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1. Background and Orientation

1.1 The nonlinear filtering problem
The general nonlinear filtering problem has the

following form: there is a signal process Xy Wwhich
satisfies the Ito stochastic differential equatior

dxt = A(t,x) dt + B(t,x) dwt
and a noisy observation process

dyt = C(t,x) 4t + D(t,x) dvt
where xeR", yeR™, and wy and vy are independent standard
Brownian motion processes. The goal is to obtain an
estimate Xy based on the observations Yq + for 0&<t.
The least squares estimate of Xy is the St—measurable
random variable ﬁt which minimizes the expectation

B Ixg - 20T 0% - 8.1 ),
where 5% is the o-field generated by the obserwvations
Yg » O<sct. It is well known that

% = E( x¢| ) _
Moreover, X, has the conditional probability density
function p(x,t), which satisfies the Kushner-Stratonovich
equation (a stochastic integro-differential equation). For

results concerning the solutions of this equation, the

reader may consult, for example, the works of Fujasaki,



Kallianpur, and Kunita [3 ] and Levieux [7 ].

Problems associated with the Kushner-Stratonovich
equation are (1) the impossibility of obtaining closed form
solutions in the general case and (2) the excess of computing
time required for application of numerical methods (despite
proof (Levieux [7 ]) that under certain conditions, the
solutions are sufficiently regular that numerical methods
may be used).

By recalling the structure of the Kalman filter, we
note another difficulty of the nonlinear filtering problem.
For the linear problem, the optimal estimate is the solution
of a linear stochastic differential equatiion

as =i>’itdt+1§dv

t t

where the matrices i, ﬁ, and the Brownian motion process Vi
depend only on the signal and observation processes.
Furthermore, the error covariance, that is, the matrix-
valued function

$(t) = E( [x, - x, 1[x_ - x.17T )

t t t t

solves a deterministic Ricatti equation. This contrasts with
the general case, for which a similar stochastic differential
equation for the conditional expectation

2t = [ x.p(x,t) dx

RN

cannot be given. Rather, on writing the equation

dﬁt = "right hand side"



it happens that the right had side involves second order
conditional moments which are nondeterministic. Similarly,
the stochastic differential equation for an nth order
conditional moment will have, on the right hand side, terms
including n+15t order conditional moments.

The difficulties inherent in the nonlinear filtering

problem suggest using filters which are suboptimal but finite

dimensional. This makes it important to know the accuracy

of such filters. For the nonlinear situation discussed

above, where a least squares estimate is desired, the error

EC Ix, - % 1TIx. - %1,

for the suboptimal estimate §t' trivially satisfies

EC Ixp - %] TIxg - %] ) > E( [xg - %]TIx, - #)

We would necessarily like to know more.
To attack this problem, it is necessary, in principle,

to compute

E( Ixg = &I [xg - #¢1).
This is, at best, very difficult. An alternative approach,
considered by several authors, notably Bobrovsky, Zakai,
and Ziv. (working as collaborators) [1 ,14] and Gilman and
Rhodes [# , 5], has been to analytically bound this number.
We shall show later, for a specific elementary, but highly
nonlinear problem, that these bounds are nok necessarily

useful.



Simulations have been used in attempts to measure the
estimator error (see Bucy [2] for results concerning the
phase-lock loop, for example). Of course, in the absence of
any analysis, it cannot be known how, precise these

measurements are.

1.2 A specific class of nonlinear filtering problems
As has been mentioned above, we are interested in
nonlinear s 'stems. A subclass of these which has received
attention, by workers including Willsky and Marcus [8.13]
is that of bilinear systems with linear observations.
These are systems of the form.
dxy = Axt dt + Bxg dwg
dyt = Cxy dt + dvg
For several specific problems, the structure of optimal
estimators has been analyzed and various approximations,
which may serve as suboptimal filters, have been proposed.
The reader may consult, for example, Willsky [ 12 for
a discussion of these issues.
In what follows, we will discuss our efforts to
understand the performance of the optimal filter for
the following phase-tracking problem, which is perhaps

the simplest bilinear problem.



Example: A particle on the unit circle in R2 undergoes
Brownian motion, having bequn at time t=0 at the point (1,0).
The x and y coordinates of the particle are observed during
the passage of time, but the observations are not precise.
Rather, they consist of the true coordinates, corrupted by
additive noise, which is taken to be white noise. The Ito
stochastic differential equations describing this situation
are

de = ol/2av

dx

(cos p)dt + Rl/zdwl

(sin g)dt + rR1/23y

dy 5
where v, wy; ,» and w5 are independent standard Brownian
motion processes and we impose the initial conditions

8 (0)=0, x(0)=1, and y(0)=0.
The filtering problem consists of finding a random variable
§(t), which is an estimate of 6 (t), based on the
Oobservations x(s) and y(s), for O<s<t. Technically
speaking, we require 6 (t) to be e3£—measurable, where
:;t is the o-field generated by the random variables x(s)
and y(s), for O0<s<t. This estimate will typically be
chosen to minimize some error criterion, for example
the conditional expectation

