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Abstract

Tomographic signal processing encompasses a wide variety of applications in such diverse areas

as medical imaging, geophysical and oceanographic signal processing, machine vision, and astro-

physics. AR such applications, however, share a common underlying structure. An object is to

be reconstructed from its noisy, and possibly sparse, line-integral projections. Mathematically, the

problem is that of inversion of the Radon-transform of a function from noisy data. Classical tech-

niques such as the algebraic and transform techniques, along with their variants have constituted the

main avenues of study in tomography in the past 2 decades. Many variations on the these themes

have been proposed and implemented with varying degrees of success. Most research efforts in to-

mography have ignored the issue of extracting explicit geometric information from the projection

data. At best, these algorithms have allowed the incorporation of some geometric constraints in

the reconstruction process. Until recently, however, the data itself has seldom been considered as

directly containing encoded geometric information about the objects we seek to reconstruct. In this

thesis, we present a framework for the direct extraction of geometric information from tomographic

data and for image reconstruction based on this estimated information. In particular, we exploit the

linear relationship between the moments of an image and the moments of its Radon transform to

estimate the moments of the image from noisy projection measurements. These estimated moments,

and the original data, then form the basis of our novel reconstruction algorithms. For finitely param-

eterized images, we study Maximum Likelihood, Minimum Description Length criteria, and array

processing algorithms for the estimation of the image parameters. For general image reconstruction

from estimated moments, we study iterative variational formulations based on divergence minimiza-

tion criteria. We demonstrate that with appropriate initialization based on the available data, our

methods show superior performance when compared to classical reconstruction algorithms.
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Thesis Supervisor: William C. Karl

Title: Research Scientist
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Chapter 1

Introduction

Tomographic signal processing encompasses a wide variety of applications in such di-

verse areas as medical imaging [40], geophysical and oceanographic signal processing

[65, 50], machine vision [801, and astronomy [16]. All such applications, however,

share a common underlying structure. An object is to be reconstructed from its

noisy, and possibly sparse, line-integral projections. Mathematically, the problem

is that of inversion of the Radon-transform of a function given noisy observations.

Classical techniques such as the Algebraic Reconstruction Technique (ART) and Fil-

tered Backprojection (FBP) [401, along with many variants of these techniques, have

been widely applied to pixel-based reconstruction of images from noisy projections.

In many applications of tomography, however, the aim is to extract a rather small

set of geometric features from a given set of projection data [7, 98, 92]. In such in-

stances, a full pixel-by-pixel reconstruction of the object is a rather inefficient and

non-robust approach. In addition, it is often difficult or impossible to correct a dense

data set of high quality. A case in point is ocean acoustic tomography where due to

the enormous size and nonstationarity of the objects (bodies of water) under study,

only sparse measurements of relatively poor quality are possible [65, 50]. When the

available data set is sparse and very noisy, classical reconstruction techniques fail to

produce acceptable reconstructions. Two main sources can be cited for the short-

comings of these classical techniques. First, classical techniques are invariably aimed

at reconstructing every pixel value of the underlying object with little regard for the
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quality and quantity of the available data. To put it differently, there is no implicit or

explicit mechanism to control greed and focus information, thus preventing one from

attempting to extract more information from a data set than it actually contains.

The second type of shortcoming results from the fact that if we assume that the

projection data are corrupted by Gaussian white noise, the process of reconstruction

will have the net effect of "coloring" this noise. This effect manifests itself in the

object domain in the form of spurious features which will complicate the detection of

geometric features. This observation points out the importance of working directly

with the projection data when the final goal is the extraction of geometric informa-

tion. In this thesis, we present a statistically optimal framework for the estimation

and reconstruction of objects based on the direct extraction of geometric information

from noisy projection measurements. In particular, we develop optimal algorithms

for the estimation of the moments of an image directly from its noisy projection mea-

surements. Given these estimated moments, and the original projections, we develop

efficient optimal algorithms for the reconstruction of images based on this geometric

information. Several advantages are inherent to our approach. The most important

advantage of our approach is that it provides a sound framework for image recon-

struction with controlled degrees of freedom. This level of control not only manifests

itself in terms of better reconstructions, but it also translates into significant compu-

tational savings. Another advantage is that in our framework, in contrast to most

classical algorithms, prior geometric information such as spatial support, and other

information such as positivity of the image values can be directly incorporated into

the reconstruction process. Although we have not addressed the issue of recognition

and classification of images from estimated moments, such application of moment

estimation from noisy projections is clearly a possibility. In contrast to classical ap-

proaches to diagnostic tomography which are based on direct image reconstruction,

given the estimated moments of the underlying image and the respective covariances

of these estimates, the problem of classification of the underlying image based on

measured projections can be addressed in a statistically optimal fashion without re-

sorting to reconstruction. This application of moment estimation from projections
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would, at least in theory, eliminate the need for reconstruction if the end objective is

classification and recognition of particular features of images.

In Section 1.1 we will provide a brief summary of classical tomographic recon-

struction techniques. Following this, in Section 1.2, we summarize the literature on

geometrically based reconstruction techniques, such as ours, which have explicitly

studied the direct extraction of geometric information from projection data and on

reconstruction algorithms based on such information. In particular, we highlight

those research efforts that have led to the work presented in this thesis. In Section

1.3 we describe the major contributions of this thesis. Section 1.4 will describe the

organizational layout of this thesis. In the remainder of this thesis, the values of the

Radon transform, whose formal definition is stated in Section 2.1 are interchangeably

referred to as projections. In addition, depending on the context, the term image is

occasionally interchanged with function. The term object is used instead of image if it

is assumed that what is to be estimated is a single geometric entity such as a binary

polygon.

1.1 Classical Reconstruction Techniques

Perhaps the most widely used, and arguably the most influential set of classical re-

construction techniques, are the transform techniques such as Filtered Backprojection

(FBP) and the iterative techniques such as the Algebraic Reconstruction Technique

(ART) [40]. The transform methods seeks to construct effective approximate inver-

sion algorithms for the Radon transform and do not perform well in the absence of full

angular coverage and high signal to noise ratios. In iterative techniques, sometimes

referred to as Finite Series Expansion Methods the function f representing the image

is approximated by a finite sum of weighted basis functions foil. i.e.

f (Xi Y) fioi(x) Y) (1.1)
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The reconstruction process now consists of estimating the weighting factors fi. The

noisy measurements here are in essence given as the noisy inner product of f with

measurement basis functions foil.

di=ff f(X1Y)oi(X)Y)dxdY+ei (1.2)

[fl, f2'.. fThe estimation of the vector ]T can now be formulated as a linear

estimation problem.

d--Hf +e (1.3)

where

d [di, d2, d,]T (1.4)

e [el, e2, , en ]T (1.5)

Hij ff oi (X, Y) Oj (x, y) dx dy. (1.6)

The matrix H is commonly referred to as the projection matrix. Many variants

of the above formulation have been studied in the literature [40] with each corre-

sponding to essentially a different choice of the basis functions Oi and Oi. Although

the formulation (1.3) suggest a straightforward linear estimation framework, the typ-

ically large dimensionality of H make these approaches computationally difficult even

though efficient iterative algorithms are usually applied to solve such linear estimation

problems. Recently, however, some researchers have made use of particular families of

functions Oi(x, y), [11] (natural pixels), [12] (polar pixels), and families of overlapping

functions [37], to produce more computationally efficient and robust algorithms.

As discussed earlier in this chapter, in many applications of tomography such as

ocean acoustic imaging, data is collected sparsely either due to the geometry of the

object or the imaging apparatus, or due to cost or damage incurred as a result of

imaging (such as when large doses of radiation may harm the subject under study).

In such instances, data is typically sparse both in terms of the number of views and

the number of samples per view. Early on, the standard Algebraic Reconstruction
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Techniques (ART) were applied to solve the problem with no particular provisions

made for the missing angles. These resulted in reconstructions with streaking effects

[13]. Several modifications of the series expansion techniques have since been proposed

to deal with the case of sparse angles. Later work by Wood, Mackovski, and Morf

[103] showed that with the addition of an object prior covariance, the linear minimum

variance estimate gave better reconstructions.

Variations of transform techniques have also been proposed for the Emited an-

gle reconstruction problem. Louis [58], for instance, has used the Radon transform

consistency conditions to "estimate" the missing projections. He then uses FBP to re-

cover the object. Some of our work in the later chapters will be closely related to this

idea. More recently, Reed and Shepp [73] have devised an algorithm called "squash-

ing" which, aside from its computational savings, is effective in relieving the major

artifacts caused by the lack of angular measurement. The drawback of this technique

is that it does not provide any tools for the incorporation of prior knowledge, whether

geometric or probabilistic, into the reconstruction process.

Constraints given by prior knowledge and consistency have also been used in iter-

ative reconstruction algorithms known as Projection onto Convex Sets (POCS) [68].

These algorithms iteratively reconstruct the object by projecting the data between

convex constraint sets in a given function space. Convergence is guaranteed due to

the convexity of the constraint sets.

1.2 Geometric Reconstruction

In Eght of the success of the classical reconstruction techniques in the full-view, high

SNR cases, little attention has been paid to geometric/parametric modeling in tomo-

graphic reconstruction. The approach of direct geometric modeling is to parameterize

the class of objects of interest so that tomographic reconstruction is in essence reduced

to the optimal estimation of finitely many geometric features, or parameters. This is in

a sense similar to the finite series expansion methods, with the fundamental difference

being that in geometric reconstruction, parameters represent geometric detail through
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an appropriate choice of basis functions that describe the image. Tomographic recon-

struction is often a geometric problem since in many cases, the end goal is to obtain

some geometric information about the underlying image. Hence the formulation of

geometric models appears to be a natural framework for its solution. Given the suc-

cess of classical techniques in high SNR, full view cases, geometric reconstruction will

perhaps find its best applications in the low SNR, limited angle situations where the

explicit modeling of the underlying image as a finitely parameterized function can be

exploited to obtain accurate estimates of the unknown parameters. Recall that the

general algebraic formulation of the pixel-based tomographic reconstruction problem

(1.3) can be viewed as a high-dimensional linear estimation problem. The funda-

mental contribution of geometric/parametric analysis of tomographic reconstruction

algorithms is that by limiting the number of parameters to be estimated, and care-

fully choosing the parameterization itself, the information contained in the measured

projections is focused to where it is ultimately most valuable: in describing a few

important geometric features of the underlying image. In essence, geometric recon-

struction algorithms provide a framework in which it is possible to control the degrees

of freedom of the reconstruction and still obtain good results. This is the idea of con-

trolling the greed factor. By focusing the information contained in the measured

projections, one is prevented from attempting to extract more information from the

data than it actually contains. Classical reconstruction algorithms are, in this sense,

greedy in that regardless of the quality and quantity of the available data, the aim is

always to reconstruct the pixel-by-pixel values of the underlying image.

On the other hand, the explicit reconstruction algorithms in parametric frame-

works, are typically highly nonlinear optimization problems. This, however, does not

necessarily mean that the resulting algorithms are more computationally intensive

than other techniques. In fact, as we will demonstrate in this thesis, by making

good use of the available data to produce reasonable initial estimates, these nonlinear

optimization problems may be solved quite efficiently.

The work of Rossi and Willsky [76] and Prince and Willsky [72] has served as the

starting point of this research effort. In the work of Rossi, the object was represented
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by a known profile, with only three geometric parameters; namely size, location, and

eccentricity. These parameters were then estimated from projection data using the

Maximum Likelihood (ML) formulation. In their approach, the number of unknown

parameters was fixed and the main focus of their work was on performance analysis.

Prince, working in the projection space, used a priori information such as prior prob-

abilities on sinograms and consistency conditions to compute Maximum A Posteriori

(MAP) estimates of the sinogram and then used CBP to obtain a reconstruction. He

made use of prior assumptions about shape, such as convexity, to reconstruct convex

objects from support samples which were extracted from noisy projections through

optimal filtering techniques. The approach of Prince provided an explicit method of

integrating geometric information into the reconstruction process but was in essence

still a pixel-by-pixel reconstruction. Extending these ideas, Lele, Kulkarni, and Will-

sky [54] made use of only support information to produce polygonal reconstructions.

Karl [47] also has studied the reconstruction of 3-D objects from two-dimensional

silhouette projections.

The geometric modeling approach of Rossi and Willsky was expanded upon to

include a more general set of objects by Bresler and Mackovski [10] and Fessler and

Mackovski [24]. The former work chose sequences of 3-D cylinders with unknown

radius, position, and orientation to model blood vessels being tomographically imaged

in 3-D. The latter work used ellipsoids with unknown parameters to reconstruct 3-D

arterial trees from a few magnetic resonance angiograms. Recently, Thirion [98] has

introduced a technique to extract boundaries of objects from raw tomographic data

through edge detection and in the sinogram. Other work in geometric reconstruction

by Chang [14] and more recently Kuba, Volcic, Gardner and Fishburn, [51, 101, 25, 27]

has been concerned with the reconstruction of binary objects from only two noise-free

projections.

In this thesis, we provide a framework for the optimal reconstruction of an image

from its noisy Radon transform samples by first estimating the moments of the under-

lying image from the noisy raw data. Having done so, we present efficient algorithms

for the optimal reconstruction of the underlying image using the estimated moments
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and, in some cases, the original projection data. The problem of estimating moments

from noisy projections turns out to be a simple linear estimation problem, while the

problem of reconstructing the image from its estimated moments is a highly ill-posed

inverse problem. We present stable and efficient algorithms for reconstructing images

from their estimated moments.

1.3 Contributions

The contributions of this thesis can be group into several categories.

1. With regard to geometric model-based reconstruction, our work serves to con-

tinue the works of Rossi, Prince, and Bresler [10, 24, 72, 76] to:

• cover a much less restrictive object class, namely binary polygonal objects

rather than convex, ellipsoidal or cylindrical shapes,

• provide an automatic mechanism for identifying the statistically optimal

number of reconstruction parameters

2. We have explicitly used the linear relationship between the moments of a func-

tion and those of its Radon transform in an estimation theoretic framework.

Although this relationship has been known to mathematicians for some time

(since at least 1966 to be exact [30]), the engineering community has not made

much use of it for reconstruction purposes until now. The explicit use of this

relationship has many apparent advantages. We have studied the following

aspects:

* It is possible, and quite simple, to extract geometric information about an

object in the form of moments directly from (the moments of) its noisy

Radon transform data and without reconstruction of the underlying image.

* The (unique) computation of the moments of a function from its Radon

transform requires a minimum number of views. This, in essence provides

one with a theoretical upper bound on the amount of uniquely identifiable

geometric information that is contained in a limited data set.
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9 The linear nature of the dependence of the moments of an image on those

of its Radon transform make the explicit computation of estimation er-

ror covariances possible. This allows us to specify not only the geometric

features of an image directly from projections, but also the degree of con-

fidence which we place on these estimates.

* The moments of the projections are shown to be sufficient statistics for the

estimation of a function f from its Radon transform projections.

e The Radon transform operator R as an operator from one Hilbert space to

another, can be decomposed in terms of operators which map a function

and its Radon transform to their respective moments. This leads to a new

set of interpretations of classical reconstruction algorithms.

e The problem of estimation of moments of an image from raw projection

data is numerically more stable for a particular set of sampling strategies

in the projection domain. Hence, we can use the analysis of the stability

of this estimation problem to arrive at optimal sampling strategies.

3. Given the estimated moments of an image from projections, we have devised

novel reconstruction algorithms for estimating the image. In particular, we have

investigated algorithms for:

e direct reconstruction of binary polygonal objects using a finite number of

their moments and the raw data, via Maximum Likelihood estimation

9 reconstruction of binary polygonal objects using a finite number of their

moments via array processing algorithms

e variational formulations with moment constraints based on divergence and

quadratic cost functionals for reconstruction of general images.

1.4 Organization

The organization of this thesis is as follows. Chapter 2 contains a brief review of

essential concepts and definitions which we will refer to throughout the thesis. Chap-
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ter 3 describes our contributions to the study of the reconstruction of parameterized

objects from projections. Chapter 4 contains the contributions we have made in mak-

ing explicit use of the connection between the moments of a function and those of

its Radon transform. In this chapter we describe the optimal estimation of moments

of a function from noisy Radon transform projection data. In Chapter 5 we discuss

novel moment-based variational reconstruction algorithms that are based on diver-

gence and quadratic minimization criteria. In Chapter 6 we describe reconstruction

algorithms for binary polygonal objects based on array processing techniques. Finalay,

in Chapter 7 we summarize the contributions of this thesis, propose several directions

of future research and state our concluding remarks.
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Chapter 2

Preliminaries

In this chapter, we present some preliminary concepts and definitions about the prop-

erties of the Radon Transform, its range, and support. In this context, we will describe

the role of basic geometric constraints in tomographic reconstruction. The facts, def-

initions and results presented in this chapter will serve not only to highlight the

geometric aspects of the properties of the Radon transform, but also as a collection

concepts and definitions to which we will refer throughout the thesis.

2.1 The Radon Transform and Its Properties

The Radon Transform [39, 40, 59] of a function f (x, y), denoted as g(t, 0), is defined

as its line integrals along lines forming an angle of 0 + 7' with the x-axis and a radial2

distance t from the origin. More precisely, if f (x, y) has support in some compact

region of the plane 0, its Radon Transform is given by

g(t, 0) Rf - f (X 7,Y) 8(t - x'w) dx dy, (2.1)

where

X [XI Y1T1 (2.2)

w [cos(O), sin( 0)]T. (2.3)
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g(t, o

Figure 2-1: The Radon transform

and 8(.) denotes the Dirac delta function. See Figure 2-1.

Note that the vectorLo is a unit direction vector at angle 0 with the x-axis. In what

follows we will assume that the function f (x, y) vanishes outside of the closed unit disk

D so that 0 C D. We shall also assume that f (x, y) is a non-negative function, and

that it is square-integrable so that (2.1) is well defined. The assumption of positivity

is simply a consequence of practical considerations about the types of applications

we have in mind. It is also sufficient to consider the values of 0 E [0, r) due to

the symmetry properties of the Radon Transform which we will discuss later. The

function g(t, 0) has its support on the cylinder given by

S = I (t, 0) : -I < t < 1, 0 < 0 < 7r (2.4)

The Radon Transform maps the object domain (or spatial domain) (x, y) to the

projection domain (t, 0). Each point (t, 0) in the projection domain corresponds to a
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line in the object domain through the following equation:

x cos(O) + y sin(O) -- t (2-5)

Correspondingly, a point IX0, YO]' in the object domain maps to a sinusoid in the

projection domain through (2.5).

The Radon Transform is a linear operator and has several useful properties which

we describe next. The proofs of the following properties, if not explicitly discussed,

may be found in [30, 46] among other places.

Property 1 (Linearity) If a and b are real numbers,

R(af, (x, y) + bf2(x7 y)) = ag, (t, 0) + bg2(t7 0) (2.6)

Property 2 (Bounded Support) If f (x, y) = 0 for JxJ7 Jyj > d, we have that
2

g(t, 0) = 0 for Itl > V24
2

Property 3 (Symmetry) The Radon Transform is symmetric as follows:

g(-t, 0 + -X) -- g(t, 0) (2.7)

Property 4 (Periodicity) The Radon Transform is periodic in the variable 0 with

period 2-r. i.e. for every integer k, we have:

g(t7 0 + 2k-x) = g(t7 0) (2-8)

Property 5 (Shift) Given the coordinates of the point po - IXOI Yol T we have

,Rf(X _ X07 Y _ YO) - g(t _ WTP07 0) (2-9)

where w is the unit direction vector at angle 0.

Property 6 (Rotation) Let f (r, 0) denote the polar representation of the function
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f (X 7 Y) through the transformations

x r cos(O) (2.10)

y r sin (2.11)

The Radon transform of f then satisfies:

Rf (r, 0 + Oo) = g(t, 0 + Oo) (2.12)

Property 7 (Scaling) If a is a nonzero real number, we have

Rf (ax, ay) -_ I g(at, 0) (2.13)
jal

Property 8 (Convolution) Let f (x), with x -_/x, yF, be given by the 2-d convolu-

tion of two functions f, and f2 which have Radon transforms g, and 92, respectively.

i. e.

f (X) f� (S)h (x s) ds. (2.14)

Then we have:

Rf (X) - 91 (S) 0)92 (t s, 0) ds (2.15)

Property 9 (Differentiation in t) Suppose that f (x, y) is differentiable in x and

y. Then, given real numbers a and b, we have:

R(a Of + b Of (a cos(O) + b sin(9)) ag(t, 0) (2.16)
TX ay a t

From this, it then follows that if P(-, -) is a polynomial differential operator of order

k with constant coefficients, we have:

la a akg(t, 9)
IW(P( f (X 0 - P (cos (0), sin (0)) (2.17)ax ay atk
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Property 10 (Differentiation in 0) Provided that all relevant quantities exist,

a b ag(t' 0)
R((ax + by) f (x, y)) - (2.18)

sin(O) cos(O) 00 '

The above ten properties constitute the most basic properties of the Radon Trans-

form. Other properties of the Radon Transform can be established that relate the

Fourier Transform of f (x, y) to its Radon Transform. The relation between the Fourier

Transform and the Radon Transform is actually only a Corollary to a more general

result which we discuss next.

Theorem 1 Q90]) Let the square integrable function f (x, y), with support 0 C D,

and its Radon Transform g(t, 0) be given. Then for any square-integrable function

F(t) defined over [-1, 1] we have

g(t, O)F(t)dt = f f f (x, y)F(x cos(O) + y sin(O))dxdy (2.19)

This result in essence follows from the definition of the Radon Transform.

g(t, O)F(t) dt f f (X 7 Y) 8(t - x cos (0) - y sin (0)) F (t) dx dy dt

f f (X 7 Y) 8(t - x cos (0) - y sin (0)) F (t) dt dx dy

ff f (X I Y) F (x cos (0) + y sin (0)) dx dy

As a corollary to Theorem 1, the celebrated Projection-Slice Theorem [55] is obtained

by letting F(t) = e-". This result relates the Fourier Transform of f to its Radon

Transform.

Corollary 1 (Projection-Slice Theorem) The Fourier and Radon Transforms of

Ax 7 Y) are related by the following identity.

g(t, O)e,-" dt = f f f (X7 Y) e-i(x cos(O)+y sin(O)) dx dy (2.20)0
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Recall that the Fourier Transform of the function f is defined by

F(u, v) -1 L f (X I Y) . -'(ux+vy) dx dy (2.21)

Hence, the Projection Slice Theorem states that for any -fixed angle 0, the I-D Fourier

Transform of g(t, 0) is equal to a central slice at an angle 0 through the 2-1) Fourier

Transform of the function f (x, y). This result forms the basis of a set of important

classical reconstruction techniques known as the Transform Methods [40].

In the next result, we have established a relationship between the Radon Trans-

form of f (x, y) and the support function [9] of its domain 0. The support function

h(O) of the compact set 0 is defined as:

h(O) -_ sup x TW7 (2.22)
XEO

where w is defined in (2.3). Given this definition we have

Result 1 Let f (x, y) be a positive function, with support in a compact subset 0 of

the closed unit disk. Denote by g(t, 0) the Radon Transform of f (x, y), and by h(O)

the support function of 0. Then, for every positive integer m,

g(t, Or dt -,'- ttoo Jh(O) I' (2.23)

where

ILOO f (X) Y) dx dy (2.24)

Proof: By definition, for all x c 0, we have

XT w < h(O). (2.25)

Applying Theorem 1, the result follows immediately. El

Note that (2.23) actually relates the moments of g(t, 0) (the left hand side of the

inequality) to the support function of the set 0. Since we have assumed that 0 C D,

it follows that the magnitude of the support function h(O) is bounded above by unity.
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Hence, (2.23) shows that all the moments of g(t, 0) must be bounded in magnitude

by the zeroth order moment jioo.

2.2 Geometry of the Projection Space

In this section we discuss some properties of the range and null-space of the Radon

transform. In Section 2.2.1 we discuss the classical consistency results which define

the range of the Radon transform, while Section 2.2.2 contains a review of results

from the literature on reconstruction of binary planar sets from few projections in

the absence of noise. These results provide insights into the structure of the null-space

of the Radon transform.

2.2.1 The Classical Radon Transform Constraints

Not all functions g(t, 0) are Radon Transforms of some f (x, y). For instance, a nec-

essary condition for g(t, 0) to be the Radon transform of a function f (x, y) > 0 is

that g(t, 0) > 0. Several well-known conditions, known as the consistency relations,

specify necessary and sufficient conditions for a function g(t, 0) to be a valid Radon

transform. The Radon transform of a function f (x, y) is constrained to he in a partic-

ular functional subspace of the space of all real-valued functions g(t, 0) : R X S' -4 R,

where S' is the unit circle. This subspace is characterized by the fact that g must

be an even function of t, and that certain coefficients of the Fourier expansion of g

must be zero. For the sake of simplicity, we state the corresponding classical theorem

in 2 dimensions and for square-integrable functions with bounded support. General

versions of this result hold true not only in higher dimensions, but more generally

over certain Banach spaces.

Theorem 2 Q39, 59]) Let L 2(D) denote the space of all square-integrable functions

f : D --+ 7Z with support inside the closed unit disk D. In order for g(t, 0) to be the

Radon transform of some function f G L2(D), it is necessary and sufficient that

1. g G L2([_J, 1] X [0, 27r]),
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2. g(t, 0 + 7r) -_ g(-t, 0), and

3. the integral

f g(tO)tkdt (2.26)_1

be a homogeneous polynomial of degree k in cos(O) and sin(O) for every positive

integer k.

Let us make some observations regarding the third condition in the above theorem.

First, note that the expression (2.26), for a fixed 0 = Oo, represents the moments

of the function g(t, Oo). So this condition states that the kt' order moments of the

projection function g in any fixed direction 00 are homogeneous polynomials of order

k in cos(Oo) and sin(Oo). Furthermore, the following identity is easily established as a

corollary to Theorem 1.

Corollary 2 Given a square-integrable function f (x, y) with compact support 0 C D,

we have

g(t, O)tk dt f (x, y)(x cos(O) + y sin(O))' dx dy (2.27)

for all positive integers k.

The equation (2.27) is the explicit connection between the moments of f and those

of its Radon transform g, as we will show in Chapter 4.

2.2.2 Number of Projections and Reconstructability

In this section we review some results and observations regarding the problem of

reconstructability of a binary planar sets from a few projections in the absence of

noise. These results provide insights into the structure of the null-space of the Radon

transform for a particular class of objects. Although the results we present in this

section are mostly of theoretical nature, with little or no reference to applications,

they are useful in showing just what can be done with a very limited data set. These

results are, in fact, useful from a practical point of view when few projections are

available and the underlying object is binary or a close approximation thereof. Such
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a situation arises in the study of cold core rings in gulf streams [65, 50]. A cold core

ring is a rather homogeneous body of cold water that is found encompassed in a much

larger body of warm water known as a gulf stream. In acoustic transmission tomog-

raphy, measurements of these cold core rings are made by computing the attenuation

of acoustic waves which are transmitted across the gulf stream. The cold core ring,

due to its homogeneous nature can be adequately approximated by a binary region

(in 3-D). Due to the size and continuous motion of the body of water, it is impossible

to make more than a few projection measurements in a small time interval. Hence, in

this scenario we are essentially concerned with the reconstruction of a binary region

from very few projections. Even though the results that follow do not deal with mea-

surement error, they provide some theoretical framework for dealing with a practical

situation as the one described above.

In general, no finite set of projections will allow the exact reconstruction of an

object. In what follows, we shall term those objects which are uniquely determined

by few projections as uniqueness sets or uniquely characterized sets. When there are

only two projection directions, the structure of uniqueness sets is wen understood via

the classical work of Lorentz [57], and more recent work by Kuba [51, 52], Volcic [52],

and Fishburn [25]. When 3 or more projections are available, the problem of uniquely

characterizable sets remains, with the exception of some recent work by Gardner [26]

and Giering [31], largely unexamined. In Chapter 5 we shall present some original

contributions to the theory of reconstructability of binary polygonal regions from few

projections.

The problem of reconstructability from few projections has also been studied in

the digital realm, where the reconstruction of binary digital patterns from discrete

projections in 2 directions has been considered. The digital problem with 2 directions

is far less complicated than its continuous counterpart, and was effectively solved

by Chang [14]. In 1949, Lorentz derived necessary and sufficient conditions on two

non-negative, integrable functions g(t, 01) andg(t, 02) so that these are projections

of a measurable plane (binary) set [57]. He further characterized projections that

determine one, more than one, or no plane set. His results, although seminal, are
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Figure 2-2: Projections of projections

mathematically quite involved and are not geometrically intuitive. The recent works

of Fishburn, et al. [25], and Kuba and Volcic [52], have sought to reinterpret and

generalize the work of Lorentz. In [52], Kuba and Volcic reformulate Lorentz's theo-

rems and obtain explicit expressions for uniquely determined plane sets. To provide

some insight into the null space of the Radon transform operator, we discuss some of

these results in detail. These discussions will also put into perspective some of our

own contributions which we will present in detail in Chapter 6.

Let g,,(t) and g,(t) denote two projections of a binary object in two orthogonal

directions which, without loss of generality, we take to be parallel to the coordinate

axes x and y. Now consider these functions as objects in R2 and define g,,,y(t) as

the projection of g,,,(t) in the direction of y. (See Figure 2-2). Similarly, we can

define g,,,y ... (t) for any number of indices. The following result is a reinterpretation of

Lorentz's result and was stated in [52].
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Theorem 3 (Kuba, Volcic) Let g,,(t) and g,(t) be non-negative, integrable func-

tions such that
00 00

f 00 g�, (t) dt 00 g, (t) dt (2.28)

Then

1. g. and gy uniquely specify a plane set iff

- f g,,.,, (t) dt

f0c gXy (t) dt (2.29)

for all c > 0.

2. g,,, and g. can specify many plane sets iff

f0c gxy(t)dt > f0c gy.y (t) dt (2.30)

for all c > 0 and there is a c > 0 for which strict inequality holds.

3. g. and gy specify no plane sets (are inconsistent) iff

fo Cgxy(t)dt < f0c gy.y (t) dt (2.31)

for some c > 0.

(It is worth noting that the functions gy,,y and g.., look exactly alike. What distin-

guishes the two is that gy--y is a function of the variable y while g., is a function of

the variable x.)

Results with a more distinct geometric flavor have been obtained with the use of

the concept of switching components. Formally we have

Definition 1 Let P be a compact set in the plane. Denote by 'P(",O) and 'P(Ob) its

horizontal and vertical translations by a and b, respectively. We say that a compact

set 0 in the plane admits a switching component if there exist two real numbers

a :� 0 and b =/ 0, and four sets 'P, Q, R, and S such that
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U R C 0 (2.32)

2.

('P u s) n o- 0 (2-33)

3.

'P(.,O) (2.34)

R = 'P(Ob) (2-35)

S = 'P(ab) (2.36)

The shaded object on the right hand side of Figure 2-3 illustrates a set with a

switching component and the sets defined above are also shown. The shaded object

on the left hand side of Figure 2-3 shows an object which has identical projections

from horizontal and vertical directions as the object on the right hand side of Figure

2-3. The corresponding picture of a switching component (i.e. a digital analog of the
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set 'P) for the digital case is either of the two patterns

1 0
(2-37)

0 1

0 1
(2-38)

1 0

Any digital object containing either of the two patterns is not uniquely determined

by discrete projections in the horizontal and vertical directions [14]. Note that this

is because the above two patterns have identical projections in the horizontal and

vertical directions. The following result can now be formulated.

Theorem 4 Q52]) A compact plane set of nonzero measure is uniquely determined

by its two projections g., and gy in the orthogonal directions x and y iff it has no

switching component.

In [25], Fishburn et al. have derived necessary and sufficient algebraic conditions

for uniquely determined sets in terms of additive sets. An additive set is defined as

follows.

Definition 2 A compact subset 0 of the plane is said to be additive with respect

to the directions x and y if there exist bounded measurable functions Q, and Cy

where C,(x, y) -- C.,(x) and C,(x, y) Cy(y) depend only on the directions x and y

respectively, such that

(X O' YO) C- 0 C. (X 0) + Cy (YO) > 0 (2.39)

For example, the unit disk in the plane is an additive set. Simply take C. (X) - I _X2
2

and C,(y) -- I _ y2 . The following result is proved in [25] for sets in
2

Theorem 5 (Fishburn, et al.) Let 0 be a compact subset of the plane. Then the

following conditions are equivalent.

1. 0 is uniquely determined by two projections in the directions x and y,
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Figure 2-4: An additive vs. a non-additive ellipse with respect to the coordinate axes

2. 0 is additive with respect to the directions x and y.

As an example of an additive set, consider the case of an ellipse centered at the

origin and aligned with the orthogonal coordinate axes x and y, as illustrated in

Figure 2-4. This ellipse is an additive set with respect to (X, Y). Any ellipse which is

not aligned with these coordinate axes, however, is not an additive set with respect

to these directions. One can easily verify this by writing down the equation for the

tilted ellipse. It should be noted that the above result is not true in higher dimensions

as pointed out in [48, 491.

The binary object reconstruction problem from few projections has also been

studied when the directions of the two projections are arbitrary [51]. The problem

has been transformed into the orthogonal case using a suitable affine transformation.

The case where three projections are available is treated in some depth in [26] and [31].

An interesting consequence 6f a result proved by Giering in [31] is that any ellipse is

uniquely determined with respect to any three projections taken from noncongruent

directions. Karl [47] has also shown that an ellipsoid is uniquely determined by three

silhouette projections from noncongruent directions. We are able to prove the same

result in the framework of moments as discussed in Chapter 4. The following general

result is due to Giering [31].

Theorem 6 (Giering) Given a convex planar body 0, three directions may be cho-
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sen so that the projections of 0 in those directions determine 0 uniquely.

The operative word in the above result is convex. The assumption of convexity has

lead to stronger results about objects uniquely determined from projections from few

directions [28, 31]. The convexity assumption has also paved the way for results

regarding reconstructability from fan-beam (FB) projections taken from a few points

[52, 23]. The root of these investigations lies in the seminal work of Hammer [36].

We show in Chapter 6 that any simple binary polygonal object with N sides is

uniquely determined by 2(N - 1) projections from distinct (but otherwise arbitrary)

directions, thereby significantly strengthening existing results on the reconstruction

of binary polygonal shapes from few projections.
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Chapter 3

Reconstruction of Finitely

Parameterized Objects

3.1 Introduction

In this chapter, we study the reconstruction of finitely parameterized objects from

noisy (and possibly sparse) samples of their Radon-transform projections. The study

of finitely parameterized objects is motivated by the fact that in many applications of

tomographic signal processing, the final aim is often the extraction of a rather small

set of geometrically-based features from a set of projection data. In such instances, a

full pixel-by-pixel reconstruction of the object is a rather inefficient and non-robust

approach. Classical reconstruction algorithms such as Filtered-backprojection (FBP)

and Algebraic Reconstruction Techniques (ART) aim to reconstruct the intensity

values of each pixel in the image with little regard to the quality and quantity of the

available data [40]. Not surprisingly, they fail to produce acceptable reconstructions

when the data is very noisy and/or sparse. This can be attributed to the fact that

these classical algorithms in essence try to extract more information from the given

data set than it actually contains. i.e. too many degrees of freedom are allowed in the

reconstruction. In our effort to address this issue, we have proposed the use of simple

geometric priors in the form of finitely parameterized objects. The assumption that

the object to be reconstructed is finitely parameterized allows for the tomographic
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reconstruction problem to be posed as a finite (relatively low-dimensional) parameter

estimation problem. A more detailed survey of this literature was given in Chapter

1.

If we further assume, as we have done in the latter part of this chapter, that the

number of such parameters is also an unknown, we can formulate the reconstruc-

tion problem as a Minimum Description Length estimation problem which provides

for an automatic (data-driven) method for computing the optimal parameterized ob-

jects with the "best" number of parameters, given the data. This is, in essence, an

information-theoretic criterion which gives us a direct way to estimate as many pa-

rameters as the information content of the data allows us to, and thus control the

greed factor.

