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ABSTRACT

A systematic approach to failure detection using the Multiple
Model (MM) algorithm was applied to Automated Guideway Transit (AGT)
vehicles, and the ability of an AGT vehicle to adapt to failures was
examined using the MM algorithm as a basis for a fault tolerant control-
ler. This was done to determine how the safety and reliability of AGT
systems could be improved through detecting and adapting to failures.

Factors influencing the performance of the algorithm such as
model selection, robustness, and sensor configuration were examined.
The results indicate that failures could be quickly detected and
accurately identified using MM. No false alarms occurred even though
the models neglected wind and grade and very simply approximated vehicle
dynamics.

Under a certain set of communication requirements the fault
tolerant controller performed very well. Ways in which these require-
ments could be relaxed were examined but resulted in degraded performance.
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1. Introduction

For Automated Guideway Transit (AGT) to be a viable form of public
transportation it must be safe and reliable. Fault tolerant control
systems can help maintain high levels of safety and reliability by de-
tecting and adapting to failures in the vehicle and its subsystems. In
this thesis, failure detection and adaptation algorithms have been ex-
amined for the longitudinal control of AGT vehicles to determine the
safety and reliability they provide. The algorithms that have been ex-
amined are based on the Multiple Model (MM) technique and have their
roots in modern filtering and estimation theory. They are used in developing
a systematic approach to failure detection software. These algorithms
have been implemented and their performance evaluated by incorporating

them in simulated AGT vehicles on a large digital computer.

1.1 Background

Safety for the longitudinal control of guideway transit systems is
primarily a matter of insuring that vehicles stay within service Timits
on speed, acceleration and jerk and preventing collisions by keeping
vehicles separated. Of these, vehicle separation is the most critical
safety factor. Inter-vehicle separation, or headway (measured in units
of time or distance) has traditionally been maintained using block control.
The guideway is divided into sections called blocks and vehicles are
allowed to enter only unoccupied blocks:; if the next block is occupied
the vehicle is commanded to stop. The vehicle must be able to stop
before entering the next block so vehicle stopping distance limits the
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minimum block size which in turn limits the minimum headway. For head-
ways less than 20 to 30 seconds block control becomes unwieldy, necessitating
other control strategies [1].

An alternative to block control which can provide for shorter head-
ways is vehicle follower control, and it is this control strategy that
has been used in the research. A vehicle's desired velocity is determined
to maintain a given headway using information about the vehicle's motion
and the motion of its neighbors. The headway could be specified as a
constant time headway, a constant distance headway, or a constant safety
factor headway (where the distance between vehicles is proportional to the
trailing vehicle's stopping distance). It has been shown that vehicle
follower strategies can provide stable control for closely packed strings
of vehicles and a variety of control laws have been designed [2-11]. The
control Taw used in this research is described in Section 3.1.

The information provided to the controller by the sensors is an
important factor influencing the safety of the system. If a sensor
erroneously indicates a large headway between vehicles, the trailing ve-
hicle could collide with the preceding vehicle in attempting to shorten
the headway. The conventional approach to this problem would be throuah
the use of redundant sensors. The outputs of two sensors could be com-
pared and if they differed significantly a failure would be indicated.

By using three sensors the faulty sensor could be identified and operation
could continue using the two unfailed sensors. The replication of hardware

can be avoided by using analytic redundancy which employs mathematical

relationships to compare the outputs of different sensors. Even if sensors



are triplicated analytic redundancy can benefit the system by still being
able to identify which of a pair of sensors has failed if the third has
already failed. Unlike triplicated sensors, analytic redundancy can also
detect generic sensor failures such as when a temperature change similarly
affects all sensors of a physically redundant set. A simple example of
analytic redundancy would be to integrate the output of a speedometer to
serve as a check on the odometer. Mathematical techniques can also be
applied to detect failures in components other than sensors. For example,
knowing the input to the propulsion system, a model can be used to com-
pute what the output should be. If the computed output differs signi-
ficantly from the actual output one can often infer that a failure has
occurred.

Even though a host of mathematical techniques have been developed
for failure detection (see[12] for a survey) only one has previously been
applied to AGT. VanderVelde [13] used the failure detection filter
developed by Beard [14] and Jones [15]. The detection filter compares
the output of a Tinear model of the system with the measured output of
the system to obtain an error vector, eq (see Figure 1.1-1). If the

system is described by the equations

<
—
+
N
I

Ax(t) + Bu(t)

N
—
t
~
]

Cx(t)

where x(t) is the state vector, u(t) the control vector and z(t) the
measurement vector, then the failure detection filter is given by the

equations

10



A

weabeLq ¥00|g 432 L4 UOLFIB}S(Q B4n|Le

1-1°1 a4nbL4

104114 01190420

(1)Z

_ﬁllllllllllIllllllllll.lll.mm_ﬂdml.mﬂm.J_
_ | I

| > Vv |

l |
_ b

_

“ \ i _

+

o | — apf fe—{ g | _

| () K / ] _

| + |
e ORI CURTEE NP SO ol
— 12 a .

(4) %
. 13]1044U0)

g T 5 |jopow wasks

i o ® ul papnjoul
5 ® T “ — “i|9poy iDBulT [ — 210 solwoukq [

SYOSN3S (Hx WILSAS (o SYOLYNLOY

() n

11



y(t) = Ay(t) + Bu(t) + Dey(t)

eq(t) = z(t) - Cy(t)

The feedback gain matrix, D, is constructed so that in normal unfailed
operation the filter will track the system and the error vector will remain
small; but when a failure occurs the error vector will increase in a
direction corresponding to the given failure. For example, assume the
error vector has two components and that the direction associated with an

T

actuator failure is (1 0)" and the direction associated with a sensor

failure is (0 1)T (superscript T denotes transpose). If the actuator
fails the error vector will have a large magnitude and be in the (1 0)T
direction, i.e., it will have a large first component. A sensor failure
would result in an error vector with a large second component. Other
failures could be indicated by other directions, but because it is easier
to monitor individual components than arbitrary directions additional
failure detection filters could be used.

One important feature of the failure detection filter is that its
design requires little information about failure modes or how a component
fails. The actuator in the example could fail by changing its gain,
developing a bias or failing full on but it is immaterial to the failure
detection filter. The actuator in the example could fail by changing its
gain, developing a bias or failing full on, but all these failures are
characterized by an increased magnitude in one component of the error

vector. This allows the failure detection filter to use a less detailed

model but also prevents it from extracting much information about the

12



failure. The Multiple Model method uses a more detailed characterization
of the failure which allows it to extract more information about the
failure, but this could also make it less robust than the failure detec-
tion filter. The robustness of the Multiple Model method is examined in
Section 4.3.

Information about the failure that could be supplied by the Multiple
Model method can help the system in taking corrective action when a failure
has been detected. For example, by knowing the gain change of an actuator
the input to that actuator could be appropriately scaled to permit con-
tinued although possibly degraded operation. The Multiple Model method
provides another advantage over the detection filter in that it constantly
generates optimal estimates of the system's state. In the event of a
sensor failure these estimates could be used to provide information
needed by the controller. The Multiple Model method is more fully ex-

plained in the next chapter.

1.2 Thesis Qverview

The research conducted for this thesis is presented in the next four
chapters. In Chapter 2 the Multiple Model algorithm is described. The
nonlinear model used to simulate the AGT vehicle is discussed in the first
half of Chapter 3. The simulated vehicle was used to generate data for
testing the algorithm similar to data that would have come from an actual
AGT vehicle. Much simpler Tinear models were used to describe the AGT
vehicle in the failure detection algorithm. The various models used in
the algorithm are discussed in the second half of Chapter 3. These
simpler models attempt to describe only the aspects of the vehicle

13



necessary for failure detection, and thus avoid degrading failure detec-
tion performance by using complex models subject to parameter uncertainty.

The ability of these various models to detect failures and other
factors influencing the performance of the algorithm are discussed in
Chapter 4. Specifically, the effects of noise parameters used in the
algorithm, the robustness of the algorithm, and redundant sensor config-
urations were examined. It was found that the algorithm could quickly
detect and accurately identify failures with no false alarms when the
noise parameters were properly selected. It was shown how to determine
when redundant sensors would yield the most benefit and that the algorithm
was fairly robust.

The performance of the MM algorithm in detecting failures and in
a simple fault tolerant control strategy is examined in Chapter 5. Under
one plausible set of conditions excellent control results were obtained.
Other sets of conditions were examined under which the control strategy
was not as effective.

Chapter 6 summarizes the results of this thesis and presents sug-

gestions for further research.
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2. The Multiple Model Method

In the Multiple Model (MM) method failure detection is formulated as
a problem of determining which of several linear models most accurately
describes the system [16-20]. Each model is based on a different hypo-
thesis about the condition of the system--whether it is unfailed or has
suffered a failure of some sort. The basic form of the models in contin-

uous time is

Ax(t) + Bu(t) + w(t)

x(t)

—
p—
~——

z(t) = Cx(t) + z(t)

where x(t) is the state vector, u(t) the control vector, z(t) the observa-
tion vector, w(t) and z(t) zero mean white Gaussian noise vectors of co-
variance Q and R respectively. Table 2-1 cives a set of models (neglecting
noise) illustrating various failures that can be hypothesized for a simple
vehicle model. Vehicle models will be discussed later in more detail.

More complex vehicle models could also allow changes in the dynamics with
different A matrices.

The MM algorithm generates a set of maximally informative statis-
tics on which to base decisions about which model corresponds to the
actual system. For each model, the MM algorithm computes the probability
of that model matching the system given observations up to the current
time.

