomaly. Those that passed the test would

be further subdivided into four smaller squares and the process would re-

peat. Clearly, unlike the current algorithm presented in Chapter 6, this

quadtree method does not allow for the identification of rectangular struc-

tures; however, it is simpler in form and requires only that a subset of the

elements in J be examined for the presence of anomalies. Thus, the bulk

of the work related to this investigation would involve the exploration of

the resulting tradeoff between performance and computational complexity

and comparing these statistics to those associated with our current method

as well as the exhaustive M-ary hypothesis testing approach.

0 Extension to the nonlinear case Given the insight provide by our analysis

techniques as well as the success of the detection algorithm in the case of the

linearized inverse scattering problem, it would clearly be interesting to extend

our results to the nonlinear case. Here a number of possibilities exist. First,

the primary motivation for a nonlinear model is to allow for the modeling of

situations in which the conductivity profile violates the assumption of the Born

approximation. In cases such as these, the linear model breaks down in that it

no longer provides a valid mechanism for describing the relationship between

the data and the conductivity. It may be possible however, to exploit this model

mismatch to localize anomalous areas through the development of algorithms

which identify where in space and scale the model is failing. Making this notion
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precise and constructing and analyzing the required detection algorithm would

constitute the majority of the work in this case.

A second possibility is that a nonlinear model of the type considered in Chapter

7 would need be employed in the detection, localization and estimation proce-

dure. The primary difficulty here is that under a model of the form

,q = 'D('� + fl + V

the data is no longer normally distributed due to the nonlinear transforma-

tion of the random vector �. Hence, the Gaussian-based methods of Chapter

6 would no longer be applicable. Moreover, in all likelihood, the exact distri-

bution of q would be unavailable in closed form. Here we identify two possible

approximations which may be used to make the nonlinear detection problem

tractable:

- First, we may ignore the fractal background in the nonlinear model by

setting � = 0. Now, the data is normally distributed with a mean equal to

-15(�y-). Hence, the same procedures used in Chapter 6 may be employed ex-

cept that in evaluating the various likelihood functions, the forward model

rather than 8,� would be used. Perhaps the extended Born approxi-

mation or a suitably reduced-order version of this model could be used to

lower the complexity of the resulting algorithm.

- If we wish to incorporate the fractal. background into the process, then

we might assume that � is in some sense small so that a series expan-

sion (Taylor, perturbation, etc.) of -1) could be employed. The resulting

approximate model would then take the form

Ao(,�) + A&�)� +
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where AO and Al are the first two terms in the expansion of �P and each

depends upon the anomaly structure, ;�y. Moreover because

Ar(Ao (wy), Al (�) PoA T (,�Y) + R)1

we can continue to use the Gaussian models of Chapter 6. Here however,

both the mean as well as the covariance structure of the data depended

upon the anomaly. The implications of this relationship on detectabil-

ity, distinguishability, algorithm performance as well as the computational

tractability of the resulting scale-recursive localization scheme would all

need to be investigated.

8.2.3 Computational Analysis

With the exception of the analysis in Chapter 7, we have not performed any extensive

analysis of the computational benefits which a wavelet domain implementation of the

inversion algorithms can offer. Based upon the work in the first seven chapters of this

thesis, the following collection of tasks may be of interest

0 In Appendix A, we present an iterative algorithm built upon the LSQR method

of Paige and Saunders [87, 88] which is useful for solving large, sparse least

squares problem of the type considered in the linear full reconstruction por-

tions of this thesis. Additionally, our algorithm, called POLSQR allows for the

efficient computation of arbitrary elements of the error-covariance matrix, P.

In particular, the error-variances, which play a prominent role in the RECM

analysis, may be obtained with POLSQR. Thus, it would of use to analyze the

performance of this algorithm both for generating the estimate and in comput-

ing error statistics. In particular its performance relative to LSQR and other

conjugate direction type methods would need to be explored in terms of float-

ing point operations, convergence of the algorithm, and the manner in which

computational complexity scales with the size of the problem.
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Of particular interest both in the context of linear as well as nonlinear full

reconstruction problems is examining the effect of operator sparsification on

the resulting reconstructions. For the linear problem, it would be useful if

one could obtain explicit bounds on the mean square error of an estimate as

a function of the truncation parameter used to determine the level fill in E).