Our approach provides a statistically optimal Maximum Likelihood (ML) formu-

lation for the direct recovery of objects from the projection data in the presence of

noise. We also provide an automatic mechanism for identifying the statistically op-

timal number of object parameters, and thus information, in a given data set. The

statistically optimal ML formulation leads to an optimization problem that is non-

linear and has many local extrema. An appropriate initial guess is thus essential for

its iterative solution. We thus provide a simple procedure to generate an appropri-

ate initial guess, based on moment estimates of the object, formed from the original

data. The direct estimation of the moments of the underlying image from measured

projections is a topic which we will address in Chapter 4 in detail. As we win briefly

allude to in this chapter, this moment estimation problem is a straightforward linear

estimation problem. Our use of estimates of the underlying moments in the genera-

tion of an initial guess is based on a fundamental property of the Radon transform

which relates the moments of a function f (x, y) to the moments of its projections

g(t, 0). As we will see in Chapter 4, this fundamental property win also play a key

role in the development of reconstruction algorithms which we present in Chapters 5

and 6.

The organization of this Chapter is as follows. In Section 3.2 we introduce the

basic definitions and assumptions and pose the general problem which we intend to
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solve. We also discuss the particular statistical formulations of the reconstruction

problem which we use. In Section 3.2.3 we discuss our novel technique for computing

a good initial guess for the nonlinear optimization problems that result from our

formulations. Section 3.3 contains basic performance results and robustness studies

for various scenarios. Section 3.4 contains our conclusions.

3.2 The Reconstruction Problem

As defined in (2. 1) of Chapter 2, the Radon transform of a function f (x, y) defined

over a compact domain of the plane 0 is given by

g(t, 0) f (XI Y)8(t_W . [XYIT ) dx dy. (3.1)

Here we assume the existence of a set of parameters that uniquely specify the

function f. It is the estimation of these parameters that is the concern of this chapter.

of this chapter. Let us stack the set of parameters that uniquely define f in a vector

V. In what follows, we shall then consider the function f and its set of defining

parameters as interchangeable. We will assume throughout that the data available to

us are discrete samples of g which are corrupted by Gaussian white noise of known

intensity. In particular, our observations will be given by

yij - g(ti, 0j, V*) + W(ti, Oj), (3.2)

for I < i < n, I < i < m where V* is the true object we wish to reconstruct.

The variables w(ti, Oj) are assumed to be independent, identically distributed (i.i.d.)

Gaussian random variables with variance o,'. We will denote by Y the vector obtained

by stacking all such observations.

In the classical framework, the parameter vector V consists of the pixel values

of all pixels in the image to be reconstructed. For example, the parameter vector V

here would contain over 16,000 elements for a 128x128 image. The FBP technique

would estimate all of these parameters. For many applications, creation of this dense
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visual field is not really necessary. For instance, in ocean acoustic tomography [65,

50], as discussed in Chapter 2, the size, location, and shape of a cold core ring

are important quantities to be estimated within a gulf stream. Since a cold core

ring can be considered a binary object, these parameters can be easily extracted

from tomographic data directly without reconstruction of the entire pixel field. The

classical approach, however, is to perform the full reconstruction of the image and

then try to locate and measure objects, such as cold core rings, in the resulting image.

If we only desire knowledge of the size and location of a localized occlusion, that is

to say essentially three numbers, FBP is then estimating roughly 15,997 parameters

too many!

Clearly, the estimation of all the pixel values is not only an inefficient use of the

data, but in high noise and sparse data situations it can also produce spurious fea-

tures known as "ghosts" that are bound to complicate the subsequent processing. In

particular, such spurious features reflect the fact that we have colored the observation

noise. This coloring of the noise, as reflected in reconstruction artifacts, may not be

severe when we have high SNR and full-coverage data, yet can be quite limiting when

these conditions are not met. In general, there may arise situations where the quality

or quantity of the available data will simply not support the reliable estimation of

all the parameters represented by the pixel values. In such cases, even though our

interest may not be fundamentally geometric, our approach provides a rational and

statistically precise way of reducing the degrees of freedom of the problem and hence

of focusing the available information.

3.2.1 Maximum Likelihood Approach

In our approach, the original data in (3.2) is used to directly estimate the parameters

V of a geometric parameterization in a statistically optimal way. The dimension of

the parameter vector V is determined by the level of detail that one can extract

from the sparse and noisy data. For clarity, we first consider the case where a fixed

and known number of parameters is assumed. In this case, the Maximum Likelihood

(ML) [100] estimate, of the parameter vector V is given by that value of V which
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makes the observed data most likely. In particular, using the monotonicity of the

logarithm:

V,,, = arg max log [P(Y I V)] (3-3)V

where P(YIV) denotes the conditional probability density of the observed data set

Y given the parameter vector V. It is well-known that given the assumption that

the data is corrupted by i.i.d. Gaussian random noise, the solution to the above ML-

estimation problem is precisely equivalent to the following Nonlinear Least Squares

Error (NLSE) formulation

V,, = arg rain yij - g(ti, 0j, V) (3.4)
V

The formulation (3.4) shows that, in contrast to the linear formulation of clas-

sical reconstruction methods, the ML tomographic reconstruction approach, while

yielding an optimal reconstruction framework, generally results in a highly nonlinear

minimization problem. It is the nature of the dependence of g on the parameter

vector V that makes the problem nonlinear. Being nonlinear, the problem is plagued

by numerous extraneous local extrema, making the issue of computing a good ini-

tial guess for nonlinear optimization routines an important one. As we win discuss

in Section 3.2.3, the geometric information carried in the projections can be conve-

niently extracted as the solution to a simple linear estimation problem in the form

of moments of the underlying image. These moments can in turn be used to easily

compute a good initial guess for the optimization algorithms.

FinaRy, note that if additional explicit geometric information is available in terms

of a prior probabilistic description of the object vector V, then a Maximum-A-

Posteriori estimate of V may be computed as foRows:

V,.,,,,p = arg max log [P(V I Y)] (3-5)
V

In this work we concentrate on the ML problem given in (3.3) and its extensions,

though application of our results to the MAP formulation is straightforward.
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3.2.2 Minimum Description Length

In the previous ML discussion we assumed we had prior knowledge of the number

of parameters describing the underlying object. Without this knowledge, we can

consider the Minimum Description Length (MDL) principle [75]. In this approach,

the cost function is formulated such that the global minimum of the cost corresponds

to a model of least order that explains the data best. The MDL approach in essence

extends the Maximum Likelihood principle by including a term in the optimization

criterion that measures the model complexity. In the present context, the model

complexity refers to the number of parameters used to capture the object in question.

Whereas the ML approach maximizes the log likelihood function given in (3.3), the

MDL criterion maximizes a modified log likelihood function, as follows:

- =argmax log [P(YIV)]- N log(d (3.6)
VMDL VN 2 ) I

where d = mn is the number of samples of g(t, 0) and N refers to the number of

parameters defining the reconstruction. Roughly speaking, the MDL cost is propor-

tional to the number of bits required to model the observed data set with a model of

order N, hence the term Minimum Description Length. Under our assumed observa-

tion model (3.2), the MDL criterion (3.6) yields the following nonlinear optimization

problem for the optimal parameter vector VMDL:

VMDL = arg min min f a . ,j _ g(t,, Oj, V) 11 2+ N log (d) (3.7)
N V ij

where the optimization is now performed over both V and the number of parameters

N. Note that the solution of the inner minimization in (3.7) essentially requires

solution of the original ML problem (3-3) or (3.4) for a sequence of values of N. Thus

the optimization problem (3.7), being an extension of (3.4), is also highly nonlinear

and routines to solve it will similarly require proper initializations to avoid being

stuck in local minima.

In summary, our proposed approach, in its most general form, is a statistically
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optimal technique for the extraction of specific geometric features or objects directly

from the projection data with rational focusing of sparse and noisy information. Fur-

thermore, via the MDL criterion it is equipped to compute the optimal number of

features (parameters) that may be extracted from a given noisy and possibly sparse

projection data set. While being a statistically optimal approach, the resulting op-

timization problems are highly nonlinear and require appropriate initialization for

their solution. To this end we will present a simple robust method to generate such

an initial estimate.

For the sake of focus in what follows, we will concentrate our attention on binary,

polygonal objects. We define these as objects taking the value 1 inside a simple

polygonal region and zero elsewhere.

Unless otherwise stated 7we assume from here on that the matrix' V contains the

vertices of an N-sided binary, polygonal region as follows:

V V (3.8)1 1 V21 ... I VN I

where Vi = [X,, yj denote the Cartesian coordinates of the i1h vertex of the polygonal

region arranged in the counter-clockwise direction (See Figure 3-1). The tomographic

reconstruction problem for these objects can now be stated as the problem of optimal

estimation of the vertices V given noisy samples of the projections denoted by Yij as

in (3.2).

3.2.3 Algorithmic Aspects - Computing A Good Initial Guess

Given the highly nonlinear nature of the dependence of the cost function in (3.4) on

the parameters in V, it appears evident that given a poor initial condition, typical

numerical optimization algorithms may converge to local minima of the cost function.

Indeed, this issue is a major obstacle to the use of a statistically optimal though

nonlinear approach such as given in (3.3) or (3.6). In this section we describe a

'We use a matrix of parameters rather than a vector in what follows for notational ease of
explanation in the algorithms to follow, though this is not essential.
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Figure 3-2: A projection of a binary, polygonal object
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method for using the projection data to directly compute an initial guess that is

sufficiently close to the true global minimum as to result in convergence to it in

nearly all cases. We do this by estimating the moments of the object directly from

the projection data and then using (some of) these moments to compute an initial

guess.

In considering the use of moments as the basis for an initialization algorithm,

one is faced with two important issues. The first is that, as we show in Chapter 4,

estimating the moments of a function from its projections is a relatively easy task.

The reconstruction of a function from a finite number of moments, however, is in

general a highly ill-posed problem even when these moments are exactly known [95].

Furthermore, in our framework the moments are estimated from noisy data, and hence

are themselves noisy. In fact, as higher and higher order moments are estimated, the

error in the estimates of these moments becomes larger. Our approach avoids these

moment related difficulties by using the moments only to guide an initial coarse

estimate of the object parameters for subsequent use in solution of the nonlinear

ML or MDL problems. This initial estimate, in turn, itself mitigates the difficulties

associated with the nonlinearities of the optimal statistical approaches. In particular,

the amount of computation involved in arriving at an initial guess using our moment-

based method is far smaller than the amount of computation (number of iterations)

required to converge to an answer given a poor initial guess, especially since a poor

initial guess may converge to a local minimum and never reach the basin of the

global minimum. Further, the parameterization of the objects serves to regularize

and robustify the moment inversion process [95, 86, 70, 2].

Our method of using moments to generate an initial guess is based on the following

set of observations. First, let 11P., 0 < p, q denote the moment of f (x, y) of order p + q

as given by:

JLpq ff X PYqf(X, y) dx dy (3.9)

In particular, note that the moments up to order 2 have the following physical re-

lationships. The zeroth order moment 1LOO is the area of the object, the first order
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moments pol and /,tio are the coordinates of the center of mass of the object scaled by

the area, and the second order moments IL02, All, /12o are used to form the entries of

the inertia matrix of the object. Thus these moments contain basic geometric infor-

mation about object size, location, and elongation and orientation that, if available,

could be used to guide our initialization of the nonlinear optimization problems (3.4)

or (3.7). Our first aim then is to estimate them directly from the noisy projection

data. To that end, as we showed in Chapter 2, we have

00
00 g(t, 0) tk dt [X COS(0) + y sin( 0)]k dx dy. (3.10)

By expanding the integrand on the right hand side of (3.10), it becomes apparent

that the moments of the projections are linearly related to the moments JLp', of the

object. In particular, specializing (3. 10) to k = 0, 1, 2, and noting that f (x, y) is an

indicator function when the objects in question are binary, we arrive at the following

relationships between 11pq, 0 < p + q < 2 and the projection g(t, 0) of f (x, y) at each

angle 0:

ILOO = fg(t,0)dt_=-H(0)(0) (3-11)

1-tio
cos(O) sin(O) = f g(t, 0) t dt =_ W(l)(0) (3-12)

1101

IL20

f g(t, 0) t2 H(2)
Cos 2(0) 2sin(O)cos(O) sin 2(0) Ali dt (0) (3-13)

IZ02

Thus if we have projections at three or more distinct, known angles we can estimate

the moments of up to order 2 of the object we wish to reconstruct. As can be

seen from (3.11), (3.12), and (3.13), and as described in Chapter 4, the computation

of these moments is a linear calculation, making their estimation from projections

straightforward. Since, in general, many more than three projections are available,

the estimation of these moments determining the area, center, and inertia axes of

49



the object is overdetermined. The result is a robustness to noise and data sparsity

through a reduction in the noise variance of the estimated moments. In particular,

we can stack the moments H(k)(O,) we obtain from the projections at each angle Oi

to obtain the following overall equations for the Ppq:

-H(O) (01)

POO (3-14)

cos(01) sin(01) 'H(l) (01)
A10 (3.15)

IL01
cos(O,) sin(O,,,)

Cos 2(01 2 sin (01) cos(01) sin 2(01) IL20 H(2) (01

IL11 (3.16)

Cos 2(9' 2sin(O,,)cos(O,) sin 2(0,) IL02 -H(2)(O'.")

Using these equations we can easily calculate the maximum likelihood estimates of

the moments of the object itp., 0 < p + q < 2. For a detailed discussion of the

problem of optimal estimation of moments from projections, see Chapter 4. Let us

denote these ML moment estimates by Apq-

Now that we have estimates of the moments of up to order 2 of the object, and

thus estimates of its basic geometric structure, we need to convert this information

into a suitable object for use in initializing the nonlinear optimization problem (3.4)

or (3.7). The initial guess algorithm outlined next uses these ML estimates of the low-

order moments Apq obtained from the noisy projection data, to produce a polygon

which has moments up to order 2 which are close to (or in some cases equal to) those

which were estimated from the projection data. The resulting polygon, which will be

used as our initialization, should thus have the same basic geometric structure as the

underlying object.

Recall that in this process of generating an initial object from the moment data

we want to avoid the difficulties usually associated with obtaining an object from a
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set of its moments. For this reason, the initial polygon we will use is simply obtained

as the affine transformation of a reference object V,,f(N), which is a centered regular

N-gon of unit area. For a given choice of number of sides N, the reference object we

use is given by:

cos(O) Cos( ') ... Cos (27r(N-1))
N NV,,f (N) (3.17)

Nsin(') sin(O) sin() ... sin( 27r(N-1)) J
V2 N L N N

The affine transformation of this reference object, which will be generated from the

estimated moment set, consists of a uniform scaling, a stretching along the coordinate

axes, a rotation, and finally a translation, and simply corresponds to the following

transformation of the underlying spatial coordinates of the reference object

xi X
-- L + C. (3.18)

Y Y J

In particular, given the form of V,,f(N) in (3.17), this yields the following equation

for the family of possible initial objects Vinit:

Vinit = L V.,�f (N) + C C (3-19)

The set of all such affine transformations of Vrf(N) we term the affinely regular

N-gons. In the absence of noise, the initial guess algorithm we detail win exactly

match the given estimated moments if the underlying object itself happens to be

affinely regular. As shown in Appendix 3-13, if the underlying object is not affinely

regular itself, the algorithm will not necessarily produce an N-gon exactly matching

its moments, even in the absence of noise, though it will usually be close. Of course,

in the presence of noise, the estimated moments themselves are not exact and thus,

while we would hope to get close, our resulting initial N-gon win never exactly match

the true moments of the underlying object anyway.

Given that we will restrict ourselves to initial objects of the form (3.19), let us

consider how we might choose the parameters of the transformation L and C to match
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a given estimated moment set Ap., 0 < p + q < 2. Using (3.19) and (3.17) to calculate

the moments of Vi,,it up to order 2 we obtain the following relationships:

YOO(Vinit) det (L) (3.20)

Ylo(Vinit)
det(L) C (3.21)

IL01 (Viit)

JZ20(Vinit) Ail(Vinit) T + CCT)
det(L) (k,,LL (3.22)

Yll(Vinit) /LO2(Vinit)

where ILpg(Vilit) is the pq-th moment of Vinit and kN = I/ (4N tan(r/N)). For explicit

derivations of these relations, see Appendix 3-B. Thus to match ILOOMit), /110(Vinit),

AOI(Vinit) with their estimated counterparts the first two conditions require:

I det (L) I = Aoo (3.23)

i O
C = - (3.24)

ILOO A01

The first condition simply corresponds to a scaling of Vrf(N) so that its area matches

the estimated one. The second condition shows that the term C in the transformation

(3.18) should correspond to a translation of Vrf(N) to the estimated center of mass

of the object. These two conditions ensure that we match the estimated area and

center of mass location.

Now, after some manipulation, (3.22) implies that to match the estimated second

order moments AP,,, p + q = 2, we must have:

TLL (3.25)
AOOkN

where is the matrix of estimated central moments defined by:

A20 All A i O (3.26)

L All A02 A00 - A10 A01J L ILO' J

52



In particular, this condition implies another constraint on det(L) independent of

(3.23), which we will not, in general, be able to satisfy. Specifically, a necessary

condition for finding an L satisfying both (3.25) and (3.23) is that:

4 k2 (3.27)det M = �00 N

where the expression on the left is the determinant of the estimated central second

moments. Actually the condition (3.27) is also sufficient, as shown in Appendix 3-

B. Clearly, this condition will not, in general, be satisfied and we win be unable

to exactly match the estimated second moments. In fact, the objects that do meet

this constraint, and thus whose moments we can exactly match, are precisely the

elements of the set of affinely regular N-gons. Geometrically, this situation reflects

the limitation of our restricted object class (3.19), i.e. the set of affinely regular N-

gons. Within this class, for a given object area we are constrained as to the "size" of

the corresponding inertia matrix we may have, where inertia size is measured as the

product of the principle central inertia moments (eigenvalues of the central inertia

matrix). For example, whereas the objects of our class will always be convex polygons,

for a given area we can always obtain nonconvex objects of greater inertia by "moving

area outward, 77 as in a dumbbell.

The condition (3.25) can also be viewed as implying a different scaling on L, needed

to obtain a perfect match to the inertia condition. In general, we thus have a choice

of picking this scaling of L to satisfy either the inertia condition (3.25) or the area

condition (3.23). Since the area condition (3.23) is both a more robustly estimated

and a more fundamental geometric quantity, we choose to enforce this condition in

the algorithm to follow. We then choose L so that the resulting central inertia matrix

of Vinit has the same principle axes directions and has its principle inertias in the

same ratio as those estimated from the data as found in ±. We accomplish these

goals by using a square root of the matrix ± normalized to have unit determinant

for the form of L, then scaling the result to match the determinant condition (3.23).

Thus we sacrifice overall scaling of the inertia matrix in favor of matching of the
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estimated area. We have proved, in Result 4 of Appendix 3-B, that the normalized

error incurred in matching the inertia matrix of a general n-gon by an affinely-regular

n-gon is always less than 100%.

Collecting the above steps and reasoning, the overall algorithm is given by the

following:

Algorithm I (Initial Guess)

1. Compute the optimal (ML) estimates of the moments up to order 2 (A00, A10,

A01, A20, All, and A02) from the raw projection data using (3-14)-(3-16).

2. Construct an N-sided regular polygon centered at the origin with vertices chosen

as the scaled roots of unity in counter-clockwise order so that they lie on the

circle of radius 1 /V2 sin(). This polygon has unit area and is given by.

COS(0) COS( 1) ... COS(2,(N-1)

V N N (3.28)
(N) N sin() sin(O) sin() ... sin( 2-7r(N-1))

� 2 N - N N

3. Compute the translation C, obtained as the estimated object center of mass:

IL10
C = (3.29)

AOO A01 J

4. Form the estimated central inertia matrix as follows:

A20 All i 0 (3-30)

All A02 POO A01 IL10 Pol

The entries of this matrix are the (estimated) central second moments.

5. If ± is not positive definite, set L = V/f-tooI to match areas, and goto step 8.

Otherwise proceed to step 6.
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6. Perform an eigendecomposition of the normalized matrix ± as follows:

A 0 uT
U (3.31)

Vdet 0 I/A

where we have assumed that the eigenvalues are arranged in descending order

and U is orthogonal so that det(U) -_ ±1. Note that the eigenvalues are recipro-

cals of each other since we have scaled the left hand side so that its determinant

is 1.

7. Form the linear transformation L as a scaled square root of T as follows:

L U vl'A- 0 (3.32)

L 0 1 / VA---J

Note that det(L) = goo as desired. Depending on whether U is a pure rota-

tion or a rotation followed by a reflection, it will have determinant + 1 or - 1,

respectively.

8. The initial guess Viit is now obtained by applying the scaling, stretching, and

rotation transformation L and the translation C to the reference object V,,f (N)

via the coordinate transformation [x', YI]T = L[x, y]T + C. Because of the form

of V,,f(N) this operation yields:

Vi.it == LY7,f(N) + C C (3-33)

Note that the eigenvalue A of the unit determinant matrix calculated in step 7 gives

the eccentricity of the underlying object while the corresponding eigenvector give its

orientation. Also note that, in the presence of noise, the estimated central inertia

matrix for the object ± may not be strictly positive definite and hence may not

correspond to the inertia matrix of any object at all. In such instances, the algorithm

refrains from the use of these moments of order 2 and computes an initial guess based

only on the estimated area and center of mass.
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Also note that if the matrix L, computed above, is replaced by LI = LT for any

orthogonal T, the resulting quantity L'L IT satisfies

T ITLL = L'L (3-34)

Hence, although the initial guess generated by the above algorithm is unambiguous

and unique in the sense that the square root of ± is unique, an infinity of other initial

guesses having the same moments up to order 2 may be generated by replacing L

by LT and allowing T to range over the set of all 2 x 2 orthogonal transformations.

A precise characterization of the set of all affinely regular N-gons with the same

moments up to order 2 is, in fact, given in the following result which we prove in

Appendix 3-B.

Result 2 Consider the 2 x 2 symmetric, strictly positive definite matrix I with

det(_T) - k2 A40. LetN o

Eo aN 1 (3.35)
�OOkN

Ej yookN 1 (3.36)

where

aN = 1/ N sin( 27r (3.37)
2 N

#N = ll(Ntan(-xlN)) (3-38)

Define the two ellipses go and 91, respectively, as follows

ZTE61Z 1 (3.39)

ZTEPZ 1. (3.40)

For a fixed integer N > 3 let C, denote the set of all N-gons whose first three moment

sets are poo, 0, 0, 1; and let C2 denote the set of all N-gons with vertices on go and
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0

Figure 3-3: Illustration of Result 2

with sides tangent to 91 at their midpoints. Then

C1 = C2 (3.41)

This result states that the class of all affinely regular N-gons with a given set of

moments up to order 2 is given by the class of N-gons whose vertices are on a fixed

ellipse and whose side are tangent to a second ellipse which is confocal with the first.

(See Figure 3-3 for an example). The ellipses are uniquely determined by the value

of the given moments. In order to simplify the Initial Guess algorithm, we do not

search further over this set of all possible initial guesses. We simply use the output

of the Initial Guess Algorithm described above as the starting guess for our nonlinear

optimization routines.

This algorithm begs the question of how one would incorporate higher order mo-

ments in this process to perhaps construct a better initial guess. In Chapter 5 we

describe how to reconstruct an image from its estimated moments of higher order; and

in Chapter 6, we describe how to reconstruct a polygonal region from its estimated

moments of higher order using array processing techniques.
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3.3 Experimental Results

In this section we present some performance studies of our proposed algorithm with

simple polygonal objects as prototypical reconstructions. One may expect that our

algorithms work best when the underlying object (that from which the data is gener-

ated) is itself a simple binary polygonal shape. While this is true, we win also show

that our algorithms perform consistently well even when the underlying objects are

complex, non-convex, and non-polygonal shapes.

First we demonstrate reconstructions based on the ML criterion. In these recon-

structions we use the parameters of the true polygon as the initial guess to ensure

that the solution produced by the algorithm is actually the ML estimate, i.e., at the

global minimum of the ML cost function. Typical reconstructions are shown along

with average performance studies for a variety of noise and data sampling scenar-

ios. In particular, we show that the performance of our algorithms is quite robust

to noise and sparsity of the data, significantly more so than classical reconstruction

techniques. To demonstrate this point, reconstructions using our techniques and the

classical FBP are provided.

Next we demonstrate how the MDL criterion may be used to optimally estimate

the number of parameters (sides) N directly from the data. We solve these MDL

problems by solving the ML problem for a sequence of values of N. To initialize

each of these ML problems, a regular polygon of the desired number of sides with the

same area and centroid is used. This initialization tries to ensure us that the actual

ML solution corresponding to the number of sides in question is most likely being

found. The robustness of the MDL approach and its ability to capture the shape

information in noisy data when the underlying object is not polygonal is also shown

through polygonal reconstruction of more complicated shapes.

In order to quantify some measure of performance of our proposed reconstruc-

tion algorithms, we first need to define an appropriate notion of signal-to-noise ratio

(SNR). We define the SNR per sample as
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SNR = lo log, Eij g'(ti, Oj) I d (3.42)
01,2

where d -_ m x n is the total number of observations , and or 2 is the variance of the

i.i.d. noise w in the projection observations (3.2 ) 2.

In all our simulations the reconstruction error is measured in terms of the percent

Hausdorff distance [6] between the estimate and the true polygon or shape. The

Hausdorff metric is a proper notion of "distance" between two nonempty compact

sets and it is defined as follows. Let d(pl, S) denote the minimum distance between

the point p, and the compact set S:

d(pi, S) -- inf f 11p, - p1l I p EE SI. (3.43)

Define the e- neighborhood of the set S as

S(") = fp I d(p, S) < el. (3.44)

Now given two non-empty compact sets, Si and S2, the Hausdorff distance between

them is defined as:

'H(Si, S2) -_ inf f e I Si C S(") and S2C S(E)l (3.45)

2 1

In essence 7the Hausdorff metric is a measure of the largest distance by which the sets

SI and S2 differ. The percent Hausdorff distance between the true object S and the

reconstruction 9 is now defined as

Percent Error = 100% x -H(3, S) (3.46)
MO I S)

where 0 denotes the set composed of the single point at the origin, so that if S contains

2Note that the logarithm in the definition of SNR is the natural logarithm. Although this is
unconventional, we have consistently used the same definition of SNR through the thesis. The usual
(dB) definition of the SNR with base 10 logarithm can be obtained from our definition by dividing
by2.3
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the origin, 'H(O, S) is the maximal distance of a point in the set to the origin and thus

a measure of the set's size.

3.3.1 ML Based Reconstruction

Here we present examples and performance analyses of the ML based reconstruction

method (3.4). For these experiments an initial condition equal to the true object was

used to ensure us of obtaining the actual ML estimate.

Sample Reconstructions

In Figures 3-4 and 3-5 are optimal reconstructions of a triangle and a hexagon, re-

spectively, based on the ML criterion. The true polygon, in each case is depicted

in solid lines while the estimate is shown in dashed lines. For both objects, 1000

noisy projection samples were collected in the form of 50 equally spaced projections

in the interval (0,7r] (m--50), and 20 samples per projection (n=20). The field of

view (extent of measurements in the variable t) was chosen as twice the maximum

width of the true object in each case. For each of these data sets the variance of the

noise in (3.2) was set so that the SNR given by (3.42) was equal to 0. The typical

behavior of the optimal ML based reconstructions in the projection space can be seen

in Figure 3-6, which corresponds to the hexagon of Figure 3-5. The top image of this

figure shows the underlying projection function g(ti, Oj, V-) of (3.2) for the hexagon,

while the middle image shows the noisy observed data Yij. The object is difficult

to distinguish in the noise in the image. The bottom image shows the reconstructed

projections corresponding to the optimal estimate g(ti, 6j, f7), which is virtually in-

distinguishable from those corresponding to the true object. Figure 3-7 shows the

best3FBP reconstruction of the hexagon used in Figure 3-5 based on 4096 projection

samples of the same SNR (0) (64 angles with 64 samples per angle). For comparison,

the reconstruction using our algorithm is shown in Figure 3-8.

-3The fact that this is the "best" FBP is somewhat subjective. We tried many different filters
and visually, the best reconstruction was obtained with a Butterworth filter of order 3 with 0.15
normalized cutoff frequency.
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Figure 3-4: Sample reconstruction of a triangle at 0 SNR 50 views, 20 samples/view:
True(-), Reconstruction(- -)

In contrast to the ML-based reconstruction, the details of the hexagon are cor-

rupted in the FBP reconstruction. In addition, there are spurious features in the FBP

reconstructions and perhaps most importantly, to extract a binary object from the

FBP reconstruction, we would need to threshold the image of perform edge detection

on it. Neither of these postprocessing steps are easily interpretable in an optimal

estimation framework and, of course, they incur even more computational costs.

Note that the number of samples per projection used in this reconstruction is

actually more than the number used to produce the ML-based reconstruction in

Figure 3-5. The increase in sampling was necessary because CBP produces severe

artifacts if the number of views exceeds the number of samples per view. This behavior

is called the "incomplete data" effect [40]. The ML approach has no such difficulties,

as we will see in the next section where we examine performance.

Effect of Noise on Performance

The average performance of the ML based reconstructions is presented through several

Monte-Carlo studies. Again, for these experiments an initial condition equal to the
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Figure 3-5: Sample reconstruction of a hexagon at 0 SNR 50 views, 20 samples/view
: True(-), Reconstruction(- -)

true object was used in each case to ensure us of obtaining the actual ML estimates.

The first study establishes average reconstruction errors at various SNR's for a fixed

number of data samples. The purpose of these simulations is to demonstrate that

the ML-based reconstructions are robust to the quality of the data used for a wide

range of SNR's. The same two polygons as in Figures 3-4 and 3-5 were chosen as

the underlying objects. Again, in each case, 1000 samples of the projections of these

objects were collected in the form of 50 equally spaced projections in the interval

(0, 7r] (m-50), and 20 samples per projection (n=20) while the field of view (extent

of measurements in the variable t) was chosen as twice the maximum width of the

object in each case. The samples g(ti, 9j, V*) were then corrupted by Gaussian white

noise w(ti, Oj) of different intensities to yield data sets at several SNR's. At each SNR,

100 reconstructions were done using independent sample paths of the corrupting white

noise. The average reconstruction error was then computed and is displayed against

the SNR in Figure 3-9. The error bars denote the 95% confidence intervals for the

computed mean values.

The percent error in these reconstructions increases with decreasing SNR, as one
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Figure 3-6: From Top to Bottom: Sinograms with 50 projections and 20 samples per
projection of I) Noiseless Hexagon, II) Noisy data at SNR of 0 dB III) Reconstructed
Hexagon. In each of these images, the horizontal axis is 0, the vertical axis is t, and
the intensity values are the values of the corresponding projections mapped to the
grayscale range of [0, 255]
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Figure 3-7: Sample reconstruction of a hexagon at 0 SNR using FBP: 64 views, 64
samples per view

3

2 -

0 -

-2
Percent Error =1 7.4

'f3 -2 0 2 3

Figure 3-8: Sample reconstruction of a Hexagon at 0 SNR 64 views, 64 samples/view:
True(-), Reconstruction(-
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Figure 3-9: Mean performance curves for ML reconstructions of a triangle and a
hexagon

would expect. In fact, the graph shows that, at least in the examined SNR range of

-10 to +10, the relation between between percent error and SNR is roughly linear

in the cases of the triangle and the hexagon. This suggests that the performance of

our algorithm does not degrade very quickly with decaying SNR, demonstrating the

robustness to noise of such object-based optimal ML estimates.

Effect of Sampling on Performance

Here the performance of our ML-based estimates with respect to both the number of

available data samples and their distribution is studied. One would naturally expect

that as the number of available data points decreases, the reconstruction error should

increase. The main aim of these simulations is to demonstrate that the ML-based

reconstructions are robust to both the quantity and the distribution of data over a

wide range of SNR's. In particular, reasonable estimates are produced even with a

drastic reduction of data and, unlike the behavior seen in FBP reconstructions, the

ML estimates display no catastrophic degradation as the samples per angular view

are reduced. The relative sensitivity of the ML estimates to density of samples of
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Figure 3-10: Performance as a function of Number of Views

g(t, 0, V*) in t and 0 is also discussed, providing information of use for the design of

sampling strategies.

The true hexagon used in Figure 3-5 was again used as the underlying object. As

before, an initial condition equal to the true object was used for each of experiments to

ensure us of obtaining the actual ML estimates. A series of Monte-Carlo simulations

(50 runs for each sampling configuration) were then performed at various SNR's to

observe the effect of sparse projections and sparse sampling in each projection. In

Figure 3-10, the percent Hausdorff reconstruction error is plotted versus the number

of angular views for SNR's of 0, 10, and 20, while the number of samples per view

was fixed at 50. With a modest 50 samples per view, all three curves fall below 10%

reconstruction error when the number of views is greater than about 10. This is only

500 total observations, many of which do not contain the object at all (since the field

of view is twice as large as the object). Furthermore, as the number of angular views

is decreased from 100 to 10, only a marginal increase in the reconstruction error is

observed. These observations testify to the robustness of optimal ML estimates with

respect to the number of views.

In Figure 3-11, the dual case is presented. In this figure the percent Hausdorff
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Figure 3-11: Performance as a Function of Number of Samples per View

reconstruction error is plotted versus the number of samples per view for SNR's of 0,

10, and 20, while the number of angular views was fixed at 50. With 50 angular views,

all curves fall below 10% reconstruction error when the number of samples per view

is greater than only 10. Also, as the number of samples per view is decreased from

100 to 10, again only a marginal increase in the reconstruction error is observed. This

behavior shows that the optimal ML estimates are robust with respect to the number

of samples per view. Note that for a fixed sampling strategy, the reconstruction error

increases only slightly as the SNR is decreased over a wide range. For instance, in

Figure 3-10, with 40 angular views and 50 samples per view, the percent error is

reduced only about 5% while the SNR goes from 0 to 20.

Finally, it is noteworthy that the reconstruction error enjoys a dramatic improve-

ment for all SNR's (0, 10, and 20) when the number of samples per view is increased

from 5 to 10. This improvement is more significant than that observed in Figure 3-10

when the number of views is increased from 5 to 10. This behavior indicates that in

a scenario where only a small (fixed) number of sample points can be collected, it is

more beneficial to have more samples per view rather than more views.
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3.3.2 MDL Reconstructions

Here we will examine reconstruction under the MDL criterion of (3.7) where we

now assume that the number of sides of the reconstructed polygon is unknown. In

particular, the reconstruction experiments for the hexagon in Figure 3-5 were repeated

at SNR=O assuming no knowledge of the number of sides. The MDL criterion was

employed to estimate the optimal number of sides. Figure 3-12 shows a plot of the

MDL cost corresponding to the expression in (3.7) vs. the number of sides for a

sample reconstruction of the hexagon in Figure 3-5. It can be seen that the minimum

occurs at N - 6, demonstrating that the optimal MDL reconstruction will consist of

6-sides. Indeed this number coincides with the true number of sides of the underlying

object. The optimal MDL estimate is thus exactly the optimal ML estimate for this

data set presented before. Note that as in the ML algorithm, it is important to find

a good initial guess for the MDL algorithm as well. The problem is twofold. First, a

reasonable guess must be made as to the appropriate range of the number of sides.

We picked a fairly small range for the number of sides of the reconstruction; typically,

3 to 10 sides. Next, for each number of sides in this range, the Initial Guess algorithm

was used to produce an initial guess for the optimization routine. The procedure for

selecting the range of number of sides is ad hoc, but was shown to be reliable in the

sense that for our simulations, the MDL cost never showed local or global minima for

number of sides larger than 10.

3.3.3 Polygonal Reconstruction of Non-polygonal Objects

In this section we wish to study the robustness of MDL-based estimates when the

underlying, true object is non-polygonal. First we examine the case of an elliptical

object. We use the MDL formulation presented in the previous section and study the

behavior of the optimal reconstructions at two different SNR's. To this end, let the

true ob ect (that which generated the data) be a binary ellipse whose boundary is

given by:
(y + 1 )2

X7Y1 (X - _)2 + 2 (3.47)
2 9/4
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Figure 3-12: Cost vs number of sides for the hexagon in Figure 3-5

The above relation defines an ellipse centered at the point (1/2, -1/2) whose ma-

jor and minor axes are aligned with the coordinate axes with lengths 1 and 3/2,

respectively.

One thousand (1000) noisy samples of the Radon transform of this ellipse were

generated (m=50 equally spaced angular views in (Oir], and n=20 samples per view)

at SNR's of 0 and 5 respectively for 50 different sample paths of the corrupting noise.