The computation of the probabilities relies heavily upon modern esti-
mation theory and the Kalman filter; because the algorithm wiil be imple-

mented on a digital computer, the discrete-time Ka'man filter is used.
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Table 2-1 Typical Failure Models Used in MM

Hypothesis 0: Unfailed Vehicle
3(t)

0 1]s(t) 0~
) E + f(t)
_v(t)} [0 O‘Jv(t)} L/MJ

—

sm(t)} {? 015(t)}
vty o vt

m

Hypothesis 1: Actuator Amplifier Changes Gain to k
s(t) 0 1]s(t) 0
o | 2 + | |R()
v(t) 0 0fv(t) k/M
(observation equation unchanged from HO)
Hypothesis 2: Actuator Bias, DC Offset of b
3(t) 0 1]s(t) (o 0
R £ E(e)
s Lo ofve)]  Lam b
(observation equatior unchanged from Ho)
Hypothesis 3: Speedometer Fails to Zero
sm(t) _ 1 0ls(t)
vm(t)J 0 0jv(t)

(dynamics equation unchanged from HO)
Hypothesis 4: Speedometer Sticks at Velocity V
s (t) 1 0]s(t) 0

m - +
vm(t) 0 0]v(t) Vv

(dynamics equation unchanged from HO)

s(t) distance traveled

v(t) velocity

f(t) force applied to vehicle
M mass of vehicle

subscript m denotes measured quantity
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The structure of the MM algorithm is illustrated in Figure 2-1. Each

Kalman filter in Figure 2-1 is of the form

R(klk) = %(k|k-1) + Hr(k)
x(k+11k) = AR(k|k) + Bu(k) (2)
r(k) = z(k) - Cx(k|k-1)

where H is the Kalman gain, r(k) the residual vector and X(k+1|k) the
optimal estimate of the state at time k+1 given measurements through

time k. The matrices H, A, B, and C for the itb hypothesis (Hi) are
those consistent with the model corresponding to Hi' If the itb hypo-
thesis is the correct one, the residuals produced by the model corres-
ponding to Hi will be a zero mean white Gaussian process with probability
density

p;(K) = p(r.(K)|H,) = [(2m)"det(z;)] %expl-4r] (k)] v, ()] (3)

where Zi is the precomputable covariance for the steady state Kalman
filter based on Hi‘ Essentially, pi(k) is a measure of the probability
of the residual produced by model i assuming model i is correct. Using
these pi(k) and Bayes' rule the probability of the system matching model i
can be recursively computed according to the equation [20]

pi(k-l)pi(k)
p;(k) = — (4)

jZle(k‘l)pj(k)

There is an assumption implicit in the above equations that causes
a minor difficulty in the implementation of MM. This assumption is that

17
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the system does not change and is always described by the same model. For
example, if the set of models in Table 2-1 were used and the past sequence

of pi(k) indicated H, was correct, P0 would approach unity and all other

0
P. would approach zero. If a failure then occurred equation (4) indicates
that PO would remain unity and the other Pi would remain zero. This can
easily be prevented by setting a Tower 1imit on the Pi so that they can-
not approach zero. Another problem is the degradation of the state esti-
mates. For example, while the system is unfailed the state estimate for
the model based on a biased actuator (H2 in Table 2-1) will diverge from
the true state. If a bias did develop the residuals for H2 would remain
large because of the error in H2's state estimate, and these large resi-
duals would keep P2 small. This problem can be solved by setting the
state estimates of exceedingly improbable models to the estimate of the
most probable model.

These problems have not proven to be serious difficulties in pre-
vious applications of MM [16-20]. It has been successfully used to detect
freeway incidents [16] and abnormalities in electrocardiograms [17] and
was used with moderate success as an adaptive controller for the F-8

aircraft [18,19].

2.1 Multiple Model and Control

The Pi(k) computed by the MM algorithm provide information about the
system but the issue of how to use this information to determine a proper
control for the system remains and has been the subject of previous in-
vestigations [20]. Two different ways of using these probabilities are
illustrated in Figures 2.1-1 and 2.1-2. In Figure 2.1-1 the probabilities

19



are used in conjunction with a decision rule that decides which model
corresponds to the system. The control designed for that model is then
used to drive the system. In Figure 2.1-2 the probabilities are used

to weight the various controls which are then added to produce the control
for the system. The latter method avoids the need for a decision rule
but can exhibit stability problems as shown in one of its previous appli-

cations [19].

20
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3. AGT Vehicle Models

In our research, AGT vehicles were simulated on a digital computer
to produce sensor outputs similar to those of a real vehicle going through
various maneuvers and developing various failures. The simulated vehicle's
sensor outputs were used in place of those of a real vehicle in the failure
detection algorithm. The sensor outputs were processed by the MM al-
gorithm to demonstrate the various issues involved in failure detection.
Different sets of models were employed in the MM algorithm approximating
the vehicle at various levels of complexity and using various sensor
configurations to determine their relative merits. The failure detection
models are not as complex as the simulation model because they attempt
to capture only the significant characteristics of the vehicle whereas
the simulation model attempts to duplicate a real vehicle at a reasonable

level of complexity.

3.1 Simulation Models

A wheeled vehicle driven by a DC electric motor was simulated to
produce the sensor outputs used as input to the failure detection al-
gorithm. A block diagram for this type of vehicle developed by Pitts [21]
is given in Figure 3.1-1, and typical parameter values for two vehicles
are given in Table 3.1-1. In addition to the electric motor this model
includes a force due to grade and a nonlinear aerodynamic drag force.
Linearizing this model and transforming it to obtain position, s, velo-
city, v, and acceleration, a, as state variables results in the equivalent
linear model of Figure 3.1-2. The constants CO’ C1 and Km depend on the
model parameters and the nominal velocity about which the model was

23
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Symbol

Parameter (units)

motor torque constant (nE;m)

V-5
motor back emf constant (?33)

armature resistance (ohm)

armature inductance (henry)

wheel radius (m)

gear ratio (dimensionless)

vehicle mass (kg)
empty
mean
full

total rotational inertia (kg-mz)

(motor inertia + reflected inertia)

vehicle frontal area (mz)

drag coefficient (dimensionless)

density of air (5%)
m

26

Table 3.1-1 Typical Vehicle Model Parameter Values

Vehicle A

1.18

1.26

.0415

.0011

i35

2120
2500
2880

16.23
19.14

22.05

3.4

0.7

1.22

Vehicle B

.827

.88

.0203

.00052

+35

3.82

663
979
1295

6.03
8.68

11.33

3.4

0.7

1.22



linearized. Simulations were conducted with both 1inear and nonlinear
models, and except in isolated cases to be discussed shortly there were
negligible differences in the simulated behavior.

Two different controllers were used to produce a voltage when given
a velocity command. Initially the proportional-integral (PI) controller
of Pue [22] as illustrated in Figure 3.1-3 was used to control the vehicle
described by Column A in Table 3.1-1. The values of k, and k

1 2
produced a large bandwidth system in which the measured velocity, Vs

from [22]

closely tracked the commanded velocity, Veo and was relatively unaffected
by grade and wind disturbances. However, when velocity sensor failures
were simulated, the abrupt change in Ve produced unreasonably large jerks
and accelerations violating motor power constraints given in [23]. By
limiting voltage and current in the nonlinear simulator, acceleration

was prevented from becoming extremely large and power constraints were
not violated, but jerk was still excessive.

The modified form of Chiu, Stupp and Brown's linear-quadratic (LQ)
controller [24] used by Draper [25] did not exhibit the same characteris-
tics as the PI controller. The LQ controller is illustrated in Figure 3.1-4
using Draper's notation for the gains. The vehicle described in Column B
of Table 3.1-1 using the LQ controller has a much narrower bandwidth than
that of the vehicle using the PI controller. Because of its narrower
bandwidth it does not respond as violently to speedometer failures but
it also responds more slowly in correcting disturbances due to wind and
grade. The effects of these two different controllers on failure detection

will be discussed later.
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In single vehicle simulations velocity commands were generated
by doubly integrating a jerk command. In multiple vehicle simulations
velocity commands were generated for tracking vehicles using Draper's
safe approach controller [25]. This controller computes a minimum safe

spacing according to the eguation
s = C wz-v% + Ch(Vy=Vy) + Cavy + C
ni R ol N | 3°2 4

a simplified form of the kinematic constraints developed by Pue riij.
The preceding vehicle's velocity is Vi the trailing vehicle's velocity
is Vs and Cys Cps C3 and Cy are constants. Velocity commands are generated

to keep the trailing vehicle on the safe approach curve by using a lin-

earization of the curve about the point (VZ’Smin(V9))’
oy AS"ASmin(VZ)
c 2 aAsmin
8v2 ,
2

The block diagram of this controller is given in Figure 3.1-5. Modifi-
cations to this controller in the event of a failure are discussed in

Chapter 6.

3.2 Failure Detection Models

A variety of simple models are used in the research to approximate
the vehicle in the failure detection algorithm. These models attempt to
characterize the sianificant aspects of the real vehicle in various ways.

The models examined are not intended to provide a comprehensive list but
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rather to illustrate the advantages and disadvantages of various types
of models. Continuous time models are given here but their discrete time
equivalents are used in the research.

The simplest class of models is that based on the kinematic rela-
tionships between position, s(t), velocity, v(t), and acceleration, a(t).
Assuming that the commanded acceleration, ac(t), is equal to the true

acceleration, the vehicle can be modeled as
r(t)} [0 1}5(1;)} ﬁ

= + a (t)
v(t) 0 0jv(t) 1] ©
[%m(t) 1 0]s(t)
vm(t)] 0 l]v(t)}

KC2--Kinematic Command driven model 2 state

.

where the subscript m denotes measured quantities. This model allows
position and velocity sensor failures to be modeled. In our research
position sensor biases and velocity sensor gain changes are modeled.

For position sensor biases the measurement equation takes the form
sm(t) _ 1 0 s(t)] , ]
v (t) 0 1jv(t)] 0l

where b is the magnitude of the bias. For a velocity sensor which changes

its gain to k the measurement equation becomes

Sy(t) 1 0]s(t)
v (t)] [o k]v(t)]
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but because the velocity sensor is in a feedback Toop it affects the
relationship between commanded and true acceleration and therefore the

B matrix. Measured velocity tracks commanded velocity, i.e.,

vc(t) = vm(t)
but if vm(t) = kv(t)
then vc(t) = kv(t)
or W(t) = ¢ a(t)

so that the state equation becomes

s(t) 0 1]s(t) 0

ol "o oo * [0

v(t) 0 0fv(t) T

The MM algorithm when using this model detects failures by detecting

discrepancies between commanded and measured vehicle behavior so that it
is possible to detect controller failures or that controller failures
cause sensor failure models to be indicated when this model is used. For
example, suppose that the controller developed a bias so that the applied
voltage is Targer than it should be. The bias would cause the vehicle's
velocity to increase even though there were no commanded acceleration.
The measured velocity would be larger than the velocity computed by
integrating the acceleration command and this discrepancy could be attri-
buted to a velocity sensor failure if there were no other model that could

account for the discrepancy.

However, failures are not the only cause of discrepancies between
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commanded and actual behavior. Discrepancies also occur because of
plant dynamics that are not included in this model and because of dis-
turbances such as wind and grade.

One way to avoid these discrepancies is to use measured acceleration
instead of commanded acceleration as the driving term. The model is iden-

tical in form to the previous model,
s(t) 1s(t) 0
. = + | |a (t)
o) "o ool * L
sm(t) 1 0]s(t)
vm(t)} ) [o Jv(t)

KS2--Kinematic Sensor driven model 2 state

This model uses no command information making it independent of the rela-
tionship between commanded and actual behavior. For this reason it also
does not reflect possible controller failures. Sensor biases and gain
changes are modeled straightforwardly.

