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Abstract

Statistical modeling and estimation of large-scale dynamic systems is important in
a wide range of scientific applications. Conventional optimal estimation methods,
however, are impractical due to their computational complexity. In this thesis, we
consider an alternative multiscale modeling framework first developed by Basseville,
Willsky, et al. [6, 18].

This multiscale estimation methodology has been successfully applied to a number
of large-scale static estimation problems, one of which is the application of the so-
called 11f multiscale models to the mapping of ocean surface height from satellite
altimetric measurements. A modified 11f model is used in this thesis to jointly
estimate the surface height of the Mediterranean Sea and the correlated component
of the measurement noise in order to remove the artifacts apparent in maps generated
with the more simplistic assumption that the measurement noise is white.

The main contribution of this thesis is the extension of the multiscale framework to
dynamic estimation. We introduce a recursive procedure that propagates a multiscale
model for the estimation errors in a manner analogous to, but more efficient than,
the Kalman filter's propagation of the error covariances. With appropriately chosen
multiscale models, such as the new class of non-redundant models that we introduce,
the computational gain can be substantial. We use I-D and 2-D diffusion processes
to illustrate the development of our algorithm. The resulting multiscale estimators
achieve O(N) computational complexity with near-optimal performance in I-D and
0 (N 3/2) in 2-D, as compared to the 0 (N 3) complexity of the standard Kalman
filter.
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Title: Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis primarily addresses the topic of statistical modeling and efficient esti-

mation methods for large-scale dynamic systems within the multiscale estimation

framework first developed by Basseville, Willsky, et al. [6, 18]. Since the introduction

of this multiscale estimation methodology about ten years ago, a rich body of research

results has accumulated on the subject. Much of the earlier research dealt with algo-

rithmic issues; that is, developing multiscale counterparts to the conventional linear

least squares formulation, such as algorithms for computing the estimates [18], for

modeling the a posteriori estimation error statistics [69], for likelihood tests [68],

etc. The bulk of the research, however, dealt with modeling issues; that is, iden-

tifying classes of random processes that admit compact multiscale models [18, 67]

and developing computationally efficient methods for realizing simple and accurate

multiscale models for a given random process [56, 41]. From the very beginning, the

development of the multiscale methodology has been motivated by its computational

efficiency. Its applications in scientific and engineering problems tackled a number

of large-scale estimation problems heretofore infeasible to solve with conventional

methods [33, 341.

Previous results on the multiscale methodology, however, were limited almost ex-

clusively to the modeling and estimation of static random fields. The need to address

issues of temporal dynamics was apparent in some applications, such as remote sens-

ing problems in oceanography, where the underlying process is inherently dynamic.
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Drawing upon the results from several areas of past research on the multiscale method-

ology, this thesis represents a first step towards extending the multiscale framework

to dynamic estimation. In the area of algorithmic development, the multiscale recur-

sive estimation algorithm introduced in this thesis can be viewed as a counterpart

to the Kalman filter. In the area of modeling, a new class of non-redundant mod-

els, which results in a computationally more efficient multiscale recursive procedure

than other types of multiscale models used previously, is invented. In the area of

applications, this new dynamic estimation method is applied to both I-D and 2-D

diffusion processes. We also apply the multiscale methodology, though in the static

estimation setting, to mapping ocean surface height of the Mediterranean Sea from

satellite altimetry data. Such large-scale oceanographic data assimilation problems,

i.e., the melding of data with dynamic models, provided the original motivation for

our investigation into multiscale dynamic estimation techniques, although the com-

plexity of these problems renders the application of dynamic estimation methods still

a challenging goal.

1.1 Problems Addressed and Contributions

1.1.1 Multiscale Recursive Estimation Algorithm

The need for cornputationally efficient estimation algorithms for high-dimensional dy-

namic systems arises in a variety of scientific and engineering applications. Numerical

approaches to solving distributed parameter systems governed by partial differential

equations (PDEs), such as those found in applications ranging from pollution con-

trol [74] to the modeling of ecological systems and flexible structures [5], have been

limited largely due to the high-dimensionality resulting from approximating such sys-

tems by finite-dimensional lumped systems. This is certainly the case in the field of

remote sensing, in which the assimilation of remote sensing data with atmospheric [22]

or oceanographic [33] dynamic models yields finite-dimensional approximations of the

underlying dynamics on the order of hundreds of thousands to hundreds of millions of
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variables. Image processing applications, such as inverse problems including optical

flow computation [14] and surface reconstruction [32], for example, present another

source of large-scale estimation problems.

The computational challenge is substantial. Conventional linear least squares es-

timation (LLSE) algorithms, such as Kalman filtering, are completely impractical for

solving such large problems both for computational and for storage reasons, given

the sheer size of the error covariance matrices involved. A critical aspect of these

estimation problems is the requirement that estimation error statistics be computed.

This necessity precludes the use of accelerated methods such as multigrid [11], which

do not supply such error statistics, or the fast Fourier transform (FFT), which re-

quires spatially stationary prior models and spatially regular measurement patterns,

requirements that cannot be met in many applications including most, if not all,

remote sensing problems.

For these reasons, it is clear that there is a need for suboptimal estimation algo-

rithms that can deal effectively with the computational challenge. The key to doing

this is to find a compact and effective representation for the statistics of the esti-

mation errors. In particular, consider the standard recursive estimation structure,

which includes the optimal Kalman filter, of alternating prediction and measurement

update steps. Each measurement update step has a straightforward interpretation as

solving a static estimation problem, namely the estimation of the error in the pre-

dicted estimates based on the innovations for the current measurements. Solving this

update step requires the statistics of the prediction errors which, in standard Kalman

filtering, are explicitly available in the form of the prediction error covariance ma-

trix, i.e., an object with O(N') elements for an N-dimensional state. To use this

operator in the update step requires O(N 2) computations, which is dwarfed by the

O(N') complexity of the Riccati equation for the propagation of the error covariance

through successive prediction and update steps.

Interpreting each measurement update step as a static spatial estimation prob-

lem suggests the possibility of implicitly specifying error statistics in the form of a

compact multiscale model for the prediction error random field. The key challenge
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in developing this formalism is the development of a method to propagate multiscale

models over time, i.e., developing a replacement for the Riccati equation either for the

propagation of this error model as it changes after each prediction and measurement

steps or for the evaluation of a steady-state error model. The full covariance matri-

ces of the estimation errors are never explicitly computed or stored, but implicitly

specified via the multiscale models. The steady-state error model is iteratively solved

for rather than realized directly from the steady-state error covariance matrix, which

is not available. Propagation through the measurement update step is known and is

accomplished as a by-product of the estimation algorithm [69]. It is the propagation

of the multiscale model through the prediction step that remains, and the challenge

here is to untangle the mixing effect of the dynamics in updating the parameters of

the model. Doing this requires a careful examination of exactly how the temporal

dynamics mix the variables captured at each scale in the multiscale representation.

The analysis will depend on both the dynamics and the multiscale models used for

the estimation error.

In this thesis we perform this examination for diffusion processes in detail. As

we will see, multiscale models designed to exactly model MRFs [67] can adequately

capture the statistics of the estimation errors of diffusion, both in I-D and in 2-D,

resulting in multiscale estimators with near-optimal performance. For 1-1) diffusion,

depending on the choice of multiscale models for the estimation errors, our multiscale

algorithm for the dynamic propagation of the error models is of O(N) computational

complexity, as compared to the 0 (N') complexity of the Kalman filter, where N is

the number of variables to be estimated. For 2-1) diffusion, due to the added spatial

dimension, multiscale models generally require that the multiscale state dimensions

grow with the size of the error field. Depending on the type of models, the multiscale

recursive algorithm is 0 (N 3/2 ) Ias compared to, again, 0 (N 3) of the Kalman filter.

Reduction in state dimensions of the 2-1) models, which results in lower computational

cost, is accompanied by poorer estimator performance. We examine the trade-off for

several types of reduced-order models.
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1.1.2 Non-Redundant Models

In constructing a multiscale model for a given random field, we aim to satisfy a

number of requirements. The first and the focus of much of the past research effort on

realization techniques [56, 41] is the accurate reproduction of second-order statistics

for the given random field of interest. Multiscale models used previously have always

placed the random field of interest at the finest scale. Coarser-scale states are then

designed to produce the desired correlation structure at the finest scale either exactly

or approximately. For the class of internal models [56], such coarser-scale states can

be expressed as linear functionals of the fine-scale state variables. It is important that,

while maintaining a certain level of accurate reproduction of second-order statistics,

the state dimensions of the multiscale model be kept low, e.g., constant such that the

estimation algorithm can achieve the often claimed O(N) computational efficiency.

In addition, care must be also taken in the design of the linear functionals in order

to maintain model consistency [25]. That is, the coarser-scale states must not only

have the correct second-order statistics but must also be truly linear functions of the

finest-scale random variables.

In the context of dynamic estimation, the computational complexity of the mul-

tiscale recursive algorithm depends not only on the state dimension of the multiscale

model for the estimation errors but also on how the states are defined. Multiscale

prediction for internal models in both 1-D and 2-D are generally more complex than

multiscale smoothing, i.e., the update step in the recursive algorithm. This consider-

ation motivated the creation of a new class of non-redundant models. Unlike internal

models, elements of the field of interest are no longer placed at the finest scale only,

but distributed among all the nodes on the tree. A state variable in a non-redundant

model corresponds to an element of the random field of interest and appears only

once on the tree rather than at multiple nodes as in internal models [67]. Non-

redundant models, like the internal models shown in [671, can model Markov random

fields (MRFs) exactly. Both produce comparable estimator performance for model-

ing diffusion processes. The major advantage for using the non-redundant model is
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computational efficiency for multiscale prediction. For a I-D diffusion, while the mul-

tiscale prediction step is of up to 0 (N log N) complexity for the more conventional

internal models, it is of O(N) on non-redundant models. In 2-1), the complexity is

0 (N 5/2) for internal models and 0 (N 3/2) on non-redundant models.

1.1.3 Large-Scale Data Assimilation

Large-scale data assimilation problems in oceanographic applications provided the

original motivation for our investigation into multiscale dynamic estimation methods.

In addition to the high computational cost due to the large number of variables to

be estimated in these applications, the precise knowledge of the statistical structure

of the ocean is often lacking, and the dynamic models of the ocean derived from the

underlying physics are usually immensely complicated.

In this thesis we apply the multiscale estimation framework to mapping the sea

level anomaly of the Mediterranean Sea based on satellite altimetric data. Similar to

the application of multiscale methodology to mapping the ocean surface height in the

Pacific [33], the oceanographic signal here is modeled as a stationary llf�' process,

where f is the horizontal wavenumber. Unlike previous applications, the measurement

noise is modeled as the sum of a Gaussian white noise process and a correlated process

of low wavenumber, the latter of which is used to model the systematic errors in

the satellite orbit. The correlated measurement noise process is accommodated by

augmenting the multiscale model for the oceanographic signal, and is jointly estimated

along with the anomaly signal. The efficiency of the multiscale scheme allowed the

testing of large sets of hypothesized statistical prior model parameters in order to

determine the most likely prior model. Mapping results with low-wavenumber error

corrections are free of the obvious artifacts present in mapping results without the

corrections.

The issue of temporal dynamics is side-stepped by assuming the ocean to be static

for the duration of one repeat cycle of the satellite measurements. Temporal dynamics

are taken into account by adjusting the measurement quality, i.e., measurements

further from the point in time of interest are assumed to be of higher uncertainty.
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While we are addressing data fusion with a spatial model of the ocean here, fusing

data with a spatial model as well as a temporal dynamics model of the ocean remains

a goal for further research.

1.2 Thesis Organization

The remaining chapters of this thesis are organized as follows.

Chapter 2 presents the background material on multiscale estimation and realiza-

tion that is relevant to the development in later chapters. It begins with a brief review

of the multiscale smoothing algorithm, the smoothing error model, and the likelihood

test. The section on realization methods includes a description of the correlation

structure of MRFs and the development of internal models for exact realization of

MRFs on multiscale tree models. The basic approach of canonical correlations realiza-

tion (CCR), a generalized method for realizing any Gaussian random field is explained

next. Two simple examples then illustrate the concept of conditional decorrelation

and model consistency - two important issues in multiscale internal realization. Ex-

ternal models, and 11f models in particular, are covered next. The historical and

somewhat forgotten link between wavelets and the multiscale m odels is revisited.

The chapter concludes with a summary of the major papers written on the multiscale

framework as a guide for readers who are interested in learning about the field in

more detail.

Chapter 3 begins with the standard recursive estimator and draws a parallel among

the optimal Kalman filter, a MRF-based recursive estimation, and our multiscale ap-

proach. The development of the chapter focuses on a method for propagating a

multiscale model for the estimation error through the prediction step. Our multi-

scale method is explained in general terms first, and is then illustrated with several

examples of 1-D internal models with end-point linear functionals for the cases of

simple temporal dynamics that results in diagonal or tridiagonal dynamic matrices.
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Non-redundant models are introduced next and shown to have a computational ad-

vantage over internal models for the purpose of multiscale prediction. The chapter is

concluded with a discussion on the issues of convergence of the recursive algorithm

and estimator performance measure.

Chapter 4 develops multiscale models and recursive estimators for I-D diffusion

processes in detail. A careful analysis of what linear functionals are suitable for mod-

eling the steady-state predicted estimation errors, as well as the steady-state I-D

diffusion process, is done. The analysis demonstrates that in the case of diffusion

both the internal models with end-point linear functionals and non-redundant mod-

els, built to model I-D MRFs exactly, can adequately model the estimation errors

of diffusion processes. In the last section examples for several variations of the ba-

sic diffusion process and for advection-diffusion processes show that the multiscale

suboptimal estimators are not only computationally efficient but also near-optimal in

performance.

Chapter 5 examines multiscale models and recursive estimators for 2-D diffusion

processes. We demonstrate that exact multiscale models built for 2-D MRFs are again

highly accurate for modeling the estimation errors of diffusion. The major challenge

in 2-D lies in constructing reduced-order multiscale models to deal with the higher

computational complexity of the recursive algorithm due to the added spatial dimen-

sion. We propose and compare several types of reduced-order non-redundant models,

and examine the trade-off between computational cost and estimator performance.

Chapter 6 details the application of the multiscale methodology to the mapping

of ocean surface height anomalies in the Mediterranean Sea using TOPEX/Poseidon

and ERS-1 satellite altimetric data. First, we explain ho w the modifications to the

basic 11f model used previously for modeling ocean surface height signals take into

account the correlated measurement errors. A presentation of the results on the

determination of multiscale model parameters then follows. Maps generated with

several different methods - a basic interpolation scheme, multiscale estimation with
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and without correcting for the correlated measurement error, a suboptimal space-

time interpolation scheme, and multiscale joint TOPEX/Poseidon-ERS-1 estimation

- are compared.

Chapter 7 summarizes the major results and contributions of this thesis. It dis-

cusses several interesting areas of research beyond the scope of the main chapters of

this thesis, and points out some possible future research directions.
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Chapter 2

Fundamentals of 1\4ultiscale

1\4odeling and Estimation

In this chapter we will lay out the major building blocks of the multiscale framework

of [6, 18], upon which the material in later chapters is based. This chapter will

allow readers who are not familiar with this multiscale methodology to attain a basic

understanding and to put in perspective where the results in this thesis stand within

the larger context of multiscale estimation.

Previous research on this multiscale methodology, summarized in this chapter,

answers one of the following three basic questions:

(i) What are the multiscale models of [6, 18]?

(ii) How is estimation done efficiently on such models?

(iii) How does one build multiscale models for a given random process so that esti-

mation can be done efficiently?

The chapter is roughly organized to address each of these questions. Most of the recent

research has focused on answering the last of the above three questions. Building

multiscale models that not only accurately capture the desired statistics but are also

compact enough to achieve the computational gains is by far the most challenging

aspect of applying the multiscale framework to practical estimation problems. In
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later chapters, we will extend previous results on modeling static random processes

to modeling dynamic processes.

2.1 Multiscale Stochastic Models

In the traditional linear least squares estimation (LLSE) setting, one's prior knowledge

of a given random process X, a column vector, is expressed through its second-order

statistics' - the mean mX - E [X], which is usually assumed to be zero without loss

of generality, and the covariance PX = E [XXT]. We may view the covariance matrix

as a statistical model for the random process of interest X.

Given a set of measurements

Yd - CdX + Vd, (2.1)

where the measurement noise Vd is Gaussian with zero mean and covariance Rd, the

linear least squares estimate has the simple form

CT CT
MX + PX d (CdPX d + Rd)-' (Yd - CdMX) (2.2)

The associated estimation error covariance is

Pe -_ E[iiT] = pX _ pXCT (CdPX CT + Rd) _1 CdPX, (2-3)d d

where X - ;j is the estimation error. Alternatively, we may express (2.2) and

(2.3) in the inverse format:

MX +Pe CT R-' (Yd - CdMX) (2.4)

P-1 P-1 + CT R-'Cd- (2.5)
e X d d

'For Gaussian random variables that we deal with in this thesis, second-order statistics give a

complete description of the random variables.
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Figure 2-1: A portion of a dyadic multiscale tree.

Both forms can be used interchangeably depending on their respective computational

cost.

There are two difficulties with applying LLSE directly to large systems, for exam-

ple, the surface heights of an entire ocean basin on a dense grid [33, 34]:

(i) The computational complexity of the matrix inversion involved in computing

the estimates and the estimation error covariance in (2.2), (2.3), and (2.4), (2.5)

grows cubically with the dimension of the number of measurements or of the

number of estimates.

(ii) The number of variables to be estimated in cases such as mapping ocean surface

heights [33] can easily reach millions. The storage requirement for a million by

million matrix PX is simply not feasible.

