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Abstract

In this thesis, we develop image processing algorithms and applications for a particu-
lar class of multiscale stochastic models. First, we provide background on the model
class, including a discussion of its relationship to wavelet transforms and the details
of a two-sweep algorithm for estimation. A multiscale model for the error process as-
sociated with this algorithm is derived. Next, we illustrate how the multiscale models
can be used in the context of regularizing ill-posed inverse problems and demonstrate
the substantial computational savings that such an approach offers. Several novel
features of the approach are developed including a technique for choosing the opti-
mal resolution at which to recover the object of interest. Next, we show that this
class of models contains other widely used classes of statistical models including I-D
Markov processes and 2-D Markov random fields, and we propose a class of multi-
scale models for approximately representing Gaussian Markov random fields. These
results, coupled with those illustrating the computational efficiencies that the multi-
scale models lead to, suggest that the multiscale framework is a powerful paradigm
for image processing both because of the efficient algorithms it admits and because
of the rich class of phenomena it can be used to describe. This motivates us in the
final section of this thesis to pursue further algorithmic development for the multi-
scale models. In particular, we develop an efficient likelihood calculation algorithm
for multiscale models and demonstrate an application' of the algorithm in the area of
texture discrimination. The thesis concludes with a review of our main results and
with a discussion of a few of the many open problems and promising directions for
further research and application.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Multiscale Signal Processing and Wavelet Trans-

forms

There has been, and continues to be, strong interest in the signal processing com-

munity in multiresolution methods in image processing. One often expressed reason

for this is that multiresolution methods lead naturally to processing which is scale-

invariant, that is, the interpretation or processing of the image does not depend on the

scale of the objects therein [85, 38]. For instance, several researchers have developed

stereo matching techniques which operate at a range of scales, allowing objects to

be matched despite changes in size [94, 115]. Others have developed multiresolution

methods for edge detection [147, 114, 93], filtering [32, 110] and compression [21, 44].

Such multiresolution approaches often also lead to substantial computational advan-

tages, especially when the processing is organized in a coarse-to-fine progression. For

instance, in [18] a multiresolution segmentation algorithm is proposed in which im-

ages are first segmented at coarse resolutions, the results of which are then used to

guide segmentation at successively finer levels. The operation at any given level is

iterative, and because there is a good initial guess from the previous resolution level,

the number of iterations can be substantially reduced over an approach which begins

and ends at the finest level of resolution.
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The development recently of multiscale representations based on wavelet trans-

forms has initiated a substantial amount of new research in multiscale signal pro-

cessing [39, 40, 85, 561. This theory provides very elegant and general tools for

decomposing signals into their components at different scales, and a rich framework

for the development of applications in a variety of areas [37, 44, 87, 153, 152].

The orthonormal wavelet representation of a signal is based on translations and

dilations of a single scaling function O(x). The approximation of a function f (x), x E

R at the m'h level of resolution is given by:

f,.,, (x) E f (m, n) On,. (x) (1. 1)
n

where 0,,n(X) =_ 2- 12 <�(2rnx - n) and the set of translates of the scaling function

{0,,n(X),n E ZJ provide an orthonormal basis for a space of functions V, at res-

olution m [861. In particular, the scaling function O(x) provides a multiresolution

analysis of the space of square integrable functions L2(R), which consists of a se-

quence of nested approximation spaces:

... Vn-1 C Vn C Vn+l ... (1.2)

with the properties:

I. 9(x) E V, +-+ g(2x) E V",,,

2. n v, = 101, U Vn = L2 (R)

and V, = linear spanfO,,n(X), n E Z I. The multiresolution approximation in (1.1) is

then just the partial expansion of f (x) in V, with respect to the basis f 0,,,(x), n e

Z1. The coefficients of the expansion, f (m, n), are given by a projection equation:

AM, n) Onn(X)f (x)dx (1-3)

Associated with the scaling function O(x) is a wavelet function O(x) which provides

an orthonormal. expansion of certain detail spaces associated with the multiresolution
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analysis. In particular, define the detail space W, by:

V,,, = W,,, (DV,. - 1 (1.4)

That is, W, is the space of functions contained in the resolution space V, but not

contained in V,-,. Thus, W, I V,-,, i.e. the space of incremental detail associated

with an increase in one resolution step, from V,-, to V, is orthogonal to V.-, - The

wavelet O(x), and in particular, the set of translates for a given M, 10,,"(x), n E ZJ,

whereO,,n(X)=- 2m1'0(2mx - n), provide an orthonormal basis of W,. From (1.4),

we see that Vm-1 = W,-1 ED V,-2, and by substituting this relation into (1.4), and

proceeding in a similar way with respect to V,-2, V,-3, - - -, We See that the space of

functions at any given resolution can be written as a direct sum of the detail spaces:

Vm (Dn<mWn. Thus, we can rewrite the expansion (1.1) as:

rn

fm (X) = E E d(k-, n)Okn(X) (1.5)
k=-oo n

where the coefficients d(k, n) of this expansion are given by a projection equation

similar to (1 -3).

One simple example of a multiresolution analysis is associated with the Haar

wavelet transform. In this case, the scaling function O(x) and corresponding wavelet

?P(x) are given by:

OW = I if x E [0, 11 (1.6)
0 else

I if X C- [0, 1/2]

OW = -1 if X E (1/2, 1] (1.7)

0 else

The f (m, n) in this case Just correspond to averages of f (x) over intervals:

f (M n) = 2m/2 2-"(n+l) (x)dx (1-8)
f2-inn f
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As m increases, the length of the intervals decreases, and we see that the f (m, n)

provide information about f (x) at progressively finer levels of resolution.

Much of the usefulness of the wavelet transform in practical signal processing

problems stems from the fact that the expansion coefficients f (m, n) and d(m, n) can

be efficiently computed recursively in scale. Specifically, associated with each (0,'O)

pair is a quadrature mirror filter pair (h, g) that allows computation of f (m, n) and

d(m, n) from the scaling function coefficients f (m + 1, n) at the next finest scale. In

particular:

f (m, n) h(2n - k)f (m + 1, k)
k

d(m, n) E g(2n - k)f (m + 1, k) (1. 1 0)
k

This fact was an important link leading to the collaboration between researchers in

the physics and mathematical communities, where much of the original wavelet theory

was developed, and the signal processing community, where quadrature mirror filters

and multirate filterbank structures had been studied for some time in communication

and coding contexts [125, 138, 140, 141].

1.2 Multiscale Stochastic Models

As pointed out in [7], the development of statistically optimal multiscale signal pro-

cessing algorithms requires a theory of multiscale stochastic processes. The wavelet-

based multiresolution framework discussed above motivates the study of stochastic

processes indexed by nodes of a dyadic tree in (8, 30, 27, 29] (see Figure 1-1). In

this thesis, our interest is in image processing applications, and hence we will focus

primarily on processes defined on the quadtree structure shown in Figure 1-2.

Pyramidal data structures such as the quadtree arise naturally in multiresolution

approaches to image processing problems. For instance, successive filtering and deci-

mation operations lead to images defined on such a hierarchy of grids in the Laplacian

pyramid coding algorithm of Burt and Adelson [21] and of course in the wavelet trans-

10
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Figure 1-1: The dyadic tree. The abstract index s refers to a node in the tree; Si
refers to the parent node.

S 7

S

Figure 1-2: Quadtree structures such as that above arise naturally in multiresolution
approaches to image processing problems.

form decomposition of images [861. Also, the multigrid approaches to low level vision

problems discussed by Terzopoulos [134] involve relaxation on a similar sequence of

grids. It is important to emphasize here, however, that in contrast to approaches such

as these, in our case we w1H use the quadtree structure to model a spatially-distributed

random field rather than to analyze or decompose a given field. As we win see, this

model does, in fact, lead to processing algorithms operating on the quadtree, but

these algorithms are optimal estimation and likelihood calculation procedures (if the
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Figure 1-3: The structure of a multiscale random field is depicted. The components of

the field are denoted x, (i, j) where m refers to the scale and the pair (i, j) denotes a

particular grid location at a given scale. At the coarsest scale, the field is represented

by a single value or state vector and, more generally, at the m'h scale there are 4n

state vectors.

assumptions of the model are satisfied), and thus are completely different in form,

nature, and intent from standard pyramidal decomposition procedures.

A stochastic process defined on the quadtree is naturally indexed by the 3-tuple

(Ml i, j), where m is a scale index and the pair (i, j) specifies a spatial location. Such a

scheme is shown in Figure 1-3 where the value of the multiscale process at a particular

node in the quadtree is given by x,(ij). Higher levels of the tree correspond to

coarser scale representations of the random field at the finest level. In particular,

at the mt' level, the process is characterized by 4' values (or, more generally, state

vectors). The coarsest version of the random field, represented by the single value (or

vector) xO at the root node of the quadtree, corresponds to an aggregate description

of the process at the finest level of the quadtree.

The model introduced in [30, 27, 29] and adapted here to quadtrees for the state

x,,,(ij) is motivated directly by the wavelet transform synthesis equation:

f(m+ln) = Eh(2k - n)f (m, k) +E g(2k-- n)d(m, k) (1.11)
k k
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This equation is just the counterpart to the analysis equations, (1.9), (1.10), and

describes how the scaling coefficients evolve in scale, from coarse to fine. In particular,

note that (L 1 1) defines a dynamical relationship between the coefficients f (m, n) at

one scale and those at the next. To make this statement more precise, let us consider

again the Haar transform. In this case, the QMF filters h and g are given by:

h(n) = (1/-,12)8(n) + (1/v'2-)8(n - 1) (1.12)

g(n) = (1/V2)5(n) - (1/v/-2-)8(n - 1) (1.13)

Using (1.11), we see that, in this case, for n a multiple of 2:

f (m -i- 1, n) ( 1 / v�2-) f (m, n / 2) + (1 / N/-2) d(m, n / 2) (1.14)

f (m + 1, n + 1) (11-\,12-)f (m, n/2) - (1/N/-2)d(m, n/2) (1.15)

and the scaling coefficients in the expansion are naturally associated with the dyadic

tree in Figure 1- 1 - In particular, a scaling coefficient f (m, n/2) at any given level is

associated thru (1-14), (1.15) with two coefficients at the next level, this association

being represented in Figure 1 -I by the branches connecting each node to two offspring.

What this fact suggests is a statistical model which relates the components of a process

at different scales in terms of the relationship of components at successive resolutions,

and in fact in terms of relationships between scaling coefficients at nodes which are

connected on the tree. This philosophy is similar to that in standard time series

analysis where, e.g. Markov models are defined in terms of transition probabilities for

the state at time t given the state at time t - 1 [16], or Markov random field modeling,

where the random field statistical structure is determined by local energy functions

[13, 53].

Also, note that the wavelet coefficients in (1.14), (1.15) can be interpreted as

the driving term in the dynamical equation describing the scale to scale evolution

of the scaling coefficients of the process. Analysis in several papers suggests that

for many classes of stochastic processes, these wavelet coefficients are nearly white

13



[46, 50, 51, 55, 109, 118, 1351. Thus, we are led naturally to models for processes

defined on tree structures in which the process is built up recursively in scale, as in

(1.14), (1.15), and in which the details added at successive levels, corresponding to

the wavelet coefficients in (1.14), (1.15), are independent of previous scales.

In fact, we can define a class of processes which, while still motivated by (1.14),

(1.15), allows for a substantially more general modeling framework. In particular, as

shown in Chapter 3, these models allow us to represent not only processes which have

an intrinsic multiscale nature, e.g. 11f and other fractal processes, but also the entire

class of Markov random fields. To describe these models 7 let us define in place of the

3-tuple (m, i, j) an abstract index s to specify nodes on the quadtree. Also, let S;Y-

denote the parent of node S, i.e. --y is an upward shift operator on the set of nodes on

the tree, and let m(s) denote the scale of node s (we number the scales sequentially

from coarse to fine, as in Figure 1-3). The stochastic tree process x ( S jZn i S then

described via the following scale-recursive model:

x(s) = A(s)x(s�) + B(s)w(s) (1-16)

under the following assumptions:

X0 , M(O, Po) (1.17)

w(s) - A((O, 1) (1.18)

where w(s) E Rm and A(s) and B(s) are matrices of appropriate size'. The state

variable xO at the root node of the tree provides an initial condition for the recursion.

The driving noise w(s) is white, i.e. w(s) and w(c) are uncorrelated if S :� 0-, and is

uncorrelated with the initial condition.

The class of models introduced in [30, 27, 29] for processes defined on dyadic trees

is of precisely the same form as (1.16). The only difference is that the shift operator

is defined ia an appropriate way - each node on the dyadle tree has two offspring,

'The expression y - W(ti, A) means that random variable y is normally distributed, with mean
and variance A.

14



----------

q offspring

Figure 1-4: The q"-order tree is illustrated. This is a set of nodes, each of which has
q offspring.

as opposed to four on the quadtree. Indeed, there is an obvious generalization of

the model (1.16) to general q"-order trees, that is, to pyramidal structures of nodes

connected such that any given node has q offspring, as shown in Figure 1-4. In the

rest of this thesis, we refer often to (1.16) when we describe particular multiscale

models, and the particular tree structure, e.g. quadtree or dyadic tree or q'h_order

tree, will be clear from the context.

Interpreting the states at a given level of the tree as a representation of one scale

of the process, we see that (1.16) describes the evolution of the process from coarse

to fine scales. The term A(s)x(s�) represents interpolation or prediction down to the

next level, and B(s)w(s) represents new information added as the process evolves from

one scale to the next. On the dyadic tree, we can recover a model directly associated

with the Haar synthesis equations (1. 14), (1.15) by setting A(s) = 1, B(s) = 1 and

assuming that if two nodes s and o- have the same parent, i.e. if s� = C�, that

w(s) = -w(o-). In this form of the model 7the driving noise is not white, but it can

easily be converted to a white noise driven model by state augmentation (see [27]).

In general, the choice of the parameters A(s) and B(s) and their dependence (-If any)

on the node s, depends upon the particular application and process being modeled.

Moreover, there is no reason to require that the model state x(s) be interpreted

15



as a scaling coefficient, i.e. as a local average. In this thesis, we interpret the states

at a given scale more generally as information about the process at that scale. This

information may correspond to local averages, as it has to this point, but it may

also correspond to local detail, that is, to wavelet coefficients of some sequence or

function. Alternatively, the values of the process at a given scale may correspond

to a decimated version of the process at the finest scale. In Chapter 2 of this thesis

we will use the scaling coefficient interpretation of the state and make choices of

the model parameters A(s), B(s) that lead to fractal-like models. In Chapter 3 we

construct parameters A(s), B(s) such that (1.16) provides a multiscale representation

of I-D Markov processes or 2-D Markov random fields, and in this case the coarse

scale values are interpreted as decimated versions of a fine scale process. In this thesis,

we will not use models in which the states are interpreted as wavelet coefficients, but

preliminary investigations of such an approach can be found in [46].

We have motivated the model (1.16) by emphasizing its potential for modeling

processes at multiple scales. However, the model also has interesting connections to

standard time-series models. In particular, the set of integers with t connected to t - 1

as shown in Figure 1-5 can be viewed as a first-order tree, that is, as the simplest

counterpart to the dyadic and quadtrees. Gauss-Markov models of the following form

on the first-order tree have found use in many applications:

z(t + 1) = Fz(t) + GIL(t)

where z(t) is the state of the process, F is a one-step transition matrix, and JL(t) is a

white Gaussian driving noise term (p(t) and tt(r) are uncorrelated if t :�- r).

The model (1.19) is widely used as the basis for the design and analysis of systems

for two important reasons. First, Gauss-Markov processes (and their non-Gaussian

generalizations) are excellent models for a wide class of interesting problems and

phenomena, including many arising in the design and control of dynamic systems

[3, 16, 69], biomedical, seismic and geophysical signal processing [6, 57], and speech

and image processing [108, 111, 881. Second, their simple structure leads naturally

16



0 0 0 0 0

t-1 t

Figure 1-5: A first-order tree, corresponding to the set of integers, is shown. Time
recursive models defined on the first-order tree, such as (1.19), provide a rich modeling
framework and lead to efficient time-recursive algorithms for 1-D signal processing.

to efficient recursive algorithms for problems such as state and parameter estimation

[41, 66, 70, 84]. It is natural to expect then that models of this same form, adapted

to higher order trees, can be used to model a wide range of processes and will also

lead to efficient algorithms for statistical signal processing. To show this result in an

image processing context is one of the main goals of this thesis.

There is, in fact, already substantial evidence that this is true for I-D signal

processing applications. In particular, note that, in the same way that any given

node on the first-order tree can be viewed as a boundary between two subsets of

nodes on the first-order tree (i.e. the node t separates the two subsets which consist

of the nodes before and after t), any given node on the q'h_order tree can be viewed as

a boundary between q + 1 subsets of nodes (q corresponding to paths leading towards

offspring and one corresponding to a path leading towards the parent) 2. An extremely

important property of the scale-recursive model (1-16) is that not only is it Markov

from scale-to-scale but, conditioned on the value of the state at any node, the values

of the state in the corresponding subsets of nodes are independent. This fact is the

basis for the development in [7, 30, 27, 29, 31, 32] of an extremely efficient and highly

parallelizable algorithm for optimal estimation of processes of the form (1.16) based

on noisy measurements y(s) E 1ZP of the form:

Y(S) = C(S)X(S) + V(S) (1.20)

2The only exception is the root node, which has no parent and hence separates the tree into just
q subsets of nodes.
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where v(s) - .1V(0, R(s)) and the matrix C(s) can specify, in a very general way,

measurements taken at different times or spatial locations and at different scales.

The structure of the algorithm consists of two scale-recursive sweeps (a fine-to-coarse

sweep followed by a coarse-to-fine recursion), each of which follows the structure of

the dyadic tree so that there is substantial parallelism and efficiency. The upward or

fine-to-coarse sweep on the tree propagates the measurement information in parallel,

level by level, from the fine scale nodes up to the root node. This sweep is followed by

the downward or coarse-to-fine sweep, which propagates the measurement information

back down, and throughout the tree. The result of the algorithm is the least squares

estimate of the state x(s) at each node based on all of the data. In Chapter 2, we use

a form of this algorithm adapted to quadtrees in the context of image sequence optical

flow estimation. The details of the algorithm are given below for models defined on

qth_order trees, and are discussed (for the case of dyadic trees) in much greater detail

in [29, 31].

1.3 Multiscale Optimal Estimation

The model given by (I -16) is a downward model in the sense that the recursion starts

from the root node and propagates down the tree from coarse-to-fine scales. In order

to describe the upward sweep of the smoothing algorithm, we need a corresponding

upward model. This upward model is equivalent to the downward model in the sense

that the joint second order statistics of the states x(s) and measurements y(s) are

the same. The upward model is given by 3 [27, 291:

x(s�) = F(s)x(s) + fv-(s) (1.21)

Y(S) = C(S)X(S) + V09) (1.22)

'We use E[x] to denote the expected value of the random variable x and E[XJy] to denote the
expected value of x given y.
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where:

F(s) = Pey A T (S) p,- 1 (1.23)

E[,Cv(s )IDT(3)] = Px, - P.;-, AT(S )P,-'A(,9)P,-� (1.24)

(1.25)

and where P, = E[x(s)x T(3)' is the variance of the state at node s and evolves

according to the Lyapunov equation:

P, = A(s)P,-zA T(S) + B(s)B T(S) (1.26)

To proceed further we need to define some new notation.

I' = jy(o-)jc- = s or o- is a descendant of sl (1.27)

= V. \ {Y(S) (1.28)

i(O-js) = E[x(o-)IY,] (1.29)

5i(o, I s +)= E[x(o-)IY,+] (1-30)

))T]P (o- I -9)- E[(x(o-) - ii(Tja))(x(o-) - i(c-js (1-31)

P(o-ls+) = E[(x(o-) - i(o-js+))(x(o-) - ii(,T (1-32)

where the notation I' \ fy(s)j means the measurement y(s) is not included in the

set Y,+. The upward sweep of the smoothing algorithm begins with the initialization

of ii(sjs+) and the corresponding error covariance P(sis+) at the finest level. The

initial conditions at this scale reflect the prior statistics of x(s) at the finest scale,

as we have not yet incorporated data. Thus, for every s at this finest scale we set

ii(sjs+) to zero (which is the prior mean of x(s)) and similarly set P(sis+) to the

corresponding covariance, namely the solution of the Lyapunov equation (1.26) at the

finest level. The upward sweep of the smoothing algorithm then proceeds recursively.

Specifically, suppose that we have i(sjs+) and P(sls+) at a given node a. Then this

estimate is updated to incorporate the measurement y(s) (if there is a measurement
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at this node) according to the following:

ii(sjs) ii(sjs+) + K(s)[y(s) - C(s)E(SjS+)1 (1.33)

P(s1s) [I - K(s)C(s)]P(sjs+) (1.34)

K(s) p(5jS+,CT(S)V-I(S) (1.35)

V(S) C(S)p(8jS+)CT(S) + R(s) (1.36)

Denote the offspring of x(s) as x(saj), i = 1, - - - , q. The updated estimates at the

offspring nodes are then predicted back up to the next level:

i(sjsaj) = F(saj)5i(sajjsaj) (1.37)

P(sjsctj) = F(sctj)P(sajjsaj)F T(Sa,) + Q(S(X,) (1-38)

The predicted estimates from the q offspring are then merged:

q
ii(sjs-4-) P(sjs+)EP_'(8jSaj)i(sjScej) (1.39)

P(sls+) [(l-q)P,-'+ P-'(sjsaj)]-1 (1.40)

The upward sweep given by the update, predict and merge equations proceeds recur-

sively up the quadtree. At the top of the tree (corresponding to the root node s = 0),

one obtains the smoothed estimate of the root node, that is, an estimate based on all

of the data. The estimate and its error covariance are given by:

V(O) = ii(010) (1.41)

PS(O) = P(010) (1.42)

where the superscript s denotes the fact that these are smoothed estimates. The

smoothed estimate and associated error covariance at the root node provide initializa-
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tion for the downward sweep, which is given by the following coarse-to-fine recursion:

i(SIS) + (1.43)

P'(S) P(SIS) + J(S)[P'(S'�) - P(S�js)]J'(S) (1.44)

J(s) P(sls)F T(S)p-1(3�IS) (1.45)

The form of the algorithm we have specified here, which generalizes standard Kalman

filtering and smoothing algorithms to the multiscale context, obviously assumes that

the state covariance P, is well defined and finite, and it is not difficult to see from

(1.26) that this will be the case if Po is finite. There is, however, an alternate form

of this algorithm presented in [29, 31] which generalizes so-called information form

algorithms for standard state space models and which propagates inverses of covari-

ances. In this alternate form it is straightforward to accommodate the setting of PO

to infinity (which corresponds to P�-' = 0), and we refer the reader to [29, 311 for

details.

Finally, note that a recursion for the covariance of the error process (s)

x(s) -;P(s) associated with the two-sweep smoothing algorithm is provided by (1.44).

In fact, information about the correlation structure of the error process can also be

obtained. That is, whereas (1.44) allows us to obtain Ej;P(s)(FC1(3))Tj' we show

in Appendix A how to obtain cross-correlations of the form ))TI. In-

particular, we show that ;P(s) satisfies a white noise driven difference equation of the

form (1.16), and we obtain a simple form for the model parameters. The Lyapunov

equation associated with this model can then be used to obtain correlations between

errors at different nodes on the tree. Applications of the model for the smoothing

error are discussed in Chapter 5.

1.4 Other Related Work

In addition to the previous work on multiresolution methods in signal processing,

including that on wavelet transforms, which we have discussed in Section 1.1, and
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the research in [7, 30, 27, 29] on which much of our work is built, a number of

other researchers have developed image processing algorithms in similar multiscale

stochastic modeling frameworks. In particular, in [32], a scalar version of the model

(1.16) with A(s) = I and B(s) assumed to vary only as a function of scale is proposed

for image modeling. A smoothing algorithm consistent with that in the previous

section is derived along with an approach to adoptively estimating B(S) across scales.

In addition, in [17, 19, 201 a model is proposed for a class of discrete-state processes

defined on trees. The model has the same recursive structure as (1.16), and leads to

an efficient two-sweep algorithm for computing maximum a-posteriori estimates of

the process based on noisy observations. The modeling framework was applied to

a problem of image segmentation. While our work here does not directly build on

either this research or that in [32], there is one interesting point of contact to be

made. In particular, it was noted in the above works that processing based on the

quadtree models led to blocky results which could differ significantly for different

positionings of the tree with respect to the finest scale lattice, and this fact led to

the need for more complex processing structures. Indeed, in [32] it was necessary

to perform processing several times with different tree positions and to average the

results, while in [17, 19, 20] the tree was replaced by a more connected lattice (so that

any two nodes have both common ancestors and common descendants). The latter

modification, however, destroys the partially-ordered Markovian structure which the

tree processes possess and which leads to highly parallelizable and scale-recursive

algorithms such as that in the previous section and in Chapter 4 of this thesis where

we develop a likelihood calculation algorithm for the multiscale processes (1.16). In

Chapter 3, we show that one can avoid the apparent problems in using quadtree

models by demonstrating that one can model any MRF exactly using such a model.

1.5 Thesis Organization

As mentioned previously, in this thesis we will demonstrate that, especially for 2-D

applications, models of the form (1-16) provide a rich framework for practical ap-
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plications and lead to very efficient signal processing algorithms. To begin then, in

Chapter 2 we illustrate how this class of models can be used as a means of regular-

izing ill-posed inverse problems, using as a vehicle for this development the problem

of computing dense optical flow fields in an image sequence. Standard formulations

of this problem require the computationally intensive solution of an elliptic partial

differential equation which arises from the often used "smoothness constraint" type

regularization. We utilize the interpretation of the smoothness constraint as a "fractal

prior" to motivate regularization based on multiscale models of the form (1.16). The

solution of the new problem formulation is computed with the multiscale smooth-

ing algorithm discussed in Section 1.3 and experiments on several image sequences

demonstrate the substantial computational savings that can be achieved. Such sav-

ings result from the fact that the algorithm is non-iterative and in fact has a per pixel

computational complexity which is independent of image size. The new approach also

has a number of other important advantages. Specifically, multiresolution flow field

estimates are available at no extra cost, allowing great flexibility in dealing with the

tradeoff between resolution and accuracy. Multiscale error covariance information is

also available, which is of considerable use in assessing the accuracy of the estimates.

In particular, these error statistics can be used as the basis for a rational procedure

for determining the spatially-varying optimal reconstruction resolution, in addition

to providing the information necessary for the statistically optimal fusion of these

estimates with other data or prior information. Furthermore 7if there are compelling

reasons to insist upon a standard smoothness constraint, the new approach provides

an excellent initialization for the iterative algorithms associated with the smoothness

constraint problem formulation.

In Chapter 3 we describe how I-D Markov processes and 2-D Markov random

fields (MRF's) can be represented within the multiscale modeling framework of (1.16).

Markov processes in I-D and 2-D Markov random fields are widely used classes of

models for analysis, design and statistical inference. As we have stated, the recursive

structure of 1-D Markov processes makes them simple to analyze, and generally leads

to computationally efficient algorithms for statistical inference. On the other hand,
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2-D MRF's are well known to be very difficult to analyze due to their non-causal

structure, and thus their use typically leads to computationally intensive algorithms

for smoothing and parameter identification. Our multiscale representations of these

processes are based on the scale-recursive model (1.16), thus providing a framework

for the development of new and efficient algorithms for Markov processes and MRF's-

In 1-D, the representation generalizes the mid-point deflection construction of Brow-

nian motion. In 2-D, we use a further generalization to a "mid-line" deflection con-

struction. Our exact representations of 2-D MRF's are of potentially high dimension,

and this fact motivates our development of a class of approximate models based on

one-dimensional wavelet transforms. We demonstrate the use of these models in the

context of texture representation and in particular, we show how they can be used

as approximations for, or alternatives to, well-known MRF texture models. We il-

lustrate how the quality of the representations varies as a function of the underlying

MRF and the complexity of the wavelet-based approximate representation.

Our development in Chapter 2 of an algorithm based on (1.16) for computing

optical flow in an image sequence, and the construction in Chapter 3 of multiscale

models for representing Markov random fields, provides substantial evidence that the

multiscale model class can be used to model a broad range of phenomena and allows

for the development of efficient image processing algorithms. Further algorithmic de-

velopment is the focus of Chapter 4 in which we introduce an algorithm for computing

likelihoods for Gaussian multiscale models on q` order trees. That is, we consider

the problem of computing the conditional probability of a set of noisy observations,

given that the data corresponds to a particular multiscale model. Our development

exploits the scale-recursive structure of the multiscale models thereby leading to a

computationally efficient and highly parallelizable algorithm. The algorithm is non-

iterative and in fact has a constant per node computational complexity. We illustrate

one possible application of the algorithm to texture discrimination and demonstrate

that likelihood-based methods using our algorithm and the results in Chapter 3 for

modeling GMRF's have substantially better probability of error characteristics than

well-known least-squares methods, and achieve performance comparable to that of
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GMRF-based techniques, which in general are prohibitively complex computation-

ally.

Finally, in Chapter 5 we summarize the contributions of this thesis and discuss

directions for further research.
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Chapter 2

Applications of A4ulti'scale

Regularization to the

Computation of Optical Flow

2.1 Introduction

In this chapter we introduce and develop a new multiscale approach to regularization

problems in image processing, using the computation of dense optical flow fields as the

vehicle for our development. Regularization is, of course, a widely-known and used

concept in image analysis. In some cases the introduction of a regularizing term is

necessitated by ill-posedness (also referred to as the "aperture problem" in computer

vision), i.e. by the insufficient information provided solely by the available data, or by

a desire to reduce noise. In other problems the so-called regularizing term represents

substantive prior information arising, for example, from physical constraints or laws

or from information extracted from previous image frames. The family of optical

flow reconstruction algorithms stemming from the work of Horn and Schunck [62],

which forms the specific context for our development and which has found success

in a number of applications such as `11-�7], is one example of a formulation typically

introduced to deal with ill-posedness. However, very similar formulations arise in

other contexts ranging from the problem of the temporal tracking of optical flow [26]
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to large scale oceanographic data assimilation problems [120). Thus, while we use

the problem of estimating optical flow at a single point in time as the focus for our

development, it is our strong belief that the ideas developed here have a far broader

range of applicability.

Optical flow, the apparent velocity vector field corresponding to the observed mo-

tion of intensity patterns in successive image frames, is an important quantity in a

variety of problems. For example, in MRI imaging of the heart [107, 104] this vector

field provides diagnostic information concerning cardiac muscle motion and differ-

ential strain. In oceanographic data processing such information can be of use, for

example, in tracking the meandering motion of the Gulf Stream [92]. Also, in compu-

tational vision, optical flow is an important input into higher level vision algorithms

performing tasks such as segmentation, tracking, object detection, robot guidance

and recovery of shape information ;12, 98, 112, 122, 130]. In addition, methods for

computing optical flow are an essential part of motion compensated coding schemes

[4, 143].

As we have indicated, our approach to optical flow estimation is motivated by,

and represents an alternative to, regularization methods such as that of Horn and

Schunck [62] which employs the often used "smoothness constraint" regularization

term. In particular, the starting point for this and many other approaches to optical

flow estimation is the use of a brightness constraint, i.e. the assumption that changes

in image brightness are due only to motion in the image frame. This leads to the

so-called brightness constraint equation' [62]:

d a
0 = -E(zi, Z2, t) E(ziZ2, t) +VE(z,,Z2, t) .X(Z1, Z2, t) (2.1)

dt

where E(z,,Z2, t) is the image intensity as a function of time t and space (ZlZ2),

'More generally, it is straightforward to adapt (2.1) to cases in which E has a known temporal
variation. See (107] for an example in the context of MRI imaging.
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X(Z1, Z2, t) is the optical flow vector field, and:

(9Z, (9Z2 T
X = - (2.2)

O t at

VE = OE aE (2.3)
_6Z I aZ2

The brightness constraint equation (2.1), however, does not completely specify the

flow fieldX(Zl, Z2, t) since it provides only one linear constraint for the two unknowns

at each point. Thus, (2-1) by itself represents an under-determined or ill-posed set of

constraints on optical flow. In addition, in practice, only noisy measurements of the

temporal and spatial intensity derivatives will be available, meaning that we in fact

have available only noisy constraints. For both of these reasons one must regularize

the problem of reconstructing x(Z1, Z2, t), and one commonly used way to do this is

to assume some type of spatial coherence in the optical flow field, for instance by

assuming that x(Z1, Z2, t) is constant over spatial patches or by other methods for

imposing coherence and achieving spatial noise averaging.

