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ABSTRACT

An algebraic approach is developed for multiple time scale
decompomtmn of a linear system using the Smith structure of the system
matrix viewed as the matrix of functions of a small parameter c. This
derivation makes clear that both the necessary and sufficient multiple
semi-stability (MSST) condition, which ensures well-defined multiple
time scale behavior and the time-scale-decomposed system structure which
approxnnates the original system are closely related to the so-called

Schur complements of a certain matrix. Furthemmore, this decomposition
has been extended to a larger class of systems, satisfying the so-called

multiple semi-simple nullstructure (MSSNS) condition.

The algebraic approach is also applied to examine the questions of
the feedback control of the linear systems. Specifically we present
results on time scale modifications by state feedback.

The characterization of the relationship among the eigenvalues of
A(c), its invariant factors and the MSSNS and MSST conditions has been
thoroughly studied. It is shown that the MSSNS condition is not only
equivalent to the non-singularity of the Schur complements of certain
matrix but also equivalent to 1) the eigenvalues and the invariant
factors having the same orders and 2) a condition which exposes the
relationship among the order of the gcd of all ixi principal minors, the
order of their sum and the invariant factors. The MSST condition is
equivalent to 1) the Schur camplements being Hurwitz and 2) a condition



which reveals the connection between the MSSNS and MSST conditions and
the eigenvalues of A(c).

Using the algebraic approach, a scaling procedure is developed to
transform a system having no uniform time scale approximation to one
which does. This procedure is applied to high-gain feedback problems,
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CHAPTER 1  INTRODUCTION

1.1 General Description

The class of systems considered in this thesis are linear, time-
invariant systems whose parameters are subject to a small perturbation.

Mathematically, this can be stated through the system equation
x(t) = A(e)x(t) + B(e)u(t) (1.1)

Here x and u are n—- and m- dimensional state and control vectors
respectively; and A(e), B(e) are nxn and nxm matrices whose entries are

analytic at e=0.

As pointed out by Coderch and et.al. [1], [7], under certain

conditions the undriven system

x(t) = A(e)x(t) (1.2)
will exhibit multiple time scale behavior, Namely, the state variable
x(t) can be "approximated" by a new variable z(t) whose components

evolve at several time scales with time constants proportional to
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1,1/e,1/<-:2,..... In other words, the undriven system which may have
Very large dimension can be broken down into several subsystems with

lower dimensions, each of which focuses on different time scale.

The phenomenon just described is commonly referred to as a

consequence of the singular perturbation of the system matrix A(e).
Specifically, as noted by Coderch [7], the system (1.2) may have several
time scales only if A(e) losses rank as € goes to zerot. If the rank of
A(0) is equal to the rank of A(e), then A(e) is regularly perturbed and

has only one time scale.

The value of singular perturbation analysis for the system (1.2)
rests on the fact that it achieves model order reduction by separating
the system's time scales, that is by considering slow and fast'phenomena
separately. Consequently, probiems of analysis and control for systems
with very large dimension may boil down to several problems of smaller
dimension., In addition, there are situations in which the original
system is not singularly perturbed but in which the control which is

applied causes the overal closed-loop system to possess several time

* For most of the discussion in this thesis we will focus on the case
in which A(e) has full rank for € € (0,eg] but is singular at e=0. In
Section 2.8 we show how to extend our results to the case in which A(e)

itself is singular,
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scales, For example, singularly perturbed system can result
from the optimal control of a system using a quadratic cost functional
having a small penalty on the control [2], [13]. The results in these

references reveal the existance of multiple time scales in such systems.

There have been numerous papers dedicated to this subject ( see
survey [i0],[22) among which Rokotovic et.al. have thoroughly studied the
two time scale case. Then Coderch, et.al. [1], [7] carried this idea to
the multiple time scale case and derived some basic results. In this
thesis we develop a new algebraic approach to multiple time scale
analysis which allows us to obtain a clearer and deeper understanding of
time scale decomposition for the general systems (1l.1l), (1.2). Not only
does this approach allow us to gain more insight into the nature of
systems with several time scales but it also provides a framework within
which it ié possible for us to consider and solve several other
important problems., 1In this chapter we first briefly describe previous
work which forms the foundation on which our research is built., We then

give the outline of this thesis and summarize its contributions.

1.2 Background

The origin of the multiple time scale problem can be traced to the
so—-called boundary-layer problem in ordinary differencial equation

theory where a small positive number e is incorporated to allow

12



perturbations. Typically such a problem gives rise to a boundary layer,
which is a narrow interval of time close to the origin where the
solution of the differential equation changes rapidly. The thickness of
the boundary layer approuches zero as e-->0, Outside the boundary
layer, in the outer region, the solution varies slowly. Therefore the
system presents two time scales. A simple example will show this

phenomenon., Consider the perturbed differential equation
ex(t) + (l+e)x(t) + x(t) = 0, x(0)=0,x(1)=1

The exact solution of this problem is

et _. -t/e¢
x(t) =

el = -1/e

Therefore this problem exhibits two time scales having time constants of
order 1 (slow) and order € (fast). In general, the boundary layer
method is based on the fact that if a solution of a differencial
equation is slowly varying except in isolated boundary layers, then it
may be easy to obtain a leading order approximation without directly

solving the equation.

Kokotovic and co-workers studied a special class of systems of

singular perturbed linear differential equations [4], [5]

13



;{1 (t) = Allxl(t) + A12X2(t)

If we change the argument t to
t =t/e

then we have

1/€)l(l (e) = Allxl(t) + Aqu ('l'.)
;{2 (t) = A21X1 (v) + A22X2 (t)

Or
€1 €Ay

Ayy LY

(1.3)

(1.4)

Thus, (1.3), or equivalently (1.4) is a special case of (1.2). If in

addition A5, and All-A21A22'1A12 have all their eigenvalues strictly in
the left-half plane, then system (1.2) has well-defined two time scale
behavior (see below) and the eigenvalues of A(e) will fall in two groups

as € approaches zero, one of order 1 the other of order e.

In the previous subsection we gave a verbal, intuitive definition

of what we mean by well-defined multiple time scale behavior, namely

that the system can be decomposed into several subsystems, one at each

time scale. The following is a precise statement of what we mean.

Definition:

System (1.2) bhas well-defined multiple time scale behavior if there

14



exist constant matrices Ag, Ajresessr Ay, T and integers kgskySeSkp_q
such that

lim sup |lexp{A(e)t}
e->0 t>0

- Texp{diag[ekvo,eklAl, . .ekn'lAn_ll il =0

In this case we will frequently say that [Agses..,A,_1:T] defines

a time scale decomposition of (1.2).

It is clear from the definition, that if (1.2) has well-defined
time scale behavior then the state variable x(t) can be approximated
(after a linear transformation) by n components, each evolving at a
different time scale. Furthermore, the approximation is uniformely

valid on entire half-line [0,9)%,

While Kokotovic considered the two time scale case, Coderch, et.
al. [1], [7] presented the first complete solution of the general case
(1.2). In this work they present necessary and sufficient conditions
for the system (1.2) to have well-defined time scale behavior. Their

proofs suggest a procedure for extracting and displaying the multiple

* As point out by Coderch [7], exp{A(O)t} is a good approximation for
exp{A(e)t} on any finite interval [0,T]. Therefore the notion of
multiple time scale makes sense only when the concern is the whole

interval [0,%).
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time scale structure of (1.2), However this method is quite involved
and does not lend itself to easy interpretation or computation. For
example, the relationship between the complex results of [1], [7] and

intuitively simple results of [4], [5] is not at all apparent. Making
clear this relationship and obtaining a conceptually and computationally
simple solution in the general case are two of the objectives achieved

in this thesis.

1.3 Outline of This Thesis

The first portion of the research described in this thesis deals
with 'an algebraic approach to the time ‘scale decomposition of (1.2).
Specifically, in Chapter 2 we consider the Smith form of A(e-;) over the
ring T of all functions of c which are analytic at e=0, and based on
this form we are able to obtain a more direct and simple description of
the multiple time scale decomposition. This derivation makes clear that
both the necessary and sufficient multiple semi-stability (MSST)
condition, which ensures well-defined multiple time scale behavior and
the time-scale-decomposed system structure which approximates the
original system are closely related to the so-called Schur complements
of a certain matrix. In doing this we also are able to make clear the
connection between the general results of Coderch et. al. and those of
Kokotovic. Furthermore, having established this framework we are able

to use it to solve several additional problems. In particular we are
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able to extend our decomposition (with a modified notion of well-defined
time scale behavior) to a larger class of systems, satisfying the so-
called multiple semisimple nullstructure (MSSNS) condition, and, at the
end of Chapter 2, we use our results to examine the questions of the
feedback control of the system (l.1). Specifically we present results

on time scale modification by state feedback.

Chapter 3 deals with the characterization of the relationship among
the eigenvalues of A(e), its invariant factors and the MSSNS and MSST
conditions. It is shown in this chapter that the MSSNS condition is not
only equivalent to the non-singularity of the Schur complements of a
certain matrix but it is also equivalent to 1) the eigenvalues and the
_invariant factors having the same orders and 2) a condition which
exposes the relationship among the orders of the gcd of - all ixi
principal minors, the order of their sum, and the invariant factors.
These results provide us with a procedure for computing the orders of
the eigenvalues and invariant factors and for checking the MSSNS
condition. Also, in this chapter we show that the MSST condition is
equivalent not only to the Schur complements of a certain matrix being
Hurwitz (Chapter 2) but also to a condition on the orders of the real
and imaginary parts of the eigenvalues of A(e), which in turn reveals

the connection between the MSSNS and MSST conditions,

In Chapter 4 we use our results on the relationship between the
orders of eigenvalues and invariant factors to explore the use of

amplitude scaling to transform a system matrix without MSSNS into one

17



that does have this property. The analysis involved in this
investigation is rather delicate as it involves careful examination of
the orders of principal minors and the identification of key elements of
the matrix that must be scaled. The end result of our efforts is a
procedure for determining such a scaling matrix for systems satisfying
certain conditions. We then apply our results to interpret and
generalize recent results on time scale analysis of high gain or nearly

singular optimal feedback systems.

Finally, in Chapter 5 we briefly summarize the main results of the

thesis and discuss several directions for further research.

1.4 Main Contributions of This Thesis

We feel the main contributions of this thesis are the following.

l. We present a simpler and clearer picture of the multiple time
scale decomposition of a general perturbed linear system based on an
algebraic approach which allows further development in several

directions.

2, We make clear the connection between Kokotovic's explicit

approach for the two time scale decomposition case and Coderch's

18



elaborate multiple time scale results.

3. We thoroughly study the MSSNS and MSST conditions relating them
to the algebraic structure of A(e). By exposing the important role that
the orders of the invariant factors and eigenvalues play, the

interpretation of those conditions is clarified.

4, We develop an algorithm to extend time scale decompositions to a

larger class of systems which satisfy MSSNS but not MSST.

5. We present results on time scale assignment through state

feedback control.

6. We make clear the relationship between the MSSNS condition and
the MSST condition. Specifically, A(e) satisfies the MSST condition if
and only if it satisfies the MSSNS condition and the orders »of the real
parts of its eigenvalues are equal to or less than those of the

corresponding imaginary parts.

7. We reveal the role of the gcd's of the principal minors (not all
minors as in the general case) in determining the invariant factors of a
system with MSSNS and develop an algorithm similar to that of the so-
called Newton polygon. We show that if the system has well-defined
time scale behavior (or more generally if A(e) just has MSSNS) then this
algorithm determines the orders of the various time scales and the

dimensions of the subsystem at each time scale,

8. We develop a procedure for amplitude scaling to transform a

19



system which does not satisfy the MSSNS condition to a system which
does. If the original system satisfies some conditions studied in this
thesis, then after scaling the resulting system will have well-defined

multiple time scale behavior.

9. We apply the scaling procedure developed in this thesis to high-
gain feedback problems, leading to an interpretation and generalization

of results in the literature.

20



CHAPTER 2

ALGEBRAIC ASPECTS OF TIME SCALE BEHAVIOR

2,1 INTRODUCTION

As we pointed out in Chapter 1, the system we shall consider in

this thesis is a perturbed, linear, time-invariant system

x(t) = A(e)x(t) + B(e)u(t) (2.1)
and its undriven form
x(t) = A(e)x(t) ' (2.2)

where A(e) and B(e) are nxn and nxm matrices whose entries are functions
of a small parameter € analytic at e=0., Kokotovic and co-worker [6, 10]
have thoroughly studied a special case of (2.2) in the two time scale
case, which, as we discussed in Chapter 1 Eq. (1.4), corresponds to

A(e) having the special form

21



€A1y  €Rp)

A(e) =
Ayy A

. -1 .
with All-Alezz Azl Hurwitz,

Coderch et. al. [7,1] studied the general case of (2.2) and derived
necessary and sufficient conditions for the system (2.2) to have a well-
behaved multiple time scale description. In Section 2.2 we give a more
detailed review of their work and point out the limitations of their

results which have motivate our work.

In particular, in this chapter we develop an algebraic approach for
determining the multiple time scale structure of (2.2). This method
involves the examination of the Smith form of A(e) over a particular
local ring T. In Section 2.3 we give the definition and basic feature
of this ring. In Section 2.4, we introduce the so-called explicit form
of the perturbed system (2.2) which is closely related to the Smith form
of A(e). We also show that after some invertible 1linear
transformations, the solution of this explicit form is a good
approximation (in an asymptotic sense) to that of system (2.2) if in
fact the original system has well-defined multiple time-scale behavior (
a property we define in the sequel). Moreover, using the explicit form
we can define a straightforward procedure to check if a system has well-
defined time scale behavior., At the end of the section we provide an

overview of the major results along these lines that are developed in -
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the following sections.

In Section 2.5, we give a first derivation of the multiple time
scale approximation. This derivation is in fact an extension of the
usual two time scale argument. Then in Section 2.6 a proof of the
asymptotic properties of this approximation is given based on making
explicit the connection with Coderch's results. It turns out that the
time—scale-seperated system which approximates the original system is
determined by a sequence of Schur complements of the system matrix in
explicit form. A major consequence of this is that the computational
procedure we derive is far more transparent than that proposed in [7].
The egivalence between the results obtained in Section 2.5 and 2.6 is
established in Section 2.7. This development makes clear the
relationship between Kolotovic's two time scale result and Coderch's
multipie time scale result. Finally, in Section 2.8 we review our
results in order to place our contribution in its proper perspective.
Specifically our approach establishes a framework that not only exposes
the essential nature of time scale decompositions in a very clear
fashion, thereby improving our understanding of such decompositions, but
also provides a starting point for posing and solving a variety of
problems that are not so easily posed or solved using previously
developed approaches. Chapters 3 and 4 contain several important
results of this type, as does the end of Section 2.8 in which we solve
several problems including one that had been proposed, but not solved,
by Coderch [7].
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2.2 PREVIOUS WORK

As pointed out in Section 2.1, not only is our work closely related
to Kokotovic's two time scale results and Coderch's miltiple time scale
approach, but it also establishes the clear and simple relationship
between these earlier results. Therefore at the start it is important
that we describe their work in some depth. In this section we give an

outline of their work and point out several issues.

2.2.1 Two Time Scale Results

The two time scale singular perturbation method developed by
Kokotovic, et.al [6.10] is based on a linear time invariant system with

a small constant ¢ on the left hand side of its state equation:

1
- x Ay1Xy+Ay5X A A X X
['1 =|:111 12%2 =[11 12[]=A[1 (2.3)
ex Bo1%1 20X fo1 AallXpl  Ix
There are two well-known results about this system for small c,

l. If A22 and £11=A11-A12A22-1A21 are DQD_-_S_iDQ_u_l_QL, then the
eigenvalues of (2.3) fall in two groups as e—>0. One group approaches

the eigenvalues of ;\11. The other approaches that of €Aj,. The matrix

24



5*11 is commenly referred to as the Schur complement of Aj, in the matrix
A [3]. We will have much more to say about Schur complements as we

develop our approach in following sections,

2. If Ayy and 5*11 are Hurwitz, then the 'system has "well-defined
time-scale structure" as e-->0. The fast time scale is of order 1 and

the slow time scale of order 1/e.

Mathematically, what "well-defined time-scale—structure" means can

be explained as follows.

Define
T = ‘ (2.4)

and

yp(t) x) ()
1 - 1
Yo (t) X9 (t)

Then under the condition that A,,, A;; are Hurwitz, we have

v (£5] [ys(®)
= + 0(e), O<t (2.5)

o (t) | | ye(t/e

where the O(e) term is bounded uniformly in t on [0,%) as e-->0 and

25




Yg(t) and yg(t/e) are called the "slow" and "fast" states respectively

‘and satisfy

Yo(t) =A11¥g(t), ¥s(0) = xq(0)
Xy (0) A9, 1An1 %1 (0)  (2.6)

Ye(t) = Agoye(t), yg(0)

If we define

A;y Ay

Ae) =
-l _l
€ A21 € A22

in view of (2.4), (2.5) and (2.6), we have

lim sup IITexp{A(e)t}'I’_"l - expi{diag [17\11, 1/eAyo1t}1|=0
e->0 t>0

Furthermore, if we change the time scale to t=t/e, we have

J'(l(t) eAll CAlz xl(t) xl(t)
= =A(e)

;(2 (tv) A21 A22 X2 (t) x2 (t)

Then similarly,

lim sup ||Texp{A(€)T}T™! - exp{diagled;y, Ayylt}|I=0 (2.7)
e->0 >0

In general, as we defined in Chapter 1, if A(€) ié analytic at e=0

26



and Hurwitz for €>0 and there exist constant matrices Ay, Ay, T such
that uniform convergence as in (2.7) holds, then we say that A(¢) has
well-defined two time scale behavior. Obviously Kokotovic's results
provide a two time scale decomposition of a linear system. Moreover, as
mentioned earlier, this approach has been proven to be useful in optimal
control [4], stochastic control [8], design of nonlinear regulators [5],
analysis of high gain systems [13], cheap control [2, 12, 13] and so on,
The limitations of this method consist of two points, First, the
assumed form of Eg. (2.3) essentially implies that the seperation of
fast and slow state variables has been done beforehand. This is,
however, not the general case, especially for complex systems, where the
system matrix could be a more general function of €, and state
seperation would not be immediately available, Secondly, only two time
scales are considered in this model. 1In the next subsection we
introduce the result of Coderch, et.al [7, 1] which successfully solve
the general problem of multiple time scale behavior of a perturbed

linear system,

N

2.2.,2. Multiple Time Scale Behavior of Singularly Perturbed LTI Systems
The system considered in [7,1] is the singularly perturbed LTI

system (2.2) with a slight change in notation whose purpose will become

clear shortly.
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Xt) = Ay(e)x(t) (2.8)

where the nxn matrix Ag(e) is an analytic function of e. For the
present discussion we assume that Ag(e) is Hurwitz for e¢(0,eq) although
Cocerch allows slightly weaker assumptions. In Section 2.8 we will show

how our approach can be easily extended to this more general case,

In order to present the results in [7,1], we need several

definitions., A matrix H is said to have semisimple pullstructure (SSNS)

if its zero eigenvalue has geometric multiplicity equal to its algebraic
multiplicity. In other words, every zero eigenvalue of H corresponds to
a distinct independent eigenvector. A matrix H is said to be semistable
if it has SSNS and all its non-zero eigenvalues have negative real
parts. Suppose Ag(€) has eigenvalues Al(e),.....,An(e) y:here A (e)=>0,
€->0, i=l,....,m$n. Then the total projection for the zero-group of
eigenvalues of Ay(e), Pg(e) is the projection onto the subspace spanned

by eigenvenctors corresponding to Aj (€)jesees Ap(€) of Aqp(e) [9].

Since Ap(e) is analytic at e=0, it has a series expansion of the

form
Bole) =2 ePFgy
p=0
It can be proven [7,1] that if Fyo bas SSNS, the matrix
Al (e) = PO (G)Ao (e)/e

has a series expansion of the form

28



[~
A(e) =3 PF
1 50 1p
If Fio also has SSNS we define Az(e) as

. Ag(e) =Pj(e)Aj(e)/e= Pl(e‘.)Po(e)Ao(e:)/e:2

P
= F
=0

where Py (c) is the total projection for the zero-group of eigenvalues of

A;(e). This process can be continued but it terminates at
Ap(€) = Pp_1(€)Ay_j(€)/e = Pyq(€)....Pyl€)Bg(€) /€M
3" ePr
po

if the matrix Fpp does not have SSNS or if

ran'kF00+rankFlo+. . .+ranka0=n.

A matrix Ag(€e) is said to satisfy the multiple semisimple null
structure (MSSNS) condition if the sequence of matrices Ay (€) can be
contructed up to a stage k=m with all matrices Fiy, k=0,....,m having
SSNS and rankF00+....+ranka0=n. If ‘in addition, all Fypg are

semistable, then we say that Aq(€) satisfies multiple semistability
(MSST) condition.

The following results determines when an asymptotic approximation
to x(t), uniformly valid for t20, can be constructed which clearly
displays the multiple time scale behavior of x(t). The main result is

the following.
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1. System (2.8) has well-defined time-scale behavior if and only if

Ag(e) satisfies MSST condition.

2. If Ao(e) satisfies the MSST condition. Then

lim sup |lexp{A(e)t} - exp{ZFkoekt}ll =0
e=>0 t>0

Furthermore, it can be shown that using a linear transformation T, which
is independent of € , we have that

TLFy oT = diag{0,0,..4,0,A¢.0,...,0}, K=0,...,m

where each of the ;\k is Hurwitz. Therefore

lim sup |lexp{Ap(e)t} - 'I"lexp{ZTFkoT'lekt}Tll =0
e>0 t>0

or
lim sup exp{TAo(e)T'l} - dlag{exp[Aot],....,exp[Amemt]} =0
e=>0 t>0

(2.10)

In other words, to first order approximation, the original system (2.8)
can be thought of as being composed of (m+l) uncoupled subsystems (after

certain e-independent transformations)

30



d§k(t)/dt = Rk§k (t) r k=0'ooo-'m

each running at a different time scale. In this case we will say that

(T: Age aae 2A,) defines a time scale decomposition of (2.8).

From this result it can be seen that in order to obtain the
uncoupled approximation one must first compute Fyg, k=0,....,m, then
compute T, Although a procedure was proposed in [7], it really should
not be viewed as an algorithm, since the computational aspects of the
procedure have not been examined, and the procedure is quite involved.

For example, Fin, Fpgr F3p can be obtained by

F10 = PoRo1Po
_ #
Foo = P1Po(RgoRg1BR00 A01) PoP1
_ # . #
P2P1Po (Ro3~Ro1R00 "2027R02R00 201
# # #
+A01200 Po1200 Po17202210 202 .
# # # #
+AgoR10"A01800 2017 P01R00 201210 A02
- # # #
Bg1R00 201210 A01R00 Po1) PoP1P2

T
w
o

|

where Pi=él_i;n‘l;i (e), i=0,1,2, and A¥ is the pseudo—inverse of

matrix A. The computation of F,q is much more complicated. The
complexity of these formulas makes it difficult to obtain a deep
understanding of multiple time scale behavior and the structure of Agy(e)
or to examine a variety of problems such as the consideration of the

effect of control on time scale behavior.
Having these background results we are now in a position to
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introduce our main results. As we mentioned in Chapter 1 and earlier in
this chapter, an important element in our development is the Smith form
of A(e) over a local ring T of all functions of € analytic at €=0. In
next section we give the definition and the major properties of this

ring.