E(]e(t) - 8(t) |2 ‘~5i)

or E( 1 - cos(6(t) - 8(t)) lj;i)
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(Note that since 6(t) and 6(t) are points on the unit circle,
we identify 6(t) and 6(t)+2r , and similarly for 6(t).)
Remark: This is a problem of the class mentioned in

section 1.2, with a bilinear system and linear observations.
It is, in fact, the same as the problem of obtaining
estimates &t and ét for the system

o 0 o

[ [ o]
a | = Ql/2 gv, - Zl Jat
18] |1 ojj8 | 8]

with linear observations
dx = o dt + Rl/zdwl
and dy = B dt + R1/2aw,
(Note: the system equations are verified upon setting
o =cos 6, B = sin 68 , and using the Ito differential rule

to obtain the stochastic differential equations for o

and B .)
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2. The Phase-tracking Problem: Introduction

An optimal solution to the phase-tracking problem

We consider the Kushner-Stratonovich equation--the
stochastic integro-differential equation for the conditional
probability density of 6 (conditioned on X and Yo *
for 0O«sc<t)--for the phase-tracking problem of the example
of section 1.2. It is

. dv
(KS) dp, = Qa%p dt + p [sinf - s{nbfcosﬁ - césé] 1
t 2382 o172 ' dvo

where

N
5 = dxt -(cos B)dt

/\
dv, = dy,_-(sin §)dt and dv
Rl/2 R1/2

1

and, for any random variable u,
ﬁ=E(u|§— ).
t
In (KS), p(6,t) is the conditional probability density
function of 6(t). We will study solutions of (KS) by

using Fourier series. We expand

® ind
p(o,t) = e (t) e A

n=-—o
The cn are zg%—measurable random variables. Upon
substituting the series expansion into (KS), we obtain

the infinite coupled system of stochastic ordinary

differential equations
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5 dzi
dcn = -Qn c, dt + 1 Mn
2 1/2 dz;
R 2
where [ :
M =1%-1"%n+1 | cpImlcy)icn g +on4n cnRe(cl)
n{ 2i j 2

These eauations --suggest certain suboptimal estimators;
we obtain, for example, an approximate filter upon
ignoring all but a finite number of these equations (that

is, set cn=0, for fnl sufficiently large).



3. Bounds on Estimator Error: General Results Applied

to the Phase-tracking Problem

Survey of available results
In [14], Zakai and Ziv consider the problem of bounding
the mean square error of the optimal estimator for a process
of the form
de = .Xj+l ’ j= l,2,...,n—l

dx_ = m(x(t)) dt + B(x(t)) dw

n t

with the real-valued observation
- 1/2
dyt = g(xk(t)) dt + R dvt

For the case when x(t) is Gaussian, they obtain the lower

bound
. 1 ¢t 2
E([x; - X.1%) D E(0;(t)2) expl -= / E(o_(s)?) ds]
J J J R g
where

2 4
958 = By o) Ugleg(t),t) = By gy [9(xy (£),£)12)

and oj(t) is the conditional (upon x(0) ) variance of xj .

. _ _ _~Ll/2 s
Example: if n=1, m(x)=0, B (x)=Q , and g(x)= sin x,
We have the phase-tracking problem, with only one observation.
For large t, og(t)2 is approximately equal to 1/2,
since the probability density function of 6 tends to a
uniform distribution, as t-+w,

Also, ol(t)2 = Qt, if we assume that x(0)=0. We deduce



that the lower bound is (asymptotically)
Qt expl -t/2Q 1,
evidently a useless result.
Moreover, the upper bound derived in the same paper is of
no help, in this case, as it is valid only for the case
g(x)=x, Jj=k=n.
A different type of result is due to Gilman and Rhodes
[4 ,5]. They consider the system
dx = f£(x,t) dt + D(t) dv
dz = g(x,t) dt + G(t) dw
where v and w are independent standard Brownian motions
and the functions f and g satisfy the so-called "cone-
boundedness condition"
|| £ (x+8 ,£) ~£ (x) -AT) § ]| < a(t)|s]|
g (x+8,£)-g(x)-B(t)s| < b(t)]s]|
The Functions A(t) and B(t) parameterize an associated
nominal linear system
dx = A(t)x dt + D(t) av

dz

B(t)x dt + G(t) dw
The first result obtained by Gilman and Rhodes is an upper
bound on the error covariance of the suboptimal filter

d% = £(%,t)dt + K(t) [dz - g(&,t)dt]



Their upper bound is
E( [x(t)-%(t)][x(t)-%(t)1T ) <P(t),

where P(t) solves the differential equation

dP = V + KWKT +(aA-KC)P + P(A-KC)T +(a+c)P +(aI+CKKT)+trp

dt
Here W=GG! and V=DD< are assumed to be positive
definite. Moreover, K may be chosen to minimize P(t).