In particular, Horn and Schunck's approach [621, often referred to as imposing a

smoothness constraint, consists of constructing the optical flow field estimate as the

solution of the following optimization problem:

iisc = arg min R-1 ( d E)2 + 11,7XII2 dzi dZ2 (2.4)
1 ff Tt

The smoothness constraint is captured by the second term which penalizes large gra-

dients in the optical flow. The constant R allows one to tradeoff between the relative

importance in the cost function of the brightness and smoothness constraint terms.

For example, in some situations R-1 is taken to be quite large to force the solution

to match the constraints (2-1), and in such a case the smoothness constraint serves

merely to regularize the problem, i.e. to ensure that (2.4) has a unique solution. In

other cases, however, one might use a more moderate value of R-1 either to account

for the fact that the constraint (2.1) is noisy or to reflect the fact that the smooth-

ness constraint penalty represents a useful source of information itself. For example,
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in [26] the smoothness constraint is replaced by an analogous term reflecting both

smoothness and prior information gleaned from preceding image frames. We refer

to the optical flow estimate obtained from (2.4) as the smoothness constraint (SC)

solution to the problem of computing optical flow.

One of the major problems associated with the formulation in (2.4) and with anal-

ogous formulations for other regularized image processing problems is that they lead

to cornputationally intensive algorithms. Specifically, one can show that the solution

of (2.4) satisfies an elliptic partial differential equation (PDE) [62]. Discretization

of this PDE leads to a sparse but extremely large set of linear equations which are

typically solved using iterative approaches. Terzopoulos [134] proposed the use of

multigrid approaches and reported a factor of 7 reduction in computation over the

Gauss-Seidel approach. Successive over-relaxation (SOR) algorithms [75] also provide

significant computational improvement over GS approaches and have been success-

fully used in [107, 116, 1171. However, whatever numerical method is employed,

computational complexity per pixel typically grows with image size, a fact that can

make real-time or in some cases even off-line implementation prohibitively complex.

For example, while computational complexity for such a problem may be severe for

512 x 512 images, especially if real-time processing of image sequences is required,

the computational demands in other contexts, such as oceanographic data processing

where one may consider problems as large as 100,000,000 voxels (3-D pixels), are

more than a serious problem: they are, in fact, the major problem.

One of the principal motivations for the method proposed in this chapter is the

computational challenge discussed above. To do this, we need to analyze the smooth-

ness constraint in more detail. Note in particular that the penalty associated with the

smoothness constraint term in (2.4) is equal to the integral of the squared norm of the

field gradient over the image plane. In a one-dimensional context, such a constraint

would penalize each of the (one-dimensional) fields in Figure 2-1 equally. Intuitively,

the smoothness constraint has a fractal nature, and in fact is often referred to as a

"fractal prior" [131].

Moreover, as discussed in [116, 117] and as described in more detail in the next

29



Figure 2-1: Depiction of three fields which are equally favored by the smoothness
constraint, illustrating how this penalty provides a fractal prior model for the optical
flow.

section, the optical flow problem formulation in (2.4) has an equivalent formulation

and precise interpretation in an estimation-theoretic context. Roughly speaking, the

optimization problem (2.4) corresponds to a statistical model in which the noise or

error in the brightness constraint is assumed to be spatially white and in which the

two components of the optical flow are modeled as independent random fields, each of

which has a zero mean, spatially white gradient. That is, as discussed in [26, 116, 117],

the smoothness constraint essentially corresponds to modeling each component of

optical flow as a spatial Brownian motion, i.e. as a statistically self-similar, fractal

process with a 1/lf I' generalized spectrum [1311.

Given that the smoothness constraint corresponds precisely to a prior model with

fractal characteristics, a natural idea is that of using alternate prior statistical models

- corresponding to alternate penalty terms to that in (2.4) - that possess the same

type of fractal characteristics but that lead to computationally more attractive prob-

lem formulations. In this chapter, we do just that as we introduce an approach based

on substituting the class of prior models introduced in ("'hapter 1 for the smoothness

constraint prior. The key idea behind this approach is that instead of the Brownian

motion fractal. prior that describes the optical flow field as one that has independent
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increments in space, we use a statistical model for optical flow that has independent

increments in scale. The model can be interpreted as a smoothness constraint that

provides individual penalties on each scale of detail or as providing a multiscale prob-

abilistic model in which the variances of the detail components vary from scale to

scale in a fractal, self-similar fashion. For this reason, we say that our formulation

corresponds to a multiscale regularization (MR) of the optical flow problem, and we

refer below to the MR algorithm and solution.

One of the most important consequences of this alternate smoothness constraint

is that it allows us to make use of the extremely efficient scale-recursive optimal es-

timation algorithm discussed in Chapter 1. In particular, the resulting algorithm is

not iterative and in fact requires a fixed number of floating point operations per pixel

independent of image size. Thus, since iterative methods for solving the smooth-

ness constraint problem formulation have per pixel computational complexities that

typically grow with image size, the computational savings associated with the new

approach increase as the image size grows and, as we will see, can be considerable

even for modest-sized problems.

Moreover, while computational efficiency did serve as the original motivation for

this new formulation and in many problems may be its most important asset, there

are several other potential advantages that the new approach has. First, the scale-

recursive nature of the algorithm directly yields estimates of the optical flow field

at multiple resolutions, providing us with considerable flexibility in dealing with the

tradeoff between accuracy and resolution. Specifically, one can expect to obtain

higher accuracy at coarser resolutions, and thus one can imagine trading off resolution

versus accuracy in a data-adaptive way. For example, in regions with substantial local

intensity variations one would expect to be able to estimate optical flow at a finer

spatial resolution than in regions in which intensity varies more smoothly and contrast

is low. The question, of course, is how such an intuitive concept can be realized in

an algorithm. As we will demonstrate, our multiscale algorithm provides us with all

of the information required to do this with essentially no additional computation,

leading to a simple approach to designating the preferred resolution for estimating
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optical flow at every point in the image frame.

Secondly, an important consequence of employing an estimation-theoretic inter-

pretation is that it offers the possibility of evaluating a quantitative measure of the

quality of our optical flow estimate, namely the estimation error covariance. This

idea, of course, also applies to the original smoothness constraint formulation (2.4).

However, in that case, the computation of the error covariance must be done in addi-

tion to solving the partial differential equations for the optimal flow estimates, and in

fact, the computation of these error statistics has complexity at least as great as that

for calculating the estimates. In contrast, for our formulation, error covariances can

be calculated with essentiallv no increase in computational complexity. Furthermore,

our algorithm provides error covariance statistics at multiple resolutions, providing

information that is essential to addressing the tradeoff between resolution and accu-

racy as discussed in the previous paragraph, and that may also be useful to higher

level vision algorithms which need to combine information in a rational way from a

variety of sources.

As we have indicated, the new algorithm we develop is based on a problem for-

mutation that is similar but not identical to that given by (2.4), and there are several

implications of this fact. The first is that while the estimates produced by our algo-

rithm are not identical to those based on (2.4), they are similar and have comparable

root-mean-square (rms) error characteristics, as the experimental evidence in Sec-

tion 2.3 illustrates. Moreover, these results also show that the difference between

the SC and MR flow estimates consists of mostly high spatial frequency components,

which are precisely the components which can be quickly removed by the iterative

algorithms computing a smoothness constraint solution. Thus, even in situations in

which a solution to the original smoothness constraint formulation is required (for

instance 7 if the smoothness constraint corresponds to physically-based prior informa-

tion) there may be considerable computational advantages in using the MR solution

as an initial estimate of the optical flow, i.e. as an initial estimate for an iterative algo-

rithm which computes the solution of the partial differential equation characterizing

(2.4). Indeed, given the promise suggested by results presented here, we conjecture
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that another potential application of the approach we introduce is in providing easily

computed, accurate initial estimates for the solution of partial differential equations

arising in contexts other than image processing.

There is another implication of the relationship of our approach to the formulation

in (2.4). Specifically, there are of course, problems of practical importance in which

the basic assumptions underlying the Horn and Schunck formalism are violated, for

instance if there is substantial temporal aliasing (so that the data implied by (2.1)

are not available), if there are discontinuities in the motion field due to object bound-

aries and occlusion or if there are multiple motions. In such cases, the Horn and

Schunck formulation may fail to give adequate results, and, due to the similarity of

the approaches, our method would likely fail as well. In such contexts algorithms

developed to deal explicitly with such issues, such as those in [52, 60], may be more

appropriate. On the other hand, for the not insignificant class of problems for which

the Horn and Schunck formulation is well-suited, such as [107] and the many ill-posed

and variational problems arising in fields ranging from image processing and tomog-

raphy to meteorology, seismology and oceanography [12, 106, 137, 78, 136, 97], our

method will also work well and also provides the advantages described previously:

computational efficiency, multiresolution estimates and multiscale error covariance

information. Moreover, even in cases in which Horn and Schunck-type global smooth-

ness constraints are inappropriate, there are reasons to believe that algorithms based

on our formulation may provide the basis for promising new solutions. While it is

beyond the scope of this thesis to develop such methods in detail, we provide an

example suggesting this promise and also indicate how the statistical interpretation

and flexible structure of our formalism might be used to advantage.

This chapter is organized as follows. In Section 2.2 we discuss in more detail an

estimation-theoretic interpretation of the optical flow formulation in (2.4) and develop

our new approach to the computation of optical flow. Section 2.3 presents experi-

mental results on several real and synthetic image sequences. Section 2.4 provides

further discussion and a summary of the results.

33



2.2 Multiscale Regularization

In the first part of this section we develop a discrete formulation of the optical flow

problem, and discuss in more detail the estimation-theoretic interpretation of it. We

then illustrate precisely how the smoothness constraint can be interpreted as a prior

model for the flow field, and how it can be replaced by a multiscale model of the form

(1.16), hence leading to a more computationally attractive problem formulation. The

quadtree models we use, i.e. the specific choices for the parameters in (1.16), are then

discussed in detail.

Estimation-theoretic formulations and interpretations of optical flow problems

have been introduced and studied by a number of authors. For instance, in [73, 142]

Markov random field (MRF.) models are proposed along with a maximum a-posteriori

criterion for estimating optical flow. MRF models are also used in [60] to address

problems of occlusion and flow field discontinuity. Kalman filtering approaches which

allow for temporal as well as spatial smoothness constraints have been discussed in

[26, 124, 59, 1291. In addition, in [1231 a Bayesian formulation which provides optical

flow estimates and confidence measures based on a local window of data is proposed.

In addition there is the interpretation by Rouge'e et al. [116, 1171 of the Horn and

Schunck smoothness constraint formulation (2.4) as an equivalent estimation problem

with a Brownian motion, fractal prior for the flow field. The distinguishing feature

of the Brownian motion model implied by (2.4), the Markov random field models,

and the spatio-temporal models used in the Kalman filtering approaches, is that they

all provide models in terms of local relationships (typically nearest neighbor) of the

flow field components at a single, finest level of resolution. This leads naturally to

spatially local, iterative algorithms for computing the optimal optical flow estimates

(such as those needed to solve the partial differential equation resulting from (2.4)

or simulated annealing algorithms for MRF models). In contrast, the probabilistic

model for optical flow proposed in this chapter describes the flow field in terms of

probabilistic variations from scale to scale and leads naturally to the efficient scale

recursive algorithms described in Chapters I and 4.
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As we have indicated, our approach is motivated by the probabilistic interpreta-

tions of Horn and Schunck's formulation, which we now discuss briefly. The reader

is referred to [25, 26, 116, 1171 for a more extensive discussion of this and related

probabilistic models. We start by introducing the following notation. Define:

Y(Zh Z2) - a E(zj, Z2, t) (2.5)
at

C(Z1, Z2) VE(zl, Z2, t) (2-6)

The brightness constraint equation (2.1) can then be written:

Y(ZI, Z2) = C(Z1, Z2) - X(Z1, Z2) (2.7)

where the time dependence of the equations has been suppressed.

In practice, brightness measurements are only available over a discrete set of points

in space and time. Thus, the temporal and spatial derivative terms in the brightness

constraint equation (2.7) must be approximated by a finite difference scheme in time

and space, and the optical flow is only estimated on a discrete space-time grid. There

are a number of important issues which arise due to the discretization, such as the

use of spatial and/or temporal smoothing prior to discretization, the use of more

than two image frames in the computation of temporal derivatives, etc., and we refer

the reader to [25, 5, 52] for further discussion. We assume here that the optical flow

is to be estimated on the set 1(Z1, Z2)lZl = ih, Z2 = jh; ij E f 2MIJ where h

is the grid spacing and Al is an integer. The assumption that the lattice is square

and that the number of rows is equal to a power of two simplifies the notation in

the subsequent development, but is not essential as we discuss in Appendix B.1. In

order to simplify the notation further, we let y(ij), x(ij), and C(ij) denote the

measured temporal brightness derivative, the optical flow, and the spatial gradient of

the image brightness, respectively, at grid point (ihjh). The brightness constraints

at all grid points can then be grouped into one large set of linear equations to capture

the optical flow information contained in the image sequence. Defining x as the vector
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of optical flow vectors x(i, j) at all grid points (using, say, a lexicographic ordering),

C as the matrix containing the corresponding spatial gradient terms C(i, j), and y

as the vector of temporal gradients y(i, j), we can write:

Y = Cx (2.8)

Then, the discrete counterpart of (2.4) is:

Scisc arg min Ily - Cxjj' _� + jjLxjj'X R I

arg min (Y _ CX)T R-'(y - CX) + XT L TLx (2.9)
X

where the matrix L is a discrete approximation of the gradient operator in (2.4) and

R = RI, where I is the identity matrix. The regularization term x TLTLx makes the

optimization problem (2.9) well-posed. In particular, the solution of (2.13) satisfies

the so-called normal equations [128]:

(CT R-1C + L T L)Rsc = CT R-ly (2.10)

and the invertibility of (CT R- 1 C + LT L) guarantees that RSC is unique. The normal

equations (2.10) are the discrete counterpart of the partial differential equation that

arises from (2.4).

An estimation-theoretic formulation of the optimization problem in (2.9) can now

be developed. Specifically, suppose that we wish to estimate x based on the measure-

ments

Y = CX+V (2.11)

0 = Lx+w (2.12)

where v and w are uncorrelated random vectors with' v , jV(O, R) and w - JV(O, I).

'The notation z - Y(m, A) means that z has a Gaussian distribution, with mean rn and covari-
ance A.
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Then the measurement vector [y'10]' is conditionally Gaussian, and the maxi-

mum likelihood estimate [1391 of x is:

SCML arg max p(Y IX)X

arg min - log p(:Y I X)X

arg min (y - Cx)TR-'(y - Cx) + XT L TLx (2.13)X

5CSC

Thus, the maximum likelihood problem formulation results in the same solution as

the smoothness constraint formulation when L is used to define an additional set of

noisy measurements.

The main point here is that by formulating the problem in this estimation-

theoretic framework, we can use (2.12) to interpret the smoothness constraint as

a prior probabilistic model for the flow field. Specifically, we can rewrite (2.12) as:

Lx = -w (2.14)

Recalling that L is an approximation to the gradient operator, we see that (2.14) is

nothing more than a spatial difference equation model for x driven by the spatial

white noise field w.

To some extent the precise form of this prior model is arbitrary, and thus we are

led to the idea of introducing a new prior model which is similar in nature, but which

leads to a computationally more attractive problem formulation. That is, we want to

change the smoothness constraint term x T LT Lx in (2.13) to something similar, say,

X TSX - XT L T Lx (where S is a symmetric positive semi-definite matrix) such that the

resulting optimization problem is easy to solve. If we factor S as S = LT FL then we

can interpret the new constraint as a prior probabilistic model just as we did with the

smoothness constraint. In addition, there is a precise interpretation of what we have

done as a Bayesian estimation problem. Specifically, if S is invertible, then the use of

this new constraint in place of the smoothness constraint is equivalent to modeling
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the flow field probabilistically as x - IV(O, S-'), since in this case the Bayes' least

squares estimate of the flow field x, given this prior model and the measurements in

(2. 1 1) is given by:

RBLSE = arg min (y - Cx)'R-'(y - Cx) + x'Sx (2.15)X

which corresponds to (2.13) with a different prior model term. The normal equations

corresponding to (2.15) are given by:

(CT R- 1 C + S)5ZBLSE = CT R-ly (2.16)

Comparison of the problem formulations (2.9) and (2.15), or of the normal equa-

tions (2.10) and (2.16), makes it apparent how the two problem formulations are

related. Note that an analogous Bayesian interpretation can apparently be given

to the smoothness constraint formulation (2.9), (2.10), with the corresponding prior

model for optical flow given by x - M(O, (L TL)-'). Recall, however, that L is an

approximation to the spatial gradient operator and thus is not invertible since oper-

ating on constants with this operator yields zero. The probabilistic interpretation of

this is that the model (2.14) places probabilistic constraints on the spatial differences

of the optical flow, but not on its DC value. Indeed, it is not difficult to check that if

we model optical flow instead as x - jV(O, (LTL + eI)-'), where E is any arbitrarily

small positive number, then LTL +,EI is indeed invertible and the DC value of x has a

prior covariance Po on the order of 1/E, so that Po ---� oo as e - 0. Thus, the original

smoothness constraint formulation in essence assumes an infinite prior covariance on

the DC value of optical flow.

We propose now the replacement of the smoothness constraint model by a mul-

tiscale model of the form (1.16) defined on a quadtree. The state of this model

represents the optical flow at a range of scales, m = 0, 1, - - - , M. As illustrated in

Figure 1-3, at the m" scale the field consists of 4' flow vectors. At the fir.'ast level,

the flow field is represented on a grid with the same resolution as the image brightness

data. In particular, xm(ij) corresponds to the optical flow vector x(i1j).
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Measurements of the finest level optical flow field are available from the brightness

constraint. In particular, at a particular node s at the finest level M, we have the

measurement equation exactly of the form (1.20, with v(i, j) - JV(O, R), assumed to

be independent of the process driving noise w(s) and the initial condition x0, and

where C(s) E R'x'. Of course, we can group the state variables x(s) at the finest

level into a vector xM as well as the corresponding measurements y(s) and spatial

gradient terms C(s) in the same way as we did to get (2.8):

Y = CXM+V (2.17)

v - )V(O, R) (2.18)

We now have exactly the framework which led to the statement of (2.15) as a

generalization of the smoothness constraint formulation (2.13). In particular, (1.16)

indicates that at the finest level of the quadtree, the flow field vectors win be a set of

jointly Gaussian random variables xm - V(O, A), where A is implicitly given by the

parameters in (1.16), and a set of noisy measurements given by (2-17). The Bayes'

least squares estimate of xM given the measurements in (2.17) and the prior model

(1. 16) is:

Rm = arg min (Y _ CXM)T R-1(y - CXM) + XT A-lxm (2.19)
XM M

The multiscale modeling framework thus provides an alternative to the smoothness

constraint formulation of (2.9) or (2-13). Furthermore, if we drop the assumption of

Gaussianity for xo, w(s), and v(i, j), the optimal estimate Rm has the interpretation

as the linear least squares estimate of x.

What remains to be done are (1) to specify a model within this class that has

characteristics similar to those of the smoothness constraint prior model, and (2) to

demonstrate why the use of this alternate multiresolution formulation is of interest.

We defer the latter of these to the next section and focus here on the former. In

particular, for our multiscale model (1.16) to approximate the smoothness constraint
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prior we would Eke to choose our model parameters so that we have A` ;:Z� L T L. The

observation that the prior model implied by the operator L in (2.13) corresponds to

a Brownian motion "fractal prior" suggests one approach to choosing the model pa-

rameters. In particular, the one-dimensional Brownian motion has a Ilf' generalized

spectrum [89]. It has been demonstrated that such processes are well approximated

by multiscale models such as ours in one dimension if geometrically decreasing powers

of noise are added at each level m of the process [29, 150, 151, 1521. This motivates

the choice of B(s) = b4- I in (1.16), where I is the 2 x 2 identity matrix, and

where b and p are scalar constants. The constant b directly controls the overall noise

power in the process. Also, as discussed in [150, 151, 152], the choice of /I controls the

power law dependence of the generalized spectrum of the process at the finest resolu-

tion as well as the fractal dimension of its sample paths. Specifically, this spectrum

has a 11fP dependence and the choice of jL = 2 would correspond to a Brownian-like

fractal process.

Thus, we use the following parameterization of the optical flow field model (1.16)

and measurement (1.20):

x(s) = x(s�) + (b4_""').(,) (2.20)

Y(-g) = C(3)X(S) + V(S) (2.21)

with v(s) - M(O, R(s)), xo - A�(O, pI), and where I is a 2 x 2 identity matrix. In

the context of the optical flow estimation problem, measurements are taken only at

the finest scale, corresponding to C(s) = 0 unless s is a node on the finest scale.

From (2.20) we see that the two components of the optical flow field are modeled as

independent sets of random variables,. and that each has a fractal-like characteristic

due to the form of the driving noise gain B(s). The independence of the flow field

components is motivated by the fact that the smoothness constraint formulation

implicitly makes this assumption as well [116, 117]. We view IL and b as free model

parameters which can be varied to control the degree and type of regularization in

much the same way that the parameter R in the smoothness constraint formulation
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(2.4) is used to tradeoff between the data dependent and regularization terms in the

optimization functional. However, we have found in our experiments that the choice

b = A = I typically works well, and we have used these values in all of the experiments

below.

As discussed previously, the measurements y(s) and measurement matrix C(s)

come directly from the image temporal and spatial gradients, which are available at

the finest level of the quadtree. In the experiments described below, we smoothed

the images with the 7 x 7 filter given by:

0.25 0.25 0.25 0.25 0.25 0.25
* ... * (2.22)

L 0.25 0.25 i L 0.25 0.25 i L 0.25 0.25 i

(where * denotes the 2-D convolution) and then calculated spatial gradients with a

central difference approximation. The temporal gradient was computed as the dif-

ference of two smoothed images. Temporal smoothing (in addition to the spatial

smoothing) has been shown to reduce estimation errors in several methods, including

the smoothness constraint approach [5] and thus would be of value for the multiscale

regularization method as well. For our purposes here, however, namely to demon-

strate comparative computational efficiency relative to the smoothness constraint

formulation and to illustrate the use and value of both multiresolution estimates and

covariance information, the simple two frame difference is sufficient.

The additive noise variance is given by R(s). We have found empirically that

the choice R(s) = max(jjC(s)jj', 10) worked well in all cases. This choice effectively

penalizes large spatial gradients, which are points at which the brightness constraint

equation is likely to have large errors [123) (due, for example, to noise, aliasing or

occlusion).

Finally, recall that in the smoothness constraint formulation, L TL was not invert-

ible because of the implicit assumption of infinite prior variance on the DC value of

the optical flow field. In our multiscale regularization context, this would correspond

to setting Po equal to infinity in (1.17). This can be done without difficulty in the

estimation algorithms described next, but we have found that it is generally sufficient
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simply to choose Po to be a large multiple of the identity. In particular, the parameter

p in the prior covariance was set to p = 100.

2.3 Experimental Results

We compare our approach computationally and visually to the Gauss-Seidel (GS)

and successive over-relaxation (SOR) algorithms, which can be used to compute the

solution of the smoothness constraint formulation given by (2.9) or (2-13) (see, for

example, [62, 75, 107, 116, 117, 1271 and Appendix B.2). In our experiments, we

have found that SOR typically provides a factor of 10 to 100 performance improve-

ment of Gauss-Seidel, and hence is computationally equal to or better than multigrid

approaches [134, 49]. The parameter R in the Horn and Schunck formulation (2.4)

was chosen in to yield good visual and quantitative results. In particular, R was

set to 100 in the first example below, and 2500 in the subsequent examples. Several

possibilities for choosing this parameter based on the image data have been proposed

in the literature [12, 99], although there is no universally agreed upon method; our

choice is comparable to those in [25, 5, 58].

Straightforward analysis shows (see Appendix B.2) that the GS and SOR algo-

rithms require 14 and 18 floating point operations (flops) per pixel per iteration

respectively. The number of iterations required for convergence of the iterative al-

gorithms grows with image size [75]. For reasonable size images (say, 512 x 512),

SOR may require on the order of hundreds of iterations to converge, so that the total

computation per pixel can be on the order of 10' to 10' flops. On the other hand,

the MR algorithm requires 76 flops per pixel (see Appendix B.3). Recall further that

the MR algorithm is not iterative. Thus , as we will now see, the computational gain

associated with the MR algorithm can be on the order of one to two orders of mag-

nitude for problems of this size and substantially greater for problems defined over

much larger spatial regions.
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Figure 2-2: (a) First frame of the �'rotation` sequence and (b) Rotation sequence true

optical flow.

2.3.1 Rotation Sequence

We begin with a comparatively small synthetic example of rotational motion in order

to illustrate the basic features of our approach. Specifically, this first example is a

irst
synthetic sequence of Gaussian images modulated by a spatial sinewave with the f

frame brightness pattern given by:

(2.23)
E(zi, sin(atan(zi - 23, Z2 - 28)) exp(--z Z- z)Z2, t1) 2

z, - 23 (2.24)
z

Z2 - 28

1000 0 (2.25)
z -

0 500

where atan(ZI, Z2) is a 27r arctangent (atan(0,1) = 0, atan(1,0) = -7r), h and

M = 6 (i.e. the image lattice is 64 x 64, cf. the discussion about discretization at the

beginning of Section 2.2). The second frame is equal to the first, rotated by I degree

about pixel (23,28). The first frame and actual optical flow are illustrated in Figure

2-2. The rms value of this flow field is 0.49.
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The first point we wish to examine is the visual appearance of the estimates

produced. Figure 2-3 shows four different estimates of the optical flow. The first

of these (a) is the SC estimate produced using the original smoothness constraint

formulation and performing 50 iterations of the SOR algorithm 3; (b) is the finest

scale of the MR estimates produced by the MR algorithm with the parameters set

as b = p = 1; (c), which we refer to as MR-PF, is a post-filtered version of the

MR estimates in (b) to be described; and (d), which we refer to as MR-SOR, is

the estimate produced by performing 5 iterations of the SOR algorithm used in (a)

but using the MR estimates in (b) as an initial condition. AR four estimates clearly

display the rotational nature of the true flow with quality that is roughly comparable.

In particular, while rnis error is not necessarily an appropriate measure of absolute

estimate quality, it is of value in assessing the relative quality of these four methods,

and for this example the rms errors for the estimates in Figure 2-3 are:

(SC) 0.24

(MR) 0.22

(MR-PF) 0.22

(MR-SOR) 0.20

which indicates that the MR method and its variations in (c) and (d) yield estimates

of quantitative accuracy comparable to the SC-based method.

Despite this fact, the MR estimate in (b) has visual characteristics that may be

somewhat distracting to the viewer: namely, the apparent blockiness of the estimates.

As the rms errors indicate, and as we argue further in a moment, this visual artifact

is not quantitatively significant. However, its nature and the reason for its presence

motivate the computationally simple post-processing procedures illustrated in parts

(c) and (d) of Figure 2-3. The first of these is motivated by the interpretation of our

MR algorithm in terms of wavelet transforms and multiresolution analysis [21, 86].

Specifically, as discussed in Chapter 1, the values of a multiscale process at a given

scale can be though", of as the so-called "scaling coefficients" [86] ot' particular basis

'In this and subsequent examples, the iterative algorithms computing the solution of (2-4) were
initialized with zero.

44



b
a

d

c s. Smoothness constraint estimates
-3: Rotation sequence flow estimate Regularization (MR) estimates,

Figure 2 using 50 iterations Of SOR, (b) Multiscale oduced by using MR estimates
computed ates and (d) Estimates Pr
(c) post-filtered MR estim
as initial condition for SOR algorithm.
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functions used in the approximation at that scale. In that sense, the flow -field esti-

mate in (b) corresponds to the Haar approximation in which the basis functions are

piecewise constant over squares of size corresponding to the scale being represented.

The blockiness in (b) is thus due to the "staircase" nature of the Haar approximation.

On the other hand, there are far smoother choices for basis functions and multires-

olution approximations, each of which corresponds in essence to convolving the 2-D

array of quadtree estimates at the finest scale with particular FIR filters. The MR-PF

estimates in Figure 2-3(c) corresponds to using the FIR filter given by (2.22) together

with the MR estimate in (b).

The estimate in (d) is motivated by the observation that the visual artifacts in the

estimate (b) are local and high-frequency in nature. Indeed, it is precisely these high

frequency artifacts that are quickly and easily removed by SOR or GS algorithms

computing the smoothness constraint solution. This is clearly demonstrated in the

MR-SOR estimates in (d) in which only 5 SOR iterations have been used to post-

process (b).

Let us now turn to the question of computational complexity. Figure 2-4 illus-

trates the rms error in the flow estimates as a function of iteration for the SOR and

GS algorithms. The rnis error in the MR flow estimate of Figure 2-3(b) as wen as

those of MR-PF and MR-SOR in (c) and (d) are also indicated in the figure. The

procedures used to generate the MR, MR-PF and MR-SOR estimates are not iter-

ative and thus the associated rms errors are shown simply as straight lines. Note

first that, as expected, the SOR algorithm is significantly faster than the GS algo-

rithm (they will converge to the same result since they are solving the same partial

differential equation). However, the SOR algorithm itself has a substantial compu-

tational burden. For example, while the SOR algorithm has not converged after 50

iterations, the estimates in Figure 2-3(a) are not bad, but even at this point and

even for this small example, SOR requires far more computation than the MR based

estimate. In particular, as we indicated'previously, the computational load of the MR

algorithm equals 4.2 SOR iterations, while producing the MR-PF and MR-SOR esti-
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mates requires computation equivalent to 5.6 and 9.2 SOR iterations, respectively'.

Thus, for this small example, the algorithms corresponding to Figures 2-3(b) - (d)

offer computational savings over SOR of factors of 50/4.2 = 11.9, 50/5.6 = 8.9 and

50/9.2 = 5.4 respectively. As an aside, note that these results also suggest that if

one insists upon solving the partial differential equation corresponding to the SC for-

mulation, then using the MR estimate as an initial condition is a computationally

attractive way in which to do this. Specifically, Figure 2-5 illustrates the rms differ-

ence between the smoothness constraint solution 5 and the intermediate values of the

GS, SOR and MR-initialized SOR estimates as a function of iteration. The error plot

for the MR-initialized SOR algorithm begins at 4.2 iterations to take into account the

initial computation associated with the MR algorithm. The figure demonstrates that

the MR-initiahzed SOR approach provides a substantial reduction in computational

burden even for this small size problem. This in fact suggests that MR algorithms

may be of more general use in the efficient solution of partial differential equations in

other applications as well.

As we have emphasized, the MR algorithm has other attractive features beyond

its computational efficiency, including the fact that it directly provides estimates at

multiple resolutions. Figure 2-6 depicts these estimates at several scales (where the

finest scale estimates are in Figure 2-3(b)). These coarser estimates also obviously

capture the rotational motion and may, in some cases, be preferable representations of

perceived motion because of their comparative parsimony compared to Figure 2-3(b).

Indeed in many applications one is interested in fairly aggregate measures of motion

which these estimates provide directly. Furthermore, as we describe next, the MR

algorithm in fact directly provides a precise way in which to determine the optimal

resolution for characterizing optical flow in different regions of the image, the basis

of which is the multiscale covariance information computed �y the MR algorithm.

'With respect to the MR-PF estimates (c), straightforward convolution of the two components
of the optical flow in (b) with a separable 7 x 7 filter requires 26 flops per pixel (equivalent to 1.4
SOR iterations) and could, of course, be reduced further with FFT algorithms.

'The smoothness constraint solution is approximated as the SOR algorithm optical flow estimates
after 500 iterations.
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Figure 2-4: Rms Error Comparison of MR, MR-PF, MR-SOR, SOR and Gauss-Seidel

(GS) algorithm flow estimates for the rotation sequence.
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Figure 2-5: Rms difference comparison illustrates how the MR-initialized SOR, SOR

and GS algorithms converge to the smoothness constraint solution for the Rotation

sequence, The plots show the rms difference between the smoothness constraint

solution and the estimates as a function of iteration. All will eventually converge, but

the MR-initialized SOR algorithm converges much faster than SOR or GS.
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Figure 2-6: Multiscale Regularization flow estimates at the (a) first, (b) second and
(c) third scales.