In the multiscale estimation framework of [6, 18, 56], random processes are mod-

eled on tree structures. Figure 2-1 shows an example of a dyadic tree. The nodes of

the tree are organized into a sequence of scales. A node s is connected to a unique

parent node, s`�I, at the next coarser level, and to several child nodes Sai (i - 1, . . . , q),

at the next finer level. The multiscale process is a collection of zero-mean random vec-

tors x(s), indexed by nodes s on the tree and specified by a scale-to-scale relationship
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Figure 2-2: An example quad tree for modeling 2-D random fields. (Taken from [33].)

of the following form

x(s) - A(s)x(s,;7y) + B(s)w(s), (2.6)

where w(s) is a zero-mean unit-variance white noise process uncorrelated with x(O),

the state at the root node of the tree.

In general, the number of children may vary from scale to scale and in fact from

node to node. For convenience, in the vast majority of cases, I-D random processes

are mapped to the finest scale of uniform dyadic trees (i.e., q = 2 for all nodes except

the leaf nodes at the finest scale) as in Figure 2-1, and 2-D random fields are mapped

to the finest scale of quad trees (q -_ 4) as in Figure 2-2. We will show in Section 3.5

that in some cases the best way to model a random process of interest is not mapping

it to the finest scale but distributing it among different nodes at different scales on the

tree. How to find the appropriate A(s) and B(s) given a random process of interest

is a realization problem which will be covered in Section 2.3. For now, we assume

that a multiscale model of (2.6) has already been defined for us.

Measurements can be made at any node:

y(s) - C(8*8) + V(s), (2-7)
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where v(s) is white, zero-mean, and uncorrelated with the process x(s). Although

measurements can be taken at any scale, they are restricted to be linear functions

of the state x(s). Suppose that each element in the process of interest is mapped

to a scalar node at the finest scale of a tree. Then only point measurements of the

process are readily placeable on the finest scale of tree. Additional states can be

augmented onto the tree [25] so that non-local measurements can be placed on the

tree, but augmentation must be done with care to guarantee model consistency (see

Section 2.3.4).

Whereas in the LLSE setting one's prior knowledge of the random process is

expressed in the form of a covariance matrix Px� in the multiscale framework that

prior knowledge is expressed through the scale-to-scale relationship of (2.6), i.e., model

parameters A(s) and B(s). Equation (2.6), together with the covariance P(O) of the

variable x(O) at the root node of the tree, provides an implicit specification of the full

covariance of the multiscale process. Computing the full covariance is straightforward

since the explicit covariance between any two nodes x(si) and X(S2) can be easily

calculated as

A
P(SI, S2) = E [X(SI)X'(82)] = lb(sj, s, A S2)P(s, A S2)(D'(S2, s, A S2), (2-8)

where s, A S2 is the lowest-scale common ancestor of si and 82, P(s, A S2) is the

covariance of x(s, A 82), and 4,(s, o,) is the state transition matrix from any node a

to direct descendent s. For example, referring to Fig. 2-1,

A
P(saj, u) - E [x(saj)x'(u)] = A(saj)A(s)P(s,;y)A'(u). (2.9)

Furthermore, the covariances of x(s) at each individual node can be recursively com-

puted from P(O) in a tree-recursive Lyapunov equation:

P(s) = A(s)P(s,;�I)A'(s) + B(s)B'(s). (2.10)

Thus, the calculation of P(s) and any individual P(SI, S2) is computationally simple
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(at most O(N) for all of the P(s)). However, the calculation of all of the cross-

covariances P(81, 82) is prohibitively complex for large N since there are O(N 2) such

covariances. Of course, the whole reason for applying multiscale models is to avoid

ever computing or storing the full covariance matrix PX1

LLSE makes no special assumptions about the covariance structure PX1 This

generality comes with a computational penalty - O(N 3) computational complexity

and O(N 2) storage requirements for a length N random process. Computationally

more efficient methods necessarily put restrictions on the range of random processes

for which such methods are applicable'. FFT methods exploit the stationary correl cu-

tions structure in a random process, i.e., one column of PX is enough to represent the

whole matrix. Markov random field (MRF) [281 models exploit the conditional decor-

relation properties, i.e., the inverse of the covariance matrix P-1 is sparse and/orX

banded [80]. (More will be said about MRFs and multiscale realizations of MRFs

in Section 2.3.2.) Similarly, multiscale models exploit certain statistical structure of

a random process and express such structure in a scale-to-scale relationship of (2.6)

that is not only more compact to express but also results in more efficient estimation

algorithms. Two classes of random processes - MRF (see Section 2.3.2) and 11f

processes (see Section 2.3-5) - have been so far identified as particularly suitable for

modeling in the multiscale framework.

2.2 Multiscale Algorithms

2.2.1 Multiscale Smoothing Algorithm

From (2.6), conditioned on the state x(s) the q + 1 subtrees connected to node s are

conditionally decorrelated (by the whiteness of w(s)). Because of this Markovianity

property on the multiscale tree, the random variable x(s) is referred to as the state

at node s. The conditional decorrelation property also makes possible efficient scale-

recursive smoothing algorithms [18, 191, similar to the Rauch-Tung-Striebel (RTS)

smoothing algorithm [751 for time series. In fact, a monadic tree, i.e. q -- 1, reduces
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Figure 2-3: Rauch-Tung-Striebel smoothing algorithm on the tree.

to a standard 1-D Markov process as illustrated in Figure 2-3.

In the time series case, the RTS algorithm consists of a Kalman filtering estimation

algorithm running forward in time and a smoothing algorithm backward in time. In

alternating update and prediction steps, the Kalman filter recursively computes the

best estimate of the process at time t given all measurements up to t and the best

estimate of the process at time t + I given measurements up to t. The smoothing

algorithm recursively computes the best estimate of the process at time t given all

measurements.

The RTS algorithm can be generalized for smoothing on the multiscale tree. The

generalized algorithm consists of a single upward sweep similar to Kalman filtering

and a downward smoothing sweep. The analogy with the time series case breaks down

in that each node of the multiscale tree can have multiple immediate descendents,

not just one. A new merge step is now required in the prediction step during the

upward sweep. The best estimates of x(s) given measurements on each individual

subtree originating from each of its child nodes sai are combined into an estimate

of x(s) given all measurements on all of these subtrees. Detailed development of

the smoothing algorithm can be found in [18, 19]. The essential equations of the

algorithm are summarized in Appendix A.

For models with state dimension k independent of the number of nodes at the
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finest scale of the tree N, the computational complexity of the smoothing algorithm

is 0(k'N) for the computation of estimates and error covariances at all nodes of the

tree. In comparison, the computational complexity of USE is O(N'). The O(N)

complexity, however, hinges on a constant k independent of N. For k that grows

linearly with N, e.g., exact internal models for 2-D MRFs to be seen in Section 2.3.2,

only 0 (N 3/2) complexity is not achieved. One of the major challenges of multiscale

realization is building models that do achieve O(N) complexity, or at worst only

slightly faster growth with respect to the problem size N.

2.2.2 Smoothing Error Model

In addition to the estimates i:(s), the multiscale smoothing algorithm produces, at

no extra computational cost, a multiscale model for the a posteriori estimation errors

i (s).v - x(s) - -�(s) [69]. The multiscale model for the estimation errors are of the

exact same structure as the model for the process, but with new "A(s)" and "B(s)"

matrices defining the scale-to-scale relationships:

;r-(s) - + fv(s) (2.11)

where P(slo,) is the estimation error covariance for estimating x(s) given all mea-

surements at node a and below, P(s) is the prior covariance of x(s), and fV(s) is

the error process noise. (See [69] and Appendix A for more detail.) In static estima-

tion problems, often only the estimation error variances, i.e., only the diagonals of

E [,i� (S);b (8) T] are of interest as a measure of the quality of the estimates. The multi-

scale model for the errors are of secondary importance. We shall see in Chapter 3 that

the update step of a temporal Kalman filter can be interpreted as static estimation

of the predicted estimation error while the a posteriori error of this static estimation

step is exactly the updated estimation error. The availability of a multiscale model

for the a posteriori estimation errors given a model for the process to be estimated is

of direct interest to us.
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2.2.3 Multiscale Likelihood Test

The multiscale tree structure also admits a fast algorithm for calculating the like-

lihood function for the model, i.e., the log probability density of the measurement

data given the model. Such likelihood tests are used in applications such as texture

discrimination [68, 70], where likelihood ratio tests are performed to decide between

two multiscale models parameterized with different sets of parameters for two types

of texture. The computational efficiency of the likelihood test algorithm also allows

a large number of tests to be performed to identify the model parameters that maxi-

mize the likelihood function. Past applications of this type include fractal dimension

identification [35] and ocean surface height model parameter identification [34, 33].

In Chapter 6, we will employ multiscale likelihood tests to determine two parameters

used in multiscale models for the sea level anomaly of the Mediterranean Sea.

Suppose that all available measurements on the multiscale tree are stacked into a

vector y, which has a Gaussian distribution with zero-mean and covariance Py that

depends on a parameter vector 0. The likelihood function is

L(O) = logpylo(Y10) (2.12)

Tn TP-1
= -- log 27r - -log P -Y Y, (2.13)

2 2 1 Y1 - 2 y

where rn is the number of elements in y and IPy I is the determinant of Py. The

main difficulty with computing (2.13) directly is the matrix inversion of Py, as the

covariance matrix is generally full. However, if an invertible transformation T that

Twhitens y can be found, so that the covariance of v = Ty, P, - TPYT , is diagonal,

then

TP-1VL(O) log ITI - Tn log 27r - log IPl - V V (2.14)
2 2 2

is easy to compute. For Markov time series, the Kalman filter performs the whitening

by generating the filter innovations. This is the trivial case on the tree for q - 1.

For q > 1, however, the filtering residuals vf (s) - y(s) - C(s).,�(sjs+) generated

by the Kalman filtering upward sweep of the multiscale estimation algorithm are
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only partially whitened. That is, only residuals along a direct descendent line are

white. Residuals at nodes across a scale are not white. Nevertheless, the partial

whitening of the upward sweep can be used to advantage in a multiscale analog of

the Kalman filter. The nodes on the tree are ordered according to a "pre-order"

scheme in which child nodes appear before their parents. The likelihood calculation

algorithm essentially provides the additional whitening required to make the residuals

v completely uncorrelated. See [68, 70] for more detailed discussions of the algorithm.

The computational effort of the whitening algorithm is similar to that for the

estimation algorithm. For multiscale models with constant state dimension, the com-

putational complexity of the likelihood algorithm is O(N).

2.3 Multiscale Realization

As we have seen in Section 2.1, given a multiscale model of the form in (2.6) it is

straightforward, though computationally intensive, to calculate the full covariance

structure among states at all nodes on the tree. For the subset of models, for which

the random process of interest is mapped to the finest scale, the covariance matrix

of interest is the one for the finest scale. The converse, i.e., constructing a multi-

scale model given the covariance matrix of a random process of interest so that the

finest-scale covariance exactly or approximately matches the given covariance, is a far

more difficult task. The majority of recent work on the multiscale methodology has

focused on efficient stochastic realization algorithms, motivated by the computational

advantages of the multiscale framework.

All of the past results on multiscale realization have mapped the random process

of interest to the finest scale of a multiscale tree. Most of the existing work focuses

on building multiscale models so that the statistics of the finest-scale process match

or approximate a desired finest-scale covariance, although there are motivations and

some results [25] on constructing realizations under more general conditions. This

differs from the usual realization problem for time series for which we wish to meet or

approximate a second-order specification over the entire time index set. For multiscale
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representations here we are interested in only a limited aperture of the full tree index

set, namely the finest scale. To be more specific, let x denote the set of all multiscale

state variables x(s) at the finest scale; let Px denote its covariance. Similarly, let PX

denote the desired covariance (of the finest-scale process X) we wish to realize. The

fine-scale realization problem is then to construct a multiscale model as in (2.6) so

that Px (approximately) equals PX1

The key to this problem is defining the state at the "hidden" levels above the finest

one so that the resulting process satisfies the tree-Markovianity property, while the

finest-scale covariance Px matches the desired PX either exactly or approximately.

Multiscale models developed so far fall into two main categories - internal and

external models. Internal models are models where the coarser-scale states are defined

explicitly as a linear function of the finest-scale states [67, 73, 57, 56, 25]. Coarse-scale

states on external models, on the other hand, cannot be written explicitly as a linear

function of the finest-scale states [33, 34, 35]. In either case, the coarser-scale states

are created for the purpose of generating a desired covariance structure at the finest

scale.

We will discuss in the remainder of this chapter the relevant past result on internal

and external realizations. In Section 3.5 we will introduce a new type of non-redundant

models where the process of interest is uniquely mapped onto the multiscale tree, i.e.,

there is a one-to-one correspondence between variables on the tree and variables

defining the process of interest. Realization ideas described in this section will be

extended in Section 3.5 to modeling Markov random fields on non-redundant models.

2.3.1 Internal Realization Models

Just as for time series, (2.6) can be interpreted as writing x(s) as its best estimate

based on its parent x(s,;7y) plus the (orthogonal) error w(s) in this estimate. That is,

x (s) = E [x (s) I x (s,7y) ] + w (s), (2.15)
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where

E [x (s) I x (szy) A (s) x (s,�y-), (2.16)

and

E [w(s)w(s)'] B(s)B'(s). (2.17)

This implies that the parameters A(s) and B(s) are completely determined by the

joint statistics of x(s) and x(s,�y):

A (s) P (s, s,;;y-) P (s,;;y), (2.18)

B(s)B'(s) P(s)-P(s,szy)P-l(s,�y)P'(s,szy)- (2.19)

Thus, model construction is immediate once the, multiscale states are defined and the

parent-child second-order statistics are computed at each node.

For the class of internal realization the state 45) at each node can be defined as

a linear functional of the finest-scale process. That is,

x(s) = L(s) x. (2.20)

Once the internal matrices, or linear functionals, L(s) are properly defined, the re-

quired parent-child statistics follow immediately. Specifically, recalling the objective

that Px - PX7 we have

P (s, szy) - L (s) PX L T (S,7y) (2.21)

P (s) - L (s) Px L T(S). (2.22)

The way A(s) and B(s) are defined in (2.18) and (2.19) guarantees (2.21) and

(2.22) to be true for any node s on the realized multiscale tree model, for any arbitrary

choice of linear functionals L(s). For example, suppose that the process of interested

is mapped to the finest scale where all nodes have scalar states. This means that at

least the diagonal of the realized covariance Px exactly matches that of the desired

covariance PX I On the other hand, P (s, a) - L (s) Px L T(or), for a not equal to

44



s or s--1, does not generally hold true unless the linear functionals L(S) have been

designed to meet the Markovianity property on the tree. For example, the state

at node s`�l in Figure 2-1 must decorrelate three subsets of the finest-scale process,

namely jx(sai), X(SCe2) 1, f x(uai), x(ua2) 1, and all of the remainder of the finest scale.

This is why we have made a distinction between what is realized on the multiscale

model, Px, and what is desired, PX1

In the following subsections on internal models, we will first describe internal

models for the class of Markov random fields (MRF), which will be used heavily later

on in the development of models for dynamic estimation. We will then briefly explain

how a canonical correlations realization (CCR) method constructs internal models

for general Gaussian random fields. We will have more to say about two important

requirements we place on the linear functionals of such internal models - conditional

decorrelation and consistency.

2.3.2 Internal Models for MRFs

A I-D process X(t), t E R, is a Markov process (or a unilateral Markov process) [28]

if for t > T

PX(t)jX(-),-E(OT] (X(t) IX(T),F E (0, T]) - PX(t)IX(T) (X(t) JX(T)) (2.23)

That is, conditioned on the present, X(T), the past, X(t), t < T, and the future, X(t),

t > T, are uncorrelated. A I-D process X(t) is a 1-D Markov random field (or a

bilateral Markov process or a reciprocal process) [28] if for t E (TI, T2), T2 > T1,

PX(t)jX(-),-rE(TiT2)', (X(t) JX(T), T E (TI, T2)') - PX(t)jX(Tj),X(T2) (X(t) IX(TI), X(T2)),

(2.24)

where (TI, T2)' is the complement of (Ti, T2). That is, conditioned on the boundary

points, X(TI) and X(T2), X(t) within the interval (TI, T2) is conditionally decorrelated

from the field outside of the interval. Note that a Markov process is also a 1-D

MRF, but a 1-D MRF is not necessarily a Markov process. Similarly, a continuous-
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space 2-D random field X(t), t E R2, is a Markov random field if a closed boundary F

conditionally decorrelates the random field inside the boundary from the field outside.

Discrete I-D MRFs on t C Z are defined similarly with the continuous intervals

replaced by discrete intervals. Discrete 2-D MRFs [28] on t C 32 require the definition

of a neighborhood structure to make precise what a closed boundary is. A first-order

neighborhood of point on a lattice consists of its four nearest neighboring points; a

second-order neighborhood the eight nearest, and so on. The boundary of a subset

Q E Z2 is the set of points that are neighbors of Q but not elements of Q. The

order of the MRF is the order of the neighborhood needed to define a boundary that

conditionally decorrelates X(t) on Q from X(t) on Q'. This definition of order applies

to both 1-D and 2-D MRFs.

There is considerable structure in the covariance of a Markov random field. Al-

though the covariance matrix of a MRF P is generally full, its inverse P-1 is sparseX X

and banded [801. Take the following I-D Markov process for example:

a X(t) - b X(t - 1) + w(t), (2.25)

for t = 0,...,T, where X(-I) - 0, w(t) is a white noise process, and a and b are

constant coefficients. Written in vector form:

a 0 ... ... 0 X (0) W (0)

b a 0 X (1) W (1)

0 b (2.26)

0 X(T - 1) w(T - 1)

0 0 -b a X (T) w (T)

or

MX - W, (2.27)

where w is white with diagonal covariance matrix Q. Then

MPX MT Q. (2.28)
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Assuming an invertible M,

p-1 = MTQ-IM. (2.29)
X

Since Q is diagonal, P-1 the inverse of the covariance of the 1-D process, is tridiag-

onal. For second-order Markov processes where M has two lower diagonals, P` isX
penta-diagonal.

