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Abstract

This thesis describes a new adaptive approximation technique called high resolution
pursuit (HRP), and demonstrates how HRP can be used to extract features that are
suitable for object recognition. Recently, adaptive approximation techniques have
become popular for obtaining representations of large classes of signals. These tech-
niques include method of frames, matching pursuit, and basis pursuit. In this work,
HRP is developed as an alternative to existing function approximation techniques.
Existing techniques do not always efficiently yield representations that are sparse
and physically interpretable. HRP is an enhanced version of the matching pursuit
algorithm that overcomes its shortcomings by emphasizing local fit over global fit at
each stage. Furthermore, the HRP algorithm has the same order of computational
complexity as matching pursuit.

To demonstrate the utility of HRP for feature extraction, we develop a technique
based on HRP features for the recognition of airplanes from silhouettes. Features
extracted by HRP are shown to be robust to boundary perturbations, scale variations,
small orientation variations, and variations due to occlusion. Furthermore, the HRP-
based technique is shown to surpass the traditional Fourier descriptor techniques in
the presence of occlusion.
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Chapter I

Introduction

This thesis describes high resolution pursuit, a new adaptive approximation tech-

nique, and demonstrates how high resolution pursuit can be used to extract features

which are suitable for object recognition. The high resolution pursuit algorithm, like-

other adaptive approximation techniques, is a method to decompose a function as

the weighted sum of elements from a redundant dictionary. The high resolution pur-

suit decomposition also yields a set of geometric features which are ideal for object

recognition. Thus, this thesis contributes to the areas of adaptive approximation and

object recognition.

1.1 Adaptive Approximation Motivation

Recently, adaptive approximation techniques have become popular for obtaining par-

simonious representations of large classes of signals. In these adaptive approximation

techniques, the goal is to find a representation of a function f as a weighted sum of

21



22 Chapter 1. Introduction

elements from an overcomplete dictionary. That is, f is represented as

f - E Ag-,
7Er

where the set fgyl-y c Il is a redundant dictionary spanning the space of possible

functions. If very few of the coefficients A in (1. 1) are non-zero, then the decomposition

is said to be sparse.

Redundant dictionaries are used since they are flexible enough to match many of

the important structures of the function. As a result of this flexibility, decomposi-

tions over redundant dictionaries may have very few non-zero coefficients (i.e. sparse

representations are possible). Of course, the decomposition problem would be sim-

pler (trivial) if orthogonal dictionaries were used. The main drawback of orthogonal

dictionaries is that they may not be flexible enough to include the different types of

structures present in a function, and therefore it may not be possible to obtain sparse

decompositions. For example, suppose f was the sum of a sinusoid and a single Dirac.

Two possible orthogonal dictionaries are the Fourier and Dirac dictionaries. A decom-

position of f over either the Fourier dictionary or Dirac dictionary would not yield a

sparse description crf-, the- fu-niftion �since neither -dictionary-contains all the structures

of the function. Borrowing from the analogy used in [26], these dictionaries are like a

language with a very limited vocabulary. It is still possible to express all ideas using

this limited vocabulary. However, full sentences must be used to replace unavailable

words. A better dictionary for decomposing f would be a redundant dictionary which

contains both the Fourier and Dirac bases.

Since many possible representations of f of the form of (1-1) exist in a redundant

dictionary, the price of using a flexible redundant dictionary is the ambiguity asso-

ciated with determining the "optimal" decomposition. Several methods have been

suggested for determining the "optimal" decomposition. T hese include the method
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of frames [9], best orthogonal basis [81, matching pursuit [26], and, most recently,

basis pursuit [6]_

Intuitively, the "optimal" decomposition should have the following characteristics:

• Sparsity A sparse representation is one in which a minimum number of dictio-

nary elements are used to represent any function. In particular, if a function is

synthesized as the sum of dictionary elements, the "optimal" adaptive approx-

imation representation would be precisely those elements used to construct the

function.

• Super-Resolution A closely related concept is that of resolution. The decom-

position of a function which is the sum of two closely spaced dictionary elements

should show the presence of both elements.

• Physical Interpretation A physically interpretable decomposition is one in

which each term of (L-1) relates to the geometric (e.g. size and location) char-

acteristics of the function.

• Hierarchy The "optimal" decomposition should have a corresponding hierar-

chy so that a few -elements of sum in -(1. 1) yield a coarse- approximation to the

function.

Stability In the case where f is corrupted by'noise, the "optimal" decompo-

sition should be stable so that small perturbations in the underlying signal do

not drastically change the representation.

Cornputationally Tractability To be practical, the decomposition should be

obtained in a manner that is computationally tractable.

Existing adaptive approximation techniques do not always yield representations

with all of these desired characteristics. The method of frames [91 chooses the de-
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composition which minimizes the f' norm of the coefficients, A-Y, in (1.1). As a result,

the method of frames tends towards solutions which are not sparsity-preserving. In

contrast, basis pursuit [6] chooses the decomposition which minimizes the V norm

of the coefficients in (1.1), a criterion that has been shown to yield sparse represen-

tations. However, to find this optimal solution, the minimization problem is trans-

lated to an equivalent large scale linear program, which is know to be computation-

ally complex. Thus, basis pursuit produces representations which preserve sparsity

and resolve closely spaced features, but is computationally complex. Finally, match-

ing pursuit [26] addresses the sparsity issue directly by building the decomposition

in (L 1) up one element at a time. At each step, the dictionary element chosen is

the one which yields a maximum reduction in residual power. However, the major

drawback of matching pursuit is that it is unable to resolve closely spaced elements.

The greedy nature of matching pursuit can in fact lead to the introduction of artifacts

which in turn lead to the extraction of features which are not physically meaningful.

Both matching pursuit and basis pursuit will be further explored in Chapter 2.

In light of the desired representation characteristics outlined above, high resolu-

tion pursuit is developed in this thesis as an alternative to existing function approx-

imation techniques. High resolution pursuit is an enhanced version of the matching

pursuit algorithm which overcomes the shortcomings of the original matching pursuit

algorithm by emphasizing local fit over global fit without significantly increasing the

computational complexity over that of matching pursuit. In particular, high resolu-

tion pursuit decompositions frequently rival those of basis pursuit in terms of sparsity

and resolution, but require much less computation.
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1.2 Silhouette Recognition Motivation

Humans have the ability to. analyze visual scenes, localize and recognize objects, and

make decisions based on our visual observations. A computer vision system that could

emulate these tasks, which are simple for a human, would have numerous industrial,

military, and medical applications. Model-based object recognition [3,15] from images

is currently the focus of much work in computer vision and is performed by comparing

features extracted from a given data image to features extracted from a predefined set

of model images and determining. which model the data image most closely resembles.

One specific computer vision problem that will be of interest in this work is the

recognition of airplanes from silhouettes. Since humans -have the ability to recognize

objects from only silhouette or boundary curves, there is a widely-held intuition in

computer vision [3, 13, 16, 19, 24, 30, 401 that these object boundaries contain much

of the significant information required to recognize objects. For a computer vision

algorithm for recognizing objects from silhouettes to be of p ractical importance, the

algorithm must perform well under a number of possible variations in the image, such

as scale variation, orientation variation, boundary perturbations, and variation due

to occlusion. Further, features should be quickly computable.

Previous work in model-based object recognition from silhouettes has focused on

feature matching where the features were of two distinct types : global and local.

Global features are those constructed from the entire object; some examples of global

features are Fourier descriptors and moments (e.g. area). Some relevant benefits of

global features are the following. First, object recognition is carried out simply by

matching these global features. That is, it is clear which model feature to compare

to which image feature so that a correspondence problem does not arise. Second,

one can envision a clear hierarchy in the object recognition phase. For example, in

recognition based on moments, a match of the lower order moments would be more
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significantly weighted than a match of the higher order moments. On the other hand,

global features also have the following drawbacks. First, object recognition based

on global features does not handle occlusion well. Second, the entire set of features

(i.e. the overall representation) may be drastically changed by a local change in the

underlying object.

In contrast, local features, as the name implies, are determined by local image

properties. Some commonly used local features include edges [20], vertices [7, 32])

and curvature extrema [31]. Again, there are both benefits and drawbacks to using

local features. Object recognition based on local features performs well in cases of par-

tial occlusion since only a subset of the object features are changed by a local change

in the object. On the other hand, determining the correspondence between model

features and object features may present a large computational burden. In addition,

local features may not be not intrinsically geometric. Certain geometric properties of

the object may be deduced from an aggregation of local features, but the individual

features do not yield size, orientation or elongation information. Geometry is in-

stead introduced by imposing geometrically based constraints in the correspondence

search [21]. There is generally no hierarchy among the set of local features (i.e. there

is no way to determine which features are more important than others). Finally, local

features may not be robust to errors introduced by unstructured noise. For example,

the presence of noise in an image may greatly distort the edge locations.

In this thesis, high resolution pursuit is proposed as a means of extracting features

that are robust to the presence of boundary perturbations and variations due to occlu-

sion. The features extracted by high resolution pursuit quantify the size and location

of subparts of the object, and therefore represent a new class of features for object

recognition. This new class of features are robust to both boundary perturbations

and perturbations due to occlusion.
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1.3 Contributions

This thesis contributes to the areas of adaptive approximation and object recogni-

tion. The characteristics of the "optimal" adaptive approximation decomposition

are desirable qualities in feature extraction for object recognition as well. Thus, the

parameters of the elements extracted by high resolution pursuit are attractive as

candidates features for object recognition.

First, this thesis contributes to the area of adaptive approximation. The technique

developed in this work, high resolution pursuit, is a new adaptive approximation

technique. The decompositions obtained using high resolution pursuit are sparsity-

preserving, exhibit super-resolution, and have an inherent hierarchy. Further, high

resolution pursuit produces decompositions which are stable in the presence of small

perturbations in the underlying function and does so in a computationally tractable

way. This thesis contains a thorough investigation of high resolution pursuit as a

general adaptive approximation procedure. Two distinct interpretations of the high

resolution pursuit algorithm are described. The first description gives a geometric

interpretation of the high resolution pursuit algorithm, while the second gives a con-

strained maximization interpretation. In addition, the convergence properties and

computatio nal complexity of the high resolution pursuit algorithm are studied. Fi-

nally, the high resolution pursuit algorithm is demonstrated on several ID signals

using the cubic b-spline and wavelet packet dictionaries.

Second, this thesis contributes to the area of object recognition from silhouettes.

In the object recognition context, the elements extracted by high resolution pursuit

are a new class of features that describe geometric (i.e. size and location) properties of

subparts of the object. The features based on elements extracted by high resolution

pursuit exhibit some qualities typically associated with global features and some

qualities typically associated with local features. Like global features, the features
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based on high resolution pursuit are robust to variations due to noise and exhibit

a hierarchy. Like local features, the features based on high resolution pursuit are

robust to variations due to occlusion. Since a small number of high resolution pursuit

features can be used to describe an object, there is only a small correspondence

problem which must be solved in comparing data and model silhouettes. As we

demonstrate in Chapter 4, this new class of features can be used to recognize objects

in the presence of scale variation, orientation variation, and boundary noise, as well as

occlusion. This is an improvement on existing techniques which are often not robust

to both boundary noise and occlusion.

1.4 Organization

The organization of the thesis is as follows. Chapter 2 describes two techniques from

adaptive approximation, matching pursuit and basis pursuit. This chapter also in-

eludes a description of the cubic b-spline dictionary which will be useful in this work.

In Chapter 3, the high resolution pursuit algorithm is developed and demonstrated.

Chapter 3 also presents a geometric interpretation and a constrained maximization

interpretation of the high resolution pursuit algorithm. Chapter 4 demonstrates how

the elements extract by the high resolution pursuit algorithm can be used for the

recognition of airplanes from silhouettes. Finally, Chapter 5 summarizes the conclu-

sions of this work and presents some ideas for future research.



Chapter 2

Background:Adaptive

Approximation

Recently, adaptive approximation techniques have become popular for obtaining rep-

resentations of large classes of functions. In adaptive approximation, the goal is to

find the representation of a function f as a weighted sum of elements from a redundant

(overcomplete) dictionary. That is, f is represented as

f Xy 9-� (2.1)

where the set fg,,I-/ E rj is a dictionary which spans the space of possible functions

but is redundant. Many possible representations of f exist in this redundant dictio-

nary. Several methods have been suggested to find the "optimal" representation of

the form of (2.1). These methods include the method of frames [91, best orthogonal

basis [8], matching pursuit [26], and, most recently, basis pursuit [6]. Matchin pur-

suit (MP) and basis pursuit (BP) will be particularly relevant in this thesis. In this

chapter, we summarize some relevant topics from adaptive approximation techniques.

29
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2.1 Dictionaries

An important issue in using these adaptive approximation techniques is the choice of

the dictionary. Adaptive approximation techniques are used to determine the "opti-

mal" decomposition of f of the form (2.1) from a redundant dictionary. Redundant

dictionaries are used since they can easily accommodate elements that have a wide

range of time-frequency characteristics and match the important structures of the

function to be decomposed. Of course, the decomposition problem would be sim-

pler (trivial) if orthogonal dictionaries were used. The main drawback of orthogonal

dictionaries is that they may not be flexible enough to include the different types

of structures present in a function. For example, suppose f was the sum of a sinu-

soid and a single Dirac. Two possible orthogonal dictionaries are the Fourier and

Dirac dictionaries. A decomposition of f over either the Fourier dictionary or Dirac

dictionary would not yield a sparse description of the function since neither dictio-

nary contains all the structures of the function. Borrowing from the analogy used

in [26], these dictionaries are like a language with a very limited vocabulary. It is still

possible to express all ideas using this limited vocabulary. However, f 11 sentences

must be used to-replace--Rnavailable words. A- better dictionary for decomposing f

would be.a redundant dictionary which contains both the Fourier and Dirac bases.

To summarize, the dictionary should be chosen to contain elements which match the

important structures of the function to be decomposed and often redundant dictio-

naries are required to fulfill this requirement. Two redundant dictionaries that will

be particularly useful in this thesis are the cubic b-spline dictionary and the wavelet

packet dictionary, though many others can be imagined.
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(a), A box spline, b(x). (b) A cubic box spline,
g,,,(x) = bb * b * b(x).

Figure 2-1: Box Splines.

2.1.1 The Cubic B-spline Dictionary

The cubic b-spline dictionary consists of cubic b-splines over an appropriate range

of scales and translations. This section will describe the cubic b-spline dictionary

structure and highlight properties that will be important in this thesis.

-A cubic b-spline is, a box spline convolved with itself three times. Figure 2-1 shows

a box spline b(x) and the resulting cubic b-spline g,,(x). The analytic forms for b(x)

and g,,,(x) are

1 -1 < X < I
b (x)

0 otherwise

g,,(x) b b b b(x) (2.3)



32 Chapter 2. Background:Adaptive Approximation

(x' + 12X2 + 48x + 64) for -4 < x < -2T4

'(-3x' - 12X2 + 32) for -2 < x < 0
T4 (2.4)

'(3X3 - 12X2 + 32) for 0 < x < 2
T4

1(_X3 + 12X2 - 48x + 64) for 2 < x < 4
T-4

Let g (x) g. (x) g. (x) A cubic b-spline at scale j and translation t will be denoted

gjt(x) and is given by

gjt(x) = v"'2jg(2j(x - t)). (2.5)

As j --+ oo, the cubic b-splines become.finer in scale and approach Diracs. In this

work, we will often use -y to denote the pair (j, t) so that g,, (x) = gjt(x) - The cubic

b-spline dictionary then contains a set of functions gjt(x) over an appropriate range

of scales and translations. For example, Figure 2-2 shows some elements at different

scales from a cubic b-spline dictionary. Note that the elements of the dictionary are

normalized so that 11gj,,11 = I for all j and all t.

The following property of cubic b-splines will be conceptually important for the

work in this thesis. Any cubic b-spline may be written as the sum of finer scale cubic

b-splines which are also dictionary elements. For example, gjt may be written as the

weighted sum of finer scale cubic b-splines which are all at the same scale, j + k; that

is,
L

9j't Cigj+kti (2.6)

Note that the sum in (2-6) is unique and finite. This is illustrated in Figure 2-3 for

k = I and k = 2. Following this idea, and for convenience later, let us define for each

element in the cubic b-spline dictionary, g., an associated set of indices, -T,,(k). The

functions which are indexed by L,(k) are the dictionary elements at the finer scale
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Figure 2-2: Some samples of cubic b-splines, gjt, for several values of j.

j + k which when properly weighted and summed yield gy plus 7 itself. That is,

L

I y (k) (j + k, ti) 9-Y = E Cigj+kti U01. (2.7)
i=1

The index -y has been- included in the family 1,,(k) because it will be useful in See-

tion 3.3. Thus, (2.6) can be written equivalently as

9'Y Cigi (2.8)
iEl-y(k)/-y



34 Chapter 2. Background:Adaptive Approximation

k I k-2
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(a) k (b) k 2.

