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Abstract

Optimal joint detection for interfering (non-orthogonal) users in a multiple access
communication system has, in general, a computational complexity which is expo-
nential in the number of users. For this reason, optimal joint detection has been
thought impractical for large numbers of users. A number of suboptimal low com-
plexity joint detectors have been proposed for direct sequence spread spectrum user
waveforms which have properties suitable for mobile cellular systems. There are,
however, other systems, such as satellite systems, for which other waveforms may
be considered. This thesis shows that there are user signature set selections which
enable optimal joint detection that is extremely low in complexity. When a hierarchi-
cal cross-correlation structure is imposed on the user waveforms, optimal detection
can be achieved with a tree-structured receiver having complexity that is, in typical
cases, a low-order-polynomial in the number of users. This is a huge savings over the
exponential complexity needed for the optimal detection of general signals.

Work in recent literature has shown that a hierarchically structured signal set
can achieve over-saturation (more users than dimensions) with no growth in required
signal-to-noise ratio. The proposed tree detector achieves low complexity optimal
joint detection even in this over-saturated case.

In this thesis the optimal one-shot tree joint detector is derived for the special
case of all user signatures (including phases) exactly known at the receiver and its
behavior in non-ideal conditions is examined via simulation. For the more realistic
case of having an unknown or a partially known phase at the receiver the optimal
one-shot tree joint weight/phase estimator is derived and its performance is studied
through simulations. Three procedures that take advantage of having a sequence of
symbol frames are proposed: the optimal joint weight/phase sequence estimator, the
multi-frame phase estimate average, and the multi-frame recursive phase estimate.

Thesis Supervisor: Alan S. Willsky
Title: Professor
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Chapter 1

Introduction

Multiple access (MA) communication represents an active area of current research

since it is the only means of communication among users in wireless systems such as

mobile and fixed terrestrial systems and satellite-based systems. In each of these ap-

plications the possibility of many users sharing the available communication channel

offers obvious advantages in terms of flexible and cost-efficient use of the channel. In

addition, MA also poses a number of challenging research problems including wave-

form design, user packing, detection and estimation, development of low complexity

receivers, etc. This thesis investigates one of those challenges, namely, the problem

of optimal detection in uncoded MA communications.

The importance and difficulty of the problem of detection in an uncoded MA sys-

tem has been recognized for some time ([8, 23, 21, 4]). In particular, consider a pulse-

amplitude-modulated (PAM) communication system in which each user transmits a

distinct waveform, the amplitude of which is modulated by a weight corresponding to

the information to be communicated.' If there is only one user transmitting through

an additive white Gaussian noise channel, the detector that maximizes the a pos-

teriori joint probability for the user weights is realized at the receiver by a simple

'In binary communications this weight takes on one of two values. Among the most popular
methods for binary PAM is binary phase-shift-keying (BPSK) in which the weights are 1+1, -1}.
For general M-ary PAM, however, M possible values are allowed for these weights.

16



CHAPTER 1. INTRODUCTION 17

matched filter followed by a quantization to the closest weight used in transmission

([7]). If, however, many users were to transmit through the channel the situation can

become far more complex.

One MA case in which detection is simple is that in which the user waveforms

are orthogonal. In this case, as in the single user case, a matched filter followed by a

quantization to the closest weight used in transmission is optimal for each user.2 The

restriction to orthogonal signal sets, however, is often not a satisfactory one.

In particular, the assumption of orthogonality among user signals must be aban-

doned if we are to offer service to more users than orthogonality would allow. In

the absence of time-varying fading, time-varying multipath or frequency dispersion,

it is possible to constrain user signals to be orthogonal.' Of course, this choice limits

the number of users to the dimension of the signal space available for transmission

(1181). "Over-saturating" the signal space with users can, in principle, be accom-

plished with minimal impact on system performance assuming that optimal detec-

4tion can be implemented. It is, therefore, desirable to increase the number of users

beyond the orthogonal limit in order to enhance both system utilization and through-

put. The success of such a system requires that the problem of optimal detection for

non-orthogonal signal sets be confronted.

The challenge, then, is to design optimal, or very near optimal, detectors for MA

systems that employ non-orthogonal signal sets. As discussed in [23], the optimal

joint detector for an arbitrary, non-orthogonal signal set has exponential complexity

'Forcing user transmissions to be orthogonal or nearly orthogonal, even at the expense of inserting
wasteful buffer zones in which no user is permitted to transmit, is common practice in systems of

present.
3For example, current MA processing-satellite systems employing narrow beam terrestrial an-

tennas assign each user a disjoint portion of the available frequency spectrum. This is frequency
division multiple access (FDMA).

4Moreover, as can be seen in the work of Ross and Taylor [16, 15, 17], it is, indeed, possible
to design signal sets having more users than dimensions where the minimum inter-decision-point
distance resulting from use of this set is the same as that achieved by the orthogonal set. Their
design constrains all users to have powers no higher than the users in the orthogonal set. Sections 2.4
and 3.1.1 present the results of Ross and Taylor in greater detail.
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in the number of users, K. This is a catastrophic increase over the linear complexity

of a bank of matched filters, one for each user. Surprisingly, the convention currently

used, even in the case of non-orthogonal users, is a bank of matched filters where for

each user the interference from all other users is assumed to be a second source of

4� noise". With this type of detection, however, it is understood that the error rate

will be higher than that obtained by the computationally complex optimal detector.

Indeed, as argued by Lupas and Verd�i in [8], the performance loss of the conven-

tional approach, as compared to the optimal, can be significant.' This has motivated

several researchers ([8, 23, 21, 4]) to consider slightly more complex, suboptimal

detection algorithms that perform joint detection for all users; better performance

than the simple matched filtering approach is achieved with complexity that is at

most polynomial in the number of users. These methods were developed for the

case of pseudo-noise user signals 6 and require the set of user signals to be linearly

independent'. These suboptimal approaches offer near optimal performance when

the signal energy to noise energy ratio is very high for all users.

In contrast, this thesis addresses the problem of finding an optimal joint detection

algorithm for the case of K > N users in N-dimensional signal space that, like the

suboptimal detectors, has complexity which is a low-order polynomial in the number

of users. The key to devising such a detection algorithm is to choose the set of user

waveforms so that an advantageous geometric structure is present.' In particular, the

51n particular, for the "near-far" problem (large power variations among interfering users) the
conventional detector fails consistently.

'The MA detection literature is heavily concentrated on the cellular problem for which code di-
vision multiple access (CDMA)-through the use of pseudo-noise user signals-exhibits advantages
over orthogonal signals, for example an orthogonal spot is not wasted when a person is not talk-
ing. By restricting the user waveforms to be pseudo-noise pulses, orthogonality among users is not
possible.

'Although some of these detection algorithms may be applied in the linearly dependent case,
they were not intended for the over-saturated problem and, therefore, give very poor performance.

81n contrast to previous work with suboptimal detectors, user signals are not constrained to be
pseudo-noise pulses. As will be discussed in Chapter 3, the structure is chosen to aid low complexity
detection; this structure would be used as a guideline for the choice or design of the actual waveforms
to be transmitted.
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class of signal sets considered in this thesis has a hierarchical tree structure that allows

for a rich variety of possibilities. For example, this desired tree structure is present

in signals of considerable current interest in the signal processing literature such as

wavelets and wavelet packets. Moreover, in the communication literature, we find that

Ross and Taylor ([16, 17]) have developed signal design guidelines that fit K > N

users in N dimensions while preserving the minimum distance of a corresponding

orthogonal system. The advantageous tree structure is a by-product of their design.

This thesis is organized as follows. Chapter 2 formally states the problem and

the general optimal solution. Several existing one-shot detectors are shown, the over-

packing of users is motivated, and the difficulty of the general over-saturated problem

is explained. Chapter 3 details the specific signature structure used throughout this

work. For the special scenario of all user signatures (including phases) exactly known

at the receiver, the optimal one-shot tree joint detector is derived, examples are given

and the computational complexity is calculated. Violations of the ideal conditions are

tested via simulations. Chapter 4 derives the one-shot tree joint detector for the cases

of an unknown or a partially known phase at the receiver. Again, examples are given

to illustrate the detection procedure and computational complexity is calculated. The

complexity of the joint weight/phase estimator can, under some circumstances, grow

to beyond practicality, hence, some suboptimal procedures are developed. Simula-

tion results are reported to show performance of the optimal detectors proposed in

this chapter. Chapter 5 derives both optimal and sub-optimal tree weight/phase es-

timators that would be used with a training sequence. Chapter 6 discusses issues for

future work on this topic and offers concluding remarks.



Chapter 2

Background

2.1 The Problem

Time-bandwidth restrictions on any communication system limit the dimension, N,

of the space of possible user waveforms. Adopting the commonly-used vector space

framework ([121), the N-dimensional complex signal space would correspond to V N

and the multiuser joint detection problem may be stated as follows: for a given

Kset of user waveforms represented in signal space by the set of signal vectors, fSkJ , ,

Sk E UN , the general uncoded detection problem is to compute an estimate of weights,

b, from an observation r E UN,

K

r E bkSk + an = Sb + an, (2.1)
k=1

where

* K is the number of users.

9 b E r' = I [b, ... bK ]T I bi G Pi I, where Pi is some finite set of amplitudes (real
or complex) and the b-'s are independent and identicall distributed (i.i.d.),

z y

uniform. For Pi having M elements, this is 11/1-ary signaling.

20
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• S - [S1, - - -, SKI is an N x K matrix whose columns are user signal vectors as

seen at the receiver.

• n is a vector of independent, circularly Gaussian, zero mean, unit variance

complex random variables.

• a is the noise standard deviation.

The satellite uplink channel is well modeled by Equation (2.1) where the re-

ceived waveforms are 7 simply, translated and attenuated replicas of the transmitted

waveforms. 1

A two dimensional, two user example of a received signal for which the noiseless

received signal is denoted by r',

r b1S1 + b2S2,

is shown in Figure 2-1. The signature vectors are as shown in Figure 2-1-(a) and (b).

If binary phase shift keying (BPSK) is employed, i.e., bi E 1+1, -11, the range of r',

the possible noise free received signal vector, consists of the four points in the real

plane, as shown in Figure 2-1-(c). The collection of points that comprise the range

of r' will be referred to as the received constellation. Figure 2-1-(d) depicts the

2probability density for the actual received vector, r, as a density cloud. The density

cloud qualitatively shows that the received vector, r, is more likely to be near one of

the four points in Figure 2-1-(c) and less likely to be far from the points.

lKnowledge of the operations of existing and next generation military satellites that will be
referred to throughout this thesis was obtained through discussions with Dr. Don Boroson, the
Assistant Group Leader of the Satellite Communications Technology Group at the MIT Lincoln
Laboratory. The text on satellite communications by Gagliardi ([5]) is also recommended for more
on the modeling and operation of communication satellites.

'The probability density function (PDF) for this example is the sum of four appropriately shifted
and normalized two-dimensional Gaussian functions. The next section mathematically shows the
general PDF for the MA detection problem,
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S2

S

(a) (b)

probability density cloud for r
range of r'

0

(C) (d)

Figure 2-1: Example of two users in two real dimensions. (a) The signature of user 1,
sl, is depicted as a vector pointing along one dimension. (b) User 2 has a signature
vector that lies in both dimensions. (c) Set of all possible points, r' -- bis, + b2S2, bi E
f + 1, - 1 1. (d) Probability density function depicted qualitatively as a density cloud
for r = r' + an, n having zero mean, independently Gaussian elements.
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2.2 The General Optimal Solution

In this section, the maximum a posteriori (MAP) joint weight estimator is derived for

the problem stated in the previous section. Recall that the MAP estimator results

from using a cost function that equally penalizes all possible ways of making an error

Q20]). The MAP estimator for b, minimizes the probability of there being an error

in any of the users' weight estimates. The MAP construction is used throughout this

thesis.' For this derivation, no special structure among user signature waveforms is

assumed.

The MAP joint weight estimator chooses the values for b E F that maximizes the

a posteriori probability density function (PDF) for b, given the received vector, r,

Pblr(blr) -Prlb(r I b) Prob(b)
Pr (r)

For an actual system, Prob(b) is well modeled as being the same for every realization

of b. The MAP detector, then, will result in the same estimate found by the maximum

likelihood (ML) detector which maximizes Plb(rlb) over b. We can easily write

Plb(r I b) as

Prlb(rlb) )2N exp(- I lir - SbJ 12).
�7227ra

The optimal joint weight/phase estimator is given by

b(r) - arg max Prlb(rlb), b (E F
b

or

b(r) -- arg max ln[PrJb(rJb)], b E F.
b

3Note that a single user in the system may be more interested in the average probability of weight
error for each user. A worthwhile extension of the work done in this thesis would be the derivation
of detectors that minimize the average probability of making a weight error for each user. More is
said on this topic in the future work section of Chapter 6.
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Discarding constant terms and constant negative multipliers from the function to be

maximized gives the optimal joint detector for general signature matrices, S,

arg min I Jr - SbJ 12. (2.2)
bEr

Notice that the general optimal joint detector in Equation (2.2) requires a search

over all possible realizations of the weight vector b, the number of which is exponential

in the number of users. For typical numbers of users, this search is not possible with

even the most advanced computers available today.

The ML joint weight/phase estimator may be interpreted as follows. The optimal

detector defined by Equation (2.2) finds the point, �', in the range of the random

variable r' = Sb that is closeSt4 to the realization of the random variable r. This

closest point, F, lies on one of the points in the range of r'. The value of b that

corresponds to this point constitutes b, and the weight estimate is correct, i.e., b

bt,,,,,, if �' lies on the same point as does r'true'

For the simple example in Figure 2-1, the decision regions for �, given any possible

value of the received vector, r, are shown in Figure 2-2.

2.3 Existing Joint Detectors for MA Communica-

tions

This section briefly describes four detectors, the conventional detector (used in sys-

tems of present), and three more proposed in the literature, the decorrelating joint

detector Q8, 9]), the decision feedback joint detector Q41), and the multistage joint

detector Q21, 22]). For simplicity, all detectors are shown for BPSK signaling.

Systems of present do not yet employ joint detection. Rather, each user is treated

as if it were the only user in the system, where any interference due to the presence

'Closest, in terms of Euclidean distance.
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decision regions for the optimal joint detector

(b] b2 (-I,+I)

(blb2 (+I,+I)

(bl b2

(bl b2 (+I,-I)

Figure 2-2: Optimal decision regions for the example of two users in Figure 2-1.

of other users is treated as if it were additive white Gaussian noise. The conventional

approach to receiver design is to use a matched filter and slicer,5

Hbk(r)- Sgn [skr], (2.3)

or

�conventional (r) = sgn [SH r], (2.4)

where sgn represents the signum function and bk denotes the estimated/detected

weight of the k 1h user. Here, S' is the complex conjugate transpose, or Hermitian,

of S.

The conventional matched filter (2.3) represents the optimal receiver in two cases.

In the first case, the user signatures must be orthogonal, e.g., if s4sj = 0 Vi

the conventional detector of Equation (2.4) is equivalent to the optimal detector of

Equation (2.2) for BPSK. Typical orthogonal MA systems keep users from interfering

through the frequency division or time division of user transmissions. In the second

5This assumes binary PSK, b E f + 1, - 1 1.
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CONVENTIONAL DETECTOR DECORRELATING DETECTOR

(a) (b)

Figure 2-3: (a) Decision regions for the conventional detector for the example of two
users in Figure 2-1. (b) Decision regions carved out by the decorrelating detector for
the two user example of Figure 2-1.

case, user signatures are designed to look like white Gaussian noise to one another. 6

Specifically, users are assigned pseudo-noise waveforms (or direct sequence spread

spectrum (DSSS) signatures) which have low cross correlations with one another.

Under this assumption, as users are added to the system the multiple user interference

raises the noise level; this, in turn, degrades the matched filter performance. Figure

2-3-(a) shows the decision regions that would be carved out by the conventional

detector for the two user example from Figure 2-1. Notice that even in the absence of

noise, this detector will consistently fail for the set of user signatures in this example

since the cross-correlations between these users is too high to assume that they are

orthogonal.

'In this case the multiple access interference is well modeled to be additive white Gaussian noise if
the receiver has no prior knowledge of the waveforms that comprise the multiple access interference.
Since the receiver knows each user's waveform, the conventional detector is not strictly optimal for
this second case.
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The remaining detectors described in this section were developed for use with

DSSS signatures (pseudo-noise waveforms). In this case there is no exploitable struc-

ture in the set of user signatures, and correspondingly, S in Equation (2.1) also has

arbitrary structure. In [23], it is shown that the optimal joint detector for an arbi-

trary signal set has exponential complexity in the number of users, K. The following

detectors were motivated by the search for low complexity suboptimal solutions for

the MA joint detection problem with DSSS signatures.'

The decorrelating linear detector of Lupas and Verd�i ([8]) is analogous to the

linear zero forcing equalizer used to combat single user inter-symbol interference. 8

The decorrelator is
1

bdecorrelator(r) -_ sgn[(S*)- r]. (2.5)

where (S*)-' is the complex conjugate inverse of S. In words, for each user, the

decorrelator "zeros" out the contribution of the other users, leaving only the portion

of the received signal which lies in the subspace which is not spanned by the rest

of the users' signatures. From the sign of this, possibly very small, remnant of the

received signal, the weight of the user is estimated. Figure 2-4-(b) shows the decision

regions that would be carved out by the decorrelating detector for the two users from

Figure 2-1.

Notice that this detector requires S to have an inverse. This implies that the user

signatures are linearly independent, hence, the number of users must not exceed the

number of signal dimensions, i.e., K < N must be satisfied.'

Another joint detection scheme analogous to one used for single user inter-symbol

interference is the decision feedback joint detector of Duel-Hallen ([4]). This detector

7These detectors will, of course, work well under certain conditions for MA systems that use
waveforms other than DSSS.

'A good text for single user communications is [7], by Lee and Messerschmitt.
'Of course, replacing (S*)-' with the complex co 'ugate pseudo inverse, (S*)+, is the natural

extension of this detector for the case of K > N. This will give very poor performance, however.
Some discussion of this is offered in Section 2.5.
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is based on solving

r -_ Sb (2-6)

with QR factorization." For a matrix, S, having linearly independent columns, a

convenient factorization can be found,

S - QR7

for which Q is unitary (orthonormal columns, QY = Q-') and R is upper triangular.

Equation (2.6) becomes

Q"r -_ Rb,

a compact representation of N equations with N unknowns. The last row or equation

has only one unknown, since R is upper triangular, and we may read off the solution

for the last element of b. Next we may substitute this solution into the second to

last row or equation (feed it back) to obtain the second to last element of b, and so

on. The decision feedback MA joint detector differs from this method (also called

Gram-Schmidt orthogonalization) only slightly due to the existence of noise and the

a priori knowledge, b E I + 1, - I I - Including noise gives

QHr -_ Rb +,7QH n. (2-7)

The weight estimate at each stage of the feedback, starting at the bottom of the

matrix equation in (2.7) will have one more step at each level than did the noiseless

procedure just described. Specifically, the solution at a given level will be changed

to a +1 (-I) if the sign of the solution to the equation at that level is positive

(negative). Figure 2-4 shows the decision regions carved out by the decision feed

back joint detector. This detector will give different results for different ordering of

the users (or columns of S). Figure 2-4-(a) corresponds to stripping off the user with

"See the text by Strang [19] for more details on solving matrix equations.
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DECISION FEEDBACK DETECTOR

(a) (b)

Figure 2-4: Decision regions carved out by the decision feedback detector for two user
example of Figure 2-1. (a) Detecting user I first. (b) Detecting user 2 first.

the lowest energy first, while Figure 2-4-(b) corresponds to stripping off the user with

the highest energy first.

Another approach that has been shown to offer good performance is the multistage

joint detector (MJD) developed by Varanasi and Aazhang in [21] and [22]. In this

procedure, the weight decisions are achieved after several iterations. The iteration

defining the MJD is

gn[ST STS)�(M)],b(m + 1) -- s r + (E (2.8)

IL
where the energy matrix E - diag ((Sk, Sk))'k=l In words, the MJD estimates the

interference seen by each user due to the presence of the other users and subtracts

it from the output of the matched filter to obtain an estimate of the desired weight.

This process is iterated to obtain "better" estimates of the multiuser interference in

the hope of improving the estimate of the desired bit.
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If the sgn were removed from Equation (2.8), it would be the Jacobi iteration to

solve STr = STSb for which STS - E - (E - STS). Recall, that for a Jacobi iteration,

ST r -- [E - (E - STS )]b

is rearranged to give

Eb - ST r + (E - ST S)b,

and the b on the right hand side is replaced with b(m) while the b on the left hand

side is replaced with b(m + 1). The logic behind the addition of the signum is to take

advantage of the prior information on b, namely, b E 1+1) -1j." In the presence of

noise, the Jacobi iteration is not guaranteed to converge. No figure is given for the

decision regions for the MJD.

The common constraint for the methods described in this section is that the user

signatures must be linearly independent and the number of users cannot exceed the

number of signal space dimensions available." In other words, even if the users are

not orthogonal, use of these detectors limits the number of users to that which can

be orthogonally fit into the given time/bandwidth signaling space. Alternatively, this

thesis is concerned with the operation of MA systems that have more users than

signal space dimensions, hence, the work in recent literature, although valuable and

insightful, is an inappropriate foundation for this thesis. The next section offers some

simple examples to motivate the packing of more users than dimensions into a MA

communication system.

"Since E is diagonal with positive elements, we may remove it from the left hand side before
taking the signum.

12Moreover, as these detectors were intended for DSSS waveforms which tend to have small cross-
correlations, the performance of these detectors deteriorates as user signatures become more highly
correlated.
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2.4 Over-saturation of the Signal Space

A communication service provider would, of course, like to provide reliable commu-

nications to as many users as possible. In wireless systems of present it is common

for users to be turned away due to a lack of signaling spots. The number of spots

in current systems is determined, in the case of frequency division or time division

multiple access (FDMA or TDMA, respectively), by the number of orthogonal slots

available or, in the case of a DSSS (or CDMA) system, by the maximum level of

interference noise that can be tolerated Q27, 18]). With the use of the optimal joint

detector, more users can be reliably fit into a system than would be possible when

assigning users orthogonal signatures.

This over-packing of the signal space is termed over-saturation. The simple ex-

ample in Figure 2-5 shows and example of over-saturation. This figure shows the same

user signatures, si and S2, used in the previous examples, beginning with Figure 2-1.

In Figure 2-5-(a) we have allowed a third user, having signature vector S3, to enter

the system. Figure 2-5-(b) shows the received constellation, i.e., the set of possible

noiseless received signals, r/ - bis, + b2S2 + b3S3 for bi E 1+1� -11. Figure 2-5-(c)

shows decision regions carved out by the optimal joint detector.

The probability that the optimal detector makes an error is entirely determined

by the size, shape and placement of the decision regions relative to the received

constellation. When the noise variance is small, the dominating factor in calculating

the probability of making an error is the minimum distance between points in the

received constellation and decision region boundaries. In Figure 2-5-(d) this minimum

distance is denoted as d,,,i,. For this example di, is identical to the minimum

distance for the optimal detector in Figure 2-2 for two users in two dimensions. This

means that if a system were operating with the two users having signatures si and

S2 shown in Figure 2-5-(a), with minimal performance degradation, service could

simultaneously be offered to a third user by assigning it the signature corresponding

to the vector S3 in Figure 2-5-(a).



CHAPTER 2. BACKGROUND 32

3 USERS in 2-D

S2
S3 range of r'

Si

(a)

dmin

(C)

Figure 2-5: (a) Three signatures vectors. (b) The received constellation or range
of possible noiseless received signals, r' - b1s, + b2S2+ b3S3 for bi E �+I' -II. (c)
Decision regions carved out by the optimal joint detector.
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In two dimensions, the ability to squeeze in another user arises from the unequal

energies of the user signature waveforms. This scenario occurs naturally in practice

in a terrestrial wireless system since some users will be closer to the receiver and

others will be far away. In a satellite system, some users will have large transmitting

antennas powered by comparatively unlimited sources while others may have small

portable antennas powered by batteries. 13

As given by a simple theorem developed by Ross and Taylor in [16, 17], beginning

with an orthogonal system of users having equal or different energies, more users can

be fit into the system without decreasing the minimum distance compared to that

of the received constellation of the original orthogonal set. The number of users is

determined by the number of dimensions and the relative powers of the users. One

example of equal energy users employing BPSK can fit one additional user of the

same energy for every four orthogonal users. Iterative applications of this rule leads

to the packing of 21 users in 16 dimensions, 85 users in 64 dimensions, etc. In the

limit as the number of dimensions gets large, the number of users can be increase by

33% compared to the orthogonal system. Section 3.1.2 shows some specific examples

of the Ross/Taylor sets.

Via simulations, Appendix A shows the performance obtained by the optimal

receiver in an MA system employing the over-packed Ross/Taylor sets and compares

it to the performance of an MA systems employing orthogonal sets. For a set of equal

energy users, the performance degradation due to over-packing is 0.25 dB, on average.

This means that for the users in an over-saturated MA system with the Ross/Taylor

sets achieve the same bit error rate (BER) as the users in an orthogonal system, the

over-packed users must have a signal to noise ratio (SNR) 0.25 dB (or 6%) greater

than the SNR for the users in the orthogonal MA system.

From the example in Figure 2-5 and from the results of Ross and Taylor, we see

"Large power variations among interfering users is often referred to as the near-far problem.
Here, we see that as long as optimal detection is used, the near-far scenario offers an advantage for
increasing system throughput.
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that if we can use optimal joint detection (which has a performance that is largely

dictated by the minimum distance in the received constellation) over-saturation is a

viable alternative to orthogonal MA, thus, allowing for a more efficient use of the

system resources.

It is important to note, however, that for the general MA problem, optimal joint

detection is achieved with procedures having no less than exponential complexity.

Moreover, without reliable low complexity detection at the receiver, over-saturation,

i.e., throughput gain, is not possible. The next section explains the difficulty of

detection for the general over-saturated case.

2.5 Difficulty of General MA Joint Detection

In order to understand the obstacles of developing a low complexity joint detection

algorithm the detection problem is described in a geometrical framework. To begin

our understanding of the problem we examine its fundamental structure in the absence

of noise.

Recall the definition of the set of weight vectors for BPSK

A
F = f [bi ... bK]' I bi E 1+1, -11 Vz = 1, KJ.

Geometrically, IF comprises the vertices of a hypercube of dimension K. For K > N

the N-dimensional signature vectors, f sk. are linearly dependent. This means that

the solution, x, to

r Sx (2.9)

is not unique. By definition of linear dependence, we have

Sa -_ 0

for any a E V(S), the null-space of S. We may, then, express the solution of Equa-
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tion (2.9) as

X + a,

for which 0 1 ce so that

r = S(0 + a) = So. (2.10)

The only solutions of interest to the MA problem are the values of (O+ a) that are con-

tained in the set IF. In other words, for every 0 1 Y(S) which solves Equation (2.10)

we are interested only in the solutions for which (O + a) G IF, where a G Y(S).

A geometric interpretation of the above discussion follows. We have our set of

possible solutions, F, the vertices of a K-dimensional hypercube. We separate our

solution 7 X, into two parts, a and 0. This corresponds to viewing our vector space,

cK )14 as the Cartesian product of two complex subspaces, ,V(S) and the space which

is orthogonal to Y(S), namely, 'R(ST), the row-space of S. Given the uniquely

determined solution, 0 1 Y(S)", the general solution must lie in the affine space

I/V =`2' Y(S) + 0. The MA joint detection problem corresponds, geometrically, to

finding the point, x, which lies in the intersection of the set F and the affine space

W.

Our problem of finding the intersection between W and IF can be shown for general

singular signature matrices, S, to be NP-complete, i.e., to have a solution procedure

having a complexity which is, at best, non-polynomial in the number of elements of

x No solution which is polynomial in complexity is known to solve the NP-

complete problem. In general, sub-optimal attempts to solve Equation (2.9) for an

arbitrary singular matrix, S, and for x from a known discrete set, suffer from possible

convergence to local minima."

"The space CK contains all solutions, x.
"Alternatively, 13 may be specified as the minimum length least squares solution to Equation (2.9)

where 13 = S+r, and S+ is the pseudoinverse of S.
"The noise free problem of over-saturated MA joint detection is exactly the same as the integer

programming problem which is known to be NP-complete (11 11) -
"For example, the decorrelator doesn't make sense for the over-saturated system since extending
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The development of low complexity optimal detectors for over-saturated MA com-

munications is the topic of the remaining chapters of this thesis. The approach taken

is to recognize that the problem of designing a reliable and realistic MA communica-

tions system allows for the joint design of users' signatures and detection procedures.

In other words, exercising the control we have over the characteristics (or structure)

of S will make our job easier. As is shown later in this thesis, imposing structure

on S will aid in the design of low complexity optimal detectors for over-saturated

MA. The next chapter begins with an illustration of the signal structure that is used

throughout this thesis.

the decorrelating detector of Equation (2.5) by replacing S` with the pseudoinverse, S+, will give
an estimate, fi, that is the projection of 13 onto the nearest point in 1. This projection is typically not
the point at which r and W intersect. For a more detailed treatment of this geometric interpretation
and for an analysis of an alternating projection detector, see the paper by Learned, Mallat,
Claus, and Willsky OD-



Chapter 3

The 1\4ultiple Access Tree Detector

In this chapter the signal set structure of interest is described and illustrated. For the

ideal case in which each user's signature waveform is entirely known at the receiver,

an overview of the hierarchical one-shot tree joint detector is given via an example,

this low complexity optimal detector is formally derived, and a its computational

complexity is calculated. The term "one-shot" is used to specify that the weight

estimates for all users are made after observing the received signal over only one

symbol duration.' Details of the processing procedure of the tree detection algorithm

are also given along with a binary example. Via simulations, the tree detector derived

for the ideal case of completely known, tree structured signature sets is tested for two

non-ideal cases: 1) violation of tree structure, 2) incorrect knowledge of a user's phase

at the receiver. In such cases, the tree detector, being sub-optimal, offers surprisingly

good performance.

'In contrast, to reduce the probability of making errors at the receiver, error correction coding
can be used. It can either be implemented separately from the one-shot communication system or
it can be paired with detectors that make sequence decisions after collecting several symbols worth
of the received signal. This thesis assumes that any decoding is done on the hard decisions made by
the one-shot detector.

37
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3.1 The Signal Sets

3.1.1 Signal Vector Set Structure

The geometric structure imposed on the signal vector set' is best described by saying

that the set of signatures has tree-structured cross-correlations. Specifically, S

will have the desired structure if the signal vectors, the columns of the matrix S,

can be assigned to the nodes of a tree like the one shown in Figure 3-1. The tree

pictorially conveys the following required relationships among user signal vectors.

* Each vector at a given level of the tree is orthogonal to all other vectors at that

level.

* A signal vector is correlated only with its ancestor vectors (parent, grandparent,

etc.) and its descendant vectors (children, grandchildren, etc.).

Both linearly dependent and linearly independent sets of signature vectors may be

created to have tree-structured cross-correlations. The detector detailed in this paper

finds the optimal solution for both cases.

The constraint of tree-structured cross-correlations, while very particular, actually

allows for a considerable amount of flexibility in designing user waveforms. Given a

tree, a signal set may be constructed to possess the desired cross-correlation structure.

Assume that waveforms at the bottom level of the tree comprise an orthogonal set.

An orthogonal set is obtained at any level, i.e., the I" level, by constructing a signal

at each node at this level as a linear combination of the signals at its bottom-most

descendant nodes. Since orthogonal signals have been assigned to the lowest level

nodes of the tree, the sets of bottom-level descendants for distinct nodes at the I" level

are disjoint, and consequently the signals created at level I are mutually orthogonal.

'For ease of notation, the abstract complex baseband signal space representation of real passband
signals is used, and, hence, all properties imposed on the signal vectors will also be true for the real
waveform counterparts. The signal vector set structure described in this section, therefore, can be
viewed as design guidelines for the waveforms that would be used in practice.
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SK

SK-1

SN+i

SI S2 SN

Figure 3-1: This example of a general tree shows the correlation structure needed
among signature vectors within the signature set.

It follows that the general construction of a signal set with tree-structured cross-

correlations requires (a) the specification of the tree structure, i.e., the number of

levels, L, and the parent-child relations for all levels and nodes of the tree; (b) the

specification of any orthogonal basis SI, S2, - - - , SN, Of VN which is then assigned to

the N nodes on the bottom of the tree;' (c) the specification of the weights for each of

the linear combinations used to construct signals from their bottom-level descendants;

and possibly (d) the deletion of signals at any of the nodes. This formulation allows

for considerable flexibility in designing the signal set since any choices that satisfy

(a)-(d) will lead to the desired geometric structure on the signal set. Note also

that (d) provides the flexibility to capture linearly independent sets with the desired

correlation. 4

'Without loss of generality, we may assume that the bottom level of the tree has exactly N nodes.
4For simplicity, however, (and since we wish to emphasize the applicability of our methods to the

over-saturated case) assume that the tree is full, i.e., that there is a user signature at each node on
the tree. The extension of the low complexity optimal detection scheme to the case in which there
are fewer users is immediate.
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3.1.2 Some Examples of Signature Sets

There are many different signal sets that can be constructed to have the tree struc-

ture just described. This section gives examples of two particular choices of signal

vector sets, one of which involves signals of considerable current interest in the signal

processing community, namely, wavelets and wavelet packets Q10, 3]) and one that

was introduced in [16, 15, 17] directly in the context of designing signal vector sets

for over-saturated MA systems. Note that the following two examples are, simply,

two different realizations of requirements (a), (b), and (c), in the above discussion.