Information about the conditional dependencies among elements of a discrete

random process is in fact contained in the inverse of its covariance matrix [80]. A

connected graph may be drawn according to the locations of the non-zero entries

of the inverse covariance matrix. Conditional decorrelation relationships can then

be deduced from the graph. (The reader is referred to [80] for more detail.) For

our purposes here, it suffices to say that if the inverse of the covariance matrix is

tridiagonal, then the process is a first-order Markov process. Furthermore, if the

inverse is tridiagonal with two corner elements, then the process is a first-order 1-D

Markov random field. If the inverse is penta-diagonal, then the process is second

order, etc.

The multiscale models described in [671 for MRFs originate from the midpoint

deflection algorithm for synthesizing sampled I-D Brownian motion. The idea is

that given the values of the boundaries of an interval I of a I-D MRF, the value of

a point inside the interval (not necessarily the exact midpoint) can be synthesized

independently of the values of points outside of that interval. The value of the syn-

thesized midpoint is simply the linear interpolation, i.e., the average of the values of

the boundary points, plus a deflection term whose variance is the estimation error

variance in estimating the midpoint given the values of the boundary points. The

midpoint and the boundary points of I then form the boundary points of two subinter-

vals. The midpoint deflections in the two subintervals are conditionally uncorrelated

given the boundary points. This midpoint deflection recursion is naturally modeled

on a multiscale tree with the interval boundary points defined as the states.

Figure 2-4 shows an example for a sampled 1-D MRF over a discrete finite index

set, i.e., the set f 1 ... 91. Each node is associated with a subinterval of 11 ... 91; for
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Figure 2-4: The linear functionals of an internal realization of a first-order I-D Markov
random field on a dyadic tree with a state dimension of three.

example, the node labeled s in the figure is associated with the subinterval f 5 ... 91.

The state at each node s consists of the set of values of the finest-scale process at the

end-points and the midpoint of the subinterval, and is marked within an elongated

oval in the figure. Since the states at all nodes are copies of the finest-scale variables,

the multiscale model in Figure 2-4 is internal. The states so defined at any node

perfectly decorrelate the states on its child subtrees and their complement, thereby

satisfying the Markovianity property on tree. The multiscale dynamics (2.6) then

consist of subdividing intervals at each scale and generating midpoint values.

There is considerable redundancy as most states appear at multiple nodes of the

same scale as well as at multiple nodes at different scales, e.g., the variable at location

5 appears at two nodes at scale 1, and it appears at some nodes on all scales. This

model redundancy can be reduced by allowing the state dimension to increase to four

as shown in Figure 2-5. Each fine-scale variable appears at only one node across a

scale, even though it still appears at multiple nodes at different scales. Since the linear

functionals at a node consist of the end-points of the subintervals under the node,

we refer to the functionals in Figure 2-5 collectively as end-point linear functionals,

and refer to the models using such functionals as internal models with end-point

linear functionals for convenience. Since each functional has a region of support over

only one element of the finest-scale process, we refer to these functionals as point

functionals. In addition, if we make the finest-scale states scalar, i.e., each node at
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Figure 2-5: The end-point linear functionals of an internal realization of a first-order

I-D Markov random field on a dyadic tree with a state dimension of four.

the finest scale corresponds to an element of the process of interest, as in Figure 2-5,

we really need only define the multiscale state to two levels above the finest scale.

The multiscale models shown in Figures 2-4 and 2-5 are both exact models for I-D

discrete Markov random fields. The midpoint deflection approach behind the con-

struction of these models also means that they can be used to approximate continuous

MRFs to arbitrary resolution by adding finer scales to the tree while keeping the same

coarser-scale state definition. The random field of interest is readily available at the

finest scale. In Section 3.5, we will propose a class of non-redundant models for which

a state variable corresponding to an element of the random field of interest appears

only once on the tree rather than at multiple nodes 2 . These models are still exact

models for discrete MRFs, but there are subtle but important differences. (We will

elaborate in Section 3.5.)

Exact realizations of 2-D MRFs are analogous to those in I-D. Instead of end-

points of subintervals, boundary points of subregions make up the states. The key

2In [70, 67], the model in Figure 2-5 is referred to as non-redundant since a state variable appears

only once over a single scale, unlike the model in Figure 2-4. Our notion of non-redundancy is more

stringent.
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Figure 2-6: Boundary points (marked with filled circles) kept as states at (a) the
root node, and (b) the four nodes at scale 1, of an internal realization of a 16 x 16
first-order 2-D Markov random field.

difference and the major difficulty with exact models for 2-D MRFs is the growth of

state dimension. Whereas in I-D the state dimension is constant regardless of the

size of the interval over which the process of interest is to be represented, in 2-D

the state dimension grows with the length of an edge of the 2-D domain, i.e., for a

square field of interest with N elements, the state dimension k - VN7. The claimed

O(N) complexity of the multiscale smoothing algorithm hinges on a constant state

dimension k independent of N. For the linear functionals shown in Figure 2-6, the

state dimension at node s is 8 x (n/2-(')) - 16, where n the the length of one edge

of the 2-D field, i.e., N = n2, and m(s) is the scale of node s. The total amount of

computation of the smoothing algorithm is then on the order of

1092 n n 3

�7 V x 8X2m(s) - 16 (2-30)
M=0

Writing out the terms and neglecting the lower-order term, we have O(n'). Then the

computational complexity of the smoothing algorithm for exact multiscale models for

2-D MRFs is 0(N 3/2 ), where N is the number of variables in the field of interest.

The order of computational complexity is largely determined by the state at the root
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node whose dimension is O(n) and whose associated computational burden is O(n 3).

This is not dissimilar to the computational complexity of nested dissection [46, 77]

techniques in which Gaussian eliminations on a n 2 x n 2matrix is dominated by the

inversion of an n x n submatrix resulting in an 0(n') algorithm.

In some applications, additional structure in the correlations can be exploited to

reduce the state dimensions. Rather than keeping the entire set of boundary points

as the multiscale states, linear functions of the boundary points, i.e., a coordinate

transformation such as I-D Fourier series or I-D wavelet transform, are kept. In

modeling textures [67, 68], e.g., wood, which are highly correlated in one physical

direction, only a few wavelet coefficients of the boundary in that direction are needed

to capture most of the correlations and are kept as the multiscale state variables. The

resulting multiscale model is approximate, but with much lower state dimensions. In

modeling the ocean temperature field [73, 31], since nearby elements of the field are

highly correlated, subsampled boundary points rather than the full boundary set are

kept as the multiscale state variables.

2.3.3 Canonical Correlations Realization

The approximate models for Markov random fields used for modeling textures in [671

suggested the need for a way to prioritize linear functionals so that reduced-orde'r mod-

els can be built to varying degrees of model fidelity. A general method for constructing

the linear functionals L(s) to achieve exact or approximate conditional decorrelation

required by the tree model is the so-called canonical correlations realization (CCR)

algorithm [56, 55]. It represents a generalization of Akaike's canonical correlations

algorithm [21 for the stochastic realization of time series, where one wants to define,

at a point in time, a set of state variables, written as linear functionals of the past

or of the future, that either exactly or approximately conditionally decorrelates the

past and the future. Following the same idea, but instead of decorrelating the past

from the future, the canonical correlations realization method for multiscale model-

ing finds states x(s) that decorrelate one segment of a 1-D Gaussian process from its

complement or one region of a 2-D Gaussian random field from its complement. Let
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us denote x(s) to be the collection of finest-scale states under node s and denote xc(s)

to be the complement of x(s). Canonical correlations realization algorithm computes

the set of linear functionals L(s) of (2.20) so that x(s) conditionally decorrelates

x(saj), i = 1, . . , q, and their complement.

The basic idea of CCR is the following. Given a zero-mean random vector

77 - (2.31)
L n2 j

which is written as two sub-vectors of dimensions nj and n2, and given its covariance

matrix

P771 P771772

P77 - PT (2.32)
771 772 Pn2

there exist matrices T, and T2 of dimensions ml x ni and M2 x n2 such that

T

T, 0 P 771 P771772 T, 0 Imi D (2-33)
PT

0 T2 711772 P772 0 T2 j L D In2 j

The matrix D has dimensions ml X M2, and is given by

D 0
D - (2-34)

0 0
L i

where b is a unique, positive definite diagonal matrix of dimension M12. Either T1771

or T2q2 conditionally decorrelates T11 and 772 [56]. That is,

E [77177T I Tiql] - E [77, 1 Tiql ] E [q2 I Tiql (2-35)2

The matrices T, and T2 are computed via a singular value decomposition (SVD).

The associated singular values are the entries of b and order the state variables by

their relative significance in decorrelating 77, and t7j. Varying levels of approximation

can be obtained naturally by discarding rows of T, and T2 associated with the least
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significant singular values.

To conditionally decorrelate more than two random vectors, e.g., to decorrelate '171,

172, and '173, first compute a Tir7l that conditionally decorrelates 'n, from T T] T11% 'q3
from T T]. The resulting

Similarly, compute T2772 that decorrelates 772 1771 773

T1771 (2.36)

T2772

then conditionally decorrelates qj, 772, and 773. This concept extends naturally to

q-adic trees. In this case, the set of state variables defined at node s must decorrelate

the q + I sets of variables, namely x(saj), i - 1, . . . , q, and xc (s). A Tjx(saj) that

conditionally decorrelates x(saj) from the remaining q vectors is computed for each

of the x(saj). The linear functionals L(s) at node s is then the collection of these Ti.

Reduced-order models obtained by discarding some of the least significant func-

tionals do not perform the conditional decorrelation of (2.35) perfectly. That is, the

Markovianity property of the multiscale tree is not exactly satisfied. Consequently,

the realized covariance structure at the finest scale Px will not exactly match the

true covariance PX of the random field to be realized. Reduced-order models with

lower state dimensions are of course computationally less costly for the multiscale

estimation algorithms. The trade-off between model simplicity and fidelity generally

depends on the correlation structure of the random process to be realized.

Computing the linear functionals L(s) at each node involves q singular value

decompositions (except at the root where only q - 1 sets of variables need to be

decorrelated), each of which is an SVD on the order of N. As a result, canonical

correlations realization is prohibitively expensive for modeling random processes of

large size. Linear functionals are computed non-recursively at each individual node,

so the number of SVI)s grows linearly with N, where N is the total number of vari-

ables at the finest scale. Thus, building a multiscale model using CCR carries a

computational complexity of O(N'). To lessen the computational cost, approxima-

tion techniques [56] that exploit symmetry or short correlation length of the random
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process to be realized are available for special cases. However, canonical correlations

realization, while conceptually general, is still too computationally expensive to be

practical. For the purpose of this thesis, CCR is used only as a tool for analyzing

the random processes or fields we face. The intuition gained from the analysis guides

us in designing the appropriate linear functionals for modeling the random processes

in which we are interested. CCR is bypassed in the actual construction of multiscale

models.

A new realization method currently under investigation [40, 41, 51] deals with the

drawbacks of CCR. Instead of attempting to find a T, that minimizes the residual

correlation between ql and 'q2 conditioned on Tji7, as in (2.33), the new method

attempts to find a T, that minimizes the mean square estimation error in estimating

% based on Tiql. In designing the states at node s, it also attempts to decorrelate

the states at the child nodes x(sai) rather than the entire finest-scale process x(saj).

The method therefore can achieve O(N 2) computational complexity overall.

2.3.4 Conditional Decorrelation and Model Consistency

There is one subtle but important point about the state definition of internal models

- (2.20), which equates x(s) and L(s) x as the same random variables, is not true for

an arbitrary set of L(s), even though the way the model parameters A(s) and B(s)

are computed in (2.18) and (2.19) does indeed ensure that the covariance of x(S)

and the cross-covariance between x(s) and x(s,;y�) are exactly realized, i.e., (2.21) and

(2.22) are guaranteed to be true. For Px -_ Px to be true, the linear functionals must

satisfy a conditional decorrelation, or tree Markovianity, requirement. For x(s) and

L(s) x to be the same random variables, which is what the term internal means, the

linear functionals must satisfy a consistency requirement [25]. The choice of linear

functionals cannot be arbitrary. If they do not satisfy the conditional decorrelation

requirement, then the resulting multiscale model is not exact; if they do not satisfy

the consistency requirement, then the model is not internal.

Take the very simple tree model in Figure 2-7 as an example, where the root node

X(O) - X1 + X2 and its children are defined as x(l) - XI and x(2) = X2. Given the
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X(O)=XI+X2

x(')=Xl x(2)=X2

Figure 2-7: An example tree that does not satisfy the conditional decorrelation re-
quirement.

X (0) 0 0

X

x (2) co 0

xi X2

Figure 2-8: An example tree that does not satisfy the consistency requirement.

sum of X, and X2, the two variables are conditionally correlated. That is, if we treat

X1 + X2 as a measurement and estimate Xi and X2, the estimation errors are corre-

lated. In other words, the process noises w(l) and w(2) in x(l) = A(I)x(O) + w(i)

and x(2) = A(2)x(O) + w(2) are correlated. A multiscale tree model with states

defined as in the figure will treat w(l) and w(2) as uncorrelated and thus will re-

alize P(1, 2) = A(I)P(O)A(2) for the covariance between Xi and X2, even though

the correct covariance is A(1)P(O)A(2) + E[w(l)w(2)]. For multiscale realizations to

be exact, i.e., Px = PX7 the linear functionals (in this case the linear functional at

the root node) must be chosen so that the resulting w(i) and w(2) are indeed un-

correlated. Exact multiscale models performs the conditional decorrelation perfectly.

Approximate CCR realization models [56] order the linear functionals so that for the

given state dimension the resulting correlated noise term E[w(l)w(2)] is minimized.

The description of the multiscale model is complete once the model parameters

A(s), B(s), and P(O) have been specified. The model does not automatically ensure

that x(s) are the same random variables as L(s) x. Consider the simple example of a

monadic tree in Figure 2-8, where the states at node 0 and node 2, are defined with the
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same linear functionals, i.e., L(O) -_ L'(2). Although P(O) - P(2) - Px, where Px is

the covariance of the random field of interest placed at node 2, the first state variables

at nodes 0 and 2, denoted xi(O) and xj(2) respectively, are two different random

variables because of the information loss going through node 1. For instance, the

sample paths generated for xi (0) and xi (2) will be different. The issue of consistency

becomes acute if we are to place a measurement of XI onto the tree. If we believe

(2.20), we have two equal choices: y(O) -_ [I 0 ] x(O) + v or y(2) - [I 0 ] x(2) + v.

However, for the example in Figure 2-8, the two choices yield different estimation

results. In either case, the estimates of xI(O) and xj(2) are different, because xi(O)

and xj(2) are in fact two distinct random variables despite what (2.20) may lead one

to believe. The model has to be consistent and no information must be lost passing

from node to node, in order for xi (0) and xi (2) to be the same random variable.

Inconsistent models may be exact. For the example in Figure 2-8, the desired

covariance is realized exactly at the finest scale. As long as measurements are not

placed anywhere on the tree where the state variables are inconsistent, exact esti-

mation results are obtained. Placing the measurement at node 2 yields the correct

estimates, i.e., same as LLSE, for XI and X2; placing the measurement at node 0 does

not.

The issues of conditional decorrelation and consistency become important when

additional states are to be augmented onto an existing tree model [25] in order to

place non-local measurements that are not readily placeable at the finest scale, to

which the process of interest is explicitly mapped. To preserve the conditional decor-

relation property, it is sufficient to make sure that a linear functional augmented at

node s has support over only an individual x(saj), not the entire x(s). To preserve

consistency, additional states should be augmented at other nodes to ensure the nec-

essary information is propagated without loss to the descendents of node 8 at the

finest scale [25]. For the simple example in Figure 2-8, this means augmenting XI as

a state at node 1. Since models whose coarser-scale states are not linear functionals

of the finest-scale states are external, the simple example in Figure 2-8 is external;

that is, even though (2.21) and (2.22) are true, (2.20) is not.
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2.3.5 External Models

The most important class of multiscale external models developed to date are the

so-called 11f models whose development antecedes that of internal models and draws

heavily from ideas of the wavelet transform.

The term multiscale has been used loosely to mean a variety of different things.

For instance, it could mean a divide-and-conquer approach to solving image pro-

cessing problems [43, 42]. The term, however, brings up in many people's mind the

wavelet transform, which is deterministic in most applications. We have used the

term multiscale to mean stochastic processes that are organized by scale where states

situated at coarser-scale nodes conditionally decorrelates states situated at finer-scale

nodes. Internal realization methods focus very much on how to define the states that

conditionally decorrelate well. Yet the notion of scale there is not entirely intuitive.

The development of 11f models makes clear the connection between our stochastic

models and the wavelet transform.