Figure 2-7 illustrates the trace of the 2 x 2 estimation error covariance in (1.44)

at each point in the quadtree at different scales. Bright areas correspond to regions

of lower covariance (higher confidence). Note that around the border of the image,

where the Gaussian has tapered off and the gradients are relatively small, the error

covariance is relatively large, as compared to the region around the point of rotation.

One use of this covariance information is to provide information that may be useful
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to higher level vision algorithms which use the optical flow field in conjunction with

information from other sources, and need to combine this information in a rational

way. Moreover, as we have suggested, this information can also be used in the context

of addressing the problem of resolution vs. accuracy in the estimates. The idea is that

we would expect to estimate rather well the coarse resolution features in the optical

flow field and that finer resolution features could be estimated with decreasing fidelity

depending on the quality and characteristics of the available data (e.g. on the presence

or absence of fine scale image intensity fluctuations). Thus, what we would like is a

rational procedure for determining the estimate resolution supported by the data.

There are several ways in which the flow estimate covariance information can

be used to approach this problem. One possibility, which has a precise statistical

interpretation, is as follows. To each node at the finest scale, we can trace a path

up to the root node, where nodes in the path correspond to the parent, grandparent,

great-grandparent, etc. of the node at the finest level. The optical flow estimates

at each of these resolutions can be thought of as successively coarser representations

of the optical flow estimate at the finest scale. Associated with that same path is

a sequence of smoothing error covariance matrices computed via (1.44). At each

pixel location we can choose the optimal resolution at which to represent the field

by choosing the scale at which this error covariance is minimum. In Figure 2-8 the

scale of the minimum of the trace of the smoothed error covariance along this path

is plotted for each lattice site. Note that in regions near the border, where the

Gaussian has tapered off and not much gradient information is available, a lower

resolution representation for the flow field is given. On the other hand, near the

point of rotation, where there is gradient information, the resolution is at a higher

(i.e. finer) level. It is interesting to note that the areas in which the finest level MR

estimate of Figure 2-3(b) has the most visually obvious blocky behavior are also areas

in which one has no business estimating optical flow at such a fine scale to begin with.

Said another way, one interpretation of Figure 2-8 is that any Cstimate of optical flow

at such a fine scale in such regions is a visual artifact!

Finally, let us briefly comment on the choice of the parameters b and IL in the MR
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Figure 2-7: Multiscale Regularization error covariance at the (a) third, (b) fourth,

(c) fifth and (d) finest scales.

51



Level 4

Level 5

Level 3
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Level I

Figure 2-8: Map showing the optimal resolution for optical flow reconstruction for

the rotation image sequence optical flow. At points near the focus of rotation the flow

is represented at fine scales, while at points near the edge of the image (where little

gradient information is available) the optical flow is represented at a coarser level of
the quadtree.

algorithm. In particular, we have found through experimentation that the rms error

in the estimates and their qualitative appearance is relatively insensitive to b and 1L.

Figure 2-9 depicts the rms errors in the MR flow estimates for the rotation example

as a function of b and A, displaying characteristically flat behavior over a very large

range of values.

2.3.2 Yosemite Sequence

The second example is a synthetic image sequence which simulates the view from a

plane flying through the Yosemite Valley'. The first image in the sequence and the

'This sequence was synthesized by Lyn Quam of SRI International. The original sequence is
252 x 312. As discussed in Appendix B.1, it is straightforward to adapt our approach to trees other
than regular quadtrees, i.e. to trees with varying numbers of branches. However, for simplicity, in
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Figure 2-9: Multiscale Regularization rms error sensitivity to the parameters b and It
(rotation sequence).

corresponding optical flow are shown in Figure 2-10. The rms value of the flow field

is 1.86.

Figure 2-11 illustrates four estimates of the optical flow corresponding to (a) the

SC formulation after 100 iterations of the SOR algorithm, (b) the finest scale of

estimates produced by the MR algorithm with parameters b = ji = 1, (c) the MR-PF

estimates derived as described previously and (d) the MR-SOR estimates produced

by post-processing the MR estimates with 10 iterations of SOR. The estimates are

qualitatively similar, each indicating the fly-through nature of the sequence. The

estimates are also quantitatively similar as indicated by the rms errors for the four

estimates:

(SC) 0.76

(MR) 0.79

(MR-PF) 0.79

(MR-SOR) 0.78

these experiments we have coded our algorithms for quadtrees. For this example, then, we extracted
a 252 x 256 portion of the sequence (the left side) so that processing could be done on a quadtree
with 256 x 256 lattice sites at the finest level. The measurement matrix C(S) defined at the unneeded
four rows of the quadtree structure was set to zero, reflecting the fact that we have no information
about the (non-existent) optical flow field in that region.
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a b

Figure 2-10: (a) First frame of Yosemite sequence and (b) Yosemite sequence true
optical flow.

The rms errors as a function of iteration are shown in Figure 2-12. Note that the

SC estimates (a) have actually not yet converged after 100 iterations and that when

they do, the rms error of the SC estimate is slightly higher than those for the various

approaches based on the MR algorithm.

Again, there is some blockiness in the MR optical flow estimates, and, as seen in

Figures 2-11(c) and (d), some of this effect can be eliminated by post-processing the

estimates with an FIR filter as in the previous example. There is still some blockiness

apparent, but comparison with (a) shows that this is also apparent in the SC solution.

Hence, the residual blockiness in the smoothed estimates is not due to the quadtree

structure , but rather to the nature of the image sequence data itself.

An examination of computational complexity again shows the gains achievable

using MR-based methods. The SC flow estimates shown in Figure 2-11(a) required

100 SOR iterations in this example, representing a factor of 100/4.2 = 23.8 more

computation than the MR estimates. Likewise, the MR-PF and MR-SOR (c) and (d)

represent factors of 100/7.7 = 13 and 100/14.2 = 7.0 computational improvement.

Furthermore, as before one would expect to be able to quickly obtain the SC

solution by using the MR solution as, an initial condition. Figure 2-13 illustrates
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Figure 2-11: Yosemite sequence flow estimates. (a) Smoothness constraint estimates
computed using 100 iterations of SOR, (b) Multiscale Regularization (MR) estimates,
(c) Post-filtered MR estimates and (d) Estimates produced by using MR estimates
as initial condition for SOR algorithm.
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Figure 2-12: Rms Error Comparison of MR, MR-PF, MR-SOR, SOR and Gauss-

Seidel (GS) algorithm flow estimates for the yosemite sequence.

how the GS, SOR and NIR-initialized SOR algorithms converge to the smoothness

constraint solution. Note that visually, there is almost no difference between the

MR-initialized SOR estimates Figure 2-11(d) and the SC estimates shown in Figure

2-11(a). Indeed, the rms difference between the MR estimates and the smoothness

constraint solution is 0.178, while the rms difference between the estimates in Figure

2-11(a) and the smoothness constraint solution is 0.181. More generally, Figure 2-13

shows that for any given number of iterations, the MR-initialized SOR estimates are

substantially closer to the final solution than the GS or SOR estimates.

Estimates of the optical flow at several scales computed via the MR algorithm are

shown in Figure 2-14 and multiscale error covariance images, again, corresponding

to the traces of the smoothing error covariance matrices at individual lattice sites,

are shown in Figure 2-15. The coarser versions of the flow are intuitively reasonable

given the estimates at the finest level and, as expected, the covariance images are

relatively dark (high covariance) in the top portion of the image where there is no

gradient information available.

Figure 2-16 depicts a map of the optimum resolutian for flow estimation at each

pixel location computed as the minimum of the trace of the smoothed error covari-

ance matrix along paths from nodes at the finest level to the root node. We see,
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Figure 2-13: Rms Difference Comparison illustrates how the MR-initialized SOR,

SOR and GS algorithms converge to the smoothness constraint solution (Yosemite

sequence) -

not surprisingly, that the level of resolution chosen for the region with no intensity

information is quite low. In addition, the resolution along the face of the mountain

in the foreground is slightly reduced due to the relative lack of gradient information

in the direction of the striations.

Finally, Figure 2-17 illustrates the variations in the rms error in the optical flow

estimates to variations in the parameters b and p. The figure shows that the estimates

are relatively insensitive to the parameter b, and are also insensitive to IL for values

ranging from slightly less than I upward. The degradation in performance as IL

decreases toward zero is not uncommon or unexpected. In particular, as discussed

in (30, 27, 29, 31, 150, 151, 152] decreasing IL leads to significant decreases in spatial

correlation in the model and to far noisier sample paths. Thus, the estimates for small

values of IL correspond to imposing virtually no smoothness constraint, resulting in

estimated fields with noise-like characteristics. On the other hand, choosing any value

of ji > I yields results of comparable quality to each other and to the SC solution.
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c

Figure 2-14: Multiscale Regularization flow estimates at the (a) first, (b) second and
(c) third scales.

2.3.3 Moving Vehicle Sequence

The third example is based on a real' image sequence which depicts the view from

a car driving down a road. The first image in the sequence is illustrated in Figure

2-18 and Figure 2-19 illustrates four estimates of the optical flow corresponding to

'The sequence is courtesy of Saab-Scania.
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Figure 2-15: Multiscale Regularization error covariance at the (a) second, (b) fourth,
(c) sixth and (d) finest scales.
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Figure 2-16: Map depicting the optimal resolution for representing the optical flow

field as a function of lattice site. Note that the optical flow field is represented at a

coarser level in the quadtree in regions where there is no gradient information (at the

top). It is also represented at a coarser level along the face of the mountain, where

there is little gradient information parallel to the striations.
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Figure 2-17: Multiscale Regularization rms error sensitivity to the parameters b and

IL (Yosemite sequence).
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Figure 2-18: First frame of Moving vehicle sequence.

(a) the SC formulation and 200 iterations of the SOR algorithm, (b) the finest scale

of estimates produced by the NIR algorithm with parameters b = ju = 1, (c) the MR-

PF estimate and (d) the MR-SOR estimate produced by post-processing the MR

estimates (b) with 30 iterations of SOR.

Since the true optical flow is not available (as it was in the previous simulated

examples), an alternate performance metric is needed. In particular, we win use a

reconstruction error metric, which is often used in contexts in which one is interested

in using optical flow for motion-compensated coding. This metric measures the mean

square difference between the current image in a sequence and an estimate of it based

on the computed optical flow, the previous image, and a bilinear interpolation scheme

[100]. The optical flow used is that associated with the current image. Essentially,

one estimates the brightness at any given point by using the optical flow to project

that point back to the previous image. In general, that point will not be on the image

plane, and the bilinear interpolation is required.

Figure 2-20 provides a comparison of reconstruction error performance for the ap-

T)roaches as a function of iteration (where once again the results for the non-iterative

MR, MR-PF and MR-SOR approaches are depicted as horizontal lines). In this

example, the SC solution was slightly better than the MR and MR-PF methods,
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Figure 2-19: Moving vehicle sequence flow estimates. (a) Smoothness constraint

estimates computed using 300 iterations of SOR, (b) Multiscale Regularization (MR)

estimates, (c) Post-filtered MR estimates and (d) Estimates produced by using MR

estimates as initial condition for SOR algorithm.
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Figure 2-20: Rms Error Comparison of MR, SOR and Gauss-Seidel (GS) algorithm

flow estimates for the Moving vehicle sequence.

achieving a slightly greater rms error reduction from the value obtained without mo-

tion compensation (i.e. straightforward frame difference given by the zero-iteration

starting point for SOR). However, this slight increase in performance is achieved at

the cost of significantly greater computation. In particular, the computational gains

are 200/4.2 = 47.6, 200/6.98 = 28.7 for the MR-PF and MR-SOR approaches, respec-

tively. Furthermore, as is also illustrated in Figure 2-20, the modest performance gain

of SC over MR can recouped with far less computation using the MR-SOR procedure

which has a factor of 200/34.2 = 5.8 computational speedup. Indeed, as Figure 2-21

shows, the MR-SOR solution of Figure 2-19(d) is closer to the SC solution than the

result in Figure 2-19(a), which required 200 iterations of SOR to, obtain.

As in the previous examples, multiresolution flow estimates and error covariance

information is available at all levels of the quadtree, and an image e of the error covari-

ance information at the finest level lattice points is shown in Figure 2-22(a). Note in

this case that the error covariance is relatively high (dark regions in the image) along

the road where the image gradient is relatively low. Also, Figure 2-22(b) depicts the

optimal resolution at which to recover the optical flow field completed using this error

covariance information.

Finally, the sensitivity of the optical flow estimates in this example to parameter
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Figure 2-21: Rms Difference Comparison illustrates how the MR initialized SOR,

SOR and GS algorithms converge to the smoothness constraint solution (Moving

vehicle sequence).
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Figure 2-22: (a) Multiscale Regularization error covariance at the finest scale and (b)

Map illustrating the optimal representation resolution for the Moving vehicle sequence

optical flow estimates.
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Figure 2-23: Multiscale Regularization rms error sensitivity to the parameters b and
It (Moving vehicle sequence).

choice is shown in Figure 2-23. The figure shows that the reconstruction error is

stable for p > 1 as in the Yosemite example, and is insensitive to variations in b over

a significant range of values.

2.3.4 Chopper Sequence

The first frame of the real "chopper" sequence' is shown in Figure 2-24. Figure 2-25

illustrates four estimates of the optical flow corresponding to (a) the SC formulation

and 200 iterations of the SOR algorithm, (b) the finest scale of estimates produced

by the MR algorithm with parameters b = IL = 1, (c) the MR-PF estimate and (d)

the MR-SOR estimate produced by post-processing the MR estimates (b) with 80

iterations of SOR.

As in the previous example, rms reconstruction error is the metric we use for

comparison since the true flow is not known. Figure 2-26 provides a comparison

of the reconstruction error performance of the approaches as a function of iteration.

Note that in this example all four methods yield essentially identical rms performance,

'aThe 480 x 480 image lattice was centered on the finest level of a 10 level (512 x 512 at the finest
scale) quadtree. Again, as discussed in Appendix B.1, adapting our approach to deal directly with
arbitrary size lattices is straightforward.
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Figure 2-24: First frame of Chopper sequence.

but once again the MR-based algorithms have significant computational advantage.

Computational gains for the MR, MR-PF, and MR-SOR approaches are 200/4-2

47.6, 200/6.53 = 30.6 and 200/84.2 = 2.38.

Also, as in the previous examples, the performance of the MR algorithm is stable

over a wide range of values of the parameters b and 1L, as is illustrated in Figure 2-27.

In addition, multiresolution estimates and error covariance information are, of course,

available. For the sake of brevity, we illustrate only map of the optimum resolution

information constructed from the multiscale error covariance information in Figure

2-28. Note in this case that the resolution level is relatively uniform over the image

and is at a scale far coarser than the finest scale scale. That is, the image spatial

intensity variations in this image sequence are not particularly strong so that fine

resolution flow estimation can only be achieved with high levels of uncertainty.

On the other hand, there is an important fine-level velocity feature of some sig-

nificance in this image sequence, namely a helicopter, located near the center of the

image frame, which is moving relative to the background. While the local image

contrast in the image is not sufficiently strong to allow very accurate estimation of

what is in essence a discontinuity in the optical flow field, it is reasonable to expect

that there would be some useful, quantitative information in the image sequence that
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Figure 2-25: Chopper sequence flow estimates. (a) Smoothness constraint estimates
computed using 200 iterations of SOR, (b) Multiscale Regularization (MR) estimates,
(c) Post-filtered MR estimates and (d) Estimates produced by using MR estimates
as initial condition for SOR algorithm.
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Figure 2-26: Rms Error Comparison of MR, SOR and Gauss-Seidel (GS) algorithm

flow estimates for the Chopper sequence.
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Figure 2-27: Multiscale Regularization rms error sensitivity to the parameters b and

IL (Chopper sequence).

could be used to detect this motion discontinuity and obtain rough (i.e. coarse level)

motion estimates. While it is beyond the scope of this chapter to develop such a

scheme in detail, we can provide an indication of how the MR method provides the

essential elements for an effective solution.

The starting point for this is the well-known criterion of global smoothness con-
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Figure 2-28: Map illustrating the optimal resolution for the Chopper sequence optical

flow estimates.

straint type formulations such as ours, namely that they tend to obscure localized

motions such as that due to the helicopter in Figure 2-24. This is not surprising since

SC-type formulations yield what are in essence low-pass spatial filters. However, there

is an extremely critical point that is well-known in Kalman filtering theory and in

that relating to the use of such filters for the detection of abrupt changes in time

series or dynamic systems. Specifically, such filters can also be used to implement

high-pass filters which produce outputs that not only enhance the discontinuities to

be detected but also make optimal detection possible. Specifically, the residuals or

innovations in a Kalman filter, that is, the difference between the observations and

predicted observations based on model and data, represent a statistically whitened

version of the observations resulting from what is in essence a high-pass filter. As

discussed in many papers and books ([6, 145], for example), discontinuities in the

data being processed then lead to distinctive signatures which can be looked for using

optimal detection methods.
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Figure 2-29: The smoothing filter residuals shown above can be used to develop

adaptive algorithms for the motion-based object detection.

In a similar fashion we can compute the residuals of the MR estimates:

V(s) = Y('9) - C(S)V(8) (2.26)

for the chopper sequence, an image of which is illustrated in Figure 2-29. Note that

in contrast to the original image in Figure 2-24, this residual image does not display

any coherent structure other than the helicopter, making detection of the helicopter

a far easier task in this domain. Furthermore, high pass filtering has in fact enhanced

the chopper signature, as the helicopter rotors, nearly imperceptible in Figure 2-24

are clearly in evidence in Figure 2-29 because of the motion discontinuity. As we have

indicated, statistically optimal methods for using residuals analogous to these have

been developed for time series, and, as discussed in [6, 1451, such methods require error

covariance information from the estimator in order to specify the optimal detection

procedure. Since the MR algorithm also produces such error covariance information

it is possible to develop optimal detection methods in this imaging context as well.
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2.4 S ummary

We have presented a new approach to the regularization of ill-posed inverse problems,

and have demonstrated its potential through its application to the problem of com-

puting optical flow. This approach starts from the "fractal prior" interpretation of

the smoothness constraint introduced by Horn and Sch.unck to motivate regularization

based on multiscale stochastic models. This new formulation leads to an extremely

efficient, non-iterative, scale-recursive solution, yielding substantial savings over the

iterative algorithms required for the smoothness constraint solution. In particular

for 256 x 256 or 512 x 512 images, the algorithm leads to computational savings on

the order of a factor of 10 to 100. Indeed , since the iterative approaches associated

with the smoothness constraint solution typically require progressively more itera-

tions as the image grows, whereas the per pixel computation associated with the MR

algorithm is independent of image size, even larger savings can be realized for larger

image domains.
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Chapter 3

1\4ultiscale Representations of

1\4arkov Random Fields

3.1 Introduction

In this chapter, we describe how the class of multiscale stochastic models introduced

in Chapter I can be used to represent I-D Markov and reciprocal processes and 2-

D Markov random fields (MRF's). Markov models in one dimension provide a rich

framework for modeling a wide variety of biological, chemical, electrical, mechanical

and economic phenomena [161. Moreover, the Markov structure makes the models

very simple to analyze, so that they often can be easily applied to statistical inference

problems (such as detection, parameter identification and state estimation) as well as

problems in system design (e.g. control and queuing systems).

In two dimensions, MRF's also have been widely used as models for physical sys-

tems (9, 13, 102, 48], and more recently for images. For example, Gaussian fields [148]

have been used as image texture models [35, 34, 71, 23, 91, 90], and the more general

Gibb's fields have been used as prior models in image segmentation, edge detection

and smoothing problems [14, 53, 103, 95]. Causal sub-classes of MRF's, such as

Markov W-.sh Random Fields [1, 42] and Non-Symmetric Half-Plane Markov chains

[671 lead to two-dimensional versions of Kalman filtering algorithms when the fields

are Gaussian [1491. In addition, efficient fast Fourier transform algorithms are avail-
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able for stationary Gaussian fields defined on toroidal lattices (35, 71, 24]. In general,

however, Markov random field models lead to computationally intensive algorithms

(e.g. stochastic relaxation [531) for estimation problems. In addition, parameter iden-

tification is difficult for MRF models due to the problem of computing the partition

function [13, 76, 105]. Thus, while Markov random fields provide a rich structure

for multidimensional modeling, they do not generally lead to the simple analysis and

computationally efficient algorithms that I-D Markov processes do.

These computational issues are the most important obstacle to the application of

MRF models to a broader range of problems, and are the principal motivations for

the investigation in this chapter of the richness of the class of multiscale stochastic

processes, and in particular of how such multiscale processes can be used to exactly

and approximately represent Markov random fields. We demonstrate how a simple

generalization of the model (1.16) leads to classes of models which can be used to

represent all 1-D Markov processes and 2-D Markov random fields. The significance

of this result is not only that it opens the door to the possibility of new and efficient

algorithms for MRF models, but also that it suggests that this multiscale modeling

framework may be a decidedly superior basis for image and random field modeling and

analysis than MRF's both because of the efficient algorithms it admits and because

of the rich class of phenomena it can be used to describe.

The multiscale representations developed here rely on a generalization of the mid-

point deflection technique for constructing a Brownian motion in one dimension [41,

51, 82]. To construct a Brownian motion sample path over an interval by mid-point

deflection, we start by randomly choosing values for the process at the mid-point and

the two boundary points of the interval according to the joint probability distribution

implied by the Brownian motion model. We then use these three values to compute

the expected values of the Brownian motion at the one-fourth and three-fourths points

of the interval. The expected value at the one-fourth (three-fourths) point corresponds

to the average of the initial and mid-point values (mid-point and final values) as shown

in the upper left of Figure 3-1. Random values, with appropriate error variances, are

then added to the predictions at each of these new points. The critical observation
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Figure 3-1: The first two levels of a "mid-point deflection" construction of a Brownian
motion sample path are shown on the left. The construction generates a sequence of
approximations based on linear interpolations of samples of the Brownian motion at
the dyadic points. On the right, the basis functions, integrals of the Haar wavelet, in
this construction are shown.

to be made here is that, since the Brownian motion process is a Markov process, its

value at the one-fourth point, given the values at the initial point and mid-point is

Independent of the process values beyond the mid-point, in particular the values at

the three-fourths and end-points of the interval. Obviously, it is also the case that

the value at the three-fourths point is independent of the values at the initial and

one-fourth points, given the values at the mid-point and final point. Consequently,

the random deflection terms used to generate the values of the Brownian motion at

the one-fourth and three-fourths points can be chosen independently. In addition, we

see that the Markov property of Brownian motion allows us to iterate this process,

generating values at increasingly dense sets of dyadic points in the interval.

There are several important observations to be made about the preceding devel-

opment. The first is that, by linearly interpolating at each level in this procedure,

as illustrated in Figure 3-1, a sequence of continuous approximations of a Brownian

motion is constructed, and the statistics of these approximations converge to those of

a Brownian motion [41]. Indeed, this sequence of linear spline approximations can be

interpreted exactly as a non-orthogonal multiscale approximation using as the scaling

function the triangular "hat"l-function [1271 which is the integral of the Haar wavelet

[51]. Second, as we will see, the structure of this mid-point deflection construction

fits precisely into our multiscale modeling framework, and corresponds simply to a
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particular choice of the parameters in a dyadic tree multiscale model of the form

(1.16). Moreover, this concept generalizes, allowing us to show that all reciprocal

and Markov processes in one dimensioni can be represented by multiscale stochastic

models in a similar wav. Thus, in one dimension we will show that the class of pro-

cesses realizable via multiscale, scale-recursive models is at least as rich as the class

of all Markov and reciprocal processes. In fact, as we will illustrate, it is significantly

richer than this.

Furthermore, these same ideas can be extended to multidimensional processes.

In particular, we show how a generalization of the mid-point deflection concept to a

"mid-line" deflection construction can be used to represent all 2-D Markov random

fields with multiscale models defined on quadtrees. In particular, the key to our

multiscale representations in one or two dimensions is a partitioning of the domain

over which the process is defined so that the coarse-to-fine construction of the process

can proceed independently in each subdomain. Markovianity plus knowledge of the

process on the boundaries of the subdomain partition make this possible. The fun-

damental difference, however, between the 1-D and 2-D cases is due to the fact that

boundaries in V correspond to curves or in Z' to sets of connected lattice sites, as

opposed to pairs of points in one dimension. Because of this difference, exact multi-

scale representations of MRF's defined over a subset of Z' have a dimension which

varies from scale to scale, and which depends on the size of the domain over which

the MRF is defined.

As a consequence, in addition to the exact representations, we will introduce a fam-

ily of approximate representations for Gaussian MRF's (GMRF's) based on wavelet

transforms. As we have indicated, maintaining complete knowledge of a process on

2-D boundaries leads to models of scale-varying dimension, which can become pro-

hibitively large for domains of substantial size. On the other hand, at coarser scales, it

would seem reasonable to keep only coarse approximations to these boundary values,

'Note that this also includes all so-called higher order Mar 'kov and reciprocal processes. For
example, a second order Markov process, i.e. one for which the value of the process z(t) at time t
depends on both z(t - 1) and z(t - 2), can be represented as a vector first order Markov process
[Z(t), Z(t _ 1)]T, which can then be represented in the manner developed in Section 3.3.
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and this leads naturally to the use of a multiscale change of basis for the represen-

tation of the values of a 2-D process along each I-D boundary. That is, through

our mid-line deflection based models, we are led to the idea of using one-dimensional

wavelet transforms in the representation of the values of a two-dimensional GMRF.

The result is a family of models, ranging from those which keep only the coarsest

wavelet coefficients along each I-D boundary to the exact model which keeps them

all. This family of approximate representations allows one to tradeoff the complexity

and accuracy of the representations.

We demonstrate our framework for wavelet-based approximate representation of

Gaussian MRF's in the context of natural texture representation. In particular,

classes of GMRF's have been widely used to represent natural textures in the context

of segmentation and anomaly detection applications [23, 35, 34, 33, 71, 91, 90], and

we illustrate how these models can be approximated in our multiscale framework. In

addition, we illustrate how the fidelity of the approximation varies with the character-

istics of the GMRF being approximated and with the complexity of the approximate

representation.

This chapter is organized as follows. In Section 3.2 we describe a non-Gaussian

generalization of the multiscale stochastic models (1.16). In Section 3.3 we develop

the details of the representation of Brownian motion discussed above, and generalize

this idea to allow the representation of all 1-D Markov and reciprocal processes. These

ideas are then further generalized in Section 3.4 to provide exact and approximate

representations of MRF's. In Section 3.5 we illustrate how the approximate models

can be used to represent GMRF texture models. In Section 3.6, we summarize the

results of this chapter.

3.2 Generalized Multiscale Stochastic Models

In this section we describe a simple generalization of the multiscale model (1.16)

which allows for more general (non-Gaussian) processes. As we indicated in Chapter

1, a basic property of the model (1.16) is the Markovianity of the state with respect
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to the ordering structure defined by the tree.

More precisely, on a q'h_order tree, let Tf I i = 1, q + I denote the q + 1

subsets of states which correspond to viewing node s as a boundary (c.f. the discussion

immediately preceding Section 1.3). Then, (1.16), along with the assumption that

the driving noise w(s) is white, implies that:

Jjp-.fj..(VjX.) (3.1)

By requiring only this property to hold, we obtain a much wider class of processes than

that given by (1.16), but still retain the essential properties leading to the efficient

algorithms described in Section 1.3 and Chapter 4. In particular, recalling that m(s)

denotes the scale of node s, the property (3.1) not only implies that the tree processes

are Markov in scale, from coarse-to-fine, but also that the conditional pdf of the state

at node s, given the states at all previous scales, depends only on the state at the

parent node s�:

1"Y"" M(C' ) < 'M(S)) (3.2)

Such tree processes are naturally defined by specifying the parent-offspring con-

ditional pdf's, along with a pdf for the state at the root node of the tree. A simple

example of a stochastic process in this general class is the following discrete-state

stochastic process x(s) E f 0, 1, LI with parent-offspring conditional probability

mass functions given by:

Om(s) if Xs xr� (3.3)

(1 - 0,(,))IL if X, X,-;�

where p,,.,, (Xo) = I/ (L + 1) for Xo E f 0, 1, - - - , LI and Om(,) is a number between 0

and 1 which may vary with scale m(s). A class of processes with this structure and

defined on a quadtree has been proposed by Bournan for segmentation applications

1191.
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The conditional independence property, (3.1) also implies that such a process

can also be viewed as a Markov random field on the tree. In particular, define the

neighborhood set D, of node s as its nearest neighbors on the tree' (i.e. the parent and

offspring nodes). The general multiscale process described above is then a Markov

random field on the tree in the sense that:

P_-(8)JX(ff),0,t_8 (Xs I X01 7 0, PX(8)JX(0-),0-ED,(Xs1-X C- D.) (3.4)

The most general class of joint probability distribution functions which lead to condi-

tional distributions satisfying (3-4) is given by the Hammersley-Clifford theorem (13].

Our focus here is on processes which also satisfy the one-sided Markov property (3.2),

because this class of processes leads naturally to efficient scale-recursive algorithms.

3.3 Representation of 1-D Reciprocal Processes

In this section we describe the basic properties of reciprocal processes in one di-

mension, introduce and develop representations of reciprocal processes in terms of

multiscale stochastic models, and present several examples.

3.3.1 1-D Reciprocal Processes

A reciprocal process is a first-order MRF on the real line. More formally, a stochastic

process z(t), t E R is said to be reciprocals (or bilateral Markov, two-sided Markov

or non-causal Markov) if it has the property that the probability distribution of a

state in any open interval (Ti 7 T2), conditioned on the boundary states z(Tl), Z(T2) is

independent of states outside of the interval [43, 811. That is, for t E (T1, T2):

Pz(t)Jz(-r),rE(T1,T2)1 (Zt I Z,, 7 C- (T17T2)'C) =

'Obvious modifications of the neighborhood set must be made for the root node at the top of
the tree, which has no parent, and the nodes at the finest level of the tree, which have no offspring.

'The discussion here refers only to first-order reciprocal processes. Extension to higher-order
processes is straightforward [43].
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P-(t) I -(T1 ), -(T2) ( Zt I ZT� I ZT2 ) (3.5)

where (Ti, T2)' denotes the complement of the open interval (T1, T2). Reciprocal

processes defined on the integers Z satisfy the same property with the continuous

interval (Ti, T2) replaced by the discrete interval IT, + 1, Ti + 2, T2 - 11:

Pz(t)lz(-),-E{Tl+l,---,T2-11'(ZtIZ,, 7 C= JT1 + 1, T2 - Ile) =

PZ(t)IZ(TI ),Z(T2) (ZtJZT�,ZT,) (3.6)

Reciprocal processes are closely related to the class of Markov processes. A process

z(t) on 7Z or Z is Markov if past and future values of the state are independent given

the present. This means that for t2 < t3:

PZ(t3)1z(t1),t1<t2(Zt31Zt11t1 < t2) = PZ(t3)1Z(t2)(Zt31Zt2) (3.7)

As shown in (1], if a process is Markov then it is also reciprocal. On the other hand,

reciprocal processes are not necessarily Markov [43], although one can show that

essentially all stationary Gaussian reciprocal processes are Markov [80].

