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Abstract

This thesis deals with a method to obtain the ejection fraction of the left ventricle of
the heart from a gated set of planar myocardial perfusion images. Ejection fraction
is defined as the ratio of the fully contracted left-ventricular volume to the fully ex-
panded left-ventricular volume and is known as an effective gauge of cardiac function.
This method is proposed as a safer and more cost effective alternative to currently
used radionuclide ventriculographic based techniques.

To formulate this estimate of ejection fraction, we employ geometric reconstruc-
tion and recursive estimation techniques. The left ventricle is modelled as a three-
dimensional ellipsoid. Projections of this left ventricular ellipsoid are two-dimensional
ellipsoids, which we use to model the left-ventricular outline in the observed myocar-
dial perfusion images. The ellipsoid that approximates the left ventricle is recon-
structed using Rauch-Tung Striebel smoothing which combines the observed tempo-
ral set of projection images with an evolution model to produce the best estimate
of the ellipsoid at any point given all the data. Ejection fraction is calculated from
the reconstructed ellipsoids. We study the error introduced in the reconstruction
by imperfect knowledge of the ellipsoid dynamics and projection geometry through
simulations. In addition, we use simulations to investigate model identification as
a method to identify which of two hypothesized models best approximates the true
ellipsoid dynamics. Finally, we test these techniques on real myocardial perfusion
data.
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Chapter 1

Introduction

1. I Overview

This thesis deals with a method to obtain the ejection fraction of the left ventricle

of the heart from a set of planar myocardial perfusion images obtained over time.

Ejection fraction of the left ventricle has long been known as an effective gauge of

cardiac function [14]. Myocardial perfusion imaging is a radionuclide technique that

may be used to produce a sequential set of images of the heart in motion. The

approach described in this thesis employs geometric reconstruction and recursive es-

timation techniques to track left-ventricular volume throughout the cardiac cycle,

thus allowing the generation of an ejection fraction estimate.

Ejection fraction is defined by the ratio of the fully contracted left-ventricular

volume to the fully expanded left-ventricular volume. Thus, it is a measure of the

pumping capability of the heart and has great prognostic value to cardiologists. A

reduced ejection fraction is indicative of potential cardiac malfunction. Thus, inex-

pensive and noninvasive techniques of determining ejection fraction are essential to

the prompt diagnosis of heart disease.

Planar myocardial perfusion images are obtained by injecting the patient with a

radionuclide-marked substance. The heart is imaged while the radioactive tracer is

absorbed by the heart muscle or myocardium. This procedure uses a gamma camera

which produces images by counting the photons emitted from the radioactive tracer.



It is possible to use the patient's electrocardiogram (ECG) to gate the counts recorded

by the gamma camera into separate bins that correspond to different points in the

cardiac cycle. Typically, ECG gating is used to obtain a sequential set of images at 16

equally spaced points in the cardiac cycle. These gated myocardial perfusion images

are not snapshots of the heart in motion, but rather, averages of a particular cardiac

phase over several cardiac cycles. Therefore, they are poor visual quality images.

We propose to use the myocardial perfusion images to estimate ejection fraction, a

purpose for which they are not traditionally used. Myocardial perfusion images while

of poor visual quality, contain a large amount of physiological information reflecting

the tie between the chosen radionuclide and the biochemistry of the region under

study. As a result, they are traditionally used to locate infarcts, areas in the heart

muscle that are being deprived of nutrients because of an occlusion. In the myocardial

perfusion images, such infarcts appear as dark regions. In addition to this traditional

role, it is possible to distinguish the outline of the left-ventricular cavity from myocar-

dial perfusion images. It is this projection-like outline of the left-ventricular cavity

that we propose to use to estimate ejection fraction.

To estimate ejection fraction from the temporal set of myocardial perfusion images,

we employ geometric reconstruction and recursive estimation techniques. One com-

monly used approximation to the true shape of the left ventricle is a three-dimensional

ellipsoid. Projections of this left ventricular ellipsoid model are two-dimensional ellip-

soids, which we use to model the left-ventricular outline in the observed myocardial

perfusion images. Much work in geometric reconstruction [7, 11, 12] has focused on

reconstructing objects such as ellipsoids from noisy lower-dimensional projections.

Combining these geometric reconstruction techniques with recursive estimation pro-

cedures, such as Rauch-Tung Striebel smoothing, we have the means to formulate an

estimation procedure that combines the observed temporal set of projection images

with an evolution model to produce the best estimate of the ellipsoid at any point

given all the data. From the reconstructed three-dimensional ellipsoids which approx-

imate the true shape of the left ventricle, we may then approximate left ventricular

volume and calculate ejection fraction.
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1.2 Contributions

The work presented in this thesis contributes in the following areas. First, by defining

a method to estimate left-ventricular ejection fraction from a gated set of myocardial

perfusion images, the current process of diagnosing heart disease becomes more cost

effective and safer. The current "gold standard" technique used to estimate ejection

fraction is based on images produced through radionuclide ventriculography. These

images are also produced by injecting a patient with a radionuclide-marked substance

and imaging with an ECG gated gamma camera. While myocardial perfusion images

are produced as the radioactive tracer is absorbed by the heart muscle itself, ra-

dionuclide ventriculographic images are produced as the tracer passes through the

left ventricular cavity. Typically, a physician uses myocardial perfusion images as

a preliminary screening tool. If the myocardial perfusion images show potential in-

farcts, further tests such as radionuclide ventriculography are performed to determine

ejection fraction. By estimating ejection fraction from myocardial perfusion images,

it is possible to use this preliminary step to screen for potential infarcts and estimate

ejection fraction using only one procedure. Thus, the patient must undergo only one

exposure to radioactive substances.

In addition, our proposed method of estimating ejection fraction improves on

current techniques by integrating temporal information. In current techniques based

on images produced by radionuclide ventriculography, volume is estimated only at the

fully contracted and fully expanded phases. That is, only the data in these two frames

are used. In our proposed approach based on gated myocardial perfusion images, we

track the volume of the left ventricle through the entire cardiac cycle. Thus, we use

all the available data. By incorporating this temporal set of data, we are able to more

robustly estimate the fully expanded and fully contracted left ventricular volumes and

thus the ejection fraction itself.

In addition, this thesis builds on previous work done in geometric reconstruction

[7, 11, 12]. In Chapter 4, we reconstruct dynamically evolving ellipsoids from noisy

lower-dimensional projections. While previous research concentrated on reconstruct-
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ing dynamically evolving ellipsoids with known dynamics, the work in this thesis

concentrates on imperfect knowledge of dynamics. We investigate several dynamic

models that approximate the true dynamics of the ellipsoid and the effect of each

of these dynamic models on the error in the reconstructed ellipse. In Chapter 5, we

discuss a method to determine an approximation to the true dynamics of an ellipsoid

using a model identification scheme. In particular, we describe a method to choose

which of two hypothesized dynamic models more closely matches the true dynamics

of a dynamically evolving ellipsoid. Finally, in Chapter 6, we apply these techniques

to real myocardial perfusion images.

1.3 Organization

The organization of this thesis is as follows. In Chapter 2, we discuss the medical mo-

tivation for the work presented in this thesis. We discuss the differences in the types

of radionuclide-based cardiac imaging and explore the motivation for a myocardial-

perfusion-based estimate of ejection fraction. In Chapter 3, we discuss previous work

in geometric reconstruction of ellipsoids from noisy lower-dimensional projections.

Chapter 4 ties together the ideas presented in Chapters 2 and 3, by investigating the

reconstruction of computer simulated, dynamically evolving ellipsoids. This chapter

also discusses, in some detail, the effect of imperfect knowledge of ellipsoid dynamics

on the reconstruction of dynamically evolving ellipsoids. Chapter 5 investigates a

model identification scheme used to choose which of two hypothesized dynamic mod-

els best approximates the true dynamics of an evolving ellipsoid. Finally, Chapter 6

combines the model identification and smoothing filter-based reconstruction to esti-

mate the ejection fraction of several patients from real myocardial perfusion images.

Chapter 7 offers suggestions for future work and summarizes the work contained in

this thesis.

14



Chapter 2

1\4edical Background

2.1 Objective

The objective of this chapter is to discuss the medical motivation for the work pre-

sented in this thesis. Ejection fraction of the left entricle of the heart has long been

known as an effective gauge of cardiac function [141. Many techniques exist for es-

timating ejection fraction including angiography [4], echocardiography [3], magnetic

resonant imaging (MRI) [1], and radionuclide ventriculography [4]. Of these tech-

niques, the least expensive and most prevalent is radionuclide ventriculography. It

has been shown that images produced by this technique may be used to give an ac-

curate assessment of ejection fraction [14]. Myocardial perfusion is another relatively

safe and inexpensive technique used to image the heart and diagnose cardiovascu-

lar disease. Myocardial perfusion images have not traditionally been used in the

estimation of ejection fraction. We propose to use the images produced by myocar-

dial perfusion as an alternative to radionuclide ventriculography to estimate ejection

fraction.

This chapter will be organized in the following way. We begin by explaining

and defining left ventricular ejection fraction. Next, we include a discussion of cur-

rently used radionuclide ventriculographic techniques for measuring ejection fraction.

Finally, we provide background information on myocardial perfusion imaging and de-

scribe the benefits of estimating ejection fraction from these images as opposed to

15



radionuclide ventriculography.

2.2 Left Ventricular Ejection Fraction

Before explicitly defining left ventricular ejection fraction, a measure of how efficiently

the heart is pumping blood to the rest of the body, let us describe the pumping action

of the heart, the cardiac cycle, and the electrocardiogram. The heart consists of four

chambers: the right atrium, the right ventricle, the left atrium, and the left ventricle.

These four chambers act as a pump which, in conjunction with the lungs, receives

deoxygenated blood and ejects oxygenated blood. Specifically, the right atrium and

right ventricle are responsible for pumping deoxygenated blood to the lungs. It is the

left side of the heart which then receives and pumps oxygenated blood to the rest of

the body. The left atrium is simply a receiving chamber. The chamber responsible

for pumping blood to the rest of the body is the left ventricle. Therefore, we may

evaluate the pumping capability of the heart by evaluating the pumping capability

of the left ventricle.

This pumping action is repeated in a periodic manner known as the cardiac cycle.

The evolution of the left ventricle, the pumping chamber, through the cardiac cycle is

as follows. During the systolic phase of the cardiac cycle, the left ventricle contracts

and ejects blood. At end systole (ES) the left ventricle is fully contracted. In the

diastolic phase, the left ventricle expands to receive blood. End diastole (ED) is the

fully expanded phase of the left ventricle.

Phases of the cardiac cycle may be monitored using an electrocardiogram (ECG).

The chambers of the heart expand and contract by a process of depolarization and

repolarization of the heart muscle itself. For further details on the process of depo-

larization/repolarization, see [4]. At the surface of the skin, it is possible to measure

voltage changes caused by the depolarization/repolarization process. A plot of this

voltage versus time is known as an electrocardiogram. Figure 2-1 shows a sample

ECC. The sections of the ECG are known to correspond to portions of the cardiac

cycle. For example, the QRS complex on the ECG precedes each cardiac contraction

16
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Figure 2-1: Sample of ECG from [4]. Note that sections of the wave are marked.

(the systolic phase). Thus, we can discern the location of the heart in its cycle by

observing the ECG.

Having established the necessary background, we may now define ejection fraction

of the left ventricle. Ejection fraction (EF) is the percent of total left ventricular

volume ejected by each contraction. The formal definition of ejection fraction is given

by :

ED volume - ES volume

EF -- ED volume (2.1)

where ED is the fully expanded cardiac phase and ES is the fully contracted cardiac

phase. A normal value for ejection fraction is 0.50 or above. Reduced ejection fraction

is indicative of reduced cardiac performance.

2.3 Radionuclide Ventriculography

Radionuclide ventriculography is the most prevalent imaging technique used to esti-

mate ejection fraction. This technique is used to produce a sequential set of images

as a bolus or blood pool of radionuclide tagged blood passes through the cardiac

chambers. The images corresponding to ES and ED are used to provide estimates

of left ventricular volume at those phases. From these volume estimates, one may

17



formulate an estimate of ejection fraction.

There are two types of radionuclide ventriculography. They are the first pass tech-

nique and the multiple gated blood pool technique (MUGA). Both of these techniques

have been shown to accurately assess ejection fraction [4]. Both radionuclide ventricu-

lographic techniques give a so-called "gold standard" estimate of ejection fraction. We

will give a brief description of the images produced using each technique.

2.3.1 Procedure

The radionuclide ventriculographic images are produced by, first, injecting the pa-

tient with a radiopharmaceutical such as Technetium-99m (Tc'9-). While a bolus or

blood pool of the radiopharmaceutical passes through the chambers of the heart, a

gamma or scintillation camera produces images by counting the photons emitted by

the radioactive substance. Gamma cameras work by converting radiation (gamma

rays) to light (scintillation) using a sodium iodide crystal.

Note that the images produced by radionuclide ventriculography are not images

of the heart. Rather, the images show the pool of blood contained in the chambers

of the heart.

2.3.2 First Pass Technique

First pass images are produced as the radionuclide tagged blood traverses through

the cardiac chambers for the first time [4]. The gamma ray camera is used to acquire

a set of images of the heart from one view. The images are acquired rapidly, usually

one or more per second. The entire data acquisition lasts about 30 seconds. The

gamma camera is triggered by the patients ECG so that the images correspond to

specific points in the cardiac cycle.

Ejection fraction as defined in (2.1) is based on the left ventricular volume at ES

and ED phases. Using the frames corresponding to ES and ED from the sequential

set of first pass images, it is possible to calculate left ventricular volume at ES and

ED. The left ventricular volume is assumed to be proportional to the intensity of the
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area corresponding to the left ventricle on the image.

The benefit of the first pass technique is that there is low background radiation

because the radiopharmaceutical has not been taken up by other organs. The delin-

eation of the edges of the heart in a first pass image is easily achieved.

2.3.3 Multiple Gated Blood Pool Technique

Multiple gated blood pool (MUGA) images are produced by similarly viewing a bolus

as it is pumped through the cardiac chambers. The MUGA images are produced not

on the first pass of the bolus through the heart, but rather during several subsequent

cycles. Thus, the radiopharmaceutical in the cardiac chambers during MUGA imaging

is less concentrated than during first pass imaging. In fact, the concentration of the

radiopharmaceutical is too low to produce enough gamma-scintillations to form a

meaningful image. For this reason, a process known as gating is used. The patient's

ECG is used to gate the counts recorded by the gamma camera over time into separate

bins that correspond to different points in the cardiac cycle (see Figure 2-2). Thus,

the MUGA images produced are the sum of images at a particular cardiac phase over

several cardiac cycles.

There are some additional differences between the MUGA technique and the first

pass technique. While images produced using the -first pass technique are typically

only produced from one view, MUGA images are produced from multiple views.

Also, because the radiopharmaceutical has dissipated through the body in MUGA

imaging, there is more background radiation and the edges of the heart are not so

clearly delineated as in first pass images.

Again, left ventricular volume is assumed to be proportional to the intensity of the

area corresponding to the left ventricle on the MUGA image. Using the estimate of

left ventricular volume as based on the MUGA images corresponding to ES and ED,

it is possible to calculate ejection fraction as in (2.1). Samples of a MUGA images

may be found in [4, 101.
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Figure 2-2: Reprinted from [6]. The gating process for producing MUGA images.

2.4 Proposed Approach

While techniques based on radionuclide ventriculographic images are known to give

an accurate estimate of ejection fraction, an alternative approach based on gated

myocardial perfusion images may prove to be safer, more cost effective, and more

robust. Thus, we propose to use a temporal set of myocardial perfusion images to

estimate ejection fraction. In this section, we present background information on

myocardial perfusion imaging and the benefits of using myocardial perfusion images

to estimate ejection fraction.

2.4.1 Myocardial Perfusion Imaging

Myocardial perfusion is another relatively safe and inexpensive technique used to

image the heart and diagnose cardiovascular disease. As we present background in-

formation on myocardial perfusion imaging, keep in mind that we propose to use the

images produced by myocardial perfusion as an alternative to radionuclide ventricu-

lography to estimate ejection fraction.

Planar myocardial perfusion images are also obtained by injecting the patient with

a radionuclide marked substance and imaging with an ECG gated gamma camera.
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Figure 2-3: A sample myocardial perfusion image

While radionuclide ventriculography images are produced as the tracer passes through

the left-ventricular cavity, myocardial perfusion images are produced when the tracer

has been absorbed by the heart muscle or myocardium. The myocardial perfusion

images produced are not snapshots of the heart in motion, but rather, the sum of a

particular cardiac phase over several cardiac cycles. Therefore, they are poor visual

quality images. A sample of such a myocardial perfusion image is shown in Figure 2-3.

Although myocardial perfusion images are of poor visual quality, they contain

a large amount of physiological information reflecting the tie between the chosen

radionuclide and the biochemistry of the region under study. As a result, they are

traditionally used to locate infarcts, areas in the heart muscle that are being deprived

of nutrients because of an occlusion. In the myocardial perfusion images, such infarcts

appear as dark regions.

It is also possible to distinguish the projection-like outline of the left-ventricular

cavity in myocardial perfusion images. It is this outline that we propose to use to

estimate left-ventricular volume. Thus, while the images produced by myocardial

perfusion are not traditionally used to estimate left-ventricular volume, we note that

it may be possible to use them in this capacity.

One additional note of interest is that recent developments have made myocar-

dial perfusion imaging even safer and less expensive. Myocardial perfusion is com-
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monly used; however, there have been certain drawbacks associated with this proce-

dure. In the past, the radiopharmaceutical of choice for myocardial perfusion imag-

ing was thallium-201 (TI201), which has a long half fife and is difficult to produce.

Recently, doctors have found a way to produce myocardial perfusion images using

Tc99--labeRed agents [13, 5]. Because Tc99- has a shorter half fife and is more easily

produced, myocardial perfusion imaging is now even more attractive.

2.4.2 Benefits

By de-fining a method to estimate left-ventricular ejection fraction from a gated set of

myocardial perfusion images, the current process of diagnosing heart disease becomes

safer and more cost effective. Typically, a physician uses myocardial perfusion images

as a preliminary screening tool. If the myocardial perfusion images show potential

occlusions, further tests such as radionuclide ventriculography are performed to de-

termine ejection fraction. By estimating ejection fraction from myocardial perfusion

images, it is possible to screen for potential occlusions and estimate ejection frac-

tion using only one procedure. Thus, we eliminate a second procedure and limit the

patient's exposure to radioactive substances.

In addition, our proposed method provides a more robust estimate of ejection

fraction by integrating temporal information. In current techniques based on images

produced by radionuclide ventriculography, volume is estimated only at the fully

contracted and fully expanded phases. That is, only the data in these two frames

are used. In our proposed approach based on gated myocardial perfusion images, we

track the volume of the left ventricle through the entire cardiac cycle. Thus, we use

all the available data. By incorporating this temporal set of data, we are able to more

robustly estimate the fully expanded and fully contracted left ventricular volumes and

thus the ejection fraction itself.
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Chapter 3

Geometric Reconstruction

Background

3.1 Ob'ective

Before moving on with the analysis of the myocardial perfusion data presented in

Chapter 2, we need some additional background. As we have mentioned previously,

it is our intention to model the left ventricular cavity as a dynamically evolving

three-dimensional ellipsoid. Thus, our myocardial perfusion images may be viewed

as noisy two-dimensional projections of this three-dimensional ellipsoid. For this rea-

son, in this chapter we discuss the reconstruction of ellipsoids from lower dimensional

projections. Much work has been done on reconstructing objects from lower dimen-

sional projections [12, 11, 7]. In particular [7], discusses the reconstruction of an

n-dimensional ellipsoid from noisy lower dimensional projections. This chapter sum-

marizes the problem formulation and reconstruction of an n-dimensional dynamically

evolving ellipsoid.