Figure 2-3: 'Weighted sum of cubic b-splines at scale j + k yields a cubic b-spline at
s(%le'j.

2.1.2 The Wavelet Packet Dictionary

The wavelet packet dictionary is a redundant dictionary consisting of the functions

used to generate the wavelet packet decomposition. This section highlights the struc-

ture of the wavelet packet dictionary that will be important in this thesis. More de-

tailed descriptions of wavelet and wavelet packet transforms may be found in [22,36].

The wavelet packet -decomposition is an extension of the. wavelet decomposition.

As described in [22, 29, 33], the wavelet transform of a function is the projection of

that function onto translated, scaled versions of a mother wavelet, *(x). Let

�bjt(x) = Vr2__iO(2i(x - t)). (2.9)

The set of wavelet functions at a given scale j and translates t = 2-il, with I E Z

forms an orthogonal basis for a space that is denoted Wj. The scaling function that
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accompanies O(x) is denoted O(x). Scaled and translated version of O(x) are denoted

Ojt(x) = v"2iO(2j(x - t)). (2.10)

The set of scaling functions at. a given scale j and translates t = 2-3 'I, with I c Z

forms an orthogonal basis for a space that is denoted Vj. The space Wj contains

high frequency elements, the space Vj contains low frequency elements, and the two

spaces are orthogonal to one another. Linear combinations of the scaling functions at

scale j yield the wavelet and scaling functions at the next coarser scale, j - 1. These

linear combinations are specified by the conjugate mirror filters ' hi and h2. That is,

+00
Ojio(x) = E hi [n] 0 3',2-i. W (2.11)

n=-oo

+00

7/)ii'O(X) = E h2[n%,2-i.(X)- (2.12)
n=-oo

The set of coarser functions f V)i_1,2-U-1)111Ez and f 0 3.-1,2-(j-1)111Ez are bases for Wj_1

and Vj_1, respectively. The spaces Wj_1 and Vj_1 are contained in Vj and thus or-

thogonal to Wi. The wavelet transform is constructed by projecting onto spaces

that are formed by repeatedly dividing the low frequency spaces Vj. As a result, the

wavelet transform yields poor frequency resolution for high frequencies. In contrast,

the wavelet packet transform is constructed by dividing Wj as well as Vj. Generaliz-

ing the wavelet notation, the wavelet packet decomposition of a function is the projec-

tion of that function onto a set of spaces Wj,, where is scale and w is a frequency

index. Each space Wj,, has a corresponding orthogonal basis f'Oi't'W(X)Jt=2-i1J1EZ-

Linear combinations (specified by hi and h2) of the basis functions of the space Wj,"

I-vVe have used h, and h2 to refer to the conjugate mirror filters which are usually [22] referred
to as h and g. This notation was used to avoid confusion with our dictionary elements g.
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Figure 2-4: Representative elements of Haar wavelet packet dictionary. Note that the
finest resolution has been designated j = 0.

yield the basis functions of the spaces Wi-1,2, and Wi-1,2,,+,. That is,

+00

V)3.- 1,0,2u, ( X 1: h, [n]Oi,2-i.,,, (X) (2.13)
n=-oo

+00

V)iL0,2w+1 W h2[n]�bi,2-j nw (X (2.14)
n=-oo

Figure 2-4 shows sample elements from a wavelet packet dictionary based on the Haar

wavelet.

In this work, we will denote elements of the wavelet packet dictionary g-,

where -y (j, t, w) is now a joint index over scale, translation, and frequency. This

is in contrast to the cubic b-spline dictionary which was indexed only by scale and

translation. Also in this work, it will be convenient to use the time-frequency plane

to represent the support of wavelet packet dictionary elements. Figure 2-5 shows
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the time-frequency plane representation of elements from a wavelet packet dictio-

nary based on the Haar wavelet- wavelet packet dictionaries based on other wavelets

exhibit similar time-frequency behavior. Each rectangle in the time-frequency plane

represents the area over which the energy of the function is concentrated. The scale of

the element determines the size of the rectangle and the translation and frequency of

the element determine the location in the time-frequency plane. Note that Figure 2-5

shows that the wavelet packet transform divides the frequency axis into intervals of

different sizes in a way that does not depend on the frequency. This is in contrast to

the wavelet transform which divided the frequency axis into large frequency intervals

at high frequencies and small frequency intervals at low frequencies.

Note the following important properties of the wavelet pack'et dictionary. First,

the wavelet packet dictionary is redundant. The collection of functions of the same

scale (size) is a basis for RP,- where P is the length of f [221. The entire dictionary is

a collection of bases and is therefore redundant. Second, equations (2.13) and (2.14)

imply that each dictionary element is the weighted sum of dictionary elements at a

finer scale. Thus, just as was the case for the cubic b-spline dictionary, it is possible

to define for each element, g,,, an associated set of indices 1,(k) where the functions

indexed by 1,(k) are the function 9. and the dictionary elements at scale j + k which

when properly summed yield g,,. That is,

L

Ly (k) = (j + k, ti, w12) 9-Y Ci9j+ktiw12 U f -YI if w even (2.1 5)

L

Ly (k) = (j + k, t., (w - 1)/2) -1) 2 U �-yj if w odd (2.16)

Again, -/ has been appended to 1,(k) for convenience later. This definition for 1',(k)

is analogous to the definition for 1,,(k) for the cubic b-spline dictionary given in (2.7).

This property is will be important when we define the new similarity measure in
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Figure 2-5: Time Frequency representations of the Haar Wavelet Packet Dictionary.
Each rectangle represents the area 'over which the energy of the function is concen-
trated. For each dictionary element, scale determines the size of the rectangle and
translation and frequency determine the location.

Section 3. 1.

.2.2 Matching Pursuit

Matching pursuit (MP) is an iterative, adaptive algorithm for signal decompose

tion [26]. The original signal is decomposed as the sum of the most contributive

elements from a dictionary set. In MP, elements are chosen one at a time. At each

iteration, the most contributive element is defined to be the one which minimizes the

2L norm of the fit error, or equivalently, has a maximum inner product with the last

residual. The underlying goal of the matching pursuit algorithm is to extract local
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physical features of the signal. For certain basic examples, MP yields un-intuitive

results because of the greedy nature of the algorithm. In this section, we describe

the matching pursuit algorithm for signal decomposition and provide examples where

this algorithm fails to extract local physical features of the signal.

The matching pursuit algorithm is defined as follows. Let f be the function to be

decomposed and D = fgI-y C I'l be the set of dictionary vectors with 1. The

first element g-,,, C- 'D is chosen such that

g,,, - arg max I < f , g, > (2.17)
9-Y

The-function f is then decomposed as

f =< f, gy, > g-y, + Rf (2.18)

where Rf is the residual. It is easy to show that gy,,, the element with the largest

inner product with f, also yields the smallest residual energy. An energy conservation

equation follows :

Ilf 112 < f, g_Y' > 12 + IIRf 11 2. (2.19)

Subsequent elements are chosen similarly to be the best fit to the previous residual.

That is,

9-y,., = arg max I < R'f , g,, > (2.20)
9-Y

where R'f is the n-th residual. This yields a cumulative decomposition of

f < R' f , > + R' f (2.21)
n=0
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and a cumulative energy equation of

,m - 1

11fil' E I < R nf, 9-Yn > 12 + 1IRmf 112. (2.22)
n=O

Further, Mallat and Zhang [26] show that if f and g. E D are discrete functions with

a finite number of samples, then 1IRnf 11 decays exponentially.

In the matching pursuit algorithm, the inner product is used as the measure of

correlation or similarity between a function and elements of the dictionary. It is

well known [14] that the inner product may not be a good measure of similarity

between two signals. As we show in Section 2.2.2, the inner product-based similarity

meas .ure makes MP a greedy algorithm which yields un-intuitive decompositions for

some simple examples.

J&I
2.2.1 Comput�66'n-af Com"plexity

The MP algorithm can be efficiently implemented so that the number of operations

required for each iteration is proportional to the size of the dictionary. Let Q be

the number of elements in the dictionary. To begin, compute and store < f, g7 >

for all gy E 'D and < g_�, gj3 > for all g,,, g,3 cz D. This requires O(Q2p) (where

P is the length of the signal) operations, although this initial computation can be

significantly reduced by taking advantage of specific dictionary structures. These

initial computations reduce the computational requirements for subsequent iterations.

Since

n+lf nf nf, g.", > gR R - < R _tn' (2.23)

we know that

n+lf, g nf, g, > nf, g< R _Y >=< R < R _Y. > < g_y,." g_y > (2.24)
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Each term on the right hand side of (2.24) has been stored at the previous iteration;

therefore, the computation of < R"+'f, g7 > for all g, E D requires 0(2Q) operations.

In [26], the authors show that computational complexity may be further reduced by

performing MP at each step over a subdictionary and then refining the estimate

using a Newton search strategy. Thus, there exist implementations of MP where the

computational burden is reasonable.

2.2.2 Drawbacks of MP

The MP approach works well for many types of signals. It has been shown to be

especially useful for extracting structure from signals which consist of components

with widely varying time-frequency localizations [26]. MP is a greedy algorithm in

the sense that the elementchosen at each step is the one which absorbs the most

remaining energy in the signal. In practice,.this results -in an algorithm that sacrifices

local fit for global fit, as illustrated by the following example.

The twin peaks function, f, illustrated in Figure 2-6, is the sum of two cubic

b-splines at the same scale but different, nearby translates. Let the dictionary 'D

consist of cubic b-splines at a wide range of translates and scales, including those used

to construct f. This dictionary is well suited for the signal under consideration. For

the twin peaks example, the first element chosen by MP is one which does not match

either of the two functions which are the true components of f - This is illustrated

in Figure 2-6 which shows the original function and the first element chosen by MP,

_q-yo - We can gain insight into the behavior of MP for the twin peaks example by

studying the projection graph which is defined to be the inner product of f with

each dictionary element as a function of the scale and translation of the dictionary

element. A contour plot of the projection graph is shown in Figure 2-7. The proximity

of the two components of f leads to a maximum of the similarity function (the
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Function f and the first element chosen by MP

Original function,
MP first element f II
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Figure 2-6: The twin peaks function and first element chosen by MP.

AMC,,

inner product) which is not at the correct translation and scale of either element.

The first MP residual is shown in Figure 2-8. The residual has a large negative

component at t = 0 where the original function was positive. Thus, instead of finding

significant features of the signal, MP has effectively introduced new artifacts which

the algorithm will have to account for by fitting additional elements. This problem

is further compounded as subsequent elements are chosen by MP in an effort to

correct the initial mistake. .,Figure 2-9 shows the first ten elements chosen by MP to

represent J. Here, note that the elements chosen by MP do not correspond to the

physical features of the function. In fact, many of these are "non-features" which

only serve to correct mistakes from previous stages.

2.3 Basis Pursuit

The basis pursuit (BP) principle [6] is to find the decomposition given in (2.1) which

minimizes the �'-norm of the coefficients A,,. The examples presented in [6] indicate

that basis pursuit yields decompositions which are sparse and show super-resolution.



Section 2.3. Basis Pursuit 43

Contour of inner product of f with each dictionary element
7

Fine

6 -

6 - -

4 -

2 -

0 -

Coarse

-2
-4 -3 -2 -1 0 2 3

Translation

Figure 2-7: The projection graph is the inner product of the function with each
dictionary element which is -indexed by scale and translation. This figure shows the
contour of the projection graph. X marks maximum inner product. 0 marks location
of true elements of function.
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Figure 2-8: First residual generated by MP.
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First ten elements chosen by Matching Pursuit
1
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Figure 2-9: The first ten elements picked by MP.

Thus, in general, BP does not exhibit problems highlighted by the twin peaks exam-

ple. An important drawback in the implementation of BP is that of computational

complexity. Since basis pursuit decompositions are based on solving a large-scale.

optimization problem, there exist examples where the decomposition may not be

completed, in a reasonable amount of time, as stressed in [6].

To implement the basis pursuit principle, an equivalent linear programming prob-

lem is solved. The basis pursuit principle is to find the decomposition of the form (2.1),

which minimizes the fl-norm of the coefficients A,. Equivalently, in matrix notation,

the basis pursuit problem statement is

min IJAII, subject to f = A T G (2.25)

where G is a matrix of all the vectors in D, f E RP, A E Rq, and G E Rpxq. The

solution to (2.25) is found by formulating and solving an equivalent standard form

linear program.

Two algorithms from linear programming are proposed in [6] to implement the

basis pursuit principle the simplex method and interior point methods. For a signal
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of length P and a dictionary of Q elements, the BP principle implemented using the

simplex method requires an average of O(Q2p) calculations, though it could require

as many as 0(2p - 1)0(QP) calculations. The complexity of interior point methods

depends on the implementation. Interior point methods are typically polynomial in

Q and P [11, 17]. Thus, the implementation of BP is computationally complex, as

compared to MP.
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Chapter 3

High Resolution Pursuit

The objective of high resolution pursuit (HRP) is to combine the computational speed

of MP and the super-resolution of BP. The HRP algorithm, developed in this chapter,

is similar in structure to the MP algorithm and in fact has the same computational

complexity as MP. In contrast to MP, HRP employs a similarity measure which

emphasizes local fit over global fit, and is thus able to achieve super-resolution similar

to that exhibited by BP.

The organization of this chapter is as follows. Section 3.1 describes the HRP

similarity measure and the basic algorithm. In Section 3.2, two interpretations of

the HRP algorithm are described. We show a geometric interpretation as well as a

constrained maximization interpretation of the HRP algorithm. In Section 3.3, the

convergence properties of HRP are discussed. Next, Section 3.4 describes the HRP

computational complexity. Then, the HRP algorithm is demonstrated in Section 3.5.

47
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3.1 The HRP Algorithm

Let us begin by developing our intuition about the MP similarity measure using cubic

b-spline dictionaries. For the case of cubic b-spline dictionaries, the inner product

(the MP similarity measure) of f with dictionary element g,, can be shown to be

a weighted average of the inner products of f with finer scale dictionary elements.

Recall the notation introduced in Section 2.1.1, where elements of the cubic b-spline

dictionary at scale j and translation t are denoted gjt, or, equivalently, g. where -Y

is a joint index over scale and translation. Any cubic b-spline may be written as the

sum of finer scale' cubic b-splines" composing g. which are also dictionary elements,

as expressed in (2-8). Since gjt may be represented as the weighted sum of cubic

b-splines that are k scales finer, the inner product < f, gjt > may also be expressed

in terms of finer scale inner products,

L

< f 93,t > Ci < f gj+kti >, (3-1)

or, equivalently,

< f, gy >= Ci < gi > (3.2)
iEl-y(k)

where Ly(k) is as defined in (2.7). In other words, the inner product of f and gy may

be interpreted as the weighted average of the inner products of f with high resolution

dictionary elements.

This interpretation of the MP similarity measure yields intuition about what form

a new, more locally-sensitive similarity measure might take. Even though each of the

high resolution correlations in (3-1) (i.e. 9i >JiE1,(k)) is sensitive to local struc-

ture, the (weighted) averaging process of (3.1) renders < f, gy > relatively insensitive

to local structure. One can imagine that some other combination of the high resolu-

tion correlations, f < 9i >bEI.,(k), might yield a new measure of similarity between
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f and g,,, which is more sensitive to local mismatch. Intuitively, this new similar-

ity measure should be dominated by worst local fit. For example, the minimum of

< f , gi > IiEl,(k) is dominated by worst local fit.