2.3 The Iocal Ring T

In this section we study the ring T of all functions of real
variable e which are analytic at e€=0. In other words, we study the rir_lg
of functions which have Taylor series expansions at €=0. We show that
this ring have a Smith form. It is this Smith form that plays an
important role in this thesis. We state many of the results concering T
and matrices over T without proof because they are immediate extensions

or examples of results which can be found in literature [3,11].

Consider a set T which consists of all functions of € which are
analytic at e=0., It is easy to show that T is a ring. The units of T

are elemlnts of T which do not vavish at e=0,
U ={ x| x€T, x(0)%0}
Therefore any unit of T has the form

u-= a0+ale+32€2 seeoe
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with aoés\o. Define the degree of x, a(x), to be the order of the first
nonzere term in its Taylor expansion., (For example, if x=a2e2+a3e3+....
and az%O, tﬁen the degree of x is two). Then T is a Euclidean domain
with degree function a(x). If for some x, a(x)=i, then x equals el
times a unit. In other words, each x is equivalent (modulo units) to
one of the element of set {l,e,ez,.....}. Let £ and g be two eleménts

of T. Then it is easy to see that
1. f divides g iff a(f)<a(g).

2. f and g are coprime iff at least one of them is not

equal to zero at €=0.

Let M(T) denote the set of matrices whose elements belong te T. Then

the set of unimodular matrices is defined as
Uu(T) = {GIGeM(T), 1G(0) %0}

Because T is a Euclidean domain, it is a principle ideal domain.
Therefore any matrix A€éM(T) can be transformed to its Smith form,

Namely for any matrix A€éM(T) we have
A=PDQ
where P,Q¢U(T) and D has the form
D = diag {e}l,...., €if, 0,....,0 }

where the integers ij are ordered so that 0£iy€i;% ... ¢i,. The

33



quantities eil, s are called the jnvariant factors of A(e). The
elementary row and column operations used in bringing A into its Smith

form have the form
1. Interchange of any two columns (or rows).

2. Addition to any column (row) of any other column (row)

multiplied by an element in T.
3. Scaling any colum (row) by any element in U(T).
Let A, B € M(T) have the same number of rows. Then A and B are left
coprime

iff F=[A B] has the Smith form P[I 0]Q. .
iff F has full row rank at e=0.

It can be shown that this ring is a local ring because its maximal

ideal, namely <e> is unique.

As pointed out in Chapter 1, system (2.2) can be approximated by
its explicit form. Further work on our algebraic approach is bassed on
this form. Therefore in next section we derive the explicit form of

(2.2) using the Smith form of A(e).
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2,4, THE EXPLICIT FORM FOR A SINGULARLY PERTURBED AUTONOMOUS

LINEAR SYSTEM

2.4.1. Introduction

In this section we show how a general system (2.2), with A(e) being
a matrix over T, can be put into what we tefm its explicit form., As
mentioned before, it is the explicit form that makes it possible to
connect the Smith form of A(e) with the multiple time scale behavior of
the system. This provides considerable insight into the structure of
such systems. Also, the explicit form permlts us to develop an algorthm
fof conétruting the time scale decomposition of (2.2) that makes use of
Schur complements and that makes clear the computations required to
determine the time-scale decomposition. This formalso allows us to
pose and answer a variety of questions in subsequent chapters and

sections of this chapter.
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2.4,2, Explicit Form
As mentioned in Section 2.3, an nxn matrix A(e) over T has its
Smith form
A(e) = P(e)D(e)Q(e)

where P(e) and Q(e) are unimodular, namely [P(0)| X 0, [Q(0)] X 0 and

D(e) is

D(e) =

0 Do | s

where dj(e)=eij, J=lyeees,r, and Osijsik, j<k.

consequently we can rewrite the system (2.2) as

x = P(e)D(e)0(e) x (2.11)

Because P(€) is unimodular, P'l(e) exists in the neighbourhood of e=0.
Later on we shall see that we can use P(e) as a similarity
transformation on the state without affecting the time scales of the
system. In particular, multiplying by P'l(e) on the left 6f both sides
of Eq. (2.11) we have
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P(e)"1x = D(e)O(e)P(e)P(e) 1k

Let

p(e) 1x

<
[}

Then

y

D(e)Q(e)P(e)y

If we define
E(e) = Q(e)P(e)
we have
y = D(e)A(e)y
= diag{ Iy, e€Ipseeess €11, 1} K(e) (2.12)

Eq. (2.12) is called the explicit form because D(€) explicitly reveals’
the time scales of thes system. Recall that Q(e) and P(e) are

unimodular, and therfore so is A(e).

In the next section we shall consider (2.12) and find, under a
particular set of conditions, the time scale-decomposed approximation of
y (after appropriate similarity transformations). Before vﬁe do that,
let us overview some of the major results to be devoloped in the

following sections.

2.,4,3 An Overview

What we are interested in doing is investigating the time scale
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decomposition of (2.2), or equivalently of (2.12). Coderch's approach
(Section 2.2.2) provides a general method for doing this involving the
computation of the total projection for the zero group of eigenvalues of
A(e) and of each of the subsequent system matrices Aj(€)y Ag(€)r eeee
defined in this procedure, All of these computations involve using the
complete e-dependent projection matrices. On the other hand, as we will
discuss, if one has a system in a form analogous to that of Kokotovic's
treatment (Section 2.2.1), the computation of these projections is
straightforward and transparent, as is the check of the MSSNS and MSST
conditions. What our approach does is to transform the system so that
this straightforward construction can be applied. In this process, we
in fact throw away certain parts of the e~dependency of the system
matrices that'are unimportant in obtaining a time scale decompoéiﬁions
if in fact the original system has a time-scale decomposition. 1In a
sense what this does is to minimize the number of e-dependent
computations that must be performed, thereby making far more clear what
the critical e-dependencies are in A(e), its total projection onto the

zero group, and those of its successors (Al(e), A, (€), etc.).

To be more specific, let us assume, both here and in the next three
sections that A(e) in (2.2) is Hurwitz for e€>0. Now, if we obtain a
time-scale decomposition for y in (2.12), it is straightforward to
obtain a time-scale decomposition for x in (2.2) using an e—independent

similarity transformation, Specifically,
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Lemma 2,1:

Suppose that (T; IT\O, eoer gm) defines a time-scale decomposition of
the explicit form dynamics (2.12). Then (TP™3(0); Ag, weess A ) defines

a time-scale decomposition of the original system (2.2).

Proof:
It is straightforward to check that this lemma states is equivalent

to the following. Note that

X_(t) = P(e)y(t)

Define

x1(t) = P(0)y(t) | S (2.13)
Then |

;irg i;g Hx(t) = x(8)[1 =0 (2.14)

That is, (2.13) is an asymtotically accurate approximation of the

solution of (2.2).

To proceed, note that
Hix(t) = x1(0) 11 < [IP(e) = PO ] |ly®)I]
So that (2.14) will be proved if we can show that

lim sup Jly(t)l] = M < o0
>0 t>0

However, by hypothesis

39



y(€) = T ldiag{exp[Agtl, . , explA™t]}Ty(0)
where each of the S‘i is Hurwitzt., Since

sup |lexp[Ajelt]|] =sup |lexp[Ast]l| <
t>0 t>0

the result is proved.

Note that one consequence of the lemma is that (2.2) has a time-
scale decomposition if and only if (2.12) does. However, while this
lemma tells us a little bit about those e-dependencies that can be

thrown out, there is far more that can be said.

Specifically, recall that XA(e) in (2.12) is unimodular.
Intuitively, what this means islthat E(e) has no "structure at e=0",
For notational simplicity, let us denote A(0) as A, and consider the

system
z = D(e)Az (2.15a)

Let us also write & In block form compatible with the diagonal block

sizes of D(€)

* That the S*i are Hurwitz follows from the assumption that A(e)

is Hurwitz for eé(o,eO].
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———

A1) A1p eeess A
B21 B2 eeeee Bpp

A= e 0o v et

_Aml Ao eeees Arrm_
So that
-—' — r— - =
Zl All A12 evens Alm Zl
|z €Ay] €Ay eeee. €A, |lz
z = .2 = 21‘ 22 2m .2 (2.15b)
' .
z, cmAml emAmz ceces emAnm Zn
L J L JLJ

is in a form very similar to the form (2.7) considered by Kokotovic., We -

call this the reduced explicit form.

As we saw in Section 2.2.1, the Schur complement play an important
role in defining the time-scale decomposition of the system considered
by Kokotovic, A similar statement is true here. Specifically, in the
next three sections we define a sequence of matrices 5‘0' eese g Km and a
similarity transformation T obtained by successive Schur complementation
of A, and we provide two derivations, one based on the approach of
Kokotovic, and a second making explicit contact with the results of
Coderch, of the following (again under the assumption that A(e) is

Hurwitz for e>0):
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Theorem 2,1:

Consider the original system (2.2) and the explicit form system
(2.12), These systems have well-behaved time-scale decompositions if
and only if the reduced explicit form system does. Furthermore, these
well-behaved time scale decompositions exist if and only if Z\O' vee 7 im
mentioned above all exist and are Hurwitz. In this case (T; 50, coee
gm) defines a time-scale decomposition for both (2.12) and (2.15), and
(by lemma 2.1), (TP'l(O); 50, cee 7 im) defines one for the original

system (2.2).

Let us make several important comments about this result.
Specifical ly, once we have determined P(0) and A=Qk0)P(0) r all of the
mm_mg glg_ujgt_i_qng are g—_md_emgdgg; Thus, we have identified the
critical e—dependent computations as the determination of P(0) and Q(0)
in the Smith decomposition of A(€). Finally, note that one point of the
Theoremv is that if (2.15) has a well-behaved time scale decomposition,
then

lim sup [ly(t) = z(t)ll =0

e->0 t20
However, as is illustrated in Section 2.7, this peed not be true if a
well-behaved time scale decomposition does pot exist. 1In fact, while
A(e) is Hurwitz for e€>0 by assumption, and D(e)EA(e) = P"'l(e)A(e)P(e) is
obViously Hurwitz as well, D(€)A need pot be Hurwitz for e>0. Thus, if

the original system has a well-behaved time scale decomposition, we can
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throw away the e-dependent terms in A(€). However, if such a time-scale
decomposition does not exist, the e-dependent terms of A(€) represent
- critical components of the damping in the original system (2.2). In
Section 2.8 we use this observation to define time scale'decompositions
in a slightly weaker sense by pinpointing and keeping these e-dependent
terms in A(e) that are critical to system stability. This construction,
posed as an open problem by Coderch, is but one example of the problems

that our framework allows us to solve.
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2.5, DERIVATION FROM TWO TIME SCALE RESULTS

2.5.1. Introduction

As we stated in the last section (Section 2.4.3), £inding the time
scale decomposition of (2.2) is equivalent to finding that of (2.12).

In this section we shall show that if the successive Schur complements

Ay

decomposion for both (2.12) and (2.15), and (TP™1(0); Ay7, eeer Apy)

i are Hurwitz then (T; gll' ces ¢ gmm) defines a time scale

defines one for the original system (2.2). The proof is in fact an
extension of the well-known method used in 'the two time scale case.
Then in the next section we shall relate our approach to the multiple
time scale results obtained by Coderch et.al, and this will allow us to
prove the full version of Theorem 2.1, that is,‘ that the iii being
Hurwitz is pecessary as weli as sufficiant for the system (2.2) to have

a well—defined time—-scale decomposition.
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2.5,2, Derivtion From Two Time Scale Results

The basic idea behind this approach is to block-diagonalize
A, (e)=D(e)A(e). It uses well known two time-scale results repeatedly to
"peel off" each time scale. So first let us review some of those

results. Suppose the system we are considering has the following form

X = A(e)x

where
Ay Ay
Ae) =
ehy) €Ay
It is proven [17] that if we define

I -L(€)
T(e)= ‘ (2.16)

eH(e) I-eH(e)L(€)

- where H and L satisfy
Alz(e)-All(G)L-GL(Azz(C)+A21(€)L) =0 (2.17)

H(A17 (€)-LAyy (€))=€(Agq (€)+Ao (€)L)H+eAy (€)=0  (2.18)

We have
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T(€) tl(c)= (2.19)

€A21(€) €A22 (€) 0 G2 (C)
where

Gy (e)=Aq; (€)-€L(€}An) (€)

G2(€) =A22 (€)+A21(€)L(€) (2.20)

Solution to (2.17) and (2.18) exist as long as A1;(0) is invertible and
e is sufficiently small. Note that under these conditions T(e) is

unimodular and, as €0, L{€)=>-Ay; 1(0)A15(0), H(€)->0.

Now, consider our system in explicit form (Eqg. (2.12))
élT All (e) eeossve Alrn(e) zl

i2 i2
z €1%An1(€)  eeceee€ Ao (€) z
2|.|% "2 2m 2 (2.21)

Lzm Leijml(e) ......em%(e) Zn

- L _]
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Let us apply this procedure m-1 times in succession to A(€), where
at each stage we "peel off" one of the time scales of (2.21), starting
from the fastest. We begin by assuming that A;4(0) in (2.21) is
invertible and apply the procedure just described to A;(€), with
"eAy, (€)" identified as the large lower right-hand block matrix in (3.7)
and with "Ajo(€)" and "eA,y(€)" defined in a corresponding manner. Thus

we construct
I "'Ll ( e)
Tl(e) = (2.22)

€i28 (e) I-€?H) (e)Ly (o)

where, as e—>0, H(e)—>0, Gy (€)—>A17, and

Ly(€) = [L15(€) eesslyp(€) 1=>A17 2 [A190 00 Aypl]
Also
izz(e) RN N NN NN N izrn(e)
G2(€) = LICC B AN B A
eim'izimz(e) em'izi\m(e)
where

~ _ -1 _
Ajj(e) = Ajj(€)-AjiLiy(€)—>Aj4=Aj1A1) A4 = Ay
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We now see that if 13:22 is invertible we can repeat this procedure on

Go(e). Continuing, we finally obtain

To1(€) eeeTy (€A (€T L (E) o0u T 172 (0)
= diag{Gy (e), eisz (€) roves ,ei“\Gm(e) }

-provided that All = Gl(O)y gzz = GZ(O)""";‘m-l,m-l = Gm_l(O)

are all invertible, Define
A(e) = dlag{;xll, 612322, ceee ,eiman.m)

We shall prove

| Theorem 2.2:

If ill""'gm are all Hurwitz then (T; Rll, coer ;‘m) defines a
time-scale decomposition for both (2.12) and (2.15) and (TP'l(O);

ill'"" imm) defines one for the original system (2.2).
To prove this theorem we need the following lemma.
Lemma 2,2

Let E(e) be an nxn matrix with entries from T, If E(0) is Hurwitz,

then

lim sup |lexp{E(e)t} - exp{E(0)t}I| =0
e=>0 t>0
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Proof:
It is well known [9] that

exp{E(e)t} = -l/2ﬂj§ exp{st}R(s,E(€))ds
r
where [~ is a positively-oriented contour enclosing all eigenvalues of

E(e) and

R(s,E(€)) = (sI-E(e))~!

Note that for e small enough E(e) is Hurwitz and " can be chosen to lie
in the left-half plane and to enclose all eigenvalues of E(0) as well as

E(e). Therefore we have

| lexp{E(e)t} - exp{E(0)t}|] =
1727 | <§ exp{st}[R(s,E(€)) - R(s,E(0))]ds||

< 1/2Wexp{-at}| 1§ R(s,E(€)) - R(s,E(0))]ds
r

where a is a positive number. The uniform convergence of R(s,E(€)) to

R(s,E(0)) on[" [9] then proves the 1lemma.

Proof of Theorem:

As a first step we note that by lemma and the assumption that

511»--'5m are Hurwitz

lim sup |ldiag[exp{G (e)t,....,exp{e' (et] -
e->0 t>0 1 mk;m
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diag[exp{illt},.. .,exp{emﬁmt}] i

m ~
< lim ¥ sup [lexp{G (e)t} - exp{A  t}|| =0
e->0 r=1 t>0

Thus, since T(e) is unimodular, we have

lim sup |lexp{a; (e)t} - Tl(e)exp(A(e)t}T(e) |1 = 0

e>0 t>0
From the proof we can see that this result holds not only for (2.12),
but also for (2.15). Thus we have proved the first part of Theorem 2.2.
To prove that (re~1(0); Z‘ll""' Z\mn) defines a time-scale decomposition

for the original system (2.2) we need just invoke Lemma 2.l.

As. a fina;l comment we note that the recursive procedure for peeling
off successively slower time scales actually yields a sequence of
approximations over longer time intervals if exp{A(e)t} is replaced by
diag{exp[illt],....,exp[irreirt], I,ee0ey1}, we obtain a uniform
approximation over an interval of the form [0, €l-ir+l] (see [7] for a

similar comment).

The results in this section show that the Hurwitz condition is a
sufficient condition for the system (2.2), (2.12) and (2.15) to have
well-behaved time-scale and provide the actural time-scale
decomposition. As mentioned previously, in the next section we show,

based on Coderch's results, that this condition is also neccessary.
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2.6. RELATIONSHIP WITH CODERCH'S RESULTS

2.6.1, Introduction

In Section 2.4 we showed (Lemma 2.1) that a perturbed, linear time-
invariant system that exhibits well-defined time scale behavior can be
approximated by its explicit form which is closely related to the Smith
form of the system matrix over the local ring T provided the system
(2.2) hés well-behaved time-scales. Then in Section 2.5 we used a
method based on the well-known two-time scale results to prove (Theorem
2.2) that the explicit form and the reduced explicit form can be further
approximated by a block-diagonalized, time-scale-seperated system if the

A;; are Hurwitz. In this section, starting from the multiple-time-scale
results in [1,7], we shall prove the necessity of this condition and

thus prove Theorem 2.l.
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2.6.2 The Schur Complem€nt

Consider the matrix

Bll Blz see oB]n

B— L I B B A N )

Bnl Bkz .oooBkk
where the B;;, i=l,...,n are square matrices. Define

B11 B12 «eeeBrk
Yk= 200G COOOOIOOSS km

Bkl Bxa -eeeBkk

Then the Schur complement of Y, with respect to By, is

~ -1
Bk = Bgg—[BgyeeeoBg k11 (Y1) “[Byg'eceBry 'l

If we define

Sk1 = (Y1) "IByrr i=l,.eessk-1 (2.26)

The Schur coplement can be written as

Bkk =Bkk-[Bkl....Bk'k—1] [Skl'o...Sk’k_l']l

k-1

A number of properties of Schur complements are described in
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Appendix 1, which we shall find useful in proof of our main results.
In addition, there is one other relatively simple property of Schur
complements that we are in essence using in this section but whose
derivation is deferred until Section 2.7 where we derive other related
results. Specifically, in Section 2.5 we define the E‘ii as successive
Schur complements., That is 511 is simply the upper left-hand block of
A. Then we perform a Schur complement of A compatible with the block

structure shown below

o

All A12 cevecee Aln-l

A21 A22 eecene Azl.n .
- (A G2

.. C1 Cp2

So that
= -1
Co2 = Co2 = Co1B11 Cy2

and 522 is then simply the upper left-hand block of 622. The procedure
then continues step by step. On the other hand, the Schur complement
Ay defined as in (2.27) if the B's are replaced by A's, is obtained in
one step. That these two computations yield the same result is shown in

Section 2.7.2.
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2.6.3. Main results

The main result in this section is the proof of Theorém 2.1, based
on Coderch's results. The basic idea behind the proof is to construct
the succesive projection matrices and pseudo-inversces used in Coderch's
approach. By using the explicit form for these computations we can then
directly relate the MSSNS and MSST conditions to the condition that all
of the S‘i'i are Hurwitz, Since the proof is tedious we leave it in
Appendix A2 at the end of this chapter. One byproduct of this
computation is the explicit identification of the similarity
transformation T needed in the time scale decomposition. Thus what we

actually obtain is the following:

Theorem 2,3:

Consider system (2.2) and its explicit form (2.12) and reduced

explicit form (2.15). Let the system matrices of (2.15) be

All Alz sveoo Aln

K= o0 00O OCOIOINOEEGSEOITPOTES

App Anp eees Am
and define
Ayq.
: STI
A(e) - 3
0 . ~
",
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where the Z*ii' i=1,....,n are the Schur complements of & as defined

before, Then we have

1. Systems (2.2), (2.12) and (2.15) have well-behaved time-
scale decompositions if and only if the gii' i=l,eeeyn

are all Hurwitz,

2. If the iii are all Hurwitz, then (T; ill' eee S‘nn)
defines a time-scale decomposition for both (2.12) and
(2.15), and (TP™1(0); A11, wes Any) defines one for

the original system (2.2), where

I Sy S31 e Spi
|0 T 832 eees S
T = .
0 0 L
L0 0 .eeee O I ]
and the sij' i=2, eeey N, j=1, .., n-1 are defined in Eqg.(2.26) if we
replace Bij with Aij' A direct consequence of this result is the
following,
Corollary:

The following conditions are equivalent:

1. A(e) and its explicit form satisfy the MSSNS (MSST)

condition.
2. A;; are of full rank (Hurwitz).
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2.7 Relationship Between The Two Derivations And The Uniqueness

Of The Time Scale Decomposition

2.7.1. Introduction

In this section we show first that the gii in section 2.5 are
nothing more than the Schur complements in Section 2.6. We then turn
our attention to the question of the uniqueness of the time scale
decomposition, Specifically, we show that although the matrices P(e) -
and Q(e) are not unique (because of the non-uniqueness of Smith form
decoﬁposition) the Schur complements of A=Q(0)P(0) corresponding to
different choices of P(€) and Q(€) are similar, Therefore different
Smith decompositions give the same time scale result up to a similarity

transformation at each time scale.

- 2.7.2. Recursive and nonrecursive computation of Schur

complements

To prove that gii as defined according to Eq.(2.27) equals 511 in

Eq.(2.23) we need the following lemma.
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Lemna 2,3:

Consider an invertible matrix A

B11 Byp A3
A= Azl A22 A23 (2.30)
A31 A3 A3z
Define
Fij=Aij"AilAll-lAlj, i,j,=2,3 (2.31)

Then the Schur complement of Az3 is

5 -1
Ag3=F33-F3oFyy “Fo3 (2.32)

Proof: Consider the linear equation
Alx' y' z']' = [00Db"]" (2.33)
It is easy to show that the solution is z=§33'1b. We can also

write the solution as

-1
* Ayy “[A1p Ag3l

z Azp A3z B33 b

| F32 F33 b
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or
Fao Fp3||Y 0

= (2.34)
F32 F33 2z b
Solving (2.34) for z we have
= - -1 -1

Eg.(2.35) is true for all possible b. Also the solution for Eg.(2.33)

is unique. Therefore we have proved the lemma.

Note that F33-F32F22-1F23 is nothing more than the 333 defined in
Section 2.5.2. Hence we can conclude that 2\33 defined in Section 2.6 is
the same as that defined in (2.26). Repeatedly using Lemma 2.2 it is

easy to prove that this is true for all k=1,...,n.

