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ABSTRACT

Let A be a finite-dimensional, associative, semisimple algebra over
a field F. A generalization of the discrete Fourier transform is pre-
sented; this transform permits efficient multiplication of elements of

A: one multiplies corresponding projections of each element in the

simple subalgebras into which A decomposes. It is demonstrated that when
F contains at least [A:F] elements, the number of these simple sub-
algebras equals the number of distinct irreducible factors of the char-

acteristic polynomial of the regular representation of the general

element of A. A new explicit calculation of this polynomial is given

for an arbitrary algebra of a finite abelian group over a field with a

primitive root of unity. Several examples are considered in detail:
quotient polynomial rings, abelian group algebras, dihedral group alge-

bras, and generalized quaternion group algebras.

This thesis emphasizes the minimization of nonscalar multiplica-

tions. A theorem previously promulgated is proved correctly: if ft(z),

a polynomial of degree n, has k distinct irreducible factors in F[z],

then computing products in F[z]/(7(z)) requires at least 2n-k nonscalar

multiplications.
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1. IJTRODUCTION

Introduced by Cooley and Tukey in 1965 [C2], the fast Fourier trans-

form (FFT) algorithm has influenced many researchers--particularly those

in digital signal processing and in the theory of computation. Using the

FFT, academicians have discovered efficient algorithms for multiplying

polynomials and multiplying large integers; in both cases the concomi-

tant convolutions are computed with a FFT [Al) [B3].

Multiplying polynomials ni=0 a i and I bj yields an acyclic

convolution of the coefficient vectors [a0 al ... anl] and

[b0 bl ... b 1 ]:

-l . n 1 2n-2

t ai.zI I b zj = cz , ck = a.b..
i=O ) j_0 k=0 i+j=k 1

n
Suppose one multiplies these polynomials modulo z -1. This operation is

then a (convolutional) multiplication of elements of the group algebra

F[Zn ], where F is a field and Z is the cyclic group of order n. We ob-

tai(n-1 zi n-1 bjzj ) _n-l k
tain (io ai z )(' bjzj) L- k=O Ckzk mod (z -1), where

ck a.b. = a.b + a .b.

i+j-k mod n i+j=k i+j=k+n

for k = 0, ..., n-l. In this case the coefficient vector [c0 c1 ... cn_ 1]

is the cyclic convolution of [a .... a _ and [b b 3. One can
In]d0 n-_ O n-e

use the discrete Fourier transform to calculate a cyclic convolution:

if a(z), $(z), and y(z) are polynomials of degree n-l, then y(z) =

a(z)3(z) mod (zn-1) if, and only if, a(w k)(wk) = Y(k) for every k =

O,1,... ,n-l, where w is a primitive nth root of unity. The vector whose
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components are a(w), cz(w ), .. , c(n-l ) is the discrete Fourier trans-

form of the coefficient vector ([a ... a n_l] of a(z) = a + alz + ...

n-l
anl z

More generally, consider multiplication of elements of the group

algebra C[G], where G is a finite group. If a = ZgcG agg and B =

fgEG bgg, then

Y = c hh, where ch = a b -1h for hEG.

hEG gcG

These products arise in filtering problems for random finite group homo-

morphic sequential systems, studied by Willsky [W1]. A probability dis-

tribution on the state variable is expressed as an element of the group

algebra C[G] in which G is the state space; distributions for input and

output variables are treated analogously. Employing the irreducible,

inequivalent matrix representations {T , ... , Tm } of G, Willsky defines

for the probability distributions a transform yielding a set of matrices.

Let .i be the dimension of T- for i = l,...,m. Then the transform pair

for C = O gG a g is

Ci(o5 ) = - Ia Ti(g1) for i = l,...,m;
n EG

m 1 .

a I I Ci (C)k T (g)jk'

i=l j=l k=l jk

where C (a)jk is the j,k entry of Ci(a), and Ti(g)jk is the j,k entry of

T (g), and superscript t denotes the transpose of the matrix. To obtain

the transform of the convolution of two pobability distributions, one
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multiplies corresponding matrices of the transforms of the distributions:

3~ = Y if, and only if, ci(c)ci () = Ci(Y) for i = l,...,m.

Fiduccia [F1] noticed that the FFT algorithm computes a discrete

Fourier transform by successive division of polynomials. For instance,

if the polynomial Oa(z) has degree 7 and c is a primitive eighth root of

unity, then one evaluates a at U , U, ... , 
7 as follows:

=(z) = [ (Z)(z W - ) - 4)(Z - 2)( - c6)] + G (Z)

'(z) = ()(z) [ (z - c)) ) )(z4) ] + C00(z)qo0= q1 (zZ)[( z z - w2) (z -6)] + a0 (z )

a (z) = q0 0(z) [(z - H) z - 4 ) + e (Z)= q0(z)(z - O) (z - W)] + ao(z)

01 01) (z ) + ()%10 (z) = q 0 0 (z)( (Z ( - O) + a(O1)
= q0 0 1 (z) (z - 5) + C(W2 2ll (Z) = ql10(z)(z - 3) + a((U3)

= qlll(z)(z - 67) + a(U76)

4. Write () mod l(Z) for the remainder (residue) when isdivided by 1; for instance, (z) = (z) mod (z - 3). For any poly-CL (z) (z) (z )1 + a(W
10 q1 00

5 5

=q (z) (z - )+ a(W

Each polynomial division can be performed rapidly because every divisor

has the form - for example, (z - U ) (z - U)) (z H U)) (z - U))

4 4
z - W) Write '(z) mod P (z) for the remainder (residue) when ( is

divided by '1; for instance, ca(w ) = Ca(z) mod (z - w ). For any poly-
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nomials 4, f1' and 42' 
(
4 mod (412)) mod 41 = ~ mod 1' This fact

justifies the FFT.

The inverse FFT interpolates a polynomial by the reverse process--

successive polynomial multiplication. For the example above the inverse

transform reconstructs a(z) from the values a(w ), a(w), ..., c(w7).

The FFT and its inverse each require O(n log n) total arithmetic opera-

tions for a polynomial of degree n. In fact, Morgenstern [M2] established

a O(n log n) lower bound on the number of arithmetic operations used by

any algorithm computing the discrete Fourier transform with additions 

and multiplications only by scalars of modulus -l.

Rader [R1] and WinogradlW6] discovered variants of the FFT. Rader's

modification computes the discrete Fourier transform when n, the degree

of the polynomial, is prime. Related to Rader's idea, Winograd's innova-

tion is particularly fast for small n.

Generalizing the FFT, Moenck and Borodin [Ml] [B2] devised algo-

rithms for rapid modular representation of polynomials and Chinese re-

maindering. Let a(z) be a polynomial of degree n, and let Wl(Z), .

4n(Z) be relatively prime polynomials. Suppose we wish to calculate the

residues a(z) mod 4 l (z), ..., a(z) mod n(z); if all 4i have the form

z - ui, then this calculation evaluates cX at u1, ..., un . Imitating the

FFT, one divides successively by products of {,1' ... ' }: viz.,
1 n

1l2 n 2 4, . nnnln; n-3n-2n-ln 2 12 3 4' ' n-l n;

41 , ... , n. This Moenck-Borodin algorithm uses O(n (log n) 2 )

total arithmetic operations.
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Conversely, let 4l(Z), ... , pn(Z) be relatively prime polynomials.

For any polynomials al(z), ... n (Z) such that deg a < deg 'i for each

i, the Chinese Remainder Theorem asserts the existence of a polynomial

a(z) such that (z) - ai(z) (mod 4i(z)) for i = l,...,n. Define Vi(z)

and 4.(z) for i = 1,...,n so that

(n
Ti(z) = H Pk(z) / i(z) and

tk=l / Wi(Z) and (1.2)

)i(z)Ti(z) - 1 (mod ~i(z));

one can choose each i. so that deg .i < deg ~i. Then

n
Ot(z) = ~ i(z) (z)z .(z) (1.3)

i=1

has the desired property. When all pi have the form z - u. for some

scalars ui, equations (1.2) and (1.3) are the Lagrange interpolation

formula. Suitably reversing the Moenck-Borodin algorithm for calculating

modular residues produces a rapid Chinese Remainder Algorithm that uses

2O(n (log n)2) total arithmetic operations on problems of size n. One

may find complete expositions of modular algorithms and the FFT in (Al]

and [B3].

In this thesis we consider efficient computations of products in

finite-dimensional, associative algebras, particularly semisimple alge-

bras. All algebras in subsequent chapters are associative and finite-

dimensional over a field.
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In Chapter 2 we present a model of computation--the straight-line

program--and define the multiplicative complexity of an algebra to be the

minimum number of nonscalar rudimentary multiplications necessary for

computing products in the algebra. We then give a brief exegesis of re-

cent results on quotient polynomial rings, including a correct proof of

a theorem announced by Winograd [W5]: the multiplicative complexity of

F[z]/(71(z)) is at least 2n-k, where n is the degree of w(z) and k is the

number of its distinct irreducible factors.

After summarizing definitions and properties of representations of

semisimple algebras, we define the general element i of a semisimple

algebra A and the characteristic polynomial X of the regular representa-

tion of i. We establish a one-one correspondence between distinct, irre-

ducible factors of X and the irreducible, inequivalent representations

of A when the base field is sufficiently large.

Using the structure of the semisimple algebra A over a field F,.we

devise a generalization of the discrete Fourier transform: to multiply

elements a and B of A, one multiplies the projections 'of a and B in the

simple subalgebras of A; each projection is a small matrix with entries

in a division algebra over F. This technique uses fewer nonscalar multi-

plications than others.

Chapter 4 presents examples to illustrate the ideas of Chapter 3.

Related to our general methods are known algorithms for quotient poly-

nomial algebras and abelian group algebras.. For quotient polynomial al-

gebras and abelian group algebras in which the base field contains a

primitive root of unity we calculate the characteristic polynomial of



the regular representation of the general element. Furthermore, we give

algorithms for computing products in algebras of dihedral groups and

generalized quaternion groups. We consider algebras of these groups not

only over the complex numbers C, but also over the reals IR and rationals

In Chapter 5 we suggest topics for further study.
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2. BACKGROUND

2A. The Problem

A finite-dimensional, associative algebra A of dimension n over a

field F is simultaneously a ring (A,+,',0,1) (with multiplicative iden-

tity 1) and a vector space of finite dimension n over F. An algebra

is semisimple if it contains no nilpotent left ideals: for no left ideal

J in A and no positive integer m does {u1 u2 '''U ml every uiEJ} equal (0),

the zero ideal. Let {vl, v2, ..., v } be a basis for algebra A over

field F. Elements of A have the form alv1 + a2 v2 + ... + a v, where

the coefficients a1, a2, ..., an are in F.

Example. The complex numbers C form an algebra of dimension 2 over

the real numbers (R. Elements of C can be written al'l + a 2'Ci with al,

a2 in R. Any finite-dimensional extension field is an algebra over the

base field.

Example. The noncommutative division ring of real quaternions %

is an algebra of dimension 4 over R with basis 1, 1, 3, 1 and multi-

plication defined by

,2 A
2 2 4B 4,

K = -K = = -1K = J 

Each quaternion has the form ao + ali + a2j + a3k, where a, a, a and

a3 are in 8R. Analogously, one can define quaternions over any field F:

F = {ao + all+ a2 + a3kl a+ a', a2, a3 in F}. If char F = 2, then F

is not semisimple because 1 + 1 generates a nilpotent left ideal.
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Example. Let r(z) be a polynomial in F[z]. The quotient ring

F[z]/(7(z)) is an algebra over the field F of dimension deg I, the degree

of r. This algebra is semisimple if, and only if, the irreducible fac-

tors of T(z) in F[z] have multiplicity 1. If an irreducible factor T (Z)

of r(z) has multiplicity greater than 1, then the ideal generated by

ir(z)/07T(z) is nilpotent.

Example. The algebra F[G] of a finite group G over a field F is

the set of all formal sums agG ag'g with every a in F. Multiplication

of elements of F(G] is defined by

( eg g ] bg = Ch h, where ch = X a b -lh.
gEG G hG gEG

Suppose G is abelian and the prime p divides the order of G; let e be

the identity of G and let g in G have order p; if F has characteristic

p, then the ideal in F[G] generated by g - e is nilpotent, and hence

F[G] is not semisimple. For any algebra F[G], Maschke's Theorem [C3]

asserts that F[G] is semisimple if the characteristic of F does not

divide the cardinality of G. Much is known about the representations

of semisimple algebras of finite groups over algebraically closed fields.

We seek efficient algorithms for computing products of elements in

finite-dimensional, associative algebras, especially semis'imple algebras.