The similarity measure we propose is essentially the minimum over < f gi >

for all i E 17 (k). Our new similarity measure, S (f , g,,), is given by

S (f g-,) M, (f , g') 8 (f , g^,) (3.3)

s (f g,,) min < fgi > (3.4)
< gi, g, >

+1 if <fgi> > 0 for all i E Ly(k)<.gi &Y >

m (f g') -1 if <fg'> < 0 for all i E Ly(k) (3.5)<gigy > -

0 otherwise

where 1,,(k) is given in (2.7) for cubic b-spline dictionaries. In this work, we will

sometimes refer to the elements indexed by 1, as the subfamily associated with dic-

tionary element 97 I The denominator of s(f, gy) is a normalization factor which yields

S(gy, gy) = 1. The -term m(f, g_�) is included to assure that oscillatory functions yield

similarity measures of zero with coarse scale dictionary elements. That is, if the scale

of g. is coarser than the scale of the oscillations of f, then rn(f, g,�) will force S(f, g7)

to be zero'. This implies that for an oscillatory f the coarsest cubic b-spline element

to yield a non-zero similarity measure would be the one whose scale matches the scale

of the oscillations of

The HRP algorithm follows essentially the same procedure as the MP algorithm.

In HRP, the elements are chosen one at a time. At each iteration, the element chosen

by HRP is the one which maximizes the HRP similarity measure with the previous
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residual. That is, the element chosen at the n-th step, is given by

g7,, = arg max IS(R'f, gy) 1 (3.6)
yEr

where the similarity between the n-th residual, R'f, and a dictionary element, 9-Y,

is given by S(R nfg_,) - m(Rnfg7)s(R nf, g.) as defined in (3-4) and (3.5). In the

HRP algorithm, the n + 1-st residual is then generated as

n+lf nf nf, g',"jg',".R R S(R (3.7)

One further note about the parameter k which essentially controls the depth of the

resolution of the HRP algorithm. The HRP decomposition will change as a function of

k, as will be illustrated in Section 3.5. When k is set to zero, the HRP decomposition

will be identical to the MP Aecomposition. At the other extreme when k is very large,

the fine scale elements of -T,(k) will approach Diracs and the HRP decomposition will

be highly sensitive to noise in the signal. For our work k has been chosen empirically.

In general, k should be regarded as a means to incorporate prior knowledge.

Although our discussion has concentrated on cubic b-spline dictionaries, the HRP

algorithm and the intuition behind it extend in a straightforward way to other dic-

tionaries where coarse s cale elements may be written as the weighted sum of fine

scale elements. The HRP algorithm in these more general dictionaries is exactly the

same as before, but with the set 1^((k) defined to be analogous to (2.7). That is, the

functions indexed by 1,,(k) are gy and a set of functions k scales finer which yield gy

when properly weighted and summed. For example, in the wavelet packet dictionary

which has the property that coarse scale elements are the sum of fine scale elements,

the analogous definition for Ly(k) is given in (2.15) and (2.16).

A related pointed that we should mention is that we have chosen to use a particular
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structure for Ly(k), namely that 1,(k) indexes the set of functions k scales finer which

can be summed to yield g,,. Many other choices of 1. might also be appropriate. For

example, one could imagine using combinations of finer scale cubic b-splines that are

not all at the same scale which also sum to g,,. In some cases, this may be a way to

incorporate prior knowledge.

Finally, note that the HRP algorithm is not limited dictionaries where coarse

scale elements may be constructed as the weighted sum of finer scale elements. For

dictionaries where it is not possible to represent coarse scale elements exactly as

the sum of finer scale elements, it would be necessary to specify for each dictionary

element g,, a local family L, which consists of finer scale functions which somehow

capture the local structure of g.-

3.2 HRP Interpretations

In this section, two interpretations of the HRP algorithm are described. First, for

the case where the functions under consideration are 2-D vectors, the-HRP similarity

measure may be interpreted geometrically as an oblique projection of f onto g. and

the magnitude of the oblique projection is determined by the associated set 1',(k).

This is in'contrast to MP where the similarity measure is an orthogonal projection

of f onto g,,. Second, we show that the element which maximizes the HRP similarity

measure, JS(R n-1 f , gy) 1, is the same one which solves a constrained maximization of

JJR nf -R n-1fJJ . This mirrors the development of MP in Section 2.2 where we noted

that the element which maximized the inner product similarity measure,

< R n-1 > is the same one which solves an unconstrained minimization of

JJR nfll_
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3.2.1 Geometric Interpretation

In the following discussion, we use a vector example to illustrate the differences be-

tween MP and HRP and to show a geometric interpretation of the HRP similarity

measure. The goal of the following discussion is to illustrate two points. First, HRP

is better than MP at preserving sparsity. That is, given a function which may be

synthesized as the sum of n dictionary elements, often the MP algorithm yields a de-

composition of m > n elements. On the other hand, by emphasizing local over global

fit, HRP yields decompositions which preserve sparsity. Second, the HRP similarity

measure, S(f, gy), is a projection of f onto g.. The magnitude of this projection is

(tptermined by the associated subfamily I..

This discussion will be based on the following simple, two-dimensional vector ex-

ample. Consider the decomposition of the vector f E R' over the dictionary consist-

ing Of �91, 92, 93 1, where g7 I for -y .= 1, 2, 3. For this example, we use boldface

notation to emphasize that f and gy are vectors. These vectors are illustrated in

Figure 3-1 and are given by
F

91 i 0 (3.8)

92 0 i (3-9)

-2 -2
93 2 2 (3.10)

f 1 3
2 4 (3.11)

The following scale structure, which will be useful for applying HRP to this example,

is imposed in this vector dictionary. The elements gi and 92 are finest scale elements,

and are similar to Diracs, which were the finest scale elements in the cubic b-spline

dictionary. The element 93 is a coarse scale element. In this vector dictionary,

the coarse scale element (93) may be constructed as the weighted sum of fine scale
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92

- - - - - - - - - - - - -f
9 3

Figure 3-1: The function f and the dictionary 191, 92, 931

elements (g, and 92). Thus, the scale structure of this simple vector dictionary is

similar to the scale structure of the cubic b-spline dictionary.

We begin by examining the performance of MP. The first element chosen by MP

is the dictionary element which maximizes the inner product < f, g,.y > 1. The

projections of f onto each of the dictionary elements are shown by the dashed lines

in Figure 3-1 and are also given in Table- 3. 1. Therefore, the -first element chosen

by MP is 93. The resulting residual is shown in Figure 3-2. To achieve an exact

decomposition, a total of three elements must be used : the second element chosen

by MP is 92, and the third element is gl.

For this example, the MP algorithm does not preserve sparsity. That is, the MP

decomposition requires three elements to decompose a function that could have been

represented with two. In effect, MP has introduced an artifact in Rf. That is, Rf has
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< f'g, > 0.5

< f,92 > 0.75
< f,93 > 0.8839

Table 3.1: Projection of f onto each dictionary element

92

93

]Rf

9

Figure 3-2: The MP residual Rf and the dictionary f 91, 92, 931
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a negative component in the direction of g, which did not exist in f, and which will

have to be corrected for in subsequent stages. This is a parallel to the introduction

of artifacts illustrated in the twin peaks example of Section 2.2.2.

In contrast, consider the performance of HRP. To apply HRP, we must specify

a set I-, associated with each dictionary element. Since we have been given a scale

structure that is similar to that of the cubic b-spline dictionary, we can define the

sets L, to have a similar structure to that in the cubic b-spline dictionary. That is,

the associated subfamily for a finest scale element is just itself, and the associated

subfamily for a coarse scale element is the element itself plus the set of finer scale

elements which when properly weighted and summed yield the coarse element. This

implies -11 II, I2 = f 2 1, and 13 1, 2, 31. Applying (3-3),

S(f, gi) - < f, g, > (3.12)

S(f, 92) - < f, 92 > (3.13)

< f, 91 > < f, 92 >
S(f, 93) = min < 93, 91 > , < 93, 92 > < f, 93 > (3.14)

It is instructive to show how S(f , g,,) for -y - 1, 2, 3 may be determined graphically.

Clearly, S(f, 91), S(f, 92), and the last term in on the right-hand side of (3.14) can be

determined graphically. The first two terms in (3.14) may be determined graphically

as follows. Let r = ag3 denote the vector which satisfies

< r, g, >=< f, g, > (3.15)

for some value of a. This equality is shown in Figure 3-3. Equivalently,

< f, 91 >= < 93, 91 > (3.16)
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93

r

Figure 3-3: A geometric interpretation of the HRP similarity measure.

<fgl>Since 119311 = 1, it follows that r <9.3,91 > Iwhich is precisely the first term

in (3.14). This term is the magnitude of the oblique projection of f onto93 generated

by the orthogonal projection of f onto gi. Similarly, the second term in (3.14) is equal

to the magnitude of the oblique projection Of f Onto 93 generated by the orthogonal

projection of f onto92. Thus, S(f, 93) is the minimum of the three projections of f

onto93 shown in Figure 3-4.

The first element chosen by HRP is the one which maximizes IS(fg,)I. For

the example illustrated in Figure 3- 1, the values of I S (f , g,) I are listed in the first

column of Table 3.2. Thus, the first element chosen by HRP is 92. The resulting

residual, Rf, is [ I o ]. The values of IS(Rf, g7)1 are listed in the second column
2

of Table 3.2, indicating that the second element chosen by HRP is gi. Thus, an

exact decomposition is achieved with two elements and sparsity of the synthesis is

preserved.
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Figure 3-4: Projections of f onto 93

S(f, Rf gy)
1 0.5 0.5
2 0.75 0
3 0.7071 0

Table 3.2: HRP similarity of f and Rf with each dictionary element.
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3.2.2 A Constrained Maximization Interpretation

Additional insight may be gained through the following alternative interpretation

of the HRP algorithm. This section shows that the element which maximizes the

n-If, gHRP similarity measure, IS(R is the same one which solves a constrained

n-1fIImaximization of IIR'f - R This discussion mirrors the development of MP

in Section 2.2 which noted that the element which maximized the inner product

similarity measure, I < R n-1 f, g'Y > I was the same one which solves an unconstrained

minimization of IIR nfIl.

Let us begin by introducing -some notation and mathematically describing the

interpretation of HRP as a constrained maximization. In the interest of cleaner

notation, we will restrict our discussion to the case of the first element chosen by

HRP. That is, we will show that the element which maximizes I S(Rf , g,) I is the same

one whichsolves a constrained maximization of II Rf - f II - The discussion that follows

immediately extends to subsequent stages. Suppose that the first residual generated

by any dictionary element, g., is denoted R,�f and is of the form

R'Yf - f - C(f, g-y)g7 (3.17)

where C(f, g7) is an unknown scalar. It follows that

IIRf - f 11 = IC(f, g,)I. (3.18)

Now consider the maximization of IIRyf - f 11 or equivalently IC(f, g7)1 under the

following constraints

I < R-yf, gli > I < I < f, gi > I for all i E _Ty (k) (3.19)

sign (< R, f , g >) sign (< f , gi >) for all i E 17 (k) (3.20)
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We will show that for any R7 f to meet constraints (3.19) and (3.20) 1 C (f , gY) I must

be less than or equal to I S (f , g,) I as defined in (3.3). Also, the maximum value of any

particular R7f which meets the constraints occurs when C(f, gY) == S(f, g7). Further,

we will show that the dictionary element which solves this constrained maximization

problem is the same as the first element chosen by HRP. In equation form,

9-YO argmax1SU'g')1 (3.21)yEr

arg max Ry - f I I subj ect to (3.19) and (3.20). (3.22)
YEI,

Before showing that the element which solves the constrained maximization is the

same as the first element chosen by HRP, we will discuss the constraints in (3.19)

and (3.20). The constraint in (3.19) captures the idea that the magnitude of the

residual projection onto any element should decrease both globally and locally. In

other words, if g,, is well matched to f , then the projection of the residual onto g'Y

should decrease, and the projection of the residual onto all the local structures which

make up gy (i.e. gi for i E 4 (k)) should decrease. The constraint in (3.20) is motivated,

by the shortcomings of the MP algorithm, Recall that in the MP decomposition of

the twin peaks example, Rf had a large negative component at t = 0 where the

original function was positive. This negative component was not a feature of the

function, but rather an artifact introduced by MP. Thus, constraint (3.20) steers

the decomposition away from including artifacts such as those introduced by MP in

the twin peaks example. It is important to note that the two constraints effectively

balance one another and together imply that the projection onto all local structures

of gy must decrease, but not so much that the sign of the projections onto local

structures change.

We can also illustrate the effect of these constraints in terms of the simple example

shown in Figure 3-1. Recall that for this example the function f is to be decomposed
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over a dictionary set f 91, 92, 93 1, g, and 92 are finest scale elements (i.e. they have no

associated subfamilies), and 93 has an associated subfamily indexed by 13 = f 1, 2, 31.

Figure 3-5 shows the residuals generated for dictionary element 93 by three different

values Of C(f, 93). Figure 3-5a shows the residual that results when C(f, 93) = 1.5.

In this case,

R3f -0.5607 -0.3107 (3.23)

This residual violates both constraints (3-19) and (3.20), since I < R3f, 91 >

0.5607 while I < f, g, > is only 0.5 and since both < R3f, 91 > and I < R3f, 92 >

are negative while < f g, > � an-d f _1�92 > are positive.-- Figure 3-5b shows the

residual that results when C(f, 93) 1-0- In this case,

R3f -0,2071 0.0429 (3.24)

This residual violates only constraint (3.20), since < R3f,91 > is negative while

< fg, > is positive. Fl-nally, Figure 3-5c shows the residual that results when

C(f, 93) = .7071 which is precisely the value Of S(f, 93) in Table 3.2. In this case, the

residual is given R3f 0 0.25 ]. This residual does not violate either constraint.

In fact, this value Of C(f, 93) is the maximum weight that can be given to 93 and still

produce a residual which does not violate the constraints.

Returning to the general case, we now show that the element which maximizes

IS(fgy)l is the same as the one which maximizes IIRyf - f II subject to (3.19)

and (3.20). Assume for now that

< fgi >
< g-t' gi > > 0 for all gi E -Ty (k). (3.25)

Some simple algebraic manipulation yields a sequence of alternative forms for con-
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92 9 92

R3

f 9

f 3

3

9 g V/ 9

(a) R3fforC(f 93) .1. 5. (b) R3f fOr C(f, 93) 1 -0- (c) R3f for C(f, 93)
0.7071.

Figure 3-5: A geometric interpretation of the constraints.

straint (3.19) as follows

I < Rf, gi > I < I < f, gi > 1 (3.26)

< f, gi > -CY, M < g7' g1l > I < I < f, gi > 1 (3.27)

I - CY, 97) < 9-Y, 9i < 1 (3.28)
< f, gi >

0 < C (f , gY) < 2 < fgi > (3.29)
< g'Y' gi >

where the last line follows because of (3.25). Similarly, alternative forms for con-

straint (3.20) are obtained as follows

sign(< Rf , gi >) = sign(< f , gi >) (3.30)

< Rf, gi > < f, gi > > 0 (3.31)
(< f, gi > -CY, g-Y) < gi, gi >) < f, g. > > 0

71 - (3-32)

Cu; g7) < < f, gi > (3-33)
< g-Y' gi >
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where the last line follows because of (3.25). Combining (3.29) and (3.33), we have

< fgi >
O <_ CY, M < (3.34)

< g-f, gi >

The same derivation can be followed through for the case where <fgi> < 0 for all<g-ygi>

gi E 1,,(k) yielding

CY, 9,Y) > > (3.35)

< 9-Y, 9i >

For the case where the ratio <-fgi' does not have the same sign for all gi E 1,,(k), the<g-"gj>

only value of C(f, gy) which meets both constraints for all elements in the subfamily

1. is zero. Thus, for each dictionary element, C(f, g-,) = S(f, g-,) as defined in (3.3)

maximizes IIRyf - f 11 under constraints (3.19) and (3.20). Further, the single dictio-

nary element which maximizes IIRyf - f 11 under constraints (3.19) and (3.20) is the

same one which maximizes IS (f , g-,) 1.

3.3 HRP Convergence Properties

In this section, the properties of the HRP algorithm for finite discrete functions

f [t] for 0 < t < P are studied. The main result of this section shows that if the

dictionary r is complete then the HRP algorithm produces residuals whose norms

decay exponentially.

To prove the exponential convergence of the norm of the residuals produced by

HRP, the following lemma is needed. This lemma proves that at each step the sim-

ilarity function must be bounded below by a fraction of the energy of the current

residual. A crucial element of this proof is the assumption that the dictionary con-

tains all elements g,, [t] of the form

9-Y[t] 6[t - r] for 0 < r < P (3.36)
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where
I for t = 0

(3.37)
0 otherwise

Note that by definition S(f, 6[t - r]) = f [r].