For each set of data, reconstructions were performed using the ML algorithm with 3,

47 57 67 7, and 8 sides. The MDL cost in (3.7) was then computed for each of these

reconstructions. The ensemble mean of this cost over the 50 runs, for each value

of N, is presented in the top part of Figure 3-13. The error bars denote the 95%

confidence intervals for the computed mean values. The top left curve corresponding

to the SNR= 5 case displays its minimum at N _- 5. This behavior indicates that the

average optimal MDL reconstruction uses 5 sides at this noise level. A corresponding

typical such five-sided reconstruction of the ellipse is displayed on the lower left plot

of Figure 3-13 together with the true ellipse. The upper right curve corresponding to

the SNR-_ 0 case displays its minimum at N = 6 which indicates that the average

optimal MDL reconstruction for this case uses 6 sides. The MDL cost curve for this
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Figure 3-13: Minimum MDL costs and Sample Reconstructions for an Ellipse

lower SNR case has now become quite flat however, showing that the reconstruction

with N from 4 to 6 are all about equally explanatory of the data. Although the

curves for both cases demonstrate the ability of the MDL procedure to capture the

shape's complexity through its choice of N, this behavior suggests that with increasing

noise intensity, an MDL-based estimate becomes less sensitive to the precise level of

complexity of the reconstruction, as we would expect. Apparently, in high noise

situations the differences between these reconstructions that would be apparent in

high SNR scenarios are masked. As the noise level increases, these fine distinctions

are unimportant or not supported by the data. A typical 6-sided reconstruction is also

displayed in the lower right plot of Figure 3-13 along with the true ellipse.

As another example of the robustness of the ML-based estimates when the under-

lying object is non-polygonal, we present a sample reconstruction of a nonpolygonal

object that is also non-convex. In Figure 3-14 a typical reconstruction of this object

is presented based on 20 equally spaced projections with 50 samples per projection,

at a signal to noise ratio of 10. To ensure that the reconstruction was not a local

minimum, the vertices of the initial guess were chosen by eye at points where the

underlying object had curvature extrema. Furthermore, the number of sides was
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Figure 3-14: True object reconstruction initial guess (o) picked by eye

picked arbitrarily according to the number of apparent curvature extrema of the true

object. Figure 3-15 shows a reconstruction of the same kidney-shaped object at SNR

of 10 with the initial guess chosen by the Initial Guess Algorithm. Figure 3-16 con-

tains the reconstruction produced by FBP using the same data set. As in our other

examples, the underlying object has been captured more accurately than the FBP

reconstruction and without spurious features through the use of our algorithm.

3.3.4 Initial Guess Algorithm

In this section we present some sample reconstructions and performance plots for

which we use the Initial Guess algorithm for generating a starting point to the non-

linear optimization (3.3). To study the average performance of the ML algorithm

using the output of the Initial Guess Algorithm, a Monte-Carlo simulation was done

for the reconstruction of the hexagon shown in Figure 3-5. 100 reconstructions were

carried out for different realizations of the noise at various SNR's, each with 1000

projection samples as before (50 projections and 20 samples per projection). For

each signal to noise ratio, on average less than 5 percent of the reconstructions (i.e. 5

out of 100 sample reconstructions) had very large reconstruction errors (we call these
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Figure 3-15: True object reconstruction initial guess (o) picked using Initial
Guess Algorithm

ENV,

Figure 3-16: FBP Reconstruction of Non-polygonal, Non convex Object: 3rd order
Butterworth filter with 0.15 normalized cutoff frequency
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Figure 3-17: A sample path of the reconstruction error at SNR=O

instances outliers). Figure 3-17 shows the reconstruction erros for 100 realizations of

the noise at SNR_0. The outliers are clearly visible.

Figure 3-17 indicates that in a few instances, the reconstructions were essentially

at local minima very far from the global minimum of the cost. In our experience,

these outliers occur most frequently when poor estimates of the moments of order 2

are obtained from the noisy data. Note that the second order moments are used in

the Initial Guess Algorithm only if the corresponding inertia matrix obtained from

them is strictly positive definite. Even though the elements of this estimated inertia

matrix (the second order moments) are normally distributed, the eigenvalues of this

matrix (which along with the eigenvectors determine inertial axes and whether the

inertia matrix is positive definite) are not. Hence, it appears that the outliers shown

in Figure 3-17 are a direct result of a somewhat "heavy-tailed" distribution of the

eigenvalues which results when the elements of the underlying matrix are normally

distributed, though this has not been analytically verified. So in summary, the outliers

occur in those rare instances when the estimated inertia matrix happens to be a

very poor estimate, but yet positive definite (and hence used in the Initial Guess

Algorithm). This phenomenon, in turn, seems to occur when relatively few samples
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per projection are available. To put it differently, the estimates of moments of order

2 are more sensitive to the number of samples per view than the number of views.

Consequently, the performance of the overall ML algorithm using the Initial Guess

algorithm's output as a starting point, is also more sensitive to the number of samples

per view rather than the number of views. This is consistent with the conclusions

of Section 3.3.1 where we discussed the effects of different sampling strategies on the

performance of the ML algorithm.

Figure 3-18 shows the mean percent error in the Monte-Carlo runs after the re-

moval of the outliers. The outliers were simply removed from the ensemble and the

results of the remaining realizations were averaged to yield the values in Figure 3-

18. That is to say that if 3 out of 100 realizations led to outliers, then only those

97 results which seemed "reasonable" were used in computing the ensemble average.

Whether the result of a run was deemed reasonable or not was decided by comparing

the resulting percent error to the ensemble median reconstruction error for an 100

runs. In particular, if the percent error for a particular run was larger than one stan-

dard deviation away from the median, the run was declared an outlier. In the case

of Figure 3-17, using the computed median value of 17.2, and standard deviation of

33.2 a threshold level of 50.4 was chosen above which outliers were declared.

The mean percent error after this outlier removal process is plotted here in Figure

3-18 to show the average performance without the effect of the outliers. It can be seen,

upon comparing Figure 3-18 with the corresponding performance curve in Figure 3-

9 that the performance of the ML algorithm using the output of the Initial Guess

algorithm still suffers about a 5 % penalty even after discounting the obvious outliers.

This means that instances of convergence to local minima still occur, but note that

the average performance after the removal of outliers is not significantly different

from the average performance with the actual polygon as the initial guess. From

this observation, we conclude that the initial guess algorithm does not always lead

to convergence to the global maximum, but it almost always leads at least to a local

minimum that is fairly close to the global minimum of the ML cost function. Typical

reconstruction at local minima which are close to the global minimum of the cost are

74



25 1 1 1 1 1

T
20-

2
Ui
r= 15-
0-0(n
CZ
r

a)10-

CL

5-

0
15 _1� 1� 15

SNR

Figure 3-18: Percent error for Hexagon vs SNR after outlier removal

shown in Figure 3-19 for SNR=O and in Figure 3-20 for SNR-_10.

3.3.5 Conclusions from Experiments

Several conclusions may be drawn from the experimental results presented in this

section. The optimal estimates based on the ML criterion produce reconstructions

that are highly robust to noise and sparsity and distribution of data. This behavior is

essentially a direct consequence of the fact that ML-based techniques focus all of the

available information to the task at hand as represented in the parameters of underly-

ing object. In contrast, classical approaches, such as the FBP algorithm must spread

this information over all the pixels in an image. Extending the ML approach through

the MDL principle allows for the automatic determination of the optimum number of

parameters needed to describe the given data set. The experiments verify the utility

of this method. The ML-based approaches are also able to produce reconstructions

for a wide variety of objects. The drawback of such statistically optimal ML and MDL

approaches is that, in contrast to the linear formulations of classical reconstruction

algorithms, they lead to highly non-linear optimization problems. This fact makes

the issue of computing a good initial guess to the nonlinear optimization routines an
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Figure 3-19: A typical reconstruction at a local minimum with SNR=O
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Figure 3-20: A typical reconstruction at a local minimum with SNR=10
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important one. We provided a way to circumvent this difficulty through a robust

and simple initial guess algorithm based on the estimated moments of the object. In

particular, the coarse geometric information carried in the projections can be easily

extracted in the form of moments, which are then used to generate the initial guess.

The efficacy of this algorithm over a wide range of SNR's was demonstrated.

3.4 Conclusions

In this Chapter, we have studied statistical techniques for the reconstruction of finitely

parameterized geometric objects. In particular, we focused on the reconstruction of

binary polygonal objects. The reconstruction of such objects was posed as a param-

eter estimation problem for which the Maximum Likelihood technique was proposed

as a solution. In contrast to the classical techniques, such as FBP, the ML based

reconstructions showed great robustness to noise and data loss and distribution. The

drawback of such ML-based formulations is that the resulting optimization problems

are highly nonlinear and thus a good initial guess is necessary to ensure convergence

of optimization routines to the true ML estimate or to at least a local minimum near

the true ML estimate. To this end, an algorithm was presented for computing such a

reasonable initial guess using moments of the object which are estimated directly from

the projection data. While estimation of a function from its moments is, in general, a

difficult and ill-posed problem, we avoid these problems by using the noisy estimated

moments only to guide a coarse object estimate. This estimate, in turn, mitigates the

difficulties associated with the non-linearities of the optimal ML statistical approach.

The efficacy of this moment based initial guess algorithm was demonstrated over a

wide range of SNR's.

If the number of parameters describing the underlying object are not known, a

Minimum Description Length criterion can be employed that simply generalizes the

ML framework to penalize the use of an excessively large number of parameters for

the reconstruction. The MDL approach was shown to work successfully in estimating

the number of sides and the underlying object itself for low signal-to-noise ratio
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situations and for a variety of sampling scenarios. It was further demonstrated that if

the underlying object is not polygonal, but still binary, the proposed MDL algorithm

is still capable of producing polygonal reconstructions which reasonably capture the

object shape in the presence of high noise and sparsely sampled data.

In this work we have focused on the reconstruction of binary polygonal objects

parameterized by their vertices. The ML and MDL-based techniques used here may

also be applied to more general object parameterizations. In particular, while we

used the (estimated) moments of the object only as the basis for generation of an

initial guess, it is possible to actually parameterize the entire object through its

moments, as we will show in Chapter 6. More generally, a "well-behaved" function

is completely determined by the entire set of its moments. In reality we will only

have access to a finite set of these moments and these numbers, being estimates, will

themselves be inexact and noisy. While estimation of the moments of a function

based on its projections is, conveniently, a linear problem, inversion of the resulting

finite set of moments to obtain the underlying function estimate is a difficult and

ill-posed problem. These observations suggest a spectrum of ways in which to use

moments in our reconstruction problems. At one extreme, only a few moments are

used in a sub-optimal way to generate a simple initialization for solution of a hard,

non-linear estimation problem. At the other extreme, the moments are themselves

used in an optimal reconstruction scheme. In Chapter 5, we also consider the use of

estimated moments as constraints in variational formulations of general tomographic

reconstruction problems.

3-A Alternate Parameterizations

A finitely parameterized object may be represented in many different, but equivalent

ways. Some parameterizations may yield more numerically robust algorithms while

others may prove to be more geometrically intuitive. A case in point is that of bi-

nary polygonal objects. The parameterization of binary polygonal objects in terms

of their vertices is only one of many possible parameterizations. We have chosen this
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particular parameterization because it seems natural, and in fact it is rather easy to

compute the projections of a binary polygonal object in terms of its vertices. It does,

however, lead to highly nonlinear and complex optimization problems as we have

seen. We sought other parameterizations of binary polygonal objects such as those

in terms of normals to the sides, the slopes and intercepts of the sides, and also the

polar representation of the vertices; but they all essentially led to rather complicated

cost functions with no apparent advantage. In some instances, however, other geo-

metrically informative parameterizations are possible. One such parameterization is

the affine representation. In particular, the affine representation of triangles is rather

interesting. We briefly describe this representation in this section.

3-A.1 The Affine Representation of Triangles

We wish to consider an affine representation of all non-degenerate triangles in the

plane in this section. More specifically, we can show that every non-degenerate tri-

angle in the plane can be represented (up to a permutation of the vertices) by some

affine transformation of a reference triangle V,,(N) which we have picked to be an

equilateral triangle centered at the origin with vertices at the third roots of unity in

counter-clockwise order:

1 -1/2 -1/2

V. (N) 0 VF3/2 -V3-12 (3.48)

We have the following result.

Result 3 For every non-degenerate triangle V in the plane, there exists a unique

pair (LC) such that

V = LY,(N) + [C I C I C] (3.49)

where L is an invertible 2 x 2 matrix, and C is a 2 x I vector.

79



Proof: It is easy to check that the unique pair is given by

L (2/3)VV:(N) (3.50)

C (113)Vs (3.51)

where s = [1, 1, ]T. Since V and V,,(N) are both assumed to be non-degenerate

triangles, L will have rank 2, and is therefore invertible. O

Note that the expression for C is simply the arithmetic average of the coordinates

of the vertices. For a binary triangle, this corresponds exactly to the center of mass

of V. It is interesting to note that a representation of the form (3.49) win not yield

arbitrary N-gons in the plane as affine transformations of a reference, regular N-gon.

Now consider the Singular Value Decomposition (SVD) of the matrix L. i.e.

L -_ LOSJy (3.52)

Where LY, and Lk are orthogonal transformations which can be interpreted as rota-

tions followed by reflections in the plane, while SX is diagonal and strictly positive

definite which can be interpreted as an isotropic scaling in the plane. Hence we have

V = (LOSjy)V.(N) + [C I C I C1. (3.53)

Therefore in geometric terms, any triangle in the plane (up to a permutation of

vertices) can be obtained by a series of rotations, reflections, and a stretching of

V.(N).

Some interesting observations can be made regarding the information one obtains

from the SVD of L. The condition number of L is simply the ratio of the largest to

smallest singular values of L. We term square root of this number the eccentricity

of the triangle V. Given the above parameterization of triangles in the plane, it

is natural to ask whether similar representations exist for simple polygons with N

sides (N > 4). As pointed out earlier, an affine transformation of the form given

for the triangle will clearly not work since there are simply not enough degrees of
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freedom. An alternative is to split the simple N-gon into triangular pieces, each of

which may be described by an affine transformation as in (3.49). There clearly need

to be constraints among these affine transformations that guarantee the end result to

be a simple polygon. In the interest of the focus of this chapter, we win not address

these questions here further.

3-B Theoretical Results on the Initial Guess Al-

gorithm

In this section we present some theoretical justification for the initial guess algorithm.

To start, we state some elementary properties of unit area polygons V,,f(N) whose

vertices are the scaled N 1h roots of unity (in counter-clockwise direction). Explicitly,

Cos (0) COS(,) ... COS(I,(N-1))

Vrtf (N) N N (3.54)
N sin() sin(O) sin(2) ... sin(2,(N-1))

� 2 N . N N -

Invoking Result 6 of Chapter 4, it is a matter of some algebraic manipulations to

show that the regular polygon Vrf(N) has moments of up to order 2 given by

Aoo (Vr.�f (N)) = 1 (3-55)

Aio(Vr,�f(N)) = Aoi(Vr,�f(N)) = 0 (3-56)

JL20(V�,,,f(N)) = ft02(Vrr (3-57),f (N)) = 4N tan( kN

A Vref (N)) = 0 (3-58)

Now let Vinit be an affine transformation of V,,f as

Vi.it = LV,,,,f (N) + [ C I C I ... IC] (3.59)

for some linear transformation L and some 2 x I vector C. Let O(Vi"it) denote the

closed, binary polygonal region enclosed by the N-gon Vi,_,it. Now by considering the

change of variables z = Lu, and dropping the explicit dependences on N we have
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A00 (Viit) ffo(vi.it) dz, (3.60)

A M. )I det (L) I du, (3.61)

Yoo(V�,,,f)j det(L)l = I det(L)l (3-62)

Similarly, we get

[jt1O(Vj.jt) [tol(V pol(V..�'f)]T + C) I det(L)l = I det(L)IC (3-63)

and

(LI(V T + CCT)

�,�,f)L I det(L) (kNLLT + CCT) I d t(L) (3-64)

where for any N-gon V we write

A20(v) A11M
I(V) = - (3.65)

L I't" (V) P02 (V) j

This proves relations (3.20), (3-21), and (3-22). We next establish an explicit descrip-

tion of the set of all affinely regular N-gons with a fixed set of moments up to order

2. In order to do this, we first need to prove a lemma.

Lemma 1 For every N-gon V with moments itoo, /_tjo = 0, /to, = 0, A20i IL11, JL02,

such that the inertia matrix I satisfies det(-T) - k2 1140, there exists a matrix L,N o

unique up to some orthogonal transformation, such that V -- LV,,f.

Proof: The assumptions that /.tio = 0 and no, = 0 are made without loss of

generality and to facilitate the presentation of the proof. Having said this, we de-

fine L as the scaled (unique) square root of I as follows. First, write the following

eigendecomposition

US2UT (3.66)

Fd e t (1)
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where U is orthogonal and S has unit determinant. Define L as

L -_ VIA-o-oUS. (3.67)

The moments of V = LV,,f are then given by

POOM = A00 (3.68)

A1O(V) = A01M == 0 (3.69)

I(V) _- kN L L TI det (L) (3.70)

Note that

det(l) = k 2A 4 (3.71)
N 00

as required. If L is replaced by LT where T is any 2 x 2 orthogonal transformation,

the same moments are obtained. Hence the lemma is established. El

Given this lemma, we obtain an interesting geometric representation of all affinely

regular N-gons that have a prespecified set of moments of up to order 2. This char-

acterization is given by Result 2, on page 56, which we prove next.

Proof of Result 2: First consider an N-gon V C C1. V has moments /Loo, 0, 0, I

and therefore, by Lemma 1, there exists an L given by (3.66) and (3.67), unique up

to some orthogonal matrix T, such that we can write

V - (LTj)Vrf(N) (3.72)

Let us denote the N-gons V and V,,f(N) explicitly in terms of their columns as

V = [V1 I V2 I ... I VNI (3.73)

V,,f (N) = [W1 I W21 ... I WNI (3.74)
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so that

vj = LTwj. (3.75)

It is easy to show from the definition of V,,f(N) that

wTwj - aN, (3.76)3

(Wj+l + Wj)T (Wj+l + Wj) - 4ON- (3.77)

Now to show that V E C2, we prove that

T
V E -'vj (3.78)j 0

(Vj+l + Vj)T
Eil (Vj+1 + Vj) (3.79)

2 2

4for j 1, 2 ... N. Using (3.66) and (3-67), we can write

vTE-lvj VTI-lvj. (3.80)
aN 3

ILookN 1 4 W TTITSUTUS-2UTUSTJWj. (3.81)
2 -toOaN TNA00

1 T
-Wj Wi. (3.82)
aN

1. (3.83)

Similarly,

(Vj+l + Vj)T I ILookN 1 )T_T-1(Vj+l + Vj)
-E-1 (vj+l + vj) 00(vj+l + VjI IL2 1U2 2 4 ON kN 00

1ON (Wj+l + Wj)T(Wj+l + Wj) (3.84)

1 (3.85)

Hence, V C C2-

'Note that, by convention, N + 11
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Now assume that V C C2. Then, by assumption,

vTE-lvj (3.86)

(Vj+1 + Vj),Eil (Vj+12+ VA (3-87)

Define the vertices of the related N-gon Z as

s-luTV.
Zi - .7. (3.88)

Va�NA 0 0

where S and U are given by the normalized eigendecomposition of I given in (3.66).

Writing (3.86) and (3.87) in terms of zj, after some algebraic manipulations, we get

T
Zj Zj 1 (3.89)

(Zj+l + Zj)T (Zj+l + Zj) Cos 2(') (3.90)
2 2 N

From these identities, again with some algebraic manipulation, it easily follows that

Z is equilateral. Specifically,

llzj+l - zjJ111' -- 2 sin( 7r (3.91)
N

Since the above identities show that the N-gon Z is a regular N-gon inscribed in the

unit circle, then it must be related to V,,f(N) through a scaling and some orthogonal

transformation T2. In particular,

Z sin( )T2Vrf (N) (3.92)
2

This in turn shows that

S-1UTv sin( )T2Vrf (N) (3.93)
V'raNYOO 2
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or after solving for V and simplifying,

V = Vj-LooUST2V,�,f(N)- (3.94)

Letting L - Vp-OOUS, we obtain

V -- (LT2)V��f(N). (3.95)

This last identity implies that V has moments pooM - A00) A1o(V) - fLoi M - 0

and

I(V) = kNLL T I det (L) (3.96)

with det(I(V)) - k 2 jt4o . Hence V E C, and the result is established. ON 0

Note that the ratios aNlkN and,3NIkN can be simplified to get

aN 4 3.97)
kN COS2(7r/N)'

,3N 4. (3.98)
kN

If I is not the inertia matrix of an affinely regular N-gon, then the L constructed

in the Initial Guess Algorithm will not have have the prescribed inertia matrix. We

are, however, able to bound the approximation error from above and below in the

following way.

Result 4 Suppose that the moments poo, plo = /,to, 0,

A20 JU11
(3.99)

L IL" [tO2 j

are given such that det(l) - k 2 /.140 + E >0. DefineN 0

L = VIA--ooUS (3.100)
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where

US2UT (3.101)
Vd e t (1)

is the normalized eigendecomposition of -T. Then the normalized Frobenius-norm error

is given by
T 2

IIAOOkNLL - -TllF I - kNAOO (3.102)
2 A4IIIJIF VkN 00

Proof: Letting A =,uookNLL T and B 1, we can write

A = allS2UT (3.103)

B = bUS2UT (3.104)

where

s2 A 0
(3.105)

0 I/A

a = kNL2 (3.106)00)

2 IZ040 + C.
b = VkN (3.107)

Hence we have

IIA - BlIF 11(a - b)S2 JIF - la - bI A2 + (3.108)
A2

JIBIIF lbl A2 + T2 (3.109)

Hence,

I VkN2A40o + kNA20 jj2
IIA - BlIF la-b 0 kN 00

(3.110)2 A4JIBIIF lbl 2 A4 Vk 00�N N

which establishes the result. O

We have plotted the expression for the relative error in Figure 3-21 for N = 3 and
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Figure 3-21: Relative error in matching second order moments using the Initial Guess

Algorithm

N = 1000, and assuming that /.too = 1. This figure shows that although the relative

error grows quite fast as E is increased, it never exceeds the maximum of I (i.e. 100

percent) for a fixed poo. Also, the relative errors for different number of sides are seen

to be very close.
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Chapter 4

A4oments and the Radon

Transform

4.1 Introduction

In this chapter we discuss a fundamental property of the Radon transform which

relates the moments of a function f (x, y) to those of its Radon transform g(t, 0). We

exploit this property to develop a Maximum Likelihood framework for the estimation

of the moments of a function 1 from noisy and possibly sparse measurements of its

line-integral projections. We show that this framework provides one with a direct and

statistically optimal methodology for the extraction of geometric information about

an image directly from projection data. This geometric information can be used in

several distinctly different ways. As we discussed in Chapter 3, these estimated mo-

ments can be used to construct good initial guesses for highly nonlinear optimization

problems arising in parameterized, model-based, optimal tomographic reconstruction

algorithms for binary polygonal objects. As we shall describe in Chapter 5, these

estimated moments can also be used to arrive at robust and computationally efficient

variational reconstruction algorithms. In addition, from the study of the relation-

ship between the moments of a function and those of its Radon transform we gain

'As mentioned in Chapter 1, we will use the terms "function" and "image" interchangeably.
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much insight into the structure of the range and null-space of the Radon transform

operator and, in fact, arrive at a decomposition of this operator which yields new in-

terpretations for a number of classical tomographic reconstruction algorithms. From

a statistical standpoint, we show that the moments of the noisy projections of an im-

age constitute a set of sufficient statistics for the optimal estimation of the underlying

image. This fact provides a stochastic justification for estimation and reconstruction

based on moments. Finally, we show that the study of the explicit relationship be-

tween the moments of an image and those of its Radon transform yields insights as

to what sampling (projection) strategies are generically the best in terms of yielding

the best-conditioned moment estimation problem.

The explicit relationship between the moments of a function and those of its Radon

transform has been known and used extensively in the mathematics community for

some time [39, 30, 33]. The use of this relationship has basically been limited, how-

ever, to mostly theoretical considerations. Practical applications of this relationship

have rarely been used outside of the mathematics community [58, 66]. A framework

has, to date, not been established for exploiting this relationship for estimation and

reconstruction purposes from a practical point of view. In this chapter, we intend to

provide such a framework. We use this framework in Chapters 3, 5, and 6 to develop

novel reconstruction algorithms.

The organization of this chapter is as follows. In Section 4.2 we present the basic

definitions of various types of moments of an image (a function) and also describe

some notation which will be used in what follows. Section 4.3 contains fundamental

results relating the moments of a function to the moments of its projections and also

results regarding the number of uniquely computable moments from a finite number of

projections. In Section 4.4 we present new interpretations of classical reconstruction

algorithms based on the results of Section 4.3. We discuss the optimal estimation of

the moments of a function from noisy measured projections in Section 4.5. Section

4.6 describes other useful results arising from the study of the moments of the Radon

transform of a function. Finally, to illustrate the main concepts of this chapter, we

present some examples and experiments in Section 4.7.
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4.2 Basic Definitions

The moments of a function f (x, y) are the coefficients of the expansion of f in any

basis. In what follows, we shall assume that f is a square-integrable function with

compact support 0 contained in the closed unit disk D. We shall denote this by

f E V(D). We next define the geometric, orthogonal, and complex moments of f.

Definition 3 (Geometric Moments) Let f (x, y) C L2(D) be defined over a com-

pact -subset of the plane 0 C D. The geometric moments of f over 0 are defined

as the set of real numbers up, given by

jtpq f (XI Y) XPY q dx dy (4.1)

for all integers p, q > 0.

Note that poo is the area of 0 while plo/poo and pol /poo give the x and y coordinates

of the center of mass of 0, respectively. Second order moments of f give rise to other

geometric information; namely, the inertial properties of f (for p + q = 2). Higher

order moments of f yield more detailed information about f. However, these higher

moments are not easily interpreted as tangible geometric quantities.

Definition 4 (Orthogonal Moments) The orthogonal (Legendre) moments

Of f over 0, denoted by Apq, are defined by

A q f (x, y) Pp (x) P. (y) dx dy, (4.2)

where Pk(.) denotes the k 1h order normalized Legendre polynomial over the closed

interval [-1, 1].

Explicitly, the k 1h -order normalized Legendre polynomial is given by

k 2 + I 1 dk
2Pk (X) Oik X (X W (4.3)

i=O 2 2kk! dxk
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The family of Legendre polynomials f Pk(x) I k > 01 form a complete orthonormal

basis over the interval [-1, 1], i.e.

Pp (x) Pq (x) dx - 8pq Vp, q > 0, (4.4)

where

8pq - I for p q (4.5)

0 for p q

Therefore, the family of functions f Pp(x)Pq(y) I p, q > 01 forms a complete orthonor-

mal set of functions over the square given by [- 1, 1] x [- 1, 11.

Since the Legendre Polynomials span the set of functions f xk I k > 0 1, it is

natural to expect that the Legendre moments of f (x, y) should be linearly related to

the geometric moments of f. This is indeed the case and the explicit relationship is

given by the following expression.

p q
Apq E E,3ip,3jqYij (4.6)

i=O j=O

Hence, a given set of orthogonal moments depends only on geometric moments of the

same order and lower, and conversely.

Definition 5 (Complex Moments) The complex moments of f over 0, de-

noted byCpq, are defined by

Cpq=ff f(xly)ZPVdxdy (4.7)

where z = x + iy, x - iy, and i

The complex moments of order k are linear combinations, with complex coefficients,

of the geometric moments of the same order. More precisely, we have [97]:

p q P q i(p+q)-(r+.)(

Cpq EE _ 1)q- 'A,+s,(p+q)-(r+s) (4.8)
r=O 3=0 r S
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The complex moments and their relationship with the geometric moments win be

used in Chapter 6 when the reconstruction of binary polygonal objects from their

moments is discussed. We hence defer further discussion of the complex moments to

Chapter 6.

For the sake of notational convenience, we group the moments of a given order

k and define the k Ih order geometric and orthogonal moment vectors respectively as

follows:

A (k) [AkO) 14-1,1 ILO'k]T (4.9)

A('�) [Akol Ak-1,1i ... I Aok]T (4.10)

Note that each of these vectors contains all the moments whose indices add up to k.

These moments are arranged in this particular way to ease the exposition in what

follows.

Vectors of the geometric and orthogonal moments up to order N are defined using

the moment vectors 1L (k) and A(k) respectively for k 0, 1, N as follows:

IL(O) A(O)

ILM P)
MN LN (4.11)

L IL (N) A (N)
J L J

By virtue of (4.6), we then have a linear relation between the vectors MN and CN

which we denote as

MN = TNCN (4.12)
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where TN is a lower triangular, invertible (N+1)(N+2) X (N+1)(N+2) matrix. For N - 2)
2 2

for instance, TN is given by:

2.0000 0 0 0 0 0

0 1.1547 0 0 0 0

0 0 1.1547 0 0 0
T2 = (4.13)

0.6667 0 0 0.5963 0 0

0 0 0 0 0.6667 0

0.6667 0 0 0 0 0.5963

For a fixed angle 0, we can define the k1h order geometric and orthogonal moments

of the projection g(t, 0) analogously to the moments of f as follows.

H(k)(0) = f g(t, 0) th dt, (4.14)_1

G(k) (0) = g (t, 0) Pk (t) dt, (4.15)

where from the definition of the Legendre polynomials, it follows that

k

G(k)(0) = E,3ikH(')(0). (4.16)
i=O

We define the vectors of moments up to order N of g(t, 0) similarly as

H(o)(0) G(O) (0)

H(l)(0) GM (0)
RN (0) GN(O) (4.17)

H(N) (0) J G(N) (0) J

Through (4.16) we have:

GN(0):= BNHN(0) (4.18)
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where
'300 0 0 ... 0

001 Oil 0 ... 0

BN 002 312 022 ... 0 (4.19)

OON 31N 32N 3NN

where 3ij are the coefficients of the normalized legendre polynomial Pj(t) of order

In the next section) we prove that the vectors GN(O) and 'HN(O) are, respectively,

linearly related to the vectors LN and MN-

4.3 Basic Results

In this section we establish the basic relationship between the moments of f and the

moments of its Radon transform. We show that this relationship essentially yields a

decomposition of the Radon transform operator in terms of linear operators mapping

a function and its projections to their respective moments. In the case where a

finite number of viewing angles are given along with complete, continuous data in the

variable t, we derive analytic constraints on the maximum number of moments of a

function f that may be uniquely determined from a finite set of (noiseless) projection

measurements of f.

4.3.1 Relating the Moments of f to the Moments of 9 = Rf

To arrive at the explicit relationship between the moments of f and the moments of

g, recall Theorem I of Chapter 2 on page 29. From this theorem, we have that if F(t)

is any square-integrable function over [-1, 1], the following is true.

g(t, 0) F(t) dt f (x, y) F(x cos(O) + y sin(O)) dx dy (4.20)

The expressions relating the geometric and orthogonal moments of f to the geometric

and orthogonal moments of g are arrived at by letting F(t) = tk and F(t) -_ Pk(t),
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respectively. First let F(t) = tk and expand the resulting term (cos(O)x + sin(O)y)h

on the right hand side of (4.20) according to the Binomial Theorem. This yields:

H(k) (0) g(t, 0) tk dt = � k Cos k-j(O) sini(O) pk-jj, (4.21)
j=0 j

where H00(0) is simply the k" order geometric moment of the projection function

g(t, 0) for a fixed angle 0. Hence, we have arrived at an explicit expression relating

the moments of f to those of g. Defining

D (k) (0) [,Yko COS" (0) I ̂ /kl cosk-1 (0) sin(O) sinA(0)] (4.22)

k
(4.23)

the identity (4.21) can be concisely expressed as

H(k) (0) - D (k) (0) P(k). (4.24)

Note that this expression states that moments of order k of the projections depend

only on moments of order k, [t(k) , of f (x, y). Now invoking this last expression for

k - 0111 ... 7 N, we can write

H(o)(0) D(o)(0) 0 ... 0 JL(0)

0
(4.25)

0

L H(N) (0) L 0 ... 0 D(N)(0) .1 L t(N) J

'HN (0) DN (0) M N (4.26)

where the obvious association is made in the last equation and MN is de-fined in

(4.11). By invoking (4.12) and (4.18) we arrive at the following relationship between
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the orthogonal moments of f and the orthogonal moments of g.

GN(O) = BNDN(O)TNLN (4.27)

In the above expression, N is a finite integer. The relationship (4.27), however, can

be expressed similarly when all the moments of f and g are considered. (That is to

say, letting N - oo.) To this end, we need to define the appropriate Hilbert spaces

over which the relevant quantities exist. Referring to Figure 4-1, consider the function

f E L'(D) and its Radon transform g(t, 0) c C C L2 Q_ 1, 1] X [0, 2r]) where C denotes

the set of valid Radon transforms defined by Theorem 2 of Chapter 2 on page 31. Let

Q denote the operator mapping f onto its set of orthogonal moments f Apj defined

as follows.

9 f EL 2(D) --+ LG'Xa(Q) C 12, (4.28)

where L is simply the moment vector LN with N -_ oo, and 12 denotes the Hilbert

space of square-summable infinite sequences of real numbers. Similarly, define the

operator M mapping g(tO) onto its orthogonal moments JG(")(O)j for each fixed 0

as follows.

M : gECcL 2Q- 1, 1] x [0, 27r]) -- � G(O) C 'Ra(M) C 12( [0, 2-x]), (4.29)

where G(O) is simply the moment vector GN(O) with N = oo.

Now dropping the explicit dependence of the quantities in (4.27) on N we can

write

G = A(9) L (4.30)

A(O) = BD(O)T, (4-31)

where the operators B, D(O), and T are interpreted simply as (infinite-dimensional)

operator counterparts of the quantities in (4.27), and the operator A = BDT is de-
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R
9Y g(t,

R=MA

M M

XPJ G(ko')l

Figure 4-1: A diagram of the decomposition of the Radon transform

fined for convenience. As is now apparent from the commuter diagram shown in

Figure 4- 1, the linear interdependence between the orthogonal moments of f and the

orthogonal moments of g naturally results in a decomposition of the Radon transform

operator W - M*AQ. Note that in Figure 4-1, the respective inverses of the operators

M and Q are displayed as their adjoints M* and W. This is a consequence of the

fact that both of these operators essentially amount to an orthonormal transforma-

tions applied to functions in their respective domains. In particular, both operators

are isometric (from Parseval's Theorem [62]) and surjective (or onto their respective

ranges 7Za(M) and 7Za(f2)) so that both of these operators are unitary. (i.e. their

inverses coincide with their adjoints.)
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4.3.2 Analytic Constraints on the Number of Uniquely Com-

putable Moments

Given the linear relationship between the moments of a function and those of its

Radon transform (4.26), in this section we wish to address the following question:

"Given a finite number p of noise-free projections at distinct angles, what is the

maximum N for which MN can be uniquely determined?" This is in essence a way of

asking to what extent a finite number of projections uniquely determines a function

f (X) Y). This issue is of practical importance since in many instances such as Ocean

Acoustic Tomography [65, 50] where due to a variety of practical difficulties, such as

size of objects being imaged, only a very limited set of projection data is available.

The question of reconstructability 2 from a finite number of projections has been

studied rather carefully in the mathematical literature on tomography for the partic-

ular case of binary polygonal objects [101, 52, 22, 27, 26]. Results are also available

for the general case [90], where it is shown that no finite number of projections wilI, in

general, suffice to uniquely determine a function. The question we have posed in this

section in essence seeks to find that "part" of a function that is uniquely determined

by a finite number of projections from different directions.

In this section, we wiH prove that one may uniquely recover the first p geometric

moments of a function f (x, y) G L 2(D) from a fixed number p of Radon-transform

[391 projections from non-congruent directions. We further show that one can not

uniquely recover any higher order moments of f (x, y) from such limited information.

Note that the operative word here is "unique". As we shag see, the fact that only

the first p moments of f are uniquely defined by p distinct projections does not mean

that this given data set is void of information about higher order moments of f

The importance of this result lies in the fact that it directly shows to what extent a

limited number of projections of a function determine the function uniquely. This,

in essence, is a precise notion of the (unique) geometric complexity that a limited

set of projections can support. We wiH use the results of this section directly in the

2Reconstructability refers to a situation where a function can be uniquely recovered from only a
finite number of its projections.
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development of optimal estimation algorithms for computing the moments of f (x, y)

from a finite number of noisy projections later in this chapter.

