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ABSTRACT

The Constrained generalized likelihood ratio (CGLR ) technique is applied
to the problem of locating knots in a spline approximation. Theoretical -
analysis is performed to determine performance tradeoffs and key system -
parameters. The technique is applied to real electrocardiogram ( ECG ) -
data with results that indicate the potential usefulness of the method -
for heartbeat wave location and/or ECG data compression and automatic -
diagnosis.
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Chapter I

Introduction and Motivation

I.1l) Spline Approximation Problem

Throughout the years, a great deal of work has been devoted to determine
an automatic diagnoses system using electrocardiogram (ECG) data.[8,9]
In this research work we will try to determine the feasibility of using
polynomial approximation over variable segments of ECG's. Specifically ,
our approach will consider spline functions [1,2] for electrocardiogram
modeling. There are several reasons for doing this :

a) Since the amount of data generated by ECG's is enormous, polynomial
approximation may allow data compression.

b) Spline functions provide the location of knots, which may have diag--
nostic significance. For example, the knot location may tell us when
certain cardiac events occur.

The approximation problem can be visualized as in Fig. I.l.

Consider subdividing the fixed time interval TO <t < TN of ECG data into

N subregions delimited by the mesh of knots

6 : T, < < ... <
0 Tl T

The ECG model is a function Se(y,t) constrained to match exactly the a---
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Within each interval between the knots, ECG data y(t) is approximated by
a finite ( n-1 )st order polynomial, whose unknown coefficients must be
determined. Usually, a convenient constraint imposed on the approxima=--

ting ( n-1 )st order polynomials is to require Se(y,t) to be continuous



together with its first, second, ... (n-2)nd derivatives on T0 <t < TN.

- In the litefature, this condition is given the name " Maximum Smoothness "
The parameters of the spline function Se(y,t) will consequently be

1) the location of the " optimal knots ", and

2) the coefficients of the ( n-1 )st order polynomials used in the ———-

approximation between knots.

I.2) Failure Detection Problem

In the past few years, a great deal of research in system theory has
been directed to the problem of the detection of abrupt changes in dyna-
mical systems. In this paper, such changes will be referred to as " fai-
lures ", although such changes may have quite different physical mea----
nings.

Much of the failure detection analysis has been performed in the context

of a state space description of a linear dynamical system as follows

State Equation
x(k+1) = ®(k)x(k) + B(k)u(k) + w(k) (I.2.1)
Sensor Equation

z(k) = H(k)x(k) + J(k)u(k) + v(k) (I.2.2)
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where : u(k) is a known input ; w(k) and v(k) are independent, zero ——--
mean, white Gaussian sequences with covariance matrices Q and R
respectively.
Recent studies have provided different approaches to the failure detec--
tion problem. Among them, the generalized likelihood ratio ( GLR ) tech-
nique, first suggested by A.S.Willsky and H.Jones [ 6 ] has been widely
studied and successfully applied to a variety of practical problems [ 3 ].
Moreover, the GLR technique provides an estimate of the failure magnitude
and the time of occurrence of the failure which are important in some
applications. We present a brief description of the GLR method in Chapter
IT.
Thus far, we have considered the spline approximation problem and the ---
failure detection problem independently. Now we can raise the following
question : Is it possible to use the GLR detection approach to identify
the " optimal knot " location for spline functions, and can this approach
be useful in processing ECG's ? The goal of this research is the thorough

investigation of this question.

I.3) The Spline Model

The essence of our dynamic model is captured by the knot location problem.

The basic point of departure for constructing a dynamical system is the -
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Maximum Smoothness " property of splines.

Given an ( n-1 )st order polynomial y(t) define :

y(t) = xl(t)
y(£) = x,(£)
in—l) -
y(r) = x (v) (I.3.1)
and

x(t) = -xl(t) -

xz(t)

- x (t)- (I.3.2)
n

Suppose now that y(t) is actually an ( n-1l )st order spline -i.e. it is
piecewise an ( n-1 )st order polynomial with discontinuities in the ----
highest derivative at the knot times [ Ti ]. We then have the dynamical

equation for x(t) :

X(t) = A x(t) +F o §(t-T, .) (I.3.3)
n i-1

T, <t<rT,
1



y(t) = H x(t)

where :

and o is the

100...

010 ...

001...

00O0...

000 ...

magnitude of the discontinuity at t = Tioy -+

0

0

0

1
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(I.3.4)

This point of view considers the spline as a dynamic system driven by

impulses, much as cardiac activity is driven by a series of impulses. As
our aim is to approximate ECG's by splines, a crucial question is the lo-

cation of the knots -i.e. the times [ Ti ]. The basic premise here is that

the spline approximations can be useful in allowing data compression of

the ECG ( without loss of diagnostic information ) and that the knot lo--

cations themselves may provide information concerning the timing of car--

diac events.
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Discretization in Time

Upon discretizing the time invariant dynamic system, we arrive to the --

following set of equations for an ( n-1 }st order spline ( which has an

nth order state representation ) :

State Equation

x(k+1l) = eAA x(k) + Fn o §(k+1,0) (I.3.5)

Sensor Equation

z(k) = H x(k) (I.3.6)
where : R N 8L ety (1.3.7)
01 ...
001 :
A
000 1 i

and A is the time interval.

I.4) Overview of the Research

This research comprises two basic parts, analytical work and experimental
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research.

a) Analytical Work

The failure detection analysis will be performed in the context of a ----
state space description of a spline. Initially, our attention will be de-
voted to understanding how well the GLR detection scheme can locate the
knots of a spline function when we actually observe a spline in additive
Gaussian noise.

