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ABSTRACT

This thesis proposes a system failure detection method —- Failure
Projection Method (FPM) which provides a géometric picture of the
problem of failure detectidn in the presence of model uncertainties
and noise.

The concept of FPM is‘thoroughly-studiedvin this'thesisgin
particular, two groups of formulationé have been developed, One gives
distinct geometrical interpretation while the other is based on assuming
that one has available a priori information on the system state. Within
two groups three formulations which are based on slightly different
-criteria and have decreasing complexity of calculation are developed,
The simplest require only a singular value decomposition. Also two
numerical examples are given which.show the relationship among these
formulations and thus provide a deeper understanding of their nature.

An algebric approach is developed for the generation of a complete
set of minimal length parity checks.

The FPM is extended to including measurement and process noise.
Again a forkulation is developed which only involves a singular value

decomposition.



Again a formulation is developed which only involves a singular value
decomposiﬁion.

The FPM is demonstrated on a model of three machine power system
to indicate how it can be used as a design tool in assessing system

redundancy and in determining parity checks.
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CHAPTER 1
INTRODUCTION

1.1 Importance of Failure Detection

System failure detection and identification are important issues
for which a great amount of work has been done in the past (see the
survey in [1]) and many of the important issues in failure detection
have been examined. There remain, however, some important problems
to be examined in order to develop useful general procedures. One of
them is the development of a design methodology for failure detection
algorithm which is robust to model uncertainties. Up to the present
there has been only one theoretical effort that focussed on this
problem. This is the work of Chow [2] and Chow and Willéky [3]1. our
research uses this previous work as a starting point from which we
shall develop signifiéant extensions and insights into this impor-

tant problem.

1.2 Key Point of Failure Detection

As discussed by Chow [2], the failure detection process can
be considered as consisting of two stages: residual generation and
decision making based on the residuals. The key property of the
residuals is that they should behave in very different ways for each
possible failure mode so that an accurate decision can be made. That

is, we desire each failure to have a distinct signature in the resi-



6

duals. The actual residuals will, of course, deviate from the signa-
tures because of the presence of noise. Also the actual failure

signatures will deviate from those that we might calculate a priori
because of wuncertainties in the model. The design of robust failure

detection systems then can be thought of in the following way:

(1L.1) Find a residual generation procedure so that the residuals
will be small if there is no failure and will have a distinct pattern

if there is a failure. This should be true in the presence of noise

and model uncertainties.

It is this problem that we will address. We will not focus
any attention on the decision-making part of failure detection, where
as in Chow's work [2],‘we think of the robustness issue completely
in terms of providing residuals from which decision making is made
easier.

as mentioned before, one important issue for designing a residual
generator is robustness, i.e. the residual generator must be insensi-
tive to system modelling errors or parameter variations. In Chow's
thesis [2] a relationship between sensor outputs is selected so that
the resulting residuél will be as small as possible under worst case
conditions on parameter uncertainties when no failure has ocurred.
This selection depends upon the mean value of the state and the

applied inputs. Therefore, different residual signals may be optimum
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for different mean valures and inputs. While this may be reasonable

in some cases, there are also other problems in which it is possible
and in fact advantageous to find a single set of residual signals
that performs satisfactorily independent of operating conditions.

our proposed research -- the failure projection method (FPM) is aimed
at this problem. In this thesis, two groups of formulations are deve-
loped to soive this problem. One of them has an appealing and impor-
tant geometrical interpretation while the other is based on more
practical assumptions so that it would be more useful in practice.
Within each group, several formulations involving calculations of
decreasing complexity and starting from slightly different criteria
are given.vWe develop in some detail the relationships (i.e. the
similarities and differences) among these methods so that the issues
involved in choosing the appropriate formulations for a given problem

are evident.

1.3 Goal of this Thesis

The ultimate goal of this research topics is to find a vector of
residuals g such that g is small when no failure has ocurred and has
decidedly different characteristics under each of a specified set
of failures. In this thesis we take a major step forward towards the
achievement of this goal and towards the development of a deeper
understanding of the problem of robust failure detection. We do this

by examining the problem:

»



(1.2) Minimize the maximum residuals of the normal (unfailed) system

under model uncertainties.,

Note that this problém does not take any specific failure mode
into account, but rather is more in keeping with the failure detection
philosophy of producing as largezzéet of signals as possible which
are all small when no failure has ocurred. The implicit assumption
here is that any observable failure mode will lead to a large value
for the residual vector. This implicit desire can be made explicit by

considering problem such as

(1.3) Find a residual vector which yields good performance when there

is only one postulated failure mode.

Here we are given one specific failure mode to detect and must
find a residual that achieves an acceptable tradeoff between detection
and false alarm characteristics. A variety of criteria could be used
to determine an acceptable residual design. For example, one might
constrain the size of the norm of the failure residuals when the
system is unfailed.while maximizing the failure residuals when the
system fails. Clearly one can consider more complex problems in which
there are several failure modes postulated and we want the residuals
to be large and distinctly different for each (assuming that

we wish to distinquish among the different failure modes) while still



requiring them to be small under normal conditions.

In this thesis we focus essentially all of our attentién on
Problem (1.2) and in particular on the solution of this problem in
the presence of model uncertainties. The fréme work and insight that
we develop also provide a useful starting point and the requisite
machinery for considerihg probleﬁs such as (1.3) which incorperate
specific failure mode informétion, We will commemt on such extensions
at the end of the thesis.

In Chapter 2 we introduce the basic idea behind the Failure
Projection Method which is a geometrical approach using orthogonal
projections. Using these ideas we develop a first group of basic for-
mulation. to solve Problem (1.2). Three different formulations,
which are based on slightly different criteria and have decreasing
complexety of calculation are develbped. The appealing feature of this
group of formulations is their distinct geometrical interpretation and
the intuition they provide for robust failure detection. In Chapter 3,‘
another group of formulations is proposed. This group is based on
assuming that one has available a priori information on the system
state. Specifically, it is aséumed that one knows that the state is
confined to a given ellepsoid. Typicaliy in practice one has information
about the likely ranges of values for the state variables and conse-
quently this groﬁp of approaches may be more useful in practice than

that developed in Chapter 2, which uses no such information. In Chapter
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4 an example of a power system with three coupled generators is
studied in order to show how the formulation obtained in Chapter 3

using singular value decomposition can be applied to a practical

problem.

One of the key aspects of analytic methods of failure detection

is the use of information concerning the dynamic relationship among
outputs. Cbnsequently, in our geometric approach we consider residuals
generated from a window of observations over some interval of time.
The "observation space" then has dimension proportional to the length
of this interval, and at its simplest level failure detection can be
achieved by projecting‘the observations onto the orthogonal complement
of the subspace in which the observations should lie if there is no
failure. This idea in fact is the basis for our geometric approach
in the next chapter for the problem of robust failure detection. In
addition to providing the motivation for our robustness analysis,
this idea raises an additional questign¢ Specifically, if we are given.
a linear, time-invariant system, how do we determine the required
length of the window of observations and also how.do we generate the
projection onto the orthogonal complementvjust mentioned. In Chapter
5 we pfésen£4;“f£éQﬁéﬁc;‘d;A;;ﬁ agpféaégwfo éetéfmiﬁiﬁg the miniﬁ;ﬁ‘
window size and for generating this orthogonal projectionm.

Finally in Chapter 6, we shall briefly discuss the significance

of our results and problems which should be examined in the future,

including the extension of our methodology to problem such as (1.3).
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CHAPTER 2

FAILURE PROJECTION METHOD (FPM)

——- GEOMETRICAL APPROACH

2.1 Introduction.

In this chapter we introduce the basic idea of the FPM and
develop three formulations which have geometrical interpretations
based on the notion of the angle between subspaces. They involve
caculations of decreasing complexity ~-- from nonlinear programming
to singular value decomposition.While having appealing geometrical
interpretations they also have significant limitations which will be
overcome in Chapter 3.

To introduce the basic idea of the FPM, let us consider a

discrete time and time invariant system

(2.1a) x (k+1) Ax (k) + Bu(k)

(2.1b) Y(k) cx (k) k= o,l,e.z-e¢°

As the first step we shall focus on sensor and plant failure
detection and not actuator failures. Thus without loss of generality,
we shall assume u(k)=0, k=0,1,...... Therefore the system equations

we are dealing with can be written as
(2.2a) x (k+1) = Ax (k)

(2.2b) y (k) = Cx (k) k=0,1,......



.

X
where x(k) € Rn, v(k) € Rm, Ae R M and Ce Ran.

Define the extended observation vector of length p to be

y (k)

(2.3) §P(k) = | y(k+1) p,k=0,1,......
y (k+p-1)4
obviously
. C
(2.4) §p(k) = | ca x (k)
caP™1
Let s=mp. Then §P (k) € RS.
Define
C
- ‘ X
(2.5) c o= | <A e g5°P
p :
caP™1

and the observation space (of length p) Z_to be

(2,6) Z = R(C)
P P

12
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where R(EP) is the range of Ep . Define the detection spacel(of length

p) Gp to be the orthogonal complement of Zp’ i.e.

(2.7) I G =R

Then for any vector g SGD we have

ey

(2.8) <g,}_7p> =0

Equation (2.8) (or,more precisely, the left-hand side of this equation)

is called a parity check [2],[4]. We shall call g a detection vector
(of length p).
In (2.8), if p=1, then §p =y (k). Therefore we only make use of

the redundancy among values of the measurements at a 51ngle tlme,

as considered by Potter and Suman in [4] and Desai and Ray in [5].