3.3.2 Exact Representations of 1-D Reciprocal Processes

In the introduction we described a construction of a Brownian motion b(t) over the

unit interval via mid-point deflection. As we noted, this corresponds precisely to a

Gaussian multiscale stochastic model of the form (1.16) defined on a dyadic tree. To

see this, consider the following multiscale process. At the coarsest level, the initial

state x0 is a three-dimensional vector whose pdf is given by the joint pdf for the values

of a Brownian motion at the initial, middle and final points of the interval:

b(O)

XO b(O. 5) )V(O, Po) (3.8)

b(l) J
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0 0 0

PO 0 0.5 0.5 (3.9)

0 0.5 1

where we have used the facts that b(O) 0, b(t) is an independent increments process,

and for tj < t2, b(t2 b( t 1 V(0, t2 tl

Choosing a value for xo as a sample from this distribution corresponds to the

first step in the mid-point deflection construction of Brownian motion. The second

step in the mid-point deflection construction is the specification of values for the

Brownian motion at the one-fourth and three-fourths points. In the context of our

multiscale modeling framework, we define two state vectors at the second level of

the dyadic tree, each again a 3-tuple. The state on the left represents the values

of the Brownian motion at the initial, one-fourth and middle points of the interval,

[b(O), b(O.25), b(O.5)], and the state on the right represents the corresponding values

in the right half-interval, .b(O.5), b(O.75), b(Q. The sample at the quarter point is

given by linear interpolation of b(O) and b(O.5), plus a Gaussian random variable with

variance equal to the variance of the error in this prediction:

1
b(O.25) -(b(O) + b(O-5)) + e(O.25) (3-10)

2
e(O.25) �V(0,0.125) (3.11)

Likewise, b(O.75) is chosen by averaging the end points of the right half-interval, b(O-5)

and b(l), and adding in a random value, independent of the deflection term used to

create the sample at the one-fourth point:

I
b(O-75) -(b(O.5) + b(1)) + e(O.75) (3-12)

2

e(O.75) V(O, 0. 125) (3-13)

The above construction of b(O.215) and b(O.75) is precisely the same as the midpoint

deflection construction of these values. Values of the process at successively finer sets
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b(t)

t
0 0.25 0.5 0.75 1

Scale

M=0

M

m=2

Figure 3-2: The state vectors for the first three levels of a multiscale model represent-
ing Brownian motion, b(t), are illustrated. At the first level, the state is the vector
[b(O), b(O.5), b(l)], which is indicated by the three points at m = 0 surrounded by
an ellipse. The points are placed directly below the points t = 0, 0.5 and t = I on
the graph above to indicate that the state of the multiscale process at the first level
consists of the values of the Brownian motion at those three points. Likewise, at
lower levels, the states are indicated by sets of three points surrounded by ellipses,
with the horizontal location of the points in correspondence with time indices in the
graph at the top. At the mt' level, there are 2' state vectors, each of which consists
of the values of b(t) at three consecutive dyadic points, and which together represent
the values of the Brownian motion at 2m+' + I distinct points on the interval [0, 1].
The multiscale representation for Brownian motion can be generalized to the class of
I-D reciprocal process, which contains the class of I-D Markov processes.

of dyadic points are generated in the same way. At the m'h scale, the values of the

process at t = k/2m+', k = 0, 1, - - - , 2-+' are represented with 2m state vectors, each

containing the values of the process at three points, as shown in Figure 3-2. At any

level, eac.11i state is a linear function of its parent, plus an independent noise term.

Thus, this construction fits precisely into the multiscale modeling framework given

by (1.16) (see Section 3.3.3 for the precise formulae for A(s) and B(s)).
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Representation of more general I-D reciprocal processes via multiscale models is

a simple extension of the above idea. To construct a multiscale model for a particular

reciprocal process z(t), t (E f1O, 1], start by choosing the state at the coarsest level as a

sample from the joint distribution:

PZ(O)'Z(0.5)'z(i)(zO' ZO.5) ZJ) (3-14)

This generalizes the choice in (3.8) in which the state at the top level is chosen using

the Gaussian distribution corresponding to a Brownian motion. The two state vec-

tors at the second level are again the three-dimensional vectors [z(O), z(O.25), z(O.5)]

and [z(O.5), z(O-75), z(1)], where values for the half-interval mid-points are chosen as

samples from the conditional distributions:

Pz(O.25)Jz(O),z(O.5)(ZO.25JZO, ZO.5) (3-15)

Pz(O.75)lz(O.5),z(l)(ZO.751ZO.5, Z1) (3-16)

Since the process is reciprocal, z(O.25) and z(O.75) are conditionally independent

given the state at the first level, and thus the modeling structure fits precisely into

the more general non-linear model class described in Section 3.2.

The construction above assumes that the process is defined over a continuous inter-

val. In practice, we are typically concerned with processes z(t) on a discrete interval,

t E 10, 1, - - -, T1. If T = 2' for some integer N, then we can use essentially the same

construction as for the continuous case above. Specifically, xo _= [z(O), z(T12), z(T)] is

a random vector chosen from the appropriate distribution for the process of interest.

The states at the second level are [z(O), z(T14), z(T/2)] and [z(T/2), z(3T/4), z(T)],

with the half-interval mid-points again chosen using the appropriate distribution.

Since there are only a 'finite number of points in the discrete process, only a finite

number of levels are needed to exactly represent it. In particular, with T = 2 N , N

levels are. required.

There are several observations to be made about the continuous and discrete-time
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construction we have just described. The first is that there is no fundamental diffi-

culty in choosing a point other than the mid-point at each level in these constructions.

For example, in the construction of Brownian motion, starting from the initial set of

points given in (3.8), we could next generate any pair of points on either side of

0.5, e.g. b(O.1) and b(O.7). However, the regular structure implied by the choice of

mid-points may be of some value for processes such as Brownian motion which have

stationary increments, as they lead to models in which the model parameters, such as

A(s) and B(s) in (1.16) have very simple and regular characterizations as a function

of node s and scale m(s) (see, for example, (3.40),(3.41)). This regularity in turn

leads to simplifications in the structure of algorithms for estimation and signal pro-

cessing, requiring fewer distinct gains to be calculated and, if parallel implementation

is considered, allowing SINID (single instruction, multiple data) rather than MIMD

(multiple instruction, multiple data) implementations.

Secondly, in discrete-time, there will always be at least some degree of irregularity

in the multiscale model if the process is defined over t E {0, 1, TJ and T is not

a power of two. In particular, in such a case the structure of the tree and/or the

state needed in the multiscale representation of this process win need to be modified.

For example, consider a process defined over t E lo, 1'... , 101. In this case, we can

develop a model of the type we have described in which the tree is of non-uniform

depth and in which we do not have mid-point deflection at some nodes, as indicated

in Figure Ma (e.g. in the generation of the value at t = 3 given values at 0 and 5).

Alternatively, as shown in Figure 3-3b, we may be able to achieve some level of (and

perhaps complete) symmetry by generating more than one new point at some nodes

(e.g. in Figure 3-3b we generate values at both t = 2 and t = 3 given values at 0

and 5). Obviously, as in standard discrete signal processing applications in which the

FFT is to be used, there are considerable efficiencies to be had if T is a power of 2.

Furthermore, as we have indicated previously, while our development has focused

on first-order reciprocal processes, the extension to higher-order models is straight-

forward. Indeed, a K"-order model defined on t E {1, 2, - -, K(T + 1)J, where T is a

power of 2, can be accommodated by grouping states at adjacent points into sets of

83



Z(t)

t
0 6 8 10

Scale

M=0 0

M = 1 0

m=2

m=3
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Scale

M=0

M
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b

Figure 3-3: The state vectors are shown for two possible multiscale representations for
a reciprocal process which is defined on a discrete interval of the form f 0, 1, - - - , 101.
In (a), a dyadic tree with uniform I-ate dimension, but non-uniform depth is used,
whereas in (b) a dyadic tree of uniform depth but non-uniform state size is used.
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Z(t)

t

0 18
Scale

M=O

M = I 0 0

M=2

Figure 3-4: The state vectors are shown for a multiscale representation of a second-
order reciprocal process defined on a discrete interval. In this case, the state vectors
are composed of three groups of two points, reflecting the fact that the value at the
current point, say z(to) is independent of the values at all other times, given the pairs
of nearest neighbors z(to - 1), z(to - 2) and z(to + 1), z(to + 2).

size K. The states at different levels of the tree might be as depicted in Figure 3-4 for

a second-order reciprocal process defined over t E �0' 1, ... '181. Higher-order models

can equivalently be represented by simply redefining the state of the process z(t) to

be a vector of appropriate dimension.

The representations we have introduced to this point have obvious and substantial

levels of redundancy. For example, the value of z(TI2) appears in the state vector

at both nodes at the second level of the multiscale model we have described for

discrete-time reciprocal processes. More generally, at the m 1h level of the model for

such a process there are 2' state vectors containing a total of 3 x 2m values, only

2'+' + I of which are distinct. This redundancy is actually of minimal consequence

for estimation and likelihood calculation algorithms based on these models (see, for

85



Z(t)

t

0 15
Scale
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Figure 3-5: The state vectors are shown for a non-redundant multiscale' representa-
tion of a I-D reciprocal process. These non-redundant representations, appropriately
generalized for the 2-D case, are useful in the context of wavelet-based approximate
representations of Gaussian MRF's.

instance, Appendix C). However, it is also easy to eliminate the redundancy by a

simple modification to the construction we have described. In particular, we may

generate two internal points between each pair of points at each stage in the level-to-

level recursion, yielding a four-dimensional state vector. For example, if the reciprocal

process is defined over t E f 1, 2,...,161, then we can choose the non-redundant set

of state vectors illustrated in Figure 3-5. In this case, a first-order reciprocal process

is represented by a process with a four-dimensional state, instead of the process

with a three-dimensional state used earlier. In general, at the m" level of such a

representation, there are 2m state vectors representing 2'+' distinct values of the

process. Again, in the situation where T is not a power of two, some irregularity in

the structure will be introduced.

Once we allow ourselves to consider such variants on the original mid-point deflec-
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Figure 3-6- The state vectors are shown for a multiscale representation on a third-
order tree.

tion construction in which more than one new point is generated between each pair of

previously constructed points, we see immediately that it is possible to generate mul-

tiscale representations on trees that are not dyadic. For example, consider a reciprocal

process defined on t e f 0, 1, - - - , 3NJ . This process is most conveniently represented

on the regular structure of a third-order tree, as shown in Figure 3-6. This flexibil-

ity of the modeling framework allows the possibility of considering different tradeoffs

in terms of level of parallelization and computational power of individual processors

when implementing estimation algorithms such as the multiscale smoothing algorithm

used in Chapter 2 or the likelihood calculation algorithm to be described in Chapter

4.

Finally, it is of interest to note that the construction we have described, and its

several variants, can be interpreted as a non-iterative Gibb's sampler. The Gibb's

sampler introduced in [53] is an iterative algorithm for the generation of sample

paths of Markov random fields on a discrete lattice. For 1-D discrete-time reciprocal
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processes this procedure reduces to using the nearest neighbor conditional probability

functions to construct a Markov chain which has an asymptotic distribution equal to

the joint distribution of the process. Specifically, at each step of the procedure we

modify the current sample path zk(t), t E 10, TJ by replacing the value at

some point in time, say to with a random value chosen according to the conditional

distribution for the process at that point given the current values of the sample

path at to - I and to --,- 1. By cycling repeatedly through all of the time points, the

sample path is guaranteed to converge to one with the correct joint statistics. The

procedure is conceptually simple but computationally intensive, since the Markov

chain requires many transitions for the probability function to converge. In contrast,

in our construction, we successively generate samples at new points (e.g. mid-points)

conditioned on values at previously generated points, which are not nearest neighbors

but rather boundary points that partition the time interval of interest. For this

reason, and since we begin at the root node with a decimated set of values with the

correct distribution, we are guaranteed that at each stage the decimated process that

is constructed has exact1v the correct distribution. Thus, with this structure we visit

each time point only once and construct a sample path non-iteratively.

In fairness, an important point to note here is that if a reciprocal process is

specified directly in terms of a Gibb's distribution - i.e. in terms of nearest neighbor

energy functions (see, for example, [53]) - then the calculation of the nearest neighbor

pdf's required in the Gibb's sampler is simple. The question then is whether it is

also simple to determine the conditional pdf's - e.g. the pdf for z(TI2) given z(O)

and z(T) - needed to implement the non-iterative, multiscale procedures we have

described. In general, this may not be a straightforward task, since, if we begin with

a Gibb's distribution the computation of such pdf's requires explicit calculation of

quantities related to the so-called partition function [53], which can be quite complex.

On the other hand, such calculations need only be done once to construct the pdf's

needed for the multiscale model. In addition, as we have seen for Brownian motion

and as we now illustrate further, in many cases, including all vector Gauss-Markov

processes and L-state Markov chains, closed form expressions can be derived for the
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multiscale representations.

3.3.3 Examples

In this section we discuss several examples of reciprocal processes and their multiscale

representations. The first examples describe multiresolution models for general vector

Gauss-Markov processes specified in state-space form, and, in particular describe this

construction in detail for two cases corresponding to the integral of white noise (i.e.

Brownian motion) and the second integral of white noise. These examples allow us to

illustrate the interpretation of these multiresolution models as providing approxima-

tions using non-orthogonal expansions. In particular, our model for Brownian motion

corresponds to the use of the so-called "hat" function [127] in this expansion, lead-

ing to linear interpolation between dyadic points, while the model for the integral of

Brownian motion leads to a multiresolution approximation using cubic interpolation.

The second part of this section presents several discrete-state examples, the first

of which investigates general L-state Markov chains and allows us to make contact

with the models used in (17, 19, 201 for segmentation applications. The second ex-

ample is a general two-state process, which is used to demonstrate that the class of

multiscale models is in fact far richer than the class of Markov processes. In particu-

lar, through this example we gain insight into the very particular conditions that the

parent-to-child transition pdf's must satisfy in order for the finest level process to be

Markov. This analysis suggests that Markov chains are, in fact, only a small subset of

the processes realizable with multiscale models and, in particular, directly motivates

several other multiscale mid-point deflection processes which are not Markov.

Finally, we derive a multiscale representation for the 1-D Ising model. This model

and its multidimensional generalizations are widely studied in the statistical mechan-

ics community due to the fact that the Ising model is the simplest example of a Gibb's

distribution which exhibits a phase transition.
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Gauss-Markov Processes

Consider a vector Gauss-Markov process defined on the interval [0, 1] and given by:

Z'(t) -- Ftz(t) + Gtji(t) (3-17)

where:

z(O) A((OHo) (3-18)

EftL(t)P(7)'j I 8(t (3.19)

E fjL(t)Z(O)Tj 0 (3.20)

Define the state transition matrix (D(t, 7) by:

4�(t, 7) Ft4l)(t, 7) (3.21)

'�(t' O I (3.22)

and state covariance matrix [It = Ef Z(t)Z(t)TI . As is well known [41], the state

covariance matrix satisfies the following differential and integral equations:

ftt = FJI, + rItFtT + GtG T (3.23)t
tH t = � (t, 0) H 0,1(t, O)T + 11)(t, 7)GG Tq� (t, 7)T dr (3.24)

fo

Also, define the conditional expectation of the state at time t2 given the states z(ti)

and Z(t3), and the corresponding covariance of the error as:

�t2 Itl t3 EfZ(t2)IZ(tl),Z(t3)1 (3.25)

Pt2 lt�43 Ef(Z(t2) - 't2lt�h)(Z(t2) - 't2ltlt.3 )Tj (3.26)

Since:

PZ(t2)lz(ti),Z(t3)(Zt2lZtllZt3) = M(Zt2;t2It1,t3IPt2jtIt3) (3.27)
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the conditional expectation (3-25) and error covariance (3.26) are the quantities we

require to construct a multiscale representation of the process (3-17) - (3.20). In fact,

it is easy to show that for tj < t2 < 6:

T - . -1 -

't2 14 t3 Ht, (1)(t2, t I ) T Ht, Ht,'I�(6, t, )T Z(ti) (3.28)

'P(6, t2)r,,, J L (D(t3, tj)IItj Ht' J LZ(t3) J

Pt2 ltlt3 Ht2 -

, T -
Htj 4)(t2, t 1 ) T fit, Ht'.1)(t3, t, )T IIt,'1)(t2, tl)T

't(6, t2)rI1, �P(t3, tj),It� Ht, (P(t3, t2)Ilt2

(3.29)

Equations (3.28) and (3-29) directly provide us with the parameters of the matrices

A(s), B(s) and Po in the multiscale model (1.16) corresponding to our mid-point

deflection construction, In particular, let us identify the abstract index S with a

pair of numbers (m, �o) which denote the scale and horizontal shift of the node S,

respectively. The horizontal shift �o, running from 0 to 2n - 1, indexes the nodes at

scale m. For instance, the root node is associated with the pair (1,O), and the left and

right nodes at the first level are associated with (2,O) and (2,1), respectively. With

this notation, the state at node s on the tree contains the values of the process z(t)

at the particular three points:

z(2�pI2-+')

x (s) _= x ((m, �o)) z((2�p + 1)/2-+') (3.30)

z((2�p + 2)/2m+')

From the description of the general construction, the form of the matrix A(s) in (L 16)
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is clear:

I 0 0

K, K2 0 if �p is even

L 0 1 0 J

A(s) A((m, �p)) (3.31)

0 1 0

0 K, K2 if �o is odd

0 0 1 J

In particular, if �o is even, then the first and third components of the state x(s) in

(3.30) correspond to the first and second components of x(s;�). Thus, the identity

matrices in (3.31) for �o even simply map the first and second components of x(.5;�)

to the first and third components of x(s). In addition, the mid-point prediction of

z((2�p + 1)/2-+') is just a linear function of the first two components of the parent

x(s�), which is expressed via the matrices K, and K2 in the second row of (3-31).

The matrix A(s) for �p odd is similar, and in fact is just a "shifted" version of A(S)

for �o even (reflecting the fact that the interpolation down to the state on the right

depends on the last two components of x(s�)).

The gain matrices in (3.31) can be computed directly from (3.28). Using standard

formulas for the inversion of a block 2 x 2 matrix, we compute:

Ki = (D(t2, t, ) + '1'(t2, tl)Ht, (D(t3, t, )T(Ht, - '1>(t3, tl)][It��(t3, tl)T)-l (P(t3, t1)

-lit )T(Ilt, )T)-l
2 4) (t3, t2 - 41�(t3, tl)][It, 44�(t3, tl (k(t3, t1) (3.32)

K2 = -4)(t2, tl )IIt, -1)(t3, t, )T(Ilt:, - (D(t3, tl )Htl (P(t3, tl )T)-i

+HWI�(t3, t2 )T(Ilt, - '4�(t3, tl )lIt, 4>(t3, tl )T)-i (3.33)

where t, = 2�o/2-+', t2 = (2�p + 1)/2-+' and t3 = (2�p + 2)/2'+'
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The matrix B(s) in (1.16) has the following block structure:

0

B B K3 (3.34)

0

where K3 is any matrix such that K3K3' = Ptjt,,t,, and, again, tj = 2�0/2-+1,4

(2�p + 1)/2'+' and t3 = (2W + 2)/2-+'. The matrix B(s) in (3.34) reflects the fact

that no noise is added to the first and third components of the state x(s), (which are

simply copied from the preceding level), while noise corresponding to the error (3-29)

is added to the second. In particular, in this case the covariance of the additive noise

term B(s)w(s) in (1.16) is given by:

Ef B(s)w(s)w'(.q)B'(s)j B(,q)B T(S)

0 0 0

0 P(2w+l)/2-+1[2w/2-+I,(2w+2)/2-+I 0 (3-35)

0 0 0

where a =- (m, �o).

Finally, the initial covariance matrix Po for the state at the root node of the tree

is given by:

T,

Z(O) Z(O)

Po E z(O-5) Z(0.5) (3.36)

(1)
L z(1) J L z

1110 Hol�(1/2, O)T 110,4qj, O)T

<D(1/2, O)II0 H1/2 H1/2'40, 1/2 )T (3.37)

'qq1' O)1IO '1q1' 1/2)IIi/2 11,

For instance, if z(t) is the standard Brownian motion, then Ft 0, '4*' -0 = 1,
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and Ht = t. Thus for this example (3.28) and (3.29) become:

t3 - t2 t2- t,
�t2 Itl t3 = Z,(ti) + - Z(t2) (3-38)

t3 - tl t3 - tl

(t2 tl)(6 - t2)
Pt-2 Itl t3 = (3-39)

t3 - tl

and we obtain:

I 0 0

1/2 1/2 0 if �o is even

0 1 0

A(s) A((,m, ,o)) (3.40)

0 1 0

0 1/2 1/2 if �o is odd

0 0 1

0

B(s) B((,rn, �o)) 1/2 (m+2)/2 (3.41)

0

0 0 0

PO 0 0.5 0.5 (3.42)

0 0.5 1

The formula (3.28) for the conditional expectation 't2Jt,,tII which specifies A(s) as

just described, also provides us with the required formula for interpolating between

dyadic sample points at any level in our multiscale representation and hence pro-

vides us with a direct interpretation of this representation as providing a sequence

of multiresolution approximations. For example, Brownian motion provides us with

the linear interpolation formula given in (3.38) and illustrated in Figure 3-1. This

corresponds to a multiresolution linear spline approximation or, as also illustrated

in Figure 3-1, as a non-orthogonal multiresolution decomposition using the so-called

"hat" function [127].
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As a second example, consider the movement of a particle whose velocity is given

by a Brownian motion. This motion can be described using the following Gauss-

Markov process:

z 0 i 0 (3.43)
Z(t) +

0 0 1

In (3.43), the first component of z(t) is the particle position and the second component

is its velocity. The state transition matrix 4�(t, r) and the state covariance matrix Ht

are given by:

(D(t, 7) I t (3.44)

0 1
L J

0 /3 t2 /2
(3.45)

t2 /2 t

One can show by direct computation that the terms Ht,'I�(t2, tl)T and (k(t3, t2A2 in

the leftmost block matrix on the right side of (3.28) contain only cubic powers of t2-

Note also that the block matrix in the middle of the right side does not depend on

t2. Thus, the interpolation Of Z(t2) between t, and t3 is a cubic polynomial int2:

t2 t3
C1 + C2t2 + C3 2 + C4 2 (3.46)

t2 ltlt3 = t2
C2+ 2C3t24- 3C4 2 J

where from (3.43), the second component of 't2JhA1 is just the first derivative of the

first. One can use (3.28) directly to calculate the values of the coefficients in (3.46).

Alternatively, it is clear from the definition of zit'1443 in (3.25) that 't1Jt1,t3 Z(tl)

and 'tllt03 =-'-- Z(t3)- These two constraints provide four linear equations in the four

unknown coefficients in (3.46), and thus uniquely determine the interpolating function

(3.46). Note that the interpolating polynomial for the first component of the state

(the position of the particle) has a continuous derivative at the knot locations t =

k/2m+', k 0, 1, 2m+'. The interpolation of the first component of the state
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Figure 3-7: The first two scales in a multiscale representation of a process which is
equal to the second integral of white noise are shown. The representation consists of
samples of the process at dyadic points along with a piecewise-cubic, interpolation.
Compare these curves with the graphs of Figure 3-1, which depict the piecewise linear
interpolation of the first integral of white noise.

is shown in Figure 3-7 for the first two levels of a sample path of the multiscale

realization. The top of Figure 3-7 is the cubic interpolation the first components of

z(O), z(O.5) and z(1), while the bottom illustrates the cubic interpolation of the first

components of z(O), z(O.25), z(O.5), z(O.75) and z(1).

We make two final points before ending our discussion on the multiscale repre-

sentation of Gaussian-Markov processes. First, we note that the Brownian motion

process over an interval can actually be represented as a two-state multiscale process.

We point this out not only because it is interesting in its own right, and because it

suggests that by taking into account more details about the structure of the process
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under consideration (i.e. by exploiting more than just reciprocity or Markovianity), el-

egant and parsimonious alternative representations can be obtained. Second, while we

have focused on the construction of multiscale models for the class of continuous-time

Gauss-Markov processes, an exactly analogous set of calculations can be performed

for the discrete-time process:

z(t + 1) = Ftz(t) + GqL(t) (3.47)

Also, as discussed in Section 3.3, in this case we can either construct models with

three or four-point state vectors. The former of these is exactly analogous to what

we have done here in continuous-time and has, as we have indicated, a high degree of

redundancy, while the latter does not. We defer explicit discussion and illustration of

such non-redundant representations until Section 3.4 where we describe them in the

context of modeling 2-D MRF's.

Finite-State Markov Processes

Next, consider a general finite-state Markov process z(t) E f 1, 2'... LI defined over

a discrete interval t E f 0, 1, - - - , TI. The probability structure of the process is

completely determined by the initial conditions:

Pr[z(O) = k] (3.48)

for k G f 1, 2, LI and by the one-step transition probabilities:

Pij =_ Pr[z(t) = ilz(t - 1) = j] (3.49)
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We define the one-step transition matrix:

PIJ P1,2 ... P1,L

P2,1 P2,2 ... P2,L
P (3.50)

PL, I PL, 2 ... PLL

Note that the multistep transition probabilities are given by powers of the matrix 4

P:

Pr'z(t - r) = ilz(t) = j] = IP'lij (3.51)

Using (3.51) and Bayes' rule it is straightforward to calculate that for tj < t2 < t3:

Pr[Z(t2) z(ti) - 1', z(t3) = k] [Pt3-12 I kj [Pt2-tI 1j'i (3.52)
[Pt3-tj h'i

These conditional probabilities, in addition to the probability function required for

the state at the root node of the tree, namely

Pr[z(O) = Z', z(T,,'2) z(T) = k] = [pT12jh'j[pT12j jiPr[z(O) = i] (3.53)

allow us to construct the multiscale representation of the process. Note that (3.52) is

the counterpart of the conditional probability equations for Gauss-Markov processes

given in (3.27) - (3.29), and that the pdf for the state at the root node (3.53) is the

counterpart of the initial covariance matrix (3-37).

One special case of this process is the following:

Pi, i IL (3.54)

Pij 1 - IL (3.55)
L - I

Pr[z(O) = 1] 11L, i !-,2,...,L (3.56)

'[Alij stands for the (1, element of the matrix A.
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Figure 3-8: A sample path of a discrete-state Markov process is shown. Multiscale

representation of this and other discrete-state processes are developed in Section 3.3-3.

A sample path of such a process is shown in Figure 3-8 for L = 8 and ji = 0.97.

Neighboring states of this process tend to be the same, and when the process does

change state, no particular change is preferred. Thus, this model would seem to be

a natural one to use in segmentation applications and can in fact be viewed as an

alternative to the I-D multiscale model (3.3) introduced in (17, 19, 201. As noted

in Section 3.2, the model in (3.3) does not in general produce a Markov chain or

reciprocal process at the finest level. On the other hand (3.54) - (3-56) is a Markov

model and for this process:
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[pk].,j (I + (L - 1)i�k)/L if i = i (3.57)
(I -,Ok)IL if i j

where:

(3.58)

The conditional probability function (3-57) can be verified by noting that, given

(3.54), (3-55), the one-step transition matrix (3-50) is circulant, and thus diagonalized

by the L x L Discrete Fourier Transform matrix.

Using (3.52), for this example we can write down the transition probabilities for

the mid-point deflection model. In particular, assuming that T is a power of two, we

can associate the state at node s with the following values of the process:

z(2�oT12-+')

X(S) x((M''P)) z((2�j + T)/2m+') (3.59)

z((2�oT + 2T)/2m+')

where, as in (3.30), the pair of numbers (m,�p) denote the scale and horizontal shift

of the node s, respectively. Thus, to generate the state at node s, given the state at

the parent node s--y, we require the following conditional pdf:

Pr1Z( 2�pT + T 2�oT 2�oT + 2T k-]
21+1 jlz(�2m+'�) = i'z( 21"1+1 -

(1(1/(2 if i = j = k

(1�1 /6 if i 0 j = k

U1/6 if i = j 7� k (3-60)

�1 6 I (2 if i = k 0 j

6�1/6 if i, j, k distinct

where:

(I + (L - j)t9T/2"+' )IL (3.61)
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C2 = (1+(L- I)VT12- )IL (3.62)

= (I _ OT/2"+' )IL (3-63)

= (1 _ 19T/2- )IL (3-64)

To gain additional insight concerning the structure of our multiscale models, con-

sider the particular example of a stationary two-state binary process with one-step

transition matrix and initial state probabilities equal to:

p 77
P = (3.65)

L A 77 j

Pr[z(O) = ij = '077 + A) if i = 1 (3-66)
it/(77 + IL) if i = 2

For this process one can show that:

I n + A(l -,q - IL), n - q(l -,q - A),Pk = (3-67)

n + IL A - 141 - 'q - A)' A +q(l - ?7 - A)'L -i

and thus using (3.67) with (3.52), (3-53) one can build multiscale representations for

the class of stationary binary Markov processes. While we have focused in this exam-

ple and in the previous one on processes with stationary state transition probabilities,

it is straightforward to apply this construction to the representation of non-stationary

discrete-state Markov processes as well, simply by choosing the conditional probabil-

ity functions required in the multiscale representation correctly.

Moreover, the mid-point deflection structure can also be used to generate non-

Markov processes on the tree. For instance, consider the following binary mid-point

((selection" process defined over t E f 0, 1, . . . 2"" 1 [133]:

Pr[z(O) i, z(2 N-1) j, z(2 N) = k] = 1/8 for all i, j, k (3.68)
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if i j = k

Pr[z(t2) = IIZ(tl) j, Z(t3) 1 - IL if i j and j = k (3-69)

0.5 if j 0 k

where 1, j, k- E � 1, 21 and where tl , t2 , t3are any 3-tuple of dyadic points corresponding

to one of the state vectors in the multiscale representation. At the coarsest "scale"

of this process, the three components of the state vector xO are independent and

identically distributed random variables, each equally likely to be 1 or 2. It is easy

to show that 'the process resulting from this construction is not Markov in general,

and thus we can conclude that the set of binary stochastic processes which can be

constructed within the mid-point deflection framework is strictly larger than the class

of binary Markov processes over intervals.

In fact, a bit of thought shows that the class of processes realizable by multiscale

models is quite a bit larger than the class of Markov chains. Indeed, any binary

stochastic process defined over t E f 0, 1, - - - , 2 NJ when represented via mid-point

deflection has a probability structure which is determined by 4(2' - 1) parameters,

corresponding to the required conditional probability functions. In particular, the

conditional probabilities Pr[z(t2) = ilZ(tl) = j, Z(t3) = k] for specific choices of

tl < t2 < t3 are uniquely determined by the four parameters:

Pr[Z(t2) = II Z(tl ) = 1, Z(t3) = 11 = Al (3.70)

Pr[z(t2) = II Z(tl ) = 1, Z(t3)= 2] = A2 (3.71)

Pr[z(t2) =11z(ti) = 2,Z(t3) = 11 = A3 (3.72)

Pr[Z(t2) =I Iz(ti) = 2,Z(t3)= 2] = A4 (3.73)

Since the process is represented with an N level multiscale process, there are 2' - 2

of these conditional densities which must be specified, corresponding to each of the

nodes except the root node. However, the probability function for the state at the

root node also requires four parameters, and thus the total number of parameters to

be specified is 4(2N - 1). In contrast, a non-stationary binary Markov process defined
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OAV-0-4V-0-0- --- -0-0-4-<D-40-0
0 1 2 3 N-1

Figure 3-9: A sample path of a I-D Ising process is shown. The process can take on
two states or qpins, represented above by empty and filled circles.

over the time interval t �_: f 0, 1, 2'1 requires at most 1 + 2 x 2N parameters (one

corresponding to the initial probability, and 2 for each transition from t to t + 1,

for t = 0, 1'... 2' - 1). Since each of the parameters in each of these models is a

probability, i.e. a number in the interval [0,1], we see that the set of processes arising

from N-level multiscale models is in one-to-one correspondence with the 4(2 N _ 1)_

dimensional unit cube, while the set of non-stationary Markov chains over the same

length interval (2N -�- 1) corresponds to the 2(2 N + I)-dimensional unit cube. Thus,

for N > 1, Markov processes constitute only a "thin" subset of the entire class of

binary tree processes.

1-D Ising Model

The Ising model was originally proposed by Ernst Ising in 1925 in the context of

ferromagnetic modeling 631- The 2-D version of the model has been widely studied

in the statistical mechanics community as it is the simplest example of a Gibb's

distribution which exhibits a phase transition [96, 9, 102]. The I-D version of the

model describes a binary random function defined over an interval f 0, 1, - - - , N - 1 1

and taking on the values 1 or -1. A sample path of the Ising model is shown in

Figure 3-9, with the symbols 9 and o corresponding to I and -1, respectively.

The probability structure of the Ising model is characterized by an energy function

or Hamiltonian H(Z):

P. (Z) exPj-H(Z)j
(3-74)
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where Z = f ZtIN-' and E) is called the partition junction.' The Hamiltonian is at=O

sum of local energy terms which depend on neighboring pairs of sites.

Two slightly different formulations of the Ising model, which differ in the way the

boundary values are treated, are commonly encountered [96]. In the cyclic model, the

sites at t = 0 and t = N - I are considered to be neighbors, so that the interaction

energy due to the pair (ZO, ZN-1) is the same as the interaction energy for any other

two neighbors (Zt, Zt+,):

N-1 N-1

H,:(Z) E aztzt+l E PZt (3.75)
t=O t=O

where the indices are interpreted modulo N, so that ZN =- Zo.