Mathematically, this would require the construction of a bound for

MSE(,E) = tr(P(,E))

= tr E)T (6)R-18(E) + P6-1

where E)(E) is the system matrix truncated using the parameter 'E as described

in Section 7.3. Additionally, Monte-Carlo methods could be employed to de-

termine the tightness of the resulting bound. Finally, it would be useful to

explore the manner in which MSE(,E) varies with the size of the problem, the

wavelets used in the transformation to scale space, and the parameterization

of the underlying scattering experiments including frequencies, source/receiver

configurations, etc.

8.2.4 Data Transformations

The majority of the work in this thesis focused upon the analysis of the scale-space

representation of the unknown quantity in the inverse problem with little attention

paid to the multiscale form of the data. Indeed, the primary motivation for consider-

ing the wavelet transform of yi was to ensure that the operator matrices E)i == WiTillVg

were sparse in the transform domain. We note however that the analysis and algo-

rithms built upon the RECM, and RCRB, as well as all of the results in anomaly

detection are completely independent of the choice of Wi. In fact, aside from the

sparsity of Oi, no transform of yi is required for these results. Thus, one possible line

of research would involve analysis of alternate transformations of the data designed

to achieve goals which may include sparse transform domain operator matrices in

addition to other objectives.
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For example, in [381, Donoho develops the so-called Wavelet- Vaguelette transform

(WVD) as an alternate to the singular value decomposition for the analysis of linear

inverse problem characterized by a homogeneous kernel (see [381 for a definition of

homogeneity). Specifically, Donoho considers an equation of the form

y = Tg + n (8.2)

where we have already decided to use a particular wavelet representation of g, that is

g = WT-Y. The data transformation is now constructed to reflect both the structure9

of the operator, T, as well as our multiscale representation of the function, g. In

particular, the vaguelette portion of the WVD is defined by

V = )IVTTt (8.3)
9

where Tt is the pseudo-inverse of the operator T. Now (8.2) is transformed as follows:

,O = [Vy] = [VTWT] [)IVgg] + [Vn]9

= -Y + [Vn] (8.4)

where the identity VTWT = I follows from (8.3). It is important to note here that9

while the WVD has diagonalized the operator, this simplification comes at a price. In

particular, the transformation V is not in general orthonormal so that the transformed

noise, Vn, will be correlated as well as possibly amplified by the transformation

procedure. In fact, if we think of V as a matrix, it is not even square implying that

the WVD must result in some loss of information. Donoho was concerned with the

asymptotic performance of an inversion based upon (8.4), that is, the performance

where the length of the data record was very long or the variance of the noise was

very small. In these circumstances, the possible difficulties with V were shown to be

of of little import.

While the asymptotic assumptions may not hold for the cases of interest here, the

general idea behind the WVD is of interest. Rather than specifying V as in (8.3),
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we propose to define V in terms of an optimization problem designed to produce

a transformation matrix possessing various desirable properties some of which may

include:

• The transformation should not significantly amplify the noise, i.e. the eigen-

values of VV' should be reasonably close to one to avoid large amplification of

the noise. Additionally, it would be useful if the transformation were at least

orthogonal, (i.e. VV' is diagonal) so that the noise is not correlated.

• The result of applying V to the matrix Tj1VT is a transformed operator with9

a certain structure such as diagonal, banded, block diagonal, finger structured,

etc. The particular choice of structure may be driven by the processing algo-

rithm used to perform the inversion in the transform domain. For example, a

diagonal observation model could be combined with the recently developed tree-

type prior models [23-25,80] in the synthesis of highly efficient scale-recursive

estimation schemes.

Given these desired characteristics, V is taken as the solution to the problem

V, = arg max Ml VTWg M2 11 F (8.5)
VEV

where F denotes Frobenius norm, V is a set of matrices possessing certain charac-

teristic (e.g. orthogonal matrices with spectral radius close to one) and Ml and M2

are "masking matrices" used to enforce some structure in the transformed operator.