Wavelet Packet Sets

Wavelet and wavelet packet waveforms may be generated from a tree-structured pro-

cedure in which subspaces (generated by sets of orthogonal signals) are decomposed

into Cartesian products of orthogonal lower-dimensional subspaces.' The result is a

wavelet or wavelet packet dictionary consisting of an over-complete set of basis func-

tions. A discrete wavelet packet dictionary offers a rich set of signal vectors from

which to select many tree-structured sets. An example of a discrete wavelet packet

signal set is shown below as an intensity matrix where each element of the matrix is

shown as a pixel in the 8 x II image. The values are shown in gray scale where the

smallest is denoted by white and the largest is denoted by black.

S

Each column of S is a user signature vector. In order to reveal the tree-structured

cross-correlations among user signatures, the absolute values of the elements of STS

5 For a tutorial treatment of wavelet packets see the paper by Coifman and Wickerhauser ([3]).



CHAPTER 3. THE AIULTIPLE ACCESS TREE DETECTOR 41

S11

S9 S 0

SI S2 S3 S4 S5 S6 S7 S8

Figure 3-2: Correlation tree for a wavelet packet signature set.

are displayed below, where 0 and I are denoted by white and black, respectively.

STS

S'S is the matrix of cross-correlations between the received signals of the eleven

different users. The wavelet packet signal vector set can be cast onto a tree with

three levels as shown in Figure 3-2.

Minimurn Distance Sets

Another example is the minimum distance sets developed by Ross and Taylor in [15,

17]. They begin with N orthogonal users in N dimensions. The set of possible received

points based on an M-ary PAM MA system with an orthogonal set of signal vectors

has associated with it a minimum distance. That is, if the vectors ISI, S2, - - - , SNI

is the orthogonal signal set, then there is a specified minimum distance between any

two points in the received constellation, i.e., the set fy:N bkSk I bk E Pkj. Since

the distance between the elements in this set are directly related to the probability

that the optimal detector makes an error, maintaining a specified minimum distance is
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desirable. Ross and Taylor devise a method for adding additional, energy-constrained,

linearly dependent users so that the minimum Euclidean distance between received

points is preserved. The reader is referred to [I 7] for details of their construction.

Ross and Taylor, for antipodal binary modulation, Pk + 1, - I 1, fit 4 N - ' unit3 3

energy signal vectors into N dimensions where N must be a power of 4. A specific

example detailed in [17] is briefly repeated below.

1/2 0 0 0 1/4

1/2 0 0 0 1/4

1/2 0 0 0 1/4

1/2 0 0 0 1/4

0 1/2 0 0 1/4

0 1/2 0 0 1/4

0 1/2 0 0 1/4

S 116 0 1/2 0 0 1/4 (3-1)

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

Here, 116 is the 16 dimensional identity matrix. The cross-correlation matrix, STS'

is given below, again, as an intensity plot with 0 and 1 corresponding to white and

black, respectively.
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Figure 3-3: Correlation tree for a unit energy minimum distance signature set.

ST S =

-ONNNIMIEWW"'I

The structure of S'S reveals that this minimum distance set of signature vectors

may be cast onto a quad tree for which 4 children emanate from each parent node, as

shown in Figure 3-3. The signature vector associated with the top of the correlation

tree is the right-most column of S. The first 16 columns are associated with the

bottom of the tree. These signature sets were designed for their minimum distance

property. The tree hierarchy they possess is a by-product that can be exploited in

the optimal detector described in Section 3.4.

The remainder of this thesis is devoted to the development of low complexity, opti-

mal, and near optimal joint detectors for an over-saturated system of tree-structured

user signatures. It is important to recognize that for the success of an over-saturated

system, further investigation of good ways of over-packing users with tree structured

signature sets needs to be done to ensure reliable performance. Though the design

and analysis of signature sets is beyond the scope of this thesis, the minimum dis-
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tance sets offer a good foundation for the rest of this thesis since they do a good job of

packing in more users than dimensions. In the limit as the number of dimensions gets

large, the minimum distance sets offer a 33% increase in the number of active users in

a MA system relative to that of an orthogonal system with very small increases in bit

error rate (BER) per user. Appendix A shows some bit error rate curves comparing

the performance of optimal joint detection for orthogonal users, a Ross/Taylor set

of 5 users in 4 dimensions, and a Ross/Taylor set of 21 users in 16 dimensions. All

simulations in this thesis will be done with the minimum distance sets.

3.2 Notation

Notation is introduced that will be used throughout the remainder of this thesis.

* n: node index

* pn: index of the parent to node n

o P-n: index of the ancestor to node n that is rn levels above n 6

& an = Jpn, p2 n, p3 set of indices corresponding to the ancestor

nodes of node n 7

o cni: node index for the Z"h child of node n

o Kn: number of children of node n

o cn cni, cn2, - . ., cnKn}: set of indices corresponding to children of node n

o dn f cni, (Icni, cn2, dM2, - - - I cnKn, dC?'1Kn1: set of indices corresponding to

the descendant nodes of node n 8

'Note that if node n is at level 1, the index of the root node can be denoted by pi-in.
7This ordering of ancestors is important and will be useful later,
'Note that dn is recursively defined, where dcni is the set of descendants of node cni. In addition,

the ordering of nodes into sub-tree groupings will be useful in later sections.



CHAPTER 3. THE MULTIPLE ACCESS TREE DETECTOR 45

* f n = In, dnJ: the family of indices associated with node n 9

Note that the set of descendants for a node, n, at the lowest level of the tree is empty,

i.e., dn = 0. Likewise, the set of ancestors for the root node is empty, i.e. an = 0.

Using the above tree index notation, the weight estimate and signature vector

associated with a node, n, of the tree may be denoted by b,, and s, respectively.

Collect the weight estimates and signature vectors of all ancestors of node n into a

column vector, �an, and corresponding signature matrix, San, respectively. Here, the

columns Of Sa, are the signature vectors, si, i E an. Similarly defined are bd,, and Sd,-

The inner products between the user signals is required for the derivation of the

estimator in Section 3.6
T

S. S.
z 3 � 3' (3.2)

Extending this definition, the following notation is established:

0 Yian = STSa,: row vector of inner products between a signal and its ancestor

signals

Y.Zdn = STSdn: row vector of inner products between a signal and its descendant

signals

TYandn SanSdn: matrix of inner products between ancestor and descendant

signals

STYdndn dnSd,,: matrix of inner products among the group of descendant

signals

'Each set of family indices corresponds to an entire sub-tree having root node corresponding to
node n.
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3.3 Discussion of Processing

The first key signal processing operation in the detection algorithm will be the cal-

culation of the following set of coefficients from the received signal r:

li - s Tr, i -_ 1, 2.... I K. (3.3)i

The calculations of each li corresponds to processing the data r through a filter

matched to the signal s.." Reductions in the calculation of the set f QK can be

obtained by taking advantage of the exact relationships among user signatures on the

tree.

Due to the manner in which the tree-structured signal set was created", both the

inner products and the matched filter outputs for nodes above the bottom level can

be easily calculated from the sets I y .,i} and I Q where i = 1, . . . , N corresponds

to the bottom-level nodes. This will allow for an efficient calculation of y and li for

i > N, the non-bottom-level nodes.

If we were to adopt a tree-recursive construction for our tree-correlated sets

we would realize further simplification in calculating the sets of yij and li. A tree-

recursive set requires the signal, s,, at a node n to be a linear combination of its

children. 12 The computational reduction is due to a node having far less children

than bottom-level descendants. If we define S,, to be the signal vector matrix for the

signals that lie at the children nodes of node n, we require the signal set construction

Kn

Sn ": Scnhn hncni Scni (3-4)

"As will become clear in Section 3.6, jj,}K is the set of sufficient statistics needed for optimal
detection.

"Recall that a signature at node n was constructed as a linear combination of its bottom-level
descendants.

12Note that both the minimum distance and the wavelet/wavelet packet sets can easily be chosen
to exhibit this tree-recursive quality.
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s-, -=:: h7,.5 s.5 + h7,6 S6

s,5 = h5,lsl + 115 2S? sr, = h6,3s3 + h6,4S4

Sl S2 S3 S4

Figure 3-4: An example of a set of tree-structured signature vectors.

where the elements of h' = [h,,,,, h, ... C112 n, m are known but arbitrary.

To illustrate a tree-recursive signal set, consider the signal set shown in Figure 3-4.

This signal set comprises 7 users in 4 dimensions. The four signals, f S1, S2, S3, S41,

at the bottom of the tree form an orthogonal basis for V4 , and the three upper-level

signals are as shown in the figure.

The inner products, y,,., of recursive tree-structured signals can be quickly com-

puted from h, and I ISi I 12 yij for i N. In particular, from Equation (3.4),

since the signal S n at node n is expressed in terms of the signals at its children, we

have Yni -_ h TST S. - h Ty"",. It follows that the yi, can be calculated in a pyramidalcn z 71

fashion from the bottom of the tree to the top.

Due to a tree-recursive creation of the signal set, the matched filter outputs for

nodes above the bottom level can also be calculated in a pyramidal fashion. Specifi-

cally,

1, = h TST r = h Tj"" (3.5)
n cn n

where 1,,,, is the column vector having elements 1k, k E cn. For our example of

Figure 3-4, we calculate 11, 12, 13, and 14 at the bottom level of the tree. Then, at the

next level of the tree we compute

15 -_ h5,111 + h5,212 , 16 = h6,313 + h6,414 (3.6)



CHAPTER 3. THE MULTIPLE ACCESS TREE DETECTOR 48

and at the top level of the tree

17-- h7,515+h7,616 (3.7)

The structure of these calculation is reminiscent of the structure of the calcula-

tions involved in computing wavelet or wavelet packet coefficients at a sequence of

13scales ([3]). It follows that the computational complexity of determining the li's is

comparable to that of a wavelet transform: for an N-dimensional signal space with

K users there are N matched filter outputs 1i - Jr, i 2,.. ., N to be calculated

at the bottom level of the tree followed by, at most, (K - 1) additional multiplies and

adds to compute 1i for the remainder of the nodes on the tree.

3.4 The Tree Joint Detection Algorithm

3.4.1 Overview of the Detector

Recall that the optimum joint detector for the problem stated in Equation (2.1)

chooses the weight vector estimate, b, according to the nearest neighbor or minimum

distance rule.

arg min I ir - Sbj 1'. (3-8)
bEP-T'�

For ease of discussion, each user is assumed to employ the same M-ary PAM for the

remainder of this thesis where bi E P, Vi; this assumption is not essential to the

operation of the tree algorithm. An MA system employing an arbitrary set of signal

vectors, the columns of S, can achieve optimal detection through an exhaustive search,

i.e., the detector performs AV'� - I comparisons to find the best estimate Q231).

"In this case, however, the coefficients in the vectors h,, are not required to correspond to the filter
coefficients used to construct orthogonal wavelets or filter banks. Moreover, a regular structure is not
required-e.g., different parent nodes at the same level of the tree may have a different coefficients
in their h, vectors and may also have different numbers of children.
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Figure 3-5: An example.

If the signal set has been constructed to have the tree cross-correlation structure

described in Section 3.1.1, the optimum detector of Equation (3.8) can be achieved

through a tree-structured algorithm that offers a huge reduction in the number of

comparisons. In particular, because of this signal set structure, a signature at a given

node is correlated with all signatures at its ancestor and descendant nodes and is

orthogonal to all other signatures on the tree. The weight estimate) bn5 at a given

node, n, will affect the estimates at descendant and ancestor nodes but will not

directly affect the other estimates on the tree.

A simple example provides the basic idea. Consider the tree structure in Fig-

ure 3-5 and consider, first, the choice of the weight estimates for users I through

4 having signal vectors SI, S2, S3 7 S4. These vectors are mutually orthogonal and are

also orthogonal to S5, S6, S7, ss and sio but not to s9 and SI,. Since S5-s's and sio

are also correlated with SI,, the decisions on weight estimates for s5-s8 and sio, are

coupled with those for SI-S4. These estimates can, however, be decouple by looking,

instead, at the conditional estimates. Specifically, for each possible pair of weight

estimates for s9 and SI,, the optimal weight estimates for SI, S2, S37 S4 can be indepen-

dently computed-i.e., the problem to be solved for each of these weight estimates

is decoupled not only from the other three but also from the weight estimates corre-

sponding to S5-S8 and slo. The result of this calculation for S1-S4 can be thought

of as producing a conditional weight estimate table, i.e., for each possible pair
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of choices for the weight estimates for sg and s1l the optimal weight estimates for

Sl-S4 is known. Similarly, -for each pair of possible weight estimates for sio and sil

the optimal estimates for S5_S8 can be computed. The estimation process may be

iterated for sq: for each possible choice of weight value for its ancestor s1l and with

knowledge of the just-constructed conditional estimate table for its descendants sl-

S4, the optimal estimate for s9 may be computed in a manner decoupled from the

analogous computation for slo. This gives conditional estimate tables for sg and sio

which then can be used to determine the optimal estimate for s1l at the top of the

tree. Conceptually, once this last estimate is obtained it is a simple matter of succes-

sive table look-ups that propagate down the tree to determine the optimal estimates

first for sg and sio and then for their descendants.

As this simple example illustrates, the tree detection algorithm takes advantage

of the tree structure and sweeps through the tree from bottom to top, creating a

conditional weight estimate table at each node. The table of decisions at a given node

is conditioned on weight decisions of the ancestors and is a function of weight decisions

of the descendants. Since each conditional estimate table requires an entry for each

possible combination of weights at all ancestor nodes, the number of computations

needed to create a table and the size of the table is exponential in the number of

ancestors (since if there are I ancestors there a-re All' possible sets of weight values

for these ancestors). This complexity decreases exponentially as I decreases, i.e., as

the algorithm moves from the bottom to the top of the tree the number of decisions

made at each level decreases exponentially until there is only one decision associated

with the top node of the tree. The full weight vector estimate for all user weights is

a by-product of the last decision at the top of the tree.

While the complexity of the procedure as described to this point is exponential

in the number of levels in the tree (which ]sounds the number of ancestors of each

node), the actual algorithm complexity is, in fact, extremely modest. If the tree is

of uniform construction, i.e., if there are Q children emanating from each node, the
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number of levels of the tree is logarithmic in the number of users, K. The overall

complexity, then, is bounded by a very low-order polynomial in K. This is discussed

more fully in Section 3.5.

Moreover, while the derivation of the general algorithm given in the next section

is most easily explained in terms of conditional estimate tables, it is actually possible

to use the structure of the signal sets to simplify the required on-line processing. The

details of the calculation of the estimates are given in Section 3.6.

3.4.2 Derivation of Tree Detector

The global cost that must be minimized in Equation (3.8) is

F(bJr) -_ I Jr - SbJ 12. (3.9)

In general, F(bJr) is not separable in weight variables, bi. Hence, the solution to

Equation (3.8) is found by the calculation and comparison of F(blr),Vb E pK.

The introduction of tree-structured cross-correlations transforms the structure of

the cost function. The complexity of finding the smallest cost may be reduced by

making decisions in stages. The independence of the conditional decisions discussed

in the previous section can be seen mathematically. Specifically, the global cost may

be separated into independent terms. First, Equation (3.9) may be re-written as

N N
F(bJr) -_ 1: fj(bJr) -_ E(r[fl _ t[i])2 (3.10)

,1hwhere t = Sb and t[fl is the Z element of the vector t. In general, each term fj(bJr)

is a function of all users' bits.

If the signature set were to exhibit tree-structured cross-correlations, a rotation

matrix SR may be constructed from the orthogonal basis vectors that reside on the
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bottom of the tree,
S2 SN

SR S1 � -. -I. (3.11)
11S111 JIS211 -FISNII

Since the cost function of Equation (3.9) is a squared Euclidean distance between a

Gaussian random vector, r, and a deterministic vector, Sb, a rotation of this difference

vector, r - Sb , does not change its length or probability distribution. Hence,

F(bjr) - IIST r -ST Sbj 12. (3-12)
R R

The tree structure is reflected in the position of the zero-valued elements of STS. In

this form, the partition of F(bjr) into terms is

N N

F(bjr) = E.fi(blr) = E(�[fl - i[fl)', (3.13)

where i = ST r, ST Sb, and where the indices, i E 11, 21 ... I NJ, correspond toR R

the orthogonal users at the bottom nodes of the tree.

For example, the rotated version of the wavelet packet signal matrix from Sec-

tion 3.1.2 is

T
SRS

It is clear that for this example, i [i] - [ST Sb] [Z'] can be written as a linear combinationR

of b. and the elements of b,,.. Here, we have used the ancestor vector notation fromZ Z

Section 3.2.
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In general, it follows that the "rotated" cost may be separated into additive terms

where each term is a function of only one of the weights bi, i Cz 11, 21 ... I NJ, and all

of the weights that correspond to its ancestors. Each term, fi(blr) in Equation (3.13)

may be explicitly written as fi(bi, b,,dr). Note that for i, j E 11, 2,..., NJ and i j,

fi (bi, b,,i I r) and fj (bJ, b,3- I r) have no common unknown parameters given the values

for b,,i and b,,j. It follows that the optimal solution may be determined through the

optimization of each term conditioned on the values of the weights corresponding to

the ancestors of the index, Z, of that term.

Since the optimal cost function to be minimized is capable of being decomposed

into disjoint parts, the minimization may be formulated as a shortest path problem.

The twists and turns of the best path correspond to the user weight choices.

As an example, the shortest path construction for the joint estimation of three

tree-structured users is shown in Figure 3-6. In the general shortest path problem,

we wish to find the path from the root node to the terminal node that has the lowest

total cost. The total cost is obtained by adding each path segment cost. The metric

(or cost) values for each path segment are the terms, fj(bjb,,j1r). The unlabeled

path segments in the figure have metric value of zero.

See any text on mathematical programming, [28] for example, for several pro-

cedures that can be used to search a node/path graph for the shortest path from

its root node to its terminal node. The preferred algorithm would depend upon the

available storage and processing resources. Some procedures from which to choose are

the "best-first" search (attributed to Dijkstra) [28, 1], or transforming the path/node

graph into a transshipment problem so that the transportation simplex procedure

may be used [281, or noticing that the node/path graphs for tree structured MA

joint detection have the specific stage-by-stage structure needed by the back-to-front

procedure of dynamic programming [28, 1]. These and other shortest path search

procedures avoid enumerating all possible path segment combinations to arrive at

the optimal solution, but with many less operations than needed by the enumeration
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S�-
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12(l, -1jr

f2 r r

(b)

Figure 3-6: (a) Tree structure for signature set of 3 vectors. (b) Node/path graph
corresponding to the tree in (a) where the unlabeled branches have metric values of
zero. Unlabeled nodes are dummy nodes inserted to reflect the independence between
the variables corresponding to either side of the dummy node.

method.

The dynamic program has exactly as many compares as the tree-climbing con-

ditional estimation procedure described in the previous section. The dynamic pro-

gramming approach can be carried out stage by stage where several cumulative path

metrics are constructed and decisions are made at every instance of merging paths. 14

For a system employing an L-level tree and M-ary PAM for all users, at any interior

14 This type of search is identical to the one used by the Viterbi algorithm for the the node/path
graph created by convolutional coding ([26]) or for single user inter-symbol interference ([7]).
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stage of the graph, no more than ML paths need to be retained. Recall that the

number of levels in the tree is typically logarithmic in the number of users, hence the

number of paths to keep track of at any given stage of the dynamic program is a low

order polynomial in the number of users.

3.5 Computational Complexity

The conceptual description of the tree detector in Section 3.4.1 and the dynamic pro-

gramming description in Section 3.4.2 inevitably include many wasteful calculations

and storage requirements." Furthermore, it is expected that for each different tree

structure and modulation a streamlined implementation is possible. The order of

complexity of optimal detection may be calculated from the conceptually simplest,

although admittedly inefficient, version of the tree detector. The resulting complexity

of this "inefficient" version leads to an upper bound on tree detector complexity that

is extremely low.

For simplicity of calculation of computational complexity, the tree is restricted to

have exactly Q children emanating from each non-terminal node. Recall that N is

the number of signal space dimensions available (the number of nodes at the bottom

of the tree) and All is the number of levels that can be modulated by each user. A

measure of complexity which is in agreement with the MA joint detection literature

is the number of compares, c, needed to perform the detection algorithm; 16 c is stated

below and derived shortly.

M - I I gQN+1
c(N, Q, All) - (NQM 0 (3.14)

QM - I

"The discussion in Section 3.6 addresses the removal of this redundancy.
'Counting the number of comparisons is equivalent to counting number of tentative decisions

that must be made. Without computational optimization of the algorithm, each decision requires
the computation of M metrics, Each metric requires several adds and subtracts. To find the order
of the complexity of the tree algorithm, it is sufficient to count the number of compares.
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Table 3.1: Computational complexity.
- 8N 3/2 -1 3N I K I Exhaustive Detector c - 2-"� Tree Detector c - O(K7

4 5 32 9
16 21 2.10e+6 73
64 85 3.87e+25 585

256 341 4.4795e+102 4681

For example, if a system were to employ antipodal modulation, P + I i

M -_ 2, and signal sets having quad-tree structure (Q - 4) such as the minimum dis-

tance waveform sets, the number of comparisons needed for the tree detector estimate

is
8N 3/2 _ 1

c(N, Q = 4, M = 2) - 7 (3.15)

The computational complexity is polynomial in the number.of dimensions. The num-

ber of users, K, in this special case is K = 'N - ', hence, the tree detector is
3 3

also polynomial in the number of users, resulting in a computational complexity of

O(K 3/2). Table 3.1 shows c(N,4,2) for several values of N (and K). Notice that

with a typical K of 85 users, an exhaustive joint detector would require computations

on the order of 1021 , while the optimal tree detector would require only 585 compu-

tations. Following the tree-structured signal design guidelines clearly eliminates the

computational obstacle of optimal joint detection.

Equation (3.14) is derived by counting the number of comparisons needed to

execute the tree algorithm. Some facts used in the complexity calculation follow:

* Each node at level I has I - I ancestor nodes.

* There are Q'-' nodes at level I of the tree.

* The tree has a total of L levels (counting the top as level 1).

* There are N - QL-1 nodes at the bottom of the tree, thus, L = logQ N + 1.
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The algorithm creates a conditional bit estimate table for each node, n. For a

given b,,n the best of M possible values of b, must be found. This requires M - I

comparisons for a single configuration of Since there are I - I ancestors of node

n, there are Ml-' possible configurations of The tree detector, therefore, creates

a single table at level 1, node n, with (114' - I)A,11-1 comparisons. There are Ql-'

tables needed for level I of the tree and there are a total of logQ N + I levels in the

tree. It follows that the total number of comparisons needed for the tree algorithm is

logQ N+1

c(N, Q, M)

(Qm)logQN+l - i
(!14- - 1)

Q

p (NQA4,logQN+l

(QM 1)

3.6 Signal Processing for the Optimal Tree Detec-

tor

3.6.1 Calculation of the Estimate

As was shown in Section 3.4.2, each weight estimate is related to the weight estimates

corresponding to its ancestors and descendants. Mathematically, this dependence is

revealed as the reduction of the general optimal estimator of Equation (3.8) to the

tree-structured optimal estimator below. For each node, n, of the tree, calculate the

following estimate conditioned on the value of the set b,,,,,;

2
b,,,(rlb,,,) - arg min I Jr - sb,, - Sanban - Sdnbdn(rlbn, ban) I I (3.16)

b,, cP

Notation developed in Section 3.2 is used throughout this section. The set of estimates

for all descendants of node n has already been calculated in the previous steps of the
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algorithm. Hence, bdn (r I bn, ban) is best defined recursively. For a given set of values

for f bn, ban},

bfcn, (rlbn, ban)

�d. (r I bn, ban) cn2 (r bnj ban) (3.17)

�f",,Jrjbnban)

For that same set of f bn ban 1, bcni (r I bn ban) has already been calculated; if the value

found for bni(rlbn ban) is �, then the sub-vectors on the right hand side of Equation

(3.17) are given by

bni(r I bn ban)
bfcnj(rjb,,, ban) (3.18)

L bdcni (r I bcni bn) ban) j

We examine the argument of the minimization in Equation (3.16) more closely.

We may, of course, remove any terms that do not depend on bn and we can multiply

17by any positive constant. As a result, some algebra shows that (3.16) is equivalent

to

bn(rlba,,) = argmaxJ(bnlrban) (3-19)
bnEP

where

J(bn r, ban) [Inb, b Ynn] - bYnanbn (3.20)
2

+ [IT _T
dn�dn (r I bn, ban) - -bdn(rlb,,, ban)Ydndnbdn(r1bn� banp.21)

2

- bnYndn�dn (r I bn � ban) (3.22)

an Yandn�dn(rIbn) ban)- (3.23)

Note that the only explicit processing of the data r is for the terms In = S Tr andn

Idn = ST r on lines (3.20) and (3.21).dn

17 or multiply by a negative constant and replace minimization by maximization
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The first bracketed term [1A - 'b'y,,,,,,] on line (3.20) corresponds exactly to2 n

the decision statistic that would be used to choose bn if there were no other users

to consider or if all other users had orthogonal signals. The remaining terms, then,

represent the adju8tment,!3 of this decision statistic to reflect the impact of the non-

orthogonality in the signals. The last term on line (3,20)) bnYnanban, represents the

interaction between the choice Of bn and the particular hypothesized choices for the

ancestor weights. Note that since the values of ban will be hypothesized, this term

can be pre-computed. Line (3.21) represents a counterpart to the bracketed term on

line (3.20). Specifically, if all users other than the ones corresponding to the weights

bdn were not present, then

[IT b b T bd,-,] (3.24)dn d, - 2 dn dndn

represents the decision statistic that would be used to determine the optimal choice

of bdn - Since this is not the case, this term incorporates the decisions bdn (r I bn, ban)

conditioned on the value of f bn, banj. Line (3.22) accounts for the interactions be-

tween these descendant decisions and the possible decisions bn. Likewise, line (3.23)

accounts for the interactions between the descendant decisions and the hypothesized

decisions ban at the ancestors of node n. Thus, all of the quantities needed in the last

three lines (3.21-3.23) can be computed based on the value of bn and the calculations

that have already been performed at lower levels on the tree.

3.6.2 The Binary Conditional Decision Rule

This section focuses on the binary antipodal signaling case, i.e., when P

For each choice of ban there is only one comparison to make for the minimization of
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Equation (3.19)". The solution to (3.19) can, therefore, be expressed as"

J (+ I b,,,) - J (- I b,,,,)
sgn 2 (3.25)

Substituting the definition of J(b,, I r, b,,,) from lines (3-20-3.23) into Equation (3.25)

and performing some algebra, (3.25) can be written as

b,,(rlb,,) = sgn [1, - �,(b,,,) - 6,(rjb,,,,)]. (3.26)

The conditional decision rule at node n for each choice of ancestor bit vectorsi b,,

corresponds to comparing the matched filter output, 1, to a threshold:

b, = +1

1" 6n(b,,,) - 6n(rjb,,). (3.27)
b� = -1

The threshold on the right hand side of Equation (3.27) has both a deterministic

component reflecting the influence of the hypothesized decisions at ancestor nodes,

= y,,,,,,,b,, (3.28)

and an adaptive component reflecting decision rules already constructed at descendant

"For the more general M-ary case, there would be (M - 1) comparisons.
"Dividing by 2 in (3.25) has no effect on the sign and is included to put the subsequent expressions

into a form that can be compared with standard results.
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nodes,

�Fn(rlban) = �Yndn [6dn(rl + 1, ban) + 6d,(rl - 1, ban)]

+ 16T (rl + 1, bn)Ydndn6dn(rJ + 1, ban)4 dn

(3.29)

16T (rl - 1, ban)Ydndn6dn(rJ - 1� ban)� dn

+ I T IT
2 [banyandn dn] [6dn (r I + 1, ban) - 6dn (r 1, ban)]

In particular, note that for nodes at the bottom level of the tree, there are no descen-

dants and, consequently, E,,(rlb,,,) = 0. Hence, at the lowest level of the tree, the

decision rules in Equation (3.27) for each of the hypothesized set of values, ban, corre-

spond to comparing In to the fixed threshold given in Equation (3.28). This non-zero

threshold represents the adjustment of the test statistic to reflect the interference of

users at ancestor nodes.

The calculation of �5,(rlban), the adaptive portion of each threshold, has a child-

separable structure:

En (r I ban) - 71cn 1 (r I ban) + 71,,, (r I ban) + + ?7cnKn (r I ban), (3-30)

This is easy to see from the structure of Ydndn- Note the grouping structure of

Sdn = [Sfcn, Sfcn2 ... Sf cnKn ]. That is, Sd, consists of orthogonal sub-matrices, one

for each child and its descendants. Furthermore, for each child node, cni, we have

Sfcni - IScni Sdcni I) where Sdcni consists of orthogonal sub-matrices. It is this nesting

of orthogonal sub-matrices that gi-ves Ydndn a nested block diagonal structure that

leads to the separation Of ��n(rlban) into terms.

In (3.30), the term 77cni(rlban) represents the contribution of the Z"h child of node

n to the adaptive threshold at node n. Hence, the calculation of the adjustment En
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Table 3.2: Table created at node n for the general binary case.

bT = [bpnb 2 bf.(rlba.)

an P n... bp(1-1),] 77n(rlbapn)

= q.(ribP2n i bp 3ni ... I bp(1-1)n)

[+ 1, + 1, + 1.... I +1] bf,,(rl + 1, +1, +1, +1) ?7n(rl + 1, +1, +1)

+1, +1, +1] bf,(rl - 1, +1, +1, +1)

[+ 1, - 1, +1, +1] bf,(rl + 1, -I, +1, +1) qn(rj - 1, +1, +1)

[-I, -1, +1, +1] 6fn(rl - 1, -1, +1, +1)

may be done in parts, one for each child of node n. We use the family notation,

fn -- f n, dnj, in showing the formula for the terms of Equation (3.30):

17n(r I bapn) :-- 1Yp.jn$fn(r II) bapn) + �fn(r 1, bapn)]2

+ I�T (rII, bpn)Yfjn�fn(rII, bapn)4 fn

(3.31)

1�T (rI - I, bapn)Yfnjn�fn(rI - I, bapn)
4 f 7-1

+ 1 [b T IT J$f.(rII, b �T (ri - I, b2 apnYapnfn fn apn) fn ap.)]

Implementation of the optimal decision rule may be organized as follows. Starting

at the bottom of the tree and progressing to the top, construct augmented decision

20tables as illustrated in Table 3.2.

At each bottom node n, the conditional optimal decision) bn(rIban), is computed

2'Notice that there are half as many values of 71,, in the table as there are values Of bn - Since there
is one value Of 'qn for each value of bpn i we organize the values of ban into pairs corresponding to
[± 1, b apn] -
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by comparing 1,, to the pre-computed threshold For each node at this level

calculate and storeq,(rlb,,) to be used at the next level. Move to the parent node, pn,

calculating the threshold for this node by starting with the pre-computable portion,

6p,,(b,,,,,n), and adding to it the adjustments, from each of the children of

node pn. Compare 1p, to this threshold to make a decision.

For the root node, n, corresponding to the top level of the tree, an 0 and

S,(b,,,) = 0; there is a single threshold to be computed from the 'q's stored at the

children of the root node.

3.6.3 A Binary Example

This procedure is illustrated for the simple signal set shown in Figure 3-4. Consider

node I at the lowest level. In this case the table that is constructed for node I is

shown in Table 3.3. Note that each value of ql(rlb7) depends on the two decisions

bi (r + 1, + 1) and b, (r + 1),

T/1(rj + 1) - 1Y5,1 [bi(rl + 1, +1) + 1, +1)2

(3-32)

+ I [Y7,1 - 11] [bi(rl + 1, +1) - 1, +1)2

and

771 (r 'Y5,1 [�j (r I + + bi (r2

(3-33)

+ 1[-Y7,1 - 11][bi(rl + 1, -1) - 1, -I)].2

For example, suppose yi,5 - Y5,1 - 2 and Y1,7 - Y7,1 1 and 11 Table 3.42

shows the values of the T11's for this case. Similarly, tables are also constructed at the

other bottom level nodes, 2-4.

Moving to the next level of the tree, consider node 5. The following conditional
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Table 3.3: Table created at node I for the example in Figure 3-4.