2.,7.3. Similarity of Schur complements of different
decompositions

In this subsection we show that although for different PDQ
decomposition the matrices Q(0)P(0) are different, their Schur
complements are similar. We first show how the Schur complement of a
matrix is influenced by a left (right) multiplication by a lower
(upper)triangular matrix. Then we prove the similarity between Schur

complements of different decompositions.
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Lemma 2.,4: Consider a matrix
A B
S=
CD
where A is invertible. Consider the Schur complement
D=D-ca~1p

and suppose that D is invertible. Let

1= =
Uy vyitend Lle py
where T and vV, are invertible. Let

D) = D1=CiA) By

Then

A B [Tz v, [Az 32]
Sz—[c D] 0 vz]— C; Dy

where T, and V, are invertible, Let

Let

= -1
Dy = Dy—Cohy "By
Then

Dy

DV,
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Proof:

Consider the linear eguation

< R

The solution is

y =D la (2.37)
: Ty O
By left multiplying by on both sides of (2.36) we
Vl Vl ~
have
A B X 0
oA ” - [ ] ‘ (2.38)
D \Y
Cl 1 Ly ] L la..l . .

The solution of (2.38) is

y = D7vja (2.39)
Combining (2.37) amd (2.39) we have
bl = D7vja (2.40)
Because (2.40) holds for all a€R"™, we have

51 = p,-L
D™t = D7y

or

~

D; = V;D
Now note that (2.36) can be rewritteri as
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or
[A B] [T2 Uz][Tz-lx—Tz-levz_l] [o]
C DJiLoO Vo | V2'1y a
Let
Xl = Tz-»‘-lh—Tz—]'Usz-ly
We have
[Az Bz][’ﬂ ] [:]
¢ Dl
Then
Vz'ly = 132'1a = Vz'lf)'la
Therefore

Suppose A(e) has two decompositions:

A(e) = Py (e)D(e)Q;(e) = Py(€)D(€)Qy(€)

D(e)

diag{Iy, €Iy, ....} = diag{d;, e... dnl (2.41)

Where &; = €%f, 0<a;<aj<....<a,. Then we have

61



Lemma 2,5:
The Schur complement of Qy(0)P(0) and Q,(0)P,(0) are

similar.

Proof:
For simplicity, let us write D(€), P;(e) and Q;(e) as D, P; and Q;

repectively for i=1,2. From (2.41) we have

D=P; "1P,D0y0) !

M N
Therefore
M~1p=DN
Or
1 =
(M~ (e))ij_di/dj (N(e))ij (2.42)
Suppose

dl=d2=ooo=dso=1’ i dso+l=oo-=dsl=e' (XYY 4

Agme1+1=0..=q =€", s =n

Define

R0={1""'SO}’ Rl={so+ll OOOIsl}loo;] Rm={Sm_1+l,...,Sm}
If i'j Rk' k=0'ooo’ frOIl'l (2.42) we have
(L (e)) 35=(N(e)) 45

or
(r1(0)) 3 5=(N(0)) 45
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If 1€Rg), J€Re, kikky then, because (M71(0));y and (N(0))j5 are finite

for all i,j, we have
(N(O))ij=Nij=0, k1<k2
1 =
(M- (0))13-01 k1>k2
Then N(0) and M~1(0) can be expressed as

)

n n
N(0) = .21 22 (2.43)

Pmtl,1 +eeeee-Om+l,mel

, L .
M1(0)= 22
0 .
O+l ,mel
Hence
-1
Mmoo, i
22 .
M(0) = . (2.44)
0 . 4
D, mel

By definition of M and N we have
NO1PIM = QoF)
Therefore in view of the special forms of (2.43) and (2.44), the k-th
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principal sub-block of Q;(0)P;(0) and Q;(0)P5(0) denoted by [Q;P]ly and
[QoP,]k can be related by

-1
n%l 0 Ny .
. [Q1P1 1k 0 = [QPo g (2.45)"

*

gk Ngk

Then applying Fact 1 to (2.45) we see that the k-th Schur complement of
[Q5P5]k = Hio is related to the ki Schur complement of [Q;P;]y by

= -1
Hyo = NpgHgiNgk
Thus we have shown that for different decompositions PyDQ; and PoDQo,
the Schur complements are related by
A,(€) = UA (e)uT
where
U = diag{nlI' seoe Innm'.}

and njj, i=l,....,m are the diagonal blocks of the matrix

N(O) = Qy(0)01(0)™F = diaginyy,eeee iy}

From this lemma we see that although the Q(0)P(0) is not unique,

its successive Schur complements are similar. Furthermore, the time-
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scale decomposition is determined by the Schur complements and a
similarity transformation matrix T. Therefore the similarity of the
Schur complements explains the essential uniqueness of the time-scale

decomposition.
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2.8 Summary Plus An Extension
2,8.1 Introduction

In this chapter we have developed a new approach for determining if

a system of the form
]
x = A(e)x

has well-defined time scale behavior and for constfucting the
corresponding multiple time scale a;pproximation. As we discuésed in
Section 2.1, a major motivation for this work was a desire to gain
additional insight into the algebraic structure of systems with several
time scales and to perhaps develop an approach that is conceptually (and
hopefully algorithmically) simpler so that further study of these
systems might be facilitated. We feel that the approach described in
this chapter accomplishes this, since (1) we have been able to provide a
clear bridge between the general work of Coderch, et al. [7] and the far
simpler and more transparent results developed byKokotovic, et,al. [17]
for systems in what we have termed "explicit form", and (2) the approach
established in this chapter provides the foundation for posing and
answering numerous important questions about systems with several time -

scales. In this section we first briefly review the main results of
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this chapter to support the first of these points and we then present
two additional results which support the second point. The remaining
chapters of this thesis provide further indication of the usefulness of

this approach to time scale analysis.

Let us first review the major result of this chapter.
Specifically, we have analyzed the multiple time scale structure of a

system of the form
x = Ale)x (2.45)

where A(e) is assumed to be BHurwitz for e 6[0,60]. Our approach consists

first of performing a Smith deconpqsition of A(e)

A(e) = P(e)D(€)Q(e) ' (2.46)
where |P(0)|X0, [Q(0)I[X0 and

D(e) = diag (K01y, &klry,...., ek r )

We then consider a similarity transformation on (2.45) which leads us to

the explicit form
y = D(e)A(e)y

where A(e)=Q(e)P(e) and the reduced explicit form
z = D(e) Az (2.47)

where
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A1y By eeee Byp

A A oo o0 A
K=%0) = | =,

Al AR
(here the block dimensions are compatible with those for D(e¢) in
(2.47)). We have shown that A(e) satisfies the MSST condition if and
only if each of the successive Schur complements Aii (see Section 2.6.2
for definition) of A is Hurwitz. In this case we have then shown how to
construct a similarity transformation T so that

lim sup || exp{A(e)t} - Texp{A(@)t}T™! ||
e=>0 t>0

0 (2.48)

 where

That is, (ill,....,inn;'r) define a time-scale decomposition of the

original system,

Let us make two comments about this result. The first is that it
is straightforward to extend this result to the case in which we assume

only that A(e) is semistable for e€>0, i.e. that

lim exp{A(e)t}
t=>ee

exists (so that A(e) has no eigenvalues in the right-half plane and the
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only eigenvalues on the jw axis are simple eigenvalues at 0). Under
this Condition, the Smith decomposition of A(e) is as in (2.46), but

D(e) has the form
D(e) = diag(eX01y,....,eK" 11 _;,0) = diaglD; (e),0]

In this case the explicit form of A(e) is

Dy(e) 0]l Ay(e) Ay(e)
D(e)E(e) =

Now A, (e) is invertible since the upper block corfesponds to the nonzero
eigenvalues of A(e). Furthermore, as direct consequence of the result
in this chapter, A(e) will have MSSNS only if A;(0) is invertible, i.e.
only if A(e) is unimodulart., Therefore, let us assume this is the case
and define the unimodular matrix

I -a"He)a(e)

R(e) =
0 I

* By the assumption that lim expA(e)t exists, then A;(0) is in fact
t->00
Hurwitz.
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D (e)A(e) O
R 1(e)D(e)E(e)R(e) = 1A

Now apply the time scale decomposition developed in this chapter to the
explicit form matrix Dy(e)A;(e). If this does not have well-behaved

time scale structure, then neither does the original system. If it does

have well-behaved time scale structure, let (511,....,1.&[]“;@ denote the

time scale decomposition of this system. Then let

Ale) = diag{ekO%yy,...., &71A, 0}
Tl = dlag[T 0]
T = P(0)R(0)Ty

It is then straightforward to check that (i(e), T) define the time scale

decomposition of Af(e).

The second point we wish to make is that if A(e) does not satisfy

the MSST condition (i.e. if not all of the S*i'

i are Hurwitz), then (1)

the reduced explicit form (2.15) need not be asymptotically equivalent
to the explicit form (2.12) or the original system (2.2); and (2) the
origenal system does not have well-defined time scale behavior in that
sense that we have used so far —— i.e., it is not possible to satisfy
(2.10) for any choice of constant matrices iii (i.e. not restricting
attention to simply the definitions of these matrices as successive

Schur complements). Coderch [7] conjectured that it might be possible
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to find an approximation in the sense of (2.10) even if A(e) violates
the MSST condition if one allows the Z\ii to be e-dependent. In the next
two subsections we show how to construct such an approximation which

keeps only those e-dependent terms that are needed to achieve (2.10).

Finally, in Section 2.8.4 we discuss the problem of using feedback
to modify the time scales of a perturbed system. Specifically, up to
this point we have considered the multiple time scale behavior of the

undriven system (2.2). In 2.8.4 we discuss the driven system

X = A(e)x + B(e)u . (2.49)
wiFh the stéte feedback

u = k'(e?x ' (2.50)

The natural question here is to ask what freedom there is in assigning
the time scale structure by application of the state feedback of (2.50).

If we insert (2.50) into (2.49), we have
x = [A(e) + B(e)K(e)]x = F(e)x (2.51)

with

F(e) = A(e) + B(e)K(e)
As we have developed in this chapter, the time scales of a system like
(2.51) are determined by the invariant factors of F(¢). Thus assigning

the time scales of (2.49) by state feedback (2.50) naturally leads to

the problem of invariant factor assionment of F(e) by means of choosing
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K(e). 1In 2.8.4 we concentrate our attention on the special case where
A(e) and B(e) are left coprime (over ring T). It is established that
the invariant factor assignment is related to the rank of B(0).
Specifically, we show that the number of invariant factors which can be

arbitrarily assigned is no more than rank of B(0).

2.8.2 Extended Well-Defined Time Scale Decompositions

Let us begin with an example to illustrate some of our ideas.

Example 2,8,1 Consider

—e-c? 1

A(e) =
-1 -e-¢?

Here A(e) is already in explicit form, and

0 1
Ay = A(0) =
11 1 0
is invertible but not stable. In other words, A(e) satisfies the

MSSNS but not the MSST condition. Solving this system we have

2

X (t) = xloe"et'e tsint
. 2

x2 (t) = Xzoe-et-e tht
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Let us show that this system does not have well-defined time scale
behavior in the sense we have been using so far. Substituting t=et we

have

X (t) = xpe” " *Tsinc/e

(2.52)

X5 (t) = xy0e " €Ceost/€

Obviously x(t) does not have a limit as e->0 because of the rapid
oscillations. On the other hand, in order to have a well-defined time
scale approximation we require that there is some Ay so that

lim sup || exp{A(e)t} - Texp{AOt}T’l Il =0
e->0 t>0

If this were true, then the following should also be true:

lim sup || exp{A(e)t/c} - Texp{Agr/e}T L || = 0  (2.53)

e->0 >0
It has been shown in (2.51) that the first term does not have a limit as
€ goes to zero. So the only way to have (2.53) satisfied is if the left

hand side is identically 0, but using a constant Ap does not allow us to

do this.

A further investigation shows that if we slightly change our
definition of well-defined time scale behavior, then we may be able to

extend our results to a larger class of systems. For example, if we use

- 1

Ay(e) =

-1l -e
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instead of a constant matrix Ay in (2.48), then a simple computation

shows
lim sup || exp{A(e)t} - exp{Ag(e)t} ||
e->0 t>0
cost sint
= lim sup || exp(-et) [l-exp(-€t)] I
e->0 t>0 -sint cost
< lim sup || exp(-et) [1-exp(-e%t)] || =0

e->0 t>0

This example suggests that if we keep some of the e-dependent terms
in our system we may obtain valid time scale decompositions even if the
sysi:em only satisfies MSSNS but not MSST. In order to study the time
scale decomposition process under MSSNS alone, we first propose an

extended definition for well-defined time scale behavior.

Definition (Extended well-defined time scale behavior)
Let A(e) be Hurwitz¥ for €p>€>0. Then A(e) has extended well-
defined time scale behavior if and only if there exist some

matrices Ag(€),eeeesAn_71(€), with A;(0) invertible, i=0,...,n-1, and a

* As before, it is possible to extend these results to the case when
A(e) is only semistable for e>0. For simplicity we focus on the case

when A(€) is Hurwitz.

74



constant invertible matrix T such that

lim sup || exp{A(e)t} - TexpiA(e)t}T™L || =0
e=>0 t>0
where

A(e) = diaglAg(e) ;eh)(€) suer €™ IA 1 (€)]

Let us now study the relationship between MSSNS condition and the
eigenvaiues of A(e) because a deeper understanding will help us capture
the essence of our approach., Recall, A(e) being Hurwitz for €p>e>0 is
an implicit assumption throughout this Chapter (except at the end of the

preceding subsection). We claim that if A(e) satisfies the MSSNS

.qondition, iii' cannot have eigenvalues with positive real parts. The

reason is the following. As we shall see in Chapter 3, Theorem 3.2, the
eigenvalues of A(e) are clustered in n groups, with those in the k~th
group lying within O(ekj"’l) of the eigenvalues of ekjl.\jj. Consequently,
if l’ijj for some j has an eigenvalue with positive’ real part, then one of
the eigenvalue of A(c) must have a positive real part for € sufficiently
close to zero. This contridicts the assumption that A(e) is Hurwitz.
What can happen, however, is that for some iii the real parts of some of

their eigenvalues are zero. If A(e) has MSSNS (so that the ii' are

i
invertible), we must then have that these eigenvalues are purely
imaginary (i.e. not equal to zero). The implication of this for A(e) is
that its corresponding eigenvalues have negative real parts of orders
that are higher than those of their imaginary parts. By keeping only

the dominant terms, then, we in essence throw away these damping
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effects. If we can somehow keep the dominant terms of these real parts,
we should still have a good approximation as we have seen in Example

2.8.1.

In the next subsection we introduce an iterative approach that
guarantees the retention of the dominant e—dependent parts of each mode.,
This approach is based on the following observations. Consider the two
time scale case.

A B
A(e) = (2.54)
eC €D

where A is invertible. We have shown that there are a unimodular matrix

T(e) and two matrices Gy(e), Gp(e) such that

A(e) = T(e) T (e)

To really compute Gj(€) and Gy(€) is impractical . 1In the previous
~sections we used A and D=D~-ca~1B to approximate Gj(e), Gp(€). But, as
we just pointed out, if the MSST condition does not hold then this
approximation fails, and we have to retain some e-dependent terms. We
also know that Gp(e) and G,(€) can be obtained by an iterative procedure
if A(e) satisfies the MSSNS condition [17]. As we show in the next
subsection, if we somehow know the orders of the real parts of the
eigenvalues of A(e), then after a specific finite number of iterations

the results capture the dominant parts and we can stop. In the next
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subsection, we first describe the iterative procedure proposed in [17].
Then we prove some lemmas which are used to determine the stopping
rules. Finally we describe our approach, which includes a method for
determining an upper bound on the orders of the real parts of the

eigenvalues.

2.8.3 An Iterative Algorithm for Extended Time Scale

Decomposition

As mentioned in the previous subsection, we have shown in Chapter

2, Section 2.5 that we can write A(e) in (2.54) in the form

_ Gy(e) O 1
A(e) = T(e) 1 (e) (2.55)
0 eGy(e)

There is an iterative approach to determine Gy (e) and Gy(e) which

is presented in the following Lemma.

Let us first define matrices P and Py associated with a matrix F

where

Fln Fi2
Fo1 Fop

(here F may be e-dependent but we suppress this dependency).
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Specifically

[ -1 7
SN i S R
0o I
r —
I 0
Py = -1 (2.56)
[F21F11 7 1]

if Fyy is invertible. Then we have

Lemma 2,8,1
Let o
A(e) Bl(e) (0)  g.(0)
5 * (@) = ale) = - | 0 ° (2.57)
. eC(e) eD(e) eCo( ) GDO(O)

~ where Ao(o), Bo(o), CO(O) and DO(O) are generally functions of € and

-Ao(o) is invertible at e=0. Define

Ei(j) (€)
= p,(3),.p,Wp (1) p Mg (0) () p, ()7L,
(py () =(p, 1)1, (p,(3))-1

A elp, )
T et @ e, @) (2.58)

Then as i—>&, j—>w
Ai(]) —_ Gl' Di(]) - GZ
where Gy and G2 are defined in Section 2.5.2 (see (2.19)) and Plti) and
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Pz(j) are the matrices associated with Ei—l(o) (e) and Ei(j'l) (),

respectively, as in (2.56). Again all temms in (2.58) including Gy and

Gp are functions of e.

Proof : See [17].

Note: From (2.56)-(2.58) we have
Ai(j+l) = Ai(j) + ei+j+lBi(j)ci(j)(Ai(j))_l
Ai+l(j) = Ai(j) + €i+j+l(Ai(j))-lBi(j)Ci(j)

Dy (3+1) (3

Di(j) - ei+jci(j)(Ai(j))-lBi(j)=Di+l

Thus, after the (i+j+l)-th iteration

0413 = 2;3)) > i+

O(Di(j+1) - DJ.(J)) = O(Di+l(j) - Dl(J)) 2 it

(2.59)

(2.60)

(2.61)

(2.62)
(2.63)
(2.64)

Therefore we would expect that after a finite number of iterations

the Ai(j) and Di(j) would be "close enough" to Gy and Gy so that we can

use them to approximate G; and Gy. The next two lemmas give the

definition of "closeness" and provide conditions based on which we can

‘determine the number of iterations required. The first lemma states the

eigenvalue order relations for two matrices Aj(e) and Ay(€) under which

exp{A;(e)t} can be approximated by exp{A,(e)t}. Let '\ij' i=1,2,
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j=1,...,N be eigenvalues of A;(e) and A,(€), repectively, and let O(x)

denote the order of x, then ( suppressing the e-dependence of A ij )

Lemma 2,8,2 If A, (e) and A, (€) satisfy

1. Al(O) = A2(0) has SSNS.

‘3

O(Im()\zj)) = Sy and if [4285 then

3. O(Im()‘lj))

Sj(O(Im(Alj-XZJ) ) ’ i=1' cee ,N.

lim sup || exp{A;(e)t} - exp{Ay(e)t}l] =0
e->0 t20

Proof:

Define R[A(€),A] = (r\I-A(e:))':L as before., From Condition 1 we know
that the number of the eigenvalues whose real parts have orders higher
than 0 is the same for both A;(c) and Aj(e). Denote this number by m
and suppose that the first m eigenvalues are these higher-order
eigenvalues. From the assumption that A(e) is Hurwitz for O<e<ey, it is
also clear that the leading term (i.é. the lowest order term) of the
real part of each eigenvalue has a negative coefficient. Now, write
R[A;(€) 2] as

Fij(e) E; (€)

m
R[Aj(e),A] = Z + , i=1,2  (2.65)
- 3=1 A -Ajq pj(A,€)
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where p; (A,€) = (A-Ai,m_,_l) (’\"\i,m+2)"'(’\"‘i,N) and Fij(e) and E; (e) are

functions of € only and are analytic at e=0, We know that

exp{A (e)t} - exp{A,(e)t}
= 9 {RIA;(€) ,A] = RIAy(e) 2] }e ar (2.66)
C

where C is the contour enclosing every eigenvalues in the complex plane. .
Using (2.65), (2.66) can be rewritten as
Eq (€) Es (€)
{ Jertar +§ (0 - 2 jAtgy
=1 Cy A=Ay A=bs C' p1(rde)  pylAe)
(2.67)

F]_J (e) _ sz (e)

where Cj are contours enclosing eigenvalues '\1]- and "2j', 3=1,eee,m and
C' is a contour enclosing all '\lj' '\Zj' j=m+l,...,N. Since
Re(Aij(e))'——>Re(Aij(0))<0, i=1,2, j=m+l,...,N, C' can be chosen to lie

entirely in the left half plane. Therefore, since

El (e) E2 (e)

—> 0, e—>0 (Condition 1)

p1(rr€) py(r,e€)

E; (€) BEs(€)
I - 2 } etar|[—>0, e—>0
Pl(Are) Pz('\re)
Cl
E, (e) E;(€)
< - d\ —> 0, e=>0 (2.68)
Pl()’re) Pz()\le)

Now consider only one term in the first part of (2.67):
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é { Flj (e) sz (C)

} tax
Cy A=hj A=Xpj

Let A'=MefJ. Then (2.69) can be written as

Fqz Fos . .
1] - 2] } exp{efINt}dA'er]

C'j erl\'—Alj er )\'-ij

Fq. Fru
1
= @ { ] - 23 } exp{»\'t}dA’
C'j )."A'lj A'-A'zj

where

/\'ij = )\ij/crjr t=€rjtl i‘=112r J=lseeem.

From Conditions 2 and 3 and the Hurwitz assumption we have

0>Re(A'35) = O(1),

Re()‘llj-/\'zj') = 0(l), Im()\'lj—,\'zj) = o(l) (2.71)

Therefore it is obvious that C'j can be taken as a circle in the left
half plane whose diameter is of order 1. Since the order of the
imaginary part may be lower or higher than that of the real part, this

circle may move up or down vertically as € changes but it remains in the

left-hand plane and does not shrink to 0. Also

Flj sz (A'-/\zj')Flj-(A'-Alj')sz

)"-&'lj AI_Alzj (AI_AlJI) (AI_AZJI)
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(13 223" )F25~ (M =X5") (Fp5Fy5)
(Al_Alj l) (Al-Azj l)

(2.72)

On contour Cj', Alj'--> "2j'r sz -—> Flj as e—->0 and the denominator
is bounded away from 0, Therefore the integrand of (2.70) goes to zero
uniformly on C'j as e-->d. Considering (2.68) we can conclude that
(2.67), and therefore (2.66), goes to zero uniformly in t as e—=>0.

This Lemma gives us a criterion to judge how "close" the
eigenvalues of two matrices should be in order for one to be a good
approximation of the other. 1In the next Lemma we study how a
perturbation on a matrix can influence the eigenvalues. To develop a
complete picture of how perturbations affect the eigenvalues is beyond
the scope of this development. For our purpose of defining a stoppiné
point for our iterative computation of Gy(e) and Gy(e), we only need the

following result.

Lemma 2,.8.3 :
Let A=B+eC where A,B and C are NxN matrix functions of e. Let the

eigenvalues of A and B be denoted by 2; () and A ;(B), i=l,...,N. Then

min O(}; (A)-}; (B)) 2 w/p > /N (2.73)
i
where p is some integer, 1<p<N.

Proof : See [9].
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Combining this Lemma with (2.59)-(2.64) it is clear that after the
(i+j+1)-th iteration the eigenvalue difference between the (i+j)-th and
the (i+j+l)-th iterations must have an order higher than (i+j)/N.
Therefore, as the number of iterations becomes larger and larger, the
contribution of each additional iteration becomes less and less. Thus,
a stopping rule can be established if we in addition take Lemma 2.8.2

into account. This result can be summarized in the following Theorem.