Lemma I For a dictionary r which contains elements of the form given in (3.36),

IS(R'fg-y.,,,)l > 1 1 Rrf II (3.38)
,VP

Proof : The similarity function will always be greater than the value of Rn f at any

particular point. That is,

I S (Rn f , g_y") I > I R" f [r] I for any r. (3-39)

This follows because, by definition,

9-y" = arg sup I S (Rn f , g_y) (3.40)
-YEr

and 6 [t - -r] Erand S(R"'f, 6[t - r]) -- R'f This implies

I S (R' fg,,,,) I > sup I R' f [r] 1. (3.41)

Further,

P
1IRnf 11' IRnf [r] II (3.42)

IjRnf III < P (sup I Rn f [r] I)' (3.43)
r
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which implies

sup IRnf [r] I > JJR nfll. (3.44)
r VIT

It follows that,

JS(R n f, g_Ij I > I JJR nfjj. (3.45)
VIT_

The following theorem shows that for a complete dictionary which contains ele-

ments of the form given in (3.36), the HRP algorithm yields residuals whose energies

decay exponentially.

Theorem 1 For a dictionary I' which contains elements of the form given in (3.36),

n+1fjj < (1 nfjjJJR (3.46)
P

Proof Note that

JJR n+1fjj1 JJR nfjj 2S(R nf, q,") < R n f, > + S2 (R nf, g,"'). (3.47)

From the definition of the similarity function, we know

I < R nf, g�n > I > S(R nf, g',"") (3.48)

sign(< R n f, g_y"� >) = sign(S(R nf, g')). (3.49)

This implies

n+IfII2 < nflllJJR JJR S2 (R nf, g_Y.). (3.50)
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Lemma I then implies

n+lf 112 n 2 nf IIIIIR < IIR A P IIR (3.51)

nf 112(l 1
IIR - ). (3.52)

P

0

3.4 HRP Computational Complexity

The HRP algorithm may be efficiently implemented so that the number of opera-

tions. required for each iteration is proportional to the size of the dictionary. Further,

the computational complexity of HRP may be reduced by using a subdictionary

constructed by sampling the scale/shift space. In this section, we discuss the compu-

tational complexity of HRP for the cubic b-spline and wavelet packet dictionaries.

We begin with the cubic b-spline dictionary. Recall that the notation for the aic-

tionary is �gj-y E rj- Suppose we construct a reduced dictionary jgyj-� (E rRj. For

the cubic b-spline dictionary, the reduced dictionary has scales j which are integers

in the range 0 < j < 1092 (P), where P is the length of the signal, and 2i evenly

spaced translations. This reduced dictionary has a total of C = 2P - I elements. Let

H be the set of functions which form the subfamilies for all elements of the reduced

dictionary, H = fgil for Z' E Ly and -y G rR. The HRP algorithm is initialized by

computing < f , gi > for all g H and < gy, gi > for all -y Erand all gi E H. This

initialization requires a one-time computation of O(p2 (1092 (p)) 2) operations using

the FFT. The HRP similarity measure S(f, g_�) for -y E rR may then be computed in

O(KC) operations where K is the cardinality of the set 1,(k). The element which

maximizes I S(f , gy) I over the reduced dictionary is an approximation to the element

which maximizes IS (f gy) I over the unreduced dictionary. The element which max-



66 Chapter 3. High Resolution Pursuit

imizes IS(fgj unreduced dictionary could then be found using a Newton search

strategy. Let g., be the element which maximizes JS(f, g7)1 over the unreduced dic-

tionary. Using (3.7), the inner products < Rf , gy > for all gi E H can be computed

as

< Rf, gy >=< f, g7 > -S(f, g_�O) < gy,,, gt > (3.53)

The inner products < Rf, gi > for all gi c- H can then be computed using (3.53).

Since each of the terms on the right hand side of (3.53) has been previously stored,

the calculation of < Rf, gi > for all gi C: H takes O(KC) operations. Extending

this argument, we see that each iteration takes O(KC) = 0?(2PK) operations. The

number of iterations will typically be much smaller than P.

For the wavelet packet dictionary, the size of the reduced dictionary is C

P 1092 (P). This reduced dictionary has scales j which are integers in the range

0 <_ i < 1092 (P), 2 7jp -Jrequency�binsfor scale j, and 2i evenly spaced translations

for every scale and frequency bin. HRP using the wavelet packet dictionary can be

O(p2initialized in 1092(p)) operations by computing < fgi >. Each iteration for

HRP with the wavelet packet dictionary requires the computation of S(R'f, gY), the

computation of < gy.,,:jtgj >--and-the Gomputation of < Rf,�gj >. This is a total of

O(KC) O(KP'092(p)) operations per iteration where K is the cardinality of the

set 14). Again, the number of iterations will be much smaller than P.

3.5 Demonstration of HRP

In this section, we show that HRP is able to extract signal structure using some

simulated examples. As discussed in Chapter 2, the two dictionaries which are of

particular interest for this work are cubic b-spline and wavelet packet dictionaries. In

this section, we investigate the performance of HRP on some simulated examples for
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both the cubic b-spline and wavelet packet dictionaries.

3.5.1 HRP with Cubic B-spline Dictionaries

In this section, the performance of HRP using cubic b-spline dictionaries is explored.

We return to the twin peaks example introduced in Section 2.2. HRP is able to resolve

the two closely spaced elements used to construct the function. We also investigate

the performance of HRP on the so-called gong signal used in [6]. This is an example of

the performance of HRP on a function that is not constructed as the sum of dictionary

elements.

Twin' Peaks Revisited

Recall the twin peaks example of Section 2.2 for which MP yielded unintuitive results.

The twin peaks signal is constructed as the sum of two dictionary elements at scale

32 and translation t == ±0.3281. The -contour plot of the HRP similarity function for

fitting the first element is shown in Figure 3-6 and clearly shows two maxima at the

scale and translations which'correspond to the features of the original signal. This

is -in contrast to the.- analogous contour plot for. MP, which was originally shown in

Figure 2-7 and is repeated in Figure 3-7. As this figure shows, the MP similarity

measure has a single maxima at scale 40 and translation t = 0.

The coherent structures of this signal are captured by the first two elements of the

HRP approximation. The first ten elements of the HRP decomposition are shown in

Figure 3-8. Since HRP chooses two reasonable elements in the first stages, subsequent

elements serve to refine the fit rather than to correct mistakes from previous stages.

One can imagine that, in a feature extraction setting, the first two elements would

provide a good approximation to the signal and could be used as features of the signal.

As discussed earlier, the HRP decomposition will be affected by the depth at which
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Contour of HRP similarity measure of f with each dictionary element

Fine 7
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Figure 3-6: The HRP similarity graph is the HRP similarity measure between the
function and each dictionary element w�ich is indexed by scale and translation. This
figure shows the contour of the HRP similarity graph. 0 marks location of true
elements of the function which are the same as the maxima of the HRP similarity
graph.

Contour of inner product of f with each dictionary element
7
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-4 -3 -2 -1 0 1 2 3
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Figure 3-7: Contour of MP projection graph for the twin peaks example. This graph
is also shown in Figure 2-7 and repeated here for comparison
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First ten elements of HRP
1.2

1

0.8 -

0.6 -

0.4 -

0.2

-3 -2 -1 0 1 2 3 4
t

Figure 3-8: First ten elements for twin peaks example using HRP.

the family Ly(k) is constructed. Figure 3-9a-d show the coherent features of the HRP

decomposition with depths zero, one, two and three, respectively. At a depth of zero,

HRP reduces to MP and the signal is decomposed as a coarse scale feature plus a

negatively weighted fine scale feature near the center. At a depth of one, HRP gives

the decomposition in Figure 3-9b which may be interpreted as a coarse scale feature

plus fine scale details at t ;z� ±0.25. Finally, at a depth of two or higher, HRP gives

the decomposition shown in Figure 3-9c-d, which is interpreted as the sum of two

positively.weighted fine scale features. In real data applications, the depth of LY(k)

may be used to incorporate prior knowledge into the decomposition.

Figure 3-10 compares the residual norms for MP and HRP for the twin peaks

example up to 1024 elements. We can identify three distinct regions of convergence.

In the first region, from approximately element I through 10, both algorithms generate

residuals whose norms decay quickly and at a very similar rate, but the decompositions

for the two algorithms look very different. MP is behaving in a greedy way by picking

coarse features instead of fine features. On the other hand, HRP is behaving in a

slightl' less greedy way and only picks coarse features when they match the signal
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a. HRP resolution depth 0b. HRP resolution depth 1
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Figure 3-9: Changes in the HRP decomposition of the twin peaks signal as the resolu-
tion depth (i.e. the value of k) is changed. Each subfigure shows the first few elements
of the HRP decomposition for a different value of k. (a) k = 0. (b) k = 1. (c) k = 2.
(d) k = 3.

structure locally as well as globally. In the next region, from approximately element 10

to 200, the rate of decay of the residual norms for both decrease slightly from the rate

in the first region. In this second region, the MP residual norms are slightly smaller

than HRP residual norms. This is to be expected since the MP criterion is to minimize

the norm of the residual at each step. The final region starts at approximately element

200. In this final region, the MP residuals continue to decay at an exponential rate,

but the I4RP residuals decay at a rate much faster than exponential. In this region,

the residuals only have structure at the finest scale (i.e. Diracs). HRP will only

extract Diracs at this stage- MP, on the other hand, will continue to extract coarser

features. This behavior is simply an extension of the behavior shown in Figure 3-.11

which shows that MP often extracts coarse scale structures from signals which have

only fine scale structure, but HRP extracts fine scale structure. The implication of

this behavior is that once HRP attains the Dirac extraction mode, the residual will

converge to zero in N iterations, where N is the number of samples of the signal.
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Figure 3-10:,Compariso-n of MP and HRP residual norms for twin peaks example.
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Figure 3-11: Comparison of MP and HRP on a residue with only fine scale structure.
(a) Sample Residual. (b) MP chooses an element with coarse scale structure when
the signal has only fine scale features. (c) HRP chooses an element with fine scale
structure.
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The Gong Signal

The next signal we consider is the one illustrated in Figure 3-12 which has a sharp

attack at x = -2 followed by a slow decay. This is the envelope of the gong signal used

in [6]. The ideal decomposition for this signal would capture the attack with elements

well localized in time and would not place elements prior to the attack of the signal.

We will compare the results of the MP algorithm with those of the HRP algorithm

when k := 2. Figure 3-13 shows the first element picked by the two algorithms. As

was with the case with the twin peaks example, the first element chosen by the MP

algorithm is one which introduces.an artifact (i.e. energy prior to the attack of the

signal). This artifact will have to be corrected for in subsequent stages. In c ontrast,

the first element chosen by HRP does not have a significant amount of energy prior

to the attack of the signal. Figure 3-14 shows the first ten elements chosen by the two

algorithms. Since the first element of the MP decomposition has significant energy

prior to the attack of the signal, three of the subsequent nine elements are used to

correct for this initial mistake. On the other hand, HRP captures the attack of the

signal with elements well localized in time and does not place elements before the

attack. Finally, Figure 3-15 shows the sum of the first ten elements for the two

algorithms. Note that the MP approximation has some ringing prior to the attack

of the gong signal and that the HRP algorithm has only a small error prior to the

attack of the signal.

Figure 3-16 compares the norms of the MP and HRP residuals. Once again, three

regions of convergence are evident. The first region, which extends from element

1 through 10, both algorithms decay at similar rates. However, while MP extracts

elements which fit the signal well globally, HRP only extracts elements which fit

well locally as well as globally. In the second region, from element 10 to 500, both

algorithms show exponential convergence. In the final region, above element 500,



Section 3.5. Demonstration of HRP 73

The envelope of a gong signal
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Figure 3-12: Envelope of the gong signal.
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Figure 3-13: First element picked by MP and HRP for the gong example. The dashed
line is the gong signal.
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Figure 3-14: First ten elements picked by MP and HRP for the gong example. The
dashed line is the gong signal.
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Figure 3-15: Sum of the first ten elements picked by MP and HRP for the gong
example. The dashed line is the gong signal.
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Norm of Residuals for MP and HRP
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Figure 3-16: Comparison of MP and HRP residual norms for the gong example.

HRP shows a convergence rate much faster than exponential.- Again, this results

from the fact that HRP enters -a mode where it extracts only Diracs.

3.5.2 HRP with Wavelet Packet Dictionaries

In this section, we show that HRP with wavelet packet dictionaries is able extract

signal structure and able to resolve two elements which have the same scale and

frequency characteristics but differ in translation. However, because of the particular

structure we have chosen for the family I., the HRP algorithm will not be able to

resolve two elements which have the same scale and translation characteristics but

differ in frequency. In this section, we highlight the strengths and weaknesses of HRP

with wavelet packet dictionaries.

Super-Resolution Examples

Just as was the case for cubic b-spline dictionaries, HRP using wavelet packet dictio-

naries is able to resolve elements in translation. Figure 3-17 shows the signals fl, f2,

and f f, + f2 and their corresponding ideal representations on a time-frequency
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plane. The functions f, and f2 have the same scale and frequency characteristics

but differ in translation and are elements of a wavelet packet dictionary based on the

Symmlet wavelet described in [6]. The signal f will be decomposed over the Symm-

let wavelet packet dictionary which contains each of the elements used to construct

the signal f. Thus, the signal and the dictionary are well-matched. This example

is analogous to the twin peaks example which was the sum of two cubic b-spline

elements at the same scale but different, nearby translates and was decomposed over

the cubic b-spline dictionary. Figure 3-18 shows the time-frequency representations

of the MP, BP, and HRP decompositions. The HRP decomposition uses k = 2. The

MP decomposition is unable to resolve the two elements and gives the appearance of

a complicated signal structure. On the other hand, both the BP and HRP decom-

positions are able to resolve the two elements and yield a sparse representation for

this signal. Even though the BP and HRP decompositions are identical, HRP has an

advantage over BP in terms of computational complexity.

Because of the particular structure we have chosen for the family 1,(k), the HRP

algorithm will not be able to resolve two elements in frequency. In the wavelet packet

dictionary, we can construct a signal that is the sum of two dictionary element's

which share scale and translation characteristics but differ in frequency. This type of

a construction was not possible in the cubic b-spline dictionary since all cubic b-spline

dictionary elements share basically the same frequency characteristics. We. construct

another signal f = f, + f, where f, a d f2 are elements of the Symmlet wavelet packet

dictionary as shown in Figure 3-19. Figure 3-19 also shows the ideal time-frequency

plane representations for fl, f2 and f. For this example, the functions f, and f2 have

the same scale and translation characteristics but differ in frequency. The signal f will

be decomposed over the Symmlet wavelet packet dictionary. Again, the signal and the

dictionary are well-matched. Figure 3-20 shows the time-frequency representations
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Figure 3-17: The signal f is the sum of f, and f2 which are both elements of the
Symmlet -wavelet packet dictionary. The signals f, and f2 have the same scale and
frequency characteristics but differ in translation. The time-frequency plane repre-
sentations of fl, f2, and f are also shown.
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a. MP Phase Plane b. BP Phase Plane
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Figure 3-18: The time-frequency plane representations of the MP, BP, and HRP
decompositions.
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of the MP, BP, and HRP (with k = 2) decompositions. For this example, the both

the MP and HRP decompositions are unable to resolve the two elements and give

the appearance of a complicated signal structure. In contrast, BP is still able to

resolve the two elements. The sub-optimal behavior of HRP for this example can be

attributed to the structure we have chosen for the subfamily 1,(k). Compared to the

time-frequency support of the function gy, the functions included in the subfamily

Ly(k) have a narrower support in time and therefore a wider support in frequency. It

follows that the HRP similarity measure based on this particular structure of Ljk)

is a minimum over inner products with elements with a wider support in frequency

and therefore will not be able to distinguish two elements closely spaced in frequency.

One c-an imagine, however, developing an HRP algorithm to resolve elements close in

frequency where- the family L, is defined to consist of elements with finer frequency

resolution and therefore coarser time resolution. That is, the subfamilies in this case

are, in a sense, the "duals" of those used in this section.

Finally, consider the signal f shown in Figure 3-21a which is the sum of four

elements : a Dirac, a sinusoid, and 2 Symmlet wavelet packet dictionary elements

which are closely spaced in translation. The signal is decomposed over the Symmlet

wavelet packet dictionary and the results of the MP, BP, and HRP algorithms are

shown in Figure 3-2lb-d. The MP decomposition clearly resolves the Dirac and the

sinusoid but is unable to resolve the other two elements. Both BP and HRP resolve all

four elements, but HRP improves on the computation time of BP by a factor of four.

The signal f is very similar to the carbon signal introduced in [6] which included two

additional Symmlet wavelet packet elements that were closely spaced in frequency.