FIZI = lb5b7]I bi(rlb,,,) 771(rlb7)

[+I + 1] bi(rl + +1) sgn(li - Y1,5 - Y1,7) +

[-I + 1] sgn(1j + Y1,5 - Y1,7)

1] bi(rl + -1) sgn(li Y115 + Y1,7)

11 bi(rl - t, -1) sgn(1j + Y1,5 + Y1,7)

estimates are computed:

b5(rl + 1) sgn(15 - Y5,7 771(rl + 1) -q2(rj + 1)) (3.34)

and

b5(rl - 1) S911(15 + Y5,7 771(rj - 1) -q2(rl - 1)). (3.35)

where Tjj(rj + 1) and ql(rl 1) are the quantities in Table 3.3 for node 1. Similarly,

772 (r I + 1) and 772 (r I - 1) are the corresponding quantities that would be in the table for

node 2. At this point note that part of Table 3.3 and part of the corresponding table

for node 2 may be discarded and the remaining information may be consolidated into

a single table for node 5. Specifically, suppose that b5(r I + 1) 1. This implies that

the best choice for b5 is -1 if b7 = +I - We may discard the first row of Table 3.3

since the first row corresponds to choosing b5 = +1 when b7 = +I- Similarly, the

analogous row of the table for node 2 may be discarded. That is, once the values

in Equations (3.34) and (3.35) have been computed the following vectors may be

assembled:

b5(rl + 1) b5(rl - 1)

6f5(ri + 1) bi(rjb5(rj + 1), +1) �f&j - 1) bi(rjb5(rj - 1), -1) (3-36)

b2(rjb5(rj + 1), +1) b2(rjb5(rj - 1), -1)
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Table 3.4: Specific instance of the table at node I of our example.
bT = [b5b7l (rlb,,, 77, (r I b7)

[+I + 1] 3/2

+ 1]

2

Table 3.5: Table created at node 5 in our example.

a5 b7 b5 (r I b7) q5 (r)

+ Sf5(rl + 1) T15(r)

-1 bf5(rl - 1)

The table residing at node 5 (shown in Table 3-5) may now be constructed.

Since node 7 has no ancestors, a single threshold correction, q5(r), is calculated

from Equation (3.31) with n - 5 by dropping the last term. The calculation Of 775(r)

from (3.31) uses the following substitutions

Y5,5 Y5,1 Y5,2

Ypnfn -:::' Y7J5 - [Y7,5 Y7,1 Y7,21, Yfnfn - Yf5,f5 Y5,1 Y1,1 0

Y5,2 0 Y2,2

Finally, at the top of the tree, since an = 0, �7 = 0, and the optimal decision rule

at node 7 is

b7 = sgn(17 -q5(r) -q6(r)), (3-37)

where 'q6(r) is computed in an analogous fashion to the computation Of 'q5(r). Once

we have b7, e.g., �7 - +1, the full optimal estimate may be read off the tables for

nodes 5 and 6, e.g. bf5(rl + 1) and bf6(rl + 1).
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3.7 Study of Violations of Tree Detector Require-

ments

The optimal MA tree joint detector has two requirements. First, the user signature

waveforms must exhibit tree-structured cross correlations. Without this, the com-

putationally simple tree traversal procedure would not yield the optimal estimate.

Second, each of the received user signature waveforms must be completely known

at the receiver. With incorrect knowledge of the user signatures, the minimization

in Equation (3.8) would not be optimal. This section examines the bit error rate

degradation of the tree detector when each of these requirements is violated.

The signature vector sets used for these simulations are based on the equal energy

5 user minimum distance set

I 0 0 0 1/2

S 0 1 0 0 1/2 (3.38)

0 0 1 0 1/2

0 0 0 1 1/2

and the equal energy 21 user minimum distance set

116

0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0sT 2 2 2 2 (3.39)

0 0 0 0 0 0 0 0 0 0 0 02 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Here, 116 is the 16 dimensional identity matrix, The trees corresponding to these

minimum distance sets are shown in Figure 3-7 and Figure 3-8, respectively.

In an actual system, each user is assigned a signature waveform envelope and a
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carrier frequency. The carrier phase is not controllable by the user or by the receiver.

To model this phenomenon, prior to the simulations, each user's signature has been

multiplied by a unit magnitude complex scalar, arbitrarily chosen.

3.7.1 Experimental Analysis of Performance Under Struc-

ture Mismatch

In the case of structure mismatch, a slight violation of the necessary tree-structure

is permitted. If, for example, each user's signature at a node of the tree had a non-

zero, but known, correlation with it's sibling users at the same level, the tree detector

could be used as a sub-optimal low complexity detector. For example, in existing

orthogonal FDMA satellite communications systems, user signature waveforms are

narrow band signals, lined up side by side in frequency. Due to slight carrier frequency

imperfections and timing offsets, user signatures are not strictly orthogonal. A user

can typically see -20 to -40 dB of the adjacent channel user's energy. 2' This section

shows performance curves resulting from the use of the tree joint detector for user

signature sets that are nearly tree-structured, just as the FDMA signature sets are

nearly orthogonal in the satellite system. The tree detector, ignoring this "leakage"

into adjacent users, is a suboptimal detector for such a set of signatures.

The equal energy minimum distance sets of 5 users in 4 dimensions and 21 users

in 16 dimensions are used for these simulations. Figure 3-9, for the 5 user set, shows

the bit error rate averaged over all 5 users. The signatures have -20 dB, -30 dB, and

-40 dB cross-correlations with their neighboring users on the tree. In other words,

in the 5 user set of Figure 3-7, user I has a 0.1 (-20 dB), 0.036 (-30 dB), or 0.01

(-40 dB) cross-correlation with user 2. User 2 has these same cross-correlations with

both user 1 and user 3. User 5, at the top of the tree has no neighbors with which

"Note that differelit allocation of channel resources and different signaling schemes result in the

wide range of adjacent channel leaks examined in this section. For example, for time division multiple

access (TDMA) leaks can be very low and nearly zero. Keeping adjacent channel interference in an

FDMA satellite systems down at -30 dB is commonly done ([13]).
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5

2 3 4
Figure 3-7: Correlation tree for a unit energy minimum distance signature set of 5
users in 4 dimensions.

21

1 18 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3-8: Correlation tree for a, unit energy minimum distance signature set of 21
users in 16 dimensions.
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to interfere. From Figure 3-9 we see negligible performance degradation for leaks

of -30 dB and -40 dB and less than 1dB degradation due to the -20 dB leaks.

A IdB performance degradation means that all users in the -20 dB leaky system

would need to increase their signal energy to noise energy ratio by IdB (or by 26%)

per bit transmitted to achieve the same bit error rate of the strictly-tree-structured

system. The degradations from the strictly tree-structured system to the nearly tree-

structured systems are approximately the same as for an orthogonal versus nearly-

22orthogonal systems for which adjacent channel leaks are treated as noise Q13]).

The average bit error rate curves for the leaky equal energy minimum distance set

of 21 users in 16 dimensions are shown in Figure 3-10. For 21 users in 16 dimensions,

a -40 dB leak goes virtually unnoticed and a -30 dB leak causes only negligible

performance loss. A -20 dB leak in each user results in a 1.25 dB performance

loss. In other words, each user in the -20 dB leaky system would need to increase its

signal energy to noise energy ratio by 1.25 dB (or 33%) to regain the performance

of a strictly tree-structured system. For comparison, a system of nearly orthogonal

users experiences a loss of approximately I dB (26%) relative to a strictly orthogonal

system.[13]

3.7.2 Experimental Analysis of Phase Mismatch

In an actual MA system a user, say user k, is assigned an envelope waveform, Sk(t),

by the base station. The user modulates this envelope with a cosine wave having a

carrier frequency, w,, that was also assigned by the base station. The user's oscillator

will have a phase, Ok, relative to the pulse, Sk(t), which is not controllable. The user's

signature waveform may be represented as

Sk(t) COS(Wt + Ok)-

2211ere, it should be noted that all simulations in this thesis are done with equal energy users.
Study of non-ideal scenarios on the tree joint detector for unequal energy users is left for future
work.
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0 Adjacent Channel Interference: 5 users in 4 dimensions
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Figure 3-9: Average bit error rate for a minimum distance set of 5 users in 4 di-
mensions for which sibling users are not strictly orthogonal. Each user is allowed to
have a 0.1 (-20 dB), 0.036 (-30 dB), or 0.01 (-40 dB) cross-correlation with its
neighboring sibling user on the tree. One standard deviation error bars (not shown)
are between 2% and 3% of BER.
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0 Adjacent Channel Interference: 21 users in 16 dimensions
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Figure 3-10: Average bit error rate for a minimum distance set of 21 users in 16
dimensions for which sibling users are not strictly orthogonal. Each user is allowed
to have a 0.1 (-20 dB), 0.036 (-30 dB), or 0.01 (-40 dB) cross-correlation with
its neighboring sibling user on the tree. One standard deviation error bars are not
shown- they are between 1% and 1.2% of BER.
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In practice, the received power of each user can be estimated to a high degree of

accuracy by the satellite. The user's power can be considered to be constant since it

will either remain constant throughout transmission or vary very slowly relative to

the symbol repetition period ([2]). The phase, on the other hand, is less certain at

the receiver. The estimate of the phase will typically have a non-negligible variance.

Furthermore, it can drift over many symbol durations. This section examines the

effect of having incorrect knowledge of a user's phase at the receiver." Through

simulations we find that the tree joint detector (for equal energy minimum distance

sets) can tolerate up to a 15' phase error in one user, resulting in negligible increases

in bit error rates, and can accommodate up to a 20' phase error in one user with

small performance degradations.

An interesting scenario for the examination of phase mismatch is with the mini-

mum distance set of 21 users in 16 dimensions. The 21 user tree is shown in Figure 3-8.

Figure 3-11 shows the bit error rate averaged over all 21 users for all users having

perfectly known phases at the receiver, and for the case of user 17 having a 10', 15',

and a 20' phase mismatch while the other users have no mismatch. From the figure

14we see that a substantial phase error of 20' causes a performance loss of 0.5 dB.

A user in such a system cares more about the worst case bit error rate than it

does about the average bit error rate. Figure 3-12 shows several bit error curves for

users that are effected by the mismatch of user 17's phase. From Figure 3-12-(a) we

see that user 17, the user with phase mismatch, experiences a 0.5 dB loss for the 20'

phase mismatch and negligible loss for the 15' and 10' mismatches. As can be seen

from Figure 3-12-(.f), user 21, the parent of user 17, experiences the most loss at 1dB

for the 20' mismatch, 0.5 dB for the 150 mismatch, and nearly unnoticeable loss for

the 10' phase mismatch on user 17.

23A thorough treatment of incorporating phase estimation into the tree detector is done in Chap-
ter 4.

24Each of the users would need to increase their EbINO by 12% to regain the bit error rate of the
corresponding system having no phase mismatch.
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Phase Mistmatch On User 17: 21 users in 16 dimensions
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Figure 3-1 1: Average bit error rate for a set of 21 users in 16 dimensions for which user
17's phase is incorrectly known at the receiver. All other user signature waveforms
are entirely known at the receiver. One standard deviation error bars on the BER
points in the figure are not shown; they are between 1% and 1.2% of BER.
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Figure 3-12: Bit error rates for individual users in a set of 21 users in 16 dimensions

for which user 17's phase is incorrectly known at the receiver. One standard deviation

error bars on the BER curves are not shown; they are between 4.5% and 5.5% of BER.

(a) user 17, the user with phase mismatch. (b) user 1, a child of user 17. (c) user 2,

a child of user 17. (d) user 3, a child of user 17. (e) user 4, a child of user 17. (f)

user 21, the parent of user 17.
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Table 3.6: Approximate performance loss seen by users 1, 2, 3, 4, 17 and 21. The
loss due to a mismatch on user 17's phase is relative to the performance for the case
in which all phases are known.

user number 20' 150 1
user 1 0.75 dB 0.5 dB 0.15 dB

user 2 OJ5 dB 0dB 0 dB

user 3 0.25 dB 0.15 dB 0 dB

user 4 0.50 dB 0.50 dB 0 dB

user 17 0.50 dB 0.25 dB 0. 15 dB

user 21 1.00 dB 0.50 dB 0. 15 dB

From the remaining plots in Figure 3-12 we see that each of the children of user

17 experiences a different degree of loss. In other words, the presence of an unknown

phase on user 17 does not cause the same degradation for users 1, 2, 3, and 4. User

11 in Figure 3-12-(b), shows a 0.75 dB loss for a 20' mismatch, a 0.5 dB loss for a

15' mismatch, and less than 0.25 dB loss for a 10' mismatch on user 17's phase. The

losses for the rest of the child users are summarized in Table 3.6.

The variation in loss among the children of the unknown-phase user is to be

expected since each user signature of the minimum distance set has been multiplied

by an arbitrary value of phase to emulate an actual system. This step causes slightly

difference performance from user to user. Notice that the O' BER curve for user 1 in

Figure 3-12-(b) is lower than the corresponding curves for users 2 and 3 in Figures 3-

12-(c) and (d). Also notice that the 20' curve in Figure 3-12-(b), for user 1, is nearly

equivalent to the 20' curve for user 3 in Figure 3-12-(c). Part of the degradation seen

by user 1 due to user 17's mismatch in phase is due to the change in the relationships

among user signatures resulting from a change in user 17 phase. In other words, the

arbitrary assignment of phases for each user gave user I a slight advantage- changing

this by assigning user 17 a phase that is 20' greater than its original assignment

would change the relationship among user signatures, perhaps taking away user 1's

original advantage. All other users in the tree exhibit no noticeable performance loss;
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bit error curves for these remaining users are not shown here.

Simulations were also run for the same 21 user signature set, but with a phase

mismatch in user 21 at the top of the tree. Figure 3-13 shows average bit error curves

for user 21 having the phase mismatch. Not shown here, plots of each user's bit

error curve revealed similar behavior to that described above for the case of user 17

having the mismatch. User 21, the user with the phase mismatch for this simulation

suffered only a 0.5 dB degradation for the 20' case, a negligible degradation for a

15' mismatch, and an almost unnoticeable degradation for the 10' mismatch. The

performance loss seen by user 21's children, users 17, 18) 19 , and 20, due to a 20'

mismatch in user 21's phase ranged from virtually no loss to approximately 0.75 dB

loss. The bottom users experienced the smallest loss, on average, where the worst

case loss was only 0.25 dB for the 20' mismatch on user 21's phase.

Figure 3-14 shows the average bit error curves for a corresponding simulation to

the previous ones, but with the mismatch in user I's phase. As might be expected

from the low tree-position of user 1, the mismatch on user I affects fewer users, hence

the degradation in bit error rates is less than that in the previous simulations for

which the mismatched phase user is higher up in the tree. Again, plots of each user's

bit error curves (not shown here) revealed that only users 1 and 17 were affected by

the mismatch on user 1. The siblings to user 1, users 2 and 3 were slightly affected,

exhibiting a 0.25 dB performance loss in the 20' mismatch case. All other users,

including the root user (the grandparent to user 1) showed no loss, even for the 20'

mismatch in user I's phase.

The more common scenario of having small mismatches in all users phases was

also simulated. Figure 3-15 shows the average bit error curves for a 5' mismatch, a

10' mismatch, and no mismatch. From Figure 3-15 we see a 0.75 dB (19%) average

performance loss for a 10' mismatch in all user phases, and a mere 0.13 dB (3%)

loss for a mismatch of 5'. For near lossless performance, then, the tree joint detector

requires better than a ±5' certainty in the knowledge of each user's phase.
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0 Phase Mistmatch On User 21 (root): 21 users in 16 dimensions
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Figure 3-13: Average bit error rate for a set of 21 users in 16 dimensions for which user
21's phase is incorrectly known at the receiver. All other user signature waveforms
are entirely known at the receiver. One standard deviation error bars (not shown)
are between 1% and 1.2% of BER.
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Phase Mistmatch On User 1: 21 users in 16 dimensions
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Figure 3-14: Average bit error rate for a set of 21 users in 16 dimensions for which
user I's phase is incorrectly known at the receiver. All other user signature waveforms
are entirely known at the receiver. One standard deviation error bars are not shown;
they are between 1% and 1.2% BER.
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Phase Mistmatch On All Users: 21 users in 16 dimensions
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Figure 3-15: Average bit error rate for a set of 21 users in 16 dimensions for which all
users' phases are incorrectly known at the receiver. The dashed line corresponds to all
users having a 10' phase mismatch, the dash-dot line corresponds to a 5' mismatch,
and the solid line corresponds to all users having known phases (no mismatch). The
standard deviation on the BER calculations range from 0.5% to 4.4% BER.
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In the next chapter, the estimation of an unknown phase is incorporated into the

tree detection procedure. As indicated by the results for the case of a small mismatch

on all users' phases, once a phase is estimated to within 5', the estimate can be taken

to be true for many subsequent symbol transmissions. 25

2'Recall that it is common for there to be a relatively slow drift in a user's phase. The user's
phase will need to be re-estimated periodically, but the frequency of the need for a phase estimate
update is far lower than the symbol transmission rate.



Chapter 4

One-shot _VVeight Phase Estimation

In a MA system, a set of channels can be set aside for interaction between the base

station and the users. Specifically, if a new user wishes to obtain a place in the system,

it makes a request to the base station over this separate acquisition channel. If the

system can accommodate this new user, the base station assigns this user a signature

waveform (which might consist of a signature envelope, modulation frequency, and

symbol timing). During the acquisition process, the base station refines any timing

or power demands it might have on this new user by sending control signals telling

the new user to make the necessary adjustments.' Although the phase of the new

user's transmission can be estimated during acquisition, this phase will not necessar-

ily remain the same once the user begins transmitting at it's assigned modulation

frequency. It is possible that the phase of this new user will be unknown to the

receiver once communication commences. 2

Joint detection, in general, requires comparison of the actual received signal with

the set of possible received signals. The set of possible received signals is constructed

by the detector using replicas of the actual received signature signals that are stored at

'This procedure is typical of state of the art military satellite communications. For more infor-
mation on satellite communications, see [5].

2Coherent changeover from the acquisition channel to the transmission channel would require a
broad band, continuous-phase transmitter, which may be difficult to implement ([2])-

81
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the receiver. If the set of signature waveforms stored at the receiver do not faithfully

replicate the actual received signature waveforms, the performance, in general, of a

joint detector is degraded.

The performance tradeofF with varying degrees of phase error was studied for the

optimal tree joint detector via simulations in cection 3.7.2. The best performance

occurs when the receiver has perfect information about the users' phases. As expected,

as the error between the actual and assumed user phases grows, the performance of

the tree detector of Chapter 3 degrades. The simulation results of O-ection 3.7.2

indicate that a phase error of 5' (10') on all users will cause a performance loss 0.13

dB (0.75 dB) relative to the case in which all users' phases are accurately known

by the coherent detector. For tree-structured MA that used the tree detector, it is

important, then, to estimate each user's phase with no worse than a 5' accuracy. Once

an estimate for a given user is found to meet this requirement, the phase estimate can

be taken to be true for subsequent symbol transmissions for this user. This chapter

incorporates phase estimation into the tree detector.

In general, there are three conditions for which a communications system may be

designed. The first is the condition that the user's phase is known; this condition

results in a coherent system. 3 The second is the condition that the user's phase

is unknown; this condition results in a non-coherent system.' The third is the

condition for which partial phase information is available; this condition results in a

partially coherent system. 5 The tree detector in Chapter 3 was developed for the

3An example of a coherent single user system is one that employs phase shift keying (PSK). If
binary signaling is used, a phase of 0 radians corresponds to an information bit of 0 and a phase of
7r radians corresponds to an information bit of 1. Any system employing PSK must be capable of
knowing the phase of the received signal.

4An example of a non-coherent single user system is one that employs frequency shift keying
(FSK). If binary signaling is used, two di Joint bands of frequency are reserved for a single user.
The user transmits in one band to communicate an information bit of 0 and in the other band to
communicate an information bit of 1. The detector monitors each band for the energy per symbol
time slot to decide which bit is being sent.

'If an estimate of a user's phase is fed to the receiver, the receiver should use the estimate, but
only to the degree of its accuracy. See the paper by Viterbi, [25], for a detailed derivation of single
user partially coherent detection.
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case in which all phases were assumed to be known and will, therefore, be referred to

as the coherent tree joint detector for the remainder of this thesis.

The specific scenario addressed in this chapter is the case in which one user has an

unknown or uncertain phase and all other users' phases are known exactly. Focusing

on this scenario is motivated by the dynamic nature of a MA communication system.

Users drop in and out of a system, one at a time, hence the newest user's phase will

need to be estimated upon its entry to the system. The training protocol of MA

communication systems of present is also adopted in this thesis. S-pecifically, a new

user will begin with the transmission of a previously agreed upon training sequence

of weights so that the receiver can concentrate only on estimating this user's phase.

It can reasonably be assumed that an estimate of this new user's phase is found prior

to the addition of another user to the system.

This chapter develops low complexity optimal and sub-optimal one-shot algo-

rithms for the non-coherent and partially coherent cases to be used with tree-structured

user signature sets.' The ultimate goal at the receiver is to achieve a phase estimate

that is in error of, at most, 50. Although the one-shot phase estimation algorithms

developed in the chapter are not capable of achieving such accuracy, they will serve

as the foundation for several estimation procedures of Chapter 5 that make use of a

sequence of symbol transmissions.

In cection 4.1 the non-coherent weight/phase estimator is derived for the

general case in which no specific structure is present among user signatures. Sec-

tion 4.2 shows the computational reduction of this estimator realized for signature

sets exhibiting tree-structure. An example is also given to illustrate the non-coherent

weight/phase estimation procedure which is only a slight variation from the coher-

ent tree joint detector of Chapter 3. ' Reaction 4.3 offers a formal derivation of the

complexity of the non-coherent tree weight/phase estimator. election 4.4 develops the

'Recall that the term one-shot means that weight and phase estimates are made with data from
one symbol duration. In contrast, estimation can be done using data from a sequence of symbols.
The sequence weight/phase estimator is developed and analyzed in Chapter 5.
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partially coherent weight/phase estimator that incorporates partial information

about the new user's phase. If an estimate of the phase is not desired, a partially

coherent weight-only estimator may be used. This is derived in section 4.5.

Both the non-coherent and partially coherent estimators have a complexity that can

range from very low order polynomial in the number of users, to exponential in the

number of users, depending upon the position in the tree of the new, uncertain-phase

user. As was seen in section 3.7-2, one low complexity option is to ignore the phase

uncertainty and use the coherent tree joint detector with an incorrect value for the

phase; this works well given less than a, 15' inaccuracy in the phase of one user, only

if all other users' phases are known exactly. In �_-ection 4.6.1, this assumed coher-

ent joint weight detector is formally presented and intuition is given to explain

the simulations results of '--'action 3.7.2. �-ince, ultimately, the receiver needs to know

all users' phases within a 5' error, in general, use of the AC detector to avoid the

complexity of the optimal estimator is not recommended. 'section 4.6.2 proposes a

sub-optimal version of the optimal phase estimator, namely, the assumed discrete

joint weight/phase estimator, which achieves low complexity by assuming that

the known phase is a di8crete random variable. The weight error performance and the

phase estimate accuracy for the optimal estimators derived in this chapter is explored

through simulations in election 4.7.1 and section 4.7.2, respectively.

4.1 Optimal Non-coherent Weight/Phase Estima-

tor

In this section the maximum a posteriori (MAP) joint weight/phase estimator is

derived for the case in which one user's phase is not known at the receiver. To

be consistent with the single user literature, the MA joint estimator derived in this

section will be called the non-coherent (NC) joint weight/phase estimator. No

special structure among user signature waveforms is assumed for the derivation. The
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received signal is modeled by the complex vector equation 7

K-1

r - 1: bkSke.?'�k + SK6 JOK + an (4.1)
k=1

where the assigned N-dimensional user signature vectors, f Skj'i, are now real. Users

I � 2,. . ., (K - 1) have arbitrary, but known, phases, 10k IK-1 . The noise vector,

n, is complex with elements independently and identically distributed as circularly

Gaussian with unit variance. Notice that user K has no weight, i.e., bK -_ +I. This

reflects the protocol of MA communication systems of present, in that a new user

joining the system transmits a previously agreed upon training sequence of weights.

For this derivation of the one-shot joint weight/phase estimator the training weight is

assumed to be bK = +I, without loss of generality. The following, equivalent matrix

representation of Equation (4.1) is more convenient:

r -_ S4)b + SKC30K + an. (4.2)

S now has as its columns the K - I user signature vectors that correspond to the users

with known phase. The known phases are collected in 4� = diag[Jej'k, IK-1] . The (K-1

I)-element information weight vector, b, has a finite number of possible realizations

enumerated in the discrete set F. For this section in which we assume no knowledge

of the true value of user K's phase, OK is modeled as a uniformly distributed random

variable: 8

POK (0) 7r < 0 < 7r. (4.3)
27r '

In the absence of noise, the received signal vector is

r' - S(Db + SK63'�K

7This model replaces that of Equation (2. 1) so that the users' phases may be explicitly expressed.
'Note that this is the worst case prior distribution on OK - Section 4.4 uses a different prior that

reflects varying degrees of accuracy of the receiver's knowledge of the new user's phase.



CHAPTER 4. ONE-SHOT WEIGHTIPHASE ESTIMATION 86

The received constellation, or range of the complex random vector, r', in the complex

hyper-plane, is the union of 1171 rings, one ring for each possible realization of b.

For example, if there were only two users present in one complex dimension,

3 J02base,'�l + 52e

then the range of ?-' would be two rings in the real and imaginary plane. A two user,

binary signaling example is shown in Figure 4-1.' In this example, the phase of user

I is assumed to be known at 0 radians and the signature signal for user 1 is depicted

as a complex scalar having a phase of zero and is shown in Figure 4-1-(a). The phase

of user 2 is unknown soO2 is assumed to be uniformly distributed between -7r and

7r. The complex scalar signature for user 2, then, is only known up to its length,

therefore, it could lie anywhere on the ring in Figure 4-1-(b). For this example, user

I may transmit a weight of b, -_ +1 or b, = -1. Recall that user 2, the user with

the unknown phase, must transmit a training weight of b2- +I- It follows that the

range of r' for this example is the union of two rings as shown in Figure 4-1-(c): one

ring centered at s, (for bi -_ +1, the right ring) and one ring centered at -si (for

bi = -1, the left ring).

The actual received value is

71 -- 711 + un,

where n, again, is a complex scalar Gaussian random variable that has identically and

independently distributed real and imaginary parts. In other words, n is circularly

Gaussian in the complex plane. The range for r is the entire complex plane. The

probability density the function for r is illustrated via the 2-D density cloud shown

in Figure 4-1-(d). The density cloud qualitatively shows that r is more likely to be

'Any illustration of the range of r' for examples requiring more than I complex dimension is
not done in this thesis. To show even the simplest example, say, with three users in two complex
dimensions, one user's phase unknown, would require at least three real dimensions. Such an example
would have a range of r' comprised of 2-D rings in three dimensions and is too confusing to show.
This two user example, however, does offer some intuition that can be extended to higher dimensions.
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near a point on the two rings of Figure 4-1-(c) and less likely to be far from the rings.

The general MAP joint weight/phase estimator chooses the values for b E r, and

-7r <_ OK < 7 which maximize the a posteriori probability density function (PDF)

for b and OK, given the received vector, r,

Pb,0KJr(b, Olr)- Pr1b,0,(r1b, 0) Prob(b)POK
Pr (r)

where b and OK are statistically independent. We are maximizing the above PDF

over b and OK. Note that p,(r) is not a function of these parameters. In addition

Prob(b) is assumed to be the same for every realization of b, and PO K (0) is uniform.

Under these conditions, the MAP estimator will give the same estimate found by the

maximum likelihood (ML) estimator which maximizes PlbOK(r I b, 0) over b and OK

We can easily write Nlb,0, (r I b, 0) as

I 2N 0)1112 + O)II12]).(r1b, 0) - exp(_ _ [JJRJD(b, I JQ� f D (b, (4.4)Pr1b,0K ( "'2- ) 2
v 79 2a

The difference, denoted by D(b, 0), is

D(b, 0) -_ (r - S(bb - SKe jo), (4.5)

where R(.) and!��(-) are the real and imaginary operators. The optimal joint weight/phase

estimator is given by

I b, OK I -_ arg max Pr I b,,�, (r I b, 0), b E r, 7r < 0 < 7r (4.6)
bO

or

lb, OKI = arg max 1n[PrJb,0,JrJb, 0)], bEIF, -7r<0<7.
b,0

Discarding constant terms and constant negative multipliers from the function to be
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Im(s e J 0 1) lm(se J 02)

signature (complex scalar) 412
S2e-

for user I 02 =?
�-j i 0 1 ) J 02)

Re(s e Re(se
s

signature

for user 2 could be

anywhere on this ring

(a) (b)

Im(r') range of r, Im(r) probability density

cloud for r

Re(r') Pwr)

(d)

Figure 4-1: Example of two users in one complex dimension. User I has a known phase

(O radians) and user 2 has a uniformly distributed phase. (a) The signature of user 1,

S1, is depicted as a complex scalar having only a real part. (b) User 2 has a uniformly

distributed phase, hence, its signature (complex scalar) could lie anywhere on the

ring. (c) -et of all possible points, 7,1 := bis, + 82C, jO2 � bi E 1+1,-11, 02 E [-7r,7]-

(d) Probability density function for i- + an, n circularly Gaussian, depicted

qualitatively as a density cloud.
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maximized leads us to the minimization

f b, OKI -_ arg min Y�l (b, 01r), b E F, -7r < 0 < 7r, (4.7)
b,�

Ai(bolr) - JJRJD(b,&)JJJ'+ (4-8)

The ML joint weight/phase estimator may be interpreted as follows. The optimal

detector defined by Equations (4.7) and (4.8) finds the point, F, in the range of the

random variable r' - S,4�b+ SKC 3'OK that is closest's to the realization of the random

variable, r. This closest point, F, lies on one of the rings in the range of r'. The value

of b that corresponds to this ring would constitute & Moreover, the weight estimate

is correct, i.e., btrue� if F lies on the same ring as does r' The phase estimate,

OK, is the angle of the complex vector F - S(Db.

The two user binary example in Figure 4-1 can be used to illustrate this procedure

carried out by the optimal non-coherent oint estimator. Recall that if there were only

two users present in one complex dimension, one user's phase known to be zero and

one user's phase unknown, the range of r' = b181 + 82e j�2 would be the two rings in

the real and imaginary plane as shown in Figure 4-1-(c). Now, consider as an example

of r, the received complex scalar that is shown in Figure 4-2-(a) as a 2-D vector with

one dimension corresponding to the real part and one dimension corresponding to the

imaginary part. The optimal non-coherent joint estimator for b, and 02 would project

r onto the range of r', thus, finding the closest possible transmitted value, P, to the

received value, r. This projection is shown in Figure 4-2-(b). The estimate b, would

correspond to the ring on which P lies. In the example of Figure 4-2, P lies on the left

ring. The left ring corresponds to b, = -1, hence b, = -1. For this simple example,

the decision regions for bi given any possible value of the received complex scalar, r,

are shown in Figure 4-2-(c). Specifically, if the received signal value, r, were to lie in

one of the pink (green) regions, the optimum non-coherent weight/phase estimator

loClosest, in terms of Euclidean distance.
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would assign b, = +1 (bi = -1). The phase estimate for 02 is, simply, the phase of
- 71 -2-(d).

P- blsl. In this example, �2 - 3 , as shown in Figure 4

The above discussion offered a conceptual interpretation of the optimal non-

coherent joint weight/phase estimator. In practice, we must find an algorithm to

carry out the detector of Equations (4.7) and (4.8). S-ubstituting Equation (4.5) into

Equation (4.8) and expanding gives

Ai(bolr) = JlRfr-S-I�bjl 12 + II ��f r - S,�Dbj 112 (4.9)

j,1 1 12 + fSKe 12+ I IRISK6 -j'j 1 (4-10)

- 2Rf see i01T Rf r - S(Dbl - 2!�Vf sKeiOIT�jjr - SI�bj. (4.11)

The term on line (4.9) is

Fp�(blr) = JJRJr - S(DbJJ 12 + I JQvJr - S4)bJ1 12,

or

Fl-c(blr) == I Jr - SDbJ 12 (4.12)

where FK(b I r) is, simply, the energy of the residual obtained from subtracting all but

the K" received signal from the actual received signal. Fl,((blr) is a function of b,

the value of the weights corresponding to users 1, 2,... , (K - I).

The term on line (4.10) is

6K = JJRfSK6 j,1112 + I IQVf SKej'l 112 =JJSKei0 112. (4.13)

This is the received energy due to the K 1h user's transmission.
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Im(r)

received complex scalar, r b1=-1 r

Re(r)

r

range of r'

(a) (b)

Im(r)

r'+ s

r

Re(r)

(c) (d)

Figure 4-2: Example of two users in one complex dimension. User I has a known
phase (O radians) and user 2 has a uniformly distributed phase. See Figure 4-1-(a)
and (b). (a) A specific realization of the received signal, r. (b) The received value is
projected on to the range of r'. This projection is P. The bit estimate is bi = -1
since P is on the left ring. (c) The bi decision regions. For any received signal that
falls within the pink (green) regions, the estimate for bi will be +1 (-I). (c) The
phase estimate for this example is the angle of P - �lsl = P - (-si). The angle for
this example is �2 - 113
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Finally, we re-write the last two terms on line (4.11) using the two substitutions

RI SK d"' I - Rf SK I COS 0 - !��j SK I sin 0,

QVISKe 3'�j - QVf SKI COS 0 + RISKI sin 0.

The last two terms on line (4.11) can be re-written as

-2 COS O[Rf SK jTRjr - S,�Dbj +!ajSK IT Qsjr - S(Db}]

(4.14)

-2 sin O[Rf SK jTQVf r - S4)bl QVf SK I TRjr - S4)bl].