Our model of computation is the straight-line program. For each algebra

A we devise a straight-line program P that computes the product of a pair

of elements of A. Let {vl, ..., v } be a basis for A. To multiply a =

avv and +bvyielding y =lcv + ... +
n nn 1 1 n n 1
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cnvn, we input {a1 , ..., an, b1, ... , bn} to P, which calculates

{c, ..., c . Think of {a , b . .. , b } as a set of indeter-
1' n 1 n 1 n

minates; the c 1 , ... , c are bilinear expressions in {a1, ... , a } and

{bl, ..., bn}.

Formally, a straight-line program for our problem is a finite se-

quence of statements l 82, ... r of the form:

(a) k ak for k = 1,...,n;

(b) 0k + bk-n for k = n+l,...,2n;

(c) for k > 2n either

(i) 0k + uG. for some scalar uEF, some i < k; or

(ii) 8k + 8i + 8j for some i, j < k; or

(iii) k+ i *· j for some i, j < k.

Define an evaluation of a statement to be the map 8: { l, ... , 8 } +
r

F[al,...,anb l .. b n] such that

8e() = ak if 1 < k < n,

(0 k) = bkk(O bk-n if n+1 <, k < 2n,

-(0 ) = u (0i) for form (i),

k0) <= .i ) + t(8j) for form (ii),

&(0k) = 8(Oi) &(jM ) for form (iii).

The program P computes Y = 0a from {al, ... , an b, .. , b } if for

somek ... , of P we have c = (kl), ... , c = n( kk' k k1 kn
1 n 1 n
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Example. Suppose we multiply complex numbers over the field of

reals: a = (alv1 + a2V2 ) (b V 1 + b2V2 ) = (cV 1 + c2v 2), where c 1

a 1- a 22 and c2 = ab2 + a 2bl A straight-line program for the

product is:

91 al 85 81 83 810 1 + 82

2 a2 86 + (-1)85 911 3 + 84

3 1 87 82· 4 12 10' 11

84 + b2 88 (-1)87 813 12 + 86

0+9 + 05 0 + 0
89 f 85 + 88 14 + 813 + 88

This program computes ca because cl = (8 9) and c2 = O(e14).

A statement of type (iii) is a nonscalar multiplication if neither

1(9i) nor (0 j) is an element of F. (Recall that al, ..., a , bl, ...,

b are indeterminates.) For instance, the program in the example above
n

contains three nonscalar multiplications. For every algebra A we desire

a program for computing products in A having the fewest nonscalar multi-

plications. The multiplicative complexity of an algebra is the minimum

number of nonscalar multiplications necessary for computing a product in

the algebra. The multiplicative complexity of A over F is at most the

2
square of the dimension n = [A:F]: one could compute a set of n prod-

ucts {a. b. I < i n, 1< j< n}; the c1, ..., c are linear combinations
1 3 n

of elements of this set.

Assessing the algebraic complexity of a problem, researchers often

count only multiplications because on an electronic computer multiplica-

tions generally require more time than additions: the number of multi-
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plications seems to characterize the speed of a program. We ignore

scalar multiplications (cf. [F2], [W3]). When the base field is the

field of rationals £, scalar multiplications by fixed rational numbers

can be simulated by additions.

Because we compute bilinear forms, we may assume that all nonscalar

multiplication steps, when evaluated, are products of linear combina-

tions of the given indeterminates.

Theorem 2.1 ([W3], [B3, p. 35]). For every program computing a set

of bilinear forms in {a1, ..., an} and {b1, ..., b } there exists another

program computing the same set of bilinear forms with the same number of

nonscalar multiplications, each of which, when evaluated by the map A,

has the form L1L2, where L1 and L2 are linear combinations of {a1 , ...,

an, bl, .. , b }

In a bilinear program all nonscalar multiplications have the form

L'L 2, where L1 is a linear combination of {al, ..., an} , L a linear

combination of {b, ..., b}.

Theorem 2.2 ([Pl]). If the {a ..., an } do not commute with the

{b1, ..., b }, then for any program computing bilinear forms in {a1, ...,

an} and {b1, ..., bn } there exists a bilinear program computing the same

forms having the same number of nonscalar multiplications.

Theorem 2.3 ([P1]). If the {a1 , ..., a I do commute with the
1' ·n n

{bl, ..., bn } [the usual case], then for any program P computing bilinear

forms in {a1, ..., an} and {b, ..., bn } there exists a bilinear program
1' n 1' n
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computing the same forms having at most twice the number of nonscalar

multiplications in P.

Hopcroft and Kerr [H2] demonstrated that commutativity can reduce

the number of nonscalar multiplications. If m > 5, the product of

m x 2 and 2 x 2 matrices over a commutative ring can be computed with

fewer nonscalar multiplications than for the product over a noncommuta-

tive ring.

2B. Prior Results

Winograd [W3] first established a general framework for obtaining

lower bounds on the number of nonscalar multiplications needed to com-

pute functions. His technique and related techniques of Fiduccia are

summarized in [A1] and [B3].

Fiduccia and Zalcstein [F2] derived a lower bound on the multipli-

cative complexity of division algebras.

Theorem 2.4 (IF3]). Let V be a division algebra of dimension n =

[I:F] over a field F. The multiplicative complexity of D is at least

2n-1.

Using the Chinese Remainder Algorithm extensively, they constructed

an efficient algorithm for computing products in quotient polynomial

rings. Let lr(z) be a fixed polynomial of degree n in F[z] having prime

factorization r(z) = 7rl(Z) l 2 (z)2 .. kr (z)Vk; let n. = deg i Vi for

i = l,...,k.
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Algorithm 2.5. To compute the coefficients {c0 , ... Cn-l } of the

n-i
product Y(z) = (z) (z) = co + cz + ... + Cnlz -1 of (z) = a0 + alz +

n-1 n-1
+ a z and l(z) b +b z + +b z from {a, a, ... ,

n-la0 1 n- 0 l1

an_l, b0 ., bnl } in F[z]/('i(z)).

Step 1. Perform Step 2 through Step 4 for i = 1,...,k.

Step 2.- Compute &i (z) = c(z) mod 7Ti(z)Vi and Wi(z)

W(z) mod Ti (z)Vi; the degrees of the polynomials &i(z) and ~i(z)

are at most n.-l.

Step3. For any 2n i-I distinct elements u
1, u2 , ..., U2ni-

in F multiply ai(uj) i(uj ) for j = 1,2,... ,2n -1.

Step 4. Using the Lagrange interpolation formula (.a special

case of the Chinese Remainder Algorithm), recover the polynomial

Yi(z) = [(i(z) i( z) mod ((z - u1 )'' '(z - u 2ni 1 ))] mod .(z) vi

The product of a. (z) and B3,(z) has degree at most. 2n.-2; thus,

A A

(Z =a(z)(3 z) mod ((z - u1 )' (z - )).
i i' U 2ni-

Step 5. Use the Chinese Remainder Algorithm to obtain y(z) =

c(z)f3(z) mod 7T(z) from all the i(z) = W(z)H(z) mod i (z)Vi. 0

The idea implemented in, Steps 3 and 4 also appears in the Toom-Cook

algorithm for multiplying large integers (K1]. Only Step 3 involves non-

k
scalar multiplications. There are i=l (2ni-1) = 2n-k nonscalar multipli-1 i

cations.

Theorem 2.6 ([F2]). Let the fixed polynomial r(z) have prime fac-

torization l(z) ¥'ir k(z)Vk in F[z], where F'is a field. Let n = deg rand n=g.fi1k

and n. = deg 7T for i = 1,...,k. If F has at least max f2n -I, ...

. .. ....... . ......-~~~~~~~~~~~~~~... ..
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2nk-1} distinct elements, then the multiplicative complexity of

F[z]/(7(z)) is at most 2n-k.

Furthermore, Fiduccia and Zalcstein devised an algorithm for multi-

plying elements of commutative semisimple algebras over perfect fields.

In Section 4A we shall show that this algorithm is a special case of our

general methods.

Theorem 2.7 (fF2]). Let A be a commutative semisimple algebra of

dimension n over a perfect field F. Suppose A decomposes into a direct

sum of k simple algebras: A = A] @ ... A , where each A. is simple.
1 1

Let nmax {= x [A1:F] , ..., [Ak:F]}. If F has at least 2nmax-1 ele-

ments, then the multiplicative complexity of A over F is at most 2n-k.

Proof. Each Ai is a commutative division algebra over F--i.e., a

finite-dimensional extension field of F. Since each A. is algebraic over

F, which is perfect, there exist irreducible polynomials i. in F[z] of

degrees deg Ri = [Ai:F] such that A i. F[zl/(Ci(z)) for i = 1,...,k. D

Winograd [W5] attempted to prove that Algorithm 2.5 is optimal, but

his arguments contain a flaw that we now correct. Let {a1 , ..., an }

be a set of n distinct indeterminates. Tet F be a field.

Definition. A set of r-vectors {v1, ..., v } with components in

F[a,. .. ,ana is linearly independent modulo Fr if whenever k u.v. E Pr

for someuil uik o.for some u1 , ... , u in F we have u 1 = ...- = = 0.
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Lemma 2.8. Let {v1 , ..., vk } be a set of r-vectors with components

in F[al,...,an]. Suppose k > 2 and this set has a subset of 6 vectors

linearly independent modulo Fr. Then for any u2 , ..., uk in F the set

{v. + UivlIi = 2,...,k} includes a subset of 6-1 vectors linearly inde-

pendent modulo Fr

Proof. [Al, p. 435]. 0

Definition. Let P be a program computing Mx, where matrix M has

entires in F[al,...,a ] and x is a vector with components in F[bl,...,b ].

A nonscalar multiplication in p is active if one of the operands involves

an indeterminate b. and the other is not an element of F.

The next lemma generalizes Winograd's technique for deriving lower

bounds [W3].

Lemma 2.9. Let X be a r-vector with components in F[al,...,an].

Let x be a vector of p linearly independent linear combinations of inde-

terminates {b1, ..., bn}. If matrix M with entries in F[al...l,a ] has1 n l"' n

6 columns linearly independent modulo Fr, and if 6 > 1, then any program

computing Mx + X requires at least 6 active multiplications.

Proof. Modifying the proof of Theorem 12.2 in [Al], we proceed by

induction on 6.

Case: 6 = 1. Some entry E in M is in F[a ,...,a n] ] but not in F.

Computing Mx + y requires a multiplication Eb. for some j.

Case: 6 > 1. Let b be the column vector [b ... b lt and let x =

Qb, where Q is a pxp invertible matrix with entries in F. By induc-

tion, any program P for Mx + y has at least 6-1 2 1 active multiplica-
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tions. Let 0 + 8'*0" be the first active multiplication in P:

F(e') = 4)(a ...,a) + P i i' ' ' n i=l ii

where 4 is a polynomial in F[al,...,a ] and every ci E F. Without loss

of generality, take c1 4 0. Define d1, ..., d by [d ... d] 

[C1 ** c]Q I . Then b = dP x. Assume dl 0 O without loss
p i=l ibi i=l i 1i

of generality.

From P we can construct a new program P' with one fewer active

multiplication. This new program will compute M'x' + y', where the

rX(p-l) matrix M' will have 6-1 columns linearly independent modulo F£ .

By the inductive hypothesis, P' will have at least 6-1 active multipli-

cations; therefore, P has at least 6 active multiplications.

To obtain P' from P we use a substitution argument [B3, Ch. 2].

Replace

b by -cl [~(al" '''an) + =2 cibi],
1 n i=2(2.1)

X by -d 1 (l[(al'...''an + =2 dx];

these substitutions force (80') to be zero. Compared with P, the program

P' has one fewer active multiplication.

We now define M', x', and y'. Let the ith column of M be mi and

set the (i-l)th column of M' to be

d.

-i' m. -m for i = 2,...,p.