A function f (x, y) G L 2(D) is uniquely and completely determined by the complete

set of its geometric or orthogonal moments [t (k) I A (k) , for all k > 0 [97, 96]. If only

a finite number of moments of f are given, then an infinity of functions exist that

match those moments. If the collection of all such functions is considered as a subset

of L 2 (D), then in essence, we seek to find the one function that can be uniquely

identified given a finite set of projections g(t, Oi) for i -- 1, - - - , m. We assume that

we are given (noise-free) integral projections of f (x, y) at a fixed number p of angles

Oi. Essentially we are given "cuts" of the Radon transform g(t, 0) of f (x, y) at a

-finite number of 0. Note that each projection g(t, Oi) itself is uniquely and completely

defined by the complete set of its geometric moments H(k)(0i) for an k > 0. In Section

4.2 we showed that 'HN(O) and MN are related as follows:

'HN (0) = DN (0) M N (4.32)

Now consider the problem where we observe a number p of (noise free) projections

g(t I Oi) I i =:: I I , , , , p, and wish to uniquely recover as much of f (x, y) as possible. We

look at this problem in the following way: we observe H(")(0i) Vk, i = 1,...,p and

wish to uniquely recover as many of the jt(j) as possible. Note that we treat moments

of a given order, j, as a unit, e.g. even though tt(') consists of two numbers, we

consider it determined only if both are uniquely determined. Our main result is the

following:

Result 5 (p Moments From p Projections) Given line integralprojections of f (x, y)

at p different angles Oi in [0, -7r), one can uniquely determine the first p geometric mo-

ment vectors ft(j), 0 < i < p of f (x, y). Furthermore, this can be done using only the

first p order geometric moments H(k)(0), 0 < k < p of the projections. Conversely,

moments of f (x, y) of higher order cannot be uniquely determined from p projections.
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Proof: Let us extract, from each projection, a finite but arbitrary number N of

geometric moments of that projection. This simply amounts to computing 'HN(oi)

for i _- I,. - - p. Note that since each projection is completely characterized by the

complete set of its moments, we recover all the information in our original projections

as N -+ oo.

Now consider (4.26) and suppose that we stack up our moment observations at

the different angles to obtain:

'HN(01) _DN(01)

'HN(02) DN(02) MN (4.33)

'HN (0p) J VN (0p) J

HN DNMN (4-34)

(N+1)(N+2)so that the matrix DN relating MN and the projections is pN x 2 Clearly,

if DN has full column rank, then MN is uniquely determined. Now we may rearrange

the rows of (4.33), grouping together the moments of the same order from all projec-

tions, without changing the column rank of DN. This operation yields the following
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equivalent equation:

H(o)(01) D(o)(01)

H(o)(02) D(o)(02)

0

H(o)(0p) D(o)(0p)

H(l)(01) DM (01

H(l)(02) D(l)(02)

0
(4.35)

H(1)(0p) D(l)(0p)
A(N) j

0

H (N)(01) D(N)(01)

H (N) (02) D(N) (02)

H (N) (OP) L D(N) (OP)

fJ(O) (0) 0
P P (0)

0 bpm
P (4.36)

0
P 0 0 f)P(N) J 14(N) J

where f1P(k) is thus the collection of moments of order k from all the projections and

bp(k) is a matrix relating moments of order k of the object to moments of order k in

each of the p projections. Now since the overall matrix is block diagonal, the problem
of determining each u(k) decouples so that fj, (k) = j) (k)

P P A(k) for any k and p. In fact,

we can determine a particular tt(k) uniquely if and only if the corresponding matrix

block:

f) (k) D(k)(02) (4-37)
P

D(k) (0p)
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has full column rank. Let us now examine the conditions when Ak) will have fullP

column rank. Substituting for D(h)(0i) from (4.22) we find that 1)(k) is of the form:P

-fkO COS'(01) 'Ykh-1 COs(01) sin k-1 (01) -YA,,k sin'(01)

'/k,0 COSk(02) -Ykl,-l COS(02) sink-1 (02) 'Ykh sink(02)

P (4.38)

'/k,0 COS k (0p) ykA,-, cos(Op) sink-10p) -Ykh sinA(0p)

and the matrix Ak) is p x (k + 1). Now -bW will have full column rank if and only ifP P

its columns are independent. Note that we must, at least, have p > k. The columns

will be independent if and only if there is no set of ai (not all zero) such that:

ao COS k (Oi)+al COSk-1 (0,) sin (0i) + - - -+ ak - 1 COS (0i) sin k-1 (Oi)+ak sin k (0,) - 0, (4.39)

for 1 < i < p. In particular, this will be true (when p > k) if the homogeneous

trigonometric polynomial of order k defined by (4.39) has at most k roots 9i in [0, 7r).

This motivates the following lemma, which we prove in Appendix 4-A.

Lemma 2 (Roots of Homogeneous Trigonometric Polynomial of order k) The

k1h order homogeneous trigonometric polynomial equation given by:

aocos'(O)+alcos'-'(O)sin(O)+...+ak-lcos(O)sin'-'(O)+akSin'(O)=O (4.40)

has at most k distinct roots in [0, -7r).

Given this lemma we see that Ak) will have full column rank if and only if p > k, i.e.P

the number of projections p is greater than the order k of the moment vector y(k) that

we are interested in. In particular, we can achieve this full column rank if p = k + 1,

so we use no more than the first p moments of the projection. Also note that this
implies that if b(n) k

is of full column rank for some n then so is b( ) for all k < n.P P

Now the preceding arguments essentially show the first two statements of the

theorem. Given p projections the matrices 1)(k) will have full column rank for 0 <
P

k < p. Thus we can uniquely find the moments IL(k) from the corresponding ft(k)P
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and 6(k). In particular, note that due to the block diagonal structure of (4.36), usingP

higher order moments of the projections is of no help in determining a given moment

IL (k). 0

Remarks:

We have shown that to uniquely specify the first p moments of a function f (x, y)

one needs at least p integral projections at distinct angles in the interval [0, -X), and

that this number is both necessary and sufficient. It is important to note that this

result does not mean that the given p projections are void of information about the

higher order moments of f. To make this concrete, consider the case where only

one projection g(t, 01) of the function f is given at some fixed angle 01. Then our

result states that only the integral of f (i.e. its zero-th order moment) is uniquely

determined from this projection. Even though this is true, the shape of g(t, 01) does

tell us something about what f and its region of support look like. For example if f

is an indicator function over a simply-connected region of the plane and g(t, 01) has a

very narrow region of support, we can conclude that the underlying object is eccentric

in the direction of 01. Conversely, if g(t, 01) has a wider region of support, we can

assume that the underlying object must be wide in the 01 direction. This is a trivial

instance of how a single projection uniquely determines the area of the underlying

object but also gives some (non-unique) idea of its location and orientation (first and

second-order moment characteristics).

4.3.3 Specific Results for Binary Polygonal Objects

Here we present some results regarding the moments of binary polygonal objects and

the moments of their Radon transforms. The results in this particular section may

not seem immediately applicable, but we shall invoke them in other chapters of this

thesis.

If the function f (x, y) is the indicator function of a binary N-sided polygonal

region 0, then the geometric moments of f can be written as algebraic polynomials
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in the coordinates of the vertices of 0 as follows.

Result 6 (Moments of Polygons) The geometric moments 1-tpq of a binary, N-

sided, polygonal object with vertices at (xj, yj), I < j < N, are given by

1 N
Apq - p+q+l E(xj+l + xj)p+'(Yj+l + yj),(Yj+l - YA (4.41)(p + 1)2 j=1

-1 N
(q + 1)2P+q+l E(Xj+l + Xj)p(yj+l + Yj)q+l(Xj+l _ Xj)) (4.42)

j=1

with XN+1 - X1, and YN+1 - Y1 -

Proof: See A-P-Dendix 4-B 3. As we have seen in Chapter 3, this result is useful

in studying the moments of binary polygonal objects when their vertices are given

explicitly. In particular, this result is invoked in the proof of Lemma 1 of Chapter 3.

On a different note, the application of Result 5 to binary polygonal objects yields

some interesting results. A fascinating theorem due to Davis [18, 19] states that a

triangle in the plane in uniquely determined by its moments of up to order 3. i.e.

f tt(o)) A(1) I A(2) 7 A (3)1 . Furthermore, Davis has, in essence, provided an explicit algo-

rithm for reconstructing the triangle from this set of numbers. Our result would

imply that exactly 4 projections are sufficient to determine this set of moments.

Hence, together with the work of Davis, our result provides a closed form solution

to the problem of reconstructing a binary triangular region in the plane from only 4

tomographic projections in the absence of noise. In fact, as we will show in Chapter

6, we have improved Davis' result to show that the vertices (and in some instances

the interior) of any nondegenerate simply-connected n-gon are uniquely determined

by its geometric (or orthogonal) moments up to order 2n - 3. (i.e. M2n-3) This gen-

eralization improves on known theoretical results on the reconstructability of binary

objects from few (noiseless) projections as discussed in Section 2.2.2 of Chapter 2.

3This result was independently proved by the author and the authors of [78]
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4.4 New Interpretations of Classical Reconstruc-

tion Algorithms

In this section we present some new interpretations of classical tomographic recon-

struction algorithms from noisy projection data based on the results presented in

Section 4.3.

Let us consider the following measurement equation for the noisy Radon transform

of the function f

Y(t, 0) = Rf + e(t, 0) (4.43)

where e(t, 0) is assumed to be white Gaussian noise of intensity a 2 . (Here we are

assuming that Y is given for all t E [- 1, 1] and 0 E [0, 27r].) Then the ML estimate

of f based on this data can be written as

2arg min 11 Y - Rf 11 (4.44)
f

where the norm on the right hand side is that of L2([- 1, 1] x [0, 27r]). Denoting the

adjoint of the Radon transform by R*, the ML estimate of f is given by

(4.45)

This solution corresponds to the classical Convolution-Backprojection (CBP) algo-

rithm [40], where R*Y is the backprojection operation and essentially amounts

to filtering the resulting backprojection with a ramp (differentiator) filter [671.

Recall from Figure 4-1 that the Radon transform has the following decomposition

R = M*AQ (4.46)

Substituting this decomposition into (4.45) we obtain

W (A*A)-'A*MY (4.47)
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Now note that the Za = (A*A)-'A*MY is nothing but the ML estimate of (all)

the moments of f, from the given noisy projection data, while Q* is the operator

which reconstructs a function f from its full set of moments '. Hence, the classical

CBP algorithm can be interpreted as a two-step process whereby ML estimates of the

moments of f are first estimated from the raw projection data and then the estimate

f,1 is reconstructed by inverting the operator Q. Similar statements can be made

if a prior is given for f. In particular, if a Gaussian Random field prior with zero

mean and variance o, 2/_� is given, the corresponding Maximum A-Posteriori or MAP

(regularized) solution is obtained by finding the solution of

min 11,Rf - Y11' + 711fJ12. (4.48)
f

It is easy to show that this solution is given by

fl.,,P +_YI)_1R*Y, (4.49)

which corresponds to the classical Filtered Back-Projection algorithm [40] where

(R*R +,XI)-' corresponds to filtering the backprojected image with a low-pass filter

whose order and cutoff frequency are set by picking an appropriate value of the regu-

larization parameter -/. The decomposition of the Radon transform shown in Figure

4-1 shows that this operation is in essence equivalent to computing a regularized

inverse of the operator A. i.e.

fl-ap =W(A-A +-II)-'A*MY (4.50)

In the next section, we develop Maximum Likelihood algorithms for the estimation

of the moments of a function f from noisy measurements of its projections. Later

in Chapter 5 we discuss robust and numerically efficient variational algorithms for

4Note that here we make the assumption that the estimated moment vector 4,, is consistent,
i.e. that it is in the range of the operator Q. Due to noise, this may not be so; and we shall deal
with this case in Chapter 5.
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computing the regularized inverse of the moment operator 9 from a finite number of

estimated orthogonal moments.

4.5 Optimal Estimation of Moments Rrom Noisy

Projections

In this section we develop the Maximum Likelihood estimator for the moment vec-

tors MN and LN of an image f (x, y) from noisy measurements of it Radon transform

g(t, 0). These estimates, along with their computed covariances will be used in Chap-

ter 5 in regularized variational algorithms to reconstruct the underlying image. In

Chapter 6, we will use the estimated geometric moments of a binary polygonal object

to compute ML estimates of its complex moments. These moments win subsequently

be used in novel array processing-type algorithms to reconstruct the vertices of the

underlying polygon.

In the development that follows, we present the full details of the derivation of the

ML estimator for the case where only a finite number of views are given. In the case

where a complete, continuous set of views is available, the development is limited to

the final formulae which are obvious extensions of the discrete angle cases. In either

case, we assume that complete and continuous data is given in the variable t for each

projection '. In the discussion of the covariance structure of the estimated moments,

the complete-view case can lead to some nice closed-form expressions which are not

available for the discrete-view case. To this end, most of the discussion on covariance

structures will be centered around the continuous, complete-view scenario.

4.5.1 Measurement and Noise Model

As is assumed throughout this thesis, the projections g(t, 0) are assumed to be cor-

rupted by zero-mean Gaussian white noise of some known intensity 0'. 2, which we shall

'Obviously, this is an idealization of the practical scenario. We are essentially assuming that
the samples in t are obtained at sufficiently many points to justify the assumption that this data is
available continuously in t.
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denote by Y(O' 0,2) . That is, the data is given by

Y(t, 0) = g(t, 0) + e(t, 0),

where e(t, 0) - A((O, 0,2 ). Define the k" order orthogonal moments of the quantities

appearing in (4.51) as follows.

y(k) (0) f Y(t, 0) Pk (t) dt (4.52)_1

G(k) (0) g (t, 0) Pk (t) dt (4.53)

e(k)(0) e (t, 0) Pk (t) dt (4.54)

where Pk(t) is the k" order normalized Legendre polynomial defined in (4.3). From

(4.51) we then have

y(k) (0) = G(k)(0) + e(A:)(0), (4.55)

where due to the orthonormality of the family f Pk (t), k > 0 1, the stochastic processes

e(k)(0), k > 0 1 are a family of zero-mean, uncorrelated, Gaussian white noise

2 (k)processes of equal intensity a . In effect, the functions e (0) are the coefficients of

the Karhunen-Loeve expansion [100] of the white noise process e(t, 0) in the variable

t. Adopting the notation

T
YN(O) = [Y(O)(0), y(l)(0), y(N)(0)] 7 (4.56)

9N(O) = [0)(0), G(l)(0), G(N)(9)IT 7 (4.57)

eN(O) = [e(o)(0), e(l)(0), e(N)(0)] T (4-58)

we can write

YN(O) 9N(O) + eN(O), (4-59)

with

eN(9) A((O, 0,2IN+J), (4.60)
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where IN+, denotes the (N + 1) x (N + 1) identity matrix. By appealing to (4.27), we

have

YN(O) = BNDN(O)TNLN + eN(O), (4-61)

or simply

YN(O) = AN(O) LN + eN(O) (4.62)

which is a linear measurement equation for the orthogonal moments of f (x, y) in

terms of the orthogonal moments of the noisy projections.

4.5.2 Maximum Likelihood (ML) Moment Estimation

Suppose that we are given samples of YN(O) at only a finite number m of distinct

angles f Oj, i = 1, - -ml in [0, -7r). Then we can stack our observations given by

(4.61) as follows

YN(01) DN(01) eN(01)

D N
YN(U2) VN (02) + eN (02)

= (BN 0 Im) TNLN (4.63)

YN (O.) J VN(01-) eN(O,)

YN = BNDNTN LN + eN (4-64)

with

IeN _ A((O, 0,2 I.(N+1)) (4.65)

where the symbol 0 denotes the Kronecker product, and I,,(N+l) denotes the m(N + 1) x

m(N + 1) identity matrix. Hence if BNDNTN is full column rank, the ML estimate

Of CN is given by

ZN = (TNT D TB TBNDNTN) -1 TNTD TB T YN- (4-66)

N N N N
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Since TN is invertible, this expression simplifies to

TLN = V T T D T B T YN- (4-67)(DNBN BNDN) N N

Note that in order for this expression to make sense, the term (DT B T BNDN) mustN N

be invertible. Since the matrix BN is known to be invertible, the invertibility of

D T B T BNDN will only depend on whether DN has full column rank. Appealing
( N N

to Result 5 we deduce that DN has full column rank, and hence ZN is well defined

6 if , and only if, ra > N > 0. i.e. the number, m, of available projections should

strictly exceed the order of the highest order estimated moments.

Using the invariance property of ML estimates [81], from (4.67), and assuming

the inverses exist, the ML estimate Of MN is derived as

T T _1 T T
MN - TNCN = (DNBNBNDN ) DNBNYN- (4-68)

Digressing to the continuous angle (complete-view) case, if the (noisy) projection

data Y(t, 0) is available at all angles 0 C [0, 7r), by appealing to (4.61), the expression

for the ML estimate of LN takes the following form

ir -1L* - TV (O)T T fDN(O)TBNT
N - V 'DN BNBNDN(O)dO YN(O)dO (4.69)

fo 0

where we use the superscript * to distinguish full-view estimates from estimates ob-

tained when only a finite number of projections are available.

4.5.3 Statistics of the Estimated Moments

The covariance matrices of the estimated orthogonal moments LN and geometric

moments QN are readily given (when m > N) by:

QN = U2 (TNT DT B T BNDNTN)-' (4.70)

'Well defined means it exists and is unique



T T
RN COV(-QN) = 0" (DNBNBNDN (4.71)

By studying the complete-view case, the corresponding covariance matrices reveal

some interesting structure which we examine next. In particular, one might hope

that the covariance matrix of the estimated orthogonal moments is at least block-

diagonal. This, unfortunately, is in general not the case. Also, the trace of the

individual covariance matrices may be thought of as some "overall" measure of how

poor the corresponding estimated vector is. We will show that for the complete-view

case, the trace of the covariance matrix for the estimated geometric moments may be

bounded below by a rather easily computed function of the trace of the inverse of this

covariance matrix. To begin, note that the expressions for the covariance matrices

when a complete, continuous set of projections is available is given by

Q* cov(f"�) O-' rp T (O)T pT BNDN(O) TN dO (4.72)N fo"r -L NDN 'N

R* COV(,Q* 0-2 f- DN(O)T pT BNDN(0) dO (4.73)
N N -L-N

For N 2, these matrices are given by

O O O O 04

O 1 O O O O2

20,2 0 0 1 0 0 0
*2 2 (4.74)

7r 0 0 0 3 0 -1
4 4

0 0 0 0 2 0
5

0 0 0 -1 0 3
L 4 4 J

1 0 0 03 3

0 2 0 0 0 0
3

2,y2 0 0 2 0 0 0
R* 3 (4.75)

2 7r 1 0 0 17 0 1
3 45 45

O O O O 8 O45

1 0 0 1 0 17
45 45 J
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For N > 2, the desirable block-diagonal structure of Q* breaks down.N

The inverse of the covariance matrix R* has a particularly neat form. We can

exploit this fact to arrive at a lower bound on the trace of R* in terms of the traceN

of its inverse. We can write

R * -1 =:: 01-2 DN (O)TB T BNDN(0) dO (4.76)N N0

Now by referring to (4.22), (4.25) and (4.19) respectively, where DN(O) and BN are

defined, the trace of R* -' can be written asN

2

7r N k j-1(0) sin'(9) dO. (4.77)Tr(R* o,-2 EL flik Cos
k=O j=O 1=0 1 i

Denoting by B('+', b+) the standard Beta function [34] given by2 2

a (9) Co b (9(1/2)B sin s dO (4.78)
2 2 0

for nonnegative integers a and b we obtain

2
N k j

Tr(R* -1) - 7-2 02 B(j - I+ I11 + (4-79)
N

k=O j=0 1=0 2 2

To obtain a lower bound on the trace of the covariance matrix R* itself we use theN

following result, the proof of which may be found in appendix 4-C.

Result 7 Let A be an n x n real, symmetric strictly positive definite matrix. Then

the following identity holds true

n 2
Tr(A-1) Tr(A). (4-80)

Furthermore, the inequality can not be improved.

Given this result, we obtain the following lower bound
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(N + 1)'(N + 2)2 < Tr(R'). (4.81)
4Tr(R' -1) - N

Note the fact that computing the trace of R* is quite a messy affair, while computing

the trace of R* -' is, as we have shown in (4.79) is rather simple via the use of the

Beta function. Hence, the lower bound (4.81) serves in essence only as a quick way

of getting a rough lower bound on the quality of the estimated geometric moment

vector. In at least this sense, it is reminiscent of the Cramer-Rao bound for nonlinear

ML estimation [100].

4.6 Other Results on Moments and the Radon

Transform

So far in this Chapter we have shown that the moments of a function f (x, y) can

be computed from the moments of its Radon Transform 9(t, 0) in a straightforward

(linear) fashion. We have developed an optimal ML algorithm for the estimation of

moments of a function f(xy) from noisy measurements of its Radon transform. In

this section, we wish to discuss specific advantages and insights that may be gained

from the study of moments of the Radon transform of a function. Specifically, we

concentrate on the following four issues.

1. Not every square-integrable function g(t, 0), over [- 1, 1] x [0, 2,x], is a Radon

transform of some square-integrable f (x, y) defined over the unit disk. Certain

well-known necessary and sufficient conditions, widely known as the Consistency

Conditions (see Theorem 2 of Chapter 2), must be satisfied by g(t, 0) to be a

valid Radon transform. In particular, a given data set Y(t, 0) may not be a

valid Radon transform due to the effect of noise. A valid Radon transform may

be obtained from Y by projecting it onto the set of valid Radon transforms.

We show that this projection can be obtained from the moments of the Radon

transform by simply computing the ML estimates of the parameters (moments)

that define a valid Radon transform.
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2. We show that computing the orthogonal moments of a noisy data set Y(t, 0)

amounts to a linear transformation of the data. We will use this observation to

deduce that the computed moments of the data are sufficient statistics for the

estimation of a function f (x, y) from this data.

3. Given a finite number of views, the explicit relationship between the orthogonal

moments of the data Y(t, 0) and the (ML) estimated orthogonal moments for

the underlying function f (x, y) is given by (4.67). The right hand side of (4.67)

depends on the inverse of the matrix D' BT BNDN. The condition number of

this matrix, in turn, depends on the number of available views and the particu-

lar geometry of the acquisition system (i.e. the values of the angles Oi). Hence,

by studying the condition number of D T B T BNDN with respect to theses pa-

rameters, we can identify sampling schemes that provide the most numerically

stable algorithms for the estimation of the moments of the underlying object

f (XI Y).

4.6.1 Consistent Estimation Using Moments

Consider the problem of -finding the "closest" function � (in a sense to be made precise

later) to the given data Y that is a valid Radon Transform of some object ftx7y).

We will henceforth refer to this problem as the consistent estimation problem. We

shall separate the problem into three distinct cases that we distinguish by considering

whether 1) data is available continuously in both variables t and 9 II) data is available

continuously in t but discretely in 0 or III) data is given discretely in both t and 0.

The t-Continuous/0-Continuous (CC) case

In this section we assume that the data set Y is given for all values of t C- [-1, 1] and

O G [0, 2-7r] 7The explicit problem we wish to solve here is that of finding a function

which is closest to the data Y in the L' sense subject to the constraint that g is a

7Note that from a practical point of view, due to the symmetry of the Radon transform, data
from only the interval [0, r) can be considered complete.
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valid Radon transform of some square-integrable function f with support in the unit

disk. Formally we have

Problem 1

min JJY - g1l' (4.82)
gEC

Where C denotes the set of all valid Radon transforms and the norm is taken to be the

L2 norm over the Hilbert space of square integrable functions g over [- 1, 1] x [0, 27r]

given by
2,7r 1

11gJ12 -fo f 92(t, 9) dt dO (4.83)
1

The set C is determined by the Classical result of Helgason-Ludwig [39, 59] which

we presented as Theorem 2 of Chapter 2 and which we repeat here for the sake of

continuity.

Theorem 7 Q39, 59]) Let L 2(D) denote the space of all square-integrable functions

f : D --+ 7Z with support inside the closed unit disk D. In order for g(t, 0) to be the

Radon transform of some function f C L 2(D), it is necessary and sufficient that

1. g EL 2([_J, 1] X [0, 27r]),

2. g(t, 0 + 7r) = g(-t, 0), and

3. the integral
g(to)tk dt (4.84)

be a homogeneous polynomial of degree k in cos(O) and sin(O) for every positive

integer k.

In order for Problem 1 to have a solution, and in particular one that is unique, it

suffices to show that the set C is closed and convex. We have the following Lemma.

Lemma 3 The set C is a closed and convex subset of L 2([_l, 1] X [0, 27r]).
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Proof: See Appendix 4-D.

Given this Lemma, the solution to Problem 1 is simply given by the projection of the

function Y(t, 0) onto the set C. Let the projection operator onto the consistency set

C be denoted by HC. We now show that this projection operator can be decomposed

using the operator M which maps a given function in L 2([_I, 1] x [0, 271) onto its set

of orthogonal moments for every fixed 0 as defined in (4.29). Referring to Figure 4-2,

let us denote the range of this operator as A -- Ra(M) and let the image of C under

the operator M be denoted by AC. Furthermore, denote the projection operator onto

AC by IIA,. Then, as illustrated in Figure 4-2, the solution to Problem 1 can be

computed by the following process:

1. Compute the orthogonal moments MY of Y,

2. Project MY onto the set AC,

3. Apply the inverse M* of M to the result.

This process is justified by the following Result.

Result 8 Consider the linear operator T - M*11AM mapping L 2([- 1, 1] x [0, 27r])

onto itself. Then T is a projection operator onto the consistency set C. That is,

T - M* IIA, M = IIC (4.85)

Proof: We have

T* = M*HA* M = M*11IAM - T (4-86)

TT = M*IIIAMM*IIIACM = M*HAM -- T (4-87)

Hence T is a projection. Since T is a projection, then there exists one and only one

closed linear subspace S C L 2([_I, 11 X [0,2-7r]) such that T -- Hs [5]. In particular,

S = Ra(T); and since Ra(T) -- C, the result is established. F1

As a direct consequence of this result, the solution to Problem 1 can be written in
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Figure 4-2: A diagram for the proof of Result 8
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terms of the following expansion:

E 0(k)(O)pXt, 0) - k (t). (4.88)
k=O

where d(k)(0) are simply the projections of the orthogonalmoments of the data Y(k)(0)

onto the set AC. i.e. 6(k)(0) are the image of Y(")(0) under I A,. According to the

consistency Theorem 7, the elements of the consistency set C are those functions

g(tO) for which G(-)(0) are sums of homogeneous polynomials of order no greater

than k. The conditions of Theorem 7 show that g E C if and only if the Fourier series

expansion of G(k)(0) has the following form [72, 58].

k

G (k)(0) a(k) cos(nO) + b�k) sin(nO) (4.89)n

-0n+k even

d(k)(0) is now obtained by projecting Y('�)(O) onto the set Ac. That is, by solving

the following optimization problems:

min IIY(k)(0) - G (k) (0) 11 2 (4.90)
G(k) (0) EA C

But G(k)(0) EE AC if and only if G(k)(0) has the form given in (4.89) for all k > 0.

Hence, we can rewrite (4.90) as

k

min IIY(k)(0) - a(k) cos(nO) + b(k) sin(nO) 112 (4.91)
(k),b(k) n n

a. n n=O
n+k even

where the minimization over a(k) and bn(k) is now unrestricted.n

Now recalling from (4.55) that y(k)(0) is corrupted by white Gaussian noise, the

solution of (4.90) can now be given from the Maximum Likelihood estimates of the

coefficients a(k) and b(k) as follows:n n

'The norm used here is that of L2 QO, 2-x])
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k
d(k)(0) ii(k) cos(nO) + �,(,k) sin(nO) (4.92)

n
'-0

n+k even

ij(k (k) are the respective ML estimates of the Fourier coefficients a (k) and
where n ) and R n

b(k) obtained from 4.91.n

The t-Continuous/0-Discrete (CD) case

In this section we study the analog of Problem I for the case where the data Y(t, 0)

is given for all t C [-1, 1], but only for a finite number m of non-congruent viewing

directions Oj E [0, 27r], j - 1, m. This analogous problem is given by 9

Problem 2
M

min E I I y(t, 0j) _ g(t, 0j) 11 2 (4-93)
fg(t,6j), 1<j<MJEC,.j=1

where Cm denotes the set of all collections of m projections from fixed, non-congruent,

angles Oj which are consistent.

The description of the consistency set in this case is somewhat different from the

CC case. For each angle Oj, consider the geometric moments of the projection data

Y(t, Oj) given bylo

y(k) (0j) y(t, oj)tk dt. (4.94)

In order for these values to correspond to a set of consistent samples, y(k) (O j) must be

the samples of a homogeneous trigonometric polynomial in sin(O) and cos(O) of order

k for all k > 0. However, using Lemma 2 on page 103, we can show that the values of a

homogeneous polynomial of order k in sin(O) and cos(O) can be prescribed arbitrarily

at any k + I points on the unit circle. That is to say, any homogeneous polynomial of

order k in sin(O) and cos(O) is completely determined by its values measured at any

k + 1 (noncongruent modulo -7r) points on the unit circle. Hence, the condition that

Y(h)(0j) be the values of homogeneous polynomials of order k for all k > 0 are trivially

9The norm used here is that of L2 (1-1111)

1ONote that Y(k)(0) and Y(k)(0) respectively denote the geometric and orthogonal moments of
Y(t, 0) and should not be confused.
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satisfied for k > rn - 1. Therefore, the set of these conditions that are binding becomes

finite, and the consistency set C, is defined by only a finite number of constraints.

The question arises as to whether this finite number of conditions is also sufficient for

consistency. The answer has been provided by Smith et al. [90] in the form of the

following Theorem. Let gf (t, Oj) denote the Radon Transform projection of f (x, y) at

the angle 8j.

Theorem 8 ([90]) Let fY(tOj), 1 < i < m, 9i :/ Oj(mod r) C- [0,27r]l be square

integrable and vanish for It I > 1, and assume that for each k < m - 2, the geometric

moments

Y(,,) (0i) y(t, 0j) tk dt (4.95)

of Y(t, Oj) are the values of a homogeneous polynomial o degree k. Then for each

,E > 0 there is a square integrable function f (x, y) with support in the closed unit disk

of radius I + E centered at the origin such that gf (t, Oj) = Y(t, Oj) for I < j <

This theorem provides an explicit description of the set Cn in terms of constraints

which involve the values of the geometric moments of the given discrete-view data set.

To draw a parallel analysis with the CC case, we interpret the statement of Theorem

8 in terms of already familiar operators defined for the CC case.

Let us stack up the given projections to define the following data vector.

Yr% (t) = [Y(t, 01) I Y(t, 02) y(t, 0,)]T (4.96)

Hence,

Y. (t) [-1, 1] -4 L 2([_I, 1]) X ... x L 2([_l, 11) (4.97)

m times

The operator M defined in (4.29) may be applied to each element of the vector Ym(t)

to obtain the orthogonalmoments of each projection. This can be written as MmYm(t)

where Mm denotes the operator which maps each element of the vector Ym(t) to its

121



set of orthogonal moments. In particular,

M,,, = diag(M, M, M), (4.98)
M times

so that

Mm : L 2([_l, 1]) X ... x L 2([_l, 11) __4 12 X ... X 12 (4.99)

M tZmes m times

Mmy.(t) = [MY(t,01) I MY(t,02) I My(t' OM)IT' (4.100)

where 12 denotes the set of infinite length, square-summable, sequences of real num-

bers. Now denote the image of the discrete-view consistency set Cm by AC,. and denote

by and IIIA,,,,, the projection operators onto these respective sets. Analogously to

Result 8, we have

Result 9 Consider the linear operator Tm = M;�IFIA,,. Mm mapping the space

L 2([_I, 1]) X ... x L 2([_I, 1]) onto itself. Then Tm is a projection operator onto the

M times
discrete-view consistency set Cm. That is,

Tm = Mm*][IA,,.Mm = ][IC,,, (4.101)

Proof: Note that from the definition of the operator Mm, it follows that it too is

a unitary operator like M. The proof of this result then is essentially identical to the

proof of Result 8.

Hence the solution to Problem 2 is given by

�m(t) = IICY.(t) - Mm*IIA,,,,MmYm(t) (4.102)

where

�m [�(t, 01) I �(t, 02) I �(t' 9M)IT (4.103)

Due to the fact that the discrete-view consistency set Cm is defined by only a

finite number of constraints, the solution §m(t) to Problem 2 win only involve the

nontrivial estimation of a finite number of coefficients. To see this, let us decompose
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the function M,-,,Y,,,(t) into two orthogonal pieces as follows

MIIIXI-.(0 = IIAMI-.Y.(t) + (I - HA)M'Y"(t) (4.104)

where A denotes the following subspace of L'([-1, 11) x ... x L'([- 1, 1])

m jimes

A = spanf [Pk(t) I ... lPk(t)]', 0 < k < m - 21 (4.105)

m tZmes

and HA denotes the projection operator onto A, and I - HA denotes the projection

operator onto the orthogonal complement of A denoted by A'. The subspace A

contains all functions in L 2([_l, 1]) X ... x L 2([_1, 11) whose moments of order equal

m times

to, or larger than, m - I are identically zero; while the subspace A' contains all

functions in L 2([_l, 1]) X ... x L 2([_l, 1]) whose orthogonal ( and therefore geomet-

m times
ric) moments of order up to, and including, m - 2 are identically zero. Hence, all

functions in A' trivially satisfy the constraints of Theorem 8; that is to say,

(I - IIIA)Mmym(t) G Ac,.. (4.106)

Hence, (I - HA)Mmym(t) is invariant under the projection operator IIA,,",., i.e.

HA,,. (I - IIA) Mm Ym (t) = (I - HA) Mm Ym (t) - (4.107)

Now substituting the decomposition (4.104) into the right hand side of (4.102), we

obtain

§m(t) = Mm*11IA,,,,IIIAMmYm(t) + Mm-HA,,,,'(I - IIIA)Mmyrn(t), (4.108)

which after invoking (4.107), becomes

§m(t) = M�IIIAr IIAMmym(t) + Mm*(I - IIA)Mmym(t), (4.109)
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Note that the second term on the right hand side of (4.109) does not involve the

constraint set C,-,, at all. In fact, this term is a function which has orthogonal moments

up to order m - 2 which are identically zero, and its remaining orthogonal moments

are precisely those of the original data vector Y,.,,(t). To explore the structure of

(4.109) more carefully, we can study one component of the vector 9-(t) as follows.

Equation 4.109 directly implies that for every j = 1, M. I we must have

m-2 00

Xt I OA E a(,,) (0A Ph (t) + E Y(h) (0j) Ph (t) (4.110)
k=O k=m-1

where

y(k)(0j) f 1 Y(t, Oj) PA, (t) dt (4.111)_1

and 0(h)(0j) is obtained from (4.91) and (4.92) and evaluated at 0 -- Op Hence,

similar to the CC case, the solution to Problem 2 amounts to computing Maximum

Likelihood estimates of the parameters a() and b(k) with n + k even, but with k onlyn n

in the range 0 < k < m - 2.

The discrete t, discrete 0 (DD) case

In this case, we assume that the projection data is given at a finite number of angles

and that, at each angle, only a finite number of samples in the variable t are given.

As is pointed out in [90], as a corollary of Theorem 8, we have the following result.

Corollary 3 A finite number of noisy projections read at a finite number of points

cannot be inconsistent.

This result states that any finite data set is consistent. It is interesting to note that

ideally one would like the number of samples in t to be very large so that there is

redundancy and better resolution in the data, but if we have a continuous data set

in t, we have to worry about the possibility of inconsistency in the data.

124



4.6.2 Moments as Sufficient Statistics

In this Section we wish to highlight an important aspect of the study of moments of

the Radon transform. Namely, the idea that, in general, the complete set of moments

of the (noisy) Radon transform of a function f constitute a set of sufficient statistics

for the estimation of the underlying function f. In fact, we show that in the case of a

finite number of views with a finite number of samples per view, only a finite number of

moments of the projection constitute a set of sufficient statistics. The primary reason

for the study of moments as sufficient statistics is that it allows one to embed the

problem of tornographic reconstruction in the context of approximation at different

scales of resolution. In fact, even if the final goal is not the reconstruction of a function

f 1 moments are useful as features for classification, diagnosis and, in general, data

compression in applications such as Non-Destructive Evaluation of materials where

• complete reconstruction of the underlying image may be unnecessary [40]. In such

• scenario, the final goal is to answer a question such as whether a certain feature is

present in the underlying object or not. In these applications, the moments of the

projections can be used to estimate the moments of the underlying object and from

these a statistically sound answer may be provided.