In the free boundary model, there is no contribution to the Hamiltonian from an

interaction between Zo and ZN-1:

N-2 N-i

Hf (Z) E CiZtZt+j - E 0Zt (3-76)
t=O t=O

In either case, the partition functions in the cyclic and free boundary models, which we

denote 0, and Of and which depend on the model parameters N, a and 0, normalize

the probability function so that it sums to one:

E E ... E exp{--U(Z)l
ZoEJ-1,11ZiE�-1,11 ZN-lE{-Ill

E expj-H(Z)j (3-77)
Z1,1E[0,N-ij

where we define [i, j i, i + 1, j 1. We also use t he not ation (i, j) =- [i + 1, j - 1

below.

The I-D Ising model is one of the few Gibb's distributions for which the partition

function can be calculated exactly. We repeat this calculation here because it win

turn out that a modification of this approach can be used to calculate the conditional

'The partition function is normally denoted with the symbol Z; we use e to avoid confusion with
the process Z(t).
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probability functions of the form (3.14) - (3-15) that we will use to develop a multiscale

representation of the Ising model.

Consider first the calculation of the partition function for the cyclic model. The

idea is to associate the two values that Zt can take on with a basis for a 2-D vector

space. In particular, to each random variable Zt we associate a vector 2t as follows:

Zt zt = (3.78)
L 0 i

Z, +-4 2t = 0 (3.79)

Next, if we write the Hamiltonian for the cyclic model in the symmetric form:

N-i I

H,(Z) E aztzt+i + �O(zt + Zt+i) (3.80)
t=O

then we can associate the summand with the contribution to the Hamiltonian from

the pair (Zt, Zt+,). Next, define a matrix V such that:

2TV2T 1t t4_1 = expfaztzt+i + -,3(Zt + Zt+,)l (3.81)
2

Written explicitly, the matrix V is given by:

V V(1,1) V(17-1)

L V(- 1, 1) V(- 1, - 1) j

ecx+o e -a
(3.82)

e-a ea-0

where:

I
V(Z, Z') expJaZZ' -,3 (3-83)2 (Z + ZI)i
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The summation in (3.77) for the cyclic model is then given by:

E) c 111(ZO, Zl)V(Zl, Z2) ... V(ZN-1, ZO) (3.84)
Z,,IE rON - 11

2,)TV212TV ... 2TJV20
1 22 N

ZJE �ON -Ill

= trace VN

= A N - A N (3.85)
1 2

where the eigenvalues Al and A2 of the matrix V are given by:

A, = e' cosh 3 + (e 2a sinh 2 0+ e-2a)1/2 (3.86)

A2 - e' cosh 13 - (e 2 a. sinh 2 0+ e-2a)1/2 (3.87)

and where we have used the fact that:

I 0 2t 2T
1: t (3.88)

0 1 J ZtE{-1,11

Similarly, in the case of free boundary conditions, the Hamiltonian can be written:

N-2

Hf (Z) 13Zo - 13ZN-l - E aztzt+l + -O(Zt + Zt+i) (3.89)
2' 2 t=O 2

The partition function calculation requires a bit more work in this case because the

boundary values ZO and ZN-I must be specially treated. In particular, we define a

vector v which allows us to represent the contribution of the boundary points to the

Hamiltonian (without including a term corresponding to an energy between them):

T 2t IV exp{_,3Ztj, for t = 0 or N - 1 (3-90)
2
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Written explicitly, the vector v is given by:

expf 1131V 2

expf -)31
L 2

Then the summation in (3-77) becomes:

Of exp ZO I V (ZO, Z1) ... V(ZN-2VN-1) expf -OZN-11 (3.92)
Z,,IE[ON-1) 2 2

VT2020TV212TV22 ... ZT TE I N-2V2N-12N-1V
ZIIE[ON-1]

V TvN-1V (3-93)

We can evaluate (3.93) by using the following eigen-decomposition of V:

V = U-I Al 0 U (3.94)
L 0 A2 J

ea(A2- ea-0
U = (3-95)

ea(AI ea+O)

which yields:

Of = [1 - e"(Al e'+19)(A2- e'-13)]-l

xfA N-1 [ea+(' /2),3 - e -(1/2),S 2
1 (ecx-O - Al)

+AN-l[ea- (1/2),3 1/2),3]21
2 (ea+O - A2) - e( (3.96)

Now, in the context of multiscale representations, we need to calculate probabil-

ities of the type p,,(j)J.(i),.(k)(ZjJZiZk) where i < i < k. Using the fact that Zt is

a reciprocal process it is clear that (3.97) below holds. That is, from (3-6) we see

that the conditional distribution of Zj given ZiZk is the same as the conditional

distribution of Zj given ZI, I E f 1, - i, k, N - 11 =_ (i, ky. Then, (3-98) is just

an application of the conditional probability rule Pr(AIB) = Pr(A, B)lPr(B). Next,

to obtain (3.99), note that the sets JjJ U (i, k)c and [0, N - 1] (i, j) U (j, k)J are
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equivalent. Thus, the joint probability for Z1, 1 E JjJ U (i, h)' can be obtained by

starting with the joint probability for Z1, 1 E [0, N - 1], which is given by (3.74),

and summing out over �(T, J) U (i, k)J. This leads to the numerator of (3.99), and a

similar analysis gives the denominator. Finally, (3.100) is obtained by substituting

the summand of (3.84) or (3-92) for the joint pdf of Z1, I C- [0, N - 1], and canceling

common factors. Note in particular that all factors containing only terms in (i, k)C

cancel.

P.(j)lz(i),z(k) (Zj I Z , Zk) P--(j)J-,(1),1E(ik)- (Zi I Z1, I E (i, k)c) (3.97)

Pz(j),z(1),1E(ik)c (zi) Z1, 1 C- (i I k)C) (3-98)

Pz(1),1E(ik)'(Z1 I E (i, k)C)

1:Zi,1E(iJ)U(jk) Pz(tjtE(ON-I](Zt, t E [0, N - 1])
E41E(ik) Pz(t),tE(ON-i](Zt' t E [0, N - 1])

(3-99)

F-41E(ij)U(jk) V(Zi, Zi+1) ... V(Zk-1, Zk) (3.100)
EZJE(ik) V(Zil Zi+1) ... V(zk-,, Zk)

Note also that (3.100) does not depend on the boundary condition. This is due to

the obvious fact that the boundary values are never contained in the interval (i, k).

What the boundary condition does affect is the probability calculation at the root

node. This root node calculation is closely related to (3.100), and hence we focus on

(3.100) and simply state the result for the root node calculation. From (3.100), our

main problem is clear. We need to perform summations which are similar in nature

to those required to compute the partition function, with the only difference being

that we do not want to sum out over everything in the interval.

There are two cases of interest. The first case is j - i = k - j = 1, i.e. the nearest

neighbor probability. In this case the summations in (3.100) are easy to compute.

Indeed, nothing needs to be done in the numerator and we only need to sum over Zj
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in the denominator. The well-known result is:

exp{a(zj-lzj + zjzj+l) +,3zjj
Pz(j)lz(j-l),.(i+l)(Zjlzj-l)zj+l) = . (3-101)cosh(ce(Zjj + Zj+,) + 0)

The second case is the situation in which i - i > I and k - i > 1, i.e. situations

in which there is a non-trivial summation to be done in the numerator of" (3.100).

A modified version of the transfer matrix approach defined above can be used in this

case. In particular, let us define the vector wt such that:

W T (3.102)t zt+1 = V(Zt, zt+i)

Written explicitly,

expfoezt + 21,3(zt + 01Wt (3-103)
expf -azt + 10(Zt - 01

L 2

Then, using (3.81), (3.100) and (3.102):

EZ,,1E(ij)U(jk) WZT2i+l ... 2j-1WjWT2,T+, zk-,WA,
PzU)jz(i),z(k)(ZjA)zk) - __ 3

EZ,,IE(ik) W,;r2i+l ... 2k-lWk
WTVj-i-2WjWTVk-j-2Wk

W7Vk--i-2
t Wk

w(ij)w(jk)/w(ik) (3-104)

where:

Am-n-2 0
w(mn) = WTu-1 1 UWnm -n-2

0 Am
L 2 J

= [I - e"(Al - ec'+O)(A2 _e CZ-beta )I-1

xfAm -n-2 [ecxZ,.+(1/2)0(Z,.+1) _ (Al - e'+19)e ((1/2)0--)(Z.-1)]
1

x [e"Z,,+(1/2),S(Z,,+1) +(A2 - e"-O)e((1/2),3--)(Z,,-1)]

'The case in which j - i > 1 and k - j = 1 (or in which j - i and k - j > 1) is a simple
combination of the two cases we discuss.

109



+Am -n-2 [,-aZ-+(1/2)0(Z,-1) - (A2 - ect-O)e ((1/2)0+-)(Z.+I)
2

X [e-C'Z"'+(1/2),3(Zn-1) + (Al - ec'+O)e((' /2),8+a)(Zn+1)]j (3.105)

Using analysis similar to the above, we can show that the root node probability in

the cyclic case is given by:

Pz(O),z(N12),z(N-1)(ZO, ZN12, ZN-1)

TV(N-4)/2 WT V(N-4)/2WN/2 /2 WN-1 expJaZOZN-1 + -O(Zo + ZN-1110, (3.106)0 N 2

and in the free boundary case by:

Pz(O),z(N12),z(N-1)(ZOi ZN12) ZN-1)

WTV(N-4)/2 WN/2 WT /2 V(N-4)/2 WN-1 expf IO(ZO + ZN-111'9f (3.107)0 N 2

Together, (3.104) - (3.107) can be used to construct a multiscale representation of

the Ising process, with free or cyclic boundary conditions.

3.4 Representation of 2-D Markov Random Fields

In this section we first review a few of the properties of Markov random fields and then

describe how Markov random fields can be represented exactly with our multiscale

modeling structure. Next, we introduce a family of approximate representations for

Gaussian MRF's employing I-D wavelet transforms.

3.4.1 2-D Markov Random Fields

Markov random fields (MRF's) are a multidimensional generalization of 1-D reciprocal

processes. A continuous space stochastic process z(t), t (=- Rn is said to be a IN11arkov

random field if the probability distribution of the process in the interior of any closed

set 0 is independent of the process outside, conditioned on the values of z(t) on the

110



boundary r of Q. That is, for t Cz Q \ r:

Pz(t)Jz(-r),rc-(n\r),(Zt!Z,, 7 E (Q \ r)')

Pz(t)lz(-r),-rEr(zt I z, 7 E r) (3-108)

where the notation Q \� r denotes the set of elements in Q which are not in r (in

this case, the interior of SI). The definition for Markov random fields on discrete

lattices requires the specification of the notion of the "boundary" of a set in Z'

[148, 431. Typically, this is accomplished through the specification of a neighborhood

system. The idea is that the probability distribution of z(t), conditioned on a set

JZ(7), 7 E DtJ in the neighborhood, Dt, of t, is independent of the process outside

the neighborhood:

Pz(t)lz(r),rE Z- (t)(Zt! Z,, 7 E Zn

Pz(t)Jz(r),-rEDt (Zt I Z,,7E Dt) (3-109)

We will focus on 2-D MRF's, i.e. t E Z', and in this context there is a hierarchical

sequence of neighborhoods frequently used in image processing applications [23]. The

first order neighborhood of a lattice point consists of its four nearest neighbors, and

the second-order neighborhood consists of its eight nearest neighbors. The sequence

of neighborhoods up to order seven is illustrated in Figure 3-10.

A given neighborhood system implicitly determines the boundary set of any par-

ticular region. In particular, given the neighborhood system Dt, t E Z', the boundary

rof a subset 0 of Z' is given by the set of points which are neighbors of elements in

Q, but not elements of Q:

E Dt, t E QJ \ Q (3-110)

The conditional distribution and neighborhood structure cannot be chosen arbi-

trarily if one is to obtain a consistent joint distribution for the elements of the random

field. First, the neighborhood system must have the properties that t � Dt and (2) if
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Figure 3-10: The first through seventh-order neighborhoods of lattice site t are shown.
The first-order neighborhood consists of just the two vertical and two horizontal
nearest neighbors.

t E D, then 7 G Dt. Second, the conditional distribution functions must satisfy the

consistency conditions given by the Harnmersley-Clifford theorem [13]. For detailed

accounts of these issues and MRF's in general, we refer the reader to a few of the

widely referenced papers in the field [47, 113, 126, 13, 148, 71, 53, 43].

3.4.2 Exact Representations of 2-D Markov Random Fields

The representations of I-D reciprocal and Markov processes in Section 3.3 relied on

the conditional independence of regions inside and outside a boundary set, and we

use the same idea here to represent Markov random fields on a square lattice. The

only change is that we now use multiscale models defined on the quadtree shown in

Figure 1-2.

Consider a 2-D MRF z(t) defined on a (2 N+1) X (2 N+1) lattice. The construction

of reciprocal processes in one-dimension started with the values of the process at the

initial, middle and end points of an interval. In two dimensions, the analogous top

level description consists of the values of the MRF around the outer boundary of the

lattice and along the vertical and horizontal "mid-lines" which divide the lattice into

four quadrants of equal size. For instance, on a 17 x 17 lattice, the state vector X0 at

the root node of the quadtree contains the values of the MRF at the shaded boundary
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Boundary points 0 Nfid-line points

Figure 3-11: The state vector at the root node in the MRF multiscale representation
consists of the MRF values at the boundary and "mid-line" points, shown in the
shaded region here for a 17 x 17 lattice. To construct a sample path of the MRF
using the "mid-line" deflection construction, we start by choosing a sample from the
joint distribution of the values in the root node state.

and mid-line points shown in Figure 3-11. The boundary points are denoted with 0

and o symbols, respectively. In general, the state at the root node is a (6 x 2 N - 3)-

dimensional vector (given some ordering of the boundary and mid-line lattice points).

To construct a sample path of the MRF, we begin by choosing a sample from the

joint pdf of the MRF values defined on the boundary and mid-line set. This is the

2-D counterpart to choosing a sample from the pdf in (3-14) when constructing a I-D

reciprocal process.

In the I-D case, transitions from the first to second level consisted of obtaining a

sample from the conditional distribution of the state at the mid-points of the left and
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right half-intervals. In two dimensions, we predict the set of values at the mid-lines

in each of the four quadrants. The components of the four state vectors at the second

level of the quadtree are illustrated in Figure 3-12 for the 17 x 17 MRF. The points

corresponding to the state in the north-west corner are shaded, and correspond to

a scaled and shifted version of the points at the top level. The boundary points of

the north-west state are denoted with open and blackened diamond symbols and the

new mid-line points are denoted with open circles. Note that the four states at the

second level share the black diamond mid-line points of the state at the first level.

This is analogous to the I-D construction in which the mid-point at the first level

corresponds to an end point in both states at the second level (cf. Figure 3-2). In

general, the state vectors at the four nodes at the second level each specify the MRF

at 6 x 2 N-1 - 3 lattice points. Each of these states at the second level consists of

points carried down from the root node (namely the diamond boundaries of each of

the quadrants in Figure 3-12) as well as new mid-line points within each quadrant

(the open circles in Figure 3-12). These mid-line values are chosen as samples from

their joint conditional distribution, given the state at the root node. The key point

here is that given the values of the field around the boundary of each quadrant, the

values of the field along the mid-lines of that quadrant are independent of the values

outside this quadrant. Said another way, the four states at the second level of the

tree are conditionally independent given the values of the MRF on their respective

boundaries, i.e. given precisely that information captured in the state at the first

level. Thus, the values along the new mid-lines at the second level can be chosen

independently and in parallel, in analogy to the way the two mid-points in (3-15),

(3.16) are chosen.

Now, we can iterate the construction by defining the states at successive levels

to be the values of the MRF at boundary and mid-line points of successively smaller

subregions. Indeed, by subdividing each quadrant in the same way as we did in going

from the first level to the second, at the m" level the 4' state vectors each contain

the values of the MRF at 6 x 2 N-, - 3 boundary and mid-line points. Note that

the dimension of the state varies from level to level, reflecting the obvious fact that
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Boundary points at both first and second levels
Boundary points at the second level and mid-line
points at the first level

o New (second level) mid-line points

Figure 3-12: The components of the four state vectors at the second level of the tree
are scaled and shifted versions of the components of the state at the root node. For
instance, the state corresponding to the north-west corner at the second level of a
representation for an MRF defined on a 17 x 17 lattice consists of the values of the
process at the shaded points. The values of the MRF at the boundary points in
these second level states are mapped down from the root node state, and the values
at the new mid-lines in each of the four quadrants are chosen independently. In
particular, the new mid-line values in any given quadrant are independent of values
of the MRF outside that quadrant, given the boundary. Thus, in the construction
of a sample path, we can choose values along each of the four sets of new mid-
lines independently and in parallel. This process can then be iterated, by defining
the states of the multiscale process at lower levels in the quadtree with respect to
successively smaller subdomains, and constructing the process (along boundary and
mid-line points) independently within each subdomain.
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the number of points in the boundary of a 2-D region depends on the size of the

region. The multiscale representation defined at scales 0, 1'.. N - 1, and each of

the 4N states at scale N - I represents 9 values in a 3 x 3 square. Because of the

Markov property, at each level the states are conditionally independent, given their

parent state at the next higher level. Thus, the MRF can be thought of precisely as a

multiscale stochastic process, and, in the Gaussian case, this leads to models exactly

as in (L 16).

As in the I-D case, there are several comments to make. First, we have described

a construction in which the lattice is square. If the MRF is de-fined over a non-square

lattice, then the same basic approach will work. In particular, all we require is some

sequence of subregions whose boundaries eventually become dense in the set of lattice

points. Second, just as our I -D multiscale model has a natural interpretation in terms

of decimation - e.g. if the points on the finest scale correspond to integers, i.e. to

Z, then at the next most fine scale they correspond to even integers, i.e. 2Z - so

does our 2-D model, although it differs from the usual notion of decimation in 2-D.
Specifically, the points on the finest scale correspond to Z2

1 = Z x Z, then the

usual notion of decimation would be 2Z x 2Z. In contrast, the notion of decimation

associated with our multiscale models yields the set (2Z x Z) U(Z x 2Z) at the next

finest scale.

Indeed, the obvious difference between our multiscale MRF representations and

those of [61, 54, 77] is that these latter representations do correspond to multiscale

representations using the usual notion of decimation. That is, the usual decima-

tion leads to representations of the field at coarser levels which correspond roughly

to 2-D lowpass filtered and subsampled versions of that at the finest level. Hence,

the interpolating functions which generate a process at the finest level from a coarse

scale sample naturally correspond to 2-D Haar scaling functions or more generally

to localized interpolation operators such as those commonly used for coarse-to-fine

grid transfer in multigrid applications. In contrast, the interpolation functions in our

representation naturally correspond, in the case of Gaussian MRF's, to the solutions

of specific differential (or partial differential) equations determined by the covariance
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structure of the process. To see this more clearly, note that the linear spline in-

terpolation formula for Brownian motion given values at two points z(O) = Zo and

z(T) = ZT is simply the solution to the second-order differential equation:

d2
= 0 (3.111)Wt_2 Z t I 0, T

Similarly the interpolation of the first component of the second-order process (3.43)

is given by the solution of:

4
d 0 (3-112)Tt4 ZtIOT

given z(O), i(O), z(T) and i(T). The 2-D example analogous to the linear spline model

for Brownian motion is Laplace's equation:

17 2i = 0 (3-113)

given values of z on the boundary of a square region, while the counterpart to (3-112),

corresponding to a second-order model, would be the solution of a homogeneous

biharmonic equation:

74i = 0 (3-114)

given boundary values and normal derivatives along the boundary. (see, for example

[146, 79], for related discussions).

Third, note that the representation we have defined is redundant. In the I-D case

this redundancy was removed by predicting two mid-points at each level instead of

one (cf. Figure 3-5). Likewise, in two dimensions we can eliminate the redundancy by

predicting two mid-lines at each level instead of one. For instance, the state vector at

the top level of the quadtree for an MRF defined on a 16 x 16 lattice would consist of

the values of the MRF at the shaded points shown in Figure 3-13, and the four state

vectors at the next level would consist of the values of the process at the points shaded
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in Figure 3-14. In the 2-D case this latter representation is important in the context

of defining approximate models, as will be seen in the next section, and illustrated in

Section 3.5.

Fourth, higher-order models can be easily accommodated. For example, if the

Markov random field has up to a fifth-order neighborhood (cf. Figure 3-10), the field

can be represented by taking as state the values of the process along boundaries and

mid-lines of "width" two. In general, neighborhoods of any order can be handled by

increasing the boundary and mid-line widths appropriately.

Finally, we note that for domains of substantial size, the representations may be of

prohibitively large dimensions This issue is addressed for Gaussian MRF's in the next

section, where we introduce a family of low-dimensional approximate representations

based on one-dimensional wavelet transforms of the MRF along 1-D boundaries.

3.4.3 Approximate Representation of 2-D Gaussian MRF's

In this section we propose a family of approximate representations for Gaussian

MRF's that provide low-dimensional alternatives to the exact multiscale representa-

tions. The basic idea behind the approximate representations is to take as the state

not boundaries of regions, but rather some reduced-order representation of them.

Conceptually, we would like to retain only those components of the boundary that

are required to maintain nearly complete conditional independence of regions. In

general, exact conditional independence will be lost unless the entire boundary is

kept, but as we discuss and illustrate here and in the next section, in many cases

only a small amount of information needs to be retained in order to obtain adequate

representations of the important statistical and qualitative features of a Gaussian

MRF.

The basis for our approximation methodology is a change of coordinates in rep-

resenting the values of MRF's along 1-D boundaries. A family of models can then be

generated by naaking different choices for the set of coordinates to be retained and

those to be discarded at each level of the multiscale representation. These models

range from being exact (if all coordinates are retained) to increasingly approximate
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ONE 0,NWhu
0 ]F 0,NWhl

OSE ONW > 0,NWvl

01SW I 0,NWvr

Figure 3-13: The state at the root node in a non-redundant exact multiscale represen-
tation of an MRF defined on a 16 x 16 lattice consists of the values of the process at
the shaded points. The redundancy in the exact representation is eliminated by gen-
erating the values of the process along two mid-lines instead of one. The figure also
illustrates the sets r., and the sequences O,jj(k) defined in the context of approxi-
mate representations in Section 3.4. The 0,,jj(k) are I-D sequences corresponding to
values of the MRF along boundaries of square subdomains (which, at the first level,
are the white areas in the figure). These sequences overlap at the corner points of
boundaries. In the figure, this is represented by putting two symbols at the same lat-
tice point, e.g. 7 and L> in the upper left corner. The approximate representations
take as the state subsets of the coefficients in I-D wavelet expansions of the O.'i'j(k)
sequences.
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Figure 3-14: The four states at the second level of the tree in a non-redundant exact
multiscale representation are scaled and shifted versions of the state at the root node,
and are shown here for an MRF defined on a 16 x 16 lattice. The state in the north-
west corner contains the values of the process at the shaded points in the north-west
8 x 8 quadrant. With the node s corresponding to this north-west corner state, the
sets F,,i and sequences 0,,Nwj are illustrated. Note again that the sequences 0.,ij
overlap.
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and simple as fewer and fewer coefficients are retained. While one can imagine using

a wide variety of different coordinate transformations, including a 1-D Fourier trans-

form or a Karhunen-Lo�ve expansion, we focus here on a choice that is particularly

well matched to the self-similar, multiresolution nature of our exact representation.

Specifically, as illustrated in Figures 3-13 and 3-14, as we proceed from one level to the

next finer level in our multiscale representation of a Gaussian MRF, the boundaries

at the coarser levels are essentially halved in length (and new, shorter boundaries

are added as well). This self-similar structure suggests representing the values of the

MRF along such boundaries in terms of wavelet bases. In this case, if at each level

we keep only the wavelet coefficients up to a particular level of resolution, then at

each level in our representation we are actually adding only one new level of detail.

The approximation that is made in keeping only coarse wavelet approximations

along boundaries actually has two parts. The first is that we assume that the new

detail to be added along each boundary from level to level is independent of the pre-

viously generated coarse approximations. The second is that we neglect the residual

correlation between MRF values in neighboring subregions when we are given only

a coarse approximation, rather than complete knowledge of, the values along their

common boundary. The former of these approximations, namely the scale-to-scale

decorrelation capability of wavelet transforms, has already been studied and wen doc-

umented in several papers on I-D stochastic processes [31, 135]. The latter of these,

which deals explicitly with the full statistical structure of 2-D MRF's, has not, to

our knowledge, been investigated previously (in fact, the use of 1-D wavelets for 2-D

random fields is, we believe, a completely new idea). As the results presented here

illustrate, this appears to be an extremely effective method for many MRF's.

The approximate models are based on the non-redundant exact representations

for MRF's described in the previous section. The states at the first and second

levels of this representation for an MRF defined on a 16 x 16 lattice are shown in

Figures 3-13 and 3-14. The root node state in Figure 3-13 contains the values of

the MRF at 112 points. More generally, in a multiscale representation of an MRF

defined on a 2 N x 2N lattice, a state at the m1h level in this exact representation
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represents the values of the MRF at 16(2 N-,-l _ 1) points. We denote this set

of points as r., and we view it as the union of four mutually exclusive subsets.

In particular, consider agwin the 112 points associated with the root node state in

Figure 3-13. We can view these as four sets of 28 points, each of which corresponds

to the boundary of one 8 x 8 quadrant. In general, we can divide the setr, into four

sets of 4(2 N-,(,)-l _ 1) points in a similar fashion, and we denote these mutually

exclusive subsets as F,,,, I :-- � N W, NE, SE, SWJ, where the subscripts refer to the

spatial location of the subset. For instance, with s = 0 corresponding to the root

node, the four subsets Fo.,, i NW, NE, SE, SWI are illustrated in Figure 3-13

with the symbols:

rONW A, and combinations of these. (3-115)

IPONE (3-116)

rOSE (3-117)

FOSW (3.118)

Next, we interpret the set of values fz(t),t E r,j for each of these quadrant

N-,(,)-iboundaries, as four 1-D sequences of length 2 , corresponding to each of the

sides of the quadrant boundary. Thus, there are a total of sixteen 1-D boundary

sequences associated with the set F,, and we denote these as:

,3,ij, i E f NW, NE, SE, SWJ, j E f hu, hl, W, vrj (3-119)

where the latter four subscripts refer to the "horizontal, upper", "horizontal, lower",

"vertical, left" and "vertical, right", respectively. For instance, for the 16 x 16 lattice,

the sequences Ooij are shown in Figure 3-13 and defined below: 7

,30,NWh.(k) = Z(O, k), corresponding to the points denoted with 7,

7We will use z(i, j) to denote the value of the MRF at lattice site (i, j). If the lattice has T, rows
and T2 columns, then (i, j) E f 0, 1, Tj - 11 x f 0, 1, T2 - 1
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the combination of 7 and 1,

and the combination of 7 and > in Fig. 15.

(3-120)

�30,NW,.,-(k) = z(k, 7), corresponding to the points denoted with .1,

the combination of .1 and 17,

and the combination of --I and A in Fig. 15.

(3-121)

00,NWhl(k) = z(7, k), corresponding to the points denoted with A,

the combination of A and <1,

and the combination of L and > in Fig. 15.

(3-122)

00,NW,,,I(k) Z(k, 0), corresponding to the points denoted with >,

the combination of > and 7,

and the combination of > and L in Fig. 15.

(3-123)

00,NEhu(k) = z(O, k + 8) (3-124)

00,NE,,(k) = Z(k, 15) (3-125)

00,NEhl(k) = z(7, k + 8) (3-126)

,30,NEvi(k) = z(k-, 8) (3-127)

130,SEhu(k) = z(8, k + 8) (3-128)

,30,SE,.,-(k) = z(k + 8,15) (3-129)

00,SEhl(k) = z(151 k + 8) (3-130)

,30,SE,.I(k) = z(k + 8,8) (3-131)

,80,SWhu(k) = z(8, k) (3-132)

Oosw,,,,(k) = z(k + 877) (3-133)
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00,SWh1(k) = z(15, k) (3.134)

00'sw'vl(k) = z(k + 8, 0) (3.135)

for k = 0, 1, - .. 7. Note there is overlap in the sequences 0,,ij. For instance, 00,NWh.

and 00,NWvl both contain the value of the process at (0,O), and this fact is reflected

in Figure 3-13 by the presence of both 7 and > at this lattice point.

Let us now consider the simplest of our approximate models. Specifically, we take

as the state of the approximate representation just the averages of the sequences 0,,ij.

The state at any node then has sixteen components:

XNW(S)

X (S) XNEW (3.136)

XSE(S)

xsw(s)

where:

WOO.,ih.

WOOOivr
Xi(s) (3-137)

Woosihl

W008'i'vi

for i NW, NE, SE, SW I and where WOO,,ij denotes the average of the sequence

0,,ij(k). Given the definition of the state (3.136),(3.137) (which will be generalized

shortly to allow general wavelet transform approximations to the sequence Oij), the

conditional parent-offspring pdf's need to be obtained from the MRF being approx-

imated. Instead of using these directly, we make an additional approximation. Let

us define the downshift operators ai, i G JNW, NE, SE, SWI, which are the coun-

terparts of the upshift operator defined previously. In particular, we denote the

four offspring of node s as sai, i {NW, NE, SE, SWI, where the subscript refers

to the relative spatial location of the offspring nodes. In the exact, non-redundant
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representations, the following relationship holds:

Pz(t),tEr".i iz(,r),-rEr, (zt, t c- ra, I zr) 7 E re)

PZ(0,tEr-,i Iz(-r),-rEr,,i(Zt7 t E r.., I z.., 7 E r,,i) (3.138)

for 1 c- JNW, NE, SE, SWI. What (3.138) says is that the conditional pdf for the

state at node scii depends only on a subset of the values making up the state at the

parent node s. For example, in the case of the NW offspring of node 3, the state in

the exact representation at node SaNW (that is, z(t), t E r,,,,,,w) depends only on the

NW component of the state at node s (that is, on the values Z(t), t E r,,NW). Thus,

in the exact representation the state at node sctNw is independent of the values of

the MRF at the points in F,,NE, rsSE and r,,Sw, given the values at r,,NW- In con-

trast, it is not true in general in the simple approximate representations just described

that the state x(SaNW) is independent Of XNE(S), XSE(S) and xsw(s), given XNW(S)-

That is, simply knowing the average value of a process along each side of a square

region does not completely decorrelate the values of the field inside and outside the

region. Nevertheless, in our approximate modeling framework we will make exactly

this assumption. More generally and precisely, our approximate modeling methodol-

ogy yields a sequence of models corresponding to differing resolution approximations

to the boundary processes 0,j(k), where (3.136) - (3-137) corresponds to the coars-

est of these. Using the same symbols xi(s) and x(s) to denote the state components

and state of any of these models, we construct our model by making the approxi-

mation corresponding to assuming that the conditional independence property holds,

i.e. that:

PX(&Cei)JX(8)(X8CZi IXS) pX(8CLi)1Xi(s)(X"ai 1-'Y'i(-q)) (3-139)

Since the field being approximated is assumed to be jointly Gaussian, the condi-

tional density function (3.139) is parameterized by conditional means and covariances
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as in (3-27) - (3.29):

Cti 7 Plai (3.140)

where:

i ITCxi E f x (s ati) I x i (s)

Ef x( Sa,)X,(S)T I(Efxi(s)xi( S)Tl)-I_,y,(S) (3.141)

P..i Ej(x(saj) C..i)TI

Ef x( S0i)X(SCt,)Tj

-Ef x(sai )X,(S)T J(Ef X,(S)X,(S)Tl)-l (Ef X(Sa,)X,(S)TI)T

(3.142)

One can then derive the matrices A(s), B(s) and Po in the multiscale representa-

tion of the random field:

A(SaNW) = [Ki, 0, 0, 0] (3-143)

A(SaNE) = A K2,0,01 (3.144)

A(SaSE) = [0, 07 K3, 01 (3-145)

A(sasw) = [0, 0, 0, K4] (3.146)

where:

Ki Ef x(saj)(xi(s ))Tj (Ef xi(s )(X,(S))Tl)-l (3-147)

Also:

B(sai)B(scii )T = p""i (3-148)

Po = Ef xox Tj (3-149)0
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The assumption (3.139) is directly reflected in (3.143) - (3.146). In particular, the

,1hstate x(sai) is a function only of the 1 component of the parent (cf. (3.136)). Thus,

the assumption in (3-139) leads to relatively simple level-to-level interpolations. In-

deed, if the MRF is stationary, from symmetry we see that not only do the parameters

A(s), B(s) depend only on the scale of node s, but also, K, = K2 = K3 = K4. Thus,

in this case, the representations are quite simply described, and more importantly,

this simple structure, in addition to the substantially reduced dimensionality of the

approximate representations, leads to considerable efficiencies for smoothing and like-

lihood calculation algorithms (cf. Chapter 4).