If p>1, we can make use of the redundancy among measurements at diffe-
rent time, as discussed at some length by Chow [2] and Chow and

wWillsky [3].

A parametric failure is one that causes parameter changes, e.g.
changes in A and/or C. An additive failure is one that creates additive

components in (2.2a) and/or in (2.2b). For example,

(2.9) x (k+1) = Ax(k)

y (k) =Cx (k) + f(k)
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where f(k) represents some additive failure, Either of these failures
will generélly result in a nonzero value for at least one parity
check. Thﬁs a set of parity checks serves as a failure detector
which ideally is zero if there is no failure and is non-zero if a
parametric failure or an additive failure has occurred.

Motivated by these ideas, Potter and Suman [4] proposed a new
approach which makes use of a complete set of detection vectors,
In this approach a matrix V whose rows are an orthogonal basis for the
detection space GP (i.e. a complete set of detection Vectofs) is

defined. Because Gp is the orthogonal complement of z
A% =0 any v € Z
Yy ’ yyp p

The range of V, R(V), is called the parity space [4],[5]. The vectors

which belong to the parity space are called the parity vecters.

As mentioned before, in [4] and [5] the special case p=1 is
considered. Here we use the definition of extended observation vector
§P for p>1 introduced by Chow in [2].

In this chapter we will make a particular choice for V. We
define V to be the orthogonal projection along Zp onto GP denoted by
PG' Note that PG is an operator from R® to Rs, while in [4] V is an

operator from R® to RY where dimGp=q. Note also that rank P=q-



It is known that an orthogonal projection has some important

properties, i.e.

(2.10) Py = Py = B
(2.11) R(PG) =Gp N‘(PG) = Zp
(2.12) P, = c(c'e) g

where G is a matrix the column of which form a basis for subspace(;P.
We shall see later on that the geometric and algebraic properties of
the orthogonal projection enable us to pose problems involving un-

certainties relatively easily. This is our reason for using it.

2.2 FPM With Uncertainties -- Problem (1.2)
To characterize the influence of uncertainties let us introduce
a compact set of possible parameter values U (e.g. a subset of a

t .
space R~ for some t) and two functions A and C

nxn

mXxn

Then we can incorparate parameter uncertainties in the system equa-

tions (2,2a) and (2.2b) by modifying them as follows:
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(2.13a) - x(k+1) = a(n)=x(k)
(2.13b) v (k) = cM)x(k)
k=0,1,......, "Ne U

Here A(n) and C(n) represent the possible system matrices as N varies
over U. They could have different ranks for different NeU due to

unmodeled dynamics. Similarly

c(n)
_ 1 ctnmam) : _
(2.14) vy (k) = . "x(k) = C_(M)x(k)
o) . p-1 P
cm)am)
Z (n) = R(C_(M), ne U
p p

It can be seen that as N varies over U, Zp(n) will vary also
(in fact, in general its dimension will change as T is varied).
Generally we cannot find a Gp which is orthogonal to all Zp(n) as

we did in the previous section. that is to say we cannot find a PG

which projects all vectors in Zp(n) (for all n ) tb zero. In order to
formulate Problem(l.2) precisely what we must intuitively seek is a
PG which makes the projection of vectors in Zp(n) as small as_ possible
for all N . To obtain some insight into this problem let us consider

a simple example where U={1,2,3} and Z(1),Z (2) and Z(3) are
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one-dimensional subspace of a three~dimensional space. Then one
natural choice for the detection space G is that which minimizes. the
maximum projection of unit vectors in Z{(1),Z(2) and Z(3). That is ,
this c¢hoiceminimizes the worst possible effect of parameter uncertain-
ties. The nature of this approach can be visualized as in Fug. 2.1

where s and s, are projections of unit wvector in Z2(1),Z(2) and

1752 3

Z(3) onto a candidate 2-dimensional space. Our goal. is to find a G

and s_is minimized.

such that the maximum vector among $118, 3

7(2) 7(3)

/]

Sl
G Sy
Fig. 2.1 Failure projection with system
uncertainties

Generally Zp(n), NeU may have different dimensions. Suppose

r = max d(Z(n))
neu

where d(Z(M)) is the dimension of Z(n). Then our formulation of

Problem (1.2) would be
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(2.15) inf sup sup || oy || 2
6 neu Zm)
aim Goser bk

In the next section we shall further discuss Problem (2.15) and
eventually find a way to solve it in terms of a basis of Z(n). Fur-
thermore, in siction 2.4 and 2.5 we shall develop other alternative
formulations té problem (1,2) which turn out to be much easier to
solve and also pdssess advantages in practice over the approach

discussed in this and the following section.

2.3 Solution to Problem (2.15)

In this section we shall continue the discussion started in section
2.2 in order to understand more thoroughly the problem we have described
and to develop a solution in terms of a basis of Zm).

Consider Eg.(2.15). Let us suppose U is a finite set, e;g.

(2.16) u=A{1,2,......,t}

We make this assumption for mathematical convenience. However, in
principle one can discretize the set of possible parameters. Fur-
thermore, it is anbunproven conjecture that any set U can be replaced
by a finite set whose corresponding observation subspaces are the

"extreme points" of the original set of observation spaces as the



parameter vector ranges over U.
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Under the assumption (2.16), problem (2,15) can be rewritten as

Suppose d(Zi)=mi, Let Zi and G be matrices whose columns are

inf sup sup HPGy” 2 , i=1,
G ieu YEZ,

Il <2

orthonormal bases for Zi and G respectively. Then according to (2.12)

we have

(2.17)

and

Let y=Zix, xeRm

But

P = cc'e) Tet = ag

sup|| 2y|l ? = supl| ce'y ]| 2

ve Zi ye Zi

lly k1 I =2

. Then

supllPGyll= sup][GG‘Zix“
veZ, lFiXIFl

|l |1 xeR"

ex|P= x'z, 2% = k]
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So
supl[PGy|F = sup x‘Zi*GG'GG‘Zix = sup x'Z, 'GG'Z,x
| x[=1 el F
llyll=1 XER" XER"
2 . = g2 .
= max (€25 = 0 oy (2576

where Omax(.) is the maximum singular value of a matrix. The last
ity holds si se @ = ' ix A.
equality holds simply because max(A) max(A } for any matrix A

Therefore we have

2 2, 2,
(2.18) sup ‘HPGy |“=0 362, =0 (21G)
ve Zi .
llyll=1

Combining (2.16) and (2.18) we have that the FPM problem posed
in section 2.2 reduces to solving for a nx(s-r) matrix G with ortho-

normal columns and which achieves

2
(2.19) min max O (G'Z.)
. max i

G'G=I *
S

The problem given in Eqg. (2,19) has a simple geometrical inter-

pretation. If we define the angle between two sets sS4 and Syr 8 szeRn
4

to be

(2.20) A(s,,s,) = sup||P x||2

’ ) TLPT2 s

€ 2
X€s,

[ [l=2
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where Ps\x is the orthogonal projection of x on s then formulation

2
(2.19) can be given a geometrical explaihation. To see the meaning of

2!

definition (2.20) let us consider a 2-dimensional case. As in Fig.2.2,

sy and s, are two subspaces. The cosine of the angle between s1 and

Fig. 2,2

s, can be seen to be the orthogonal projection of unit vector of S1

on s, as shown in Fig. 2,2.

Using definition (2.20),(2,19) can be rewritten as

(2.21) min max A(zi,G)
G'G=I i
s-r
Eg. (2.21) means that the optimal G should be that which minimizes
the maximum angle between Zi and G . This is the geometrical meaning
of formulétion (2.19).
The solution of (2.19) requires the use of nonlinear programming.

We have chosen not to do this, since as we will discuss in Chapter 3,



22

the mathematical Ffoxmulation on which (2.19).is based has some weaknesses
in terms of its relationship to the nature of real failure detection
problems. As a prelude to the discussion in.Chater 3, let us consider.
several altermatives to (2.19) which are less difficult to solve,

which in some sense can be viewed as approximations to (2.19), and

which in others can be interpreted as solving slightly different
problems that possess advantages over our original formulation.