Using orthonormal wavelet transforms [26, 81], the multiresolution approximation

of a signal f (t) at scale m, is a weighted sum of shifted and scaled versions of the

basic scaling function 0(.):

+00
c,[n]0(2't - n), (2.37)

n=-oo

where cn[n] are the scaling or approximation coefficients, and scale is indexed by

m. The scaling functions are related according to the dilation equation, O(t) _-

En h[n]0(2t-n). The associated wavelets are related to the scaling functions through

the wavelet equation, V)(t) = En g[n]0(2t - n). The h[n] and g[n] form a conjugate

mirror filter pair for orthonormal wavelets [81]. The approximation of the signal f (t)

at one scale can be expressed as the sum of its approximation at one coarser scale

and new details, i.e., f,-,,+,(t) - f,(t) + En d,[n]�0(2't - n). The approximation

coefficients c,-,,[n] and the detail or wavelet coefficients d,,,[n] of the signal can be

computed recursively in scale from fine to coarse through the analysis equations,

cm [n] - Tkh[2n-k]c,,+I[k] and dm[n] = Ekg[2n-kldm+,[k]. Recursion from coarse
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to fine scale is through the synthesis equation:

CM+1[n] h[2k - n1cm[k] + E g[2k - nldm[k]. (2-38)
k k

Multiscale estimation theory views the wavelet transform synthesis equation (2-38)

as a dynamic relationship between scaling coefficients at one scale and those at the

next. This relationship can be represented on an infinite lattice [20]. In the simplest

case of the Haar wavelet transform, the lattice becomes a dyadic tree. The multiscale

estimation framework relies on the assumption that the wavelet coefficients are un-

correlated from scale to scale and along a scale, as the recursive multiscale smoothing

algorithm require this condition. For stochastic processes whitened by the wavelet

transform such that dm[n] at a particular scale are white and uncorrelated with cm[n]

at coarser s�ales, (2.38) represents a first-order recursion in scale that is driven by

white noise, dm[n]. It has been shown that fractional Brownian motion has approxi-

mately uncorrelated wavelet coefficients [37, 38, 84]. A broader class of 11f processes

that display 11f �'-like spectra over a range of frequencies can also be synthesized with

uncorrelated wavelet coefficients [61]. For this class of processes the wavelet transform

acts like a Karhunen-Lo6ve expansion, whitening the processes [921. Analogously, the

Fourier transform whitens stationary processes so that the individual frequency com-

ponents of such processes are statistically uncorrelated. Frequency-domain operations

such as Wiener filtering can then be applied.

In the simplest case, states on the 11f multiscale model are scalar, and the process

of interest is placed at the finest scale. The state at any node is simply its parent

node, i.e., A(s) = 1, plus some injected white process noise, whose strength decreases

exponentially as a function of scale:

x (s) = x (s,�y) + R, 2 (1 -p)m(s)/2 W (8), (2-39)

where m(s) is the scale of nodes (m(s) -_ 0 at the root node and increases as we move

to finer scales), and where B,, and /-t controls the magnitude and the rate of decrease
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of the process noise, respectively. The process noise term captures the self-similar

scaling properties in that the variability of the I If �' process scales geometrically with

the spatial resolution at which the variations are measured [33]. A variant of (2.39),

in which a higher-order model with state dimension equal to two is used to capture

some of the correlations in the detail coefficients, is used in [35] to model fractional

Brownian motion.

Whereas for internal models the states, defined in terms of the process of interest,

have some physical meaning, e.g., a weighted average of some subset of elements of

the process of interest, the meaning of the state at the coarser-scale nodes on Ilf

models are more abstract. For the model in (2.39), the variable at the root node may

be thought of as the aggregate average over the entire region of support, although it

is an average only in an abstract sense. States at coarser scales on external models,

by definition, cannot be written in the form of (2.20). Moving down to finer scales,

details are added as process noise w(s). The state x(s) can be viewed as the stochastic

analog of the scaling coefficients and w(s) the detail coefficients [20].

Multiscale Ilf models have been successfully employed in a variety of applica-

tions. The low state dimension of the Ilf models means that extremely large 2-D

estimation problems can be solved very fast. The earliest application was to the

problem of estimating optical flow [66], where the Ilf multiscale models is used as

a regularization term for dealing with the ill-posedness of the optical flow computa-

tion. In [33], 11f models were used for mapping ocean surface height in the Pacific

where maps with 250, 000 grid points were generated in less than a minute on the

then current generation of workstations. Modified version of the same type of models

will be used to model surface height anomaly signal in the Mediterranean Sea [34] in

Chapter 6. Multiscale Ilf models have also been used as prior models in variational

surface reconstruction [32] and image segmentation [78, 76, 60].
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2.4 Concluding Remarks

A rich body of research on multiscale estimation and modeling has been accumulated

in the last ten years. In this chapter, we have briefly described those parts of the

past research that are relevant to this thesis. However, the wide array of topics and

papers has obscured the fact that there is considerable continuity in the theoretical

development as well as the application of this multiscale framework. As a conclusion

to this chapter, we will group the major topics roughly into three categories, name

the main results in each, and point the reader to the relevant papers. The following

list is by no means exhaustive, but it should give the reader somewhat of an index

to the available literature on our multiscale framework. (Journal papers are listed

where possible. More detailed exposition on a topic is usually. found in the thesis by

the same author.)

Multiscale models and algorithms

• Earlier research on multiscale autoregressive model for parameterization and

whitening of isotropic processes, motivated in part by the wavelet transform

Basseville, Benveniste, Nikoukhah, and Willsky [7, 8, 6].

• Multiscale model and the smoothing algorithm in the present form - Chou [18].

• System issues such as stability, reachability, observability, and steady state as-

sociated with the multiscale smoothing algorithm - Chou [19].

• Smoothing error model - Luettgen [691.

• Multiscale likelihood test

- Algorithmic development - Luettgen [68].

- Texture discrimination - Luettgen [68].

- Parameter identification of fractional Brownian motion - Fieguth [35].

- Ocean surface model parameter identification - Fieguth [33, 34].
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Overlapping trees for the removal of blocky artifacts in images due to low state

dimension - Irving and Fieguth [57].

11f models (External models)

• Fractional Brownian motion - Fieguth [35].

• 11f prior for optical flow field - Chou [18], Luettgen [66]

• Membrane and thin-plate variational constraints interpreted as 11f 2prior sta-

tistical models for surface reconstruction - Fieguth [321.

• Ocean surface model - Fieguth [33, 341.

• Image segmentation - Schneider [78].

• Synthetic aperture radar image modeling, segmentation, and compression

Irving [58], Fosgate [39], Kim [62].

Internal models

• Theoretical development

- Models for MRFs - Luettgen [671.

- Canonical correlations realization - Irving [56].

- State augmentation and non-local measurements - Daniel [25].

- Fast realization algorithm - Frakt [40].

• Applications

- Texture - Luettgen [67].

- Fractional Brownian motion - Daniel [24].

- Ocean temperature - Fieguth [73, 31].
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Chapter 3

1\4ultiscale Time-Recursive

Estimation

3.1 Introduction

Estimation of dynamic systems governed by partial differential equations (PDEs),

i.e., distributed parameter systems, such as those found in applications ranging from

pollution control [74] to modeling ecological systems and flexible structures [5], are of

considerable scientific, as well as practical, interest. While there have been successful

applications of the theory of optimal estimation for such systems, there are severe

computational barriers that limit the domain in which truly optimal methods can be

implemented. Numerical approaches to solving distributed parameter systems have

been limited largely due to the high-dimensionality resulting from approximating such

systems by finite-dimensional lumped systems [3]. Indeed this is certainly the case

in the field of remote sensing in which data assimilation, i.e., the melding of data

with dynamic models, represents one of the most significant current-day problems.

For example, in problems of atmospheric or oceanographic data assimilation [331, the

dimensionality of finite-dimensional approximations to the underlying dynamics can

range from hundreds of thousands to hundreds of millions.

Conventional linear least squares estimation (LLSE) algorithms, such as Kalman

filtering, are completely impractical for solving such large problems both for compu-
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tational and for storage reasons, given the sheer size of the error covariance matrices

involved. A critical aspect of these estimation problems is the requirement that esti-

mation error statistics be computed. This necessity precludes the use of accelerated

methods such as multigrid [11], which do not supply such error statistics, or the FFT,

which requires spatially stationary prior models and spatially regular measurement

patterns, requirements that cannot be met in many applications including most, if

not all, remote sensing problems.

For these reasons, it is clear that there is a need for estimation algorithms that

can deal effectively with the computational challenge. Consider the standard recur-

sive estimation structure of alternating prediction and measurement update steps. In

standard Kalman filtering, the propagation of the estimation error statistics is done

explicitly via the estimation error covariance matrix, an object with O(N 2) elements

for an N-dimensional state. The computational complexity of the Riccati equation

for the propagation of the error covariance matrices through the successive prediction

and update steps is O(N') - far too large for systems with large N. The key to

computationally more efficient estimation algorithms is finding a compact and effec-

tive representation for the statistics of the estimation error that implicitly specifies

these error statistics in the form of a compact model. There are two major challenges

in realizing this concept:

(i) finding an appropriate random field model class that both accurately represents

the error statistics and also leads to substantial reduction in complexity, and

(ii) developing a replacement for the Riccati equation either for the propagation of

this error model as it changes after each prediction and measurement step or

for the evaluation of a steady-state error model.

In [15, 16, 14, 13] such an approach was developed using Markov random field

(MRF) models for the spatial error models. Such models do indeed capture a rich class

of spatial phenomena and in particular were demonstrated to lead to near-optimal

estimation performance for problems in dynamic computer vision. These models have

several attractive features with regard to the challenges mentioned previously: they
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are compact, typically requiring O(N) storage, and there are several O(N) algorithms

for the propagation of these models. However, the actual solution of the spatial

estimation problem for each measurement update using such a model is not nearly

as efficient, requiring up to O(N') computations for the calculation of estimates and

the spatial error variances.

The class of multiscale models of the form (2.6) have been shown to be rich, not

only yielding accurate representations in problems in which MRFs have commonly

been used [67] but also in other contexts, including the modeling and analysis of

11f processes and the modeling of large distributed phenomena for remote sensing

applications in oceanography [33, 34] and hydrology [25]. In applications such as

mapping ocean surface height [33, 341 and computing optical flow fields [66, 15],

even though the underlying physical systems are dynamic in such applications, the

estimation problems were treated as static estimation problems by considering one

snapshot of the system at a time. The flexibility, computational simplicity, and proven

value of these multiscale models for large, but static, spatial estimation problems

provide the motivation for the use of multiscale spatial models in dynamic estimation

problems.

The key challenge in developing this formalism is the development of a method

to propagate a multiscale model of the estimation errors over time. Each measure-

ment update step in the standard recursive estimation structure has a straightforward

interpretation as solving a static estimation problem, namely the estimation of the er-

ror in the predicted estimate based on the innovation for the current measurements.

Propagation through the measurement update step is easy and is accomplished as

a by-product of the multiscale estimation algorithm [69]. It is the propagation of

the multiscale model through the prediction step that remains, and the challenge

here is to untangle the mixing effect of the dynamics in updating the parameters of

the model. Doing this requires a careful examination of exactly how the temporal

dynamics mix the variables captured at each scale in the multiscale representation.

In the following sections, we first describe the basics of recursive estimation and

Kalman filtering. We then outline the general approach of the multiscale dynamic
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estimation algorithm and develop in more detail the multiscale prediction step. We

illustrate the prediction algorithm with some simple examples in I-D. We propose a

new class of non-redundant models that are particularly suitable for modeling MRFs

in the dynamic estimation context. In the next chapter, we apply the multiscale

dynamic estimation algorithm to I-D diffusion processes with both internal models

and non-redundant models, and in Chapter 5 to 2-D diffusion processes.

3.2 Recursive Estimation of Dynamic Systems

Consider a discrete-time system whose temporal dynamics are governed by

z(t + 1) - Ad Z(t) + Wd(t), (3-1)

where Wd(t) is the zero-mean process noise with diagonal covariance Qd. The mea-

surements are

Yd(t) - Cd(t) Z(t) + Vd(t), (3.2)

where Vd(t) is the Gaussian measurement noise with zero mean and diagonal co-

variance Rd. The temporal dynamics, process noise, and measurement noise are

assumed to be stationary in time, i.e., Ad, Qd, and Rd are independent of t. For the

applications we have in mind such as diffusion processes (c.f., Chapter 4) z(t) would

represent a spatially-discretized distributed parameter process and (3-1) would rep-

resent the corresponding temporally-discretized dynamics, so that Ad represents the

discretization of a partial differential operator in space. In addition, in the problems

of interest here Cd is a selection matrix and Rd is diagonal, so that the components

Of Yd represent independent point measurements of the distributed process.

Let Z"1(tjT) denote the estimate 2 of z(t) based on measurements through time T,

'We use the term selection matrix to denote a matrix in which each row has only one nonzero
element. By appropriate scaling the components of Yd(t) and Rd we can then, without loss of
generality, assume that each nonzero value in Cd equals 1.

'Linear least squares estimators require only second-order statistics of random variables. In
this thesis, estimates and estimators involve only second-order statistics, and statistical stationarity
implies wide sense stationarity.
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and let X(tIT) denote the corresponding estimation error

X(tIT) - Z(t) - i(tIT)_ (3-3)

The form of a class of recursive estimators (which includes the optimal Kalman filter)

consists of a prediction stage

i(t + 11t) = Ad-i(tjt), (3.4)

and a measurement update stage

_;#It - 1) + i(tIt - 1), (3-5)

where j(tIt - 1) is the estimate of the one-step prediction error X(tIt - 1) based on

the innovation

V W - Yd(t) - Cd i(tIt - 1) (3-6)

- CdX(tlt-l)+Vd(t)- (3.7)

Each measurement update step is essentially a static estimation problem of computing

fC (t I t - 1), but it requires the statistics of j (t I t - 1), which must be propagated through

time.

In standard Kalman filtering the estimate j(tIt - 1) is calculated explicitly as

j(tIt - 1) - K(t)v(t), (3.8)

where

pX(tIt _ 1)CT 1)CT + RdK (t) - d (CdPX(tlt - d (3-9)

is the Kalman filter gain. Computing j(tIt - 1) requires the availability of the pre-

dicted estimation error covariance P. (t It - 1), which is propagated through time from
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Px (t I t - 1) to Px (t + I I t) via the Riccati equation:

PX(tlt) = pX(tlt _ I)CT (CdPx(tlt - I)CT + Rd)
d d

CdPx(tlt - 1) (3.10)

Px(t+llt) = AdPX(tlt)A T (3-11)
d + Qd-

Note that (3.8) and (3.9) are of exactly the same form as the static LLSE equation

in (2.2). The updated estimation error covariance Px(tlt) is exactly the a posteriori

estimation error covariance from estimating X(tIt - 1).

For problems of interest to us the dimensionality of X(tIt - 1) makes this explicit

Kalman filter calculation either impossible or at best exceedingly complex. Under

general conditions,

(i) computing the predicted estimate in (3.4) is O(N 2);

(ii) computing the estimate of the predicted estimation error, j(tjt - 1), in (3.8)

and (3.9) is O(N 3);

(iii) propagating the estimation error covariances through the Riccati equation in

(3.10) and (3.11) is O(N 3).

For systems that approximate PDEs, the temporal dynamic matrix Ad is a discretized

differential operator and may be sparse and banded, depending on the discretization

scheme. Computing the predicted estimate then becomes O(N). However, difficulties

with (ii) and (iii) remain.

Suboptimal recursive estimators may compute j(tjt - 1) and propagate the es-

timation error statistics in any number of ways, often aimed to achieve better com-

putational complexity by taking advantage of additional structure in the estimation

errors. The suboptimal estimator may compute the estimates approximately, or prop-

agate the error statistics approximately, or both. Note that an equivalent filter gain

G(t) can be calculated for any linear suboptimal estimator if necessary. Since the

estimator is a linear system with input v (t) and output j (t I t - 1) as in (3-8), the Z'-th

column of G(t) is the estimation result for v(t) = ej, where ej is a column vector of
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all zeros except a one at the i-th element. The temporal dynamics of the updated and

the predicted estimation errors of the linear recursive estimator are then governed by

X(tlt) = (I - G(t)Cd) X(tIt - 1) - GMVd(t) (3-12)

X(t+11t) = AdX(tjt)+Wd(t), (3.13)

determined after some algebraic manipulation'. Therefore, the updated and the pre-

dicted estimation error covariances of the suboptimal estimator satisfy the following:

Px(tlt) (I - G(t)Cd) PX(tlt - 1) (I - G(t)Cd )T

+G(t)RdG (t)T (3.14)

Px(t+llt) AdPx(tjt)A T+ (3.15)
d Qd-

The suboptimal computation of j(tjt - 1), may be based on error statistics (or some

implicit representation of the error statistics) propagated incorrectly, i.e., the error

statistics the suboptimal estimator believes and uses in its recursion are different from

the actual error statistics in (3.14) and (3.15). Only the optimal estimator, e.g., the

Kalman filter for which G(t) -_ K(t), correctly propagates the error statistics, i.e.,

(3.10) gives the same answer as (3.14), and (3.11) the same as (3.15). More will be

said in Section 3.6.

'For the updated estimation error:

010 = ZM -i(tlt)
= ZM - _;*It - 1) - 01t - 1)
= X(tIt - 1) - G(t)v(t)
= X(tIt - 1) - G(t)CdX(tlt - 1) -G(t) V d (t)

= (I - G(t)Cd) X(tit - 1) - GM V d (t)

For the predicted estimation error:

x(t+11t) = Z(t+1)-gt+Ijt)
= AdZ(t) + Wd(t) -Adi(t1t)

= AdX(tlt) + Wd(t)
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3.2.1 MRF-Based Recursive Estimation

Markov random field models have been used to model the errors in estimating optical

flow [15, 14, 13] and geophysical flow fields [17], for which the dimension of the field

of interest z(t) is usually large. As we have said in Section 2.3.2, the inverse of the

covariance matrix of a Markov random field is sparse. It then makes sense to express

the error statistics not in terms of an error covariance matrix but in terms of the

inverse of the error covariance matrix. The information form of the Kalman filter

is used instead of the standard form in (3-8), (3.9), (3-10) and (3.11). The basic

approach of the algorithm is the following. (See also Section 7.2.3.)