As we have indicated, the generalization of the coarsest approximate model, with

state given by (3.136), (3-137) corresponds to using wavelet transforms to obtain dif-

ferent resolution representations of the sequences 0,,ij(1c). We utilize the wavelet

bransform, for discrete sequences as described in [15]. The wavelet transform of

,3.,ij(k), k E 11, 2,...,2 is a set consisting of a single "scaling" coefficient

and 2 N-m(s)-i I "detail" coefficients'. These are computed recursively according

to9:

n=2M

f kj nfnj+2k-2 (3.150)
n=1

n=2M

di-' = (3-151)k E gnfnj+2k-2
n=1

where the scaling coefficients and detail coefficients are f4l and d-k' respectively, hngn

are impulse responses of quadrature mirror filters (39, 1251 of length 2M, and where
N-m(s) _f4 ). We say that a p1h_order representation of the sequence 0,ij(k) is a

set consisting of the scaling coefficient and the wavelet coefficients up to order p in the

wavelet expansion, and that a zeroth-order representation is a set consisting of just

'To be concrete, we assume that the wavelet transform filter/downsample operations are iterated

until the sequence of scaling coefficients, i.e. the downsampled output of the lowpass component

of the wavelet filter bank, is of length one. More generally, one could stop at any point in the

decomposition.

'Our notation is slightly different from that in [15]. In particular, in (15], increasing superscript

j corresponds to lower levels in the decomposition (i.e., fewer wavelet and scaling coefficients), while

here it corresponds to higher levels.
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the scaling coefficient. We denote the operator which maps the sequence O,ij(k) to

its P'h_ order representation as Wp. Note that if p = N - m(s) - I the representation

is complete, since it contains the scaling coefficient and all of the wavelet coefficients.

For p > N - m(s) - 1 we take Wp = WNm(,)_1 (i.e. if there are fewer than p scales

of wavelet coefficients, we keep all of them).

The generalization of the approximate representation based on averages of the

I-D sequences 3,,ij(k) discussed previously now just involves a new definition for the

state variables x(s). In particular, simply replace (3.137) with:

WpO.,ih.

Xi(s) WP,38,ivr (3.152)

Wp,3,,ihl

Wn3oml

where Wpo,,ij denotes the pth_ order representation of the sequence O,ij(k) (a vector

of length 2P if p < N - m(s) - I and of length 2 N--(,,)-i if p > N - m(s) - 1).

Thus, the state at any given node consists of sixteen components, each a p'h_order

representation of one of the I-D boundary sequences O,ij(k) associated with the state

x(s). Using this generalized definition for the state, and making the assumption in

(3-139), the parameters A(s), B(s) and Po are again given by (3.143) - (3.149).

Several comments are in order. First, note that a simple generalization of the

above representation would be to allow different levels of approximation for different

components of the boundary sequences (e.g. one might use a p'h_order approximation

for "vertical" boundary sequences 0.,ijj E JvrvlJ and a p1h -order approximation2

for "horizontal" boundary sequences 0,,ij, i E f hu, MI). Examples of such a general-

ization will be given in the next section in the context of approximate representations

for MRF texture models.

Second, note that even if all of the wavelet coefficients are retained at au levels

(i.e. if the boundary representations are complete), the representation we have just

described will be exact only if the GMRF is Markov with respect to either the first

or second-order neighborhood in Figure 3-10. As we have discussed, higher-order
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neighborhoods lead to thicker boundaries, and this leads naturally to the idea of

taking wavelet expansions of boundaries of width two or more, and utilizing these as

the state. When the boundaries are expanded to have a width of q lattice sites, the

state at node s will be broken up into the p'h_order representations of 16q sequences of

length 2'-n(")-1. With this expanded family, the approximate representations can be

made exact for any GMRF by keeping complete wavelet expansions of all boundary

sequences 0,jj(k) at all scales. An example of an approximate representation which

keeps wavelet coefficient along boundaries of width two is discussed in the next section.

Third, note that the covariance matrices required in (3-147) and (3.148) are not

invertible if the representation of the I-D boundary sequences is complete, due to the

fact, as mentioned previously, that these sequences overlap. For instance, in Figure 3-

137 both 00,NWh,, and 00,Nq-,,j contain the value of the state at pixel location (0, 0). In

this case we have redundant information and hence the conditional expectation and

error covariance formulas must be modified to deal with this. This modification is a

straightforward matter as discussed in [101, 132].

Fourth, note that not only has the dimensionality of the representations been

reduced in going from the exact to the approximate representations, but it has, in

fact, been made constant at the first N - p levels of the quadtree, where p is the order

of the approximation and the MRF is defined on a 2N x 2N lattice. In particular,

the dimension of the state at node s is equal to 16 x 2P, for m(s) < N - p - L

When rn = N - p - 1, the boundary sequence representations are complete and the

dimension of the state drops by a factor of 2 at each level thereafter.

Fifth, because our approximate models keep only limited resolution versions of

MRF values along I-D boundaries, the quadtrees for these approximate models may

require more levels than the exact model. For example, consider an MRF over a

4 x 4 region. The exact representation of this field in our framework has only a

single level, since the exterior boundaries and mid-lines form the entire 4 x 4 region

(consider Figure 3-13 adapted to a 4 x 4 grid). On the other hand, a first-order Haar

approximation would retain only the sixteen average values of pairs of horizontal or

vertical points at the first level, only twelve of which are independent thanks to the
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overlap in the 0,,ij sequences. Consequently, in this case, we need a second level,

corresponding to "averages" of single points, to completely represent the field.

Finally, the order of the approximations required to achieve a desired level of

fidelity in the approximate model depends, of course, on the statistical structure of the

specific GMRF under study. In the next section we present examples which illustrate

this for several GMRF's and a number of different approximate representations.

3.5 Examples of 2-D GMRF Approximate Rep-

resentations

In this section we illustrate sample paths generated by our approximate represen-

tations for two examples of separable Gaussian MRF's and then for two examples

of non-separable Gaussian NIRF's. Separable MRF's were one of the first widely

used image models because of their simple covariance structure [65, 641, while non-

separable GMRF's have been widely used in the context of texture representation

[23, 74, 35, 34, 33, 91, 901.

3.5.1 Separable Gaussian MRF Examples

Consider a separable Gaussian MRF defined on a 2 N x 2N lattice with a covariance

function given by:

2 Ji-kJ U-11 (3-153)Efz('J)z(k,1)J = a- Po Py

where p,,. and py are one-step correlation parameters in the vertical and horizon-

tal directions. These random fields are Markovian with respect to the second-order

neighborhood given in Figure 3-10.

Let us construct a zeroth-order Haar approximate representation of this MRF- In

thiz case, the state at the root node of the tree consists of sixteen values, representing

the averages across each of the I-D components of the boundary. Since this state

variable is just a linear function of the values of the random field, its covariance
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structure can be calculated directly from knowledge of the averages taken and the

covariance function in (3-153). Indeed, the covariance matrix for the four averages

corresponding to the north-west corner of the state at the root node is given by:

T

WOOONWh. WO,80,NWh. WY O. WY V)

E WO,30,NWvr WOOONW,,

WOOONWhl WO,30,NWhl LO.Y WY
U;X

L WOOONW,-1 J L WOOO, N W,,, IJ L 'O.YU;W J
(3-154)

where:

Wy = (2 N-1 (I + PY)/(1 - py) - 2py(l _ PN-1)1(1 _ PY)2 (3-155)
Y

= (2'-'(1 + p.)I(l - p.) - 2p.(1 _ P.,N-1)1(1 _ P.)2 (3-156)

= ((I _ p2N-1)1(1 _ P.))((l _ p2N-1)1(1 _ PY)) (3-157)
X Y

Lo 2= P2N-2-1 (3-158)

Loy = P2N-2 -1 (3-159)
Y

Figures 3-15a and 3-15b illustrate 256 x 256 sample paths of exact representations

of the separable random fields for p. = py = 0.7 and p. = py = 0.9, respectively.

Sample paths of zeroth-order Haar approximations of these MRF's are shown in

Figures 3-15c and 3-15d, respectively". Note that for p. = py = 0.7, the zeroth-

order approximation is visually similar to the exact representation, with only minor

boundary effects apparent, caused by the approximation in the first-order Haar model,

i.e. the neglecting of the residual correlation in adjoining regions when we are given

only the coarse Haar approximation of the field along common boundaries. As the

coupling between pixels is increased, the effects of this coarse approximation become

more apparent, as seen in the first-order approximation of the separable MRF with

1OWe emphasize that Figures 3-15-e'an-d 3-15d depict sample paths of the approximate representa-
tions, and not approximate representations of the sample paths in Figures 3-15a and 3-15b.
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---------------
c d

Figure 3-15: Sample paths of a separable Gaussian MRF with correlation structure
E I z (i, j) z (k, 1) c-'p li-ki PU-1i with p,,. = py = 0.7 and p. = py = 0.9 are shown inX Y
(a) and (b) respectively. Sample paths of zeroth-order approximate representations
of these fields, based on the Haar wavelet , are shown in (c) and (d). The stronger
correlation between neighboring pixels in (b) leads to boundary effects in the sample
path of the approximate representation shown in (d), which can be eliminated by
using higher-order approximations.

P_- = Py = 0.9. This indicates that such fields will in general require higher-order

approximations. We defer the illustration of such higher-order approximations of

fields to the following subsection, in which we describe several examples of the use of

our modeling methodology to represent natural textures.
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3.5.2 Non-Separarable Gaussian MRF Examples

Consider the class of GMRF's defined by the following 2-D autoregressive model

[24, 71]:

z (i, hkjz(i - kj - 1) + e(ij) (3-160)
(A1,1)ED

where hkj = h-k,-I, D is a neighborhood around the origin (0, 0), the Gaussian

driving noise e(i, j) is a locally correlated sequence of random variables, and (i, j) E

f 0, 1, - - - , T1 - I I X f 0, 1, - - - , T2 - I I - In the examples below, the set D corresponds to

the neighborhood sets in Figure 3-10. For instance, the set corresponding to a first-

order neighborhood is D = f (0, 1), (0, - 1), (1, 0), (- 1, 0) 1. In addition, we interpret

the lattice as a toroid, i.e. the independent variables (ij) in (3-160) are interpreted

modulo (Tj, T2). For instance, the first-order neighborhood of lattice site (0, 0) is given

by the set f (1, 0), (0, 1), (0, T2 - 1), (Tj 1, O)j. Finally, the correlation structure of

the driving noise is given by:

2 if k = I = 0

Efe(ij)e(?"-kj-1)j - O'2hkj if (k, 1) E D (3-161)

0 if (k, 1) � D

and has the property that:

C'2 for i = kj = I
Efe(z'j)z(k,1)j (3-162)

0 else

From (3.162), and the fact that the random field is Gaussian, one can prove that the

autoregressive model above does imply that z(ij) is a Markov random field [148].

We refer to the model (3.160) as a n 1h -order MRF if the set D corresponds to the

n th_order neighborhood of Figure 3-10.

Infinite lattice versions of the processes in (3.160) were introduced in [1481 and

their toroidal lattice counterparts have been thoroughly studied in the context of
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texture representation [23, 74, 35, 34, 33, 91, 90]. The correlation structure of these

MRF's cannot be explicitly written down as in the previous example. However, the

specific statistics and correlations (as in (3.143) - (3.146)) required to construct our

multiscale approximate models can be computed efficiently using 2-D FFT's because

of the fact that correlation matrices for these random fields, assuming lexicographic

ordering, are block circulant with circulant blocks and hence these random fields are

whitened by the 2-D Fourier transform [71]. In particular, denote by z the set of values

z(t) stacked into a vector (with lexicographic ordering), and denote the correlation

matrix of the MRF by R.,,. Then:

FRzF' = A (3.163)

where F is the 2-D Fourier transform matrix and A is a diagonal matrix of the eigen-

values of R... The wavelet coefficients required in the approximate representation

correspond to linear functions of the values z(t). That is:

WPO.'i'j = WPSz (3-164)

= Lz (3.165)

where the matrix L is the product of the wavelet transform operator Wp and a "se-

lection" matrix S which generates the vector from z. Thus, to compute the

correlation matrices required in the approximate representation, we need only com-

pute functions of the form:

LR,,L T = (LF*)A(FL T) (3.166)
2 2

Indeed, as described in Appendix C, the structure of the approximate representations

and the stationarity of the GMRF allow us to compute the required correlations with

only 2P 1-D Fourier transform operations per level of the representation, where p is

the order of the approximation. Furthermore, these calculations need only be per-

formed once, since they are used simply to determine the parameters in the multiscale
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1) hkj hkj

(1,O) 0.4341 (0,2) 0.0592

(0, 1) 0.2182 (-1)2) -0-0302
1) -0-0980 (1,2) -0.0407

(1,I) -0-0006 (-271) 0.0406
(2,O) -0-0836 (2,1) -0.0001

Table 3.1: Coefficients in the model (3.160) for the "wool" texture.

approximate model.

Figure 3-16a illustrates the "wool" texture from [74]. Three sample paths of

approximate representations of this field based on the Haar wavelet are shown in

Figures 3-16b to 3-16d. The wool texture is corresponds to a fourth-order version of

the model (3.160), with the coefficients given in Table 3.1.

Figures 3-16b and 3-16c correspond to zeroth and first-order approximations, re-

spectively. Note in Figure 3-16c that some of the boundary effects apparent in Fig-

ure 3-16b have disappeared, due to the increase in the approximation order. Since

the wool texture is actually Markov with respect to the fourth-order neighborhood

of Figure 3-10, an exact representation of this field would require that boundaries of

width equal to two be kept. To this end, the approximation, shown in Figure 3-16d

takes as state variables first-order approximations to these double width boundaries.

Essentially all of the boundary effects present in the Figures 3-16b to 3-16c have been

eliminated, and this representation appears to have retained the essential statistical

and qualitative features of the exact representation used to generate Figure 3-16a.

Figure 3-17a illustrates the "wood" texture from (74], and three approximations

of this MRF based on the Haar wavelet are shown in Figures 3-17b to 3-17d. The

wood texture corresponds to a fourth-order version of the model (3-160), with the

coefficients given in Table 3.2.

This texture clearly has a very asymmetric correlation structure, and thus we rep-

resent the vertical and horizontal boundary with different levels of approximation. In

Figure 3-17b, the horizontal and vertical boundaries are represented with second and

zeroth-order approximations respectively. In Figures 3-17c and 3-17d, the horizontal
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a b

c

Figure 3-16: A sample path of a Gaussian MRF representing the "wool" texture of
[74] is shown in (a). Figures 3-16b to 3-16d illustrate sample paths of approximate
representations of this MRF based on the Haar wavelet. Zeroth and first-order ap-
proximations are used in (b) and (c),respectively. In (d), a first-order approximation
based on boundaries of width two is used. Note that as the order of the approximate
model is increased , the boundary effects disappear, and that for relatively low-order
models an approximate representation which retains most of the qualitative and sta-
tistical features of the original MRF can be obtained.
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c d

Figure 3-17: A sample path of a Gaussian MRF representing the "wood" texture of
[74] is shown in (a). Figures 3-17b to 3-17d illustrate sample paths of approximate
representations of the MRF based on the Haar wavelet. The structure of the MRF
suggests using approximations which use relatively low order representations of ver-
tical boundaries. The approximate representations used to generate Figures 3-17b to
3-17d used zeroth-order representations of the vertical boundaries, and second, fourth
and sixth-order representations for the horizontal boundaries, respectively.

boundaries are represented with fourth and sixth-order approximations, respectively,

whereas the vertical boundary is still represented with a zeroth-order approximation.

As the complexity of the representation increases, the sample paths of the approx-

imate random fields have fewer boundary effects. The approximate representations

used to generate Figures 3-17c and 3-17d appear to accurately represent the qualita-
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(k, 1) hkl (k, 1) hkj

(1,O) 0.5508 (0,2) 0.0139
(0, 1) 0.2498 (-1,2) -0.0085
(- 1, 1) -0-1164 (1,2) -0.0058
(I 1) -0.1405 (-2,1) -0.0008
(2,O) -0-051 (2,1) 0.0091

Table 3.2: Coefficients in the model (3.160) for the "wood" texture.

tive and statistical features of the MRF. An interesting point here is that the level

of representation only needs to be increased in one direction to obtain an excellent

representation of the field. Also, the neighborhood of this MRF is fourth-order (see

Figure 3-10) and thus double width boundaries would be needed in an exact repre-

sentation. The fields shown in Figures 3-17b to 3-17d, however, use only the thinner

boundaries in forming states. Several experiments were done in which we used the

double width boundaries in forming states for models analogous to those in Flg'ur'es 3-

17b to 3-17d. It was found ,however, that there we're no visual differences between

the single and double width approximate representations.

Three approximations of the "wood" texture based on the Daubechies 8 wavelet

described in [39] are illustrated in Figures 3-18a to 3-18c. The order of the approxi-

mations are identical to the orders for Haar approximations in the previous example.

We note that there is no apparent difference between the approximations based on

the Haar wavelet and the Daubechies 8 wavelet. That is, at least for this example,

and for the others we have examined , the critical issue in model fidelity appears to

be model order rather than the particular choice of the wavelet used. Furthermore,

as these examples indicate, we can achieve quite high quality results with low-order

models, which in turn lead to extremely efficient algorithms as in [30, 27, 29, 31] and

Chapter 4. In addition, as we briefly discuss in the next section, for GMRF's which

have particular directions in which correlation structures are oscillatory rather than

monotonically decaying (such as the one describing the "wood' texture), there may

be different choices of bases other than wavelets that lead to high fidelity models of

even lower dimension.
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Figure 3-18: Figures 3-18a to 3-18c illustrate sample paths of approximate represen-
tations based on the Daubechies 8 wavelet, with the same orders of approximation as
in Figure 3-17b to 3-17d.

3.6 Summary

In this chapter, we have shown how to represent reciprocal and Markov processes in

one dimension and Markov random fields in two dimensions with a class of multiscale

stochastic models. This modeling structure provides a framework for the development

of efficient, scale-recursive algorithms for a variety of statistical signal processing prob-

lems. The representations in I-D rely. on a generalization of the mid-point deflection

construction of Brownian motion. In 2-D, we introduced a "mid-line" construction
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which leads to a class of models with scale-varying dimension. Since for reasonable

size fields this state dimension may be prohibitively large, we also introduced a class

of multiscale approximate MRF representations based on 1-D wavelet transforms of

the MRF along 1-D boundaries of multiresolution partitionings of the 2-D domain

of interest; This family of models allows one to tradeoff complexity and accuracy of

the representations, and provides a framework for the development of extremely effi-

cient estimation and likelihood calculation algorithms. Exa 'ples de onstraie
tion which e most

for relatively low-order models, an approximate re resenta r tains' f

the qualitative and statistical features of the original MRF can be obtained. We use

these models in Chapter 4 in the context of a texture discrimination application, and

show how they lead to computationally efficient algorithms, with near optimal perfor-

mance, in problems in which optimal GMRF-based approaches are computationally

infeasible.
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Chapter 4

Likelihood Calculations and their

Applications

4.1 Introduction

Our development in Chapter 2 of an algorithm based on (1.16) for computing optical

flow in an image sequence, and the construction in Chapter 3 of multiscale models for

representing Markov random fields, provides substantial evidence that the multiscale

model class can be used to model a broad range of phenomena and allows for the devel-

opment of efficient image processing algorithms. Further algorithmic development is

the focus of this chapter in which we introduce an algorithm for computing likelihoods

for Gaussian multiscale models on q 1h order trees. That is, we consider the problem

of computing the conditional probability of a set of noisy observations, given that

the data corresponds to a particular multiscale model. Likelihood calculations play

a fundamental role in many problems, for instance Bayesian and Neyman-Pearson

formulations of detection and classification problems [139, 119]. Our development

exploits the scale-recursive structure of the multiscale model (1.16) thereby leading

to a computationally efficiently and highly parallelizable algorithm. The approach

allows for multiresolution data and parameters which vary in space as wen as scale.

In addition, it is non-iterative and in fact has a constant per-node computational

complexity.
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We illustrate one possible application of the algorithm to a texture classifica-

tion problem. In the classical texture discrimination problem, one must choose from

among a set of models the model which best represents or most likely corresponds

to a given set of random field measurements [72]. As discussed in Chapter 3, Gaus-

sian MRF (GMRF) and the multiscale models derived from them provide a good

statistical representation of many textures. With stochastic models as a basis for

texture representation, the texture classification problem is naturally formulated as

a hypothesis test with a minimum probability of error criterion, and hence likelihood

calculations play a fundamental role. Our purpose is to compare the relative com-

putational requirements and classification accuracies of an approach based on the

multiscale framework to that of standard GMRF-based approaches to the problem.

In this chapter, we will take the simplest of the approximate representations,

namely the zeroth-order representation, as a basis for multiscale texture represen-

tation. These models, along with the GMRF models, then provide a basis for the

hypothesis test associated with likelihood-based approaches to the texture discrimi-

nation problem. As we show in Section 4.3, even if the random field measurements

actually do correspond to a GMRF, the probability of error performance loss in us-

ing the zeroth-order approximate GMRF models is only around 5%. Likewise, if the

random field measurements correspond to a multiscale texture model (in particular,

one of the zeroth-order approximate GMRF models) we show that the probability of

error performance difference between GMRF and multiscale approaches is again on

the order of 5%. Since in practice both of these models are idealizations, these perfor-

mance results suggest the algorithms will provide similar performance on real data.

In cases in which the random field measurements are available over a rectangular do-

main, our results argue for GMRF based approaches to the problem since in this case

these provide superior computational performance, due to the fact that the required

likelihood calculations can be carried out for GMRF models using 2-D FFT's- On

the other hand, if the data are available over an irregularly shaped domain, if there

are data dropouts, or if there are regions without data (due to camera blockage, for

instance) then the 2-D FFT approaches break down for GMRF models and exact
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likelihood calculation becomes comptitationally infeasible for even moderately sized

domains. On the other hand, the multiscale approach can still be used under these

more general conditions, and provides a computationally efficient method for carry-

ing out the required likelihood calculations. Moreover, as we show, the multiscale

approach provides probability of error performance which is substantially better than

that of minimum-distance classifier approaches [23].

This chapter is organized as follows. In Section 4.2 the algorithm for computing

the multiscale model likelihood function is developed. In Section 4.3 the results

of experiments relative to the texture classification experiment described above are

presented. A chapter summary is given in Section 4.4.

4.2 Likelihood Function Calculation

The hkefthood function for the multiscale model (1.16) is defined as the log of the

conditional probability of the data, given the model parameters. The unknown model

parameters 0 may be entries in the matrices A, B, C, R and Po, and they may also

specify the state model dimension or the structure of the tree on which the model is

defined (e.g. quadtree or dvadic tree). In this section, we provide an algorithm for

computing the likelihood function.

To obtain an explicit form for the likelihood function, let us denote the set of nodes

on the tree at which we have measurements as T and then stack the measurements

fY(B)jET into a vector Y. Then the likelihood function L(0) is given by:

L(o) log P"16(1,16)
I I yT
-log JAj - - A-'Y - PS log 27r (4.1)
2 2 y 2

where Ay is implicitly given by the model parameters, p is the dimension of the

measurement y(s), and S is the cardinality of the set E.

The main problem in evaluating (4.1) is that the data covariance matrix Ay is

generally full, and thus inverting it directly is difficult if the number of data points is
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large. The algorithm below whitens the data, which allows the likelihood to be eval-

uated easily. That is, the data is invertibly transformed to a new set of data {v(s)j,

such that v(s) and v(o-) are uncorrelated if s :� c-. In particular, if we construct

a vector v by stacking up the residuals {V(S)IIET, then v = Ty for some invertible

matrix T, and the resulting covariance matrix, A, = TA T T is diagonal (or block di-Y

agonal). The fact that the transformation is invertible means that fy(s)j and Jv(s)j

contain the same information in the sense that the conditional statistics of the under-

lying state process are identical given {y(s)j or {v(s)j. The whitened measurements

�v(s)j are preferred as these lead to simple calculation of the counterpart to (4.1):

+ VT (4.2),C(O) [p log 27r + log IA,(,) I (s)A-1)V(8)1
, ET V(s

where we have made the assumption (for simplicity of presentation only) that the

determinant of the transformation matrix T is equal to 1.

If the eigenvectors and eigenvalues of Ay are known, then a transformation based

on this eigendecomposition provides a natural approach to the whitening problem.

Indeed, if the multiscale model parameters vary only as a function of scale, then

the Haar transform (and appropriate generalizations for trees of order q > 2) can
be used to whiten the data [30, 27, 28, 45]. On the other hand, when the model

parameters vary in both space and scale, an eigendecomposition of the measurement

data covariance matrix is not immediately available, and hence for this case we pro-

pose a Gram-Schmidt orthogonalization approach. This approach and the resulting

algorithm are heavily influenced by related Gram-Schmidt approaches proposed for

calculating likelihoods corresponding to Gauss-Markov models [121, 68]. In this latter

case, the Kalman filter actually performs the whitening and the only additional com-

putation that needs to be done corresponds to (4.2). For the multiscale model (1.16),

we also have a Kalman filter (corresponding to the upward sweep of the smoothing

algorithm described in Section 1.3). However, in this case, the Kalman filter provides

only a partial whitening of the data due to the more complicated structure of higher

order trees. For instance, while a measurement at any given node on a higher order
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tree will be whitened with respect to the measurements in the subtree below, it win

not be whitened with respect to other measurements at the same level.

In particular, we define the residuals generated by the multiscale Kalman filter as:

Vf(s) = Y(8)-C(S)--4S1Y"") (4.3)

where the subscript f is used to distinguished these filter residuals from the residuals

v(s) which will be the result of the likelihood calculation algorithm. The fact that

the set f vf (s)j is not white is apparent from the update equation (1.33) in which the

residual term vf(s) is used to obtain X'(slY.). Since the estimate i(sjYa-1) does not

depend on nodes outside the subtree below node s, there is no reason to expect that

Vf(s) is orthogonal to the corresponding residuals calculated at nodes at the same

level as node s. The difficulty arises from the fact that while the Kalman filter on the

first-order tree respects a total order on the first-order tree nodes (it processes the

measurement at node t after that at t - 1, etc.), the Kalman filter on higher order trees

does not (it operates on many nodes in parallel). However, while the Kalman filter

for the multiscale model does not completely whiten the data, we can take advantage

of the partial whitening it performs. In particular, one of the main components of

our likelihood calculation algorithm is a modified version of the multiscale Kalman

filter; the other main part is associated with turning the partially whitened data into

fully whitened data.

4.2.1 From Partial to Total Ordering

To see how this can be done, consider first the set of measurements Y, associated

with node s in Figure 4-1. The corresponding set of residuals generated by the

Kalman filter is fvf(s),Y(-5a1),Y(,3a2),Y(8a3)J, since i(sajjY,0,,',1,) is initialized with

zero. The residual vf (s) is orthogonal to Y(Sal), Y(Sa2) and Y(SCi3) and so we can

set v(s) = vf (a). What we need to do is calculate v(saj), i = 1, 2, 3 such that

these residuals are mutually orthogonal. The way to do this is with a Gram-Schmidt
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Figure 4-1: Third order tree.

procedure:

v(sai) = y(saj) - EJy(saj)Iy(saj)J < il (4.4)

For i = 1, we just have v(sal) = y(sal). To perform the calculation for i 2, 3,

we need to propagate information around the tree structure in an efficient way. In

particular, to obtainV(3a2)we use the upward dynamics (1.21) to calculate �c(sIY,.,,),

use the downward dynamics (L 16) to obtainiC (S a2 IYa, ), and then use the linearity of

the expected value operator to obtain the residual. This information flow is illustrated

in Figure 4-2a, with the arrows representing the directed flow. The information flow

required to obtain V(Sa3) is shown in 4-2b. In particular, we again use the upward

dynamics to propagate the information about y(Sa3) contained inY(SCX2) up the tree.

The sufficient statistic for this information at node s is i(sIY,',), and this can be

combined with to give 1 Y-11112 )I which is then propagated back down

the tree using (1.16) to obtain the residual at V(Sa3)-

With the residuals at the four nodes S, Sal, Sa2, Sa3 computed, we focus now on

the computation required to whiten the measurements in the set Y.J. The procedure

will be very similar to that used to whiten the measurement set Y', but willh the

additional complication that we will also need to whiten Yg with respect to Y,. The
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Figure 4-2: This figure illustrates the information flow in the likelihood calculation
algorithm. (a) The residual at Sa2 is computed by using the model dynamics to prop-
agate the information in y(sckj) up to node s and back down to Sa2- (b) Likewise,
to get the residual at sa3, we combine information from y(scxj) and Y(SCX2) at node
S, and then use the dynamics to propagate this back down towards sa.3. (c) Having
whitened the measurements in the set Y,, we consider next those at YS. We first prop-
agate information contained about these measurements over from the set Y,,-and then
combine this with the information in Yg to get a set of residuals s8, S8CX1 7 S6CX2, S8Ct:;,

which are mutually orthogonal, and orthogonal to Y, (d) The process continues by
propagating the information in Y, and Yg up to s--y, and then back down to sSS.

information required to do this is contained in i(s IY) which we can propagate over to

the subtree below sS by using the upward and downward dynamics of the multiscale

process, as shown in Figure 4-2c. Having obtained :�(sSIY,), we can form the residual

at s8al by propagating this information down the tree. By construction, this residual

is orthogonal to the residuals at the four nodes s, sal, SCf2, Sa.3- Likewise, we can get

the residual at SSa2 by first computing �(sSlYj,,j, combining this with and

then using the downward dynamics to propagate the combined information back down

the tree towards SSCX2- In a similar way, we obtain the residuals at s3cx.3. The residual
at sS is computed by combining the Kalman filter resu C!q

it �3(s8jyb ) with �(AY,),
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and subtracting the resulting estimate of y(s) from y(s). By construction, the four

residuals at A SSal, S302, SSa3 are mutually orthogonal, and orthogonal to the set

Y. -

We continue this pattern of information flow to compute residuals at the set of

nodes including and below node sSS. The construction of the residuals here is entirely

similar to the construction at and below s3, except that now we must be sure to whiten

with respect to the measurements in both Y. and Yj. This leads to the information

flow in Figure 4-2d, in which estimates i(slY.) and �c(sSJYg) are propagated up to

s�, combined, and the propagated back down the tree.

The extrapolation of this idea to general q`-order trees should now be apparent.

We implicitly form a total ordering of the nodes on the tree which is compatible with

the partial ordering induced by the Kalman filter, and perform the corresponding

Gram-Schmidt calculations required to completely whiten the partially whitened data

that the Kalman filter provides. This total ordering is illustrated in Figure 4-3 for a

third order tree with four levels. The node soa where the scales are numbered

coarse-to-fine, as m = 0, 1, 1, and so is the root node, is the starting point for

our ordering. Starting there, we proceed to the right, labeling all of the offspring

of a given parent, and then the parent. By labeling the offspring before the parent,

we preserve the partial ordering induced by the Kalman filter. Specifically, since the

Kalman filter residual vf (s) is whitened with respect to measurements in the subtree

below, the node s must be labelled after the nodes in the subtree below. This basic

rule characterizes the ordering, up to some flexibility in the ordering of the offspring

(which we label sequentially: gal before Sa2 etc.) A formal description of the ordering

is given in the pseudo-code algorithm in Table 4.1. The command "Label s" in the

code means that node s is assigned the value of a counter (the counter is incremented

after each labeling, and is initialized with 1).

4.2.2 Algorithm Description

The particular total ordering we have defined now allows us to carry out the whitening

calculations in a parallel and decoupled fashion. The structure of the algorithm we
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Figure 4-3: An ordering of the nodes on the tree convenient for computing the likeh-

hood function is depicted.

1-1.S �-= soal )

10 If all nodes below s are labeled then

Label s;

If s is the root node then

End;

Elseif s = sla, then

s s�; Goto 10;

Else

S S 3; G o t o I 0;

Else

S 4-- Sal; Goto 10;

Table 4.1: Pseudo-code description of labeling sequence.

describe in this section is depicted in Figure 4-4. The algorithm can be broken up

into three steps: an upward sweep, followed by a downward sweep, followed by the

computation corresponding to (4.2). Before we describe the details of these steps, let

us define a bit of notation and describe in general terms how the algorithm works.