We have chosen to deletethose additional elements for this example since, as we have

already pointed out, HRP, as we have configured it here, will not always be able to

resolve elements closely spaced in frequency.
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Figure 3-19: The signal f is the sum of f, and f2 which are both elements of the
Symmlet -wavelet packet dictionary. The signals f, and f2 have the same scale and
translation characteristics but differ in frequency. The time-frequency plane repre-
sentations of fl, f2, and f are also shown.
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Figure 3-20: The time-frequency plane representations of the MP, BP, and HRP
decompositions.
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a. Carbon Singal b. MP Phase Plane
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Figure 3-21: Results for the carbon signal. (a) The carbon signal which consists of
the sum of four dictionary elements. (b) The MP decomposition. Note that nearby
elements are blurred. (c) The BP decomposition. Note that all four elements are
resolved. (d) The HRP decomposition. Again, all four elements are resolved.
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The Gong Signal

Figure 3-22a shows a gong signal. As was mentioned in Section 3.5.1, this type of

signal has a sharp attack, followed by a slow envelope decay. Again, the ideal de-

composition would capture the attack with elements well localized in time and would

capture the correct frequency of the modulation. Further, the ideal decomposition

would not introduce elements prior to the attack. of the signal. That is, it would not

introduce a pre-echo effect which is particularly disturbing for audio signals.

Figures 3-22b-d show the time-frequency plane results for MP, BP, and HRP,

respectively. The partial reconstructions for three, five and ten elements for each of

the three methods are shown in Figure 3-23. The signal was analyzed using a wavelet

packet dictionary constructed from the Daubechies six tap wavelet [10]. MP captures

the point of the attack and identifies the correct frequency, but introduces several

elements prior to the attack of the signal which results in the addition of subsequent

artifacts in the reconstruction. Although the elements before the attack have a small

weight, they significantly impact the reconstruction. Thus, the MP reconstruction

exhibits this pre-echo effect. BP performs very well since it captures the attack,

does not place elements prior to the attack of the signal, and captures the correct

frequency of the modulation. HRP captures the point of the attack and does not

introduce elements prior to the attack of the signal. However, HRP does not do as

well as BP in capturing the correct frequency of the modulation. Comparing the

rates of decay of the three methods (see Figure 3-24), we see that BP decays at a rate

slightly faster than HRP. In conclusion, HRP does not surpass BP in the quality of

the decompositions. However, HRP provides decompositions without artifacts prior

to the attack of the signal and does not require the intensive computation of BP.
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Figure 3-22: (a) The gong signal. (b) Time-Frequency plane for MP. (c) Time-
frequency plane for BP. (d) Time-Frequency plane for HRP.
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Figure 3-23: Partial reconstructions for MP, BP, and HRP with 3, 5 and 10 elements.
In the MP reconstruction, we see the elements prior to the attack of the signal have
a significant impact on the partial reconstruction.
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Figure 3-24: Rates of decay of the three methods.



Chapter 4

Recognition of Airplanes from

Silhouettes

4. I Intro duct ion

Humans have the ability to analyze visual scenes, localize and recognize objects, and

make decisions based on our visual observations. A computer vision system that could

emulate these tasks, which are simple for a human, would have numerous industrial,

military, and medical applications. Of course, computer vision is an immense field

encompassing a vast array of research [2, 21, 28]. In this chapter, we investigate the

application of HRP to one very specific computer vision problem, namely, model-

based object recognition from silhouettes.

Model-based object recognition [3,15] is performed by comparing features ex-

tracted from a given data image to features extracted from a predefined set of model

images and determining which model the data image most closely resembles. Since

humans have the ability to recognize objects from only silhouette.or boundary data,

there is a widely-held intuition in computer vision [3,13,16,19,24,30,40] that these

87
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object boundaries contain much of the significant information required to recognize

objects. Silhouettes may be generated from gray scale images using any one of a num-

ber of edge detectors [5, 12, 18, 27], segmentation algorithms [38], or active contour

models [1]'.

For a computer vision algorithm for recognizing objects from silhouettes to be of

practical importance, the algorithm must perform well under a number of possible

variations in the image. Since it is not always feasible to control the spatial relation-

ship between the object and the imaging senor, a computer vision system must be

robust to variations in scale, orientation, and translation. Further, imaging conditions

such as lighting, reflectance, and haze may result in object boundaries which appear

perturbed from their original position. These imaging conditions or the positioning of

the object in the scene may also cause portions of object boundaries to be occluded.

That is, a portion of the object boundary may be missing entirely. In addition, the

algorithm should be robust to variations within the object class'.

A number of algorithms have been investigated to recognize objects from their sil-

houettes under scale variations, orientation variations, boundary perturbations, and

occlusion. In [23,30],Ahe authors use Fourier descriptors to recognize silhouettes. The

benefits of these techniques based on Fourier descriptors is their small computational

burden, robustness -to scale and orientation variation, and their relative robustness

to boundary perturbations. On the other hand, these techniques deteriorate rapidly

when occlusions are present. In [24], the authors investigate a technique to classify

partial boundaries based on Fourier descriptors. The basic idea behind the technique

is to estimate the Fourier descriptors of the complete boundary by minimizing a cost

function which is the sum of the least square fit to the Fourier descriptors of the

Of course, this does not imply that recognition from silhouettes is applicable in all settings since
it may not always be possible to binarize a scene to obtain a silhouette as pointed in [21].

2In the airplane data set that we investigate in this chapter, the presence or absence of under-wing
stores (e.g. missiles) would be an example of such variations within the object class.
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partial boundary and a compactness measure. The authors show that their technique

is able to distinguish some rather broad classes of objects, rather than individual

shapes. In contrast, the technique that we describe in this chapter will be able to

distinguish individual shapes. In [25], the authors segment the object boundaries and

compare two boundaries based on the ratio of the lengths of consecutive segments.

This technique was demonstrated on occluded boundaries but no results were pre-

sented showing the performance under boundary perturbations. In [39], the authors

present a technique based on the chord length distribution, i.e. the normalized set

of chord lengths between all pairs of boundary points. The main drawback of the

technique outlined in [39] is the computational complexity. Because of the large com-

putational burden imposed by their algorithm, the authors of [39] test their method

under boundary perturbations as well as noise, but only use a very small sample size..

In this chapter, we propose an algorithm based on HRP to recognize airplanes

from their silhouettes. Since a number of researchers [3, 13, 23, 30] have based their

recognition schemes on a ID representation of the silhouette, we propose to use HRP

to extract elements from a ID representation of the silhouette, namely the centroidal

distance profile [3,13,23]. The parameters of the HRP elements are organized into

a feature vector. - Recognition is performed using this feature vector and an M-ary

hypothesis testing scheme. Our experimental results show that this approach is robust

to boundary perturbations, scale variations, and small orientation variations. Further,

our approach is also robust to variations due to occlusion. This is in contrast to the

basic technique based on Fourier descriptors [23,30] which cannot accommodate both

boundary perturbations and variations due to occlusion. Moreover, in contrast to the

technique for recognition of partial boundaries based on Fourier descriptors in [24],

the HRP based technique we describe in this chapter is able to distinguish individual

shapes rather than broad classes of objects.
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4.2 Background

In this section, we discuss methods for extracting ID profiles from silhouettes, some

models used to create noisy silhouettes, and a classical classification technique based

on Fourier descriptors, and give a brief survey of the current literature.

The data set of interest for our work consists of the silhouettes of seventeen mili-

tary airplanes shown in Figure 4-1. Similar data sets have been used in [4,19,23-251.

This data set is a fairly challenging one since it contains some planes which are very

similar, for example, Planes # 2, 9, and 10 are similar to one another and Planes #4,

15 and 16 are similar to one another. Planes 7, 12 and 17 are considered swept

wing. aircraft.

4.2.1 1D Profile Extraction

A number of methods for extracting ID representations of silhouettes are considered

in [3,23]. These include the centroidal distance profile, the complex coordinate profile,

and the curvature profile. These techniques often depend on not just extracting

boundary curves but extracting ordered points from boundary curves. Such a set of

ordered points may be obtained as a byproduct of the curve extraction (e.g. active

contours -[I]) or from some other technique (e.g. chain codes [3]). The centroidal

distance profile is the distance from the points along the object boundary to the

object's centroid. That is, if (x(m), y(m)) are an ordered sequence of boundary

points then the centroidal distance profile f (m) is given by

(4.1)f (M) -
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Plane 1, a-10 Plane 2, a-4 Plane 3, a-7 Plane 4, b-1 3

Plane 5, b-52 Plane 6, buccaneer Plane 7, f-1 1 1 Plane 8, f-4

Plane 9, harrier Plane 1 0, jaguar Plane 1 1, mig-27 Plane 12, mirage-IV .

Plane 13, su-24 Plane 14, su-7 Plane 15, tu-22 Plane 16, tu-26

Plane 17, viggen

Figure 4-1: Silhouettes of 17 military airplanes which make up the data set.
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where (X,, Y,) is the centroid of the object and is defined as

X - Ex Ey B(x, y)x (4.2)
C Ex , EY B(x,,y)

YC - Ex Ey B(x, y)y (4.3)
Ex EY B(x, y)

where B(x, y) is set to I for points inside the object boundary and 0 for points

outside the object boundary [3]. The complex coordinate profile [23] is a complex

representation of points along the object's boundary. If (x(m), Y(m)) are an ordered

sequence of boundary points then the complex coordinate profile z(m) is given by

z (M) = (X (M) - X') + 3, (Y (M) - YC) (4.4)

where (X,, Y,) is the centroid of the object as defined in (4.2) and (4.3). Finally, the
-alp,

curvature profile, for �ou` ndary points (x(m), y(m)), is given by c(m) [23] where

c(m) = arctan Y(M) - Y(M - W) - arctan Y(M - Y(M - W - (4.5)
X(M) - X(M - W) x(,rn - x(m - w -

where w is a constant-. -

For this work, we will use the centroidal distance function to represent the silhou-

ettes in our airplane database. We have chosen to use the centroidal distance function

since it is fairly robust to -noise, as shown in [3,231, and it is well matched to the cubic

b-spline dictionary which was investigated in Chapter 2.

There are two schools of thought on how to extract the centroidal distance profile

from a silhouette : equiangular spacing and equidistant spacing. In [13], the authors

calculate the centroidal distance profile at the points of intersection of the boundary

with equiangularly spaced radius vectors, as illustrated in Figure 4-2. In [3,23], the

authors calculate the centroidal distance profile using points which are equidistant



Section 4.2. Background 93

90

120 60

150 0

180

210 330

240 0

270

Figure 4-2: Equiangular spacing for extracting the centroidal profile. The numbers
indicate the angle in degrees.

along boundary as illustrated in Figure 4-3.

Since equiangular spacing leads to non-uniform sampling of the boundary and

ambiguity when the radial vector intersects the boundary more than -once (e.g. the

vector at 60' in Figure 4-2), we will use equidistant spacing to calculate the centroidal

distance profile in this work. Figure 4-4 shows the centroidal distance profile,

corresponding to equidistant spacing for Plane #1. This centroidal distance profile

starts at the tip of the nose and proceeds in a counter clockwise direction. Note

that the centroidal distance profile will be periodic. From this figure, we note that

the physical features of the plane are clearly identifiable in the centroidal distant

profile. The first peak in f (which is wrapped around the interval) corresponds to

the nose of the aircraft. Similarly, the next peak corresponds to one wing, the third

peak corresponds to the tail, and the last peak corresponds to the other wing. In

this work, the first point in the centroidal profile will be the one corresponding to

0 = -7r/2. Figure 4-5 shows the centroidal distance profile calculated at equidistant

points extracted for each of the planes in the data set under consideration.

One drawback of the centroidal distance profile is that it essentially discards angu-

lar information. Clearly, it is not possible to reconstruct the original boundary from
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Figure 4-3: Equally spaced points along the boundary.
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Figure 4-4: The centroidal distance profile, f, for Plane #1 calculated at equally
spaced points along the boundary.
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Figure 4-5-.' The ID centroidal distance function extracted from each plane in the
data set. The points used are equispaced along the boundary.
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Figure 4-6: The angular profile accompanying the centroidal distance profile in Fig-
ure 4-4.

the centroidal distance profile alone. The additional information needed to construct

the original boundary is the angular profile, O(m). For boundary points (X(M), y(m)),

the angular profile 0 (m) -is -given by

Y(M)O(M) = arctan (4.6)
X (M) - X,

The centroidal distance pi�Qfile and the angular profile are just the representation of

the boundary in polar coordinates centered at the centroid of the silhouette. As an

example, Figure 4-6 shows the angular profile accompanying the centroidal profile

shown in Figure 4-4. This angular information will be useful in Section 4.4.

4.2.2 Silhouette Variations

For an algorithm for recognizing objects from silhouettes to be of practical impor-

tance, the algorithm must perform well under a number of possible variations in the

silhouette or boundary curve. The algorithm must be robust to variations in scale

and orientation since it is not always possible to control the spatial relationship be-
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Figure 4-7: The centroidal distance profile of Plane #3 at different scales.

tween the object and the imaging system. Certain imaging conditions may cause

the perturbations in the boundary or even occlusions. In this section we illustrate

some of these possible variations, their effects on the centroidal distance function,

and describe models used in the literature to create these silhouette variations.

The scale of the silhouette changes as a function of the distance between the

object and the imaging system. The resulting centroidal distance profile shows a

change in amplitude. Figure 4-7 shows the centroidal distance profile for Plane #3 at

two different scales. The peaks in the centroidal distance profile corresponding to the

nose, wings, and tail are still identifiable. Next, consider rotation of the object, where

the axis of rotation is perpendicular to the imaging plane. Suppose the centroidal

distance profile f is always extracted starting at fixed angular position, then this

rotation results in a circular shift of the centroidal distance profile. Figure 4-8 shows

Plane #4 at different rotations and the corresponding centroidal distance profiles,

where the starting point for the centroidal profile is at 0 = -7r/2.

Imaging conditions such as lighting, reflectance, and haze may cause perturbations

in the boundary curve itself. We will model these boundary perturbations using the

technique adopted in [3, 23, 39]. In [3, 23, 391, p percent of the boundary points are

perturbed by Gaussian noise which is perpendicular to the boundary. That is, the
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Figure 4-8: Plane #4 at two different rotations and the corresponding centroidal

distance profiles.

m-th boundary point goes from (x(m), y(m)) to (x,(m), y,,,(m)) where

X,(qn) = x(m)+drcos(�(m)) (4.7)

.(7n),.,= yfm)+drsin(�(m)) (4.8)

where d is the distance between boundary points m and m + 1, r is a random variable

chosen from N(O, s'), and � is the angle between the x-axis and the direction normal

to the boundary at point m. Figure 4-9a shows the points in Figure 4-3a perturbed

according to (4.7) and (4.8) with p 40 and s = .9. By connecting'the perturbed

points, we obtain the noisy boundary given in Figure 4-9b. The noisy 1D centroidal

profile in Figure 4-10 is then generated from the unperturbed centroid, and points

that are equally spaced along the noisy boundary. This requires resampling the noisy

boundary. This type of boundary perturbation also causes a change in the object's

centroid. While other papers [3,231 have ignored this secondary effect, we will include

it in our experimentation.

Occlusion may be caused by changes in lighting, reflectance, haze, or the presence

of other objects in the image. In [25], occluded boundaries are created by replacing
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Figure 4-9: Generating Gaussian perturbations perpendicular to the object contour.
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Figure 4-10: Noisy 1D centroidal distance function.
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Plane 1 without occlusion Plane 1 with 10% occlusion

Figure 4-11: Plane #1 with and without occlusion. The plane on the right is generated
with q = 10%.

a random, consecutive set of q percent of the boundary points in a silhouette with

a straight line. Figure 4-11 shows occluded version of Plane # 1 with q = 0 (i.e. no

occlusion) and q - 10 and Figure 4-12 shows the corresponding centroidal distance

profiles. Occlusion causes two types of distortion in the centroidal distance profile.

First, since a portion of the boundary is missing more boundary points will be devoted

to the remaining airplane features. As a result, the scale of the remaining features

has changed. For example, in the occluded centroidal distance profile in Figure 4-12,

since the first wing is occluded the second wing appears wider than in the unoccluded

profile. Second, the occlusion also causes a shift in the centroid which leads to a

significant warping in the centroidal distance profile.