A simpler sensor driven model that does not require an accelerometer

is

s(t) = [0]s(t) + [1lv(t)
(t) = [1]s(t)

KS1--Kinematic Sensor driven model 1 state

>m

Another more complicated model used in our research that avoids
assuming that commanded acceleration equals true acceleration is based

on Figure 3.1-2:
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v(t) =10 0 1 |v(t)| + |0 IE(t)
a(t) 0 -Cy -Cqla(t) Ky

'Em(t) 1 0 O0]s(t)
_vm(t):| ) L 1 O]V(t)

a(t)

P3--Parameterized model 3 state

which uses plant parameters to explicitly model the dynamics. This model
is used in our research as a basis for modeling power conditioning unit
failures in addition to sensor failures. There is a drawback to this model
in that it is subject to modeling errors. The values of CO, C1 and KM
cannot be known exactly but only approximated. The validity of this

approximation is examined later in Chapter 4.
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4, Failure Detection Performance

Failure detection performance was examined by using the MM algorithm
to process sensor outputs generated by a simulated vehicle. The first two
sections attempt to determine how the various parameters in the algorithm
affect the performance. The first section examines the effects of varying
the modeled noise covariance matrices; in the second section various pos-
sibilities for the A, B and C matrices used to parameterize the failures
are examined. How well the algorithm can detect failures that are not
explicitly modeled is investigated in Section 3. In the fourth section
the addition of redundant sensors and how they improve failure detection
is discussed. After examining the algorithm and how it can be applied to
a single vehicle, the application of the algorithm to pairs of vehicles
moving in tandem is explored in Chapter 5.

Several basic scenarios are used throughout the rest of the thesis to
examine the properties of the algorithm. These scenarios are described in

Table 4-1.

4.1 Modeled Noise Covariance Selection

The modeled plant noise covariance, Q, and the modeled sensor noise
covariance, R, are important parameters in the failure detection algorithm
because of the influence they have in determining the residual covariance,
£, and the Kalman gain, H. So that the significance of Q and R can be better
understood, the roles that the residual covariance and the Kalman gain

play in the algorithm and how they are affected by the modeled noise
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Table 4-1 Scenario Descriptions

Scenario Description*
o

4 5Tjerk (m/sec
‘3

>t (sec)

maneuver _1.51_ 1 2

commanded velocity increases from 15 to 18 m/sec
(34 to 40 mi/hr)

at t=1 sec grade starts increasing linearly until
a grade of 10% is reached at t=2 sec

grade maximum force due to grade:

2450 nt for vehicle A

960 nt for vehicle B

at t=1 sec wind velocity starts increasing linearly
until a wind velocity of 18 m/sec (40 mi/hr) is
wind reached at t=1.5 sec
maximum force due to wind:
1250 nt for both vehicles

at t=1 sec measured position becomes 1 m larger
+1 m odometer than true position
bias

at t=1 sec measured velocity becomes 10% smaller

-9 speedometer than true velocity

gain

measured acceleration is 10% smaller than true accel-

.9 accelerometer * :
elero eration as the vehicle goes through a maneuver

gain

at t=1 sec voltage applied to motor becomes 10%
1.1 PCV gain larger than commanded voltage

I

*all scenarios begin with the vehicle traveling at a constant 15 m/sec (34 mi/hr)
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covariances will be discussed before the results are presented.

Multiple Model is based on using the residuals, the differences
between predicted and actual measurements, to detect failures. The
residual covariance indicates how close to zero the residuals are expected
to be; the smaller the covariance the more closely the predictions and
measurements are expected to agree. If the various models accurately
predict the various possible states of the system and the measurements
accurately reflect the true state of the system then failures can be quickly
detected. Inaccuracies in either predictions or measurements must be
accounted for with a larger modeled plant or sensor noise covariance re-
sulting in a larger residual covariance and slower detection of failures.

Two equations from Kalman filter theory show how 0 and R affect the

residual covariance.

L = cech + R (1)

0, = poAT + Q (2)

where @p is the predicted state error covariance and © is the updated
state error covariance. The first term on the right hand side of equation
(1) is due to prediction error; the second term is due to sensor noise.
Equation (2) shows how the predicted state error covariance is due to
plant noise and uncertainty in the state on which the nprediction is based.
Comparisons of R and £ are used later to determine the primary influences
on residuals as modeled by the algorithm.

Although the effects that the Kalman gain has upon failure detection
are not as clearly demonstrated by the results of this section as the

effects of &, it is still an important parameter in the algorithm. The
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Kalman gain, H, is selected to produce optimal state estimates by pro-
perly weighting the information about the true state of the system con-
tained in the predictions and in the measurements. The bandwidth of the
filter is indicative of how these two sources are weighted. A small
bandwidth filter will base estimates primarily on the predictions because
the measurements are considered relatively inaccurate. A large bandwidth
filter will base estimates primarily on the measurements. Figure 4.1-1
illustrates how a small and a large bandwidth filter would respond if the
velocity measurements suddenly indicated an increase in velocity when

the model indicated a constant velocity. The large bandwidth filter tracks
the measurements more quickly than the small bandwidth filter. The effects

of bandwidth on failure detection are discussed later.

Effects of varying Q and R

The effects of varying Q and R were examined using the two state

kinematic control driven model, KC2, as a basis for the following set of

models:
1. unfailed
2. position sensor bias of -1 m
3. position sensor bias of +1 m
4. velocity sensor gain of .9
5. velocity sensor gain of 1.1

The MM algorithm needs explicit specifications of failure modes for each
instrument and we have chosen representative failure modes. It is of
course possible that the actual mode of failure of an instrument may dif-
fer from our model. For example, a velocity sensor might experience a

gain change to .8 rather than .9, or it might get stuck at some value.
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Figure 4.1-1 Estimates Tracking Measurements
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Previous experience in other failure detection problems has indicated that
MM is reasonably robust to such discrepancies since a real velocity sen-
sor failure will generally look more like a velocity bias failure to .9
than like a position bias failure. We will give some examples of this
robustness later in this chapter.

Five sets of models with different plant and noise covariances were

used. The nominal value for plant covariance used was

0 0 /%1070 Y1074
Qc = Qd - -4 -1
0 1 Y2x10 10
where QC is the continuous plant covariance and Qd-is the equivalent
discrete time plant covariance used in the digital implementation on the
computer. The standard deviations of the position sensor noise and ve-

locity sensor noise were assumed to be %3mand 0.1 m/sec respectively,

yielding a sensor noise covariance of

25 0
R:
0 .01
which is the same for both continuous and discrete time. Other sets were
obtained by reducing and increasing the sensor noise covariance by a fac-
tor of 10 and by similarly reducing and increasing the plant noise co-
variance.

These sets were used on the odometer and speedometer failure scenarios

and the maneuver and grade scenarios. All scenarios were based on vehicle A
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using the PI controller.* The failure scenarios were used to determine
how quickly the various sets of models detect the failures. The maneuver
and grade scenarios were used to study the effects of discrepancies
between predicted and measured vehicle behavior due to modeling ap-
proximations. Sensor noise was not added in any of these scenarios so

as not to obscure the issue being examined with random effects. Thus we
were primarily interested in these initial tests in determining the
effect on MM response time of different assumed noise statistics. The
effects of sensor noise present in the simulation are examined separately
later in this section.

Results are summarized in Table 4.1-1. The grade scenario is not
listed because the grade caused practically no discrepancy between com-
manded and actual behavior; the PI controller quickly compensated for the
grade because of its large bandwidth. The maneuver also had no adverse
effects on the failure detection algorithm. It was adequately compensated
for even with the reduced plant covariance. Because it had no adverse
effects the time it took for the probabilities of the failure models

to reach the minimum probability of 1.0x10"7

from their initial proba-
bility of .05 is given. Time is measured in the table by the number of
discrete time steps. Throughout this thesis a discrete time step of 0.1
sec is used. For the failures, the number of discrete time steps given
in the table are measured from the onset of the failure. When tested on
failures, probabilities for the failure models were initialized to pmin
*The parameters which characterize vehicle A are given in Table 3.1-1.

The PI controller is discussed in Section 3.1 and a block diagram is
given in Figure 3.1-3.
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Table 4.1-1

Effects of Q and R on Failure Detection

Scenario

Model Set | | Maneuver ____ Position Bias +1  Velocity Gain .9

P (odometer failures)*

reach min in 9 steps detected in 10 steps | detected in

’ 7 steps
' P (speedometer gain .9) :

nominal i o (20 failure)

reaches min in 6 steps (156 failure)

P (speedometer gain 1.1)

reaches min in 8 steps

P (odometer failures)

reach min in 1 step immediate detection detected in
:Z::gid P (speedometer gain .9) 3 steps
covariance reaches min 1n 1 step (6c failure) (450 failure)

P (speedometer gain 1.1)

reach min in 4 steps

P (odometer failures) P (position bias +1) | detected in
freraased decrease to approx. increases to approx. 20 steps
SEREDT .001 after 50 steps 1.7x10"% in 20 steps
covariance | P (speedometer failures) 2 . .

reach min: Sn ADDEOK. (¥,0 failure) (50 failure)

17 steps

P (odometer failures)
reduced reach min in 8 steps detected in 10 steps 1mmedi§te
gligﬁiance P (speedometer failures) detection

reach min in 1 step (20 failure) (150 failure)
; P (odometer failures) P (position bias +1) | detected in
;qg;iased reach min in 13 steps increases to 10 steps
covariance | P (speedometer failures) -27 in 20 steps

reach min in 10 steps

(20 failure)

(150 failure)

*P (odometer failures) means the probability of the odometer failure models
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so that at the time of the failure the failure models would have a correct
state estimate. Failures are considered detected when the corresponding
model has the maximum probability. Ratios of failure magnitude to sensor
noise standard deviation are given in parentheses.

These results will be explained with the aid of Table 4.1-2 which
gives the residual covariances and modeled sensor noise covariance for the
unfailed model of each set. Residual covariances for the models of velocity
gain change failures differed slightly from that of the unfailed model of
the same set. Residual covariances for the models of the position sensor
bias failures were identical with that of the unfailed model of the same
set.