By Lemma 2.8, M' has at least 6-1 linearly independent columns (modulo

Fr) . Let ji be the ith column of Q. With the substitution (2.1) we have
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CIx b2 -C1l (al * a n

LXJQbPi+L °0
where

c 2 c

q= C2 - -1 l *- X -

The matrix Q has p-1 linearly independent columns, and hence its row

rank is p-l. A simple calculation reveals that the first row of Q is a

linear combination of the others:

q - = Yi& (q. - 2il) for j = 2,...,p.li -- ij C'
1 1=2 1 1

Delete the first row of Q to form a (p-l)X(p-l) matrix Q'. Since Q has

row rank p-l, Q' is nonsingular. Define x' and y' by

x' = = Q' ,

-dl (a -q c (a, ... an ) )

0 -qlC a)
+M' q31 c 13 (a1 ,. .. n

Y' y + M + M' ·

o -qplc1
1 (al,... a)

Then program P' computes M'x' + y', where the components of x' are lin-

early independent linear combinations of p-l indeterminates {b2,... ,b}.
p
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The program P' computes M'x' + y', where PM' has 6-1 columns linearly

independent modulo Fr. Since P' has at least 6-1 nonscalar multiplica-

tions, P has at least 6. O

Theorem 2.10 ([W5]). Let F be a field, and let the fixed monic

polynomial T(z) of degree n have prime factorization 1
1 (z) V'''.k (z)

in F[z], The multiplicative complexity of F[z]/(l(z)) is at least 2n-k.

n-l
Proof. Part 1. Let a(z) = a + a z + ... + a z and 3(z) =

-O0 1 n-l

b0 + blz + ... + b nlZ , where aO, ... , an_ b o, ..., b are dis-

tinct indeterminates. Let P be the nXn companion matrix for (z) =

n-l n

PO + Pl Z + ' + P1Z + Z

0 0 -P0

P ~1-PP= 1 ."--.

--. 0 -Pn-2

0 = P' 1 n-1

Let x =[b b bb a= [aO a anal] t and M = aI + a P +
01 n-l 01 n-l n 1
n-l n-l

+ a 1P = [a , Pa .. , p n ]. For i = l,...,k let n. =

deg i (z)i, and let aio + ailZ + + zi 1- (z) mod 7. (zii
1 i i i 1Lnil -

V. ii
and iO * + . ,i + n (z) mod ' +(z) i; let x10 i1 1,ni-l

[1iO l. '. ii1t and a i= [ a. a The comiponents10 11 1,n10 11 component

of each x1 and ai are linear combinations of {bo, ..., b 1 } and

{aO, ·..., a_ 1}. Let P. be the n.xn. companion matrix for f.i and
0 nl I1 1 1 1

Mi iOIni + ailP i + + a. pni-l .ai]

for each i = ,... ,k.

for each i = 1,...,k.
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Computing the coefficients of c(z) (z) mod ?7(z) is equivalent to

V.
multiplying Mx; computing a(z)~(z) mod 7Wi(z) is equivalent to multiply-

~~i Vk))~1
ing M.ix . Since F[z]/(7(z)) F[z]/(Tl (z) )) * ... 0 F[z]/(7k (z)k)),

changing the basis of Mx yields

0 M 2

The Chinese Remainder Theorem guarantees that computing Mx and computing

Mx require the same number of nonscalar multiplications: an answer to

one matrix product yields, with some additions and scalar multiplica-

tions, a solution to the other product. We shall prove that any program

computing Mx must have at least 2n-k nonscalar multiplications.

Part 2. We demonstrate that all components of vectors a- are line-

arly independent linear combinations of {a0 , a l}; this result
n-l'

will imply that all components of the x are linearly independent linear

combinations of {bo ..., bn_}.

The vector space V of matrices M generated from polynomials cx(z) in

Part 1 is spanned by {I , P, ..., Pn }, which is a basis for this space;

nxn
this.-subspace V. of F has dimension n. Changing the basis, i.e.,

mapping matrices M into matrices Mi, is an invertible transformation from

V to V, a vector space of matrices M; since V has dimension n over F,

the space V also has dimension n.

The entries of each matrix M. are linear combinations of {i 0o, ... ,
1 i

.i, nic }. .Let R be the set of pairs (i,j) such that {.ij. (i,j) e R}1, ni-l
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is the set of all a.. that can be obtained from linear combinations of
13

{cij I (i,j) E R}. Suppose, contrary to what we want to prove, R has

fewer than n pairs. Then we can obtain all matrices El by linear com-

binations of

i (i,j) R

0 "-0

But then V is spanned by fewer than n matrices, and °V has dimension less

than n. Having obtained a contradiction, we conclude that all the aij

are linearly independent.

Part 3. We revise the proof of Theorem 4 in [W5] to show that com-

puting Tx requires at least 2n-k nonscalar multiplications.

For i = 1,...,k, define ~i to be the one dimensional subspace of

Fni spanned by the row vector [1 0 0 ... 0]. One may verify that if

w e Wi, then for any one-variable polynomial 4 of degree deg 4 < ni,

wo(Pi ) = 0 only if 4 = 0. Let W. be the subspace such that Fni =
1 1n

Wi W. This subspace W. includes {w e Fnil there exists some nonzero

polynomial ) of one variable with deg 4 < ni such that yw(P i ) = 0}.

Let t be the minimum number of nonscalar multiplications required

for computing a (z) (z) mod 7 (z). By Theorem 2.1, we may assume _ x = K4,

where K is a nxt matrix with entries in F, and the components of L are

the results of nonscalar multiplications involving the indeterminates

{a0, ..., a _l b ... , b 1}. Because the first column of M contains
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only zeroes and the linearly independent expressions 1 0 ' 11' '''

,nl-1 ' for no row vector v in F does vM equal zero. Therefore, K

has rank n; assume that the first n columns of K are linearly independ-

ent. Let Q be the nxn nonsingular matrix such that QK = [I , K'],

where I is the nxn identity matrix and K' is a nx(t-n) matrix.

In order to apply Lemma 2.9, we shall find a row vector c in Fn

with at most k nonzero components such that the n columns of the lxn

matrix cQ1 are linearly independent. It will follow that computing

cQMx = cE[I K' ]? requires at least n nonscalar multiplications; be-

cause c has at most k nonzero components, c[I ' K' ]~ can be computed

with only k + (t-n) nonscalar multiplications. Thus, we shall show that

k + t - n 2 n.

To find this vector c, we seek some linear combination cQ = d of k

rows of Q such that if d is partitioned [dl i d2 ... d ], where each

each d. has n. components, then d. % W. First, partition Q =
-1 . -1i 1

'Q -... ,' Q ], where each Q comprises ni columns of Q. For each i

write Qi =i + Qi such that every row of Qi is in Wi and every row of

7-i ^1 ^k -Il Bk
Qisin W Let Q=Q [ ... ] and Q Q ... 1. Because

Q - Q + Q is nonsingular, the map v vQ is surjective onto Fn . Thus,

the range of Q is all of W1 0 ... · Wk; that is, for every w in W1 d ...e

Wk there exists v in Fn such that w = vQ. The matrix Q has k linearly

independent rows {qj , ..., q I because W ... W has dimension k.
Let y k 1 k

Let y = [l' , k] be any row vector in Fn such that Y E Wi and

yi .0 for i = 1,...,k. Some linear combination of {qj , ..., q }

equals y. There exists a vector c in Fn having at most k nonzero com-
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ponents (viz., at positions jil ..., jk) such that cQ = y. Let d =

dl d... , I] = cQ. Since each yi y 0, each di Wi.

Finally, we demonstrate that the n columns of cQM = dM are linearly

independent modulo F = F. For any u10 Ull, ..., ul 1n -' U2 0 ,

Uknk-l in F, if

n.-l
*k 1 1

i=l j=0 j

is in F, then it must be zero; this result implies that

n.-1

d. X u..PJ = 0 for i = l,...,k
1 ij ij=0

because all components of all a- are linearly independent. Since every

di P W i, every Uij = 0.

Ergo, by Lemma 2.9, computing cQx requires at least n nonscalar

multiplications. Hence, k + t - n > n, and t > 2n - k. O

In Winograd's proof [W5], the rows qj , ... , qk are chosen accord-

ing to a different criterion, essentially that the part of .qj in Q

be nonzero; some of the jQ may be the same. In this case the desired c

vector might not exist. For instance, suppose F = F2, k = 3, n = 6,

nl = n2 = n3 = 2,

r1 0 i0 O 1 0 i 0' 0
? 1 1 0 1 0 1 0, 1 0 

O O O 1 0 0 Q O O-0 O O 1 0 0 0 o 0 0 0 0o

o 0 o 0 0 1 o Lo O: o o 1 o
n n iO n n ! n 1 n0 n ' n n ! n n
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Jl = 3 = 1, and j2 = 2; note that Q is nonsingular. Then

[1 1 0 0 0 0] = [O 0 1 o 1 0], [1 0 O O O 0]Q = [1 0 O 1 0],

and [O 1 0 0 0 O]Q = [1 0 O O0 0 0], none of which yields the vector

y = (1 0 1 0 1 0].
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3. REPRESENTATIONS AND ALGORITHMS

3A. Preliminaries

In this section we collect definitions and theorems from standard

textbooks [C33 and [Ill], assuming that the reader is familiar with

algebra at the level of [J1]. As usual, all algebras are associative

and finite-dimensional over a field.

Definition. A ring satisfies the minimum condition if it has no

infinite descending chain of ideals.

Every finite-dimensional, associative algebra satisfies the minimum

condition.

Definition. A ring is simple if it has no nontrivial two-sided

ideals.

Theorem 3.1 (Wedderburn). Every simple ring with minimum condition

is isomorphic to a full matrix ring over a division ring.

Definition. A ring is semisimple if it includes no nilpotent left

ideals.

Theorem 3.2. Every semisimple ring with minimum condition is iso-

morphic to a direct sum of a finite number of simple subrings with mini-

mum condition.
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Theorem 3.3 (Maschke). The algebra F[G] of a finite group G over

a field F is semisimple if the characteristic of F does not divide the

order of G: i.e., if char F 4 card G.

Definition. A representation of an algebra A over a field F is an

algebra homomorphism from A into the endomorphisms (set of linear trans-

formations) EndF(V) of a vector space V over F; the space V is the

representation space. The dimension of a representation is the dimen-

sion of its representation space. If the representation space is A,

then the representation is regular.

Definition. A matrix representation of dimension r of an algebra

A over a field F is an algebra homomorphism from. A into a subalgebra of

rXr
F , the ring of rXr matrices over F. The left regular matrix repre-

sentation PL with respect to a basis {v, ... v } of A is an algebra

homomorphism from A into FnX where n = [A:F]; for any a in A,

j = PL (a) ljvl + + PL (a) njVn j = 1...,

defines the i,j entry of PL(X)ij of PL(a).

A matrix representation is a coordinatized version of a representa-

tion. Any representation T is defined by the values T(v i) for i =

1,...,n if {v1 , ..., vn is a basis for the algebra. We shall use the

word representation for both the homomorphism and its values.
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Definition. ·A matrix representation of dimension r of a group G

over a field F is a group homomorphism from G into the group of invert-

rxr
ible matrices in F .

Any matrix representation of a group G over a field F extends

naturally to a matrix representation of the group algebra F[G] and,

furthermore, to the algebra EIG] over any field E that includes F.

Example. With respect to the basis {1, ", i, Z} the left regular

matrix representation of the real quaternions (. is

aO -al -a 2 -a3

rL · + + al + a23 + a3 a a3 a 1

2 3 a 0 -a1

a3 -a2 al a0

Example. One can define the regular matrix representation of the

polynomial algebra F[z]/(lT(z)) in terms of the companion matrix P for

0 ~n1 n-1
n(z) = PO + P1Z + ''' + Pn-1z + z:

O 0 -p0

1 O° -P

P=1,"" * . .0

% -P
n-2

L0 11 -P n-l

The left regular representation with respect to the basis (1, z, ... ,

n-l
z } isFS~~~~~P = .,
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n-l n-1
PL a0 + az +... + an-lZ a0I + a n-l
L 1 n-1 '

where I is the nxn identity matrix.

Examle. Let {g , ... , g} be an ordering of a finite group G.

The i,j entry of the left regular matrix representation of the element

of FG is ( ak if, and only if, gi = gkgj-
i= igi ofL ij '2.

Definition. Two matrix representations T and U of A of dimension r

are equivalent if there exists a fixed invertible matrix S in F r such

that T(a)S = SU(a) for all a in A.

Definition. A representation T of an algebra A with nonzero repre-

sentation space V is reducible if there exists a nontrivial proper in-

variant subspace W of V satisfying

T(a)w E W for all a E A, all w E W;

otherwise, the representation is irreducible. The representation is

completely reducible if for every such invariant subspace W of V there

exists an invariant subspace W such that V - W * W.

Theorem 3.4. A finite-dimensional, associative algebra is semi-

simple if, and only if, every reducible representation is completely

reducible.

For any algebra A and representation T of A with representation

space V one can make V into a (left) A-module by defining scalar multi-

plication by
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av = T(a)v for all a in A, all v in V.

Call this A-module irreducible if T is irreducible.

Theorem 3.5. If A is a semisimple algebra, then every irreducible

A-module is isomorphic to some minimal left ideal of A (i.e., a left

ideal that properly contains no nontrivial left ideals).