We will show that if the objective is to optimally estimate a function f (x7 y) from

a set of noisy projection data Y, the set of orthogonal moments of Y is a sufficient

statistic for f. This is to say that once we have computed the moments of Y, the

original data may be discarded, for the set of moments will contain exactly the same

information as the original data since this calculation of the moments is simply an

orthonormal transformation of the data.

RecaH the measurement equation for the noisy Radon transform

Y(t7 0) _- Wf + e(t, 0), (4.112)

We again study the three cases CC, CD, and DD as in the previous section.
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CC case: Let us begin by assuming that a complete, continuous set of data Y(t' 0)

is given in both variables t and 0. Under the assumption that the noise process C(t' 0)

is Gaussian and white with intensity 7 2, the ML estimate of f is given by

f,,, -- argmaxP(Ylf), (4.113)
f

where P(Ylf) denotes the conditional probability density of Y given f. A function

of the data S = S(Y) is termed a sufficient statistic for f if and only if S(Y) contains

the same information as Y [81]. More specifically, S is sufficient for f if and only if

P(Ylf) - C(S' Y)P(Slf), (4.114)

where c is a function that is independent of f. Note that this makes intuitive sense

since from (4.114), the maximization of P(Ylf) with respect to f is equivalent to the

maximization of P(S I f ) because c(S, Y) is independent of f . The notion of sufficient

statistics is much more general than our exposition. However, for the sake of focus,

we will not make our definitions any more technical than they need to be. Now to

show that the infinite set of moments of Y(t, 0), MY, are sufficient for f, we use the

results of Section 4.6.1. The probability density P(Ylf) can be written as

I Ily _ Rf 112),P(Ylf) = ki exp(- (4.115)
2U2

where k, is a positive normalizing constant, and the norm used in the exponent on

the right hand side is that of L 2([_1, 11 x [0, 27r]). Now recall the definition of the

operator M acting on L 2([_I, 1] x [0, 27r]) and note that due to the fact that M is a

unitary operator, (4.115) may be written as

1 JjMy _ MRf 112)
P(Ylf) = ki exp( 20,2 (4.116)
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where the norm used on the right hand side is that of L2 ([O, 2-7r]). But the right hand

side of (4.116) is simply P(MYIf) and hence we have

P(Ylf) = P(my1f), (4.117)

which shows that MY is sufficient for f.

CD case: When data is given continuously in t, but only for a finite number of

angles Oj, j -- 1, m, we write the probability density of the vector Y," (t) of all

projections as

gf (t, 0j) 11 2)P(Y,, I f k2 exp(- Y(t, Oj) (4.118)
20r2 j=1

where gf(tOj) denotes the Radon transform projection of f(xy) in the direction

Oj and the norm used in the exponent on the right hand side of (4.118) is that of

L 2Q_1' 1]). Again, similar to the CC case, due to the fact that M (and therefore

M,) is a unitary operator, we can write (4.118) as

-1 Mgf (t, 0j) 11 2)
P(ym If) - k2 exp(- MY(t, Oj) (4.119)

20,2 j=1

where the right hand side is now simply P(MY,,,If), hence showing that

P(Ymlf) = P(MMYMIP (4.120)

DD case: In the case of discrete data in both t and 0, we are given data samples

JY(ti, 9j) : 1 < i < n, 1 < j < ml. The moments of the projections are now defined

in terms of sums that approximate the integral expressions for these moments given

in the CC and CD cases. We denote the DD moments of the data Y byk(�)(Oj) and

define these for j = 1, m as follows

n
k(k) pk (t,) y(t,, Oj) A ti (4.121)
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where ti C [_1' 11, Ati = ti+1 - ti, and t,+, = 1. For each fixed j, (4.121) denotes a

linear transformation of the projection samples at the angle Op Written another way

we have

yp(oj) = UPY(OA, (4.122)

where

YP(OA [f'(O)(0j)' -k(1)(0j)' ... k(P)(0j)]T (4.123)

PO(tl)Atl PO(t2)At2 ... PO(t")At'.'

PI(tl)Atl Pl(t2)At2 ... Pl(t,,)At,
UP (4.124)

Pp(tl),Atl Pp(t2)At2 ... Pp (tn) 'A tn J

Y(Oj) [Y(tl, 9j), Y(t2, Oi), - - - , Y(t" 7 OAT- (4.125)

The samples Y(Oj) are from an n-dimensional Gaussian density, hence we know that

the minimal sufficient statistic must be a vector of length n. Hence, for each j, we must

compute (at least) the numbers k(k) (0j) for k = 0, - - - , n - 1. i.e. we must at least have

p = n - 1. To show that the set of numbers f f7(k)(0j), 0 < k < n - 1, I < i < ml, or

equivalently, the set of vectors f Yn-1 (0j), 1 < i <,ml form a set of sufficient statistics,

it suffices to show that the linear transformation given by Un-, is nonsingular. We

first note that Un-, can be decomposed as follows.

Un-1 Bn-1 V(tl, t2, tn)A, (4.126)

where

'300 0 0 ... 0

'301 '311 0 ... 0

Bn-1 302 1312 1322 ... 0 (4.127)

,30,n-1 31,n-1 02,.-l On-ln-l
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t, t2 t3 . . . tn

V(tJ' t2, tn) t2 t2 t2 . . . t2 (4.128)1 2 3 n

tn-1 tn-1 tn-1 ... tn-1
1 2 3 n

Diag(Atl, At2, At3, Atn) (4.129)

where Oij are the coefficients of normalized Legendre polynomials of order i+j and are

defined in (4.3) on page 91. The matrix Bn_1 is non-singular since an of its diagonal

elements are nonzero [94]. The matrix A is also non-singular since by assumption,

Ati :/: 0 for I < i < n. We recognize the matrix V(tl, t2, tn) as a Vandermonde

matrix whose determinant is given by

det(V(tl, t2, tn)) = H(tl - tq) (4.130)
1>q

for I < 1, q < n. Hence V(ti, t2, tn) is also non-singular since by assumption,

tl < t2 < ... < tn. Therefore, Un-, is nonsingular, as desired. Hence, the set of

vectors f Yn-1 (0j), 1 < j < ml is a sufficient statistic for

4.6.3 Better Sampling Strategies

The study of moments can be used as a means of justifying certain commonly used

sampling strategies in the variables t and 0. For instance, a typical tomogram is

sampled at equaRy (maximally) spaced angles in [0,7r), with each projection con-

taining samples at regularly spaced intervals in t that are symmetrically placed with

respect to the center of the detector plane. (This is clearly an approximation to what

happens in reality with standard detector geometries that are commonly in use.) In

terms of the moments we show that these strategies are, in fact, the best possible in

the sense that they provide the best-conditioned linear formulations for estimating

129



the moments of a function (image) f from moments, in the variable t, of its noisy

and sparse integral projections.

Sampling in the Variable t:

In Section 4.6.2 we showed that when a finite number of projections with a finite

number of samples per projection are measured, the set of vectors M-10A 1 _<

j < ml defined by (4.122) is a sufficient statistic for the underlying function f (x, y).

The numerical stability of the computation of these sufficient statistics is directly

dependent on the condition number of U,,_1 through (4.122). Hence, by studying

the condition number of U,,_1 in terms of the partition t, < t2 < . . . < t", we may

gain some insight as to what the best sampling strategies in t may look like. (The

more ill-conditioned U,,,-, is, the more numerical distortion is introduced when the

sufficient statistics are computed). For convenience, let us denote V(tl, t2) . . . ) tn)

simply as Vn. Note that if we assume that the samples in t are uniformly spaced,

then the condition number of U,,_1 depends only on the condition number of V".

This is because Bn_1 is independent of the samples in t, and under the assumption of

uniformly spaced samples in t, A is a nonzero scalar multiple of the identity matrix

and is hence perfectly conditioned. Under the assumption of uniform sampling in t,

consider the L,,,,, condition number of V,, which is defined as follows.

K(Vn) = JJVnJJ.11Vn-111 (4.131)

From [29] we quote the following result.

Theorem 9 If the minimum of the condition number r.(Vn) is unique as a function

of the partition ti < t2 < ... < tn, then this minimum is necessarily achieved when

the partition is symmetric with respect to the origin, i.e.

ti + tn+i-1 - 0 for i = 1, 2, - - - , n (4.132)
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Although it is not known whether or not the minimum of r,(V,,) is unique, this

theorem suggests that when the object is assumed to lie in the unit disk of the plane,

and uniformly spaced samples are taken in the variable t, the "optimal" sampling

strategy should be one where the samples are taken symmetrically about zero on the

t-axis.

Sampling in the Variable 0

To study the effect of different sampling strategies in the variable 0 on the numerical

stability of the moment estimation problem from projections, we consider the CD

case where projections from a finite number of angles are given while each projection

contains a complete, continuous data set in the variable t (E [-I, 1]. In particular,

recall the expression relating the estimates of the orthogonal moments up to order N

of a function f to moments of its projections given in (4.67) on page Ill

TV T T T T
f- N (DNBN BNDN DNBN YN- (4.133)

Note that in this expression, the condition number of D T B TBNDN determines the

numerical sensitivity of the estimated moment vector LN to sampling strategies in

the variable 0. Figure 4-3 contains the plots of the (2-norm) condition number of

D T B T BNDN (in log scale) versus the number of available views. This plot showsN N

that this condition number does not dramatically improve as the number of views are

increased, while it does degrade if the number of computed moments are increased, i.e.

when the size of the moment estimation problem is increased. This increase is linear,

however. (This can be seen by plotting the corresponding points of each graph versus

N). This fact suggests that in computing the moments of a function from those of its

Radon transform, the numerical stability of the problem depends on the number of

the moments being computed and is essentially insensitive to increasing the number

of views. Figure 4-4 shows the condition number (in log scale) of D TB T BNDN versusN N

decreasing angular coverage for various N and with a fixed number of views of 15.

In particular, the angular coverage is parameterized with an integer c, which we call
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Figure 4-3: Condition Number of D'B TBNDN vs the number of views for variousN N

N

the "compression parameter", represented on the horizontal axis of this figure. The

angular coverage is then taken to be from 0 = 0 to 0 " and in this interval 15 viewsC

are taken at equally spaced intervals of length AO It can be seen that the15c

condition number degrades rather severely as the angular coverage is reduced from

[0, 7r] to [0, - ]. The condition number is also enlarged with increasing N, the number10

of moments to be computed. These observations are consistent with the practice of

choosing a wide angular coverage whenever possible.

4.7 Some Examples and Experiments

In this section we present some examples and experiments to illustrate practical uses

of the ideas discussed in this chapter.

4.7.1 Consistent Estimation with Constraints

In Section 4.6.1 we showed how the problem of producing a consistent Radon trans-

form � from a possibly inconsistent data set Y may be solved with the aid of moments.
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In this section, we give an illustration of this idea when additional constraints, other

than the standard Radon transform constraints, are placed on the function �. These

constraints may involve explicit conditions placed on the function f -- R�, such as

the one we discuss next. Let us assume that we wish to solve the following specific

problem.

Problem 3

min JJY - g1l' (4.134)
9

subject to:

1. g CC

2. f =- R-'g satisfies

ff f(x7y) dx dy > 0 (4.135)

Note that the second constraint can simply be written as

G(O) (0) > O (4.136)
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which, in turn, defines a convex constraint set C, over the functions g, or equivalently

a convex constraint set Al in the moment space of g. Hence, the solution to Problem

3 is given by

� = M*IIAnA�My = Hcnc�y (4.137)

where ldcnc� and HAnA, refer to orthogonal projections onto the (convex) sets C n C,

and AC n Al, respectively. The projection operatorHAenAlmay be approximated by

the method of successive projections [85], otherwise known as Projection onto Convex

Sets (POCS). In this technique, a recursion relation is defined as follows:

P9k = gk+l (4.138)

where P is an arbitrary permutation of the projection operators ITC and HC1, such as

P -- HC11IC1. Picking go - Y, this iteration can be shown to converge to a consistent

solution as k becomes large. This recursive algorithm can easily be recast in terms of

the moments by observing that

IIC = M-111A, M, (4.139)

IIC, = M* IIA1 M. (4.140)

In general, the POCS algorithm given by (4.138) would work whenever the second

constraint in the statement of Problem 3 is any convex-type constraint.

4.7.2 An Approximation of the Radon 'Dransform

In Section 4.3.1, we showed how the Radon transform operator R may be decomposed

into a product of moment operators Q, M*, and the operator A relating the moments

of a function f to the moments of its Radon transform g as follows

R = M*AE2. (4.141)
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This expression suggests that the Radon transform of a function f may be obtained

(exactly) by first computing the (infinite set of) moments of f, then applying the oper-

ator A, and finally, applying M*. In this example we wish to give an illustration of this

idea by computing a projection of a binary object at a particular angle using only a fi-

nite number of moments. In particular, assume that we are given the function f (x, y)

which is the indicator function for the rectangle 0 [-0.44,0.23] x [-0.44,0.23]. i.e.

f (XI Y) = 11 (XY) (4.142)

0, (X, Y)

From (4.27) we have that for moments of a function f up to order N, for every N > 0,

the moments of f and those of its projection at angle 0 are related by

!9N(O) = BNDN(O)TN LN- (4.143)

where 9N(O) denotes the vector of orthogonal moments of g(t, 0) up to order N, LN

denotes the vector of orthogonal moments of f up to order N, and AN = BNDN(O)TN

denotes the linear operator which relates these moments through (4.27). We have

numerically computed the vector LN for N -5, 10, 15, and 20. From these, we have

computed!gN(O) for the same values of N and for 0 = 0. For each 0, the approximation

of g(t, 0) over the interval [- 1, 11 is then given by

N

gN (t, 0) - E G(") (0) Pk (t), (4.144)
k=O

where as N goes to infinity, gN converges to g according to (4.141). To illustrate this

behavior, we have plotted the function 9N(t, 0) for 0 = 0 and for N =5, 10, 15, and

20 in Figure 4-5.

4.7.3 ML Moment Estimation Example and Performance

In this subsection we present an example of the reconstruction of the moments of a

function f(xy) from noisy measured projection data. In particular, let f(xy) be
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Figure 4-5: The functions 9N(t, 0) for N - 5, 10, 15, and 20

given by the image shown in Figure 4-6. This image is an 81 x 81 two-valued image

with dark areas having the value of zero while the white areas have activity level of

10. So f (x, y) is (10 times) the indicator function over the white areas of the image.

This "MIT ellipse" is tilted at an angle of 45 degrees with the horizontal axis and

has ma .or and minor axis lengths of 0.8 and 0.24 respectively. Hence the object is

contained within the unit disk centered at the origin. We consider 60 projections

of this image at equally spaced angles Oj EE [0,7r) with 80 samples per projection

at a signal-to-noise ratio of 10. The noiseless projection data along with the noisy

projection data are shown in Figures 5-26 and 5-27 of Chapter 5 on pages 194 and

195, respectively.

We first compute the orthogonal moments up to order 10 of this image by directly

approximating the integrals representing them over the 81 x 81 pixel grid on which

the image is defined. Next, we use the noisy projection measurements to estimate the

orthogonal moments of the image by first computing the orthogonal moments of the

projections and then applying the ML estimation technique discussed in Section" 4.5.

11Note that throughout Section 4.5 we assumed continuous data in the variable i. In the present
example, the number of samples in i for each projection is sufficiently large so that we may assume
this to be the case.
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Figure 4-6: The MIT ellipse phantom

Figure 4-7 shows the elements of the vector of directly computed orthogonal moments

of the image and the elements of the vector of ML estimated orthogonal moments of

the image versus their index. (The elements of these orthogonal moment vectors are

arranged as defined in 4.11 on page 93.) Figure 4-8 shows the difference between the

respective elements of the computed and estimated values of the orthogonal moments.

To study the performance of the ML moment estimation algorithm, in Figure 4-

9 we plot the trace of the covariance matrices of the estimated orthogonal moment

vectors12 �(,) of a given order k, defined in (4.10) on page 93, versus k and for different

SNR values. As expected, the value of the trace of the covariance matrix of is

larger for larger k. Also, as expected, the corresponding curves for worse SNR's

display larger values for all moment orders.

"Note that for a given k, the covariance matrix of �(k) is simply the (k + 1)1h, (k + 1) X (k + 1),

diagonal block of the covariance matrix Q10 of 'Cio
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Figure 4-8: The difference values between computed and ML Estimated moments up

to order 10 of the MIT Ellipse image versus their index

138



30

25 -

.X SNR=-10

20 -E

co
co 15-
0

0
a)

lo-co SNR=c�

5 -
SNR=l 0

0
0 2 4 6 8 1 0

Order of estimated moment set

Figure 4-9: Trace of covariance matrix versus moment order up to order 10

4-A Proof of Lemma 2

Let p(O) denote the homogeneous polynomial in question. i.e.

p(9) = ao cos'(O)+al cos"(0) sin(O)+. - -+ak-1 cos(O) sin'-'(O)+ak sink(g). (4.145)

9 CASE 1: Assume that p(-x/2) z� 0. Then we can write p(8) as

P(0) -- Cosk(9)q(0). (4.146)

where q(9) has no roots at 0 -- -7r/2 and

q(9) - ao + a, tan(O) + - - - + ak-1 tan k-1 (0) + ak tank(o). (4.147)

Letting u = tan(9) we observe that the right hand side of (4.147) is simply a

polynomial of order k in u. By the Fundamental Theorem of Algebra [61], this

polynomial has at most k real roots. This is to say that there exist at most k

values ui E R such that q(tan-1(uj)) = 0. Given this, we have that the roots of
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q(O) are

Oi - tan-'(ui). (4.148)

We know that the function tan-' is one-to-one over the interval [0,,r). Since

q(,x/2) :� 0 by assumption, it follows that there exist at most k angles Oi C [0, 7r)

for which q(Oi) = 0.

CASE II:- Assume p(r/2) = 0. Let ro(O) -_ p(O), and define the functions

ri(O) for 1 < i < k as follows.

ri ri-,(O) if rjj(7r/2) = 0 (4.149)
cos(O)

Since p(7r/2) -_ 0, we have

k
p(,7r/2) -_ ak sin (7r/2) - ak = 0- (4.150)

Therefore we have that

p(O) = cos(O) (ao cos'(0) + + ak-1 sin"(0)) = cos(O) ri(O) (4.151)

If ri (7r/2) =� 0, Case I shows that it has at most k - I roots in [0, 7r), which

together with cos(O) _- 0 give at most k roots for p(O) in [0, 7r) and we are done.

Now from the definition of ri(O), it is clear that if ri-,(r/2) = 0, then:

ri(O) = ao cos k-i(o) + - + a,-i sin"-'(0). (4.152)

Now suppose that ri(-7r/2) = 0 for i = 0, n - 1 and rn(7r/2) =/- 0, where

1 < n < k. Again, from the definition of ri(O) it follows that

P(O) = CoSn (O)rn(O)- (4.153)

From Case I, rn (0) has at most k - n roots in [0, -7r), which along with CoSn (0) = 0

give at most k roots for p(O) in [0, -7r). D
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4-B Proof of Result 6

Let P(x, y) and Q(x, y) be two real-values functions defined over a simple region 0

of the plane. Then by Green's Theorem [631, we have

,9Q ap dx dy P dx + Q dy, (4.154)A ax ay f,90

where aO refers to the boundary of 0. Now define

XP+lyq
Ql(xy) (4.155)P + 1
Pi(x7y) Xpyq+l (4.156)

q + 1

Letting P =: Pi and Q Q, yields

xP+1 y q dy Xp yq+' dx (4.157)
P+1 80 q+1 o

Now first let P = P, and Q = 0, and then let P = 0 and Q _- Q1, respectively in

(4.154). Together, from these substitutions, we obtain

P q I P+1[1pq x y dx dy � � ( fr x yq dy (4.158)
P + I jaO

-1 Xp yq+1 dx (4.159)
q + 1

Since 0 is an N-sided, simple polygonal region, we can split each of the integrals

on the right hand sides of (4.158), and (4.159) into integrals over each of the sides of

W. Then applying the Mean Value Theorem for integrals [62] to each of these pieces

yields the desired result.
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4-C Proof of Result 7'

Let the eigenvalues of A be given by Al, A2, An. Then we have that

n

Tr(A) Ai (4.160)

n

Tr(A-') (4.161)
i=1 Ai

Let us denote by an and hn the arithmetic and the harmonic means, respectively, of

the eigenvalues of A. Then we have

an= Tr(A)/n, (4.162)

hn = (Tr(A-')/n)-l. (4.163)

We also know that the harmonic and arithmetic means of a set of positive real numbers

satisfy [38]

hn< an (4.164)

This last inequality proves the result. To see why the inequality can not be improved,

let A be the identity matrix. F1

4-D Proof of Lemma 3

To show convexity of the constraint set C, consider two arbitrary gi (t, 0) G C and

92(t, 0) G C, and define 9(t, 0) = P91 (t, 0) + (I - tt)92 (t, 0) for 0 < IL < 1. Clearly,

g G L 2([_ 1, 11 X[0, 2r]). We also have,

g(t, 0 + 7r) = Itgl (t, 0 + 7r) + (I- /L)92 (t, 0 +ir), (4.165)

= Agl(-t, 0) + (I - A)92(-t, 0), (4.166)

= g(-t, 0). (4.167)
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The moments of g satisfy

f g(t, 0) t' dt = tt f gi(t, 0) t' dt + (1 - tt) f 92(t, 0) P' dt, (4.168)

The right hand side of (4.168) is a linear combination of two homogeneous polynomials

of degree k in cos(O) and sin(O). Hence, the left hand side is a homogeneous polynomial

of degree k. This shows convexity.

To show closure of C, let f g,, I be an arbitrary convergent sequence in C. i.e. g" c C

for all n. Suppose that gn ---, 9, that is

119.(t, 0) - 9(t, 0) 11 2 - I 1(gn _ g)2 dt dO --, 0 as n --, oo (4.169)

Now consider the quantity E _= Iff (gn - g) Pk(t)e �n' dt d0j, where Pk(t) denotes the

kIh order normalized Legendre polynomial over [-1, 1]. The Cauchy-Schwartz in-

equality yields

2(t) 2inO 1 t2 ffi gn _ g)2 1/2E < If Pk e dt dO dt dO (4.170)

The second term on the right hand side of (4.170) vanishes as n --+ oo, hence E --+ 0

as n ---+ oo. Therefore, we have that the Fourier series expansion of the orthogonal

moments G (k) (0) of g has the required form given by (4.89) in page 119. Hence, 9 E C.
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Chapter 5

Variational Formulations for

Reconstruction from 1\4oments

5.1 Introduction

In this chapter, we discuss the reconstruction via regularization of a function f (x, y)

from the Maximum Likelihood estimates of its orthogonal moments. The problem

of reconstructing a function from a finite number of moments is known to be highly

ill-posed [951, as is the problem of inverting the Radon transform. In our framework,

we have transformed the problem of inverting the Radon transform into the problem

of reconstructing a function from its moments (classically known as the moment

problem). The fundamental result that the algorithms in this chapter rely on is, as

we showed in Chapter 4, that the ML (or MAP) estimate of an image from samples

of its Radon transform corrupted by Gaussian white noise can be obtained in two

distinct steps. The first step being the ML (or MAP) estimation of the moments

of the underlying image from the noisy data, while the second step involves the

reconstruction of the image from its estimated moments. The first step is a simple

linear estimation problem while the second is a highly ill-posed inverse problem. In

this chapter we present efficient algorithms for recovering the image from its estimated

moments.

We show that there are several advantages to our two-step approach. One is
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that the use of moments provides an explicit mechanism for controlling the degrees

of freedom in the reconstructions. Another is the computational savings inherent to

our approach. Finally, these features yield an overall efficient and versatile set of

algorithms that yield reconstructions of excellent quality when compared to other

available algorithms.

In our formulation of the reconstruction problem, we do not have exact knowl-

edge of the moments due to noise; nor can we estimate all the moments of a function

given finite resolution data. The algorithms we propose take these two issue into

account. The reconstruction of images from their moments is not a central issue in

image processing and pattern recognition theory since the use of moments there is

essentially restricted to applications where extraction of distinguishing features is the

end goal. As a result, little work has been done on the reconstruction of images from

their moments in the image processing community [70]. Also, there has been a little

work in this area within the tomography community [84]. On the other hand, the

moment problem has been the subject of much work in the mathematics community

for many years. For comprehensive surveys see [2, 86]. However, almost all of this

work has been concentrated around questions of existence and uniqueness of solu-

tions. As a consequence, there exists a wealth of theoretical results on the moment

problem, while very little work exists on explicit, and numerically sound, algorithms

for a solution. Here we propose two different techniques. The first is 1-divergence

regularization and the second is Quadratic regularization. Variants of both of our

techniques have been proposed elsewhere in the literature [95, 99, 45, 67, 721 31 but

not in the particular context that we present. We also propose novel numerical tech-

niques for solving these variational problems and study some of their properties and

extensions. We demonstrate, in this Chapter, that our proposed overall tomographic

reconstruction techniques enjoy a number of advantages over classical techniques.

One such advantage over the classical reconstruction techniques, such as CBP, which

rely on the direct inversion of the Radon transform, is that in our framework, there

is an inherent mechanism to control the degrees of freedom of the reconstructions. In

specific, this is given by the number of moments used to obtain the reconstruction.
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This number may, in turn, be estimated using a statistically sound technique such

as the Minimum Description Length criterion. Another advantage is that geometric

information can be incorporated easily and directly into our algorithms.

In this chapter we also discuss an iterative extension of these algorithms that can

efficiently yield a solution to the equality constrained variants of these regularization

problems. We discuss the relative merits and drawbacks of each and support these

assertions with numerical examples which appear at the end of the chapter.

5.2 Regularization

In this section we present regularization techniques for the in-posed problem of recon-

structing an image from its estimated orthogonal moments. The motivation behind

using the I-divergence regularization (IDR) technique is based on several ideas. The

solution of the IDR problem has a particularly compact and attractive form. From

this form it follows that, by picking a positive prior estimate, we are guaranteed that

the solution will be a positive function. This is clearly desirable given the objective of

reconstructing an image (a positive function). The particular form in which the prior

enters the solution allows for the explicit incorporation of prior geometric information

into the reconstruction process. Finally, by picking a uniform prior, we can arrive at

• Maximum Entropy solution which has an interesting statistical interpretation [44].

The Quadratic Regularization (QR) technique enjoys the advantage that it yields

• closed form solution which translates to obvious computational savings. It is also

the preferred classical regularization technique for solving the moment problem [95].

Hence, its solution can be used as a benchmark against the performance of the IDR

algorithm. The QR solution is not guaranteed to be positive so in at least this sense,

it is not as well suited for image reconstruction as the IDR solution.

5.2.1 I-Divergence Regularization

The principle of Minimum I-divergence [17, 89, 91] provides a general method of infer-

ence about a function f when there exists a prior estimate of f and new information
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about f in the form of moments. The principle states that, of all the functions that

satisfy the moment constraints, one should pick the one I with the least 1-divergence

D(f , fo), where this is defined as

DY' fo) = f f f (X) log( fo(x) ) + fo(x) - f (x) dx

where fo is a prior estimate of f.

The basic idea dates back to Kullback [53] who introduced Cross Entropy (or

directed divergence) minimization for measuring the relative information content be-

tween probability density functions. I-divergence was later introduced by Csizar [171

to generalize Cross Entropy to other functions. The principle of Maximum Entropy

[441 is equivalent to the concept of Cross Entropy in the case of uniform Priors fo.

Entropy and more recently I-divergence have a rich history of applications in pattern

classification [881, spectral analysis [87], image processing [102, 35] and recently to-

mography [84, 74, 20, 64]. In these applications, the general problem has been posed

as the following type of equality constrained optimization problem:

min D(f, fo) subject to f f f (x) Oij(x) dx _- 9ij (5.2)
f

In particular, in the context of tomography, the weight functions Oij(x) have

been chosen as appropriate delta functions so that the constraints 9ij are the noisy

measured values of the Radon transform of f [84, 74, 20, 64]. That is to say, the

constraints have the form

f f f (X) 8(t, _ XTWj ) dx dy -_ 9ij (5.3)

where wj is the unit direction vector making an angle Oj with the x-axis. (See the

definition of the Radon transform in Chapter 2.) In fact, most of the tomography

literature on the subject has been concerned with a very special case of the divergence

measure D(f, fo). Namely, the case where fo is taken to be a uniform prior estimate of

f . This corresponds to the maximum entropy reconstruction algorithms. Other vari-
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ants of these algorithms allow for the equality constraints to be inequality constraints

so that some notion of uncertainty in the measured values of 9ij can be taken into

account [45]. Three important features distinguish our approach from other available

algorithms mentioned above. The first is that we allow for arbitrary (but positive)

prior estimates fo so that our approach allows for the incorporation of prior geometric

information not only in terms of the moments, but also in terms of the particular prior

estimate fo we may wish to use. The second is that we use the estimated Legendre

moments instead of the actual measured values of the projections. This is to say that,

in our case, the basis functions are Oij(xy) = Pi(x)Pj(y), where Pi(.) denotes the

j1h order normalized Legendre polynomial over the interval [- 1, 11. We do not use

the estimated moments to form hard equality or inequality constraints but rather use

these estimates, along with their computed covariance structure, to form a composite

cost function that consists of the I-divergence term plus a quadratic form in terms

of the estimated moments. Finally, and perhaps most importantly, we estimate and

use the moments and directly incorporate their estimated covariances, thus ensuring

that these data are used in a statistically optimal way. Since the covariance of the

estimated moments grows without bound for higher order moments, we effectively

only use the first few of the estimated moments. That is, by using moments, we are

able to focus the information in the raw projection data, identifying a much smaller

set of statistically significant quantities capturing essentially all information of use in

reconstruction. This is in contrast to other divergence based algorithms which use

measured values of the projections as in (5.3).

Each of the above three features leads to important advantages over other available

techniques. By allowing general prior estimates fo, we are capable of reconstructing a

much wider class of objects. Classical maximum entropy approaches tend to produce

reconstructions that do not capture fine variations (details) particularly well. This

is a direct consequence of fixing fo to be a uniform prior. We alleviate this problem

by allowing prior estimates that reflect explicit prior knowledge about the underlying

phantom such as its spatial support, locations of objects and regions of interest, and

other localized effects such as edges. By using the Legendre polynomials in a com-
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posite cost function as soft constraints, we have an exact statistical interpretation

of the solution as the Maximum-A-Posteriori (MAP) estimate of f based on noisy

measurements of its moments. We will show this shortly. Lastly, the computational

savings in estimating and using a limited number of moments versus using an of the

available projection measurements are significant. For instance consider a typical sce-

nario where projections from 64 views with 64 samples per view have been collected.

In this case, if all the samples are used as constraints in (5.3), this amounts to over

4000 constraints. In our framework, a typical range for the number of moments used

that would yield a good reconstruction is 15 to 20. This amounts to using between

16x17 - 136 and 21X22 -_ 231 moment values in the cost function. This translates to
2 2

a significantly reduced computational cost.

Formally, we define the I-divergence Regularization (IDR) cost functional as

I )T
JIDR(f,fo)---yD(f,fo)+-(,EN-,CN(f) EN(fN-LN(f)), (5.4)

2

where y E (0, oo) is the regularization parameter, and EN = Q-1 is the inverse of theN

error covariance matrix for the estimate ZN. Now consider the MAP estimate of f

based on noisy measurement of its moments up to order N. Assuming that P(f) is

some prior probability density function on the space of functions f, the MAP cost to

be minimized is given by

J-.p (f 109 P(ZN If) - 109 P(f (5.5)

(f))T
- (ZN- LN EN(fN - LN(f)) - 109 CP(f) (5-6)
2

where c is a normalizing constant depending only on N and EN. Comparing (5-6) to

JIDR(f), we conclude that if

P(f exp(-,yD(f , fo)), (5-7)
C

then JIDR(f, fO) = Jm.pff). The probability density function given by (5.7) is not

a commonplace one. Mathematically, we can consider the function D(f, fo) as a
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distance measure between the two positive functions f and fo. In fact, it is known to

be the unique function that satisfies a set of axioms known as directed orthogonality

principle [45]. These axioms are analogous to those used in defining linear projections

in Hilbert spaces. The function D(f, fo) is in fact known as a directed distance

[451. From this point of view, the probability density function given by (5.7) is quite

analogous to the standard Gaussian density, the difference being that in the Gaussian

case, the exponent is basically the L' norm of the difference f - fo.

5.2.2 Quadratic Regularization

Quadratic regularization (QR) [99, 95, 8] is based on the idea of using the standard

L2 distance as a regularization functional. This approach is a particular case of

a more general class of regularization methods proposed by Tikhonov [99]. The

quadratic regularization approach, in contrast to I-divergence minimization, is not

guaranteed to produce positive functions as solutions, but enjoys the advantage that

it is algorithmically much simpler and numerically efficient.

Prince [72] used a term penalizing non-smooth solutions to form a cost function

in the projection domain. This cost function was then minimized subject to hard

constraints given by the values of the first two moments of the projections. Our

approach differs from that of Prince in several ways. First, the formulations we

present in this chapter do not make use of a smoothness penalty term as did Prince.

We will, however, allude to how such a regularization functional may be incorporated

into our reconstruction algorithms in Section 7.2.

Our regularized problem is formulated in the object space, not the projection

space. Perhaps more importantly, our approach does not use the moments as hard

constraints hence allowing for the computed covariances of the estimated moments

to directly enter the regularized cost functional. Furthermore, we typically use more

than two estimated moments to compute the solution

To begin let us define our QR cost function as follows.

JQR(f, A) = -YQ(f, A) + (fN - LN(f))'EN(fN - LN(f)) (5.8)

150



where
QY' A) f f, y))'dxdy (5-9)

"(f (XI Y) - fO(X

This cost function has a direct statistical interpretation as the negative of the MAP

log likelihood function when f is assumed to be a white Gaussian random field with

a mean value of fo, where the relaxation parameter y is inversely proportional to the

variance of the random field. This approach has been suggested for the reconstruction

of functions from a finite number of noisy moments before [95]. However, the struc-

ture of the noise in the moments has not been explicitly used in the reconstruction

process. In our approach we have directly incorporated the covariance structure of

the estimated moments in the second term of (5.8). We show that this formulation

leads to a closed form solution which can be computed efficiently.

5.3 Solution of Regularized Problems

In this section we proceed to the explicit computation of the solutions to the proposed

regularized problems. To make the presentation simpler, define the vectors Ok (X, Y)

for k = 0, 1, N as

PkWPOW

Ok (X, Y) Pk - 1 (X) P1 (Y)

L Po W Pk (Y)

where Pk(.) is the k1h order normalized Legendre polynomial over the interval [-1,1].

Also define (I)N(xy) as

00 (X, Y)

(PN(X, Y) (X, Y) 5.11)

ON (X, Y)
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5.3.1 I-Divergence Solution

The cost functional JIDR(f) can be written as

JIDR(fh) - (ff f(x1y)4�N(Xy)dxdy-,EN)'EN(ff f(x1y)4�N(Xy)dxdy-fN)

+ -ID(f, fo) (5.12)

To find the minimum of this cost functional with respect to f we use the techniques of

calculus of variations. We can find the minimum of this cost function by computing

its variation SJIDR(f) with respect to f and setting this equal to zero. This variation

is given by

8JIDR(f , fo) = -18D(f , fo) + f fo 'J�N'(XY)F1N(,CN(f)-fN)8f dxdy = 0 (5.13)

with

8D(f, fo) log( f )8fdxdy (5.14)
fo

In order for the variation 8JIDR(f) to be equal to zero, it is necessary that the

integrands in (5.13) vanish. (This is because 8f is an arbitrary variation in f). Setting

the integrands equal to zero yields

'( f ) + "P'N(XY)EN(1CN(f) -EN) = 0

-Y log fo

Rewriting this in terms of f we have

-1 T
f (X� Y) - fo(x� Y) exp(-"bN(X, Y)EN(,CN(f) -EN)) (5-16)

The above is now an equation in f which may be solved. Note that the prior esti-

mate fo enters the solution multiplicatively. This will allow us to directly introduce

geometric information into the solution. We shall have more to say about this later.