The second result, enunciated in [5 ], is the lower
bound
E([x(t)-%(£) ] [x(£) =% (£)17) > (L-r(t)) B(t),
where B(t) is the error covariance of the Kalman filter for
the associated nominal linear system. That is, it solves
af = v + af + Pa - BcTwch
dt

and r(t) > 0 solves

(l-r)e¥f = 79,
where
t 2 -1 2 -1
d(t) = f [a“(s) |V "(s) + c“(s)|W “(s)]| 1trP(s) ds.
0
Example: For the phase-tracking problem;
cos X 10
1/2
£f(x,t)=0, D=Q / ’ g(x,t)= ’ =Rl/21 r 1=
. 2 2
sin x lO 1
Hence,

A=0 ’ C=0 ’ a=0 ’ c=1 ’ W=R12 ’ and V=Q .
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Note: the fact that c¢=1 follows from the fact that

cos (x+8§) - cos x 2 5

= 2[1 - cos 8] . <§°.

sin(x+§) = sin x

For the upper bound, we have, letting K=[k1 k2],
= T 3
dP = Q + RKK™ + P
dt
This has the .solution
p(t) = P(0)et + (0+RKKT) (eb-1)
But, K may be chosen to minimize P(t). This is done by K=0,

so that

t

P(t) = P(0) e" + Q(ef-1)

In particular, the upper bound tends to infinity as to«.

In addition, the lower bound which Gilman and Rhodes derive

is not useful in this case:

df = Q, so B(t)=qQt + P(0)
dt
t R 2
and d(t) = f P(s)ds ~ Qt® , as towo
0 R 2R
d

Now, (1-r)ef = e~ + Wwhence for large t,



r(t)e 1 - exp[ -1 - Qt% ] .
2R

Hence, the lower bound is asymptotically
2
ot exp[ -1 - Qt 1,

2R

which is not useful for large values of t.

Another general result, due to Zakai and Bobrovsky [ 1],
shows that the estimation error for a given nonlinear
problem is bounded below by the estimation error for an
associated linear filtering problem. For the special case
of estimating a Gaussian process from nonlinear measurements,
their results coincide with those of Snyder and Rhodes [ 9].

Snyder and Rhodes consider the system

dx = F(t)x dt + v/ 2%ay

Y H(t)x,

where Y, i® the €suwssian Process to beestimated by the
observation process
1/2
dz = h(t,y) dt + W dw
The result "is that the optimal filter error satisfies
E([y(t)-3(8)1Ty(t)-5(0)1T) > B Z ()T,
where Z(t) solves the Ricatti equation

dy = FL + IFT + V - gHT

dt

PHY .
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and P(t) = E( gTw 7)),

for J = the Jacobian of h(t,y), (with respect to y).
Example: We illustrate the Snyder and Rhodes result by
applying it to the phase-tracking problem:
We have F=0, V=Q, H=l, h(t,y)=sinwt + y), and W=R .
Hence, J=cos(wt + y), so that

P(t) =(£)E( cosz(wt+y) ),
R
hénce » as t2>x ,

P(t) ~ 1 .
2R
Letting I_ denote the limit of I as t-»>~, I solves the

algebraic Ricatti equation

0 =0Q - (22)2 ’
2R

whence the error for the optimal nonlinear filter for the

phase-tracking problem is bounded below by /2QR .

For coﬁpleteness, solely in connection with the phase-
tracking problem, we discuss the classical phase-lock loop.
As discussed in Van Trees [10l, this system may be used to
attack the problem of estimating a signal 0, from a
noisy observation

s(t) = sin(wt + 6) + dw .
dt

We suppose that et and w, are independent Brownian motion
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processes with covariances of Qt and Rt, respectively. Note

that is restricted to the unit circle, so 6 and 0+2T

B¢
are identified.

The structure of the phase-lock loop is shown in
Figure 1. The voltage controlled oscillator (VCO) 1is a

device whose output, given input df , 1is cos(wt+f(t)).

dt
In [10 1L 17, it is shown that the system of Figure 2
may be used to model the phase-lock loop. Heuristically,
this is because the signal fed into the low-pass filter is

[sin(wt + ©) + %%]cos(wt + 6)

= % [sin(2wt)]lcos (6-8) + %[l+cos(2wt)](sin6)(sing)
- %[l—cos(Zwt)](cosG)(cos@)

+ ¥ [oos (wh+6) ]
dt
The lww-pass filter removes the double-frequency (that is,

the 2wt) terms and the last term is modelled as a white

noise process g%., where W has covariance Rt/2.

It follows that the system of Figure 2 models the phase-lock

loop, provided that the noise process %% has strength 2R.

We now discuss the mean square error for the phase-lock
loop. We observe that if the operator "sine" is replaced
by the identity, and if the gain function F(s) equals

the Kalman filter gain for the linear filtering prcblem
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of estimating 6 given the observation process z, (where

t
dzy = 6dt + dw )

the modified system is merely the Kalman filter for this

problem. This value of F(s) is used in the phase-lock loop.