4.2.3 Fourier Descriptors

One classical technique used to recognize silhouettes is based on Fourier descrip-

tors [23,30,401. The benefits of these techniques is their small computational burden,

robustness to scale and orientation variation, and their relative robustness to bound-

ary perturbations. On the other hand, these techniques deteriorate rapidly when

occlusions are present.
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Figure 4-12: Corresponding centroidal distance profiles for Figure 4-11.
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In [23], the authors construct a feature vector based on the normalized magnitude

of the centroidal distance profile of a silhouette. If the centroidal distance profile of

a silhouette has N samples and is given by f, and the discrete Fourier transform of

f is given by F, then the feature vector y is given by

[IF11 ... IFNI21
Y- (4.9)

11FOI IF01

where Fj denotes the i-th component of F. The classification of silhouettes based on

their Fourier descriptors is done using a K nearest neighbor procedure [14].

4.3 Detection Theory Background

As we have already mentioned, the basic approach in this work is to extract HRP

features from a 1D representation of th'e air-'-p'lane silhouettes and use these features

to identify the plane. The search engine we will be using in this work is the M-ary

hypothesis test and the generalized likelihood ratio test. In this section, we describe

these two general concepts from detection theory.

4.3.1 Hypothesis Testing

The M-ary hypothesis testing problem is an extension of the binary hypothesis testing

problem so we begin by considering the binary hypothesis test. Suppose we are given

a vector of measurements y whose probabilistic behavior is determined by one of

two hypotheses, Ho and H1. We are also given the following information regarding

the measurements and hypotheses. First, we are given the probabilistic relationship

b etween y and each of the hyp otheses, i. e. py I H,.,, (Y I H,) for m 0, I Second, we

are given P, the probability that hypothesis 77-� is true. Third, we are given Cm,

the cost associated with choosing hypothesis m if hypothesis n is true. The decision
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rule, D(Y) which minimizes the expected value of Bayesian risk [14,371 is stated as

follows:
1 if PyIH,(YIHI) (C1O-COO)PO

D(Y) PyjHO(YjHo3 (Coj-Cjj)Pj (4.10)
0 if PyIH,(YlHl) < (CIO-COO)PO

PyIHO(YlHo) Col -C11)P1

where the term on the left hand side of the inequality in (4.10) is referred to as the

likelihood ratio. For the case where the cost associated with correct decisions is zero,

the cost associated with incorrect decisions is one, and the hypotheses are equally

likely, this decision rule reduces to

D (Y) I if PyIHI(YIH,) > pyHO(YlHo) (4.11)

0 if PyIH,(YIH,) > pyH,,(YIHO)

That is, the choice which minimizes the Bayesian error criterion is the hypothesis with

the maximum likelihood. In the M-�ary hypothesis-test_,, the set of possible -hypotheses

is given by f Hi, . . . , Hm - The Bayes minimum risk decision rule for the case where

the cost associated with correct decisions is zero, the cost associated with incorrect

decisions is on e, and the hypotheses are equally likely is given by

'D(Y) = M if PylHm(YIH,,,) > pyH.,,,(YIH,,) for all n =A m. (4.12)

Although we have shown the more general case with arbitrary values for Pm and

C", we will assume in the remainder of this chapter that the cost associated with

correct decisions is zero, the cost associated with incorrect decisions is one, and the

hypotheses are equally likely.

Reiterating, our proposed approach is to use the M-ary hypothesis test to deter-

mine which plane is most likely given a set of features based on the elements extracted

by HRP from a noisy 1D representation of a silhouette. In this proposed approach,

y will be a feature vector based on the HRP decomposition and each hypothesis H,
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will correspond to one of the planes in the database.

4.3.2 Generalized Likelihood Ratio Test

The hypothesis testing problem can also be extended to include more complex hy-

potheses, typically referred to as composite hypotheses [34]. A composite hypothesis

is one which depends on another unknown value. That is, py1H,"(YJH,) actually de-

pends on some other unknown value � and should be rewritten as py1H_,,3(YJH., 0).

The parameter 0 is often referred to as a "nuisance" parameter since the objective is

to choose a hypothesis, regardless of the actual value of

The generalized likelihood ratio test (GLRT) suggests that a logical approach

to this problem is to replace the unknown parameter with its maximum likelihood

estimate and continue with the hypothesis test previously outlined. In this case, the

M-ary hypothesis testing decision rule becomes D(Y) = m if

max,3 Py I H,,,,,,6 (Y H,,,,
MaX16 PyIH,,,,,8 (Y Hn, 0) > -y for all n =,4 m (4.13)

where 7 is some threshold. In the specific case where the cost associated with the

correct decision is zero, the-'cosf associated with an incorrect decision is one, and all

hypotheses are equally likely, -� is equal to one.

The following examples serve to illustrate the generalized likelihood ratio test.

Examples 2 and 3 will be particularly useful in the remainder of this chapter.

Example 1. One example often used to illustrate the GLRT is as follows. For this

example, the measurements are a random vector y with N components. Suppose that

under hypothesis Ho the components of y are independent and identically distributed

and have a Gaussian distribution with a mean of zero and a known variance u. Under

hypothesis Hi, each component of y has a Gaussian distribution with an unknown
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mean 0 and a known variance u. The maximum likelihood estimate of is given by

N

Yi, (4,14)
N

and the decision rule becomes

I if I Yj)' >D (Y) 2 0,2 N (4.15)
0 if 1 1(F�Vly _y

2a2 N _7'= )2 <

where -y > I

Example 2. In this example, the measurements are given by the random vector

y which has two components (i.e. y = -tyl Y21 Under hypothesis Ho, the com-

ponents are independent and Gaussian with mo [ 0 5 ] and Ay = C21. Under

hypothesis Hi, the components are independent and Gaussian with ml = [ 0 -5 1

and Ay = 072 1. The decision regions derived using the likelihood ratio test are.shown

in Figure 4-13a. Suppose that we are supplied with the additional information that

the components of y may have been switched. That is, mo may actually be [ 5 0

and ml may actually be [ -5 0 ]. This switching of components may be viewed as a

nuisance parameter in the same way that the unknown mean 0 was in Example 1. We

can formulate this problem in terms of two composite hypotheses Ho = f Ho, HObj

and Hi = f Hi., Hlbj, where each hypothesis implies the components of y are inde-

pendent and Gaussian with the following means

Ho,, mo,, = 0 5

HOb Mob = 5 0

Hi, m1a 0 -5

Hlb Mlb -5 0
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H 0

Y, Y,

(a) The decision regions for (b) The decision regions for
Example 2 without switching. Example 2 with switching.

Figure 4-13: The decision regions for Example 2.

The decision regions using the generalized likelihood ratio test to account for switching

are shown in Figure 4-13b. By using the GLRT to incorporate the additional infor-

mation about switched components, the decision regions have been changed. Con-

ceptually, this example is easily extended to incorporate the possibility of switched

components when y has more than two components.

Example 3. For this example, let y be a random vector with four independent

components and let the conditional probability for the i-th component of y given

hypothesis rn be denoted PYijH,,-,(YjjH,). This implies that

4

PyJH-(YIHn) = HPyjjH_(YijH.)- (4.16)

Suppose we are also given the additional information that one component of y has

been corrupted, but we are not told which component. This corruption implies that

yj for some i is no longer described by the conditional density PyilH-(YiJH.), but

rather by a conditional density that does not depend on the hypothesis. Once again,
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the corruption of a component may be treated as a nuisance parameter just as the

unknown mean was in Example 1. Using the GLRT, we obtain the following solution.

For each hypothesis H, determine which component has most likely been corrupted.

That is, find IM*

argmaxpyIH_,I(YJH,., I) (4.17)

where

ILEf2,3,4} py,,H,.,, (YilHm) if I = I

PyIH_,,(YlHm, 1) ME f 1,3,4} Pyj I H,,,, (Yi Hm) if I = 2 (4.18)

ME 11,2,41 Pyi JH- (Yi Hm) if I 3

ILE 1 1,2,31 Pyi IH,-,,, (Yi Hm) if I 4.

Then, determine the most likely hypothesis by excluding the component. which is

mostly likely corrupted for each hypothesis, as follows

H* - argmaxpyIH_,I(YJH,., 1* (4.19)
H_ M

4.4 HRP-Based Recognition

Our proposed approach will be to use HRP to decompose a 1D representation of

the airplane silhouette. There are several possible 1D representations for silhouettes

considered in the literature which we described in Section 4.2.1 and we have chosen

to use the centroidal distance profile. Each centroidal profile f will start at 0

-7/2, where 0 is the angular profile associated with f, and continue in a counter

clockwise direction. We will then construct a feature vector from the parameters (i.e.

scale, translation, and magnitude) of the elements of the HRP decomposition of the

centroidal distance profile and use this feature vector for recognition. The recognition

phase of our approach will be based on M-ary hypothesis testing and the generalized
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ratio test. In this section, we describe the details of our proposed feature extraction

and HRP-based recognition algorithm.

Some notation that will be useful in this section is as follows. The centroidal dis-

tance profile will be denoted f and the accompanying angular profile will be denoted

0. Centroidal profiles which are corrupted by. noise or occlusion will be denoted

and the corresponding angular profile will be denoted 0,,,.

4.4.1 Feature Extraction

There are a number of questions to address in order use HRP to decompose the cen-

troidal distance representation of an airplane silhouette. We must decide the number

of elements to extract, choose a dictionary that is appropriate for the centroidal dis-

tance profiles, and determine a value of the depth parameter in the HRP algorithm k

which yields robust decompositions. In addition, we discuss how to incorporate some

of the angular information which is essentially discarded in the centroidal profile rep-

resentation of a silhouette. Finally, we discuss how to organize the parameters of the

elements from the HRP decomposition into a feature vector that makes recognition

using the M-ary hypothesis test feasible.

The following observations guide us in choosing the appropriate number of HRP

elements to extract from the centroidal distance profiles. Figure 4-14 shows four

noisy realizations of the profile of Plane #1 created using the boundary perturbation

model described Section 4.2.2 with p = 40% and s = 0.9. Figure 4-15 shows the

corresponding centroidal profiles for each of the noisy realizations of Figure 4-14.

These profiles are extracted starting at the tip of the nose and proceeding counter

clockwise. The physical features of the airplane are clearly visible in the features of

the centroidal profile : the first peak in the profile corresponds to the plane's nose,

the second corresponds to one wing, the third corresponds to the tail, and the fourth
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a-10 Realization #1 a-10 Realization #2

a-10 Realization #3 a-10 Realization #4

Figure 4-14: Four noisy realizations -of Plane 1, generated using p 40%, and..
S = 0.9.

corresponds to the other wing. These four peaks are evident in each of the noisy

profiles. Given that centroidal distance profiles for most planes in the data base

exhibit four similar strong features, one logical approach would be to extract four

elements from each profile. Although one can imagine developing a scheme to allow

the number of elements extracted to adapt to the particular profile, we have chosen to

extract four elements for this work. Future work may incorporate additional elements

to increase the discriminating power of the algorithm. In addition, if HRP is tuned

via the parameter k so that each HRP element corresponds to one feature (or peak) in

the centroidal distance profile, then each of these four HRP elements will correspond

to a physical feature of the plane, and the parameters of the HRP elements give a

description of the physical features of the plane.

The HRP decomposition may be used with many dictionaries. For any applica-
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Figure 4-15: The centroidal distance functions corresponding to the noisy realizations
of Plane "I shown in Fig-Lire 4-14.

tion, the dictionary should be chosen so that it is well-matched to the signals under

consideration. From Figure 4-15, we -note that one possible dictionary is the cubic

b-spline dictionary which was introduced in Chapter 2. This dictionary contains ele-

ments which are primitive-entough to i-n-atch -the wide range of features in our data set.

In our the experiments in the next section, we will use the cubic b-spline dictionary.

The value of the depth parameter k must be chosen to be robust to noise and

yet yield a set of HRP elements from which it is possible to distinguish the planes

in the data set from one another. One way to accomplish this is to choose k so

that each HRP element corresponds to a feature (or peak) in the centroidal distance

profile. In this case, each of HRP elements will correspond to a physical feature of

the plane. However, choosing a value for k may be complicated since there is a wide

range of variation in the centroidal profiles of the airplanes in the data set and the

value of k must yield qualitatively accurate descriptions for all planes in the data
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set. Consider the following decompositions of noisy centroidal profiles of Plane #1

from our data base, where noise has been added as described in Section 4.2.2 with

P = 40% and s = 0.9. Figure 4-16 shows the decomposition of a noisy centroidal

profile from Plane #1 with k = 1. Note that in this decomposition the elements from

the HRP decomposition do not correspond to the peaks of the centroidal profile. As

a result, the parameters of the HRP elements do not give a description of the physical

features of the plane. Since our underlying intuition was to extract four features which

corresponded to each of the physical features of the plane (i.e. the nose, the wings, and

the tail), we conclude that this value of k is a poor choice. In comparison, Figure 4-

17 shows the decomposition of the same noisy centroidal profile from Plane #1 with

k -2, with the elements labeled alphabetically from.left to right. Qualitatively, we

might say that elements a, b, and d give a good fit to the peaks in the centroidal

distance function, but element c gives a poor fit since it is not well matched to the-- -

profile over the entire feature corresponding to the tail. Since element c is a poor fit,

we conclude again that k = 2 is a poor choice. Now consider the HRP decomposition

of the same noisy centroidal profile if we use k = 3 to extract two elements, then use

k -_ 2 to extract a third element, and then use k -_ I to extract a fourth element.

The results of this-decomposition -are shown in-, Figure 4-18. This decomposition

yields the. qualitative performance we desire, namely, that each element corresponds

to a physical feature of the plane and accurately describes that feature. Through

experimentation, we have found that using this same pattern for k (i.e. k = 3 for the

first two elements, k = 2 for the third element, and k = 1 for the fourth element) I

in general, yields robust and accurate decompositions for the centroidal profiles from

each of the planes in the data set. Further, our experimentation results show that

this pattern of values for k yields qualitatively accurate descriptions in the presence

of several different values of boundary noise and occlusional noise.
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Figure 4-16: The HRP decomposition of a noisy version of the centroidal profile for
Plane #1 using k 1.
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Figure 4-17: The HRP decomposition of a noisy version of the centroidal. profile for
Plane #1 using k 2.
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Figure 4-18: The HRP decomposition of a noisy version of the centroidal profile for
Plane #1 using k = 3 for the first two elements, k = 2 for the third element, and
k = I for the fourth element.

To summarize, our proposed approach is to use -HRP to extract four elements

from each centroidal distance profile using k -- 3 for the first two elements, k = 2 for

the third element, and k = 4 for the fourth element. We will then construct a feature

vector derived from the three parameters (i.e. scale, translation, and magnitude) of

each of the elements of the HRP decomposition. Thus, the feature vector that we will

use for recognition consists of 12 components. We now discuss methods to derive the

particular components of the feature vector from the parameters of the HRP elements

and to do'so in way that incorporates the angular information which is discarded when

extracting the centroidal distance profile from the silhouette.

Incorporating Angular Information

As we pointed out in Section 4.2.1, the centroidal distance profile discards angular

information. We now show how this angular information can be incorporated with

the parameters of the HRP elements to create a feature vector which is robust to

variations due to noise and occlusion.

-- --- --- ---
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Since the centroidal distance function is periodic, the translation parameter of

an element extracted by HRP can be misleading. To illustrate this, consider the

motivational example illustrated in Figure 4-19 which shows two noisy centroidal

distance profiles for Plane #1, f, and f, and the HRP element which corresponds

to the plane's nose for each profile. For f, the translation of the HRP element which

corresponds to the nose is t = 1. In contrast, for f,,,, the translation of the analogous

element is t = 256. The translation parameter of the HRP element indicates that the

nose features of the two centroidal profiles are far apart which is not the case. To

overcome this ambiguity introduced by the translation parameter, we note that the

translation parameter for each element extracted by HRP from the centroidal distance

pro-file may be replaced by its angular equivalent. This is done simply by using the

angular profile associated with each centroidal distance profile, like the one shown in

Figure 4-6. That is, if O(x) is the angular profile accompanying the centroidal profile

f,,(x), then each translation parameter t of each HRP element is replaced by O(t).