Propagating the error statistics through the update step is cornputationally effi-

cient:

p-l(tjt) - p-l(tlt _ 1) + CT R-'Cd, (3-16)X X d d

if P-1(tjt - 1) and CT R-'Cd are sparse and block tridiagonal, corresponding toX d d

a first-order 2-D MRF. This is the case in the optical flow and the geophysical

flow applications and in our problems (c.f., Chapters 4 and 5), where the prediction

error is approximated as a MRF such that P-'(tlt - 1) is sparse, and point or localX

measurements and white measurement noise result in a sparse CT R-'Cd. The sparsed d

and block tridiagonal structure is preserved in P-1(tjt). Computing the updatedX

estimate in (3.5) and (3-8) is done via a normal equation

p-l(tjt) i(tjt _ 1) CT R-'v (t). (3.17)X d d

The sparseness of P-1(t1t) allows us to use efficient iterative procedures, such asX

multigrid [11], to solve for j(tjt - 1).

Propagating the error statistics through the prediction step as expressed in (3-11),

however, requires Px(tjt). Remember that only the inverse covariance matrices

P-1(t1t) and P-'(tlt-1) are sparse. The covariance matrices themselves are generallyX X
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full, and inverting P-1(tIt) is to be avoided. Written in the inverse form,X

Q-1 TQ- -1 A TQ-1. (3.18)P-1(t + lit) - Q-1 - Ad A 'Ad + P-1 (tit)) d dX - d d ( d d X

In applications where Ad is sparse and Qd is diagonal, computing the predicted

estimate in (3.4) is easy. On the other hand, propagating the error statistics through

the prediction step in (3.18) requires a matrix inversion, and the sparse structure of

P- 1 (t I t) is not preserved in P- 1 (t + I I t). That is, P- 1 (t + I I t) is no longer Markov.X X X

For the case of the optical flow computation, where Ad = I and Qd -_ qL

P_1(t + I It) = q-1I - q -2 )-I (3-19)
(q-li + P-1(tIt)

An approximation method is used in [15, 14] to impose a sparse structure on P-l(t+X
II t) by approximating the matrix inversion with an infinite series:

S-1 - D-'- D-'QD-1 + D-'QD-'QD-1 - D-'QD-'QD-'QD-'+ (3.20)

where S = q-1I + P-1(tlt), D and Q are respectively the the block diagonal andX

off-diagonal parts of S, such that S - D + f2. The more terms in the infinite

series are kept, the denser the approximated matrix is, and the more accurate the

approximation is. Near-optimal estimation performance was obtained by keeping just

the first two terms in (3.20) for the optical flow applications'.

The MRF models and the associated suboptimal recursive estimation method have

several desirable features:

• The MRF models for the estimation errors are compact, requiring O(N) storage.

The statistics of the errors are expressed implicitly in terms of the inverse of

the error covariances.

• The propagation of the error statistics is O(N). Propagating the error statistics

'In the case of the optical flow application [15], as well as others, the comparison with the optimal
estimator can only be done for small problems. The whole point of using suboptimal methods is
that for large systems the optimal estimator is computational infeasible.

71



Update/Estimation Prediction/Dynamics

A(s;tlt- 1) A(s;tlt) A(s;t+llt)
B(s;tlt-1) L(s) B(s;tlt) L(s) B(s;t+llt) L(s)

YW
X(s;tIt-1) X( ;tit) x(s;t+llt)

X (tit- 1)

Ad

J

X (tit- 1) X (tit) X (t+1 It)

J J

for steady state
- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -

Figure 3-1: A schematic of the multiscale recursive estimation method.

through the update step is an exact calculation, although approximations must

be made for the prediction step.

o Computing the updated estimates is approximate and requires iterative pro-

cedures that may reach up to O(N') complexity. Computing the predicted

estimates is simple with O(N) complexity.

3.3 Multiscale Recursive Estimation

The alternative approach that we consider in this thesis involves the implicit cal-

culation and propagation of the statistics of the estimation errors as a sequence of

multiscale models, as illustrated in Figure 3-1, similar to the propagation of the error

statistics as a sequence of MRFs we just discussed. Specifically, suppose that we have

a multiscale model for the prediction error X(tJt - 1) at time t. The model is com-

pletely specified by its model parameters A(s; t1t - 1), B(s; t1t - 1), and P(O; t1t - 1),

where we use t1t - I to indicate that these are quantities associated with the predic-

tion error model. Given the innovation of (3.7), the multiscale estimation algorithm

yields not only the estimates of the prediction errors j(tlt - 1), but also a multiscale

model for the updated estimation error X(t1t). Denote the model parameters for the

updated estimation error by A(s-tlt), B(s;tlt), and P(O-tlt), where we use t1t to

indicate that these are quantities associated with the updated error model at t. The
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update step of the multiscale recursive estimator is exactly a static estimation prob-

lem. That is, if we start with a multiscale model for X(tIt - 1), we directly obtain an

analogous model for X(tjt) without explicitly calculating Px(tIt). If the multiscale

model for X(tIt - 1) is exact, then j(tjt - 1) is computed exactly, i.e., optimally, and

the multiscale model for X(tIt) is exact. For compact multiscale models with con-

stant state dimension independent of the problem size, the update step is of O(N)

computational complexity. The update step of propagating a multiscale model for

X(tjt - 1) to a model for X(tIt) is illustrated in the first two boxes in Figure 3-1.

In contrast, the prediction step is the one that requires something new to avoid

computational overload. We again assume that computing the predicted estimates

of (3.4) for a sparse Ad is simple. The challenge lies in the propagation of the

multiscale models for the errors through the prediction step. To complete one step

of the recursion we need to construct a multiscale model for the predicted estimation

errors (3.13) without explicit calculating Px (t + 1 It) as in (3.15). The prediction step

is illustrated in the right two boxes in Figure 3-1. (In steady state, the model for

X(t + I It) becomes the same as that for X(tjt - 1).)

3.3.1 Multiscale Prediction Step

We develop the multiscale prediction step for the class of internal models as they

provide an easy way to write the temporal dynamics of the coarse-scale states given

dynamics of the fine-scale process, where the process of interest is placed and where

the dynamics (3.13) are specified'. Thus we assume that the state at any node 8 in

5The multiscale recursive algorithm does not in principle require internal models. However, for
external realization models whose coarse-scale states cannot be expressed as linear functionals of the
finest-scale process, it is not clear how the coarse-scale states should evolve in time. That is, with
the assumption that the process of interest is placed at the finest scale of a multiscale tree and that
the temporal dynamics (3.13) are given for the the finest-scale process only, it is not clear how the
coarse-scale states on the prediction error model relate to states on the updated error model as in
(3.23). A brief analysis was done in [30, Appendix B] for time-varying external models for which
very simple temporal dynamics are assumed for states at individual nodes such that each node on
the multiscale tree evolves independently of one another. Even if one starts with a simple multiscale
model with low state dimension, the exact multiscale model becomes intractable over time with
growing state dimension. How external models of estimation errors can be propagated through the
prediction step is an open question.
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a multiscale model is a linear function of the finest-scale process, where, in general,

the linear functions required may change with time. Suppose, then, that we have an

internal model for the predicted estimation error at t, in which the state at node 8 is

given by

x(s; tIt = 1) = L(s; tIt - I)X(tIt - 1), (3.21)

with model parameters A(s; tIt - 1), B(s; tIt - 1), and P(O; tIt - 1), and where we

use the notation L(s- tIt - 1) to denote that the linear function at node s is for the

predicted estimation errors at t based on data through t- 1. The multiscale smoothing

algorithm yields a new multiscale model with states

x(s; t1t) - L(s; tIt)X(tIt), (3.22)

for the updated error, with model parameters A(s; t1t), B(s; t1t), and P(O; t1t) com-

puted as part of the multiscale estimation process'. The update step preserves the

structure of the multiscale model as well as the state definitions, i.e., L(s; t1t) -_

L(s; tIt - 1). The state at node s on tree model for the one-step-ahead prediction

error then relates to the updated estimation error via

x(s; t + 11t) -_ L(s; t + 1 It)AdX(tlt) + L(s; t + Ilt)Wd(t)- (3.23)

There are two principal issues involved in propagating a model of the estimation

errors through the prediction step:

(i) the specification of the linear functionals L (s; t + 1 It) that should be used to

form the multiscale states x (s; t + II t) for modeling X (t + II t), and

(H) determining and propagating the parameters of the multiscale model through

the temporal dynamics (3.13).

'It is an abuse of notation to write X ( I -) instead of x The estimation errors X as defined in
(3.3) evolves in time according to (3.12) and (3.13). We are attempting to model X (+) on multiscale
tree models. Since the models and the propagation of the models are approximate, what is realized
at the finest scale of the tree, x(.1.), is not the same as what is to be realized,
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In general, one might expect the linear functionals to change with time if the statistics

of the one-step prediction errors are time varying, e.g., if the dynamics or measure-

ments vary in time or if we wish to capture the transient behavior of the estimation

process. The linear functionals in (3.21), (3.22), and (3.23), therefore, have been

written to indicate that they may be time-dependent. One case in which these linear

functionals should not change with time is if we are seeking to determine the form

of the steady-state estimator for a time-invariant estimation problem, since in this

case the prediction error statistics will be time-invariant. In this case, the recursive

procedure of alternating update and prediction steps is used as an iterative method

for constructing the steady-state multiscale estimator, in much the same way as using

the time-varying Riccati equation to derive the steady-state solution of the Riccati

equation, i.e., iterating (3-10) and (3-11) to arrive at the steady-state estimator gain

K (oo) -

In the time-variant case, we may still impose a fixed set of linear functionals for

modeling the estimation errors if the statistics do not change too much, or if the

linear functionals can adequately, though approximately, capture the error statistics,

or both. This is similar to the MRF-based recursive estimator in Section 3.2.1, where a

Markov structure is imposed. In this thesis we will assume that the linear functionals

defining the multiscale states for the predicted and updated estimation error models

for all t are time-invariant. Thus, we simply write L(s) without the second argument.

The question of what these linear functionals should be may depend on the specific

problem. As we will discuss in Chapters 4 and 5, the results from modeling diffusion

processes show that there is a natural choice for the L(s) (namely sets of boundary

points of subintervals in 1-D or subregions in 2-D of the prediction errors), which works

well for distributed parameter systems described by PDEs, both for the steady-state

estimation problem and for time-varying estimation. We will also have more to say

about the general properties we demand from these linear functionals in Section 3.3.3.

Once the choice of the linear functionals L(s) is made, we are left with the second

and final key issue, namely determining and propagating the parameters of the mul-

tiscale model through the temporal dynamics (3.13). The difficulty here, however,
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is that dynamics generally introduce spatial mixing. Unraveling this mixing requires

more detailed calculations which we describe next.

3.3.2 Model Parameters of the Predicted Error Model

Assume that we have specified a time-invariant set of linear functionals L(8) to be

used in the multiscale models. Assume that we have the model parameters A(S; t1t),

B(s; t1t), and P(O; t1t) of the multiscale model for X(tIt). The covariances of the

individual state vectors x(s; t1t), P(s; t1t), and the cross-covariances between parent

and child nodes, P(s, s,�y; t1t), are available as a result of the multiscale estimation

algorithm from the previous update step, or are readily computed. What remains is

to calculate the corresponding quantities A(s; t + I It), B(s; t + 1 It), and P(O; t + 11t)

for the model for X (t + I It), whose states are

x(s; t + 11t) - L(s)X(t + 11t). (3.24)

From (2.18), (2.19), (2.2 1), and (2.2 2), we see that A (s t + I I t) and B (s t + I I t)

are determined if we have both the individual state covariances P (s; t + II t) and the

parent-child cross-covariances P(s, s,�y; t+11t). To derive expressions for the individual

elements of these covariances, we first substitute the temporal dynamics (3.13) into

(3.24):

x(s; t + 11t) - L(s)Ad X(tIt) + L(S)Wd(t)- (3.25)

It is here that we can see the spatial mixing caused by the temporal dynamics. Unless

the set of linear functionals specified by L(s) and the temporal dynamics commute,

the term L(s)Ad produces a mixing of the linear functionals used to form the states

x(s; t1t) -_ L(s)X(tIt). To unravel this further, let us examine individual components

of the states in (3.25). Specifically, letting 1T (s) denote the Z'-th row of L(s), i.e.,

corresponding to the i-th linear functional for x (s; t + I It), we have

Xi(S; t + 11t) - 1T (s)Ad X(tIt) + 1T (8) Wd (t) (3.26)i i
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The term 1T (s) Ad represents some linear functional of X (t I t), but in general it will not

correspond to any of the linear functionals which we already have in L(S). However,

it is possible to write it as a linear combination of existing functionals if the set of

linear functionals corresponding to the rows of L(s) for all nodes is a complete or an

overcomplete set. This is indeed the case for internal models where the process of

interest is placed at the finest scale. Since the finest scale captures the entire fine-

scale process X(.I-), the collection of linear functionals at this scale already forms a

complete basis. The collection of all linear functionals at all nodes then forms an

overcomplete basis. As a consequence we can always write

1T (s) Ad - E h"'i1T (3.27)i Uj i
(CT'j)ES

where (o,, indexes the j-th state at node a and S is the set of indices of all state

components at all nodes on the tree. We can now write xi (s; t + 1 It) not in terms

of the entire finest-scale process X(tlt) as in (3.26), but in terms of selected states of

this model:

xi(s, t + I It) hS'ijT(U)X(tIt) + 1T (8) W d (t) (3.28)U'j i i
(U'j)ES

hS'i Xj (a, tIt) + 1T (S)Wd(t)- (3.29)O-J i
(0-J)ES

Written in vector form for ease of notation

xi(s, t + 11t) - h T(S)�(tjt) + 1T (S)Wd(t), (3-30)i i

where �(tjt) is a random vector containing all the states in the multiscale tree model

for X (t I t).

The representation in (3.27) and here in (3.29) are not unique for overcomplete

sets of 1T (8) I U, s) E SI. To understand what characterizes a good choice of repre-I i

sentation, let us examine the quantities that need to be computed, namely P (8; t + 1 It)

and P(s, s,;;y-; t + I It). The elements of these matrices correspond to quantities of the
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form

E [xi (s; t + I It)xj (u; t + I It)] (3.31)

for u -_ s or 9,;:'y and for all components i and j. Examining (3.29) and (3-31) we see

that such a quantity can be calculated in terms of the cross-covariances of elements

of the states x(s; t1t) of the model for X(tIt):

E [xi(s, t + Ilt)x'(u, t + 11t)] h'(s)P6(tjt)hj(u) + "(S)Qdlj(U)- (3-32)

Which cross-covariance entries of P�(tjt), must be calculated depends on h'(s). (The

second term on the right, 1T is assumed to bei (S)Qdlj(U) is easy to compute as Qd

diagonal.) By assumption we already have the covariance matrices P(s; t1t) for each

of the states of the updated error model individually and can, in principle, calculate

cross-covariances using (2.8). However, as we pointed out in Section 2.1, calculating

all or even many of these cross-covariances is prohibitive, although it is a relatively

simple computational task to calculate P(81, 82; t1t) for s, and 82 that are sufficiently

close to each other on the tree, i.e., so that the distances between 81 and s, A S2 and

between 82 and s, A 82 are small.

Thus, given an overcomplete set of 1T (8) 0, s) c SI that offer multiple ways of

writing (3.27), it is desirable, if possible, to choose a representation of (3.27) such

that the coefficients h"t are extremely sparse and in fact are nonzero only for nodesUj

a that are near to node s. For instance, since the finest-scale linear functionals form

a complete basis, (3.27) can always sum over those linear functionals. This, however,

is a poor choice as it may amount to calculating the full Px(tlt) which we want to

avoid in the first place. Whether this goal of finding sparse h T (8) can be achieved for

all nodes on the tree depends on two related factors:

(i) the type of linear functionals available on the tree and how they are distributed

among the nodes; i.e., the 1T (S) in (3.27), andi

(h) the nature of dynamic mixing; i.e., Ad in (3.27).

The two factors are related as temporal dynamics determine in part the statistics of
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the estimation errors and thus affect the choice of linear functionals for modeling the

errors. Given the overcomplete set of linear functionals and the temporal dynamics,

it is comparatively simple to decide what terms should go into the summation on the

right-hand side of (3.27) so that the total amount computation for (3.31) is minimized,

even though the best solution may still be computationally too costly. On the other

hand, it is a major challenge to design linear functionals that result in computationally

efficient multiscale prediction while simultaneously fulfilling their numerous other

important objectives, as we discuss next. Focusing on only one objective of the linear

functionals here, namely how to make the multiscale prediction step computationally

efficient, we will demonstrate in Section 3.4.2 that we can perform the prediction step

in O(N log N) time for an internal model with end-point linear functionals as the

one shown in Figure 2-5 and for dynamics corresponding to discretized I-D PDEs.

We will show in Section 3.5.2 that for a different choice of linear functionals, i.e.,

non-redundant models, we can perform the prediction step in O(N) time.

3.3.3 Choice of Linear Functionals

From the point of view of efficient propagation of a model for the estimation errors

through the prediction step, the best linear functionals are the left-eigenvectors of

Ad such that the right-hand side of (3.27) has only one term: 1'(S)Ad - Ai(s)l'(S),

where Ai (s) -- h" is the left eigenvalue', such that

xi (s, t + 1 It) = Ai (s)xi (s, t1t) + 1T (S)Wd(t)- (3.33)

Note that this does not mean the states evolve independently as they are coupled

through the temporal process noise. However, the left eigenvectors of Ad generally

have support over the entire process X(+). Such linear functionals generally do not

satisfy the conditional decorrelation requirement discussed in Section 2.3.4. Thus,

7Actually, it is not necessary that each individual linear functional be a left eigenvector for this
"best" case. It is sufficient if the linear functionals at s, comprising the set of rows of L(s), are in
the left eigenspace of Ad such that L(s)Ad = A(s)L(s) for some A(s) not necessarily diagonal.
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this "best" case for model propagation will not, in general, also achieve the required

decorrelation property for states in tree models. We would expect to relax the desire

to have only one non-zero term in (3.27) in order to find linear functionals that achieve

all of our objectives.