Theorem 3.6 (Schur's Lemma). If A is a finite-dimensional, asso-

ciative, semisimple algebra, then the endomorphisms of any irreducible

left A-module form a division algebra; if the base field F is algebraic-

ally closed and X is an irreducible left A-module, then EndA(X) = F.

The simple subalgebra of A including a minimal left ideal J of A is iso-

morphic to a matrix ring over this division algebra defined by J.

Definition. A field F is a splitting field for the finite group G

if every irreducible representation of G over F extends to an irreducible

representation of E [G] over E for every extension field E of F.

The splitting field of a group is related to the splitting field of

a polynomial. A field F is a splitting field for the cyclic group Z of

order n if, and only if, it is a splitting field for the polynomial

n n
z - 1 because F[Zn] F[z]/(z - 1).

Corollary. If G is a finite group, then any algebraically closed

field is a splitting field for G.
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3B. The General Element and its Characteristic Polynomlial

From the theorems in the last section one can deduce that a (finite-

dimensional, associative) semisimple algebra decomposes into a direct

sum of full matrix rings over certain division algebras. We define the

general element 4 of an algebra and study the characteristic polynomial

of the regular representation of i. The factorization of this polyno-

mial yields information on the sizes of these matrix rings and division

algebras.

Definition. For a semisimple algebra A over a field F the general

element of Ais =x 1 + 2 2 + ... + x v , where v, , v } is a

basis for A and x1, ... , x are distinct indeterminates over F.n

The left regular matrix representation of the general element i is

P () xP )v + ... + nP(V)L iVL 1 nL n

which has entries in F[xl,...,Xn]. Let X(X) denote the characteristic

polynomial of pL(4): i.e., X(X) = det (XI - PL(C)), where I is the

nXn identity matrix.

We first establish a lemma crucial to the proof of our main result.

If ((x1,...,xn) is a polynomial in F[xl,...,x ], then write p(u1 ,...,u )
n n n

for the value in F resulting from the substitution of u. for xi, i =
1. 1

1,...,n, in p. Recall that the degree of a multivariate polynomial is

the maximum of the degrees of its terms:
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deg (X, 1 ... ,xn ) = max {v1 + *.. + Vnl X l'...xn Vn

appears in A}.

For instance, deg X(X) = n.

Lemma 3.7. Let F be a field of cardinality f 2 n (f may be in-

finite). Let xl, ..., x be indeterminates and let R = F[xl,...,x ].

Let l(X,x1 ... ,Xn) and 2( ,Xl...,xn) be monic polynomials in R[A] of

degree less than n in F[A,x1 1..., Xn]. If for all u1 1 ..., u in F the

irreducible factors of P!(A,u 1,...,un) divide 42 (X,u 1 ,...,u ) in F[A],

then all irreducible factors of P1 (X,Xl,...,xn) divide 42 (A,xl,...,x )

in RI[].

Proof. It suffices to demonstrate that if l(A,ul,... ,u.)

2 (X,u 1 ... ,un ) in F[X] for all elements ul, ..., u in F, then 011~ 2

in R(A].

Since ~! and 2 are monic in RIX], one can use the division algo-

rithm for polynomials to write

2 (X,xl'-.,xn) = l (X,xl"...x n)q(Xxl ....,x ) +

r(1,xl,... ,x n ) .

Let r(X,xl,... ,X) = (d(xl, . Xn )d + ... + 4 0 (1 , ... ,x) and 6 = deg r;

since deg 2 < n, 6 < n. By hypothesis, j(ul,... ,u) = 0 for each j

nand every selection of ul, ..., un from F.

Case: F infinite. This property of each .j implies that .j = 0

for all j. Therefore, r = 0 and .l11 2 in R[X].
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Case: F finite. Suppose Aj d 0. If for some u2, ..., u in F we

have j(x1,u 2,..,u) u 0, then the polynomial

It (x1 - u) = x 1 -x 1

uEF

divides xj(xl,u21 ...,un) in F[x1] because P j(u,u 2, . . . , u) = 0 for every

u in F; but since the highest power of xl in 'j is at most 6 and

f > n > 6, we have a contradiction. Therefore, for all selections of

u2, ..., u in F we have .j(Xl,U2,...,un ) O0. Now consider 'j as a

polynomial in x: j = k k(X2 x n)xlk , where each jk 

F[x 2 '...,Xn]. We know that 'Pjk (u2 . ,un) = 0 for every selection of

u2' ..., un in F, and deg 'jk < 6 < f for every j,k. By induction every

jk = 0, and hence 'j = 0. Since 'j = 0 for every j, r = 0, and 11|2' a

The hypothesis on the cardinality of the field F cannot be weakened.

For example, let !( ,xl,x 2,3,xX4) = A + (x1 2 + x2 + x3 + x4),

2(XXlX2,X3Xx4)= X2( + (x + x + + x4) ) xx 2 + xx2xl +

2 2
x3 x4 + x 4 x3 , and F = F2, the field of two elements. Then

(X'U 1'U2'U 3'U4) 2(X'Ul'U2 U3'U 4) for every selection u1 , u 2, u3, u4

from F, but l(A,xlx 2, X3,X 4 )t P 2 ( ,X1 X2, X3 X4) in F [(,X, 2,x3,x4 ].

Thus, the ideas expressed by Lemma 3.7 seem inadequate for establishing

our main result for arbitrary fields.

Because F[A,x ,...,x ] is a unique factorization domain, X(A) has
r1 n

a unique prime factorization into powers of irreducible factors.
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Theorem 3.8. Let XfA) be the characteristic polynomial of the

regular representation of the general element i of a semisimple algebra

A of dimension n over a field F of cardinality card F > n. There is a

one-one correspondence between the irreducible factors of X(X) and the

inequivalent, irreducible representations of A over F; for each irre-

ducible representation T the characteristic polynomial of T(S) is a

power of an irreducible factor of X(A).

Proof. Part 1. All inequivalent, irreducible representations

appear (with some multiplicity) in the regular representation (Theorem

3.5).

Part 2. If representation T is reducible, then clearly the charac-

teristic polynomial of T(C) is reducible.

Part 3. We must show that if T is a representation of dimension

r • n such that the characteristic polynomial 4(X,xl,...,x ) of T(S) has

nontrivial distinct irreducible factors in F[r,xl,...,x ], then T is

reducible.

Let (,Xl,.x n )= l( 'Xl ''Xn) 2(X'xl' 'xn)' where 1 and

02 have no irreducible factors in common; equivalently, the greatest

common divisor of 01 and 02 is a scalar in F. Assume 1 (A) and ¢ 2(A) are

monic and neither is a scalar. Since the dimension of T is at most n,

deg ( -< n, and so deg P1 < n and deg 02 < n.

Let {vl, ..., v } be a basis for A. Define W = {wEFrl for all u =

ulv1 + ... u v in A, 1 (T(u),u1 ,...,un)w = 0}. It suffices to show that

W is a nontrivial proper subspace of Fr invariant under T. If w E W and
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u ulv1 +...+unvn E A, then T(u)w E W because 4l(T(u),u 1 , -.. ,un) T(u)w =

T(u)4l(T(u),u l,... u n)w = 0. Thus, W is invariant under every T(u).

Claim: W 3 Fr . Suppose, to the contrary, W = E' Then

Pl(T(u) ,Ul, ..Uu n ) O0 for every u = v + ... + unv in A, and the

minimum polynomial of T(u) divides l(X,ul,...,u n). Since the minimum

polynomial and the characteristic polynomial have the same irreducible

factors, all the irreducible factors of 42 (Aul,... ,u) are factors of

4l(A,ul,...,un ) for every selection of ul, ..., u from F. By Lemma 3.7,

the irreducible factors of 2(X,x 1,...,xn) divide 41(,xl,...,x ) .

Contradiction.

Claim: W $ 0. Suppose W = 0. Then for no nonzero w in F
r does

'~(T(),xl1 ,. . . ,x n )w = 0. Therefore, l1(T()',xl, .. ,x n) 0. Since

~(T(i),xl, .xn ) = 0 and (Al,xl= .. ( n , (X'X1 l Xn)

2 (,xl,...,oXn), we must have 02 (T(),xl,...*,xn) = 0. For every u =

uV 1 + ... + un in A, p2 (T(u),u 1,.,un) = 0, and the minimum poly-

nomial of T(u) divides p2 (X,Ul,...,un). As in the I&ast paragraph we

derive a contradiction.

Ergo, W is a nontrivial proper subspace of F invariant under T(u)

for all u E A, and T is reducible. O

Let {J1' ' ' J } be a complete set of nonisomorphic minimal left

ideals of the semisimple algebra A over field F whose cardinality is at

least as large as the dimension of A. Each Ji is isomorphic to the

left A-module engendered by an irreducible representation. For i = 1,

... ,m define the division algebra Vi = EndA(J ) and let . = [J :p3].
1 1 1 i
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From [C3] we know that A ~ A1 @ ... A , where each A. is a full pixpi1 m I. 1 1

matrix ring over i., and n = [A:F] = i pi [ )i :F ] . Each simple alge-

bra Ai is a direct sum of pi copies of Ji. Let X(A) be the character-

istic polynomial of the regular representation of the general element of

A, with prime factorization X(X) = Xl() l.-.Xk( ) k . Let deg Xi = n1

Then k = m and we can reorder the Xi or Ji so that ni.i = i i2[Di:F] for

every i.

For each i = 1,...,m, because A. is a direct sum of pi copies of Ji.,
1 1

the ith representation occurs pi times in the regular representation,

and therefore, pil|vi. Thus, in some cases we can calculate each pi and

[iV:F] from n. and V.. For instance, if n = 3 and V = 2, then p4 = 1
1. 1 1 4 4

and [( :F] = 6.

Example. Since the real quaternions % form a division algebra, %

has one simple component (itself); Q. is isomorphic to a lxl matrix ring

over itself. The characteristic polynomial of the regular representation

of the general element x0 + x + x2 + x3 of % is

2 2 2 2 22
( -2xOA + (xO + x1 + x2 + )) In this case n = 4, k = 1,

nl = 2, V1 = 2, p1 = 1, and [P:IRJ = 4.

Intuitively, the general element epitomizes all elements of an alge-

bra; the characteristic polynomial of the regular representation of the

general element summarizes the properties of the representations of the

algebra.
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3C. An Algorithm for Products in Semisimple Algebras

We present a class of algorithms for multiplying elements of a

semisimple algebra A over a field F. As in the last section, let A de-

compose into a direct sum of m simple algebras Ai, i = 1,...,m; each A.

is a full pixPi matrix ring over a unique division algebra Di. Let

[A:F] = n and let {v, ..., vn } be a basis for A. Let {T1, ..., T} be

the inequivalent, irreducible Iatrix representations of A over F, with

Ti corresponding to Ai for each i.

Like Winograd [1W3], we can cast the problem of multiplication in A

in terms of a matrix-vector product. If a = alv1 + ... + anvn, l =

b 1 + + bv , and a clv + ... + c v ,then

[:: = PL(a) {] (3.1)

Changing the basis of the algebra changes the matrix and vectors in (3.1)

by only additions and scalar multiplications. Thus, a change of basis

yields a computationally equivalent matrix-vector problem: a program

for the new problem can be modified to produce a program for the original

problem with the same number of nonscalar multiplications, and vice

versa. The caracteristic polynomial of the regular representation of

the general element of A remains invariant under change of basis.

With a, particular change of basis we can block-diagonalize the reg-

ular matrix representation so that each matrix representation Ti occurs

i. times along the diagonal. Let ni = [Ai F] = i [Di :F], and let
1 1 1 1 1~~~
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VI' ., v' } be this new basis, where for each i
Vin I 21 mnm

{v', ...* v' } is a basis for A.. Let p'(a) be the left regular matrix
il 1 ini i1 L

representation of a with respect to the new basis. Let = b v + ...

+ b' v' . Conmputing (3.1) is equivalent to computing
mn m mnm

p6 (a) ( (3.2)

Lb '
mnm

1 -.