The organization of this chapter is as follows. We begin by discussing the prob-

lem formulation. We discuss mathematical representations for the ellipsoid itself,

dynamics of the ellipsoid, and projections of the ellipsoid. Next, we discuss methods

for reconstructing both a single ellipsoid from one measurement and a dynamically

evolving ellipsoid from multiple measurements. For simplicity, the examples used
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to illustrate these points are two or three-dimensional ellipsoids, but generally the

information presented here is applicable to higher dimensional ellipsoids as well.

3.2 Problem Formulation

In this section, we discuss two representations for an ellipsoid, ellipsoid dynamics,

and ellipsoid projections. The first ellipsoid representation is in terms of a symmetric,

positive definite matrix. The dynamics and projections of an ellipsoid may be written

as linear functions of the matrix that represents the ellipsoid. Alternatively, we may

express an ellipsoid in terms of a vector. Again, we may express ellipsoid dynamics

and projections as linear functions of the vector that represents the ellipsoid.

Although both representations for an ellipsoid, its dynamics, and its projections

are equivalent, we will find the vector representation of the ellipsoid yields a simplified

problem formulation. The reconstruction of a dynamically evolving ellipsoid may be

reduced to tracking a dynamically evolving state vector from noisy measurements by

using the vector representation of the ellipsoid. We may then call on a rich class

of techniques from stochastic estimation such as Kalman filtering and Rauch-Tung

Striebel smoothing [9, 15]. Therefore, the vector representation for the ellipsoid is

the one we will use in Section 3.3.

3.2.1 Matrix Representation

Ellipsoid Representation

It is possible to represent the points included in an n-dimensional, origin centered,

non-degenerate ellipsoid, e, in the following way :

fXJX TE-1x < II X E R nj (3-1)

where the positive definite matrix E that represents an ellipsoid is easily determined.

Consider a two-dimensional ellipsoid (an ellipse) as an example. A two-dimensional

ellipsoid centered at the origin is uniquely specified by two semi-axis lengths, a and
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b, and an angle of rotation 0. This ellipsoid is represented by the matrix

E2= R TE2,, R (3.2)

where

R cos sin (3-3)

- sin 0 cos

E2. a 0 (3.4)

0 b2

Note that if the angle of rotation 0, E = E2u. Hence, E2u i S the matrix that

represents the ellipse that has its axes lined up with the coordinate system (i.e. an

unrotated ellipse).

For example, an unrotated ellipse with major and minor semi-axis lengths of 8

and 6 respectively is shown in Figure 3-1. This -figure also shows the same ellipse

rotated by an angle of =7r/4. The corresponding matrix representations are given

by

64 0
E2U (3-5)

0 36
L -1

50 14
E2 (3.6)

14 50

Similarly, a three-dimensional ellipsoid centered at the origin may be specified by

the three semi-axis lengths and three angles of rotation. The semi-axis lengths, a, b,

and c correspond to the semi-axis lengths of the unrotated ellipsoid along the x, y,

and z-axes, respectively. The angles of rotation, Ox 7 OY) OZ correspond to rotation

about the x, y, and z-axes, respectively. The corresponding matrix representation is
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Figure 3- 1: Example of an Ellipse and Rotated Ellipse

given by

E3 = R TE3.,, R

a2 0 0

E3.. = 0 b 2 0

0 0 C2

Cos 0, sin 0 Cos OU 0 sin Oy I 0 0

R3 = sin 0,, cos 0 0 1 0 0 cos sin O.,

0 0 1 -sin 0,, 0 cos Oy 0 -sin Oy cos Oy

For example, a three-dimensional ellipsoid with axis lengths 8, 6, and 8 with a rotation
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about the x-axis of -7r/4 is represented by the matrix

64 0 0

E3= 0 50 14

0 14 50

Note that we have made the simplifying assumption that the ellipsoid center is

known. The above representations assume the ellipsoids are centered at the origin.

The same representations may be extended to represent ellipsoids with centers other

than the origin by translating the the coordinate system origin to the ellipsoid center.

Dynamics

Recall that we are interested in tracking dynamically evolving ellipsoids. For this rea-

son, we will briefly discuss several types of ellipsoid evolution that we may encounter.

It is possible to capture a broad range of ellipsoid dynamics in the following form :

E(k + 1) -- A(k )T E(k)A(k) (3-7)

where we can represent changes such as magnification, rotation, and eccentricity

change in A(k). For the two-dimensional case, the matrix that captures these dy-

namics is given by (see [12]) :

tk 0 COS Ok sin Ok ak

A( k) = (3.8)

0 tk sin0k COS Ok 0 I/ak

In (3.8), the parameters tk, 8k, and ak represent magnification, rotation, and ec-

centricity change respectively. This class of dynamics does not include an possible

ellipsoid dynamics; however, for the estimation of ejection fraction from myocardial

perfusion images this set of dynamics will be sufficient.

Note, also, that the extension to higher dimensions is straightforward. Magnifica-

tion is still a scalar times the identity matrix. Rotation is expressed as the product of

several matrices where each matrix represents rotation about one axis of the coordi-
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nate system. Eccentricity is also expressed as the product of several matrices, where

each matrix represents the eccentricity change between two axes at a time.

Projections

The projection of an ellipsoid is an ellipsoid of lower dimension. In equation form, a

single projection, Yi, of an ellipsoid, E, is represented by

Yi = C7ECi (3-9)

where the matrix Ci captures the geometry of the projection. The rows of the matrix

Ci span the space of the projection.

Projections may be thought of as the shadow cast by the ellipsoid. Figure 3-2

provides an illustration of the projection of a three-dimensional ellipsoid. The matrix

that represents the projection of a three-dimensional ellipsoid onto the xy-plane is

given by
( 1 0

Ci O i (3-10)

0 0

The one dimensional projection of a two-dimensional ellipsoid is a line. The matrix

that represents the projection of a two-dimensional ellipsoid onto the x-axis is given

by

1
Ci (3.11)

0

Problem Statement

We may summarize the dynamics and projections of an ellipsoid represented as a

matrix in the following manner

E(k + 1) = A(k)T E(k)A(k) + W(k) (3-12)
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Figure 3-2: Projection of a Three-Dimensional Ellipsoid

Y(k) = CTE(k)C + V(k) (3-13)

where W(k) and V(k) represent process and measurement noise, respectively. Noise

terms are included to represent the uncertainty in the dynamics and projections.

The matrices E(k + 1) and Y(k) represent ellipsoids and, therefore, must be positive

definite. To simplify the ellipsoid reconstruction problem, we assume that the inde-

pendent elements of W(k) and V(k) have a Gaussian distribution. Clearly, this is not

the case. If the independent elements of W(k) and V(k) had Gaussian distribution,

E(k + 1) and Y(k) would not always be positive definite matrices. However, we choose

to employ this commonly-used assumption because of the simplification it provides

in the ellipsoid reconstruction problem. Our objective is then to determine E(k) for

all k given noisy projections (or measurements) at all k.

This problem formulation proves to be difficult to manipulate. A more convenient

problem statement is obtained using a vector representation of the ellipsoid. This

alternative problem formulation is examined in Section 3.2-2.
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3.2.2 Vector Representation

Ellipsoid Representation : The Mapping

For simplicity, we define an equivalent vector representation for an ellipsoid. In [7],

several such vector representations are discussed. One vector representation with

certain very useful properties is the '(n+l) vector which consists of the independent
2

elements of the matrix E as defined in Section 3.2.1. As we will see in the sections

to follow� this vector representation of an ellipsoid greatly simplifies the problem of

reconstructing ellipsoids from lower dimensional projections.

The mapping '-:-- defines a transformation from a symmetric n x n matrix, E, to an

n(n+l) dimensional vector, E. The vector 76, consists of multiples of the independent
2

elements of the symmetric matrix, E. Thus, a one-to-one relationship exists between

E and e. We need the following definitions to specify the transformation EE. We

define a standard orthonormal basis for the space of symmetric n x n matrices as

M(n) I 1 < f < n(n + 1)/21 where

eieT if f (i-1)(2n+2-i) + 1 i = 1 ... n
M(n) 71 T 2 (3-14)

ejeT+eie i(2n+l-i)
.7 Vr2-i if f 2 _ n + < i < < n

where ei is the i - th unit vector consisting of all zeros except a one in the i-th position.

In addition, we define an inner product as

(A7 B)n =_ trace(A T B) (3.15)

The -th element of the vector, 6, is the inner product of the matrix, E, and the

j-th basis matrix. That is,

(E, _A,,(n,) (3.16)
j n

Equation (3-16) defines a mapping '-':' from E to E. We denote this relationship as

'_E(E) (3-17)
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As an example, consider the two-dimensional case. An orthonormal basis for the

set of symmetric 2 x 2 matrices consists of the following elements

M(2) 1 0
1

0 0
L J

M(2) 0 1 V2_
2

I V/2- 0

M(2) 0 0
3

0 1

Using this standard basis and the mapping'-E, the transformation from a 2 x 2 matrix

to a vector in R3takes the following form

X11
X11 X12

F--* N/'2-Xl 2
X12 X22

L X22 J

Continuing our example from above, the vector representation of the matrix in (3.6)

is

50

E2- 19.799

50

Dynamics and Projections : The Mapping F

Consider an equation of the form :

y = STXS (3.18)

where X, Y, and S are matrices with dimensions n x n, M X M, and m x n respectively.

If the matrices X and (thus) Y are symmetric matrices, it is possible to write the
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same relationship in a vector representation of the form

Y = �X (3.19)

where x and y are '(n+l) and '('+') dimensional vectors respectively and � is a
2 2

M(M+l) X n(n+l) matrix. If the mapping E. defined in (3.16) describes the transforma-
2 2

tion from X to x and from Y to y, then a mappingrdefining the transformation from

S to � is induced. The following equation shows this induced relationship between

the elements of S and �.

- - (M(r-) STM(-.)S)
(S)ij j M (3.20)

This mapping is denoted

� = I'(S) (3.21)

We may apply the mapping r to matrix A that describes the ellipsoid dynamics

in (3.7). Using the mappings r and we rewrite (3.7) as

,E(k + 1) = A(k)e(k) (3.22)

where r;(k) = E(E(k)) and A(k) = r(A(k)). As an example, consider the two-

dimensional case. Using the mapping r, we may express the transformation from A

to A as

A A

A2 v"'2- A 1 1 A21 A 2
All A12 11 21

v2'-A 1 1 A12 A12A21+ AlIA22 N/'-2-A2lA22
A21 A22 2

A12 v/2Al2A22 A22

We may also use the mappingrto rewrite (3.9) in the following form

Yi(k) = OjE(k) (3.23)
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where E(k) = E(E), yi(k) = "(Yi), and Oi = F(Ci). As an example, consider the

matrix Ci that defines the projection of a two-dimensional ellipsoid onto the x-axis

in (3.11). The corresponding matrix Oi is given by

Oi = i O O ) (3.24)

Note that (3.23) represents a single projection. We may have multiple projections

at a given instant in time. Stacking up all such projections we obtain

Y(k) = C'E(k) (3.25)

Y1 C,

where y and 0 = -Y2 C2

J J

Problem Statement

We may summarize the dynamics and projections of an ellipsoid represented as a

vector in the following manner

,E(k + 1) = A(k),E(k) + w(k) (3.26)

y(k) = 0,E(k) + v(k) (3.27)

where w(k) and v(k) represent process and measurement noise, respectively. As in

Section 3.2.1, we assume that the noises w(k) and v(k) are zero mean, white, Gaussian

noise processes with variances Q and R respectively.

We note that the representation of ellipsoid dynamics and projections in (3.26)-

(3.27) is equivalent to the representation given by (3.12)-(3-13). The representation

given by (3.26)-(3.27) is a more convenient problem formulation. Now, the problem

of reconstructing the three-dimensional ellipsoid represented by E(k) is stated in a

familiar framework. The problem is reduced to tracking a dynamically evolving state

vector from noisy measurements. We may now call on a rich class of techniques from
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stochastic estimation.

3.3 Ellipsoid Reconstruction

3.3.1 Static Reconstruction

It is possible to reconstruct a dynamically evolving ellipsoid at each time step given a

sufficient number of projections at that time step. This estimate of the ellipsoid does

not incorporate past or future measurements in the estimate of the ellipsoid at any

time instant. We term this a static reconstruction of the ellipsoid because it does not

incorporate dynamics in the estimate. Our static estimate is taken to be the standard

least squares estimate which is equivalent to a maximum likelihood estimate under

the assumption of additive Gaussian noise.

Given a system of the form of (3.27) where 0 is of full column rank, the linear

static estimate which minimizes the square error is given by

�(k) = (ffo)-IOTY(k) (3.28)

3.3.2 Dynamic Reconstruction

Alternatively, we may form an ellipsoid estimate that incorporates knowledge of the

dynamics of the system. Our system is described by (3.26)-(3.27). We may formulate

an estimate at time k that is optimal given all measurements up to and including

measurements at time k. Such an estimate is known as the Kalman filter estimate

[9, 15]. Another approach we may use is to formulate an estimate at time k that is

optimal given all measurements in the interval [0, T]. This type of an estimate may be

formed using a non-causal smoothing algorithm such as Rauch-Tung Striebel [9, 15].

We concentrate on the Rauch-Tung Striebel smoothing filter because it eliminates

the lag intrinsic to the Kalman filter.

The Rauch-Tung Striebel smoothing filter consists of a Kalman filter and a sub-

sequent update step.. The Kalman filter processes the data running forward in time.
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The estimate obtained from the forward running -filter at time k is the best estimate

given all measurements up to and including time k. This estimate is denoted �(kjk).

The update step processes the data backwards in time. This is the smoothed esti-

mate. We denote the smoothed estimate as i(kjT) where T is the time interval over

which we have data.

The forward running filter must be initialized with an initial estimate, 'EO, and an

initial error covariance Po. The estimate from the forward running Kalman filter is

given by :

�(kjk) = �(kjk - 1) + K(k)[y(k) - 0�(kjk - 1)] (3.29)

K(k) = P(klk _ 1)OT [OP(kik - I)OT - R]-1 (3-30)

P(klk) = P(klk - 1) - K(k)OP(kjk - 1) (3-31)

�(k + 11k) = A01k) (3-32)

P(k + 11k) = AP(klk)A T + Q (3.33)

The update step is initialized with the final error covariance P(TIT) of the forward

running filter. The smoothed estimate is then given by :

�(kjT) - A-1(k)�(k + 11T) - A-1(k)Q(k)P-1(k + ljk)[�(k + 11T) - �(k + 11k)] (3.34)

The combination of the forward Kalman -filter and backward update step is known as

the Rauch-Tung Striebel smoothing filter.
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Chapter 4

Simulated Ellipsoid

Reconstruction

4.1 Objective

Thus far, we have discussed two seemingly unrelated topics. In Chapter 2, we outlined

medical background related to the ejection fraction of the left ventricle of the heart.

In Chapter 3, we explored geometric reconstruction of ellipsoids. We have developed

methods to mathematically represent ellipsoids, their projections, and their dynamics.

In addition, we have introduced reconstruction techniques for a single ellipsoid and

for a dynamically evolving set of ellipsoids.

Our ultimate objective is to employ the techniques developed in Chapter 3 to

analyze the myocardial perfusion data presented in Chapter 2 and form an estimate

of ejection fraction. To do this, we will view the left ventricular cavity as a dynamically

evolving three-dimensional ellipsoid. Thus, our myocardial perfusion images win be

viewed as two-dimensional projections of this dynamically evolving ellipsoid. The

estimate will be based on a Rauch-Tung Striebel smoothing algorithm that combines

all the data with a model to produce the best estimate at any point given all the

data.

Before tackling the problem of estimating ejection fraction from real myocardial

perfusion images, we test our approach by using Rauch-Tung Striebel smoothing
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to reconstruct computer simulated ellipsoids. First, we use the smoothing filter to

reconstruct a computer simulated, dynamically evolving two-dimensional ellipsoid

from noisy measurements of the ellipse itself. This is meant to be a preliminary

exercise that gives us insight into the reconstruction of a three-dimensional ellipsoid.

Second, we use smoothing to reconstruct a computer simulated, dynamically evolving

three-dimensional ellipsoid from noisy two-dimensional projections.

In this chapter, we describe our simulation setup and results. We begin by dis-

cussing the simulated input to the smoothing filters, namely two-dimensional ellip-

soids that may be thought of as noisy projections a of computer simulated, dynami-

cally evolving three-dimensional ellipsoid whose shape and dynamics mimic those of

the ellipsoid that approximates the left ventricle of the human heart. Next, we present

practical issues to be considered in implementing our smoothing algorithm. These

are the limitations we will encounter in reconstructing the ellipsoid that approximates

the left ventricle from myocardial perfusion data. For example, we win not know the

true dynamics or the projection geometry of the ellipsoid that approximates the left

ventricle. These same limitations should be reflected in our simulated ellipsoid re-

constructions. In this way, our simulated results will give an indication of how well

we will do in estimating ejection fraction from the myocardial perfusion images. We

then present results from the Rauch-Tung Striebel smoothing filter reconstruction

of a computer simulated, dynamically evolving two-dimensional ellipsoid. Finally,

we present results from the Rauch-Tung Striebel smoothing filter reconstruction of a

simulated, dynamically evolving three-dimensional ellipsoid.

4.2 Simulation Setup

4.2.1 Generation of Data

The true shape of the heart is irregular and not easily characterized. In addition, the

shape of the heart varies from person to person and throughout the cardiac cycle.

We would like to formulate an approximation to the true shape of the human heart
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(specifically the left ventricle) for use in generating simulated data. One such com-

monly used simple approximation to the shape of the left ventricular cavity is a time

varying, three-dimensional ellipsoid. This type of ellipsoid heart model is commonly

used in medical applications [4, 8]. The justification for this type of ellipsoid heart

model is as follows. If the left ventricle really were a three-dimensional ellipsoid, then

its projections on a plane would be two-dimensional ellipsoids (ellipses). Our myocar-

dial perfusion data show (see Chapter 2) that the projection of the left ventricle is

roughly an ellipse. Therefore, the ellipsoidal model seems adequate. Thus, our ap-

proach will be to reconstruct dynamically evolving three-dimensional ellipsoids based

on two-dimensional projections. From these reconstructed three-dimensional ellip-

soids, we will determine an approximation to the ejection fraction of our simulated

data.

The true dynamics of the left ventricular ellipsoid model are again irregular and

not easily characterized. From the end diastolic phase to the end systolic phase, the

ellipsoid that approximates the left ventricle contracts and rotates. Similarly, from

the end systolic to the end diastolic phase the left ventricular ellipsoid model expands

and rotates. There may be additional dynamics such as eccentricity change. The

rates of these dynamic changes vary from person to person and from step to step.

One rough approximation to the dynamics of the left ventricular ellipsoid model is

simple contraction/expansion and rotation where the rates of change are constant

over time. These dynamics capture the coarse motion of the heart. In this chap-

ter, we generate and reconstruct an ellipsoid with these coarse dynamics (fixed rate

contraction/expansion and rotation). This exercise will give us insight for Chapter 6

where we apply these reconstruction techniques to real data.