Remark: A constant is the simplest choice of transfer function;

with a gain of the form F(s)=a+(b/s), the filter is called

a second order loop.

It is possible to evaluate the asymptotic error

covariance, that is

lim E( '{G(t)-g(t)} ),

t>o
for the phase-lock loop (where, for an angle ¢,

"{$} a min |¢+2km] ).
kez

This is discussed in [10] and illustrated in Figure 3. In the
graph of Figure 3, the straight line is the asymptotic error
for the Kalman filter for the linear problem obtained by
replacing the sine operator with the identity, as above.

The curve is the asymptotic error for the phase-lock loop.
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4. Bounds on an Error Criterion for the Optimal Filter
for the Phase-tracking Problem.

We discuss, in this section, our efforts to find

bounds for the error criterion

(1) E{ 1 - cos(s-6) )

for the phase-tracking problem introduced in section 1.
Section 4 is organized as follows:

(a) We show that (1) depends only on the Fourier
coefficient cl(t) of the series expansion of the
conditional probability density p(6,t), which is
the solution of the Kushner-Stratonovich equation
for the phase-tracking problem (see section 2).

(b) We derive stochastic differential equations for
|cn(t)|2, for all n.

(c) We study the asymptotic behavior of E(Icn(t)lz)
and of related random variables.

(d) We analyze the (algebraic) equations for the limits
1(|e_|%) £ 1lim = TE([cn(t)]z)dt

Treo 0

(e) We state a conjecture and generalization, which
might strengthen these bounds. Unfortunately, the
conjecture and generalization together are

generally false; we give a counterexample.
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(£) We give correct arguments motivated by the
erroneous conjecture to strengthen the bounds
obtained by the analysis described in (d4).

(g) We compare these results with those obtained by
other workers using different methods for

a related problem.

4.1. Study of the error criterion E(1 - cos(e-g) )

In this subsection, we suppose that the random variable
6, - with values on the unit circle, has the probability
density function p(6). The angle ¢ is to be chosen to
minimize

(2) E(1 - cos(8-a) )i
we show that the minimal wvalue of (2) is

1~ |c

1"
where p(8) has the Fourier expansion
pe) = ¥ c_ e

n
n:-oo

Thus, if we seek, for the phase-tracking problem, a random
variable 6, which is
(a) :;L-measurable

and (b) minimizes the conditional e xpectation

(3) E(L - cos(e-8) | 7).

then the minimum of (3) is 1l-|c,|, where p(6) now represents

1|



the conditional (with respect to "3t) probability density

function of g (the Fourier coefficients are f}f-measurable

A

random variables). Therefore, the optimal choice of 9
will give
E(lL - cos(6-8) ) = 1 - E(leq )

To verify that (2) is minimized by 1 - [cil,

1 - cos(p-q) =1 - 1[el(B-a) 4e-1(6-0)]
2

Taking expectations,

E(1l - cos(p-a) ) =1 - l[c_le—la+*clela 1.

2
But p(e) is real-valued, so c_q= Ei.
Hence, (2)=1 - Re(clela), which is minimized when
ia

Re(c,e ) = |cl|, as was to be shown.

4.2 A stochastic differential equation for Icn(t)l2

In this subsection, we will show that the following
2

differential equation for |c_(t)| holds:

2

|

dlcn n+l

l 21

2
+=°n—l + Coyy cnRe(cl)I
2

+ White Noise

( lcn—l - c + cpIm(cy)

2
I

l ) 1dt
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Justification:

from section 2, we have,
5 dv
dc_ = -Qn“c _dt + 1 g g ]
n 2 B Rl/z[JL 21 av

1

2

where vl and v2 were defined in section 2, and

9, = Ch-1 —.cn+l + cpIm(c,)
21
— + -
92 = Cn—l ; Cn+1 cnRe(cl)

Hence, taking complex conjugates,

ge, = ~wPrae v 1[5 9) =
2 Rl/2 dv2
By the Ito calculus, we have
2 - - T 01
d|cn| = cndcn + cndcn + 1 tr GQG dat
2R 10
g, 9, 10
where G = and Q =
- - n
gl 92 O 1

The desired equation follows from the observation that

f o (01
: 2
tr [GOG = 2(]g;|" +|g,
10

1)

We now simplify the equation:

The term (|gl|2 +|g2|2) is of the form
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2 2

(4) + |a+c - BH
|

A-C +BI| |
| 2 |

I
| 21
But, for complex 2z and g,

|z +z|2 =|z]|? +|;]2+ 2 Re(zZ);

hence, (4) equals

1212 + |c|? + |B|%(12 + H2) - H Re(AB) + I Im(AB)
3

- H Re(CB) + I Im(CB)

On setting

I=Im(cl)

and substituting into the stochastic differential equation

2

for |cn| , We obtain

(5) d|c,|?