For example, if we want 0 = VTIIVg to be tridiagonal, then we would choose Ml and

M2 in a manner such that for an arbitrary matrix A, MlAM2 equals A except on the

tridiagonal where it is equal to zero. In this way, the elements off of the main three

diagonals can be made small relative to tridiagonal part of the matrix through the

optimization procedure in (8.5) with no penalty for the tridiagonal components.

Clearly, a variety of interesting questions arise in considering this approach to the

construction of a data transformation matrix. First, assuming we could solve the

minimization problem, it is not obvious how useful the resulting V transformation
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matrix would be in that the various constraints imposed through V, MI, and M2 may

be incompatible. For example, it may well be the case that the eigenvalues of the

matrix V,,VT which minimizes (8.5) in the case where we want a tridiagonal structure

is entirely too large to be of use. Thus, exploring the ways in which the different

objectives interact in the formation of V, is one area of interest. Additionally, it is

not at all obvious how one may go about generating the solution to (8-5). First we

need to parameterize the set V and then develop optimization algorithms to execute

the constrained minimization in a reasonably efficient manner. Convergence analysis

of such algorithms would always be an issue as would be difficulties with local minima.

Incorporating other features into E) in addition to the two described above would

also be of interest. For example, we know from our sensor fusion analysis that certain

redundancies exist in the data to the extent that not every data point contributes

unique information to our knowledge of g. Thus, as in the WVD case, we may want V

to be a many-to-one mapping which performs some sort of data compression resulting

in a vector n of dimension less that y which contains only the "useful" information

in the original set collection of measurements. Making these notions precise and

incorporating them into a procedure for constructing V would clearly require some

effort.

Lastly, we note that for many nonlinear full reconstruction problems the V can

be constructed exactly as in (8.5). That is, the nonlinearity, or more specifically the

particular value of the unknown function g, would not impact the structure of V. In

turn, this implies that a single V may be calculated off line and used for all iterations

of the inversion routine. For example, both the exact physical model as well as the

extended Born approximation for the inverse conductivity problem take the form

y = TF(g) + n (8.6)

where T is a known matrix independent of the conductivity and F(g) is a nonlinear

281



function of g. Thus, we could consider a transformation of (8.6) of the type

[Vy] = [VTWT] [WF(-y)] + [Vn] (8.7)1

with -y = Wgg and WI a second wavelet transformation. Clearly, given T and )/V1, we

can define an optimization problem as in (8.5) for determining V which is independent

of the underlying g.

8.2.5 Prior Model Development

The last area we identify as a source of new an interesting research is that of prior

model development. While the fractal-type models considered in this work are useful

both in terms of their ability to describe natural processes as well as from a regular-

ization perspective, they are certainly not the only multiscale models which may be

used in an inversion routine. Two natural generalizations of the 11f type models of

interest in the context of inverse problems are as follows

0 Adaptive priors The fundamental idea behind a prior model is to capture

our knowledge of the structure of g as it exists before consideration of the

information from the data. In fact, it may well be the case that the true behavior

of g differs from that of the prior model. Thus, in the interest of improving the

reconstruction, one would like an algorithm that jointly determines both g and

appropriately updates the structure of the prior statistical model. Essentially,

the idea here is similar to that in [9,62,63,108] where the primary concern is

with the best choice of the regularization parameter A in the following problem

112 _� 2 112arg min Ily - Tg R + A IlLog 'P-1
9 0

with Lo a discretized differential operator, Roughly speaking the objective

underlying the work in [9, 62, 63, 108] is to select A in such a manner that

enough, but not too much regularization is achieved where these ideas can be

made mathematically precise.
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In Chapter 5., we demonstrated one method for selectively altering the structure

of Po to incorporate more detail information into the reconstruction at particular

shifts and scales. We began with a 11f model and increased the variances only

of those elements of -y associated with shifts and scales where we knew that g

differed from the fractal prior. Automating this procedure would certainly be

one interesting course of research.