The use of calculus of variations to minimize JIDR and the particularly interesting

form of the solution (5.16) are quite similar to those discussed in earlier works on
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the sub ect of I-divergence minimization [45, 89, 44] with hard constraints. What is

different about our approach is that the estimated moments are explicitly used to

form the cost function and not as hard equality or inequality constraints.

Due to the form of the solution (5.16), we may convert (5.16) into a nonlinear

algebraic equation in terms of the coefficient CN defined as follows

CN - Y-N(LN(f) -,EN)- (5.17)

Substituting the expression forCN(f) using (5.16) we obtain an equation in terms of

CN as follows.

CN= EN(f 4 f.(Xl Y) exp('b'N(X, Y)CN)4�N(X, y)dxdy - ZN) (5.18)

Defining

H(CN) fo (X 7 Y) exp('1'N'(X, Y)CN)'bN(X, y)dxdy - ZN) (5-19)

we can write

CN ENH(CN). (5.20)

For the sake of simplicity, we propose to solve (5.20) by linear iteration [15] as follows

CN(j + 1) = -1 ENH(CN(j))_ (5.21)
ly

If this iteration is stable, with a suitable initial guess, CN(j) will approach the unique

solution 1 of (5.20) as j grows large. Linear iteration (or fixed-point iteration) is one of

many algorithms that may be applied to the solution of (5.20). One such algorithm is

the well-known Newton's algorithm [151. In this approach, the equation is essentially

linearized about the best current guess at every step of an iteration that involves the

gradient of the function F(CN) = CN - H(CN) as follows. We wish to solve the

'Uniqueness follows from the fact that the minimization of the cost functional has a unique
solution due to the convex nature Of JIDR
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equation F(CN) = 0. To this end, let CN(k) denote the current best estimate of the

solution and write a local approximation of the function F about this value as follows

F(CN) -- F(CN(k)) + GF(CN(k))(CN - CN(k)) = 0 (5.22)

where

GF(CN(k)) aF (5.23)
19CN CN(k)

denotes the gradient of the function F with respect to CN, evaluated at the current

best guess CN(k). Solving (5.22) for CN, Newton's algorithm is then given by

CN(k + 1) = CN(k) - GF_1(CN(k))F(CN(k)). (5.24)

Stability of algorithm

To study the stability of our fixed-point iterative algorithm (5.21), we carry out a

local stability analysis. To first order, we can approximate the function H(CN) by

expanding it in a Taylor series around some initial value CN(O) which we assume is

sufficiently close to the solution of (5.20). For simplicity, let us consider CN(O) = 0

2 We then have
aH

H(CN) -_ H(Q) + � � CN- (5.25)
19CN 0

Note that

H(Q) =,CN(fO) - fN (5.26)

and let

Do aH -PN(X, y)-K (x, y)dxdy (5.27)- ff fo(x7y)( N
19CN 0

Hence, locally, around 0, (5.21) can be written as

CN(j + 1) -_ -I EN(ICN(fO) - ZN + DoCN(j)) (5.28)

2Our numerical experiments show that CN(O) = 0 is actually often sufficiently close to the

solution of (5.20) to result in convergence to it
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This is now a linear dynamic system whose stability depends on whether the matrix

3(-1/-y)ENDo has stable eigenvalues. . More generally, we have the following result.

Result 10 The iterative system (5.21) is strictly stable around the initial value CN(O)

0 if all eigenvalues of the matrix (-1/7)ENDo are contained strictly inside the unit

disk; where Do is the Jacobian of H with respect to CN evaluated at CN(O) = 0.

This result fixes an allowable range for the relaxation parameter -Y so that the

iteration (5.21) is guaranteed to be stable. Within this range, we can pick a value

of y that provides a desirable level of regularization in our solution. Note also that

Result 10 is only a sufficient condition for the local stability of (5.21). The iteration

may be stable even when the eigenvalues Of (-11-1)ENDo are outside the unit disk.

Furthermore, (5.21) is only one possible algorithm for solving (5.20). Other algo-

rithms, such as Newton's algorithm discussed above, can be used which may have

different stability properties.

5.3.2 Quadratic Solution

Again, to compute the minimum Of JQR(f , fO) we employ the calculus of variations.

It is easy to show that the variation of Q(f, fo) is given by

8Q(ffO) - ff 2(f(X)Y) - fo(xly))8fdxdy (5.29)

which gives

8JQR(f 2-/ 7 Y)-fO(Xl 08f dxdy+2 -ZN)8fdxdy.

(f (x "KN(XY)EN(LN(f)

(5.30)

Setting the integrand equal to zero and solving for f yields

I
Ax 7 Y) = fo(X, Y) - _(b'N(X7Y)EN(LN(f) - ZN)- (5.31)

'Note that if fo(x, y) is picked to be a uniform prior (a constant function = c), the matrix Do is
simply c times the identity matrix so that stability will only depend on the eigenvalues of (-clY)EN
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To solve this explicitly for f, we rewrite this equation in terms of CN (which was

defined in (5.17)) as follows

CN EN '(1�N(XY)(f-(X�y)+d�'(x,y)CN)dxdy-,EN

EN(CN +,CN(fO) -EN), (5.32)

Upon solving for CN we obtain

ON = (III + EN)_1EN(fN - LN(h)), (5-33)

which, in turn gives

N _1F1N(ZN

fQR(XY) f0(XY)+'4�'(XY)(-YI+EN) - LN(fo))- (5-34)

Note that in contrast to the IDR algorithm, the equation (5.32) is linear in CN

and is hence solved explicitly, giving a closed-form solution for the minimizer of the

cost functional JQR(f, fo). This clearly translates to significant savings in terms of

the computation time required to arrive at a solution when compared to the IDR

algorithm.

5.3.3 Properties of the Solutions

In this section we explore some properties of the solutions obtained by using the

proposed regularization schemes.

IDR Solution Properties

The I-divergence regularization problem and its solution have some interesting prop-

erties. Below we briefly mention a few of these.

Form of the Solution and Positivity

In Section 5.3.1, we obtained the solution fIDR(XY) that minimizes the cost

function JIDR(f, fo). This unique solution (uniqueness due to convexity Of JIDR)
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has the general form

T (5-35)
fIDR(X, Y) fo(x, y) exp("TN(XI Y)CN)

where fo(x, y) is a prior estimate of f and ON is the solution of Equation

(5.20). The compact form of this solution makes its numerical computation

quite simple. In particular, as shown in Section 5.3.1, the overall solution of the

variational problem of minimizing JIDR amounts to solving a nonlinear set of

algebraic equations in terms of the coefficient vector CN. This is a particularly

attractive feature of the IDR algorithm since it amounts to doing relatively little

computation in arriving at the final solution.

Also, note that if fo is a positive function of x and y, then the reconstruction

fIDR is necessarily a positive function as well. This is not accidental. In fact,

Csizar [17] identified all distance measures that were consistent with a set of se-

lection axioms (later interpreted as directed orthogonality in [45]) and concluded

that if the functions involved are all real with both positive and negative values,

then minimizing the least squares (L 2) measure is the only consistent choice;

whereas, if all functions are required to be nonnegative, then the I-divergence

measure is the only consistent choice. This fact is indeed a desirable property

since we are reconstructing images (positive functions with greyscale intensity

values between 0 and 255). The fact that we can produce positive functions as

solutions, without explicitly making positivity a constraint, is one of the major

advantages of using I-divergence as a regularization functional.

9 Prior geometric information

The prior fo(x, y) can be used to directly incorporate geometric information into

the reconstruction process. In particular, assume that after performing some

geometric preprocessing on the data, such as extraction of support information

[72, 541, or a preliminary parameterized reconstruction such as the polygonal

reconstructions discussed in Chapter 3, an estimate is obtained of the region

of the plane where the function f is nonzero (i.e. the spatial support of the
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object). Then, according to this information, the prior fo(x, y) can be chosen

as essentially an indicator function over this estimated region. Since the solution

fIDR is composed of fo multiplied by another function as shown in (5.35), this

in effect nulls out the part of the reconstruction that the geometric preprocessor

eliminated as not being part of the spatial support of the object. This feature

of the IDR algorithm is uniquely well suited to situations where it is important

to concentrate the reconstruction on a particular region of interest. To be more

specific, let us carry out a simple example.

Suppose that through some geometric preprocessing it is determined that the

object of interest lies inside a disk of radius r centered at the origin, denoted

by D(O, r). We can pick fo (x, y) to reflect this information. This may be done

in a variety of ways depending on the level of confidence which we place in

the information provided by the geometric preprocessor. If the preprocessor

tends to give very reliable information about the spatial support of the object

of interest, then we may pick fo as follows

fo(xly) a if (x, Y) E D (0, r) (5-36)

IE else

where a = Poo/(7rr'), with goo denoting the estimated value of f fo f (x, y)dxdy

from the noisy projections. Here E is a small but nonzero positive real number

4

If there is some quantifiable level of uncertainty associated with the information

provided by the geometric preprocessor (say for instance uncertainty about the

value of the radius of the region of interest r), this may be incorporated into the

reconstruction process as a parameter that controls the transition of the values of

fO(X1 Y) from points inside D(O, r) to points outside of it. The function fo(x, y),

as defined in (5.36), is discontinuous at the boundary of D(O, r). The uncertainty

in the predicted radius r can be translated into a smoother transition from

4Note that 4E must be positive if the cost function JIDR(f, fO) is to be well-defined.
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High Confldence

................

Low Confidence

Figure 5-1: Taking uncertainty into account when picking prior

values inside the disk to those outside of it by picking fo(x, y) as illustrated in

Figure 5-1. What has been suggested here is merely one way to deal with the

issue of uncertainty. Many other possibilities exist. To some extent, the fact

that many other approaches to incorporating prior geometric information exist

in this context is an indication of the power and utility of our proposed IDR

reconstruction algorithm.

e Approximate Solution

The local analysis of the equation (5.20) can be used to derive an approximate

solution to this equation. This approximation is essentially the result of one

iteration of Newton's algorithm discussed in Section 5.3.1.

Using the first order approximation given in (5.25), we can write

-1
CN EN(CN(fO)-fN + DoCN). (5-37)

Solving this for CN yields the approximate solution

ON - (-YI + ENDo)-1EN(,EN ICN(fo)) (5.38)

This, in turn, yields

hDR(X, Y) -- fo(x, y) exp ((]�'N(X, Y)(YI + ENDo (5.39)
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5.4 Recursive Regularization

In this section we present a recursive refinement of the IDR and QR algorithms that is

based on redefining the prior. In this formulation, an initial prior is chosen, and using

this prior, a solution to the IDR (or QR) minimization problem is computed. This

solution is then used as the prior for a new IDR cost function and the minimization is

carried out again. We show that in the IDR case, the function to which the recursive

regularization algorithm converges is exactly the solution of the following problem:

Problem 4

min D (f, fo), subject to LN (f (5.40)
f

where i*) denotes the projection, defined with respect to the inner product <

IT11,12 1 EN12, of EN onto the range of the operator QN- Here QN denotes

the operator mapping a square-integrable function f G V(D), with support in the

unit disk, to its Legendre moments up to order N. Note that if LN happens to be in

the range Ra(QN) of the operator ON, the constraint simply becomes LN(f) - ZN-

Similarly, the recursive QR solution converges to the solution of

Problem 5

minQ(ffo), subjectto LN(f)--LN (5.41)
f

Hence, recursive regularization provides an iterative method of converting the soft-

constrained solutions LDR and !QR to hard-constrained solutions. If the estimated

moments are not consistent, i.e. ZN 0 Ra(f2N), the proposed iterative algorithms im-

plicitly compute and enforce the projection of EN onto the set of consistent moments

as hard constraints.

Two major advantages are gained from these recursive algorithms. The first is

that we can improve the quality of our reconstructions by "controlling" how strictly

the estimated moment information is enforced in the final solution. This "control"

parameter is given by the number of iterations of the recursive algorithm that we wish

to carry out. The second advantage is that the proposed algorithms automatically and

implicitly compute and enforce the consistent component of the estimated moments as
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hard constraints. This is particularly appealing since no explicit analytic description

of the set Ra(f2N) is known to exist [86].

Formally, let J(f, fo) denote the cost functional of either the IDR or the QR

algorithms. In either case, the solution I is obtained as

f = arg min J(f , fo) (5.42)
f

Let us denote 11 = 1 and define 12 as

f2 = arg min J(f , fl). (5.43)
f

In this way, we recursively have

fk+l = arg min J(f , 1k) (5.44)
f

This recursion forms the basis of the recursive regularization algorithms we discuss

next.

5.4.1 Recursive I-divergence Regularization (RIDR)

Explicitly, the RIDR takes the form of the following recursion.

fk+l (x, y) -_ arg min -yk D (f , jk) + (CN (f 'EN) TEN(CN(f) -EN) (5.45)
f

By appealing to (5.35) the solution at each k may be written as

P(.1,T (X, Y) -(111))
fk+l(Xly) fk(XY)eX N CN' (5.46)

where

,;,-(k+l)
"N Yk EN(jCN(lk+l) -EN) (5.47)
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- (k)In terms of CNI' , we may rewrite this as

+1) k
0 N( fO(X I Y)'I�N(Xy) exp(l�'N(X1 Y) 1: ON(j))dxdy -,EN (5.48)

'Yk j=1

To investigate the stability of this algorithm, we make an approximation similar to

(5.37). Expanding the right hand side of (5.48) in a Taylor series about _0 and solving

for (k+1) yields the following approximationCN'

-(k+l) kDoCN' j)(-YI + ENDo)-'EN EN - LN(fo) - ON( (5.49)

This approximation may be simplified significantly to yield

CN' (I - (YI + ENDo)-'Fl NDo) "' - (1) (5.50)

where an approximation to is given in (5.38). The linear approximation (5.50)

implies a local sufficient condition for the stability of the RIDR algorithm. Formally,

this condition is:

Result 11 The recursive I-divergence regularization (RIDR) algorithm is strictly lo-

cally stable around CN= 0 if the eigenvalues of the matrix

A = I - (YI + ENDo)-'ENDo (5-51)

are strictly inside the unit disk.

Note that if the RIDR algorithm is locally stable around 0, then from (5.50) it follows

that -(k+l) --+ 0 as k -4 oo. In what follows, we shall henceforth assume that theCN'

regularization factor -y is always chosen so that the RIDR algorithm is strictly locally

stable around 0.

As an application of Result 11, let us assume thatENis a diagonal matrixEN

diag[sii], and let us pick fo to be a constant prior with the value of c over the domain
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0. These assumptions imply that A is given by

A = diag[I - (,y + csjj)-'csjj]. (5.52)

so in order to satisfy the premise of result 11, for every i - 1, 2,.- -, N(N + 1)/2, we

must have

+ CSjj)-'CSjj < 1. (5.53)

Simplifying this gives the following equivalent condition.

I/ < (5.54)
+ Csii

This condition is satisfied whenever c > 0. This serves as an indication that the

sufficient condition for the local stability of the RIDR algorithm, as given by Result

11, should not be difficult to satisfy in most cases.

5.4.2 Recursive Quadratic Regularization (RQR)

The recursion (5.44) can be written out for QR explicitly as

(f ))T
fk+ 1 -- arg min -Yk T (f , fk) + (fN - LN EN(fN -,CN(f))- (5.55)

f

From (5.34) we can write the solution for each k as

+,(XY) = 1k (X, Y) + I�T (X, Y) (,Tk I +
lk N EN)-'EN(fN - LN(lk))- (5.56)

Now note that the function 4�T (X, y)fN is the unique 5 fixed point of this iterationN

since it has moments exactly equal to fN. Hence it follows that the solution to the

recursive quadratic regularization problem is simply given by

T
fRQR(Xly) = '1'N(XIy)LN, (5.57)

'Again, uniqueness follows from convexity of the cost functional
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which is, in fact, the best L' (i.e. least-squares error) reconstruction of f from its

estimated moments.

5.4.3 Recursive Regularization and Equality-Constrained

Minimization

At the outset of Section 5.4, we claimed that the RIDR and RQR algorithms solve

Problems 4 and 5, respectively. In this section, we prove this assertion.

Let us consider Problem 4; the argument for Problem 5 is essentially identical.

First consider the case when EN E 7Za(f1N)- It is well known [53, 89, 17] that a

solution to Problem 4 in this case is unique and has the form'

AX) Y) - A (X 7 Y) exp(4� ' (x, y) KN), (5.58)

where the vector of constants KN is chosen such that

LN(f) - fN (5.59)

In fact, if a function of the form (5.58) exists and satisfies the constraints given by

(5.59), then it is necessarily the unique solution of Problem 4. Hence, to show that

fRIDR solves Problem 4, it suffices to show that it has the form given by (5.58) and

moments given by (5.59). Recall from (5.46) that at each iteration of RIDR we have

T (X, Y) -(h+l))
fk+l = fk exp("'N 1, (5.60)

This yields:
k+1

exp(.I)T (X, Y) (5.61)
fk+1 = fo N CN'

i=1

Recall that we have assumed that the RIDR algorithm is stable around 0 so that -(k)CN'

converges to a finite limit point (namely 0). Now through 5.48, this implies that the

6Note that the existence of the solution is guaranteed by the assumption that EN E Ra(QN)
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sum also converges as k --+ oo.i=1 CN'

Hence, as k -* oo, in the limit, the RIDR solution has the same form as (5.58),

k,with KN= =ic"). At the fixed point of (5.60), the solution fRIDR satisfies

fRIDR(X, Y) = !RIDR(X, Y) eXP(-'1�'N(X, Y)C-( N' )) I (5.62)

which, since the elements of the vector 4�N(X, y) are linearly independent, implies that

0 This, in turn, through (5.47), implies thatCN'

L (IRIDR) = EN (5.63)

Therefore, !RID.R(X, Y) is the unique solution of Problem 4 in the case L-N C Ra(QN)

Invoking the convexity of the functional Q(f, fo), a similar argument shows that fRQR

is the unique solution of Problem 5 whenEN E Ra(QN)-

Let us now discuss the case where EN is inconsistent. The statement that EN is

inconsistent is equivalent to stating that it is not in the range Of QN- In practice,

LN may often lie outside of Ra(QN) due to moment estimation error arising from

noise in the measured projection data. We next show that the RIDR solution solves

Problem 4 as foRows

minD(ffo), subject to LN(f) =ZN(c) (5-64)
f

where f(c) is the "consistent part" of ZN, in a sense to be made precise shortly.N

Define the inner-product of two vectors 11 andl2oflength (N+1)(N+I) (same length
2

asfN)with respect to the matrix FIN as

>E,- 1T
< 11, 12 1 EN12- (5-65)

This inner product induces the norm 11 - 11FINon the inner product space of real vectors
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of length (N+1)(N,2) , and is defined by
2

11111EN = (1'EN 1)1/2. (5.66)

In terms of this norm, the RIDR algorithm may be described as

112
fk+l = arg minykD(f, 1k) + JJfN - LN(f ) EN (5.67)

f

Now define the projection operator onto IC = Ra(SIN) with respect to the inner

product< >FIN as
P(I;N) - QN -1nN

�)C (nN.ENQN) EN- (5.68)

It is readily verified that this operator satisfies

p(EN)P(EN) = P(EN) (5.69)x K IC (idempotence)

P(EN)T D(FIN)
A X EN = EN-L X (self-adjoint with respect to < -'- >EN (5.70)

The projection operator onto the orthogonal complement of K, denoted IC is given

by

P(EN) D(EN)
X-L L K (5.71)

The estimated moment vectorfN can be decomposed into its consistent and

inconsistent parts as follows

fN = D(E X NN LN + N-c) + ZN(i)i(E.) EN = Ai-Z,( (5-72)

where f(c) and Z(') respectively denote the consistent and the inconsistent componentsN N

Of LN, which by definition are orthogonal with respect to the inner product < >EN-

Replacing fNin (5.67) by its decomposition and invoking the orthogonality of the

components we may write

2 + 2 (5-73)
fk+l = arg min 7kD(f, 1k) + II'-"Nc) - ICN(f EN N EN

f
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Now clearly, CN(jk) (-z Ra(flN) at every iteration k. Hence, the estimates jk do not

depend on the inconsistent part of the estimated moments AE�('). Therefore, we may

drop the last term on the right hand side of (5.73) without changing the solution

of the optimization problem (5.73). This, in other words, implies that the RIDR

algorithm converges to the solution of

minD(ffo), subjectto LN(f)--"-� (5.74)
f IN

where

P(FIN)
ICN K ZN (5.75)

is the "consistent part" of the estimated moment vector. A particularly interesting

feature of this property of the RIDR algorithm is that an explicit description of the

set Ra(QN) is never used in the algorithm. This is convenient since to our knowledge,

one has not been discovered as of yet [861!

5.5 Numerical Examples

In this section, we study the performance of our proposed algorithms using three

distinct phantoms. We present experiments with various different choices of initial

estimates, various number of views and at different SNR's. To present a coherent set

of experiments, we have organized this section as follows.

1. The phantom to be reconstructed in the first set of examples is shown in Figure

5-2. Here, we will show reconstructions of this phantom using the classical

filtered-backprojection algorithm along with reconstructions produced by the

RQR, IDR, and RIDR algorithms which use the classical FBP reconstruction

as an initial estimate. Other initial estimates, namely produced by maximizing

the Shannon and Burg entropy criteria, are also presented. The intent here is

to show the relative performance of our proposed algorithms with respect to

the choice of various different initial estimates. In addition, for the case when

the FBP is used to construct an initial estimates, we also present experiments
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to study the performance of our algorithms with respect to various SNR's and

different number of moments used in the reconstructions.

2. The phantom to be reconstructed in the second set of examples is shown in Fig-

ure 5-17. This phantom is composed of circular regions with linearly decreasing

radii and linearly increasing activity levels. The choice of this phantom was

motivated by the need to study the spatial and greyscale resolution of our re-

construction algorithm. We compare the performance of the RIDR algorithm

using FBP-based initial estimates to the FBP reconstructions for various cases

where different number of projection views are used at a fixed SNR.

3. The phantom to be reconstructed in the last set of examples if shown in Figure

5-25. We study RIDR reconstructions of this phantom using FBP-based initial

estimates at various SNR's. The choice of this phantom was motivated by two

factors. First, this is the same as the canonical example used in [72], which is the

direct predecessor of this thesis. The second reason for using the "MIT ellipse"

image is to further study the level of geometric detail that the RIDR algorithm

can extract from a given set of noisy data. We also present performance curves

for mean-squared reconstruction errors versus SNR.

Throughout what follows, the SNR is defined the same way as in Chapter 3 and

is given by
SNR - 10 log,, Ei Ej g'(ti, 9j) / (m x n) (5.76)

or2

where m denotes the number of views and n denotes the number of samples per view,

and o- 2 is the variance of the corrupting noise. In order to quantify the quality of

the reconstructions in all examples that follow, we define the percent Mean-Squared

Error (MSE) as:
MY - 2dx du% MSE X 100% (5-77)

ff f2 dx dy
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5.5.1 Example set I

In this section, we reconstruct the phantom shown in Figure 5-2 from estimated

orthogonal moments up to order 8 via the IDR, RQR and the RIDR algorithms.

We show how the choice of different initial estimates affect the reconstructions. The

results of RIDR reconstructions using different initial estimates are summarized in

Figure 5-16.

Figure 5-2: Phantom for Example set I

In this example we measured 64 projections with 64 samples per projection at

various signal to noise ratios. The original noiseless and noisy sinograms are shown

in Figure 5-3. To start, we present the classical FBP reconstruction produced from

the data in Figure 5-4 with SNR--10.

Figure 5-3: Left to Right: Sinogram of Phantom, Noisy Sinogram at SNR of 10
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Figure 5-4: Filtered Backprojection with 3rd order Butterworth filter with 0.25 nor-
malized cutoff frequency. SNR-10

This reconstruction is produced with a 3-rd order Butterworth filter with 0.25

normalized cutoff frequency. This reconstruction is the "best" FBP reconstruction

in the sense that the filter order and cutoff frequency have been carefully chosen to

produce (visually) the best reconstruction possible. In a series of experiments that

followl this FBP reconstruction is used to produce an initial estimate of the underlying

phantom. The pixel values of the FBP reconstruction are, in general, not guaranteed

to be positive values. Hence, in order to use the FBP reconstruction as an initial

estimate, we add a number to each pixel value in the FBP image in order to maintain

positivity. Furthermore, to speed up the convergence, we scaled the result so as to

produce an initial estimate with integral equal to the estimated zeroth order moment.

In particular, let !FBp denote the filtered-backprojection reconstruction. Then our

FBP-based initial estimate fo is given by

fO a(!FBP + 0) + (5.78)

where

-min(�,v)fFBP if min(�,,y)fFBP < 0, (5.79)

0 if min(,,,,,,)1FBP >_ 0
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and
a Poo - cA (5.80)

ff !FBP(X, y) dx dy +,3A'

where A = 4 is the area of the square pixel grid [-1, 1] x [-1, 11 over which fFBP is

defined, and r: -_ 10' is a constant value added in to maintain positivity. In our ex-

perience, the scaling a (which is entirely data-driven) produces better reconstructions

with fewer iterations of the RIDR algorithm.

Quadratic Reconstruction with FBP Initial Estimate

The initial estimate fo for this reconstruction was chosen as the offset and scaled

version of the best FBP reconstruction given by (5.78). Here we use moments up to

order 8. This FBP-based initial estimate, along with the RQR reconstruction after 2

iterations and the RQR reconstruction after 8 iterations are shown in Figure 5-5. No

further improvement was observed after 8 iterations. (Note that actually, the RQR

solution can be computed directly in closed form without any iterations as described

in Section 5.4.2) Note that while this reconstruction is an improvement over the FBP

reconstruction both visually and in terms of MSE, it appears "smeared" or "diffuse"

with little edge information preserved. As we shall see, the RIDR algorithm produces

reconstructions which give rise to better resolution of local and global geometric

information.

Uniform Prior Over the Unit Disk

The Maximum Entropy solution subject to the estimated moments can be arrived at

by choosing a uniform prior fo. In this case, we pick fo to be a uniform image over

the unit disk such that its total area is equal to the estimated zeroth order moment

Aoo. i.e.
C if (x7y) D7

f0(x7 Y) 0 if (xy) D (5-81)

where

C = POO/'X (5.82)
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M

Figure 5-5: Counter-clockwise from upper left: Phantom, computed FBP initial esti-
mate (% MSE=55.3, RQR result after 2 iterations (% MSE=17.8), RQR result after
8 iterations (% MSE-13.4). Data: 64 projections w/ 64 samples per projection at
SNR-_ 10; moments up to order 8 were used.
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Moments up to order 8 were used. The phantom, the prior estimate, the IDR and

the RIDR reconstructions are shown in Figure 5-6. A value of -Y -_ 35 was used and a

total number of 10 iterations of the RIDR algorithm resulted in convergence. As can

be seen, the RIDR reconstruction produces a very rough estimate of the underlying

image with smooth or "flattened" edge regions. This is essentially due to the fact

that the Maximum Entropy prior seeks the "flattest" reconstruction that matches the

data best. As we will show next, a modestly more informative initial estimate, such

as the FBP-based initial prior can yield significantly better RIDR reconstructions.

Figure 5-6: Counter-clockwise from upper left: Phantom, uniform initial estimate (%
MSE=65.7), IDR solution (% MSE--55.9), RIDR solution (% MSE=15.8). Data: 64
projections w/ 64 samples per projection at SNR= 10; moments up to order 8 were
used.
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Burg Initial Estimate

In this case, the initial estimate fo was computed from the estimated moments ac-

cording to the following :

fo - arg min -to f - log(f)dxdy + (EN - LN(f))'EN(IEN - LN(f)), (5.83)
f f fD

with 7o -- 22, and N = 8 (i.e. moments up to order 8 used). The first term in this

cost function corresponds to the Burg Entropy of f, which is known to give "peaked"

or 44 spikey" results [45]. This procedure was designed to avoid choosing a uniform

prior as fo. The choice of a uniform prior produces the maximum Shannon entropy

solution which in contrast to the Burg entropy prior, tends to suppress features and

"flatten out" the reconstruction. The resulting fo from minimizing (5.83) has the

form

fo (5-84)1 + _yO-1(J)TN(X, Y)EN(LN(h) -fN)'

which can be solved for fo according to the analogous iterative procedure to that

described in Section 5.3.1. Next, the solution given by (5.84) is used directly as the

initial estimate 7. The initial estimate, the IDR solution and the RIDR solution are

shown in Figure 5-7. In this reconstruction moments up to order 8 were used with

data composed of 64 projections with 64 samples per projection at SNR of 10.

FBP Initial Estimate

In this section we produce reconstructions of the phantom shown in Figure 5-2 with

a prior estimate fo which is picked to be an offset and scaled version of the filtered-

backprojection solution shown in Figure 5-4. Again moments up to order 8 were used

in the reconstruction.

Due to the nonuniform nature of the FBP-based initial estimate, a rather large

value of the regularization factor (-y = 200) had to be used first in order to keep the

'Note that this initial estimate is, in general, not guaranteed to be positive, but in this example,
it happened to be positive so that no further processing was necessary to construct a "valid" initial
estimate
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Figure 5-7: Counter-clockwise from upper left: Phantom, Initialization computed
using (5.83) without support information (% MSE=39.8), IDR solution (% MSE=31),
RIDR solution (% MSE-10.3). Data: 64 projections, 64 samples per projection with
SNR=10; moments up to order 8 used.
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IDR algorithm stable. After having computed the IDR solution with this value of -Y,

it was then possible to use a smaller value of y = 30 in subsequent iterations of the

RIDR algorithm. Figure 5-8 shows the initial estimate fo, the RIDR solution after 3

iterations, and the RIDR solution after 10 iterations. No marked improvement was

observed in further iterates of the RIDR algorithm in this case. Note that the RIDR

algorithm has begun to eliminate the spurious features produced by the FBP solution

after only 3 iterations. After 10 iterations, it has successfully eliminated essentially au

the clutter produced by FBP that was not part of the original image. It has further

improved the quality of the reconstruction within the spatial support of the object.

It is worth noting the fact that our reconstructions quickly null out all but a circular

region tangent to the square image grid. This is a result of the assumption that

all functions to be reconstructed are nonzero only inside the unit disk. Consistent

with this assumption, the orthonormal Legendre polynomials Pk(t) over [-1, 1] were

used in computing the moments of the projections from which the moments of the

underlying image were estimated.

Effect of the number of moments used on performance:

To see the effect of the number of moments used in the reconstructions, we present

MSE values versus number of moments used in Figure 5-9. In this graph, the MSE

error of the RIDR reconstructions is shown when moments up to order 2, 5, 8, and

11 were respectively used in the reconstruction. In these reconstructions, the data

was composed of 64 projections with 64 samples per projection at SNR of 10, and all

used the same initial estimate which was chosen to be the FBP-based initial estimate.

Figure 5-10 shows the reconstructions using 2, 5, 8, and 11 moments respectively in

counter-clockwise order.

As can be seen from Figure 5-9, the use of higher order moments does improve the

reconstructions. However, after some point (in this case moments up to order 8) the

effect of using higher order moments is not significant, This phenomenon is essentially

clue to the effect of the significantly reduced weighting placed on these higher order

estimated moments by the inverse of the moment estimation error covariance matrix
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Figure 5-8: Counter-clockwise from upper left: Phantom, fo based on FBP (%
MSE-55.3), RIDR solution after 3 iterations (% MSE-38.1), RIDR solution after
10 iterations (% MSE=11.1). Data: 64 projections w 64 samples per projection at
SNR= 10; moments up to order 8 used.

which is explicitly used in the RIDR algorithm.

Effect of noise on performance:

To show the effect of noise on the quality of the reconstructions, Figure 5-11 shows the

MSE values of the FBP reconstruction and the final RIDR reconstructions with FBP-

based initial estimates at various SNR's. In these reconstructions, estimated moments

up to order 8 were used. As can be seen, our algorithm performs significantly better

than the FBP algorithm at all SNR's while at higher SNR's this better performance

is more dramatic. This indicates that, in terms of MSE, the RIDR algorithm is most

useful in low SNR scenarios.
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Figure 5-9: MSE versus number of moments used in reconstructing the phantom of

Figure 5-2

Figure 5-10: Counter-clockwise from upper left: reconstructions using moments up to

order 2, 5) 8, and 11. Data: 64 projections w/64 samples per projection at SNR= 10.

Initial guess was based on FBP in every case.
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Figure 5-11: MSE versus SNR in reconstructing the phantom of Figure 5-2: Moments

up to order 8 used.

Effect of Perfectly Known Support

In this subsection, we study the effect of perfectly known support on the performance

of our RIDR algorithm. We combine the known support with the Burg initial esti-

mate, and the FBP-based initial estimate. It assumed that the spatial support of the

phantom is perfectly known, and this information is encoded into the initial guess by

multiplying the solution of (5.84) and the FBP-based prior (5.78) by the indicator

function of the supporting set. The resulting image is then normalized according to

a similar procedure as in (5.78) so as to ensure having an initial estimate that is I)

positive and II) has zero-th order moment equal to the estimated zero-th order mo-

ment Poo. The resulting fo is then used to compute the IDR solution and the RIDR

solution. Figure 5-12 shows the reconstructions using the Burg initial estimate with

perfect support information and using moments up to order 8. The data consisted of

64 projections with 64 samples per projection at SNR of 10. It is seen that the com-

puted fo gives a very coarse estimate of where the main features of the object lie. The

IDR solution refines this initial estimate. The RIDR solution refines it further to an

image in which the features are quite distinctly captured. The marked improvement
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Image Burg est. w/o suppt Burg est. w/ suppt !RIDR W/O SUPPt !RIDR W/ SUPPt

% MSE 39.8 37.9 10.3 8.9
Image FBP est. w/o suppt FBP est. w/ suppt 1RIDR W/O SUPPt 1RIDR W/ SUPPt

% MSKI-_ 55.3 10.9 11.1 6.2

Table 5.1: MSE values for reconstructions using Burg prior with and without support
information

over the FBP solution is quite clear.

Figure 5-13 shows the reconstructions using the FBP-based initial estimate with

perfect support information and using moments up to order 8. The data again con-

sisted of 64 projections with 64 samples per projection at SNR of 10. Again it is seen

that the coarse initial estimate provided by the FBP reconstruction is improved in the

final RIDR reconstruction to a point where the final reconstruction contains much of

the geometric information of the underlying image. Table 5.1 shows the MSE values

for the RIDR reconstructions using the Burg-based and FBP-based initial priors with

and without knowledge of the support of the underlying object. It is seen that the

reconstructions using the Burg estimate with and without support information differ

by little in terms of the MSE values incurred. They also look rather similar in visual

terms. The reconstruction using the FBP-based initial estimate with support infor-

mation is somewhat better than its counterpart without support information shown

in Figure 5-8 on page 177. This difference is seem both visually and in terms of the

improved MSE values shown in Table 5.1.

These observations indicate that the RIDR algorithm is capable of producing bet-

ter reconstructions if provided with a-priori information regarding the spatial support

of the image. This information is, however, not necessary since the RIDR algorithm

appears to do a fairly good job of localizing the important features of the image

without a-priori support information.
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Figure 5-12: Counter-clockwise from upper left: Phantom, Initialization computed
using (5.83) with support information (% MSE=37.9), IDR solution (% MSE=28),
RIDR solution (% MSE=8.9). Data: 64 projections, 64 samples per projection with
SNR--10; moments up to order 8 used.
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Figure 5-13: Counter-clockwise from upper left: Phantom, Initialization computed
using FBP with support information (% MSE=10.95), IDR solution (% MSE=10.7),
RIDR solution (% MSE--6.2). Data: 64 projections, 64 samples per projection with
SNR--10; moments up to order 8 used.
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Effect of Estimated Support

In this subsection we present a comprehensive example of the application of the

concepts and algorithms discussed throughout this thesis. Specifically, we -first use

the concepts in Chapter 3 to estimate the spatial support of the underlying phantom

from the noisy projection data by fitting a binary polygonal region to the data. We

use the MDL criterion, in fact, to find a polygonal region of least number of sides

that fits the data best. Next, we define the indicator set of this estimated region and

use this to constrain the best FBP solution to the estimated spatial support. The

output of this process is then used as the initial estimate, fo for the RIDR algorithm.

First, in order to obtain a reasonable polygonal fit to the given data, we normalize

the data by its average value. i.e. we define the new data set Y as

Y(ti, 0j) = AtAO Y(ti' 0j) (5.85)
27r Ei Ej Y(ti' 0j)

Recall the assumption that all images in this thesis are contained in the unit disk.