For instance, it is desirable that the linear functionals are "almost" in the left

eigenspace of Ad. By "almost" we mean the number of terms in the summation

in (3.27) is very small. For example, suppose that Ad is tridiagonal with constant

diagonals for a I-D dynamic system. The point linearfunctionals, i.e., C(s) that have

exactly one non-zero element, are almost in the left eigenspace as the summation in

(3.27) will always have exactly three terms. How the linear functionals are distributed

among the nodes will have an impact on the total computational cost, since the cost of

computing cross-covariances between two nodes on the tree is directly proportional to

the distance between the two nodes, as we shall see shortly in Sections 3.4.2 and 3.5.2.

If Ad is tridiagonal with constant diagonals, there are other linear functionals

we might add to this set of point linear functionals while maintaining the sparsity of

(3.27). For example, we may add functionals that are averages over a subinterval, e.g.,

let 1T (s) be a 32-element row vector with ones at elements 19-161 and zeros elsewhere.

Then, 1T (s)Ad - KI 1T (8) + Ej=18,9,16,17} KjeT, where Kj are constant coefficients, and

eT are row vectors with a one at the j-th element and zeros elsewhere, i.e., the point

linear functionals. Thus functionals of these types (point values and averages) are

attractive for the purpose of prediction for a tridiagonal Ad because of the relative

sparsity of (3.27). Whether these linear functionals also successfully fulfill other

objectives such as accurately capturing the correlation structure of the random process

of interest is another matter.

In summary, we are placing a multitude of requirements on the linear functionals,

some of which may conflict with one another:

(i) The linear functionals placed at node s must conditionally decorrelate the sub-

trees connected to s such that the desired statistics of the process to be modeled

are accurately captured.
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(ii) The linear functionals must be almost in the left eigenspace of the temporal dy-

namic matrix Ad, and they must be appropriately distributed among the nodes

on the tree, such that multiscale prediction step is computationally efficient.

(iii) The number of linear functionals kept at each node must be as small as possible

to keep the computational cost down. They should be prioritized if possible to

allow further reduction in state dimension for approximate models.

(iv) The linear functionals must be consistent so that the models are truly internal.

Moreover, in other applications beyond the scope of this thesis there may be other

requirements for these linear functionals. In particular, in some applications [25, 41]

we may also require particular linear functionals to be included in the state for one

of two reasons:

(v) The linear functionals must be constructed to accommodate non-point or non-

local measurements.

(vi) The linear functionals must be constructed to accommodate non-local quantities

that are to be estimated.

Choosing linear functionals that satisfy all of the above conditions is exceeding dif-

ficult. For the purpose of this thesis, we are focusing mostly on the first four re-

quirements, as the applications that motivate our work here, such as mapping ocean

surface height, often do have only point measurements and do not requirement non-

local quantities to be estimated. Some ideas regarding requirements (v) and (vi) are

included in Chapter 7.

3.4 Examples of Multiscale Prediction in 1-D

3.4.1 End-Point Linear Functionals and Diagonal Ad

Take the example of the MRF-based recursive estimators we considered in Sec-

tion 3.2.1. Let us assume that the updated estimation error process X(tlt) is a I-D
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Figure 3-2: An example tree model using end-point linear functionals that can realize
non-MRFs exactly at the finest scale. A broader class of random processes than I-D
MRFs can be realized by the end-point linear functionals.

MRF with a sparse P-'(tlt), and assume that we have a multiscale model for X(tIt)X

with end-point linear functionals of the type shown in Figure 2-5, which exactly

realizes X(tIt). For the trivial case of Ad - I, which is used in the optical flow appli-

cations [15, 14, 131, the end-point linear functionals are in fact the left eigenvectors

of Ad - Thus, (3.33) applies, and to calculate P (s; t + I I t) and P (s, s�; t + I I t) on the

predicted error model we need only P(s; t1t) and P(s, s,�; t1t) on the updated error

model.

We know from the discussion in Section 3.2.1 that the predicted estimation error

X(t + I It) is no longer a I-D MRF, i.e., P-1(t + I It) is no longer sparse. Therefore,X

the end-point linear functionals cannot exactly capture the conditional decorrelation

structure of X (t + I I t), and the multiscale model for X (t + I I t) is not exact. In the

MRF-based recursive estimation case, a MRF structure is imposed on X (t + II t). In

the multiscale recursive estimation case, a fixed set of linear functionals is imposed.

The two cases are subtly different. We have shown in Section 2.3.2 that I-D MRFs are

exactly modeled by the end-point linear functionals. However, the end-point linear

functionals are in principle capable of realizing a broader class of random processes

than just the I-D MRFs. A MRF specifies a set of conditional decorrelation relation-

ships. The end-point linear functionals enforces only a subset of these conditional

decorrelation relationships. The rest of correlation structure is realized exactly by

appropriately specifying the model parameters, A(s) and B(s). Take the simple ex-

ample shown in Figure 3-2. The model can realize any correlation structure for x(I),

including for example an x(I) in which XI and X3 do not conditionally decorrelate
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X2 and X4- In other words, the end-point linear functionals do not impose a MRF

structure on the approximate multiscale realization of X (t + I It) - This is potentially

advantageous as the end-point linear functionals are also convenient for multiscale

prediction.

3.4.2 End-Point Linear Functionals and Tridiagonal Ad

The statistical structure of the estimation errors is partially determined by the tem-

poral dynamics as they enter in the prediction step in (3.11). The choice of linear

functionals for modeling the errors will therefore depend on the dynamics. We will

in Chapter 4 discuss in more detail what linear functionals are appropriate for I-D

diffusion and advection-diffusion processes. For now let us assume that the end-point

linear functionals of Figure 2-5 are suitable for the Ad we have. Let us further assume

that the Ad is tridiagonal', e.g., the result of an explicit discretization scheme for a

diffusion operator (c.f., Section 4.1). Of immediate interest here is how Ad affects the

spatial mixing during the prediction step.

For general internal models with the physical process placed at the finest scale, the

collection of all linear functionals on the tree form an overcomplete basis. However,

the end-point linear functionals, shown in Figure 2-5, in fact form only a complete

basis because the coarser-scale states are merely copies of the variables at the finest

scale. Let us write the basis functions as J, a row vector with a one at the j-th

element and zeros elsewhere. That is, the finest-scale node where the j-th element

of X(.I.) is placed has eT as its functional. Of course, most of the e T also appear

at coarser scales (refer to Figure 2-5). The elements of each of the cross-covariance

matrix P(81, 82; +) are then a specific set of cross-covariances between fine-scale pro-

cess values. Computing P (s; t + II t) and P (s, s,;y-; t + I It) to determine the model

parameters of the predicted error model is then equivalent to filling certain entries of

PX(t + 11t).

'With circular boundary condition, i.e., a 1-D process on a ring, there may be two nonzero
elements at the upper-right and the lower-left corners of Ad- When we speak of tridiagonal Ad, we
also mean to include this case, even though the matrix is not strictly tridiagonal.
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tridiagonal Ad introduces sparse and spatially local mixing. Let 1T (8) - eT

for some j. Then, 1T (s)Ad has exactly three nonzero elements and is written as thei
weighted sum of three linear functionals: 1T (s)Ad - En=j-1jj+1 hne T- The e TX (t I 0,

i n n

for n -_ j - 1, j, j + 1, pick out three spatially neighboring elements of X (t I t). Therefore,

each (k, 1) entry of Px (t + I I t) depends on nine entries of Px (t I t) at (k + Tn, I + n) I

m, n E 1, 0, II. Since e T may appear at more than one node, the remaining

question is which nodes on the updated error model are involved in computing the

need entries of Px(tlt). Note that the matrix Px(tlt) serves as a convenient way for

keeping track of the necessary cross-covariances. Cross-covariances between nodes on

the tree, equivalent to only a small percentage of the entries of Px(tlt), are needed

to define the multiscale model for the predicted error.

Suppose that we need the joint statistics between the state variables at nodes s and

s,�;7y on the predicted error model, i. e., P (s; t + I I t), P (sZy; t + 1 1 t), and P (s, s';Zy- t + I I t).

Suppose that we have the joint statistics between state variables at nodes 8 and 8':�Y

on the updated error model. The linear functionals at s and s�y are marked as solid

black circles in Figure 3-3. Spatial mixing due to the temporal dynamics means that

we also need joint statistics with the variables spatially neighboring the solid circles,

which are marked with x in the figure. These neighboring elements are either already

available at s and s,:;�y- or they are found at some other nodes, the nearest of which are

marked with shaded gray circles. Given the fixed state dimension for end-point linear

functionals, the closer two nodes are, the less computation is required to calculate

the cross-covariance between the two nodes, so it makes sense to locate the additional

linear functionals (marked x) at nodes nearest s and s,�y so that the least amount of

computation is required. Thus, to compute the joint statistics between 8 and s�7y on

the predicted error model, we need to compute the joint statistics among nodes with

either solid circles or shaded circles on the updated error model.

Taking all the P (s; t + I I t) and P (s, s,;:y- t + I I t) that need to be computed, we

map out the corresponding entries of Px(tlt) that must be filled in Figure 3-4. Since

there are 0 (N) nodes on the tree, 0 (N) pairs of P (s, s,�y; t + I I t) are to be computed.

Each entry of Px(t + 11t) depends on at most nine entries of Px(tlt), so we need
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Figure 3-3: The cross-covariances needed in the internal model with end-point linear
functionals for the updated estimation errors for multiscale prediction. The linear
functionals are labeled with circles. The joint statistics between nodes 8 and S�Y,
whose functionals are labeled with solid black circles, on the updated error model
are assumed to be available. The x marks indicate the additional functionals on
the updated error model that are required for the prediction step due to temporal
dynamics. The nearest locations on the tree where such linear functionals are found
are marked with shaded gray circles. To compute the joint statistics between nodes
s and s,�y on the predicted error model, joint statistics among nodes with either solid
black circles or shaded gray circles on the updated error model must be computed.
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Figure 3-4: The entries of Px(tlt) that must be filled for multiscale prediction with
end-point linear functionals are labeled with circles, solid or hollow. The solid circles
mark those entries filled by computing covariances of states at individual nodes and
cross-covariances between states at parent and child nodes, a by-product of the update
step.
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to calculate only O(N) entries of the N x N matrix Px(tlt). This means that we

need to compute cross-covariances of at most O(N) pairs of nodes on the updated

error model. Since the multiscale state dimension is fixed, the effort in computing

each pair of cross-covariance is proportional to the tree distance between that pair

of nodes, which is at most O(logN). The total computations required to fill all the

needed entries of Px (t I t) is then 0 (N log N). Therefore, the recursive procedure here

for multiscale models with end-point linear functionals and tridiagonal Ad

• requires O(N) storage;

• is of O(N) complexity for computing the updated estimates and for propagating

the error model through the update step;

• is of 0 (N) complexity for computing the predicted estimates and 0 (N log N)

for propagating the error model through the prediction step.

3.5 Non-Redundant Models

3.5.1 Non-Redundant Models for MRFs

Multiscale prediction with a tridiagonal Ad would be much easier and computationally

efficient if the set of linear functionals could be designed such that the additional linear

functionals needed for prediction due to dynamic mixing, i.e., those marked with x

in Figure 3-3 could be found at close-by nodes, e.g., within a fixed tree distance.

This motivated the design of a new class of non-redundant Models that we introduce

here [50].

Multiscale realization methods and the realization of MRFs have been studied

extensively [67, 70, 56, 41]. In midpoint deflection constructions of I-D MRFs such as

the multiscale models shown in Figures 2-4 and 2-5, the state at s includes exact copies

of some state variables from the parent node s,7y plus some new state variables. The

two models in Figures 2-4 and 2-5, in addition to other variations shown in [67, 701, are

exact because the linear functionals so defined satisfy the conditional decorrelation
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Figure 3-5: The linear functionals of a non-redundant model (with state dimension
k - 3) for a first-order I-D Markov random field.

property or the Markovianity property on the tree (as explained in Section 2.3.4).

In all multiscale models studied so far, however, the random process of interest is

always mapped to the finest scale. Thus, for example, in models based on midpoint

deflection coarse-scale states are simply copies of finest-scale state variables, making

the multiscale model redundant. The linear functionals shown in Figure 3-5, on the

other hand, are non-redundant as elements of the process of interest only appear once

on the tree. The model still satisfies the conditional decorrelation requirement and is

still exact for modeling I-D MRFs.

There are several differences between the non-redundant models and the internal

models of Figures 2-4 and 2-5. Immediately clear from the figure is that the process

of interest is no longer found at the finest scale but rather is distributed among all

nodes on the tree. Reassembling the process of interest from the variables on the tree

requires some additional work but is straightforward. More importantly, since no

element of the process of interest appears more than once on a non-redundant model,

model consistency, which is important for internal models, becomes a non-issue.

The internal models in Figures 2-4 and 2-5 were designed as approximate repre-

sentations of spatially continuous 1-D MRFs. These models can achieve any desired

level of fidelity by extending the number of scales downward to finer resolutions. The

states at the coarser levels remain unchanged as the tree grows more scales. How-

ever, for a non-redundant model, doubling the desired resolution would dramatically

change the structure of the tree model, as the elements of the process of interest that
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get mapped to nodes on the tree change dramatically. For example, Figure 3-5 may

represent an approximation of a 1-D MRF at 21 grid points. The process at location

11 is placed at the root node; the process at the adjacent grid points at locations 10

and 12 are placed at the left and right nodes at scale 1, respectively. Doubling the

resolution and modeling the 1-D MRF at 41 grid points results in the same definition

for the root node. However, the grid points adjacent to location 11, which are now at

locations 10.5 and 11.5, must be included in the states at scale 1, while the process

at locations 10 and 12 are pushed down one scale to nodes at scale 2. Furthermore,

doubling the resolution means that the number of elements of the discretized process

is no longer divisible by 3. Figure 3-5 shows a regular dyadic tree on which each

coarse-scale node has two children and each node has three state variables, such that

the number of element of the process of interest is N -- 3 x (2m - 1), where M is the

total number of scales. With 41 grid points an irregular tree would result. Of course,

having a regular tree is mostly for convenience and makes no difference to the mul-

tiscale estimation algorithm. Non-redundant models can still approximate spatially

continuous 1-D MRFs to any resolution, but they require that the resolution of the

discretized process be specified ahead of time.

With the implicit assumption that the process of interest is placed at the finest

scale, internal models are defined to be models whose coarse-scale states can be writ-

ten as linear functionals of the finest-scale variables. Otherwise, the model is external.

With this strict definition, non-redundant models appear to be external. However, if

we relax the definition of internal models to mean models whose states can be written

as linear functionals of the process of interest, then non-redundant models qualify.

Non-redundant models do indeed resemble internal models in many ways and are well

suited for multiscale prediction, as we shall see shortly in Section 3.5.2.

Non-redundant models for 2-D MRFs are analogous to the 1-D models. Instead

of end-points of subintervals in I-D, boundary points of subregions are kept as linear

functionals. There are issues special to the 2-D case that are not present to I-D. We

defer the discussion of 2-D non-redundant models to Chapter 5.
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Figure 3-6: The cross-covariances needed in the non-redundant model for the updated
estimation errors for multiscale prediction. The linear functionals are labeled with
circles. The joint statistics between nodes s and s,�, whose functionals are labeled
with solid black circles, on the updated error model are assumed to be available.
The x marks indicate the additional functionals on the updated error model that are
required for the prediction step due to a tridiagonal temporal dynamic matrix Ad-

Such linear functionals are found at either the parent or a child node of 8 and 8�,
where they are marked with shaded gray circles.

3.5.2 Multiscale Prediction in 1-D with Non-Redundant Mod-

els and Tridiagonal Ad

Continuing the example in Section 3.4.2 with a tridiagonal Ad, we see from Figure 3-6

that for non-redundant models in order to compute the joint statistics between nodes

s and s,��y on the one-step prediction error model, the additional linear functionals on

the updated error model needed for prediction are found at either the parent or a

child node of s or s,;;�y-. This means that a fixed amount of computation is required for

computing the joint statistics between a pair nodes on the predicted error model. The

total computational complexity of the prediction step is then O(N). Since the update

step is also of O(N) complexity, the resulting recursive algorithm is then O(N).

For the sole objective of computationally efficient multiscale prediction, the non-

redundant models hold clear advantage over internal models with end-point linear

functionals for the I-D examples we have shown. However, as we illustrate in Sec-

tion 7.2.3, internal models, or at least some level of redundancy, may be preferable in

cases in which we wish to incorporate non-local measurements.
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Figure 3-7: The linear functionals of a non-redundant model with state dimension
k = 4 for a first-order I-D Markov random field.

3.5.3 Higher-Order Non-Redundant Models

There are several reasons for using higher-order, i.e., higher multiscale state dimension

k, non-redundant models. We show three examples here.

We saw in Section 2.3.2 that even though an internal model with state dimension

k - 3, e.g., with functionals, shown in Figure 2-4, can exactly realize first-order I-D

MRFs, models with state dimension k = 4, e.g., with functionals shown in Figure 2-5,

are desirable for reducing model redundancy. Although model redundancy is not an

issue for non-redundant models, for estimator performance comparison purposes we

shall see later in Section 4.2, it is still useful to have a higher-order non-redundant with

k _- 4 for first-order 1-D MRFs, whose linear functionals are depicted in Figure 3-7.

Another reason for going to high state dimension is non-local dynamics. For

example, Figure 3-8 shows a model for a penta-diagonal dynamics matrix Ad-

The non-redundant models so far realize first-order. 1-D MRFs exactly. Similar

to the higher-order internal models with end-point linear functionals [67, 70], higher-

order non-redundant models can be constructed for modeling second- or higher-order

MRFs. Figure 3-9 shows such a non-redundant model for a second-order 1-D MRF.