The first point to note is that the reduced sensor covariance set
detects the position sensor bias significantly faster than the nominal set
whereas the velocity sensor gain change is not detected significantly faster.
This is because the nominal set attributes position residuals to poor
measurements whereas it attributes velocity residuals to poor predictions.
Comparison of R and £ of the nominal set shows that the position residual
covariance is nearly equal to the odometer noise covariance but that the
velocity residual covariance is much larger than the speedometer noise
covariance. When the modeled sensor covariance is reduced the position
residual covariance decreases significantly but the velocity residual co-
variance decreases slightly. Because the position residuals are expected
to be smaller, large residuals are penalized more heavily in the proba-
bility calculation so that the unfailed model's probability decreases

quickly and the probability of the +1 m odometer bias model increases
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Table 4.1-2 Residual and Sensor Noise Covariances

Model Set z R

(257  .006] .25 0 ]
nominal

1.006 .119] 0 .01 |
reduced 7.027  .005] .025 0
sensor
covariance .005 .102] 0 .001
increased .55 .018 2.5 0
sensor
covariance 1.018  .262 0 1
reduced [.255  .002] 25 0 ]
plant
covariance .002  .026 L0 .01 _
increased .268  .051] 25 0 ]
plant
covariance .051  1.02] L0 {01 |
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quickly. The velocity sensor failure is detected slightly more quickly
because the velocity residual covariance decreases only slichtly.

Similar conclusions are reached by comparing the nominal set's
performance with the reduced plant covariance set's performance. In
this case the speedometer failure is detected more quickly whereas there
is no improvement in detecting the odometer failure. Reducing the modeled
plant covariance significantly reduced the velocity residual covariance,
allowing the speedometer failure to be detected more quickly; the posi-
tion residual covariance was reduced marginally so that the odometer
failure was not detected more quickly.

For the increased sensor covariance set the increase in R was large
enough to increase both the position and velocity residual covariance so
that performance in detecting both failures was degraded. However, the
position residual covariance increased so drastically that the bias in
the position sensor is essentially assumed to be noise.

If the foreagoing arguments were applied to the increased plant co-
variance set, one would expect a slight increase in the time required to
detect the odometer failure because of the slight increase in the position
residual covariance. Also, it would be expected that the speedometer
failure would be detected much more slowly because of the large increase
in velocity residual covariance. However, effects due to bandwidth come
into play so that the odometer failure takes twice as long to detect and
the speedometer failure takes only slightly longer to detect. The odometer
failure will be explained first.

Increasing the plant covariance increases the bandwidth of the Kalman

filter because the model is trusted less. This causes the filter to track
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the measurements more quickly as illustrated previously in Figure 4.1-1.
The unfailed model of the increased plant covariance set was able to
track the erroneous position measurement more quickly than the unfailed
model of the nominal set. This is indicated by its more quickly decaying
position residuals illustrated in Figure 4.1-2. Because its residuals
decreased more quickly, the unfailed model of the increased plant covariance
set does not become improbable as quickly.

The increase in bandwidth also causes the velocity measurements to
be tracked more quickly. The unfailed model tracks the sudden decrease
in velocity so that its velocity residuals become small quickly. However,
because the unfailed model believes the vehicle is actually going slower
it predicts that a shorter distance will be traveled than actually will
be traveled. The model of the velocity sensor with a gain of .9 is able
to accurately predict the distance traveled. The position residuals of
the unfailed model grow because of its constant underestimation of the
vehicle's velocity. It is because of increasing position residuals that
the unfailed model is rejected. The model of the 0.9 gain speedometer is
selected because of its more accurate position predictions. Because ve-
locity sensor failures are also detected through position residuals the
substantial increase in time required to detect the failure that might

have been expected is not seen.

Addition of Simulated Sensor Noise

The previous results show that by reducing Q and R failures can be
detected more quickly. However, the modeled noise covariances should not

be reduced without consideration of the noise that is actually present in
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the system. The noise that is actually present must be accounted for with
sufficiently large Q and R matrices or else it can cause false alarms
or other degradations in failure detection performance.

Some of the pitfalls of inadequately compensating for noise were
demonstrated using scenarios similar to those used previously with noise
added to the simulated sensor outputs. The simulated sensor noise had a
covariance ten times larger than the nominal modeled sensor noise covariance.
The reduced plant noise covariance set was tested on these scenarios be-
cause its modeled plant covariance adequately accounted for the modeling
approximations and provided for good failure detection performance.

Figure 4.1-3 illustrates how the probabilities behaved when no noise
was present in the odometer failure scenario. The initial probabilities
for the failure models were .05 and they decreased quickly to the minimum.
The initial probability for the unfailed model was .8 and it quickly
approached unity. Several steps after the failure occurs there is a
smooth transition where the probability of the +1 m odometer bias model
approaches unity and the unfailed model's probability decreases to the
minimum.

Figure 4.1-4 illustrates how the probabilities behave when excessive
simulated sensor noise is added in the scenario. During the one second
before the onset of the failure there are problems in locking onto the
unfailed model. At first a negative odometer bias is indicated; then a
positive odometer bias is indicated. At the time of the failure a velocity
sensor gain of 0.9 is indicated. After the failure the probabilities

oscillate wildly between the positive odometer bias model and the unfailed
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model but finally the odometer bias model is indicated.

When the same noise sequence is added to the speedometer failure
scenario the failure is incorrectly identified. This is illustrated in
Figure 4.1-5. The same initial chattering of the probabilities was
present for this scenario as in Figure 4.1-4 so the first second of data
is omitted. Initially the correct model is indicated but the noise causes
the 0.9 speedometer gain model to be rejected. For a while the unfailed
model is indicated but because it underestimates the true velocity it also
underestimates the vehicle's position. The measured position grows larger
than the estimated position so that eventually it appears that there is
an odometer bias of +1 m.

The results of this section demonstrate that noise must be adequately
accounted for with sufficiently large Q and R matrices. By limiting how
small Q and R can be, the noise 1imits how quickly failures can be detected.
Minimal amounts of plant and sensor noise are desired. By comparing R and
Z it can be determined whether reducing plant noise or reducing sensor
noise will result in the greater improvement in detection speed. If the
modeled Q and R correspond to the noise actually present in the system
then this comparison of R and I indicates whether a more accurate model

or more accurate sensors will allow quicker detection of failures.

4.2 Comparison of Failure Detection Models

The results of the tests of the various models are summarized in
Table 4.2-1. The scenarios were all based on vehicle B using the LQ
controller. The grade scenario was not used because grade and wind have

similar effects on the vehicle and wind is the more significant disturbance
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for vehicle B (compare the forces given in Table 4-1). No noise was

added in the simulations so as not to obscure the other factors influencing
performance. A1l models used a standard deviation of 0.2 m (8 in) for
modeled odometer noise and .1 m/sec (.22 mi/hr) for modeled velocity sen-
sor noise.

Results are discussed on a model by model basis.

KC2 - Kinematic Control Driven Model - 2 State

This model is extensively discussed in other sections and is listed
here primarily for comparison. The continuous modeled plant noise co-

variance used for this set is

0 O
Q =
¢ lo 0.1

The PCU failure is discussed in Section 4.3 with the other unmodeled failures.
One point that should be noted is that the maneuver and wind scenarios
do not cause false alarms or even an increase in any of the failure model
probabilities even though the LQ controller was used instead of the PI
controller. Because of the smaller bandwidth of the LQ controller the
vehicle's measured velocity does not track the commanded velocity as well
as with the large bandwidth PI controller. The LQ controller allows larger
discrepancies between commanded and true velocity so that there are lar-
ger discrepancies between commanded and true acceleration. This would
imply that a larger modeled plant noise covariance would be needed, but
the covariance used adequately accounted for the discrepancies so that no

effects on the model probabilities were observed.
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KS1 - Kinematic Sensor Driven Model - 1 State

This model allows failures to be detected by integrating the measured
velocity for comparison with the measured position. It does not attempt
to approximate vehicle dynamics as does KC2, and it does not require an
accelerometer that is required by KS2. KS1 allows velocity sensor gain
changes and position sensor biases to be modeled.

Because velocity measurements are made discretely the modeled plant
noise covariance was not computed in the way that the covariance for KC2
was computed where the driving term is continuous. Instead the noise was

assumed to enter the discretized state equations directly:
s(k+1) = s(k) + 0.1(v(k) +w(k))

where w(k) has the covariance of the speedometer noise. The plant noise

is 0.1w(k) so that the plant noise covariance is

(0.1)%cov(w(k)) = 0.0001

This model is extremely simple but its simplicity limits its perfor-
mance in detecting certain failures. Because it checks only for agreement
between the odometer and speedometer it is unaffected by any discrepancies
between commanded and measured vehicle behavior regardless of whether these
discrepancies are caused by controller failures or wind disturbances. A
more important limitation is that it requires Tonger to detect the speedo-
meter gain change than either KC2 or KS2, even though the velocity sensor
is assumed to be equally accurate for all three models. This is because

the predicted distance computed by intecrating the erroneous velocity
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measurement diverges slowly from the true distance indicated by the un-
failed odometer. This is illustrated in Figure 4.2-1. Small deviations
between predicted and measured position could be caused by noise so the
algorithm waits until there is a significant difference between them
before making a decision. Models KC2 and KS2 can detect the speedometer
gain change more quickly because they have a predicted velocity with which
the measured velocity is compared so that the discrepancy is immediately
obvious.

The probability of the +1 m odometer bias increases slightly when
the speedometer fails because the measured position is larger than the
position predicted by integrating the measured velocity. This is sympto-
matic when failure detection is done by comparing two sensors. There is
uncertainty in whether one has failed by indicating a false large quantity
or if the other has failed by indicating a false large quantity. This
did not prove to be a serious problem in this case. At no time was the
+1 m odometer bias model ever more probable than the 0.9 speedometer gain
model, and its probability decreased when the discrepancy between pre-
dicted and measured position grew larger than 1 m.

Another point to note, which is characteristic of all gain change
failures, is that the velocity sensor gain change failure will take Tonger
to detect with smaller velocities. If the true velocity is v and the

measured velocity is .9v then the difference between them is

v-0.9v = .1lv

At lower velocities this difference is smaller so that more data must be

56



true velocity

_________ — —measured velocity

true position

_ —predicted position

Tiime of failure

Figure 4.2-1 Divergence of Position Predicted from
Incorrect Measured Velocity
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collected to distinguish between failed and unfailed. However, this may
not be a serious shortcoming because if the vehicle is travelinag slowly

an extremely quick detection will probably not be required.

KS2 - Kinematic Sensor Driven Model - 2 State

This model is identical to KC2 except that instead of using commanded
acceleration as the driving term, measured acceleration is used. This
avoids the approximation made by KC2 that the commanded acceleration is
close to the true acceleration. In addition to the failures modeled by
KC2, accelerometer gain changes to .9 and 1.1 are also modeled by altering
the B matrix. The standard deviation of the modeled accelerometer noise
used is .0125 m/secz. The modeled plant noise covariance was computed
using the method used for KS1.