Theorem 2,8,1:
Let
o |20 8o @] [ o][af? @ 5@ |
Ae) = = |
eCo (% (o) eDo(O)(e) 0 eI Co(o) (e) DO(O)(G)J

D(e)A(e)

satisfy the MSSNS condition. Define Pl(i),Pz(j),Ai(j) (e) and Di(j) (e)
as in (2.56),(2.58)—(2.61). Suppose the maximum order of the real parts

of the eigenvalues of A(e) is m. Then

lim sup || exp{A(e)t} - Tyexp{aj(e)tiTy™ I1 =0

e->0 t>0
(2.74)

where
(p)
Aq (e) O
Ay (e) = (2.75)
1 0 (P (e
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and p+g=mN+l, where N is the dimension of A(e), p>0,q>0 and Ty is a

constant matrix defined in the proof.

Proof:
For simplicity we will write Ao(o)(O), Bo(o)(O), Co(o) (0), and

DO(O) (0) as A,B,C, and D, respectively. From Section 2.5 we see that

A(e) = T(e) T (e) (2.76)
0 er(e)
and Gy(0)=A, G,(0)= ~lg, It is also clear from Eq.(2.59)-(2.61) that

2,370 =2, p;3(0) = p-calp, i+21
Therefore

a,® (0) =g, (0), Dq P! (0)=6, (0)

and these matrices have SSNS, Furthermore, from Lemma 2.8.1 we know

that
2; 3 —56,, 0, P —35,, itj—>m

On the other hand, one more iteration than p+g=mN+l1 will change the
eigenvalues of Aq(P) on the order of (mN+l)/N=m+l1/N>m. Since the
highest order of the real parts of eigenvalues is m, we see that this
implies that Condition 2 of Lemma 2.8.2 is satisfied. Furthermore,

Condition 3 is automatically satisfied if rszj, since as we just

85




argued, the order change introduced by one more iteration will be
higher than Ly and therefore greater than Sqe From Lemma 2.8.2, we

therefore have

lim sup || exp{ay (@t} - explGye} 11 =0 (2.77)
e=->0 t>0

A similar equation holds for Dq(P) and G,.

Now define the product of the iteratively applied Pl(i) and Pz(j)
to be Tl'l(e) which is obviously unimodular and therefore contains no
information about the time scales. It is also easy to check that
T1(0)=T(0), where T(e) is defined in (2.76). Thus, we finally have

'(2.74) with Ty=T; (0).

Note:

1. Since A(e) is Hurwitz for ep>e>0, the real parts of its
eigenvalues cannot be zero and are in fact negative, Therefore m is

finite. In fact, let the order of the determinant of A(c) be O3 Then
Od.?.o(lxil)l i=llooo'N

But l"il2=(ReAi)2+(ImAi)2. Therefore it is easy to see that

Ol»; [20(ReA;)s i=l;...,N. In other words, Oy is an upper bound on m.
2. The integers p and q in (2.75) are not unique but their sum —-
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the number of total iterations must be sufficiently large. It is quite
possible that the iteration can stop much earlier. Nevertheless,

ptg=NOy is a safe bound for stopping.

3. In Theorem 2.8.1 only the first step of the multiple time scale
decomposition has been shown. But the general procedure is only a

simple extension of this theorem. The detailed procedure is as follows.

(1) Determine the Smith form of A(e)=P(e)D(e)Q(e€).
(2) Let D(e)Q(e)P(e)=D(c)A(€) where

A A A
11 12 cocee 1n
€A21 €A22 escee €A2n

A(e) = P00 COOCOGOOOIOIEOOPOIEQROOEOGOOPEORNOTOTDS
lay Ay e lay,
(3) Compute the order of the determinant of A(e) and use it as an

- upper bound on m.

(4) Similar to the procedure for deriving the multiple time scale
decomposition in Chapter 2, we treat Aj; and the complement lower right
principal submatrix as AO(O) and Do(o) in Theorem 2.8.1 and apply

ptg=NOg+l iterations to them.

(5) Treat the resulting Dq(P) as the original matrix A(e) and go

back to step (3).

(6) Repeat this procedure until all time scales have been revealed.
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4. The result in the previous sections of this Chapter can be
viewed as a special case of the theorem in this section. That is, if
A(e) satisfies the MSST condition, then for each time scale, only one
iteration is required. But if we do not know if the system satisfies
MSST, we have to do the following. First we apply the procedure
described in the preceding section, which corresponds to performing
only one step of the iteration described in this section at each time
scale. If for all time scales the resulting deagonal blocks (i.e. S*ii
as we denoted before) are Hurwitz at e€=0, then we are done. Otherwise,
if at some step i, the resulting 511 is not Hurwitz at e=0, we have to

go back to the very beginning and perform the full set of iterations at

each time scale.

2.8.,4 Invariant Factor Assignment When A(e) And B(e) Are Left

Coprime

In this subsection we solve the problem of invariant factor
assignment by state feedback when A(e) and B(e) are left coprime over

the ring T. To prove the main results we need the following Lemma.

Lemma 2,8,.4

Let A(e), B(e) and K(e) be nxn, nxl and 1xn matrices over T and

A(e) ~ diaglaj,...rap] = Sp
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where @)rseser@p are invariant factors of A(e) and "-" denotes
equivalence via multiplication (on the right and left) by unimodular

transformations. Let

F(e) = A(e) + B(e)K(e) (2.78)
Then for any K(e) € T there is a R(e) € T™ guch that

F(c) ~ 5 + B(e)K(e)

where B(e) is an upper triangular matrix and B(e) ~ S(e). Furthermore

there exist unimodular matrices R and S such that

We know that there exist unimodular matrices P and Q such that

A = PSpQ
Therefore

A + BR = PSp0 + BK = P(Sy + P 1BKO™1)Q
and

A+BK ~S, + P lBrgl 2w (2.79)
Furthermore, by elementary column operations we can show that
p~BU = B

where U is a unimodular matrix and B is an upper triangular matrix.
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Therefore (2.79) can be rewritten as

W= S, + BUlkgl
Let

R = uikg!
We have

and the lemma is proved.

What Lemma 2.8.4 tells us is that instead of considering the
invariant factor assignment of F(e) we may work on Sp+B(€)R(€). Because
of the special form of Sp and B(e), the original problem becomes much
easier. We shall see this in the proof of our main result Theorem

2.8.2.

Theorem 2,8,2

Let A(e) ¢ TP¥N B(e) € TNXT, and let b denote the rank of B(0).

Assume A(e) and B(e) are left doprime. Then

1. F(e) defined in (2.78) can have no more than b non-unit

invariant factors for any choice of K(€).

2. There exists a K(e) such that F(e) has ejl,....,ejb as
its invariant factors, for arbitrary non-negative integers

j1reeserJp (with the convention that €™ =0).
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1. The left coprimeness of two matrices A(e) and B(e) over the
local ring T means that if there are matrices D(e) TN, E(e) TXN zng

B(e) € ™X such that
A(e) = D(e)E(e), B(e) = D(e)B(e) ‘ (2.80)

‘then D(e) is unimodular. That is D(0) is nonsingular. A simple
criterian for the left coprimeness of A(e) and B(e) is to check if [A(0)

B(0)] is of full row rank. For example,

Ale) = ’ Ble) =

are coprime because

l1 00O

[A(0) B(0)] =
l1 0 0 1
has full rank. But
1 O 1 0
Ale) = B(e) =
1 € ’ 1+€2 €

are not because there exists a nonunimodular matrix
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D(e) =
1l €
and matrices
l1 0O 1 O
A(e) = ' B(e) =
0 1l e 1

satisfying (2.80). Alternatively, we note that

1 01O
[a(0) B(0)] =
1 010

is not full rank.,

2. It is also easy to see that in order to ensure the full rank of
[A(0) B(0)], the rank of A(0) must be greater than n-b. Or in other

words, A(e) itself has at most b invariant factors other than 1.
Proof:
As in Lemma 2.8.4, let
A =PS,0, B=PlRU
where B is an upper triangular matrix. Consider
W =Sy + BR

Suppose A has n-m unit invariant factors.
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Sp = diag[l,..,1, eil,....,eim]
N— —— e —

n=m m

Then in view of left coprimeness of A and B, B must have the form of

x oo 0O OO OO EOS x
: . n-m
B(€) = | X ceeeonecesse X
"x oz .
1 .
0 . . m
1l

where x represents and arbitrary element in T.

First, let us assume that m=b. Then we can construct a unimodular

matrix V such that

eeesecsenss X 2
n-m

1 m
0 .
1
Suppose gjse..gp are the desired closed-loop invariant factors. Let

0 0
R=V
0 G

where Gy = diag[gl-eil,...,gm—ej'm] . Then

KNe o M
e NMe o
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I W
Sy + BER =
0 Gy
where Gy = diaglgj,e.e,9y] and W is some (r-m)xm matrix., After some

elementary operation, we can show that
SA + BR Ndiag[l,..,lygl'-.orgm]
By Lemma 2.8.4 we know that A+BK has invariant factors g]ressrgp Where

K = URQ
Now, assume m<b. Then after some elementary column operations we

can always achieve

[ Sasl -

X seececcssese X
kl 0.0.010 oooooo
P00 cssccevcnee n—=m

kz 0..0 l o ooooooo

= x oee eSS ORPOSIOSEEPODS x

L]
X L N X

Namely there will be b-m rows (say, rows KyreeerKpm) among the first n—
m rows, each of which has one unit and r-1 zeros. Furthermore if the
unit in kj—th row is located in the sj-th column, then sjé\sp, if jXxp.
That is, the units for different rows are located in different columns.

If gyseser9p are the desired invariant factors, we can construct a
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R in a similar manner to that used previously:

K 0
R=v 1
0 G
where
ky kg
0 0.....0....0
0 0000000...00
K - 0 OOIOOg -l..o j
1 2
0 9 -1 X1 ooooo j
0 6 L N B B Y N W) 0 l
and
G, = diaqg] -eil -ej'm]
3 Il9o-mt1 ™€ rereer %

similarly we have

) SA + BK =

where

T X X secovee ;
K2 = 0...00 gl 0...000
XeeooX X l XeooeX

@ oofoooooo- 0 gz-

Gy = diaglgy iy reeesrgp)

and K3 is some arbitriry matrix.' After some column operations we have
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SA + BR "’diag[l,...,l'gl'l'--orlIQZIgb-mllot'lgb]

By Lemma 2.8.4 we know A+BK has invariant factors Jyreeer9ps This

proves the second part of Theorem 2.8.2.

Let N be the number of unit invariant factors of A, It is easy to

see, that
N = rank [A(0)+B(0)K(0) ]

Using Lemma 2.8.4 this is equivalent to
N = rank[S,(0)+BR(0)]

And as pointed out before
SA(O) + B(O)K(O) = diag[l,...,l,O,...,O]

x e0 0 OO OGSO
[ ]

x o000 0soOe O

+ X eeees R(0)

1
0 . m
1

c—

W X

where x represents either 1 or 0. Since the rank of B(0) is b>m, there
must exist b-m independent colum vectors in the first r-m columns in
B(0). Since left multiplication by K(0) is nothing more than column
operations and the rank of Sp(0) is n-m, adding B(0)K(0) to 55(0) can
reduce thé rank of S,(0) by at most b-m. In other words, the rank of

Sp(0)+B(0)R(0) is greater than n-m—-(b-m)=n-b. Or
N > n-b
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which proves part 1 of the theorem,
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CHAPTER 3

EIGENVALUE AND INVARIANT FACTOR STRUCTURES

3.1 INTRODUCTION

So far we have shown that the MSSNS of a matrix A(e) impl ies that
the Schur complements A;; are non-singular* and MSST implies that 2\'11
are Hurwitz. In this chapter we shall introduce new but equivalent
criteria for the MSSNS and MSST conditions. These criteria are
important not only because they provide new insight into these
conditions and their relationship to the eigenvalues of A(€), but also
because they make it possible to introduce a new approach, developed in
Chapter 4, for defining time and amplitude scaling when the MSSNS

condition is not satisfied so that the traditional time-scale

* As in most of our development in Chapter 2, we assume here that A(€)
is invertible and in fact Hurwitz for € €(0,e5]l. The extension ofthe
results of this chapter to the case when this is not true can be

accomplished in a straightforward manner, such as in Section 2.8.
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decomposition method cannot be applied.

First, in Section 3.2, we show several equiva;ent conditions for
MSSNS. 1In particular, it is proven in Theorem 3.1 that the MSSNS
condition is not only equivalent to Rii being non-singular as seen in
last chapter, but also equivalent to 1) the eigenvalues and invariant
factors of A(e) having the same orders and to 2) a "no-cancellation"
condition, namely that for a certain set of values of i the order of the
ged of all ixi principal minors must be the same as that of their sum,
together with the condition that this set of the gcd's uniquely
determines the invariant factors in a particular fashion. The
plausibility of the first result can be seen from the following
- observation. Suppose A(e) not only has MSSNS but also has MSST. Then
it has been shown in last cﬁapter that the time scales are determined by
its invariant factors. On the other hand, the eigenvalues of A(e)
determine its modes. Therefore we would expect that if the system has
well behaved time-scales, i.e. A(e) has MSST, the eigenvalues and
invariant factors of A(e) should have the same orders. Since the MSST
condition differs from MSSNS condition only by adding an extra stability
conditions ( which we shall touch on in a moment) MSSNS should also
ensure this purely algebraic equality. It is shown in Theorem 3.1 that
the equality of the orders of the eigenvalues and invariant factors is
not only a necessary condition for A(e) to have MSSNS, as we just
argued, it is also a sufficient condition. To illustrate these ideas,

let us consider two examples. The first one does not have MSSNS but the
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second one does.

Example 3,1,1

In this example we consider a system that does not have MSSNS., As
we will see, its eigenvalues and invariant factors do not have the same
orders either. The system considered is

r
X - 1l]lx :
' = = Ai(e)x
Xy 0 -ellx

This system does not have well-defined time scale behavior which can be

" seen directly from the solution of this system.

Xloe_et + Xzote—et

et

x; (t)

X2(t) = XZoe-

If we substitute t=et, we have

Xl(t/e) xloe't + XZot/ee_t

T

X5 (t/€) x20e'

It is clear that at the time scale t=et, the second term in the first
equation becomes unbounded as e goes to zero. As pointed out in [71,
this is an evidence that the system does not have well-defined time
scale behavior, It is easy to see that this system does not have MSSNS
either. Furthermore, the eigenvalues of Aj(€) are € and €. On the

other hand, the Smith form of Al(e) is
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Aq(e) =

Therefore the orders of eigenvalues are 1 and 1 and the orders of the

invariant factors are 0 and 2.

Example 3,1,.2

Now consider the system matrix

Az(e) = =

We already know that this system has well-behaved time-scales. It can
be seen that the orders of the eigenvalues and the invariant factors are

the same, i.e, 0 and 1.

Based on the proof of this result we shall observe that under MSSNS
the eigenvalues of A(e) are clustered in n groups with those in the k-th
group close to the eigenvalues of ejkf\kk. This block diagonal dominant
phénomenon is expected in view of the appoximation of exp{A(e)t} by
Texp{;\(e)t}T'l if the system satisfies MSST. It is also true when MSSNS

condition is satisfied. This observation is summarized in Theorem 3.2.
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The second result in Theorem 3.1 first says A(€e) satisfies MSSNS if
and only if the set of gcd's (greatest common divisors) of all ixi
principal minors, i=l,...,n uniquely determine the invariant factors and
in addition we have the no-cancellation condition mentioned earlier,
This is different from the general case where the orders of all ixi
minors, instead of principal minors, determine the invariant factors.
An algorithm is also given to actually compute the invariant factors.
This gives us another potentially very useful criterion for checking the

MSSNS condition.

In Section 3.3, we present Theorem 3.3, which defines conditions
equivalent to MSST. They include two known conditions, i.e. 1) the Z\ii
being Hurwitz and 2) the system having well-behaved time-scales, and 3)
a new condition which reveals the connection between the MSSNS and MSST
conditions and the eigenvalues of A(€). Specifically, if A(e) satisfies
MSSNS and the orders of the real parts of its eigenvalues are equal to
or less than those of the corresponding imaginary parts then A(€) has
MSST and vice versa.t This condition implies that in addition to MSSNS,
‘if the damping rates of the system modes are equal to or faster than the
oscillation rates, then well-behaved time-scales are ensured and vice

versa, For example, consider the following system,

* Because of our assumption that A(e) is Hurwitz for ee(o,eo],

we know that the real parts of the eigenvalues are negative.
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- 1

e
"
"

(3.1)
-l -

where A(e) is stable and satisfies MSSNS since

- 0 1
Ay, = A(0) =
1
1 -1 0
which obviously is invertible. Note, however that A; = -etl. Therefore
the damping rate here is of order 1 but the oscillation rate is of order
0. Thus the condition we have just stated is violated so that the

system does not have well-behaved time-scales. Indeed, solving (3.1) we

have

Xl(t) = Xloe sint

]
»
N
o
ml
&
8
)]
o

x5 (t)

Substituting t=et we have

x1(t) = xloe"tsint/ €

X5(t) = xop€ “cost/e

Thus the time behavior of x(t) as e-->0 shows oscillation but no

damping, while the process x(t) does not have a limit as e—>0
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because of rapid oscillations. Note, from the fact that ;‘11 is not

Hurwitz we can come to the same conclusion.

In Section 3.4, we present an algorithm for checking MSSNS based on
the results of Section 3.2, Finally, in Section 3.5 we summarize our
results and present an additional result dealing with MSSNS and the

detailed eigenstructure of A(e).

3.2 BEguivalent Statements of the MSSNS and MSST conditions

In this Section we prove several statements which are equivalent bto
MSSNS condition. We have already shown in Chaptér 2. that the MSSNS
condition is equivalent to iii being non-singular. In this section we
shall prove two new equivalent conditions — 1) the orders of the
eigenvalues of A(e) being equal to the orders of the corresponding
invariant factors and 2) the orders of the gcd's of the ixi principal
minors of A(e), i=l,...,n, uniquely determining the invariant factors
and certain of these orders being equal to the orders of the gums of the
corresponding principal minors. As mentioned in Section 3.1, the
intuition behind the first result is based on the following
observations. We have shown that the invariant factors of A(e)
determine the time-scale structure of the system if the system has well-
behaved time-scale structure. On the other hand, the eigenvalues

determine the modes of a system. Therefore if the system has well-
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behaved time-scale behavior, the invariant factors and eigenvalues
should have the same orders. 1In this section we prove this is true if

and only if the system has MSSNS,

The second result is closely related to the first one. We shall
see that the orders of the sums of the principal minors uniquely
determine the orders of the eigenvalues. Thus if these orders are equal
to the gcd's of the principal minors, in other words if there is no
complete cancellation of the lowest order terms in the summation, then
the latter will determine the orders of the eigenvalues too. Therefore
from the first result we see that if in addition the gcd's of the
principal minors also uniquely determine the orders of the invariant
factors then A(e) must have MSSNS because its eigenvalues and invariant
factors must have the same orders. We show the first result in section
3.2.1. Then in section 3.2.2 we prove the second result and state the

entire theorem,

3.2.1 Orders of eigenvalues and invariant factors

To show the first result we need the following lemma.
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Lemma 3,1

- Let

A A
A = 11 “12

Ry By

Then, if A1y is invertible

detA = detAlldetgzz

where

- -1
Ryo = Byo-Ao1A1] “Ajp

Proof: see [ ].

Consider a matrix A(e) over the ring T. Denote the orders ofthe

eigenvalues and invariant factors by bj<bs<....<b, and ajLag<eseefay

respectively and the corresponding eigenvalues are AJreeserApn.

Smith form of A(e) is

Let

A(e) = P(e)D(e)Q(e)

Al(ve) = Pl (e)A(e)P(e) = D(e)Q(€)P(e) = D(e)k(e)

B
CklIl

ckn—1
In-

1

—All (e) se e oAln(e)
A21 (e) xXx} 0A2n(e)

(€) eueeB(€)
LAnle AnnGJ
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where Igreees,Ip_] a@re ngxng, NjXNjseceesNp_ XN identity matrices.
Let gii' i=1l,....,n denote the successive Schur complements of A(0) as
described in Section 2. Then we state the first result as the

following lemma,

Lemma 3,2

A(e) has MSSNS if and only if The eigenvalues and invariant factors

have the same orders; i.e. bi = ajr i=1,eeee, N,

Proof

Since Ay (€) is similar to A(e), they have the same eigenvalues.
Furthermore, because P(€) is unimodular, it will not effect the
invariant factors. Therefore we shall consider A(e€) instead of A(e€) in
our proof. We shall use the fact that A(e) having MSSNS is equivalent
to the ‘Aii' i=l,...,n having full rank, a fact proven in last section.

We first prove the "only if" part.
Define

d(e,r) = det(e KA (e) - A1)
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Ep ST E SO SN (S
= det| A51(€)eeenseeByy(€)= IeeeneByp(€) (3.2)

i e N DO W CIE |

and

o

All(e)_ekj Io-.oou.o.ooo:o-ooooAln(e)

By (€) wuuBgp(€)=ekITKL 1. L Ay (e)

d; (e,n) = det A.jl(e).......Ajj(e)- I.........Ajn(e)

e kI1p L (e)eeinnnn. @K D (o)1 |

Denote d(e,») and dy(e,») by d and d; respectively. Then the difference
between them is that in d; the first j-1 blocks of rows of the matrix
have been mutiplied by ekj, ekj'kl, ....,ekj"kj"l respectively.

Therefore
dl = evd
where
vV = nokj+n1(kj—kl)+. . .+l'1j_l(kj-kj_l)
Since € is a positive number, &; and d will have the same zeros.
It is easy to see that d; is a continuous function of € at

109



€=0 and
r —
All A12 -ooo--.o-o.oAln

Azl A22 ooo.ooooo..-Azn

41 (0A) = det
Rjl By eeoBjjmAL..Ay,
P .
_ _

since the gii are of full rank for i=l,...,n. Repeatedly using Lemma

3.1, one can easily see that

j_l - . .
dj(0,A) = Ab|ay4- T 1Ay (3.3)
where
n-l-n.
t = an nj+i
i=1

Therefore d;(0,%) has ny zeros which are identical to the eigenvalues of

By3e
Furthermore, since the zeros of dl are continuous functions of e,

they can be approximated by the eigenvalues of ijj for € is small

enough. Because the zeros of d) are the same as the zeros of d, in view
of (3.2) the eigenvalues of e'ijl(e) can be approximated by the
eigenvalues of Z\j e In other words, denote the eigenvalues of Ay (e) by

)‘i' i=l,...,N then there are n.

3 eigenvalues of Aj(e) for which the
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following inequalities hold. Given any positive number © there is an

cj such that

(3.4)
where
j-1
My =2 n; andAyyyj is the (Mj+i)-th eigenvalue of 2(e).
i=1

Repeating this procedure for j=0,....,n~1 we can finally prove that

for any >0, there is an e

€n = min{egsecees €}

such that if 0<e"<e:0 then

Mgjei/€ = A @By 1 <8, isl,.ny, (3.5)
j=0'o'.'n_l

Since )\i(ijj)%o, for j=0,.c..,n-1, i=1,.....,nj, these inequalities tell
us that there are nj eigenvalues of order kj—l" These are exactly the

orders of the invariant factors of A(e).

Now let us prove the "if" part.
Suppose that S‘j,j is not of full rank but iii' i=0,.e.,3-1 are.
Then from (3.4) we see that there is at least one eigenvalue of ij, say

)\io (;‘jj)=° and the corresponding eigenvalue of Ay (€), Ajgr has an order
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higher than k This implies that there are fewer eigenvalues with the

jo

order kj than there are invariant factors.