Using the identity

Z1Z2 = Rf Z11RIZ21 +!�VJZI JQ�JZ21 + '[Rf Z21QVIZ1} ��JZ21RJZ111

(4.14) may be re-written as

-2RjX(bjr)j COS Taf X(bjr)j sin

where

X(bjr) = s T (r - S-T)b) (4.15)K

is a complex scalar." The likelihood function of Equation (4.8) may now be written

as

Ai(b, 01r) -_ Fl-c(bIr) + EK - 2Rf X(bjr)j COS 2QVjX(bjr)j sinO. (4.16)

��ince �FK, defined in Equation (4.13) , is independent of b and is the same for all values

"Recall that SK is real for the MA model used in this chapter.
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of 0, the ML joint weight/phase estimator becomes

b, 01,� arg min A2 (b, r)
b,0

where

A2 (b, r) -_ Fp: (b I r) - 2 RI X (b I r)} cos 0 - 2QVf X (b I r) I sin (4.17)

Fince the choices for b are from a discrete set, it is convenient to perform this mini-

mization in two steps,

I b, OK} = arg min min A2 (b, r).
b 0

Given the measurement r, an estimate of 0 is found for every possible value of b. This

estimate is denoted by �(b I r). The weight vector, �, is chosen to equal the the value

of b which gives the smallest A2 (b, �(b I r) I r). To find �(b I r), we set ' A2 (b, r) = 0ao

and solve for 0:

(9 A2(b, 01r) = -2RJX(b1r)J sin 0 + 2��JX(blr)} cos 0 = 0,
'go

9'(blr) = tan- RI _Y(bJr)J'

Calculating an inverse tangent for every possible value of b may be avoided by sub-

stituting the above solution for 0 into Equation (4.17):

A3(blr) = A2(b, tan-1 'q X(b r)J Jr)
RJX(bJr)J

and using the trigonometric identities

cos(tan- , a) b sin(tan-1 a a
2 2 2 2b Va- + b b Va +
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to obtain

A3(blr) = Fj,,7(blr)-2RIX(blr)}cos(�(blr))-2!��fX(bir)lsin(�(blr))

= Fj,�7 (b I r) - 2

or

A3(blr) = Fj-�(bjr) - 21X(blr)l,

where is the magnitude of the complex scalar argument.

An estimation procedure equivalent to the ML estimator in Equation (4.6) can be

performed in two parts. First, find the value of b such that

arg min A3(blr)
b

or

argminb[FK(blr) - 21X(blr)l] (4.18)

where FK(blr) and X(bjr) are defined in Equations (4.12) and (4.15), respectively.
c-'econd, K r)

calculate the estimate

�K = tan- 1 Q�f X(bjr)j (4.19)
R�X(�Jr)}

Simulation results of the NC weight/phase estimator showing bit error rate curves

and phase error histograms are reported in 'sections 4.7.1 and 4.7.2, respectively.
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4.2 The Estimation Algorithm: An Example

The MAP joint weight/phase estimator is shown in Equations (4.18) and (4.19). In

general, each possible realization of b must be tried. This requires IF I -I comparisons,

where 1171, the number of elements in the set F, is exponential in the number of users. If

the user signature vectors are tree-structured, a substantial savings in computational

complexity of the joint estimator may be realized. As was the case in Chapter 3 for

F(bJr) of Equation (3.9), Fpc(blr)l of Equation (4.12) is separable when conditioned

on the weights that correspond to upper levels of the tree. The other term in Equation

(4.18), IX(blr)l, is not separable by conditioning, but may be significantly reduced,

since

ST Sn=O Vn�adK=dKUaK.

That is, as a by-product of the tree structure, X(bIr) is a function of the weights

associated with user K's ancestors and descendants and is independent of the rest of

the weights corresponding to user signatures that are orthogonal to user K's signature.

For tree-structured signature sets,

'V(blr) -_ X(badKJr) = s T (r - SadK'%dKb (4.20)

K dK)

The optimal NC tree weight estimator for tree-structured signatures is

� = argn1i11b[F1_,JbIr) - 21X(b.dK)lr)l] (4.21)

with Fic(blr) defined in Equation (4.12).

As was done in c,-ection 3.4.2, FK(blr) can be decomposed into N conditionally

independent terms, corresponding to the N users at the bottom of the tree. This
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separation allowed for a tree climbing procedure that created conditional weight es-

timate tables at each node. For MA with one unknown-phase user, the minimization

in Equation (4.21) can also be carried out through a tree climbing procedure of ta-

ble creations. For this unknown-phase case, however, there are four types of tables.

Figure 4-3 pictorially shows the four different types of tables and where they occur

on the tree relative to the node at which the unknown-phase user is located. For the

example in Figure 4-3, user 12 is the last addition to the system. The phase of user 12

is not known, but the phases of the other users are assumed to have been accurately

acquired prior to the addition of user 12. Below, a description of each type of table

is given and illustrated by stepping through the example in the figure.

Standard table: Since X(bdKIr) is independent of b-�-dK (the weights at nodes

n, Vn � adK), a standard table of conditional weight estimates may be constructed

at all nodes n, Vn � adK. The estimate that is stored in the standard table at node

n for a specific realization of ban is found from

bn(rlban) = arg min I Jr - Sn nC San4)anban - Sdn(Ddn�dn(rJbn1 ban) II
b"

where �dn(rjbn, ban) is defined in Equations (3-17) and (3.18). As was described

in more detail in section 3.6.1, the weight estimates) bdn(rlbn, ban), can easily be

obtained from a succession of simple standard table look-ups at the descendent nodes

of node n.

In the example of Figure 4-3, ad(I 2) 1, 2, 3, 4, 5, 6, 9, 10, 11, 131. Weight esti-

mates of b�� are decoupled from the estimate of user 12's phase and the weight

estimates for users 7 and 8 by conditioning on the weights of users 14 and 15.

Hence, the nodes b�� are treated exactly as if all phases in the tree were known.

Specifically, the standard tables of conditional weight estimates that were created for

the coherent tree detector of 'section 3.4.1 may be constructed for nodes ad(12)

11, 2,3,4,5,6,9,10,11,131, but not for nodes ad(12) -_ 17,8,14,151.
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15
b15

ancestor tables

�14

13 1 unknown-phase

standard tables userat node 12

desue dant table

9 10 11 1

b75 b8

1 2 3 4 5 6 7 8

X table X

Figure 4-3: Example of the non-coherent weight/phase estimator and the tables it

constructs.
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Table 4.1: Node 1: standard table. c-�ee Figure 4-3 for the full tree illustration
and the position of node 1. The blanks would be filled by calculations of Equation
(4.22).

b9, b13, b15 bi (r I b9, b13, b15)

+ I + t + I

+ + I - I

+ +

+

+ +

+

+

Tables 4.1, 4.2, and 4.3 show a binary example of the standard tables that would

be created at nodes 1, 9, and 13, respectively. Without loss of generality, assume all

known phases are zero, i.e., �D 1. The entries of Table 4.1 are calculated by

12,bi(rlbg, b13, b15) -- arg min I Jr - sib, - sgbg- S13b,3 -S15b15J (4.22)
bi

where each entry of the table is indexed by Jb9, b13, b151. The tables at nodes 2, 3, 4,

5 and 6 would be constructed in the same fashion as the table at node 1.

The entries of the standard table created at node 9, shown in Table 4.2, are

calculated by

2
12,b9(rJb13, bl5)= arg min I Jr - s9b9- S13b13 - S15b,5 sibi(rlbgbl3bl5)1 (4.23)

b9

where each entry of the table is indexed by �bI3, b151. The estimates bi (r I b9, b13, b15)

for i = 1) 2 have been stored in the standard tables just created at nodes I and 2,

and are indexed by f b9, b13, 151. The standard tables at nodes 10 and 11 would be

constructed in the same fashion as was the standard table at node 9.

The standard table at node 13 of Figure 4-3 is shown in Table 4.3. An entry of



CHAPTER 4. ONE-SHOT WEIGHTIPHASE ESTIMATION 99

Table 4.2: Node 9: standard table. ',"'ee Figure 4-3 for the position of node 9 in
the tree. The blanks would be filled by calculations of Equation (4,23).

b13) b15 bg(rlbl3, bl5)-

+ +

+

+

this table, in the row indexed by a specific realization of b15, would be calculated from

bl3(rlbl5) -- arg minb,, 11 r- S13bl3- sl5b15
- Flo (4.24)

-t.=9 sjbj(rjbl3, b15)
- E4 2

k=l Skbk(rjbpk(rjbl3,bl5),bl.3,bl5) 11 -

The first summation above requires the estimates bi(rlbl3, b15), i = 9, 1 0. Recall

that these estimates have been stored in the previously constructed standard ta-

bles for nodes 9 and 10 and are indexed by f b13, bl5j. The second summation in

Equation (4.24) requires the four estimates denoted by bk(rjbpk(rjbl3,bl5), b13, b15) for

k -- i) 2� 3, 4. These estimates have also been stored in the previously constructed

standard tables at nodes 1, 2, 3, and 4. Each of these four estimates is indexed by

three values: the specific value of bl5denoting which row of the standard table at node

13 that we are currently being calculated; the specific value of b13 that we are testing;

and the estimate bpk(r I b13, bl5)- Recall that pk denotes the parent node of node k. In

this example, for k = 1, pk -_ 9, i.e., the parent of node 1 is node 9. For k = 1, we

need to look up bl(rjb9(rjbl3, bi.5), b13, b15), for this, we need the value of bg(rlbl3, b15)

This value has been stored in the standard table that was constructed at node 9; it

is indexed by jblOl5j. For k = 2, pk - 9; given the realization of �bl3, bl5j, and

the value from the standard standard table at node 9 for bg(rlbl3,bl5)we look up the

value for b2(rjb9(rjbl3, b15), b13� b15) from the standard table at node 2. For k = 3,
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Table 4.3: Node 13: standard table. c-ee Figure 4-3 for the position of node 13 in
the tree. The blanks would be filled by calculations of Equation (4.24).

b15 b13(rJb15)
+

pk = 10; given the same realization of f b13,bl5j, we use the value from the standard

table at node 10 for bjo(rJb13,b15) to look up the value for b3(rJbjo(rjb13,b15), b13, b15)

from the standard table at node 3. �-imilarly, we find �4(rJko(rJb13jb15)) b13,b15) -

X-table: Due to the existence of the unknown phase at node K of the tree, the weight

estimates corresponding to nodes dK cannot be decoupled through conditioning. In

other words, since there are infinitely many possibilities for the phase at node K,

weight estimates at nodes dK cannot be conditioned upon OK- Instead, a single,

large table, the X-table, may be constructed. For each possible realization of b"dK,

this table has one entry, namely the complex scalar resulting from the calculation of

Equation (4.20).

This is seen in the example of Figure 4-3. Specifically, sinceS7and s8are correlated

withS12, the decisions on weight estimates for users 7 and 8 are dependent upon the

phase of user 12's transmission. �-ince this phase is a continuous random variable,

the standard tables cannot be created for nodes 7 and 8 since there are infinitely

many values Of 012 upon which to condition. We can, however, create an X-table.

Specifically, for each possible realization of bad(12) - [b7, b8, b14, b15] we find

(bd(12) Jr) - sT(r - Sad(12)bad(12)) (4.25)

Table 4.4 gives an example of the X-table that would be placed at the bottom of the

tree in Figure 4-3. Note that the number of entries in the X-table is exponential in

the number of ancestors and descendants of the unknown-phase user. Since the users
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Table 4.4: X-table depicted in Figure 4-3. For each realization of b"d(12) =

[b7, b8, b14, b15 IT in the left column of this table, a corresponding value for X(b"d(12) Jr),
calculated by Equation (4.25), may be entered into the right column of this table.

b7) b8i b147 b15 X (b7, b8, bl 4, bl 5 1 r)
+1 +1 +1 +1
+1 +1 +1 -1
+1 +1 -1 +1
+1 +1 -1 -1
+1 -1 +1 +1

-1 -1 +1 -1
-1 - I -1 -1

are employing binary signaling in this example, this X-table has 2 4 16 entries.

Descendant table: The next table that can be constructed is a table of joint condi-

tional weight estimates for the descendants of node K. This table is most conveniently

placed at node K (node 12 in the example of Figure 4-3). The joint estimate that

would be entered into the descendant table, for a specific realization of baK, is

found from

bdK(rlb.K) = arg min I Jr - SaK'I�aKbaK - SdK'�bdKbdK1 I aK
bdK

Note that the values of the conditional estimates of bTd-K stored in the standard tables

are independent of bdK and, thus, do not appear in the minimization equation for the

creation of the descendant table. This is due to the conditionally separable property

of Fl,,:(blr) that was shown in S-'ection 3.4.9

In the example of Figure 4-3, the descendant table is constructed at node 12 where,

for each hypothesized pair of values of f b14, b,51, the joint conditional estimates of b7

and b8 are optimally determined by choosing those values which correspond to the



CHAPTER 4. ONE-SHOT 147EIGHTIPHASE ESTIMATION 102

Table 4.5: Node 12: descendant table. ee Figure 4-3. For each realization of
b.(12) = [b14, bi 5]T in the left column of this table, a corresponding pair of values for

jb7(rjb14, b15), b8(rjb14, b15)j, calculated by Equation (4.26), may be entered into the
right column of this table.

b14,b15 �7(rjb14,b15)b8(rjb14,b15)
+1 + I

+1 - I

+

minimization

b7(rjb14, b15) arg min r - S7b7 SA S14b14 S15b15112 21X(b7, b8, b14, b151r) 1.
b7,b8

L b8(rlbl4,bl5)
(4.26)

Recall that X(b7,b8,b14,b15jr) has already been calculated and is stored in the X-

table at the bottom of the tree. An example of the descendant table that would

be created at node 12 is shown in Table 4.5. The computational complexity for the

descendant table is exponential in the number of ancestors and descendants of the

unknown-phase user. In this example there are 2 jd(11)j _ I= 2 4 _ I 15 comparisons

needed to find a single entry in the table. There are 21' (12) 1 = 22 4 entries in the

table. It follows that there are a total of 2 1.(12) 1(2 ld(12)1 _ I 60 comparisons needed

to fill the descendant table.

Ancestor tables: The estimation algorithm is completed by successively creating

tables for the remainder of the tree, at the nodes aK, starting first, with node pK

and ending with the root node. At a node i E aK, an ancestor table is constructed

by calculating a conditional estimate for every possible realization of bi from

b (r I b,,i) = arg minTi (b b, I r) - 2 JX (bdK (r I b,9 (r I bib. bo (r I bib,,i), bi, bi I r)
bi
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where
'1:7 3-Oibi - Saiibai
,i(b-,b,,iJr) -11 r-sie

Sd0DdK�dK(rJ6,9(rJbibai), bi, bai)

where z� = aK\fi, ail, i.e., the set of ancestor nodes to node K that are not in

the set of nodes f Z', ail. Note that �,q (r I bibai) can be retrieved from successive table

look-ups of ancestor tables previously constructed at the nodes below node i and

above node K. Recall that �dK(r$,9(rlbibai)) can be obtained by a simple look-up

in the descendant table at node K. In the last term of Fi(bibailr), ( = di\dK,

i.e., the set of descendant nodes of node 1 that are not descendants of node K. The

conditional weight estimates for these nodes are collected together in ��(rlbibai) and

may be obtained from simple successive look-ups of either the standard tables or just

constructed ancestor tables.

To illustrate the construction of the ancestor tables, consider node 14 in Figure

4-3. The ancestor table for node 14 has two entries, one corresponding to b15 = +1

and one corresponding to bl 5 -- L Each entry is found by fixing the value for b15

and trying both possible values for b14. The conditional estimate for b14 is the one

that minimizes

b14(rJb15)= arg min F14(bI4, bl 5 Jr) - 2JX(b7,8(rJb14, b15), b14, b15 I r)
b14

where

8

-F14(b14, b151r) = JJr-S14b14 - S15b,5 sibi(rib14, b15) Skbk(rlbl4,bl5)11'- (4.27)
Z=7 kEC

In this case, for node 14, 11, 5, 61. The estimates b7(rJb14A5) and b8(rlb14, b15)

are needed in the first summation on the right hand side of Equation (4.27); these

conditional estimates have been stored in the descendant table that sits at node 12.

The estimates bk(rlb14, b15), k G ( - f 11, 5, 61 are needed in the second summation on
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the right hand side of Equation (4.27). First, for the fixed value of b15 and the value

of b14 that we are testing, we retrieve the estimate b11(rJb14, b15) from the standard

table at node 11. Next, we need the estimates from the lowest level of the tree:

b5(rJb11(rJb14, b15), b14, b15) and b6(rJb11(rJb14A5), b14, b15). These have been stored in

the standard tables at nodes 5 and 6. The computational complexity of creating an

ancestor table is nearly the same as that needed to create a standard table since the

number of comparisons needed for each table entry is exponential in the number of

ancestors in both cases.

The estimate for b15 is obtained by minimizing

b15(r) = arg min JC'l 5 (b15 Jr) - 2JV(b7,8(rJb14(rJb15), b15), b14(rlb15), b15 Jr) 1,
b15

8

"':'l 5(bl 5 Jr) = I Jr -S15b15 -Sibi (r I bl 4, b15) - 1: Skbk(rlbl 4, b15) I 1',

t=7 kEC

where, in this case for node 15, = f 13,14,9,10,11,1,2,3,4,5,6}- Obtaining the

estimates at these nodes may be done with successive table-lookups as described

above for the calculation of the ancestor table at node 14.

Conceptually, once the estimate of b15 is obtained, it is a simple matter of succes-

sive table look-ups that propagate down the tree to determine the optimal estimates,

first, for users 13 and 14, and then for their children, users 9, 10, 11, and then for 7

and 8, then, finally, down to nodes 1, 2, 3, 4, 5, and 6 at the bottom. To complete the

optimal NC joint weight/phase estimation procedure, the optimal estimate of user

12's phase is calculated from Equation (4.19), using the optimal estimates for users

71 8, 14 and 15
1 QVJX(�.d(12) Jr)J

012 = tan-
RJX(�,d(12) Jr)1'

As this example illustrates, the NC tree weight/phase estimation algorithm takes

advantage of the signal set structure, sweeping up the tree creating a standard table of

conditional weight estimates at each node that is neither an ancestor nor descendant
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of the unknown-phase user. For the rest of the nodes in the tree, the algorithm begins

at the node corresponding to the unknown phase, creating the X-table, the entries

of which are a function of the values of the weights corresponding to the ancestors

and descendants of the unknown-phase user. Also at this node, the descendant table

of conditional joint estimates is created. The algorithm then continues to sweep

up through the ancestors of the unknown-phase user, creating ancestor tables of

conditional weight estimates.

A rough lower bound on the complexity of this procedure is easily determined:

the introduction of a single unknown phase at a node K of the tree requires the

calculation of two large tables, the X-table and the descendant table, each having

a computational complexity on the order of M(Jalll), where JadKJ is the number of

ancestors and descendants to node K, and each user employs M-ary signaling. In

general, the joint weight/phase estimation procedure for tree-structured signature

sets is of lowest complexity if the user having the unknown phase is at the bottom

of the tree since JadKJ for typical tree structures is minimized if K denotes a lowest

level node. The computational complexity is calculated exactly in the next section.

4.3 Computational Complexity

For simplicity, assume all K - I users employ A/1-ary signaling, i.e., b E r, where,

Irl = M(K-1). The K 1h user transmits a weight of +1, and its phase is to be estimated.

Also, the tree is restricted to be of uniform composition in that there are exactly Q

children emanating from each node." Furthermore, there are a total of L levels, and

at the bottom there are N nodes, hence, N = QL- ' and L = logQ N + 1. As was

done in cSection 3.5 we count the number of compares, C, needed to perform the joint

weight/phase estimation algorithm. The calculation of c is done in two parts, one for

each section of the tree as color coded in the example tree shown in Figure 4-4. Let

12A tree having Q children emanating from each node will be called a Q-tree.
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node n V
at level

1-M

Figure 4-4: A quad tree partitioned into two sections by color.

node n, at level L, correspond to the user having the unknown phase.

Green section of tree: The algorithm creates a conditional bit estimate table for each

node in this green section of the tree." The green section comprises all non-descendant

nodes to node n. It is easiest to find the computational complexity corresponding to

the green section of the tree by calculating the computational complexity of filling the

entire tree with standard tables, and then subtracting out the complexity of filling

the red portion of the tree with standard tables.

Let cc (L, Q, M) denote the complexity of the coherent tree detector." Calculating

cc (L, Q, M) was done in Section 3.5. Briefly, for each node i at level 1, we must do

M - I compares to find the table entry for a single realization of bj. There are

Q` nodes at level 1. There are realizations of b,,i for each node, i, at level 1.

Translating the above sentences into an equation gives

L

cc(L, Q, M) - E(M - I)Q'-10-1.
1=1

"The standard tables and the ancestor tables created in the green section of the tree require the
same number of compares for each entry and are considered computationally equivalent.

"Recall that this was found in Section 3.5 as a function of N, the number of dimensions. Here,
it is shown as a function of L.
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In section 3.5, this was shown to be

Al-I L
cc (L, Q, 111) � � [ (Q M) _ I], (4.28)

Q11l - I

with L -_ logQ N + 1.

The notation c' (L, L, Q, All) will be used to denote the number of computations

needed to fill the red portion of the tree with standard tables. The calculation of

C' (L, Ln, Q, M) follows. For each node i in the red portion of the tree at level 1,c

M - 1 compares are needed to find the table entry for a single realization of bai.

There are QI-L - nodes in the red section at level 1 > L,,. There are M'-' realizations

of bi for each node, Z, at level 1. We have

L

C' (L, L., Q, M) QI-L.,, (M - 1)M1_1c

Al _ I (QM)L+l _ (QM)L-

QL,,M QM_1

which is re-written as

M - I L 1 m)L-L,,,+l - ii.C' (L, Ln, Q, All) - Al (Q (4.29)c QM - I

Notice that when Ln -_ L, c' (L, L, Q, M) -_ (Al- I)ML-1; this is just the complexityc

of making a single table at the bottom level.

The computational complexity corresponding to the green section of the tree is

c (L, L, Q, M) = CC (L, Q, M) - c' (L, L., Q, M) (4-30)9 c

Red section of tree: The red section requires the construction of two large tables,

the X-table and the descendant table. For the X-table we calculate one value of

X(b,,,,,bd,,,Ir) for each possible realization of [b T , bT ]. This table, then, will have
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MI.nJ+Jd.1 entries, where Janj and IdnJ are the number of ancestors and descendants

to node n, respectively.

For each entry of the descendant table we are finding the best joint estimate of the

weights JbkJkEd,, hence, we must do MJdJ _ I compares for every possible realization

of bi. There are MJanJ possible realizations of bai. The number of compares needed

to create the descendant table is A,1JanJ(11/1JdnJ - 1). The complexity corresponding to

the red section of the tree is

C,,d(L, Ln, Q, M) MJa-J+JdnJ + MJa-J(MJdnJ

A1Ja.J(2MJdnJ _ 1).

Noting that

lanj Ln - I

Q'-LnJdnJ J�= L n + 13

Q ( QL-1

Q-1 QLn-1

gives
qL-1

ML,-1 Q-1) QLn-1
C,,d (L, L,, Q, JU) [2 (114' Q (4.31)

Notice the dependence Of Crd (L, Ln, Q, M) on Ln, the level at which the new unknown-

phase user is placed. When Ln -_ L (when the unknown-phase user is at the bottom

of the tree) � Cred (L, Ln, Q, M) = AjL-1, as we would expect. Hence, if the new user

is at the bottom of the tree, the only calculations done for the red section of the tree

correspond to the creation of the X-table. This table requires one entry for each pos-

sible realization of the ancestor weights, and a bottom node has ML-' ancestor nodes.

Total complexity for the non-coherent tree estimator: We combine the computational

complexities calculated for the two parts of the tree to find the complexity of the
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non-coherent tree estimator

CNC(LL.,QM) -_ cg,,,,,,(LL,,Q,1111)+C,-,d(LL,,,,QM)

cc (L, Q, M) - c' (L, L, Q, M) + Ced (L, L., Q, M).

We may also write

CNC (L, L,�,, Q, M) = cc (L, Q, M) + cA (L, L., Q, M).

The difference between cc (L, Q, M), the complexity of the coherent tree joint detector

of Chapter 3, and CNC(L, L, Q, M), the complexity of the non-coherent tree joint

estimator (for the case of a single user at level L, having an unknown phase), is

cl,, (L, L, M, Q) C,,d (L, L, Q, M) - c' (L, L, Q, M)

ML--'[2(A1I Q-1 QL,-l M-1 MLn-'[(QM)L-Ln+l
QM_1

(4.32)

When Ln = L�

cA (L, L, Q, M) ML-1 (M 1)ML-1

and we see a small decrease in complexity in the non-coherent case relative to the

coherent case. This apparent decrease is an artifact of the different means used

to measure the complexity of the X-table and the standard table. The operations

counted for the construction of a standard table is the number of compares. �-ince the

X-table is constructed without compares, its complexity is measured as the number

of rows in the table.
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Table 4.6: Computational complexity of tree algorithm for binary signaling (M = 2)
and a quad tree (Q = 4). Recall that L is the total number of levels in the tree,
K is the total number of users (nodes on the tree), and L,, is the level at which the
unknown-phase user sits on the tree.

L I K I CNC(Ln -- L) I CNC(L,, = L - 1) CNC(Ln = L - 2)TcNc(Ln = L
3 21 73 117 2.0972e+06
4 85 585 673 4.1947e+06 3.8686e+25
5 341 4681 4 85 7 8.3930e+06 7.7371e+25

At the other extreme, when L, = 1, we have

Q-1 )QL-1-1 M-1 QM)L
c,(L, 1, Q, M) -_ 2(M' - I QM_ I

where QL-1 = N. As we would expect, in the case where the new unknown-phase user

is at the top of the tree, cA (L, 1, Q, M) is exponential in the number of dimensions,

N. Recall that for typical trees, N is a linear function of K, the number of users.

Table 4.6 shows CNC(L, L,, Q, M) for different values of L and L, for Q = 4 and

M -_ 2. Notice that for Ln < L - 3, the total complexity is above 10" which is

computationally impractical.

To avoid the high complexity of having an unknown-phase user high up in the

tree, a sub-optimal estimation procedure which saves on computational complexity is

proposed in Section 4.6.2.

Alternatively, this complexity could be alleviated by designing the the system to

accommodate dynamic re-assignment of new users. To avoid ballooning complexity

with the addition of new, unknown-phase users, we would prefer to put a new user

at a lower level of the tree. Once its phase has been learned accurately, we may

move it to another spot in the tree, as long as this move preserves phase. With the

state of the art signal synthesizers, this requirement for coherent changeover from one

signal to another may be possible but has not yet been implemented Q21). If such a

coherent changeover is possible, then, perhaps, a user's phase can be learned during
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acquisition and a coherent changeover can be made from the acquisition signal to the

transmission signal within the tree. For this last scenario, the newest user's phase,

then, would be known within some standard deviation. Although this might alleviate

the need for the NC tree joint weight/phase estimator, the phase estimate might not

be within a desired accuracy and might need to be re-estimated. The next section

derives the tree joint weight /phase estimator for the case of partial phase information.

4.4 Optimal Partially Coherent Weight/Phase Es-

timator

A communication system will, for some portion of its operation, have some informa-

tion about the phase of a user. Often this information is the result of some estimation

procedure such as that just described in the previous section. Other times, the phase

of a user might drift, hence the new phase is not entirely unknown. In the presence

of phase inaccuracies, the systems has two choices of operation: 1) require the user

with the phase inaccuracy to transmit a known, training weight and estimate this

user's phase only; 2) allow the user to transmit an unknown information weight

(e.g., bi E 1+1, -11) and estimate both the phase and the weight for this user. This

section derives the MAP weight estimator that would correspond to the receiver hav-

ing complete knowledge for all but one user's signature waveforms and having partial

information about the phase of one user. For this section all users are allowed to send

information weights. Restricting the uncertain-phase user to send a known training

weight results in a trivial simplification of the detector derived for the general case of

allowing all users to send information weights.

To reflect the partial knowledge of user K's phase, OK is assumed to be a continu-

ous random variable with a non-uniform distribution that corresponds to the accuracy

of the phase knowledge at the receiver. To be consistent with the single user literature

Q25]), the MA joint weight/phase estimator derived for this case will be called the
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optimal partially coherent (PC) joint weight/phase estimator. 15

There are two slight differences between the partially coherent estimator that

will be derived in this section and the non-coherent estimator that was derived in

'2�ection 4.1.1' First in the partially coherent scenario, all users are assumed to be

transmitting information, therefore, the model for the received signal includes the

weight bK,

r = S-4�b + bj,,�SKdOl,� +an. (4.33)

Without loss of generality, we may think of user K's presumed phase as being zero

radians and the random error in our knowledge of this phase as OK- second, the

prior distribution on user K's phase in the non-coherent scenario was uniform, for

the partially coherent scenario, a reasonable prior is

ea Cos
(4.34)

where 1,(a) is the modified Bessel function of zeroth order. This exponential cosine

PDF has been shown by Viterbi Q24]) to be the PDF for the MAP phase estimate of

the single user phase-locked loop. Figure 4-5 shows this PDF for several values of a.

The parameter a allows the phase to range from a uniform random variable, when

a 0, to a deterministic variable, when a = oc.

vVe wish to find the values of b, bK and 0 that maximize the a posteriori

probability 17

Pbb.rc,0.1,C Jr (b, bK, r) - PJbb,,0,,, (r I b, bK, Prob(b, bK)
Pr (r)

15 For a thorough treatment of PC single user detection see the paper by Viterbi, [25].
"Note that for large phase uncertainties, the estimator derived in this section reduces to the

non-coherent joint weight/phase estimator. See Appendix B.
17 The derivation of this section is very much like that done in Section 4.1 for the NC joint

weight/phase estimator. The only differences for the PC case is that we must also estimate user
K's weight (bK) and that the prior distribution on OK is not uniform. The reader may skip over
the details of this derivation and pick up with the final form of the PC joint weight/phase estimator
shown in Equations (4.40), (4.41) and (4.42).
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0.5- 0.5-

0 0
-100 0 100 -100 0 100

(a) (b)
3 3

2 - 2

1 1

0 0
-100 0 100 -100 0 100

(C) (d)10 10

5 5

0 0
-100 0 100 -100 0 100

(e) M

Figure 4-5: The exponential cosine PDF is assumed to be the distribution for OK,
ec, C.8

where po, 1800 <- OK < 1800. This PDF is shown for six different
values of a. (a) a - 0.25. Note that as a approaches zero the PDF approaches a
uniform distribution. (b) a = I (c) a = 10 (d) a - 50 (e) a = 150 (f) a = 600 Note
that as a approaches infinity the PDF approaches a Dirac.
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Fince p, (r) is independent of b, bK and 0 and Prob(b, bK) is equally likely for all

realizations of the weights, the MAP partially coherent joint weight/phase estimator

is

fbbK4KJarg max Qi(bbK,01r),

where

Q, (b, bK, 01 r) - PJbb,'0,', (r I b, bK, O)PO, (0),

and

[JJRfd(bbK,0)) 112+ 11!��fd(bbK,0)1 112] ea Cos 0

PrJbbK,0K (r I b, bK, OPOK (0) (.V/-2-7,7) 2 N (4.35)27rI,(a)

where

d(b, bK, (r - S,�Db - bKSK6 jo).

We take the log of Equation (4.35) and discard any constant terms to obtain

Q2(b, bK, 01r) -_ - 12 [I I Rf d(b, bK, 0) 1112 +I I af d(b, bK, 0)1 1 12] + Ce COS
2u

The same substitutions and algebra used to reduce Equation (4.8) to Equation (4.16)

will give

FI_,JbJr) --I<-(bK)Q2(bbKOlr) 2 2

2RfY(bbKJr)Jcos0+ 2!��JY(bbKlr)jsino (4.36)

U2 012

+ CY Cos
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where FK(blr) is defined in Equation (4.12) and

C3 .0 2 12
EOK) - J1bKSK , 11 JbkJ JISKI (4-37)

and

Y(b, bK Jr) - b* ST (r - S4)b). (4.38)K K

The MAP joint weight/phase estimate may be found in two steps:

b, bK, OK arg max max Q2 (b, bK,

First, set

Q2(b, bK, 0
00

to find
2 Q�fY(bbK1r)l0K(bbK1r) - tan-' - 012 (4.39)

2 RJY(b, bKJr)J + a'012

The parameter a does exactly what we expect, namely, when a is large, OK(b, bKJr)

approaches zero, i.e., our knowledge of user K's phase is nearly perfect. When a

is small, �K (b, bK I r) approaches the estimator of Equation (4.19) which assumes no

knowledge of user K's phase.

Second, we plug Equation (4.39) into Equation (4.36) and multiply by -I to get

Q3(b, bKJr) = -Q2(b, bK, �K(b, bKlr)lr)
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or

Q3(b, bKJr) Fic(blr) + Ce)2 + ( 2 ��JY(b, bKlr)1)2.
a 2 2 2

Noting that a is real and

2 a12 + Qq 2 + aJ2 = 1 2 + a12,Rf -Y(b, bKJr) + _Y(b, bKJr) Y(b, bKJr)
2 2 2

gives

Q3(b, bKJr) = F,,:(bJr) + --K(bK) - I 2Y(b, bKJr) + cel. (4.40)
92 012 012

The PC joint weight/phase estimation procedure would first solve

lb, bKJ = argMinfbbJ Q3(b, bKJr) (4.41)

and then plug these weight estimates into Equation (4.39) to get

�K= tan-' Jr)) (4.42)
a2

9Z1Y(0KJr)J+c, �-

This detector is, not surprisingly, very similar to the joint weight phase estima-

tor derived in election 4.1. There are two slight differences. First, the NC joint

weight/phase estimator assumed that bK = +1. The PC joint weight/phase esti-

mator assumes bl,<- to be a discrete complex valued random variable, hence the K 1h

user)s energy, EK(bK), must be taken into account by the estimator." ',-second, the

18 If bK G Jeo IO = 01, - --, OM I (this is uniform envelope signaling) then EK(bK) would be indepen-
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PC joint weight/phase estimator, by definition, assumes a non-uniform prior PDF

on OK, hence the phase accuracy parameter, a, must be taken into account by the

estimator.