Specifically, we may formulate the problem as one of estimating the variance

structure associated with the prior model. It turns out that finding the Maxi-

mum Likelihood estimate [105] of the diagonal components of the prior-model

variance matrix given q is amenable to solution using the Expectation-Maxim-

ization (EM) algorithm [31,431 which also produces an estimate of -y. Straight-

forward implementation of this particular approach is somewhat heavy-handed

in that it requires all elements of the diagonal of Po be determined. To reduce

the complexity of this proposal we may

- Consider estimating only the two parameters [L and o7' defining the 11f

model in (2.37). While this would lead to a simpler estimation algorithm, it

would also reduce the extent to which we are able to tune the regularization

over specific shifts and scale.

- Perform some type of on-line sensitivity analysis designed to determine

that subset of prior-model variances which the data dictates may require

alteration. This computation might be based upon analysis of the gradient

matrix
'9� - (9 E)T

'9PO '9PO ( R-18 + P6-1)

where po is the vector comprised of the diagonal elements of Po. Thus the

overall estimation algorithm would be iterative in nature and similar in

structure to that of the Gauss-Newton procedure developed in Chapter 7.

At each stage, we would identify those elements of po in need of revision.

The EM approach would then be used to estimate this subvector as well

as update our reconstruction of -y and the procedure would then repeat.
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9 Non-Gaussian Prior Models In [39], Donoho discusses the use of wavelets as

unconditional bases for a variety of esoteric function spaces. While his concern is

in exploitation of this property in the context of ininimax statistical estimation,

the mathematical expressions for the norms in these spaces are very similar in

structure to the term

ly I -Y Oc 2-1`(_,.m)2 (8.8)
shifts n scales m

used to regularize the linear full reconstruction problem consider in Chapters 3

and 5'. Although a whole family of norms is considered by Donoho in [391, the

most interesting from our perspective here is that of the form

E E 2-1`J-,.mJ. (8.9)
shitfs n scales m

While (8.9) is used in [39] as an means of computing the norm of a function

in a certain space via its wavelet coefficients, the form of this expression is

sufficiently similar to (8.8) that it suggests a statistical model for -y in which

each coefficient is independently distributed according to a probability law with

an e-I'l structure.

Interestingly, the use of such a prior distribution has been considered in the

past for problems where g is expected to have jump-type discontinuities such

images with edges [12, 50, 96, 1151. In fact, the space of functions with such

jumps is exactly that space for which (8.9) is a norm. With this deterministic

relationship in mind, it maybe of interest to explore the statistical interpreta-

tion of (8.9). For example, one may consider the evaluation and analysis of error

statistics for these stochastic models. Algorithms incorporating these models

could be constructed and their performance compared to that obtained using

the Gaussian priors. We may look at the more general norm-structures consid-

'Note that we ignore the terms in the summation associated with the coarsest scale scaling
coefficients in -� as their inclusion serves only to complicate the formula and obscure the point under
consideration.
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ered by Donoho and explore their statistical implications as well. In all cases,

RECM or RCRB-type methods could be employed as a means of evaluating the

information content in the data relative to these non-Gaussian prior models.

8.3 Closing

In this thesis, we have considered the application of multiscale modeling and analysis

methods as well as elements of statistical estimation and decision theory to difficulties

arising in the study of spatial inverse problems. The motivation underlying much of

this work has been a desire to use these tools in the construction of a framework for

better understanding the manner in which the structure of the final reconstruction is

determined by the information in a collection of data sets. For each of the problems

of interest, we began with the construction of new and innovative analysis methods

designed to lend quantitative insight into the relationship between the data and the

estimate. Subsequently, we used these multiresolution and stochastic methods in the

synthesis of inversion algorithms designed to take advantage of the information made

available through the analysis process. In the case of anomaly detection, the de-

tectability and distinguishability analysis directly suggested the scale-recursive form

of the decision-directed localization procedure. For the full reconstruction problems,

the RECM/RCRB were used to vastly lower the complexity of the resulting algorithm

by identifying those elements in the reconstruction for which significant information

was embedded in the data. While we believe that the effort in this thesis indicates

the utility of a joint multiscale and statistical approach to inversion, it is also true