Now, let us show the second result in Theorem 3.1 which relates the

invariant factors with MSSNS condition.
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3.2,2 The Invariant Factors and Principal Minors of A(e)

As mentioned in 3.2.1, in this subsection we investigate some
properties relating the MSSNS condition with the invariant factors and
principal minors of A(e). We prove in Lemma 3.4, that if A(e) satisfies
the MSSNS condition then the invariant factors will be uniquely
determined by the orders of the gcd's of the principal minors and these
orders must be equal to the orders of the sums of the principal minors,
In Theorem 3.1 we show that the reverse statement is also true. Also a
corollary of Theorem 3.1 shows that if the gcd of the principal minors
are computed from the explicit form of A(e) then the following statement
is true: if the orders of the gcd of the principal minors uniquely
' detei:mine the invariant factors then A(e) has MSSNS. That is, in
explicit form the no-cancellation condition is automatically satisfied
if the invariant factors are uniquely determined by the orders of the

gcd's of the principal minors.

It is well known that the eigenvalues of a matrix are determined by
its principal minors of all sizes. Then it is obvious from the previous
subsection that under MSSNS the principal minors also determine the
invariant factors of A(e). For a general matrix A(e) (possibly not
possessing MSSNS) the invariant factors can be determined from the gcd's
of all ixi minors, i=l,..,n. We shall prove that under MSSNS, the gcd
of all ixi principal minors, i=l,....,n, determine the invariant

factors.
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To show this, we first prove Lemma 3.3. Then we show that the
orders of the gcd's of ixi principal minors and the orders of i-th
invariant factors satisfy the conditions of Lemma 3.3. Based on this

fact we prove the result.

Now let us first state and prove Lemma 3.3.

LEMMA 3,3,

Given a set of real numbers p;, i=l,...,n, there is a unique set of

real nubers Sir i=1,...,n such that

.Fl 51$32$t e .'Ssrl

J
F2 iz=151 S pj r J=1'ooo'n

] . .
F3 iz-:lsi = P4 if sj%sj_,_l or j=n.

This result is most easily seen pictorially. In Fig. 3.2.1, the
x's denote the py's. First, we draw a line starting from origin and
passing through at least one p; and leaving all pi's either on or above

this line. Obviously there is one and only one line
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which Satisfies thig requirement, Let Pn1 be the 1ast of -the Py that
lie on thig line, 71f Pn1=p, the Procedure jig terminateq, If not, thep

Pne We claim that the Slope of these Segments are the si's. Namely,



definition of these segments.

To show the uniqueness, suppose we have another solution
i

s'ys i=l,...,n. Let jEls'j=ri. Obviously, Ln1<Pp1. Otherwise

F2 will be violated. Suppose I'n1<Pp1. Since pjse..,pp] are either on
or above OPn; by definition, the line or,; must be a straight line too.
If this were not the case, say, at some point n. the slope changed, then
Pnt Would be on the line Oppt because of F3 and Ppt would be below oPnyr
contradicting the construction of this line (see Fig., 3.2.2). In a
similar fashion we can deduce that the curve O-rj-ro=e..—r, cannot
change slope at any point. But we know that our curve O-Bp1~Pp2e-- Mmeet
at the end since I,=p, by condition F3. This contradicts the hypotheses

tbat Yn1<Pp1+ The same argument works if [hi=Pni 1=l,...,k-1 but

Ink<Pnk -

pnt I &N
n,

Figure 3.2 : Illustrating a contradiction:
If r1<Pn; and if the postulated curve from O to I, changes
slope, then necessarily Pnt<Ppjr contradicting thé

construction of this line
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Note: It should be pointed out that the algorithm proposed in this
section is actually a "Newton polygon" concept. This is to be expected
in the context of the present problem, c.f.[19]. However, we have not
encountered in the literature a statement as simple as that given in the

Lemma or to be given in statement 4 of that of Theorem 3.l.

Now we turn to the relation between gcd's of principal minors and
invariant factors. We shall show in the following Lemma that their

orders satisfy Fl1-F3 in Lemma 3.3.

Let us first define:

the order of the gcd of all ixi principal minors.

'Pi _
a: = the order of the. i-th invariant factor.

1

m
Mim, i=l,...,[ ], m=1l,....,1 = mxm principal minors of A(e).
n
Ip = Order(Z M;™ .
i
Then we have

Lemma 3,4
If A(e) TM*? has MSSNS, then p; and a; satisfy F1-F3 (with the a;
playing the role of the s;). Furthermore rp=p_ if apXap+) (the "no-

cancellation" condition).
Proof:

By definition,
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alsazi. . .San (3 .6)
J .
Also £ a; is the order of the gcd's of all jxj minors Therefore
i=1
p; and a; satisfy F1 and F2, To show F3, let us recall that A(e) having
MSSNS also means that the invariant factors of A(e€) have the same orders

as the corresponding eigenvalues. In other words,
bi = ai’ i=l'ooo'n (3.7)

where b; are orders of the eigenvalues, A;.
It is known that

det(AI-A(€)) = A" = AVL(ZAL) + APTZ(Z A 4Ay) Heut

*1.0..)‘1-1

(3.8)
m

Where Mim, i=l,...,( 1, m=l,....,n are principal minors of A(e).
n

Compare the coefficients on both sides of (3.8) we see that

zMim =Z Ailo.'oxirn (309)
i
Now, suppose ap X ap;j. Under the MSSNS condition, in view of (3.6),

(3.7), we see that among all the terms on the right hand side of (3.9),
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AleeAp has the smallast degree, say dpr and any term in (3.9) other than

AjessAp Must have an order greater than dp. Therefore

[a}
]

m
m = Order(Z M;M) =d = X ag
i i=1l

order of 'gcd of all mxm minors = pg (3.10)

Since the order of the gcd of Mim (i.e. pp) must be greater than or
equal to 4, (since p; is the gcd of a smaller set of minors), this

equality in turn means that p, is equal to g, That is
m
Bp=Z 2 if an X amy
1=
n
This, together with the fact that X a; = order(M;") yields F3,
’ i=1
and (3.10) gives us the no—-cancellation condition.
Before we state and prove Theorem 3.1, we still need the following

lemma.

Lemma 3,5 The sets of numbers r; and by satisfy Fl to F3, with the r;

playing the role of the p; and the b; the role of the sj.

Proof: The conditions Fl1 and F2 are obtained simply by cheking the

two sides of (3.8). The derivation of F3 is similar to that of (3.10).

Lemma 3,6 Define q; i=l,...,n to be the orders of the gcd of all ixi

minors. Then r;>p;>qj.
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Note: gj=aj+....+a, by definition of the invariant factors.

The proof is also trivial. Since the q; are computed from a larger
set of minors, the second inequality is then proved. The first
inequality is due to the fact that the order of the sum of some terms is

always greater than or equal to the order of the gcd of those terms.

Based on lemma 3.1 to 3.6 we can prove the following theorem.

Theorem 3,1
Suppose A(c)é TN, Then the following statements are eguivalent.

l. A(e) satisfies the MSSNS condition.

2. The Z\‘ii' i=1l,...,n are invertible,

3. The orders of the eigenvalues are equal to that of the
invariant factors, i. e. a;=bj.

4. (a) pj and a; i=l,...,n satisfy Fl, F2 and F3.

(b) rp=p, if am%am_i_l (the no—-cancellation condition).

2: This has been proven in the last section.

2 <==> 3: This has been proven in‘Lemma 3.2,
4: This is Lemma 3.4.

4 ===> 3: Define pic the lower bound of the convex hull of Pj.

Refering to Figure 3.2.1, pic, i=l,...,n are the corresponding points

lying on the solid line in the figure. We will on occasion refer to pic
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as the lower hull of Pj. Then from statement 4a we can conclude that
pic=al+...+ai. But this is in fact the definition of d;j. Therefore we
have proved p; ®=q;. Define r;© the lower bound of the convex hull of
r;. Then Lemma 3.6 and statement 4b imply that ric=pj_°. Using Lemma

3.5 and statement 4a we then have that ai=bi' for i=1,...,n.

Corollary If A(e) is in explicit form, then 4a implies 4b in Theorem

3.5, so that 4a by itself is equivalent to MSSNS,

Proof: Since A(e) satisfying the MSSNS condition implies that its
explicit form A, (€) satisfies the same condition and vice versa, we

shall consider Ay(e) in the proof. Let

All Alz LI Aln } no

€klA21 eklAzz evssee CklAzn }nl
B (e) =

N TRy P

b —

Then from 4a we know
i
Zlaj = pi' i=r10' n0+n1'ooo,n0+ooo+nn_l' N
J=
because a g=a 541/ 4n0+n1=3n0+nl+1re-s- That is, the order of the gcd
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of all ngxng principal minors is 0. The order of the gcd of all
(ng+nj)x(ng+n;) principal minors is njij and so on. It is easy to see
that ro=p, =0 since A17 is the only principal minor of order ny whose
order is 0. Similarly, the submatrix containing Ayyy Aygy eilAzl,
eilAzz is the only (ng+ny)x(ng+ny) principal submatrix whose
determinant can be equal to mKky. Thus rpg4n1=Pro4nle Continune this

argument we can finally prove this corollary.

Note:

Here is an example to show that in general condition 4a alone is

hot sufficient to ensure the MSSNS condition. Let

1 -1
A(e) =
1 - -l+e.
Here
pi = 0'2
ai = 0’2

So that p; and aj satisfy F1-F3. But A(0) does not have SSNS as is
easily seen by checking that both its eigenvalues are 0 but A(0)=0.

This is due to the fact that 2b is violated: ry=2xpy=0 while a;¥a,.

From the proof of Theorem 3.1, especially (3.3), we see that if
A(e) satisfies MSSNS, then for anyd >0, there is an €gr such that if

0<e<eo then
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| A /€ A @1 <8, i=li...ny

j=0'oo"n-l
or
[ M y. '/ek = (~)| = 0(e) i=l,¢.esn<
My +2 A A5 S A
or

I Am. os = 2 (X Ay ) = o(eK5tLy, i=1,...,n:
Mg +1 ” *1(€7 Ay " 5=0,..nd1

Therefore we have the following theorem.

Theorem 3,2:
If A(e) has MSSNS, the eigenvalues of A(e) are clustered in n
groups, with those in the k-th group lying within 0(ek3*l) of the

eigenvalues of" eij\j je

In Section 3.4, we use the results of t'his séction to define an
algorithm to determine the invariant factors of A(e) from the gcd's of
its principal minors under the condition that A(e) satisfies the MSSNS
condition, Before doing that, let us first consider some equivalent

conditions for MSST,
3.3 Eguivalent statements for MSST condition

Having seen the equivalent conditions for MSSNS, one would expect
to see the similar conditions for MSST, As we will see however, there

is one additional property of the eigenvalues that is required for MSST,
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and this allows us to gain a deeper understanding of the MSST condition.

Theorem 3,.3:
The following statements are equivalent.
1. A(e) has MSST.
2. The Z‘ii' i=l,...,n are Hurwitz.
3. The system :'c=A(e)x has well-behaved timé—scale structure,
4. A(e) has MSSNS and O[Re(A;)] < O[Im(A;)] for i=l,...,n.

_whére the A; are the eigenvalues of A(€) and the
O[Re(A;)] and O[Im(A;)] are the orders of the real
and imaginary parts of the eigenvalues of A(e)

respectively.

Proof:

The first three statements were proven in the last chapter. Here
we only need to prove 2 <==> 4, First let us prove

Since A(e) has MSSNS, from theorem 3.1 we know that the eigenvalues
of A(e) are clustered in n groups. Denote the eigenvalues of A(e) by

)\11' ..;.’ Alnl'Az:l, soee 'Akl’ eooey )\an, sese § Ann ’ Where, from
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Theorem 3.2 and the MSSNS assumption

- kiz ki+ly =
Aji = Ap(eRIRg4) + 0597, i=l,...,my

j=l,...,l’l
Since MSSNS implies that S‘jj is invertible, we see that
Lim(rs./eKd) = A (Aii) X O (3.11)
e->0 )‘Jl * AJJ

Furthermore, since we have assumed the O[Re(N.;)] < O[Im{\;)], we can

immediately conclude that
cy3 = Lim(Re(ry;)/€k9) = Re(A;(Ay5)) X 0

Since A(e) is Hurwitz for e€¢(0,ey) we have that cji<0, which in turn

implies that lljj is Hurwitz.
2 =>4

We have already seen that 2 ==> that A(e) has MSSNS. Since (3.11)
still holds and Re[)\i(;\jj)] < 0 by assumption, we immediately have that

As commented in Section 3.1, the fourth statement in this theorem
states that if the system has MSSNS and if in addition the damping rate
is at least as fast as the oscillation rate (i.e. the orders of the
real parts of the eigenvalues are equal to or less than the orders of

the corresponding imaginary parts) then the system has well-behaved
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time-scales. The reverse is also true.

Thus, in this section we have proven a result which relates the
MSST condition with several other conditions. In the following section
we use the results of Section 3.2 to define an algorithm to determine
the invariant factors of A(e) from the gcd's of its principal minors

under the condition that A(e) satisfies the MSSNS condition.
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3.4 An Algorithm For Determing The Invariant Factors Of A(e€)

Given certain real numbers Pjr i=l,...,n, there is a simple
algorithm to determine a; which satisfy F1-F3 in Lemma 3.3. The
algorithm proceeds as follows., The first objective is to f£ind the slope
of the initial line segment and the first "turning point". We do this
by computing for each p; the slope uj=b;/i of the line from the origin
to the point p;j. Then the initial slope is the smallest of the u; and
the first turning point corresponds to the largest value of i that has
this minimum value of uj. From this point we essentially repeat the
process by looking at the slopes of lines from this turning point to
ea;ch of the p; corresponding to-subsequent values of i. A flow graph of
an algorithm that accomplishes this is depicted in Figure 3.3. As
indicated in this flow graph, each subsequent slope and turning point
computation can be reduced to the original one by shifting the previous

turning point to the origin.
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q; = pi/i

m: gp<q;

if A= => m>j

i
a;=qn

i=l'ooo-,m

YES
: STOP

1=1-m

|

P =P+~

i=l'ooo-'l

Figure 3.4.1 Flow graph of an algorithm
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The following are some examples showing how this algorithm works.

Example 3,4,1

In this example, P;=3,2,2,3,4,6 are as shown in Fig. 3.4.

s

er x—Ph X

5 |- fe

,¢4 _ X

3_ X )

L

1k %

| N R S N N B -
i 2 3 4 5 6 n
Fig. 3.4

The algorithm, illustrated in Figure 3.4.1, proceeds as follows

l. 1=6

2. q;=3, 1, 2/3, 3/4, 4/5, 1

3. It is easy to check that m=3, G=2/3.
4. aj=aj=ay=2/3.

5. mn=6., Therefore continue.
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6. 1=6-3=3’ pi=l'2'4-
7. Repeat 1-4. We have aj=ag=1.

8. This time, 1=1, pj=2=ag. Stop.
So we have a; = 2/3, 2/3, 2/3, 1, 1, 2.

The next two examples show how to actually compute the invariant factors

from a matrix satisfying the MSSNS condition.

Example 3,4.2
€2 1l c e3-
e:2 c 1l c—:2
Ale) =
€ 1 1 €
e e & e

The order of the gcd of Mil is obviously 0, because there are diagonal
elements of A(e) that have order 0. Since one of the 2x2 principal
minor is 1, we also have that p,=0. We then find that p3 is determined

by the upper left 3x3 minor which is e, Also det(A(e))=e®. So that

P1=p2=0, pP3=1, Pg=5.

If we also know that A(€) satisfies MSSNS condition (this is true for

this example), then using our algorithm we have

a 1=a2 =bl=b2 =0
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This algorithm in fact also provides a way to check the MSSNS condition.
We first observe that ri=p;. Then, since there is a 3x3 principal minor
whose order is 1 and there is no other 3x3 minor of lower order, we know
that the invariant factors are 0,0,1 and 5. The numbers determined by
Pi a;:cording to the algorithm are 0,0,1 and 5 which are equal to the
orders of the invariant factors. Therefore statement 4 of Theorem 3.1

tells us that A(e) has MSSNS.

Example 3.4.3

e 1 1 1
1 & e €
£ S o0 &
b el el

A(e) =

It can be seen that

pP1=1l, py=0, p3=3, pg=14.

As in the preceding example, we can check that this A(e) satisfies

MSSNS, and our algorithm then yields the invariant factors:
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3.5 Conclusion

The new results in this Chapter are the following.

1.

2.

3.

Based on these new results one can derive several conclusions.

1. The new condition for MSSNS does not require us to compute the
successive Schur complements to determine if a system satisfies this
condition.
factors have been computed, then we can easily see if A(e) has MSSNS as

pointed out in Theorem 3.1, statement 3.

New equivalent conditions for MSSNS — 1) the orders of
the eigenvalues being equal to those of the invariant
factors. 2) A(e) satisfies the no-cancellation
condition and the p; uniquely determine aj (Theorem

3.1).

A new equivalent condition for MSST — A(e) satisfies
MSSNS and in addition the orders of the real parts of
the eigenvalues are equal to or less than those of the -

corresponding imaginary parts (Theorem 3.3).

If A(e) has MSSNS, then the eigenvalues of A(e) are

clustered in n groups (Theorem 3.2).

basis for our approach to scaling developed in the next chapter.

scaling involves the construction of a non-unimodular similarity
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transformation so that the orders of the invariant factors can be
changed to be eaual to the orders of the eigenvalues (which of course
are left unchanged). If in addition the real and imaginary parts of the
eigenvalues of A(e) satisfy the order condition as stated in Theorem
3.3, then after scaling the new system matrix will not only have MSSNS
but also MSST. So that, as stated in Section 2.5 and 2.6,the system
will have well-behaved time-scales and the results in those sections can
apply. If this condition is not satisfied, then using the results in
Chapter 2, Section 2.8, after scaling we can still have the extended

well-defined time scale behavior.

The second approach for checking the MSSNS condition is to use
statement 4 in Theorem 3.1. Namely, we first check if Lp=Pp When
8pX8n4]s(the no-cancellation condition). If the answer is yes then we
conclude that the system does not have MSSNS. If, on the other hang,
they are equal, we proceed to check if the gcd's of the principal minors
and the invariant factors satisfy F1-F3. The third method is to make
use of the corollary of Theorem 3.1. That is, we first obtain the
explicit form of A(e). Then compute the p; from the explicit form and

check if they and a; satisfy F1-F3.

2. The new condition for MSST is not only a new criterian for MSST,
it is also a bridge between MSSNS and MSST. In other words, if A(e€) has
MSSNS then we should only check the orders of the real and imaginary

parts of ii;s eigenvalues to make sure if it has MSST.
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3. Theorem 3.2 provides a way to check the approximate locations
of the eigenvalues if A(€) satisfies MSSNS, 1In principal, if A(e) does
not satisfy MSSNS, but we can find a scaling to bring it to MSSNS, then
this theorem can still apply to the transformed system. It holds
regardless of the stability of the system. It also suggests a
connection to frequency domain consideration. That is, even if A(e€)
does not satisfies the stability condition of Theorem 3.3, as long as it
satisfies the MSSNS condition, we should expect, in view of its
clustered eigenvalues, well-defined multiple frequency-scales (cf.
[20],[21]). In other words, the frequency response of the original system
should be able to be approximated by the frequency response of a
decoulpled frequency—-scale separated system as the one suggested in

Chapter 2, Theorem 2.1.

This Chapter has dealt to a great extent with the relationship
between time scales, invariant factors, and eigenvalues. A natural
question to ask is the relationship between time scales and the complete
eigenstructure of A(e). In particular, let us point out one result on
the relationship between the Jordan form of A(e) and the MSSNS

condition. Let
Ae) = M(e)A(e)M L(e)

where A(e) is the Jordan form of A(e) and M(€) is normalized (i.e. the
eigenvectors are chosen to have the unit length). We then have the

following reault. Suppose that M(e) is unimodular. Then A(e) has MSSNS
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if and only if A(0) has SSNS (i.e. if it contains no diagonal blocks of
dimension greater than 1 with 0's on the diagonal). This follows from
the observations that (1) A(e) has MSSNS if and only if A(0) has SSNS
and (2) M(e) is unimodular. Let us give some examples and make several

comments about this result. Consider the matrix
A(e) =

In this case M(€)=I and A(0)=0, from which we can deduce that A(e) has

MSSNS. On the other hand, consider

e 1
A(e) =
0 €

In this case M(e€)=I but A(0) does not have MSSNS.

It is important to point out that there are many cases in which
M(e) is pot unimodular. In this case it is perfectly possible for A(e)
to have MSSNS even if A(0) does not have SSNS or for A(€) not to have

MSSNS even if A(0) does have SSNS. Let us illustrate this with two

examples,
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Ex 3,5.1 Consider

e 1 1 1/(2-e)lle oll1 1/(e=€?)
Ae) = 5 = ’ 5
0 € 0 1 0 e<l10 1
M(€) A(e)

Here A(e) does not have MSSNS and M(€) is not unimodular, while A(0)

has SSNS,

Ex 3,5.2 The matrix

R I A i [

Cn———————

M(€) Ale)

satisfies MSSNS condition and has one time scale et. (This can be seen
by checking the orders of the eigenvalues and invariant factors. They
are 1 and 1 in this example). But obviously A(0) does not have SSNS and

M(e) is not unimodular.

As seen from these examples, the MSSNS condition does not require
A(0) to have SSNS or M(e) to be unimodular. It is an open questionto
investigate the full relationship between MSSNS and the eigenstructure

of A(e).
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CHAPTER 4

SCALING

4,1 INTRODUCTION
4,1.1 Motivation

Having seen the decisive role that MSSNS and MSST play, we now
consider systems that do not have MSSNS, In this chapter we show that
under specified conditions a scaling transformation on the states
produces a system that has MSSNS, so that the formulation in previous

chapters can apply.

We have already seen in Chapter 3 that, when the system does not
have MSSNS, the ordérs of eigenvalues and invariant factors are not
equal, and conversely. The only way to make the system have MSSNS is
therefore to change the orders of its eigenvalues and/or those of its
invariant factors. We choose the latter, since this will not change the
system's dynamics and is more direct to implement. In fact, a
similarity transformation through a pon-unimodular matrix has the

potential to meet this requirement, since it will not change the
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eigenvalues but can modify the invariant factors.

This can be clarified by a simple example that we have inspected

before, namely

- 1

[,
]
»

As mentioned in Chapter 3, Section 3.1, this system does not have MSSNS
since the orders {b;} of its eigenvalues are 1,1 but the orders {aj} of
its invariant factors are 0,2. This failure to satisfy the MSSNS
condition could also be deduced from Fig. 4.1. From this figure, we

see that the slopes of the lower bound of the {py} are 1 and 1. Recall
" that points on the lower bound of the {p;} were defined as pic in the
last chapter. Recall also that we defined r; as the order of the sum of
all ixi principal minors, and ric as points on their lower bound. Since
in this example r;®=p;©, these slopes are also the {b;}. Also, the
invariant factor orders are 0 and 2, corresponding to the slopes of the
dotted line segments making up the plot of q; versus i, where we recall

that q; was defined as the gcd of all ixi minors.
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Figure 4.1 A simple example

Absence of MSSNS implies that the system does not have well-behaved time
scales, For this example, as we have seen in Section 3.1, Xy (t) becomes

- unbounded at the time scale et as € goes to zero.