To summarize, our simulated data will be noisy projections of a dynamically

evolving three-dimensional ellipsoid. The eccentricity of the simulated ellipsoid is

chosen to approximate the eccentricity of the ellipsoid that is a best fit to the left

ventricle. In addition, the ejection fraction of our simulated heart will be 50. This

value for ejection fraction is used because it is the expected ejection fraction of an

average human heart. The simulated ellipsoid will have a period of 16 steps. In
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the first eight steps, the ellipsoid will contract at a constant rate. Similarly, the

ellipsoid will expand at a constant rate for the last eight steps. In addition, we

include simulation results for an two-dimensional ellipsoid whose dynamics include

rotation.

In terms of the notation developed in Chapter 3, the generation of simulated data

is summarized as

e(k + 1) = A(k)e(k) (4.1)

where e(k) is the vector representation for the ellipsoid, A(k) captures the dynamics

of the ellipsoid. Recall, A(k) = rA(k) (see 3.2.2) where the matrices A(k) which

represent the shrinking/expanding dynamics we described above are given by

14(k) t(k)I for k = I ... 8

' I for k = 9 ... 16T(k-)

As we mentioned above, we will also include reconstruction of a two-dimensional

ellipsoid whose dynamics also include shrinking/expanding and rotation, O(k). These

dynamics are represented by

t(k)i cos O(k) sin O(k) for k = 1 ... 8

A(k) sin O(k) cos O(k)

cos O(k) - sin O(k) for k = 9 ... 16
Tt( k-) sin O(k) cos O(k)

where the fixed rate contraction/expansion and rotation described above implies t(k)

and O(k) are constants.

4.2.2 Reconstruction : Practical Considerations

We have outlined a method to reconstruct a dynamically evolving ellipsoid from

lower dimensional projections in Chapter 3. We will apply the Rauch-Tung Striebel

smoothing filter to reconstruct our simulated ellipsoids and then use these recon-

structed ellipsoids to formulate an estimate of ejection fraction.
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Let us address a few of the difficulties that we expect to encounter in using the

smoothing filter to reconstruct the ellipsoid that approximates the left ventricle from

the myocardial perfusion data. This foresight will enable us to include these limi-

tations in our reconstruction of simulated data. Thus, our results from simulations

will be easily extended to the real data as well. Valuable insight about the strengths

and weaknesses of the smoothing filter approach of reconstructing ellipsoids is gained

through this discussion.

Data Extraction

The smoothing filter we have sketched out in (3-29)-(3.34) expects as its input ellipses

that are noisy projections of a dynamically evolving three-dimensional ellipsoid. To

use the smoothing filter approach to reconstruct the ellipsoid modelling the left ven-

tricle from the myocardial perfusion images, we would have to include some type of

a preprocessing step that extracts ellipses from the raw images. Automation of the

process of extracting ellipses from the raw data is in and of itself a difficult problem.

We will use an interactive method to extract ellipses from the myocardial perfu-

sion images. Thus, for our simulations, we may assume that the observations of the

smoothing filter are noisy ellipses.

Dynamic Models

The smoothing filter assumes knowledge of the true dynamics of the system. When

reconstructing the ellipsoid that approximates the left ventricle, we will not know the

exact dynamics of evolution. The true dynamics of a left ventricular ellipsoid model

would vary from person to person. In Chapter 3, the types of ellipsoid dynamics we

discussed included magnification, rotation, and eccentricity change. The dynamics

of the left ventricular ellipsoid model for a particular person may not fit into these

categories. For these reasons, it becomes necessary to study different dynamic models

and the error introduced by model mismatch. We will use simulations to address these

issues.

In the discussion to follow, we would like to keep in mind that our goal is to deter-
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mine the simplest model that still gives an improved estimate of ejection fraction. We

will judge improvement in the following way. Recall that in Chapter 2, we outlined

a method that physicians attempted to use to estimate ejection fraction using my-

ocardial perfusion images. This method used only the end systolic and end diastolic

frames for volume estimates. The results obtained did not correlate wen with the

"gold standard" ejection fraction estimates. The analogous estimate for simulated

data is determined by using static estimates for volume at the fully expanded and

fully contracted phases. By static estimates, we mean reconstruction of a single ellip-

soid based on the set of projections at one time step. We will compare our smoothed

estimates, with each type of dynamic model, to these static estimates to determine

which models give us improvement on current methods.

In reconstructing our simulated ellipsoid, we will investigate model mismatch (i.e.

a mismatch between the dynamics used to generate the data and the dynamics used in

the smoothing filter) by using prior knowledge to formulate models that capture the

coarse motion of the heart. This approach is equivalent to replacing the true ellipsoid

dynamics, A(k) in (3.29)-(3.34) with an approximation of the true dynamics, k(k).

That is, recall the system which is used to generate the data is given by

,E(k + 1) = A(k),E(k)

The smoothing filter assumes that the system is described by

,E,(k + 1) = f1-(k),E,(k) (4.2)

where ft(k) = A(k) + A(k). Thus, A(k) is the error in modelling the true dynamics.

Equation (4.2) may be rewritten as

,E�,(k + 1) -_ A(k),E,(k) + w(k) (4-3)

the term w(k) -_ A(k),E,(k) may be thought of as process noise. We assume that the

process noise is Gaussian white noise with variance, Q -_ qL Clearly, the process noise
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is neither Gaussian nor white. This is just a simplified model we use for convenience.

We use the standard filter equations to implement the Rauch-Tung Striebel algorithm.

Now the question arises as to the optimal value for q. One could imagine exper-

imentally finding the variance of w(k) and using this value for the variance of the

process noise, q, in the smoothing filter equations. Another approach might be to

evaluate filter performance as we vary q. We hope that this type of an investigation

wiH yield a wide range of values of q where the error in the estimate is small.

The smoothed estimate is a weighted average of the measured and predicted states.

In the smoothing filter, the variance of the process noise may be interpreted as a

measure of our trust in the dynamic model and thus the predicted state. If q is very

high, the estimate will be based on the measurement alone. If q is low, the estimate

wiH be based on the predicted state alone. We will investigate how sensitive the error

in the filtered estimate is to changes in the variance of the process noise.

For each of our sets of experiments, we consider three classes of dynamic models

for the smoothing filter that is used, which we term : perfect model, assumed model,

and random walk model. Note that the model classes we have chosen are meant to

represent a trade off between complexity and accuracy. The perfect model captures

complicated ellipsoid dynamics. There is no model mismatch in a smoothing filter

based on the perfect model. Thus, a smoothing filter based on the perfect model of

dynamics is most accurate. The assumed model is less accurate because it captures

only the simplified, nominal dynamics of the ellipsoid. The assumed model represents

a small model mismatch. Finafly, the random walk model is the simplest of the three

dynamic models and consequently the least accurate.

We begin by considering the perfect model of dynamics. This is not really a model

class, but rather a best case smoothing filter where the dynamics used to generate

the data match those used in the smoothing filter. One may think of the output of

a smoothing filter based on perfect model of dynamics as a best case performance.

The best results we can hope for are by using a smoothing filter based on the perfect

model. The results from the other two model classes may be compared to the perfect

model results to evaluate their performance. For the perfect model, Mp(k) = A(k)
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(i.e. there is no model mismatch). Through our simulations, we win also investigate

the effect of including process noise variance in the smoothing filter equations using

the perfect model of dynamics. A high value of q reflects low confidence in the model.

Therefore, we expect the error to increase as q increases.

Next, we consider a smoothing filter based on the assumed model. This model

incorporates limited prior knowledge of the true dynamics of the ellipsoid. Suppose

we know that in general the ellipsoid is shrinking and rotating, but we do not know

the exact rates of change. We might use an assumed nominal model that gave an

approximation to these dynamics. For example, if the true dynamics (in terms of

matrix notation) are given by

A(k) t(k) 0 cos O(k) sin O(k)

0 t(k) - sin O(k) cos 0(k)

then we could use an assumed model of the form

M. M t" 0
0 t"

where t,,, is a time invariant approximation to t(k), the true time varying rate of

magnification. Note our approximation of the rotation angle is Ojk) = 0. In terms

of the vector notation that we developed in Chapter 3, kjk) -- F(Mjk)). When

using the assumed model, neither the measurement nor the predicted state is exact.

For this reason, we would expect that a range of q exists that minimizes the error in

the estimate. We will investigate the possibility of "tuning" the filter with the value

of q.

Finally, consider the simplest dynamic model, the random walk. This model

implies we have no knowledge of the true ellipse dynamics, so we pick the simplest

possible evolution. In other words, we assume the ellipse evolves as a random walk,

or on average is constant. For this approach, we use k,(k) -- I. The filter used is

given by (3.29)-(3.34). Again, we hope to compensate for the error introduced by

the random walk assumption through the process noise. We will again investigate
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the possibility of "tuning" the filter with the value of q. There is a greater model

mismatch in a smoothing filter based on the random walk model than in one using

the assumed model for dynamics. Therefore, we would expect that the range of q

that minimizes the error in the estimate for the random walk model is higher than

the corresponding range for the assumed model.

We will be able to construct dynamic models that are similar to those we have just

discussed when we reconstruct the ellipsoid that approximates the left ventricle from

myocardial perfusion data. The closest we can come to the perfect model case is by

adding a preprocessing step to "learn" the dynamics of each individual patient from

the myocardial perfusion data itself. This might be accomplished using some type of

a system identification approach. Similarly, we may be able to use the assumed model

approach in a model identification context which will be discussed in Chapter 5. A

bank of Kalman filters would be used to determine the optimal matrix M(k) for the

patient.

Projection Angles

A third problem we might encounter in the real data is lack of knowledge of the pro-

jection angles. The smoothing filter formulation described by (3.29)-(3.34) requires

knowledge of the matrix, 0, which captures the geometry of the ellipsoidal projec-

tions. Recall that the imaging procedure used to obtain the myocardial perfusion

images is highly inexact. The cardiac views obtained are roughly anterior, lateral,

and left anterior oblique. Optimally estimating the three-dimensional ejection frac-

tion requires exact knowledge of the projection angles (and hence, the matrix C). In

Section 4.4, we will evaluate filter performance for three-dimensional ellipsoid recon-

struction when these angles are known. Further discussion of the problems that arise

from lack of knowledge of the 0 matrices is deferred to Chapter 6.

Measurement Noise

Finally, the smoothing filter we propose to use requires that the measurement noise

has a normal distribution with zero mean and variance R. As we explained above,
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the observations for reconstructing the ellipsoid that approximates the left ventricle

are ellipses that have been extracted from the myocardial perfusion images. There-

fore, measurement noise is the error introduced in fitting ellipses to the myocardial

perfusion images. This measurement noise is due to many factors which include the

noise in the image itself and human or algorithm error in fitting ellipses. It is difficult

to characterize the true measurement noise introduced by fitting ellipses to the my-

ocardial perfusion data. One commonly used approach is to assume the measurement

noise is Gaussian.

In our ellipsoid reconstruction simulations described in the next two sections, the

noise added to observations will have a zero mean normal distribution with variance

R = rI. This corresponds to adding Gaussian noise to the elements of the vector that

represents the ellipsoid. There will be no mismatch in the value for noise variance

used to produce the measurement and that used in the smoothing reconstruction

algorithm.

The problem of reconstructing the left ventricular ellipsoid model from myocardial

perfusion images differs from the simulations. First, the noise in the elliptical obser-

vations from the myocardial perfusion images will almost certainly not be Gaussian.

Second, the value of R which best approximates the variance of the distribution of the

measurement noise in the extracted ellipses will be unknown. While the measurement

noise in the simulated observations differs from the noise in the extracted ellipses, we

hope the simulation results give some indication as to how well the filter performs on

the myocardial perfusion data and how sensitive the filter is to noise.

4.3 Two-Dimensional Ellipsoid Reconstruction

We study the reconstruction of a computer simulated, dynamically evolving two-

dimensional ellipsoid from noisy measurements of the ellipsoid itself as a preliminary

exercise. This exercise yields insight into the three-dimensional ellipsoid reconstruc-

tion problem because two-dimensional ellipsoids are more easily visualized. One major

difference between the two- and three-dimensional ellipsoid reconstructions is that the
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input to the smoothing filter for the two-dimensional case does not consist of noisy

projections of the two-dimensional ellipsoids, but rather, noisy observations of the

ellipsoids themselves.

Generally in reconstructing a three-dimensional ellipsoid from two-dimensional

projections, the projection geometry may be unknown or imprecisely known. For this

reason, we investigate using the two-dimensional ejection fraction of the projections

of a three-dimensional ellipsoid as an approximation to the true ejection fraction of

the three-dimensional ellipsoid. In addition, for some very specific cases, the two-

dimensional ejection fraction of the projections of a three-dimensional ellipsoid is

exactly equal to the ejection fraction of the three-dimensional ellipsoid. For further

discussion see Section 4.5.

4.3.1 Generation

In the generation of a computer simulated two-dimensional ellipsoid, note the follow-

ing points. The characteristics of the starting ellipse as well as the rate of ellipse

contraction will be chosen to reflect the characteristics of the heart. We will study

two types of ellipse dynamics that are meant to cover the range of motion we might

see in the heart. One simplification to note is that while true heart dynamics have ir-

regular rates of change, our ellipses will have constant rates of change. The two types

of ellipse dynamics we will investigate are shrink/expand and shrink/expand/rotate.

The heart definitely has some rotation associated with its dynamics, but it is diffi-

cult to identify the exact degree of rotation. The two classes of dynamics we have

chosen are meant to represent the extremes of rotation. The shrinking/expanding

ellipse shows no rotation which is less than we would expect to see in the dynamics

of the heart. The shrinking/expanding/rotating ellipse shows a total rotation of ap-

proximately -7r/2 which is more rotation than one would expect. Thus, we hope to

draw conclusions on the performance of our reconstructions when the true rotation

lies somewhere between these two extremes.

46



Shrinking and Expanding Ellipse

The first two-dimensional reconstruction we consider is the shrinking and expanding

ellipse. In light of our knowledge about the shape and motion of the heart, we choose

the following characteristics for our starting ellipse.

Characteristic Symbol Value
long axis a 8
short axis b 7.2

beccentricity .9a I

rotation 0 1 0

Table 4.1: Characteristics of starting 2D ellipsoid

This starting ellipse may be represented by the 2 x 2 matrix in the form of (3.2)

64 0
E =

0 51-84

Our ellipse shrinks for eight steps at a rate t = .957 and expands for eight steps at

rate '. That is, our dynamic matrices in (3.7) are given byt

tI for k = 1 ... 8
A(k) =

I for k - 9 ... 1 5

This set of ellipses is shown in Figure 4-1. The rate of contraction t = .957 is meant

to give a true ejection fraction of 50, which is the ejection fraction of a average human

heart.

Shrinking and Expanding Ellipse with Rotation

The second type of ellipse dynamics we will attempt to track is a shrinking and

expanding ellipse with rotation. Our starting ellipse is the same as given above. The

dynamics now also include a rotation of 7r/15 counterclockwise at each step in the

contraction phase and a rotation of 7r/15 clockwise at each step in the expansion
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Figure 4- 1: Shrinking and Expanding Ellipse

phase. Thus, our new dynamic matrices are given by

0.9361 0.1990
for k I ... 8

-0-1990 0.9361
A(k) =

1.0222 -0.2173
for k 9 ... 15

0.2173 1.0221

This set of ellipses is shown in Figure 4-2.

4.3.2 Estimation

Now we consider the reconstruction of these dynamically evolving two dimensional

ellipsoid. There are many directions our investigation may follow. We would like

to evaluate the performance of the smoothing algorithm outlined in (3.29)-(3.34) as

we vary measurement noise, dynamics of the true underlying ellipse, the models that

approximate the true dynamics, and "process noise". We will evaluate the smoothing
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Figure 4-2: Shrinking and Expanding Ellipse with Rotation

filter performance by holding all but one of these factors constant. Thus, we hope to

map out the performance of our reconstruction with respect to all variables.

But -first, a few comments on definitions and initializations. The reconstructions

will be based on noisy measurements of the ellipses themselves for reasons that we

discussed in Section 4.2.2. That is, the measurements are given by

y(k) -_ E(k) + v(k)

where E(k) is the vector representation of the ellipse and v(k) is zero-mean, Gaussian

white noise with variance R = rL In addition, we define signal-to-noise ratio as

SNR(k) = 11,E(k) 112- (4.4)
� n(n + 1)r/2

where n is the dimension of the ellipsoid. Note, the ellipse we are trying to track

shrinks, but the noise remains at a constant level. Thus, the signal-to-noise ratio will
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decrease as the ellipse contracts. One last issue we must deal with is initialization of

the forward Kalman filter. As is the case with the real data, we would like to set the

initial error covariance, Po to be infinity to indicate that our confidence in the initial

estimate is low. We set the initial estimate co to be the linear least square estimate.

If our initial error covariance is set high enough, the initial guess, co is more or less

ignored and the estimate at time k = 1 is equal to the first measurement. We have

chosen to implement these initial conditions in the following manner

Po = 5R -_ pI

�o = (ffo)-IOTY(j)

We choose the initial error covariance Po to be five times the measurement noise

which is not infinity, but still high enough to indicate very low confidence in the

initial estimate.

Shrinking and Expanding Ellipse Results

Let us begin with the simplest possible problem. We will fix the strength of measure-

ment noise to be

ri 10-3m (4.5)

where m 114011, (4.6)
3

The true ellipse dynamics will be shrinking and expanding (no rotation) as defined

above. In addition, we will start with a smoothing filter using the perfect model for

the dynamics so that Mp(k) = A(k). So the only remaining variable is the "process

noise". For these conditions, the signal-to-noise ratios through the ellipse cycle are

as shown in Figure 4-3. For this level of noise, the measurements are very close to

the true ellipses.

In light of the facts that our measurement noise is low, our true ellipse dynamics

are as simple as possible, and our model is highly accurate, we expect the estimate
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Figure 4-3: Signal to Noise Ratio for Shrinking and Expanding Ellipse and Low Level

Noise (ri)

error to be very low. Also, recall that we are using "process noise" Q -- qI to indicate

our level of confidence in the dynamic model. For the perfect model, we expect the

estimate error will increase as q increases because there is no noise in the generation of

our ellipses and there is no model mismatch in the smoothing filter. Our simulations

support these expectations.

We define percent magnitude error as

1010 11,E(k) - �(kjT)jj

11,E(k)JI

where E(k) is the vector that represents the true ellipse at time k and �(kjT) is the

vector that represents the reconstructed ellipsoid at time k given all measurements.

Figure 4-4 illustrates the percent magnitude error at each time step. Each curve

corresponds to a different value of q and is the average of 100 realizations of the

smoothing algorithm. In this figure, the values of q used are shown in Table 4.2

where m is defined in (4-6). Our estimate error ranges from less than 1% for low

51



Perfect Model/Shrinidng & Expanding Effipse
5.5

5 -

4.5 -

4 -
Increasingq

3.5 -

3 -

2.5 -
..........

2 -

1.5 - ----------
---- --- ----------------- --------- --....... ------------------------------------ ... ... ..... .. ..... .......

....... .... ...... ............ ........ ...... -- .... ....... ..... ---- --------------

0.5
0 2 4 6 8 10 12 14 16 18

Time

Figure 4-4: Percent magnitude error using perfect model of dynamics. Each curve

corresponds to a different value of process noise, q.

q, 'q2 q3 q4 q5 q6 q7 q8

10-'M 10 -7 M 10-6M 10-'M 110-4 rn 10-3M 10-2M lo-1M

Table 4.2: Process Noise Values

values of q to approximately 5.5% for higher values of q. The error increases as the

value of q increases.