KS2 performs similarly to KC2 in detecting the odometer and speedo-
meter failures. However, there is a drastic variation in the speed of
detecting the accelerometer failures, and a slight sensitivity to the
maneuver is displayed. The same cause is responsible for both effects and
will be explained by first discussing the results obtained using the
maneuver scenario.

During the one second before the maneuver begins, the probabilities
of the accelerometer failure models do not decrease from their initial
probability of 0.05 because while the acceleration is zero they are in-
distinguishable from the unfailed model. However, as the acceleration
increases it would be expected that the probabilities of the accelerometer
failure models would decrease, but the probability of the .9 accelerometer

gain increases slightly. This increasing probability is due to discretization
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error, the error made by assuming that the control is constant over

each discrete time interval. Figure 4.2-2 shows the relationship be-
tween the true and discretized acceleration. The probability of the .9
accelerometer cain increases because it indicates when true acceleration
is larger than measured acceleration. As illustrated by Figure 4.2-2,
the true acceleration actually is Targer than the acceleration assumed
by the discrete time model. When these two curves are integrated to
obtain velocity, the velocity obtained from the discretized curve is
smaller. The error caused by discretization is small, but the failure
magnitude of this gain change failure is also small because of the small
acceleration. Because the discretization error produces a discrepancy
similar to that which would be caused by an accelerometer with a gain of
0.9, the probability of the failure model increases.

The discretization error causes the drastic difference in times
required to detect the two different accelerometer failures. As the
vehicle accelerates in the 0.9 accelerometer gain change scenario, the
probability of the 0.9 accelerometer gain model increases in part due to
discretization error causing a relatively quick detection. This same
error causes the probability of the 1.1 accelerometer gain model to be
smaller than it should be, so that even when an accelerometer gain change
to 1.1 has occurred it takes longer to detect.

One way to alleviate this problem is to increase the modeled plant
noise covariance. This would help account for the "noise" due to dis-
cretization but it would also degrade performance in detecting accelero-
meter failures. A relatively large amount of time is already required

to detect the accelerometer failures even though the probability of the
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accelerometer failure models began considerably higher than the minimum
probability. A further increase in time required for detection because
of a larger Q would not be desirable.

Another way to alleviate this problem is to alter the model so that
true acceleration is better approximated. This could be done by using

the kinematic equations

2 3
s(k+1) = s(k) + Atv(k) + -A;‘— a(k) + % (k)
2
v(k+1) = v(k) + Ata(k) + %— (k)

where j(k) is the jerk and At is the discrete time interval. KS2 ignores

the terms due to jerk, but jerk can be approximated by

. _ a(k) -a(k-1
(k) = k) =aticl)

This would Tead to the state equations

- 5 . ) _
[s(k+1)] = |1 At -é%— s(k) %gAtz

A2 2
vik+1){ = {0 1 -~?—-v(k) + [ %At a(k)
a(k) ] =10 0 0 a(k-1) L1

P3 - Parameterized Model - 3 State

This model attempts to approximate the dynamics of the vehicle more

closely than KC2 by explicitly including a model of the vehicle's electric
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motor. The state equations are of the form

3(t) 0 1 0 |s(t) 0
vit)l =10 0 1 {v(t)| + |0 Ec(t)

a(t) 0 -Cq -Gy a(t) Ky

where Ec(t) is the commanded voltage and CO’ Cl’ and KM are constants
dependent on vehicle parameters. The continuous plant noise covariance

used was

o o O
o O

Q. = |0
0

—
o

which can be obtained by assuming a noisy commanded voltage with a standard
deviation of /TG/KM ~ 0.2 volts.

This model performed well in detecting all failures and the maneuver
and wind caused no fluctuation in the probabilities. Discretization error
had no effect because the failure magnitudes of the PCU gain change failures
was much larger than the discretization error. KS2 had problems with dis-
cretization error because the failure magnitudes of the .9 accelerometer
gain was on the order of the discretization error.

Because this model depends on vehicle parameters it was tested on a
scenario based on a vehicle using different parameters. The most easily
identifiable and largest varying parameter is the vehicle's total mass,
which varies with the vehicle's load. The mass was increased to the maxi-

mum for vehicle B given in Table 3.1-1 to generate the scenario data. The
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variation in mass only affects transient behavior and not the steady state
relationship of v= (KM/CO)E so the heavy vehicle was put through a maneuver.
The variation in mass did not cause the probabilities to differ signi-
ficantly from those in the maneuver scenario using nominal vehicle mass.

The results of this section indicate that KC2 would be a good model
to use in the MM algorithm. KS1 imposes a smaller computational burden,
i.e., it requires fewer multiplications and additions per time step than
KC2, but it requires more time to detect the épeedometer failure. Also,
KC2 does not require the accelerometer that is needed by KS2. Unlike
P3 it did not detect the PCU failure but this failure does not have a
drastic impact on safety because it is compensated for by the LQ controller.
However, the dynamics of an actual vehicle could differ from those of the
simulated vehicle. It is possible that a more detailed model such as P3

could be required to account for the dynamics.

4.3 Detection of Unmodeled Failures

The performance of the MM algorithm in detecting failures not ex-
plicitly modeled was examined using the reduced plant covariance set of
Section 4.1. The unmodeled failures simulated and the performance of the
algorithm is summarized in Table 4.3-1. Most of the simulations were
based on vehicle A using the PI controller. The one exception is the
PCU failure* which was simulated on vehicle B using the LQ controller
because the LQ controller did not compensate for the PCU failure as quickly
so that the PCU failure is more detectable. Performance in detecting

modeled failures is given at the bottom of the table for comparison.

*The Power Conditioning Unit failure is described in Table 3.1-1.
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Table 4.3-1 Summary of Unmodeled Failure Detection Performance

Failure

Performance

+% m odometer bias

no failure models indicated

+%, m odometer bias

+1 m odometer bias model probability increases
to 0.45 after 25 steps

unfailed model probability decreases to 0.55

0.95 speedometer gain

+1 m odometer bias indicated in 18 steps

0.925 speedometer gain

0.9 speedometer gain indicated in 11 steps

+1 m/sec speedometer
bias

1.1 speedometer gain indicated in 13 steps

1.1 PCU gain (LQG
controller)

no failure models indicated

+1 m odometer bias

detected in 10 steps

.9 speedometer gain

detected immediately
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The position bias of 4 m was not detected because it was exactly
halfway between the unfailed model and the +1 m odometer bias model.
After the failure occurs the position residuals of the two models are
equal in magnitude but opposite in sign. Because both models have the
same residual covariance their pi(k) are identical. The two models also
have the same Kalman gain so they both track the failure at the same rate
as illustrated in Figure 4.3-1 so that their pi(k) remain the same. The
probability of the position sensor bias of +1 m does not increase because
its pi(k) must be larger than that of the unfailed model for it to in-

crease. This can be seen by writing equation (4) from Chapter 2 as

_ pz(k)Pz(k'l) pz(k)
P2(0) = 5 ey ey * By Pkl

using subscript 1 to indicate the unfailed model and subscript 2 to in-
dicate the +1 m odometer bias model. This equation assumes that all terms
in the denominator other than that for the unfailed model are negligibly
small and that Pl(k—l) ~1. An intuitive explanation for this is that be-
cause present evidence indicates the models are equally probable the
decision is made on the basis of past evidence which indicated that the
unfailed model is the correct one.

A laraer bias tips the balance between the two models in favor of the
+1 m odometer bias model as demonstrated with the simulated +% m position
sensor bias.

The velocity sensor gain change to 0.95 was not detected as a speedo-

meter failure for reasons similar to those given for why the odometer bias
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of +% m was not detected. The simulated failure was halfway between the
unfailed model and the 0.9 speedometer gain model. However, a position
sensor bias of +1 m was indicated because the models tracked the erroneously
low velocity measurements. This caused the predicted position to increase
more slowly than the measured position. The discrepancy between measured
and predicted position results in the +1 m odometer bias model being
indicated. A speedometer gain to 0.925 is detected as a speedometer fail-
ure because it is closer to the 0.9 speedometer gain model than the un-
failed model.

Speedometer biases can cause speedometer gain change models to be
indicated as demonstrated with the +1 m/sec speedometer bias scenario.

The +1 m/sec speedometer bias causes the 1.1 speedometer gain to be indi-
cated because both failure and model say that the true velocity is less

than the measured velocity. If the measured velocity is a constant 15 m/sec
the 1.1 speedometer gain model believes the true velocity to be 13.6 m/sec.
As Tong as the measured velocity remains constant this is equivalent to
saying that there is a +1.4 m/sec bias in the measured velocity. The

+1 m/sec speedometer bias is relatively close to this model so that the

1.1 speedometer gain is indicated.

The PCU gain change to 1.1 was simulated using the LQ controller be-
cause the PI controller would have quickly corrected for the failure, making
it much more difficult for KC2 to detect. There was some possibility that
KC2 could detect this failure because it would result in an increased
measured velocity even though no increase was commanded. Because steady

state velocity is directly proportional to voltage the PCU failure should
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be similar to a 1.1 speedometer gain. However, the dynamics of the vehi-
cle do not permit the velocity of the vehicle to change quickly in response
to this failure so that it is easily tracked by the models., Also, it

does not cause a discrepancy between measured position and measured velo-
city, which helps speedometer gain change models to be indicated. It

is possible that by reducing the modeled plant covariance the models will
not track the measurement as quickly, permitting this failure to be de-
tected. However, reducing the modeled plant covariance can make the set

of models sensitive to wind and grade. A downgrade also causes an increase
in measured velocity even though no increase is commanded.

If the MM algorithm is to be used primarily as an alarm to indicate
that something has gone wrong, then its ability to detect failures not
explicitly modeled is a positive quality. When the speedometer's gain
changed to 0.95, the +1 m odometer bias model was selected, indicating
that something has gone wrong and corrective action needs to be taken.
However, in a fully automated system more than an alarm may be required
and an accurate identification of the failure could be crucial. The action
taken by the controller when a +1 m odometer bias is indicated may not be
appropriate if a speedometer gain change to .95 caused the bias to be

indicated.

4.4 Redundant Sensor Configurations

Factors influencing the improvement in failure detection through
duplicating sensors were examined using KC2 with two odometers and two
speedometers., For this sensor configuration the measurement equation

becomes
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s 4] 1 0]s
Sm2| _ 1 Olv
Vi1 ) 0 1
_yma_ _P {

Using the nominal standard deviations for sensor noise given in Section 4.1

yields a sensor noise covariance of

.25 0
0 .25
0 0 .01 O
0 0 0 .01

The nominal plant noise covariance matrix of Section 4.1 was also used.
These modeled noise covariances were used so that the failure detection
performance of this configuration could be compared directly with the
performance of the nominal set of Section 4.1, a set whose performance

left room for improvement. The increased number of sensors requires a
greater number of models because of the greater number of failures possible.