that the results we have obtained serve to highlight much of the work that remains

to be done in the areas of full reconstruction problems, anomaly detection, computa-

tional analysis, transform development, and the construction of scale-space stochastic

models.
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Appendix A

POLSQR: Partially

Reortho onalized LS )RQ

In Chapter 3, we observed that the sparse structure of the scale-space operator ma-

trices E) combined with the diagonal nature of the prior covariance matrix Po could

be exploited in the computation of both the estimate, � in (3.9) as well as the error-

variances, that is, the diagonal elements of the P in (3.10). While many sparse matrix

algorithms exist which can be used in the computation of � [6,65,87,881, as described

in more detail below, none is able to calculate the error-variances in a stable man-

ner due to the so-called Lanczos phenomena described in [29,53]. Here we present a

variant of the algorithm LSQR [87,88] called POLSQR for Partially Reorthogonal-

ized LSQR, which is capable of both solving the normal equations and providing the

variance information required in our RECM-based analysis.

In [88], Paige and Saunders introduce a conjugate direction type algorithm, LSQR,

designed to obtain the solution of regularized, large, sparse least squares problems in

a computationally efficient manner. The model problem considered by these authors

is

2

A b
min X - (A. 1)

0
2
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the solution of which is defined by the normal equations

(A TA + a'I)J� = A7b. (A.2)

Note that (A.2) is of the same form the linear system in (3.9) under the identities

1/2(E)pl/2A R- 0

P�_1/2

b R- 1/2 7I

2

Each iteration of LSQR is a two stage procedure. In the first stage, one step in a

bidiagonalization of the matrix A is executed. In the second stage, the new approxi-

mation to 1- as well as the error-variances are generated from parameters calculated in

stage one. Most of the computational effort is required for the bidiagonalization pro-

cess and it is here where numerical difficulties arise which prevent accurate calculation

of the variances information.

The procedure for obtaining the bidiagonalization of A used in LSQR was actually

introduced first by Golub and Kahan [881. Given the m x n matrix A and vector

b defining the particular instance of the problem, the bidiagonalization algorithm

proceeds as follows

01u, = b alvi = A TUI (A.3a)

�j+ju-+j = Avi - cejuj (A.3b)

cej+jvj+j = A TU,+l _ 0,+,V, (A.3c)

for i 2, 3 Here, ai and Oi are chosen to make ui vi 1. In principal,
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the sequences f ui I and Ivil are orthonormal and satisfy

Ozi

TU. Av. 0,+1 j (A.4)

0 otherwise.

Moreover, the orthonormality of fuil and fvil are required in Section 5.4 of [88] for

the computation of the error variances during LSQR.

In practice, the vectors NJ and fvil generally loose their orthonormality after a

few iterations with the situation growing worse as the condition number of A rises.

While this problem does not preclude LSQR from iterating to the correct solution

to the original least squares problem, it makes accurate error variance calculations

impossible. To solve this difficulty, we have developed POLSQR as a modified form

of LSQR designed to ensure that a sufficient degree of orthogonality is maintained at

each iteration of the algorithm.

The lose of orthogonality during the bidiagonalization process is reminiscent of

a very similar problem encountered in the Lanczos algorithm [89,98]. While many

solutions have been proposed to remedy the problem in the Lanczos case, the one

most suitable for adaptation to the LSQR algorithm was presented by Simon in [98].

At each step in the bidiagonalization process, one first checks if u-+, is "sufficiently"

orthogonal to uj for j = 1, 2, i. If it is then nothing is done; otherwise, a Gram-

Schmidt procedure is carried out to enforce orthogonality. Defining

iii+1 = Avi - ajui.

then the condition J uj > r, for any j < i + I requires that iii+1 be adjusted

according to the Gram-Schmidt procedure [53]

i
Oi+lui+l = fti+1 - E(J jUj)Uj_ (A-5)i+

j=1
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The parameter K defines the degree to which orthogonality must be maintained among

the sets of vectors NJ and fvij. In [981, Simon lets r, be V,',E-, the square root of

the machine precision. In general, it appears that a higher level of orthogonality is

required as the condition number of A increases. Finally, an analogous Gram-Schmidt

procedure is executed for the f vj I family of vectors.