A qualitative example of the binary weight decision regions carved out by the

PC weight/phase estimator is shown in Figure 4-6. The signature signal for user I

is completely known at the receiver and is depicted in Figure 4-6-(a) as a complex

scalar having only a real part. The signature for user 2 is depicted in Figure 4-6-(b)

and has a phase which is known to be ' within a phase error. This phase error is
3

represented as the arc in the figure and is characterized by the PDF of Equation

(4.34) with a = 10. The PDF for this phase error is shown in Figure 4-5-(c). With

non-negligible probability, user 2's signature could lie anywhere along the 100' arc

shown in Figure 4-6-(b).'9 The length of this arc exactly corresponds to the range of 0

centered underneath the lobe of the PDF (shown in Figure 4-5-(c) for which ce = 10)

that holds 99% of the probability. If each user is transmitting its signature signal

with either a +1 weight or a -1 weight, the collection of all possible noiseless received

points, r' = b1s, + b2,52C , is shown in Figure jO2 -6-(c). The noiseless received point

could lie anywhere on the four arcs shown in Figure 4-6-(c). The optimal PC weight

estimator would draw decision boundaries similar to the ones shown in Figure 4-6-

(d).20 For example, if any received point, r + o7n, falls in the upper left region

marked (-I, +1), the PC joint weight/phase estimator would decide that bi = -1

and b2 = +1. Figures 4-7-(a) and 4-7-(b) show the binary weight decision regions if

the 99% probability arc for user 2's phase was decreased to 45' and 30' by increasing

a to 50 and 150, respectively.

If user signatures were to exhibit tree structure, the PC joint estimator reduces

dent of bK and could be dropped.
19Note that a random phase having the PDF shown in Figure 4-6-(b) for a = 10 will, with 99%

(95%) probability, fall within an arc of 100' (74.5').
"The boundaries shown in the figure have been drawn free hand and have not been mathematically

calculated. The purpose of this figure is to offer intuition on the PC estimator, hence, performing the
difficult calculations needed to obtain the mathematically exact boundary regions is not necessary.
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Irn(s,eibl) Irn(s2pilt)

signature vector 02, characterized

for user I by a = 10

ARe(se- Re(s2e

S2eib2 ir/3

signature vector
could be anywhere on this arc

(a)
(b)

Irn(r') range of r': (x =IO CC =10

(b b2)=(+ I,+ I

Re(r')

(c) (d)

Figure 4-6: (a) The signature for user I is shown as complex scalar having a non-zero
real part and zero imaginary part. (b) The signature signal for user 2 is known within
a phase error. This phase error is characterized by representing the signature of user
2 as a complex scalar with an unknown phase having the PDF of Equation (4.34)
with a = 10. User 2's signature (complex scalar) could lie anywhere along the 100'
arc with 99% probability. (c) The range of ?-' = bis, + b282e jO2 . This is the collection
of all possible values for r'. (d) The binary weight decision boundaries that would be
carved out by the optimal PC joint weight/phase estimator are super-imposed on the
ran�e of r'. For example, if 7- -_ r' +,7,n were to lie in the upper right region marked

(bi, b2) = (+ 1, + 1), the PC detector would decide that r' must have come from the

upper right arc, corresponding to b, - +1 and b2 = +L
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a =50 (x = 150

(b)
(a)

Figure 4-7: Binary weight decision boundaries that would be carved out by the opti-

mal PC joint weight/phase estimator if a in Figure 4-6 were changed. The arc lengths

shown are the 99% probability regions corresponding to each value of a. (a)a = 50

(450 arc) (b) ce -_ 150 (30' arc). '--'ee Figure 4-5 for the PDF corresponding to these

values of a.
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in exactly the same manner as does the NC estimator for uniformly distributed

21phase shown in section 4.2. It would sweep up the tree creating a standard table at

each node that is neither an ancestor nor descendant of the uncertain-phase user. The

only trivial difference between the NC tree procedure and the PC tree procedure is the

replacement of the X-table with a, table of Y(bdK, bK1r), or a Y-table. Just as with

X (bdKIr) for the NC joint weight/phase estimator, Y(b,,dKbKlr) is a function of

the values of the weights corresponding to it and its ancestors and descendants. The

Y-table has a number of entries which is exponential in the number of ancestors and

descendants plus one, since we are now estimating bK. Also at this node, the algorithm

creates a descendant table of conditional estimates $dK, bK1 . This requires a number

of compares that is also exponential in the number of ancestors and descendants plus

one. The algorithm proceeds exactly as it did for the NC tree procedure where an

ancestor table is created at each node that is an ancestor to the node corresponding

to the uncertain-phase user.

The computational complexity is virtually the same as that derived in election 4.3.

The only difference is due to the estimation of the uncertain-phase user's weight (the

NC joint weight/phase estimator required this weight to be fixed)." The resulting

trivial change in complexity does not change the order of the computational complex-

ity of the algorithm as a function of K, the number of users.

S�imulation results of the PC weight/phase estimator are reported infections 4.7.1

and 4.7.2.

2'Note that the two user example given above does not show a tree structured set of user signatures.
For any full tree, no two users would lie entirely in the same complex plane, hence, no two rings
would intersect. The close proximity of arcs in Figures 4-6 and 4-7 is not typical of tree structured
signature sets.

22The complexity of the PC joint weight/phase estimator can be obtained by replacing the ML_-I

in the first term of Equation (4.31) with ML - and adding (M _ 1)ML_ to Equation (4.29). If the
receiver knew the value of bK, the complexity of the NC joint weight/phase estimator and the PC
joint weight/phase estimator would be exactly the same.
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4.5 Optimal PC Joint Weight-only Estimation

23Partially coherent detection may also be done without estimating user K's phase.

The PC weight estimator finds the value of [b, bK1 to maximize

PbbK Jr (b, bK r) 7r PbbK,�Klr(b, bK, olr)do.

(b, bK r) Nlbb, (r I b, bK) Prob(b, bK)Pbb_Tclr p(r) I

and p(r) is independent of b and bK, and Prob(b, bK) is equally likely for all realiza-

tions of the weights, the MAP joint weight PC estimator is

f b, bKJ arg max T, (b, bK Jr),
lbbK}

where

T,(bbK1r)-f PJbbK,0K(rJbbK,0)P0K(0)d0.
_7r

and Prlbbr,�,OK (r b, bK, O)PO, (0) is defined in Equation (4.35).

- (F1,�(b1r)+eK(bK)) "r ( 2 RJY(bb.TcJr)}+ce)cos0+ 2 Q�JY(bbKJr)JsinTl(bbKlr) = Ce 12 f- 7r e Cr2 C12 Odo,

where C holds all the multipliers that are independent of b and bK- -ee Equations

(4.12), (4.13), and (4.38) for definitions of Flc(blr), EK(bK) and Y(bbKlr). Recog-

nizing that the integral above is a modified Bessel function, we can write

-[F1,:(b1r)+c-K(b1_,:)] 2
T, (b, bK Jr) = Ce a2 1,,( RfY(b,bKlr)l+a)2+(-�'SIY(b,bKlr)1)2)_

a U2

2'Note that for very small phase uncertainties, this estimator reduces to the coherent joint
weight/phase estimator. See Appendix B.
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Maximizing T, (b, bK I r) over [b, bK] will result in the same weight estimates as mini-

mizing its negative log, hence the PC weight-only estimator is

arg Minfbb,} T2(b, bKjr) (4.43)

where

T2(bbKlr) -_ F,�7(bjr)+sjc(bjj - In Io( 2 JY(b, bKjr) + al) (4.44)
012 012

where we used

RI Y(b, bK I r) + a12 + !�Vf Y(b, be I r) + a}2 Y(b, bK I r) + a 12.

It is easy to see that both the PC weight-only estimator above and the PC

weight/phase estimator in Equations (4.41) and (4.40) have the same form. Both,

therefore, exhibit the same reduction when user signatures are tree-structured. The

computational complexity of the PC weight-only estimator, then, is at least that of

the PC weight/phase estimator. The estimation procedures are the same, except

where the PC weight/phase estimator calculates

+ a)2 + ( 2 2!��f Y(b, bK I r) 1)2,
(T

the PC weight-only estimator does the same calculation, but must do one extra step.

The PC weight-only estimator must use this value as the argument to a modified

Bessel function; this requires a look-up in a Bessel table. To create a single entry

at an ancestor node to the uncertain-phase user, the PC weight-only estimator must

do M Bessel look-ups. �'-ince the number of ancestors of the uncertain-phase user

is typically low, this additional computational complexity will be negligible. If a
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system is low on storage space for its detection algorithm, then the PC weight/phase

estimator would be preferable to the PC weight-only estimator.

4.6 Sub-optimal Lower Complexity Alternatives

As found in section 4.3, both the non-coherent and partially coherent estimators have

a complexity that can range from very low order polynomial in the number of users,

to a complexity which is impractical, depending upon the position of the uncertain-

phase user in the tree. If the tree position of the uncertain-phase user cannot be

controlled to keep the complexity low, there are two low complexity alternatives:

1. if, at the receiver, a user's phase is known within a small error, no phase esti-

mation is needed and the coherent detector may be used with slightly incorrect

phase information.

2. If the phase uncertainty cannot be ignored, a sub-optimal, lower complexity

version of the optimal joint weight/phase estimator may be used.

This section discusses both options of avoiding the high complexity of optimal joint

weight/phase estimation.

As was seen in section 3.7.2, ignoring phase inaccuracies works well under some

conditions. election 4.6.1 formally presents the assumed coherent weight estima-

tor that was used for the simulations of section 3.7.2 in which phase uncertainty was

ignored and the coherent tree joint detector was used with an incorrect value for the

phase. 24 In the process of developing this detector, intuition is given to explain the

simulations results of section 3.7.2.

S-ection 4.6.2 proposes a sub-optimal version of the optimal joint weight/phase

estimator which is much lower in complexity than its optimal counterpart. The low

14Recall that the complexity for the coherent tree 'oint detector is typically low order polynomial
in the number of users.
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complexity version makes it possible for an uncertain-phase user to be near the top of

the tree. This sub-optimal approach assumes that the random phase is from a discrete

set of possible phases to allow it choose a weight vector estimate with low complexity,

although the final phase estimate is not from the discrete set. This assumed discrete

joint weight/phase estimator is developed and its complexity is calculated.

4.6.1 Assumed Coherent Weight Estimator

Section 3.7.2 empirically found that for the equal energy minimum distance signature

sets, a phase error in one user of 20' resulted in a notable performance loss (up

to I dB, for some users in the system). 2' A phase mismatch for one user of 10'

to 15' resulted in virtually no performance loss. This section formally presents the

assumed coherent (AC) weight estimator and, in the process, discusses the

intuition behind its behavior.

The AC weight estimator finds the combination of valid weights, [b, bk] that min-

imizes the distance between the received signal vector, r, and the assumed possible

aggregate signal vector r' - S(Db+bKSKei�K, where �Kis assumed to be the accurate

value for user K's phase. The AC weight estimator is

i0K 2lb, bKJ= arg min I Jr - S4)b + bKSKe (4.45)
lbbr,�l

The only case in which this detector is optimal is if perfect knowledge of user K's

phase were communicated to the receiver. S'ince this is, strictly, never the case, the

AC weight estimator of Equation (4.45) is always sub-optimal. As was shown in

'-ection 4.4, the PC weight/phase estimator is the optimal estimator forOKrandom

with the PDF of Equation (4.34).

There are conditions under which the difference between the sub-optimal AC

25Losses are with respect to the performance of a corresponding system for which all users' phases
are correctly known at the receiver.
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weight estimator and the optimal PC weight estimator range from tolerable to negli-

gible. This concept can be illustrated with an example. Consider, again, the two user

signatures shown in Figures 4-6-(a) and 4-6-(b). Assume that our partial knowledge

of user 2's signature is due to some estimation procedure such as the NC estimator

described in section 4.1. Assume that the output of this procedure was an estimate

for user 2's phase, � - ' This estimate is not entirely accurate; Figure 4-6-(b)

conveys this inaccuracy by allowing user 2's signature to lie anywhere along the arc.

The AC weight estimator would ignore the possibility of the estimate being in error

and would set �2 = �2 - '. Figures 4-8-(a) and 4-8-(b) show the known signature
3

for user I and the assumed signature for user 2, respectively. Each user is allowed to

transmit an information weight, of either a +1 or -1, therefore the received constel-

lation, or set of assumed possible received points, r' = bis, + b2S2e 3, is the collection

of four points shown in Figure 4-8-(c). Assuming this four point received constel-

lation is correct, the optimal coherent joint weight estimator would carve out the

decision regions shown in Figure 4-8-(d). The AC joint weight estimator, then, uses

the decision regions of Figure 4-8-(d) in place of the optimal decision regions that

would be carved out by the PC joint weight/phase estimator shown in Figure 4-6-(d).

The decision region boundaries of the AC joint weight estimator are not a function

of ce, hence, they remain constant with respect to the uncertainty of the estimate.

If the uncertainty is large, the replacement of the optimal decision regions with the

sub-optimal regions of will yield unsatisfactory weight error performance. These two

decision regions are superimposed in Figure 4-9-(a) for a = 10. Notice that the AC

decision region boundaries shown as dashed lines are an approximation to the optimal

PC decision boundaries shown as solid lines. As a is increased and the uncertainty

arc is shortened, the differences between the AC decision boundaries and the optimal

PC decision boundaries is decreased. Figures 4-9-(b),(c), and (d) show both the PC

and AC boundaries for a -_ 50, 150) 600, respectively.

As can be concluded from the above example, the performance of the sub-optimal
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Im(s'eA) Im(sejT,2)
�2 assumed to be

signature vector TO

for user I

Re(sp Re(s2e
S

S21jr_
assumed signature

vector for user 2

(a)

(bPS2)=(+1'+1)

Re(r')

range of r'

(c) (d)

Figure 4-8: An example of the AC joint weight estimator. (a) Complex scalar signa-
ture for user 1. (b) Assumed complex scalar signature for user 2. The signature is
actually known within a phase error, but the AC joint weight detector ignores this
uncertainty. (c) The range of bis, + b2S2ej3 . This is the collection of all possible
values for r' if the phase were actually '. (d) Binary weight decision boundaries that

3

would be carved out by the sub-optimal AC joint weight estimator. For example, if
r - r' + an were to lie in the region marked (bl, �2) = (+ 1, + 1), the AC detector
would decide that r' must have been the upper right point, corresponding to bi = +1
and b2 - +1-
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(x =10 a =50

(+

(a) (b)

=150 cc =600

(c) (d)

Figure 4-9: Decision boundaries for AC (PC) weight estimator shown as a dashed

(solid) line. The PC weight estimator is optimal. The set of all possible aggregate

transmitted vectors is indicated by the four arcs in each figure, while the set of

assumed possible transmitted vectors is indicated by the four points in each figure.

The accuracy parameter (a) is increased in each successive figure, causing the arcs to

shrink from figure to figure: (a) a -- 10 (100' arc) (b) a -- 50 (45' arc) (c) a = 150

(30' arc) (c) a = 600 (10' arc)
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AC joint weight phase estimator compared to that of the optimal PC joint weight/phase

estimator depends upon how well straight line decision boundaries can approximate

the optimal decision boundaries of the PC estimator. The two user example, how-

ever, does not show a tree structured set of user signatures. In general, the range of

r' for a tree-structured signature set would consist of arcs in N complex dimensions,

where no set of four arcs would lie on the same complex plane. This would result

in a more favorable spacing between arcs. Unfortunately, examples in more than I

complex dimension are too difficult to illustrate in a figure.

4.6.2 Assumed Discrete Weight/Phase Estimator

As we learned from the simulations of 'section 3.7.2, to maintain near optimal perfor-

mance, the coherent joint detector requires a 4-5' phase accuracy in its knowledge of

each user's phase. If the information concerning user K's phase is of this accuracy,

there is no need to estimate user K's phase in addition to finding the joint weight es-

timate. The receiver, then, would employ the AC joint weight estimator described in

the previous section, using the partial phase information as if it were complete. If, on

the other hand, the information on user K's phase is not of this accuracy (i.e., if the

phase is likely to be off by more than 50), the receiver must jointly estimate the user

weights and estimate user K's phase. The only options for joint weight/phase estima-

tion given up to this point have been the optimal non-coherent and partially coherent

joint weight/phase estimators of elections 4.1 and 4.4. If the uncertain-phase user is

at a level in the tree that will cause these optimal estimators to be computationally

impractical, a sub-optimal alternative must be found.

This section presents a suboptimal joint weight/phase estimator which assumes

the uncertain phase to be from a discrete set. �-ince the uncertain phase is not a

discrete random variable, the assumed discrete (AD) joint weight/phase esti-

mator is not optimal. This section proposes the AD joint weight/phase estimator

and gives its computational complexity.
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The AD estimator replaces the continuous random variable, 0,, with a discrete

random variable 0,, for which 0,,, E ro,,, and 117o,,,l = Mo,,,. If b,, E r,,,, i.e., the actual

weight of user n is chosen from the discrete set of complex scalars, r, then the

compound weight for user n may be denoted by a, for which a, E fbdo- lb,, (E

F"� 0,, E F0,,J. The AD joint weight/phase estimator, then, is equivalent to the tree

joint detector of Chapter 3 that assumes the weight of user n to be this compound

weight, a, having a total number of possibilities equal to Mo"M"', where 11F"l = M".

If 0,,, is completely unknown, a training weight is sent, i.e., b, = +1, and the AD

joint weight/phase estimator discretizes the continuous range of the unknown phase

7r, 7r] into a set of evenly spaced phases, Fo,,,, i 2' 1 i = 0, 1, 2me,, ---(Mo"� W.

ee Figure 4-1 0 for a two user binary signaling example. User 1's signature vector

is shown in Figure 4-10-(a). User 2's signature vector is shown in Figure 4-10-(b). The

phase of user 2's vector is not known, hence, S2 could lie anywhere on the ring shown

in Figure 4-10-(b). The noiseless received vector is r/ = bis, + S2ei02, bi E f +1) -11

and -7r <_ 02 < 7r. The range of r' is shown in Figure 4-10-(c); the transmitted

aggregate, r/ , could lie anywhere on one of the two rings shown in the figure. In this

example, the AD estimator would assume that user 2's phase is a discrete random

variable taking on any one of the 12 values in _- fi'li = 0,2,3,...Il} with equal

probability. The assumed range of r', then, would be the 24-point subset of the actual

range of r' as shown in Figure 4-10-(d).

The AD estimator returns an estimate for b and 0,,. The AD estimate for 0,,,

chosen from the set 17o,,, can be refined by replacing it with

':JfX(bJr)J
tan-

RJX(blr)J

where X(blr) was defined in Equation (4.15).

�-imilarly, if the receiver has partial information about 0"', the AD joint weight/phase

estimator would discretize the continuous range on 0,. Recall that this range can be
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Irn(se 1rn(s'e J 0 2)

signature vector S2e- N�2

for user 1 �2

j 01) 02

Re(s e Re(se)
s

si-nature vecto

for user 2 could be

anywhere on this ring

(a) (b)

Im(r') range of r' lm( 1) assumed discrete
range of r'

0 00 0 0
0 0 0 0

Re(r') Re(r')
0 0 0 0

0 0

0

(c) (d)

Figure 4-10: Example of two users in one complex dimension. User I has a known
phase (O radians) and user 2 has a uniformly distributed phase. (a) El=ignature vector
of user 1, si. (b) User 2 has a uniformly distributed phase, hence, its signature vector
could lie anywhere on the ring. (c) "--'-et of all possible points, r' = bis, + 82ejO2 � b, (E

+ 11, 02 E [-7r, 71 - (d) The assumed discrete range of r' when M02 the number
of discrete possibilities for user 2's phase is chosen to be 12.
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defined to be the values of 0 that fall within the 99% probability range of po" (0) =

ea COS(0--,P) -idom phase 0,." If this range were denoted
, where mo is the mean of the rai

as [Olow � Ohighl the assumed discrete range would be ro,,, = fall. + i (Ohigh-01.w)
moll

0, 213,...(Mo,, - 1)1. The AD estimator returns an estimate for [b, b,1 and O'.2' As

was possible above, with the NC version of the AD joint weight/phase estimator,

refinement of the phase estimate can be made with only one additional computation.

The AD estimate �,,, chosen from the set l7o,, can be replaced with

tan-1 b.1r)l
2

RJY(b, b, Jr) + - al
2

where Y(b, b,,, I r) was defined in Equation (4.38).

The total complexity of this procedure is easily found by noting that this procedure

is the same as for the coherent tree joint detector of Chapter 3. The only difference

between the AD procedure and the coherent procedure in which 0", is known is that

the size of each of the standard tables created at nodes f n, dn} is multiplied by Mo,

This is the result of replacing b,, E r,, with a,, E f bej'- lb,,, E r,, 0, E ro,,, I in the

coherent tree joint detector. The total complexity of the AD joint detector for which

the unknown-phase user is at level L, in a Q-tree having a total of L levels is

CAD (L, L., Q, M, Mo.) = cc, (L, Q, M) - c' (L, Ln, Q, M) + MOnC' (L, Ln, Q, M) + 1

C C

CC' (L, Q, M) + (Mo,, - 1) c' (L, L., Q, M) + 1,

(4.46)

where cc (L, Q, M) is the complexity of the coherent tree detector and is shown in

Equation (4.28). Defined in Equation (4.29), c' (L, L, Q, M) is the number of com-

putations needed to fill the set of nodes f n, dnJ with standard tables, assuming user n

"Recall that the accuracy is reflected in the parameter a.
27 The estimate, corresponds to the arc that is believed to contain the actual transmitted

aggregate signal.
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has only M possible weights from which to choose. �-imilarly, (Mo,,, - I)c' (L, L., Q, M)

is the number of computations needed to fill the set of nodes f n, dnJ with standard

tables if user n has MO,,,, 11/1 possible compound weights from which to choose. The one

additional computation is due to the phase refinement calculation.

Since

cc,(L, L, Q, 1I) < cc (L, Q, M),

the complexity of the AD procedure is very loosely upper bounded by

CAD (L, Ln, Q, M, MOJ < Mo,, cc (L, Q, M) + 1.

Recall that in �-ection 3.5 cc, (L, Q, AII) _- O(KP), p small, K the total number of users.

An example was given for Q -_ 4 that showed cc(L, Q, M) _- O(K32). From this, we

may conclude for typical trees that CAD is, at most, O(Mo,,KP), p small. Hence, the

suboptimal AD joint weight/phase estimator can be of very low complexity, for many

practical values of Mo,,.

S�ubstituting Equations (4.28) and (4.29) into Equation (4.46) yields

- M I [(QAI)L 10. -1((Qm)L-L,,+l
CAD (L, L., Q, MI MOJ - I + (A/ 1)mL,

Q
(4.47)

For MO,,, = 10, 18, and 24 the complexity, CAD, is shown in Tables 4.7, 4.8, and 4.9

for various values of L, and L. The assumed discrete points on the ring for user n

lie 36' apart for Mo,,, -_ 10, 20' apart for Alo,_, _- 18, and 15' apart for MO,,, = 24.

Notice that none of the complexities in the tables are impractical, even for values of
21 -_ L - 3, the complexity of the AD estimator is on

MOn = 24. In particular, for L,

the order of 0(10') in all three tables, whereas, the PC estimator for this same L.,,

and L would be 0(10"). Refer to Table 4.6 for the complexity of the PC estimator

2'Note that if points on the ring are 15' apart, no point in the true range or r' is more than 7.5'
from a point in the assumed discrete range of r' .
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for various values of L,, and L.

With a 15' separation between discrete phases, the actual phase is guaranteed

to be within 7.5' of one of the discretized phases. It is important to note that the

phase estimate given by the assumed-discrete weight/phase estimator will not, in

general, give a phase estimate that is one of the discrete phase points. Recall that

this estimator uses the set of discrete phases to assist in finding the weight estimates

for the known-phase users. Once these are found, the phase estimation procedure is

identical to the single user phase estimator.

Simulations of the assumed-discrete weight/phase estimator, including calculation

of the phase estimate error standard deviation, are not done in this thesis. Since the

discretization can be changed to bring the discrete phase separation down to a very

small amount, this estimator is anticipated to be capable of giving very near optimal

performance. In other words, if a level of discretization does not give near optimal

performance, further reduction of the discrete phase separation may be done, at a

cost of a relatively low increase in complexity.
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Table 4.7: Computational complexity of the AD tree algorithm for binary signaling
(M -_ 2) and a quad tree (Q -_ 4). Recall that L is the total number of levels in the
tree, K is the total number of users (nodes on the tree), and L, is the level at which
the unknown-phase user sits on the tree. For this table, Mo,,, - 10 (a point separation
of 36').

L I K I CAD (L, = L) I CAD (L,,, - L - i) -CAp �(L, = L - 2) 1 CAD (L,,, = L - 3)
3 2 1 110 236 731
4 85 658 910 1900 5851
5 341 4826 5330 7310 15212

Table 4.8: Computational complexity of the AD weight estimator for Mo" = IS (point
separation of 20').

L I K I CAD (L" - L) CAD (L,, - L - 1) I CAD (L. = L - 2) 1 CAD (L, = L
3 21 142 380 1315
4 85 722 1198 3068 10531
5 341 4954 5906 9646 24572

Table 4.9: Computational complexity of the AD weight estimator for MO,, = 24 (point
separation of 15').

L I K I CAD (Ln = L) CAD (L, - L - 1) I CAD (L,,, = L - 2) 1 CAD (L,, = L
3 21 166 488 1753
4 85 770 1414 3944 14041
5 341 5050 6338 11398 31592
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4.7 Experimental Analysis

Performance prediction for the optimal joint weight/phase estimators (NC and PC

estimators) described in �_'-ections 4.1 and 4.4 and the suboptimal joint weight/phase

estimator (AD) described in section 4.6.2 is a complex task since the probability of

making a weight error and the accuracy of the phase estimate are coupled. In lieu of

deterministic analyses, this section reports the results of several simulations. These

experimental results offer estimates for the probability of making a weight error 29 and

for the probability distribution of the error on the phase estimate.

This section examines the performance of the one-shot optimal non-coherent (NC)

and partially coherent (PC) tree weight/phase estimators from sections 4.1 and 4.4.

As we have learned from the simulations in section 3.7.2, the ultimate goal at the

receiver is to achieve a phase estimate that is in error of, at most, 50. Although

the one-shot phase estimation algorithms developed in this chapter are not capable

of achieving such accuracy, they will serve as the engine for estimation procedures

of Chapter 5 that make use of a sequence of symbol transmissions. It is important,

then, to study the capabilities of the one-shot estimators several different degrees of

prior phase uncertainty. The results of this section will be the impetus for some of

the estimators developed in Chapter 5.

The non-coherent and partially coherent estimators can be thought of as being

the same. Recall that the non-coherent case of having no prior knowledge of a user's

phase can be represented with the partially coherent model by setting the accuracy

parameter, a, to zero. Repeated below is the PDF used by the partially coherent

29Note that the detectors were derived to maximize the probability of making no weight errors
but it is more meaningful to show simulation results in terms of bit error rate (BER) curves since
BER curves are the standard method for performance evaluation in the communication literature.
Each point in a BER curve is an estimate of the probability of making a weight error for a single
user.
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estimator to model the receiver's prior knowledge of a user's phase.

Ce Cos

(4.48)
2-ir 1, (a)

The simulations are done with the 21 user minimum distance set of Ross and

Taylor Q17]), repeated below.

1/2 0 0 0 1/4

1/2 0 0 0 1/4

1/2 0 0 0 1/4

1/2 0 0 0 1/4

0 1/2 0 0 1/4

0 1/2 0 0 1/4

0 1/2 0 0 1/4

S - 116 0 1/2 0 0 1/4 (4.49)

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 1/2 0 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

0 0 0 1/2 1/4

Recall that 116 is the 16 dimensional identity matrix. The tree corresponding to this

minimum distance set is shown in Figure 4-11.

Recall that in an actual system, each user is assigned a signature waveform en-

velope and a carrier frequency. The carrier phase is not controllable by the user or

by the receiver. To model this phenomenon, the signature matrix above has been
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4-11: Correlation tree for a unit energy minimum distance signature set of 21
users in 16 dimensions.

altered by multiplying each column by an arbitrarily chosen unit magnitude complex

scalar; the columns of this phase-altered matrix comprise the signature set used for

all simulations in this section.

An MA system with an additive white Gaussian noise channel supporting 21 users

with signature waveforms that correspond to the set just described is simulated. User

17 has an unknown or partially known phase at the receiver. The remaining 20 user

signatures are completely and correctly known at the receiver.

The optimal detector is examined for the non-coherent case and for two different

scenarios of the partially coherent case. For the non-coherent case, user 17 transmits

a training weight, namely, b17- +1. The partially coherent case has been simulated

for two scenarios: 1) the receiver has knowledge of user 17's phase within ±18.70 1 2)

the receiver has knowledge of user 17's phase within ±8.4'. For the ±18.7' case, user

17 can, of course, send a training weight; alternatively, user 17 does not need to send

a training weight.

We are interested in the examination of both the training and non-training cases

since results for these cases will determine the phase uncertainty at which a user

may reliably transmit an information weight. We use the term information weight

since this weight bears information, i.e., the user chooses this weight from its set of

M possible weights and the receiver does not know, a priori, which of the M weights

is being transmitted. Hence, for the ±18.70 case, both the non-training and training
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cases are tried. For the ±8.14' cases no training weight is used.

The joint weight/phase estimators, then, must account for this partial phase

knowledge by adjusting the a parameter accordingly. -ee the estimator equations

in (4.41) and (4.42). Recall that the detector has assumed the prior distribution of

Equation (4.48), the exponential cosine, for the PDF of the uncertain phase. For the

non-coherent case, a -_ 0.

For the exponential cosine PDF having an accuracy parameter, a, and a standard

deviation, ±U, the phase will fall within ±or,, with 68.5% of the probability. More-

over, the phase will fall within ±2or, (±3c,) with 95% (99.7%) of the probability. The

30standard deviation corresponding to a - 10 (a = 50) is alo = 18.70 (,71o - 8.140).

The PC detector requires the choice of a value for a. If the receiver has knowledge

of a user's phase to within ±x', the value for a chosen for the simulations in this

thesis corresponds to 7, = x.

The three uniform prior distributions used for the creation of the actual phase

of user 17 for the simulations are shown in Figure 4-12. The first is the uniform

distribution of Figure 4-12-(a) for which user 17's phase is equally likely to take on

any value from -180' to +180'. The second and third are the uniform distributions

shown in Figures 4-12-(b) and (c) for which user 17's phase is equally likely to take

on any value between -18.7' and +18.7' or between -8.14' and +8.14', respectively.

For the simulations done with the ±180' prior, the NC joint weight/phase esti-

mator of section 4.1 was used (this corresponds to cei8oo = 0). For the simulations

done with the ±18.70 (±180') uniform prior, the PC joint weight/phase estimator,

having a value Of a18.70 - 10 (a8.140 = 50), was used.

"Viterbi, in [24], gives formulas for finding o-, and Prob(101 < x). These formulas contain an
infinite series. An extremely good approximation has been used for the calculations of 0-, and
Prob(101 < x) in this thesis by carrying out the first 40 terms of the series.
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Figure 4-12: (a) Uniform PDF: range [-180',+180']. (b) Uniform PDF: range

18.7', +18.7']. (c) Uniform PDF: range = [-8.4', +8.4'1.
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4.7.1 Weight Error Analysis

This section shows two sets of bit error rate (BER) curves. The first set of curves

is the result of having user 17 send a known training weight. The second set is the

result of allowing user 17 to send an information weight, i.e., no training on user 17.

Uncertain-Phase-User Sends a Training Weight

All simulations reported in this part have been run with a training weight for user

17. Figure 4-13 shows three average bit error rate curves. The solid curve is shown

as a reference and is the BER for the optimal coherent weight detector, i.e. all users'

phases are correctly known at the receiver. The dashed curve is for the non-coherent

weight/phase estimator 31 where the actual phase is drawn from the uniform distri-

bution in Figure 4-12-(a) (+180'). The dash-dot curve is for the PC estimator for

which a = 10 where the actual phase is drawn from the uniform distribution in Fig-

ure 4-12-(b) (±18.7'). Error bars on the BER curves are not shown; the standard

deviation of each BER point in the figure is approximately (0.015)(BER).

From the figure we see a 0.25 dB difference between the solid and dashed curves.

This tell us to expect an average performance loss of 0.25 dB (6% )32 from the intro-

duction of a new user having an unknown phase. 33 When the new user has a partially

known phase (within ±18.7'), no performance loss is seen on average.