10 -orn?jc |% + |e,_1]2 *]c
R 2

2
n+l| ]

2 2
el “leyl
- Re(clcn_lgﬁ + clcngn+lﬂ'dt

+ White noise
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4.3 Asymptotic behavior of the optimal filter error
In this section, we obtain the result

2
(6) orn® 1(le_|?) = 20 T(le 1% + 1(e  1%)]

+ 1(ley]?le 1)

- Re( I(c + c.c. :c ) )

c_c ’
1l n n+1 1l A-In
where, for a polynomial g in the Fourier coefficients, c
of the conditional probability density function p(9,t),

the limit

lim
T>co

I(qg)

R

T
s ECa(t) ) dt
0

exists by a theorem of Kunita.

It is clear that (6) follows from (5) upon taking
expectations, integrating with respect to t from 0 to T,
dividing by T, and taking limits, provided that the limits
exist. In the remainder of this section we justify taking
the limits.

To explain Kunita's result, we require an abstract
formulation of the filtering problem. We motivate the
formulation with the example of the phase-tracking problem.
The state space of the signal process is Sl, the circle. The

conditional probability density function, p(6,t) may be
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viewed as a stochastic process taking values (for each time t
and each point u in the underlying probability space Q)

in C(Sl), the space of continuous, real-valued functions

on Sl. Moreover, for each  and each t, p(:,t) is a
probability density function, so it may be viewed as a
probability measure on Sl. This is the desired abstract
formulation: the filtering process is a stochastic process
taking values in M(Sl), the space of probability measures

on Sl. We use T

N to denote the filtering process, so,

for our example, Ty = p(+,t), where we suppress reference
to Q.

We now discuss the abstract problem. The signal
process x; has state space S, a compact separable,
Hausdorff space. Let M(S) be the set of all probability
measures on S, endowed with the weak " topology (as the dual
space of C(S) ), under which it is a compact, separable,
Hausdorff space. The filtering process Te is an M(S)-valued
stochastic process with transition probabilities Ht(v,P).
Kunita's results [ 6] (Theorems 3.1l and 3.3) give conditions
under which there exists a unique invariant measure of the
set of transition probabilities~Ht(v,P). Recall that an
invariant measure for the Ht(v,F) is a probability distribu-
tioq,@, on M(S), satisfying

o(r) = U (v,T) ¢ (av)
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(Intuitively: the probability that, at time t, the value
of the filter process is in T', equals the probability that
it began in T at time zero.)
The phase-tracking problem satisfies the hypotheses
of Kunita's theorems. Thus, there exists a unique, invariant
measure, ¢, for the filter process, given by
T

1
e(r) = lim g / I (v,T)dt .
T—+oc0 0

For the phase-tracking problem, S is the circle, Sl.

Suppose that f£f: M(Sl) —~ R is continuous. (As an example
of such an £ take any polynomial in the Fourier coefficients

of the measure u, for y eM(Sl); in particular, if the
. . > in®
measure has the density function p(6)= z c,e '
n=-®

let f be any polynomial in the cn.)

For such a function £, we have, by definition,

E( £(I.) | =v) = S f(a)1m,_(v,da)
So that
T
I(f) = lim F / E(£(I)|N=v)dt
T >0 0 t
1 T
= lim T JL S 1 f(a)Ht(v,da)] dt
T "0 M(ST)

= 7 f(a) §(da),
M(S™)

by the Fubini Theorem and the fact that ¢ is defined as a
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weak* limit.

Remark: This shows that the limit I(f) exists for all
functions f of interest for the phase-tracking problem.
Moreover, it shows that I is a bona fide integral, that is,

a continuous, real-valued , linear functional on C(M(Sl)).
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4.4 Bounds for the phase-tracking problem

We begin this section by deriving, from equation (6),
for n=1, several inequalities among the numbers I(|cl|2),
I(|¢2|2), and I(|cl|4). We conclude the section by deducing,
from these inequalities, a lower bound for I(|cl|).

This will give an upper bound for

III
lim 1 S [1 - E( cos(6(t) -6(t)) )ldt
T T O

for the phase-tracking problem.

Equation (6) for the case n=1 is
2
%) )

2
(7)  (1+QR) :[(lc:l = 1[1 + I(|c2| )1 + I(|cl|

Ko

- 25
I( Re(c, cy) )
We now obtain lower bounds on I(|cl|2) and I(|cl|4)
and deduce lower bounds for I(|c,|).
We remark that, using the Holder inequality and the

fact that Icn|Sl, for all n,

~ 4] . -
I( Re(clzcz) SI(|01202|) < /I(Icll ) /i(!c2|2) '

so that, from (7), we obtain

(8) (1+QR) I(]c |?) > 101 + I(eal®) + T(leyl®

2
“Vide )MV ide,) ).