Ultimately, we are interested in ejection fraction which is a function of the ellipse

area. Therefore another quantity that is of interest to us is the percent area error

which is defined as

100 area(E(k)) - area(�(klk))

area(E(k))

Figure 4-5 shows the variation of percent area error with q. Again, this error is low

ranging from .5% to less than 3%. Percent area error also increases as q increases.

Note that percent area error is smaller than percent magnitude error. This is due to
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Figure 4-5: Percent area error using perfect model of dynamics. Each curve corre-

sponds to a different value of process noise, q.

the fact that an error in orientation affects magnitude error but has no effect on area

error. Note also that both types of error are largest at the same point in the ellipse

cycle when the actual ellipse size is smallest. This is a result of the fact that signal

to noise ratio is smallest at this point in the ellipse cycle.

Now we will add another level of complexity. We would like to see the effect of

varying the strength of the measurement noise, R = rI. The values of r used are

shown in Table 4.3. Also, Figure 4-7 shows several ellipses in the ellipse cycle and one

set of corresponding measurements with measurement noise r4. At this level of noise,

the measurements poorly reflect the true shape of the ellipse. The signal-to-noise

ratios for these values of measurement noise are plotted in Figure 4-6. The highest

noise level is chosen so that none of the measurements generated is a degenerate ellipse

(i.e. all measurements correspond to matrices that are positive definite). In Figure 4-

8, we have plotted the average percent magnitude error as we vary q and r. Each

individual curve is the percent magnitude error over time averaged over 100 sample
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Figure 4-6: Signal to Noise Ratios for several noise levels
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Figure 4-7: Ellipses #1,3,6, and 8 from set of sixteen shrinking and expanding ellipses.
Also shown are the corresponding measurements. True ellipses are shown in solid lines
and the measurements are shown in dotted lines
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Figure 4-8: Average of percent magnitude error over time and over 100 runs. Uses
perfect model of dynamics. Each curve corresponds to a different value of measure-
ment noise, r
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ri 10-'m

r2 10- 2.47M

r,3 10- 1.94M

r4

Table 4.3: Measurement Noise Values

paths versus q with r fixed. As we would expect, the average percent magnitude error

increases as the assumed strength of measurement noise is increased. For all values

of r considered, the error will increase as q increases.

Of course, the real quantity of interest is the percent ejection fraction error. Fig-

ure 4-9 shows the percent ejection fraction error as a function of q. Again, each

curve corresponds to a value of r defined above. The two-dimensional version of the

definition for ejection fraction (EF) is

EF = largest area - smallest area

largest area

Our ellipse cycle as defined in Section 4.3.1 has two states where the area corresponds

to a maximum. Therefore, we will take our largest area to be the average of the areas

of the two maximum states. Our definition for the smoothed ejection fraction estimate

is then

f JP -_ area(i(16)) + area(�(I)) - 2area(�(9)) (4.7)

area(�(16)) + area(�(1))

Once again, we note that because this is a function of area, which is not affected by

errors in orientation, the percent ejection fraction error is smaller than the percent

average magnitude error. The percent ejection fraction error increases as the strength

of measurement noise increases. At the lowest measurement noise, the lowest value

for percent ejection fraction error is less than .5%. At the highest measurement noise,

the lowest value for percent ejection fraction error goes up to approximately 1.5%.

Also, for all values of r, the percent ejection fraction error increases as q increases. At

the lowest measurement noise, the percent ejection fraction error increases from ap-
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Figure 4-9: Percent ejection fraction error using perfect model of dynamics. Each
curve corresponds to a different value of measurement noise, r

proximately .5% to 3% as q increases. At the highest measurement noise, the percent

ejection fraction error increases from approximately 1.5% to 12% as q increases.

Now let us turn our attention to the next class of dynamic models. A smoothing

filter based on the assumed model (as described in Section 4.2.2) uses an approxima-

tion to the true dynamic matrices. We will consider an assumed model such that

M. (k) tJ for k = 1 ... 8 (4-8)

I for k = 9 ... 15

where t,, = .947 which gives an ejection fraction of roughly 60. Figure 4-10 shows

the average percent magnitude error versus q for the same four values of r as above.

Figure 4-11 shows the percent ejection fraction error versus q. Of course, these figures

show that both the average percent magnitude error and percent ejection fraction er-

ror are higher than the corresponding quantities for the perfect model reconstruction.

This comes as no surprise as the assumed model is not matched to the true dynamics
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Figure 4-10: Average percent magnitude error using assumed model. Each curve
corresponds to a different value of measurement noise, r.
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Figure 4-11: Average ejection fraction error using assumed model of dynamics. Each
curve corresponds to a different value of measurement noise, r.
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of the system. Again, each curve corresponds to a different value of r. As we would

expect, the errors increase for increasing values of r. The shape of the curves seem

to indicate again that we might "tune" the filter with q. That is to say, our best per-

formance for ejection fraction estimates for each value of r comes for 1 < q < 102. In

this range of values of q, the average percent magnitude error increases from 2.5% to

8% as measurement noise increases from r, to r4. Also, the percent ejection fraction

error increases from 3% to 8% as measurement noise increases. The important point

to note is that, for both the average percent magnitude error and the percent ejection

fraction error, the error is minimized by range of values of q that is not equal to zero.

The final model class to consider is the random walk model. The smoothing filter

based on the random walk model of dynamics assumes that our approximation to the

true dynamic matrices is the identity :

k,(k) = I for k = 1 ... 15

Figures 4-12 and 4-13 show the percent average magnitude error and average ejection

fraction error respectively.

To summarize, the average percent magnitude error is minimized for I < q < 100

for all levels of measurement noise. The average percent magnitude error in this range

of values of q increases'from 2.5% to 14% as measurement noise increases. The percent

ejection fraction error is minimized for a slightly different range 10 < q < 1000. In

this range of values of q, the percent ejection fraction error increases from 3% to 12%

as measurement noise increases. As we had hoped, there is a range of q that minimizes

both types of error over a broad range of measurement noise intensities. These errors

are the highest of the three model classes because the random walk model introduces

the most model mismatch. However, we still see that the filter may still be tuned to

minimize error by changing the value of q.

We stated earlier that one of the questions we hoped to answer was what is the

simplest model class that improves upon the current methods of ejection fraction

estimation. In estimating ejection fraction from myocardial perfusion images, physi-
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Figure 4-12: Average percent magnitude error using random walk model of dynamics.
Each curve corresponds to a different value of measurement noise, r
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Figure 4-13: Average ejection fraction error using random walk model of dynamics.
Each curve corresponds to a different value of measurement noise, r

60



ShrinIdng & Expanding Ellipse Static Estimate
25 1 I I I

-------------- --------------------- ------------------------------- ----------------------------------------

20 -

0
15 -

...... ...................... ...................... .............. ................... . ....... .............. ................. ..............
10 -

5 - ---------------------------------------------------------------------------

0 1 I -- . J
10-5 10-4 10-3 1�-2 10-1 100 101 102 103

Process Noise, Q

Figure 4-14: Static Ejection Fraction Error.

cians have attempted to estimate ejection fraction using only the end systolic and

end diastolic frames. The analogous procedure for simulated data is to use only the

measurements at the fully contracted and fully expanded phases. This is effectively a

static estimate where the dynamic model is ignored. We compare the ejection fraction

obtained from the smoothing filter reconstructed ellipse to the static ejection fraction.

The static ejection fraction will be based on a linear least square estimate for area

only at the fully contracted and fully expanded phases. Thus, we should compare the

results for each of the model classes to this static estimate. Again for the same values

of r as above, Figure 4-14 shows the percent ejection fraction error.

Comparing this to earlier results, we conclude that even our simplest model (the

random walk) may be "tuned" with q to give a significant error reduction at high

measurement noise levels. The error may be reduced by more than 10%. At low

noise levels, there is not much improvement over static estimation. As we saw in

Chapter 2 our images are of such poor quality that it is reasonable to assume that we

will be dealing with high levels of noise. We can conclude that it will be possible to
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significantly improve on current methods of ejection fraction estimation using even

the random walk model.

Shrinking and Expanding Ellipse with Rotation Results

We treat the reconstruction of the shrinking and expanding ellipse with rotation in

a similar manner as the shrinking and expanding ellipse without rotation. We use a

smoothing filter that is based on each of the dynamic model classes we discussed in

Section 4.2.2. The same values for measurement noise intensity as in Table 4.3 are

used; the same values for process noise as in Table 4.2 are used. As we hoped, these

results are similar to the results for the no rotation case.

To start with, consider a smoothing filter reconstruction based on the perfect

model of dynamics. In this case, Mp(k) -_ A(k). Figures 4-15 and 4-16 show the

average percent magnitude error and the percent ejection fraction error respectively.

Next, consider a smoothing filter based on the assumed model of dynamics. The

assumed model uses the dynamic matrix M,,, of (4.8). Now we have not only a

mismatch in the contraction rates, but also a mismatch in rotation rates. The model

assumes no rotation, but the true ellipse dynamics does have rotation. Figures 4-17

and 4-18 again illustrate the variation of average percent magnitude error and percent

ejection fraction error. These errors are slightly higher than the corresponding errors

for the no rotation case. However, important qualitative features remain the same.

The errors may be reduced by tuning the filter with q for all levels of r. Finally,

the corresponding results for a smoothing filter based on the random walk model are

shown in Figures 4-19 and 4-20. These results are very similar to the no rotation case.

Again, when these errors are compared to the static estimation errors, we -find that

it is possible to significantly improve the accuracy of the ejection fraction estimate

by using the Rauch-Tung Striebel algorithm. Our results show that the smoothing

filter approach is valid for the two extremes of rotational dynamics that we expect to

encounter.
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Figure 4-15: Average percent magnitude error using perfect model for dynamics.

Each curve corresponds to a different value of measurement noise, r
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Figure 4-16: Ejection fraction error using perfect model for dynamics. Each curve

corresponds to a different value of measurement noise, r
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Figure 4-17: Average percent magnitude error using assumed model for dynamics.

Each curve corresponds to a different value of measurement noise, r
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Figure 4-18: Ejection fraction error using assumed model for dynamics. Each curve

corresponds to a different value of measurement noise, r
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Figure 4-19: Average percent magnitude error using random walk model for dynamics.
Each curve corresponds to a different value of measurement noise, r

Random Walk Model/ShrinkingExpanding & Rotating Ellipse
60

50 -

4o - Increasing r
01

30 -

...................
20 -

2.

.. ......... ....... . ....
10 - ....... ..... ...

----------------------------------------------

010-1 100 101 102 103 104 105 106 107

Process noise, q

Figure 4-20: Ejection Fraction error using random walk model for dynamics. Each
curve corresponds to a different value of measurement noise, r
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4.4 Three-Dimensional Ellipsoid Reconstruction

4.4.1 Generation

For the three-dimensional ellipsoid reconstruction problem, we will consider only the

case of a shrinking and expanding ellipsoid with no rotation. This is not exactly

the type of dynamics we expect to see in the heart. However, the insight gained by

studying this simplified problem should guide our approach with the real data. The

starting ellipsoid has semi-axis lengths of 8, 8, and 7.2. The ellipsoid is oriented with

the coordinate axes; there is no rotation. This starting ellipse may be represented by

the 3 x 3 matrix

64 0 0

E 0 51.84 0

0 0 64

Our ellipse shrinks for eight steps at a rate t = .9715 and expands for eight steps at

rate '. That is, our dynamic matrices are given byt

tI for k = 1 ... 8

A(k) 1 I for k = 9 ... 1 5
T

This rate of contraction again gives an ejection fraction of 50.

4.4.2 ]Estimation

Reconstruction for the three-dimensional ellipsoid problem is accomplished using the

smoothing algorithm outlined in (3-29)-(3.34). We are assuming that the projection

angles are known. That is, that we know the matrix 0. The measurements are given

by

y(k) = 0,E(k) + v(k) (4.9)
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0 1 0
1 0 0C (4.10)
0 0 1

0 1 0

0 0 1

where r(C) and v(k) is zero-mean, Gaussian white noise with variance R = rI.

The projections are onto the xy, xz, and yz-planes.

The three-dimensional reconstruction may be treated in the same way the two-

dimensional reconstruction was treated. We will use a smoothing filter based on

the same three model classes: perfect model, assumed model, and random walk.

The measurement noise intensities are the same as for the two-dimensional case. The

signal-to-noise ratios are somewhat different than in the two-dimensional case because

the magnitude of the state is different. Figure 4-21 shows the signal-to-noise ratios

through the ellipse cycle for the values of noise considered. First using a smoothing

filter based on the perfect model, we set the filter model 1111,,(k) = A(k). Figures 4-22

-4-23 show the average percent magnitude and percent ejection fraction error. The

results show that, even for the highest levels of measurement noise, it is possible to

obtain average percent magnitude error less than 6% and percent ejection fraction

error less than 1.5% by choosing q to be low. For a smoothing filter based on the

assumed model, the filter model is given by :

t,,,I for k = 1 ... 8

I for k = 9 ... 15

where t,, = .9615 gives an ejection fraction of roughly 60. The corresponding average

percent magnitude errors and percent ejection fraction errors are shown in Figures 4-

24-4-25. These results show that average percent magnitude errors are less than 10%

even at high measurement noise levels for q < 10. Also, percent ejection fraction errors

is less than 6% for all values of noise if 1 < q < 100. Finally, for a smoothing filter
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Figure 4-21: Several Signal-to-Noise Ratios for Three Dimensional Reconstruction

based on the random walk model, AI-,(k) = 1. These results are shown in Figures 4-26

- 4-27. Even at high levels of measurement noise, average percent magnitude error

will be less than 11% for I < q < 100. Percent ejection fraction is less than 15%

for all noise levels if q > 10. As in the two-dimensional case, the error increases

as we go from the perfect model to the assumed model to the random walk model.

For a smoothing filter based on the perfect model, both types of error increase as

q increases. The smoothing filter using an assumed model results show that we can

tune the filter with q to minimize both the average percent magnitude error and the

percent ejection fraction error. The smoothing filter based on a random walk model

results are not quite as good as we had hoped. It is possible to minimize the average

percent magnitude error by adjusting q. There is not a similar result for the percent

ejection fraction error. The percent magnitude error represented by the curves in

Figure 4-27 starts out high for q = .1, decreases steadily for .1 < q < 100, and then

remains constant at higher values of q. These results indicate that we will not see

significant improvement over static estimates. Indeed, when we compare these results
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Figure 4-22: Average percent magnitude error using perfect model of dynamics. Each
curve corresponds to a different value of measurement noise, r.

to the static estimate results in Figure 4-28, we see that we have not reduced percent

ejection fraction error. Our conclusion is that the simplest model that improves on

static estimation techniques is the assumed model class of dynamics. We win be able

to extend these results to the real data in Chapter 6.

Iffn 0 04.5 2D and 3D -rejection Fractions

As we mentioned earlier, for some very specific cases, the ejection fraction of the two-

dimensional projections of a three-dimensional ellipsoid (ellipses) is equivalent to the

ejection fraction of the original ellipsoid. Before showing this explicitly, we discuss

our approach more qualitatively. Our ultimate objective is to determine the ejection

fraction of a dynamically evolving three-dimensional ellipsoid. Recall that ejection

fraction is a measure of contraction along all axes. Picture a contracting three-

dimensional ellipsoid. The projection of this ellipsoid on a plane is be a contracting
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Figure 4-23: Ejection fraction error using perfect model of dynamics. Each curve

corresponds to a different value of measurement noise, r.
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Figure 4-24: Average percent magnitude error using assumed model of dynamics.

Each curve corresponds to a different value of measurement noise, r.
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Figure 4-25: Ejection fraction error using assumed model of dynamics. Each curve
corresponds to a different value of measurement noise, r.
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Figure 4-26: Average percent magnitude error using random walk model of dynamics.
Each curve corresponds to a different value of measurement noise, r.
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Figure 4-27: Ejection fraction error using random walk model of dynamics. Each
curve corresponds to a different value of measurement noise, r.
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two-dimensional ellipsoid (an ellipse). From this projection, any contraction along

an axis perpendicular to the plane of projection is imperceptible. Contraction along

an axis that is perpendicular to the plane of the projection is information that is

lost in looking at the projection. If, however, the three-dimensional ellipsoid does

not contract along the axis that is perpendicular to the plane of the projection, no

information is lost. It seems intuitive that there exists a simple relationship between

the ejection fraction of a three-dimensional ellipsoid that contracts only along two

axes and the ejection fraction of the two-dimensional ellipsoid that is the projection

of the three-dimensional ellipsoid on to a plane that is perpendicular to the axis of

no contraction. As it turns out, these two quantities are equivalent. Thus, in some

cases, determining the ejection fraction of the three-dimensional ellipsoid is equivalent

to the simpler problem of determining the ejection fraction of the two-dimensional

ellipsoidal projection. Appendix 4-A shows this result more explicitly.

This, of course, is a specialized case. Generally, we will not encounter such a

scenario. We may, however, encounter projections that are roughly perpendicular to

an axis along which the ellipsoid does not contract very much. We investigate the

possibility of using the two-dimensional ejection fraction as an approximation to the

three-dimensional ejection fraction of the ellipsoid that approximates the left ventricle

in Chapter 6.

4.6 Conclusions

In this chapter, we have taken the first steps toward using the techniques explored in

Chapter 3 to estimate the ejection fraction of the heart. We have used the Rauch-

Tung Striebel smoothing algorithm to reconstruct computer simulated, dynamically

evolving, two and three-dimensional ellipsoids. The problem was formulated in such

• way that our results might be easily applicable to real data. First, we explored

• few model classes that approximated the true ellipsoid dynamics. Our objective

was to determine which was the simplest model class that still gave improvement

over currently used static estimation techniques. For the two-dimensional case, we
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found that we were able to significantly improve the estimate using the simplest

possible model, the random walk. In the three-dimensional case, we found it was

necessary to use a more complicated dynamic model class to gain improvement over

the static estimate results. We discussed methods of adjusting the filter to account

for mismatches between the true and modelled dynamics. Second, we addressed

techniques of estimating ejection fraction in spite of lack of knowledge of projection

angles. Our results give us a good deal of insight into the generalized dynamic ellipsoid

reconstruction problem that will be applicable to the real data problem at hand.
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4-A 2D and 3D Ejection Fractions

We now show the equivalence of the two-dimensional and three-dimensional ejection

fraction for this special case more explicitly. Consider an ellipsoid whose axes are

aligned with the coordinate system. For this ellipsoid, the semi-axis lengths, a, b,

and c are the extent of the ellipsoid along the x, y, and z axes respectively. Suppose

this three-dimensional ellipsoid contracts only along two axes, say the x and y axes.

Recall that the volume of a three-dimensional ellipsoid is given by

4
Vol = -7rabc

3

where a, b, and c are the semi-axis lengths. Thus, the three-dimensional ejection frac-

tion is given by

3D-EF = alble, - a2b2C2 (4.11)

albic,

where a,, bl, and cl correspond to the semi-axis lengths of the fully expanded ellipsoid

and a2, b2, and C2 correspond to the semi axis lengths of the fully contracted ellipsoid.