T1 (a) binT

T2 ()21 

Tm bm

0 Tm(a) b'
mnm

Each Ti has dimension i[ Di:F] = ni/Pi. For each i we have

° 0 i( in i

this matrix-vector product involves ii smaller products of Ti by a ni/Pi-

2
vector. The ith product, (3.3), can be calculated with ~i(ni/Pi) =

i3[ i:F]2 nonscalar multiplications. Therefore, we can calculate (3.2)

with E1=li [D i :F]2 nonscalar multiplications.
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Example. In the quotient ring Q[z]/(z + z - 6) - ~[z]/(z + 3) *

Q[z]/(z - 2) the computation of cO + clz = (a0 + alz)(b0 + blz) mod

(z2 + z - 6) can be expressed in two equivalent ways:

cOs1 -aO 6al - b01 - Co+2Cll -ao+2al °O 1 b0 +2b1

[c3 L:a ao-a b] c:'3Cl] L3 -O. aO-3alb - 3b

The first matrix is the left regular matrix representation of a0 + alz

with respect to the basis {1, z}, the second with respect to the basis

+3 z 2 z
5 5' 5 5

We now present an algorithm that also uses i 3l :F] 2 nonscalar

multiplications in the worst case, but fewer in several important cases.

Let fli be the natural epimorphism of A onto Ai. Because A A ...

* Am, there is a one-one correspondence between elements of A and

m-tuples of their projections:

a + (xl(),...,qm(a)) for all a E A.

Each hi(a) is a iixPi matrix with entries in Di..

Algorithm 3.9. To compute the coefficients {cl, ..., Cn} of the

product = = CV 1 + + Cn v of alv1 + .... + a v and =1 1 n:n 11 nn

blv1 . + b v in A from {al ... an, bl', --, b }

Step 1. For each simple algebra A. calculate the projections
1

A. = Ti(c) of a and B i = li(r ) of in A.. Each A. and Bi is a Uixii

matrix with entries in D..
1
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Step 2. Multiply corresponding matrices. Let Ci = A.B. for i

1,...,m.

Step 3. Find the element y of A such that the projection of y in

A i is Ci = Pji(Y) for i = l,...,m. El

In essence, we multiply the projections {A1, ..., A } and {B1, ...,

B } of a and X in the simple algebras A, ... , A. The result y is

uniquely determined by {C1, ... C }.

The algorithm employs a generalization of the discrete Fourier

transform, which maps convolutional multiplication of two vectors into

pointwise multiplication of the transformed vectors. For general semi-

simple algebras we "transform" an element into a set of matrices (its

projections), not all of which may be lXl. The "transform" of the prod-

uct of two elements equals the set of products of corresponding matrices.

To perform Step 2 we multiply PiXPi matrices with entries in D..

The matrix multiplication in A. requires at most Pi3 products of elements

of Di. Each of these products in Di requires at most [Dii:F] nonscalar

multiplications over F. Because Steps 1 and 3 comprise only additions

and scalar multiplications, Algorithm 3.9 uses at most 3 1 3 :F]2

nonscalar multiplications.

Alternatively, one could compute {c1, ..., c } by calculating

{a.b I 1 < i < n, 1 5 j < n} and taking linear combinations of these

2
products. This naive method uses n nonscalar multiplications. Since

mn 2 2 >=m 3 [D :F] , Algorithm 3.9 is superior.
2= onid [D : F] ) > caes

We consider three special cases.
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1. The divison algebra D. is commutative. For example, if the

base field F is finite, then each divison algebra pi is finite; thus, by

a celebrated theorem of Wedderburn (e.g., [Jl, p. 431]), each Di must be

commutative. One can use Winograd's algorithm [W2] to calculate the

2 2 1
matrix product A.B. with only 2i.2 + (pi - 2pi)L2(pi + 1)3 products of

1 11 12

elements of D. because D. is commutative. Moreover, the commutativity
1 1

of Di implies that it is a finite-dimensional extension field of F. If

Vi is separable over F (e.g., if F is perfect), then V. has a primitive

element: Vi - F[z]/(ri(z)) for some irreducible polynomial 7i of degree

(Di :F]. If F has at least 2[EV i :F]-l distinct elements, then Algorithm

2.5 may be used to multiply elements of pi with only 2[Pi:F]-l nonscalar

multiplications, meeting the lower bound of Theorem 2.4.

2. All i. :F] = 1. In this case the projections A. and B. in

Algorithm 3.9 coincide with the irreducible, inequivalent matrix repre-

sentations {T! , ..., Ti} of A over F: A. = Ti () and Bi = Ti ( 3) for

i = 1,..,m. Let PL(a) ' SpL(a)S be the similarity transformation

(change of basis) that block-diagonalizes the left regular matrix repre-

sentation--cf. (3.2). Calculating all products AiBi simultaneously is

equivalent to multiplying (SPL(a)S 1) (SpL()S ).

According to Schur's Lemma (Theorem 3.6), all [pV:F] = 1 when F is

algebraically closed. If A is a group algebra FIG] and F is a splitting

field for G, then all [( :F] = 1. In this latter case, to multiply
1

(gaG agg)(Cg G bgg) = (LgEG Cgg), we calculate

A Ti () = agTi (g), Bi Ti () = £ bgTi(g)
g1G gEG
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for i = 1,...,m in Step 1 of Algorithm 3.9. Modifying the inverse trans-

form of equation (1.1), we obtain

m pi pi -i
-l= I - - (AiBi ) jkTi(g )kj,

g i=l j=l k=l

where (AiBi)jk is the j,k entry of AiBi and Ti(g-1 is the k,j entryi'i jk ent

of Ti(g ).

3. The simple algebra Ai is commutative. Because A. is a full

ring of pixPi matrices, pi = 1; otherwise, if pi > 1, we could find a

pair of matrices that do not commute. Then Ai is isomorphic to the

division algebra Di, and the discussion for a commutative pi (above) ap-

plies. Fiduccia and Zalcstein [F2] studied commutative semisimple alge-

bras over perfect fields, in which the simple component algebras Ai are

separable extension fields (Theorem 2.7).

In general, we might need fewer than pi [Vi:F] nonscalar multipli-

cations to multiply the matrices AiBi in Step 2 of Algorithm 3.9. Multi-

plying a pair of Ixe matrices over any ring requires at most 0(1
°og 27)

nonscalar multiplications (over that ring) [Al]. Fischer [F3] has dem-

onstrated that at most 3.912 10g 2 7 total arithmetic operations are re-

quired if p > 13. Let M(p,R) be the number of nonscalar multiplications

required to multiply two pxp matrices with entries in a ring R. For

every ring ERM(1,R) = 1, M(2 ,R) < 7 for any positive integer k [Sl],

M(2,R) > 7 [W4], and M(3,R) < 23 [Ll]. (Actually, Winograd [W4] showed

that over Q multiplying a pair of 2x2 matrices requires at least 7 non-

scalar multiplications, but his proof holds for any commutative ring;
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since any program for multiplying matrices with entries in any (possibly

noncommutative) ring can be used if the ring is commutative, we conclude

that M(2,R) = 7 for every R.)

Fiduccia [private communication] speculates that the multiplicative

complexity of any division algebra is linear in its dimension. Fast

algorithms for multiplying elements of general noncommutative division

algebras have not yet been discovered.

Conjecture. The multiplicative complexity of A over F is at least

i=l 'M(Pi',i) (2[Di:F] - 1).

Proving this conjecture seems to require two results: (1) the mul-

tiplicative complexity of A equals the sum of the complexities of the

Ai; (2) the multiplicative complexity of each Ai is at least

M(i,Di) (2[Di:F] - 1). Part (1) is related to the "Direct Sum Conjec-

ture" of [F2] and [W5]: that the multiplicative complexity of

F1(C(1) 0 T

where components of (1 ) , (2) (1)
where components of ; I _ , T , and T- are disjoint sets of in-

determinates, equals the sum of the complexities of the matrix-vector

products M((1))IT(1) and M2( (2))T (2) . Instead of disjoint sets of in-

determinates, however, we have linearly independent linear combinations

of indeterminates. Part (2) appears to be a generalization of Theorem

2.4.
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In summary, Algorithm 3.9 enables us to compute the product of two

elements of A with at most Xm pi [.-i:F] nonscalar multiplications.

The factor p.i can be replaced by the number of nonscalar multiplications

with which a pair of ixpi matrices with entries in Di can be multiplied.

2
For the factor ([i:F] one may substitute the number of nonscalar multi-

plications with which products in D, can be calculated; if V. is com-
1 1

mutative and F is a perfect field with at least 2[. i:F]-l distinct

elements, then the factor [VD:F] can be replaced by 2[i :F]-l.
ca 1erpae y2~:]l
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4. EXAMPLES

4A. Polynomial Algebras

Consider the quotient polynomial algebra F[z]/(r(z)) in which the

n-1 n
irreducible factors of f(z) = P0 + P1z + ... + P 1 z + z all have

multiplicity 1: f(z) has prime factorization l1(Z) '.'7k(Z), where h1,

... ' 7k are distinct irreducible polynomials in F[z]. This algebra is

semisimple:

F[z]/(n7(z)) = F[z]/( l(Z)) * ... · F[z)/(7k(z));

each simple component algebra F[z]/(7i(z)) is a finite-dimensional ex-

tension field of F.

For semisimple algebras Algorithm 2.5 is a special case of Algorithm

3.9. The product (a(z) mod i. (z))(3(z) mod i. (z)) is merely the product
I1

of the projections of a and B in the simple algebra F[z]/(1i(z)). The

algorithms of Moenck and Borodin [Ml] [B2] can be used to perform for

each .i the interpolation and multiple evaluation in Steps 3 and 4 of

2
Algorithm 2..5 with 0(ni(log ni) ) additions and scalar multiplications.

Furthermore, one can employ these algorithms to calculate rapidly the

residues a (z) mod 1i (Z) and 6 (z) mod 7 i(z) as well as the reconstruction

of c(z)t(z) from the a (z) (z) mod 7i(z) (i = 1,...,k).

In Algorithm 2.5 modular representation and Chinese remaindering are

used in two different ways. Steps 2 and 5 perform a transform a. (z) =

O (z) mod 71i(z) and its inverse; the polynomials 1 (z), ... , 7k z) are

uniquely determined by 7 (z). This transform corresponds to the transform
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of Algorithm 3.9: each &. is the projection of a in the simple algebra

F[z]/(Tri(z)). In contrast, Steps 3 and 4 of Algorithm 2.5 multiply the

transformed polynomials a. and .i in each F[z]/(iT(z)). The elements ul,

.., U2ni-l are chosen freely; for instance, if F contains a primitive

(2ni-l)th root of unity W and we Select u. = w for j = 1,...,2ni-1, then

Steps 3 and 4 may be performed with a fast Fourier transform.

When 7T(z) = z - 1, the algebra F[z]/('(z)) is isomorphic to F[Z ],
n

the algebra of the cyclic group Z over F. According to Maschke's
n

Theorem (Theorem 3.3), the algebra F[Z ] is semisimple if char F 4 n.

The irreducible factors of z - 1 are the well-known cyclotomic poly-

nomials when F = Q [J1]; the number of irreducible factors of z - 1 in

Q[z] is A(n), the number of positive integral divisors of n. If F = a,

then z - 1 has only linear and quadratic irreducible factors: a total

n+l ]n+l
of r 2 1 For many nrr 2 1> A(n). By Theorems 2.6 and 2.10, the multi-

plicative complexity of [z]1/(z 5 - 1) is 2S5 - A(5) = 8, whereas the mul-

tiplicative complexity of IR[z/(z5 - 1) is 2'5 - rF5+1 = 7. For any

positive integer n the multiplicative complexity of T[z]/(zn - 1) is n

because z - 1 splits into linear factors over C. Clearly, the multi-

plicative complexity of a group algebra depends on the base field. We

expect a minimum complexity. for a group algebra if the base field is a

splitting field for the group.

Example. The left regular matrix representation of the general ele-

ment i = x0 + xl z + x2 z of F[z]/(z - 1) ~ F[Z3] with respect to the

basis {1, z, z2 } is
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PL( ) = 1 0 2 

X2 X1 XO

Suppose F = £. We know that V[z]/(z - 1) " =£[z]/(z - 1) $

2 3
Q[z]/(l + z + z ), so P[z]/(z -1) has two irreducible, inequivalent

representations. Appropriately changing the basis of 9[z]/(z - 1)

changes PL () to

Xo+Xl+X2 2 

O x0 O-X2 x2-x .

0 X1- X 2 XO- x 1

Matrix representations of dimensions 1 and 2 appear on the diagonal. We

can interpret Q[z]/(l + z + z 2 ) to be a ring of lxl matrices over itself,

a commutative division algebra of dimension 2 over V. The multiplicative

complexity of Q[Z 3] is 1 + 1 (2'2 - 1) = 4.