In Chapter II we first introduce the basic GLR approach.There we define
the likelihood ratio random variable 1(k,6) and derive some of its sta-
tistical properties. These expressions may be simplified using the —-----
" Maximum Smoothness " property of variable knot spline functions together
with the constrained GLR ( CGLR ) detection scheme. This simplification
is used throughout our work.

In Chapter III we first present some basic results for the single knot
location problem. Results include computation of the noncentrality para--
meter 62(k,6,6T) for different order spline functions ( linear, quadratic
and cubic splines ) . Development of equations for the multiple knot lo--
cation problem is followed through and results for the two knot location
problem for linear splines are presented.

In Chapter IV we derive the important sensitivity equations for the non-

centrality parameter sz(k,e,eT) in an attempt to obtain a more precise
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knowledge of its behavior as a function of some important input parame---
ters, i.e. the sensor noise covariance R and the elements of the error —-
covariance matrix P(0/0).

In Chapter V we also introduce the useful concept of " age-weighting "
filtering, which allows the GLR detector to be more sensitive to new in--
formation. Results for several age-weighting time constants for the sin--
gle knot and the two knot location problem are presented for the linear

spline case.

b) Experimental Research

Our analytical work provides us with an understanding of GLR performance
in locating knots when one actually observes a spline in additive Gaussian
noise. In Chapter VI we analyze how well the CGLR knot location system
works when we in fact approximate waveforms that are NOT splines, specifi-
cally ECG's.

The goal of this effort is to determine the feasibility of using such an

approach for data compression and/or as part of an automatic diagnosis

system.



Chapter II

Generalized Likelihood Ratio Approach

II.1l) Description of the GLR Technigue

The GLR detection system assumes

a) a discrete time linear dynamical system of the form :

State Equation
x(k+1l) = eAA x(k) + §(k+1,8) v + w(k) (IT.1.1)
Sensor Equation

z(k) = H(k) x(k) + v(k) (IT.1.2)

where : x(k) € R represents the state with Gaussian initial condition
x(0), mean ;(0) and covariance P(0/0). In addition w{(k) and v(k)
are independent, zero mean, white Gaussian random sequences with
covariance matrices Q and R respectively.In this problem eAA is
a constant as given by equation (I.3.7) ; A represents the time
interval ( for this project, A has been chosen as 4 msec. ) ;
8 is the failure time - an unknown positive integer which assumes
a finite value if a jump occurs and takes the value ® if there
is no jump. Also aij is the Kronecker delta, and VU is the un--~--

known failure.

and

-16-
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b) a Kalman-Bucy filter ( that assumes no failure 6 = © ) characterized

by the following equations [ 7 ] :

State Estimate Extrapolation

R/k-1) = & Rer-1/x-1) (II.1.3)
State Estimate Update

Q(k/k) = Q(k/k-l) + K(k) v(k) (1I1.1.4)

Innovation Process

Y(k) = z(k) - H R(k/k-1) (II.1.5)

where : Y(k) is a zero mean , white Gaussian residual with covariance
matrix V(k). K(k) is known as the Kalman filter gain, computed
recursively as follows

Error Covariance Update Matrix

P(k-1/k-1) = ( I - K(k-1) H) P(k-1/k-2) (IT.1.6)

Error Covariance Extrapolation Matrix

p(k/k-1) = ™ P(k-1/k-1) (T +

Q (II1.1.7)
Residual's Covariance Matrix
V(k) = H P(k/k-1) H + R (II.1.8)
Kalman Filter Gain
K(k) = P(k/k-1) H® v 1(k) (I1.1.9)

Schematically, the GLR detection scheme is presented in Fig. II.1l.
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KALMAN FILTER
DYNAMICAL BASED ON NO JUMP GLR

SYSTEM z (k) ASSUMPTION _ﬁli)_,r DETECTOR

1(k,0)

Fig. II.1
Due to the linearity of the system and filter, the residuals Y(k) can be
written as :
= <+ . ol
Y (k) YI(k) YII(k) (II.1.10)
where : YI(k) corresponds to all effects except 6 ( failure time ) and vV
( magnitude and direction of the failure ).

YII(k) corresponds to the effects of 8 and v .

The above equation can be written as :

Y(k) = v;(k) + G(k,0)V (I1.1.11)
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where : G(k,0) is a matrix called the " failure signature " matrix and
characterizes the way in which a failure y at time 6 propagates
through the system and affects the residual Y(k) at time k. A
computational algorithm for G(k,p) can be based upon the follo-

wing equations [ 6 ]

G(k,0) = H[ (ePH)*™0 _ &P p(x-1,9) ] (II.1.12)

F(k,g) = K(k) G(k,g) + e™ F(k-1,0) (I1.1.13)
The only new additional equation is for a jump at the present
time k :

F(k,k) = K(k)*H (I1.1.14)

We can establish two hypotheses :

H0 : no failure has occurred

Hl : a failure has occurred

Using the fact that the residualsy(k) are independent and Gaussian, we

obtain the following expressions : let

A
Ak, ) = £( y(1),ee., y(k)/ H, 6, v(k,8))
FCY Doy Y©/ ) (I1.1.15)
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A
where : U(k,0) is the best estimate of U assuming a failure at time 6 ,
and f is the density function for the residuals Y(k) given the

corresponding information. Also let
1(k,0) = 2 1n A(k,0) (IT.1.16)
and define :

d(k,6) G (5,0 V1) y() (I1.1.17)