However, if we apply the following linear transformation

S(e) =

which is simply a (diagonal) scaling of state variables, we obtain the

system
- 1
y=85x=85 s 1y
0 -
. -€ € -1 1
or y = y=¢€ y
0 -e 0 -1
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Fdr this new system, it can be seen that the orders of eigenvalues and
invariant factors are the same, so the system satisfies MSSNS. It is
furthermore evident that the system satisfies MSST as well, so results
we obtained in previous chapters apply to it. Returning to Fig. 4.1.]1,
we note that the orders {p;} of the gcd's of the principal minors are
unchanged by diagonal scaling, but the orders {g;} of the gcd's of all
minors have been raised by scaling, so that the two curves now coincide.

The solution of the scaled system is given by:

€t

Yl(t) le(t) = exloe"et + Xzoete_

Yo(t) = xo(t) = xp0e” €t (4.1)

Substitute c¢ for et to get

yl(t) cxloe—t + XZote_t

y2(t) = Xp0€ ™"

Obviously this scaling has served to avoid the problem of the unscaled
system, in that the result remains bounded for time scales t and et as €

goes to 0.

The significance of scaling is two—fold. First, as we have seen in
Chapter 3, Theorem 3.2, if the system matrix satisfies the MSSNS
condition, then its eigenvalues can be approximated by the eigenvalues

of its successive Schur complements. Hence, if A(e) does not have MSSNS
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but we can find a scaling so that the resulting matrix does, then we can
still obtain a good approximation to its eigenvalues via reduced-order
computations, because scaling preserves eigenvalues., Second, since the
scaled system has MSSNS, the procedure described in the previous chapter
will provide a time scale decomposed system to approximate it, provided
MSST is also satisfied. We conjecture that the solﬁtions of this system
can provide a good approximation to those of the original system, in a

sense that will be discussed at the conclusion of this chapter.
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4.1.2 Sumary of the Scaling Procedure

This chapter conceritrates on the development of a scaling procedure
that can be applied to a large class of systems. The procedure involves
the following steps. The first step is to transform A(e) to its
explicit form, A (e) = P'l(e)A(e)P(e) = D(e)A(e). This step does not

change either the invariant factors or the eigenvalues of A(e).

The second step involves identifying what we term a gkeleton in the
explicit form. A skeleton consists of n entries of A.(€), precisely one
from each row and coli:mn, with orders equal to the orders of the rows in
which they are located. By the order of the i-th row, we mean the order
a; of the invariant factor of this row of the explicit form matrix
A (e). Each skeleton element therefore has minimal order for its ro;v.

Since A(e€) has full rank, it is easy to see that there is at least one

skeleton in Ae(e) .

Now identify the skeleton above with the‘ nxn permutation matrix
that has 1l's at the locations of the skeleton elements and 0's
elsewhere. It is really only this pattern of the skeleton's placement
within A (e) that we shall be using in what follows, so we shall usually
talk of the skeleton as if it is the permutation. Any permutation can
be uniquely expressed as a product of disjoint cycles (see subsection
4.2.1). It follows from this that, perhaps after some re-ordering of
the variables associated with our system (which corresponds to

similarity transformation by a symmetric permutation), the elements of
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the skeleton can be brought to the positions occupied by the 1's in a_

block diagonal canonical circulant matrix (BDCM), whose diagonal blocks
take the form:

or simply [1] for a scalar block. This re-ordering of variables is the
third step of our procedure. Let &; denote the order of the skeleton
element in the i-th row, following the re-ordering of variables. The
set {a;} is the same, therefore, as the set {a;<as<...<ay} of invariant

factor orders.

For the moment, let us assume that there is only one block in the
BDCM, so as to simplify our introduction. Then, under some assumptions
on these integers 3a; and on the principal minors of Ag(¢), the following
scaling can be shown to transform the matrix to one that satisfies

MSSNS:

. S S S
S(e) = diagie L, €2, ... , e 133, (4.2)
where

S{ =Sj4) +bj - 35, sy=0

and the b; are, as before, the orders of the eigenvalues. The fourth

(and final) step of our scaling procedure is thus the application of
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this diagonal scaling transformation to the system.

In summary, the procedure for finding a diagonal scaling that
induces MSSNS is
1. Transform A(e) to its explicit form Ag(€).
2. Identify a skeleton in A(€).
3. Apply a symmetric permutation T to A.(€) so that the
skeleton of A(€) = TAe(c)'I"l corresponds to a BDCM.
4. Calculate S(e) = diag{eS1,...e5N} for A (e) so that
By(€) = S(e)A;(e)S™1(e) = S(e)TA ()T 187 (e)

has MSSNS.

A precise statement of sufficient conditions for this procedure to
succeed, as well as the details of Step 4 for a system with a multiple-

block skeleton, are given in Section 4.2, along with proofs of the main

assertions.,

Note 1 We shall suppose in the remainder of this chapter (unless
otherwise specified) that A(e) is already in its explicit form, i.e.

that step 1 has already been carried out.

Note 2 Rather than using the symbols {4;} for the reordered set
{ai}, we shall from now on in this chapter use {aj} as generic symbols

for invariant factors, with ordering determined by the context.

Note 3 In the next section we shall state several conditions that

are together sufficient for our procedure to work. Before doing this,
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we first note an important necessary condition for our scaling procedure
to succeed. From the description of the procedure above, we see that
only symmetric permutations and diagonal scaling will be applied to the
explicit form A (e). Obviously these operations have no effect on
principal minors, However, from Theorem 3.1 we also know the condition
that p;¢ =r;% i=l,..N, i.e. that the {p;} uniquely determine the {bj},
is a necessary condition for A(€) to have MSSNS. (This condition was
called the "no cancellation" condition in the previous chapter.)
Therefore, if after scaling we have the MSSNS condition, so that the no
cancellation condition holds, it must hold for the original matrix., We

shall take this necessary no-cancellation condition as a standing

assumption throughout this chapter.

4,1.3 Outline of this chapter

Séction 4,2 is devoted to filling out the outline above. 1In
Section 4.2,1 we briefly dis;:uss some properties of permutations;
further details can be found in Appendix 4A. Then in Section 4.2.2 we
introduce the essential idea of our approach through a key example.
Section 4.2.3 deals with diagonal scaling for the simplest case where
there is only one cycle in the skeleton. Section 4.2.4 extends this

result to the more general case where the skeleton has several cycles.

Since our scaling procedure is derived under some assumptions, it
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is important to know that there are interesting problems where these
assumptions are indeed satisfied, We describe, in Section 4.3, the
application of our scaling procedure t6 high-gain feedback problems. In
particular, we show that our procedure leads to scalings used by Sannuti
in [14]. (This paper, along with [15], motivated our study of scaling

in the first place.)
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4,2 Diagonal Scaling

4.2.1 Introduction

In this section, we examine matrices A(e) with structural features
that cause them to not have MSSNS. We show that it is possible (under
certain conditions) to choose a scaling of such a matrix that induces

MSSNS.

Without loss of generality, it is assumed that A(e) is in its
explicit form (see Note 1 of Section 4.1). As mentioned in that
section, we shall be considering transformations of the form S(e)T,

where S(e) is a diagonal scaling matrix, T is a permutation matrix, and
A(e) = S(e)Ta(e)T 1s(e)™L = B(e)a(e)3(e)~] (4.3)

Note that A(e) and A(e) have the same eigenvalues but may have different
invariant factors if 5(€) is not unimodular. We shall show how 3(€) can
be chosen so that the invariant factors and eigenvalues of A(e) have the

same orders, even when A(e) does not possess this property.

The development of our scaling procedure involves identifying and
manipulating permutation matrices that reflect important structural
features of A(e). Before we begin this development, therefore, let us

first review some properties of permutation matrices, i.e. of matrices
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obtained by permuting the rows and/or columns of the identity matrix I.

A permutation matrix, say

av)

]
OOHOOO
OCOOHOO
HOOOOO
[eNoNoNoNeN
OHOOOO
OCOOO0OrHOo

can also be represented in terms of the cycles that comprise it., For

the example above, the decomposition of P into cycles is given by
ep = (1,4)(2,3,6)(5)

This notation serves to indicate that if P is applied to a vector
®=(X]sX9eeerXg), then the fol lowing cycling of elements occurs:
[xl——>x4, Xg4—=> xll, [x2-->x3, X3==>Xg, Xg=—>%X51, [x5-—>x5]. Herefp

consists of three cycles, which are uniquely defined.

The canonical circulant matrix is a permutation of the form
ec = (n'n—l' n"'2, see 2’ l)

This corresponds to the permutation or circulant matrix
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A block diagonal canonical circulant matrix (BDCM) is defined as
C = block diagonal {Cj, Coseees Cpl
where Cyr i=l,.., M are canonical circulant matrices.

It can be shown (see Appendix 4A) that any permutation matrix can
be brought to a BDCM by a symmetric similarity transformation T that is

itself a permutation matrix:
P =Tprl, P is BDQM form.

We shall call this transformation T a symmetric permutation. Each block

of P corresponds to one cycle of ep.

In the next subsection we introduce our approach to scaling through
an example that also serves to illustrate the role of circulant matrices

in our development.,

4,2,2 A Key Example

The essential ideas underlying the scaling approach proposed in
this section are exposed by the following key example., To proceed, let

us first recall some definitions from the previous chapter:
aj = orders of invariant factors, i=l,...,N
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= orders of eigenvalues, i=l,¢.e/N

and, based on the no cancellation assumption, the points on the lower

bound of the {p;} are given by

p;° = ;% =X by,

A(G) = esseesccsccsssecessce (404)

0 0 0 0 .ew... ol

can 0 0 0 vesess O

3 -

Note that A becomes the canonical circulant matrix if nonzero entries
are replaced by 1; we shall therefore say A has the structure of a
circulant matrix. It is easy to see that A is in explicit form, and
that the orders of its invariant factors are aj, i=l,...,n. (Recall
from Note 2 of the previous section that we are still using {aj} to
denote the orders of the invariant factors, but they may not be ordered
as in earlier chapters.) Since the ixi pricipal minors with i<n are all

zero (this implies rj=p;=, i=l,...,n-1) and r =p,=q,=aj+...+a,, we can
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draw the following picture:

|

]
1 2----

|
!
|
|
|
!
|
]
n

Figure 4.2 A key example

It is easy to see from this picture that the orders of the eigenvalues
b;j, which are determined by ric=pic, are equal to b=qn/n for all i.
This can also be obtained by checking the characteristic polynomial of

A, which is

AR o CV

where v=q,. This again shows that all of the b; are equal, namely
bj=b=q,/n for i=l,...,n. Thus Awill not have MSSNS unless all of the

a; are the same.
Now let
S = diag{esl, esz, ceeer e5n-1' 1}
with

Si - Si+l = b - ai, 1=l'ooooln-1'
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Then after scaling

_ -
0 &€ 0 0 vueee. O
0 0 &€ 0 ...... O

A=SAS-1= LB BN BN BN BN BN BN BN BN BN BN NN N N}

0 0 0 0 veeee. €

& 0 0 0 .eees O

and the invariant factors of A have the same orders as its eigenvalues.

If A does not have the structure of a circulant matrix, but of a
more general permutation matrix, then we can apply a symmetric
permutation to bring it to block circulant structure. For example,

consider

o o el
A=[e2 0 o0
0 &3 o

As with the last example, A is in explicit form and the orders of the
invariant factors are a;, a, and as. The orders of the eigenvalues are

all equal to b=(al+a2+a3)/3. Choosing the symmetric permutation matrix

[oNoN o)
H O o
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we obtain

0 &2 o
a=Tarl= |0 o &al
e 0 o

To bring A to MSSNS, we can choose

S = diag{esl, &2, 1}

where sy=2b-aj-a,, sp=b-aj;. Applying S to A;, we obtain

0 &2 g
starisl =Sl 0 o)A

0 0 1
—" T
3
0 &
=85 1=[0 o
&L 0

N — N

In general, the entries of A that were zero in this example will

not be zero.

Nevertheless, the essential idea can still be carried over

to the more general situation, under some conditions.

In the next

subsection we start with the special case where A has the form of
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(4.4), except that the zero entries of (4.4) might no longer be zero

(though they are still, in some sense, subsidiary). In other~words, we
shall assume that there is a skeleton in A, as defined in Section 4.1,
whose elements correspond to the 1l's in a circulant matix with one
cycle. We move to the more general case, where the skeleton elements

form a permutation matrix with several cycles, in the subsection after

the next one.
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4,2,3 Scaling for matrices with one-cycle skeleton

We shall now prove that the scaling procedure described in Section
4.1.2 works for the simplest case, where a skeleton of A(e) (in its
explicit form, as assumed in Note 1 of Section 4.2.1) has only one
cycle, We shall then move to the more general case where all skeletons
in A(e) has multiple cycles. Recall that the skeleton of A(e) having
one cycle means that, after a symmetric permutation, the skeleton will
be in BDCM form with only one block, while multiple cycles implies that
the BDCM form will have multiple blocks.

Before stating the three assumptions which are retained throughout

this and the next subsections, we state some definitions that we need.

The dimension of a principal submatrix P of matrix A is the number
of rows in P. The order of a principal submatrix is the order of its
determinant, i.e. the order of the associated principal minor. A
diagonal of a principal submatrix of dimension n is defined as a set of
n elements containing precisely one entry from each row and each column
of P, The diagonal containing the entries aml,m2r 3m2,m37+**+r3mn,ml

will be represented as the ordered set

S = (m]_r Moy eceey mn)

There are n! diagonals in P, If P is the matrix A itself (in explicit

form), then some diagonals will be the skeletons defined before. The
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order of a diagonal is defined as the order of the product of all its
entries. There is one special diagonal of any leading principal

submatrix, namely
Sc = (1’ 2' scee n)

that will be called the canonical diagonal. A contiguous principal
submatrix is defined as a principal submatrix with contiguous rows. It
will be represented by two numbers, the idex of its last row i and the
index of its first column j, and denoted as M[i,j], with a subscript on
M to indicated dimension when needed. The overlap of two contiguous
principal submatrices is defined as the number of common rows. It is an
integer ranging from 0 (no overlap) to my, the smaller of the dimensions
of the two submatrices., Finally, the closure of a principal submatrix M
is defined as the smallest dimension contiguous principal submatri;t

containing M.

We can now state three assumptions under which our scaling

procedure is derived, and the two lemmas required to derive the scaling.

Assumption 4.1. bj2ay, for i,3=l,...,N1.

If we draw the curves for pic and q; as in Fig. 4.2.2, this
assumption means that the slope of pic is larger than that of g; except
for the last segment. Note that this is not a necessary condition for

A(e) to have a diagonal scaling. For example, consider Egq. (4.2.2). We
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have seen that the diagonal scaling defined in that section always work
no matter b (the order of the eigenvalues in this example) is smaller
than a; or not. But this is the condition under which our algorithm has

been shown to work.

N-1 N

Fig. 4.3 p;€ and q; for Assumption 1
i i unp

Assumption 4,2:
The order of any principal submatrix of A(e) is equal to the

smallest order of its diagonals.

This assumpotion serves to rule out certain cancellation when
summing procucts of elements in different diagonals, ensuring that the
order of any principal minor is not greater than the smallest order of
the diagonals that determine the principal minor. Again, this is not a

necessary condition for a diagonal scaling to exest.

The third assumption is motivated by the following example,

Consider
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0o 1 0 0 0 0
0.0 1 0 0 O
Ale) =€ 0 0 1 0 0
0 0 0. 0 1 0
00 &S 0 0 1
e 0 0 0 0 0

O
o

L !
2345

Figure 4.4

There are two principal submatrices M; and M, whose orders are 3. In
order to bring q; to p;©, we ought to scale three of the 1's, e.g. ajs,
ay3 and a3y, to € and scale the remaining two 1l's, namely a,g, agg, to
€2, since the diagonal scaling will not change the principal minors, we
shall end up with some entries of order less than 1, no matter how we
arrange the scaling. (After scaling the order of the gcd of all the 1x1
minors should be equal to 1 since the order of by is 1 in this example.)
The source of the problem here is the overlap of two principal
submatrices whose orders are equal to p3°, where 3 is the first turning
point in the graph of Fig.4.4. To avoid this situation, we impose two

more assumptions.
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Assumption 4.3:

Suppose the order of an mxm contiguous principal submatrix M, is
pmc. If there is an sxs contiguous principal submatrix M, that overlaps
with My and the overlap is t (an integer from 0 to min{m,s}), then the

order of My satisfies

O(M) 2 DBy y1bpt42%e o« Hipt4s+1

Consider the previous example again. If A(e) satisfied this assumption,

i.e. if one of the M;, i=1,2 had order 1+2+2=5 instead of 3, the

difficulty encountered in that example would have been eliminated. From

this assumption we also can see that any contiguous M; whose order is
c

Ppi~ Must be the unique contiguous principal submatrix that has this

order.

Assumption 4,4:
For each i=1,2,.... the principal submatrix M; of A(e) whose
determinant is pmic is a contiguous principal submatrix. Furthermore, M;

Mit1r i=l,eeeey i.e. the rows of the M; are contained in those of the

Mit1e

The following theorem now states that the scaling procedure
described in Section 4.1.2 does indeed induce MSSNS under Assumptions
4,1-4.4, Since the steps 1-3 can be applied to any A(e), we shall
suppose that the A(e) discussed in Theorems 4.1 and 4.2 has already gone

through these steps. In other words, we suppose that some skeleton of
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A(e) already forms a BDCM of one cycle.

Define

m; : turning points of qjc.

M; : principal submatrix whose determinant is equal to pp;“.
£; : slope of segement of qjc between m;_; and m,.

Ij : set of row indices of MJ

We now have the following theorem.

Theorem 4,1: Suppose A(e) satisfies Assumptions 4.1-4.4, and has a

skeleton that forms a BDCM of one cycle. Then the scaling matrix
S = diag{GSl,...., QSN} (4-5)
causes SAS™! to have MSSNS, where Sjjeeees sy are defined by

Si-Si+l=fj-ai' if i e I S f i=l'oo¢'I\]-L

SN=0.

Proof:

According to Assumption 4.4, the M; are contiguous. Now, consider
M; and My. As a consequence of Assumption 4.4, M; is contained in M,
and each entry aj4 of My, i>j, must belong to a contiguous principal

submatrix M[i,j] containing A5, J4Lr eseeer@io] g which are the elements
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of the canonical diagonal of the original matrix A and have orders

A4r3441r000035] respectively. We then have
O(ajj) +ay + a4 + «eee a5 2 (-3 E;,  13]

The scaling defined in this theorem satisfies

8578341 = £173js0-00r 5178§ = £1734

Denote the order of the (i,j)-th entry after scaling as O(Eij).
Considering the fact that the diagonal scaling does not change the

principal minors, we have

O(aij)+(aj+sj-sj+l)+"'°+(ai-l+si-l—si)
= O(Eij)+(aj+fl-aj)+....+(ai_l+fl-ai_l) 2 (l-]'l'l)fl
or . Oy 2 £y, D3 . (4.6)

The entry ajqs i<j, in the upper right triangle of M; has an order
equal to or higher than f; before scaling. After scaling, for i<j, and

considering fy2aj, i=l,..,N~1, we have

O(Eij) = O(aij)+si-sj = O(aij)+(si—si+l)+....+(sj_1-sj)

2 £, i43 (4.7)
Also O(ajj) = O(Eii) 2 £ (4.8)

Combining (4.6)-(4.8) we can conclude that, after scaling, every entry in

M; has an order equal to or higher than f.
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Now consider the entries contained in M, but not in M; (see Fig.
4.5). Using the same argument as before and the Assumption 4.3, we

have for ajqe i>j, i€I,,

O(aij)+aj+....+ai_l 2 tfy+(j-itl-t) £, (4.9)
( ]
7 M,
12< 1L t LA M,
L< [Gip
\
Figure 4.5

where t is the overlap of M; and M[i,j]. Since, after the scaling
defined in this theorem, there will be exactly (j=i+l-t) canonical
diagonal elements of M[i,j] having order f5, and t-1 having order £y,

from (4.9) we have
O(Eij) 2 £y, 1>3, ieIl (4.9)
Arguments similar to those used in deriving (4.7) will prove

O(Eij)gfl, i<j, i¢Ij. Repeating this procedure for Eij' i€I5\I;, we can

prove
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0@Fj4) > £, 1€I\Ig

This procedure can easily be extended to M3, My, ... and finally

we can show
O(Elj) 2 fk' iéIk\Ik_l

Since there is one set of ixi minors, i=l,...,N, whose orders are

exactly q; (the aj i+lr i€I\Iy_1), the theorem is proved.

The following example illustrates our approach.

Example 4,1 Consider
€3 €'4 €5 @
€3 €3 (>
A(e) =©
S @ &
.€6 CB @ 67_

Before applying Theorem 4.1, we have to apply steps 1-3 to A(e€). First
we identify the only skeleton, which comprises the circled elements in
the matrix above, and corresponds to the permutation (1,2,3,4). To
transform this permutation to canonical circulant form, we use the

symmetric permutation 6.=(1,3). Then
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(ez e & ¢

_ L . e 3 e e

Al(C) - TR B 35 et e3 1
e® &8 &b &7 ]

This matrix has a;=1,1,0,6, and b;=2,2,2,2. 1In other words, m =4, £1=2.
Hence, using Theorem 4.1, we have S1—so=f;-a;=1, sp=s3=fj-a,=1, S3-

s4=f1-a3=2, or s1=4, s5=3, s3=2, s4=0. This leads to

i ]

2 2 S

) T R

By(€) = S(e)a(€)S(e)™" = STA(E)T s~ = | s o
e e € ¢

.€2 e et &

It is easy to check that A5(€) has MSSNS, since its eigenvalues (which
are the same as those of A(€)) and invariant factors have the same

orders,

4,2.4 Scaling For Matrices With Two-Cycle Skeleton

We have derived the scaling of Theorem 4.1 for the case where the
skeleton only has one cycle. Now we shall extend this result to a more
general case where the skeleton has two cycles. From the results in
Section 4.1, we know that after some symmetric permutation A(e) can

always be brought to the following form
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Ale) = ' (4.10)

where the skeletons of Ay and Ay, are BDCM with one cycle and

Ay; is an mxm matrix, We then have the following lemma.

Lemma 4,1:
If A(e) has the form of (4.10) and satisfies Assumptions

4,1 and 4.2, then

l. a1=bl=o.ooﬂ=brn = b (4.11)
2. avjsai' j=[n'|'l'.-oo' N-l' i=1'.-oo'mo (4.12)
Proof:

From the assumptions of this lemma, we know that A;y; is a BDCM with
one cysle and that its determinant is a principal minor of order
a1+....;|-a1n. But any mxm principal minor must be equal to or larger than

Pp=01+0g*eee.+bp.  Therefore
a1 te.eatan 2 bytes. .ty (4.13)
On the other hand, from Assumption 4.1 we know that
ajbs, i,3=lyeeee,ml (4.14)
Combining (4.13) and (4.14) we have (4.11). Using Assumption 4.1 and

(4.11) we have (4.12).
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From now on we shall suppose that A(c) has the form of (4.10) and
satisfies (Assumptions 4.1 and 4.2, and therefore) (4.11) and (4.12).
The required scaling for this case will be stated in the following
theorem. In order to prove this theorem, we need to augment Assumption
4.3 by the following Assumption 4.3a, We also introduce two new

assumptions, Assumption 4.5 and 4.6.

Assumption 4.3a

Suppose the order of an mxm contiguous principal submatrix M, is
pmc. If there is an sxs principal submatrix Ny whose closure M, of
dimension r overlaps M;, and if the overlap is t, then the order of Ny

satisfies

O(Ny) 2 brn-l-xr-t-s*'bm+1:—t7-s+l""""H:‘rnﬂ'—t-l =h

where the sum above that we have denoted by h is as marked on the

figure,

Figure 4.6




Assumption 4,5:
A(e) has the form of (4.10) and the diagonals contained in A1y and

Ajy determine the qmic.