If F = C instead of Q, then F[z]/(z - 1) has three simple component

algebras: C[z]/(z3 - 1) - C[z]/(z - 1) e C[z]/(z - a) e C[z]/(z - 2),

where w is a primitive cube root of unity in C. We can find a basis for

C[z]/(z - 1) so that PL () is

0 +X2 x 02x

0 1~2 0 1 2

0 0 X2+ 2

When the base field F is perfect one can calculate the character-

istic polynomial of the regular representation of the general element of

F[z]/(w(z)) indirectly.
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Theorem 4.1 (e.g., [C3, p. 208]). Let N be a nxn matrix with en-

tries in a field F and let a1' ' '' o be its eigenvalues. For any
n

polynomial ¢(z) in F[z] the eigenvalues of ¢(N) are (1), '..'.' (On).

Suppose F is perfect. Let P be the companion matrix for Ir(z) =

n-1 n

P0 + Pl z + "' + Pn1 + z = rl(Z)''k (z), where 71 'T k are

distinct irreducible polynomials:

0 0 -p
- Po

1 0 -

P = 1 " '.

'0 -
n-2

0 '1 -Pn

since the characteristic polynomial of P is n, the eigenvalues of P are

the roots of r. Let field E split i over F: in E[z] we have i (z) =

(z - il)'(z - ini ) for i = 1,...,k, where n. = deg ji; all roots a..
i ini 1 1 1

are distinct because F is perfect. By Theorem 4.1, the characteristic

polynomial of PL () = XO + XP + ... + X Pn - is X() =

det (i n - PL(i)) = Xl(X)'''Xk(X), where

n.

Xi() = II [A - (x0 X C + x 2+a+ Xlij + ij... + Xn-lij
j=l

For each i, the polynomial Xi(X), when written in F[A,xo,...,xn_ 1] , in-

volves only symmetric polynomials in {ail, ... , ain}. Because the co-

efficients of i. (z), with suitable changes of sign, are the values of

the elementary symmetric polynomials in {ail ' ., aini, one can compute

each Xi(X) from the coefficients of . (z).
1
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2 3
Example. Suppose the polynomial 7(z) = p0 + Pl z + P2 z + P3 z is

irreducible in F[z]. Let O1, a2, and a3 be the distinct roots of r(z)

in some splitting field E: Tr(z) = (z - al) (z - a 2) (z - 3) in E[z].

The elementary symmetric polynomials in {a1 ,' 2 ' C3 } are cO = a102 a3 ,

£ = 12 a + 23 a+ 3 1' and £2 = a1 + a2 + Ca; clearly, co = -p0,

e1 = P1 ' and c2 = -P2 ' The characteristic polynomial of the regular

representation of the general element x 0 + xlz + x2z is

0 1 2

XW) = [X-(x +x a +x Ca )2 ] (x +x CYoC222 x )] A-(x +x la +x a 2)

3 2 2O 1 1 [3x 2X1 + 2 2) x2]23

+ -3x + £ X 1 + ( 2 - 2£ )x + 2gJ X 10 21 2 1 2

+ 2(£c -2c1)X0X 2 + (£2£1 - 3O)XX2
0 11 1 2 0 2 20 12

+ 2( + 2XO X1 + (E 2 - -)x 2 ) x 

2 2 23 2 2
+ £1Xl x0x + 2 + x +( -2£2)2 

+ £1 EO X2 x1 + (£2C1 - 3£0 )x0 x1 X2 ].

Thus, when F is perfect, the characteristic polynomial X(A) is the

product of distinct linear factors in E[X,x,...,x n_] and hence has no.

repeated factors in F[X,x0 , ... ,xn.]. Each factor Xi, irreducible in

F[X,xo,...,xn_ ], corresponds to a factor ir. of a, and hence also to

the simple subalgebra F[z]/(0i(z)), as guaranteed by Theorem 3.8.
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4B. Abelian Group Algebras

We examine the semisimple algebra F[G] of a finite abelian group G

over a field F. Let n = card G. By Maschke's Theorem, F[G] is semi-

simple if char F $ n.

First, we present a new proof of Chalkley's calculation [C1] of the

characteristic polynomial of the regular representation of the general

element of F[G] when F has a primitive nth root of unity. (Of course,

if F has a primitive nth root of unity, then char F 4 n necessarily.)

The proof hinges on the decomposition of G into a direct product of

cyclic groups and on Ingraham's observation [I1] that the determinant is

transitive.

Lemma 4.2 ([I1]). Let M be a mrxmr matrix with entries in field F.

Suppose M can be partitioned into a mxm matrix of rxr matrices N.. such
13

that these rxr matrices commute. Let R be a commutative subring of

rXr
F containing all these N... Then

det M = det (detR M),

where detR M is the determinant of M as a mxm matrix with entries in R.

Moreover, if I is the mrxmr identity matrix, then
mr

det (XI - M) = det (detR[X] (XI - M)).
mr pp. 407-408 mr

Proof. [I1] or [J1, pp. 407-408]. []
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Lemma 4.3. Let x , x1, ..., x be indeterminates and let W be a
O n-1

primitive nth root of unity. The characteristic polynomial of

XO Xn-l Xn-2 -.. X

X1 X 0 X n-1 ' '. X2

M = x2 x1 x0 ... x3

Xn- Xn- 2 n-3 .."' X

is C n i 2i (n-l)i]
is ni=l [ - (xo x + Xi + 2 i .+ (n- )i) .

Proof. Let P be the companion matrix for zn - 1. The matrix M is

n-l
the left regular matrix representation of x0 + xlz + ... + Xn lZ in

F[z]/(zn - 1) with respect to the basis {1, z, ..., z -1}; i.e., M =

n-i
+ X + x + ... + Xn 1 P . The lemma follows from Theorem 4.1. D

Theorem 4.4 ([Cl]). Let F be a field with a primitive nth root of

unity w. Let G be a finite abelian group of order n isomorphic to a

direct product of r cyclic groups <hl>, ..., <h > of orders n1, ..., nr.r r

The characteristic polynomial of the regular representation of the gen-

nl-1 nr-l

eral element .= ... * x(il,...,i )hl l-hir of F[G] is
i 1=0 iO

nl- n -1 n l- .n -1

we ear 1 r

where each by induction on r.= /n k

Proof. We proceed by induction on r.

Case: r = 1. When G = Z , the recherche result is a restatement
n

of Lemma 4.3.
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Case: r > 1. Assume the result for direct products of r-l cyclic

groups. Suppose nr = 3; the proof for arbitrary values of n is analo-
r r

gous. Then G - GO x Z3 , where GO comprises r-l cyclic groups. With re-

spect to a basis ordering the elements of the group properly, the left

regular matrix representation of an element

nl-1 n -1

... r u(i i ,...i r) hh il. hr r of F[G] has the form

1 r

M = [1 N 2 

N 2 N 1O

where Not N1, and N2 are left regular n Xn matrix representations of
0 21, nr nr

certain elements of F[G0]. The matrices No, N1, and N2 commute because

Go is abelian. Since wr is a primitive cube root of unity, Lemma 4.2

implies that the characteristic polynomial of M is

det (XI - M) = det [(In/nr (N +N1+N2)).

2 2 4
(AIn/nr - (N0 +WrN+Wr N2))(In (N0+r N +r ))].

By the inductive hypothesis, the characteristic polynomials of

N +N1+N2 NrNl+r2N2 and NO+r2 N1+W 4N2 are

det (XI - (N +N +N2)) =

i·*l --l [ - * 'irl (u (i l' ' 'i r- l o0 )+

il Jr-i 1 il r -O

u(i 1 ,..,i 1 ,1)+u(i11 ..., ii 2))wl jl ' '.. W ir-lJr-1]· '~r-' ' ' r-1 
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det (XI - (N+WrNl+W r 2)) =

jil Jral [X - 'i '.ir-l(U(il r-1'0)+

ru (il' 1)+ +2 u ... i '2)' il il ... r i r - l j r -

r j 1 ' r-.1 ril '1 r-l

det (XI - (N+Wr Ni+ r N2) ) 4

0 r 1 r r-
2 4Jr i lj l ir·-

fr 1 rl u(i i r-l 1 r-l

2
Because det (XI -go) = det (XI - (N +N +N ))det (XI- (N + ir N I N))

det (XI - (N +p rN +T rN )) =

n -i n -1 n -1 n -1
1 r 1 r
- X( [ha n - ... d u(il,...,ir)WlilJl' i .WrJr]

J =0 jr= 0 il=0 ir=0

for every selection of elements u(i1,... i ) of F, (4.1) holds incontro-

vertibly for indeterminates {x(i .. rei )}. ar

Note that although the abelian group G decomposes into a direct

product of cyclic groups of prime power order, the proof of Theorem 4.4

did not require this property of the orders of the cyclic groups.

Since X(X) has n distinct linear factors over F[X,x(0,...,0),...

x(nl-1,...,nr-1)] , Theorem 3.8 asserts that there are n irreducible,

inequivalent lxl matrix representations of F[G], each of which occurs

once in the regular representation. These representations are

'1-··· -··
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n -1 n -1

T. u(il,.. r ) h 1 l h ir

l'' 'J r =O i =0
1 r

1 r
u(il,..',ir)W 1

i j .l ' r-W

il=0 i =0
1 r

for 0 < Jl < nl-l, ... , O j < r-1. Following Chalkley [C1], one can

construct a matrix Q whose entries are various powers of c such that

QPL ()Q-1 is diagonal, where PL is the left regular representation with

respect to the basis comprising the elements of G. For each a =

i... 'i a(il,...,ir)hl l...h ir in F[G] the diagonal entries of

QpL() -)Ql are the representations T. (a). An n-vector a with com-

ponents T. (a) (O _ <j < n -1) is the multi-

dimensional discrete Fourier transform of an n-vector with components

a(il,.. ir ) (O < i1 < nl-1, ..., O < ir nr ). To compute y = aS in

F[G], one multiplies the multidimensional transforms & and 5 component-

wise to form y. This method is equivalent to calculating

(PL(a)-l ) (QPL (a)Q) = QPL(a)Q , which involves simultaneously the

products of the n representations: T. (a)T. (5) = T. (Y).
31 'Jr 31 -Jr 1 · Jr

This use of the multidimensional discrete Fourier transform is a special

case of the procedure outlined in Section 3C.

When F does not contain a primitive nth root of unity, however, a

multidimensional approach may be inferior to Algorithm 3.9. For example,

consider x[Z3 x Z5] ~ Q[s,t]/((s 3 - 1)(t 5 - 1)), where Z3 x Z

{s t]J 0 < i < 2, 0 < j < 4}. To compute aS =
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a. sj b..s t ), one could calculate ac as polynomials in s:

one could multiply

i ( aijt )s][i (j bi jt ) s] mod (s - 1)ct, l j a. .tj )si I rZ, cLj

5.
with one product of polynomials in t (mod (t - 1)) and

[Li (j9 aijtJ)si ][i (j bijtj)s ] mod (s + s + 1)

with three products of polynomials in t (mod (t - 1)). By Theorem

2.6, each product of polynomials in t can be calculated with 2-5 - 2 = 8

nonscalar multiplications because t - 1 has two irreducible factors in

Q[t]. This multidimensional method requires 4.8 = 32 nonscalar multi-

15 15
plications. But because Q[Z 3 x Z5] T d[Z1 5] i §[z]/(z - 1) and z - 1

has 4 distinct irreducible factors over Q, we can multiply elements of

Q[Z 3 x Z5] with only-2'15 - 4 = 26 nonscalar multiplications.

Instead of using a multidimensional approach for Q[G], one could

decompose Q[G] into a direct sum of simple algebras, as in Theorem 2.7

and Algorithm 3.9. For instance,

Vi[st]
p4Z3 x Z3] =(s $ 2

3 3 ((s - 1), (t -1)) ((s + s + 1), (t - 1))

[s't] · [s,t]

((s - 1), (t2 + t + 1)) ((s + s + 1), (t + t + 1))

Because Q[G] is commutative, each direct summand is a finite-dimensional

extension field of Q, which is perfect. Let A(m) be the number of posi-

n
tive integral divisors of an integer m. In Q[z] the polynomial z - 1

has A(n) irreducible factors. If G is the direct product of cyclic
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groups of orders n1, ..., nr, then the number of fields (simple sub-

algebras) into which P[G] decomposes is A(nl)...A(nr). By Theorem 2.7,

the multiplicative complexity of Q[G] is at most 2n - A(n1) .. A(n ),

where n = nl-..n r is the cardinality of G. The multidimensional approach

r
described in the last paragraph requires H l(2ni - A(n)) nonscalar

multiplications. An easy inductive argument shows that

Hr (2n. - A(ni)) > 2n - A(nl)..A(nr): if r-l(2n A(n))
i=l 1-1r i-=l .