I
S

1
and the information matrix

X T -1
ck,8) = > G (3,0) V(3) G(3,0) (II.1.18)
j=1

Then we have [ 6 ]

Likelihood Ratio
1(k,8) = d°(k,0) C 1(k,0) d(k,0) (II.1.19)

Maximum Likelihood Estimates ( MLE )

A -

V(k,0) = c T(k,0) d(k,0) (II.1.20)

A

6 (k) = ARG MAX 1(k,0) (I1.1.21)
8 e® (k)

A A A

v (k) = U(k,6(k)) (I1.1.22)
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Here @9 (k) is the set of postulated failure times considered at time
k. As indicated in [ 6 ], a. computationally appealing choice is the ---

singleton set @ (k) = [ k-N ] for some N.

II.2) Constrained Generalized Likelihood Ratio ( CGLR )

’

We now cosider the case in which we assume U = o Fn. Following [ 6 ] we

have :

MLE of o

A

0(k,8) =F T 4,8 /F T clk,0) F (I1.2.1)
n n n

Likelihood Ratio

1(k,0) = [ F T d(k,0) 12/ F T C(k,0) F (I1.2.2)
n n n

N
Finally, the MLE of 6(k) is the value 6< k that maximizes the above ex--
pression. Then our decision rule is :

A
1(k,0) €

(I1.2.3)

oAV I

0]
Phe implementation of the GLR detector involves a growing number of fil-
ters [ 6 ] . To avoid tis problem we can restrict our attention to a "

sliding window " of finite width -i.e. () (k) = [ k~N,k=-N+1,...,k-M ].
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II.3) Statistical Properties of 1(k,0)

Suppose a jump of size v actually occurs at time GT. Given this infor--
mation, d(k,0) is Gaussian and its statistics can be calculated. A ——-—-—
straightforward computation yields :

k
E [ d(k,0) 1

et (3,0 v 1) 6(3,6,) ‘Fnd
j=MAX(e,9T)

E [ da(k,0) 1

C(k,e,eT) Fna
COVAR [ d(k,8) 1 = C(k,0) (II.3.1)

Thus, 1l(k,p) is the square of a Gaussian random variable - i.e. it is a

noncentral XZ random variable with one degree of freedom and :

EI 1,9 1

EL(FTak,e)21/F T dk,g F (I1.3.2)
n n n

E [ 1(k,0) ]

1+ 6%(k,6,6,)
T
Here 52 is the noncentrality parameter whose value is given by :

2 _ 2 T o 2 T
8 (k.e,eT) =o I F c(k,e,eT) F 17/ F c(k,0) F (I1.3.3)



Chapter III

Knot Location Problem

ITI.1l) Single Knot Location

In the previous chapter we have derived some properties of the CGLR —----
failure detection system for the single knot location problem ( only one
real failure at time 6T ), by studying some statistical properties of the
likelihood ratio random variable 1(k,0) .

As pointed out, the implementation of the CGLR detector involves maximi-
zing the likelihood ratio expression (II.2.2). This last statement leads
us to expect maximum values of the likelihood ratio 1(k,0) for maximum -
values of the noncentrality parameter 62(k,e,eT). We would expect the =--
largest value for 6 = eT , and the rate at which 62 decreases as we change
- tells us how well GLR can isolate the knot location.

In order to get some practical insight into the nature of the CGLR detec-
tion scheme we have developed a FORTRAN computer program for computing -
—the noncentrality parameter ﬁz(k,O,GT) . The flow -chart for this program
is presented in Fig. III.1l.

Computation of sz(k,e,eT) has been performed for linear, quadratic and =--
cubic splines for several sets of values for the input parameters R ( sen-
sor's noise covariance ) and P(o/0) ( error covariance matrix ).

. : 2
In Fig.ITI.2 to III.13 we have plotted the noncentrality parameter § in

-23-
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two different ways :
1) as a function of 6, with parameter 9T and several values of k, and

2) as a function of k, with parameter © and several values of GT.

Recall that : k = actual time
O = time of failure as hypothesized by GLR
QIF true time of the failure
There we have taken = 1 for simplicity. Several outstanding facts can

be pointed out :

A) The noncentrality parameter 62 has its maximum value for ©O= GT, for
any fixed value of k.

B) The noncentrality parameter 62 is a nondecreasing function of k, for
any fixed value of GT.

C) The noncentrality parameter 62 has greater values for linear order
splines than for any other order spline function.Here, we will be
actually looking for " failures " in the first derivative.

D) Smaller values of the sensor's noise covariance R allow a much better
performance of the GLR detector, increasing the size of the noncen---
trality parameter 62. ( Compare Figs. III.2a and III.4a)

E) Smaller values of P(0/0) increase the size of the noncentrality para-
meter 52 ( Compare Figs. III.2a and III.3a ), since the Kalman filter
gain is smaller with the small P(0/0) and thus essentially the effect

of the entire jump appears in the residual.
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F) Smaller values of R and greater values of P(0/0) increase " knot reso-
lution ", i.e. the noncentrality parameter 62 curves, as a function
of 0 are more peaked at GT when one has smaller values of R and greater
values of P(0/0). ( Compare Figs. III.3a and III.4a )

G) The nondecreasing 52 curves as a function of k approach a constant
value much faster for greater values of P(0/0) for any fixed parameter
GT. ( Compare Figs. III.2b and III.3b ). This most outstanding fact
will allow the GLR detection scheme to be more sensitive to new infor-
mation, making this approach feasible for precise multiple knot loca--
tion. ( This fact will be analyzed in detail in Chapter V )

H) Knot resolution increases dramatically for a decreasing order of spline
function. ( Compare Figs. III.10a, III.6a and III.2a ) This fact —-—---
essentially allows us to expect a better performance of the GLR —-----
approach in locating the knots of first order polynomials. Specifically
, we may want to consider linear splines for ECG modeling. Of course,

one would then expect to need more knots to represent the ECG.