As a first step, it is easily shown that

o _2@'z,)

max 1 > t. 2

< max O (¢'z,)£ ¥ O (G'*Z,)
max i max i

i i=1

ot

1

Therefore instead of solving (2.19) one might consider solving the

following problem

t
(2.22) min X

which gives upper and lower bounds to (2.20) because if Gl is the

solution to (2.22) and G, is the solution to (2.19), then we have

2
t 2 t 2
L © (Gz,) z o] (Glz.)
. max 11 . max 271
i=1 i=1 5
< < max © (GrZ.)

max 271
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5 t
< max g (G,'2.)< Xz o
. max 1 i m

2 1
L x (Gl‘zil
I i=1

a

or
t
(2.23) min X Omax(G‘Zi)
"G i=l1

2
< min max © ax (G'Zi)
t G i

It should be pointed out that in addition to its interpretation
as an approximation to (2.19), the formulation (2.22) has its own
physical interpretation. Suppose we know the a priori probabilities
of occurance of different possible uncertanties. Then (2.19) might
net be reasonable because the occurance of the uncertanty which
gives maximum projection may be very unlikely. A,more,reasonabie solution
would be the minimization of the weighted summation of the maximum
projections Omaxz(G'Zi). That is if I i=1l,....,t are the probabili-
ties of the occurance of different uncertainties, then we would like
to minimize the weighted summation:

> t
Py Omax (G Zi)' L P; L

1 i=1

(2.24) min
G'G=T 1

I ™t

Geometrically here we minimize the expectation of maximum projection

instead of minimizing the maximum among them,
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If the uncertainties are equally likely to occur, i.e,
P{=P,= «+...=Py then we have (2.22). That is to say (2.22) is only
a special case of (2.24). On the other hand, if we define new matrices

Z. to be
i
Z. =Vp,2Z, i=l,.....,p

then (2.24) can be rewitten as

' (2.22a) . min ; Gmaxz(G'Ei)
G'G=I i=1
Therefore(2.22) can be thought of as a normalized version of (2.24).
Because of inequality (2.23), it is at least plausible that in
most problems the G that solves (2.22) will be a useful approximation
to the G that solves (2.19). (We will provide more insight into this
t

: 2
point through example in Section 3.3). Also because I Umax (G‘Zi)
i=1

is differentiable with respect to gij (the entries of G), the problem

(2.22) can be solved more easily than (2.19) using nonlinear programming.
Although problem (2.19) and (2,22) can be solved in principle

by nonlinear programming we would like to have an alternative approach

which gives essentially a closed~form solution. Such an approach

is developed in the next section, and as we will see, it also gives

additional insights into the problem of failure detection in the

presence of uncertain parameters.
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2,4 An Alternative Approach

In this section we develeop an alternative approach which can be
thought of as giving an approximate solution to (?1201gand (2;22}
and can be solved simply using a singular value decomposition; To

begin, it is known that
2, 2 2
Oz (€23 =|| G!ziH2 =|| zitGII2
where|L||2 is the induced matrix norm. Thus (2.22) is equivalent to

t 2
(2.25) min 2 |l z, vall 2
G'G=1 i=1 *

The Frobenius norm of matrix A€ men is defined to be
‘2

: 2
BR=2 % |a,
1

Becausel|AH; is the trace of A'A

2
I

2 n
lalz = ? |aij = tr(A'a) = I «

where ai is the eigenvalues of A'A and

2 : n
8] 5 = max {a;3]



26
It can be easily shown that

| a2

F 2 2
— <2l <kl
n

Therefore using the similar arguments given in proving (2,23), we have

t 2

min % ‘[ZiG[E . .

G i=1 < min > H Z2.'G IE < min ¥ H Z.'G IE
s-r ¢ i=1 * ¢ i=1 *

(2.26)

Following the same line of reasoning as that used in the preceding
section, we are led to the following problem.

t

(2.27) min %

G!'G=I i=

N z,'c|f

As mentioned before, we may use §i=V§:Zi instead of Zi in (2.27) if

the probabilities of occurance of uncertainties p, are different from

each other,

The problem (2,27) can further be written as

(2.28) min |jz '-G[l;f
G'G=I
where
z,*
(2.29) AN I
7 L3
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In the remainders of this section we discuss two very important
points, The first is that (2,28) can be thought of as a different
but fundamental approach to solving the problem of generating robust
parity checks for failure detection. The second is that this problem
can be solved very easily.

Now we derive the solution to problem (2,28). Suppose the singular

values of Z are

(2.30) o

IA

T,% cienn
02_ o . SOS

We claim that

sS-r
(2.31) min HZ'G”;= L g,?

G'G=I i=1 *t

and the optimal G=G* is given by
2,32 * = faeae
( ) G [ 9, gs_r]

where gl,..._...,gs_r are the singular vectors of Z corresponding to
01""""Os—r respectively.

To justify our claim we first prove the following lemma.
Lemma 2.1

If
11 12

21 22
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is symmetric and positive semidefinite, and A,, is m by m, A is n

11

by n, and eigenvalures are written in increasing order, then

(2.33) - Ai(ALS )‘i(All)" ' 1€i<m
m m
(2.34) ‘21 Ai(A) < iil ﬂi(All) = trace(AllI

Proof:

According to the Courant-Fischer minimax principle [1Q], we have

x'Allx
(2.35) 'Aj(All) = min max

P, xX¢eP, x'x
J J

where Pj is a subspace of dimension j, the orthonormali-basis of which

is pl,....,,pj. Now let us define

= Pi i
qi O 4

where pi and a4 are m and n vectors respectively. Then (2,35) can be

l,--,---.rj

rewritten as

YA;,Y

(2.36) Xj(All) = min max e

Qj YEQj

where Qj is the subspace spanned by ql""""qj'
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Also from the Courant-Fischer minimax principle,

) N -'\ Iy
(2.37) AL (R) = min max L 2 _
’ F ywF vy'y

where F is any subspace of dimension j. Comparing (2,36) with (2.37),

it is not difficult to see that

| Aj(A)_ <Ay =1, v ee .,k

Now let H be any matrix satisfying .

H'H = T
s
iy
HY = , p Hi is s-r by s
1)
H2
Then
H}ZZ'H * H *
H'Z N = 1 1 1 - 11
* * * *
and || z 8. || 2 - trace(H,,)
1l F 117
According to Lemma 2.1, (2,34)
s-r s-r . 5
; 1 = 3 L3 < = [N
LA, (zzY) I A, (2'z2'H) < trace (H),) || z HlH :

i=1 i=1
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for any H satisfying H“H=Is, The equality holds when the rows of
H' are the eigenvectors of Zz' corresponding to its smallest

eignvalues. Since

; 2
4 fxi(zz*) =05

we complete the proof of (2.31) and (2.32).

Therefore (2.31) and (2,32) give a very simple solution which
is directly given via a singular value decomposition of %, and thus
easier to be solved than the original problem (2.19) or (2;22). It
should aiso be pointed out that (2.31) and (2.32) have other
intuitive interpretations which are given in the Appendix to this

chapter.

2.5 FPM With Noise And Uncertainties

So far we have discussed the FPM with modelling uncertainties
only. Introducing pfocess and measurement noise requires some
adjusment of our approach, as the observations y(k) are no longer
deterministic but random vectors. In this case a good FPM must
minimize both the mean value and the variance of the maximum norm
of failure projection if no failures occurred. The system equations

are

x(k+l) = A(n)x(k) + D(N)w(k)

(2.38)

y (k) cimx(x) + v(k)
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where w(k) and v (k) are driving noise and observation noise respecti-

vely and
(2039) E[W(k);] = O’ E[V(k)]=0’ kzl,2'q-,-.
(2.40) Elw(k)w* (_t)]=Q(1k16‘kt (
(2.41) Elv(k)v* (£)1=R(K)8, , , k,t=1,2,....
1, k=t
§ =
ke 0, kAt

The extended observation vector ;(k) can be expressed as

(2.42)
v (k)
yx=1| :
>y(k+p—1)
c 0 0 w(k) ' v (k)
CA CD 0 . .
- | : x(x) + | ©BP - : o
. - : 0 : :
-1 -2 p-3 y )
caP caP caP co 0 w (k+p=1) v (k+p-1)
Define
C
- CA
c=1.



cD 0
5 | cap CD
caP™%p caP3p "o
wi(k) v (k)
sa= | sa=|
w(k+p-1) v (k+p-1)
Therefore
(2.43) v(k) = Cx(k) + Dw(k) + v(k)

From (2.39),(2.40) and (2.41)

Elw(k)] =0 , Elv(k)] = 0
0 (k).
Elw(k)wh (k)] = = 0(k)
0 (k)
R(k)
E[V(K)V' (k)] = = R(k)

R(k)
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Recall the deterministic case in section 2.2 where the quantity

we would like to minimize is (see (2.15))

(2.44) I = max max ” PGylF
nevu Zm)
ly|l=1

In this present case, because the observation vector y is no longer
s . 2 .
a deterministic vector, instead of ” PGy” we would like to use

5 :
its expected value E‘bGy” . From (2.43) we see that
Ey = C(Ex)

So that
Ey €R(C)= 1

Therefore a natural counterpart of (2.44) in stochastic case is

I = max max E ”PGY(U)|F
o neu  EyeZ ()
* ey [l-1
(2.45)
I = max max E[(PG§)'(P §)]
. G
n zeZn)
= max max tr[E[ (P §)(P §)‘]]
G G
n zel(m)
where
(2.46) z(n) = E(y) = C(n)x
Define

P = GG*
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From (2.17),(2.43) and (2.46) we have

(2.47) E[(PGy(n)) (PGy(n)) "]

= E[P(z(n)+D(n)w + v) (z(n) + D(n)w + v) 'P']

=E{Pz(N)z'(N)P" + PD(N)OD'(N) P' + PRP']

Consider the trace of (2.47)
T(N) = tr[Pz(n)z"(n)P* + PD(N)QD' (N)P' + PRP']
= (Pz(M)) ' (Pz(N)) + tr[PD(M)QD' (MP'] + tr[PRP']
=(Pz(M)) ' (Pz(M)) + tr(D(MQED(MN)P'P] + tr[RP'P]

=(Pz(N)) *(Pz(M)) + tr[D(MOD' (N)P] + tr[RP]

Therefore (2.45) can be written as

(2.48) I =max max T(mN)
n zel(n)

max max  {(Pz(M))'(Pz(Mn)) + trM(M)P]+ tr(Rp)}
n ze(n

max 1 max [(Pz)'(Pz)] + trM(MP]} + tr (RP)
n  zel(n)