This assumption implies that there is at least one diagonal of
order m; that is contained in A;; and Ay, and has the order of qmic for

each i.

To simplify our proof, we impose the following assumption.
Assumption 4.6:
Tl].e Mi Contain anH,l'ml fOr i=2'3'..|o

Note: We believe that without this assumption the proof still can be

extended but the notation will get very complicated.

vﬂlﬂl@i&:

Let Mj, my, Ij and f; be defined as before. Suppose A(€) satisfies

Assumptions 4.1-4.6 and 4.3a. Then the scaling matrix is

s = diag{e%!,...., N} (4.15)
X, i=m
848141 ={ (4.16)
' fi-aj, i%m and i¢I;
where
i-1
x =max {b; = Z (a,-by)+0(a;s)} (4.17)
iy, o kema < &
jedy
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Jl = {m+1’oooo'N}, J2 = {l'.ooolm}

Let us see one example of a multiple-cycle skeleton before the
proof. The following three-cycle example not only shows the
procedure of this theorem but also suggests how to extend this

theorem to the case whire there are more than two cycles.

Example 4,2 Consider
(¢ 1 1 @
62 @ € €2
€2 €2 @ €2
@ S &t & ]

It is easy to identify the skeleton in this example. The permutation

Ae) =

formed by this skeleton is (2)(3)(1,4). The symmetric permutation
should therefore be (1,3), i.e. switching the l-st and 3-rd rows and

columns, We have
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and

A (e) = TA(e)T L =

Here a;=1,1,0,2, b;=1,1,1,1. 1In the following, we shall repeatedly
aplly Theorem 4.2 to A;(€).  Since the skeleton forms a BDCM with
three blocks, we start from the lower-right 3x3 principal submatrix,
which consists of two blocks. For this submatrix, m=l, bj=1, 1, 1,
ai=1' 0, 2' b=b1=l, J1={2' 3}' J2={l}.
i-1
x =max {b;-3 (ay-b,) - 0(a;4)} =1, g=2, h=1.

ie{2,3) k2 KK *

J=1
Therefore a scaling for this 3x3 principal submatrix of Ay(e) follows

from the calculation

iy-1p=0, ip=iy=—x=-1, iz—ij=by-az=l.
or iy=iy=iy=0, iz=l.
Applying this scaling to A, (e), we obtain

A,(€) = diag{l,1,e,1}a (e)diag{l,1,e7L,1}

—
€ 62 € €2
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Now, apply Theorem 4.2 to A,(€) again. Taking the (1,1) entry as A1y
and the complementary 3x3 principal submatrix as Agy of Lemma 4.1, we
see that A,(€) satisfies the requirements for Theorem 4.2. Therefore we
x = max {b; ~ O(aj4)}=0,
i,j
So the scaling remains the same, i.e.
S = diag{l,1,¢,1}

and

Ay(e) = SAy(e)s7L = stA(e)Tls71

€ € € €

€4 C3€ €

which has a;=b;=1,1,1,1. Therefore Ay (€) has MSSNS.

Now, let us prove Theorem 4.2,

Proof :

According to Theorem 4.1, the scaling defined in (4.15)-(4.17) will

ensure that the orders of the entries in the i-th row of A;;'(where
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Aij' denotes the submatrices after scaling) have order equal to or

larger than f; and the orders of ajj'seee am—l,m' and ap;' which, in
this case, are equal to £;. The entries in i-th row of Ay,;' have order
equal to or larger than b; and the orders of am+1,m+2"""'aN-1,N' and
ay,m+1' are equal to bpijseeee/by. Now let us check the orders of the

entries in A21' and Alz'.

It is easy to see that after scaling the order of the (i,j)-th
entry in A5,' is

i-1
O(a:s) = 0(a;s;s) + T (ap-by) + x
] H |<=m+1kbk

i-1
=0(a;s) + 2 (ap=by)
1] k=m+1 k-7k
o i-1

+ max {b;-0(a;s)- < (ap—by)}

gy - k= k Tk

jedq
Zbi, ieJl

Also there exist integers g and h such that
0(5'91'1) = bg
Now define dij=0(é'ij)-0(aij) and consider the entries in A,'. For

columns g+l,....,N the order increment dij are

j-1
d' - (a -b ) - X j=g+l’- coe N
U7k K '
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j-1 g-1
S (by=a,) = b, + = (a-b,) + O(ayn)
k=il &K 9 kem1 &K gh

j-1
i: (be-ay) = bg + Olagp)
=g

j-1
> (by=a,) + b, = a5 + Of ) - b
k—+1kk g gv agh g

But
Ofagy)2ags by2ag, for any k
Therefore
'and
O(ajy') = Ofajy) +dj4 2 Olaj3) 2 £y, i=l,ecns,N,
| ‘ j=g+l’o..o’N
For the remaining part of A12" i.e. columns m+l,....,9=1, we can use

the following arguments.

In this area a3 and agh must be contained in a diagonal of some
principal minor containing only canonical diagonal elements of A;1 and
Ayy apart from aj4 and aghe In other words, if i<h, the diagonal can be
expressed as (g,h,g+1l,eeeepi-1,1,3,j+1,ee..,9-1), and contains h+g-i-j+2
elements. Since the principal minor is enclosed by M[g,h], its order

must be (according to Assumption 4.4) equal to or higher than

g
S b
k=i+j—h-2
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Therefore, it is easy to check that O(aij')>f1 after scaling. For the

case where i>h we can apply similar arguments.

The above scaling theorems have been obtained under rather strong
assumptions. It is therefore important to know that they are applicable
in certain situations of interest. In the next section we show how to

apply our results to the scaling problem in a high gain feedback system,

4,3 Scaling in High Gain Feedback systems

The problem discussed in this section is the time scale analysis
of feedback systems., In particular, we consider a high gain feedback
control problem, of the type studied by Young, Kokotovic and in more
detail by Sanutti. [14], [15], [13]. We shall see that the methodology
developed in the previous subsections serves to extend the scaling

results of these references to a more general case.

To simplify our discussion, let us restrict ourselves to the simple
situation proposed in [14], where an N-state, m-input, m—-output system

with output feedback is considered:

% = Ax + Bu
y = Cx (4.18)
a = K(e)y
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with 13, ﬁ, E:, K(e) being matrices of appropriate dimensions.

It is assumed that system (4.18) satisfies
cai-lg=g, i=1,...,q
CA9B is nonsingular for some g>l.
Under this assumption, there is a linear transformation to transfer

(4.18) to the following form [14].

. "1
X[ [P0 Ao1i- 0 X0 0
Ho=fo e el
. . I . .

%o [Pa0 AqiiBg2 eeeees Al [%g BqJ

y=[0IO0 .... 0]x

u = K(e)y
or
] — —
X| [P0 Aoy 0 %]
xl sl X1
. | =10 0o .

Xq fqo +%é ; qu esesen Aqq—‘ :(!j

Suppose that we have a high gain feedback problem where

K(e) = €91 = p91, p=cl
Then
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A(e) = |0 0

Aqo Aql qu socsee Aqq

+quq

If we scale A(e) by €9 (which corresponds to time scaling) and denote
the resultant matrix as Aj(€), then we see that A,(0) does not have
SSNS. Therefore a scaling is necessary in order to have a standard two-

time-scale form.

We can also see that Aq(e€) is in the block explicit form with one
cycle (i.e. the same form as that in the previous sections but now each
entry is a constant matrix multiplied by a power of €). Applying the
scaling in Theorem 4.1 but treating each block as one entry of matrix

A(e) in the theorem, we can see that a scaling
s = diag{pd1,p91,p% 11,9 21,...,I}

will bring A(e) to

Aj(e) = sAae)s™t=| 0 0
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I 0 i
11 A Ag1
. 0 0
= ] I
"l +1 +1
€ I Cq Aqo eq Aql quqz eecoee Aqq
+Bq

L P

= D(e)A(¢)

As in Chapter 3, we check the Schur complements of A(0) to see if Ay
satisfies the MSSNS condition or not. Note that there are two time
scales in this example so we need to check A ( i.e. the 1-7;11 in Chapter
3) and the Schur conplement of Aj (i.e. the 522 in Chapter 3). Here we
only consider the case where Ay is of full rank. Otherwise the scaling
will be too complex. Since Bq is full rank, we can see that the two

Schur complements are full rank. Therefore A () has MSSNS.,

Now consider a more general cases where K(p) is an analytic
function of p at p=w. This is a case that has not been considered

before in the literature.

Let us first consider the (n2+n3)x(n2+n3) submatrix

0 I

. . 0

. 0 . .

0 I
Aq+K(p)Bq x.oooocoox

of A(e). Now suppose the Smith form of Aq+K(p) Bq is

A4tK(p)Bg = P(p)D(p)Q(p) = Pdiag{Iy,pIy,.....}Q
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where P(p) and Q(p) are unimodular., Then by a linear transformation, we

get

g
[

I 0

0 I
0 P

D(P)  Xeessroox |

0 Q

To see the necessary scaling for Ay, let us consider an 8x8 example.

Ex es
0 a 0 e 4
Let O= ¢ P= » D(p)= 8 .
b 0| £ 0 P
Then _ T
0o 0 0 a 0 O o0 O
0 0 b 0 0 0 o0 O
0o o 0 O 1 o0 o0 O
Ap=[0 0 0 0 0 1 0 0
0 0 0 0O O 0 o0 e
o 0o 0 0 O O £ O
g 0.0 0 0 0 0 O
0o 20 0 0 0 0 O
\_ —
After some symmetric transformation we have
’—6 a 0 0
0 0 1 O 0
o 0 0 f£
a'=p* 0 0 0
6 b 0 0
0 0 1 o0
0 0, 0 0 e
8 0 0 o
- _
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This is a two—cycle case. Applying Theorem 4.2, we have the scaling for

A
S' = diag{ngparP7r 61P6I 419211}
Then [ Ar -
0 a 0 O
pI 0 0 010 0
s'a'stL = 0 0 0 f
1 0 0 O
0 b 0O
0 010
0 p%I 0 000 e
100 0

which has MSSNS. It is easy then to derive the scaling for the original
systén (simply keep the (1,1) block unchanged) and find that the system
has three time scales. From this example we notice that, unlike in the
simple case considered just prior to it, the scaling is determined by
the structure of Q(p) and P(p). Therefore, in general, if K(p) is a
function of p, one should first apply the Smith decomposition on K(p) to
find Q(p) and P(p) and then use the scaling approach in the previous

sections on A; to obtain the necessary scal ing.

From the results in this section we see that the algebraic approach
developed in this thesis not only gives a clearer picture of the scaling
proposed in [14], e.g. the justification of the scaling used, but also

provides a tool to treat the more general case where K(p) is an analytic
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funct;ion of p.

4.4 Conclusion

In this chapter we have discussed the situation where the MSSNS
condition is violated. We first observe that the lack of MSSNS is
equivalent to inequality of the orders of eigenvalues and orders of
}i»nvar_iant .factors. This suggests the usé of a non-unimodular similarity
transformation that keeps the eigenvalues the same while changing the
invariant factors. We focus atte_ntion on a special transformation,
namely scaling, i.e. a diagonal similarity transformation matrix with

the diagonal entries being powers of e.

In general, diagonal scaling may not be successful in inducing
MSSNS if applied to the system matrix A(e) directly. Our procedure
requires us to first transform A(e) to its Smith form A;(c). We then
identify a skeleton in A;(€), as defined in Section 4.1. The next step
is to apply a symmetric permutation to Aj(e) so that its skeleton forms
a block diagonal circulant matrix. The diagonal scaling can then be

derived fairly easily from this form, under certain assumptions.
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Several points should be made here.

1. The scaling is not unique. This is because, in the first place,

the skeleton is not unique., For example

A(e) =

has two skeletons. One is agor a3 a4l; az4r which has the structure
(2)(3,1,4). Another is ajor ag3s a34s a4yr With structure (3,2,1,4).
For the first one, we need a symmetric permutation (2,1). After the

symmetric permutation we have

e
€ 5¢ e €

ee4el

b &2 &t €4J

The scaling for Ay(€) is S=diag{e,e,e,1} according to Theorem 4.2.

Therefore the overall transformation is
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(0 ¢ 0 0]
e 00 0
700 0 e o
0001

On the other hand, for the second one the scaling is simply
Sy = diag{e,e,e,1} = S

2. The approach stated in this chapter is of course not the only

possible one. For example, suppose

e 1
Ale) =
0 e
Let
1 O 1 O
P= ’ - , unimodular.
e 1 - 1
Then
2¢ 1
plap =
-€2 0

is in explicit form and the scaling is S=diag{e,1}. The overall

transformation is

e 0 el 0 2 1
A = ¢
- 1 1 1 -1 0

By inspection, however, we see that S, = diag{ef, 1} is also a candidate
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scaling for the original system, because

1 e en 1 el
A = S,AS,7L = =€
1 522 0 ] 0 1

where n>1 and Ay has MSSNS.

3. In general, a diagonal scaling may not be sufficient because
diagonal scaling will not change the principal minors of A(e). As
pointed out earlier in Chapter 3, the no cancellation condition is a
necessary condition for A(e) to have MSSNS. Therefore, if this
condition is not satisfied, i.e. if there are cancellations among the
lowest order principal minors such that the order of the gcd of the
principal minors is not equal to the order of the sum of the principal
minors; then diagonal scaling will not work., The reason is that the
diagonal scaling proposed in this chapter does not change the principal
minors, so that after scaling A(e) still does not have MSSNS. Note that
this cannot be remedied even if we first transform A(e) into its
explicit form A,(€), as we have done in this chapter, since the explicit

form does not ensure this condition.

4. We have mentioned at the begining of this chapter that scaling
fifstly provided a way to find an approximation of the eigenvalues
without computing them. The second role of the scaling is to transform
a system that does not have MSSNS to a system that does. We can then

(if the scaled system satisfies MSST as well) find a time scale
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decomposed system—denote its system matrix by a(e)—to approximate the -
scaled new system using the procedure described in Chapter 4.2,
Intuitively, if we apply a reverse scaling (i.e. S~ 1) to this time—-scale
decomposed system we should obtain an approximation of the original
system. Our conjecture is that the difference between exp{ll(e)t} and

S’lexp{A(e)t}S must have an order higher than the order of exp{A(e)t}l,

i.e. the norm
| lexp{a(e)t}-s lexpia(e)t}s] |

must have an order higher than that of ||expA(e)t}l|. Mathematically,

it may be true that the norm
| 1T-exp{-A(e) t}s™ expla(e)t}s] |

approaches zero as € goes to zero, but further study of this

possibility is left for further work.

5. Assumption 4.4 can actually be derived from a revised version
of Assumption 4.3, which constrains the orders of the overlapped
principal submatrices (possibly several in contrast to two in Assumption
4.3). Unfortunately, the revision of Assumption 4.3 is almost impossible
to check in a practical situationvand the subsequent derivation of
Assumption 4.4 is also very complicated. This is why we have stated

Assumption 4.3 and 4.4 as two independent assumptions in this chapter.

Several examples are given in this chapter, including the
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application to the high gain feedback control problem. The scaling -
approach proposed in this chapter provides a better understanding and
approach to treat a more general case of the type considered in Section

4.3.
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CHAPTER 5 CONCLUSION

5.1 Contributions of This Thesis

The principal contribution of this thesis is the development of an
algebraic approach to multiple time scale decomposition of perturbed
linear systems. Based on this approach, we have been able not only to
obtain a more direct and simple description of the multiple time scale
decomposition of such systems but also to handle number of problems that

are difficult to solve using previously developed results.

In Chapter 2, using this appréaéh we make clear the »conriection |
between Kokotovic's explicit two time scale approach and Coderch's
multiple time scale results and in the process we provide a far more
straightforward procedure than that of Coderch that makes clear the role
of Smith decompositions and the Schur complements of a certain matrix.
Using this machinery we are then able to extend the multiple time scale
result to a larger class of systems that satisfy the MSSNS but not the
MSST condition and to solve a feedback time scale assignment problem for

the system 'FA(S)X+B(€)I.1 when A(€) and B(€) are coprime,

In Chapter 3, the further study of the algebraic structure of A(e)

proved useful in deriving equivalent conditions for MSSNS and MSST. In
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Chapter 2 we had shown that the MSSNS (MSST) condition is equiValent to
the successi%e Schur complements of a particular matrix being full rank
(Hurwitz). In Chapter 3 we proved that the MSSNS condition is also
equivalent to the eigenvalues and invariant factors of A(e) having the
same orders. This result not only simplifies the interpretation of the
MSSNS condition but also provides a new and perhaps the only practical
criterion to actually verify this condition. Related to this result is
the relationship between the MSSNS and MSST conditions. We showed that
A(e) satisfies the MSST condition if and only if it satisfies the MSSNS
condition and the orders of the real parts of its eigenvalues are equal
to or less than those of the corresponding imaginary parts. Therefore,
to check the MSST condition we may first check the relationship between
the orders of the real and imaginary parts of the eigenvalues of the
matrix, If they satisfy the condition we have just mentioned, then we
can proceed to check the MSSNS condition. The final and perhaps most
important contribution in Chapter 3 is the clarification of the
relationship among the principal minors of A(e), the orders of the
invariant factors, and the MSSNS condition. It is shown in this
chapter, that unlike the usual cases, if the system satisfies the MSSNS
condition, then the orders of the gcd's of the principal minors of each
size instead of all minors of each size determine the invariant factors.
Based on this observation, 1) an algorithm, related to the Newton
polygon, was developed to determine the invariant factors from the gcd's
of the principal minors when the system has MSSNS; and 2) an equivalent

condition for MSSNS was obtained which emphasizes the role of the
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principal minors and a so-called "no cancellation" condition.
Therefore, if a system has well defined time scale behavior (or more
generally, A(e) satisfies the MSSNS condition) then we can use this
algorithm to determine the orders of the various time scales. Finally,
if the system has MSSNS, we provide an approximation for the eigenvalues
of A(e) in terms of the eigenvalues of the successive Schur complements.
As we point out in Chapter 4, this is a rather general result because if
the system does not have MSSNS, we may be able to apply some scal ing so
that the scaled system does.

The results in Chapter 3 are used in Chapter 4 to develop an
amplitude scaling pfocedure to transform a system matrix without MSSNS
but satisfying certain conditions, into one that does have the MSSNS
property. The scaling procedure requires first identifying a skeleton
of thé matrix to be scaled, that is identifying a set of critical
elements to be scaled. Then, using a symmetric permutation to transform
the matrix to a particular canonic form, we can determine the
appropriate scaling matrix. Finally, we use our result on amplitude
scaling to interpret and generalize recent results on time scale

analysis of high gain or nearly singular optimal feedback systems.

5.2 Suggestions For Further Research

1. The procedure developed in Section 2.8 for time scale

decomposition of a system with MSSNS but not MSST requires an iterative
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algorithm, A bound for stopping this iteration is given in Section 2.8

as the order of the determinant of A(e) multiplied by the dimension of
A(e), However it is possible--and is typically the case--that the
iteration can be stopped much earlier. Therefore, one interesting
question is to find a tighter stopping point. Related to this is the
question of possibly developing a more efficient procedure for time
scale decomposition than that given in Section 2.8. In particular, if
ﬁhe system ‘satisfies the MSSNS condition, then only one step of the
iteration is needed at each step. Thus if all of the successive Schur
complements in Chapter 2 are Hurwitz, we are finished, However, if at
any stage one of these matrices is not Hurwitz, then we must go back to
the beginning and do the full set of iterations at each stage. It would
be desirable, if possible, to obtain a procédure with a more recursive

flavor than this.

2. Feedback time scale assingment is discussed only for the simple
case where A(e) and B(e) are coprime. At least two extensions of our

result are of interest.

1) The consideration of the time scale assignment problem that we

study for the general case where A(e) and B(e) are not coprime,

2) A generalized cheap control problem, namely the problem of

minimizing
J = j x'Q(e)x + u'R(e)u
for the system
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:’( = A(e)x + B(e)u

standard cheap control and high-gain feedback problems, i.e, the case in

which only R(e) depends on € and in fact is of the form eR,

3. In Chapter 4 we derive a diagonal scaling procedure under
somewhat restrictive conditions. The reason for these conditions was
primarily due to the absence of simple methods for calculatlng the

invariant factors for an arbltrary matrix, That is we have had to

could be directed in at least three directions:

1) Finding simpler procedures for calculating the invariant

factors.,

2) Relaxing the conditions that were imposed on the matrix A(e) in
order to verify the validity of the scaling approach proposed in this

thesis work.

3) Considering the possibility of the non-diagonal scal ing. 1In

this thesis, only the diagonal scaling of a system in So~-called explicit
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form is considered. More generally, a similarity transformation which -
changes the invariant factors but not eigenvalués can be represented as
a non unimodular matrix. By means of the Smith form of this matrix, the
general form of the similarity transformation can be treated as a
unimodular transformation plus a diagonal scaling. Therefore, an
interesting question is what role can be played by the unimodular

transformation before diagonal scaling.

4. In Chapter 2 we have given a definition of the well-defined time
scale behavior and an extended definition in order to include systems
that are Hurwitz for some c€(0,eg] but do not satisfy the MSST
condition. The Hurwitz condition (or, as pointed out in Section 2.8, a
slightly weeker conditin that allows A(€) to have some zero eigem‘falues)
is a requirement ti'lroughout this thesis. However; intuitively it should
also be poésible to define meaningful approximations for some unstable
systems as well. For example, the systems %=x+u and x=(l+€)x+u should
be thought of as being close. Although the difference between exp{t}
and exp{(l+e)t} grows without bound, the leading order temms in the two
systems' dynamics are the same so that, for example, any feedback u=—kKx
which stabilizes the leading-order term of one system does the same for
the other. For this reason it would be desirable to extend further our
definition of well-defined time scale behavior so that a much larger
class of systems can be considered. Also another possible extension of
this definition is proposed at the end of Chapter 4 to define the way in

which an amplitude-scaled system approximates the original system.
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5. It has been pointed out in Chapter 3 that the eigenvalues of
A(e) are clustered into several groups according to the eigenvalues of
the successive Schur complements. It is possiblé that a frequency scale
decomposition, i.e. the decomposition of the transfer function of the
system, could be achieved based on the machienary provided in this

thesis.

6. As we have seen in Chapter 3, Section 3.5, if the Jordan form of
A(e) does not have nontrivial Jordan blocks having eigenvalues of order
higher that 0 and if the similarity transformation matrix M(e) is also
unimodular, then A(e) has MSSNS. However as the examples in that
section also have shown, the reverse is not true, In other words, the
matrix A(e) can have MSSNS but at the same time M(e) can be non-
unimodular and there can be a nontrivial Jordan block whose eigenvalue
is of order higher than zero. Further research is required to
investigate the relationship between the Jordan form of A(e) and the
MSSNS condition so that a neccessary and sufficient condition can be

derived.