The ellipsoid we have specified does not contract along the z-axis; therefore, cl = C2-

We may rewrite (4.11) as

3D-EF -_ alb, - a2b2 (4.12)

alb,

The projection of this ellipsoid on the xy-plane (i.e. the plane that is perpendicular

to the axis of no contraction) is an ellipse with semi-axes a and b that are aligned

with the x and y-axes respectively. Recall that the area of a two-dimensional ellipsoid

is given by :

Area = irab

where a and b are the semi-ma .or and minor axis lengths. The two-dimensional

version of ejection fraction for this ellipsoid is given by

2D-EF = alb, - a2b2 (4.13)

a, bi
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where a, and b, are the semi-axis lengths of the fully expanded ellipse and a2 and b2

are the semi-axis lengths of the fully contracted ellipse. Comparing (4.12) and (4.13),

we see that th,� ejection fraction for the three-dimensional ellipsoid equals the ejection

fraction for the two-dimensional ellipsoid for this special case.
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Chapter 5

1\4odel Identification

5.1 Objective

Recall that Chapter 4 included a discussion of the error created by model mismatch.

That is, we investigated the errors introduced when the true ellipsoid dynamics differ

from those used by the smoothing filter to reconstruct the ellipsoid. We discussed

smoothing filters based on three types of dynamic models : the perfect model, the

assumed model, and the random walk model. As we showed in Chapter 4, it is

possible to improve on static estimates of ejection fraction by using a smoothing filter

based on the assumed model. However, we did not discuss how to choose the assumed

model dynamics.

In this chapter, we discuss a method of choosing the assumed model dynamics

based on a model identification or parameter estimation scheme. The model identi-

fication scheme described is used to choose which of several hypothesized dynamic

models best approximates the dynamics used to create the ellipsoid. Model identifi-

cation employs a bank of Kalman filters based on each of the hypothesized models

to determine which model is most likely given all measurements. In this chapter, we

use model identification to choose between two hypothesized models. Thus, we use a

Kalman filter bank that consists of two filters. Note that the objective of this coarse

model identification procedure is to determine which of the hypothesized models is

the best approximation to the true ellipsoid dynamics rather than to determine the
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best overall estimate to the true ellipsoid dynamics. Thus, our model identification

gives a coarse approximation to the true ellipsoid dynamics and provides a means to

determine an assumed model to be used in the smoothing filter based reconstructions

described in Chapter 4 which in turn are used to estimate ejection fraction.

In addition, model identification may be thought of as a hypothesis test used

to determine whether ejection fraction is normal or below normal. Each hypothe-

sized model used in the model identification scheme has an associated hypothesized

ejection fraction. The true ejection fraction tends to lie within a range around the

hypothesized ejection fraction that is associated with the model chosen by the model

identification scheme. Thus, model identification may be used to determine a range

of the probable values for the true ejection fraction.

This chapter includes a summary of model identification background. In addition,

we include the results of three experiments. Our input will be noisy measurements of

simulated dynamically evolving two-dimensional ellipsoids. We start by investigating

the performance of the model identification scheme when one of the hypothesized

models exactly matches the true ellipsoid dynamics. We also investigate the perfor-

mance of model identification as the difference in the ejection fractions of the two

hypothesized models becomes smaller. Next, we present simulation results when the

true and hypothesized dynamics differ in contraction rate only. Finally, we present

simulation results where the true dynamics include contraction and rotation, but the

hypothesized dynamics include only contraction.

5.2 Background

As we mentioned previously, the model identification approach that we describe in

this section is used to determine which of several models most closely approximates

the true dynamics of the system given all the measurements. We concentrate on

the case where model identifier chooses between two hypothesized models, but a

similar approach may be used to include several hypothesized models. For further

details see [15]. Recall that the system of equations that describes the evolution and
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measurement of a vector, E(k), that represents an ellipsoid is given by

,E(k + 1.) = A(k),E(k)

y(k) = 0,,E(k) +v(k) (5.2)

where v(k) is a zero mean, Gaussian white noise process with covariance R.

The matrices ki(k) and f12(k) are two hypothesized models of the true dynamics

of the system A(k). We choose M- i(k) as the better approximation to the true system

dynamics if model i is the more likely model given all the measurements thus far. We

define

pi(k) = Pr(model i is correctll"k) (5-3)

where Yk is the set of measurements up to and including the measurement at time k.

Applying Bayes' rule, we rewrite (5.3) in the following recursive form

pi(k) -- - p(y(k)j1"k-j, model 1 is correct)pi(k - 1) (5.4)
E�=j p(y(t)lYk-1, model j is correct)pj(k - 1)j

Thus, to determine pi(k) we must calculate p(y(k)jYk-jmodel It is correct). This

quantity is obtained from the Kalman filter based on model i. Recall the Kalman

filtering equations,

�j(kjk) = �j(kjk - 1) + Kj(k)vj.(k) (5.5)

vi(k) = y(k) - (,'�j(klk - 1) (5.6)

Ki(k) = Pj(klk - I)OT [OPi(klk - I)OT - R]-' (5.7)

Vi(k) = OPj(klk - -R (5.8)

Pj(klk) = Pj(kjk - 1) - Kj(k)0Pj(kjk - 1) (5.9)

�j(k + Ilk) = f1iii(k1k)

Pi(k + Ilk) -- AYj Pi (k I k) ITT + Q

The subscript i is used to indicate that these Kalman filter equations correspond to
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the filter based on model i. We know

p (y (k) I Yk, model i is correct) = N (vi (k); 0, 1�- (k)) (5-12)

as shown in [15]. Thus, by substituting (5.12.) in (5.4), we determine the probability

that model i is correct given all measurements up to and including time k.

For each time k, model Ri(k) is the more likely approximation to the true dynam-

ics of the system A(k) if pi(k) > pj(k) for i. Of course, the final model chosen by

the model identifier is the hypothesized model that is most likely given all the data.

That is, the final decision of the model identifier is ki(k) if pi(T) > pj(T) where T is

the time interval over which we have data. Thus, the model identification technique

described in this section consists of two Kalman filters and a recursive probability

calculation.

5.3 Simulation Setup

We generate a computer simulated, dynamically evolving ellipsoid and its measure-

ments as described by (5.1) and (5.2). For these simulations, we use a two-dimensional

ellipsoid whose characteristics are chosen to reflect those of projections of the ellipsoid

that approximates the left ventricle. The characteristics of the starting ellipse are as

given in Table 4.1. This simulated ellipse shrinks for eight steps at a rate t" and

expands for eight steps at rate The matrices that describe this type of dynamics

as in (3.7) are represented as AM = r(A(k)) where r(.) is defined in Section 3.2.2

and

A(k) t,,,I for k = I... 8

I for k = 9 ... 16

These dynamics yield the actual ejection fraction which we denote EF,,. Measure-

ments, as described by (5.2), are noisy observations of the ellipsoid itself (i.e. I).

The variance of the measurement noise, 11(k), is given by R = rI.

In addition, we generate two hypothesized dynamic models which are described
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by the matrices A11(k) = r(Ml(k)) and A12(k) = r(A12(k)) where

Mi (k) tii for k = I ... 8 (5.14)

' I for k = 9 ... 16Ti

The ejection fractions corresponding to the hypothesized models will be denoted as

EF, and EF2 -

Before continuing, a few comments on initializations and definitions are in order.

For reasons discussed in Section 4.3.2, the Kalman filter is initialized with

Po = 5R = pI

io -lffy(l)

In addition, the model identification scheme must be initialized with the prior prob-

ability of each model. We assume that both hypothesized models are equally likely

and set p, (0) = P2(0) = 1/2. Finally, note that signal-to-noise ratio is defined as in

(4.4).

To summarize, our simulation procedure is as follows. First, we generate a dynam-

ically evolving ellipsoid and its measurements as described in Equations (5.1)-(5.2).

The measurements described by (.5.2) are the input to a model identifier which con-

sists of two Kalman filters, KF1 and KF2, based on hypothesized dynamic models

All (k) and M2(k), respectively. Based on the output of the Kalman filters, vl(k),

V2(k), V, (k), and V2(k), we calculate pi(k) andP2(k) as defined in (5.4). Finally, we

choose model i as the better approximation to the true dynamics of the system given

all the data if pi(T) >pj(T) where T is the interval over which we have data.

5.4 Experiment #1 : Matched Contraction

The objective of this first model identification experiment is to investigate the perfor-

mance of the model identification technique when one of the hypothesized dynamic

models is exactly equal the dynamics used to create the set of ellipses. In general,
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we will not encounter such a scenario in the real world. Indeed, we need to know

the true dynamics to construct a hypothesized model that exactly matches true dy-

namics. This exercise is meant to give us insight into the performance of the model

identification scheme.

In this section, we conduct a series of model identification simulations where the

hypothesized model Ml(k) equals the true ellipsoid dynamics A(k). We investigate

the effect of noise on the performance of the model identification scheme. In addition,

we evaluate the performance of model identification as the two hypothesized models

become more similar.

We begin with the simplest problem. The true rate of ellipsoid contraction is

t,, = .936 which yields an actual ejection fraction EF,,, = .65. We will fix the strength

of measurement noise to be

ri 10-3M (5-15)

where m (5.16)
3

For this rate of contraction and noise level, the signal-to-noise ratio is as shown

in Figure 5-1. The first hypothesized model has a contraction rate equal to the

actual contraction rate (i.e. t, = t,, = .936) and therefore, EF, = .65. The second

hypothesized model has a contraction rate t2= .986 which yields an ejection fraction,

EF2 -_ .2. Note that the separation between ejection fractions of the two models is

large, 0.45. For 100 realizations of this simulation, we obtain the results shown in

Figure 5-2. This figure shows percent of our realizations that correctly choose Ri(k)

as the best approximation to the true ellipse dynamics A(k) at each time step (i.e. the

number of realizations where pi(k) >P2(k) ). For this low noise and high separation

between hypothesized ejection fractions, we get 100% classification after the third

time step.

Next, we investigate the performance of the model identification as the strength of

measurement noise is increased. The same values as above are used for true and hy-

pothesized contraction rates. We investigate the performance of model identification
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Signal to Noise Ratio for Low Noise and true EF .65
35

30 -

25 -

20 -

15 -

10 -

5 -

0
0 2 4 6 8 10 12 14 16 18 20

Time

Figure 5-1: Signal to Noise Ratios for low noise, r,

Experiment #1, EF Separations .45
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Figure 5-2: Percent correctly identified for low noise ri and high degree of ejection

fraction separation
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Signal to Noise Ratio for Several Noises and true EF .65
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Figure 5-3: Signal to Noise Ratios for several noises with true EF -_ .65

for the measurement noise strengths given in Table 5.1. Note that m is as defined by

r, 10-'m.

r2 10-1.53M

r3 10--2.06 M

r4 I 10-1.'.OM,

Table 5.1: Measurement Noise Values

(5.16). The signal-to-noise ratios for these values of noise are shown in Figure 5-3.

Again, we conduct 100 realizations of the simulation. Figure 5-4 shows the percent

of realizations that correctly identify fli(k) as the model which more closely approx-

imates the true ellipse dynamics for each time step as measurement noise increases.

As we expect, an increase in measurement noise results a lower percentage of correctly

identified realizations. However, because the separation of the hypothesized ejection

fractions is large, 100% of our realizations correctly identified f1l(k) at time k = 17.
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Experiment #1, EF Separations =.45
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Figure 5-4: Percent correctly identified for several noises and model separation .45

Next, consider the case were the true rate of ellipsoid contraction is t,, = 0.951

which yields an actual ejection fraction EF,, = 0.55. Again, the first hypothesized

model has a contraction rate which equals the contraction rate of the true ellipsoid

dynamics (i.e. t, = t,, == 0.951). The second hypothesized model has a contraction

rate t2 = 0.978 which yields an ejection fraction, EF2 = 0.3. Now the separation

between the two hypothesized ejection fraction is 0.25. We consider the same set of

measurement noises specified in Table 5.1. The signal-to-noise ratios at each time

step for the different values of measurement noise are shown in Figure 5-5. Note that

the signal-to-noise ratios differ from those shown in Figure 5-3 because the ellipsoid

dynamics we are considering now have a different rate of contraction. In Figure 5-6,

we show the percent of the realizations that correctly choose A11(k) at each time

step and for increasing measurement noise. As we expect, we see a degradation in

the performance of the model identification scheme because of the decrease in the

separation between the two hypothesized ejection fractions. By time k = 17, we have

correctly chosen AM in over 98% of our realizations for all levels of noise.
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Signal to Noise Ratioq for Several Noises and true EF .55
35

30 -

25 -
Increasing r

20 -

15 -

10 -

5 -

0.
0 2 4 6 8 10 12 14 16 18 20

Time

Figure 5-5: Signal to Noise Ratios for several noises with true EF .55
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Figure 5-6: Percent correctly identified for several noises and model separation .25
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Signal to Noise Ratios for Several Noises and true EF =.5
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Figure 5-7: Signal to Noise Ratios for several noises with true EF = .5

Similarly, we conduct 100 realizations of the same simulation with t,,, = t, = 0.957

which yields EF,,, = 0.5 and t2 = 0.968 which yields EF2 = 0.40. Thus, the separation

between the two hypothesized ejection fractions is .10. For the values of noise strength

specified in Table 5.1 and t,, = 0.957, the signal-to-noise ratios at each time step are

shown in Figure 5-7. In Figure 5-8, we show the percent of the realizations that

correctly choose kl(k) at each time step and for increasing measurement noise. For

low levels of noise, 100% of the realizations correctly identify model #1 as the more

likely of the two hypothesized models at time k 17. For higher noise levels, only

about 80% of the realizations correctly conclude that model #1 is more accurate at

time k = 17.

Finally, we conduct another 100 realizations of this simulation with t" = t, = 0.957

yielding EF,, = 0.5 and t2 = 0.963 which yields EF2 -_ .45. Now, we have reduced the

separation between the two hypothesized ejection fractions to just 0.05. Again, we

use the measurement noise strengths specified in Table 5.1; the corresponding signal-

to-noise curves are the same as given in Figure 5-7. Figure 5-9 shows the percent of
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Experiment 1, EF Separations 0. 10
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Figure 5-8: Percent correctly identified for several noises and model separation .10

realizations that correctly identify S11 (k) at each time step for increasing measurement

noise. At the lowest level of measurement noise, 100% of the realizations correctly

conclude that that model #1 is the best approximation to the true dynamics; at the

highest level of measurement noise, about 65% of the realizations correctly conclude

that model #1 is the best approximation to the true dynamics.

We may summarize the results of this experiment by plotting the percent of re-

alizations that are correctly identified at time k = 17 as a function of the separation

between hypothesized ejection fractions. Figure 5-10 shows such a plot where each

curve represents the different values of measurement noise strength considered. The

results from this experiment show the model identifier performs well when one of the

hypothesized dynamic models matches the true ellipsoid dynamics. If the separation

between the ejection fractions of the hypothesized models is high (i.e. > 0.45), 100%

of our realizations are correctly identified by time k -_ 17. As the separation between

hypothesized ejection fractions decreases to 0.05, the model identifier still correctly

classifies more than 65% of the realizations by time k 17. These results illustrate

88



Experiment #1, EF Separations = 0.05
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Figure 5-9: Percent correctly identified for several noises and model separation 0.05

the trade off between the separation of hypothesized ejeciton fractions and noise. At

low levels of noise, the model identifier performs well even if the separation between

hypothesized ejection fractions is small. At high levels of noise, the model identifier

performs better as the separation between hypothesized ejeciton fractions increases.

In addition, we repeated this experiment with the true ejection fraction equal to

EF2, the smaller of the two hypothesized ejection fractions. The results were similiar

to the case descibed above where the true ejection fraction was equal to EF1.

5.5 Experiment #2 : Contraction Mismatch

We will almost certainly be faced with identifying the ellipsoid dynamics which differ

from the two hypothesized models. In this experiment, we evaluate the performance

of model identification when neither of the two hypothesized dynamic models has a

contraction rate that equals the contraction rate of the true ellipsoid dynamics. To do

this, we establish two hypothesized dynamic models with ejection fractions, EF, and
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Summary of Experiment #1
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Figure 5-10: Percent correctly identified as a function of separation of the hypothe-

sized ejection fractions for each of the noises listed in Table 5.1

EF2. Then, we vary the true ellipsoid dynamics such that the true ejection fraction

EF,,, varies between EF, and EF2- In addition, we will investigate the effect of noise

on the performance of the model identification scheme.

The hypothesized models are fixed for this experiment. The first hypothesized

model has a contraction rate of t, = 0.936 which yields an ejection fraction of EF, =

0.65. This hypothesized model corresponds to an above normal ejection fraction.

The second hypothesized model has a contraction rate of t, = 0.986 which yields an

ejection fraction of EF2 _- 0.20 which corresponds to a below normal ejection fraction.

These values for ejection fraction are used so that on the basis of which hypothesized

model is chosen by the model identifier, we may classify the true ejection fraction as

above or below normal.

In addition, we generate the true dynamically evolving ellipsoids in the following

way. We generate fourteen different dynamically evolving ellipsoid sets with contrac-

tion rates t' chosen so that the true ejection fraction EF' vary between EF, and EF2-a a
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Table 5.2 lists the contraction rates used and their corresponding ejection fractions.

Measurements of each of these fourteen dynamically evolving ellipsoid sets are pro-

cessed by the model identifier as described in Section 5.2 which determines which of

the hypothesized dynamic models is the better approximation to the true ellipsoid

dynamics.

ti EF'a a

0.9838 .23
0.9814 .26
0.9788 .29
0.9762 .32
0.9734 .35
0.9706 .38
0.9676 .41
0.9644 .44
0.9611 .47
0.9576 .50
0.9539 .53
0.9500 .56
0.9458 .59

F6. 9-4 1-3 .62

Table 5.2: Values for true contraction rates and corresponding EFs

Once again, we start with the low noise case. Let the variance of the measurement

noise be R = r1l where r, is defined as in (5.15). This simulation was repeated 100

times and the results are presented in Figure 5-11. The plot shows the percent of

realizations that picked model #1 at time k -- 17 for each value of true ejection

fraction. Of course for this two model case, the percent of realizations that choose

model #2 is just one hundred minus the percent that choose model #1. As we had

hoped, if the true ejection fraction is high (i.e. EFa > 0-5), the model judged to be

most accurate is model #1. If the true ejection fraction is low (i.e. EFa < 0.4), model

#2 is judged to be the more accurate estimate of the true dynamics. Note that there

is a transition region between 0.4 and 0.5. If the true ejection fraction lies in this

transition region it is difficult to determine what the decision of the model identifier
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Experiment #2, Low Noise Case
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Figure 5-11: True ejection fraction vs. percent of realizations that choose model #1
at k = 17 for low noise

will be.

Thus, it is possible to determine a range in which the true ejection fraction lies

based on the outcome of the model identifier. Suppose the true ejection fraction of

the ellipsoid is unknown and the model identification chooses model #1 as the more

likely of the two models. We would guess that the true ejection fraction lies between

0.5 and 1. Thus, it is possible to determine if the ejection fraction lies in a normal or

below normal range based on the outcome of the model identifier.

In addition, we may consider the case where the strength of the measurement

noise is increased. In Figure 5-12, we show the ejection fraction of the true ellipsoid

dynamics versus the percent of realizations that picked model #1 at time k = 17 for

each of the measurement noise strengths in Table 5.1. Each curve corresponds to a

different value of measurement noise strength. As the measurement noise increases,

the transition region where the outcome of the model identification scheme is un-

certain becomes wider. Thus, even at high measurement noise, the model identifier
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Experiment #2, Increased noise case
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Figure 5-12: True ejection fraction vs. percent of realizations that choose model #1
at k = 17 for several noises. The curves with the wider transition region correspond
to higher noise.
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chooses the hypothesized model with the ejection fraction that more closely matches

the true ejection fraction in a majority of the realizations that we considered.