= max {Omaxz(z' (MG) + tr[M(MGG'] } + tr(RGG")
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where M(n) = D(M)OD* (M)

Therefore Problem (1.2) becomes

(2.49) min max T(N)
G'G=I z£ (n)

= min {max [ 0___2(2'M)G) + tr (M(M)GG') ]+tr (RGG')
max
G'G=1I n

If n belongs to a finite set, as we considered in Chapter 2, Section

2.3, (2.49) can be written as

(2.50) min  { max[o___2(2!G)+tr(M,G6') ]+tr (ReG")}
. max i i
G'G=I i
It is obvious that (2.50) can be solved by nonlinear programming.
Using the same arguments we used in deriving (2.22) or (2.24),

we arrive at an alternative criterian

t
. ' 2 v 1 5 '
(2.51) i { izl[ O ax (Z1G)+tr(M,GG") 1 + tr(RGG')}
t 5 t _
min - { ¥ o “(2!G) + tr[( I M)GG'I+tr(Rec")}
G'G=I  i=1 " i=1 *

Finally we have
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t
. : 2
(2.52) min {ro (Z!'G) + tr(NGG") }
G'G=1 =1 " %
where
t —
N= & M, +R
O

It is easy to see that (2,50) and (2.52) are counterparts of (Al)

and (A2) respectively. Similarly, we have the counterpart of (A3),

t
(2.53) min  { I |TZ!Glﬁ + tr(NGe') }
" G'G=I j=1 1

Because N can be partitioned as

N = Sst

Then (2.53) can further be simplified as

min { Hz'Glﬁ + Hs’clﬁ }

G'G=I
Or
(2.54) min {|E'c|f}
G'G=I
where
Z!\
Em —

st
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Therefore our problem has been reduced to the same form as (2,28)

and can be solved using (2.31) and (2;32[, The only difference is
that instead of Z in (2.31) and (2.32), here we use Z=[Z S] and

S is a matrix related to the covariance matrices of noise 5'and R.

Because (2.54) can be written as

_ 2 S=r
(2.55). min lh-clg = I A,
Ggle=1 i=1 *

7 . . 3 o= P v, .
where Ai is the eigenvalues of ZZ‘arranged in decreasing order.

And

(2.56) ZZ' = 2Z* + SS*

Also it can be proven that [10]

(2.57) A, (2ZY) = A, (ZZ'4+SS") 2\, (Z2Z")
i 71 s 1

Combining (2.55) (2.57) and (2.28),(2.31) we have
. = 2 . 2

(2,58) min |h'G|¥ 2 min ”Z'Glg

G'G=I G'G=I

What (2.58) tells us is that introducing noise increases the
projection of the normal system. If there is no noise, S=0, then

{(2.55) reduces to (2.28),
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The robust faillure detection issue has been considered in
Chow*s:thesiSrtZJ where a relationship between sensor outputs is
selected so that the résultant residual will be as small as possible
under worst case conditions on parameter uncertainties and noise
when no failure has occurred. Chow develops a minimax design
procedure for determining the best residual signal, In this formu-
lation the choice of residual signal depends upon the mean value of
the state and the applied inputs, Therefore,diffexent residual
signals may be optimum for different mean values and inputs. Conse;
quently, one can imagine a system in which different residual genera-
tion system are used under different‘operating conditions; In some
problems, then the operating conditions are known a priori or in
which conditions are such that one can consider scheduling the
residual generation procedure, this approaches is clearly quite
costly in terms of off-line and on-~line calculations and also in
many problems may be unnecessary ( because there are residuals which
work well under all conditions) or undesirable, The methods outlined
in this chapter and in the next directly address the pioblem of
finding a single set of residual signals that performs satisfactorily
independent of operating conditions. Our formulation (2.45) can be
directly interpreted as choosing the residual process under worst
case conditions as opposed to under a specific condition as is done

by Chow, While this formulation requires nonlinear programming, as
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does Chow's, our related formulation (2.54) is far simpler to use as

it only involves performing a singular value decomposition.

2.6  Summary

In this Chapter we have developed three different approaches,
namely (2,19),(2.22) and (2.27) and their cerresponding noise - -
versions (2,50),(2,52) and (2.54) for the specification of robust
parity checks. There are several points worth noting about these.
Because of the similarity between the two groups, we focus our
comments on the first group in ﬁhe following discussion, The results
can be easily applied to the noisy situation as well.

The first concerns numerical solution. The three problems (2.19)},
(2.22) and (2,27) involve calculations of decreasing complexity.
Problem (2.19) and (2.22) both require nonlinear programming, but
the criterion in (2.19) is non-differentiable while that in (2.22)
is. Problem(2.27) involves only a singular value decomposition.

The second point ‘is that the three criteria have intuitively
appealing geometric and algebraic interpretations. In pérticular,
(2.19) solves for the subspace that maximizes the minimum angle
between the subépace and all of the possible observation spaces,

while (2.22), which can be viewed as an approximation to (2.19),

maximizes th
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obsermation space, there the expectation is over the possible para-
meter values. Finally (2,27), .which can also be viewed as an appro-
ximation to (2.22), has ité own physical interpretations: For example
it can be interpreted as minimizing the volume of projection of the.
Z on G (see Appendix of this Chapter) .

The third point is that these formulations have significant
limitations. In particular, in computing the angle between subspaces,
one effectively examines the inner product of all possible unit

vectors iIn the two subspaces. An implication of this in our context

is that all directions in the observation spaces ‘are ‘~equaliy ‘Iikely

'EQ;Qccur‘with’pnity,mggnitude. There are two problems with this.

The first ié»that in thé generic situation parameter variations

méy increase the dimension of the observation space by introducing

a small componeﬁt into the matrix Ep. However in Ep this directipn is
- given equal footing. Thus, the approach outlined here may produce
too few parity checks. Secondly, typically one has a significant
amount of information about the relative sizes of the state x, and
clearly this information translates into some a priori information
about the likely relative magnitudes one would expect to see in
different directions in the observation space. This information is
completely ignored in the approach described in this Chapter. In the
next Chapter we sacrifice some of the geometric interpretation to
develop three approaches that parallel (2,19), (2.22) and (2.27)

but that use the available information about x.
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APPENDIX

In this Appendix we explain the geometrical meaning of formulation
(2.28) in two different ways. The first one comes from looking at
the problem (2.15) in the following way; First; find a subspaceZO
of dimension r such that Z0 is "closest" to Zl’ ";"Zt ; where

"closest" means to choose a Z_ such that

0

min || 22|}
d(ZO)=r '

here Z=[Zl.....Zt] as defined before and 2 is a matrix whose columns

0
span the subspace ZO'
Second, find the orthogonal complement of ZO as our G. This

can be seen intuitively from Fig.Al. This G is the same as that

which results from the solution of problem (2.28).

z
0
T

[]

]

]

]

\

\'4 G

Z ZZ 7

3

Fg.Al

To prove this result, let us first introduce the following lemma.
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 Lenma

Let Z be mxn real matrix. Its singular value decomposition is
Z=ULWV

where 01

L = T 0 (if n2m)

015 ""'ng are singular values of Z. Let r be an integer with r<m,

Then the solution to the following problem

min {”Z—Zolﬁ }

Z
0

dim(Z )=r
0z )=t

e
18 Z,=U m-r+1 of v
‘o
m
proof: see [10]. O
Let U = [ul.....um]
If G = [u1.1-..um_r]
and »Omvr+l
S = g
Then m
Q a 0 O I
zO!G=vT o s|lu'e =v"]o s [o] =0
' 0 O 0O O
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As we see, G is the same as that of (2.28).
The other interpretation comes from the problem of choosing a

G such that

min det (G*ZZ'G)
G'G=I

This problem also has an interesting interpretation. Because
det (G'ZZ'G) can be thought of as the volume of the projection of

the vectors in Z on G

The solution G is the same as (2.28). The proof is similar to

that of (2.28), because if we define

D = G'Z2Z'G
as before, then
s-r s-r
det(@ = T A, 2 T A,
- di i
i=1 i=1

where Adi and Aiare eigenvalues of D-and ZZ' respectively, The

minimum arxrives if

as we proved before.
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CHAPTER 3

GEOMETRICAL APPROACH WITH

CONSTRAINED STATE VARTIABLE NORM

3.1 Introduction

As mentioned in last Chapter, an implicit assumption we made
was that all directions in the observation spaces are equally likely
to occur with unity magnitude. Typically, however, this is not true
in practice and would lead to undésirable designs in some situations,
This can be shown by a simple example.

Consider a special case where the Ci are invertable matrices,

1 0

Ql
I

i=-1,0,+1
1+0.21 0.01

In this case R(Ei)=R2 . Because Omaxz(zi'G) represent the maximum
projection of unit vectors in Zi on G, if Zi is the whole space R2,
omaxz(Zi'G) will‘always be one no matter what G is»chosen. Therefore
(2.19) and (2.22) obviously become meaningless. Formulation (2,27)
also leads to a poor choice as we will see later on.

The reason for the difficulty with (2.19)and (2.22) is that in
deriving them we have effectively made the assumption that x is

equally likely to lie in any direction and take on any magnitude.