A detailed analysis of the above tradeoffs involved in GLR design led us

to choose the following guidélines for use in choosing GLR design parame-
ters. We will analyze these issues in great detail when we discuss the --
application of the GLR technique to ECG data analysis.

1) Use as low an order for the spline approximation possible to improve



-39-

GLR performance.
2) Use of small values of the sensor noise covariance R, together with

3) Greater values of the elements of the error covariance matrix P(0/0).

III.2) Multiple Knots

Up to this point, we have dealt with failure detection systems whose —--
main concern was the identification of a single failure. We intend now

to develop some useful equations for the multiple failure identification

problem.

Consider first the two failure problem. Define :

eTl = true time of failure # 1

9T2 = true time of failure # 2

Due to the linearity of the system and filter, the residuals Y(k) can be

written as :

Y(k) = YI(k) + YII(k) + YIII(k) (ITI.2.1)



=40~

where : YI(k) corresponds .to all effects except eTl ' 6T2 and v
YII(k) corresponds to the effects of 61 and v
YIII(k) corresponds to the effects of 62 and v

Substituting equation IIL.2.1 ( superposition of the effect of the resi-

duals ) into the definition of the matrix d(k,0) yields :

~

atk,9) = Y G (3,0 VG Iyp() v () 4y () ) (IT1.2.2)
|

.

Taking the expected value :

k :
E[a0,0 1= Y 65,0 vV (3) [6(3,6,)Fa +G(3,0,,)Fa,
3=1
(I11.2.3)

The noncentrality parameter 62 as a function of failures #1 and #2 can be

written as :

]

2 T 2 T
§%( k,8,0 ) = [ F =~ E[dk,0117/ F = C(k,0) F,

Tl'eTZ

2
§°( %,8,65 /6y

2 2
8" (k,0,85) + 6 (ki0,6,,)

+ 2*6(k.6:6T1)*6(k16,6T2) (III.2.4)
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We have computed the value of this quantity in several cases for linear

splines. The actual computer program used the following values :

n=2

R

0.1
P(0/0) =| 1.0 0.0

0.0 5.0

Three different pairs of knot locations were chosen :

a) eTl = 20 eT2 = 40
= = 70

b) eTl 20 T2

c) 'eTl = 20 2 = 100

The results are plotted in Fig. III.1l4, which shows the noncentrality pa-
2 . .

rameter § (k,6,6T1,6T2) as a function of 6, with parameter ( eTl’eTz) and

several values of k.

It can be seen, that GLR does have difficulty in resolving the two knots.

It is this observation that has led us to consider " age weighted " fil--

tering. ( Chapter V)
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Chapter IV

Sensitivity Equations

IV.1l) Development of the Sensitivity Equations for the Noncentrality

Parameter 62(k,9,6ql
4

In the last Chapter we developed some computer programs for the computa-
tion of the noncentrality parameter 62. There we used arbitrary values

for the parametric vector 0(0), where a(k) is defined as :

ak) =[ R (IvV.1.1)
P (k/K)

Plz(k/k)

.
.

| P (k/K) ]

The obtained results have allowed us to derive some useful properties of
our knot location detector.

In our search for the tradeoffs involved in the choice of the detection
system parametric vector 0.(0), we will develop the so called " sensitivi-
ty equations ". By doing this, we will be able to get precise knowledge
of how system parameters affect the noncentrality parameter 62. As given
by expression ( II.3.3), 62 can be computed with knowledge of the infor-
mation matrices C(k,0) and C(k,G,GT), which are in fact linear functions

of the failure signature matrices G(k,0) and G(k,GT).
-43~
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The necessary quantities for the evaluation of the failure signature ---
matrices were given in section II.l .Thus, straightforward calculations
lead us to the following expression for the noncentrality parameter ——--

2
6% (k+1,0,0.)

62(k+l,6,6T) £( F(k-1,6) ,F(k-1,6,) , a(k-1)) (IV.1.2)

Notice the dependence of the above expression on functions evaluated at

time ( k-1 ) .

IV.2) Taylor Series Expansion for 62(k+1,6,8TL

Consider incrementing the parametric vector d(k—l) byAa(k-1) around its

nominal value ap(k—l). The expression IV.1.2 for the noncentrality para-
meter 62(k+l,6,6T) will consequently be incremented by the value =-———=-=
Aéz(k+l,6,6T) around its nominal valueéz(k+l,6,6T)o. Thus, making a ---
Taylor Series expansion of the noncentrality parameter ( expression IV.

1.2 ) around its nominals yields after simplification :

A(Sz(k+1,6,6T) = 3f A F(k-1) + Of Aa(k-1)
oF (k-1) | NOM. aa(k—l) NOM.
+ h.o.t.