Hence, the above renormalization of the data is necessary to ensure that the polygonal

reconstruction with unit amplitude is indeed contained inside the unit disk. Figure

5-14 shows the MDL cost values incurred versus the number of sides of the polygonal

fit to the normalized data. The minimum of this graph at N = 5 indicates that a

5-sided polygonal fit is appropriate.

A value of -/ = 30 was again applied for the regularization parameter, while

moments up to order 8 were used. The data set here is still 64 views with 64 samples

per view at SNR of 10. Figure 5-15 shows the phantom, the initial estimate, the

solution after 3 iterations of the RIDR algorithm and the solution after 10 iterations

of the RIDR algorithm. More iterations did not produce a significant difference in

the reconstructed image. Moments up to order 8 were used in the reconstructions.
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Figure 5-14: MDL cost for polygonal fit vs number of sides

Figure 5-15: Counter-clockwise from upper left: Phantom, FBP-based initial estimate
with estimated support (% MSE--24.3), RIDR result after 3 iterations (% MSE=15.3),
RIDR result after 10 iterations (% MSE=9.4). Data: 64 views, 64 samples per view
at SNR--10; moments up to order 8 used.
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Figure 5-16: MSE of Initial Estimates vs. MSE of final RIDR reconstructions for

Example set I: Moments up to order 8 used

5.5.2 Example set II

In this set of examples, we reconstruct a new phantom shown in Figure 5-17.The

phantom to be reconstructed is composed of circular regions with linearly decreasing

radii and linearly increasing activity levels. The choice of this phantom was moti-

vated by the need to study the spatial and greyscale resolution of our reconstruction

algorithms. We compare the performance of the RIDR algorithm to that of the

filtered-backprojection algorithm for various cases where different number of projec-

tion views are available at a fixed signal to noise ratio of 10 '. Figure 5-24 summarizes

the MSE values versus the number of views for the various reconstructions we discuss

next.

Due to the increased complexity of the new phantom we wish to reconstruct,

moments of up to order 10 were used in the reconstructions reported in this example.

In order to speed up the convergence of the RIDR algorithm and ensure stability,

different value of the regularization parameter were applied at different iterations. In

8Note that the SNR per sample in the sinogram is kept fixed while the number of samples is
increased. This means that for higher number of views, the variance of the noise corrupting the
samples is proportionally increased to keep SNR per sample at a fixed value of 10
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all reconstructions for this example, the (offset and scaled) best FBP reconstruction

was used as the initial estimate.

32 views, SNR_ 10

We first collect 32 equally-spaced views between 0 and 7r with 64 samples per view

at SNR of 10 . The noiseless and noisy sinograms are given in Figure 5-19. Figure

5-18 shows the Phantom, the initial estimate based on the best FBP solution, the

IDR and the RIDR solution after 15 iterations. The MSE values are shown in Figure

5-24. It is seen from the sample reconstruction that with 32 projections, the RIDR

has been able to roughly extract the largest and the brightest of the circles. It has

not, however, been able to reconstruct the circle of medium size with modest activity

level which is the one on the lower right side of the phantom. This indicates that

with fewer projections, the reconstructed images show less geometric and amplitude

resolution, as we would expect.

64 Views, SNR = 10

Here we use 64 views with 64 samples per view at a signal to noise ratio of 10. The

noiseless and noisy sinograms are displayed in Figure 5-21.

On the first pass of the RIDR algorithm (otherwise called IDR) we used 7 = 500

while on the second iteration this value was reduced to 7 = 50. Finally, seven more

iterations were carried out with -y = 15, at which point convergence was attained.

The initial FBP-based estimate, the solution after the first iteration and the final

reconstruction are shown in Figure 5-20. In this case, we can see that all four circular

features are accentuated in the final RIDR reconstruction, showing good geometric

resolution.

128 views, SNR=10

Finally, we collect 128 equally-spaced views between 0 and 7r with 64 samples per

view at SNR of 10. The noiseless and noisy sinograms are given in Figure 5-23.

Figure 5-22 shows the Phantom, the initial estimate, the IDR and the RIDR solution
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Figure 5-17: Phantom for Example set II

after 10 iterations. The MSE values are shown in Figure 5-24. It is seen that the

reconstruction is improved in visual terms (except for the smallest circle), while the

MSE improvement is not significant when compared to the previous case where 64

views were used.
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Figure 5-18: Counter-clockwise from top left: Phantom, Initial Estimate from FBP,
IDR reconstruction, Final RIDR reconstruction (32 views, 64 samples per view, SNR
=10, moments up to order 10 used)

Figure 5-19: Left to right: Noiseless and noisy sinograms for phantom in Figure 5-17:
32 views, 64 samples per view, SNR -_10
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Figure 5-20: Counter-clockwise from top left: Phantom, Initial Estimate from FBP,
IDR reconstruction, Final RIDR reconstruction (64 views, 64 samples per view, SNR
=10, moments up to order 10 used)

Figure 5-21: Left to right: Noiseless and noisy sinograms for phantom in Figure 5-17:
64 views, 64 samples per view SNR -_10
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Figure 5-22: Counter-clockwise from top left: Phantom, Initial Estimate from FBP,

IDR reconstruction, Final RIDR reconstruction (128 views, 64 samples per view, SNR

-- 10, moments up to order 10 used)

Figure 5-23: Left to right: Noiseless and noisy sinograms for phantom in Figure 5-17:

128 views, 64 samples per view, SNR =10
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Figure 5-24: MSE versus number of views for computed FBP prior, IDR solution and

RIDR solution, SNR=10, moments up to order 10 used

5.5.3 Example set III: The MIT Ellipse

In this Section, we perform reconstructions of the image of the "MIT ellipse" displayed

in Figure 5-25. This image was also used by Prince in his PhD thesis [72]. This image

is an 81 x 81 two-valued image with dark areas having the value of zero while the

white areas have activity level of 10.

AR reconstructions use 60 measured views at 81 samples per view. The noiseless

sinogram appears in Figure 5-26. The MIT ellipse is tilted at an angle of 45 de-

grees with the horizontal axis and has major and minor axis lengths of 0.8 and 0.24

respectively. Hence the object is contained within the unit disk centered at the origin.

In this example we study the performance of our algorithm with respective to

changes in SNR using a fixed number of moments. We used moments up to order

5 in all the reconstructions shown below and the initial estimate was based on the

best FBP reconstruction in every case. Other experiments performed for the SNR

values used in this subsection, and using more moments, did not show' significant

improvements. Hence, we show results with moments up to order 5 only.

We study 4 sets of reconstructions for which the SNR values were chosen to be
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-10, 0, 10, and 20. The noisy sinograms for all cases are shown in Figure 5-27.

In Figures 5-28 and 5-29 we show the corresponding FBP and IDR reconstructions,

respectively. Figure 5-30 contains the final RIDR reconstructions. The MSE values

of the original FBP reconstructions, along with the MSE values of the RIDR recon-

structions are shown versus SNR in Figure 5-31. As this figure shows, for a fixed

number of moments (up to order 5) used in the reconstruction, at low SNR's our

algorithm performs significantly better than the best FBP algorithm. For high SNR

cases, the improvement over the classical FBP reconstructions is, in terms of MSE,

not as significant. Visually, however, our reconstructions are still superior to the

FBP reconstructions. This again affirms our assertion in Example 2 that the RIDR

algorithm appears to be most useful in low SNR situations while, at least visually, in

high SNR scenarios it is still superior to FBP. Note that if higher order moments are

used, it may be possible, depending on the geometric characteristics of the underlying

image, to obtain better reconstructions over a wide range of signal to noise ratios. In

the case of the MIT ellipse image, we used moments above order 5 at SNR's of -10,

0, 10 and 20, and observed that the resulting reconstructions were not significantly

better than those produced with moments only up to order 5. This may, in general,

not be the case for a different image.

5.6 Conclusion

In this chapter we have presented variational algorithms for the reconstruction of

an image from a finite number of its noisy estimated moments. In particular, we

studied (I) the Divergence regularization approach (IDR), which can be interpreted

as the Maximum A-Posteriori estimate of the image, and (II) the iterative Divergence

regularization approach (RIDR) which enforces its solution to have moments equal to

the (consistent projection of) the estimated moments. The quadratic regularization

algorithm was also studied.

We showed that given a rough initial estimate of the underlying image, such as the

FBP reconstruction, the IDR algorithm marginally improves the quality of the recon-
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struction while RIDR produces considerably improved reconstructions at very low

signal-to-noise ratios when compared to the classical filtered-backprojection recon-

struction algorithm. Due to the fact that our proposed algorithms make explicit use

of the covariance matrix of the estimated moments, higher order estimated moments,

the estimates of which are more inaccurate, are weighed less than lower order ones.

Hence our proposed algorithms essentially make use of a finite and modestly small

number of moments to produce superior reconstruction. This feature, along with

the overall structure of our algorithms and their observed rapid rate of convergence,

demonstrate that our algorithms are also computationally efficient.
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Figure 5-25: The MIT ellipse phantom

Figure 5-26: The noiseless sinogram of the MIT ellipse: 60 views, 81 samples/view
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Figure 5-27: Counter-clockwise from top leff:MIT ellipse sinograms at SNR 20, 10,
0, and -10: each contains 60 views with 81 samples/view
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Figure 5-28: Counter-clockwise from top left:FBP reconstructions of MIT ellipse at
SNR = 201 10, 0, and -10

Figure 5-29: Counter-clockwise from top left:IDR reconstructions of MIT ellipse at
SNR = 201 10, 0, and -10. Moments up to order 5 used.

196



Figure 5-30: Counter-clockwise from top left: RIDR reconstructions of MIT ellipse
at SNIR. 20. 10. 0. and -10. MomentsUD tOorder .5 used.
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Figure 5-31: MSE versus SNR for FBP and RIDR solution with FBP-based initial
estimate: Moments up to order 5 used.
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Chapter 6

Reconstruction of Polveons fromC1.1 %-;p

1\4oments: Connections to Array

Processing

6.1 Introduction

In this chapter we present novel algorithms for the reconstruction of binary poly-

gons from their estimated complex moments. We show, in fact, that this problem

can be formulated as an array processing [81] problem, hence exposing a seemingly

deep connection between the fields of tomography and array processing. This con-

nection implies that a host of numerical algorithms such as Total Least Squares and

ESPRIT [77], are now available for application to tomographic reconstruction prob-

lems. Furthermore we observe that the estimated complex moments turn out to have

uncorrelated errors across moments of different order. This fact makes the statement

of our reconstruction problem even more similar to the assumptions that underly a

standard array processing problem.

Mathematically, our algorithms are based on the idea that the vertices of a simply-

connected polygonal region in the plane are determined by a finite number of its mo-

ments. Davis [18] showed, using the Motzkin-Schoenberg formula of complex analysis

[83], that a triangle in the plane is uniquely determined by its moments of up to order
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3. We have generalized his result using Prony's method [41] to show that the vertices

of a planar, simply-connected, n-gon are uniquely determined by its moments of up

to order 2n - 3. This implies that 2n - 2 projections from distinct angles in [0, -7r)

suffice to uniquely determine the vertices of any simply-connected n-gon in the plane.

This result is an improvement on theoretical results dealing with reconstructability

from few projections such as those discussed in Section 2.2.2.

The organization of this chapter is as follows. In Section 6.2, we discuss the

mathematical basis of reconstruction of polygonal regions from a finite number of

their complex moments. In Section 6.3 we discuss the observation that the errors

in estimating the complex moments of a function f from noisy projections are un-

correlated across moments of different order. In Section 6.5.1 we make direct use of

Prony's method and apply ordinary and total least squares estimation algorithms to

compute estimates of the vertices of polygons. In Section 6.5.2 we present a matrix

pencil technique for the estimation of polygons from moments. Finally, in Section 6.6,

we study the performance of the proposed algorithms and observe that the proposed

algorithms do not perform well even with very little noise in the measured data. We

discuss some reasons why this is so and suggest possible improvements. Due to the

abundance of techniques in array processing, it is impractical, in our context, to be

exhaustive in showing the applications of all the well-known algorithms of array pro-

cessing to our reconstruction problem. Therefore, we have only shown some instances

(namely, least squares Prony and pencil methods) of the possible applications of these

algorithms. We defer further study of other algorithms and their relative performance

to future research efforts.

6.2 Mathematical Background

In 1977 Davis [18] showed that any triangular region in the plane is uniquely deter-

mined by its first four complex moments. This results was derived as a corollary

to a little known result in complex variable theory which he termed the Motzkin-

Schoenberg Formula. He had worked out an alternative proof of this formula in an
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earlier (1964) paper [19], where he also discussed some generalizations and applica-

tions of this result. In this section we prove a generalization of his results to show

that vertices of n-sided, simply-connected polygonal regions in the plane are uniquely

determined by a -finite number of their complex moments.

Let T designate a triangle in the complex plane whose vertices are given by zi,

Z2, and Z3- If A denotes the area of T and h(z) is any analytic function in the closure

of T, the Motzkin-Schoenberg (MS) Formula [83] states that

f fT h" (z) dx dy = 2 A det (U) / det (V) (6.1)

where

1 1 1

U Z1 Z2 Z3 (6.2)

h(zi) h(Z2) h(Z3)

V Z1 Z2 Z3 (6.3)

Z 2 Z2 Z2
1 2 3

By considering triangulations of n-sided polygons, Davis [19] extended this formula

to general polygons as follows.

Theorem 10 [19] Let zj, Z2, Zn designate the vertices of a polygon P. Then we

can find constants a,, ... , a,, depending upon zj, Z2, i Zni but independent of h,

such that for all h analytic in the closure of P,

n

f fp h" (z) dx dy aih(zi). (6.4)

If r > n and z,,,+,, ... , z, are additional points distinct from zj, z,,, and if there

are constants bl, b, which depend only upon zi, ... , Z' such that

f fP h"(z)dxdy bih(zi) (6-5)
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for all h analytic in the closure o P, then

bi ai, 1 < i < n (6.6)

bi 0, n + I < i < r (6.7)

Two observations are in order about the implications of this result. First we can prove

the following result for simply connected polygons 1 using the same line of reasoning

as Davis [19].

Lemma 4 Let P be a simply-connected polygonal region. The coefficients f ajJ in

(6-4) are all nonzero if and only if P is nondegenerate.

Proof: Using Green's theorem in the complex plane and the Cauchy-Riemann

equations for analytic functions [19], the integral in (6.4) can be rewritten as

h" (z) dx dy f h'(z) dTf fp 2 P (6.8)

where i = V�'-_Tl, OP denotes the boundary of P, and -5 denotes the complex conjugate

of z. The assumption that P is simply connected implies that the boundary of P

consists of one piece. Hence, we can assert that this boundary is composed of n

straight lines which we call S1, S2, - - -, s,,,; where sj connects the vertices zj and zj+,.

For convenience, we assume that the vertices zj of P are arranged in the counter-

clockwise direction in the order of increasing index. Hence, splitting the right-hand

side of (6.8) into a sum of terms over the sides and using the expression for the

equation of a line in the complex plane [19], we can write

n

h"(z) dx dy E(aj-, - aj)h(zj) (6.9)
f fP 2 j=1

where
Zj - Zj+l

aj (6.10)
zj - zj+1

1A simply connected domain is one whose boundary consists of one piece.
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With some algebraic manipulation, it is not difficult to show [19] that

i 2Aj
_(aj-1 - aj) = (6.11)
2 (Zj - zj+l)(Zj - Zj-1)

where Aj is the signed, or directed area of the triangle formed by the three vertices

zj-,, zj, and zj+l given by

Zj-1 Zj-1

Aj det (6.12)4 Zj 5j I

L Zj+1 '�Tj+i

Now comparing (6.9) to (6.4), we have that

aj = i Tj-1 - Tj Tj - Tj+1 - 2Aj j 1'...'n (6.13)
2 zj-l - zj Zj - Zj+1 (Zj - Zi+i)(Zj - Zj-1),

Hence, no aj is zero unless the corresponding Aj is zero. This can occur if and only

if P is degenerate. i.e. for some j, the triangle formed by zj-,, zj, and zj+l is

degenerate. F�

Note that the Equation 6.13 is an expression that depends explicitly on the vertices.

This expression also implicitly depends on the way these vertices are connected by

virtue of the fact that different ways of connecting them changes the relative order

of the vertices that enter into the right-hand side of (6.13). For instance, the vertex

zj may be connected to zk in one arrangement, while it may be connected to zk, in

another, with k :� k'.

A second observation is that the formula (6.4) is a minimal representation of the

integral of h" over P in terms of discrete values of h. To put it differently, the left-

hand side of (6.4) depends only on the values of h at the vertices of P; what values

h takes at other points in the complex plane are completely irrelevant in this regard.

Recall, from Chapter 4, the definition of complex moments of a function f:

Cki f (X, Y) Zk-z' dx dy (6.14)
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where z - x + iy, -,�T = x - iy, and i = V/'--I. Let us define the simple complex

moments (s-complex moments) as 2

Ck = Ck'O f(X, Y) Zk dx dy

The relationship between these moments and the geometric moments of f over 0 is

simply established as follows.

Ck ff f(X, Y) (X + iy)k dx dy (6.16)0

k k ij ff xk-j yj f (x, y) dx dy (6.17)
j=0

k kE j3 (6-18)
j=0 j

Written more simply in vector notation we have

Ck - T (k) (6.19)
Uk A

where
T

k k
Uk io'... ik (6.20)

0 k

Now consider Theorem 10 and let (1) h (z) zk and (II) f (x, y) be the indicator

function over a simply-connected polygonal region P of the plane. Then, this theorem

states that for any nondegenerate, simply-connected n-gon, simply-connected region

P in the plane, there exist nonzero complex numbers aj such that

n

(Zk )" dx dy aj? (6.21)
3

j=1

2These moments are also referred to as harmonic moments in the mathematics community
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The left hand side of this identity can be written as

f f,(zk)" dx dy = k(k - 1) f fp zk-' dx dy = k(k - I)Ck-2- (6.22)

Defining the numbers -rk = k-(k - 1)CA,-2, which we term weighted complex moments

(w-complex moments), with ro =,rl = 0, we have

n
'rk aj k (6.23)

Zij=I

The w-complex moments are linear combinations of the geometric moments of the

underlying polygon P which can, in turn, be directly computed from the projections

of P. Hence, (6.23) is, for every k, a direct measurement equation for the w-complex

moments in terms of the vertices of P. We will next show that by considering a

sufficient number of such measurements for different values of the parameter k, the

vertices of P may be uniquely recovered.

6.2.1 Vertices from Moments via Prony's Method

Assume that the n-gon P is simply-connected and nondegenerate, and let us consider

the equation (6.23) for k 0, 1, 2n - 1. Written in vector form we have

TO I a,

Z1 Z2 ... Zn a2
(6.24)

L 'r2n-1 J z 2n-I z 2n-1 ... znn-1 J L an JL 1 2

T2n V2nan (6.25)

where the obvious associations have been made in the last identity. We win use

Prony's method [41] here to show that the vertices Izil can be computed from the

w-complex moment vector T2n given by Equation (6.25). Davis [18] showed this result

for n -_ 3 (the triangular case).
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Define the polynomial P(z) as

n n
p(Z) (Z _ Z,) = Zn + EPZn-i (6.26)

and consider its associated coefficient vector p (n) [PniPn-li ... jp1]T. We wish to

show that the coefficients of P(z) can be uniquely determined from T2n. To this end,

form the 2n x 2n matrix K2n from P (n) as follows

pn ... Pi 0

K2n (6.27)

L 0 Pn ... P1

From the definition of the polynomial P(z) it follows that the matrix K2n, when

multiplied on the left of (6.25) annihilates it 3. That is

K2nT2n =K2nV2nan- 0 (6.28)

The identity K2nT2n = 0 can easily be rewritten as

TO 71 ''' 'rn-1 'rn

71 72 ... Tn (n) 'rn+l
p (6.29)

L 'rn-1 Tn 72n-2 j L -r2n-1 j

HnP (n) -hn (6.30)

To show that we can uniquely recover p(n) from this'last identity, we must show that

Hn is invertible.

Lemma 5 The n x n matrix Hn is invertible if and only if the corresponding simply-

connected polygon P is a nondegenerate n-gon.

'This key observation is due to Prony and forms the basis of Prony's method [41]
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Proof: The proof is obtained by noticing that H,, can be decomposed as

H,,,, = Vdiag(a,-,)V� (6-31)

where Vn is the Vandermonde matrix of the vertices Jzjj defined as follows

Z1 Z2 ... Z'

V. (6.32)

Zn-1 Zn- 1 n-1
1 2 ... Zn

The matrix Vn has determinant

det(Vn) - JJ(Zi Zj) (6-33)
i>j

which vanishes if and only if P is degenerate. Furthermore, as a consequence of

Lemma 4, the elements of the vector an are all nonzero unless P is degenerate. Hence

this Lemma is established. El

As a consequence of this lemma, the coefficients of P(z) can then be uniquely

determined through

p (n) = -Hn-lhn- (6.34)

Upon solving the polynomial equation P(z) -_ 0, the vertices of P may be recovered.

In summary, we have shown the following result.

Result 12 Let P denote a nondegenerate, simply-connected, n-sided polygonal region

in the plane. The vertices of P are uniquely determined by its w-complex moments of

up to order 2n - 1.

This result is the generalization to n-sided, simply-connected polygons of the result

Davis proved in [18] where he only considered the case n - 3. i.e. triangles.

Several useful corollaries follow from Result 12. Recall that the w-complex mo-

206



ments rk are related to the s-complex moments Ck as

,rk = k(k - 1)Ck-2 (6.35)

Hence, we have:

Corollary 4 The vertices of a nondegenerate, simply-connected n-gon P in the plane

are uniquely determined by its s-complex moments of up to order 2n - 3.

Also note that since each s-complex moment Ck depends only on the geometric moment

set of the same order, it (k) 7 it follows that

Corollary 5 The vertices of a nondegenerate, simply-connectedn-gon P in the plane

are determined by its geometric moments of up to order 2n - 3. (That is, the vector

M2n-3)

In Chapter 4, Result 5, we showed that "Given p (line integral) projections of f (x, y)

at p different angles Oi in [0, 7r), one can uniquely determine the first p geometric

moment vectors jLU), 0 < j < p of f (x, y)." When f (x, y) is taken to be the indicator

function on the polygonal region P, this implies the following corollary.

Corollary 6 Exactly 2n - 2 projections are sufficient to uniquely determine the ver-

tices of a plane simply-connected polygonal region P.

6.2.2 Remarks

Result 12 and its corollaries imply that the vertices of P can be extracted from a finite

number of moments. This theorem, however, does not tell us what the interior of P

looks like. To put it differently, according to this theorem, from the set of moments we

can decipher the locations of the vertices of P; yet this theorem does not ten us how

to "connect the dots" to form the interior of P. If the polygonal region P is assumed

to be convex, this difficulty is not an issue since, in such case, only two possible

ways exist of connecting the vertices. Namely, a clockwise and a counter-clockwise

orientation. Either of these choices, however, yield exactly the same geometric object
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4 4 4

2
3 3

Figure 6-1: Three distinct regions corresponding to the same vertices

so that any convex n-gon is, in fact, uniquely determined by geometric moments of

up to order 2n - 3.

For nonconvex P the situation is more complicated since, in general, there is more

than one way to connect the vertices, leading to multiple solutions as illustrated in

Figure 6-1. However, there are only a finite number of such possibilities, with each

such possibility yielding a different region. It is desirable to know whether only one of

these possible regions will have the prescribed moments ro, rl, . . ., 'r2n-1. The answer

to this question is, in general, no. In fact, even if all the w-complex moments rk of

a simply-connected domain are given, the interior of the domain is not necessarily

uniquely specified. This question was first posed in 1975 by H. Shapiro in [4] in the

following form:

"Let D, and D2 be Jordan domains 4 such that

Z" dx dy - zhdxdy k=0,1,2,--- (6.36)
2

Must we have D, = D2?"

In 1978, a counter-example was provided by M. Sakai in [79] where he constructed sim-

ple domains bound by a finite number of piecewise circular arcs. Polygonal counter-

examples were constructed by A. M. Gabrielov, V. N. Strakhov, and M. A. Brodsky

and were published in the latter two authors paper [93]. These authors arrived at

4jordan domains are simply-connected compact sets in the plane.
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this question from considering the more general problem of uniqueness of the shape

and density of plane gravitating bodies as determined from their exterior logarithmic

potential. A good survey of this problem from the point of view of inverse potential

theory and fluid dynamics can be found in [104] 5.

In certain special cases, however, the w-complex moments do uniquely specify

the interior of the underlying polygon. To motivate this, note that by referring to

Equation (6.13), we can see that it is reasonable to think that, in some cases, each

way of connecting the vertices should result in a different set of aj's. This in turn,

through (6.23), would imply that each way of connecting the vertices would yield a

different set of w-complex moments. Another way of saying this is that, in some cases,

only one of the finite number of possible n-gons formed by connecting the computed

vertices will have the prescribed moments -ro, 'ri , ... 7 'r2n-1 - If we can show this, then

in order to reconstruct the interior of the underlying polygon, we have to search over

all possibilities to find the unique one that has these prescribed moments. To make

the above arguments more concrete, let us carry out a simple example.

Consider the vertices zj for j = 1, - - - , 4 shown in Figure 6- 1. A total of three

polygons P, P', and P" can be obtained by connecting the four vertices in different

ways. For convenience, let us fix a counter-clockwise orientation and let us assume

that the vertices are situated in the complex plane as follows:

Z, = -1 - il (6-37)

Z2 = 07 (6.38)

Z3 = 11 (6.39)

Z4 = (6.40)

For the polygons P, P', and P", we write:

4

'rk aj k (6.41)
Zj 7

j=1

'I would like to thank Chris Bishop of SUNY Stony Brook Math dept. and Prof. Pavel Etingof
of Yale Math dept. for pointing out these references
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4

Tk a' k (6.42)

4

'rk a� (6.43)

and proceed to compute the coefficients aj, a�, and a'! through Equation (6.13). We
.7

obtain:

a, = -0.1 - 0.3i, a/ _-0.6i all = 0.1 - 0.3i

a2 = 0.5 - 0.5i, a/ i) all = -0.5 - 0.5i2 2 (6.44)

a3 = 0.5 + 0.5i) a/ 0.4 - 0.2i) all = 0.9 + 0.3i3 3

a4 = -0.9 + 0.3i, a/ -0.4 - 0.2i) all = -0.5 + 0.5i4 4

As we can see, these coefficients are different. This shows that only one of the three

possible polygons will have the prescribed set of moments rk for k -_ 0, - - -, 7. Note

that the three possibilities in this case each share a side with the others. In general,

we can show that two simply-connected n-gons P and P', with identical vertices,

which have at least one side in common must have different w-complex moments rk

for some k. Formally, we have

Result 13 Consider n distinct points zj, Z2, zn in the complex plane. Let P and

P be simply-connected, nondegenerate, n-gons generated by connecting these vertices

in two distinct ways. If P and P have at least one side in common, then for some

I < j < n,

aj(P) :/ aj(P'), (6.45)

where aj(P) and aj(P') are respectively given by

n

h"(z)dxdy E aj(P)h(zj) (6.46)
j=1
n

h"(z)dxdy aj(P')h(zj) (6.47)
j=1

(6.48)

Proof: We prove this result by contradiction. Assume that P and P have at least

one side in common. Without loss of generality, let us say this is the side give by
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connecting the vertices zj and zj+l of P. Now if aj(P) = aj(P'), it follows from (6-13)

that

Tj Tj - Tj + i ;�7j - i - Tj Tj - -fj+l (6.49)
zjj - zj zj - z.,+, 2 zLi - Zi zj - Zj+1

where z'j-1 is the j - 11h Vertex Of p. Simplifying (6.49) yields

Tj-1 - Tj - Pj_1 - Tj (6.50)
Z�_j - Zj

zj-1 - zj 3

It is easy to check that this last expression (6.50) implies that the vertices zj, Zj-1'

and zj'_j must be collinear. This is a contradiction to the assumption that P and P'

are nondegenerate. El

6.3 Statistics of Estimated Complex Moments

The explicit dependence of the s-complex moments of order k on the geometric mo-

ments of the same order implies that we can compute Maximum Likelihood estimates

of these moments from ML estimates of the geometric moments. Recall from (6.19)

that this explicit relationship is given by

T (k)
Ck = UkP (6-51)

where Uk is defined in (6.20). Note that computing the s-complex moments from

the corresponding geometric moments involves the loss of some information. This is

because each value of ck is a complex linear combination of the geometric moments of

the same order but the values of jL(k) can not be inferred from the value of cA,. Hence,

eachCk contains less information than the corresponding geometric moment vector

A W.
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For k = 0, N we can collectively write

CO UT ... 00 (0)

(6.52)

CN 0 UT (N)N IU

CN UNMN (6.53)

with the obvious associations made in the last expression. Note that UN is an (N + 1)

by (N + 1) x (N + 2)/2 matrix with complex elements.

Now if -QN denotes the ML estimate of the geometric moment vector MN, with

covariance RN, then the ML estimate of CN is given by

CN = UNMN (6.54)

The corresponding covariance matrix for CN, which we name SN, is given by

SN -- UN RN UH (6.55)
N

where the superscript ' denotes the Hermitian transpose (or conjugate transpose)

operation. To study the structure of SN carefully, let us write UN in terms of its real

and imaginary parts as

UN = URN + 'U2W (6-56)

Replacing this in (6.55) yields

U!��T) U, U!��T)N N N - U NSN = (URNRN + U2WRN +'W�WRN W WNRN (6.57)

This expression is valid when noisy projections from a finite number of views are

given. If a continuum of views are given (in [0, -7r)), we write

URT U!��T) U3ZT U,_T)S�r (URNR* + UNR* + i(U2WR* URNR* (6.58)N N N N N N N N
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From numerical experiments, we have observed that S� is real and diagonal for

all N. In fact, we have observed that each term in the real part of S.� is diagonal

and each term in the imaginary part of it is zero. We also observed that E((ON -

CN)(ON - CN)') is real and diagonal. Two important conclusions can be drawn from

these facts:

Observation I When a continuum of white-noise-corrupted projection data Y(t, 0)

is given in both variables t and 0, the estimated s- and w-complex moments �Fkll f Fk1

have uncorrelated estimation errors across moments of different order. Furthermore,

the errors in the real and imaginary parts of these estimates are also uncorrelated.

It is interesting that the covariance matrices for the estimated geometric and orthog-

onal moments failed to be diagonal (or even block diagonal) as we saw in Chapter 4;

while here, the estimated s-complex moments (and consequently w-complex moments)

have uncorrelated estimation errors. The implication is that the process of estimating

the s-complex moments is in essence an orthogonal projection of the data Y(t, 0) onto

the space of complex moments of the underlying object. This fact can be used to

advantage in applications such as pattern recognition, classification, and compression

of tomographic data. , This implies that these moments merit attention even without

regard to whether they are useful in the context of a complete reconstruction algo-

rithm. Note that Observation I is not given with respect to any particular underlying

object. In fact, the estimation error covariance RN (or R* ) is completely indepen-N

dent of the underlying object. Another point worth making is that from extensive

experimentation, we found that the conclusions presented in Observation 1 hold very

nearly true even when only a modest number of views are given. (i.e. for SN instead

of S,�) For instance, given noisy data Y(t, 0) -_ g(t, 0) + n(t, 0) with n - A((O, U2),
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the value of Sk for N = 5 is given by

0.6303 0 0 0 0 0

0 0.8405 0 0 0 0

2 0 0 0.8966 0 0 0
S5* = a (6.59)

0 0 0 0.9223 0 0

0 0 0 0 0.9371 0

0 0 0 0 0 0.9466

Where the elements denoted 0 have values on the order of 10-". With only 7 equally

spaced views in (0, 7r], the corresponding covariance matrix is

1.2412 0 0 0 0 0

0 1.6812 0 0 0 0

72 0 0 1.8157 0 0 0
S5 (6-60)

0 0 0 1.8864 0 0

0 0 0 0 1.9323 0

0 0 0 0 0 1.9655

where the elements denoted 0 are on the order of 10-14. Using a finite number of

non-equally-spacedviews tends to violate the assertions of Observation 1.

06.4 Connections to Array Processing

Array processing has been a very active field of research in the past 2 decades mo-

tivated by applications in sonar, radar, oceanography, seismology, and speech pro-

cessing, to name a few. The data to be analyzed in a standard array processing

application [81, 771 consists of a sum of damped complex exponentials in additive

white noise. This formulation corresponds to the problem of localizing several ra-

diating sources by observation of their signals at spatially separated sensors. More

formally, the general problem is that of estimating the unknowns bi and zi from the
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measured signals Yk given as follows

n
Ebj k

Yk Zj + Vk, k -- O'...' N - 1 (6.61)
j=1

Here, zj denote the unknown sources, bj denote the unknown complex amplitudes,

andVk denote (complex) white noise. In most standard array processing problems,

the sources zj are typically complex sinusoids of the form exp(-ioj), but general

formulations where zj is not restricted to this form have also been studied [42, 81 ].

Note that by letting Fk- Yk, and bj = aj in (6.61), we essentially obtain a noisy

version of the moment measurement equation (6.23) as follows.

;F _ n

k aj � + Wk- (6.62)ZJ
j=1

The general formulation of the array processing problem is therefore the same as

the formulation of the reconstruction problem of binary polygonal objects from noisy

measurements of their w-complex moments. There is, however, a difference between

the standard assumptions made in the array processing context regarding the noise

terms vk, and the covariance structure of the estimated w-complex moments. As we

discussed in Section 6.3, when a sufficient number of views are given, the covariance

matrix for the estimated s-complex moments (and hence w-complex moments) is

diagonal. This is in agreement with the standard array processing assumption of

white noise. This diagonal matrix however, is not a scalar multiple of the identity as

is assumed in standard array processing problems. In fact, we know that the variance

of the estimation error, Wk, grows Without bound with k. Hence, the noise terms, Wk,

are uncorrelated but not identically distributed.

6.5 Reconstruction Algorithms

In this section we discuss two instances of direct application of array processing

algorithms to the polygon reconstruction problem from moments. An exhaustive

study of all available algorithms and their relative performance is beyond the scope
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of this thesis and therefore, we present only two such approaches to illustrate the

main concepts. The first set of algorithms is directly based on a generalization of

Prony's method. In this context, we discuss the ordinary least squares Prony (OLSP)

and total least squares prony (TLSP) techniques. The second set of algorithm, known

as matrix pencil techniques are variants of the well known ESPRIT (Estimation of

Signal Parameters via Rotation Invariance Techniques) algorithm [77].

6.5.1 Least Squares Prony Technique

We are to estimate the parameters aj and the vertices zj corresponding to an n-sided

polygonal region from noisy estimates of the first N w-complex moments of P (which

are, in turn, estimated from noisy projections of P). For k -- 07 ... 7 N - 1, we have

n

aj? + Wk (6-63)
j=1

where, in accordance with Observation 1, we assume that Wk are (complex) Gaussian

measurement errors which are uncorrelated across different k, and that the real and

imaginary parts Of Wk are also uncorrelated. Collecting the measurements in (6.63)

into vector form we have

TO a, WO

Z1 Z2 ... Zn a2 W1
+ (6-64)

N-1 N-1 N-1
L TN-1 J L Zi Z2 ... Zn J L an J LWN-1 J

TN VNan + WN (6-65)

Applying the N x N matrix KN to both sides of (6.65) yields

KNTN = KNWN- (6-66)
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which can in turn be rewritten as

;F0 F1 ... ;F.-i

F, ;F2 ... ;Fn PH ;Fn+l (6-67)

L 'FN-n-1 FN-n ... FN-2 j L ;FN-1 J

k NP(n) -�N (6.68)

The equation (6.68) forms the basis of the Least Squares Prony technique. From this

-(n)equation, the parameter vector p is estimated and subsequently, estimates of zi are

produced by solving the polynomial equation P(z) = 0, whose coefficients are the

elements of p

The above procedure is an explicit algorithm for computing the coefficients of the

polynomial P(z), the roots of which are estimates of the vertices of the underlying

polygon P. This procedure works perfectly when there is no noise in the measured

moments (i.e. WN = 0). When noise, or measurement imprecision is introduced,

however, this method performs poorly; mainly due to the sensitivity of the roots of

P(z) to perturbations of its coefficients. It seems natural to use more moments so

that we may achieve more stable and accurate estimates of the coefficients of P(z).