With this assumption ¥ can lie in any direction in R(Ei) with no
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component being more likely to have a large value than any other,

In this Chapter we shall develbp,severai.formulations which
are parallel to Problem (2.19),(2.22) and (2.27) but which take
into account the fact that we may have some information about the
system state and thus about likely observation values. It turns out
that these formulations are not only easier to solve in terms of the
original system parameters, but they also give useful answers for

cases such as when Ei have full rank as shown above.

3.2 Unknown But Bouhded_state Constraints

As mentioned in Section 3.1, in practice we always have some
information about the state variable x. Typically, we at least
know that the norm of x cannot be arbitrarily large. Thus we may

suppose that

(3.1) Il g < m

where Ifx” é = x'0x, and Q=Q" is a specified positive definite matrix.
What (3.1) says is that x belong to an ellipsoid centered at the
origin. This idea is identical to that of unknown-but-bounded variables
in [6] where more detailed discussidns are given in the context of
problems other than the one considered here. The assumption“ x” éﬁM

effectively allows us to include realistic statements concerning

the relative magnitude of components of x (and thus of § as well).
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Note that one logical choice foxr x is its covariance. For example,
suppose X actually satisfies a linear eguations

+ W;.L

b: = Aix %

k+1 k

i, . . iy . - .
where wk is a white noise process with covariance 5. In this case

Qi could be thought as the solution of the Lyopunov equation

Qi = By0B; + 2

Now, let us consider again the problem of the previous section.

= o2 . :
Because y=Cix and” X HQsM, it is natural to modify (2.17) as

(3.2) min max max HPG(_lixH2 , 1=1,2,....,t
1 |kIP s
0
Let
(3.3) ' Q=P'P

Namely P is any square-root of Q. Let G be matrix whose columns
form an orthonormal basis for G, Considering (2.17) in this section,

we have
max |bcaix|F7= max IbG'Eix”2

x! QX_<_J.VI x" ngd

= max x'P'(P')_lEiGG’aiP—lPX
x'P'PxM
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= max z'(P') tCr'ce'c.p Lz
z *z<M 1 1
= max Mz'(p 1)'CleG'C.p 1z
z'z<1 * *
2 - -
=m0 2@ e
max i
Thus (3.2) becomes
. 2. - -1
(3.4) min max oﬁax [(CiP ) 'G]
G'G=I 1i

which is the counterpart of problem (2.19). Because Omaxz[(EiP_l)'G]

can be interpreted as the maximum projection of vectors in Zi whose
corresponding state variable x belong to an ellipsoid, (3.4) can be
thought of as minimizing the maximum projections of all such vectors
in Zl,...,.,Zp. Using similar arguments we can also obtain the

counterpart of Problem (2,22)

t 2 -1
. min Xp, O [{(c.,p 7)'G]
-9 G'G=1 i=1 * ™ ¢

which has the same interpretation as that of (2.22). Specifically,

. . . - s . 2
if Q=I, i.e. the restriction on x is ||x|l <M, we have

2 -
(3.6) min max g (C!G)
" G'g=r i  * 1
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and
3.7 min ; p. O 2(E"G)
(3.7L GloeT jop I max i
Comparing (3.4)-(3.7) and (2,19),(2.22), we see that the only
difference between the two group formulations is that instead of Zi’

CiP‘ is used in (3.4)and (3.5)and Ei is used in (3.6) and (3.7).
As we shall see in the example at the end of this Chapter, if EiP_l
is well-conditioned for all i, the formulations in this and in fhe
previous chapter yield similar results. If this is not true, there
may be a significant aifference between the results. Note also that
the formulations in this Chapter require only the determination
of Ei , which is directly related to the Ai and Ci and thus is far
simpler to calculate than Zi'

Continuing ourvdevelopment, we can also parallel the formulation
given in eq.(2.27), which has the same advantages in terms of compu-
tational complexity -- i.e. its solution involves a singular value

decomposition rather than a nonlinear optimization problem. Speci-

fically, consider the‘problem

t Sl R
(3.8) min I p, [[(€.277) G}
: G'G=I i=1 * .

where the p, are weights which can be interpreted as probabilities.

Its solution is (see Eq. (2.31) and (2.32) in Section 3.2)
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t - 1 .2 ST,
(3,91 min I II(CiP' )'G”F= T yA
G'G=I i=1 i=1 1T

where the Ei can be thought of as the normalized matrices including

the weights P, and Yl,,,,,ﬁ, Yévr are the smallest s-r singular

values of the matrix Ca,

(3.10) ' c_ =

The optimal solution for G is

(3.11) 6* = Igy-eeegg )

where Iyre-e- 19, are the left singular vectors of Ca corresponding

to Yl”""’Ys—r’

The interpretation of (3.8) is similar to that of (2.27). That
is, as shown in the appendix to Chapter 2, the G which minimizes
H G‘EiP—llli subject to G'G=Is_r is the same G which minimizes
det(G'Eip—ZEi‘G) which has the interpretation as minimizing the
volume of the projection of possible extended observation vectors
on G.

As a final comment, note that Ei and Zi can be related through

where Ti is a full rank matrix. Therefore (3.8) can be rewritten as
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(Suppose P~I)
(3.12) min I p, ”(Z'i Ti)"‘;“;

If Ti=I then (3.12) becomes the same as (2.27), This means that (2;27)
is a special case of~(3&8)qun the same way we see that (3.4) and (3.5)
are also the special casesof (2.19) and (2,22) respectively,

In this section we have derived three basic formulations under
the assumption of constrained state variable norm. This approach
allows us to take into account a priori information about the relative
sizes of the state variables. Also, the dimension of the resulting |
parity check (i.e. of the space G) becomes a design parameter rather
than being determined by the dimensions of the Zi,

Note that fromvthe derivation of the formulations in this Chapter
we see that the results of the noise version such as (2,50), (2.52)
and (2.54) can easily be extended to the results in this Chapter if
we use Ei instead of Zi in (2.50) and (2.52) and Ca instead of Z in
(2.54).

In next section we will give a further, more detailed comparison
between the formulations of this Chapter and those in Chapter 2. We

will focus this discussion completely on the noise-free case in order

to make our points more clearly.
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3.3 Compawison Between the Two Groups of Formulations

So far we have ebtained two groups of formulations aimed at
solving problem (1,2). One set, which consists of (2;19);(2,22) and
(2.27) is based on the assumption of unconstrained state variable
norm, while the other which consists of (3.4), (3.5) and (3.8) is based
on the assumptien 6f consfrained state variable norm, In order to
facilitate further discussion, we refer to these as groups A and B

and list them as follows,

(al) min max Omaxz(ziG)
G'"G=I 1
t 2
(a2) min ro ax (2!G)
G'G=1 i=1 " *
t 2
(a3) min X |hiGlL
G'G=T i=1
(B1) min max o “[@ ™) q)
G'G=I i
. t 2 = -1
(B2) min z Umax [(CiP ) 'G]
G'G=I i=1
t
. = -1, 2
(B3) min % lkCiP ) le

G'G=I i=1
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‘The main appealing feature of group A is its geometric interpre-
tation as discussed in Chapter 2. The basic concept behind these
formulations is the angle between two subspaces, a quantity which
measures the closness between two spaces. Group B is based on mére
realistic assumptions, i.e. the norm of the stateivariable cannot
be arbitrarily‘large, which makes it useful in some situations where
group A becomes useless as we shall see in next example,

Let us‘consider again the example mentioned in Section 3,1.

In this simple example

1 2 11.2 0.01

and by Grand-Schmitt orthogonization

0.78  -0.62 0.64  -0,77

N
]
N

0.62 0.78 0.77 0.64

Fig. 3.1
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As we point out in 3.1, (Al) and (A2) are meaningless for this example.
To see that (A3) also provides a useless answer in this case but that
the Group B methods yield meaningful results, consider methods (A3)

and (B3) when we choose G to be a one dimensional subspace,

Then using formulation (A3) and (B3) we have Table 3.1

. R
f g 1;"92
A3 1.99 0.993 0.121
B3 0.04 . -0.714 0.699
Table 3.1

where f* denotes the minimum vélue of the criterian being‘minimized
(in (A3) and (B3) respectively). The results are quite different and the
one from B3 is the reasonable one the reason for which can be explained
as follows.

In this example, if we write

-xl(kl

x2(kl

x(k) =

Then
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a yl(k) -
yk) = ' = C.x(k)
yz(k)

xi(k)

(1+0.21) X, (k)+0. 01x2 (k)

If the norm of x(k) is constrained to be less than M, then the effect
of xl(k) on y{k) is far more important than that of xz(k). Consequently,
- : o 1
y(k) is more likely to lie along and ignoring x2(k)
‘ 1+0.21 .

will not cause significant errors. This can be seen from Fig. 3.1
where the observation vector § is likely to lie in the shaded area.
It is obvious the G obtained in B3 (see Table 3.1) is the reasonable
one while the G resulted from A3 does not make sense. The reason for
this is that the formulations in group A consider all directions in
Zi to be equally weighted and in this case this translates into
assuming that xz(k) is likely to have a magnitude 100 times that of
xl(k).