While this straightforward approach, called full reorthogonalization, will in fact

solve the orthogonality problem, direct implementation is computationally intensive.

At each step of the algorithm the following operations are required above those of

LSQR

1. Determination of the level of orthogonality between iii+l and fujj'.=j as wellI

as between �j+j and fvjl'=,. This essentially requires two dense matrix-vector

products

Ai = UTiii+1 (A.6a)

= VTD.+,i T (A.6b)

Where Ui = [U1 U2 ... uil and Vi = [V1 V2 ... Vil

2. Reorthogonalization , if necessary, requires an additional two dense matrix-

vector products

Oi+lui+l =,Fti+l - UiPi (A.7a)

ai+lvi+i = �i+i - VA- (A.7b)

Although such additional work may be tolerable for i small, as the iteration number

increases (as it will when computing the error variances), this reorthogonalization

scheme requires too much work to be of use.

Elimination of the computational problems associated with reorthogonalization

can be accomplished via an algorithm possessing the following characteristics (here

stated only for the juil case but holding as well for the Jvjj):
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1. The ability to monitor the level of orthogonality between between �Ujlji=i

and iii+l without explicitly computing p. through the matrix-vector product

in (A-6a).

2. Perform reorthogonalization of u-j+1 against only that subset of vectors in

fujl'=, for which uTft-+, > r,.i 3 T

The advantages of such a scheme are discussed in Section 4 of [98] and are restated

here. Define the following quantities:

[tij UTUj (A-8a)i

Ilij VTV (A.8b)

At the i" step of POLSQR, monitoring orthogonality involves simple updating of Aij

and vij each of which are shown to satisfy scalar recursions. This procedure requires

far fewer operations than the matrix vector product of (A-6a) and (A.6b). Second, a

Gram-Schmidt operation is performed only against those vectors where orthogonality

has been lost. Clearly, this can provide addition savings in the implementation of

(A.6b) and (A.7b).

Monitoring Orthogonality Recursive equations for monitoring the level of or-

thogonality begins with a restatement of (A.3b) and (A.3c) to include roundoff effects

due to finite precision arithmetic as in [98]

0j+juj+1 Avi - aui - fi (A.9a)

ozjvj ATUj _ 0jVj-1 - gi (A.9b)

where fi and gi represent roundoff errors. Note in (A.9b) we have changed variables

from i to j - 1. Multiplying (A.9a) on the left by J, (A.9b) on the left by VT
3

subtracting the two, and making use of (A.8a) and (A-8b) gives

Oi+lpi+ij ajvij + Ojz-lij-i - aittij + Pi',j (A.10a)
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where pl. = UTf, - vTgj. In a similar manner, we manipulate (A.9a) and (A.8a) toW I I

arrive at the relation

+1/_ti+lj+l + ajl_t,+Ij _ 0,+,V,,j + P2
Ui+1Vi+1'j ij (A. I Ob)

2j = VTg,+, - UTwith P. JT. Finally, from the definitions in (A.8a) and (A-10a) andZ' I i+ J

the requirement that the luil and f v-1 sequences be orthonormal, the initial/diagonal

conditions on the coupled recursions (A.10a) and (A.10b) are

V0,0 = 40,0 = 0 (A.11a)

Vi'O = /-ti'o = 0 (A.11b)

Vi'i = N'i = 1 (A.11c)

The last stage in this portion of POLSQR requires a model for the terms pli andi,

Pt,?j which by assumption are not available directly to the algorithm. The solution used

here parallels that found in [981. Specifically, the p� terms are taken to be independent

normally distributed, zero mean random variables with sufficiently small variances.