In the presence of occlusion, the scale parameter of an HRP element can also

be misleading. Consider a second motivational example. Suppose we are given an

occluded silhouette of Plane #1 as shown in Figure 4-20 and the corresponding cen-

troidal distance function as shown in Figure 4-21. Figure 4-21a also shows the HRP

element which corresponds to the wing feature in the occluded profile. For compar-

ison, Figure 4-21b shows the centroidal profile for an unoccluded version of Plane

#1 and the HRP element which represents the wing feature. We note that the scale

and translation parameters of the HRP element which represents the wing feature in

the occluded profile are quite different from those of the HRP element which repre-

sents the wing feature in the unoccluded profile. The occlusion has caused this shift

in parameters 3- The mismatch in the translation parameters will be minimized by

3Note that, to a lesser degree, boundary noise can cause a similar shift in the scale and translation
parameters.
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(a) f ni, a noisy centroidal profile from Plane #1 and the
HRP element corresponding to the nose.
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(b) f n2, a noisy centroidal profile from Plane # 1 and the
HRP element corresponding to the nose.

Figure 4-19: A comparison of HRP elements corresponding to the nose of Plane #1.
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Figure 4-20: The boundary corresponding to Plane #1 with the tail occluded.

replacing t with O(t) as described above. The remaining question is how should we

account for the change in the scale parameters

The following observation about the slope of the angular profile will be useful in

understanding how to account for the change in the scale parameters We observe

that the occlusion has also caused a change in the slope of the angular profile over

the support of the element corresponding to the wing. Figure 4-23a shows the entire

angular Profile of the occluded plane. Figure 4-23b shows the portion of the same

angular profile over the support of the HRP wing element and the best fit line to

this portion of the angular profile. The slope of this line is 0.0136. For comparison,

Figure 4-22a shows the entire angular profile for the unoccluded plane, and Figure 4-

22b shows the portion of the same angular profile over the support of the HRP wing

element and the best fit line to this portion of the angular profile which has a slope

of 0.0145. Thus, the occlusion has caused a small change in the slope of the angular

profile over the support of the element corresponding to the wing. The question we
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(a) The centroidal distance function for the
occluded boundary and the HRP wing ele-
ment.
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(b) The centroidal distance function for the
unoccluded boundary and the HRP wing ele-
ment.

Figure 4-21: A comparison of HRP elements corresponding to the wing of Plane #I.
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Figure 4-22: Angular profile for the occluded plane.

would like to answer i& can this change, in the, local slope of the angular profile be

used to account for the change in scale in the HRP wing element.

As we now show, it is possible to normalize the scale of the HRP elements based on

the local slope of the angular profile. Recall that the centroidal distance profile plus

the angular profile-..are -a compLete description of.-the curve -describing the boundary

of the silhouette. In fact, the centroidal distance profile, f (m), and angular profile,

0(m), are the polar coordinates of the sampled boundary curve, for m = 1 ... P.

That is, the boundary curve of a silhouette is described by the polar coordinates

(f (m), 0(m)). Suppose that r(m) is a cubic b-spline extracted from f (m) using HRP

and that a(m) is the best fit line to the angular profile 0(m) over the support of r(m).

Then the polar coordinates (r(m), a(?n)) trace out an approximation to a portion of

the boundary curve described by (f (M), 0(m)).

Having established the relevance of curves described by (r(m), a(m)) where r(m)

is a cubic b-spline and a(,n7,) is a line, we now turn to a more abstract investiga-
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Figure 4-23: Angular profile for the unoccluded plane.

tion of these curves. Suppose that a curve -is -described -by the polar coordinates

(ro (m), ao (m)) where ro (m) is a cubic b-spline at scale jo and ao (m) is a line with

slope so. Figure 4-24 illustrates ro(m), ao(m), and the curve described by the po-

lar coordinates (,ro(m),ao(m)). Actually, the curve shown in Figure 4-24c may be

represented by many-pairs. of polar coordinates ofthe form (r(m), a(m)) where r(m)

is a cubic b-spline and a(m) is a line. For example, one would expect that the po-

lar coordinates (r(m), a(m)), where r(m) is a cubic b-spline with half the support

of the ro(m) (i.e. a cubic b-spline at scale jo + 1) and a(m) is a straight line with

double the slope of ao(m), would be one alternative representation of the the curve

shown in Figure 4-24c. Generalizing this intuition, we note that the polar coordinates

(r(m), a(m)) where r(m) is a cubic b-spline at scale j and a(m) is a line with slope

s describe the curve shown in Figure 4-24c if

s
'o + lo& (4.20)

'2 SO



120 Chapter 4. Recognition of Airplanes from Silhouettes

This is the general relationship between the scale of r(m) and the slope of a(m)

which we will use to normalize the scale of the HRP elements based on the local

slope of the angular profile. Specifically, suppose that the scale of an HRP element

extracted from a centroidal distance profile is j and the slope of the angular profile

over the support of the element is s, then the slope-adjusted scale will be given by

S(j) where

(4.21)SU) + 1092 So
s

where we have chosen to use a reference scale of so = 27r/P where P is the number

of points in the centroidal profile. This value of so is the average slope of the angular

profile over the entire interval.

Feature Vector Construction

The feature vector describing a particular silhouette will be derived from the pa-

rameters of the four HRP elements extracted from the centroidal distance profile

corresponding to the silhouette. Each HRP element has three parameters and there-

fore, the feature vector will consist of 12 components. The main issue that we must

address are how to order the HRP parameters in this feature vector.

Again, the underlying intuition of our approach is to extract parameters from

the centroidal distance profile which correspond to the physical features of the plane.
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Figure 4-24: The functions ro(m) and ao(m) and the curve described by the polar
coordinates (TO, ao)
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Ideally, we would like to construct our feature vector y with the following structure

S(3 .nose)

0 (tnose)

vnose

S(jwing,)

O(t - 0(tnose)wing)

Vwing,Y (4.22)

S(itail)

0(ttail) - 0(tnOse)

vtail

S(3'wing2)

0 (t ) - 0(tnose)win 92

Vwing2

where inose, tnose, and Vnose are the scale, translation, and magnitude, respectively,

of the HRP element corresponding to the nose feature in the centroidal distance

profile, etc. The HRP algorithm extracts elements from the centroidal distance profile

one at a time, but this order does not generally correspond to physical features of the

plane. That is, the algorithm will not always pick an element which corresponds to the

nose feature first, the wing feature second, and so on. To construct the feature vector

with the desired structure, we will use the translation parameters of the elements

extracted by HRP. Suppose, for the time-being, that all the profiles are oriented to

begin at the tip of the nose. Assuming that our profiles have length P, we could then

take the first element to be the one which has a translation t E [1'.1P] U [.9p, P],

and then order the remaining profiles according to translation. In this way, the first

element is labeled the nose, the second is wing #1, then third is the tail, and the
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fourth is wing #2. The feature vector is then constructed as in (4-22). Note that

since we have assumed that all the profiles are oriented to begin at the tip of nose,

0(tnose) -- -7r/2 for all the planes.

This same ordering scheme can also be used to accommodate small errors in

orientation. That is, if the silhouette has small error in orientation and the therefore

the centroidal distance profile does not begin precisely at the tip of the nose, we

can still take the first element to be the one which has a translation t G [1,.lP] U

[.9P, P], and then order the remaining profiles according to translation. Again, the

first element is labeled the nose, the second is wing #1, then third is the tail, and the

fourth is wing #2. To make the feature vector y more robust, we set 0(tnose) = -7/2.

That- is, we have just adjusted for the small orientation error. The feature vector is..

then constructed as in (4.22).

Often it will be convenient for us to use the following notation for y

el

Y e2 (4.23)

e3

e4L

where el 'refers to the three parameters of the element corresponding to the nose,

e2 refers to the three parameters of the element corresponding to the first wing, e3

refers to the three parameters of the element corresponding to the tail, and, e4 refers

to the three parameters of the element corresponding to the second wing. We will

also occasionally refer to these as the elemental components of y. In contrast, when

we refer to the components of y we mean the individual parameters of the vector y

as enumerated in (4-22).
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4.4.2 M-ary Hypothesis Testing

The M-ary hypothesis test is used to recognize silhouettes based on the feature vector

y constructed as indicated in (4.22). The main issue that must be addressed in apply-

ing the M-ary hypothesis testing approach to this problem is to choose appropriate

models for the conditional distributions. In the recognition of aircraft from the data

set shown in Section 4.2, we must also accommodate the possibility of switches in the

elemental components of the feature vector and the possibility that portions of the

data vector are corrupted because of occlusion.

Conditional Distribution Models

To simplify the recognition procedure we choose to model the twelve components of

the feature vector y as independent. This implies that

12

Py I H_ (Y I H,,,) py, I H,,,, (Yi I H,.). (4.24)

Future work may develop a recognition scheme which takes advantage of dependencies

in the feature vector y.

The conditional distributions associated with components of the feature vector

corresponding to slope-adjusted scale values and magnitudes will be modeled as Gaus-

sian. That is, conditional densities of components #1,3,4,6,7,9,10,12 of the feature

are modeled as Gaussian. The mean and variance for component i under hypothesis

m will be denoted E,,,i and a 2 respectively. This implies that the form of each of

these conditional densities is given by

Pvi I H,, (Yi I H,-,,) - 1 7 exp, (Yi - E.,,) 2 (4.25)
U 22 M'i

2The parameters Emi anda . will be approximated as the sample means and variances
nl,'t
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Figure 4-25: A histogram of training data for component #4 for Plane #1 and the
corresponding Gaussian distribution model

from training data.. For most of the aircraft, the Gaussian model provides a fairly.

accurate description of the scale and magnitude components -of the feature vector, as

illustrated in Figure 4-25, which shows a histogram of the training data for component

#4 of realizations of y for Plane #1 from centroidal distance profiles which have been

corrupted using the boundary perturbation model described in Section 4.2.2 with

P = 40% and s = 0.9.

Components # 2, 5, 8, and 11 of the feature vector are angles and are not well

modeled by the Gaussian distribution. One reason for this is the Gaussian distri-

bution. does not account for the periodicity inherent in an angular random variable.

Components # 2, 5, 8, and 11 will instead be modeled by the "exponential cosine"

distribution [35],
exp(ami cos(Yi - En,,j))

Pyj I H_ (Yj I H,,,) = - 2,FT0(a,,j) (4.26)

where 10 is a zeroth order modified Bessel function of the first kind, E,,i is the

mean of component 2' under hypothesis m, and a,,i is a parameter related to the

variance of component i under hypothesis 7n. Figure 4-26 shows this exponential
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The exponential cosine distribution for several values of alpha
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Figure 4-26: The exponential cosine distribution for several values of a.

cosine distribution for E,,i = 0 and several values of a. For small values of a, the

exponential cosine distribution looks very similar to a Gaussian distribution. The

variance of this distributi,'on�is given -by

2 00 1)n I"(,)
- + 4 2 (4.27)
3 n=1 n _To (a,)

Figure 4-27 shows the relationship between a and a. In our M-ary hypothesis tester,

the parameter E,.,,i will be approximated as the sample mean of yj of the training

data for plane m. The parameter oz,,j will be determined from the sample variance

of yj of the training data for plane ?n-

To summarize, using these models for the conditional probabilities, we choose

among the seventeen hypothesis (where each hypothesis corresponds to a particular

plane) which the most likely hypothesis H4* to be

H argmaxPyIH-(YIH,.) (4.28)4 H-

where we have included the subscript "4" to indicate that this is a decision based on
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Figure 4-27: Variance of- the exponential cosine distribution as a function of a.

the four elemental components in y. Recalling our independence assumption we have -

12

pyjj-j.,.,(YjH,,-j) = H pyjjH,.(YjjHm) (4.29)

where
Pyi I I-I_ (Yj I H,-.) - exp(a..,j cos(Yi - E,-,,ti)) (4.30)

2710(ce,,j)

for i 2, 5, 8, 11 and

(Yi - E,
Ayj I H- (Yj I H,,,) - exp (4.31)

v'r2-7O-.,, 2U2M'i

for 1 3, 4, 6, 7, 9, 10, 12. Recall that if the underlying conditional distributions

PyilH-(YiIH,) were all Gaussian, then maximizing pyl.H_(YIH,.,) is equivalent to min-

imizing a weighted distance. Since some of the underlying conditional distributions

are exponential cosine instead of Gaussian, maximizing pylH,,,,(YIH,) is not precisely
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equivalent to minimizing a weighted distance. Intuitively, however, since the expo-

nential cosine may be thought of as a Gaussian for large values of a, we can think

of maximizing pylH_(YIH,,) as being very close to minimizing a weighted distance.

This basic procedure is amended in light of the following important caveats.

Swept Wing Aircraft

As mentioned in Section 4.2, Planes #7 and 17 are swept wing aircraft. Our training

data indicate that we must use some caution in dealing with these aircraft. In fact,

the training data indicate that the feature vectors extracted from these planes do not

seem to be well modeled by the Gaussian distribution for the scale and magnitude

components nor by the exponential cosine for the angular components. For example,

Figure 4-28 shows the histogram for the training data for component #7 of Plane

#7. Clearly, the data does not. seQm,,well matched to the Gaussian distribution. TheM_

main reason for such a wide variation in the parameters of the HRP elements is that

for these planes HRP yields two, rather than four stable features. This fact is not

surprising since the planes lack distinct wings, see Figure 4-5. As a result of the

ordering procedure outlined in the previous section, the components of y for Planes

#7 and 17 show a wide range of variation. Essentially, the labeling procedure of

the previous section has assigned an incorrect label to the peaks in the centroidal

distance profile. Suppose the elemental components of y are relabeled according

to the magnitude parameter, v, instead of the translation parameter. That is, let

the nose correspond to the element with the maximum magnitude (i.e. v), the tail

correspond to the element with the next largest magnitude, and the wings correspond

to the elements with the smallest magnitudes. Using this ordering scheme yields a

feature vector whose components are well modeled by the Gaussian and exponential

cosine distributions. For example, Figure 4-29 shows the histogram for component
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Figure 4-28: Histogram of training data for component #7 for Plane #7.

7 of Plane # 7 after this reordering. For these reasons, training data from Planes #7

and #17 will be reordered according to magnitude.

: All of our testing data will be order accordingto translation as outlined in the pre--

vious section. This implies that in comparing features extracted from some unknown

silhouette to models #7 and 17, we must treat the ordering of the HRP elements as

a nuisance parameter and use the GLRT to find the optimal ordering. There are 24

possible orderings of the four elemental components of y and we use the GLRT to

determine which one of these is most likely.

Occlusion

Further, as a result of occlusion, one or more of the elemental components of y may

be corrupted. However, since the HRP algorithm is locally based, the remaining

elemental components still give an accurate description of the physical features of the

underlying plane. The GLRT is incorporated in our hypothesis testing procedure to

account for the possibility of occlusion. This is a direction extension of Example 3

from Section 4.3-2.
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Figure 4-29: Histogram of training data for component #7 for Plane #7 after switch-

ing components.

If we know that precisely one elemental component has been corrupted, then the

GLRT says for each hypothesis H, determine which elemental component has most

likely been corrupted. That is, find T�,

,T� arg maxPyIH-,,(YIH,., -r) (4.32)

where

MEJ2,3,41 Pei I H- (Ei I H,,) if 7 = I

rIiE{1,3,41 PejjH_ (EjjHm) if T = 2
Py I (Y I H,,,, T) (4.33)

1171'efl,2,41 PeijH_(EjjHm) if F' = 3

IliE{1,2,31 PeiiH?,-, (EiIH,) if T = 4

where Ej refers to the elemental components of Y. Then, determine the most likely

hypothesis by excluding the component which is mostly likely corrupted for each

hypothesis, as follows

H* - arg max Py I H_,T (Y H,,., (4.34)3 H-
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where we have included the subscript "Y to indicate that this is a decision based on

three elemental components of y.

Similarly if we know that precisely two elemental components have been cor-

rupted, then the GLRT says for each hypothesis H, determine which two elemental

components are most likely to have been corrupted. That is, find 6* whereM

6* argmaxPyjH_,6(YjH.,6) (4.35)M

and

1LEf1,2}PejjH_(EjjHm) if6=1

r11,_Ej1,3jP.jjH_(EjjH.) if6=2

PyjH_,6(YjHm, 6) rLEj1,4jPejjH_(EjjHm) if6=3 (4.36)

1JiC{2,3}PejjH,,JEjjHm) if6=4

1LEf2,4}PejjH_(EjjHm) if6=5

TLE13,41 PeilH,.,, (EjjHm) if 6 = 6

Then, determine the most likely hypothesis by excluding the components which are

mostly likely corrupted for each hypothesis, as follows

H9* = arg max PyIH-,6 (Y I Hm, 6m*) (4.37)
H_

where we have included the subscript "2" to indicate that this is a decision based on

two elemental components of y.