The previous example illustrates the fact that if EiP_lare very
close to singular, group B will give a reasonable solution while
group A will not. In the next example we will show that if Ei are

well-conditioned then the results of group A and group B are quite

close. In this example thé system considered is scalar:

x (k+1) a()x(k)

vy (k) =cx (k)
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where N=1,2,3 and a(1}=0.8, a(2)=1.2 , c=1. Suppose p=2, then

- 1.0 1,0 1.0

01

Il
m
1
(@)
Il

0.8 1.0 ' 1.2

) = o
Normalizing Ci' we have

0.7808 0.7071 0.6402
z, = | ' , '
0.6247 0.7071 0,7682 )

N
i
N
I

Because in this example s=2, r=1, we see that G is a one dimensional

2 \ . .
subspace in R . Suppose the unit vector generating G is

Then

ma

/2.2
= (2579 + 2,50 1-97)

o 2(Z!G) =A (G'Z.2'G)
X 1 max 1 1

where z.

i1 and zi

, are entries of Zi. Similarly

2,2, .\ _ 2.2
O ax (CiG) = (Cilg + Ci 1-g)

m 2

where c.

il and ci

are entries of 6.9
2 i
. 2, = 2 .
Because of the simple form of G (C.'G) and O (Z.G) for this
max i max i

low-order example, the various problems can be solved without non-

linear programming.
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To solve (Al) simply observe that only Z should be taken

1‘Z3

into account., The minimum is obtained at

2, -2,
. 3 = t
T ax Zp'6L = C (z,'6)

Formulation (A2) is simply an algebric equation for g. So that it can
be solved by elementary calculus. To solve (A3) we observe that the

matrix Z is

Using a singular value decomposition subroutine we can find the minimum
singular value and corresponding singular vector which is the desired
G in our simple case. Note that (Bl), (B2) and (B3) are solved in
analogous fashions.

The results are shown in table 3.2 and 3.3 where f* is the minimum

value given by each formulation

£ g JI:;E
Al 0.01112  ~0.7035 0.7106
A2 0.02026  -0,7024 0,7118
a3 0.02026  -0.7024  0.7118

Table 3,2
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N

£ g '/lng
Bl 0.02 «0,7071 0,7071
B2 0,0397 ~0,7118 0.7024
B3 0.0397 ~0.,7118 0.7024
Table 3.3

From Table 3.2 and 3.3 it can be observed that the resulting detection

spaces G are almost the same. This is due to the fact that the EipH1

matrices are well~conditioned,
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CHAPTER 4
EXAMPLE OF FORMULATION (B3)

4.1 Introduction

In this Chapteran example of a three machine power system [11]
with realistic data is analyzed in order to show how the formulation
(B3) can be used to handle the problems in practice,

This»5th order example shows how a simple singular value decom-—
position subroutine is used to solve foumulation (B3). The norm of
the maximum projection of the observation vector on G monotonely
increases with increase of dimension of‘G in order to keep the maximum
projection of the normal system less than a prescribed value.

Also this example illustrates how different values of p i.e.
different numbers of lagged outputs in extended observation vector,
and different C matrices influence the results. |

In Section 4,2 a brief discussion of the three machine system
is given in order to explain the physical meaning of the system
parameters and the uncertainties. Section 4.3 shows the results for
different C matrices. Finally in Section 4.4 a discussion is given

to suggest how to choose the observation space in practice.
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4.2 Three Machine Power System
The three machines in this power system are coupled to each other.
The whole system can be linearized as a Sth order continuous time

system [11].

% (t)

|

4.1) Fx (t)

Cx(t)

y ()

where
Aw
(4,2) AS
x(t) = | Aw
c
AGG

Amd'

with Amr,chaﬁwhAwd being the relative angular velocities of the
generator shafts with respect to a reference and Aac‘and Asd the relativye

angles. The F matrix in (4.1) is

—_
fl1 .60756 .00486 .00733 ~-.00181
0 0 377 0 0]
F = .0122 f32 f33 .0304 -.00454
0] 0 0 0 377
L-—.292 .163 -.0292 f54 f55 i

where £ and f55 are the damping factors whose values are in the

11%33
range from -.15 to ~-.2, and f32 and f54 are spring coefficients

whose values are not known precisely and can change from -.1 to -.4.

The constant value 377 in F is the angular frequency of the 60 Hz
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current and is obviously known perfectly,

In this example we consider two C matrices.

1000 0]
(4.4) c-=|loo100

l0 0001

Flooo‘o'

c = 0010O

0100 0

Matrix C1 incorporates the observation of Awr,Amc and Awd and C2
includes the observation of Amr,ch and AGC.
In order to apply formulation (B3) to this example, Eq. (4.1)

must be discretized as a discrete time system

(4.6) x(k+1l) = Ax(k)
v (k) = cx (k)
where
A = exp(FA)

and A is the sampling interval.

Because the fastest angular frequency in any mode of this system
is approximately 6.09 [11], we choose A=0.25s which is roughly 1/4
the period of the fast mode.

In next Section we apply formulation (B3) to this example and use
singular value decomposition to obtain the optimum detection space

corresponding to differentvalue of p and the two C matrices.
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4,3  solutipn of Formulation (B3)
As: discussed in Section 4.2, we assume the uncertginties only

appear at extrles~fll,f33,f55,f32 and f54 of F and we know the ranges

of values in which these entries may lie, As mentioned in Chapter 2,
Section 2.3, inorder to apply (B3) to this example we must first
discretize the uncertainties by assuming several "extreme points"
of matrix F. Here we assume U=7{1,2g3} (see (2,16), Section 2.3)

and the corresponding values £ and f54 may take on

11’f33’f55’f32

are shown in Table 4.1.

f11 f32 f33 f54 f55
1 -.2 -1 -.2 =.1 -.2
2 -.15 -.4 -.15 -.4 -.15
3 -.15 =-.2 -.15 -.2 -.15
Table 4.1

The next step of our procedure is to compute Fi' Ai=exp(FiA)

and the corresponding Ei’ i=1,2,3,

(4.7) C. = |ca,

where C can be equal to either C1 or C2.
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In order to investigate the influence of p and C we consider

four cases,

case 1 p=6, c=c11

: 2

case 2 p=6, C=C ,

: 1

case 3 p=4, C=C .

5

case 4 p=4, C=C .

As mentioned inChapter 3, the solutioen te (B3) is

3 - 2 ST¥ 2
(4.8) min Z|[ Corell = T xl
G¥o=T i=1 ° i=1
where rl,.. .:r are the smallest s-~r singular values of the matrix
Ca,
=
]
C1
(4.9) Ca\ = 02
Lal 1
C3

The optimal solution for G is

4.10 G* = aeeeaen
(4.10) [gy.- ‘,gs_r]
wheregl, ..... /g are the left singular vectors of Ca corresponding
tor ,..ha,r .
1 s-r 3

. . S a2
As shown in (4.8), the minimum value of T H CiPG!E monotonely
' i=1
incregses as the dimension of G increases, In order to see the

influece of the dimension of G ; we define
k

S(k) = I r
i=1

(4.11)
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where. T iml,.....,s are the singular values of ca ordered from

. 3 :
: . e - , % 2
smallest to largest. Eq.(4.11) gives thé minimum value of I “vCiNSH_F
=1 ‘

wﬁen_the dimension of G equals k; Using a singular value decomposition
subroutine we can compute-xi.i=lk.ﬂ,,1ﬂsy the corresponding singular
vectors and also S(k); k=l;;;;i,;s\for the four different cases. The
results ave shown in Eig,4;1 where we have used a logarithmic scale

for s(k).
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4.4 Discussion
3,
As we expected, S(k)= min z IIC.'GII is a monotone function
! . 1 F
G'G=I i=1

with respect to k. This can be seen from Fig. 4,1, although it is more
easily seen if we use a linear scale for S(k). This is done in Fig.4.2.
From Fig. 4.1 and 4.2 it can be observed that in order to keep the
projection of the normal system sufficiently small the dimension of
the detection space should be smaller than 7 or 8 in case 2,3 and 4
and smaller than 10 in case 1, because S(k) will increase very fast
if k exceed these numbers.

This example illustrates how our method can be used to compare
different sensor configurations (C) and different length lags (p)
in the residual generation process. Also, for a given C and p, a
curve as in Fig. 5.2 provides a useful visualization of the effective
redundancy in the system. For example, if the curve has a dramatic
"knee", i.e. a point at which the slope of the curve increases
significantly (as it does for all four of our cases), one has a clear

indication of how many independent parity checks can be made reliably.’

case 2
- case 3 84

s(k) 4

Fig. 4.2

10
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CHAPTER 5

FREQUENCY DOMAIN DESCRIPTION OF

THE SPACE OF ALL PARITY CHECKS

5.1 Introduction

So far we have considered the failure projection method using
a geomeﬁrical apprdachg The principal concepts in this approach are
those of parity checks and the detection space, As defined in section
2.1, the observation space Zp is a subspace spanned by the extended

observation vector §p(k) where

(5.1) "(k)=[y'(k) y'(k+l) ..... y'(k+p-1)]"

YP
Assuming there are no uncertainties, the detection space Gp is the

orthogonal complement of Zp. We also defined a detec¢tion vector ap

to be
(5.2) a'=[a' al! ..... a']l
p pO pl PP
which satisfies
(5.3) a 'y tk) =0
P yP
for some p=0,1,..... and k=0,1,..... ( here we are using a different

symbol for detection vectors than that used in Chapter 2). Recall that

relationship (5.3) is called a parity check. It is obvious that aPE Gp
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and finding all possible parity checks of length p is equivalent‘to
finding a basis for detection space Gp,

In this Chapter we shall develop a frequency domain approach
( in the case of no system uncertainty) which will answer the question
of parity checks with shortest lengths from which all possible parity
checks of all possible length can be generated, In Section 5.2 we
shali introduce a frequency domain description for parity checks by

associating a polynomial row vector with each parity check. These
polynomial detection vectors span the left null space of the

polynomial matrix [C'(ZI-A)]'. Thus, finding a polynomial basis for
this left null space is equivalent to generating all possible parity
checks, In Section 4.3 we further show that among all polynomial bases
for this null space there is a minimal basis consisting of parity

checks of minimum order. Also a method called searching the crate by

rows [7],[8] is utilized to génerate this minimal basis. Thus to
generate all posssible parity checks the followiﬁg procedure may be
used :
1. Generate the minimal basis mi(z),.....,mm(z) by searching
the crate b& TrOows.
2. Form a mxm polynomial matrix M(z) whose rows are the minimal
basis mlkz);....*,mm(z).
3. Any detection vector p(z) can be generated by multiplying
M(z) on the left by an arbitrary polynomial row vector

p'(z) = r'(z)M(z)
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5.2 Frequency domain description of all possible parity checks

In this section we establish the 1link between the time domain
and frequency domain descriptions of the parity checks. Then we show
that the frequency domain description of all possible parity checks is
nothing more than the left null space of the polynomial matrix |
[C*(ZI-A)']".