(Iv.2.1)
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where : F(k-1) = [ Fp; (k-1,0) 7]
Flsz?l,e)

an(k—l,e)
Fll(k?l,eT)
Flz(k—l,GT)

an(k—l,GT) (Iv.2.2)
- -

In expression (IV.2.1), h.o.t. refers to quadratic, cubic, quartic, ...

etc. terms of the Taylor Series. The key property of the h.o.t. is that :

lim " h.o.t.|

=0
862 (k+1,8,0)> 0 [|as 2qer1,0,60) |

If we examine (IV,2.1l) and assume that AGz(k+1,6,6T) is very small, we

can approximate the exact expression (IV.2.1) by :

86%rr, , ) B A F(k-1) + 8F Ao (k-1)

Ao oF (k—-1) | NOM. da(k-1) JNOM. (IV.2.3)

Dividing the above equation by Aai(k—l) we get the sensitivity equation

for the noncentrality parameter 62, namely :
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2
Aai(k—l) dF (k-1) Aai(k-l) aai(k-l) (IV.2.4)
NOM. NOM.

In this research we did not make use of this analysis to determine -—
good " values for the design parameters 0(0). For completeness, we pre—--
sent a detailed derivation of the required equations leading to the eva-
luationvof the sensitivity expression for the noncentrality parameter 52.
using linear splines.

For this particular case, the parametric vector o(k-1l) and the vector

F(k-1) take the following form :

ak-1) =R ] , F(k-1) =| F;; (k-1,0)
Pll(k—l/k-l) Flz(k-l,e)
P, (k-1/k-1) F,q (k-1,0)
| Pa (k-l/k—l)_ F,, (k-1, 9)

Fll(k—l,GT)
Flz(k-l,eT)

le(k—l,eT)

_Fzz(k'l'eT)—

(Iv.2.5)

Substitution of the defining expressions for the information matrices
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C(k,0) and C(k,e,GT), [ Chapter II.1 ] into the equation for the noncen-

2 . .
trality parameter 6~ ( II.3.3 ) evaluated at time ( k+1 ) yields :

5 [~ k+1 2
6%0e+1,0,00) = | §° b(3,8) bt3,0,)/ B(3+1)
L_j=Max(9,6T)
[ k+1 X
}E: b(3,0)%/ B(3+1) (Iv.2.6)
L 4=0
where : B(35+1) = 8 ™ p(3+1/9+1) (2HT 8T + R (IV.2.7)
b(3,8) b(3,0,) = FnT G(5+1,0) T G(3+1,0,) F_ (IV.2.8)

After some straghtforward calculations, the above defining equations for
B(j+1) and b(j,0) b(j,GT) can be explicitly written as a function of the

parametric vector a(k-1) and the vector F(k-1l) in the following form :

-0

b(j,0) A + A - Flz(j-l,e) - 2A Fzz(j—l,e)
_ . . -6 _ . _ .
( Kll(J) + A Kzl(J)) (A Flz(j 1,0) A F22(3 '1,9) )
(IvV.2.9)

2
B(S¥1) = [ ( 2P (3/3) + 6A By, (3/9) + 5A° B (3/9) + ROR+ A% BL B0 (5/9) 1

b(3)
(IvV.2.10)

where :
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o . . 2 .,
b(j) = Pll(J/J) + 2A P12(3/3) + A P22(J/J) + R (Iv.2.11)
ey o g N 2 ‘1
Pll(J/J) =R ( Pll(] 1/5-1) + 2A P12(J 1/3-1) + A 922(3 1/3-1))
B(3-1)
(IV.2.12)
Plz(j/j) =R ( P12(j-1/j-l)v+ A Plz(j-l/j—l))
B(j-1)
(IV.2.13)

ey N o g _ N
P22(J/J) = 922(3 1/3-1) « Pll(J 1/3-1) + R) Plz(J 1/3-1)

B8(3-1)
(IV.2.14)
Kll(j) = Pll(j—l/j-l) / R (IV.2.15)
K21(j) = Plz(j—l/j—l) / R (Iv.2.16)

Finally, using expressions (IV.2.9) through (IV.2.16) and differentiating
(IV.2.6) with respect to some of the elements of the parametric vector
0(k-1) yields the corresponding sensitivity equation. Differentiation is
straightforward, but the resulting expressions sre rather complicated and

will be omitted here.



Chapter Vv

Age Weighting Filtering

V.1l) The Single Knot Case

As noted in Chapter II, the GLR detection scheme uses a discrete Kalman
filter based on a " no jump " assumption for information processing. It is
clear, that the filter bases its estimate on all the available information.
Assume, however, that the dynamics for our heart model are imprecisely ---
known. Then, the Kalman filter might " learn " the state " too well ".
Because of imprecise dynamics used in the filter, the " good " estimate
may be wrong. In the literature this is referred to as the problem of —----
filter divergence. [ 7 ]

A reasonable approach to this problem is to limit the filter memory so
that the estimate does not become too " good ". By limiting the filter me-
mory we mean computing an estimate conditioned on data from only the " re-
cent past ". This has the effect of preventing the error covariance matrix
P(k/k) from becoming too small, hence preventing the Kalman filter gain
from becoming very small. Discarding old data can be accomplished by -----
weighting them according to when they occurred, as shown in Fig. V.l. This
means that the sensor noise covariance R must somehow be " increased " for
past meésurements, as illustrated in Fig. V.2.