We are interested in examining the BER curves for several of the individual users

in the tree. The users that experience loss from the presence of the unknown-phase

user at node 17 are the users at nodes 1, 27 3, and 4 (the children of node 17) and 21

(the parent of user 17). Figure 4-14 shows individual BER curves corresponding to

"Or, equivalently, the optimal PC estimator having a set to 0.
"Recall that a 0.25 dB (6%) loss in performance means that all users of the affected system would

need to increase their signal to noise ratios (EbIN,) by 0.25 dB or 6% to regain the performance
seen when all phases were known.

31 Concrete conclusions are, of course, limited to the specific signal set and case tested in these
simulations. These results, however, indicate general trends to be expected for tree-structured MA
systems.
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Figure 4-13: TRAINING WEIGHT U�-ED FOR U�-ER 17. Average bit error rate
for a set of 21 users in 16 dimensions. User 17's phase is either known (solid line),
unknown (dashed line), or known within ±18.7' (dash-dot line). Error bars for the
standard deviation of the BER points are not shown; they are are between 1.0% and
1.5% of the BER.
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the same three curves shown in Figure 4-13 for each child user.

Notice that among the children users, there is at most at 0.75 dB (19%) loss in

the BER curve for user 17 having an unknown phase (±180' uncertainty) relative to

the BER curve for all users having known phases. For ±18.7' uncertainty on user

17's phase, the children of user 17 experience a worst case loss of 0.35 dB (7%).

Figure 4-15 shows individual BER curves for user 21 (the parent of 17) and users

18, 19, and 20 (the siblings of user 17). Notice that the existence of the unknown-

phase user at node 17 causes the user at node 21 (the parent of 17) to experience

a performance loss of approximately 0.75 dB (19%) for the ±180' uncertainty on

user 17's phase and 0.5 dB (12%) for the ±18.7' uncertainty. Also for the ±1800

uncertainty on user 17's phase, the sibling users, users 18 and 19 experience no loss,

while the other sibling user, user 20, experiences a 0.15 (3.5%) dB loss.

It is interesting to compare the performance of the PC joint weight phase esti-

mator for the ±18.7' uncertainty on user 17's phase with the performance of the AC

(assumed coherent) weight-only detector having a 20' mismatch on user 17's phase.

Recall that in ' section 3.7.2, the AC detector was run for the 21 user minimum dis-

tance set; the AC detector assumed a value for user 17's phase that was off by 200.

The worst case performance loss, at I dB (26%), due to this phase mismatch, is seen

by user 21, while the average performance loss is 0.5 dB (12%).

In contrast, the simulations done for this section do not ignore the mismatch.

Instead, for an expected mismatch in user 17's phase of up to ±18.70, the receiver

jointly estimates user 17's phase and the weights for the other 20 users in the system.

In doing this, the worst case loss is 0.5 dB (12%) (for user 21), moreover, the average

loss is, virtually, 0 dB (0%). This tells us that using a training weight on user 17 and

jointly estimating its phase along with the weights of the other users will virtually

eradicate performance loss for phase mismatches of up to 20'.

The results of this and the next section are summarized in Tables 4.10 and 4.11.
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Figure 4-14: TRAINING WEIGHT USED FOR USER 17. Bit error rates for individ-
ual users in a set of 21 users in 16 dimensions for which user 17's phase is uncertain.
The solid curve corresponds to no phase uncertainties, the dashed curve corresponds
to complete phase uncertainty (±180'), and the dotted curve corresponds to partial
phase uncertainty (±18.7'). Error bars are not shown; the standard deviation of each
BER point ranges from 4.1% to 7.7% of the BER. (a) user 1, a child of user 17. (b)
user 2, a child of user 17. (c) user 3. a, child of user 17. (d) user 4, a child of user 17.
i 7.
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Figure 4-15: TRAINING WEIGHT USED FOR USER 17. Bit error rates for individ-

ual users for a set of 21 users in 16 dimensions for which user 17's phase is uncertain.

The solid curve corresponds to no phase uncertainties, the dashed curve corresponds

to complete phase uncertainty (±180'), and the dotted curve corresponds to partial

phase uncertainty (±18.7'). The standard deviation of each BER point ranges from

3.0% to 6.7% of BER. (a) user 21, the parent of user 17. (b) user 18, a sibling of user

17. (c) user 19, a sibling of user 17. (d) user 20, a sibling of user 17.
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Table 4.10: Loss in average BER when user 17's phase is unknown/uncertain relative
to when it is known.

TRAINING NO TRAINING

phase uncertainty phase uncertainty
±1800 ±18.70 ±18.70 ±8-140

0.25 dB 0 dB 0.25 dB 0 dB___

Table 4.11: Maximum loss for single user BER when user 17's phase is un-
known/uncertain relative to when it is known.

TRAINING NO TRAINING

phase uncertainty phase uncertainty
±1800 ±18.70 ±18.70 ±8-140

0.75 dB 0.5 dB 0.5 dB 0 dB

Uncertain-Phase-User Does Not Send a Training Weight

In the following simulations user 17 does not send a training weight, i.e., it sends

an information weight. Figure 4-16 compares the average performance loss between

training and not training when the uncertainty is within ±18.7'. We see that the two

curves are very close. This tells us that if the phase uncertainty is less than +18.7',

user 17 does not need to send a training weight and that we might as well let user 17

transmit an information weight.

Figure 4-17 shows three average bit error rate curves. The solid curve, again,

corresponds to the optimal joint detector for which all phases are known. The dashed

curve is for the optimal PC estimator for which a = 10 where the actual phase is

drawn from the uniform distribution in Figure 4-12-(b) (±18.70). The dash-dot curve

is for the optimal PC estimator for which a -- 50 where the actual phase is drawn

from the uniform distribution in Figure 4-12-(c) (±8.140). Error bars on the BER

curves are not shown; the standard deviation of each BER point in the figure is

approximately 0.015 of the BER points.
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Figure 4-16: TRAINING VS NO TRAINING. Average bit error rate for 21 users in

16 dimensions. User 17's phase is known within ±18.7'. User 17 sends either an

information weight (dashed line) or a training weight (dash-dot line). The standard

deviations on the BER points are between 1.0% and 1.4% of the BER.
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Figure 4-17: NO TRAINING. Average bit error rate for a set of 21 users in 16
dimensions. User 17's phase is either known (solid line), known within ±18.70 (dashed
line), or known within ±8.140 (dash-dot line). The standard deviation on the BER
points ranges from 1% and 1.5% of BER.
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From Figure 4-17 we see less than 0.1 dB difference between the solid and dashed

curves. This tell us to expect an average performance loss of only 0.1 dB (2.5%) when

we go from all phases known to a ±18.7' uncertainty on user 17's phase. Recall that

all users send information weights, including user 17. When the new user has a small

phase uncertainty of only ±8.14', no performance loss is seen.

Also for this simulation, BER curves are shown for the individual users in the

tree that experience loss due the presence of the unknown-phase user at node 17.

From Figure 4-18-(a) we see that user 17 experiences virtually no loss when its phase

is known within ±18.7'." For the ±8.14' uncertainty on user 17's phase, no users

experience loss. Notice in Figure 4-18-(b) that a loss of 0.25 dB (6%) is experienced

by user 21, the parent of user 17. From Figures 4-19-(a) and (d) we see, for the +18.7'

uncertainty, a 0.5 dB (12%) loss for user I and a 0.2 dB (5%) loss for user 4. The

other children of user 17 are untouched by the ±18.7' uncertainty in user 17's phase.

Again, it is interesting to compare the performance between the AC detector from

Section 3.7.2, that ignores a 20' mismatch, and the corresponding PC optimal joint

weight/phase estimator. Recall that training is not used in either case. Comparison

of Figure 3-11 in Section 3.7.2 with Figure 4-17 indicates that if the receiver ignores

a phase uncertainty of 20', it will do 0.25 dB (6%) worse than if it accounts for the

phase uncertainty by using the optimal PC estimator with the appropriate value for

a.

4.7.2 Phase Error Analysis

Section 3.7.2 in Chapter 3 found that a 5' phase error on all users in a 21 user unit

energy minimum distance set caused only 0.13 dB (3%) degradation in the perfor-

mance of the coherent detector. This section investigates the ability of the one-shot

14 Note that these BER calculations have standard deviations ranging of 3.5% to 8.3% of the BER,
hence, the apparent degradations in the figures might be partially due to inaccuracies in the BER
curves.
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Figure 4-18: NO TRAINING. Bit error rates for individual users for a set of 21 users
in 16 dimensions for which user 17's phase is uncertain. The solid curve corresponds
to no phase uncertainties, the dashed curve corresponds to a partial phase uncertainty
of ±18.7' and the dotted curve corresponds to a partial phase uncertainty of ±8.14'.
Error bars are not shown- the standard deviation of the BER points range from 3.5%
to 8.3% of BER. (a) user 17 (the user with the uncertain phase). (b) user 21, parent
of user 17.
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Figure 4-19: NO TRAINING. Bit error rates for individual users for a set of 21 users
in 16 dimensions for which user 17's phase is uncertain. The solid curve corresponds
to no phase uncertainties, the dashed curve corresponds to a partial phase uncertainty
of ±18.7' and the dotted curve corresponds to a partial phase uncertainty of ±8.14'.
Error bars are not shown; the standard deviation of the BER points range from 3.5%
to 8.3% of BER. (a) user 1, a child of user 17. (b) user 2, a child of user 17. (c) user
3, a child of user 17. (d) user 4, a child of user 17.



CHAPTER 4. ONE-SHOT WEIGHTIPHASE ESTIMATION 151

optimal PC joint weight/phase estimator to return a phase estimate that will meet

this need of the coherent tree joint detector. Phase information from the simulations

of the previous section are presented. Specifically, the probability distribution func-

tion for the one-shot phase estimate error is approximated by histograms made from

simulation results where an exponential cosine PDF is fit to each histogram.

Recall that for the the exponential cosine PDF having an accuracy parameter, 0Z,

and a standard deviation, 7,, the phase will fall within ±a, with 68.5% of the prob-

ability. The phase will fall within ±2,7, (±3,7,) with 95% (99.7%) of the probability.

Recall from the previous section that a 21 user unit energy minimum distance set

is used in all simulations. User 17's phase was either unknown or partially known at

the receiver. Two scenarios were simulated: 1) user 17 sends a training weight; 2)

user 17 does not send a training weight, i.e., it sends an information weight.

Uncertain-Phase-User Sends a Training Weight

Recall that two simulations were run in which user 17 sends a known training weight.

One simulation was run with an uncertainty for user 17's phase of ±180' and the

other simulation was run with a phase uncertainty of ±18.7'. Normalized histograms

were created with the phase error results from these simulations.

For the ±180' uncertainty, Figure 4-20 shows, for several pertinent values of the

signal to noise ratio," these normalized histograms for the error in the phase esti-

mates given by the optimal non-coherent joint weight/phase estimator. It is inter-

esting to note that the histograms in Figure 4-20 closely resemble the exponential

cosine function which is the PDF for the error in the phase locked loop phase esti-

mate for the single user system ([24]). The exponential cosine function is given in

Equation (4.48)." The histograms in Figure 4-20 exhibit, in addition to a main lobe

"These four values of the SNR are most pertinent since at these values the BER is between 10-2

and 10-3. Communications systems typically require one-shot detectors to give bit error rates of
between 10-' and 10-' so that the overall bit error rate of the coded system will be less than 10-'
([2]).

3'The exponential cosine PDF (for values of a greater than 5) resembles the Gaussian PDF with
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Figure 4-20: TRAINING WEIGHT USED. UNIFORM PRIOR (±180'). This figure

shows normalized histograms of the phase error for user 17's phase estimate given by

the optimal non-coherent joint weight/phase detector. User 17 sends a known weight.

The solid curve is the exponential cosine probability mass function having a value for

a that gives the best fit to the histograms. (a) Eb/N, = 3.979 dB, a�==17, sample

stadev(�) = 43.80, effective stadev(�) 17-30. (b) EbIN, = 4.559 dB, a�=23, sample

stadev(�) = 41.90, effective stadev(�) 15.60. (c) EbIN, = 4.948 dB, a�=23, sample

stadev(�) = 41.1', effective stadev(�) 14.9'. (d) EbIN, = 5.528 dB, a�=25, sample

stade4) = 39.70, effective stadev(�) 13.50.
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centered at zero, two small lobes centered at ±175', respectively. The outlier lobes,

together, contain from 4% to 8.2% of the probability, depending on SNR. The outlier

probability will be denoted by p. For each SNR, p was estimated as the fraction of the

phase errors greater than ±160' made by the optimal joint weight/phase estimator

run for the simulations.

The existence of other lobes for the PDF of the phase error of the optimal one-

shot joint weight/phase estimator is to be expected since, if the detector makes weight

errors, it has, in effect, chosen the wrong "ring". This will, of course, give a phase

estimate that is, possibly, quite far from the actual phase." The placement of these

additional small lobes is dependent on the configuration of hypothesized rings that

correspond to the received signal constellation. Hence, outlier probability will not,

for general tree-structured signature sets, be centered around ±175'.

The one-shot estimate error 0, then, is well described by

Po, I, P) ec, co + PUM (4.50)27J,(a)

where u(0) is the uniform distribution with a range [-180', 180']. Of course, this is

not an exact model, but it is sufficient to illustrate the behavior of the one-shot phase

estimate that we wish to acknowledge.

The sample variance was calculated for the phase estimate errors found by the

simulation. The square root of this sample variance, or sample standard deviation,

for the SNR's of interest was was found to be between 34' and 48', depending on

the signal to noise ratio. Given that the histograms are multi-modal with one dom-

inant mode, a more informative way of measuring the quality of the one-shot phase

estimate given by the non-coherent Joint weight/phase estimator is to assign an effec-

tive standard deviation which quantifies the main lobe (the portion of the histograms

tails that go to zero more quickly.
"Recall the ring detection interpretation of the optimal joint weight/phase estimator given in

Section 4. 1.
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Table 4.12: TRAINING: UNIFORM PRIOR (±180'). User 17 sends a known training
weight. Prior distribution on user 17's actual phase is uniform between ±180'. For
each value of the signal to noise ratio, the following quantities have been calculated:

A

sample standard deviation of the phase errors in the estimate (stadev(0)), the outlier
probability (p), the effective sample standard deviation (effective stadev(O)), and the
value of a (a�) that gives the best fit of the exponential cosine PDF to the main lobe
of the histogram of phase errors.

EbIN, dB stadev(�) p effective stadev a�
3.014 47.80 .082 19-80 15
3.468 46.00 .075 18-80 15
3.979 43-80 .068 17.30 17
4.559 41.90 .061 15.60 23
4.948 41.10 .058 14.90 23
5.528 39.70 .053 13.50 25
6.200 37.20 .046 12.00 25
7.210 34.70 .040 10-30 30

that contain (I - p) or 0.918 to 0.960 of the probability, depending on the SNR).

The one-shot phase estimate, then, was found to have an effective standard deviation

ranging from 100 to 200 where an occasional outlier error will occur with a 0.04 to

0.08 probability, depending on the SNR.

Furthermore, an exponential cosine probability mass function was empirically fit

to each histogram in the figure. The value for a that gave a good fit to the histograms

ranged from 17 to 20. See Table 4.12 for the specific values of the standard deviation,

denoted by stadev(0), the outlier probability, denoted by p, the effective standard

deviation, denoted by effective stadev(0), and the value for a, denoted by a�, that

gives the best fit of the exponential cosine PDF to each histogram.

We know that for an exponential cosine PDF the phase will fall within ±2u, with

95% of the probability. Although the histograms in Figure 4-20 are not an exact fit

with the exponential cosine PDF we may conclude that, if the outlier probability is

denoted by p, the error in the one-shot optimal phase estimate will be within twice

the effective standard deviation (as given in Table 4.12) with (1 - p) probability.
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For example, at an SNR of 5.528 dB, the estimate of user 17's phase given by the

optimal one-shot non-coherent joint weight/phase estimator will, with approximately

0.947 probability, fall within ±27', while, with 0.53 probability, the estimate will be

in error of ±175'. This probability analysis of the histograms is quantified further in

Chapter 5.

Recall from the results of Section 3.7.2 that the coherent joint detector requires an

accuracy in all users phases of better than 5'. As we would expect, the one-shot non-

coherent joint weight/phase estimator does not supply an estimate of this quality.

Hence, we might think to allow user 17 to transmit two or more known training

weights, collect the two or more independently obtained optimal phase estimates,

and average them. Moreover, given that we anticipate, with small probability, an

outlier estimate, we may first discard any estimates believed to be outliers before

calculating the average. In Chapter 5, this notion of combining two or more successive

non-coherent phase estimates is addressed in detail.

Simulation results were also obtained for the partially coherent case for which

user 17 sent a known training weight. Figure 4-21 shows the histograms for this case.

Notice that the histograms have only one lobe. As was determined from examination

of the BER curves in Figure 4-13, having partial information on user 17's phase within

±18.7' resulted in no performance loss. This BER result coincides with an absence of

the outlier probability in the phase estimate. Phase estimate results are summarized

in Table 4.13. Since there are no outliers the effective sample standard deviation is

the same as the actual standard deviation and the outlier probability, p, is 0.

From the simulations with an ±18.7' uncertainty on user 17's phase, we have

found that the optimal partially coherent Joint weight/phase estimator gives a phase

estimate that is within 2(stadev(�))= IS' of the true phase, with 95% probability.

Recall that in Section 3.7.2 it was determined that any estimate of user's phase

must be within a 5' error, hence, even with this partial information on user 17's

phase (±18.7' uncertainty), the one-shot optimal joint weight/phase estimator (with
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Figure 4-21: TRAINING WEIGHT USED. UNIFORM PRIOR (±18.7'). This figure
shows normalized histograms of the phase error for user 17's phase estimate given by
the optimal partially coherent joint weight/phase detector. User 17 sends a known
weight. The solid curve is the exponential cosine probability mass function having a
value for alpha that gives the best fit to the histograms. (a) EbIN, = 3.979 dB, a�=

60, sample stadev(�) -- 8.60. (b) Eb/A,, - 4.559 dB, a�= 65, sample stade '

8.14'. (c) EbIX, = 4.948 dI3, a�- 65, sample stadev(�) = 8.14'. (d) EbIN, = 5.528

dB, a�= 70, sample stadev(�) - 8.20.
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Table 4.13: TRAINING: UNIFORM PRIOR (±18.7'). User 17 sends a known train-
ing weight. The prior distribution on user 17's actual phase is uniform between
±18.7'. For each value of the signal to noise ratio, the sample standard deviation of
the error in the phase estimate (stadev(�)) has been calculated and value of a (a�)
that gives the best fit of the exponential cosine PDF to the histogram of phase errors
has been approximated.

Ebl]V, dB stadev(�) a�
3.014 8.60 60
3.468 8.70 60
3.979 8.60 60
4.559 8.40 65
4.948 8.40 65
5.528 8.20 70
6.200 8.00 70
7.210 7.70 75

training) will not achieve a phase estimate of high enough quality to be used as if it

were true for the detection of subsequent weights.

From the phase results presented up to this point, we might think to construct

a multi-symbol recursive phase estimator. For example, the user initially joins the

system and its phase is completely unknown to the detector. One training weight is

transmitted; the non-coherent optimal joint detector gives a phase estimate WI))

having an effective standard deviation of around 140. In addition, this phase estimate,

0(l), is incorporated into the uncertain phase user's signature vector, as known at

the receiver. Another training weight is sent. This time, the partially coherent joint

detector is used (having an appropriate value of a to reflect the partial information

obtained by the previous estimate of the phase). Now, we have a refined estimate

of the phase, �(2), with stadev(o'(2)) < 140. Again, this phase estimate, 0(2), is

incorporated into the uncertain phase user's signature vector, as known at the receiver.

The process may be repeated until the refined estimate is of the appropriate quality.

Chapter 5 formally presents this recursive phase refinement procedure along with some
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Table 4.14: NO TRAINING : UNIFORM ±18.7'. User 17 sends and information
weight. Prior distribution on user 17's actual phase is uniform between ±18.7'. For
each value of the signal to noise ratio, the sample standard deviation of the phase
error (stadev(�)) has been calculated and the value of a (a�) that gives the best fit of
the exponential cosine PDF to the histogram of phase errors has been approximated.

EbIN, dB stadev(0) a�
3.014 8.80 55
3.468 8.80 60
3.979 8.60 60
4.559 8.40 60
4.948 8.40 65
5.528 8.30 70
6.200 8.00 70
7.210 7.70 75

other phase estimation algorithms that take advantage of having several symbol's

worth of information.

Uncertain-Phase-User Does Not Send a Training Weight

From the simulations of Section 3.7.2 it was shown to be reasonable (for the 21

user unit energy minimum set) to allow a user with an uncertain phase to send an

information weight as long as the phase uncertainty is within ±200. For the results

reported in the following paragraphs, user 17 does not use training, i.e., user 17 sends

an information weight. The uniform priors on user 17's actual phase are shown in

Figures 4-12-(b) and (c), where the ranges of uncertainty on user 17's phase are

±18.70 and ±8.4'.

Tables 4.14 and 4.15 summarize the simulations results for both the ±18.7' and

the ±8.4' uncertainty cases. From comparison of Table 4.13 for which user 17 sends

a known training weight with Table 4.14 for which user 17 does not send a known

training weight, we see that the phase estimates in both cases are of the same quality.

Specifically, allowing user 17 to send an information weight does not jeopardize the
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Table 4.15: NO TRAINING: UNIFORM ±8.4'. User 17 sends a known weight. Prior
distribution on user 17's actual phase is uniform between ±8.4'. For each value of
the signal to noise ratio, the sample standard deviation of the phase error (stadev(�))
has been calculated and the value of a (a�) that gives the best -fit of the exponential
cosine PDF to the histogram of phase errors has been approximated.

EbIJV, dB stadev(�) ce�
3.014 5.10 300
3.468 5.10 300
3.979 5.10 300
4.559 5.10 300
4.948 5.10 300
5.528 5.20 300
6.200 5.20 300
7.2tO 5.20 300

estimate of its phase. The phase estimate, in either case, will be in error of less than

18' with 95% probability.

Since we ultimately wish to achieve an estimate having 2a� < 5', results are also

shown for the case in which the uncertainty is only slightly greater than what is

needed by the coherent joint detector. The prior uncertainty for this simulation was

±8.40. The simulation results for this case, shown in Table 4.15, indicate that only

a small improvement in a single user's phase uncertainty is obtained by the one-shot

the optimal partially coherent weight/phase estimator. Specifically, we see that the

standard deviation on the phase estimate is approximately 5'. Recall that this means

that with 95% probability, the phase estimate is within twice the standard deviation,

or within ±10'.

It is clear from these estimates that the one-shot optimal NC joint weight/phase

estimator (for prior uncertainty of ±1800) is not capable of giving a estimate with the

needed standard deviation of 2.5'. If partial information is obtained, the PC joint

weight/phase joint estimator is capable of giving a much improved phase estimate,

where the variance of this phase estimate depends, of course, on the range of the prior
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uncertainty. Chapter 5 discusses phase estimation from a sequence of symbols in a

tree-structured MA system, where the results of this section are used to motivate two

procedures of successive phase estimation over several symbol transmissions.



Chapter 5

Sequence _VVeight Phase

Estimation

The accuracy of the phase estimate can be improved by using observations of the

received signal for more than one symbol frame. The user having the unknown phase

would transmit a known training sequence of T weights. The optimal training se-

quence estimator would collect the received signal over T successive symbol trans-

missions, after which it would jointly estimate the phase of the unknown-phase user

and all of the (K - I)T weights for the rest of the users.' In this chapter the op-

timal joint weight/phase sequence estimator for tree structured sets with one

user having an unknown phase is derived and its complexity is calculated. Since

for moderate T the complexity of the optimal sequence estimator turns out to be

prohibitive for many systems, two alternative multi-frame procedures are proposed,

one calculates a multi-frame phase estimate average and the other calculates a

recursive phase estimate. Both make use of T successive frames to give a high

quality phase estimate with negligible increase in complexity relative to the one-shot

'For the derivation of the optimal sequence estimator, coding that might be employed by each
user is not taken into account. Le., it is assumed that all possible combinations of weights in a
T-tuple of user weights is equally likely.

161
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joint weight/phase estimator.

5.1 Optimal Weight/Phase Sequence Estimation

5.1.1 Derivation of the Estimator

We allow T frames to be collected. Let us re-write the model for the received signal

to reflect the frame number, i.

r(z) = S4)b(i) + bK(Z)SKC T

The new user, user K, is required to transmit a training sequence that is known

both to the transmitter and receiver. Without loss of generality, it is assumed that

bK (i) = I for i = 1, 2'. .. ,T.

The received vectors and the noise vectors may be stacked into two TN x I column

vectors.
n(l)

r(2) n(2)
rT - nT

r (T) n (T)

Likewise, the weight vectors may be stacked into a T(K - 1) x I column vector.

b(l)

b(2)
bT

b (T)

The received signal model, then, may be written as

rT - ST4)TbT + Sf�,C 3-OK + o7nT,
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where ST is TNxT(K - 1)

S

S
ST

S J

SK, is TNx1

SK

SK
SK,

L SK J

and (DT is T(K - 1) xT(K - 1)

4DT -

In Section 4.1, the optimal weight/phase estimator was derived for the model

of Equation (4.2), i.e. for T - 1. Equation (5.1), above, has the same form as

Equation (4.2), thus, the optimal joint weight/phase sequence estimator may simply

be written directly from the optimal joint weight/phase one-shot estimator shown in

Equations (4.18) and (4.19).

�T = argmin [ Fr_�(bflrT) - 2JX(bTJrT)J1 (5.2)
bT

�K - tan-
Rf -Y (�T I rT)
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Recall the definition

Fj,� (bT I rT) rT - ST (DTbT

Due to the block diagonal structure Of ST and (DT, FK(bTIrT) is separable by time

frame, i.
T

Fj_�(bTjrT) = EF1,c(b(Olr(i))
i=1

This separation means that the calculation of Fj,,c(bTjrT) can be done independently

from symbol frame to symbol frame. Moreover, as was the case in Chapters 3 and 4,

for user signature sets exhibiting the tree structure, each term, FK(b(i)jr(i), is further

separable through the conditioning upon weight values corresponding to upper levels

of the tree. As was done in the one-shot estimator, standard tables may be constructed

for nodes that are neither ancestors nor descendants of the unknown-phase user.

As each frame, r(i), is received, the algorithm proceeds as in the one-shot case

for the rest of the tree that corresponds to non-descendants and non-ancestors of

unknown-phase user. For example, if the tree of Figure 4-3 were used, at each time

frame, standard tables would be created for nodes f 1, 2, 3, 4, 5, 6, 9, 10, 11, 131.

As was the case in Section 4.2, X(bTjrT) may be reduced to be a function of the

weights of the ancestor and descendant users of node K, b,,dK,- We have

X(bTjrT) = X(bdKIrT) - S T (rT - SdKT'CD.dKb.dK,),

where
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ba K (1)

bK(2)

b,,dKT - baK(T)

bdK(1)

bdK (2)

bdK(T)

S.K SdK

SadKT

S.K SdK

and

4).K

4)adKT

4)dK

dK

The sequence estimator in Equation (5.2) requires the calculation of

I-Y(badKIrT)l -- IST(rT - SadK,-'DadkbadK,)j

and cannot be separated into a term for each time frame, i. The calculation of

X(badKIrT), however, may be done in a cumulative manner, frame by frame. Since
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SadK, and (DadK, are block diagonal, we may write

T
JrT) -EX(b

X(b,,,dKT dK(')jr(i)).
i=1

It follows that the sequence weight/phase estimator of Equation (5.2) can be

written to indicate time frame separation.

Y:T
�T = arg minlb(i)IT . , Fjc(b(Z')jr(Z')) - 2 1 E7, X(b.dK(i)jr(Z'))j (5.3)

�K = tan-i!�qx*,d"'T JrT)l (5.4)
Rf X(b.dl':T I IT) I

The sequence weight/phase estimation procedure is broken into three parts.

1. For each time frame, i, calculate the complex scalar X(bdK(Z')jr(i)) for each

possible realization of bdK(i) and each measurement vector r(Z'), and store in

a table. This table will be referred to as the hyper-X-table; an example is

shown in Table 5.1. Each column corresponds to a particular time frame, i.

Each row corresponds to a particular realization of bdK; there are MjdK1 rows,

where jadKI is the number of ancestors and descendants to node K.

2. For each time frame, t, create a standard table of conditional weight estimates

for the non-ancestor/descendant nodes of user K. This part of the procedure is

identical to the processing done for this same portion of the tree in the one-shot

estimation procedure. We must, however, leave the rest of the tree unprocessed

until the last frame, r(T), is received.

3. After the last frame is observed, we may process the rest of the tree correspond-

ing to the ancestors and descendants of user K. Specifically, we may calculate
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Table 5.1: Hyper-X-table created for part I of sequence weight/phase estimation
algorithm.

badK X(badK(I)Ir(l)) X(badK(T)Ir(T))

the joint weight estimate of bdK, using

T T

�adKT = arg min Flc (badK baK(i)) 21 X(badK (i) jr(i))l
IT

tbdK(i) i=1

where �,,,,t (II r (0, baK(0) is found in the standard tables at the

non-ancestor/descendant nodes that were previously constructed in step 2,

above. Equivalently, we may do the above joint estimate in two parts, as was

done with the one-shot non-coherent estimator. See the discussion that follows

this list of steps.

4. As was the case for the one-shot joint weight/phase estimator, the decision

made at the top of the trees finalizes all decisions made all lower levels in all T

trees. Conceptually, the top decisions (at level 1 of the T trees) are used to look

up decisions in the tables at level 2. The level 2 and level I decisions, together,

are used to look up decisions at level 3, and so on, until the lowest level of the

tree is reached.

Conceptually, we may achieve part 3 of the algorithm as if we were climbing up a

single tree, but instead of estimating a scalar weight at each node, we are estimating a

vector weight at each node. First at hyper-node K (the collection of node-K's in the T

trees), we create the hyper-descendant table of estimates of bdKT conditioned upon
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Table 5.2: Hyper-descendant table created for part 3 of sequence weight/phase esti-
mation algorithm.

b.K, �dKT(rflb,,

Table 5.3: Hyper-ancestor table created for part 3 of sequence weight/phase estima-
tion algorithm.

b.j, 63-T (rTj bj, , 6,.,,t (Z'IrT) bajT) I bdKT (rTIbaKT))
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the hyper-ancestor vector, baK, like the one shown in Table 5.2.' The hyper-

descendant vector, bdK,, has TJdKJ elements and the hyper-ancestor vector has

TJaKJ elements. The hyper-descendant table, then, has one entry for each of the

MTJaKJ possible realizations of Each entry is chosen from the MTJdKJ possible

realizations of bdK,-' The remainder of the hyper-tree may be climbed. At a node j

which is an ancestor to user K, replace b,- in the joint weight/phase one-shot estimator

with bj, = [bj(l) b,,(2) ... b3-(T)]. Recall that the one-shot estimator would create

an ancestor table at node 3' where a single table entry would be chosen from M

possible values of b,-. If we treat this portion of the sequence estimator as if it were

the corresponding portion of a one-shot estimator having vector weights instead of

scalar weights, then a single table entry must be chosen from MT possible realizations

of b3-T - [bj (1) bj (2) ... bj(T)]. See the example hyper-ancestor table in Table 5.3.

5.1.2 Computational Complexity

Consider Figure 5-1. The figure shows three trees (T = 3), one for each time frame,

t = 1, 2,3. The unknown phase user is at node n. The pink section of the trees

corresponds to nodes that are neither descendants nor ancestors of node n. The

black section of the tree corresponds to the descendant nodes of node n and the blue

section of the tree corresponds to the ancestor nodes of node n. From the description

of the sequence algorithm in the previous section, we know that the calculations

for the pink sections of each of the T trees being jointly processed is exactly the

same as if we were performing the one-shot weight/phase estimation algorithm on

T independent trees. The black and blue sections of each of the T trees, however,

must be processed together since they are coupled by the unknown, but constant

phase at node n of each of the T trees. It follows from the description of part

'Recall that a motivation for creating a descendant table on its own is that it doesn't require

pulling values from the standard tables at the non-ancestor/descendant nodes as does the creation

of ancestor tables.

'Creation of this table would require a complexity of MTJaKJ(MTJdKJ _ 1).
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3 of the estimation procedure in Section 5.1.1 that the complexity of the sequence

estimator corresponding to the black and blue portions of the trees is equivalent to the

complexity of the one-shot algorithm, but for M'-ary signaling. The computational

complexity, cs, of the sequence weight/phase estimator is

cS (L, L, Q, M, T) - cpink (L, L,-,, Q, M, T) + Cblack (L, L,,, Q, M, T) + Cbl.e (L., M, T),

where cpink (L, Ln � Q i M) i Cb1ack (L, Ln, Q, M) and Cbl,,,, (L, Ln, Q, M) are each derived

below.