Recall that the z-transform of a sequence y(k), i=0,1,,.., is

(5.4) y(z) = L y(i)z-i
i=0

Using this definition we can prove the following theorem:

Theorem 5.1 The following statements are equivalent

(5.5) i, a ‘§P(k) =0 k= 1,..... any xOE R
P p=0,1,..

(5.6) 2. p!'(z)C(zI-n) = q'(z)

where g(z) is some nxl polynomial vector

1 i
(5.7) p'(z) = Z a ‘z

Proof:
(1*2): The z-Transform of (5.5) is

P t-1 _
- X a t'zt(y(z)- I y(r)z )
t=0 P r=0
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P P t=1 _
= % zta ; y(z)~ L zta b T y(xr)z *
t=0 ¥ t=0 P% r=0
14 el ter
=p'(z)y(z)~ L a : L ylr)z =0
t=0 P* r=0
But
: -1
(5.8) y(z) = C(zI-3) X2
(5.9) . y(r) = Cx(r) = CArx0
Therefore the z-Transform of (5.5) is
_- P t-1 R
(5.10) pt(z)C(zI-A) lx0 = 7 a é z Arzt r lxo
t=0 p r=0

Because (5.5) is valid for all x ERn7 we have that

0
_ P t-1 e
(5.11) p'(z)C(zI-A) 1. I a,'C % Arzt -l _ s'(z)
t
t=0 r=0
where s(z) is a polynomial nxl vector,
(2>1): Define
- p
(5.12) (k) = a 'y (k) = I a ly(k+i)
g o Vp =z 0i¥

From the preceding derivation, in particular (5.10), we know that

the z-transform of g(k) is

glz) = p'(z)C(zI—A)le -s'(z)x

0 0
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Considering (5.6)

= —al n
gl(z) = [g'(z) s*(z)] X, all xoeR

Because q(z) and s(z) are polynomial vectors, g(z) is a scalar poly-

nomial function, However

z ‘El(k)z“k
=0

g(z)

Therefore

g(k).

a 'y (k) =0 kK=1,......
D YP r ' - 4 0

Since (5.5) is nothing more than a parity check and (5.7) can be
thought of as its frequency domain description, this theorem sets up
- a link between the frequency and time domains,

Next we shall show that p(z) and q(z) span the left null space
of the polynomial matrix [C'(zI-A)']'. Here the left null space of
some pxm rational matrix H(z) is defined [7] as a subspace spanned

by pxl rational vectors v(z)'s which satisfy
(5.13) v'(z)H(z) = 0
Note that (5.6) can be written as

p'(z)C = gq*(z) (zI-A)

Or

(5.14) [p'(z) =-q'(z)] -0
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Define [p!'(z) ~q'(z)]' as the polynomial detection vector and denote
the left null space of [C'(zI-A)*]" as Nlc' Then from (5.14) we see
that the polynomial parity vector [p'(z) -gq'(z)]" € N, -

Based on theorem 5.1 we can also show the reverse that any

polynomial vector on N corresponds to a parity check of some length

lc

p. Therefore it is enough to know one polynomial basis of Nlc in order
to generate all parity checks of all possible finite length.

In next section we shall discuss how to choose a specific basis

consisting of elements of shortest length. We will call this a

minimal basis for N, .
. 1c

5.3 Minimal basis of N1c

A rational vector space has a fine structure which is associated
with its minimal polynomial basis [7]. The minimal basis is a basis
with minimal order, Namely for the same ;ational vector space it ié
impossible to find another basis whose vectors have the same or smaller
degrees than corresponding vectors in the minimal basis but with at
least one vector whose degree is less than the corresponding one in
the minimal basis. From an engineering point of view the minimal
basis is of significance because from (5,7) and (5.5) we see that a
polynomial detection vector with lower Qrder means fewer delay
elements are required, Also, intuitively, such minimal parity checks

should be the least sensitive to parameter uncertainties.

To see how to generate the minimal basis of Nlc let us first
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introduce the concept of searching the crate by rows [7]1,[8]. The crate

is a table with m columns, representing the rows of the C matrix

: . n-1
cl‘,.....,cm' and n rows corresponding to the powers TI,A,....,A .
1

., th i~
So the (i,j).  cell of the crate represents the row vector c;;.Al
The searching process is as follows. We first search the first

row, i.e. search ¢.' though ¢_". If ¢,' is linearly independent of
! 1 m 3

dll”""’gj:l , put an x in the (O,j)th cell. Otherwise put a 0 in
this cell, Then search the second row, i.e. search cl‘A though cm'A.

I1f cj“A is linearly independent of cll"""’cm"cliA"" c.' A,

1950
then put an x in (_l,j)th cell. Otherwith put a 0O in that cell. We

repeat this procedure with the third row and continue in this way with

successive rows until n linearly independent vectors have been found.

|} 1 1 \]
¢y c, c, 4
X X X 0 AO
b4 0] 0 Al
2
b4 A
0 A3
Fig. 5.1 Example of crate diagram
m=4, n=5

Note, that when a O is found then all vectors below it in the same
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column will also be linearly dependent on the previous ones, For

example, if
(5.15) c.''= X a,c.,t

then the wvector right below it is

(5.16) cj‘A = ?51 aici‘A where ai are some constants.
i=1

but ci‘A, i=1,.....,3=1 are nothing more than the vectors in the
éecond'row that preceds cj'A. Thus cj’A is linearly dependent on
previous vectors. Furthermore, this dependence (5.16) has precisely
the same form as (5.15) and clearly is derived.from (5.15). Thus,
(5.16) does not generate "new" polynomial parity checks. So we shall
ignore (5.16) and leave the corresponding cell blank. In this way
we shall have the crate diagram with m zeros and n x's (assuming that
the system is observable), one example of such a diagram is shown in
Fig. 5,1.

Now we indicate the role searching the crate by rows play
in generating parity checks. We shall ahow that searching the crate
generates m minimum length parity checks from‘which we can generate

all other parity checks, Our procedure is as follows:

1. Show searching the crate by rows provides m parity checks.
2. These m parity checks corresponding to the minimum basis of

Nlc'
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Step 1:
Consider the m zeros in the crate diagram (e.g. Fig. 5.1).
Suppose one zero appears at the (1,j) cell of the first row. From

(5.15) we have

= T
(5.17) [al""‘aj-l 10.,..0] ?j x (k)
cr
| ™|
j-1
=[ Z a.ct - c¢'lx(k)=0
i=1 J
Or
(5.18) a'y(k) =0
where a'=[a. .....a -1 0,....01

Obviously (5.18) is a parity check.

Generally, a zero in the j-th row would represent a parity check

of the form

y (k)

(5.19) [a.'eeu.... a.'l . =0
y (k+3)

Its corresponding polynomial parity check would be

(5.20) p'(z)y(z) = q'(z)
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where

] .
(5.21) p'(z) = T a,'‘z

In fact, any blank cell in the crate diagram is also corresponding
to a linearly dependent vector and thus to a parity check as well.

However, as we mentioned before, it can be generated from the m minimal

ones.

Step 2: Searching the crate by rows generates a minimal basis of
Nlc'

Proof:

1. Because searching the crate by rows generates m parity checks,
from Theorem 5.1 we know that they correspond to m polynomial parity

vectors [pi“(z) —qi‘(z)] , i=1,....,m and
(5.24) [pi’(Z) —qi‘(Z)J} €N,y i=1,2,....,m
and [ail renae aip] is the corresponding parity check, which satisfies

v (k)
a! 1\ E =0

v (k+p-1)

2. From the crate diagram we can easily see, that every cell
except those with x represents a parity check or equivalently a

vector in the orthogonal complement of the range space of
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caP™?

In fact, the collection of parity checks corresponding to these cells
span the or ogonal complements of the range spaces of EP for all
p=1,2,...... In other words, they produce all possible parity checks,
Therefore their corresponding parity vectors must span Nlc' But  we
have already seen that these parity vectors can be generated by the

m basic ones. So the m basic polynomial parity vectors constitute the

basis of N
1lc

3. From (5.6) we see that the order of p(z) is alwayé greater than
or equal to that of g(z). From the procedure of searching the crate
by rows we also see that the m baéic polynomial parity vectors have
the minimal order.