Assume exponential age weghting of old data

-49-
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R(k-1) = eX/* R(k) (v.1.1)

for k > 1 and x > 0

where : x is the age weighting time constant.
A recursive Kalman filter can be constructed under these assumptions [ 7 ]

The equations are

Error covariance update :
P(k-1/k-1) = e*/* [ I - K(k-1) B 1 P(k-1/k-2) (v.1.2)

Error covariance extrapolation :

AA

P(k/k-1) = e p(k-1/k-1) ( A2 )T (V.1.3)
Residual covariance :
V(k) = H P(k/k-1) HT + ¢ V/% g (vV.1.4)
Kalman filter gain :
K(k) = P(k/k-1) H® vV (k) (V.1.5)

A computer program for computing the noncentrality parameter Sz(k,e,eT)
incorporating the age-weghted filtering concept was written and tested for
the following age-weghting time constants :

a) x =10

b) x = 50

The analysis tests were run for the linear spline case using the following
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set of parameters :

R = 0.1 ’ P(0/0) =|1.0 0.0

0.0 5.0

Results are presented in Figs. V.3 through V.5. Fig V.3 ( age-weighting
constant x = 10 ) and Fig. V.4 ( age-weighting constant x = 50 ) show the
noncentrality parameter 62 as a function of k, with parameter 8 for two
different values of GT. In Fig. V.5, the noncentrality parameter 52 has
been plotted as a function of 0, with parameter OT, for k = 25 and k = 50.
For comparison we have plotted both noncentral 52 curves ( x = 10 and ---
X = 50 ) on the same Fig. V.5 .

Two facts can be pointed out :

A) The noncentrality parameter 52(k,9,9T) curves as a function of k ( Fig.
V.3 and V.4 ) reach a final constant value much faster as we increase
the noise covariance R exponentially for past measurements, i.e. as we
reduce the exponential age-weighting time constant x . This fact essen-
tially allows the GLR detector to be more sensitive to new information
( basically discarding its past history ).

B) It can be seen ( Fig. V.5 ) , that the noncentrality parameter Gz(k,e,eT)
curves are less peaked as a function of 8 as we add more age-weighting.
This is a direct consequence of the exponentially increased noise cova-

riance R, which actually supports our initial comments in Chapter III.l.
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V.2) Age Weighted Multiple Knot Location

As mentioned in Chapter III, the GLR detector has difficulty in resolving
the two knot location problem. Limiting the filter memory to data from --
only the recent " past " seems now to be a reasonable approach to over—--
come this trouble.

The exponential age-weighting filtering concept was analyzed for the two
knot location problem. A Fortran computer program incorporating this ---
filtering concept was developed and tested for two different pairs of —--
knot locations :

a) 6

20 40

6
Tl T2

2
T2 20 T2

b) 6

70

Results are plotted in Fig. V.6 ( age-weighting time constant x = 10 ) and
Fig. V.7 ( age-weighting time constant x = 50 ), where the noncentrality

parameter Gz(k,e,e ) is shown as a function of 6, for the selected

Tl'eT2
sets of parameters a) and b) and several values of k.
Some important facts can be mentioned :
A) The size of the noncentrality parameter 52(k,9,9T1,9T2) decreases as we
decrease the age-weighting time constant x for some fixed value of k.
( Compare Fig. V.6 and Fig. V.7 )

B) As we add more age-weighting, i.e. as we decrease the age-weighting time

constant x, the knot resolution for the noncentrality parameter ——wee—-
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az(k,e,eTl,eTz) curves increases considerably ( Fig. V.6 )
C) Knot resolution increases as the knots to be located are more separa--

ted from each other ( See Fig. V.6 )
V.3) Discussion

The inclusion of the age-weighting concept as part of the Kalman filter
used for information processing has given us a new input variable that we
can use to adjust GLR detector performance.

As mentioned earlier in this work, our basic objective will be to deter-
mine the feasibility of using spline functions for ECG modeling. The ---
approximation problem requires that the adaptive knot location of a mesh

of knots :

eTl T2 TN

which will divide ECG data into N different subregions. Thus, although --
for single knot detection purposes we might want to use larger values for
the age-weighting time constant x, i.e. we may want large values of the
noncentrality parameter 62(k,6,6T) , the adaptive knot location of the --
mesh of knots 0 demands fine knot resolution, available only when we use

small values for the age-weighting time constant.
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Moreover, since knot resolution is poor when, in fact, the knots to be
located are close to each other, we will consider a " dead-zone " time

interval for identification purposes, i.e. we will avoid knot location

for some time after a knot GT has been located.
i



Chapter VI

Experimental Research

VI.1l) Knot Location for ECG Approximation

The analytical work developed thus far in this research has provided us
with some understanding of GLR performance in locating knots when we ac-
tually observe a spline in additive Gaussian noise. Now we plan to detef-
mine the feasibility of using such an approach when we wish to approximate
waveforms that are not splines, i.e. specifically ECG's. In Fig. VI.1l we
have shown a typical heartbeat cycle as recorded on an electrocardio--—--
gram. We note that the ECG consists of a sequence of waves ( P, Q, R, S
and T ), and, if it is to be successful, the GLR detector should determi-
ne their location. In addition, given the high amplitude and freéuency
content of the QRS complex [ 10 ], we would expect a higher " knot density
" in this region .
A Fortran computer program for the CGLR detection scheme was developed
and used to process ECG data. The data was digitized ECG data, sampled at
250 Hz ( time interval A = 4 msec. ) . In addition to the CéLR system as
discussed so far, we have included a feedback path for incrementing the

Kalman filter estimate and covariance subsequent to the detection of a --

knot ( see [ 6 1 ). A flow chart for our program is presented in Fig. VI.2.