Because of the increased state-dimension and the selection of the functionals, this

model is able to handle both tridiagonal and penta-diagonal dynamics matrices Ad-

To summarize, we have shown several variations of 1-D non-redundant models:
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Figure 3-8: A non-redundant model with state dimension k -_ 5 for a penta-diagonal
dynamics matrix Ad. The linear functionals are labeled with circles. The joint statis-
tics between nodes s and s,;7y, whose functionals are labeled with solid black circles,
on the updated error model are assumed to be available. The x marks indicate the
additional functionals on the updated error model that are required for the prediction
step due to temporal dynamics. The nearest locations on the tree where such linear
functionals are found are marked with shaded gray circles.
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Figure 3-9: A non-redundant model with state dimension k - 6 for a second-order
1-D Markov random field. The linear functionals are labeled with circles. The joint
statistics between nodes s and s,;:y, whose functionals are labeled with solid black cir-
cles, on the updated error model are assumed to be available. The x marks indicate
the additional functionals on the updated error model that are required for the pre-
diction step due to a penta-diagonal dynamics matrix Ad. The nearest locations on
the tree where such linear functionals are found are marked with shaded gray circles.
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(i) Figure 3-5, k = 3, for modeling first-order MRFs.

(ii) Figure 3-7, k = 4, for modeling first-order MRFs, design for better comparison

with internal models with end-point linear functionals.

(iii) Figure 3-8, k = 5, for modeling penta-diagonal dynamics matrix Ad-

(iv) Figure 3-9, k - 6, for modeling second-order MRFs as well as penta-diagonal

Ad-

3.6 Performance Measure

3.6.1 Convergence to Steady State

For the class of recursive estimators described in Section 3.2, the predicted and the

updated estimates of the process of interest are computed according to (3.4) and

(3.5), the latter of which is essentially a static estimation operation:

i(tIt - 1) - G(t)v(t). (3-34)

Any linear estimator, including our multiscale estimators, that takes v(t) as input

and produces i(tIt - 1) as output, defines either explicitly or implicitly an equivalent

estimator gain G(t). The optimal estimator K(t) is just one possible G(t). Given

dynamics Ad the updated and the predicted estimation errors evolve according to

(3.12) and (3.13); the updated and predicted estimation error covariances evolve

according to (3.14) and (3.15).

The optimal Kalman filter specifies a time-dependent gain K(t) that depends

on the statistics of the estimation errors, as in (3-9). Starting from some initial

condition Px(Ol - 1), the Kalman filter converges to its steady-state gain K(00) as

the predicted error covariance converges to PP and the updated error covariance to

.P,,. This optimal steady-state estimator K(oc) can be iteratively computed or it

can be solved explicitly with, in addition to (3.9), the following steady-state Riccati
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equation:

T cT cT T,
PP - AdPPAd + Qd - AdPP d (CdPp d + Rd CdPPAd (3-35)

which follows from (3-10) and (3.11). If the steady-state estimator gain K(OG) is

known beforehand, we may use this K(oc) as a fixed estimator without computing

a new K(t) at every time step, and the estimation error covariances will converge to

the same Pp and P,,.

A suboptimal steady-state estimator with an equivalent gain G can be run indefi-

nitely starting from some initial condition. The predicted estimation error covariance,

if it converges, converges to the solution to the following steady-state Lyapunov equa-

tion:

)T T T
PPG = Ad (j - GCd) PpG (I - GCd + GRdG ) Ad + Qd, (3-36)

which follows from (3.14) and (3.15). The second subscript in PpG indicates that

PpG is the steady-state predicted error covariance of the suboptimal estimator G.

Note that the Lyapunov equation of (3.36) computes the steady-state estimation error

covariance for a given time-invariant estimator G, whereas the Riccati equation of

(3-35) computes the steady-state estimation error covariance of the optimal estimator

and tells what the optimal estimator K(oo) should be (via (3.9)). Performance of

the suboptimal steady-state estimator can be measured using either PpG or PuG,

which are clearly not the same as PP and Pu.

Suboptimal steady-state estimators G that are of interest may include the follow-

ing:

(i) We may run the Kalman filter for a finite number of time steps to t = T, where

the predicted error covariance is P,,(TIT - 1), and declare the estimator K(T)

to be an approximate steady-state estimator.

(ii) We may run the multiscale recursive algorithm for T iterations to reach an

estimator with an equivalent G(T), which is then used as a steady-state es-
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timator. Denote the realized predicted error covariance on the tree model by

PX(TIT - 1).

(iii) We may attempt to realize the optimal steady-state prediction error covariance

PP with a tree model. Since the linear functionals may not be exact, the realized

covariance PXK is not the same as PP, We denote the resulting estimator by

GK-

For small problems, we may compare the performance of a suboptimal estimator

with that of the optimal by solving for the respective steady-state error covariances via

(3.36) and (3.35). For large problems, it is not computationally feasible to calculate

these quantities. We may run simulations to experimentally determined the steady-

state error variance. An alternative is to use the statistics assumed in the construction

of the suboptimal estimator G as a proxy for performance measure in some cases.

For instance, to assess the quality of the approximate multiscale estimator G(T) in

(ii) above, we may use the diagonal of the realized Px(TIT- 1). Although computing

the full Px(TIT - 1) is computationally infeasible, the diagonal is readily computed

in the tree model. However, since the multiscale recursive algorithm propagates the

error statistics only approximately, the realized error statistics are what the estimator

believes the error statistics to be, not the actual error statistics. Therefore, when using

the realized variance as a proxy performance measure, we must treat it with caution.

It is not clear under what conditions the multiscale recursive estimation algorithm

converges, and when it does, to what G(oc) it converges. There is no equivalent

Riccati equation for solving for the steady-state estimation error statistics PpG(oo) and

the steady-state estimator G(oo). One possible candidate is the multiscale estimator

GK realized from PP in (iii) above. However, we know that GK realizes at least

the diagonal of PP exactly, but we have no compelling reason to believe that the

multiscale recursive procedure should converge to a G(oo) that can exactly realize

the diagonal of PP, Therefore, GK is most likely not the steady-state multiscale

estimator G(oc). The convergence properties of the multiscale recursive estimation

algorithm remain an open theoretical problem.
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3.6.2 ]Fractional Variance Reduction

To assess the quality of a suboptimal steady-state estimator, we use as a measure

of performance the steady-state error variances, i.e., after running the approximate

steady-state estimator until the estimation error statistics have converged. For sys-

tems small enough, we can calculate the equivalent gain G for the suboptimal es-

timator and then solve the steady-state Lyapunov equation (3.36) explicitly for the

steady-state error covariance matrix PxG(C'0100)-

Comparing directly the steady-state error variances of two estimators, however,

may be misleading. For instance, if the estimation error variance of estimator A is

0.01 and the variance of estimator B is 0.02. It may appear that estimator B perfor-

mances twice as poorly. Suppose that the process variance is 1. The process variance

represents our prior knowledge of the process we are estimating and is equal to the

estimation error variance when there is no measurement or when the measurement

noise approaches infinity. With the measurement estimator A reduces the uncertainty

from I down to 0.01, a 99% reduction, while estimator B reduces the uncertainty to

0.02, a 98% reduction. The performance of the two estimators should be considered

to be comparable as they both reduce the estimation error variance from the prior

by similar amounts. Therefore, we use the fractional variance reaction (FVR) as a

measure of estimator performance:

FVR - Var(s.s. process) - Var(s.s. updated estimation error) (3.37)
Var(s.s. process)

For multi-dimensional systems, an FVR value can be computed for each element of

the process. FVR encounters a similar problem as error variance when two estimators

both perform poorly with respect to the prior. For example, if the error variances of

estimators A and B are 0.99 and 0.98 respectively, then the FVR of the two estimator

are 0.01 and 0.02 respectively. This seems to suggest that estimator B is twice as

good as A, even though the two perform comparably poorly.

If we are to compare the performance of a suboptimal estimator with the optimal

by taking the difference between some performance measure of the two and divide by
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the performance of the optimal, then neither error variance nor FVR is adequate for

the whole range of values. Error variance is a more meaningful measure where the two

estimators both perform poorly, while FVR is more meaningful where both perform

well. Since generally we are more interested in regions where there are measurements,

and since an estimator generally performs better where there is a measurement than

where there is none, we will adopt FVR as the performance measure. It is convenient

that FVR is less reliable in areas we often care less about.
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Chapter 4

1\4ultiscale Dynamic Estimation of

1-D Diffusion

In this chapter we apply the multiscale recursive estimation algorithm developed

in Chapter 3 to the estimation of 1-1) dynamic systems. In particular, we choose to

study diffusion processes in detail because they are fairly well understood, extensively

studied, and have been employed in a wide variety of applications [5, 1]. The general

approach to multiscale modeling and estimation of diffusion can be generalized to

other dynamic processes. Indeed at the end of this chapter we will show estimation

results for advection-diffusion processes, which find a number of useful applications

especially in fluid dynamics such as monitoring pollution [74] and modeling tracer

movements in the ocean [95, 94].

In the following sections, after setting up the basic equations, we first discuss in

some detail the key issue of identifying suitable linear functionals L(S) for modeling

the estimation errors in the recursive estimation of diffusion processes. We demon-

stra�e that both internal models with end-point linear functionals and non-redundant

models can adequately represent the estimation errors. The resulting multiscale recur-

sive estimators are not only computationally efficient, achieving 0 (N log N) complex-

ity for end-point internal models and O(N) for non-redundant models, as compared to

O(N') for MRF-based methods and O(N 3) for the full Kalman filter, but also nearly

optimal in performance. In the last section, we show a number of examples for 1-1)

99



diffusion and advection-diffusion processes under a variety of system configurations.

4.1 Introduction to I-D Diffusion

4.1.1 Specifications of the Process

The point of departure for this application is a 1-D damped heat diffusion process

on a thin rod or ring satisfying the following stochastic partial differential equation

(PDE):

aZ(1, T) aZ(I"T) b z(1, 7) + c w(l, T), (4.1)
,9T a12

where Z(1, T) is the temperature at location I at time 7, w (1, T) is a white Gaussian

noise with unit variance, and I C- [0, L]. The constants a and b are related to quantities

such as the heat conduction coefficient, the dimensions of the rod or ring, etc. The

first term on the right-hand side represents heat conduction within the ring, and the

second term represents the heat loss to the surrounding coolant. The temperature of

the coolant is set to zero, without loss of generality. The number of free parameters

in (4.1) can be reduced by normalizing the spatial dimension to unit length and the

diffusion parameter to V:

aZ (1, T) - a2 Z (1, _F) 3 - z(l,,r) + w(l, 7), (4.5)
a7 (912

2where � and 7 are constants

'Starting with (4. 1), we first normalize the spatial dimension to unit length by letting I= 1 IL:

Oz(["T) a ) 02Z([,,F)

- b - z(1, -r) + c -w(l, -r). (4.2)07 12

Letting ;r- = (alL 2) r normalizes the diffusion parameter to 1:

,92a ) az([,;r-) a z
f2- a;r- L2 a12 - b -z(l,;r-) + c - w(l,;r-), (4.3)

and a Z (f, ;r-) a2Z([,,;F) bL 2 L 2
a;r- - 9[2 a Z(ft) + , a W([,;r (4.4)

Re-labeling the coefficients and recycling the use of 1 and -r give us (4.5).
2 We will allow,3 to be a function of space for some examples shown in Section 4.4.
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A number of finite difference schemes can be applied to discretize (4-5) to arrive

at a system of difference equations in the form of (3.1),

z(t + 1) = AdZ(t) + Wd(t), (4-6)

where z(t) is the vector containing the temperatures at all spatial grid points at time

step t, and Wd(t) models the process noise with covariance Qd. For our purposes such

a discretized model plays two related but distinct roles:

(i) to define the prediction of the estimates, as defined in (3.4), and

(ii) to provide the dynamic matrix needed in (3-27)-(3-29) to predict the estimation

error statistics by propagating the multiscale error model.

As we have seen in Sections 3.4 and 3.5, for the latter of these it is desirable to choose

Ad to be banded with a relatively small bandwidth such that the mixing of linear

functionals is relatively local during each prediction step. Such an Ad arises if we

use an explicit finite-difference temporal discretization scheme. In particular, in the

results presented here we use a simple forward Euler scheme', in which case Ad is

3Discretization schemes for PDEs can be found a number of books including [82]. We first
discretize (4.5) in space to get

d z = Dz +w, (4.7)
dT

where elements of the vector z are continuous-time variables at the spatial grid points, and D is
a banded matrix approximating the differential operators on the right-hand side of (4.5). With
forward Euler temporal discretization,

(z (t + 1) - z (t)) = Dz (t) + w (t), (4-8)

and
z (t + 1) = (I + AT D) z (t) + AT w (t), (4.9)

Ad is then tridiagonal. With backward Euler temporal discretization,

I (z(t) - z(t - 1)) = Dz(t) + w(t), (4.10)
A

and
z(t) = (I - AT D)_1 z(t - 1) + (I - AT D)-' AT w(t), (4.11)

Ad is generally full.
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tridiagonal' and Qd - oi,- Of course when we use such a scheme for the former

purpose as well, i.e., in the actual prediction step (3.4), care must be taken to ensure

that the spatial discretization step size Al and the temporal step size AT are small

enough for numerical accuracy and convergence [82, 52]. Obviously a better choice

for this former purpose would be an implicit discretization scheme, but it would result

in a dense matrix Ad-

We can actually consider using a different choice of Ad for each of these two

purposes, namely an implicit scheme for the prediction step of the estimates and

an explicit scheme for propagating the multiscale error models through the dynamic

prediction step. We may even consider using two different time step sizes for each of

the discretization schemes, e.g., a larger AT for the implicit scheme. A dense but more

accurate Ad from the implicit scheme may be used to compute the predicted estimate,

while a banded Ad from the explicit scheme is used multiple times to propagate the

error model over the same amount of real time. If we view the former as the (more)

"exact" model, we are then performing the estimate prediction "exactly" but are

propagating the error statistics only approximately, such that new measurements are

not incorporated optimally in the update step. However, the multiscale error model

already introduces approximations into modeling the update error, and we will see in

Section 4.4 that the net effect of all of these approximations is a surprisingly small

loss in performance. For the purposes of this thesis, we will simply adopt the explicit

forward Euler temporal discretization scheme and assume a tridiagonal Ad-

The complete specification of the model (4.6) of course also implies the speci-

fication of a specific set of boundary conditions. There are four typical boundary

conditions [54]:

(i) circular boundary condition: Z(O, T) = z(1, 7), corresponding to a thin cooling

ring;

(ii) Dirichlet boundary condition: Z(O, T) - Zo (or Z(1, T) - zi), corresponding to a

'As we have said in Chapter 3, for a process on a ring there may be nonzero elements at the
upper-right and the lower-left corners of Ad- When we speak of tridiagonal or penta-diagonal Ad, we
also mean to include this case, even though the matrix is not strictly tridiagonal or penta-diagonal.

102



thin rod where one end is pinned to a heat source at temperature zo (or zj);

(iii) Von Neumann boundary condition: a Z(O, T) = To (or a z(1, T) = ri), corre-al at

sponding to a thin rod where one end is connected to a conductive material

with the rate of heat flow equal to ro (or ri);

(iv) Type 3 homogeneous boundary condition: a Z(O, T) = -,3z(O, T) (or a Z(1, 7)al al

-Oz(1, -r)), corresponding to a thin rod where one end is freely immersed in the

coolant.

For the purpose of describing our methodology in the following sections, we for conve-

nience assume circular boundary conditions. However, as we illustrate via examples,

our approach easily applies to the other cases as well. Moreover, the specification of

other boundary conditions leaves the analysis of the linear functionals and the devel-

opment of the multiscale estimators unchanged and effects only the specific numerical

values that result. The examples shown in Section 4.4 assume a variety of boundary

conditions depending on the physical setup of the system.

Since we are interested in constructing the multiscale steady-state estimator, the

optimal steady-state process covariance P, is of interest to us. The process covariance

represents our prior knowledge of the steady-state errors without measurements. It

is also the limit of the steady-state error covariances when the measurement noise

variance approaches infinity. It is solved by the following steady-state Lyapunov

equation:

P�_ = AdPzAd + Qd- (4.12)

The process noise variance 0-2. merely scales the magnitude of the steady-state process

covariance. In the case of a process with circular boundary condition and spatially

constant system parameter 0, the steady-state process variance is spatially uniform.

2Let the diagonal elements of Pz in this case be 01; . We may choose a a,,,, such that the

2 ,steady-state process variance 7; is normalized to 1. For spatially non-uniform steady-

state variance, we may for convenience choose a a,,,, that normalizes the maximum of

the steady-state variance to 1.
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4.1.2 Specifications of the Measurements

We assume point measurements that may be irregular in space, but stationary in

5time

Yd(t) - CdZ(t) + Vd(t), (4.13)

where Cd is a selection matrix, and the measurement noise Vd is white with covariance

Rd = U2 I and uncorrelated with z(t) or Wd(t)-V

The optimal steady-state predicted estimation error covariance PP satisfies the

Riecati equation (3.35). Different choices of U2 and U2 with a constant ratio onlyW V

scale the steady-state error covariances. Therefore, given a particular measurement

configuration Cd, we are left with only two free parameters, namely � and G' 2 2

2/0,2) insteadWe use the more familiar notion of signal-to-noise ratio SNR = 10 log (17� V

of 0, 2 /U2 . For spatially uniform and normalized steady-state process variance, i.e.,W V
2 t 2 = I jolog(l/U2)

aw is chosen such tha 17� , the SNR is simply V . For normalized but

spatially non-uniform process variance, i.e., a2 is chosen such that the maximum ofW

2 is I a point-wise SNR can be defined at every spatial grid point. However, for
17� 1

convenience, we simply use the SNR value at the grid point where the maximum 2
01�

is.