Again, by Holder,
S |

I(le, %) ¢ /I<Icl|4) :
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so that, from (8), we have

(9) (1+QR)¢I(|cl|4) 2.;[1+1(|c2l2)] + I(|cl|4)
2

o e
- /1:(|cl| ) l/I(|cz| )

Note that (9) is an inequality of the form ax2+bx+c <0,

with a>0, where x= VI(ICI!4) .

Hence, we conclude that X s[rl,rz], where rl and r, are

the roots of the quadratic equation.

In this way, we deduce that

A

(10) 1(|c1|4) > w(A) [ (A+1+QR) - \QR*2QR (A+1)=(1-A) 212

where, henceforth, A =¢I([c ) .

2|

N

The following fact will be useful later:

(11) A > 1 + QR - /QR(2+QR)’

We derive it from (9), which, after setting x

V1ile 1%,

is

2
(L+QR)x > 1+#A%2 + x° - xx
2
whence

2

0 < (A-x)2 < -[ 1+ x% - 2(1+QR)x | = P(x)
Figure 4 illustrates the situation. Equation (11) is merely
the observation that A is greater than the smaller root of P(X).

Also, (8) may be rewritten, in terms of A, as

(12) (e %) > 1 (122 + 1y 1M - Wrdle [

- . ANTS
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In the remainder of this section, we will use some of
the inequalities obtained above to deduce a lower bound for
I(|cl|). The analysis takes the following course:

For each value of ), we show that the set of possible values

of (I(|c 4),I(|cl|2)) is a restricted region of RZ,

1!
From this, we deduce, assuming a particular value of A,
a lower bound for I(|c;|). Then, by minimizing this
lower bound over all ) €[0,1], we obtain a lower bound for
I(|cl|).

More precisely, for each fixed value of A, (l2) gives
a lower bound for I(|cl|2), as a function of I(|cl|4).

In addition, we know

(13) (e |9 < 1(le]® < T(leq,

because |cl|5 1

and
(14) 1(]ey|®) < VI(e [,

by the Holder inequality.

These facts are illustrated in figure 5, in vhich values of
I(|cl|4) are on the x-axis and values of (|cl|2) are

on thé y-axis. The shaded region represents the set of
values of the pair (I(lcl|4), I(|cl|2)) allowed by (10),

(12), (13), and (14). The numbers z()) and w()) are defined

in the figure. The value of w(A) was given in (10);
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2
2 Jn
z()) = Wh (1+2QR) + 2QR -2A > 1 \
20R J 1+20R
The minimum value of 2z (A) is attained for A = 1

V/1+20R’

Because we do not know the true value of I(Icl|4), we
analyze, for fixed ), the possibilities

(@) wi) <I(e |h <2

4

(b) z()) < I(|cl| ) .
If (b) holds, we apply (13) and (b) to deduce that

(15) I(|cl|) > 1 .

1+2QR

If (a) is true, we use a convexity argument to lower bound
I(|cl|). (Then, the minimum of these lower bounds is
a lower bound,for the given A,) Then, by minimizing over
all ), we obtain the lower bound (18).

The convexity argument for case (b) is the well-known
fact that, given a function £, the function F(r), defined
by

F(r) = 1logl / |£(x)]|F ax],
is convex. Hence,
%[FM) - F(1)] >F(2) - F(1) .
It follows from this, by substituting c¢_, for f, and using

1
the integral I, that .
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2,.,3/2
(16) T(lc ) > [T(cyl®)] :
4
[T(|cyl 51t/
. 4
Setting x = I(|Cl| ),
2
y = I(lCll ),
2
and v = 1+27
2
3
we see that our goal is to lower bound the function \/Z_
X

over that part of the shaded region of figure 5, for which
X < z(A). This will give, for each value of A, a lower
bound for I(|cl|), by (14). Letting

G(x,1) = vix-Mx ,
/3

(11) gives

o<

X

G(x,)) 3/2 .
(1+QR)

We give a lower bound for the function G(x,)), by first
minimizing G with respect to x, for fixed A, and then
minimizing with respect to A.

In fact, G(x,A) is minimized with respect to x, for

fixed A, at the point

x(\) = %Z[x+ V/16+1722] 2 .

It follows that G(x(MA),\A) is minimized, for all A, when

A =V =/1/2" .



We conclude , therefore, that if w()) € x <€ z(}),
then
= 13/2
an e, of 282 P2
1 4
(1+QR)
Now, (15) holds if x > z()) and (17) holds if

w()) < X < z(A). We conclude that, whatever the true

true value of x and ),

(18) T(le 1> [ 1 3/3
~ [(1+20R) 1 /2 (1eom) 32

Remark: 1In section 4.6, we will improve this - lower

bound by deriving additional restrictions on the

permissible values of x,y, and ).
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4.5 A conjecture and generalizations; a partial result;
a counterexample

In this section, we do three things. We begin with a
. 2—
conjecture that Re(E( 1 9 ) ¥ >0 and suggest the

generalized conjecture that

*tcncnﬂ) >0, for all n=1,2,3,...