First, note that the calculation of the residual at any given node s involves com-

puting an estimate of x(s) based on the set Yq, plus possibly additional measure-

ments corresponding to data that have already been whitened. To capture this other

set of measurements succinctly, we define a bit of additional notation for subsets of
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update (a) Likelihood Calculation Upward Sweep

orthogonatize

predict

merge

orthogonalize

predict

rnerge

orthogonalize (b) Likelihood Calculation Downward Sweep

Figure 4-4: The general structure of the likelihood calculation algorithm is shown.
The algorithm consists of an upward sweep, in which a series of update-predict-merge
steps are used to recursively propagate information from the finest to coarsest levels,
followed by a downward sweep consisting of a series of predict-merge-orthogonalize
steps. The algorithm whitens noisy measurements of a multiscale process, so that the
likelihood of the data can be easily computed using (4.2).

measurements on the tree. Specifically:

i -U Ygctj , for i = 1, 2, q (4.5)

y(a) � YC1qjjy(o-)jo- < s and (4.6)

where the notation o, < s means that o- gets labelled before node 3 in the algorithm

of Table 4.1. Examples of these subsets are shown in Figures 4-5 and 4-6. Note that

C JIC12 C ... C YC'qthe subsets Yi are nested, Y', c Y,. Also, note that the sets

have a certain recursive structure. In particular, if s = s,�aj:

i-1 Y (4.7)Y. t;'- U (Uj=1

U Y�i-i
8-Y (4.8)
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Figure 4-5: This figure proN-Ides examples of different subsets of nodes defined with
respect to node s. Note that Yc" c Y*2 c ... c Yclq c Y,, where q 3 in the
example above.

t
aq

YS? Ysai YSa2 Y�

Figure 4-6: This figure shows examples of some other sets of nodes defined with
Ya2.respect to the node s. Note that U Y'-'Y.' U Y'-'�.' U

with the convention that Yall 0. As an example, note thatz = ?'I U Yxt., U Y.1.2

Y. U Y,12.. in Figure 4-6.

The general equation for the residual v(s) and its variance A,(,) is:

V(S) = y(_q) _ C('q)j(SjYI YIq) (4-9)

A,(,) = C(S)P(SIt, J,-01q)CI(S) + R(s) (4.10)

j(SjYCIq and

Hence, the key quantities to compute are �c(sj?,) and , ). Both i(sjY,"'

theset of estimates;i(sjYi) fori = 1,2,...,q-1, are computedrecursivelythrough a
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series of update-predict-merge steps, during the upward sweep of the algorithm. In the

downward sweep, we use the estimates �c(sjYi) for i = 1, 2, - - -, q - 1 to recursively

compute �(sjt) at each node, combine this with -�(slYc4), and then use (4.10) to

compute the residual v(s). As we will see in the detailed development below, both the

upward and downward sweeps have a highly regular, decoupled structure across scales

and hence there is substantial potential for parallel implementation of the algorithm.

We begin with the upward sweep of the algorithm. As in the upward sweep of the

smoothing algorithm described in Chapter 1, we start by initializing the estimates

at the finest level of the tree to zero. Likewise, the covariances P(SIY,*') at

the finest level are initialized using the Lyapunov equation (1.26). Now, suppose we

have the estimates i(sjYa,) for nodes s at a given scale. Then these estimates can

be updated to include information available at that scale via:

i(sIY8) i(s1l"?) + K(s)[y(s) - C(s)�i(sJY8'1)] (4.11)

K(s) P('SjYaq T ;lyq)CT(.S) + R(s)]-1 (4.12). )c (S)[C(S)P(S 8

P(SIY8) [I - K(s)C(s)]P(sjYcq) (4.13)

The next step is a series of predictions in which q estimates of each state at the

next level are computed based on measurements in each of the sets Y"", i = 1, 2, - - - ) q.

To describe this step, we need the upward model for the multiscale process given by

(1.21) - (1.24). The upward dynamics and the updated estimates ic(sailY.""j) from

(4.11) - (4.13) are then used to compute estimates of the state at the parent node S,

based on data in the subtree under each of its offspring. That is, for i = 1, 2, q,

we compute:

:�(sjYaj) = F(saj).i(scxjjY8,,,j) (4.14)

P(-91Y,.i) = F(sctj)P(sctjjY,,)FT(Sa,) + Q(Sa,) (4.15)

These q estimates are then merged to form another set of q estimates of the state at
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where the i1h estimate depends on the measurements at nodes Yi = U'=, I'node a, Oct!:

i(sly")
+ P-1(sjYO,"j:�(sjY"j] (4.16)

P(SIY.Cli)
+ P P (4.17)

Equations (4.16) (4.17) for computing these merged estimates follow from the fact

that the measurements I n t he sets I 1, 2, q are conditionally independent

given x(s).

After merging we return to the update step and in fact proceed recursively up

the tree with sequences of update-predict-merge steps, until the root node is reached.

At this point, we have obtained at each node the set of estimates -';(sjYai) for i

17 2, - - -, q.

The downward sweep begins by initializing the following estimates and error co-

variances at the root node (s so):

ic(soll-j = 0 (4.18)

P(Soll"') = PO (4.19)

(S 0 = ;i (s o I Yao'), i 1, 2, q (4.20)

P(so I Ya') = P(so I Y,",'), I 1, 2, q (4.21)

and computing the residual v(so) at the root node according to (4.9) - (4.10).

Next, note that we can use the recursive structure of the sets R, to compute:

(4.22)
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if s = S�ai. Similarly, the error covariance associated with this estimate is given by:

T(S)P(slY.) = (4.23)

Merging these estimates with the q estimates i(sjYO'i) computed during the upward

sweep, we obtain:

sjY'i)i(sjYi) + (4.24)-�(Sly-'Y'N = P(S1Y-'Y-`)1P-

P(.81Y.'Y") = 1P-1(81Y"9+P-1(s1Y'-)-P.-T1 (4.25)

The estimate -,i(sjY',, Yc") is then used in the subsequent orthogonalization step given

by (4.9) - (4.10), while the q estimates :�(sjY'.,Yci),i = 1,27 ... ) q - 1 are

propagated down the tree according to (4.22) - (4.23). At the end of the downward

sweep we have obtained v(s) and A,(,) at each node a, and (4.2) can then be used to

compute the associated likelihood.

In our discussion of the multiscale models in Chapter 1, we assumed that the

dimension of the state, driving noise and measurements was constant over the tree,

i.e. ,X(B) E jZn' W(S) C- R- and y(s) E RP for all s. However, this assumption is not

used in the algorithmic development and indeed, our algorithm applies to this more

general case. The only equation that needs to be modified is (4.2), which becomes:

,C(O) [p, log 27r + log IA,(,) I + v'(s)A-1 V(s)] (4.26)
2 V(8)

BET

reflecting the possibility that the measurement dimension may depend on S. It is

also straightforward to generalize the algorithm to non-homogeneous tree structures,

i.e., those in which different nodes may have different numbers of offspring, and to

situations in which the state covariance matrix is not invertible (see Appendix D.1).

These generalizations are not merely of theoretical interest, since, as we have seen in

Chapter 3, multiscale models of this sort naturally arise (cf. the comments after the

discussion of the approximate GMRF representation in Chapter 3).

Finally, we discuss the complexity of the algorithm as a function of the model
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parameterization and order of the tree. Assume now that the model dimensions are

fixed, with x(s) E Rn' W(S) G R- and y(s) E 1ZP. Using the approximation that

inversion of an N x N symmetric matrix requires N'13 floating point operations

(flops) we can calculate the number of flops required by the algorithm in various

situations. In particular, if we assume that the measurements y(s) are available at

all nodes on the tree, then the algorithm requires

8n 3 + 2P 3 + 7n 2p + 4np' + 6np + 5p2 + 19n 2 (4.27)
3

flops per node (there are (ql - i)l(q - 1) nodes on a tree with I + 1 scales). On the

other hand, if measurements are available only at the finest level, then the algorithm

requires

q-'(n 3 + IP3 - 7n'p + 4nP2 + 6np + 5P2) + 7n 3 + An 2 (4.28)
q 3

flops per node. Note that the total per-node computation in either case is not a func-

tion of the number of nodes, assuming that the order of the tree is a fixed parameter

of the model. Also, the numbers above are in some sense a worst-case complexity

analysis - the structure of the model can often be exploited to substantially reduce

the required computation, e.g. in the context of the multiscale model used for com-

puting optical flow in Chapter 2, we can use the fact that the dynamics (2.20) are

diagonal. Likewise, in the texture discrimination application in the next section in

which we use the approximate multiscale models defined in Chapter 3, simplification

results from the fact that the matrices A(s) given in (3.143) - (3.146) have large

blocks of zeros.

4.3 A Texture Discrimination Application

The classical texture discrimination problem is the following. Given a set of texture

models and a set of noisy random field observations, choose the model which corre-

sponds most closely in some sense to the data. When statistical models are available
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for the textures and the measurements, this problem can be formulated as a likeh-

hood ratio test, and that is the approach we take in this section. In particular, we will

utilize GMRF models, and multiscale representations of these, as a basis for texture

representation, and wiH examine the relative performance of a GMRF-based LRT,

a multiscale model based LRT and a minimum-distance classifier approach devel-

oped in [23] to texture classification. Our analysis will be based on synthetic random

field measurements which correspond to noisy realizations of either the multiscale or

GMRF texture models. We wish to demonstrate several things:

1. The probability of error performances of the likehhood-based approaches gener-

ally differ by about 5c, with the superior method being dependent on-whether

the measurements are generated using multiscale or GMRF models. This pro-

vides quantitative evidence of the visual similarity noticed in Chapter 3, and

suggests that in real applications in which neither model is correct, neither

framework wiH provide performance which is substantially superior to the other.

2. The multiscale approach to texture classification is applicable in situations in

which the GMRF-based LRT's are often too computationally demanding to be

practical, e.g. in situations in which the measurement data are available over

irregularly shaped regions or if only incomplete random field measurements are

available.

3. The minimum-distance classifier approach, while providing generally the com-

putationally most efficient approach to classification, provides probability of

error performance which is substantially worse than that of the two likelihood

based approaches. Moreover, like the GMRF-based approach, it cannot effec-

tively take advantage of incomplete measurement data.
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4.3.1 The Texture Discrimination Problem

The noisy random field measurements on which the hypothesis test is based are of

the form:

Y(Z"j) = C(i'j)Z(i'j)+V(i'j) (4.29)

where v(i, j) - M(O, r(i, j)), c(l, j) is a spatially varying gain and z(i, j) is a realiza-

tion of a random field generated using (3-160) or a multiscale model. The possibility

of spatially varying measurement gain c(i, j) can be used to capture the possibility

that measurements are available over only a subset D of the image lattice. In this

case one simply sets c(l, J) = 1, (i, j) E 'D and c(i, j) = 0 otherwise. We focus here

on a binary hypothesis testing problem and denote the parameters of the multiscale
models as Omm and Omm, and the parameters of the GMRF models as Og" and Ogmf

0 1 0 1

As is well known, the likelihood ratio test (LRT) given by:

Choose Omm

PY1qMM(Yjq-M) >
log . ___ 0 0 109 77 (4.30)Ylemm(Y19MM)P <

Choose Omm

results in optimum performance for the discrimination problem when (4.29) corre-

sponds to measurements of a realization of a multiscale texture model. A similar

test, based on Ogmf and Ogmf is, of course, optimal when the measurements corre-

spond to a GMRF. We refer below to the LRT based on the GMRF and multiscale

models as the GMRF-based and multiscale model (MM)-based approaches to texture

classification, respectively. The parameter 77 can be chosen either via a Neyman-

Pearson type criterion, or based on choosing prior probabilities for, and a set of costs

associated with making correct or incorrect decisions under, the two hypothesis. For

the examples presented here, .le simply used the maximum-likelihood philosophy,

corresponding to a choice of q = 1.

The probability of error performance of the two approaches cannot be calculated
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g-rf 09mrf Ogmrf Ogmrf
hkl 00 1 hkl 0 1

(1,O) .3795 .5341 (0,2) -. 0494 -. 0432
(0, 1) .4528 .4135 (-1,2) -. 0037 -. 0120
(- 1, 1) -. 1117 -. 1831 (1,2) .0098 .0111
(1,I) -. 1548 -. 2050 (-2,I) .0086 .0362
(2,O) 1 -.0566 -. 1229 (2,I) .0233 .0442

Table 4.2: GMRF model coefficients. The model given by 09" corresponds to pigskin,
whereas Ogmrf corresponds to sand.

in closed form due to the size of the problem, and the fact that the likelihood is a

quadratic function of the data. Hence, we will draw conclusions based on Monte-

Carlo results for a number of model pairs, image lattice sizes and noise levels. With

regard to the choice of model pair, a number of GMRF models corresponding to

natural textures are proposed in (741. As observed there and in [101, two of these

generate realizations which are quite similar visually. The parameters of these two

models, which correspond to pigskin and sand, are given in Table 4.2, and realizations

are shown in Figure 4-7. The specific results in this paper correspond to these two

GMRF's, and in fact to the family of models given by:

og-rf = (1 - )Og-rf + Logg-f (4.31)
La 0 1

with 0 < w < I and to a complementary family of multiscale approximate represen-

tations of the GMRF family'. The motivation behind choosing a family of models

is that we want to illustrate that the performance characteristics of the MM and

GMRF based approaches are comparable as the contrast or distance between the

model choices varies. For instance, if we are trying to distinguish between observa-

tions coming from Omm and Omm, this task is increasingly difficult as w - 1. We

will also present the results of experiments iri which, for a given pair of models, the

additive noise power is varied.

lWe have not included the GMRF parameter o,' in Table 4.2 since this parameter was changed
as a function of w and the lattice size in order to equalize the mean square values of the random
fields.
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Figure 4-7: Sample paths of two GMRF texture models. The left image corresponds
to the pigskin model, and the right to a model representing sand.

4.3.2 Performance on Rectangular Domains

To demonstrate that the GNIRF-based and multiscale model-based approaches to tex-

ture discrimination result in similar performance, we first compare their performance

in the case that r( r, c(l, c, since in this case discrete Fourier transforms

can be used to calculate the likelihoods required in (4.30). In particular, from (3.160)

we can write:

Hz = e (4-32)

where z and e are lexicographic orderings of the random field and driving noise values,

respectively, and H is a matrix characterized by 0. Note that e - JV(O, H) and hence

z , V(O, H-1) and, assuming that (4-29) corresponds to measurements of a GMRF,

y , IV(O, (c'H-1 + rI)-'). As discussed in [24, 23], H is a block circulant matrix,

with circulant blocks and therefore can be diagonalized by the 2-D Discrete Fourier

Transform (DFT) matrix F. Defining T1 = C'H-1 + rl, it is clear that H also is

diagonahzed by the 2-D DFT, and we can write the likelihood function of y as:

,C (0) = I (Ml A12 log 27r + log IT11 + yTfl-ly (4-33)
2
-1 + yT

= _(MIM2 log 27r + log jFf1F*j F*(FfIF*)-'FY (4.34)
2

which can be used to efficiently carry out the GMRF-based LRT.
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To implement the MM-based LRT in (4.30), we need to make a choice of which

multiscale models to use. We choose below the simplest of the multiscale approximate

models corresponding to a given GMRF, which is a zeroth-order Haar-transform based

model. The state dimension n of this model is 16, and the measurement dimension at

the finest scale is also 16 (in this application, the measurements are only available at

the finest scale). Assuming that Ml = M2 = M, tedious ut straightforward calcula-

tions show that in this case the algorithm of Section 4.2 requires approximately 8000

flops per pixel. The likelihood corresponding to the GMRF model can be computed

using 2D-FFT approaches in O(M2 log M) computations, which in this case leads to

less computation than the MM-based approach.

The results of experiments in which we generated measurements according to

(4.29), and then carried out three approaches to classification are given in Figures 4-8

and 4-10. In particular, in Figure 4-8, each data point corresponds to 1000 exper-

iments in which we generated a random field corresponding to Ognrf or 9-1'rf (500

experiments each) for a 32 x 32 lattice and signal-to-noise ratio of 0 dB, and then

implemented the MM-based, GMRF-based and minimum-distance (MD)-classifier ap-

proaches to texture classification (our implementation of the MD-classifier is discussed

in Appendix D.2). The percentages of correct classifications we have plotted are es-

timates of the probabilities of correct classification. We can characterize the error in

these estimates by noting that since the experiments were independent, the probabil-

ity we are trying to estimate is just the probability of success (correct classification) p

in a Bernoulli test. In particular, let us define the sample mean as P = N',1N, where

N, is the number of correct classifications in N trials. Then a simple application of

the central limit theorem allows us to show that the probability distribution for the

difference between our estimate P and the true probability of success p is normally

distributed, with zero mean and variance p(l - p)IN. From this we can conclude

that, for instance:

Pr(lp - fil < 1.96 P 1 P 0.95 (4-35)
N
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M - 32, SNR - 0 dB, GMRF data

0.9- - GMRF-based LRT

MM-ba"d LRT

-E 0.8 MD-elassifier
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omega

Figure 4-8: Comparison of the MM-based, GMRF-based and MD-classifier ap-

proaches to texture classification. The random field measurements correspond to

GMRF texture models.

i.e., if p = 0.5, with 95 percent confidence the error in 0 is less than 0.031.

Note that, as expected, as u.; - 1, the percentage of correct classifications ap-

proaches 50 percent, reflecting the increasing similarity of the models. In Figure 4-8,

the GMRF-based approach is superior to the MM-based approach, since in the ex-

periments the measurements actually did correspond to a GMRF. The MM-based

approach leads to approximately a 5% performance degradation in this case. By in-

creasing the order of the approximate models, the performance results win become

progressively closer to one another. For instance, we have performed experiments

using the first and second order approximate representations discussed in Chapter 3,

for SNR = 0, and M = 16. The results of these experiments (10,000 Monte-Carlo

trials) are shown in Figure 4-9. The improvement in performance with increasing

model order is apparent.

The performance results in Figure 4-10 are based on experiments in which the

measurements correspond to multiscale texture models, and hence in this case the

MM-based approach provides superior performance. The GMRF-based approach

161



0.8

0.75

.9 0.7-

0.65 -
8

0.6- Ex'actGMRFmod9I

2ncl-order approximation
CL

0.65 - 1 st-order approximation

Oth-order approximation

0'% O'l 0'2 0'3 0'4 0'5 0'6 0'7 0.8 0.9
off"a

Figure 4-9: The improvement in performance as the order of the approximate GMRF
representation is increased is shown.

led to a performance degradation of, on average, around 5%. Figures 4-8 and 4-

10 both indicate that the MD-classifier, while requiring less computation, provides

substantially poorer performance.

Our main conclusions based on Figures 4-8 and 4-10 are the following. First,

the MM-based and GMRF-based approaches provide comparable performance when

the data actually do correspond to a multiscale or GMRF texture model. Both

of these models are idealizations, and we expect based on these results that when

applied to real data, neither the MM-based or GMRF-based approach win provide

a significant probability of error performance advantage. Second, we conclude that

the two likelihood-based approaches provide substantially better performance than

the MD-classifier approach. Further support for these conclusions is provided in

Figures 4-11 to 4-16, in which we provide performance results complementing those

in Figure 4-8 (the measurements correspond to realizations of the GMRF models) for

a variety of SNR's and image lattice sizes. As in Figure 4-8, the figure,-7 show that the

performance differential is generally three to seven percent, and that the likelihood

approaches are generally superior to the MD-classifier approach.
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Figure 4-10: Comparison of the MM-based, GMRF-based and MD-classifier ap-

proaches to texture classification. The random field measurements correspond to

multiscale texture models.
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Figure 4-11: The data above and in Figures 4-13 and 4-15 further illustrate that the

MM-based approach to texture classification provides performance close to that of the

GMRF-based approach, which except in special cases is computationafly infeasible.
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Figure 4-12: The data above and in Figures 4-14 and 4-16 illustrate the performance
of the minimum-distance (.NI D) classifier approach to texture discrimination discussed
in [23]. This approach requires only a small amount of computation, but has substan-
tially poorer probability of error characteristics than the likehhood-based approaches.
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Figure 4-13: MM and GMRF-based LRT performance, M 32.
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Figure 4-14: Minimum-distance classifier performance, M 32.
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Figure 4-15: MM and GMRF-based LRT performance, M 64.
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Figure 4-16: Minimum-distance classifier performance, M 64.

4.3.3 Performance on Non-rectangular Regions

The results in the previous section provide substantial evidence that the MM-based

and GMRF-based approaches to texture classification provide comparable perfor-

mance under a variety of conditions. In this section, the results of experiments are

presented which provide further evidence of this and allow us to demonstrate how our

multiscale framework can be used to calculate likelihoods given measurements over

only a subset of the image lattice.

In particular, note that the measurement matrix C(s) in (1.20) can vary as a

function of node. In the approximate multiscale models, the values of the GMRF

are represented as components of state vectors at the finest level of the tree, each

value being represented in one state vector. Thus, setting C(S) = I if 8 is a node

at the finest level corresponds to the case of complete measurements, i.e. c(ij) = 1

for all pairs (ij). Likewise, when not all measurement data are available, we can

take this into account by eliminating the appropriate rows of the matrices C(S). This

is exactly what we have done in this section in which we used measurements over

a circular subset of the domain, as shown in Figure 4-17, and over an incompletely
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Figure 4-17: We demonstrate in Section 4.3.3 how the multiscale framework can be
used to calculate hkehhoods given measurements over non-rectangular regions, such
as the circle above.

rJ

Figure 4-18: The multiscale framework can also be used to calculate likelihoods given
incomplete measurements resulting from dropouts, or occluding objects. The dark
areas in the figure correspond to pixels or regions over which measurements of the
random field are unavailable.

sampled region as in Figure 4-18.

We begin with the experiments corresponding to the circular subset. It is assumed

that the GMRF is defined over an M x M lattice, and that the measurement gain is
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an indicator function over a circle embedded in the lattice:

c(i, j) I if (I - (M - 1)/2 )2 + (j - (M - 1)/2 )2 < p (4.36)

0, else

Calculating the GMRF likelihood in this case is difficult since the 2-D DFT no longer

diagonalizes the measurement covariance matrix. The covariance matrix must there-

fore be inverted directly. Using the approximation that the inversion of an M2 X M2

symmetric matrix requires (M2)3 /3 flops, the direct approach to the likelihood cal-

culation requires M'13 flops per pixel. As discussed in the previous section, the like-

hhood calculation algorithm developed in this chapter requires approximately 8000

flops per pixel. Hence, ignoring architectural issues, this suggests that for M > 12

and non-rectangular geometries, our multiscale approach is computationally supe-

rior. We have computed the performance of the two approaches in the case that

p = 8, M = 16 and several SNR's. The results are shown in Figures 4-19 and 4-20.

The figures illustrate that the MM and GMRF-based approaches provide comparable

performance, and performance which is superior to that of the MD-classifier.

Next, consider the case in which measurements are available over only a subset of

the image lattice due to dropouts or objects blocking a portion of the measurement

system field-of-view. Unavailable measurements correspond to black regions in Fig-

ure 4-18, and might be single pixels or groups of pixels of various sizes. This case

is more difficult than the previous case from the GMRF-perspective. In particular,

when measurements are available over a contiguous region as in the circular subset

of Figure 4-17, one could imagine breaking up the region into a number of smaller

rectangular regions, and adding up the likelihoods corresponding to these regions.

On the other hand, for measurement regions such as that in Figure 4-18, this idea

will be more difficult to implement since there are fewer large contiguous regions of

data. Likewise, the MD-classifier approach will necessarily neglect a portion of the

data since the correlation computations that are performed at each pixel require that

measurement data be available at all neighbors. Hence, elimination of a single data

point leads to loss of data over a region of size equal to the neighborhood of that data
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Figure 4-19: The data above illustrates the potential that the MM-based approach
has for evaluating likelihoods based on data over arbitrarily shaped regions. In this
case, we chose a circular region of small enough size so that the exact likelihood could
also be evaluated. The MM-based approach provides performance comparable to that
of the GMRF-based approach.
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Figure 4-20: Minimum-distance classifier performance, p 8.
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Figure 4-21: The data above illustrates the potential that the MM-based approach

has for evaluating likelihoods based on incomplete measurement data.

point. This can be mitigated to some extent by interpolation, but to what extent will

certainly be dependent on the specific interpolation scheme, and in any event, would

be expected to only further deteriorate the already relatively poor performance of the

MD-classifier.

We have computed the relative performance of the GMRF-based and MM-based

approaches on domains small enough to do the exact calculations for the GMRF

models. Measurements of a GMRF random field were made at 90% of the 16 x 16

lattice sites, at SNR's of -20, 0 and 20 dB. The results are shown in Figure 4-21

and illustrate that the GMRF-based and MM-based approaches provide comparable

performance. The MD-classifier was not applied to this example since, due to the

incomplete availability of data, the correlation computations could not be carried out

at an adequate number of pixels.

170



4.4 S ummary

We have presented a likelihood calculation algorithm for a class of multiscale stochas-

tic models. The algorithm exploits the structure of the tree on which the multiscale

models are defined resulting in an efficient, highly parallelizable approach. In addi-

tion, we have discussed one possible application of the algorithm to texture discrimi-

nation and demonstrated that likelihood-based methods using our algorithm and the

results in Chapter 3 for modeling GMRF's have substantially better probability of er-

ror characteristics than well-known least-squares methods, and achieve performance

comparable to that of GMRF-based techniques, which in general are prohibitively

complex computationally.
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Chapter 5

Thesis Contributions and

Recommendations for Future

Research

5.1 Thesis Contributions

In Chapter 2, we presented a new approach to the regularization of ill-posed inverse

problems, and demonstrated its potential through its application to the problem of

computing optical flow. The approach starts from the "fractal prior" interpretation

of the smoothness constraint introduced by Horn and Schunck to motivate regu-

larization based on a multiscale stochastic model. This new formulation leads to

an extremely efficient, non-iterative, scale-recursive solution based on the smoothing

algorithm discussed in Section 1.3, yielding substantial savings over the iterative al-

gorithms required for the smoothness constraint solution. In particular for 256 x 256

or 512 x 512 images, the algorithm leads to computational savings on the order of a

factor of 10 to 100. Indeed, since the iterative approaches associated with the smooth-

ness constraint solution take longer to converge as the image grows, whereas the per

pixel computation associated with the MR algorithm is independent of image size,

even larger savings can be realized for larger image domains. In addition to these

computational advantages, we showed how the multiscale framework allows one to
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select in a rational way the preferred resolution at which to represent the optical flow

field.

In Chapter 3, we have shown how to represent reciprocal and Markov processes

in one dimension and Markov random fields in two dimensions with a generalized

multiscale model class introduced in Section 3.2. The representations in I-D rely

on a generalization of the mid-point deflection construction of Brownian motion. In

2-D, we introduced a "mid-line" construction which leads to a class of models with

scale-varying dimension. Since for reasonable size fields this state dimension may

be prohibitively large, we also introduced a class of multiscale approximate MRF

representations based on I-D wavelet transforms of the MRF along I-D boundaries

of multiresolution partitionings of the 2-D domain of interest. This family of models

allows one to tradeoff complexity and accuracy of the representations. Examples

demonstrated that for relatively low-order models, an approximate representation

which retains most of the qualitative and statistical features of the original MRF can

be obtained.

In Chapter 4, we presented a likelihood calculation algorithm for Gaussian mul-

tiscale models defined on q`-order trees. We exploited the structure of the tree to

obtain an efficient, highly parallelizable approach. In addition, we have discussed one

possible application of the algorithm to texture discrimination and demonstrated that

likelihood-based methods using our algorithm and the approximate GMRF models

defined in Chapter 3 have vastly better probability of error characteristics than well-

known least-squares methods, and achieve performance comparable to GMRF-based

techniques, which in general are prohibitively complex computationally.

Finally, in Appendix A we derived a multiscale model for the error process as-

sociated with two-sweep smoothing algorithm. This model allows one to obtain the

complete correlation structure of the smoothing error process. Applications of the

result are discussed at the end of the next section.
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5.2 Recommendations for ]Future Research

There are many promising avenues for further research. In the context of the chapter.

dealing with multiscale regularization and the computation of optical flow:

1. In situations in which the underlying optical flow field is expected to be dis-

continuous (or, more generally, in situations where the Brownian motion prior

does not adequately represent the prior statistics) our approach may fail to give

acceptable results. It is of interest to develop a framework which can accurately

estimate the flow fields which arise in the presence of occlusion, transparency,

etc. There are several approaches one can imagine taking. First, if there is

some segmentation information available, then this could be used to modify

the model on the tree in a way such that smoothness would not be enforced

across borders. Secondly, one could imagine feeding back residual information,

such as that illustrated in Figure 2-29, and using this in an adaptive procedure

to detect and compensate for discontinuities. In particular, the measurement

residual field represents a high-pass (in time) version of the observed data which

accentuates the effects of motion discontinuities and removes other features cor-

responding to smoothly varying parts of the flow field. For time series, such

residuals provide the basis for extremely effective methods for the detection

of discontinuities, and the development of corresponding methods in our mul-

tiscale, image processing framework represents a promising direction for the

future. Indeed, this suggests a number of additional directions for extending

time-series methods to the imaging context such as adaptive estimation of the

multiscale parameters b and 1L in order to adoptively adjust the level and nature

of the regularization imposed on different image regions. While such adaptive

methods are certainly not unknown in image processing, our scale-recursive

framework not only leads to an extremely efficient framework for the realiza-

tion and provides the error covariance information needed for the development

of statistically optimal methods but the use of a pyramidal framework provides

enormous flexibility in adaptation. For example, in the time series case, the use
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of a very large value for the noise parameter corresponding to b at some point

in time essentially decouples the processing before and after that point (since

no smoothness at that point is expected). In our framework a large value for

b at some node decouples the processing within the region, corresponding to

the subtree of pixels beneath that node, from processing outside that region,

exactly what would be needed to deal with a region corresponding to motion

discontinuity relative to the background.

2. The multiscale solution was found to be an excellent initial guess for iterative

methods employing a smoothness constraint type regularization, and we sug-

gested a two-step procedure for obtaining that smoothness constraint solution.

Another approach toobtaining the smoothness constraint solution quickly might

be based on a "pre-conditioned" iterative approach. In particular, the normal

equations that must be solved to obtain the smoothness constraint solution are

of the form:

T.. b (5.1)

where T,, is the matrix resulting from the smoothness type regularization and

b constitutes the "measurements" , i.e. from (2.10):

T., C T TR-'C+L L (5.2)

b CT (5.3)R-ly

One approach to solving (5.1) is by the following iterative procedure:

�k = �4-1 - T-1(Tcij._j - b) (5.4)

where Tm, is the counterpart of T,, arising from the multiscale regularization

and ii = T,�'b is the MR solution. This iteration will converge if the operatorr

I - T;'T., has all of its eigenvalues inside the unit circle, since the error ekr
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ik - �C is given by:

ek = (I - T,;'T,,r)ek-, (5-5)

Some experiments of this sort were done, and it was found that in fact this

operator does not in general have all of its eigenvalues inside the unit circle.

One possible explanation for this is the following. We know from experiments

in Chapter 2 that the initial error el contains mostly high frequency compo-

nents. This energy is amplified by the differential component of T,,, and further

amplified by T,�'. Hence, the high frequency errors tend to accumulate as the

iteration proceeds.

There are several possible solutions to this problem. First, we might introduce

a parameter w which reduces the gain:

ik = ik-l - WT;rl(T,,:ik-1 - b) (5.6)

The drawback of this approach is that while the eigenvalues outside the unit

circle move inside, some of the eigenvalues inside move closer to the unit circle.

Indeed, as w -- + 0, the operator becomes an identity.

Second, the problem of the high frequence error components could be addressed

directly by lowpass filtering the correction term with Tip:

�k = ;4-1 - T1pT,�,1(T,,4k-l - b) (5.7)

Again, there is a tradeoff here which is similar to that faced in the previous

example - since at least part of the error that must be eliminated is high

frequency, lowpass filtering the correction term necessarily reduces the rate of

convergence. Finally, a third approach would be to sequentially modify the

operator corresponding to the rnultiscalle regularization, i.e. to have an iteration
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of the form:

,�k = �kj - T;lk(T.,�.-�kj - b) (5.8)

where the multiscale regularization operator is a function of k. Intuitively, we

should be enforcing less and less smoothness as the number of iterations in-

creases, since the residual term is no longer expected to be locally smooth.