2n/n - A(nl)-A(n rl), then

r
1i - A(n)) (2n/n A(n)...A(n ))(2n - A(n ))n r-l r r

i=l

2 2n - A(n l)--A(n ) +

2[1 - A(nr)/nr In - A(n)..A(nr l) nr]

and because 1 Ž A(n )/nr and n > A(n)' .. A(n )n , the conclusion

follows, the multidimensional approach is inferior to Algorithm 3.9.

4C. Dihedral Group Algebras

The dihedral group D of order 2r is generated by {s, t} with rela-
r

r 2

tions s = t= stst = e, the identity of D . We wish to compute prod-

rl
ucts a = (a0e + als + ... + arlsr- + a t + ar+l st + ... + a2r- sr-t)

0 1 r-l r r+ l 1

(be + + bS + ... + s + bt b + + t) =Y1 r-l r r+l 2r-l 

(c+e +CS+... + c sr - 1 + c·tr+ c St + C l-lt) in F[Dr ].

One may verify that
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r-l i = r-1 i r-2 +b r-l
i= c iz = (i=O aiz )(b +b l+.*.b -2z +b zr- +

i r-2 r-J. r
(r1 ar+iz )(b +br 1z+...+b2 z +blz ) mod (z -1),Exploiting the inequivalent, irreducible matrix2 r+1epresentations of

r-1 c z (<r1 a.z1 ) (b +b z+r.2.+b r2 +b r-l
i=0 r+i i . bf r+l b 2r-2 b 2r-lz +

arE'l .i r-2 r-l (zra .z (b +b 1z+.. .+b2z +b1z mod _-).,

Exploiting the inequivalent, irreducible matrix representations of

C[D r] ([C3, p. 339]), Willsky discovered an efficient procedure for com-

puting products in C [D r ]. The algebra C[Dr] has two lxl matrix repre-

sentations if r is odd, four if r is even; and L-I(r-l)J 2x2 representa-

tions:

T1(S) = 1, T1 (t) = 1;

T2 (s) = 1, T2(t) = -1;

T3(s) =-1, T3(t) = 1;
/ if r is even;

T4(s) -1, T4(t) =-1;)

and for k = 1,2,...,L (r-l)J,

2k( )1 0

where w is a primitive rth root of unity. As in Section 3C, to compute

ca one multiplies corresponding representations of a and 6--a total of

r-1 r-2
2 + 7- 1-nonscalar multiplications if r is odd, 4 + 7. nonscalar mul-2 2

tiplications if r is even (if one multiplies a pair of 2x2 matrices with

7 nonscalar multiplications). Willsky noted that the Uk(a) and Uk(t)

can be calculated with fast Fourier transforms:



61

r-0 ik r-i1
i=0 ai Xi=O ar+iW

Uk (a) 
Xr-cl aui(r-k) r-l ai(r-k)
i=0 ar+iw Xi=0 i

for k 1 ,...,-.

The field R of real numbers is a. splitting field for D . The

representations Uk above are equivalent to

Re(w -llm(k] 21 1 0
Uk(S) = ' Uk (t) j (4.2)

1 Re(wk ) O -1

r-l
for k = l,...,l- ]J because, letting

Sk = - -Im (,k) 

we have Uk()Sk = SkUk(s) and Uk(t)S = SkUk(t) for k = 1 J.

Thus, the multiplicative complexity of R[D 3 equals that of C[D ] for

every dihedral group D,.r

From (4.2) it is apparent that the field Q of rational numbers is

a splitting field for D3, D4, and D6: the division algebras that con-

stitute the simple subalgebras of Q[D3] , [D4], and Q[D6] coincide with

Q. The projections of an element of Q[D31 (or t[D4] or Q[D 6]) into these

simple subalgebras are its matrix representations over P. Consider the

computation of the product of a = a e + a s +a2s + at + a st + a s2t

and = e + b s b + b s t, yielding y = c e + cls +

2 2
c /s + c t + c st + c S t in Q[D 3]. We multiply corresponding matrix

representations of a and 3 to obtain the representations of y:
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T0 () = TO() T0 () = (a0+al+a2 +a3 +a4+a 5) (b0 +bl+b2+b3+bb4+b 5)

T1 (y) = T1(cT 1() = (a0+al+a2-a3-a a5)(b +b +b2-b 3-b4-b5

U(y) = u(c)U(3) =

0 -al+ 3 -a5 ala2a 4+a 1+3b5 bl-b2-b 4+5

Lal+a2+a3-a a0-a2-a3+a 5 -bl+b2+b3-b4 b-b2 b 3+b

the representation U is equivalent to the representation U1 for Q[D 3]

in (4.2).

The field Q is not a splitting field for every D , however. For

instance, no 2x2 matrix with entries in Q is equivalent to the repre-

sentation Ul(s) of s in D5 because the characteristic polynomial of U l(s)

in (4.2) is 2 + 1( E - 1) + 1.

Nevertheless, we construct an efficient algorithm for computing

products in 9[D 5]. The characteristic polynomial of the regular repre-

sentation of the general element 5 = x e + xls + ... + x s + x5t +

4 2
x6 st + +xgS of Q[D5] is X(X) = Xl(X) X2 (X)X 3(X) where

X1(A) A - (x0+xl+x2+x3+x4+x 5+x 6+x7 +x8+x9 ),

X2 ( ) = A - (Xo+xl+x2+x3+x4-x5-x6-X7- 8- 9) 9

X3( = 02 (1 + 02)00 00 022 + 3102'

90 = (xO-X) +X1 +x2 +x3 + -x5 -x6 7 -X8 -X9 ,

= (XO-A)x1 +XlX2 +X2X3+X 3X 4+X4 (X0 - )

5X6-X6X7-X 7x8 8X -x9 x 5

Q2 = (x0 -) X2 +X2 x4+x4Xl+X1x3 +X3 (x0 -A)

-X5X7-X79-X9X6-X6 X 8 -X8X 5

Because X3(A) factors into (0 + 2( 1) - + 1)0 ).3 0 2 1 2 2
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(E) V- ( l + ) 1 + 2( - 1)02) in R[X,xo .. x9 ] which is a unique
0 2 1 2 2

factorization domain, X3(X) is irreducible in [Xr,x 0 ,...,x 9] . Thus, by

Theorem 3.8, PCD5] has three irreducible, inequivalent matrix representa-

tions. Let ~[D5] ~ Al a A2 A3, where Ai corresponds to Xi for i

1,2,3. Then A1 A2
- Q; the simple algebras A1 and A2 are rings of lxl

matrices over Q. Let A3 be a full V3XP3 matrix ring over some division

algebra V3. According to the discussion at the end of Section 3B,

[A :Q] = P32[ 3:Q] = deg(X3(X) = 8; moreover, since X3 has multiplicity

2, P312. From (4.2) we deduce that 3 = 2 and D3 = Q(/5) [z]/(z -5).

The projection of any element (c = a0e + als + ... + a + a t + a6st +

+ a.s t into A3 is defined by

[( -1) (E' + 5) 1

s FF- I . -1

To compute the product ac in Q[D 5] with Algorithm 3.9 we use the

projections of a and ~ in the simple subalgebras Al, A2, and A 3. Multi-

plying projections of ca and S in Al and A2 requires 1 nonscalar multipli-

cation each. Multiplying the projections of a and S in A3 requires at

most 73 · nonscalar multiplications; the factor 7 arises from 2x2 matrix

multiplication, the factor 3 from multiplying elements of D3 

P[z]/(z2 - 5). The multiplicative complexity of Q[D5] is at most

1 + 1 + 7'3 = 23.
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4D. Generalized Quaternion Group Algebras

Related to the dihedral group D2r, the generalized quaternion group

2r 2r
H of order 4r is generated by {s, t} with relations s t s
r

stst = e, the identity of Hr. If r 2 2, then H is noncommutative.
r r

The algebra C[H r] has four irreducible, inequivalent representations

of dimension 1 and r-l of dimension 2 [C3, p. 339]:

TI(s) = 1, Tl ( t) 
= 1;

T2 (s) = 1, T2 (t) = -1;
(4.3)

T3(s) = -1, T3 (t) = 1;

T4(s) = -1, T4 (t) = -1;

and for k = 1,...,r-l,

Uk,(s) = , Uk(t) = (4.4)

where W is a primitive 2r th root of unity. According to Section 3C,

one can exploit these representations to compute products in C[H r ] with

4 + 7(r-1) nonscalar multiplications: if a and a are in H r]1, then

each product Tk(a)Tk(B) requires 1 nonscalar multiplication and each 2x2

matrix product Uk(a)Uk(S) for k = 1,...,r-l requires 7.

Computing products in i [H ] and Q [H ] apparently requires more non-
r r

scalar multiplications than computations in C[H ]. The algebra IR[H 2] de-
r 2

composes into R @ [R @ tR G ER · Q , a direct sum of simple algebras, each

of which is a lxl matrix ring over a division algebra. The projections

into the first four sunnmands are the one-dimensional representations

~^ '~"--~~~~~- ~~ ~~-~--~~"' ~~~'~~1`~~-~`~~ I~~x1--~~~'~~~`~~`^"` ~ "~ ~~'~~`~~~ "'~1 -I
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2 3
(4.3) of R[H 2]. A projection of a = a0 + als + a2s + a3s + a4t +

2 3
a5st + a s t + a s t into the last summand, the real quaternions %, is

(a0 -a2) + (a1 - a3 ) + (a4 - a6)j + -(a5 - a 7 )k. (4.5)

Dobkin [D1] proved that one can multiply quaternions over any field

whose characteristic is not 2 with 8 nonscalar multiplications. Products

in R[H 2] can be computed with 1 + 1 + 1 + 1 + 8 = 12 nonscalar multi-

plications. This analysis also applies to Q[H2] - Q · Q · Q 0 Q · %:

projections into the first four summands are defined by (4.3), and a

projection into the last summand, the rational quaternions Q, is given

by (4.5). One can calculate products in [H2 ] with 12 nonscalar multi-

plications.

The optimality of these procedures for IR[II 2] and Q[H2] seems to

hinge on the "Direct Sum Conjecture" (see Section 3C) and the assessment

of the multiplicative complexity of the quaternions; both problems have

been studied extensively by other researchers. Theorem 2.4 provides the

best lower bound known for the multiplicative complexity of . in our

model of computation: 7 nonscalar multiplications.

The algebra R[H3] is more complicated than R[H2 ]. The character-

istic polynomial of the regular representation of the general element

= xe + xls + ... + x + x6t + x t + + .St + + x st of E[H 3] has prime

power factorization X1(X)X2(X)X3 () 4(( X5() (X (X)) 2 (X6(X)) in

R[X,x0,..., ll], where

X1 (X) = - (x 2+3+4+x5+x6+7+x +x+x10+x ll)

X 2(X) = X - (x0+x+x 2+x3+x4+x5-x6 -x7-X 8-x9-x 1 0-x11),
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X 3 ( ) = - ( X2 -x+x-x+x-x+x8-x9+Xll) 

X4 (X) = A - (x0-x1+x2-x3+x4 -x5-x6+x7-x8+x9-x1 0++x 1 1),

X5( ) = (x 0 +x 3 -x 1-x 4 +x 6 +x 9 -x 8 -x 1 1 -A) (x0+x 3-x2-x5-x6-x9 +x8+x 1 -A)

- (-Xl-X4 +X 2 +x 5 +X6 +X9 -x 7 -X10 ) (Xx+x4 -X2-x5-x7-x1 0 +x8+x 1 )

2 3 2
X (A) = 00(x0 -AX 1X 2,X 3,X 4,x 5 ) + 01(Xl'X2 x4 x 5)

+ 00(x 6X7,x8,x9,X loXll) + 2 01(x7,x8,l)0'X11

1 1 - 1 1
0(z '1'2'3'z4 '5) = 0 + 2l 2 Z3 - 4 + 5' }

2 (4.6)

0E(Zl, 2 ,Z4,z 5 ) = z 1 + z2 - z4 - z.