Then, we support the conjecture by proving that

2— 4 2
Re( ¢7c,y ) > 2|cy|” - |cy 2-%

Re( I( ¢

We conclude this section with a counterexample to the
generalized conjecture.

We conjecture that Re( E(clzaé) ) > 0. This has the
following intuitive interpretation: The random variable c,
is used to obtain an angle estimate g} which, pérhaps,

2i (8 —@)‘g_t) .

maximizes E( Re(e (This is analagous to 6,

which maximizes E( Re (e’ (6-0) I .g"t) .) We observe that

218

- -3 2 —
c12c2 [E( e leI.?t)] [E(e™ | )]

L (66 (06 2 2i(8-b
= ezl( =9) .{:E(e‘l(e'e)lg.t)] [E(e2l(e_6)| fJltl

2i (6-8)
e

|c)|? *B, for B>,
A
by the assumption that & maximizes the conditional

expectation. These equations suggest that Re( E(clzgz) )

D»

measures the difference of the two estimates, g and

We expect that these estimates will be close together if they
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are good, so that
ei(@-@) ~ 1,
whence Re ( E(Clzgz) ) >0 .
The generalization of this conjecture is
Re ( E(clcn_n+l) ) >0, for all n.
A similar intuitive argument suggests that this would
reflect the accuracy of estimates based on the higher

order Fourier coefficients. We will show, however, that

the generalized conjecture cannot be true if QR=2.

Although the generalized conjecture is generally false,
and we cannot prove the conjecture, we now prove that

27 - 1
Re(cl 02) > - 5

In fact,
2 ~o 2
(L - |eP" = [ EQ - cos(e-e)lé?t) ]
< E( (1 - cos(p-8)1%| #) . (Holdef)
But
-2i¢ :
-i
(1 - cos ¢)2 = % + Re( = - 2e ¢ ),
so that ~
a o 2i6 é\
E( [1 - cos(0-8)1°]F) = 3 + re[ ©2° - 2¢c.et
t z 5 1
- 3 c,%c _
> + Re[ "1 %2 2|cl| ])
~ 2|Cli'
i6
because |c |= c,e .
1 1

Hence, combining these inequalities gives
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4 _ 2
4 - e, |

2 .
(19) Re(c;%c,) > 2|c.1

But, for all real x, 2x2 - X > '%; the conclusion follows.

Counterexample: We now give a gounterexample which shows

that the generalized conjecture fails if QR=2.

1f
E( Re(clcngn+l) ) >0, for all n, then by (6),
or 1(Jc; %) €30 1+ I(c | ]

and QR I(|c,|) L3 I(c ) + I(|c 1+ T(e |®),

2 2
n-1 | n+l l )

for n>1l.

Letting X, = I( |cn|2) , to simplify the formulas,

1
SRS
xl S2QR [ X2]

Xh € ———-‘12 [xn—l * *n+l
2(QRn -1)

1, for n>1l.

We analyze this system of inequalities by considering the

finite system:

b
A
js))
»~
+

n n—]_ bnxn+l ’ n=2,...,N"l

W
N
o
"
+
o

subject to the condition that all a, and bn are non-negative.



By induction,

. a X
N-k = Nk N-(k+1) + g
- N-k
N-k
where

£ =1

N b .
£ =1 - ON-(k*1)°N-k

N-k £

N-(k-1)
g = bN e e o .bN_k
N e & o o N.—k
Thus, for example,

X aj a

1-= i + g, =

1 1 b
1 - adi
1 - 43P,
1 - 24P3
1 - 895

For the phase-tracking problem,

a; = by

a =b
n n

20R

= ____l____ , N>1 .
2 (QRn2-1)

L2



If QR=2, then
al 1

a =b = 1 ’ n>1
2(2n2-1)

It follows that gn = 0, for all n,
and that A=V¥, < 0.135 .
But, by (11), X >0.17, a contradiction.

This concludes the counterexample.
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4,6 Strengthening the bounds

We have just shown that the conjecture and the
generalization must be generally false. Let us summarize
the information which we do have. For x,y,\, and v

as in section 4.4:

(11) QR + 1 - /OR (2+4+QR) S A
(20) v > x + QRy, because
~(1+QR)Yy + v + x = I( Re(c cy)) ) ()

and I( Re(clzgz) ) > 2x -y (19)

e

1 v+ x - WT)
1+0R

(12) y > F(x)
(10) x > w(})

These inequalities are illustrated in Figure 6. The shaded
region represents the values of the pair (x,y) which are
permitted by these inequalities.
If the pair (xo,yo), where
v T X

OR

= F(XO) = YO

lies above the line y = x, we may invoke the convexity

\

argument,introduced in section 4.4, to lower bound I(jcll).