For this work the following values were found to be effective

Pi'i Ar(O, 61100)

2 iv(0,61100)
Pi'i

Selective Orthogonalization The objective in computing tti+ij and vi+,,j is the

determination of those vectors in JujJ'=, and fvjl'=, for which a Gram-Schmidti i

operation must be performed. An obvious approach is to define the index sets 1i+1

and Ki+1 as

-Ti+1 = Jj I pi+,,j > r, j 1, 2, (A.12a)

Ki+1 = Jj I vi+,,j > r, j 1, 2, il. (A.12b)
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and modify the Gram-Schmidt portion of POLSQR at the i'h step accordingly:

E (fT JU.)Uj
A+lUi+1 = fti+1 - i+ -7

3.E1i+1

1: (J lVj)Vj.
Ozi+lvi+i = �i+i - i+

I.EKi+1

Defining 1i+1 and 1Ci+1 as in (A.12a) - (A.12b) can result in computational in-

efficiencies. As discussed in [98], it is often the case that there are many indices in

the complements of 1i+1 and 1Ci+1 as defined in (A.12a) and (A-12b) for which pi+lj

and vi+,,j are close to, but just lightly less than the threshold K. Failure to include

these terms in the reorthogonalization at step i + I leads to the obligation to do so

for these as well as many other vectors at the next iteration. Thus, if the overall level

of orthonormality exceeds the threshold r,, we define 1i+1 and 1Ci+1 as in (A.12a) and

(A.12b) except that the K is replaced with /-12 which is less than r,. In other words,

r, defines the level at which we say the loss in orthonormality is unacceptably large

while K2 is used to determine the collection of vectors for which this condition holds.

Thus, the index sets used in the selective orthogonalization procedure are defined as

141 0 if 0, 1 tti+1'j > 0 (A.13a)

fi I Ai+IJ > K21 otherwise

0 if tj I 7,li+lj > KI 0 (A. 13b)

f3' I 1/i+lj > r'21 otherwise

for j = 1, 2, i.

Updating pij, vij and -yij The final stage in POLSQR is updating 1-tij, Vij and 'Yij

after a reorthogonalization. As these quantities are required in subsequent stages of
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the recursions, it is important to ensure their integrity. After a u-reorthogonalization,

pi+lj 7-- Ar(O,,EIIOO) j E Ti+1 (A. 14a)

unchanged otherwise.

The first condition follows from the fact that for j E _Tj+j orthogonality has been

obtained explicitly by a Gram-Schmidt operation to the level of roundoff. The sec-

ond follows from the fact that no action was taken with respect to those j in the

complement of 1. Similarly, after a v-reorthogonalization

A((O, E/100) j E /Ci+l
lli+ij = (A.14b)

unchanged otherwise.

The POLSQR Algorithm The algorithm POLSQR can now be stated as follows

Algorithm 1 Given the matrix A, vector b, and scalar a defining a regularized least

squares problem of the form

2

A b
min x -

al L 0 J 2

the following iterat' tes the estimate and the dia
ive procedure genera gonals of the

error variance matrix (A TA + U21)-l.

1. Initialization

01u, = b alvi ATU,

with 01 and a, chosen so that Iluill = Ilvill

2. For i = 1, 2, 3, - - - repeat steps 3- 6

3. Bidiagonalization with partial orthogonalization

(a) Compute fti+l = Avi - ajui and A+1 = IIfii+1 II

(b) Update pi+,,j via (A.10a)
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(c) Form the index set Ij+j as defined by (A. 13a).

(d) Perform the partial orthogonalization

Oi+lui+l ::--,ai+l - E (fti'+Iuj)ujjEli+i

(e) Modify I-ti+,,j as in (A.14a) to reflect the reorthogonalization.

(f) Compute �i+j = A TU,+, -,3i+lvi and di+, = Pi+111

(g) Update vi+,,j via (A.10b).

(h) Form the index set ICi+j as defined by (A.13b).

(i) Perform the partial reorthogonalization

Cei+lvi+i :-- �i+i - E Pi'+Ivj)vj
jE)(:i+i

(j) Update vi+,,j as in (A.14b) to reflect the reorthogonalization.

4. Complete the LSQR iteration with the construction and application of Given's

rotations as described in Section 2 of [87].

5. Update x as described in Section 4 of [87] and the error variances from the

formulae provided in Section 5.4 of [88].

6. Test for convergence via one of the three methods described in Section 6 of [88].
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