The models used were

1 unfailed
2,3 position sensor #1 bias -1m, +1m
4,5 position sensor #2 bias -1m, +1m
6,7 velocity sensor #1 gain .9, 1.1

8,9 velocity sensor #2 gain .9, 1.1
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This set of models was tested on the same failure scenarios used in
Section 4.1 and performed similarly to the set of models using the reduced
plant noise of Section 4.1. The bias of +1 m in position sensor #1 was
detected in nine steps and gain change to 0.9 in velocity sensor #1 was
detected immediately as compared with the 10 steps and seven steps, re-
spectively, required by the nominal set of models.

The reason for this 1ies in the fact that both sets of models attribute
position residuals primarily to sensor errors whereas velocity residuals
are attributed primarily to prediction errors. The nominal set's delay
in detecting the velocity sensor failure is primarily due to uncertainty
in the prediction, the standard against which the velocity sensor is com-
pared. Because of their accuracy, adding another velocity sensor to the
prediction yields a relatively accurate standard against which the other
velocity sensor can be compared. This improvement in the standard for
comparison for the reduced plant covariance set of Section 4.1 was accom-
plished by reducing the modeled plant covariance. For the position sen-
sors, the nominal set already considers its standard for comparison
relatively accurate; the delay arises because the position sensor is not
expected to agree with the standard. The addition of another relatively
inaccurate position sensor does not add a significant amount of informa-
tion about what the other sensor should be indicating.

There is a problem that can arise because of dual sensors that did
not prove to be a significant effect for this set of models. The problem
is that in comparing two sensors, one indicating a larger quantity than

the other, it is difficult to tell whether one has failed by indicating

70



an erroneous large quantity or if the other has failed by indicating an
erroneous small quantity. There was a trace of this indecision in detecting
the velocity gain change but the prediction was accurate enough to serve

as a decisive third vote. In detecting the gain change to .9 in velocity
sensor #1, the probability of a gain change to 1.1 in velocity sensor #2
did rise slightly above the minimum probability to a maximum of 4.8><10'5
but returned to the minimum quickly. If the modeled plant noise were larger,
the predicted velocity would not be considered as accurate so that this
indecision would have been more apparent.

Dual sensors not only improve detection speed but also help prevent
false alarms due to modeling errors. For example, if the dynamics of the
vehicle causes the true velocity to differ significantly from the commanded
velocity this discrepancy could be mistaken for a speedometer failure if
a single speedometer is used. However, if two speedometers are used and
they both disagree with the commanded velocity but agree with each other
it is much less likely that a failure has occurred in either one of them.
This effect would help prevent the PCU failure from appearing to be a
speedometer failure if dual speedometers are used.

The results presented in this section indicate that triplicating
sensors would only marginally improve failure detection performance in
this case. The position sensors are relatively inaccurate and provide
1ittle additional information beyond that provided by the position estimate.
Two velocity sensors allow immediate detection of speedometer failures
already so that no improvement in detection speed would be obtained by

triplicating them. However, if the modeled plant covariance were larger,
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an additional speedometer would help. With a larger Q the predicted

velocity would be trusted less so that there would be a greater indecision
when a speedometer fails, resulting in a delay if only two are used. A third
speedometer would allow immediate detection by permitting the algorithm

to essentially use the three speedometers for voting.
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5. Failure Detection and Control for Vehicle Strings

The application of the MM algorithm to strings of vehicles is described

in three sections of this chapter. In the first section the response of
a string of vehicles to various failures is examined to determine the

impact of these failures on the system when they are not detected and no
corrective action is taken. In the second section models that allow a

vehicle to detect errors in measurements it has concerning other vehicles
in addition to errors in its own measurements are examined. The perfor-
mance of the algorithm using these models is also examined in the second
section. In the third section the use of the probabilities and estimates
generated by the algorithm to determine a proper control for a vehicle in

a string is discussed.

5.1 Effects of Failures Without Failure Detection

String response was examined for failures in sensors that supply measure-
ments to the controller. These failures were selected because they are
apt to have more significant effects than other failures. String behavior
is also affected by other failures, such as the PCU gain change, but it
is possible that the controller will be able to determine an appropriate
response because it still has accurate information about how the vehicle
is moving.

The control law discussed in Chapter 3 generates commands based on
three measurements, spacing, Asm, preceding vehicle velocity, Vim?® and
trailing vehicle velocity, v, .. Throughout this chapter it is assumed
that the preceding vehicle's own velocity measurements are transmitted to
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the trailing vehicle because in [25] it is stated that measurements of
relative velocity are unlikely. The equation describing the control law
is given here explicitly indicating how these measurements are used to

generate the velocity command.

VO W Asm"ASmin(vlm’VZm)
(o 2m 5
EVE'ASmin(VI’VZ) -
1m’ " 2m

where

_ 2 2
Bspin(VpaVa) = cq(vyT-vpT) +eplvy-vy) +es(vy) + ¢y
Values of cq, ¢y, c5 and cy used in this research are Y5, .15, .467 and
0.66, respectively. These values are those used in [25] where this

control law is developed. Essentially this controller attempts to keep

the trailing vehicle at a minimum safe spacing, As (vl,vz), by adjusting

min
its velocity proportionally to the error between measured and desired
spacing. The failures examined were a bias of +1m in the spacing sensor,
a gain change to 0.9 in the trailing vehicle's speedometer, and a gain
change to 1.1 in the preceding vehicle's speedometer.

The short term effects of the failures were examined by simulating
the string's behavior for periods up to four seconds (40 time steps) after
the failure occurred. This amount of time was considered sufficient
because the relatively quick detections demonstrated by the algorithm

for single vehicles indicate that the detection algorithm can respond to

the failures within this period. The simulations all began with both

74



vehicles traveling at a constant 15 m/sec with the desired spacing of
7.665 m between them. The preceding vehicle's velocity command, Vie?
is kept at a constant 15 m/sec throughout the simulations. Spacing and
relative velocity, Av==v1-v2, are plotted in Figures 5.1-1 and 5.1-2

for the three failures.

A1l three failures cause the tfai]ing vehicle to follow more closely
than the desired minimum spacing, but of the three the preceding speedo-
meter failure causes the most dangerous response. This failure causes
the preceding vehicle to slow down because its measured velocity suddenly
becomes larger than the commanded velocity. Although the spacing starts
decreasing, the trailing vehicle increases its velocity instead of slowing
down because it attempts to match its speed to that indicated by the
preceding vehicle. This failure is also the most severe in that unlike
the other failures it causes the trailing vehicle to violate the normal
operation constraint on acceleration specified by Draper in their design
of the controller [25].

An examination of the controller equations reveals that both velocity
gain change failures will Tead to a collision but the spacing sensor
bias will only cause the trailing vehicle to track the preceding more
closely. This was determined by computing a steady state spacing using
the controller equations and two additional relations. First, in steady

state the measured velocities should equal the velocity commands,

Vic vlm

Voc Vom
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Figure 5.1-1 Spacing After Various Failures
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Relative Velocity
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Figure 5.1-2 Relative Velocity After Various Failures
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For the trailing vehicle this implies measured and desired spacing are

equal,

Asm N Asmin(vlm’VZm)

Second, in steady state the true velocity of both vehicles should be

equal,

The relationship between measured and actual quantities is determined by
the failures suffered by the sensors. For example, for the preceding

speedometer gain change the equations are

bs. = Bs
v1m = 1.1v1
Vom = V2

These equations can be easily solved to determine As as a function of the
steady state velocity. Plots of As versus velocity are given in Figure 5.1-3
for various failures. Negative steady state spacings indicate that a
collision will occur.

These curves indicate that unless corrective action is taken the
speedometer gain change failures will lead to a collision. The spacing
sensor bias will not necessarily cause a collision. The minimum spacing,

As , was determined as the minimum spacing required to avoid a collision

min

if the preceding vehicle decelerates at operational limits. By decelerating
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Figure 5.1-3 Steady State Spacing for Various Failures
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slowly a collision can be avoided for the spacing sensor failure.

The results of this section indicate that unless these failures
are detected and corrective action taken that safety is jeopardized. The
two speedometer failures will Tead to a collision and the preceding speedo-
meter failure causes an especially severe response in the trailing vehicle.
The i11 effects of the preceding speedometer failure could be avoided
by using the MM algorithm to generate estimates of the preceding vehicle's
velocity. However, these estimates would heavily depend on spacing

measurements so that spacing sensor failures would become critical.

5.2 Failure Detection Models and Performance

In fhis section the ability of a vehicle to detect errors in measure-
ments it has concerning other vehicles is examined. In addition to the
spacing and preceding velocity measurements required by the controller,
preceding position measurements were also used to determine how they
might improve failure detection performance if available. Models were
examined using various subsets of these measurements to determine how well
the algorithm performed with minimum amounts of information. Dual sensor
configurations were not examined but the performance of these configura-
tions can be predicted based on the results of Section 4.4. Noise co-
variances assumed for the various sensors were .04 m2 for the odometers

and the spacing sensor and .01 mz/sec2

for the speedometers.

The models examined in this section consist of a single vehicle
model used by the trailing vehicle to describe itself, augmented by equa-
tions describing the preceding vehicle. The two state kinematic model

was used to describe the trailing vehicle. A measure of the trailing
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vehicle's true acceleration was used to drive the model and a driving
noise of covariance 0.1 mz/sec4 was assumed. If applied to an acutal
vehicle the true acceleration can be approximated with either commanded
or measured acceleration, and thus one of these two quantities is used in
the model. The issues involved in which of these are used are not of
concern here. The primary concern is how well the trailing vehicle can
detect errors in the information required by its controller.

Two different ways were used to describe the preceding vehicle in
the dual vehicle models. The first way consisted of essentially using
KS1 to describe the preceding vehicle. With measurements of spacing and

trailing position and velocity the model is given by the equations

él 0 0O Sq 1 0 Vi

Sol = 0 0 1 Sy + |10 O a2
Vo 0 0 O Vo 0 1

[ o
Asm 1 1 0 51

Som| = 0 1 0 Sy
0

0 1 Vo

D3--Dual vehicle model - 3 state

Spacing residuals affect both preceding and trailing position estimates,
and the error covariance of both these estimates affects the ability to
detect spacing sensor failures. This coupling has relatively minor effects
as will be discussed Tater. This model was also examined using preceding
position measurements in addition the other measurements to determine how

this additional sensor could improve failure detection performance. The
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set of failures modeled consisted of spacing sensor and odometer biases
of £1 m and speedometer gains of .9 and 1.1.