I(fe,[) > min v
[permissible \Ix

pairs (x,y)]
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It is easy to see that the minimum is attained at (xo,yo)
3

whenever (setting f(x,y) = %_,) the vector %f(xo,yo)

satisfies $f(xn,y0)-$ s 0, for some vector

v = (x, - xo)i + (yl - yo)ﬁ, where (xl,yl) is a permissible

pair.
Note that
5
4 (1+2QR) 2
Yo = vV T X
OR

This improves the bound obtained in section 4.4, because
the region over which the function f(x,y) need be minimized
has been made smaller.

In section 4.7, we give examples of the use of

the use of these bounds.



| y=x

B y__:\)+x— WX
1+QR

., y:\)"'X
QR

L6
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4.7 Comparison of results

In this section we compare our results with estimates
of error bounds obtained by simulations for the following
related phase-tracking problem:

The signal process satisfies

de = ndt + 51/2dw
and there is a single observation process

dx = (sin g)at + R %av .
The goal is to find an estimate 8 of 8, which minimizes
the conditional expectation

E( 1 - cos(0-8) |7,) .
There are simulation results available for two estimators:
(a) the classical phase-lock loop, and (b)a 'suboptimal
filter proposed in [12].

We may compare our results with simulation results
because we shall show how the above problem may be modified
to give the one which we have -studied. We argue non-
rigorously; for details, the reader is referred to Van Trees
[10) or viterbi [11].

The observation process solves the differential equation

g% = sin(wt + aa/zw(t)) + R1/2 %%

Multiplication by (sin pt) gives
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1/2

(sin wt)EE = l[1 - cos 2wtlcos(Q w(t))

~1/2

+ —[81n 2wt]lsin(Q w(t))

+ Rl/ (sin wt)dv .
dt
This signal .is now passed through a low-pass filter
to remove the double-frequency (24t) terms. Moreover,
we claim that the process

ﬁl/z(sin wt)dv
dt

may be replaced by
[Eil/z av,
12 at

for the standard Brownian motion process Vl(t)‘

Thus, we have an observation

sy (t) = %cos(Ql/zw(t)) +[Ell/2 dv; .
L

2 at
i = 1dz :
Setting Sq 5 3t gives
dz, = cos (02w (t)) + (2R)1 2av

1 1

If we multiply the original observation process by (cos wt)

and argue in a similar way, we obtain

az, = sin(@2w(t)) at + (2R)l/2dv2.

We have shown that the phase-tracking problem with a
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single observation may be compared with the one which we have
studied, provided that we set 0=0 and R=2ﬁ} where 6 and ﬁl
are the noise strengths for the single-observation problem
and Q and R are the strengths for the problem considered
in this thesis.

We tabulate results in Figure 7. The first two
columns are taken from Willsky [ ]. They are estimates
of the filter error based on simulation of two techniques:
the classical phase-lock loop and a filter proposed in [ 1.
The third column contains the lower bound of inequality (18).
The fourth column contains, for the cases
QIL=1.0 and QR=1.7, a bound obtained by applying the results
of section 4.6.

In applying the result of section 4.6, one issue is
to obtain tight bounds for A=-¢I(|cz|2) . To obtain a lower
bound for ), we use (ll). For the upper bound, we use
the infinite system of equations (6) to derive the infinite

system of inequalities
(ern? - 1)T(c |?) € 20 T(|e 1|?) + T(cgy|D) ]

2j 7 . Al
Ao | AR (e 1D+ (e, 1))

These follow from the Holder inequality and the fact that

|cn|5'l. We also use
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2
(18) I(IC |2) < l+I(l02| )
1 20R

By starting with the knowledge that I(|cnl2) < 1, for all n,
these inequalities may be used to give smaller bounds.

These may, in turn, be used to give still smaller ones. By
continuing this iteration, it is possible to show, for
example, that if

QR=1.7, then I(|cl|2)'5 0.311 and I(Iczlz) < 0.056,

so that A < 0.237. Hence, we have X €[0.19,0.24].

By using the argument of section 4.6 to limit the region

of permissible values of x and y, and by invoking the
convexity -argument, we may show that I(|cl|) > 0.26.

This gives the bound for the phase-tracking problem of

3

lim % /,E[1 - cos(0(t)-8(t))] dt = 0.74,
e T -
which compares very unfavorably with the estimates obtained
by simulation.
It should be noted that the iteration procedure for
upper bhounding 1is useful only for large values of QR.

In the case of QR=1l, it seems difficult to improve

significantly the bound ) €[0.26,0.59].
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§. conclusions

It is our belief, upon observing the weakness of the
error bounds obtained by our technique, that there must
exist better ways to obtain bounds for the nonlinear
filtering problem. The weakness of the method used here
must lie in the convexity argument. It cannot generally
give a bound sufficiently tight as to be useful. The only
way suggested by the technique for improving the bound is
to obtain more information which further constrains the set
of permissible values of the random variables and numbers
which we have used in our arguments (for example, I([cllz)).
One way to do this might be with the conjecture of section
4.5. Of course, this should not be attempted before learning

how the bounds may be improved, by applying the conjecture.
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