—-61-
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The following set of input parameters was chosen to remain fixed through-

out these tests :

a) n 2, i.e. linear splines for ECG modeling ,

b) x

10, i.e. we use a small age weighting time constant to permit fine
knot resolution ,

c) N4 = 5, i.e. use direct state incrementation together with error cova-
riance reset for adaptive filtering after a knot has been located,

d) N3 = 10, i.e. we will avoid locating knots for 10x4 msec. after has --
actually been located ,

e) N2 = 10, i.e. we restrict our optimization over 6 to an interval of -

the form k - 10 < 6 < k ( we note that the 1(k,k) is undefined ).

Initially, the analysis tests were run using ECG data corresponding to the
first Lead [ 10 ] of the digitized vectocardiogram ( VCG ) of a normal --
patient with an average heartbeat rate of 50 heartbeats/min. Several sets
of values for the noise covariance R and the elements of the error cova--—
riance matrix P(0/0) were chosen. The CGLR system was implemented with --

the detection law :

Hy

>
1(x,0) _ 3500 (VI.1.1)

H
0

Identification of the knots was performed in two different ways :
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1) Optimizing the detection law over the data " window " of width
N2 = 10, and

A
2) Avoiding optimization, setting : 6 =k - N2+ 1=k -9

Results are plotted in Figs. VI.3 through VI.7 showing the location of --
the knots for the first heartbeat cycle.

Several facts can be mentioned :

A) The CGLR detection scheme using optimization over the " data window "
k -~ N2< 6B <k
allows us to determine cardiac events more accurately. For example, --
the knot location in Fig. VI.3a ( optimization ) defines the P wave
completely, while Fig. VI.3b ( no optimization ) provides misleading
information concerning the duration of the P wave.

B) Smaller values for the elements of the error covariance matrix P (0/0)
increase the number of knots detected for any fixed values of the —---
noise covariance R and the treshhold € . ( Compare Fig. VI.4 and -----
Fig. VI.7 ). Since the Kalman gain is smaller with the smaller P(0/0)
( see IV.2.15 and 1IV.2.16 ) , the effect of the entire jump appears
essentially in the residual Y(k) , allowing the likelihood ratios =----
1(k,6) to increase.

C) Using optimization over the " data window " and greater values of the
sensor noise covariance R reduces the number of knots detected for --
any fixed values of P(0/0) and the treshhold £ ( Compare Figs. VI.5a,

VIi.6a and VI.7a )
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D) As expected, given the high frequency content of the QRS Complex, --
the " knot density " in this region is high.

A detailed analysis of the tradeoffs involved in the choice of the de--

tection system parameters led us to consider :

a) small values of P(0/0) when using spline functions for ECG modeling
( where we want more accurate estimation of the waveforms ) , and

b) larger values of R, if one is mainly interested in defining the ti--—-
ming of cardiac events, i.e. specifically the sequence of waves ( P,Q,
R,S, and T ), with less interest in the details of the shape of the --
waves. Note in this case we would prefer fewer knots so that we can --

more easily associate certain knots with specific cardiac events.

In order to fullfill the requirements of these two different approaches,
the following sets of values were chosen :

SET A ) Accurate ECG modeling :

R = 0.5 P P(0/0) =|0.1 0.0

0.0 0.5

Fig.VI.8 shows some real ECG data and its linear spline appro--

ximation using these set of numbers
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SET B ) Timing of cardiac events ( see Fig.Vi.7a )

R=1 ' p(0/0) =1 O

VI.2) Time Varying Detection Law

Due to the fact that the range of values for the likelihood ratios 1(k,0)
over a heartbeat cycle is too high ( approximately lO7 ), our unique --
decision rule VI.l.l1l may provide misleading knot location information.
To overcome this trouble we propose a time varying detection law of the

form :

1(k,0 £ (k) (vi.2.1)

oAV

0

over a single heartbeat cycle, with :

e(k) = ¢ for the QRS complex
e(k) = 62 for the T wave
e(k) = 83 for the P wave

We notice however, that the " on line " implementation of this time va--

rying decision rule requires some automatic procedure for defining the
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sequence of waves ( P,Q,R,S,and T ) based on the sequence of knots , and
the patient's heart-beat rate .

Some " off line " analysis tests using a variable treshhold ¢(k) were --
run in order to test the utility of this approach. Sets A) and B) were -
chosen as the CGLR system parameters; optimization over a " data window"

was performed. The following treshhold were chosen :

LEAD # 1 e, = 80000
e, = 18000
= 2500
€3
LEAD # 2 €, = 80000
= 16000
e, = 1
= 4000
€3
LEAD # 3 €, = 80000
€, = 18000
€, = 11000

Data of two normal patients having the following characteristics were ---
chosen :

PATIENT # 1 Heartbeat Rate

50 Heartbeats/min

PATIENT # 2 Heartbeat Rate = 98 Heartbeats/min
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Results for these patients are presented in Figs. VI.9 through VI.1l2 for

both sets of system parameters A) and B). Some facts can be pointed out :

1

2)

3)

The CGLR detector locates more knots for the cectocardiogram ( VCG )
data of Patient #2 , since its heartbeat rate is greater than the ----
heartbeat rate of Patient #1 and we are actually looking at more =—--—-
heartbeat cycles in the same time interval. ( Compare Figs. VI.9 and -
VI.11 )

Use of normalized ECG data for all patients allows our detection sys—-
tem to use fixed treshhold values in the time varying decision rules
without affecting system performance, i.e. the sets of parameters A)
and B) can be effectively used for ECG data processing for accurate --
ECG modeling and for defining the timing of certain cardiac events, --
respectively. Further work to verify this is needed.