Pink sections of trees: The joint weight/phase estimation procedure in the pink sec-

tion of the trees is exactly the same as doing T one-shot procedures. Recall that the

green section of the tree in Figure 4-4 is just the pink and blue sections of the tree in

Figure 5-1 and Cgreen (L) Ln) Q i M) was calculated in Section 4.3. Before multiplying

by T we must subtract out the complexity of making standard tables for the blue

section of a tree. This complexity is just

- FL_+1(M _ I)MI-1
Cstandard-blue (11/1, L,) _k=l

A4,Ln-1 - I

and

cpink(L�QM) T[Cgreen(LLnQ,11/1)-Cstandard-bl.e(MLn)I (5.5)

T(111-1) [(Qllll)L - 2 - ML-1[(QM L-Ln+l - 2]]
QM_1

Black sections of trees: In the black sections of the T trees, we must calculate the

hyper-X-table and the hyper-descendant table. The hyper-X-table, as shown in Table

5.11 is constructed with TMJadnJ calculations. That is, for each time frame, t =

11 2'...' T, we may calculate one column of the table; each column has Mldl entries.
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node n
t=1 at le

node n
t=2 at levelL

tnode
t=3 a level L

Figure 5-1: Three quad trees, each partitioned into three sections by color.
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The hyper-descendant table as shown in Table 5.2 is also needed for the black

section. This construction requires [(jjj1)jdnj - 1](Ml)lanj compares. That is, each

of (MT)Idnlentry, bdn,(rTjbanT)1 is the choice of one possible realization from a total

possible realizations of bdn,; there are (MT)Ian I entries in the table since there are

(MT)lal possible realizations of banT

Noting that

lanj - Ln

- TLIdnj '3 .- Ln+l Q3-L-

Q ( QL-1

Q-1 QLn-1

gives

Cblack(L, LnQ, M, T) -_ T ML_-1 + [(AIIT) 'Q-1 (QLn-I 1] (MT)Ln-1. (5.6)

Blue sections of trees: Construction of a hyper-ancestor table at a node j in the blue

section of the tree requires [(MT) _ 1](MT)la3'1 compares. An example table is given

in Table5.3. Each entry, 6j, (rTj baJ,), is the choice of one possible realization from

a total of MT possible realizations of the vector weight bj, -_ [bj (1), . . . , bj (T)J; this

choice requires MT - I compares. There are (MT)Iaj I entries in the table since there
(MT)Iajl I Summing the complexities of making one

are possible realizations of ba.7'T'

hyper-ancestor table at each level, noting that la3'1 - I - I for node j at level I gives

Cb1u,(Ln, AII, T) EL [(AIIT) - 1](MT)I-l
k=L,,+l

(5-7)

(mT)L,,-l

Total Complexity: The total complexity is, simply the aggregate of Equations (5-5),

(5.6), and (5.7) and is not explicitly shown here. If the unknown-phase user is any-
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where except at the bottom of the tree the total complexity of the optimal sequence

joint weight/phase estimator is dominated by Cbl,,k, namely, the complexity required

to create the hyper-descendant table is exponential in the number of ancestors and

descendants times T; this becomes prohibitive for an unknown-phase user having sev-

eral descendants. If, alternatively, the unknown-phase user is at the bottom of the

tree, then the total complexity is dominated by Cbl,,, the complexity needed to create

the hyper-ancestor tables; this complexity is exponential in the number of ancestors

times T and can become impractical for relatively small values of T if a tree has 4 or

more levels.

Table 5.4 shows, for values of T ranging from 2 to 9, cs(L, L, Q, M, T) for Q

4, M = 2� L = 4 and L, = 4,3, and 2. The realistically reasonable complexities

given in the table are are shown in bold. Notice that even with complexity constraints

on the order of 10' comparisons per user per weight decision, it is possible to use the

optimal sequence detector for L, = L (where the newest user is at the bottom of the

tree) for a value of T as high as 6 and, possibly, 7. If the new, unknown-phase user

is one level up from the bottom, T can only be as high as 3.

Due to the fast growing complexity of the optimal joint weight/phase sequence

estimator with the number of symbols, T, two alternative procedures of negligible

increase in complexity over the one-shot joint weight/phase estimator are proposed

in the next section.

5.2 Multi-franie Phase Estimation

This section develops two methods for using the training sequence to improve the

phase estimate relative to the one-shot scenario. Both methods proposed in this

section require only a neyligible increase in complexity compared to that of the one-

shot procedure. The goal for each of these procedures is to produce a phase estimate
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Table 5.4: Computational complexity, cs, of sequence estimation algorithm for M =
2, and Q 4, L - 4 total levels, N - 64 dimensions , and the number of users,
K -_ 85.

T c,(Ln = L) Fc,(Ln -_ L - 1) c,(Ln =77-_772)
2 1215 5191 4.40e+ 13
3 2239 2.64e+05 9.22e+18
4 6399 1.68e+07 1.93e+25
5 3.56e+4 1.07e+09 4.06e+31
6 2.66e+05 6.87e+10 8.51e+37
7 2.10e+06 4.40e+12 1. 78e+44
8 1.69e+O 7 2.81e+14 3.74e+50
9 1.34e+08 1.80e+16 7.85e+56

4that has a standard deviation of 2.5'.

In Section 5.2.1, the multi-frame phase estimate average is proposed. This

estimator collects T successive one-shot phase estimates and averages them. The

value of T needed by this estimator to achieve an estimate with a standard deviation

of 2.5' is on the order of 30. In Section 4.7.2 it was found that with small probability,

the one-shot non-coherent estimator will give an erroneous phase estimate. The ro-

bust multi-frame phase estimate average is proposed. to take outlier estimates

into account. The robust estimate, simply, discards possible outliers prior to the

calculation of the average.

In Section 4.7.1, results from the simulations with the 21 unit energy minimum

distance set showed that the only users to experience loss in their BER's due to the

existence of the unknown-phase user were the children and parent of that user. The

losses on the parent and children ranged from 0.25 dB to 0.75 dB. Note that in order

to calculate the T-frame phase estimate average, the estimator must wait for the

arrival of T phase estimates. During these T symbol frames, the affected users must

4Recall that from Section 3.7.2 it was found from simulations that the coherent tree joint detector
can withstand a phase mismatch of up to 5' on each user. If the receiver error in a user's phase has
a standard deviation of 2.5', then with 0.95 probability the mismatch is within ±5'.
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withstand a higher BER.

The affected users might not be able to tolerate the higher BER for more than

a few successive frames. Section 5.2.2 proposes the recursive phase estimate

to alleviate long exposure of affected users to higher BER's. Briefly, this recursive

scheme makes an interim phase estimate after only five symbol frames. The partial

information in this interim estimate is used as the seed for a recursive phase estimation

procedure. The recursive estimation procedure continues by using the information

from the estimate made at one frame to help in making the estimate at the next frame,

until an estimate having a standard deviation of 2.5' is found. In a specific example at

an SNR of 5.528 dI3, this method significantly reduces the BER for the affected users

after only five frames, and returns a phase estimate having a 2.5' standard deviation

after only 7 frames.

5.2.1 Multi-frame Average

The MAP two-frame estimator is derived and shown to be a simple average of two

successive, but independently calculated, one-shot optimal phase estimates. The

multi-frame estimate average, in which multiple one-shot phase estimates are

averaged, is proposed and analyzed. Given that each one-shot optimal phase estimate

has some non-zero probability of being an outlier, a robust multi-frame estimate

average is proposed in which possible outliers are discarded prior to averaging. The

number of total estimates that need to be collected and the maximum number to be

discarded is calculated.

If we are interested only in estimating one user's phase from r(l) and r(2), we

may choose the value of this user's phase, 0, to maximize the following conditional

probability

P0jr(1),r(2)(0jr(1)r(2)) - Ar(1),r(2)j0(r(1), r(2) 10) Po (0) (5.8)
Pr(i),r(2)(r(l), r(2))'
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Such an estimate would be the MAP phase-only estimate which, compared to the

estimator derived in Section 5.1.1, averages out the role of the user weights.5

Given the value for user K's phase, the received signals from two disjoint frames,

r(l) and r(2), are statistically independent. We may, then, re-write Equation (5.8)

as

P0Jr(1),r(2)(0Jr(1)r(2)) _- p,(1)1�(r(l) J0)Pr(2)1.&(2) 10) POW - (5-9)
Pr(i),r(2)(r(l), r(2))

Furthermore, the denominator in Equation (5.9) is, simply, a normalization constant.

Thus, when viewed as a function of 0, we see that

P0Jr(1),r(2)(0Jr(1),r(2)) cc Pr(1)J0(r(2)J0)p0(0) (5.10)

= P&(I)(Olr(l)) Pol,(2)(Olr(2)).

Recall that user K's phase is modeled to be random with a uniform PDF, thus, po(o)

is a constant. The simulation results in Section 4.7.2 found that for a single time

frame, i, and for a uniform (±180') prior PDF on 0, P01r(i)(Olr(0) is multi-modal

having one dominant lobe and, possibly, several very small lobes. The existence of

these small lobes is ignored for this derivation, and the PDF, pkir(i)(Olr(i)), may be

reasonably approximated by the exponential cosine 6

C-S(0_�W)

27rlo(aone-shot) 112)

where the mean, 0(i), is the one-shot estimate from the non-coherent joint weight/phase

estimator. Note that in order for this model to be valid, �(Z') cannot be an outlier. By

modeling Poir(i)(Olr(i)) with the PDF in (5.11) we are assuming zero probability of

'This estimate is optimal, in the sense that it is the Bayesian estimator that minimizes the risk
defined with the uniform cost function, Q� - 0) = I if � -_ 0 and 0 otherwise ([20]).

'This exponential cosine is exactly equal to the conditional probability we are seeking if user K
was the only user in the system ([24, 25]).
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an outlier estimate. The standard deviation, gone-shot I can be empirically determined

from simulations. From the standard deviation, we may find the value for aon,.,hot by

using the relation
7r2 00 n 1"_, (a) 1/2

I: 7�21o(a)
3 n=I

derived by Viterbi in [24]. Specifically, from Equation (5.12) a table of la, a(a)j

pairs may be constructed and used to find ceone-shot from gone-shot- In Section 4.7.2,

the simulation run at EblNo - 5.528 dB, found the effective standard deviation 7 of

the one-shot non-coherent phase estimate, gone-shot, to be 13.5'; the corresponding

a,,,.sht is 18.56.

The substitution of Equation (5.11) into Equation (5.10) gives

P01r(l),r(2)(0jr(l), r(2)) oc 1 ;T� one-shot [COS(O + cos(o - �(2))])
lo(clone-shot

[COS(0exp(2aone-shot COS 2 2

(5-13)

where the identity

cos(a) + cos(b) = 2 cos(a + b ) COS( a - b (5.14)
2 2

was used.

Before maximizing the function on the right hand side of Equation (5.13) we take

the log and discard all constants. The MAP two-frame phase estimator is

0(1) + 0(2)
0(1, 2) = arg max cos(o - - (5.15)

0 2

The value of 0 we are seeking sets the argument of the cosine in Equation (5.15) to

zero, hence, the MAP two-frame phase estimate is a simple average of two indepen-

'Recall that the effective standard deviation best described the error histogram if we are to ignore
the outlier lobes.
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dently calculated phase estimates, one for each frame.

0(1, 2) = -(0(1) + 0(2))2

From the form of Equation (5.13), we know that the PDF for the error probability

of the two-frame phase estimate is of the form

P(�(1,2 (01--) _C exp [20onc-shot COS 0(2) ) COS(O,)], (5.17)
2

where 0, is the error in the estimate and C is a normalization constant. Recall that in

an exponential cosine function, the accuracy parameter multiplies the cos(O,) above.

The accuracy parameter for the two-frame estimate average, �(I, 2), is

a 2aone-shot COS( 0(1) - 0(2) (5-18)
2

Recall that the one-shot optimal phase estimate, is a random variable since it

is a function of the noisy received signal vectors, r(l) and r(2). This means that

the accuracy parameter for the two-frame estimate average is also a random variable.

From Equation (5.18) we see that an upper bound is,

C'� (1, 2) < 2aone-shot, (5.19)

This tells us that accuracy value of the two-frame estimate average is no more than

twice that of the one-shot optimal non-coherent phase estimate.

Recognizing that the estimate �(I, 2), shown in Equation (5.16), has an exponen-

tial cosine PDF allows us to use the accuracy parameter, Ce�(1,2)1 found in Equation

(5.18), to calculate the standard deviation of the two-frame estimate average. Specif-

ically, the conditional standard deviation would be found by substituting a�(1,2) for
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a in Equation (5.12). This a-dependent standard deviation is denoted by 0'(a), and

is defined in terms of variance as

072 E[(O - �(I, 2) )2 1 r (1), r (2) (5.20)

where E[.] denotes the expectation.

This conditional standard deviation, '*e�(,,2))l is a function of the random vectors

r(l) and r(2), hence, it is also a random variable. We may, however, calculate a lower

bound on the conditional standard deviation. Recall that an upper bound was found

for a�(j 2) in Equation (5.19), namely, a�(1,2) < 2aone-shot . Also recall that the accuracy

parameter, a, and its corresponding standard deviation, a(a), are inversely related.

From Equation (5.12) and from the upper bound on a�(1,2)1 we may calculated a lower

bound on or(a�(,,2)) -Specifically

(7(2aone-shot) '_< 17(a�(,,2))' (5.21)

where or(2an,-sht) is found by substituting a -_ 20one-shot in Equation (5.12). Equa-

tion (5.21) tells us that the standard deviation of the two-frame estimate average is no

less than that corresponding to a doubling of the accuracy parameter of the one-shot

non-coherent phase estimate.

Alternatively, we may consider the variance, E[(o - �(1, 2))'], which, in contrast

to to Equation (5.20), is not conditional on the measurements r(l) and r(2). Recall

that 0(1, 2) in Equation (5.16) is, simply, the average of two independent identically

distributed random variables, �(I) and �(2), namely, �(I, 2) ' [�(I) + �(2)]. Let us
2

use u,,,,,(2) to denote the standard deviation of 0(1, 2). In terms of variance, we have

(7 2'e (2) = E[(O - �(I� 2) )2]. (5.22)

Contrasting this with Equation (5.20), we see that j2" (2) is the average variance ina
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the error 0 - �(I, 2) (i.e. averaged over r(l) and r(2)). Since the two independent

random variables, �(I) and �(2), have the same standard deviation, U,,,-,ht, we have

(7one-shot

Uave(2) - /2- (5.23)v

Consider, for example, the two-frame phase estimate average from two sequential

one-shot optimal phase estimates obtained by the simulation in Section 4.7.2 for

EbIN,, = 5.528 dB. As reported in Table 4.12, the effective standard deviation for

each one-shot estimate is 07one-shot - 13-50. The standard deviation of the two-frame

phase estimate average, assuming neither of the one-shot estimates is an outlier, is

u,,,(2) -_ 13-50/v/-2- - 9.50.

Recall that the coherent joint weight phase estimator needs an estimate with standard

deviation no greater than 2.5'. Therefore, T -- 2 is insufficient and we must extend

the phase estimate average to accommodate T > 2.

The MAP T-frame estimate would be found by maximizing

T

P0jr(i),---,r(T)(0jr(1), r(T)) (x exp[Ceone-shot COO (5.24)

over 0. Equivalently,

T

0(1, T) arg max ceone-shot COS(O 0(i))-

From the identity in Equation (5.14), we may write

FT Z
qj aone-shot COO

(5.25)
T/2

2aone-shot Tj=i COS(O )7(Z
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where
Z) - Cos(

-Y(, 2

where T is assumed to be a power of 2. FLirther reduction of Equation (5.25) cannot

be done with trigonometric identities since -y(i) is different for every i. Furthermore,

-y(i) is a random variable. Direct derivation of an estimator from Equation (5.25) is

not done in this thesis.

Alternatively, we may, view the one-shot phase estimate at frame i, 0(i), as a

noisy measurement of the true phase, otrue)

OW = otrue + Ci, (5.26)

where the phase measurement noise at frame i, ci, is a zero mean random variable

with standard deviation, gone-shot- Furthermore) ci is independent and identically

distributed for all i. Given multiple independent noisy measurements of otr', a good

estimate is the average of the measurements. The T-frame estimate average, then, is

proposed to be

0(1, T) _3=1 0(j) (5.27)

The standard deviation is, simply,

T) gone-shotIVIT (5.28)

Recall that we need a standard deviation of ±2.5'. This requires a number of

training frames,

T =((7one-shot )2 2.5 )2.
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For the example of the simulation in Section 4.7.2 for which EbIN" = 5.528 dB1

Coneshot = 13.50 , and we would need to average

T - (13 .5)2/ (2 .5)2 - 30 (5.29)

one-shot optimal, independently calculated, non-coherent phase estimates. Notice

that with a decrease in the SNR, this number rises significantly. For example, at

EbIN, = 4.6 dB 717one-shot - 15.6' and T;z�� 40.'

The derivation up to this point did not take into account the multi-modal nature

of the actual PDF of the one-shot phase estimate, p01,(i)(0Jr(%')). By assuming the

one-shot phase estimate to have the exponential cosine PDF (which does not produce

outliers), all results found up to this point are for the case in which outliers are not

a part of the average. We now formally recognize the possibility of having an outlier

estimate among those to be averaged. With a probability of p, the estimate is an

outlier, and, hence, is useless. �/Ve. may calculate a robust average by discarding any

of the estimates that are believed to be outliers.

Before writing the procedure for the robust multi-frame estimate average,

we must determine which of the estimates to keep and which to discard. Whether

or not an estimate is an outlier can, of course, be formally decided via a hypothesis

test. This degree of sophistication is not needed here. A simpler approach is to pre-

determine the total number of estimates that will be collected, TT, and the maximum

number that will be discarded, TD, and, simply, discard up to TD estimates that are

in disagreement with the majority. The robust TT-frame estimate average would be

found by averaging the remaining estimates.

For example, the smallest value for TT that will allow for a majority is TT = 3. In

this case, the only reasonable possibility for TD is 1. The robust three-frame estimate

'Note that during these T frames, the non-coherent joint weight phase estimator gives a degraded

BER for some users in the system. This means that the affected users must withstand T successive

frames of degraded performance. This problem is dealt with in Section 5.2.2.
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average is found by collecting three sequential, but independently calculated, one-shot

phase estimates, discarding up to one that is in disagreement with the other two, and

averaging the remaining two (or three, if no estimate was deemed to be an outlier).

Denote the robust three-frame estimate average by

0(3 \ 1)

to indicate that 3 one-shot estimates are collected and at most 1 is discarded.

This procedure for the robust three-frame estimate average will give an erroneous

estimate if more than one of the three one-shot estimates is an outlier. Therefore,

we wish to calculate the probability that the estimate is good, i.e. only non-outliers

were averaged, when TT = 3 and TD = 1. Denoting this probability by Pg(TT, TD)

P, (3, 1), we have

3 3
Pg(3, 1) - (I - P),p + (I _ P)3' (5.30)

2 3

where p is the probability that a one-shot estimate is an outlier. The probability,

Pg(3, 1), then, is the probability that no more than one of the three one-shot estimates

is an outlier.

As was found from simulations reported in Section 4.7.2, 0.04 < p < 0.082,

depending on the SNR. For the case in which EbIN, -_ 5.528 dB, p = 0.053, and the

probability of the robust three-frame estimate average being good is Pg (3, 1) = 0 .9919.

If a 2.5' standard deviation can be obtained by averaging only two one-shot non-

outlier estimates, then we would use this robust three-frame estimate average only if

we are willing to risk getting one bad three-frame estimate in every 100.

In general, collecting TT one-shot non-coherent phase estimates, discarding up to

TD, and averaging the rest, will be called the robust TT-frame phase estimate aver-

aging procedure. The robust TT-frame phase estimate average will be denoted
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by

(TT \ TD)

to indicate that TT one-shot estimates are collected and up to TD are discarded.

The general formula for the probability that the TT-frarne robust estimate average

is free of outliers is

TD TT

P9 (TT, TD) p)(TT-i)Pi.

i=O (TT - i)

if, for example, we set TD -_ 2 (discard up to 2 estimates), then the smallest

possible choice for TT is V The robust 5-frame estimate average,

0(5 \ 2)

is found by collecting TT = 5 one-shot estimates, discarding up to TD 2 possible

outliers, and averaging the rest. Also for EbIN,, - 5.528 dB and p 0.053, the

probability that the robust 5-frame estimate average is good is P. (5, 2) 0.9986. In

other words, one in every 714 robust 5-frame estimate averages is expected to be bad.

At an SNR of 5.528 dI3, we found, in Equation (5.29), that we needed to average

30 one-shot phase estimates to achieve a standard deviation of 2.50. If we require

a 0.9986 probability that the robust estimate average of at least 30 estimates does

not include an outlier, then TD - 6 and TT = 36." In other words to achieve a

rate of only I bad robust estimate average in every 714, we calculate a robust 36-

frame estimate average. Specifically, we need to collect 36 one-shot optimal phase

estimates and discard up to 6 that could be outliers, before calculating the average.

Note the computation of the robust 36-frame estimate average requires the receiver

'Recall that we discard an estimate if it is in disagreement with the majority.
101f TT = 35 and TD -_ 5, Pg(35, 5) = 0.9956 which is lower than the requirement of 0.9986, for

this example. Trying TT = 36 and TD -_ 6 gives Pg(36,6) = 0.9902 which more than meets the
requirement.
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to use the non-coherent joint weight phase estimator for 36 successive frames. This

means that any users that are affected by the presence of the unknown-phase user

are subject to a higher BER for 36 successive frames. This problem is discussed in

the next section.

5.2.2 Recursive Refinement

From the BER curves for the simulations in Section 4.7.1 we found that when a new

user with an unknown phase joins the system, the children and parent of this user

each experience an increase in the probability that their one-shot weight estimate

is in error. For example, at EblAr, - 5.528 dB, it was found that for the 21 user

minimum distance set, an unknown phase on user 17 causes the BERs for users I

and 21 to nearly double. Specifically, user I has a coherent BER of 4.2 x 10-' and a

non-coherent BER of 7.8 x 10-'. Likewise, user 21 has a coherent BER of 7.9 x 10-'

and a non-coherent BER of 14.4 x 10-3. Such losses could be significant for many

systems. The simple averaging procedure described in the previous section, then,

will subject these affected users to noticeably higher BER for the full duration of the

training sequence.

This section offers an alternative to the multi-frame estimate average of Sec-

tion 5.2. I. The recursive phase estimate is proposed to alleviate the long exposure

of affected users to higher BER's by using the information from the estimate made at

one frame to help in making the estimate at the next frame. This method significantly

reduces the BER for the affected users after only a small number frames.

For some MA systems designed to combat fading channels or bursty error channels,

a succession of 36 BER-degraded frames will not cause a problem since the system

is prepared for much worse." In such a case there is no need for the recursive phase

"One way to combat the increase in BER over TT frames is for each user to choose an error
correction code to accommodate the worst case BER. Another option is to choose a code that can
accommodate the worse case "fade" caused by the dropping in of a new user. Another coding related
option is to use interleaving so that the lower quality one-shot estimates do not occur in succession
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estimate. On the other hand, for systems with relatively fading-free and bursty-

free channels, the incorporation of long codes, interleaving, or other coding related

remedies might be wasteful;" in such cases it is beneficial to use the recursive phase

estimate so that the BER can be restored in as few frames as possible.

The recursive phase estimation procedure is motivated by the behavior of the

one-shot partially coherent joint weight/phase estimator. Recall from the derivation

of the one-shot PC estimator in Section 4.4 that this estimator assumes a value for

the phase of the uncertain-phase user. Denoting the assumed phase as and

the error in this phase as 0, allows us to write

Oe - Oassumed - Otrue- (5.32)

Also recall that the probability distribution on the assumed phase error is the familiar

exponential cosine PDF
a cos(�6,)

Po (0e) (5-33)
27rI,(a)'

where the value of the accuracy parameter, a, corresponds to a value of a(a), the

standard deviation of the error in the assumed phase. The PC estimator having

partial knowledge characterized by Equations (5-32) and (5.33) produces a phase

estimate, �. The error in this estimate has a standard deviation that is less than the

the error in the assumed phase.

Since, in this chapter, we are interested in taking advantage of several successive

symbol frames, consider the PC estimator at end of the i1h frame. The assumed phase

at the end of frame i will be denoted by Oassumed('); the error in this assumed phase

will be denoted by The partial information at the end of symbol frame i is

in the de-interleaved bit stream. For tutorial treatment of these techniques, see any text on digital
communications, such as [12].

"Recall that a user is only affected when a nearby ancestor or descendant spot on the tree is taken
by a new unknown-phase user. For many MA systems, the drop in rate for related users would be
a small fraction of the length of time a user accesses the system.
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characterized by

Oassumed Otrue + Oe (Z (5.34)

and

(5.35)

where the value of ai, the accuracy parameter at the end of frame i, corresponds to a

value of aj = a(cei), the standard deviation of the error in the assumed phase at the

end of frame i.

At frame Z'+ 1, r(i + 1) is received and the PC estimator creates a phase estimate

that will be denoted by

+

The above notation indicates that the partial information used in creating this es-

timate is characterized by the standard deviation, ori. The error in this estimate

is

(i + 1 0(i + II ai) - ot"", (5.36)

and its PDF is
+1 C.S(0e(i+1j-i))

MM, + 11(7i)) 27rl,(ai+,) (5.37)

The value for ai+l is the accuracy parameter that corresponds to the standard devi-

ation, ui+i, for this estimate.

The value of the standard deviation of the one-shot PC phase estimate can be

determined from simulations. S ecifically, the value of the standard deviation, ui+,,

of the estimate �(Z'+ I I aj), that results from the PC estimator having prior information

characterized by the standard deviation, 7i, can be found from simulations for each

EbIN,,-

Table 5.5 shows several jai, ui+l I pairs for Eb/No = 5.528 dB. The table has three

columns. The left column shows the standard deviation in the assumed knowledge

of the user's phase at the end of symbol frame i, denoted by oi. The center column
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Table 5.5: Simulation results at EbIN, = 5.528 dB for the 21 unit energy minimum
distance set for which user 17 has an uncertain phase. This table shown the standard
deviation, ai+j, Of the phase estimate given by the PC one-shot estimator having
partial information characterize by the exponential cosine with accuracy parameter
ai (or standard deviation ai).

[07 a(ai (7i+i

7.790 55-63 4.000
6.750 74-80 3.520
6.040 93-01 3.210

4.000 205.28 2.290
3.520 264.29 1 2.03
3.210 319-51 1.850

shows the accuracy parameter, a(ai), corresponding to aj. The right column shows

the value of ui+,, the standard deviation of the estimate that would be given by the

PC estimator having partial knowledge characterized by the parameters in the left

and center columns.

The values in Table 5.5 were found from simulations using the 21 unit energy

minimum distance set for which all but one user's phase is known. To find ai+1

in each row of Table 5.5 simulations were run in which user 17's phase was drawn

randomly from the distribution shown in Equation (5.35) where ai is taken from the

center column of the table. For example see the first row in Table 5.5. At 5.528

dB, the PC one-shot estimator having partial knowledge characterized by ai = 7.790,

or ai - 55.63, will give a one-shot phase estimate, 0(i + I jai), that has a standard

deviation of ai+1 -_ 4.00'.

We may, of course, use the estimate, 0(i+ 11,7i), to improve the partial information
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at the receiver. To prepare for the next frame we set

Oassumed(i + 1) = �(i + 11ai),

where this new partial information is characterized by the standard deviation ai+1

4.00'. By looking for the row in Table 5.5 that is indexed (in the left most column)

by the standard deviation of 4.00', we find that the accuracy parameter must be set

to cq+1 = 205.28. The PC estimator, at the next frame, uses this updated partial

information to give an estimate,

+

with a corresponding value Of 17i+2 2.29'.

The full recursive estimation procedure is illustrated by the flow chart shown in

Figure 5-2. Begin with the system operating with all user phases known. In this case,

as shown in block I of the flow chart, the coherent joint detector is used. At the next

symbol frame the receiver would check to see if a new user has entered the system,

as done in block 2. If there is no new user, the coherent detector is used. If there is

a new user, the procedure progresses to block 3.

The new user begins transmitting known training weights. All other users con-

tinue to transmit as usual. The receiver uses the optimal one-shot non-coherent joint

weight/phase estimator for five successive symbol frames. The five independently

calculated phase estimates for the new user are collected, 10(l), 0(2),..., 0(5)1. The

procedure progresses to block 4.

From the five one-shot phase estimates, a seed estimate is calculated as the

robust 5-frame estimate average

0o - 0(5 \ 2) (5-38)
(5 - Td) ice



CHAPTER 5. SEQUENCE WEIGHTIPHASE ESTIMATION 190

Start with

all phases 2 3
known

use NC
use coherent El YES
joint detector user joint weight/phase

? estimator for
5 frames

NO

calculate seed
estimate

/11, /^, 11
Oo = 0 (5 \ 2)

190
YES 6

7 use PC Ir
8 estimator set accuracy

look up parameter
(T <25 to find 5+1 in PC estimator

phase estimate
(C((70)

(i+1 I (Ti)

NO
10

set accuracy advanceto
if (7+1< 40 parameter next symbol

stop training in PC estimator f rame

u-((Yi+,) i = i+19

Figure 5-2: Flow chart illustrating the recursive phase estimation procedure.
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where the actual number of estimates that are discarded is denoted by Td which is, at

most, 2, and 0 is the set of Td indices denoting the non-outlier estimates. From the

previous section we know that at Eb/N, - 5.528 dB, p - 0.053, and the probability

that this robust 5-frame estimate contains no outliers is P,(5 \ 2) = 0.9986. The

standard deviation of this seed estimate is calculated to be

co - gave(5 - Td) - 07�(,) /V5 - Td (5.39)

The procedure progresses to block 5.

The seed estimate is incorporated into the unknown-phase user's signature vector,

as assumed by the receiver.

Oassurned(0) = �O (5.40)

Now, the user has some partial knowledge for the user's phase. The value of a in

the estimator must be set to reflect this partial knowledge for the next frame. The

standard deviation, co, represents the uncertainty on the assumed value of the user's

phase. From this, the accuracy parameter

ao -_ a(co)

is determined. 13 The procedure progresses to block 6.

Now, the receiver uses the optimal one-shot partially coherent joint weight/phase

estimator on symbol frame 1. The phase estimate

(5.41)

is produced. The procedure progresses to block 7 where the standard deviation, ul,

of the estimate, �(Iluo) is found from a table lookup. Recall that a table of triplets,

13Recall that we may use Viterbi's formula, shown in Equation (5.12), to create a table of f a, a(o-)}

pairs.
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fai� ai, 9i+1 I , such as Table. 5.5, may be constructed for each value of EbIN, and may

be stored at the receiver. The procedure progresses to block 8.

The receiver must check to see if the estimate �(l I ao) is of sufficient quality to use

as if it were true by the coherent detector on subsequent symbol frames. Specifically,

if the standard deviation, 71, of this estimate is no more than 2.5" the new user

may send information weights in subsequent symbol frames and the receiver uses

the coherent joint detector; the procedure progresses back to block 1. If, on the

other hand, the standard deviation, 71, is greater than 2.5', the recursive estimation

procedure is not finished and we progress to block 9.

If the standard deviation of the phase estimate is 4' or less, the unknown-phase

user may stop sending known training weights and may begin to send information

weights in subsequent frames. As was found from simulations in Section 4.7.11 the

BER given by the PC joint weight/phase detector with an 8' uncertainty in one user's

phase (all users send information weights) is virtually identical to the BER given

by the coherent detector for which all user phases are known exactly. A standard

deviation of 4' on phase uncertainty translates to a phase uncertainty of at most 8'

with 0.95 probability. The procedure progresses to block 10.

The receiver incorporates the new partial information from the most recent esti-

mate by setting

The new accuracy parameter is determined from the standard deviation of the most

recent phase estimate,

a, -- a(o-1),

where the deterministic relation in Equation (5.12) is used. The procedure progresses

to block I 1.

The receiver advances to the next symbol frame. The procedure progresses to

block 6.
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The receiver uses the optimal one-shot partially coherent joint weight/phase esti-

mator on symbol frame 2. The phase estimate

(5.42)

is produced. The procedure progresses to block 7 where the standard deviation, 0-2,

of the estimate, �(21ai) is found from a table lookup. The procedure progresses to

block 8. The recursion of blocks 9, 10, 11, 6, and 7 continues until a recursive phase

estimate having a standard deviation of less than 2.5' is found.

To illustrate the quality of successive phase estimates found by the recursive esti-

mation procedure, a specific example using simulated data is explained. The 21 user

unit energy minimum distance set was used. User 17's phase is completely unknown

at the receiver. All other user phases are correctly known at the receiver. The signal

to noise ratio for this simulation is 5.528 dB.

The first step is to collected five one-shot optimal non-coherent phase estimates.

Up to two outlier estimates may be discarded. If there are two outliers, the seed

estimate will have a standard deviation, ao = 7.79'. If there is one outlier, the seed

estimate will have a standard deviation) 7o = 6.75'. If there are no outliers, the seed

estimate will have a standard deviation, 70 -_ 6.04'. Since there are three possible

outcomes for the seed estimate, there are three possible outcomes of the recursive

estimation procedure. Table 5.6 shows each possible outcome as a progression of

standard deviation values.

The first row of Table 5.6 shows the simulation results if there were two outlier

estimates, i.e. if Td-- 2. The recursive phase estimation procedure follows. User 17

joins the system. The receiver has no prior knowledge of user 17's phase. User 17

begins sending known training weights. The receiver uses the optimal one-shot non-

coherent joint weight/phase estimator for five successive frames and five independent

one-shot phase estimates are collected. Two of these estimates are determined to be
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Table 5.6: An example of the recursive estimation procedure for a simulation at 5.525
dB.