5.6 Experiment #3 : Contraction and Rotation

Mismatch

It is reasonable to expect that we will need to identify the dynamics of an ellipsoid

which rotates as well as contracts/expands. The objective of this final experiment

is to evaluate the performance of the model identification scheme when the true el-

lipsoid dynamics include contraction/expansion and rotation and the hypothesized

models include only contraction/expansion at a rate different from the true contrac-

tion/expansion. To study this case, we use the same procedure as in Experiment

#2 where the ejection fractions of the hypothesized models are fixed and the true

contraction rate varies such that the true ejection fraction varies between the two

hypothesized ejection fractions. Again, we study the effect of noise on model identifi-

cation when the mismatch in the models and truth includes contraction and rotation.

Once again, the hypothesized models are fixed. The first hypothesized model has

a contraction rate of ti = 0.936 which yields an ejection fraction of EF, = 0.65.

The second hypothesized model has a contraction rate of t, = 0.986 which yields an

ejection fraction of EF2= 0.20.

The matrix that represents the true ellipsoid dynamics differs from that given in

(5.13). The true ellipsoid dynamics are now given by A(k) -_ r(A(k)) where

t"I Cos 0 sin 0 for k I... 8

A(k) sin 0 cos 0 (5.17)

I Cos - sin 0 for k 9 ... 16

sin cos 0

where t,, varies as shown in Table 5.2 and 0 = 7r/.54, which implies a total rotation

of approximately 7r/6.
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We consider the same four levels of measurement noise strength as in Section 5.5.

Let the variance of the measurement noise be R = rJ for i = I ... 4 where ri is

defined as in Table 5. I.

Again, we perform 100 realizations of this simulation and present the results in

Figure 5-13 which shows the percent of realizations that picked model #1 at time

k = 17 for each value of ejection fraction of the true ellipsoid dynamics. The results

are similar to those presented in Figure 5-12. Each curve corresponds to a different

value for measurement noise. For low measurement noise, the transition region, where

the decision of the model identifier is uncertain, is narrow. As the measurement noise

is increased, the transition region becomes wider.

These results indicate that, even for high levels of measurement noise and when

the true dynamics include rotation , the model identifier will choose the hypothesized

model whose ejection fraction is closest to the true ejection fraction. In addition,

these results are encouraging in that they do no significantly differ from the results

of Experiment #2 where the true dynamics did not include rotation.

5.7 Model Identification of 3D Dynamics

We repeat these model identification experiments to determine which of two hypoth-

esized dynarnic models best approximates the true dynamics of a three-dimensional

ellipsoid. For the three-dimensional dynamic model identifier, the input is a set of

noisy two-dimensional projections onto orthogonal planes. The matrix that captures

the geometry of the projections is given by (4.10).

We begin by investigating the performance of the three-dimensional model iden-

tifier when one of the hypothesized models exactly matches the true dynamics of the

ellipsoid. Figure 5-14 shows the number realizations out of 100 that correctly iden-

tify model #1 by time k = 17 as a function of separation between the hypothesized

ejection fractions. Each curve corresponds to different level of measurement noise, 'ri,

where the measurement noise strengths are given in Table 5.1. The results indicate

that we are able to accurately identify the dynamics of the three-dimensional ellip-
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Experiment #3, Several Noise Values
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Figure 5-13: True ejection fraction vs. percent of realizations that choose model #1
at k = 17 for several noises. The curves with the wider transition region correspond
to higher noise.
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Summary of Experiment #1 for 3D ellipsoids
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Figure 5-14: Percent of realizations that choose model #1 as a function of the sepa-
ration of the hypothesized ejection fractions for several values of noise

soid for 100% of the realizations if the measurement noise is low and for 75% of the

realizations if the measurement noise is high.

Next, we investigate the performance of the three-dimensional model identifier

when neither of the two hypothesized dynamic models has a contraction rate that

equals the the contraction rate of the true ellipsoid dynamics. Just as we did in

Section 5.5, we fix the two hypothesized ejection fractions at EF, and EF2 and vary

the true ejection fraction EF,,, between EF, and EF2- In Figure 5-15, we show the

percent of realizations that picked model #1 at time k -_ 17 as the measurement

noise increases. The true ejection fraction of the ellipsoid again varies as shown in

Table 5.2. Again, these results indicate that even for high levels of measurement

noise, the model identifier chooses the hypothesized model with the ejection fraction

that more closely matches the true ejection fraction in a majority of the realizations

that we considered.

Finally, we evaluate the performance of the model identification scheme for a three-
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Experiment #2 for Several Noises and 3D
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Figure 5-15: Percent of realizations that choose model #1 as a function of true ejection
fraction value for several levels of measurement noise

dimensional ellipsoid when the true ellipsoid dynamics include contraction/expansion

and rotation and the hypothesized models include only contraction/expansion at a

rate different from the true contraction/expansion rate. The true ellipsoid dynamics

include contraction/expansion at the rates listed in Table 5.2 and a rotation about the

x-axis of 7r/54 at each time step for a total rotation of approximately 7r/6. Again, we

perform 100 realizations of this simulation and present the results in Figure 5-16 which

shows the percent of realizations that picked model #1 at time k = 17 for each value

of true ejection fraction and for several measurement noises. These results illustrate

that the model identification scheme accurately chooses the hypothesized model with

the ejection fraction that more closely matches the true ejection fraction in a majority

of realizations for three-dimensional ellipsoids. These results are encouraging because

they show that the effect of rotation on the model identifier is minimal.
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Experiment #3, 3D
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Figure 5-16: Percent of realizations that choose model #1 as a function of true ejection
fraction value for several levels of measurement noise

5.8 Conclusions

In this chapter, we have evaluated the performance of model identification. We have

studied three cases : the case where one of the hypothesized models equals the true

dynamics; the case where the neither hypothesized dynamic model matches the true

contraction rate of the ellipsoid dynamics; and the case where the neither hypothesized

model matches the true contraction or rotation rate of the ellipsoid dynamics. We

have studied the performance of the model identifier in each of these scenarios as

the measurement noise is increased. As our simulated results indicate, the model

identifier performs well for these scenarios.
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Chapter 6

Real Data

6.1 Objective

Thus far, our investigation has focused on simulated data. In Chapter 4, we focused

on reconstructing a computer simulated, dynamically evolving ellipsoid based on the

Rauch-Tung Striebel smoothing algorithm. We reconstructed a two-dimensional ellip-

soid from noisy observations of the ellipse itself and a three-dimensional ellipsoid from

noisy two-dimensional projections. In Chapter 5, we investigated the performance of a

model identification scheme to determine which of two hypothesized dynamic models

best matched the dynamics of a computer generated, dynamically evolving ellipsoid.

Again, we applied model identification to both two- and three-dimensional ellipsoids.

Of course, the true test of the work done in this thesis is to apply similar approaches to

myocardial perfusion data actually taken from patients with potential heart disease.

In this chapter, we test the model identification scheme and the smoothing-filter-

based ellipsoid reconstruction on ellipses extracted from real myocardial perfusion

data and estimate ejection fraction of the left ventricle. Myocardial perfusion data is

typically taken as a set of three views for each patient. Ellipses extracted from these

three views maybe thought of as noisy two-dimensional projections of the three-

dimensional ellipsoid that approximates the left ventricle. Just as we have done in

previous chapters, we may process these extracted ellipses with a model identifier or

a smoothing -filter.
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In this chapter, we process the real data in two ways. First, we may process

the three views together as a three-dimensional model identification or reconstruc-

tion problem. That is, we may identify the dynamics of and reconstruct the three-

dimensional ellipsoid that approximates the left ventricle based on the set of noisy

two-dimensional projections in the three views. The outcome of the model identifier

is used to determine a range of the probable values of the true ejection fraction and

provide an assumed model for the smoothing-filter-based reconstruction. Based on

the volume of three-dimensional ellipsoids which are the output of the smoothing

filter, we calculate an estimate of the ejection fraction of the left ventricle. We inves-

tigate the correlation between the ejection fraction calculated this way and the "gold

standard" MUGA based ejection fraction values for each patient.

Alternatively, we may calculate approximations to the three-dimensional ejection

fraction by processing each view individually as a two-dimensional problem. That

is, we may identify the dynamics of the two-dimensional ellipsoidal projections and

use a smoothing filter to reconstruct the two-dimensional ellipsoidal projections. For

each view, the outcome of the model identifier is used to determine a range of the

probable values of the true two-dimensional ejection fraction and provide an assumed

model for the smoothing-filter-based reconstruction. Based on the reconstructed two-

dimensional projections which are the output of the smoothing filter, we may calculate

a two-dimensional ejection fraction for each view. This type of processing of individual

projection data gives a measure of the contraction of the three-dimensional ellipsoid in

the plane of the projection. We investigate approximations of the three-dimensional

ejection fraction based on the two-dimensional ejection fractions for each view.Again,

we investigate the correlation between these approximations to the three-dimensional

ejection fraction and the MUGA based ejection fraction values for each patient.

This chapter is organized as follows. We begin with a description of the real

myocardial perfusion data that is available to us. Next, we employ model identi-

fication and smoothing filter based reconstruction to estimate the two-dimensional

ejection fraction of each view for each patient. Finally, we use model identification

and smoothing filter based reconstruction to combine the data of the three views and
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directly estimate the three-dimensional ejection fraction.

6.2 Data Description

We are fortunate to have access to the raw myocardial perfusion images and the

"gold standard" MUGA based ejection fraction estimates for 28 patients. The data

set for each individual consists of three views (anterior, lateral, left anterior oblique)

of sixteen frames each. Anterior (ANT) refers to a frontal view; lateral (LAT) refers

to a side view from under the left arm; left anterior oblique (LAO) refers to a frontal

view skewed down and to the left. In general, the ANT view shows the smallest cross-

sectional area. The LAT view shows the largest cross-sectional area. The LAO view

shows a cross-sectional area that lies between the other two views. The set of sixteen

frames for each view is produced using ECG gating as described in Chapter 2. Thus,

each frame is not a snapshot of the heart in motion, but rather the sum of images

corresponding to a particular cardiac phase over several cardiac cycles. These raw

images are several years old and were taken using the radionuclide Thallium. As we

mentioned in Chapter 2, recent developments make it feasible to use Technetium as

the imaging agent for myocardial perfusion. The work described in this chapter is

applicable to myocardial perfusion based on either of these imaging agents.

As we have previously mentioned, both the model identification scheme and the

smoothing filter based reconstruction expect as input ellipses that have been ex-

tracted from the raw myocardial perfusion images. For consistency, we employ a

semi-automated method to extract ellipses from each frame. The Matlab program

used to extract these ellipses is included as Appendix 6-A. This method has proven

to be robust for the following reasons. First, there is minimal human intervention.

Second, the ellipse extraction is not sensitive to occlusions which appear as dark re-

gions in the myocardium. This point is important because most patients undergoing

this procedure have some history of cardiovascular disease.

For this chapter, we concentrate on testing our model identification and smoothing

filter based ejection fraction estimation techniques on six individuals. In Figure 6-1,
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Patient 1 2 1 4 -3 44 - ]- 4 -5 1 # 6 11
MUGA EF 0.26 0.5-6- 0.20 25 0.28 0.40

Table 6.1: MUCA Ejection Fractions for Six Individuals

we have plotted the areas of the 16 extracted ellipses from the ANT view for each

of our six patients. Similar plots may be generated for the LAT and LAO views. In

comparing the six patients, we conclude that the maximum of the cycle occurs at the

first and sixteenth time step for each individual, but the minimum point varies from

person to person. In addition, we know the "gold standard" MUGA based ejection

fraction numbers for each of the six individuals. These values are given in Table 6.1.

These ejection fractions range from 0.20 to 0.56. Thus, our sample set consists of

individuals whose ejection fractions range from below normal to normal.

6.3 2D Processing

In this section, we use model identification and smoothing filter-based reconstruction

to process each view individually as a two-dimensional problem. That is, we apply

these techniques to extracted ellipses from one view at a time. First, we use the

model identification scheme to determine which of two hypothesized models best

approximates the dynamics of the two-dimensional ellipsoid projection. The outcome

of the model identifier is of interest, in and of itself, because it indicates whether

the patient's ejection fraction is in a normal or below normal range. Second, we

employ the Rauch-Tung Striebel smoothing filter to reconstruct the two-dimensional

ellipsoidal projections. We investigate a smoothing filter based on the model chosen

by the model identifier as well as a smoothing filter based on a random walk model

of dynamics. We also calculate the two-dimensional ejection fraction based on these

reconstructed ellipses.

In addition, we investigate approximations to the three-dimensional ejection frac-

tion based on the two-dimensional ejection fractions of the three views. One rough
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Figure 6-1: Anterior areas for aR patients
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approximation to the three-dimensional ejection fraction is the two-dimensional ejec-

tion for each view. A second, more sophisticated, approximation to the the three-

dimensional ejection fraction is a function that combines the two-dimensional ejection

fraction for each view. In this section, we investigate the correlation between these

approximations to the three-dimensional ejection fraction and the MUGA based ejec-

tion fraction values for each patient.

6.3.1 2D Model Identification

We use the model identifier to process the data for each view of each individual to

determine which of the hypothesized models we should use as an assumed model in

the smoothing filter. Specifically, the model identification scheme is implemented in

the following way. For each of the three views, the input to the model identifier con-

sists of the set of 16 ellipses extracted from raw data. Because we are reconstructing

the ellipses based on noisy observations of the ellipses themselves, the matrix that

captures the geometry of the measurements, C, is the identity. The two hypothesized

models have ejection fractions EF, = 0.6 and EF2 = 0.2 respectively. These two hy-

pothesized models correspond to above and below normal values for ejection fraction.

As we mentioned in Section 6.2, the point corresponding to the minimum in the cycle

of the extracted ellipses varies from person to person. For this reason, the hypothe-

sized models used by the model identifier have a variable minimum point, T", that is

chosen to correspond to the apparent cycle minimum for each individual. Thus, the

matrices that represent the hypothesized dynamics are given by ki(k) = r(Mi(k))

where

A (k) ciI for k = 1 ... Tm (6.1)

eiI for k = T, + 1 ... 15

where ci = (1 - EFi) (T,,,-1)2 , ei = (1 - EFi) T1_6 and T, is the apparent cycle

minimum specified by the user. It is also possible to implement an automated method

of determining the cycle minimum, although we did not do so here.

In addition, we set the value for the variance of the process noise, q, to zero for
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both Kalman filters, indicating a high degree of confidence in the models. This value

of q accentuates the difference between the two models. The last parameter to be set

in the model identifier is the variance of the measurement noise, r. In dealing with

real data, the true value of the variance of the measurement noise is unknown. We use

20 < r < 120 because for this range the decision of the model identifier is accurate.

A smaller value of r indicates that the measurements are less noisy. Specifially, for

the six cases considered in this chapter, a value of r < 20 indicates that the variance

of the measurement noise is smaller than the true variance of the measurement noise

in the observations. For this reason, the outcome of the model identifier becomes less

reliable for values of r < 20.

The decisions of the model identifier for each patient and each view when r = 100

are shown in Table 6.2. We get the same results as in Table 6.2 for 20 < r < 100

for Patients#1-5. For Patients #1-5, it is clear which dynamic model to use as the

assumed model in the smoothing filter because the outcome of the model identifier is

the same for each view.

Patient #6 is a special case because the MUGA ejection fraction value for this

patient is equidistant from the two hypothesized ejection fractions. That is, the

MUCA ejection fraction lies in the transition region we discussed in Chapter 5. This

may be one reason why the decision of the model identifier differs for the three views.

The outcome of the model identifier for this patient also varies as we change the

value of r. Because it is not clear which hypothesized model we should use as an

assumed model in the smoothing filter, we use a second model identifier where the

two hypothesized ejection fractions are EF, = 0.50 and EF2 = 0.20. This model

identifier is also implemented with r = 100 and q = 0. The second model identifier

chooses model #1 for ANT and LAO views, but still chooses model #2 for LAT view

for Patient #6. Since the decision of the model identifier is still inconsistent between

the three views, we implement a third model identifier where the two hypothesized

ejection fractions are EF, = 0.40 and EF2 = 0.20. For all three views, this model

identifier chooses model #1.Thus for Patient #6, we use an assumed model that has

an ejection fraction of 0.40.
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Patient #1 #2 #3 #4 #5 #6
MUGA 0.26 0.56 0.20 0.25 0.28 0.40
ANT Model #2 Model #1 Model #2 Model #2 Model #2 Model #1
LAT Model #2 1 Model #1 I Model #21 Model #2 Model #2 1 Model #21
LA I Model #21 Model #1 I Model #21 Model #2 Model #21 Model #1

Table 6.2: Results of 2D Model Identifications for r = 100

Note that this result indicates another potential use for the model identification

scheme. That is, we may be able to implement several successive model identifiers to

directly estimate ejection fraction. We investigate this type of scheme further with

three-dimensional processing.

6.3.2 Smoothing Filter Reconstructions

In this subsection, we use the Rauch-Tung Striebel smoothing filter to reconstruct

the two-dimensional ellipsoidal projections of the three-dimensional ellipsoid that ap-

proximates the left ventricle. That is, for each view, we reconstruct a two-dimensional

ellipsoid based on noisy observations of the ellipses themselves. We implement one

smoothing filter based on an assumed model that was chosen by a method such as

the model identification scheme. In addition, we implement a second smoothing filter

based on the random walk model of dynamics.

Implementation

We implement two Rauch-Tung Striebel smoothing filters to process the data for

each view of each individual. The first smoothing filter is based on an assumed

dynamic model. The matrix that represents the assumed dynamic model is as given

in (6.1) where the value for EFi for each patient is given in Table 6.3. Note that

the same assumed model is used for each of the three views for any given individual.

The second smoothing filter is based on the random walk model of dynamics. The

dynamic model used by the smoothing filter is defined by the matrix M(k) = I.

Thus, the ejection fraction associated with the random walk model of dynamics is
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Figure 6-2: Effect of varying r/q on smoothing filter output for ANT view for Patient

#2

zero. To implement either of these smoothing filter, we need to set values for the

process noise variance, Q = qI, and the measurement noise variance, R = rL A

low value of q indicates a high degree of confidence in the model and results in

the smoothing filter output following the model. A low value of r indicates a high

degree of confidence in the measurements and results in the smoothing filter output

following the measurements. Thus, we may set the degree of smoothing by adjusting

the value of r/q. We studied the output of several smoothing filter implemented with

different values for r/q. Figure 6-2 shows the effect of changing this ratio value on

the smoothing filter output for the ANT view of Patient #2. This figure shows the

areas of the extracted (unsmoothed) ellipses, areas of the assumed model smoothed

ellipses, and areas of the random walk model smoothed ellipses. After examining

plots such as Figure 6-2, we chose the ratio r/q = 2 because for this value the filter

provides some smoothing without completely ignoring the measurements.

The output of the smoothing filter are reconstructed ellipses. In Figure 6-3, we
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Patient #1 #2 #3 #4 #5 #6
EFi 0. 2 0.6 0.2 0.2 0.2 0.4

Table 6.3: Values of Assumed Model EFs

show the areas of the unsmoothed ellipses, the areas of the reconstructed ellipses from

the assumed model smoothing filter, and the areas of the reconstructed ellipses from

the random walk smoothing filter for the ANT view for each of our six patients.