Parallel knot location for the three Leads of the VCG may allow fur--
ther resolution of cardiac events. For example, since the P wave is --
not well defined in the data corresponding to Lead #3 , one can use =--
the actual knot location of the first two Leads to identify it. More--
over, the QRS Complex can be identified by looking at the high " knot
density " regions of the three Leads. ( This information can be useful
for implementing an automatic procedure for defining the sequence of -

waves ( P,Q,R,S,T ). and the patient's heartbeat rate ).



4 -76-
Patient # 1
R = 0.5
P(0/0) =[0.1 0.0
0.0 0.5
g
L
Lead # 1
(]
Lead # 2
Lead # 3
1 1 1 1 1 1 1 1 | 1 1 i
B
o 100 200 300 400 500 600 700 800 900 1000

Fig. VI.9




-77-

Patient # 1
R=1

P(0/0) =[1 o]
0 s

Lead # 1

Lead # 2

Lead # 3




-78=

Patient # 2

R = 0.5

P(0/0) s[o.) o.o]
0.C 0.5

Lead # 1
»
Lead ¥ 2
1
' !
Lead # 3
1 1 I | I L 1 1 1 i by X
100 200 300 400 500 600 700 800 900 1000 1100

Fig.VI.1ll




-79-
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Chapter VII

‘Conclusions

The failure detection analysis was performed in the context of a state
space description of a spline used for ECG modeling. We have considered
the spline function as a dynamic system driven by impulses, much as ---
cardiac activity is driven by a series of impulses. This fact enabled -
us to use the CGLR technique for locating knots.

Having recognized that the likelihood ratio 1(k,0) is a crucial quantity
in the CGLR detection scheme, in Chapter II we initially analyzed some
of its statistical properties, i.e. specifically the noncentrality pa--
-rameter Gz(k,G,GT) .

In Chapter III we first considered the single knot location problem.
There we developed a computer routine for computing the noncentrality
parameter Gz(k,e,GT) . As a result, we were able to get some practical
insight into the nature of the CGLR detector and the tradeoffs involved
to achieve " optimal " performance. We have also developed some ground-
work for the multiple knot location problem, considering the special --
case in which we hypothesize two failures of equal size, i.e. 0. = 0o_.

1 2
Examining the behavior of the noncentrality parameter 62(k,6,6T1,6T2)
assuming different failures of different sizes remains for future work.

In Chapter IV we have also developed a framework in our search for the

optimal values of the detection system's parametric vector a(0). In this

-80-
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chapter, we have derived the sensitivity equations for the noncentrality
parameter 62, but we again have only laid out some groundwork and much
remains to be done ( in particular we need a computer routine for com--
puting the sensitivity equations for the linear spline case; use of the
computer package MAXIMA is suggested for obtaining the required quanti-
ties in the sensitivity equations ).

In Chapter V we studied the age weighting filtering concept. As a result
, we were able to improve knot resolution getting some insight into the
tradeoffs involved. It is our feeling, that the inclusion of age-~ -----
weighting greatly improves overall performance. The analytical work de-
veloped in this research provided some understanding of CGLR performance
in locating knots when we actually observe a spline in additive Gaussian
noise. Thus, the first contribution of this thesis is an understanding
of the theoretical properties of the CGLR system for knot location. We
have studied the tradeoffs in system design, have isolated the critical
design parameters, and have made several useful observations concerning
system performance.

In Chapter VI we used this approach for approximating ECG's. A computer
routine for the CGLR detector was written and used to process real ECG
data. As a result, we were able to get additional insight into the trade-
offs involved in :

a) using spline functions for ECG modeling, and

b) defining the timing of certain cardiac events.
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Our results are quite encouraging, although we have only tested the sys-
tem on a very small set of real data. Further experimentation is clearly
needed. Nevertheless, we have been able to determine several sets of CGLR
parameters that lead to good performance. One set of parameters leads to
a substantial number ( 16 ) of knots per heartbeat but provides accurate
ECG modeling with only linear splines. With the other set of parameters
the CGLR system determines a smaller set of knots, which can then be used
( together with the magnitudes of the likelihood ratios ) to identify the
sequence of waves in the ECG or VCG.

Further analysis tests for defining " optimal " values for the window —---
size and the dead zone time interval for these two objectives is required
An automatic procedure for defining the sequence of waves ( P,Q,R,S, and
T ) , based on the sequence of knots, and the patient's heartbeat rate is
also necessary.

Since VCG data actually provides simultaneous cardiac activity informa---
tion for three different leads, we could use a " spline vector " for VCG
modeling. As this research did not consider this scheme, an analysis of
CGLR similar to the one performed for the scalar case is desirable ( and
the present work provides the tools needed for such an approach ).
Lastly, since the ECG model is a spline function Se(y,t) constrained to
match exactly some set of ordinates Y; prescribed ( see Chapter I ) , our

Kalman filter used to process ECG data will provide " best " estimates at
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the locations ei of the detected knots. Thus, we may want to use " opti-
mal smoothing " techniques [ 7 ] using all measurements between ei_l and
Gi to improve our estimate of the spline model at a certain time k,
where 0, _; < k < 6;.

We feel that this research has clearly demonstrated the properties of --
CGLR for spline knot location and has provided a useful set of analytical
tools. In addition, our application of CGLR to ECG data shows the promise

of this method for heartbeat wave location and ECG data compression.
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