Td 11 OrO 1 171 1 92 11 total number number of training

2 7.790 4.000 2.290 5 + 2 7 6
1 6.750 3.520 2.030 5 + 2 7 6
0 6.040 3.210 1.850 5 + 2 7 6

outliers; the remaining three are averaged to make the seed estimate, 00. This seed

estimate has a standard deviation, ao =: 7.79'. The receiver sets 0-ssumedm = �0-

This partial information on user 17's phase is characterized by a standard deviation of

7.79'. This standard deviation corresponds to an accuracy parameter of ao = 55.63.

The receiver uses the optimal PC joint weight/phase estimator on the next symbol

frame and produces the phase estimate �(l 17.790). This estimate is determined from

Table 5.5 to have a standard deviation, o7i = 4.000. This standard deviation is

greater than 2.50, so the recursion must continue. This standard deviation is small

enough, however, to allow user 17 to stop sending training weights and to start sending

information weights at the next frame. The receiver prepares for the next frame by

updating its partial information: Oasswmed(l) =:: �(117.790) and oz, = a(4.000) =

205.28. The optimal PC joint weight/phase estimator is used (knowing that user

17 sends an information weight) to produce the phase estimate �(214.00'). From

Table 5.5 we find that the standard deviation of this estimate is U2 = 2.29'. This

standard deviation is less than 2.5o so the recursive phase estimation procedure is

terminated and �(214.00o) is taken to be true. The coherent joint detector is used for

subsequent symbol frames.

Although the other two possible progressions of the recursive estimation proce-

dure will result in slightly different values for ao, 71 and 92, we see from Table 5.5

that in all three cases, a total of 7 symbol frames were used. In addition, only 5 of

those frames required application of the one-shot non-coherent joint weight/phase es-

timator. Recall that for EbIN, = 5.528 dB, Section 5.2.1 found that the robust phase
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estimate average having a standard deviation of 2.5' would require the application

of the one-shot non-coherent joint weight/phase estimator for 36 successive frames.

If the recursive phase estimator is used, affected users must withstand a degraded

BER for only 7 frames. Moreover, the highest degradation is during the first 5 frames

during which the one-shot non-coherent joint weight/phase estimator is used.

We are interested in the progression of BER for the most affected users during the

7 frames of the recursive estimation procedure for the example at EbIN, = 5.528 dB.

Since there are three possible outcomes for the seed estimate, the BER progression

is determined to be the weighted average of the three. Specifically, the BER at a

frame i, given that Td outliers were found, is denoted by BER(flTd). The weighted

averaged BER at frame i is given by

BER(i) = (P2 BER(Z'12) + PI BER(Z'11) + Po BER(ilo))I(P2 + Pi + Po), (5.43)

where the probability of there being two outliers in the collection of five one-shot

non-coherent phase estimates is

5 2(i - P)3,
P

2

the probability of there being I outlier is

Pi = 5p(l _ P)4'

and probability of there being no outliers is

p - (I P)5.

Recall that p is the probability that a one-shot non-coherent phase estimate is an

outlier. At EbIN, - 5.528 dB p = 0.053.
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The weighted average BER(i) is shown for user I in Figure 5-3. A total of eight

symbol frames are shown. The simulation was done for the 21 user unit energy

minimum distance set with an EbIN, - 5.528 dB. The first symbol frame shows the

BER for the case in which all user phases are known. After the first symbol frame,

user 17 drops out to be replaced by a new user. At the second symbol frame, the

phase of the new user 17 is unknown at the receiver. For symbol frames 2 through

6 user 17 sends a known training weight and the receiver uses the optimal one-shot

non-coherent joint weight/phase estimator. Notice that the BER during these frames

has nearly doubled. At the end of the 6" frame the seed estimate is calculated. This

partial information is set in the estimator and the one-shot PC joint weight/phase

estimator is used on frame 7. Notice that in frame 7 the BER for user I is nearly

restored to its coherent value (the BER experienced in frame 1). In frame 8 user 17

sends an information weight and user I's BER is restored to its coherent value. The

standard deviation of the BER points found in this simulation range from 4.3% to

5.9% of the BER.

Figure 5-4 shows the BER for user 21 for same progression of symbol frames as

described above for user 1. The standard deviation of the BER points found in this

simulation range from 3.2% to 4.2% of the BER. Notice that the same behavior found

for user I exists for user 21. Specifically, after five frames of a nearly doubled BER

during the use of the one-shot non-coherent joint weight/phase estimator, user 21's

BER is nearly restored by the 6" frame of the recursive estimation procedure.
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Figure 5-3: User I's BER progression during the recursive phase estimation procedure
on user 17. Error bars are not shown. The standard deviation of the BER points
ranges from 4.3% to 5.9%.
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Figure 5-4: User 21's BER progression during the recursive phase estimation proce-

dure on user 17. Error bars are not shown. The standard deviation of the BER points

ranges from 3.2% to 4.2%.



Chapter 6

Conclusion and Future Directions

This thesis examines the problem of uncoded multiple access (MA) joint detection

for the case in which user signatures are not orthogonal.' Specifically, if a system is

to offer service to more users than is possible with FDMA and TDMA systems, users

will not be orthogonal ([18]). The primary obstacle in a non-orthogonal MA system is

the complexity of detection; in general, the optimal detector has a complexity which

is exponential in the number of users ([23]).

The approach taken in this thesis is to recognize that the problem of designing a

reliable and realistic MA communications system allows for the joint design of users'

signatures and detection procedures. In other words, exercising the control we have

over the characteristics (or structure) of the set of user signature waveforms will make

the job of finding ways for low complexity detection easier.

In this thesis, a tree-structure is used to give an advantage to the detection algo-

rithm. Specifically, the user waveforms must have tree-structured interference. The

tree structure is used as a signal design guideline that is expected to be easily achieved

for many scenarios in which orthogonal signaling is possible.

For strictly tree-structured signals the one-shot optimal tree detector is derived

'The signaling methods assumed in this thesis are M-ary pulse amplitude modulation, M-ary
phase shift keying, or a hybrid between the two.

199
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for the special ideal case of the receiver having perfect knowledge of each of the user

2waveforms, including each user's phase. Briefly, each user is assigned to a node on

the tree; the detection algorithm takes advantage of the tree structure by sweeping

through the tree from bottom to top. At each node of the tree, an intermediate

weight decision is made conditioned on the weight decisions of all the users that sit

at ancestor nodes to the current node. The top decision finalizes all the intermediate

decisions made below it.

The tree detector gives the optimal estimate with an extremely low computational

complexity. An upper bound on the complexity was found to be, for typical cases of

interest, a low-order-polynomial in the number of users, e.g. O(KP), K the number

of users and p small. This is an enormous savings in computations over the O(MK)

3computations needed if the signatures did not exhibit any structure. Indeed, with

a typical K of 85 users employing binary signaling (M = 2), an exhaustive joint

detector would require computations on the order of 1021 , while the optimal tree

detector would require only 585 computations.

Since the tree detector is optimal for any set of tree-structured signatures, its

use with the minimum distance sets proposed by Ross and Taylor in [17] allows, in

principle, for an over-saturated MA system that has comparable performance and

computational complexity as the corresponding orthogonal MA system supporting

fewer users. The detection result of this thesis has lifted a major computational ob-

stacle, thus, opening up the area of over-saturated communications for more research.

Some ideas for future work are given in Section 6.1.

Numerous performance questions were explored via simulation. All simulations in

this thesis were done with the Ross and Taylor minimum distance sets for which each

user employs binary phase shift keying. Left for future work is to test the Ross/Taylor

'The term one-shot means that the detector uses only one symbol frame from which to calculate
its estimate. In contrast, a sequence detector collects several symbol frames in order to do joint
detection on all weights in the sequence. Sequence detection for the purpose of phase estimation
was also addressed in this thesis and is summarized shortly.

'Here, it is assumed that all users employ M-ary signaling.
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sets with other popular signaling schemes such as quadrature phase shift keying. Each

userls signature signal, prior to running simulations was arbitrarily assigned a phase.

This was done to reflect the lack of phase control in an actual system. Results from

simulations done for this thesis, then, reflect a typical set of minimum distance users.

Left for future work is the exploration of worst case phase assignment on the minimum

distance sets.

In an actual system, strict orthogonality is often not possible; for many MA sys-

tems, near orthogonality is the best that can be achieved in practice. Since strict tree

structure is expected to be possible only for systems capable of keeping users strictly

orthogonal, analysis of the tree joint detector was done with nearly tree-structured

users. Namely, each user's transmission was allowed to interfere with it's neighbor-

ing user's transmission, much like FDMA users "leak" into adjacent channels. A

simulation with 21 unit energy users in 16 dimensions found that a -40 dB adjacent

channel leak by each user goes virtually unnoticed, a -30 dB leak causes only negligi-

ble performance loss, and a -20 dB leak results in a 1.25 dB performance loss. These

results mirror those for an FDMA system experiencing the same degree of leakage

Q13]). In other words, the tree joint detector which is optimal if users are strictly

tree-structured experiences the same performance loss in the face of adjacent channel

leaks as do current systems using a bank of matched filters followed by a slicer. Recall

that for the strictly orthogonal system, a bank of matched filters is optimal ([7]).

Joint detection, in general, requires comparison of the actual received signal with

the set of possible received signals. The set of possible received signals is constructed

by the detector using replicas of the actual received signature signals (including

phases) that are stored at the receiver. Hence, each time a new user joins the MA

system, it's phase must be estimated so that it can be used for the detection of sub-

sequent symbols. Any estimate will, of course, have some error variance. Ultimately,

then, the tree joint detector must be able to hold up under small degrees of phase

mismatch between the actual phase of a user and the phase as known at the receiver.
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Again, a 21 user in 16 dimension tree-structured MA system was simulated. For

the case of one user having a phase mismatch, the majority of other users in the

system experienced no loss. A few users (the users assigned to parent and child nodes

of the mismatched-phase user) experienced the following losses: negligible loss (0.0

dB to 0.15 dB) for a 10' mismatch- small loss (0-15 dB to 0.50 dB) for a mismatch of

150; and notable loss (0-50 dB to 1.00 dB) for a mismatch of 20', which might prove

to be tolerable for some systems if, perhaps, the 200 mismatch persists only for a few

symbols.

The more common scenario of having small mismatches in all users phases was

also simulated. A 0.75 dB average performance loss was found for a 10' mismatch in

all user phases in a 21 user set, and a mere 0.13 dB loss was found for a mismatch of

5'. For near lossless performance, then, the tree joint detector requires approximately

±5' certainty in the knowledge of each user's phase.

It is important, then, for a multiple access joint detection scheme to incorpo-

rate low complexity phase estimation. The estimation of a user's phase, therefore,

was incorporated into the tree detection procedure. The optimal joint weight/phase

tree-structured estimation algorithm was derived for one user having an unknown or

a partially known phase. Via simulations the one-shot optimal non-coherent joint

weight phase estimator was examined for the case of one user having a completely

unknown phase; this users sends a training weight. The standard deviation of the

phase estimate was found to be between 34' and 48', depending on the signal to noise

ratio. It is interesting to note, however, that the probability density function (PDF)

for the error in the phase estimate (approximated by simulation results) closely re-

sembles the exponential cosine function which is the PDF for the error in the phase

locked loop phase estimate for the single user system ([241). This PDF, for the condi-

tions of the simulations in this thesis, resembles the Gaussian PDF. The PDF for the

MA system exhibited, in addition to a main lobe centered at zero, two small lobes

centered at ±175', respectively. The outlier lobes, together, contained from 4% to
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8.2% of the probability, depending on SNR. A more intuitive way of measuring the

quality of the one-shot phase estimate given by the non-coherent joint weight/phase

estimator is to assign an "effective standard deviation" which quantifies the main

lobe containing 91.8% to 96% of the probability. Hence, the one-shot phase estimate

was found to have an effective standard deviation ranging from 10' to 20' where an

occasional outlier error will occur with a 0.04 to 0.08 probability.

In addition to returning a phase estimate, the non-coherent joint weight/phase

estimator finds an estimate for each of the users' weights. Simulation results for the

case in which one user's phase is unknown showed a 0.1 dB (2.5%) average perfor-

mance loss in BER relative to the case in which all users' phases are known accurately.

The greatest loss is 0.75 dB (19%) and is experienced by the parent and a child to

the unknown-phase user. The other users experience virtually no loss.

The optimal joint weight/phase estimator was also simulated for the case of the

receiver having partial phase knowledge of one of the user's phases while having

perfect knowledge for the rest of the users' phases. Having knowledge of a single

user's phase to within ±18.7' allowed for much better phase estimates. Moreover,

the approximated PDF for the error on the phase estimate given partial knowledge

had no outlier lobes. The actual standard deviations on the phase estimates ranged

from 7.7' to 9', depending on the SNR. The quality of the phase estimates (given a

prior uncertainty of ±18.70) for SNR,'s ranging from 3 dB to 7.2 dB did not depend on

whether or not a training weight was used. For example, at an SNR of 5.528 dB, the

standard deviation in phase estimate error was found to be 8.2' (training) and 8.3' (no

training). The simulation was repeated for a prior uncertainty of ±8.14'. The phase

estimate for this case had a standard deviation of 50. Recall that this approaches the

accuracy needed before the tree joint detector can use the phase estimate as if it were

true for the detection of subsequent weights. 4

4A required accuracy of 5' means that the mismatch between a user's actual phase and that phase
as known at the receiver must be no greater than 5'. A 5' standard deviation means that with 0.68
probability, the estimate error will be no greater than 5'. Ultimately, we need an estimate with a
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The average loss in BER for the partially coherent cases was found to range from

0 dB (no loss) to 0.25 dB (6% loss). No losses were found when a training weight was

used, even when the prior phase uncertainty was as high as ±18.7'. The no-training

case for the ±18.7' uncertainty gave a greatest loss of 0.5 dB (12%), experienced

by a child of the unknown-phase user. Also for this same case, the parent of the

unknown-phase user experienced a 0.25 dB (6%) loss; the other users experienced no

loss for the partially coherent case.

The tree-structured optimal joint weight/phase estimator has a complexity that

can range from very low order polynomial in the number of users to exponential in

the number of users, depending upon the position in the tree of the uncertain-phase

user. For many scenarios, the complexity remains low. Returning to the example of

85 binary users in 64 dimensions, we find that if the unknown-phase user were at the

bottom of the tree, there is no increase in complexity relative to the 585 operations

needed for the case of all users' phases known. If the unknown-phase user were one

level (two levels) up from the bottom, the joint weight/phase estimator requires 673

(4,194,700) total operations. If this unknown-phase user is at the top of the tree,

however, the complexity balloons to 0(10").

One sub-optimal low complexity option for one-shot joint weight/phase estimation

was proposed. The sub-optimal version of the weight/phase joint detector simply

assumes that the user's phase is from a discrete set of possible phases. The complexity

of this sub-optimal detector remains reasonable even for relatively fine discretization

of the phase. For example, even for a set of 24 equally spaced phases for which there

is a 15' separation, the complexity remains low. Again, the example of 85 users in

64 dimensions offers an illustration. As noted above, the worst case for this scenario

would be to put the unknown-phase user at the top of the tree. The "assumed-

discrete" joint weight/phase estimator brings the optimal estimators complexity of

0(1025 ) down to a manageable 31,592 total operations needed to find the phase

standard deviation of 2.5' so that with 0.95 probability this estimate will be within 2 x 2.5' = 5'.
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estimate for the unknown-phase user and a weight estimate for each of the other 84

users. Note that with this 15' separation between discrete phases, the actual phase

is guaranteed to be within 7.5' of one of the discrete phase points. It is important to

note that the phase estimate given by the assumed-discrete weight/phase estimator

will not, in general, be one of the discrete phase points. This estimator uses the

set of discrete phases to assist in finding the weight estimates for the known-phase

users. Once these are found, the phase estimation procedure is identical to the single

user phase estimator. Since the discretization can be changed to bring the discrete

phase separation down, this estimator is anticipated to be capable of giving very near

optimal performance. 5

Recall that an accuracy is needed within ±5' before the tree joint detector can

use a phase estimate as if it were true. This means that we need a phase estimate

with a standard deviation of 2.5'.' The one-shot non-coherent phase estimate is

incapable of giving such an estimate. Three procedures for using a sequence of trans-

missions was proposed. First, the optimal joint weight/phase sequence estimator was

derived and was found to have low complexity only for a small number of special

cases. Second, a multi-frame estimate average was proposed that requires virtually

no additional computation above the one-shot optimal joint weight/phase estimation.

Briefly, T successive, independently calculated, one-shot phase estimates are made.

Any estimates believed to be outliers are discarded. The remaining estimates are av-

eraged to create the multi-frame estimate average. For this phase estimate to achieve

a 2.50 standard deviation in error (at an SNR of 5.528 dB) it would need at least

36 one-shot estimates. That is, at least 36 transmission frames will go by during

which the unknown phase user sends a known weight, also during which a parent and

child users will experience BER losses of up to 0.75 dB. Third, a recursive refinement

phase estimator was proposed. The recursive estimator collects only five successive

'In other words, if there is a need to improve performance, further reduction of the discrete phase
separation may be done, at a cost of a relatively low increase in complexity.

'With 0.95 probability the estimate will be in error of less than 5'.



CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 206

one-shot optimal phase estimates, discards up to two possible outliers, and averages

the remaining phase estimates to create an estimate with a standard deviation (at

7an SNR of 5.528 dB) ranging from 6.04' to 7.79'. The recursive estimator continues

by noting that it now has partial information on the unknown-user's phase. The

partially coherent joint weight phase estimator is used for the next few frames, after

each, the accuracy is adjusted to reflect the improvement in the phase estimate. To

achieve a phase estimate having standard deviation of 2.5' at 5.528 dB, the recursive

phase estimator needs five successive non-coherent phase estimates and two partially

coherent phase estimates. That is, seven transmission frames are needed to create the

phase estimate. Moreover, only five of those frames employ the non-coherent joint

weight/phase estimator; this means that a parent and child users will experience BER

losses of 0.75 dB for only five frames. In the last two frames the loss in BER for these

affected users is negligible.

6.1 Ideas for Future Work

This thesis, along with the work of Ross and Taylor in [17] just begins to study over-

saturated MA communications. This section touches on some ideas for future work

in this area. Specifically, comments can be separated into three categories: 1) the

study of tree-structured estimation algorithm issues, 2) the study of tree-structured

signal set design, and 3) options other than tree-structured approaches.

First ,estimator issues are discussed. This thesis examined the problem of esti-

mating one of the user's phases while all other users' phases were accurately known

by the receiver. In an actual system, the receiver will have obtained its information

on each user's phase from some estimation procedure, hence, the knowledge of each

user's phase will be in error, even if by only a small amount. When all users have a

small phase mismatch, the estimate of the phase for a new user entering the system

7The exact value of the standard deviation depends upon the number of outliers that were found.
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will be affected. From the many examples of this thesis it is expected that the phase

mismatches on users which are ancestors and descendants to the user having the

unknown phase will contribute most to the error in estimating the unknown phase.

Simulations exploring this scenario are planned for future work.

Here, it should be pointed out that the optimal detectors proposed in this thesis

were derived to minimize the probability of making an error for one or more of the

users. That is, an error in only one user's weight is considered to have the same cost

as an error in many of the users' weights. Alternatively, it would be interesting to

determine if the same type of algorithmic simplification seen in this thesis is found for

other optimal detectors that minimize other criteria. Some meaningful minimization

criteria follow: 1) minimize the probability of making an error in each user's weight,

2) minimize the average probability of making an error in a user's weight, 3) minimize

the highest probability of error experience by a user in the tree.

It is important to study other sources of user signature mismatch, no matter

how slight. Recall that any joint detection scheme relies on the subtraction of a

hypothesized received signal from the actual received signal. The accumulation of

different signal parameter mismatches, even if each mismatch is considered to be

harmless in orthogonal systems, might prove to be detrimental to an MA system

employing joint detection if ignored. Ali understanding the effect of the receiver

having imperfect knowledge of user powers and/or symbol timings on phase and

weight estimation is needed in order to set goals for power and timing accuracies.

Furthermore, this thesis assumed that once a phase estimate was obtained it

remained constant. From the simulations reported in this thesis, small BER degra-

dation resulted from all users having a 5' phase mismatch with the receiver. Recall

that a 10' mismatch in every user caused a 0.75 dB average loss. If each user's phase

is estimated to within a ±5' error, it will be important to keep user phases from

drifting more than another 50. The work in the final two chapters of this thesis offers

a foundation for a low complexity extension of phase estimation to phase tracking.
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The development of a low complexity procedure to track the phase drift of all users

8in an over-saturated system is a logical direction for future work.

Second, signal design issues are discussed. Once a structure is shown to offer an

advantage for low complexity detection for an MA scenario of interest, user packing

according to this structure needs to be studied. Ross and Taylor have begun the work

in this area with the introduction of the minimum distance sets for an ideal case of

all user powers and signaling schemes known prior to the arrangement of users into

a tree-structured set. For this case, Ross and Taylor have found, possibly, the best

way of packing in users if the measure is to be minimum distance. Perhaps there are

other measures that will work well for the packing of tree-structured users.

In an actual system, however, users drop in and out. A challenging problem, then

would be to determine good procedures for the dynamic allocation of users having

realistic properties such as rate and power differences. An example illustrates the

difficulty of the dynamic allocation problem. If an initial group of users were to

be assigned according to the static method of Ross and Taylor, problems will arise

once a user drops out since another user will, inevitably, wish to join the system.

The Ross/Taylor set has been tightly packed according to the specifications of the

original users (including the user that just dropped out). This means that if the new,

prospective user, is incapable of exactly replicating the signature (power, frequency,

envelope, etc.) of the user that dropped out, allowing the new user to join the system

could cause the entire system to fail. Since the received constellation was carefully

designed for the original set of users, allowing a user with an arbitrary power to

replace one of the original users, for example, will cause an arbitrary alteration of the

received constellation, and the minimum distance may be significantly reduced.

One idea for the problem of dynamic allocation of tree-structured users is to design

signature sets with the variations among users in mind. It is expected that a good set

'Another tracking problem for some systems is that of tracking user power variations, hence,
incorporation of the estimation of user powers will expand the utility of the tree joint detector.
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for an actual system will not be as tightly packed as for a statically assigned user set.

Furthermore, if accurate probability models can be constructed to describe the arrival

process of users to a system, where the model would capture the type of user (priority

level, range of capable powers, signaling scheme used, duration of access, etc.) the

time of day, the inter-arrival times, etc., then a set of tree-structured signatures can

be designed to minimize a cost. Perhaps the cost will correspond to the minimization

of the number of users that will not be accepted into the system after a first request.

As we can see, the problem of dynamic allocation is two-fold: on the one hand we

wish to create a signature set that will give the best performance with the optimal

detector, on the other hand we must be sure that users are not turned away when

the system has empty slots.

Another interesting problem that falls under the heading of signal design is the

design of channel or scenario specific tree-structured waveforms. For example, a

channel may be plagued by a narrow band jammer. A tree structure, then, cannot

be achieved with a static FDMA-based set of waveforms since this is susceptible to

jamming. Current systems combat Jammers by the spreading of each user over many

frequencies. Two possibilities to achieve spreading are either frequency hopping or

direct sequence spreading. Is it possible to create a set of tree-structured waveforms

based on either of these anti-jam signaling methods? Perhaps a form of hopping

can be accommodated on the nodes of the tree. Another scenario occurring in many

terrestrial wireless systems is multipath; this problem is partly dealt with through

waveform design. The different paths can be more easily recovered if direct sequence

spread spectrum waveforms are used. Chirp waveforms are also useful for the recovery

of multiple time delayed receptions. Again, the problem of designing waveforms that

maintain tree structure in the face of multipath is important if over-saturating with

tree structure is to be possible for such systems.

Third, the options of other approaches for over-saturated MA is discussed. Al-

though the tree structure was used throughout this thesis offered promising results,
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Figure 6-1: Tree corresponding to a signature set for which there are two groups, and
orthogonal group of users (corresponding to the bottom of the tree) and a group of
remaining users (corresponding to the upper parts of the tree.

it is expected that other structures can be developed to result in low complexity opti-

mal detection algorithms. For some scenarios, any practical problems that might be

discovered with tree-structured MA might be solved by the use of another structure.

One extension of the tree-structure is to use any set of signatures, denoted by the

signature matrix S, that can be separated into two groups of signatures, each denoted

by a matrix,

S = [SA SBI,

where the columns Of SA are orthogonal. The matrix, SA, then, corresponds to the

largest set of orthogonal users that is possible among the entire set of users. The

other users, then, are grouped into set B, having as their signatures the columns

Of SB. This would result in tree structure like the one shown in Figure 6-1 where

the users corresponding to SA would be assigned to the bottom of the tree and the

users corresponding to SB would be assigned, in any arbitrary order, the nodes along

the upper part of the tree. The tree joint detector could, of course, be used at the

receiver.

Another, different method for over-saturated MA is that of rate splitting proposed

by Rimoldi and Urbanke in [14]. This notion is based on the information theoretic

principle that a user can be reliably detected while treating a second user's inter-
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ference as noise as long as the first user is transmitting information at a rate at or

lower than the channel capacity that would be determined with the incorporation

of the second user as noise. The topic of one-shot joint detection with the use of

tree structure, addressed in this thesis, and the topic of onion peeling with the use

of rate splitting are at opposite ends of the communications theory/information the-

ory spectrum. It would be helpful to the design of an actual over-saturated system

to understand tradeoffs between coding/onion peeling and one shot joint detection

for typical system scenarios. Although error correction coding is used in most MA

systems, the literature on the topic of MA joint detection is focused on one-shot de-

tectors. The explicit incorporation of coding into the tree-joint detector appears to

be a difficult and challenging problem, hence, the exploration of bridging the gap be-

tween information theoretic approaches and the one-shot detection approaches would

be useful.



Appendix A

Analysis of the 1\4inimum Distance

Sets

This appendix shows bit error rate curves obtained via simulations. The curves com-

pare the performance of optimal joint detection for orthogonal users, a Ross/Taylor

set of 5 users in 4 dimensions, and a Ross/Taylor set of 21 users in 16 dimensions.

The two trees, used for these simulations are shown in Figures A-1 and A-2.

In an actual system, each user is assigned a signature waveform envelope and a

carrier frequency. The carrier phase is not controllable by the user or by the receiver.

To model this phenomenon, prior to the simulations, each user's signature has been

multiplied by a unit magnitude complex scalar, arbitrarily chosen.

The average bit error rate curve for a set of orthogonal users, a minimum distance

5

2 3 4

Figure A-1: Correlation tree for a unit energy minimum distance signature set of 5
users in 4 dimensions.
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21

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure A-2: Correlation tree for a unit energy minimum distance signature set of 21
users in 16 dimensions.

set of 5 user in 4 dimensions, and a minimum distance set of 21 users in 16 dimensions

is shown in Figure A-3. The one standard deviation error bars for these curves are

not shown in the figure; they are approximately 2.5% of the BER for the case of the

orthogonal users and the case of 5 users in 4 dimensions and 1% of the BER for the

case of 21 users in 16 dimensions. From the figure we may conclude that more users

can be fit into an orthogonal system with a small performance loss of less than 0.5 dB.

A 0.5dB performance degradation means that all users in the over-saturated system

would need to increase their signal energy to noise energy ratio per bit transmission

by 0.5dB (or by 12%) to achieve the same bit error rate of the orthogonal system.

For most applications this is considered to be a small loss relative to the 25% and

31% increase in users.

For the set of 5 users in 4 dimensions, the bit error curves are shown for each user

in Figure A-4 having error bars between 5% and 6.5%. Notice that the performance

of user 5, the user which spans all 4 dimensions, is a bit worse than the performance

of the other users. This is explained by the arrangement of possible received points.

Briefly, if an error is made, the optimal detector will most likely be confusing one

point for its neighboring point. For the minimum distance sets of equal energy users,

confusing two neighboring points will result in an error in the estimate of user 5's

weight more often that it will for the estimate of the other users' weights.1

1 This behavior can be seen with 3 users in 2 dimensions in which the first two users are orthogonal
and of equal energy and the third user spans both dimensions and has an energy a bit smaller than
that of the first two users.
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0 ROSS/TAYLOR TREE STRUCTURED SIGNATURE SETS
1 0

4 orthogonal users

5 users in 4 dimensions

21 users in 16 dimensions
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Figure A-3: Average bit error rate for a set of orthogonal users, minimum distance set
of 5 user in 4 dimensions, and a minimum distance set of 21 users in 16 dimensions.
Error bars are not shown but would be between 1% and 2.5%.
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PERFORMANCE OF EACH USER: 5 users in 4 dimensions
1 00

user 1
10-1 ---
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..... user 3

0 + user 4

C15 0 user 5
L- 2
o 0

1 0

0

0

1 0

10-4

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Eb/No (dB)

Figure A-4: Fit error rates for each user in a minimum distance set of 5 user in 4
dimensions. Error bars are not shown but would be between 5% and 6.5%.



Appendix B

Limiting Cases of Phase Accuracy

The accuracy of the phase is parameterized by a in Equation (4.34). We examine the

case in which a approaches zero. As the accuracy in the phase estimate degrades,

we expect the partially coherent weight/phase estimator shown in Equations (4.41)

and (4.42) to reduce to the non-coherent weight/phase estimator shown in Equations

(4.18) and (4.19).

CLAIM

Assuming bK = +1, as was required by the non-coherent joint weight/phase estimator

derived in Section 4.1,

arg min liM Q3 (b, bp� - I I r) = arg min FK (b I r) - 2X (b r)
1bbK=* Ce-+O b

and
1 afY(�,bK - I Jr)J

lim tan- - tan-
ce-40 RI Y(�, be - I I r) I + ce -2 Rf X(bJr)J

2

where Q3(b, bKJr) is defined in Equation (4.40) and the PC phase estimate is defined

in Equation (4.42). The non-coherent weight and phase estimates are defined in

Equations (4.18) and (4.19).
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PROOF

Taking the limit

Fi��7 (b I r) + ET�7(bK = 1) 2 0,2
liM Q3(b, bK - I Jr) - lim IY(bbKlr) + al
ce-40 a-40 (72 U2 2

we simply substitute a -_ 0 to find

IiM Q3(b, bK - I Jr) - FK(bJr) + EK(bK = 1) 2 IY(bbKlr)l
Ce-+0 92 U2

or

1iMQ3(bbK_1Jr)_ (Fic(blr)+EK(bK=I)-21Y(bllr)]. (B.1)
Ce-+0 2

It is easy to see from Equations (4.38) and (4.15) that

Y(b, bKJr) bKX(blr),

hence, we may substitute Y(b, bK =11r) X(bJr) into Equation (B.1) to obtain

arg min liM Q3(b, bK - I I r) = arg min - [F,-,c (b I r)+ EK(bK =1) - 21X(b, I Jr)].
b ce-+O b 0-2

Finally, we may drop any terms that are independent of b and we may normalize by

any constant multipliers so that we may write

arg min liM Q3(b, bK - I I r) = arg min Flc(b Jr) - 2 JX(b, I Jr).
b a-+O b

Next, we examine the case as a gets very large, i.e. as the phase becomes highly

accurate. In this case we expect the PC joint weight-only estimator to equal the

coherent joint weight estimator in Equation (3.8).
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CLAIM

argMin liM T2(b, bK Jr) = arg min I Jr - S-I�b - bKSKe jOK 112
1bbj a-+00 f bbK}

PROOF

We take the limit of the likelihood function, T2(b, bK Jr), as a approaches infinity.

arg min IiM T2(b, bKJr) - arg min liM [T2(b, bKJr) + In 1,(a)]
f bb,,:l ce-+00 fbbK1 a-+00

Adding the constant term In I,(a), above, does not change the estimate since this

term is independent of [b, bK1 - We take the limit

IiM [T2 (b, bK I r) + In 1, (a)] -- Fi-c (b I r) + 6K (bK) _ lim In T(b, bK, a), (B.2)
a-+00 92 a-+00

where

In T (b, bK, a) = In 1,,( + ce)' + ( 2 �sj Y(b, bK I r) 1) 2 In I,, (a).
U2

(B.3)

Since

lim ln(l,,(x)) In( lim L(x)),
X-+Xo x-+Xo

we wish to find

lirn 1, RI a + Y(b, bK r) 1) 2 + (2 ��f Y(b, bK I r) 1)2 (B.4)
ce-+00 07 92

and

lim 1, (a). (B.5)
a-+co

',x Using these
)2 + C2 a + b. Also, V2-:�-xFor large a, V(a + �b for large x, 1,(x)
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two approximations, we can reduce (B.4) to

ea+ 2 RjY(bbj�:jr)}112

lim (B.6)

and (B.5) to
Ce

lim -- (B.7)
a -+ C'OV27ra'

Using (B.6) and (B.7) in Equation (B.3) gives

a+ 2 RfY(bbr,�Jr)je 12 V2- (Ce + 2RfY(bbKlr
72- M

el/-\/27rce

7T9ZfY(bbK10} R�Y(bbK1r)lF22 RfY(bbjr)j

(B.8)

Substituting Equation (B.8) into Equation (B.2) gives

F.rjbjr)+6K(bK)
IiMa-4.T2(b, bKjr) + In 1,, (a) 2 2Rf Y(b, bKjr)j

(B.9)

1jr - SOb - bKSKC jOK 2

which is the nearest neighbor likelihood function of the ML detector discussed in

Section 3.4.1.
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