In section 6.2 we showed that at least 2n - 2 moments are necessary to uniquely

recover the vertices of P (that is, N = 2n - 1 in (6.68)). In what follows, we shag

always assume that we use N > 2n - 1. By using N > 2n - 1, we expect that some

44 averaging" effect will reduce the error in our estimates of the vertices of P.

OLSP and WLSP

The Ordinary Least Squares Prony (OLSP) method consists of computing the least

squares estimate of p(n) from equation (6.68) by computing the generalized inverse

of the matrix kN as follows.
4n) -H-

_ (UHkPols -'-'N N) Hg hN (6.69)
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With these estimated coefficients, the polynomial equation -P.I,(z) = 0 is formed and

solved to get OLSP estimates ��j of the vertices. Having computed these estimates, we

can form the matrix 'PN as defined in (6.25), and subsequently estimate the unknown

vector a,, as
1)H 1 H-

fi'-� = (- 9N) - V9 TN (6.70)

The estimated parameters ij and aj should now uniquely determine an n-sided polyg-

onal region.

The Weighted Least-Squares Prony (WLSP) solution can also be considered. In

this formulation, the inverse of the covariance matrix for 4 is used as a weighting

factor. The resulting solution has the form

4n) = _ (-HWk -1 -HPWIS Hg N) HgWhN (6-71)

where W denotes the inverse of the covariance matrix for �N [811.

TLSP

The equation (6.68) is an overdetermined linear parameter estimation problem of the

form Ax -_ b for the unknown x -_ p(n). The OLS procedure for estimating the desired

parameters is appropriate when only the vector b is noisy. In fact, the OLS estimate

coincides with the Maximum Likelihood estimate if the noise is taken to be Gaussian

and white. In more general instances such as that of equation (6.68), both matrices

A and b are corrupted by noise. For these cases, a more general fitting scheme called

the Total Least Squares (TLS) is devised [32, 43, 81]. When the matrix A is noisy, the

ordinary least squares solution -_ (A H A)-'A'b is no longer statistically optimal

and is typically biased with increased error covariance. The TLS solution was formally

introduced by Golub and Van Loan [32], although it had been used extensively before

in the case of single parameter estimation. The TLS solution can, in essence, be

interpreted statistically as a regularized version of the OLS solution. In particular,

we can write

5�tj. = (AH A - O,2ninI)-1A Hb, (6-72)
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where denotes the minimum singular value of the concatenated matrix [A, b].

An alternate way of arriving at the solution is by writing out the singular value

decomposition of the matrix [A, b]. Let

[A, b] = USVH (6-73)

U = [Us) Umin] (6-74)

P. = U. U� (6.75)

where Uin denotes the singular vector that corresponds to the smallest singular value

of [A, b]. The TLS solution can then be written as

it,, -_ (AH PA)-'A H P, b, (6.76)

which is equivalent to the weighted least squares [811 solution i,,1., = (A H WA)-'A H Wb,

with weight W = P,. The TLS estimate of p(n) is then given by

-(-) - '-H- 0, m2Pa. - -(HgHN - inI)_'RNH4, (6-77)

where 0-min is the smallest singular value of [kN, -�Nl- Given this estimate, the

TLS estimates for the vertices of the underlying n-gon are obtained as roots of the

polynomial equation Ptl,(z) - 0. Subsequently, TLS estimates of the vector aN can

be obtained as

(-H 2 -H-
iin = V9 VN - O-rnin I) (6.78)

where Omin is the smallest singular value of the matrix

6.5.2 Matrix Pencil Technique

There exist a number of matrix pencil-based algorithm in the array processing litera-

ture [42, 69, 77]. Essentially, all of these methods are based on the simple observation

that there is a constant delay between any two adjacent samples in a uniformly sam-

pled time series. This fact leads to the following idea. Let YO and Y1 be defined
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as

'rn-1 'rn-2 ... TO

YO 'rn Tn-1 71 (6.79)

L 72n-2 72n-3 'rn-1 j

7'n 7n-1 'rl

Y1 7n+l 7n 72 (6.80)

'r2n-1 'r2n-2 ... 7n

These matrices can be decomposed into products of Vandermonde matrices as follows.

YO Vndiag(an))<, (6.81)

Yj Vndiag(an)diag([zl,...,Znl))/V�, (6.82)

where
Zn-1 Zn-1 ... n-1

1 2 Zn

Zn-2 Zn-2 ... n-2
Wn 1 2 Zn (6-83)

L J

The roots of the pencil of matrices YO - zY, are the underlying vertices zi. These

roots are the generalized eigenvalues of Yo - zYj, or simply the eigenvalues of Y-'Yo.1

If more moments than the minimum number (2n - 1) are used, the matrices YO and

YJ are similarly formed. If a total of N such moments are used, we have

7'n-1 Tn-2 ... TO

'rn 'rn-1 ... 71
YO (6.84)

L TN-2 7N-3 'rN-n-1 j

220



'rn 'rn-1 71

'rn+1 'rn ... 72
Y1 (6.85)

L 'rN-1 TN-2 'rN-n J

so that only the number of rows of these matrices is increased. In this case, the

solution may be obtained by using the pseudoinverse of Y, [81]. The vertices are
then the eigenvalues of (Y'Y,)-'Y'Yo [42, 81].

1 1

This approach enjoys some advantages over the direct least squares techniques

described in the previous section. The numerical algorithms available for generalized

eigenvalue problem [32] are computationally efficient. Furthermore, this approach,

unlike the OLSP or TLSP, does not require the explicit computation of the coefficients

of polynomial P(z) from the data, nor does it involve the computation of the roots of

this, possibly high order, polynomial. This, in turn, should translate to less sensitivity

with respect to noise for certain signal to noise ratios.

6.6 Numerical Examples

In this section we present some simulations to illustrate the performance of the algo-

rithms discussed in Section 6.5. As we shall see, the proposed algorithms are quite

sensitive to the number of samples and the variance of the noise in these samples. Re-

call that the array processing algorithms in Section 6.5 were essentially built around

the assumption that the corrupting noise on the samples (Fk) was white. In our case,

this is not true. In fact, as we mentioned earlier, the variance of the samples ;Fk

grows without bound as k is increased. Hence, the basic noise assumption invoked in

standard array processing algorithms is violated. Hence, it is not surprising that the

proposed algorithms do not perform particularly well when there is significant noise.

There is no reason, however, to believe that appropriate modifications of such algo-

rithms should not produce much improved reconstructions. We leave the investigation

of such possibilities for future research.
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For illustration, we apply the least squares and pencil algorithms to the recon-

struction of a triangle and a quadrilateral from noisy, estimated w-complex moments.

The prototypical triangle has been chosen as one with the following vertices depicted

in Figures 6-4, 6-5, 6-6, and 6-7.

-0.4655 0.0082 -0.3283
V - (6-86)

0.2201 0.4599 -0-1809

The data was collected in the form of 20 projections with 500 samples per projection at

a signal-to-noise ratio of 55. Note that given the high number of samples and the high

SNR, we essentially have a noise-free data set. As we will see next, even with such

44 clean" data, typical reconstructions will have (percent Hausdor:ff) reconstruction

errors on the order of 10 to 15 percent.

Figure 6-2 shows the performance curves for four the four algorithms: Ordinary

Least Squares (OLS), Total Least Squares (TLS), Weighted Least Squares (WLS),

and the Pencil Algorithm. These curves show average performance obtained by gen-

erating 100 runs of a Monte-Carlo simulation vs the number of moments used over the

minimum necessary (i.e. the overfit parameter). Recall that according to Theorem

12, w-complex moments of up to order 5 are needed (at minimum) to reconstruct

the triangle. Hence, an overfit parameter value of 2 corresponds to using estimated

w-complex moments of up to order 7.

Figure 6-3 shows the same curves as 6-2 except overlayed to show comparisons.

Note that overall, the TLS algorithm performs best, while the performance of the OLS

algorithm and the Pencil algorithm exactly coincide. The WLS algorithm performs

essentially the same for values of the overfit parameter larger than 2. This is due to

the fact that as higher order moments are considered, these are weighted according

to their inverse variance which become considerably small. The graphs show that

the overfit parameter value of 3 in the TLS algorithm provides, on average, the best

reconstructions. Note that somewhat surprisingly, the incorporation of even more

moments does not improve the reconstruction error. This is again due to the fact

that higher order moments become severely noisy and hence at some point their use
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Overfit Overfit

Figure 6-2: Performance curves at SNR--55

results in diminishing returns.

Figures 6-4, 6-5, 6-6, and 6-7 show sample reconstructions for all the aforemen-

tioned algorithms for values 0, 2, 4, and 6 of the overfit parameter.

The quadrilateral to be reconstructed was chosen as the polygon P' shown in

Figure 6- 1. Projections from 20 equally spaced angles in [0, -x) were taken with 1000

samples per view at a signal to noise ration of 150. Reconstruction of the underlying

polygon are shown with overfit parameter values of 0 in Figure 6-8. The corresponding

estimated coefficients a'. using OLS are

a -0-0053 - 0.5868ii

a' = -0-0308 + 1.0271ii2

a I = 0.4020 - 0.2422i73

a I = -0.3659 - 0.1981i.4

while the corresponding estimated coefficients using TLS are given by

a -0.0053 - 0.5872i
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Figure 6-3: Overlayed performance curves at SNR--55

True OLSP overfit= 0

0.4. 0.4- 0
0

0.2- 0.2-

0- 0 -

-0.2. -0.2- 0

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

WLSP overfit= 0 TLSP overfit= 0

0.4. 0 0.4. 0
0 0

0.2- 0.2-

0 0 -

-0.2- 0 -0.2- 0

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

Figure 6-4: Sample reconstructions at SNR-55 solid: actual, cirles: reconstructed
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True OLSP overfit= 2

0.4. 0.4 -

0.2. 0.2.

0 0

-0.2. -0.2

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

WLSP overfit= 2 TLSP overfit= 2

0.4. 0.4
0

0.2 - 0.2

0 0

-0.2 -0.2

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

Figure 6-5: Sample reconstructions at SNR-55 solid: actual, cirles: reconstructed

True OLSP overfit= 4

0.4- 0.4.

0.2- 0.2-

0- 0.

-0.2- -0.2 -

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

WLSP overfit= 4 TLS P ove rf it= 4

0.4- 0.4,
0

0.2 - 0.2 -

0 0

-0.2- -0.2

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

Figure 6-6: Sample reconstructions at SNR=55 solid: actual, cirles: reconstructed
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True OLSP overfit= 6

0.4 0.4 -

0.2 0.2.

0 0

-0.2 -0.2

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

WLSP overfit= 6 TLSP overfit= 6

0.4 0.4
0

0.2 0.2

0 0

-0.2 -0.2

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

Figure 6-7: Sample reconstructions at SNR=55 solid: actual, cirles: reconstructed

al = -0-0317 + 1.0539i2

a/ = 0.4028 - 0.2463i3

a/ = -0-3664 - 0.2021i4

(6.87)

Comparing these to the values given in (6.44), we can see that they are fairly close. To

decide on how to connect the given estimated vertices, we compute the coefficients aj

via formula (6.13) for each configuration, and compare these values to the estimated

coefficients given above. The choice of configuration is then made according to which

of the coefficient sets found using (6.13) most closely approximates the estimated

coefficient set. Let us carry out this procedure for the TLS estimated vertices of the

quadrilateral using overfit parameter of 0. For convenience, referring to Figure 6-1,

we shall denote the configurations in which the vertices of P, P and P" are connected

as configurations 1, 2, and 3, respectively, so that the correct configuration is number

2. The estimated coefficients using TLS, and the corresponding coefficients computed

using (6.13) are shown in table 6.1 along with the 11 norm of their difference defined
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Estimated aj aj config. 1 aj config. 2 aj config. 3
-0.0053-0.5872i -0.1014 - 0.3998i 0.0155 - 0.6423i 0.1169 - 0.2424i

-0.0317 + 1.0539i 0.3837 - 0.4002i 0.2669 - 0.1577i 0.8735 + 0.2877i
0.4028 - 0.2463i 1 0.6066 + 0.4454i 0.1320 + 0.9875i -0.4746 + 0.5421i
-0.3664-0.2021i -0.8890 + 0.3546i -0.4144 - 0.1875i -0.5158 - 0.5874i

11 Difference 3.2075 2.2601 3.1446

Table 6.1: Estimated and Computed coefficients aj for vertices of quadrilateral re-
constructed using TLS with overfit parameter of 0

by:
4

11 Difference in aj's E 11aj(estimated) - aj(from (6.13))Il. (6.88)
j=1

As can be seen from Table 6.1, as measured by the 11 norm, the estimated coef-

ficients are closest to the coefficients obtained when the estimated vertices are con-

nected according to configuration 2. Hence, our algorithm has correctly identified the

underlying configuration.

With an overfit parameter of 1, the reconstructions shown in Figure 6-9 are ob-

tained. The corresponding values of the coefficients at� are the same (to within 10-16)
3

as the previous case where an overfit parameter of 0 was used. The reconstructions

using an overfit parameter of 2 are shown in Figure 6-10, where the estimated a'.3

parameters using OLS are

1a' -0.0053 - 0.5868i)

a/ -0-0308 + 1.0271i72

at 0.4020 - 0.2422i)3

a/ -0.3659 - 0.1981i.4

(6.89)

The estimates of these parameters using TLS are

a/ = -0.0168 - 0.5774i)1

a/ = -0.0080 + 0.1819i)
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True OLSP overfit= 0
2 2

1 1

0 0

-21 -21
-2 0 2 -2 0 2

WLSP overfit= 0 TLSP overfit= 0
2 2

0 0

't2 0 2 0 2

Figure 6-8: Sample reconstructions at SNR-150 solid: actual, circles: reconstructions

aI = 0.4113 - 0.1072i)3

a' = -0.3997 - 0.0700i.4

(6.90)

Let us use these last set of estimated coefficients along with the estimated vertices

using TLS, with overfit parameter of 2, to decide how the estimated vertices are to

be connected. We again show the values of the coefficients obtained from (6.13) and

the values of the total difference of these coefficients with the estimated coefficients

in Table 6.2. In this case, the algorithm has again correctly chosen configuration

2 as the solution, but note that the value of the V difference of the coefficients for

configurations 1 and 3 are much closer to the minimum obtained for configuration 2.

It is interesting to note that the use of higher order moments (i.e. Overfit param-

eter > 0) degrades the estimate of the concave vertex of the underlying object more

than the others. Also, note that in this experiment, the quality of the estimates of

the vertices and the parameters a'. shows degradation as more moments (beyond the

minimum necessary) are used.
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True OLSP overfit= 1
2 2

0- 0-

-21
0 2 -2 0 2

WLSP overfit= 1 TLSP overfit= 1
2 2

0 0-

t2 0 2 0 2

Figure 6-9: Sample reconstructions at SNR=150 solid: actual, circles: reconstructions

True OLSP overfit= 2
2 2

0- 0.

't2 0 2 0 2

WLSP overfit= 2 TLSP overf it= 2
2 2

1 - 1 - C

0 0

't2 0 2 t2 0 2

Figure 6-10: Sample reconstructions at SNR=150 solid: actual, circles: reconstruc-

tions
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Estimated aj aj config. 1 aj config. 2 aj config. 3
-0.0168-0.5774i -0-0327 - 0.5684i 0.0452 - 0.6660i 0.0779 - 0.0976i

-0.0080 + 0.1809i 0.1250 - 0.1381i 0.0471 - 0.0405i 0.8478 + 0.3908i
j 0.4113- 0.1072i 0.8007 + 0.4313i 0.1092 + 0.8601i -0.6915 + 0.4289i

-0.3997-0.0700i -0.8930 + 0.2752i -0.2015 - 0.1536i -0.2342 - 0.7220i
1' Difference 1.6305 1.5648 3.2691

Table 6.2: Estimated and Computed coefficients aj for vertices of quadrilateral re-
constructed using TLS with overfit parameter of 2

6.7 Conclusion

In this chapter we have presented algorithms for the reconstruction of binary polyg-

onal shapes from noisy measurements of their moments. The mathematical basis of

these algorithms is the Motzkin-Schoenberg [831 formula in complex variable theory,

and Prony's method. The contributions we have made in this chapter can be grouped

into two categories. From a mathematical standpoint, we have improved a result due

to Davis [18] which states that the vertices of a triangle are uniquely determined by

its w-complex moments up to order 3. Our generalization states that the vertices of

any nondegenerate, simply-connected, n-sided polygon can be determined from its

w-complex moments up to order 2n - 1. We have also shown that this number of

moments is sufficient in some cases to uniquely specify the interior of the polygon.

From an estimation-theoretic viewpoint, we have established an explicit connec-

tion between the field of array signal processing and the problem of tomographic

reconstruction of binary polygonal objects. We have employed array processing tech-

niques to solve this reconstruction problem. Numerically, however, these algorithms

do not seem to perform well in the presence of significant noise. Other array processing

algorithms and modifications of the existing ones, we believe, may lead to significant

improvements in performance. It should be kept in mind that the algorithms we have

presented using a finite number of w-complex moments for the reconstruction of poly-

gons do not make use of all the available tomographic data. In fact, the s-complex (or

w-complex) moments are arrived at by forming a complex linear combination of the

geometric moments of the underlying polygon. Hence, some part of the information

in the estimated geometric moments is actually not being used. This may, to some
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extent, also explain the performance of the proposed algorithms.

Finally, it is worth noting that aside from the array processing algorithms, the

estimation problem given by (6.63) can be viewed directly as a nonlinear optimal

estimation problem. We can directly write the observation equations as

i�k = Fk (Z1, Z2, Zn) + Wk (6-91)

where
n

Fk(ZlZ2,'.. Zn) ajz� (6.92)
j=1

is a nonlinear function of the vertices and how they are connected. Nonlinear opti-

mal estimation techniques can then be applied to (6.91) to estimate the underlying

polygon. It would be interesting to study the performance of such algorithms. We

leave this for future research efforts.
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Chapter 7

Contributions, Conclusions, and

Future Research

7.1 Contributions

In this section we briefly summarize the contributions made in each of the previous

chapters.

7.1.1 Parametric Model-Based Reconstruction

In Chapter 3, we presented a general framework for the optimal reconstruction of

finitely parameterized objects. In particular, we focused on the reconstruction of

binary polygonal objects.

In this model-based framework , the tomographic reconstruction problem is viewed

as a finite-dimensional parameter estimation problem. The Maximum Likelihood

formalism is then used to estimate the missing parameters. In contrast to the classical

techniques, such as FBP, the ML based reconstructions showed robustness to noise

and data loss and distribution. The drawback of such ML-based formulations is that

the resulting optimization problems are highly non-linear and thus a good initial guess

is necessary to ensure convergence of optimization routines to the true ML estimate.

We presented an algorithm that quickly and reliably produces a good initial guess for
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the nonlinear optimization algorithm.

When the number of underlying parameters of the object was assumed to be un-

known, a Minimum Description Length criterion was employed that simply generalizes

the ML framework to penalize the use of an excessively large number of parameters

for the reconstruction. The MDL approach was shown to work successfully in esti-

mating the number of sides and the underlying object itself for low signal-to-noise

ratio situations and for a variety of sampling scenarios.

Two major contributions of our work in the area of parametric model-based tomo-

graphic reconstruction are (1) the study of a more general class of objects than were

studied before; namely binary, polygonal objects, and (H) the explicit incorporation

of information-theoretic criteria for determining the number of parameters to be used

in the reconstruction.

7.1.2 Direct Extraction of Geometric Information from To-

mographic Data

In Chapter 4 we explicitly used the linear relationship between the moments of a

function and those of its Radon transform in an estimation theoretic framework. In

this framework, we showed that:

0 it is possible, and quite simple, to extract geometric information about an ob-

ject in the form of moments directly from (the moments of) its noisy Radon

transform data and without reconstruction of the underlying image.

* the (unique) computation of the moments of a function from its Radon trans-

form requires a minimum number of views. This, in essence provides one with

a theoretical upper bound on the amount of uniquely identifiable geometric

information that is contained in a limited data set.

9 the linear nature of the dependence of the moments of an image on those of its

Radon transform make the explicit computation of estimation error covariances

possible. This allowed us to specify not only the geometric features of an image
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directly from projections, but also the degree of confidence which we place on

these estimates.

• the moments of the projections are sufficient statistics for the estimation of a

function f from its Radon transform projections.

• the Radon transform operator R as an operator from one Hilbert space to

another, can be decomposed in terms of operators which map a function and

its Radon transform to their respective moments. This led to a new set of

interpretations of classical reconstruction algorithms.

• the problem of estimation of moments of an image from raw projection data

is numerically more stable for a particular set of sampling strategies in the

projection domain. Hence, we used the analysis of the stability of this estimation

problem to arrive at optimal sampling strategies.

In summary, the most significant overall contribution we have made in Chapter 4

is to highlight the importance and use of the fundamental relationship between the

moments of a function and those of its Radon transform. Although this relationship

is well-known in the mathematics community, it has not been used extensively in the

engineering community. We hope that our work will serve to promote the careful

study of the applications of this very useful property of the Radon transform.

7.1.3 Variational Formulations for Reconstruction from Mo-

ments

In Chapter 5, we presented variational algorithms for the reconstruction of a positive

function (an image) from a finite set of its noisy moments. In particular, we studied

Divergence-based and quadratic regularization schemes. We showed that both of

these formulations have exact statistical interpretations as Maximum A-Posteriori

estimates of f. Simple iterative extensions of these algorithms were shown to yield

solutions to equality-constrained minimization problems.

The important contributions of Chapter 5 are
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* the formulation and solution of an optimal, robust and computationally efficient

algorithm for the reconstruction of a positive function from a finite number of

its noisy (estimated) moments. In this formulation, we took into account the

moment estimation error covariance explicitly. This represents an extension of

existing algorithms for recovering a function from its moments.

e we showed that simple iterative extensions of our divergence-based regularized

framework lead to solutions to highly complex nonlinear, equality-constrained

optimization problems. These problems are extremely difficult to solve by other

techniques since it is not possible to describe the constraint sets in question

analytically. Furthermore, our algorithm is more numerically stable and ana-

lytically tractable than other existing algorithms.

* we showed that our iterative algorithms perform quite well even with very noisy

and sparse data and the modest use of only a few moments. Furthermore, our

framework is general enough to allow the direct incorporation of geometric prior

information into the reconstruction process. As a particular instance of this,

the use of the classical FBP estimate as a prior estimate was shown to yield

much improved reconstructions. The classical FBP reconstructions produce

very rough reconstruction of the underlying features of the image along with

many anomalies that are not part of the underlying image. We have shown that

using our algorithm, these rough reconstructions can be significantly enhanced

and the underlying features can be extracted considerably more accurately.

Overall, the most significant contribution of this chapter is that we have presented

a general framework for optimal reconstruction of images with controlled degrees of

freedom that can easily incorporate prior knowledge. This framework is numerically

efficient and is flexible enough to incorporate various forms of prior information.

Furthermore 7we have shown that, given very rough initial estimates of the underlying

image, our framework is capable of producing superior reconstructions when compared

to classical reconstruction algorithms.
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7.1.4 Array Processing Methods for Reconstruction from

Moments

In Chapter 6 we studied the reconstruction of binary polygonal objects from a -finite

number of their complex moments. In specific, we made the following contributions.

* we showed that the vertices of a binary polygonal region can be recovered from

a finite number of its complex moments. This result extended earlier work that

established the same but only for triangles.

* we showed a binary polygonal object is determined by a finite number of projec-

tions from noncongruent, but otherwise arbitrary directions. This contribution

is a generalization of earlier results regarding reconstructability of binary objects

from few projections.

9 we presented explicit algorithms for the extraction of the vertices of a polygon

from a finite number of complex moments. These algorithms are essentially

borrowed from the field of antenna array processing, establishing for the first

time, explicit connections between tomography and array processing.

The most important overall contribution we made in Chapter 6 is that we have

discovered an interesting and potentially very useful connection between array pro-

cessing and tomography.

7.2 Future Research Directions

In this section we present some ideas for further research. The first section of this

chapter is concerned with a conjecture regarding explicit constraints on projection

samples that may be derived from the assumption that the underlying object is binary

and convex. The remaining part of this chapter is concerned with research issues that

are directly related to the work performed in this thesis.
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Figure 7-1: Parallel Beam Projection Data

7.2.1 Geometric Constraints and Projection Data

Projection data is typically collected according to one of two modalities. In the

parallel-beam (PB) case, a fixed set of directions is given and for every direction line-

integrals of the density function of the object are collected along parallel beams in

that direction. See Figure 7-1. A result of Falconer [22] states that the PB projections

of a compact convex set in the plane are necessarily convex function of the variable

t. The converse of this result is also known to be true [21]. Hence, a binary object is

convex if and only if its PB projections in all directions are convex functions of t. Let

gi-1, gi, and gi+1 denote any triplet of samples of a projection, from a fixed direction,

of some binary object 0. Then a necessary and sufficient condition for the convexity

of 0 is that for every such triplet of samples, we have

gi-i(ti+i - ti) - gi(ti+i - ti-1) + gi+i(ti - ti-1) > 0. (7-1)
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This is simply a statement that every projection is convex and quite similar to Prince's

condition for deciding whether a vector of support values is consistent or not [72]. As

a corollary to (7.1), it follows that if the data samples are equally spaced along the

t-axis, then (7.1) simply becomes

> 941 + gi-1 (7.2)
gi - 2

In other words, for any triplet of equally-spaced data points, the middle one should

be larger than the average of the other two. Given noisy samples Yj = gj + nj of the

projections of a convex object, the relation (7.1) is in general not satisfied. In such

instances, we can imagine constructing a constraint set de-fined by (7.1) and computing

the (Euclidean) projection of the given data set f Yj1 onto this set. This operation

would yield a new data set J�jj which would be consistent with the assumption that

the underlying binary object is convex. This consistent data set may then be used in

a reconstruction algorithm. Prince [72] used a similar consistency condition to obtain

valid support vectors from noisy projection data.

The question naturally arises as to whether consistency conditions similar to (7.1)

exist if the projection data is collected in Fan Beam (FB) mode. Most commercial CT

scanners collect their projection data in FB format. This is to say that a number of

sources emit radiation in many directions from a fixed point, as illustrated in Figure

7-2.

We define the concept of a polar projection of an object analogously to the PB

projection as follows.

Definition 6 Let the object 0 C R' be given, and consider the point p G R 2. Let the

function c(p, 0) denote the total length of the (possibly disjoint) chordsonL (p, 0),

where L(p, 0) denotes a line through p making an angle of 0 with some fixed direc-

tion. The plot of c(p, 0) in polar coordinates, with p as the pole, is termed the polar

projection of 0 with respect to p, and is denoted S(p, 0).

We propose the following conjecture.

Conjecture 1 A compact object 0 C R2 is convex iff its polar projections S(p, 0)
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are convex subsets of R' for all P E R'.

The forward implication has been implicitly proved [56] for the case where 0 has

a smooth boundary. There is very strong evidence that the reverse implication is

also true. For instance, note that if the object 0 is assumed to be star-shaped in

the above conjecture, then the reverse implication is easily verified. Simply consider

S(p, 0) where p is the center of the object, and convexity follows immediately. This

observation indicates that perhaps the hypotheses of the conjecture may even be too

strong. i.e. perhaps the conjecture can be proved if S(p, 0) is assumed convex for p

only in some subset of R'.

7.2.2 Alternative Variational Formulations

In Chapter 5 we discussed a number of variational formulations for the reconstructions

of objects from their noisy moments. Here we present some ideas for further study

in this rather rich area of research
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Smoothness Constraints

A rather interesting regularization method is regularization by a smoothness con-

straint. In particular, the cost function we have in mind is of the form

JS(f, A) = -YS(f, fO) + (,EN -LN(f))7EN(fN - LN(f)) (7.3)2

where

SU I fo) - JIV(f _ fo)112dxdy. (7.4)

The first term of the cost function penalizes large variations between the values of

the gradients of f and the prior fo. By appealing to the calculus of variations, we can

write the general form of the solution as follows.

,72f V2fO + I �tT (X, Y)
N EN(LN(f) - 'EN) (7.5)

To solve for f explicitly, we must -first decide on boundary values for f over the spatial

support of the image and then solve the elliptic partial integro-differential equation

given by (7.5), subject to the chosen boundary values. Recently, a novel technique

for solving such problems efficiently has been proposed in [60]. It can be shown that

the smoothness term can be interpreted as a prior probabilistic model for f; namely

a Markov Random Field. In [60], the authors have used the interpretation of the

smoothness constraint as a "fractal" prior to motivate regularization based on mul-

tiscale stochastic models. These models provide very efficient algorithms for solving

elliptic PDE's such as (7.5). The application of these models to the tomographic

reconstruction problem, and in specific to the moment problem, appears to be quite

interesting and potentially important area of research.

Mixed Regularization Terms

There is no reason to restrict the study of regularized solutions to tomographic re-

construction problems to single regularization terms as we have done in Chapter 5.
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We can consider regularization functionals of the form

jm(ffo) = 7,D(ffo)+-Y2Q(ffO)+-13S(ffO)

+ (fN -,CN(f))'Y-N(fN -,CN(f)) (7-6)

where each regularization parameter -yi is picked to enhance or suppress a particular

feature of the solution or include more prior geometric information into the recon-

struction algorithm. For instance, by including the term corresponding to 'Y1 , as we

showed, we may include information about the support of the object by letting fo be

an indicator set over the estimated spatial support. By adding in the term correspond-

ing to y3, we enforce this condition further by making sure that the estimated image

has a discontinuity at the boundary of the spatial support. Of course, the price we

pay for including more regularization terms is that the resulting algorithms become

more computationally intensive. To see this, note that in the general formulation

(7.6), the solution IM is obtained as the solution of the following integro-differential

equation.

71 log f + "b'N(X, Y)EN(LN(f) - 'EN) + 72 V2(f _ fo) + _Y3(f _ fo) 0 (7.7)
fo

7.2.3 Applications to Pattern Recognition and Data Com-

pression

As we showed in Chapter 6, the errors in the estimated s-complex moments can

(in many instances) be considered to be uncorrelated. This, in effect, implies that

the computation of the s-complex moments amounts to an orthogonal projection

of the noisy tomographic data. Hence, we may think of the estimated s-complex

moments as estimated signatures of the underlying object which may be used to

compare one set of projection data to another set for direct matching of geometric

information. Statistically optimal pattern recognition algorithms may be employed

here to classify, recognize, and compare geometric features, without ever performing

a direct reconstruction of the underlying image. (The same may be done by using
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the geometric or orthogonal estimated moments. Note that it follows from definition

that the set of complex moments contains less information than the set of geometric

or orthogonal moments.) This observation points to a connection between the two

fields of tomography and pattern recognition which surely deserves attention in future

research efforts in either area. The importance of this research is accentuated by the

fact that many diagnostic applications of tomographic imaging rely directly on pattern

analysis but in a very empirical and ad hoc way. The process can now be formalized

and studied in an analytically meaningful setting.

As an illustration of the application of s-complex moments, we show that from

these, algebraic quantities can be derived which are invariant to image rotation and

scaling. It is easy to see from the definition of the s-complex moments that the

rotation of an image only affects the phase of these moments. In particular, let Ck

denote the k" order s-complex moment of some image f (x, y). Let c' denote the k"

order s-complex moment of a rotated version of the image f (x, y). Then it is true

that

C Ck eq, (7-8)k

for some angle 0. From this it immediately follows that the magnitude Of Ck is the

same as the magnitude of c' so that the quantities Ickl (which, of course, still havek

uncorrelated estimation errors for different k) are invariants of the underlying image

with respect to rotation. In a similar fashion, we can show that the numbers ck1cO

are invariant with respect to scaling of the image. Consequently, the features I Ck CO

are invariant with respect to both scaling and rotation of the image.

7.2.4 Generalizations of the Motzkin-Schoenberg Formula

In [19], Davis writes:

" In order to obtain complex formulas for integrals of the type f f G(xy)dxdy

where G is an analytic function of two real variables x and y, we can write

1 1
G(x, y) G -(Z + i), -(Z - Z) (7.9)

2 2i
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Expansion of G in a power series now suggests that one should study integrals of the

form f fT,�h(z)dxdy .........

Subsequently, he proves a generalization of the MS formula for higher derivatives

of an analytic function over a polygonal region.

Theorem II Given a triangle T, we can find constants aAj depending on the vertices

Z1, Z2, and Z3 such that

M 3
(,+2)

I IT i'h (z)dxdy - akjh(k)(zj) (7-10)
k=0 i=1

for all h(z) regular in the closure of T.

This study suggests that the array processing ideas may be applicable to the re-

construction of analytic images f (x, y) defined over polygonal regions. Consider an

analytic function f (x, y) over a polygonal region P. Now in (7.9) write

G(XY) = xpyf(xy). (7.11)

This G is analytic and hence the comments of Davis quoted above essentially mean

that the moments of an analytic image over a polygonal region yield equations of the

form (7.10) that are analogous to signal measurement equations in array processing.

It would be interesting to study what information can be learned about this more

general class of images from measurements of their moments through array processing

algorithms.

7.2.5 Other Array Processing Algorithms and Their Per-

formance

Another important area of future work is the study of other array processing algo-

rithms for reconstruction of polygonal objects from projections. In Chapter 6, we

briefly studied the Least Squares Prony algorithm and a matrix'Pencil algorithm.

Other algorithms such as MUSIC [82], and Pisarenko Harmonic Decomposition [71]
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need to be studied to determine if they perform better. Another approach would be

to try to fit more vertices to the given moment data even when the number of under-

lying vertices is known. In this way we may hope to remove some of the sensitivity of

the algorithms to noise. Such an algorithm would likely produce degenerate, or nearly

degenerate, polygons as reconstructions from which the underlying polygon may be

extracted by throwing out the "redundant" vertices (i.e. those collinear, or nearly

collinear, with at least two other vertices). This kind of "overfitting" technique has

been used with good results in the array processing community [81].

Variations of all the available algorithms may also be studied to take into account

the fact that our array processing problem has non-identical noise distribution on

the measured samples (w-complex moments). Since the variance of the estimation

errors in higher order estimated moments is larger, new performance studies need to

be done with this fact in mind. In particular, a variation of the Total Least Squares

algorithm called constrained TLS, introduced in [1] is particularly interesting. This

algorithm solves the array processing problem with assumptions that are similar in

spirit to those under which the polygonal reconstruction problem is formulated. The

application of the ideas in [1] to the polygonal reconstruction problem appears to be

a promising line of research.

7.3 Conclusions

In this thesis, we have developed techniques for the reconstruction of images for noisy

and sparse measurements of their Radon transform projections. Our techniques first

estimate geometric features of the underlying images directly from projections and

then use this information to produce estimates of the underlying image. The major

areas of contribution of this thesis can be classified into four area:

9 The optimal reconstruction of binary polygonal objects with unknown

number of sides: We showed that high quality reconstructions of these objects

can be obtained from sparse and very noisy projection data. The number of

underlying parameters can also be reliably estimated. We showed that for
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moderate numbers of total samples, our algorithms are relatively more sensitive

to the number of samples per view than number of views.

9 The direct optimal estimation of geometric information from tomo-

graphic data in the form of moments: We developed a Maximum-Likelihood

algorithm for the (linear) estimation of the moments of a function directly from

projection data. We showed that the moments of the projections can be viewed

as sufficient statistics for the underlying image. We also showed that the Radon

transform operator can be decomposed in terms of operators that relate a func-

tion and its Radon transform to their respective moments.

9 Variational algorithms for reconstruction of images from noisy mea-

surements of a finite number of their estimated moments: We developed

direct and iterative algorithms for the reconstruction of images from their es-

timated moments and showed that these algorithms are capable of producing

superior reconstructions when compared to classical reconstruction algorithms.

Our framework was shown to be quite flexible in that it naturally facilitates the

incorporation of prior knowledge.

e Connections to, and applications of, array processing algorithms to

the reconstruction of binary polygonal objects from projections: We

showed that binary polygonal objects can be reconstructed from a finite number

of their complex moments and used array processing ideas to design algorithms

for doing this reconstruction. We observed that the algorithms we designed did

not perform well even with very little noise in the projections. This, we believe,

is due to the fact that our algorithms did not take into account the special

structure of the estimation error of complex moments. We also observed that

the performance of these algorithms were particularly sensitive to the number

of samples per view.

We believe that the application of other specialized array processing algorithms

may well lead to robustness to noise.
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Overall, we hope that the contributions of this thesis to the field of tomography

will serve to promote the study of a host of new image processing and reconstruction

algorithms based on the extraction of geometric information.
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