7. It would be useful to develop numerical algorithms for the time
scale decomposition results in this thesis. The crucial problem in this
regard is the development of a numerically sound procedure for computing
the Smith decomposition of A(e). Although an algorithm based on
Verhgese's result [18] can be constructed, further investigation is
still required to find a well posed algorithm. Note that thanks to the

results in Chapter 3, it is possible to derive an algorithm for directly
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determining the invariant factors of A(e). An interesting question is -
the development of a Smith decomposition algorithm that makes use of |

prior knowledge of the invariant factors.
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Appendix 1

In order to obtain a recursive method for the computation of the
Sgi as well as the machinary required to prove Theorem 2.3, we introduce

some definitions and properties related to the Schur complement.
Consider a matrix A

A“ eeeecves A’n

A= 00000 OOSNOEOETSTEOETS

Bay eeveeeee Anp

where the Ajjr i=1,..,n are square matrices. Define matrices C'-":-L and

i]
'Bilfil , as follows
k,0 - rk,0 =
Ci,j = Biyj = Aiy (Al.1)
cfr] = cf7j! <} (aL2)
k,1 - rk,1-1
Bil3 = Bi}3
1,1 -1 k,1
= Af,-1-k+1 (G5i1k41) C-1-k41,3” (A.3)
k,1 _ qk,1-1%
cfr3 = 8fr57
- -1[xk,1-1
[Ai.! cos 'Ai'i-ﬂ (Yi_\l) B-1 :J
k,1-1
i7Y,3 (Al.4)

YO =0
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'The following property states the relationship between C'f:% for

different 1.
Property 1
K, 1 _ ok, 1-1
Cirg = €173

il -1~ k,1-1
01,3-1-k+2(cg-1-k+2) C3-1%k+2, 3

~K 5L s 1
Here we denote C'° -l+1 ,3=1+1 oy gJJ Lo for convenience.

Proof: By definition (A1.3),(A1.4)

. o fk,1-1]
k,1 _ ok,l-1 =1{71J
Cfy" = BEYT - (Aypeeedhy 5 )(T3q) :
k,1-1
Pin1, 3
K,1=2 K 1
= Biﬁ = Ay i,j=1l=k+ 2(b j-1- -+2)03’1 k+2 °
-1 z§ 1- ET
(g qeeedy 5_ 1) (T5 ) lf
i, 1=2
P121,
PR e P RS B
+(A l...Al i= 1)(Yl-1) : (C _l_[ +2)
T I 0 -1gk,1-1
Vj11£k+2 - Cés . (CJ l—k+2) 3 l-h+2
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Based on this fact we can prove the following property that relates
the Si,j with

Define

1+ -1.1,k=2
Se,1 = A14BY e (AL.6)
i 1 1'-J-l- -
X kei = (C, .2 ) i-1+1
We have

w-l,m+l-1
Property 2

' k=1 1+1
Ck k+l = Ak Jk+1 ~ i_1AkiSK,k-i
In particular, when 1=0, we have

1,1 ~
Cegk = e T Rge T RS
which is the same as (2.27) in Chapter 2.

Proof: We proof this property by induction. Suppose for some [<i<k~2
we have

~1,1
bk JB+1 7

, Bl+_1,i
‘AY k-{-l = [Ak1 i .Ak ’k-i- 1] [Ynx-i-‘l] ] .‘:{+l

1%1,4
Peill, el
Ty=1 l+1,J
-§ SRERIE 13 Dt
W
I3

Using the matrix inversion lemma, (Al.7) can be rewritten as

195



1,1 Y :
O tiean = Bicyieen = LBy B iemia)

Ay keied . V-d—

: ¢l A . A
-1 | k-i-1 Kei=1,1°""
W3 2)” Oy 007 iz it . .

...0..........'...(i*.....l..l.‘........0.......................l.............

keietyiei-2) (Feoi-2)

-1 : -1
NG RL CHETRIPTETT TR IR NP IS PPy

i . VI ole1,d
A sl =1 || Pryms
ki1 ,

Memio2,5-1)

1,1 -1 1+1,1i
(G i) Blmi21,k+1

s N 7

XXxrx

.
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= A1 e e P keian |

1+11
B+l

mH+dw
k-i-Zk+

"N

| -1
(Vy-2)

Using (Al.4) we have

k

A

1,1 -1 1+1,1
(G250 Bioili,ke1”

1,1 )
O kr1 ™R, ker1 [ Ay e By 1eeimt]

ﬁ.H.f d ] u.:._v .—
~Clmiat,k+l

.- P 1+ :
Bl #

-1 141,31

Lk-i-1 -
: cht f i qeeh N :
. i-i-1 [k-i-%1°"""k-i-1lk-i- k-i-2 4 =B _;
mH+ 1i (=1-1 nW._..\
k=i-2k-i-1 Br-i-2k-1
o14+1,1
By xil
. -1 .
[Pri-1,1° *Proi1,kei-2f Tkai-2) :
. wH+_.M

’ “1+1,i+1
. . .lu.u.lduw.?u.
mﬂ+m“w 1,k-1 ,
AN vld “ L l.d Qdua ||._ H._-._uur.—.._
k-i-2 : keiel Ckei-tk+l
plt i h
B }
k=i-2K F'k=1-2,k-i- 1Hu
- w.m . |w H+m m++ i o
(Cliog)  Ceoill kel
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A

uﬁH+d i+l S

1, wn+m H d

- -1 1+7,1i+
) | N W Hﬁmﬂ ) : NN CAL S Wi Eeutl S o
Kk k+1™ ﬂ k1 K, k-i-2 k=i-2 141,041 k,k=i-1""k H 1 Vik=i=1,k” "]

B . .
1,k+1 H+d 11 1141, 14
-— ) - [ ] .| .w.u >-
|>w.W+H-H>wd..>w.m-H|w~A<w|w|mv 1 : xwu j(Cim ) Crojiiel (Al-8)
_ 1+1,i+1

| eie2 k]

PR NS B

.mwawlm.W+H-

LI

Comparing (Af.8) and (A1.7) we see that (A1.6) is true for i+l.

For i=1, by definitions (Al.1) and (A1.4)

(
w.W+pnp>wd...>w.w-L

1 _
kel T >WW+H|~>W_...>w.w-d~A Y1)

-1 _ w+H
A 1,1
A
1,k-1
( -1 - vo ,—dl._.P -
(Ypp) + (¥ o) : CIA PR CRTSEIY M [CAPY
By 2,x-1

'

® 000 0030009 0800000 PSOIESEQPe0 ‘..................l.....

1,1,-1 ,
~(O I By qeeep ud.wumuﬁww-mv-_

+ v e o
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1,k=1 14 ]

-(Yk-Z)-1 Celq 1,k+l

A2 k=1

.'.......’..........'..

1’1 —1 :
(Cely) et el

=A (A A | I R B R B
Akl R, e 2 (Tep) g I
| | tem2, kel (Pim2, k-1
1,1
- R=T1,k+1
p : A. "/¥A . \'\ ]
ceataly=11¢ o -1 Tek+l ,,
(C2¢) [(Ak-1,1"'Ax-1,k-a><Yk-a)' : ‘Ak-1,K+1Jf
| B2 kel J
RIS T P B
=G 2y, k1™ Okt kel
N —_—
R ‘A1 el ] ' ]
, 1,1,=1 -1[ s+l I .
e 101 (Gly) {[‘x-1,1"' w1, k-2 | (Tk-2) | R s S PSS R
Ao el '

Considering (Al.l) and (Al.2) we have
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l+1 ’O i=1,o.o,k+2

A3 ka1 T 3%, ki1
and
1,1 _ AL+,
ko1, k+l = Ckel.xtl

Therefore by (Al.3)

T511=1.1,41
Ay kel F A7 1 (G2) Celt kel
_ ol+1,0 Ayl =1 l+1 1
= Bi,k+l + Al k_c](‘-ﬂ ) ) 1’{+l (AlclO)
l+1,1
l,z‘."’l

Inserting (Al.10) into (Al.9) we have

[’ Bl+1 ,’1- N
¢l = A A -1 1’:‘.{+l
S TS R e R G T R T L S PO I - !
f l+{ 1 5
L Ske2)5e1
1,1y=1c1+1,1 (Al.11)
Ck {—1’A+l
which is the same as (Al.7) when i=l.
- For i=k-2 we have from (Al.7)
A,1 ~1.1+1,k-2 HB=2
Y S R S R R A IS Z e ey

Ala T =1 1+1,]
(b‘ J) C’m—‘]:n+l

This completes the proof of (Al.7).
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Property 2 will be used to prove our main result, Theorem 2.3. For

the same reason we need the following.property.

Property 3:
1,i=k+1 ~l+1,1=-1 1 i-1 1 Ty\=1.1,1 (Al.12)
09 H I ®
Jk-l,k bk-l,.]&x 1’1{-1( l) \-'A(.{:l’k

Proof:

Suppose (Al.l2) is true for i=l,...,m-1, we prove it is true for
i=m.

Let us consider C-?2  , lew-1. According to (Al.2) and (AL.S)
. =il

1,2 1,1 -111
ck:m,k = Ck:m,k - Ck:m,k-l(ck-l) {- K

141,01 1,1 -1.1,1
= Cimui ~ «-’-:n,-.-l("‘a 1) 21,k

Similarly by (Al.S5)

1,3 _ l A )-1 1,2
Ke=m,k =M,k z:-m,}:-l-l -1 5-1-1 s K

Using (Al.2) to find an expression for Ck l . we obtain
=-1-1,
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1,3 _ AL+1,1 _ 41,1 . -1, l 1 1,1 ~1,1
Ck:m,k - Ck-m:k Ck:m,k-l(ﬁ« ) t—l k ::m,k-l-1<‘k:l 1
= O lm 110521000 Cclioy k-1 (G21) 02y
_ C1l+1,2 _ 142 (c -1 ALy
T Ykem,x V=1, k=1 Vk l &-l,k
Then
1,4 _ 1,3 A1 © y=1cls3
ck-m,k T Ykem,x Vg=m g k=1=2 5-1-2 a-l 2,k
YR=m,K K=m, k=1 \-l ﬁ—l k"~ &-m,d-l 2" K=l 2
1,1 -1 1 2 -1.1,1
* Gl m,k-l-a(”k-l-a) o2, (G2 G2
- l+1,3 ,3 (f‘1 ’.1)".1 Cl,1
= ”k-m k= {-m ke=l'"k=1 k=1,k
Similarly we have for Ci_ﬁ-i+1
yo=1+1 _ 1,1 _ BT 1,1 UL L+1, j-1
Ck-m )4 k=i, &k . o K= m,k-J ﬁ Jak
j=2
_ ~l,m=1 -1 1 1

K- m,k-l(c“ l) & l k

ck—m,s

1,n=1 - 1
= Cclm,k-1(G21) Glp ok

Thus we have that (A1-12) is true for i=m.
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Tk=l=2,i2



For i=1+1 we have according

1,2
Clia1,k

Because

olsl

Y=l=1,5 ~

we have

ols2

AL+,
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to(A1.5)

1,1 (

1,1,=1.1
k=l=1,k=1 "

1y=1.1,1
Celi) Gk

1,1

(F-1,1)-1 1,1
Keml=l,k=1""g=1

Cell,x






APPENDIX 2

To prove Theorem 2.3 we first need two lemmas. The first lemma
provides an explicit form of the projection along the range space onto
the null space of a specific matrix A, It also displays the three
equivalent conditions for a matrix to have semi-simple null structure.
This lemma is important because the results in [1] are based on the
eigenprojection of zero eigenvalues of the matrices Fi,O (see Section

2.2 for details).

Lemma 1

Let
Ay A

A= (a2.1)

0 0

where A;€ R, A, ¢ R, Suppose that [A; A;] has full rank. Then
the three statements

1. A; is nonsingular.

2. R(A) ® N(A) = RV,

3. A has SSNS,
are equivalent. Furthermore, if Ay is nonsingular, the projection along
R(A) onto N(A) is given by

-1

0 I
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Proof:
1=>2:

It is easy to see that
R(A) = {x| x=[z' 0]', z€RY}

If x €R(Aa), xx0, then

Ax = R =Mz X0
0 0 0
Thus
x§N@A) => N(A)NR(A) = &
and
N(a) @ R(A) = R"® follows by counting dimensions.
2=>1

If R(A)@N(A)=R"*™ but A, is singular, then there is some zX0 such

that Alz=0. ‘Let x=[z' 0]'. Then

Ax = 0 => x €N(4)
But because [A; A5] has full row rank, we can find a y such that

[A, Agly=z. Therefore
Ay = [z' O0]' =x
or Oxx € R(A)NN(A). This is a contradiction.
=>3 See reference [1], [16].
Nov} consider the similarity transformation
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Q_
0 I
-1
I -A, A
- 1 2
g7l =
0 I
We have that
-1. 1l -1
QAQ‘1=I AT A |[Ay Ay || I -ATA2

0 I 0 0 0 I

L.

[ -1
Ap By || T ARy Ay O

0 o0 0 I 0 0

—

Clearly the projection onto N(QAQ"l) along R(QAQ"l) is

b ]

Therefore

0 0
-1
Pn=0Q Q
0 0 I
[ -1, | -1

0 I 0 I

r — -
0 -AT'A,
Lo I

This lemma shows that if a matrix A has the form of (A2.1), A
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having SSNS is equivalent to A; being nonsingular. Furthermore, the
projection along R(A) onto N(A) is given by (A2.2). In other words, the
eigenprojection of A for the zero eigenvalue can be computed directly

and easily.

Lemma 2 computes matrices Fi,or i=0,¢e.,m.

Lemma 2
Define

Pi,O = PiPi"l"'PO (A2.3)

where P; is the projection along R(Fj o) onto N(Fj g). Then

izl -
~ 5y -s) 2 n=i+1
Qoao. Sl.l -Si1 eo o e "Sl1
R 1 nei+1
s ¢ =845 =Sjp  eeee =55p
I . (32.4)
i-2,0 . o _al -s! _al=1+1
A S B B B B A =
5 . 1 0
Pl T
6...0 O | -’ —

where the Si]"j are defined as before. Also
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- i1
1 21,1 ol A1, 11,1
?ooo? Si1bi’i Si1u-,i+1oo-osi1ci,n
N (S SN I IS R 11,1
A B UE U TR | A1
E E Di,J-1ui,iSi’ici’j+1....Di’j-‘lvi;l (A2.5)
s s 1,1 1,1 1,1
e Cili Cilge1eee Cin
. . 0
Proof:

Lét the Taylor expansion of A(c) be
A(c) = FOO"'éFOl"'CZFOZ"'"’

From the special form of A(c) we can observe that

All svcee Aln
FOO = 0 esoccose 0

0 eeosooe 0

[ BB B N N ] x

[ A N N N ] x

X X

X X
F. L1 = 3 A; ceeccve 3
i,i-1 = | 341 §i2 +cce- fin
0 0

ee oo 0

where x's represent some terms which may be non-zero.
Now suppose that (A2.4) is valid for i<k. We would like to prove
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that if is valid for i=k+l. From the special form of (A2.4), namely the
first i-1 columns are zero vectors, and the special form of Fk,o shown

in Coderch's thesis [1] we can observe that

F k-1,0 Pr_oPg—3eee .PoF 0, k—lPO cee 'Pk-3Pk-2

Pg-pPk-3+ <« -PgF0,k-1Pk-2Pk-3++++F0

Py-2,0F0,k-1Pk-2,0 (A2.6)

The other terms in Fk-l,o which are related to Fo,k-z' FO,k-3"“°
vanish because of the special forms of Pk—2,0 and Fo,i' i=k=2,k=3/ecce

Also Fk—l,o can be rewritten as

Fk-1,0 = Pk-2,0E0,k-1%%-2,0 (A2.6)

where

0 0 eeeee ©
R P
0 0 eceoes 0

Then using Eq.(A2.2) of Property 2 we have

:.x-'l
(Oues0 o 7
e 0
ST, A1, 1,1
freq,0°Fk=2,0t %k Ckoke1t+Ckon
3 ; 0
o o
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a1
1 1,1 ol 1,1 11,1
I e e e N R I S R R SR )
1T 1,1 ] 1,1 11,1
=S km1Cn k™SI ket G ier 1 o 078 1em1 G | (A2.7)

~1 41 1,1

TRak+1  **°° Yik,n

(Oeeevssccvcsvescosocen

Qeee O

~(Oeececcsncessssnsscsese
S
b

which proves (A2.5).

Next we prove that the projection Py_, which is the projection

along R(Fk-l,o) onto N(Fk-l,oj is of the form

r1:'“0 sty sl gl cl’l+]....s IR AP RN}
Peor = 0 ..‘ Si,k-1 s&,k-](c;§1>-1“;,1+1""s‘ k_;(ci§1)c;:;
0 LG A R N A
1.
_— .‘. . . 1
(A2-8)

It is easy to see that
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2
P17 = Py

Therefore P,_; is a projection. Also it is easy to check that

Pk-1Fk-1,0 = 0
Then if we can prove that
xéN(Fk_l’o) => Pr_1X=X
we are done. Suppose
Fx—1,0% = 0/ X' = (XgeeeaeXp)y
Wetwwe
E: Ck,llﬂxk;i =0
Tmallet
Y = Pggx = [y eeeoyy'l”

We have for i<k-1l

n-k 1,1
Y= [2: (C“&r Q—
n-k
= 4t k:l.(C )1201’1
R “(O

Because of (A2.9),
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k,k+j K+

(A2.9)



Yi = xi, iS,k—l
For i=k

v, = -(QTJ)-TH...,:R 1,1
0 kl = G e 3%t 5 (A2.10)

Left multiplying (C%"ﬂ')-l on both sides of (A2.9) and adding the
resulting equation to (A2.10) we have

Yk = X
It is straightforward then to see that
Yl = xi, no>i>k+l

Therefore we have proved that if x ‘N(Fk_l'o) then Py_jx=x. This proves
that the Py_; geven in (A2.8) is the projection along R(Fk-l,o) onto

N(Fg-1,0) -

Then using (A2.4),(A2.8) and property 3, Eq.(A2.7)

212



n

%=1,0 = “k=17%-2,0

By definition (Al.6) and Property 3, (A2.7)

2 T ¢l Al
S, +sl::|. K,") "‘f’{+1

BTSN PR By ﬂu141k-~11411
= =(C {') “i,k +(G cle ) Cl 5 Cr ) ,5+1

1,1) -1.2,k=1=1 1,k=i 1,1

_ i, 1,1
= ={C Ci k4] i (Cr )T Cx ka1

=1 kel o
= -(C] ") Cilkel = ~Sk+1,1

Then we have
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P 2, 1,1y=141,1 n=ki+l, o1 [ A1,1y=1,1
Qeeed =5y #5iq (Gt )7 Samrt oSy S (G007 G
Pl A, 1=141,1 ROV B U I TR
- =S,175a (G Sl TSk, S (Sl
' . . .

: . . .

: 1'-1 ol | RUCTURIE
: . <C1 "'&+1ooooo-ooo-oo—(bkj‘; )‘Jl::n
T 1.,

i e
o 0 "1




. 1 n-l
?"'? 41,1 =S141,1
2 : :
X 1 ,O S E -Dl"'+1 ,k.f..-‘s}i‘i'“ ’:.‘i
I BT ‘
O...O ..1
- ps

Comparing (A2.11) and (A2.4) we see that (A2.4) is true for i=k+l. For

A11A12...A1n.

j
O
«©

1}

N\,

Qeeee O

Using Lemma 1, we see that Ay must be nonsingular. Under this

assumption and (A2.1), (Al.l)
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. -1 -1, Y 1 2 _en=1)
O = By ApeeeemBqqhyg] 10 =Spq =55qe.e So
Fo,0 = Fo =f:  T-, ot o
LO .'.1 ~ . "ol
-~ kv

which is of the form of (A2.4).

So far we have obtained the explicit expression for Fi-l,o'
i=1,...,n. Based on this result we are able to derive the time scale
decomposition. That is; we can compute

expf r'lz:ll Fioet} (32.12)
k=0
as the approximation to exp{A(e)t}. In order to prove Theorem 2.3 we

need only diagonalize (A2.12).

Proof of Theorem 2.3:
From the special form of Fi-l,o of (A2.5) and 71 as defined in

Theorem 2.3, we see that the j-th column of Fi—l,O (i2i) is nothing more
than the i~-th column of 1 multiplied on the right by Ck,j° Because
any row of T except the i-th row times i-th column of T~1 must be zero

and the i-th row of T times i-th column of 1 is 1, we have
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.
!

0...0 0

Pl 0

- -1_ . : ',-.1,1 e
G1=TFioq0,0T =[1 g Caf eeeeeed
. Do 0

-O...O o

The only row of G; which can be non-zero is the i-th row.

easy to see that

(Gi)j5 = ¢

and (Gi)ij = 0, j<i.

Now consider (G)ij, j>i. It can be seen that

+;.0‘+C! ’1

(G )., = cl2lgl iclsl o
Jyi+1 i,3=1

1743 T Y41 Pigtte) 5e

= -clad-1

. ,-11,1- 1,1 1 1 "'1 1

1’1
O....O.ci-|1

o1
-1 J=1,]

N——— ~—

0132

-...-C

151 A1,10=1.1, j=i=1
1,101 (800007 G255
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Gi = diag{O,...,O,Rii,oy....,O}

Therefore we have
= |
'I‘exp{kzo Fk0€ t}T—

n-1
exp{ EO TFkoT'lekt}
k=

- n-1 K
exp{ ) Gje"t}
k=0

exp{diag [All’ eosecey en'grln] t}
But we know that
n-1

lim sup |lexp{A(e)t} - exp{ ZFkoekt}ll =0 (A2.14)
e->0 t>0 k=0

Combining (A2.13) and (A2.14) we have
lim sup |lexp{A(e)t} - ‘I"lexp{diag[All,...,enlinn]t}Tl [=0
e=>0 £>0

which is Theorem 2.3.
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APPENDIX 3

In this appendix we describe some basic properties of permutation

matrix.

Lemma 1 If T is a permutation matrix and A is a matrix, then
1. TaT! is a symmetric permutation on A.

2. If TAQ is a symmetric permutation on A then T=Q~1.

Proof:
l. T can be expressed as product of finite number of 2 cycles.
Suppose T=tj*t,*....*t;. Then it is easy to see that T'1=tm*tm_

1¥eee*to*ty and Tl is a symmetric permutation on A,

2, Since TQ=TIQ=I by definition of symmetric permutation, =071,

Lemma 2:
Any permutation matrix can be brought to BDC form by similarity

transformation

TAIFl = diag{ClIC2I°°"Cn}
where T is a permutation matrix and TAT™ lisa symmetric permutation on

A,

Proof:

We already showed that a permutation can be represented by its
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cycles and this representation is unique.

The idea behind this proof is similar to that of bringing a matrix
into its Jordan form where a new basis which span invariant subspaces is
chosen. A linear transformation T serves as the basis transform. In

the new basis, the matrix will have block diagonal form.
A = TAT-]' = diag{Jl'.n'o'Jn}
where J; are Jordan blocks.

Similarly, here a simple reordering (a permutation) will do. For

example, suppose A has only one cycle.
0p = (x3,%1,%y) (of 0p=(3,1,2) for simplicity)

Here 0p is not a circulant permutation. But it is easy to see that if
we switch X3 and Xy, then in the new coordinate system 0p will be a

circulant permutation. Namely, if

E=TAT 1
1 00 0 0 1 1 00 o 1 0
=lo o 1f{1 0 o0 0 01]l=]0 01
010 010 010 1 00

then 0x=(2,1,3) is a circulant permutation.

In general if T is a permutation matrix which permutes x; and X4
and A=TAT™! then it is easy to check that Ox will be the same as 0p

except x; and %4 have switched positions. We also know that by finite
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number, say m, of switches of two entries, we can "sort" an arbitrary n
entry array in the canonical form. Suppose product of permutation -
matrices is still a permutation matrix, we proved the lemma if there is

only one cycle.

If there are several cycles, one can first regroup the entries and

then use the same schema as for single cycle.
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