Combine 2 and 3 we come to the conclusion that the m basic poly-
nomial parity vectors are the basis of N | with minimallorders.

1lc

Therefore they are minimal basis of Nlc' @)

From the development in this section we have the following:
Let ml(z),,....,mm(z) denote the minimal basis and let p(z)
denote the detection vector corresponding to any parity check. Then

there is a polynomial vector r(z) so that

(5,25) p'(z) = r'(z)M(=2)
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m, (z)

where ‘ M(z) =

m_ (z)
m

5.4 Example of searching the crate
In this section we illustrate the procedure of searching the

crate by rows., Specifically, censider the example specified by

aA=1]1 0 0
0 1 0
i i
1 0 0
C = 1 0
2 0 0

Then CA = 1 0 0
-4 -2 2
3 3 -2
2
CA = '-_'2 -1 1
6 6 =4

Because the first two rows of C are independent of each other and the
third row is dependent on the first, we have the first row of the
crate diagram as shown in Fig. 5;2. In the same way we can determine

the second and third row of the crate diagram.
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°1 i) €3

b4 X 0 AO
X 0 Al
0 A2
Fig. 5.2

The first parity check corresponding to the first zero in the first
row is

a,'c=1{2 0 -1l1c=o0

with yl(k),yz(k),y3(k) denoting the components of the output of this

system, this parity check is given by
2yl (k) - Yy (k)

The corresponding polynomial vector'ml(z) is

2 o 2
ml(z) = 0 z = 0]
-1 -1

Similarly, by a simple calculation it can be seen that the second

parity check corresponding to the zero in the second row is

C C
a.! =[1 000 -1 01 ‘= 0
CaA CA
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This corresponds to the parity check
yl(k) - y2(k+l) =0

The corresponding polynomial vector mz(z) is

1 o 0 1
mz(z) =10l z + |-1] z = |-z
0 0 0

By simple linear algebra we can show that the third parity check

corresponding to the third zero in the third row is
a3‘ =[-1 1 0 -2 0 0 -1 0 O]
This corresponds to the parity check

—yl(k) + Y2(k) -2yl(k+l) - yl(k+2)_

The corresponding polynomial wvector is

-1 0 -2 -1 5 —1—2z-—z2
m3(z) = 1l z + 0] z + 0| =z = 1
0 0 0 0
Then
v -
ml (z) 2 0 1
M(z) = m,_t(z) = 1 -2z 0
2 2
m3‘(z) ~1-2z~z 1 0

and all other parity checks can be generated as in Eq. (5.25),
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Conglusipn
In this Chapter a link between the time domain and frequency

domain descriptions of parity checks has been established. Based on
this 1link, it has been proven, that generating all possible parity
checks is equivalent to generating a basis for the left null space of
the polynomial matrix [C"(zI-A)']'. Finally, a method called searching
the crate by rows has been shown to generate the minimal basis for

the left null space of the polynomial matrix [C"(zI-A)*]%, i.e. Nlc'
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CHAPTER 6

CONCLUSION

6.1 Main Contributions of This Thesis

The main contributions of this thesis are as follows.

1. The formulation of the Failure Projection Method which
provides a geometric.picﬁure ofithe problem of failure detectidn in
the presence 6fvmodel uncertainties and noise,

2. The thorough development of the FPM concept. In particular,
two groups of formulations have been developed., One gives distinct
geométrical interpretation while the other is based on assuming that
one has available a priori informationon the system state. Within
two groups three formulations which are based on slightly diffefenf
criteria and have decreasing complexity of calculation are developed,
The simplest require only a singular value decomposition. Also two
numerical examples are given which show the relationship among these

formulations and thus provide a deeper understanding of their nature.

3. An algebric approach has been developed for the generation
of a complete set of minimal lengtﬁ parity checks.

4, Extension of FPM to include measurement and process noise.
Again a formulation is developed which only involves a singular
value decomposition;

5. An illustration of FPM to indicate how it can be used as a
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design tool in assessing system redundancy and in determining parity

checks.

6.2 Further work
We feel that the following represent the most important directiens

for further work.

1, As mentioned in Chapter 1, in this thesis we only examined
Problem (1.2) ---- minimizing the maximum residuals of the normal
system under model uncertainties and noise. In the next section we
briefly discuss some possible solutions for problem (1,3), i.e.
finding a failure detector which yields good performance when there
is only one postulated failure mode, using the machinary developed
in this theSis. The completion of this step and the final solution of
(1.3) and our ultimate goal Problem (1.1} are the important subjects

for future work.

2. In section 2.3 we made the assumption that the set of uncer-

tainties U is a finite set
v=1{1,2,....,t}

and pointed out that it is a unproven conjecture that any set U can
be replaced by a finite set whose corresponding observation subspaces
are the "extreme points" of the original set of observation spaces

as the paraméter vector ranges over U, This conjecture should be

proven.
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3. The algebraic approach developed in Chapter 4 provides a
useful starting point for further investigating the algebraic aspects
of failure detection. For example, in Chapter 4 we only considered
parity checks of finite length p, But in practice parity checks with
infinite length are often used. A simple example of a infinite length

parity checks might be as follows.

Consider a system

xl(k+l) 1 T -xl(k)
L%, G [ o 1 x5 (k)
_ yl(k) xl(k)
Y2 (k) '-X2 (k)
"1 0
Therefore C 0 1
= 1 T
ca !

It can be seen that a parity check would be

o]

L oIx (k) - x (k) + Tx_(k)]I=0
k=0 1 1 2

which is of infinite length.
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6.3 FPM with a priori information about one failure mode

In the preceding chapters we focussed attention on Problem (1.2)
(see Chapter 1, Section 1.3) without taking any specific failure mode
into account. In this section we briefly consider the Problem (1.3),
where one specific failure mode is given. To solve Problem (1.3)
we must find a residual that achieves an acceptable tradeoff between
detection and false alarm chafacteristic. As mentioned in Section 1.3
one possible criterian for this problem is to constrain the norm of
the failure residuals when the system is unfailed while maximizing
the failure residuals when the system fails,

As we did in Chapter 2 , Section 2.2, we may consider the
worst-case situation. Namely we may constrain the maximum projection
of the extended observation onto the detection space G to be less
than a prescribed quantity when there is no failure, while maximizing
the minimum projection of the observation vector whén there is a failure.

This leads to the following optimization problem,

max min  min [[PGy||2
G i yezfi

lyll=1
under constraints G'G=I
s-r
(6,.1)
max max ” P z||2 < M
G
i ZE
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where Zui’ i=1,....,p are the observation spaces of the unfailed
system and Zfi are the observation spaces of the failed system. Using

the same arguments in Section 2.3 in deriving Eq.(2.18), we can

rewrite (6.1) as

max min O , (Z_'G)
. fi
G
1 —
(6.2) G'G ISFr

max o (z 'Gg) £M
max ui

where Gmin(*) is the minimum singular value of some matrix. Instead
of considering the worst case one can imagine the possibility of

using the weighted summation or expectation as condidered in section

2.3. Then we have

P
L}
max ‘Z o, (ZfiG)
i=1
(c2) : G'G=T1I
s-r
p -
Lo (z !6) £M
i=1 max ui

where Zfi and Eui should be considered as the normalized version of
Zfi and Zui as we did in Section 2.3 (see formulation (2.22a)). In

principle (Cl) and (C2) can be solved by nonlinear programming, although

this is not an easy: ktask.
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Using criteria other than those developed so far, we can obtain
other formulations. For example, if we choose G to minimize the diffe-
rence between the projection norms of the failed and unfailed systems
we will have a set of formulations which have the same general
objective as those described previously in this section.

As one example, a formulation similar to (C2) would be

hekie

7
O (“'uiG) 1
i=1

(D2) max [ Gmin(ZfiG) -

G'G=I i=1

I Mg

Also using the Frobenius norm,(D2) can be rewritten as

- 2 - 2
(D3) min ([l Z 6l 2 -llZ_'cllZ )
G'G=T u P f F
where , Zfi Zui
z_t =\ . , z ="
£ 2 ' u 2 [}
fp up

Formulation (D3) can also be written as

(D3a) min tr(G'ZSZ'G)
G'G=I
where B
zZ ! I
.u p
Z' = ’ S =
z_ " -1



It is easy to see that (D3a) can be solved using the same derivation

we used to solve (A3) and (B3). The result is

s-r
min tr(G*2sz'G) = I 7\i
G'G=I i=1
* = e o 2 s e
G [g1 gs?r]
where Ki are smallest s-r eigenvalues of ZSZ" and gl,.,..‘,gs_r are

corresponding eigenvectors,
Problem (D3a) can be solved by "S-singular value decomposition”.

If we denote

2 2 2 . 2
= = =g A =-0
As Oy As—l P " Tsrptl p " T s-p+l  p+l’ !
2
Xl_-cp+q
then we know that
—2 —
O.
1
. 02
D
2
72872 = U -0 U’
ptl
© 2
| P+§J
=ULsSzu*"

where
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e}
1
T = - , U'U = 1
ptq
If I is nonsingular we have
clozs@ior™ = s
Define
v =2 1yz
we have
VSV' = 8§

V is called'SﬁoxthogOnal. Therefore

(6.3) % = ULV

Then the solution G of rank r is obtained by taking last r columns
of U. The thorough examination of the problem and approach described

in this section remains as a useful direction for future research.
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