The second way in which the preceding vehicle was described did not
require measurements of the preceding vehicle's velocity. This was ex-
amined to determine how well spacing sensor failures can be detected
without velocity measurements and to determine how well relative velocity
can be estimated using spacing measurements. By estimating relative
velocity, the preceding velocity can be easily estimated as required by
the controller if measurements of it are unavailable. The measurements
may be unavailable due to a failure or they may be deliberately avoided
to avoid the severe effects of the preceding speedometer failure. The

state equations used were

M T i [ Y
s1 01 0 1 s1 [U
AV 0 0 0 Ofav 0
N + a
Sy 0 0 0 1 Sy 0
j% P 0 0 Qv% }_

D4--Dual vehicle model - 4 state

The preceding vehicle's velocity, 51, is modeled as being equal to the
trailing vehicle's velocity plus a correction term, Av, the relative ve-
lTocity. Because the vehicles are traveling in a string their velocities
should be approximately equal and the relative velocity near zero. This
allows Av to be modeled as a zero mean noise process. The trailing ve-
hicle does not know how Av evolves so Av is modeled as white noise.
Modeling AV as white noise is unrealistic in the sense that this
model states that the covariance of Av grows without bound. The relative

o2
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velocity is known to remain within certain bounds and a Gauss-Markov

model such as
Av(t) = -adv(t) + w(t)

where w(t) is white noise and o a positive constant could be used to
indicate that Av's variance is bounded. However, a positive value for «
would degrade the Kalman filter's ability to estimate the relative velo-
city. Figure 5.2-1 illustrates relative velocity for a typical maneuver
and how it would be estimated with a positive a. The preceding vehicle
decelerates at jerk and acceleration limits and the trailing vehicle
attempts to track it. The magnitude of the relative velocity is under-
estimated because the model predicts the relative velocity will return

to zero. Using an a of zero will allow the estimates to better track the
true relative velocity.

The covariance of Av was selected by examining how quickly Av could
change under normal circumstances. The quickest relative velocity changed
in a simulation was when the trailing vehicle tracked the preceding
vehicle decelerating at maximum jerk and acceleration. Wind and grade
do not cause as great a variation in the preceding vehicle's velocity and
also act on the trailing vehicle causing it to similarly change its velo-
city. The biggest change in relative velocity over any .1 sec time step
during this maneuver scenario was about .075 m/sec indicating a relative
acceleration of approximately .75 m/secz. Relative acceleration was squared
and rounded to one significant digit yielding a covariance of 0.6 mz/sec4.

The two sets of measurement equations used with D4 were essentially
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Figure 5.2-1 Relative Velocity Underestimated
by a Gauss-Markov Model

84



the same as those used with D3. One set modeled measurements of spacing
and trailing vehicle position and velocity. The other set consisted of
the same measurements with an additional measurement of preceding vehicle
position. The same set of failures was modeled using D4 as was with D3
except for the preceding vehicle speedometer failures. D4 without the
preceding position measurements was also examined with a driving noise
covariance of .06 m2/sec4 for the Wiener process because of its inability
to detect spacing sensor failures when using a covariance of .6 m2/sec4.

The results of the simulations are summarized in Table 5.2-1. The
deceleration maneuver where the preceding vehicle dece]efates at jerk
and acceleration 1imits was the only scenario used to test for false
alarms. Spacing and relative velocity change more quickly for this
scenario than with other scenarios so that the models should have the
most difficulty adjusting their state estimates to account for these
changes. Wind and grade were not used because they would not cause any
discrepancies between predictions and measurements for these models. The
kinematic relationships between the inputs and outputs of these models
are valid independent of the amount of wind or grade.

The trailing odometer bias and the trailing speedometer bias were
detected by all the dual vehicle models the same as they were detected by
the single vehicle model which was not augmented by the description of the
preceding vehicle. The accuracy of the trailing velocity estimates and
the low noise of the trailing speedometer allow its failures to be quickly
and unambiguously identified. It might have been expected that the

odometer bias could have been more quickly detected because of the additional
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information about the trailing vehicle's position contained in the spacing
sensor. The additional information did cause a decrease in the Sy resi-
dual covariance but this decrease was margina]_so that there was no
noticeable improvement in performance. A typical decrease was from

.0422 for the single vehicle model to .0419 for D3 without S1m*

The performance of D3 in detecting the spacing sensor and preceding
speedometer failures is almost identical to that of KS1 in detecting the
odometer and speedometer failures. The only difference is that without
the preceding position measurement, D3 takes 1 time step longer to de-
tect the speedometer failure than KS1. This increase in time to detect
is due to an increase in bandwidth; without preceding position measure-
ments D3 is unable to estimate the preceding position as accurately as
KS1.

Spacing and velocity do not yield as much information concerning
the preceding vehicle's position as position and velocity did concerning
the single vehicle's position because spacing depends on an additional
uncertain quantity, the trailing vehicle's position. Because the pre-
ceding vehicle's position estimates are more inaccurate they track varia-
tions in the spacing measurements more closely so that the effects of
the failure are not as readily apparent.

The initial selection of plant covariance led to poor failure
detection performance when D4 was used without preceding position measure-
ments. The plant covariance of 0.6 m2/sec4 was large enough to create
relatively large bandwidth filters so that the state estimates tracked
the spacing sensor bias. The bias caused the probability of the cor-

responding model to increase from the minimum probability to only .034.
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The addition of the preceding position measurements greatly im-
proves failure detection performance. The bandwidth is still large but
the additional sensor allows another comparison to be made. When the
unfailed model attempts to decrease the spacing residuals caused by the
bias, it increases the preceding position estimate. However, this
causes the preceding position estimate to diverge from the preceding
position measurement. The unfailed model is unable to eliminate both
spacing and preceding position residuals and therefore becomes improbable.

4 also improved

Decreasing the plant covariance to 0.06 m2/sec
failure detection performance. The decrease reduces the bandwidth so
that the spacing measurements are not tracked as quickly and the effects
of the failure are more apparent. The covariance could be decreased more
in an attempt to further increase the detection speed but could make the
algorithm sluggish to Tess abrupt changes in measured spacing which
occur in normal operation such as during the deceleration maneuver.

The performance of D4 in estimating the relative velocity is ex-
amined in the next section where the effects of using these estimates in
the control law are also discussed.

The deceleration maneuver tests the models at the limits of normal
operational behavior, and as can be seen, no false alarm problems are
observed. However, there is a case when a vehicle exceeds these limits
and a failure should not be indicated. As discussed in Section 5.1, when
the preceding speedometer changed its gain to 1.1, the trailing vehicle

accelerated beyond the normal acceleration 1imits and corrective action

is not taken. A third vehicle following the second vehicle would see a
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sudden increase in spacing which could be indicated as a spacing sensor
bias. Because this situation occurs as a result of vehicle 2 using pre-
ceding velocity measurements in the control, it was examined for vehicle 3
using D3 which also uses the measurement. Simulation demonstrated that
it caused no false alarm in vehicle 3. Because the third vehicle re-
sponds less violently than the second there is no possibility that its
response would cause a false alarm in a fourth vehicle. Other failures
do not run the risk of causing false alarms in a third vehicle because
the second vehicle does not exceed operational limits in response to
them. The third vehicle would only see the second accelerating or
decelerating within normal operational 1imits and would track the second.
The results of this section demonstrate that spacing sensor failures
can be detected without any other information from the preceding vehicle.
Preceding velocity measurements allow spacing sensor failures to be
detected more quickly. The preceding speedometer failure, which causes
the most severe response, requires approximately five time steps or
0.5 seconds to be detected by the trailing vehicle. Although it is
detected before the spacing has decreased significantly, it may be desired
to lessen the severity of the response with a quicker detection. A
quicker detection can be provided with dual preceding speedometers. If
the preceding velocity measurements are being transmitted to the trailing
vehicle from the preceding vehicle then dual sensors would not be re-
quired. The preceding vehicle will be able to detect its own speedometer
failures as quickly as the trailing vehicle can detect the trailing
speedometer failure so that correct velocity information can be trans-

mitted to the trailing vehicle at all times.
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5.3 Multiple Model and Control

In this section, the effects of using the information provided by
the failure detection algorithm to control an AGT vehicle is examined.
The primary concern is whether or not the failure detection algorithm
will interact with the control law so as to produce an unstable system,
or other less drastic but nonetheless undesirable effects. The ability
of the algorithm to quickly and correctly identify failures when it is
not in the control loop has been established previously.

The two block diagrams in Chapter 2 illustrating how MM could be used
in the control loop suggest that a separate control law be designed for
each model, but a simpler approach was taken in this section, in which
only a single controller was used. The failures examined in previous
chapters can affect the system by causing incorrect information to be
supplied to the controller. However, the MM failure detection algorithm
can deal with these failures by detecting them quickly and then by supplying
estimates of spacing and vehicle velocities to the controller rather
than the raw, possibly faulty measurements. Because of the MM failure
detection performance discussed in the previous chapters, these estimates
are relatively unaffected by sensor failures and because they are generated
using Kalman filters, will minimize the effects of sensor noise.

As suggested by the block diagrams in Chapter 2, there are two ways
the state estimates from each model could be used to determine an esti-
mate for the controller. The estimate could be computed by weighting the
state estimates from each model with the model probability and adding, or

the estimate from the most probable model could be selected. The behavior
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of the probabilities in detecting the failures indicates that these two
ways would be equivalent in most cases. Selecting the most likely
estimate is equivalent to adding the estimates from all the models where
the estimate of the most 1ikely model is weighted with a factor of unity
and all other estimates are weighted with a factor of zero. When a failure
is detected, we have seen that the weights will change over a few steps
so that the correct failure model's weighting factor will change from
zero to unity and the unfailed model's weighting factor will change from
unity to zero. The probabilities come very close to weighting the state
estimates this way. For almost all failures the probability of the failure
model jumps from less than .02 to greater than .98 in two steps or less.
A correspondingly quick decrease occurs in the probability of the unfailed
model. Because there is so little difference, probabilistic weighting
was arbitrarily selected for the simulations conducted in this section.
The performance of D3 in detecting the failures made it unnecessary
to simulate the vehicle string using the algorithm based on this model in
the control loop. In general, the failures were detected so quickly and
accurately that they would have no effects on the system if D3 were used
in the control loop. The trailing speedometer failure was detected im-
mediately so that the estimates always agreed with the true state of the
system in the simulations where the algorithm was not used in the control
loop. The trailing odometer bias of +1 m was detected one time step
after the failure occurred so that at the time of the failure the bias
did cause the estimates to deviate from the true state, but the deviation

was minimal. The spacing estimate decreased because the odometer indicated

91



that the trailing vehicle had moved farther than predicted, and the trail-
ing velocity estimate increased because a greater velocity would be re-
quired to account for this greater distance traveled. However, the

spacing estimate was 7.64 m as opposed to the true spacing of 7.66 m

and the velocity estimate was 15.02 m/sec as opposed to 15.00 m/sec for

the true velocity. These deviations are much less than normal random
deviations that would be caused by noisy sensors with the assumed noise
standard deviations of 0.2 m for the odometer and 0.1 m/sec for the speedo-
meter. Deviations similarly small in magnitude were noted in the one time
step while the spacing sensor failure was undetected.