I The question now arises if we are given a unknown a feature vector y extracted

from centroidal profile a silhouette which may or may not be distorted due to oc-

clusion, how does one determine if zero, one or two elemental components are cor-

rupted and what is the most likely hypothesis given the data. In other words, if

H4* =,4 H3* =,4 H2*, which hypothesis should we choose? We then choose among H2*, H3*
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and H4* based- on the likelihoods associated with each of these results. For conve-

nience, let us define Py I H' (Y I H2*), PyIH'(YIH3*), and pylH,*(YIH4*) as
2 3

Py I H' (Y I H2*)= maxPyJH-,6(YJH,, 6* (4.38)
2 M

PyJH* (Y I 43 = max Py I H,,,,, (Y I H., T�) (4.39)
3 H-

PyIHZ(YIH*) ax (4.40)
4 = M Py I H,, (Y I H,,

H_

Recall our intuition that the M-ary hypothesis test based on Gaussian and exponential

cosine conditional densities is roughly equivalent to minimizing a weighted distance.

Intuitively, since the distance between n elements will be larger than the distance

111;14�- between n - I elements, we expect

Py > PyIH,* (YIH3*) > PyIH-(YIH4*)- (4.41)

The hypothesis we choose then is given by

41
Pyl H* (Y I H3*) /P, PyJH* (yIH2*)/,p2)

argmax(PIH*(YIH4 (4.42)4 3 2

where P is an empirically determined term to penalize the exclusion of signal features.

4.5 Experiments

In this section, we describe experiments to test our M-ary hypothesis plus GLRT ap-

proach. The results indicate that this approach is robust to boundary perturbations,

scale variation, small orientation variation, and distortions due to occlusion.

In these experiments, we will be referring to training data sets and testing data

sets which are disjoint (so we have not tested on the same data used in training).
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Training data sets are used only to calculate sample means and variances for use in

the appropriate conditional distributions for each element of the feature vector y. Our

proposed approach to analyze the training data will be to extract centroidal distance

profiles from silhouettes and analyze those centroidal distance profiles using HRP to

extract four elements. The HRP depth parameter, k, is set to 3 for the first two

elements, 2 for the next element, and I for the last element. Then, we will organize

the parameters of the HRP elements using the translation for all planes in the data

set except Planes #7 and #17 which will be organized by the magnitude parameter.

The results we present in this section are the classification of the testing data

sets. For the testing data set, our proposed approach will be to analyze centroidal

distance profiles using HRP to extract four elements (using k = 3 for the first two

elements, k = 2 for the third element, and k = I for the fourth element). Then, we

organize the parameters of the HRP elements using translation for every profile and

construct a feature vector y as described in (4.22). When comparing y to the models

corresponding to Planes #7 and #17, we will use GLRT to account for possible

switches of the elemental components of y. Using this procedure we determine the.

best hypothesis using four, three and two element components of y, i.e. H4*, H3*, H2*.

The optimal hypothesis is then chosen according to (4.42).

For comparison, we also show results based on Fourier descriptors (FD) and the K

nearest neighbor test with K = 3. This approach based on FD was described in [23]

and was summarized in Section 4.2-3. Note that this approach uses P/2 features

where P is the number of points in the centroidal distance profile. In the experiments

we describe in this section P -- 256 so the FD technique uses 128 features. In contrast,

the HRP based technique uses a feature vector with only 12 components.
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4.5.1 Boundary Perturbations

We construct training and testing data sets using the boundary perturbation model

described in 4.2.2 for p = 40% and for several values of s. In this section, there is

no scale variation, orientation variation, or variation due to occlusion in either the

testing or training data sets. However, these testing data are classified using the

M-ary -hypothesis plus GLRT approach to account for the possibility of switching of

the elemental components of y and the corruption of elemental components of y due

to occlusion (i.e. while the data do not include object occlusion, the algorithm is not

given this information and therefore must include the possibility of occlusion).

For the first experiment, both the training and testing data sets consisted of noisy

profiles generated using p -_ 40% and s = 0.9. That is, the noise level was the

same for both the training and testing data. Figure 4-30 shows the percent correct

classification of the testing data as a function of plane number for both our HRP

based technique and the FD nearest neighbor classifier. Figure 4-30 also shows the

one standard deviation error bars for the estimate of percent of correct classification

for each plane. Since the overall percent correct classification is 99%, these results

indicate that both techniq--Lies-perform very well. The HRP technique gives 99.42%

correct classification overall and the FD technique gives 99.65% correct classification

overall. Given that the standard deviation of the estimate of the percent correct

classification is about 2.5%, we conclude that this difference in overall performance

is not statistically significant.

Next, noisy profiles were generated using p - 40% and s = 1.5. Again, the noise

level was the same for both the training and testing data sets. Figure 4-31 shows the

percent correct classification of the testing data and one standard deviation error bars

for the two methods for this case. The overall percent correct classification is 96.53%

for the HRP based technique and 97.64% for the FD based technique. Again, given
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that the standard deviation of the estimate of the percent correct classification 2.5%,

we conclude that this difference in overall performance is not statistically significant.

Similarly, noisy profiles were generated using p = 40% and s = 2.1. The noise

level was the same for both the training and testing data sets. Figure 4-32 shows

the percent of correct classification of the testing data, as well as the one standard

deviation error bars. The overall percent correct classification is 94.51% for the HRP

based technique and 91.37% for the FD technique. These results show that while the

FD technique shows deterioration for all the planes in the data set, the HRP technique

has errors associated with only a few planes, namely, Planes #2, 4, 8 and 9, and has

slightly better overall performance, at a modest level of statistical significance.

4.5.2 Rotational Noise

'Next, we construct testing data which have rotational variation between ±10' plus

boundary perturbations generated with p = 40% and s = 0.9, the smallest level

of boundary perturbations. The training data used was generated without rotation

and with boundary perturbations using p - 40% and s - 0.9. Thus, there is a

mismatch between the training and testing data. Figure 4-33 shows the percent

correct classification of the testing data for each plane and for both the HRP and FD

techniques. In addition, Figure 4-33 shows the one standard deviation error bars for

the estimate of percent of correct classification for each plane. Again, the difference

in the overall performance is not statistically significant.

4.5.3 Scale Variation

Up until this point, we have not discussed the effect of scale on our M-ary hypothesis

testing plus GLRT recognition scheme. Recall from Section 4.2.2 that scale variation

in the silhouette leads to a change in amplitude in the centroidal distance profile. Also,
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HRP hypothesis testing, p=40,s=0.9, overall = 99.42%
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Figure 4-30: Classification results for noisy data generated using p = 40% and 8 0.9.
For this experiment, the noise level in the training and testing data was the same and
there was no scale or orientation variation. This figure shows the percent correct
classification of the testing data for each plane and the one standard deviation error
bars.
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HRP hypothesis testing, p=40,s=1.5, overall 96.53%
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Figure 4-31: Classification results for noisy data generated using p = 40% and 8 1.5.
For this experiment, the noise level in the training and testing data was the same and
there was no scale or orientation variation. This figure shows the Percent correct
classification of the testing data for each plane and the one standard deviation error
bars.
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HRP hypothesis testing, p=40,s=2.1, overall=94.51%
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Figure 4-32: Classification results for noisy data generated using p = 40% and S 2.1.
For this experiment, the noise level in the training and testing data was the same and
there was no scale or orientation variation. This figure shows the percent correct
classification of the testing data for each plane and the one standard deviation error

bars.
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HRP hypothesis testing, p 40, s=0.9, small rotation, overall 99.05%
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Figure 4-33: Classification results in the presence of rotational variation. The training
data is generated with p -- 40%, s = 0.9 and no rotational variation. The testing data
is generated with p -- 40%, s - 0.9 and rotational variation between ±10'. This figure
shows the percent correct classification of the testing data for each plane and the one
standard deviation error bars.
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recall from Chapter 3 that amplitude variation in a signal will only effect the magni-

tude parameter of the elements of the HRP decomposition of that signal. Certainly,

the algorithm as we have described it will not be robust to variations in the scale of

the silhouette. However, robust classification in the presence of scale variation of the

silhouette can be accomplished with a very simple change in the basic algorithm. The

basic M-ary hypothesis testing plus GLRT algorithm can be made insensitive to scale

variation by normalizing each centroidal profile by its average value. That is, for both

the training and testing data sets, each centroidal distance profile is normalized by its

average value and the recognition proceeds as previously outlined. This insensitivity

to scale variation is illustrated in the following experiment. For this experiment, noisy

centtoidal distance profiles are generated as described in Section 4.2.2 with P - 40%

and s = 0.9 and normalized by their average value. Figure 4-34 shows the percent

correct classification of the testing data for both the HRP technique and the FD

technique. These results indicate that both techniques perform well (> 99 %) and

the difference in the overall performance is not statistically significant.

4.5.4 Occlusion

Finally, we investigate the performance of the M-ary hypothesis plus GLRT recogni-

tion approach in the presence of occlusion. For this experiment, the training data set

consists of centroidal profiles with the smallest level of boundary noise, i.e. p = 40%

and s = 0.9. For the testing data set, we construct centroidal profiles corrupted

by occlusion as described in [25] and summarized in Section 4.2.2 with q = 10%.

That is, for the testing data set 10% of the boundary is replaced by a straight line.

Figure 4-35 shows the percent of correct classification for the testing data for both

the HRP and FD techniques as well as the one standard deviation error bars. This

figure shows that HRP does substantially better than the FD technique. The HRP
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HRP with scale normalization, p=40,s=0.9,overall=99.07
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Figure 4-34: Classification results for the scale insensitive algorithm. Training and
testing data generated using p -- 40% and s = 0.9. Each profile normalized by its
average value. Figure shows the percent correct classification of the the testing data
for each plane and the one standard deviation error bars.
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technique shows 94% correct classification while the FD technique shows only 88%

correct classification, a statistically significant difference in which the classification

errors have been cut in half.
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HRP-occlusion results overall=94.72%
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Figure 4-35: Classification results in the presence of occlusion. Training data consists
of centroidal profiles with boundary noise using p = 40% and 8 - 0.9. Testing data
consists of centroidal profiles with no boundary perturbations but with variation due
to occlusion using q = 10%. Figure shows the percent of correct classification for each
plane and the one standard deviation error bars.





Chapter 5

Conclusions and FutureVVork

5.1 Conclusions

In this thesis, we have developed a new adaptive approximation technique, high res-

olution pursuit (HRP), and demonstrated how HRP can be used to extract features

which are suitable for object recognition. In our investigation of HRP as an adaptive

approximation technique, we have found that it yields decompositions which rival

those obtained using basis pursuit (BP) in terms of super-resolution and sparsity, yet

is less computationally intensive than BP. To investigate the performance of HRP as a

technique'for feature extraction, we demonstrated how HRP could be used to extract

features from airplane silhouettes and how these features can be used to recognize

airplane silhouettes in the presence of boundary perturbations and variations due to

occlusion.

5.1.1 HRP for Adaptive Approximation

In this work, we developed a new algorithm for adaptive approximation, HRP. Like

other techniques in adaptive approximation, HRP is used to decompose a function

145
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over a redundant dictiol-lary. The HRP algorithm is similar in structure to the match-

ing pursuit (MP) algorithm. In contrast to MP, HRP employs a similarity measure

which emphasizes local fit over global fit.

We can evaluate the HRP algorithm in terms of the six characteristics of the

"optimal" decomposition which were outlined in Chapter 1. The HRP algorithm

can be used to obtain decompositions which preserve sparsity and exhibit super-

resolution, as evidenced by the twin peaks example of Chapter 3. The first few

elements extracted by HRP give a coarse approximation of the function. Thus, HRP

decompositions have a corresponding hierarchy. It is this hierarchy which allows us to

use only four elements for the recognition of airplanes from silhouettes in Chapter 4.

Chapter 4- also demonstrates that HRP decompositions are stable in the presence of

perturbations. Finally, Section 3.4 shows that the HRP algorithm can be efficiently

implemented and has thethe same computational complexity as the MP algorithm.

This thesis included an investigation of the behavior of HRP- During the course

of our investigation of HRP in Chapter 3, we described two distinct interpretations

of the HRP algorithm. In our geometric interpretation of HRP, we showed that the

HRP similarity measure is an oblique projection of the function onto the dictionary

elements, where the magnitude of this oblique projection is determined by the subfam-

ily associated with the dictionary element. We also showed that the HRP algorithm

can be interpreted as solving a constrained maximization of the difference between

successive residuals. Further, we investigated the convergence properties of the HRP

algorithm and were able to prove that for a discrete signal the norm of the residuals

produced by the algorithm converge exponentially.

Finally, in Section 3.5 we compared decompositions obtained using HRP to those

obtained using BP and MP. These examples employed both the cubic b-spline and

wavelet packet dictionaries. These examples demonstrated that HRP decompositions
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rival those of BP in terms of sparsity and super-resolution, yet the HRP algorithm is

computationally much less intensive.

5.1.2 HRP for Feature Extraction

We have also illustrated that HRP can be used to extract features which are suitable-

for object recognition. The use of HRP for feature extraction and object recognition

was illustrated using a data set of 17 airplanes in Chapter 4. In spite of the fact that

several of these airplanes were very similar to one another, the HRP-based recognition

-scheme that we developed was able to distinguish the planes from one another in the

presence of boundary perturbations, scale variation, small orientation variation, and

variations due to occlusion.

In the object recognition context, the elements extracted by HRP are a new class

of features that describe the geometric- (i.e. size and location) properties of subparts of

the object. These features based on the HRP decomposition are unique in that they

exhibit some properties typically associated with global features and some properties

typically associated with local features. As a result, these features based on the HRP.

decomposition are robust to both boundary noise and occlusion.

In developing an HRP-based scheme for object recognition of airplane silhouettes,

we demonstrated how to choose an appropriate value for the HRP depth parameter

and how to incorporate angular information which was discarded in the 1D represen-

tation of the silhouette. Further, we developed a recognition engine based on M-ary

hypothesis testing and the generalized likelihood ratio. This entailed developing ac-

curate conditional probability models for the features extracted from each plane.

In Chapter 4, we demonstrated that these HRP-based features were useful for

recognizing airplanes from their silhouettes. The performance of the HRP-based

approach was shown to be comparable to an approach based on Fourier descriptors
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when the the silhouettes were corrupted by boundary perturbations, scale variation,

and small orientation variation. In the presence of variations due to occlusion, the

performance of the HRP-based method surpassed the performance of the method

based on Fourier descriptors.

5.2 Future Work

As a general adaptive approximation technique, research on HRP may be extended

in the following ways. First, although we, have proved that the HRP algorithm con-

verges for discrete signals, -we have not proved that the HRP algorithm converges for

continuous signals. Second, the 1D HRP algorithm developed in -this thesis may be

extended to 2D. Conceptually, the extension of HRP to 2D functions is straightfor-

ward. The basic idea will be similar to the development in 1D, where the correlation

of a function with a coarse scale 2D dictionary function is given as the minimum of

the set of correlations with finer scale dictionary elements. The exact form of sub-

families associated with the two-dimensional dictionary elements would have to be

determined by the application. HRP in 2D requires the addition of eccentricity and

rotation parameters.

Third, a multisignal version of HRP may be developed to determine similarities

between sets. of functions. For example, if we wish to determine the features which

are similar in a set of functions one method might be to pick the first element

as

gy, arg max min S(fl, gt) (5.1)

where S(fl, gy) is as defined in (3.3). This formulation yields elements which are

present in each function f, and therefore maybe useful in extracting similar features

out of sets of functions. Such an approach may have significant applications in deter-
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mining descriptions for classes of objects.

In relation to object recognition, the following future research based on HRP is rec-

ommended. First, a higher level of occlusion should be studied using the HRP-based

recognition scheme outlined in Chapter 4. Higher levels of occlusion will significantly

perturb the centroid of the object which will in turn effect the appearance of the cen-

troidal distance profile. If we call adjust for the error in the centroid, the HRP-based

recognition scheme described in Chapter 4 should work quite well even in the pres-

ence of higher levels of occlusion. Second, we have based our recognition on four HRP

elements, but one can imagine a scheme where the number of elements extracted is

allowed to adapt to the profile.- The incorporation of additional HRP elements may

increase the discriminating power of the algorithm. Finally, it would be interesting

to apply 2D HRP features to the recognition of airplanes from their silhouettes or

gray-scale images. Since silhouette recognition is inherently a 2D problem, it seems

intuitive features based on 2D HRP elements would be a powerful recognition tool.
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