Let IR[H 3] Al ... * A6, where Xi is the characteristic polynomial

of i corresponding to the simple subalgebra Ai for i = 1,...,6. Then

A A2 = A3 A4 =; the projections of an element a = a e + als +...+
1 2 3 4 0 1

a5s 5 + a t + a7st + ... +.alls 5t ' of UR[H3] into these four subalgebras

are the one-dimensional representations (4.3). A projection of a into

A5 is a 2x2 matrix representation over iR:

a a0+a3-a-a+a6+a9-a8-al l+a4-a2-a5-a7-a +a8+al;31469811 1425 710811

-a-aa4+a+a5+a6+a-a-a a +a -a2-a5-a6-a9+as+all

(4.7)

This representation is equivalent to (4.4) in which k = 2 and w is a

primitive sixth root of unity. Since A5 is the ring of 2x2 matrices over

AR, products in Ag require exactly 7 nonscalar multiplications. Finally,

A6 Q., the real quaternions. A projection of a into A6 is
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a 0 (a0'ala2'a3,a4,a5) + 0l(ala 2 , 4,a5) 2a
0 2P 415 1 2 4 2 1(4.8)

+ 00 (a6 'a7 'a8'a 9'a 10 'loal l ) + 0 1(a7'a8 'a10 ,'all - k,

where Q0 and 01 are defined in (4.6). One can compute a product of real

quaternions (in A6) with 8 nonscalar multiplications. Therefore, using

Algorithm 3.9,we can compute products of elements of R[H 3] with 1 + 1 +

1 + 1 + 7 + 8 = 19 nonscalar multiplications.

The structure of Q[H 3] resembles that of RIh 3]: J[H3] H Ai · A2 S

A' · A* · A' A; A', where Ai A2 A3 - A4 - Q, and A; is a ring of 2x2

'3 ~~~~~~~5
matrices over Q; projections of a = a e + als + ... + a5s + a6t +

a7st + ... + a 1 s t into Ai, A 2 , A3, and A~ are defined by (4.3), and a

projection into A; is given by (4.7). The simple subalgebra A6 is a

division algebra that resembles the rational quaternions; a basis for A6

is {1, - i, j, k}, and (4.8) is a projection of a into A6.

Fiduccia's decomposition procedure [FO] yields an algorithm for computing

(u + 1 i + u 2 + u 3 2 k)(wo + wl 2 2 3 k) +

Y1 3 i + Y23+ 3 2 k in A6 with 10 nonscalar multiplications: let

3 3
m = ul(w - wl, m6 = U 3( 1 - w 2),

: 3
m2 = U (W - M w u u U3 ' )WO2 u1 (w 2 2 -w 3 ) m7 = (u0 - u1 - u2 u3)

3 3
m3 u u2 (w 0 W2 ), m 8 (u0 + + + u2 u3)w1 '

m4 = u2(-w1 + w 3), m9 = (u0 - u1 + u 2 + u3)w2'

3 3 3
m = U3(wO 23 10 0 + 1 u 2 2+ 3)w3;

then Y0 ml + m 3
+ m5 + 7' 1

= ml + m4 + m6 + m8' Y2
=.m 2 + m 3 ++



68

m6 + m9, and y3 
= m 2 + m4 + m5 + m1 0. The multiplicative complexity of

Q[H 3 ] is at most 1 + 1 + 1 + 1 + 7 + 10 = 21.

It is not known whether these algorithms for generalized quaternion

group algebras are optimal. Even if Algorithm 3.9 were optimal for

semisimple algebras in general, it might be nonoptimal when applied to

a specific algebra such as IRI[H].
3
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5. FURTHER P ROBLES

In addition to the important conjecture formulated at the end of

Section 3C we propose three subjects for further investigation.

1. Non-semisimple algebras. Examples include quaternions over

fields of characteristic 2 and abelian group algebras F[G] in which

char F I card G.

Consider F[Z2], where Z2 is the cyclic group of order 2. If

char F 5 2, then 1 4 -1, and computing products in

F[Z2 ] - F[z]/(z - 1) - F[z]/(z - 1) @ F[z]/(z + 1)

requires exactly 2 nonscalar multiplications. If char F = 2, then

1 = -1, and by Theorems 2.6 and 2.10, computing products in

F[z]/(z2 - 1) = F[z]/(z + 1)2

requires exactly 3 nonscalar multiplications.

The technique of Section 3C cannot be used for non-semisimple alge-

bras: unlike semisimple algebras, a non-semisimple algebra cannot be

expressed as a direct sum of simple algebras. Equivalently, some reduc-

ible representations of a non-semisimple algebra might not be completely

reducible. Changing the basis of the algebra might not completely block-

diagonalize the regular matrix representation.

For example, if char F # 2, one can compute products in F[Z 2 X Z2]

with 4 nonscalar multiplications:
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F[Z x z ] ~ F[y,z]/((y - 1),(z - 1)

F[y,z]/((y - l),(z - 1)) · F[y,z]/((y - l),(z + 1)) $

F[y,z]/((y + l),(z - 1)) @ F[y,z]/((y + 1),(z + 1)).

The group algebra F4[Z2 x Z2] seems to require more nonscalar multipli-

cations. Let T be a primitive element of E'4 and let s and t generate

2 2
Z2 X Z2 F Z 4[ x Z 2] = {a e + a s + a2t + a3st j s = t = e, st = ts,
2 2 42 2 0 1 2 3'

every ai E {0 T T T1 i2}}. Write (a e + a s + a2t + a3 st)(b0e + bls +

b2t + b3st) = (c0e + c s + c2t + c3st) as a matrix-vector product in

which the matrix is the left regular matrix representation of aoe + als +

a2t + a3st with respect to the basis {e, s, t, st}:

cO a 0 al a a ba3

Cl a1 a 3a 2 b2

c 2 a a2 a3 a al b a

c a3 a2 ala a b3b

+c +c+C a +al+a2+a 0 0 0 Obl+bl+b
c0+01+ 23 0 12+c 3 2

C+c = a +al a3+a2 a2+a ab l+b0

[ C3 + 0 01 1 0c2+c a3+al a +a2 al+a b 2O

c3+cO ° a2+ai al+a2 a0+a3 b3+b0

The representation

a+al a+a a+a2 a2+a3

3 aa3 2 al+a 3

aa+a al+a a +a

is reducible, but not completely reducible. Since the subspace spanned

by [T 1T 2] t is fixed by this matrix, a change of basis yields
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+al+(a2+a1 'a +a l+(a+aa3+aa2 + +(al+a 2 ) t 
2 2

a3 +al+ (a2 +al) 1 a0+a2 + (al+a 2) t 0

(a2+a ) T
1 (a+a 2 ) T a0+al+a2+a3

How quickly can products in non-semisimple algebras be computed?

In Section 2B we discussed quotient polynomial algebras that may be non-

semisimple. If 7r(z) E F[z] and 7(z) has prime factorization 7rl(z)Vl...

7Tk(Z) then

F[z]/(7(z)) - F[z/(7l(Z))l) · ... ' F[zl/(Tk(z) k)

This decomposition leads to Algorithm 2.5. Can the methods of Secion 2B

be extended to other non-semisimple algebras?

2. Small fields. Algorithm 2.5 and Theorem 3.8 both require

sufficiently large fields. Can these noisome cardinality constraints be

removed? A fast method for multiplying elements of F [z]/(7r(z)) in which

w is irreducible would be of interest to coding theorists [B1] [L2].

3. Calculating the transform. We have emphasized the mini-

mization of nonscalar multiplications at the expense of additions and

scalar multiplications. If we instead seek the shortest program, we

should minimize the total number of arithmetic operations for calculating

the transform (projections) of Algorithm 3.9 and its inverse. The algo-

rithms of Moenck and Borodin [M1] [B2], which generalize the fast Fourier

transform, apply to quotient polynomial algebras. We can characterize

the Moenck-Borodin technique abstractly: for instance, to calculate the

projections of an element a in the simple algebras A1 , A2 , A3 , and A4 of
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A ~ A1 @ A2 s A3 A4 , first calculate the projections a1 2 in Al A2

and a34 in A 3 $ A4; then calculate the projections of a12 in Al and A2

and the projections of c34 in A3 and A4. Can this abstract characteriza-

tion be developed sufficiently to permit formulation of fast procedures

for calculating the transform (projections) and inverse described in

Section 3C? Nicholson [NI] discussed theoretical underpinnings of the

transform for abelian group rings. Can we obtain lower bounds on the

complexity of calculating the transform?

------ --·-·---- --···---·--·-- ···- ··-------·---·-·-- ·F,-·-·- 1-- .·.~~~~~~~~~~~~~~~~~~~~~~~~~~-.- ·~~~~,~--*.x.~~~~.-.....; .;i .. ~~~~~'



73

6. SURMARRY AND CONCLUSIONS

In this thesis we examined computations of products in finite-

dimensional, associative algebras, especially semisimple algebras.

We established the correctness of Theorem 2.10: the multiplicative

complexity of the quotient polynomial algebra F[z]/(i(z)) is at lest

2n-k, where n = deg 7 and k is the number of (nontrivial) distinct irre-

ducible factors of f.

Having defined the general element i of a semisimple algebra A and

the characteristic polynomial X(X) of the regular representation of i,

we proved that the irreducible factors of X correspond to the irreduc-

ible, inequivalent representations of A: when the base field of A is

sufficiently large, the polynomial X has m distinct irreducible factors

if, and only if, A is the direct sum of m simple algebras; for each of

the irreducible representations T. the characteristic polynomial of Ti(S)

is the power of some irreducible factor of X. The characteristic poly-

nomial. of the regular representation of the general element is invariant

under change of basis, which yields a computationally equivalent problem.

We devised a procedure for multiplying elements of a semisimple al-

gebra A with a generalization of the discrete Fourier transform. Let

A A1 ... Am, where each simple algebra Ai is a full vixPi matrix

ring over a division algebra D.. In essence, one multiplies the projec-

tions of the multiplicands in the simple subalgebras A, , A. This

method uses at most Xi1 Pi3 [Di:F]2 nonscalar multiplications, though

this number is smaller in many cases.
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To elucidate these ideas, we demonstrated that known algorithms for

computing products in quotient polynomial algebras and certain abelian

group algebras are instances of our general technique. We presented a

new explicit calculation of the characteristic polynomial of the regular

representation of a general element of an abelian group algebra in which

the base field contains a primitive root of unity. Finally, we con-

structed algorithms for products in algebras of dihedral groups and gen-

eralized quaternion groups.

We have focused on minimizing the number of nonscalar multiplica-

tions for computing {cl, ... , cn} from {al, ... , a , b1, ... , bn}, where

ci=l v. = (i=l aivi) (i=l b.v.) in an algebra with basis {v1 , .

vn}; consequently, we have drawn many of our ideas and techniques from

linear algebra. Theorem 2.1 guarantees that since {cl, ..., Cn} are

bilinear forms, one may assume that each nonscalar multiplications step

is the product of linear combinations of {al, .. , an b ., b, ... b}; the
n n

{c1, ..., cn} are linear combinations of the results of these steps.

The proofs of Lermma 2.9 and Theorem 2.10 appeal to linear independence

of vectors. The transform defined in Section 3C is essentially a change.

of basis: calculating projections in simple subalgebras involves linear

combinations of the indeterminates. Morover, methods based on linear

algebra have established only linear lower bounds on nonscalar multipli-

cative complexity (e.g., [F2], [W3]). Have we exhausted the insights

available from applications of linear algebra? To obtain novel.results--

efficient algorithms, stronger (e.g., nonlinear) lower bounds--it seems

T T--1
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that we must use more sophisticated mathematical methods such as concepts

from algebraic geometry (S2].
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NOTATION

c field of complex numbers

IF finite field with r elements
r

field of rational numbers

I ~~R field of real numbers

QF algebra of quaternions over a field F

Dr dihedral group of order 2r

Hr generalized quaternion group of order 4r

I nxn identity matrix

Z cyclic group of order n

A (m) number of positive integral divisors of an integer m

(ROk) evaluation of a statement in a straight-line program

0(f(n)) a function bounded by cf(n) for some constant c

PL (a) left regular matrix representation of a

card y cardinality of an object y

char F characteristic of a field F

deg p degree of a polynomial c

det A determinant of a matrix A

EndR(X) ring of endomorphisms of an R-module X

Im(u) imaginary part of a complex number u

Re(u) real part of a complex number u

~1 - ~2 (mod 4) the polynomials 1 and ~2 are congruent modulo i

¢1= ¢2 mod Wi the polynomial ~1 is the residue (remainder) when 2,

is divided by i

-----1--- -1-- ·--- ·-- ----- ·-- ---
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[A: F] dimension of an algebra A over a field F

F[G] algebra of a group G over a field F

F[z]/(7T(z)) ring of polynomials in F[z] modulo 7(z)

F [xl, ,xn] ring of polynomials in indeterminates xl, ..., x

FnX n ring of nxn matrices with entries in F (homomorphic to

EndF (F))

(7 (z)) ideal generated by 7T(z)

<h> cyclic group generated by h

LuJ largest integer not greater than u

rul smallest integer not less than u

mmn (mtn) m does (does not) divide n

At transpose of a matrix A

isomorphism of objects

(D direct sum

UO end of proof or algorithm
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