2D Ejection Fraction Calculation

For each of the three views, we now calculate the ejection fraction of the two-

dimensional ellipsoids which are projections of the three-dimensional ellipsoid that

approximates the left ventricle. For each projection, the two-dimensional ejection

fraction gives a measure of the contraction of the three-dimensional ellipsoid in the

plane of the projection. The general definition of ejection fraction is as given in (2.1).

We note that maximum area of the cycle occurs at time k = 1 and k =: 16 and

the minimum area of the cycle occurs at the user specified time k = T,. We take

the average of the two maximum points as the maximum value for area. Thus, the

formula for ejection fraction of the each two-dimensional projections is given by

EF = area(l) + area(16) + 2area(T,) (6.2)
area(l) + area(16)

Using this definition, we may calculate the ejection fraction for each individual and

each view.

In Table 6.4, we have listed the ejection fractions for each view from static re-

construction, smoothing filter reconstruction based on the assumed model and a

smoothing filter based on the random walk model. The ejection fractions of each

of the two-dimensional ellipsoidal projections tends to be lower than the MUGA es-

timates. This is as it should be because the two-dimensional ejection fraction ignores

any contraction along the axis perpendicular to the plane of the projection. Note that

the static estimates of ejection fraction are based on the unsmoothed areas. Static
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Figure 6-3: Smoothed two dimensional reconstructions for ANT view for all patients
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Patien #1 #2 #3 #4 #5 #6
MUGA 0.26 0.56 0.2- 0.25 0.28 0.40

ANT static 0.4045 0.4306 0.1808 0.2079 0.3208 0.3843
LAT static 0.1045 0.4083 0.2353 0.1842 0.1198 0.2375
LAO static 0.1877 0.4603 0.1620 0.1531 0.1961 0.5194

ANT assumed model 0.3462 0.4984 0.1308 0.2222 0.2890 0.4113
LAT assumed model 0.1535 0.4925 0.1832 0.1727 0.1498 0.3247
LAO assumed model 0.2006 0.5064 0.1647 0.1496 0.2052 0.4756
ANT rw model 0.2987 0.3428 0.0703 0.1586 0.2417 0.3141
LAT rw model 0.0904 0.3322 0.1275 0.1041 0.0938 0.2127
LAO rw model 0.1421 0.3530 0.1078 0.0810 0.1526 0.3887

Table 6.4: Ejection Fractions for 2D reconstruction

estimates of ejection tend to show a large variation from view to view because these

estimates are the most likely to be effected by noise. For each view, the ejection

fraction estimate calculated from reconstructed ellipses using the assumed model of

dynamics is consistently higher than the ejection fraction estimate calculated from re-

constructed ellipses using the random walk to dynamics. This result is also expected.

Recall that the output of the smoothing filter is the best estimate given the dynamic

model and all the data. Thus, the reconstructed ellipses which are the output of a

smoothing filter based on the assumed model tend to have an ejection fraction that

is skewed towards the ejection fraction associated with the assumed model. Simi-

larly, the reconstructed ellipses which are the output of a smoothing filter based on

the random walk model tend to have an ejection fraction that is skewed towards the

ejection fraction associated with the random walk model (i.e. zero).

We have touched upon another inherent flaw in smoothing filter reconstruction

based on the assumed model. That is, the reconstructed ellipses which are the output

of a smoothing filter based on the assumed model tend to have an ejection fraction

that is skewed towards the ejection fraction associated with the assumed model. To

illustrate this point, we process the ellipses extracted for Patient #6 with smooth-

ing filters based on several different assumed models. Table 6.5 shows the ejection

fractions associated with each of the assumed models used and the ejection fraction



Assumed EF 0.20 0.30 0.40 0.50 0.60
ANT EF 0.3587 0.3838 0.4113 0.4419 0.4767
LAT EF 0.2642 0.2930 0.3247 0.3599 0.3999
LAO EF 0.4286 70.4510 O'.4756 1 0.5030 1 0.5343

Table 6.5: Variation of Reconstructed Ellipse EF with Assumed EF for Patient #6

calculated for each view using the different assumed models for Patient #6. Thus, the

ejection fraction of the reconstructed ellipses is skewed by the assumed model used

in the smoothing filter. We note that for each view the estimated ejection fraction

varies by approximately 0.10 while the hypothesized ejection fraction varies by 0.40.

Therefore, it is important to determine which assumed model best approximates the

true ellipsoid dynamics.

Approximating the 3D Ejection Fraction

Of course, the ultimate objective is to calculate an estimate for ejection fraction of

the three-dimensional ellipsoid that approximates the left ventricle. We consider two

types of approximations to the ejection fraction of the three-dimensional ellipsoid

based on the ejection fractions of the two-dimensional ellipsoidal projections.

One type of approximation to the ejection fraction of the three-dimensional ellip-

soid is the ejection fraction of the two-dimensional ellipsoidal projections. Thus, each

of the two-dimensional ejection fractions in Table 6.4 are approximations to the three-

dimensional ejection fraction. As we showed in Appendix 4-A, the ejection fraction

of a three-dimensional ellipsoid is equal to the ejection fraction of its two-dimensional

projections if there is no contraction of the three-dimensional ellipsoid along an axis

perpendicular to the plane of the projection. If the heart contracts in a manner

similar to this idealized case, the ejection fraction of the two-dimensional projections

would approximate the ejection fraction of the three-dimensional ellipsoidal model of

the left ventricle.

A second, more sophisticated type of approximation to the ejection fraction of

the three-dimensional ellipsoid that approximates the left ventricle is given by the
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formula

EF3d = 1 - V(1 - EFANT)(1 - EFLAT)(1 - EFLAO) (6-3)

This approximation is based on the assumption that the three views are projections

onto orthogonal planes. That is, we assume that the three views ANT, LAT, and

LAO correspond to projections onto the xy-, yz-, and xz-planes respectively.

The ejection fraction of the two-dimensional projections on the xy-plane may be

written as

EF�:y = 1 - XCYC (6.4)
X'Ye

where xc and yc correspond to the axis lengths of the fully contracted ellipse and x,

and y, correspond to the axis lengths of the fully expanded ellipse. We rewrite (6.4)

as

EF�,y = 1 - a,,,ay

where a., and ay are the ratio of fully contracted axis lengths to fully expanded axis

lengths along the x and y axes respectively. Similarly, we express the ejection fraction

of the two-dimensional ellipsoidal projections on the xz and yz-planes as

EF:,:, = 1 - aa, (6-5)

EFYZ = 1 - aya, (6.6)

The ANT, LAT, and LAO views correspond to projections onto the xy-, yz-, and

xz-planes respectively. That is,

EFANT = EF:,y (6.7)

EFLAT = EFYZ (6-8)

EFLAO = EF... (6.9)

We write the ejection fraction of the three-dimensional ellipsoid as

EF3d = 1 - a,,aa, (6.10)
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Patient #1 #2 #3 #4 #5 #6
MUGA 0.26 0.56 0.2 0.25 0.28 0.40
Combined View 3348 0.6455 0.2299 0.2603 0.3068 0.5434
Combined View (rw) 0.26021-0.4671 1 0.1493 1 0.1677 1 0.2369 1 0.4L55J

Table 6.6: Combined View Approximations to 3D EF

The formula of (6.3) obviously follows.

-Employing(6.3), we may calculate a combined-view approximation to the three-

dimensional ellipsoid ejection fraction. These values are given in Table 6.6. These

values are approximations to the three-dimensional ejection fraction; therefore, these

values are higher than the two-dimensional ejection fractions for each view given in

Table 6.4. Again, as expected, the approximation to the three-dimensional ejection

fraction based on reconstructed ellipses output by a smoothing filter that uses the as-

sumed model is higher than the corresponding approximation based on reconstructed

ellipses output by a smoothing filter that uses the random walk model of dynamics.

The set of approximations based on ellipses reconstructed using an assumed model

smoothing filter tend to overestimate the true ejection fraction.

Performance Evaluation

Let us discuss a method to measure the accuracy of each of the approximations to the

three-dimensional ejection fraction that were described in this chapter. As we have

previously mentioned, some of the approximations we have considered underestimate

the true ejection fraction and some overestimate the true ejection fraction. We would

like to determine which of the approximations described in this chapter give the best

overall estimate of the three-dimensional ejection fraction.

One can imagine plotting the MUGA ejection fraction values for each patient

versus our calculated approximation of three-dimensional ejection fraction. We can

also determine the slope and offset of the line that is best fit to these six points. If the

best-fit line has a slope of one and an offset of zero, then our calculated approximation

closely matches the MUGA ejection fraction values.
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In addition, we may calculate the correlation coefficient of the MUCA values

and our calculated approximation. The correlation coefficient gives a measure of the

spread of the points about the best-fit line. A correlation coefficient close to one

indicates a high degree of correlation. Let the random variables x and y denote the

estimated ejection fraction and the MUGA ejection fraction, respectively. Thus, the

sample pairs, (xiyi), of the random variables, x and y, represent the estimated and

MUGA ejection fraction values for Patient #i. Recall that the correlation coefficient

of two random variables, Xx, Y), is defined as

Xx7y) = Cov(x, Y) (6.11)
q'O'y

where cov(x, y) refers to the covariance of x and y and o-., and o-y are the standard

deviations of x and y, respectively. From the sample pairs (xi, yi)7 we may calculate

statistical approximations to the covariance and standard deviation of the random

variables x and y.

M
cov(x, Y) 'M E(xi - t)(Yi - Y) (6.12)

i=1
M

07X =,(Xi (6.13)
M -

where ;t = E xi/'M (6.14)
i=1

ra = Sample size (6.15)

For the results presented in this chapter m = 6. In Table 6.7, we list the slope

and offset of the best-fit line as well as the correlation coefficients for each of the

approximations of the three-dimensional ejection fraction. The static estimate of

ejection fraction did not correlate well with the MUCA ejection fraction values. The

approximations to the three-dimensional ejection fraction based on smoothing filter

reconstruction using an assumed model had correlation coefficients above 0.9. Recall

that the assumed models used for each individual were well matched to the true dy-

namics of the ellipsoid. Thus, these high correlation coefficients reflect the additional
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slope offset P

ANT static 0.9219 0.0286 0.7301

LAT static 0.9644 0.1177 0.7981

LAO static 0.6970 0.1300 0.8627

ANT assumed model 0.9123 0.0365 0.9057

LAT assumed model 0.9302 0.0961 0.9599

LAO assumed model 0.7643 0.1082 0.9328

Combined View (am) 0.7694 0.0274 0.9726

NT rw model 0.9681 0.0949 0.7631

LAT rw model 1.3127 0.1148 0.9456

LAO rw model 0.8769 0.1459 0.8711

Combined View (rw) 1 0.9416 1 0.0572 0.9398 1

Table 6.7: Correlation Coefficients for 2D

(correct) information incorporated by the smoothing filter based on the assumed

model. The approximations to the three-dimensional ejection fraction based on the

smoothing filter reconstruction using the random walk model of dynamics had lower

correlation coefficients for the ANT and LAO views.

6.4 3D Processing

In this section, we apply model identification and smoothing filter reconstruction to

combine the set of three, two-dimensional projections as observations of the three-

dimensional ellipsoid that approximates the left ventricle. Based on the reconstructed

three-dimensional ellipsoids, we calculate the ejection fraction of the ellipsoid that

approximates the left ventricle. While for the simulated model identification and

ellipsoid reconstruction of previous chapters the projection geometry was known,

for model identification and ellipsoid reconstruction based on real data the exact

projection geometry is unknown. In this section, we assume a projection geometry

that is an approximation to the true (unknown) projection geometry.

116



6.4.1 3D Model Identification

We use the model identifier to combine the three projected views and determine

which of two hypothesized models best matches the dynamics of the three-dimensional

ellipsoid that approximates the left ventricle. The model identification scheme is

implemented in the following way. The input to the model identifier is the set of

ellipses extracted from each of the three views. The ANT and LAT views are assumed

to be projections onto orthogonal planes. The LAO view is assumed to be projections

onto a plane that is tilted by 45' from the plane that is orthogonal to both the ANT

and LAT planes. Thus, the corresponding matrix that captures the geometry is given

by

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0 (6-16)

0 0 0 0 0 1

0.5 0 -0.7071 0 0 0.5

0.5 0.5 0 0 -0.5 -0.5

0.25 0.5 0.3536 0.5 0.5 0.25

The two hypothesized models have ejection fractions EF, 0.6 and EF2= 0.2 respec-

tively. Once again the user must provide a point that corresponds to the minimum

of the cycle. The matrices that define the dynamics are again given by (6.1). The

strength of the process noise, q, is set to be zero. We test this model identification

scheme for a wide range of values for the variance of the measurement noise. The

decision of the model identifier for 20 < r < 200 are shown in Table 6.8. For this

three-dimensional model identification the model identifier chose the correct model

for Patients #1-5. Again, the decision for Patient #6 is ambiguous because the

MUCA ejection fraction for this patient lies in the transition region between the two

hypothesized ejection fractions.
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Patient #1 #2 #3 #4 #5 #6
MUGA 0.26 0.56 0.20 0.25 0.28 0.40
Mod ID Model #2 Model #1 Model #2 Model #2 Model #2 Model #1

Table 6.8: Results of 3D Model Identifications for 20 < r < 2000

Model Identification Used to Determine EF

As we have mentioned, it may also be possible to determine the ejection fraction using

successive model identifiers. We use ellipses extracted from the raw data for Patient

#6 to illustrate this point. The model identifiers used were implemented with q = 0,

r = 100 and 0 as given in (6.16). We begin by implementing a model identifier with

hypothesized ejection fractions EF, = 0.6 and EF2= 0.2. For Patient #6, the model

identifier chooses model #1. Drawing on the simulated model identification examples

of Chapter 5, we would conclude that the actual ejection fraction EF', > 0.4. Next,

we implement a model identifier with hypothesized ejection fractions EF, = 0.6 and

EF2 = 0.3. Again, the decision of the model identifier is model #1. This indicates that

the actual ejection fraction EF,, > 0.45. Now, we implement a model identifier with

hypothesized ejection fractions EF, = 0.6 and EF2 = 0.4. This model identifier also

chooses model # 1 indicating EF,, > 0.5. Finally, we implement a model identifier with

hypothesized ejection fractions EF, = 0.6 and EF2= 0.5. This final model identifier

chooses model #1 indicating EF. > 0.55. We stop at this point where the separation

between the hypothesized ejection fractions is 0.10 because as our simulations have

shown the model identifier is not reliable as the separation between the hypothesized

ejection fractions becomes smaller. This value of ejection fraction does not agree with

the MUGA ejection fraction value for Patient #6. Since we have tested this approach

on only one patient, it is difficult to determine the reason for this discrepancy. In

future work, we will use a technique similar to that illustrated by this exercise to

determine the ejection fraction for more patients.
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6.4.2 Smoothing Filter Reconstructions

In this subsection, we use the Rauch-Tung Striebel smoothing filter to reconstruct the

three-dimensional ellipsoid that approximates the left ventricle. That is, we combine

the data of all three views to reconstruct one three-dimensional ellipsoid. Once again,

we implement one smoothing filter based on an assumed model and another based on

a random walk model of dynamics.

Implementation

The Rauch-Tung Striebel smoothing fil ter based on the assumed model is imple-

mented in the following way. Similar to approach in the two-dimensional version,

we define two assumed dynamic models Mi(k) and M2(k) with ejection fractions

EF, = 0.20 and EF2 = 0.60. The matrices MI(k) and M2(k) are again defined as in

(6.1) where T, is the user entered cycle minimum. As for the two-dimensional re-

construction, the smoothing filter reconstruction for Patients #1,3,4,and 5 are based

on k2(k). Similarly, the smoothing filter reconstruction for Patients #2 and 6 are

based on kl(k). The Rauch-Tung Striebel smoothing filter based on the random

walk model of dynamics is implemented in the a similar manner. The matrices that

represent the random walk model of dynamics are given by k(k) = L

In addition, both smoothing filters are implemented with the following parameters.

The ratio of measurement noise variance r to process noise variance q is again used to

determine the amount of smoothing. After using several different values for r/q, we

chose r/q = 10 because this value yields a filter that provides some smoothing without

completely ignoring the measurements. The matrix that captures the geometry of the

projections is given by (6.16).

Note that it is possible to perform a static reconstruction (i.e. estimate at time k

is based only on measurements at the same time) of the ellipsoid using the formula

� = (OTO)OTY(k-) (6-17)

where y(k) is the vector representing the three measurements or projections at time
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The output of the smoothing filters are reconstructed three-dimensional ellipsoids.

In Figure 6-4, we show the volumes of the unsmoothed ellipsoids, the volumes of the

reconstructed ellipsoids from the assumed model smoothing filter, and the volumes

of the reconstructed ellipsoids from on the random walk smoothing filter for each

of our six patients. We also suggest that the plots shown in Figure 6-4 that show

dynamic estimates of volume versus time may have potential prognostic value, in and

of themselves. We note that for patients with low ejection fraction and what appear

to be occlusions these plots show unusual variations for estimates of volume over time.

Ejection Fraction

Again the maximum volume for the reconstructed three-dimensional ellipsoid occurs

at time k = I and k = 16 and the minimum volume of the cycle occurs at the user

specified time k = T, The definition for ejection fraction is given by

vol(l) + vol(16) + 2area(T,)
EF - vol(l) + vol(16) (6.18)

This is the ejection fraction for the three-dimensional ellipsoid that approximates the

left ventricle.

Table 6.9 lists the ejection fractions for the static reconstruction case, the assumed-

model-based smoothing filter, and the random-walk-model-based smoothing filter.

The ejection fraction calculated from reconstructed ellipsoids using an assumed model

are again skewed by the assumed ejection fraction. For example, the assumed ejection

fraction for Patient #6 is 0.50. As a result, the ejection fraction estimate based on a

smoothing filter that uses the assumed model is higher than the MUGA or random

walk based ejection fraction. As we expected, ejection fractions calculated using

ellipsoids reconstructed using the random walk model tend to be lower than those

calculated reconstructed using the assumed model.

As we have noted, there exists an inherent flaw in the assumed model based

reconstruction; the reconstructed ellipses which are the output of a smoothing filter
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Figure 6-4: Smoothed three dimensional reconstructions for each patient
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Patient #1 #2 #4 #5 #6
MUGA 0.26 0.56 0.2 0.25 0.28 0.40
Static 0.3938 0.5417 0.2347 0.2300 0.3113 0.5429
Assum d model 0.2872 0.5834 0.1888 0.2200 0.2634 0.5707
Random Walk 0.2016 0.3515 0.0988 1 0.1199 1 0.1837 0.3118

Table 6.9: Ejection Fractions for 3D

Assumed EF 0.20 0.30 0.40 0.50 1 0.60
Calculated EF 0.3857 0.4246 0.4664 0.5119 1 0.5620

Table 6.10: Variation of Reconstructed Ellipsoids EF with Assumed EF for Patient
#6

based on the assumed model tend to have an ejection fraction that is skewed towards

the ejection fraction associated with the assumed model. Just as we did for two-

dimensional processing, we illustrate this point by processing the ellipses extracted

for Patient #6 with smoothing filters based on several different assumed models.

Table 6.10 shows the ejection fractions associated with each of the assumed models

used and the ejection fraction calculated for each view using the different assumed

models for Patient #6. Thus, the ejection fraction of the reconstructed ellipses is

skewed by the assumed model used in the smoothing filter. We note that the estimated

ejection fraction varies by approximately 0.18 as we vary the assumed ejection fraction

by 0.40.