Hence, one might choose a sequence of operators T,,,k corresponding to models

which require successively less smoothness. The challenging part of such an ap-

proach would be finding a sequence of models which both allows computational

advantages over the two-step approach discussed in the thesis, and which also

leads to a stable iterative procedure.

3. The multiresolution philosophy used in Chapter 2 may offer a promising ap-

proach to motion-compensated image sequence coding. In particular, although

we used the coding metric of reconstruction error as the basis for the comparison

of the SC and MR approaches, the methods presented in Chapter 2 would not

be the method of choice in a coding context. In particular, motion-compensated

coding algorithms designed specifically to minimize an image sequence coding

metric (4, 100, 143] will generally outperform the SC and MR approaches (which

are not designed for that express purpose). However, the computationally ef-

ficient MR algorithm can be used as an initial preconditioning step for such

coding algorithms. In addition, one can also imagine a second way in which

the multiscale framework could be used in this context. In particular, one of

the problems with the SC and MR based methods is the differential form of

the brightness constraint which, given the discrete nature of spatial and tem-

poral sampling, is only valid for relatively small interframe displacements. In

contrast, methods such as [4, 100, 143] use a direct displaced frame matching

metric, which is nothing but the integrated version of the brightness constraint.

A common approach to dealing with larger displacements with the differential

brightness constraint is to spatially blur the image sequences, i.e. to consider
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lower resolution versions of the image to estimate larger displacements [49, 60].

What this suggests is a multiscale approach based on (1.16) in which we not

only have a multiresolution model for optical flow but also multiresolution mea-

surements.

4. Finally, while we have focused in Chapter 2 on a particular image process-

ing problem, the computation of optical flow, we believe that the multiscale

stochastic modeling approach can be more generally useful. In particular, it

may provide a computationally attractive alternative to standard approaches

to the broad class of estimation problems in which the underlying field to be

estimated is modeled as a Gaussian Markov random field or as the solution

of noise driven partial differential equations, or in which a "smoothness con-

straint" type regularization is employed. Viewing the multiscale model as an

alternative underlying model should lead to significant computational savings

for such problems and should also have the other benefits discussed in Chapter

2, e.g. multiresolution estimates and error covariances.

In the area of Markov random field modeling via multiscale models:

1. With regard to the approximate GMRF models developed in Section 3.4, there

are strong motivations for the consideration of alternatives to wavelet transforms

for the approximate representations used in our multiscale models. For instance,

it is certainly possible to consider non-orthogonal multiresolution approxima-

tions to the values of MRF's along 1-D boundaries. Indeed, one possibility is to

use linear or higher-order polynomial interpolation - i.e. to perform generalized

mid-point deflection along each of the I-D boundaries. Also, and perhaps more

importantly, wavelet packet basis functions [I 44] may provide lower-dimensional

approximations for some GMRF's, such as the "wood" texture discussed in Sec-

tion 3.5, in which the random field has bandpass (i.e. oscillatory) rather than

low-pass characteristics in one or more directions. Indeed, techniques such as

in [361, suggest the idea of choosing the "optimal" set of basis functions within

some class , where optimality might be measured in terms of the compactness of
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the representation, i.e. in terms of the order of the approximate model required

to achieve an acceptable representation.

2. While the results in Chapter 3 demonstrate that MRF models can be repre-

sented within the multiscale model class, this alone is not enough of a reason for

choosing the multiscale framework as a basis for the development of statistical

signal processing algorithms and applications. In particular, although the re-

sults demonstrate conclusively that the multiscale modeling framework is quite

rich, to obtain substantial computational gains over standard MRF approaches,

models more parsimonious than the exact MRF representations are likely to

be required. Our development and use of approximate models for GMRF's in

Chapters 3 and 4 suggests that the exact MRF representations can be used

to guide the effort to obtain such models. While we have concentrated on the

Gaussian case, in our opinion the multiscale framework also holds substantial

potential for the development of other, non-Gaussian models, and associated

optimal signal processing algorithms, and the results of Chapter 3 provide one

starting point for that effort.

In the area of likelihood calculations:

1. The texture classification application in Chapter 4 might be just the first step in

an effort aimed at the development of supervised, and ultimately unsupervised,

image segmentation algorithms. The richness of the multiscale model class

suggests that it may be possible to develop a framework applicable to a broad

range of problems. Moreover, many of the current approaches to segmentation

utilize not only a stochastic model for the random field measurements given

the segmentation structure (the "label field"), but also a stochastic model for

the segmentation structure itself. What this suggests is a multiscale framework

for segmentation based on multiscale texture models and multiscale label field

models.

2. One important aspect of the multiscale framework yet to be developed is a set

of tools for building multiscale models directly from data. The likelihood cal-
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culation framework is an integral part of this set, but there are of course many

others. For instance, it is quite important to identify rich subclasses of the ba-

sic model (1.16) which are in fact identifiable. That is, as is wen known in the

case of standard time series models 7 not all parameterizations lead to a unique

solution of a max-imum likelihood formulation of the identification problem [83].

For instance, given some set of model parameters, scaling the driving noise gain

matrix B(s) by a constant factor, and scaling the measurement matrix C(S) by

the inverse of that factor, leads to a different set of model parameters with an

identical measurement covariance structure. In fact, there are actually many

other interesting issues that arise in the context of system identification theory

for multiscale models. that do not arise in the standard time-series case. For

instance, the identifiability of multiscale model classes will depend on whether

measurements of the process are available at several scales, or just at the finest

scale. A thorough understanding of such issues will allow for much wider appli-

cation of the multiscale modeling framework.

Finally, there are a number of possible applications of the smoothing error models

discussed in Appendix A:

1. One of the applications of smoothing error models for the standard time series

model (1.19) is in the area of updating and combining smoothed estimates

as new information becomes available [11]. An entirely analogous application

can be developed for our multiscale models. A problem related to updating of

estimates is that of developing time-recursive multiscale models and algorithms.

One may be interested in, for instance, a filtering problem in which at each point

in time measurements of a multiscale random field are available and are used

to update estimates of the random field available from previous measurements.

When the time evolution of the random field is a trivial mapping, i.e. the process

is assumed to be static, then this is really just a multiscale version of the

updating problem mentioned above. However, when non-trivial dynamics are

involved the problem becomes much more interesting. For instance, dynamics
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will necessarily change the correlation structure of the multiscale process so that

it may no longer correspond to our standard model (1.16). If the multiscale

structure is preserved, then the estimation problem at each time step can be

solved with the multiscale framework already available. Thus, it would be

of interest to identify classes of dynamics which do preserve the multiscale

structure of the process, or which change the dynamics in such a way that

they can be well approximated within the multiscale framework.

2. The development in Chapter 2 of an approach to finding the optimal level at

which to represent the optical flow field was based on the smoothing error covari-

ances P(s). Other approaches to this same problem could be developed based

on the information about the correlation structure of the error process that the

smoothing error model provides. For instance, one might look at the errortb(s)

in estimating the driving noise terms w(s). By projecting both sides of the

basic modeling equation (1.16) onto the space spanned by the measurements,

and then subtracting this from (1.16), one obtains:

i'(s) = A(s)V(s,�) + B(s)iv-(s) (5-9)

This can be used to obtain the error covariance of ib(s) in terms of the error

covariance mamatrix associated with the pair (;i'(s), Intuitively, if the

error in estimating w(s) is comparable to the a-priori covariance of w(s), then

the data provide essentially no information about the scale-to-scale evolution

from x(sj) to x(s), and this suggests that, for the sake of simplicity, it would

be preferable to represent the optical flow field at the coarser level.
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Appendix A

Smoothing Error 1\4odels

We derive here a multiscale model for the error process associated with the smoothed

estimates of ,P(s) (1.16). Smoothing error models have been previously derived for

the smoothing error process associated with the time-recursive Gauss-Markov model

(1.19) and applied to the problem of combining smoothed estimates based on in-

dependent measurements [II]. This application, as well as several discussed in the

conclusions of this thesis, provide motivation for the r esults presented here.

Given the model (1.16) and the measurements (1.20), the two-sweep algorithm

described in Chapter I computes, at each node s of the tree, the smoothed estimate

;P(s), i.e. the best estimate of x(s) based on all of the data. What we show here is that

the associated error, P(s) _= x(s) - ;i'(s), satisfies a multiscale difference equation

of the form (1.16). We begin by noting that the error i(sjs) =_ x(s) - i(sis) in the

estimate of x(s), based on measurements at a and in the subtree below, satisfies a

certain conditional independence property. In particular, let T, be defined as the set

of nodes which includes s and nodes in the subtree below s 7and Tc its complement.

Then:

Ej.�(sjs)ji(o-js), o- . Tcj (A. 1)

where Fc(o-js) =_ Ejx(o-)jYj. To see this, note that using the upward and downward

dynamics (1 -16), (1.2 1), we can represent x (u), o, E Tc as a linear function of x (s�)
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plus a linear function of driving noise terms. For instance:

X(S�') = F(3flX(s + tb(s (A.2)
2x(s�'ctj) = A(s CtI_)F(.5�)X(s�) + A( S�2a,)7b(Sj) + B( 312C,,)W(8�2a,) (A-3)

In general, we have that:

X(U) + �O(C) (A.4)

where �o(o-) is orthogonal to x(s�), the set of states {x(,�)Jq C- T.1, and the corre-

sponding set of measurements f y(�)!,; E TJ. It follows then that:

E{;i(sjs)j;i(o-js), o- G T,'j Ef s;ffl

+

(A.5)

Thus, using (A.1), the upward dynamics (1.21) and the upward sweep prediction

equation (1-37) we can write:

;i(sjs) = P(sls)F + tb(S) (A.6)

where tb(s) is independent of i(o-js), o, E T, and has covariance:

P(.91s) - P(sls)F T(S)p-, (s�1s)F(s)P(s1s) (A. 7)

Next, note that the independence of tb(s) and i(o-js) for c- E Tc implies that tb(s)

is also independent of the residual information about x(s) which is contained in the

set of all available measurements YO, but not contained in Y,. In particular, at each

node in Tc a residual component v(als) which is orthogonal to the measurements in
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the set Y, can be defined as:

v(als) = y(o-) - Ejy(c)IYj (A-8)

= Y(a) - C('Y)�C(O'Is) (A-9)

Denoting v, v(a Is), a E Tc 1, it is clear that

span Yo = span {Y,, v.1 (A.10)

and that v, Y,. In addition, since v(o-1s) = C(s)i(,Yjs) + v(s), we have that

7b(s) I v(o-1s) for all o- E Tc. Taking the expected value of both sides of (A.6),

conditioned on knowledge of v(o-1s), a E Tc, and using the orthogonality of tb(s) and

the residuals v, we obtain:

Eji(sjs)jvj = P(sls)F T(S)p-1 (sjIs)Ej.,'c(s,�Is)jvj (A. 1 1)

Subtracting (A-11) from (A.6) and using (A.10) we obtain:

i'(s) = + tb(s) (A. 12)

which is a multiscale model for the smoothing error of precisely the same form as

(1.16). Furthermore, using the Lyapunov equation for (A.12) and defining J(s)

P(s1s)FT(S)p-l(s,�1s) as in (1.45), we obtain:

p.(S) = j(S)p'(s�)jT(S) + P(sIs) - P(sls)F T(S)p-1 (sjIs)F(s)P(sIs)

= p(SIS) + j(Syp,(S�) _ p(S�18)jjT(S) (A. 13)

which agrees with the recursion in (1.44).
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Appendix B

Appendices to Chapter 2

BA Non-homogeneous Tree Structures

We made the assumption at the beginning of Section 2.2 that the image lattice is

square, and that the number of rows is equal to a power of two. The reason we have

done this is because of the fact that the multiscale model describing the optical flow is

defined on a quadtree structure. There are at least two ways to relax the assumption.

First, we could simply zero pad C(s) on the image lattice to make it fit the quadtree

structure. This corresponds assuming no information is available about the (non-

existent) optical flow in that region. A second, slightly more elegant approach, would

be to change the modeling structure to accommodate the lattice. In particular, we

would Eke to have a structure which gives us the proper number of nodes on the

finest level. The quadtree structure is homogeneous in the sense that each parent has

four offspring; what we are proposing are non-homogeneous tree structures in which

different parents may have different numbers of offspring. For example, suppose one

had a 6 x 9 lattice. Figure B-1 illustrates a sequence of grids that one might use to

model a random field defined this lattice. In the first level, the root node has six

offspring, two in the row direction and three in the column direction. At the second

level, each node has nine offspring, three in the row direction and three in the column

direction. Thus, at the finest level there is a 6 x 9 lattice. This example illustrates

only one simple suggestion. More complicated tree structures could be derived, and

185



4� 4� 4�

Figure B-1: Non-homogeneous tree structure for lattices which are not square. The
grid structure is a simple extension of the quadtree structure in that it allows for
varying numbers of "offspring" from each parent. The figure illustrates a hierarchy
of grids for a 6 x 9 lattice.

certainly the idea could be combined with zero padding.

B.2 Iterative Approaches to Computation of the

Smoothness Constraint Solution

We discuss in this section two iterative algorithms that can be used to compute the

solution to Horn and Schunck's smoothness constraint formulation of the optical flow

problem. One can show using the calculus of variations that the solution to (2.4)

satisfies the following set of coupled partial differential equations [62]:

172xi = R-'E.�, (Et + VE x) (B. 1)

172X2 = R-1 E,� (Et + VE x) (B.2)

where-

E E

(9Z, (Z1, Z2, t) (B -3)
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19 E(zj, Z2, t) (B.4)E,2 JZ2

Et = E(zi, Z2, t) (B.5)

OZ1 OZ2 T
x = - (B.6)

at at

and where 7 2 is the Laplacian operator, xi and X2 are the first and second compo-

nents of the vector x, and R is the parameter controlling the tradeoff between the

smoothness and data dependent terms in (2.4). Denote x(i, j) _= x(ih, jh, t) where h is

the grid spacing. Discretizing (B -1), (B -2) on a uniform grid f (i, j) ji E f 1 Z, 1, i E

f 1, ---, Z211 leads to the following equations at each point:

J�j - 4xjj, h2R- 1 E, (E., xiij + E., X2,ij+ Et) (B. 7)

-t 2- 4X2,1,.7' h'R-'E, (EzI x Iij + E, X2,ij+ Et) (B -8)

where:

Xiij (B.9)
X(ili)

X2,ij

i xi'i-ij + Xii+lj + xlij-1 + xlij+l (B-10)

�t 2 X2,i-lj + X2,i+lj + X2,ij-1 + X2,ij+l (B-11)

The GS and SOR algorithms separate the image grid into two sets of points. These

are generally referred to as the Red points (i + j is even) and the Black points (i + j is

odd). The Gauss-Seidel iterations can be derived by solving (B.7) and (B.8) for xlij

andX 2,ij:

GS Red Points

Xnt� = (�,n - h 2R-1 E,,r Xn i', + Et))Idlij (B 12)1413 1 , (E Z2 2,

Xnt� = (�,n - h 2R- 1 E-., (Ez, Xn+1 + Et))/d2,ij (B 13)
2,,,j 2 i'i'j
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GS Black Points

X 71 1 - h 2R- 1 E, (E Xn i', + Et))Idlij (B. 14)
1.1,1 Z2 2,

Xr.,' I = (j�n+ I - h 2R- 1 Ez (E, Xnt� + Et))Id (B.15)21tj 2 2 1,1,3 2,ij

where:

4+h 2R-'E 2 (B. 16)2 j Z1

d2,1,j' 4 + h 2R-1E 2 (B. 17)
Z2

The SOR algorithm is very similar to the GS algorithm, except that certain relaxation

parameters are introduced to increase the convergence rate. The SOR iterations are

given by:

SOR Red Points

Xnt 1- = (I ZVI "")X" + Wi'i'j h 2R- 1 E-,, (E�, Xn i', + Et))/di,�)3.18)1,1,3 113 2,

Xnt� = W2, I.,,)Xni,, (.;�n 2 Xnt� J3
2,ij 2 + W2,ij 2 h R-1EZ2(Ez, 1,1,3 + Et))/d2,( -19)

SOR Black Points

Xnt� = (1 _ Wl,,,.)Xni,, + Wj',',(.tn+1 - h 2R-1 Ez, (E Xn i', + Et))/ du&. 2 0)
1,1,3 I 1 1 Z2 2,

Xnt� 2 (Ez� Xnt� + Et))/ d(,4.21)
-,,)Xni,, tn+l -1 E,2,ij = - W2,& 2 + W2,ij( 2 - h R 1113

where:

Wj'' 2 (B.22)
+ p2,,,j) 12

2
W2,z"J - I (B.23)

2
2 7r

(COS - + (B.24)
-OS1,ij zi + I f2 + 1)
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P2,ij 2 Cos - 7 + Cos - 7r (B.25)
T2,ij Zi + 1 Z2 + 1

From (13.12), we see that each GS iteration requires 10 adds and 4 multiplies per

pixel per iteration. From (B. 18), we see that each SOR iteration requires 12 adds and

6 multiplies per pixel per iteration'. Thus, GS and SOR require 14 and 18 flops per

pixel per iteration respectively.

B.3 MR Algorithm Computational Complexity

Analysis

In this section we analyze the computational complexity of the MR algorithm. The

analysis applies to the specific model used in the optical flow application. The model

is repeated here for convenience:

x(s) = x(s�) + (b4 2 ") )w(s) (B.26)

Y(s) = C(s)X(s) + V(s) (B.27)

W(s) - JV(O, I) (B.28)

v(s) - Ar(O, R(s)) (B.29)

X0 - V(O, PI) (B.30)

where R(s) = max(IIC(s)l 12, 10). The analysis below takes into account an floating

point adds, multiplies and divides.

Consider first the update step given by (1-33) - (1-36). P(sIs+) is initialized with

PI. Computation of V-1(s) requires 6 floating point operations (the inverse requires

1 divide since V(s) is a scalar and the comparison required to compute R(s) is not

counted). Computation of K(s) requires 3 flops. Computation of P(SIS) requires 7

flops (Perform the C(s)P(s Is+) first, and use the fact that P(s Is) must be symmetric).

'AU additions and multiplications which are redundant from iteration to iteration have been
ignored. For instance, I - wlij does not count as an add in (B.18) since one could compute this
once at the start instead of every iteration.
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Initialize ii(sjs+) with zero. Computation of i(sis) then requires 2 flops. The update

step is required only at the finest level, since this is the only place we have data for

in the optical flow problem. Thus, the total computation associated with this step

is 18 x 41 flops (1 is defined to be the number of levels in the quadtree. There are 41

points at the finest level.)

Next, consider the prediction step, (1-37) - (1-38). Computation of P(s1sai)

requires 5 flops (note that F(s) and Q(s) are diagonal multiples of the identity).

Computation of the predicted estimate ii(sisai) requires 2 flops. These computations

must be done at levels I through 1. Thus, the total computation associated with this

step is approximately 7 x 4/3 x 41 flops.

Next, consider the merge step, (1-39) - (1.40). Computation of P(sls+) requires

44 flops (there are five 2 x 2 inverses requiring 6 flops apiece, and the computation

of (1 - q)P,-' is negligible since it only varies with scale. The inverses require only

6 flops because the matrices involved are 2 x 2 and symmetric.) Computation of

ii(sjs+) requires 36 flops. The merge step must be done at levels 0 through I - 1.

Thus, the total computation associated with this step is 80 x 1/3 x 41 flops.

Finally, consider the steps in the downward sweep, (1.43) - (1.45). Computation

of J(s) requires 12 flops (the matrix P(s�js) has already been inverted in (1.40), F(S)

is a multiple of the identity and J(s) is symmetric.) Computation of P'(S) is not

required, unless one is explicitly interested in the error covariance of the smoothed

estimate. Computation of i�'(s) requires 10 flops. The smoothing step must be done

at levels 1 through 1. Thus, the total computation associated with this step is 22 x 41

flops.

We can now add up all of the computations associated with the MR algorithm.

There are 41 pixels in the problem domain, and thus the algorithm requires 18+28/3+

80/3 + 22 = 76 flops per pixel. We note that this is a lower bound on the number of

flops per pixel in any implementation of the algorithm and that the implementation

with the lowest number of flops per pixel may not be the best. The reason is simply

that there may not be enough memory available to keep all. intermediate calculations

around (such as the inverses computed in (1.40) and reused in (1.45)). We compute
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the complexity of the GS and SOR algorithms in the same way (i.e. all intermediate

results are assumed to be available), and thus the computational comparison we

make between these algorithms is based on optimal (in terms of the number of flops)

implementations. Suboptimal implementation of the MR algorithm win lower its

computational advantage, but any reasonable implementation (for instance one which

saves just i(sls), P(s!s) and the measurement data) will still provide a significant

savings over the SOR and GS algorithms.



Appendix C

Correlation Computations for

I\4ultiscale G1\4RF 1\4odels

The correlations required in a p"-order multiscale GMRF model require the compu-

tation of 2P I-D Fast Fourier Transforms (FFT's) per level. To see this, recall that

the state x(s) of the multiscale model at any given node s is just a linear function of

the values z(ij) of the Gauss-Markov random field:

x(s) = Lz (C-1)

where z is a lexicographic ordering of the GMRF values and L is a matrix. As in

Chapter 3, we denote the correlation matrix of z as R.. and the 2-D Fourier transform

operator by F. Recalling that the 2-D Fourier transform diagonalizes Rzz:

FRxF* = A (C.2)

where A is a diagonal matrix containing the eigenvalues of R.., we have that:

P. = (LF*)A(FL T) (C.3)

For a p'h_order model describing an N x N random field, L is a (16 x 2P) x NI matrix,

with each row corresponding to one component of the state x(a). Each component of
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the state corresponds to the inner product of a dilated and translated mother wavelet

with an appropriate subset of the state. Consider the first component of the state and

the corresponding dilated and translated wavelet. Associated with that same dilated

and translated wavelet are 15 other components of the state. The subsets of GMRF

values corresponding to these other 15 states are just "shifted" versions of the subset

of values corresponding to the first state (e.g., in Figure 3-13, consider the two states

corresponding to "upward" and "downward" pointing triangles, A and 7) and hence,

using the shifting properties of the 2-D Fourier transform, it is clear that one really

only needs to compute one 2-D Fourier transform in order to calculate the components

of FL' corresponding to the first component of x(s) and its 15 counterparts which are

based on the same translation and dilation of the mother wavelet. With a bit more

thought, it is clear that these 2-D Fourier transforms can actually be computed with

I-D Fourier transforms, because of the fact that the components of x(s) correspond

to horizontal and vertical lines in the random field lattice, which implies that each

row of L can be thought of as the lexicographic ordering of a separable 2-D function

defined on the image lattice. As a simple example of these points, suppose we had a

random field defined on f 0, 1, 2, 31 x f 07 1, 2, 31 and that the first component of the

state x(s) corresponded to the average of z(O, 0) and z(O, 1), i.e., the first row of L

was given by:

LI O'... , 01 (C.4)
L

which is just a lexicographic ordering of:

I I 0 0

0 0 0 0 (C-5)

0 0 0 0

0 0 0 0

It is clear then that the 2-D Fourier transform of this array can be computed using

only I-D Fourier transforms. Likewise, if the second component of the state, L2 Z,

193



corresponded to the average of z(1, 0) and z(1, 1), which in turn corresponds to:

0 0 0 0

1 1 0 0 (C.6)

0 0 0 0

0 0 0 0

then clearly the shifting properties of the 2-D FFT can be used to calculate FLT2

directly from FL T

The situation for the first component of the state as described above is identical

to that of the other 16 x 2P - I components of the state, hence, computatation of the

correlation structure of the entire state , as given by (C.3) requires 2P FFT operations.

For stationary random fields, these computations are the same for states at the same

level, and hence 2P FFT's are required per-level.
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Appendix D

Appendices to Chapter 4

DA Likelihood Calculations for Singular P, and

P (S I Y-)

In this appendix, we discuss a generalization of the likelihood calculation algorithm

which allows for singular state and state estimation error covariance matrices P, and

P(sjY). The need for such a generalization arises from the fact that the states of the

multiscale approximate GMRF models introduced in Chapter 3 may contain redun-

dant information about the MRF values they describe. Hence, the state covariance

matrix P, may be singular, and this will lead to singularity in the error covariance

matrices P(sjY) as well.

There are actually two ways to deal with this singularity problem. Not surpris-

ingly, both generalizations involve the use of pseudo-inverse matrices [22]. Given a

symmetric matrix P of rank r, we can decompose it as:

P = UAUT (D. 1)

where A is an r x r diagonal matrix containing the eigenvalues of the matrix P, and U

is a matrix made up of the eige.-avectors of P corresponding to non-zero eigenvalues.
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Then, the so-called Moore-Penrose pseudo-inverse is given by':

P' = UA-' UT (D.2)

The first, and most obvious, approach to dealing with singular P, is to just elim-

inate the redundant state information so that the inverse of P, is well defined. A

decomposition of the state covariance at each node as above can be used to do this.

In particular, given a decomposition:

PI U. A, UT (D -3)

as above, define:

UTX(S) (DA)8

Note that the covariance matrix of X-(s) is full rank and that, because x(s) must be

an element of the column space of P, x(s) = UUTx(s). Hence, the dynamics of the

reduced order state and corresponding measurements are given by:

�c(s) = UTA(s)x(s,�) + UT B(s)w(s)8

= UT A(s)U,;�Z(s�) + UT B(s)w(s)

= A(s).;�(s�) + P(s)w(s) (D.5)

Y (S) = C(S)U.UTX(S) + V(S)
= C(S)i(s) + V(S) (D.6)

Likewise, the second-order statistics of the state are governed by the Lyapunov equa-

tion:

-(S)TI p,Ejj�(s)x (D.7)

'This definition of the pseudo-inverse applies only to symmetric matrices, which is sufficient for
our purposes.
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= A(s)AyA'(s) + P(j)Bl(s) (D.8)

Now , to compute the likelihood of a set of observations {y(s)j, the algorithm of

Section 4.2.2 can be applied directly.

A second, more direct approach to dealing with singular covariance matrices,

is to allow for their presence by modifying the equations describing the likelihood

calculation algorithm. The first place that we run into inverses of covariance matrices

is in the definition of the upwards model for the multiscale process (1.21) - (1.25),

which involves P,-'. A more general backward model which allows for non-invertibility

of P. is:

P(S)X(S) + tb(s) (D-9)

Y(S) C(S)x(S) + V(S) (D. 1 0)

where:

F(s) P. -t AT pI (D. 1 1)

[17V( 7T(S)]E P., - P.;y A T(S )P,'A(s)P.-� (D. 12)

Q(S) (D. 13)

where tb(s) I x(a) if o- = s or o,, is a descendant of s.

Singular covariance matrices also will be a problem in the merging formulas (4-16)

(4.17), (4.24) - (4.25). As we show below, these equations can be replaced by:

Y"i) P (3 I I's') P, (S I Y'.j) -� (s I Y'.j)
+ Pt(sjYc,,)-,"(sjY,,',j)] (D.14)

P(Slylcli) = RI - OP't + Pt(SJI-""j)]t
[Pt(S11--i-) + Pt(sjy'c"i� - P't]t (D. 15)
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and

+ P'(slY.) (D.16)

(D. 17)

To see this, note that the subspaces spanned by Yci-i and Y.,i are orthogonal con-

ditioned on knowledge of x(s). Hence, grouping the measurements which span these

subspaces into vectors:

vecfY(C)IY(O-) E Y"'I (D. 18)

vecf y(a) jy(o-) E Y..i I (D. 19)

we have:

H"'-'U.U�x(s) + v"'-'

Y 8 8
fl..i-1 �Tc + VCq_1 (D.20)a (9) a

y.ai H..j U. UT x (s) + vci

+ V""j (D.21)

where the additive noise terms are orthogonal, v'i-I I v,,,,,i, and where, given a de-

composition of P, as in (D.3), we have defined the reduced order state as (D.4). Also,

we define the covariances of the noise terms above as R'i-1 and Rmi, respectively.

Using standard formulas for the estimate of �c(s) based on measurements of the form

(D.21), we can compute:

i(Sly'ai) UI�401_.J

u,, I + TY T R- 1 ftsaj RL, R- 1 ysajSai Sai Sai
(PI + U.U�HLR-' H,,.,UUT)H T R-1 y, (D.22)

Seti act Scei

198



with corresponding error covariance given by:

P(Sly',) U'P(311"'JUT
ET T U, (P,- I+ ALR-' Rll-XTU-1-1UT
8 sai

IUT(pt + U. UT HL, R- 1 H,,,,i U. UT)U,]-'UT
, a acti

(Pt - U.UTH' R-'H,,iu.UT)t (D.23)

Inverses of covariance matrices are often interpreted as information matrices, and the

formula above can be interpreted in the same way. In particular, what (D.23) says

is that the total information about x(s), given by P(sJYcj)t, is equal to the prior

information Pt, plus the information in the measurements, UUTHLR-'HaiUUT.

Note that this latter term involves the matrix UUT, which is a projection matrix onto

the column space of P,. The interpretation of this is that, since x(a) is constrained

to lie in a certain subspace, only measurements in certain directions provide new

information about it.

Similar analysis can be used to show that:

Pt + u uT )T )-lHai - 1 Ul UT) (HscxiIT(Hctl-l (Rct'-' (Rcz'-')-lya'-' (D.24)

(Pt + U.UT(Hc'i-,)T (R`i-1)-1Hai-1U.U T)t (D.25)

Then, using the formulae,

X X

(Blylai) = P(.31ylclli)lp-l(slyclli-,)��(.91yai-,)+P-'(,91Y..,)�l(.91Yai)](D.26)
roei-1 -1 (D.27)P(Siylai) = [P-1(sils ) + P-,(-qlyl.i) - P.-i]

and the fact that 49) = Uj�(s), (D-14) - (D.15) follow. With a similar analysis

(D.16) - (D.17) can also be shown to hold.
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D.2 A Minimum Distance Classifier

We discuss in this section a minimum distance classifier approach to texture discrim-

ination, which is based on that in [23]. Suppose noise free measurements z(ij) of

a random field are available, and that we wish to choose which among a number of

competing GMRF models, characterized by parameters Op, p = 17 2, - .. ' P, best rep-

resents the field. Suppose further that we can estimate the model parameters directly

from the data and that we call this estimate �. Then the minimum distance classifier

classifies the texture by choosing the model which is closest in parameter space to

Model class arg min 110 - Opjjw (D.28)
P

where W is a diagonal weighting matrix.

The key component of such a classifier is clearly the algorithm for parameter

estimation. In [241, a consistent estimation scheme is proposed for the class of GMRF

models (3.160). In particular, define h as a vector of estimates of the coefficients hA,,l

in (3.160). Since it is required that hkj = h-k,-i, h will have half as many elements

as any lattice site has neighbors. In particular, set:

h = [E Q(i, j)QT(i, j)] -1 [E Q(i, j)Z(i, j)] (D.29)

2 = I hTQ(i, j)]
O' MI M2 EIZ(i1j) - (D .30)

where:

Q(i, j) vec[z(i - k, j - 1) + z(i + k, j + 1), f (-ki -1), (k, 1) E DI] (D-31)

.and define � = h, O" 2 1. As shown in [23j, these parameter estimates are consistent,

although they are not generally efficient or unbiased.

The weighting matrix W and. the model class parameters OP are generated during

a training phase which uses the estimation procedure above. In particular, given a set

of sample paths, all of which are assumed to correspond to a single GMRF model, we
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estimate for each sample path the model parameters. For the pth model, let us denote

these as O', i = 1, 2, N, where N is the number of available testing samples, andP

also let O',j denote the 'th component of O'. Then the jth component of the "trained"P I

parameter set OP used in (D.28) is given by the sample mean (11N) Ej O',j, and the

j1h weight is given by the inverse of the corresponding sample covariance. In our

experiments in Section 4.3, we used 1000 training experiments for each test (i.e.,

each set of 1000 trials corresponding to a specific lattice size, measurement domain,

GMRF pair and SNR). The MD-classifier was trained on the noisy data, not on

noise free samples of the random field. In fact, the MD-classifier does better when

trained on noisy data, than when trained on noise free data or when given the actual

parameters. This is because the MD-classifier does not take into account the presence

of noise. Hence, if the comparison (D-28) is done with respect to the actual random

field parameters, as the SNR falls the MD-classifier chooses the candidate which is

closest to white noise, since the estimates of hA,,l approach zero. This effect can be

offset to some extent (and better performance is thereby obtained) by training on the

noisy data in the first place, which is what we have done.
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