The preceding speedometer failure caused the preceding velocity
estimates to deviate significantly from the true preceding velocity for
about half a second. During this time the spacing decreased somewhat below
the minimum safe spacing, and it would decrease still further before the
controlier could bring it to the proper spacing. One way to decrease
the trailing vehicle's detection time of this failure and thus avoid the
decrease in spacing would be to use redundant preceding speedometers. How-
ever, the trailing vehicle should not have to detect this failure.

The preceding vehicle will be able to detect its own speedometer
failure as quickly as the trailing vehicle can detect its speedometer
failure. Consequently, the preceding vehicle can transmit its accurate
velocity estimates to the trailing vehicle in the event of a failure. This
removes the task of detecting failures in this performance critical sensor
from the trailing vehicle and allows this failure to be detected so quickly

that it will have negligible effects on the system.
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With regard to trailing vehicle failures and estimates of the trailing
vehicle's position and velocity, D4 performs as well as D3. However,
without preceding velocity measurements it cannot estimate preceding
velocity as well and this has a significant effect on its performance
in the control loop, even in the absence of any failures. Figure 5.3-1
illustrates how well D4 estimated relative velocity when it was not used
in the control loop. Because trailing velocity is accurately estimated,
knowledge of relative velocity is equivalent to knowledge of preceding
velocity. The curves shown are those generated for the two variations of
D4 which could detect the spacing sensor failure, the large bandwidth D4
with preceding position measurements (large Av driving noise) and the small
bandwidth D4 (small Av driving noise). Without preceding position measure-
ments a small filter bandwidth is needed so that the spacing sensor bias
will not be tracked, but the assumption of small driving noise also pre-
vents the true relative velocity from being tracked quickly. The larger
driving noise results in a larger bandwidth filter so that the true relative
velocity is better tracked but the estimates still respond sluggishly.

Using these sluggish filters to provide estimates to the controller
results in the trailing vehicle responding drastically to a deceleration
maneuver. Figure 5.3-2 illustrates the variations in relative velocity
when the measurements are used to drive the controller and when estimates
from the large and small bandwidth filters are used to drive the model.

The small bandwidth filter causes the trailing vehicle to respond more
severely because it is slower in estimating the true relative velocity.

The actual relative spacing must decrease more before the estimate responds
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substantially for the small bandwidth filter than it must for the large
bandwidth filter. This causes the system to overreact later to compen-
sate for its initial delay, and leads to oscillations. The larger band-
width filter responds more quickly to the decreasing spacing and so does
not overcompensate later.

This behavior would Tead to an unstable string. The deceleration
of the first vehicle causes a more severe deceleration in the second
vehicle which would cause an even more severe deceleration in a third
vehicle and so on down the string. Therefore this is an unacceptable
controller,

The results of this section demonstrate that the trailing vehicle
requires accurate velocity information from the preceding vehicle for
good controller performance. Because the preceding vehicle can detect its
own speedometer failures quickly and accurately it can provide accurate
velocity information to the trailing vehicle at all times. When these
conditions are met the MM-based fault tolerant controller performs very
well. If the trailing vehicle is required to detect failures in the pre-
ceding speedometer spacing decreases somewhat below the minimum safe
spacing before the failure is detected. Without preceding velocity
measurements the trailing vehicle was unable to estimate preceding

velocity well enough for acceptable control.
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6. Summary and Recommendations

In this thesis the MM algorithm was examined to determine how it
could be used to detect failures and consequently improve safety and
reliability for AGT systems. A fault-tolerant control strategy based
on the MM algorithm was also examined to demonstrate how MM could be used
to make AGT vehicles fail operational. The basic conclusion that can be
drawn from this research is that failures can be quickly detected and
accurately identified using the MM algorithm and that it can allow AGT

vehicles to continue operating safely after a failure has occurred.

6.1 Summary of Research Results

The research was conducted by first examining the performance of the
algorithm in detecting failures and the factors influencing that perfor-
mance. Specifically, the issues examined were:

1. the ability of various dynamical models to adequately describe
the vehicle and the various failures

2 the selection of noise statistics and their effects on detection
performance

< the ability of the algorithm to detect failures not explicitly
modeled or improperly parameterized

4. the improvement in detection performance through the use of
redundant sensor configurations.

The central feature of the algorithm is the set of models used to
describe the system in various failed and unfailed conditions. Several
different sets of models and their effects on failure detection performance
were examined. It was shown that basic kinematic relationships driven by

commanded acceleration modeled the vehicle well enough to provide good
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failure detection capability. Speedometer and odometer failures were
detected very quickly. Wind and grade did not cause any false alarms,
and vehicle dynamics were modeled well enough so that maneuvers did not
cause false alarms. More detailed models that incorporated more of the
dynamics of the AGT vehicle than basic kinematics or that avoided the
difference between commanded and actual acceleration were also examined
but they had various drawbacks. One required an accelerometer to drive
the kinematic equations, another modeled only the relationship between
velocity and position measurements but required longer to detect speedo-
meter failures, a third used a more complex model which required more
computation and relied on uncertain vehicle parameters. Because the use
of the simple approximation of vehicle dynamics did not result in false
alarms and allowed failures to be quickly detected, these other models
are not recommended.

The modeled sensor and plant noise covariances were shown to be
important model parameters with significant effects on failure detection
performance. These covariances should be chosen as small as possible to
provide for the quickest detection of failures, but they must be large
enough to account for the sensor noise actually present and modeling
inaccuracies, or false alarms will result.

The robustness of the algorithm was examined by determining how it
performed in detecting failures that are not modeled or improperly para-
meterized. It was shown that a failure that does not correspond exactly
to any of the failure models can cause a failure model to be indicated.

One specific demonstration showed that a speedometer gain change to 0.925

98



caused the 0.9 speedometer gain model to be selected. This capability
allows MM to indicate that a failure has occurred, but more accurate iden-
tification of the failure magnitude may be required if the system is to
be fail operational. A more accurate identification can be achieved through
using more models in the MM algorithm, or by using a parameter identifica-
tion algorithm once MM indicates that a failure has occurred. Whether a
fine set of MM models (e.g., gain change to .9, to .925, to .95) is
worthwhile or not needs to be examined. It should be noted that a two-
mode procedure--i.e., detect using one model and then estimate the gain
change--will actually involve a variable set of models in the second stage
in order to determine the gain value. Therefore, it is not clear a priori
which of the two methods will yield acceptable performance with a compu-
tationally less complex algorithm.

Failure detection performance was shown to improve through the use
of redundant sensors. Redundancy yields the areatest improvement when
modeling inaccuracies 1limit detection performance. This was demonstrated
by showing how the time required to detect failures decreased with re-
dundant sensors, but they can also prevent false alarms by verifying one
another when the model incorrectly predicts what the measurement should be.

After the algorithm's ability to detect failures was examined, the
use of MM in a fault tolerant control strategy was examined. The particular
vehicle follower control law examined required a vehicle to know the
immediately preceding vehicle's velocity and the spacing between the
two vehicles. Under reasonable assumptions concerning how the trailing

vehicle would obtain this information, excellent control results were
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obtained. Specifically, it was assumed that the preceding vehicle

would relay its own velocity measurements to the trailing vehicle, and
that the preceding vehicle would detect its own speedometer failures,
allowing it to supply accurate estimates of its own velocity to the trail-
ing vehicle in the event of a failure. These assumptions allowed the
failures to be quickly and accurately detected so that the effects of

the failures on the system were insignificant. 4Yhen the trailing vehicle
was required to detect the preceding speedometer failure the spacing
decreased somewhat below the minimum safe spacing before the failure

was detected. One possibilty for relieving the trailing vehicle's de-
pendence on receiving accurate velocity information froh the preceding
vehicle was examined. This possibility involved using MM to estimate the
preceding velocity from spacing measurements and its own velocity measure-
ments. The preceding velocity estimates differed significantly from the

true velocity even under no fail conditions so that when used by the con-

troller they resulted in unacceptable string behavior.

6.2 Suggestions for Further Research

In this thesis the MM algorithm was tested using data from a simulated
AGT vehicle. The algorithm needs to be tested using data from an actual
AGT vehicle.

The failure magnitudes were significantly greater than the noise
levels in this research, allowing failures to be quickly detected and
accurately identified. Failures smaller in magnitude will be more diffi-
cult to detect and identify with these noise levels. Further research
should be conducted to determine the minimum failure magnitudes that must
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be detected in order to avoid safety problems and the minimum failure
magnitudes that can be detected with given noise levels.

It has been demonstrated previously that a failure can cause a failure
model to be indicated even though it does not correspond exactly to the
model. Although the model describes the failure accurately enough for
the purposes of failure detection, it may not be accurate enough for the
purposes of fault tolerant control. For example, the speedometer gain
change to 0.925 caused the 0.9 speedometer gain model to be selected, but
the drastic change in steady state spacing caused by variations in speedo-
meter gain indicates that a more accurate identification of the gain may
be necessary. Methods for more accurately identifying failures need to
be examined. One method would be to use parameter identification algorithms
once MM has indicated a failure has occurred. Another method would be
to use a larger set of models for MM.

Additional methods for avoiding or alleviating the trailing vehicle's
dependence on the preceding vehicle for accurate information concerning
the preceding vehicle's velocity need to be examined. It is possible that
through modifying the control law that the preceding velocity estimates
generated by the algorithm would be acceptable substitutes for preceding
velocity measurements. Specifically, the velocity estimates resulted in
an unacceptable control because of the delay involved in estimating the
true velocity as discussed in Section 5.3. A different selection of
constants used in the control law could be made to account for this delay.
Also, there are other control laws that do not require knowledge of pre-

ceding vehicle velocity as mentioned in [25]. For these control laws,
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spacing will be the critical quantity. The spacing estimates provided by
the algorithm may be sufficiently accurate in both failed and unfailed

operation so as to provide good fault tolerant control when used by these

control Taws.
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