Performance Evaluation

Once again, one can imagine plotting the MUGA ejection fraction values versus the

estimates of ejection fraction listed in Table 6.9. Just as with the two-dimensional

based estimates, we determine the slope and offset of the line that is best fit to

these six points. We also calculate the correlation coefficient of the MUGA ejection

fraction value and the three-dimensional estimates of ejection fraction. The values

for the slope and offset of the best fit line as well as the correlation coefficients are
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slope offset P

Static 0.8094 0.0209 0.8658

Assumed Model 0.6940 0.0805 0.9265

Random Walk 1.2254 0.0662 1 0.9368

Table 6.11: Correlation Coefficients

given in Table 6.11. The static estimates give a much lower degree of correlation

than the smoothing-filter-based estimates. The correlation coefficient for the random

walk ejection fraction estimates is higher than that for the assumed model ejection

fraction estimates. This may be accounted for by the fact that the assumed model

estimates are skewed by the assumed ejection fraction. Thus, we note once again the

importance of using the correct assumed model in the smoothing filter reconstruction.

In addition, we note that there is error introduced by our assumed approximation to

the true (unkown) projection geometry.
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6-A Ellipse Extraction Program

function [ae,be,thetaeXcexe,ye,out,out2,out3l=ellpit(AviewPLOTITXc)

% Eae,be,thetaeXce..xe.ye,out,out2,out3l=ellpit(A.viewPLOTITXc)

% A : Raw Heart field of interest.

% view : Opt. Projection. 1=ant,2=lat,3=lao. Default: User is prompted.

% PLOTIT : Opt. Verbose Plotting Toggle. I=plot, O=Don't. Default=1.

% Xc : Opt. Center of heart. Default: User is prompted for center.

% Extracts an ellipse f itting the inner boundary of the heart data given

% in A. Performs the extraction as follows:

% 1) The field is smoothed by a 3x3 Gaussian window.

% 2) From given center, finds a polar version of the heart field. Theta is

% assumed to go from pi/2 to -pi/2 (neg theta is CCW), r from 12 to -12.

% 3) Maybe average some slices into wedges (not current used).

% 4) Fits an 8-th order polynomial to each slice

% 5) For each slice finds extrema of fitted polynomial (=roots of 1st deriv).

% 6) Dump roots that are complex, too far (>12) or too close (<2) to the center.

% 7) Only roots corresponding to maxima are kept (2nd deriv < 0)

% 8) Only the single largest max in each of the pos and neg directions are kept.

% 9) The inner radius vaules for the wedge are defined to be a fraction of

% the distance to these maximum values from the center (currently rfrac=.75).

% 10)Next those points in certain, view dependent excluded regions are

% dropped from the list.

% 11)The final list of radius points is then median filtered to remove

% outliers. (Median filter currently has NFTR = 4, so window size = 9.)

% 12)An ellipse is then fit to the remaining filtered (rtheta) pairs.
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View options:

% 1 = anterior

% 2 = lateral

% 3 = left-anterior oblique

% W. C. Karl 8/92

% TODO

% 1) Allow arbitrary user segment exclusion.

figure(l);colormap(gray);

if nargin < 2; % Get view from user

GETVIEW=1;

else; % User has supplied view

GETVIEW=O;

end;

if nargin < 3;

PLOTIT=1;

end;

if nargin < 4; % Get center from user

GETCEN=1;

else; % User has supplied center

GETCEN=O-

end;
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% Filters for possible use in program

gauss=[1 4 1;4 12 4;i 4 11;

gauss=gauss/sum(sum(gauss)); % Normalize Gaussian filter

vgrad3x3=[-l -2 -1;0 0 0;1 2 11;

vgrad3x3=vgrad3x3;

% Get view from user if necessary

% View options:

% 1 = anterior

% 2 = lateral

% 3 = left-anterior oblique

if GETVIEW;

view=menu('Which view is input?','Anteriorl,'Laterall,'LADI);

end-t

% Smooth field

As=filter2(gaussA);

%%%%% Find polar field %%%%%

% Find theta

nslice=1; % Number of slices in each smoothed wedge

nwedge=40; % Number of averaged wedges total

deltath = pi/(nslice*nwedge-1);

%%%%% View dependent parameter selection %%%%%

% theta: Where to get slices

% thetaexcl: Matrix of exclusion regions. Each row is a theta region to
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% exclude.

% [thmini thmaxII

% thetaexcl = [thmin2 thmax2l

% I

% rfrac: Percentage of max to use for inner boundary detection

if view==1; % Anterior view.

% theta=-.75*pi:deltath:.25*pi;

theta=-.5*pi:deltath:5*pi;

dth=pi/10;

thetaexcl=[-3*pi/4-2*dth -3*pi/41; % Theta wedge around valve plane

rfrac=.75;

elseif view==2; % Lateral view.

% theta=-.25*pi:deltath:.75*pi;

theta=-.5*pi:deltath:5*pi;

dth=pi/10;

thetaexcl=[-Pi/4-dth -pi/4+dthl; % Theta wedge around valve plane

rfrac=.75;

elseif view==3; % LAD

theta=-.5*pi:deltath:5*pi;

thetaexcl=[]; % Theta wedge to exclude

rfrac=.75;

end;
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% Find r

r = -12:12;

% Actually find the polar field

if GETCEN % Get center interactivly from user

[BXc1=polarit(Asrtheta);

drawnow

else; % User has supplied center

[BXc1=polarit(AsrthetaXc);

end;

cx=Xc(l);

cy=Xc(2);

% Median filter polar field radially (NOTO

%for i=l:size(B,2)

% c1c;

% B2(:,i)=medftr(B(:,i)ll);

%end;

B2=B;

% Combine slices along theta; avg every nslice slices

for i=l:nwedge;

% Candidate slice indices for the wedge

I = (1:nslice)+(i-I)*nslice;

% Avg slices in the wedge

B3(:,i) = sum([B2(:,I),zeros(size(B2,I),1)11)1/length(I);

thetai(i) = mean(theta(I)); % Corresp theta value
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end;

out3=B3;

if PLOTIT

% Plot slices used

image(As);

hold on;

Ithp=[];

Ithn=[];

for i=1:size(thetaexcl,1); % For each exclusion region

% Indices for pos r regions

Ithp = [Ithp;find(thetaexcl(i,1) < thetai & thetai < thetaexcl(i,2))];

% Indicies for neg r regions

thn = thetai+pi; % thn = thetas for negative r's

Iflip = find(thn>pi); % Wrap around

thn(Iflip) = thn(Iflip)-2*pi;

Ithn = [Ithn;find(thetaexcl(il) < thn & thn < thetaexcl(i,2))1;

end-

thetap=thetai;

thet ap (Ithp) =0

thetan=thetai;

thet an (Ithn)

Irn=find(r(:)<O);

Irp=f ind(r(:)>=O);

xn= (r (Irn) I *co s (thet an)

xp=[r(Irp)1*cos(thetap)];
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Yn=[r(Irn)I*sin(thetan)1;

yp=[r(Irp)I*sin(thetap)1;

plot(xn+cx,yn+cylrlxp+cx,yp+cylrl);

hold off;

title(ISample vectors');

pause(l)

end;

% Fit polynomial to each slice

polyord=8; % Polynomial order (>4 since we'll take 2 derivatives)

for i=l:nwedge

V(i,:)=polyfit(r',B3(:,i),polyord); % Coeff of best fit poly

Vd(i,:)=[polyord:-1:11.*V(il:polyord); % Coeff of 1st deriv of poly

Vdd(i,:)=[polyord-l:-1:11.*Vd(il:polyord-1); % Coeff of 2nd deriv of poly

B4(:,i) polyval(V(i,:),rl); % Matrix of function curves

B4d(:,i) polyval(Vd(i,:),r)); % Matrix of 1st deriv curves

B4dd(:,i) = polyval(Vdd(i,:),rl); % Matrix of 2nd deriv curves

end;

out2=B4dd;

%%%%% Find the inner boundary %%%%%

OUTLIER=12; % Value of abs(r) above which we declare an outlier.

rthetai=[];

rthetaip=[];

rthetain=[];

for i=l:nwedge
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Use inflection points

if 0

lam=roots(Vdd(i,:)); % Find zeros of 2nd deriv

lam(find(lam-=real(lamM=[1; % Discard complex roots

lam(find(abs(lam)>OUTLIER))=[];% Discard any radius points larger than OUTLIE1

[fooI1=sort(abs(lam)); % Find closest roots to 0 (the center)

lam=1am(I)

rthetai=[rthetai;[lam(1:2),ones(2,1)*thetai(i)ll;

end

% Use fn of min and max using Ist deriv

if 0

lam=roots(Vd(i,:)); Find zeros of 1st deriv

1am(find(lam-=rea1(1amM=[1; % Discard complex roots

lam(find(abs(lam)>OUTLIER))=[];% Discard radius points larger than OUTLIER

lam(find(abs(lam)<2))=[1; % Discard radius points smaller than 2

[fooI1=sort(abs(lam)); % Find closest roots to 0 (the center)

lam=lam(I);

cen=lam(i); % Identify center point and remove it

lam(l)=[];

lam

nlam=min(2,length(lam)); % Number of lambda values to keep

ri=(.6*1am(1:n1am)+.4*cen); % Inner pts = fn of max and min

rthetai=[rthetai;Eri,ones(nlaml)*thetai(i)ll;

end

% Use fn of user given center and poly max using 1st deriv

if I

lam=roots(Vd(i,:)); % Find zeros of 1st deriv
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1am(find(lam-=rea1(1am)))=[j; % Discard complex roots

lam(find(abs(lam)>OUTLIER))=[];% Discard radius points larger than OUTLIER

1am(find(abs(1am)<2))=[1; % Discard radius points smaller than 2

% [fooI1=sort(abs(1am)); % Find closest roots to 0 (the center)

% lam=1am(I); % Sorted roots, smallest is now first

% if length(lam)>O;

% rcen=iam(i); % r value of center

end;

% Keep only maxima (drop mins)

lam(find(polyval(Vdd(i,:),lam)>=O))=[]; % Drop if 2nd deriv is >=O

% Split into pos and neg parts

p1am=1am(find(1am>0)); % Find positive extrema values

n1am=1am(find(1am<0)); % Find negative extrema values

% Find the r values of largest max in both pos and neg dir along slice

rmaxp=[]; % Default condition: No point on the pos line

rmaxn=[]; % De-fault condition: No point on the neg line

if length(plam)>O; % pos direction

[:fooIpl=sort(polyval(V(i,:),plam));

Ip=flipud(Ip);

rmaxp=plam(Ip(l));

end;

if length(n1am)>0; % neg direction

EfooInl=sort(polyval(V(i,:),nlam));

In=flipud(In);

rmaxn=n1am(In(1));

end;
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rmax=[rma,xnrmaxp1;

% Find R values of inner boundary points found for current slice

rip=(rfrac*rmaxp); % Pos Inner Pts = fn of max and center

rin=(rfrac*rmaxn); % Neg Inner pts = fn of max and center

ri=[rip;rin]; % Inner radius point for plotting

% rthetaip contains the pairs of identified pos inner boundary points

% rthetain contains the pairs of identified neg inner boundary points

7. rthetai=[ri thetail;

rthetaip=[rthetaip;[rip,ones(length(rip),I)*thetai(i)ll;

rthetain=Erthetain;Erin,ones(length(rin),I)*thetai(i)ll;

end

% Plotting stuff

if PLOTIT

disp(['Frame: 1,int2str(iM

rmax

lam

figure(3);colormap(gray) % Plot r values

hold off

if length(rthetain)>O

plot(rthetain(:,2)*180/pi,rthetain(:,l),Irl);

hold on

end;

if length(rthetaip)>O

plot(rthetaip(:,2)*180/pi,rthetaip(:,I),Igl);

end;

title('Extracted Radius')
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xlabel('Theta (degrees)

y1abel(Irmaxn (red) and rmaxp (green),)

hold off

figure(2);colormap(gray) % Plot slice and values found

plot(rB4(:,i),rB3(:,i),lam,polyval(V(i,:),lam),Irx));

hold on;plot(ri,polyval(V(i,:),ri),Ibol);hold off-,

hold on;plot(rmax,polyval(V(i,:),rmax),Ib*');hold off;

title('Slice profile. x=inflct pts, *=max, o=inner bddry')

xlabel('Radius')

figure(l);image(As); % Plot image with boundary points

hold on;

p1ot(Xc(1),Xc(2),)r+));

plot(lam*cos(thetai(i))+Xc(l),lam*sin(thetai(i))+Xc(2),lrx))

plot(ri*cos(thetai(i))+Xc(l),ri*sin(thetai(i))+Xc(2),Ibol)

plot(rmax*cos(thetai(i))+Xc(l),rmax*sin(thetai(i))+Xc(2),Ib*')

hold off

drawnow;

disp('Spacebar to continue..')

pause

end;

end

%%% Post processing of extracted boundary points %%%

% Exclude those wedges/samples in specified regions

for i=1:size(thetaexcl,1); % For each exclusion region

% Indices for pos r regions

Ithp = find(thetaexcl(il)<rthetaip(:,2) & rthetaip(:,2)<thetaexcl(i,2));

rthetaip(Ithp,:)=[1; % Delete the points
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Indicies for neg r regions

thn = rthetain(:,2)+pi;

Iflip = find(thn>pi); % Wrap around

thn(Iflip) = thn(Iflip)-2*pi;

Ithn = find(thetaexcl(il) < thn & thn < thetaoxcl(i,2));

rthetain(Ithn,:)=[]; % Delete the points

end;

% Median filter the remaining radius points

NFTR=4;

np = 1ength(rthetaip(:,I)); % Number of pos radius points

nn = length(rthetain(:,l)); % Number of neg radius points

rtot [rthetaip(:,l);-rthetain(:,I)];% Total r vector

rtotf medftr(rtotNFTR);

% Place filtered raduis points in rthetai

% rthetai contains the rtheta boundary pairs

% rthetai=[ri thetail;

rtotf =rtotf (: ) ;

rthetai=[[rtotf(l:np),rthetaip(:,2)1;[-rtotf(np+l:np+nn),rthetain(:,2)11;

% Find the xy coordinates of points on the boundary

for i=1:size(rthetaiI)

xi(il)=rthetai(ii)*cos(rthetai(i,2))+Xc(l);

yi(il)=rthetai(il)*sin(rthetai(i,2))+Xc(2);

end;

[ae,be,thetaeXcel=fitellp3(xi,yi);

if ae-=real(ae)Ibe-=real(be)
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disp(IWARNING: complex values obtained');

end.;

ae=real(ae);

be=real(be);

[xe,yel=mkellp(thetae,ae,beXce);

if PLOTIT

figured)

image(As);

hold on;

% p1ot(xiyiIrxI)

plo t(xeye);

hold off;

% Plot extracted radius values

figure(3);

plot(rthetaip(:,2)*180/pi,rthetaip(:,l),Iglrthetain(:,2)*180/pi,rthetain(:,l),;

hold on;

plot(rthetaip(:,2)*180/pi,rtotf(l:np),rthetain(:,2)*180/pi,-rtotf(np+l:np+nn))

hold off;

xlabel('Theta (degrees),);

ylabel(Irmaxn (red) and rmaxp (green),);

figured)

end;
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Chapter 7

Future'VVork and Conclusions

7'. 1 Conclusions

In this thesis, we have presented a method to apply geometric reconstruction tech-

niques to estimate dynamically the ejection fraction of the left ventricle of the heart

from a temporal set of myocardial perfusion images. This method provides an alter-

native to current radionuclide ventriculography-based methods to estimate ejection

fraction. By estimating ejection fraction from myocardial perfusion images, the pro-

cess of dianosing heart disease becomes safer and more cost effective. In addition, by

employing recursive estimation techniques, we are able to estimate ejection fraction

more robustly.

In Chapter 4, we used Rauch-Tung Striebel smoothing to reconstruct computer

simulated, dynamically evolving ellipsoids. Our simulations included the reconstruc-

tion of two-dimensional ellipsoids from noisy observations of the ellipses themselves

and the reconstruction of three-dimensional ellipsoids from noisy lower-dimensional

projections. The simulations were formulated in such a way that our results might

be easily applicable to real data. We discussed methods of adjusting the filter to

account for mismatches between the true and modelled dynamics. The results from

the simulations indicate that it is possible to improve on static estimates of ejection

fraction by using a simplified model of the true ellipsoid dynamics. In addition, we

explored techniques to estimate ejection fraction when our knowledge of projection
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geometry is imperfect.

Chapter 5 explored a method of choosing which of two hypothesized dynamic

models best approximates the true dynamics of a computer simulated, dynamically

evolving ellipsoid. We investigated the idealized case where one of the hypothesized

models exactly matches the true ellipsoid dynamics. We also considered the case

where the true and hypothesized dynamics differ in contraction rate only. Finally,

we considered the case where the true and hypothesized dynamics differ in rotation

rate as well as contraction rate. Our results illustrate that we are able identify the

hypothesized model that more closely approximates the true ellipsoid dynamics.

Finally, in Chapter 6, we applied the model identification and smoothing filter

based reconstruction techniques to ellipses extracted from real myocardial perfusion

data for six individuals with potential heart disease. We used model identification

and smoothing filter-based reconstruction to process each of the three projected views

individually. In addition, we used model identification and smoothing filter based

reconstruction to process the three views together using an assumed projection ge-

ometry. We are able to show a high degree of correlation between our smoothing filter

based estimates of ejection fraction and MUGA based estimates of ejection fraction.

The results presented in this thesis indicate that a dynamic estimate of ejection

fraction based on myocardial perfusion images may provide an alternative to currently

used techniques based on radionuclide ventriculography, thereby making the process

of diagnosing heart disease safer and more cost effective. In addition, this thesis has

explored in great detail the effect of dynamic model mismatch in the more general

problem of reconstruction of dynamically evolving ellipsoids.

7.2 Future Work

This section deals with areas that may be explored in future research. Although

our current results show that our proposed method provides an accurate estimate of

ejection fraction, we may be able to provide a more robust ejection fraction estimate

by incorporating some of the suggestions listed in this section.
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In future work, we suggest a more detailed model identification scheme that is

used to directly estimate the ejection fraction. Thus, the smoothing filter-based

reconstruction would be eliminated and the process of estimating ejection fraction

would be reduced to one step.

It is possible to use model identification to estimate the minimum point in the

cardiac cyle which, as we noted in Chapter 6, varies from person to person. We might

propose several hypothesized models with the same contraction rate, but with varying

minimum points. Then, the model idenfication scheme could be used to identify which

of the hypothesized minimum points most closely matches the true cycle mimimum

of the data.

In the three-dimensional reconstructions of Chapter 6, we assumed a projection

geometry which incorporated our knowledge about the general orientation of the set

of projection planes used to generate the three views for the myocardial perfusion

images. We may obtain a more accurate estimate of ejection fraction by assuming

only two of the projection angles and attempting to estimate the third projection

angle using a similar model identification or parameter estimation scheme.

Future work may also investigate the possibility of a joint ellipse extraction and

ellipsoid estimation scheme. This type of technique might use the estimated three-

dimensional ellipsoid as feedback for the ellipse extraction routines.

We also suggest that the plots shown in Chapter 6 that show dynamic estimates

of volume versus time may have potential prognostic value, in and of themselves.

We have noted that for patients with low ejection fraction and what appear to be

occlusions these plots show unusual variations for estimates of volume over time.

Finally, recall that in Chapter 6 we used model identification and smoothing filter

based reconstruction to estimate the ejection fraction of six patients. The same model

identification and smoothing filter based reconstruction techniques should be explored

on a larger data set.
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