4.2 Linear Functionals for I-D Diffusion

Our multiscale recursive estimation methodology discussed in Chapter 3 for solv-

ing the Riccati equation assumes that we have the "right" linear functionals for

modeling the steady-state predicted estimation error. For small-size systems, it is

computationally possible to explicitly solve the Riccati equation (3-35) for the exact

steady-state prediction error covariance PP and the Lyapunov equation (4.12) for the

exact steady-state process covariance P,. From these we then apply the canonical

correlations realization (CCR) algorithm [56] described in Section 2.3.3 to construct

'The temporal stationarity assumption is relaxed for the last example in Section 4.4, i.e., Cd in
(4.13) is a function of time.
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realizations explicitly. Using the intuition gained from these small examples, we can

then select the appropriate linear functionals for larger systems, where neither the

Riccati equation nor CCR is computationally feasible.

4.2.1 Functionals for the Steady-State Process

It was shown in [21] that the continuous-time, continuous-space I-D heat diffusion

process of (4-5) on a ring in steady state is a I-D MRF. It is reasonable to expect our

discretized model (4.6) to be close to 1-D MRF except for errors introduced by the

discretization. It is, therefore, also reasonable to believe that the end-point internal

models of Figure 2-5 and the non-redundant models of Figure 3-5, which exactly

realize I-D MRFs as we discussed in Sections 2.3.2 and 3.5.1, can adequately model

the steady-state diffusion process. To test this we take as an example a 64-dimensional

discretized diffusion process with circular boundary condition and spatially uniform

diffusion and heat loss parameters, and explicitly compute its steady-state process

covariance P,. We are interested in modeling the steady-state process mainly as a

limiting case of the steady-state errors. We will discuss in the next subsection the

modeling of the steady-state prediction errors.

We know from Section 2.3.2 that the information about the conditional correlation

relations among elements of a discrete random process is contained in the inverse of

its covariance matrix, and that processes with tridiagonal and penta-diagonal inverse

covariance matrices are first- and second-order 1-D MRFs. The inverse of the process

covariance P, of our discretized diffusion process is found to be penta-diagonal in

general (with non-zero corners to account for circular boundary conditions). That

is, the discretized steady-state process can essentially be modeled exactly as second-

order MRFs, although the second off-diagonals are sometimes orders of magnitude

smaller than the first off-diagonals. The second off-diagonals also become increasingly

insignificant as the temporal discretization step AT decreases. For a different value

of AT, we have a different discretized dynamics matrix Ad, for which a steady-state

process covariance P, can be computed from (4.12). As AT decreases, P, is increas-

ingly better approximated as a first-order I-D MRF. In the limit as AT -+ 0, there
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exists a continuous-time Lyapunov equation:

0 = DP, + PD T + Qw, (4.14)

where D is the continuous-time dynamics matrix from (4.7) and Qw is the covariance

of w in (4.7).

First- and second-order MRF approximations of the steady-state covariance are

obtained by zeroing out the elements of P-1 that are not in the tridiagonal or the

penta-diagonal bands, and inverting the truncated inverse covariance. Denote the

approximately realized covariance by Pz. To measure how accurate a first- or second-

order MRF approximation is, i.e., how close the approximated covariance Pz is to

the desired covariance PZ, we use the Bhattacharrya distance [59, 55], defined as

'PZ + 1PZ
d (P P In 12 2 1 (4.15)

z' z) 2 iPZi1/2 IN 1/2 -

The Bhattacharrya distance is closely related to the probability of error in binary

hypothesis tests for distinguishing between two realizations of a random vector. If

the distance is large, then a reasonable decision rule for the hypothesis test will have

a low probability of error. Table 4.1 shows that the discretized diffusion process is

well approximated as a second-order MRF, while AT has to be sufficiently small for

it to be adequately approximated as first-order. The accuracy of the first-order MRF

approximation improves as the temporal discretization step size decreases. However,

the slowest time constant of the diffusion process used in Table 4.1 is 0.1 sec6. Even

at a reasonably small AT - 2 x 10-5 sec the first-order MRF approximation is still

a fairly poor one, while the second-order MRF approximation at this A7- is nearly

exact, as seen in Figure 4-1. A reasonable question we might ask is whether the

internal model with end-point linear functionals in Figure 2-5 or the non-redundant

model in Figure 3-5, both of which are designed to model first-order MRFs exactly,

'The time constants of a discrete-time dynamic system is found via the eigenvalues of Ad. The
largest eigenvalue Amax corresponds to the slowest time constant -A-r/1n(Amax)-
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Bhattacharrya distance between P, from (4.12) and P, from

AT first-order MRF approximation second-order MRF approximation

2 x 10-5 2.48 1.11 X 10-16

1 X 10-5 1.66 1.11 X 10-16

2 x 10-6 0.44 0

--+ 0 0 0

Table 4.1: The Bhattacharrya distances between the steady-state process covariance
P, of a 64-element diffusion process on a ring (3 - 10) and the realized covariances
P, from first- and second-order MRF approximations for different values of A-F. The
numbers reported in the column under second-order MRF approximation are on the
order of numerical errors. The Bhattacharrya distance may be so small that the result
is below machine precision, for which case we list the answer as 0, even though there
might be very slight differences between P, and P,.

can in fact adequately realize the steady-state process covariance P,.

We first turn to canonical correlations realization method for identifying the linear

functionals to be used in constructing a multiscale internal model for which the steady-

state diffusion process is mapped to the finest scale. Recall from the discussion in

Section 2.3.1 that at each node s on the tree we would like to keep linear functionals

that decorrelate the sets of values of the fine-scale process on the disjoint parts of the

tree separated by the node s. The CCR algorithm produces a set of linear functionals

ordered by their relative statistical significance in decorrelating the subsets of fine-

scale values. For instance, in our 64-element diffusion example the linear functionals

at the root node must decorrelate elements f I - 321 from elements f 33 - 641; the

functionals at the left node at scale 1, i.e., the left child node of the root node whose

descendents at the finest scale are elements f I - 321, must decorrelate the three

subsets of the fine-scale process: elements 11 - 161, f 17 - 321, and 133 - 641; the

functionals at the right node at scale 1 must decorrelate 11 - 321, f 33 - 481, and

149 - 641; and so on. Figure 4-2 shows the two most significant linear functionals

chosen by CCR to decorrelate element 11 - 321 from f 33 - 641 of the steady-state

process in our 64-element example. Only the first two linear functionals shown in the
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Figure 4-1: A comparison of (a) the exact steady-state process covariance of a 64-
element on a ring discretized diffusion process with (b) a first-order MRF approxi-
mation of the covariance, (c) a second-order MRF approximation, and (d) the covari-
ance realized by an internal model with end-point linear functionals. The difference
between the approximations and the exact covariance is measured in terms of the
Bhattacharrya distance, labeled d under each panel. 10, AT= 2 x 10-1.)
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Figure 4-2: Two of the linear functionals that maximally decorrelate elements 11 - 321
from elements 133 - 641 of a 64-element diffusion process on a ring in steady state.
The maximum magnitude of the functionals is normalized to 1. The region of support
for the functionals is points f I - 321. The relative significance of the functionals is
indicated by the associated singular values (sv). (O = 10, AT = 2 x 10-5.)

figure have significant singular values, implying that keeping only these two achieves

near perfect decorrelation. Furthermore, the residual correlation decreases as the time

step size AT is decreased. This is consistent with the observation that the first-order

MRF approximation is increasingly more accurate with decreasing time step size.

Moreover, the two so-identified linear functionals have tiny non-zero values at points

other than I and 32. Thus, a good approximation to the information provided by

these two linear functionals is simply the values of the fine-scale process at end-points

I and 32. In other words, the approximate functionals resulting from reducing the

region of support for the two functionals in Figure 4-2 from elements f I - 321 to just

elements I and 32 are equivalent to two point linear functionals at I and 32 via a

simple basis transform.

In Table 4.2 we compare the fidelity of the realized steady-state process covariance

P, from several approximate models with the desired covariance matrix P, As we

have already seen from the images of P, and P, in Figure 4-1, the first�order 1-

D MRF approximation to the steady-state process covariance is rather poor, while

the second-order MRF approximation is nearly perfect. We compare the realized

steady-state process covariance from four multiscale models:
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Bhattacharrya distance between

Approximate model the exact P, from (4-12) and the realized P,

first-order MRF 2.48

second-order MRF 1.11 X 10-16

CCR internal model, k - 4 1.18 x 10-10

end-point internal model, k - 4 3.54 x 10-5

non-redundant model, k 4 5.82 x 10-5

non-redundant model, k 3 1.34 x 10-4

Table 4.2: The Bhattacharrya distances between the steady-state process covariance
P, of a 64-element diffusion process on a ring and the realized covariances P, from
various approximate models. The state dimension for the multiscale models is denoted
by k. (� = 10, AT - 2 x 10-5.)

(i) The internal model with the linear functionals identified by CCR at all nodes.

In Figure 4-2 we showed the linear functionals selected by CCR to decorrelate

elements f I - 321 from f 33 - 641. Similar results are obtained for decorrelating

any subset of the fine-scale process from its complement, i.e., the two most

significant linear functionals capture essentially all the correlation between the

two subsets. As discussed in Section 2.3.3, at each node on the tree, we must

decorrelate three random vectors. For example, at the left child node of the root

node, we must decorrelate elements 11 - 161, 117-321, and f 33-641. The linear

functionals kept by CCR at this node consist of the two linear functionals from

decorrelating f I - 161 from 117 - 641 and the two from decorrelating 117 - 321

from f I - 16, 33 - 641. Thus the multiscale state dimension is k _- 4.

(ii) The internal model with end-point linear functionals of Figure 2-5. The linear

functionals kept on this model are equivalent to the linear functionals gener-

ated by CCR but with their region of support restricted to the end-points. Not

surprisingly the internal model with end-point linear functional realizes a co-

variance less accurate than the one by CCR method, although the degradation
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in accuracy is insignificant, since the functionals generated by CCR have only

tiny values away from the end-points, as shown in Figure 4-2. The state dimen-

sion here is also k = 4. The image of the realized covariance at the finest scale,

shown in Figure 4-1(d), looks identical to the desired PZ1

(iii) The non-redundant model of Figure 3-5 with state dimension k = 3. Although

both the internal model in Figure 2-5 and the non-redundant model in Figure 3-5

are designed to model first-order MRFs exactly, the former should yield a better

approximation of second-order MRFs than the latter, since it keeps one more

mid-point than the latter. This allows it to better capture some additional

correlations that the latter model is not able to. It is then reasonable to expect

that the non-redundant model will be less accurate than the internal model. A

64-element process placed on a non-redundant model results in an irregular tree,

where some nodes have only one child and/or some nodes have state dimensions

less than 3.

(iv) The non-redundant model of Figure 3-7 with state dimension k = 4. This

model makes a better comparison with the models in (i) and (ii), since these

three models now all have the same state dimension. Again, the non-redundant

model with k = 4 is irregular for modeling a 64-element process.

It is not surprising that the covariances realized by the multiscale models are of

comparable accuracy, since the differences among the four are minor. On the other

hand, while these multiscale models are designed to model 1-D MRFs exactly, their

approximations are much better than a simple 1-D MRF approximation of the steady-

state process covariance. This observation further validates the assertion we made

earlier in Section 3.4.1 that the end-point linear functionals are capable of realizing

a broader class of random processes than just the first-order I-D MRFs.

Under non-circular boundary conditions and/or spatially varying system param-

eters, the steady-state process covariance matrix is no longer spatially stationary. In

simulations we have observed very similar results for the spatially nonstationary cases;

that is, the various approximate models realize the steady-state process covariance to
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accuracies on the same order as those shown in Table 4.2. We will not elaborate on

the different cases.

4.2.2 Functionals for the Steady-State Prediction Error

Consider now the case of principal interest here, namely the multiscale modeling of

the one-step predicted error process X (t It - 1). Except in very special cases, this error

process is spatially nonstationary and spatially non-Markov. Nevertheless, we shall

see that the choice of multiscale states we just considered for the steady-state process

still represent excellent choices for the steady-state error.

Consider the estimation of the same 64-dimensional process just discussed based

on a single point measurement. For this small problem we explicitly solved the Riccati

equation (3.35) for the optimal steady-state one-step prediction error covariance PP1

The inverse of this covariance is full. However, the off-diagonal elements that are

outside of the penta-diagonal band corresponding to a MRF structure are generally

small, implying that although the steady-state error is not Markov, a second-order

MRF approximation is still reasonable, as shown in Figure 4-3 for the case of a single

measurement at location 23.

Consider again using CCR to decorrelate the interval f I - 321 from f 33 - 641 when

the measurement is located is at some point in the former interval. Because of the

intrinsic nonstationarity introduced by the tree, the location of the measurement has

some influence on the results of CCR. This is illustrated in Figures 4-4 and 4-5, which

depict the four most significant linear functionals produced by CCR for two measure-

ment locations: 16 and 32. As before, the two most significant linear functionals are

almost completely concentrated on the interval end-points, although the distribution

of their values are different for the two cases. Furthermore, the relative significance

of the third and fourth linear functionals is a function of measurement location, as

shown in Figure 4-6, which clearly indicates that dropping all but the first two linear

functionals is a much better approximation for certain measurement locations. In
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Figure 4-3: A comparison of (a) the exact steady-state prediction error covariance
PP of a 64-element discretized diffusion process on a ring with (b) a first-order MRF
approximation of the covariance, (c) a second-order MRF approximation, and (d) the
covariance realized by an internal model with end-point linear functionals. A single
measurement is placed at location 23 (SNR - OdB). The Bhattacharrya distance
between the realized and the exact covariance is displayed under each panel. 10,
A-F - 2 x 10-5.)
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Figure 4-4: The four most significant linear functionals generated by CCR that decor-

relate the steady-state predicted estimation errors at locations f 1 - 321 from those

at locations f 33 - 641 of a 64-element diffusion process on a ring with a single mea-

surement at location 16 (O = 10, SNR - 0 dB, AT = 2 x 10-'). The singular values

associated with the linear functionals are displayed above the plots.
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Figure 4-5: The four most significant linear functionals generate d by CCR that decor-

relate the steady-state predicted estimation errors at locations 11 - 321 from those

at locations f 33 - 641 of a 64-element diffusion process on a ring with a single mea-

surement at location 32 (O = 10, SNR - 0 dB, AT = 2 x 10-5) . The singular values

associated with the linear functionals are displayed above the plots.
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Figure 4-6: The relative significance of the third and fourth most significant linear

functionals, measured as the ratio between their associated singular values and the

singular value associated with the most significant functional, as a function of the

location of the single measurement.
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particular, placing measurements near major tree boundaries 7 - in this case near

I or 32 - is different from placing measurements near the middle of the interval8.

However, as we now demonstrate, keeping only the first two linear functionals yields

excellent results for our purposes regardless of measurement location.

The resulting approximate models for X(tIt - 1) can be assessed in at least two

different ways. The first is to examine, as we did for the steady-state process, how

closely the actual realized covariance of the multiscale model approximate the optimal

steady-state predicted error covariance Pp computed from the Riccati equation (3-35).

As an example, the covariance realized by the end-point linear functionals model in

Figure 4-3(d) is compared with the exact covariance in Figure 4-3(a) for the case of a

point measurement at location 23. We plot the Bhattacharrya distances between the

realized covariances of the four multiscale models and the optimal PP as a function

of the measurement location in Figure 4-7. We observe a general trend of increasing

fidelity as the measurement is placed further away from major tree boundaries. The

Bhattacharrya distance peaks near I and 32, becomes smaller near 16, and even

smaller near 8 and 24. Note that the peaks for the internal models and those for

the non-redundant models do not match exactly as the non-redundant models are

irregular and asymmetric for modeling a 64-element process. We see that the CCR

internal model realizes the most accurate error covariance. The covariances realized by

the internal model with end-point linear functionals and by the non-redundant model

of the same state dimension are of comparable quality, while the non-redundant model

7If the tree distance between two nodes at the finest scale of an internal model is large, i.e.,
the distance one must traverse on the tree to go from one node to the other is large, then the two
fine-scale nodes sit on a major tree boundary. For example in Figure 2-5, points 8 and 9 sit on a
major tree boundary, while 6 and 7 are far away from any major tree boundaries.

8The reason for this can be understood in terms of the 16-point process depicted in Figure 2-5.
Remembering that we are representing processes with cyclic boundary conditions (so that points I
and 16 are next to each other), we see that the pairs 18,9} and f 1, 161, while very close spatially,
are distant on the tree, so that the strong correlations between these neighboring points must be
captured in the state at the root node which separates each of these pairs.

On non-redundant models, e.g., the one depicted in Figure 3-5, although adjacent elements of the
physical process are always found at a parent or child node, near major tree boundaries neighboring
points of the physical process are scattered over nodes that are farther apart on the tree. For
example, elements 19 - 111 are found at nodes over three scales, while f 7 - 9} are found at a single
scale.
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Figure 4-7: The Bhattacharrya distances between the optimal steady-state predicted

error covariance PP and the realized covariances from the four suboptimal multiscale

models (internal model with linear functionals selected by CCR, internal model with

end-point linear functionals, non-redundant model with k = 4, and non-redundant

model with k - 3) for a 64-element diffusion process on a ring, plotted as a function

of the location of the single measurement on f I - 321. (,3 = 10, SNR = 0 dB,

AT = 2 x 10-5.)

of a lower dimension (k = 3) is the least accurate. This observation is consistent with

what we saw before for the steady-state process (c.f., Table 4.2).

The second and more meaningful assessment is the estimation performance loss

incurred by using the approximate multiscale models, using fractional variance re-

duction (FVR) as a measure of estimator performance as we discussed in Section 3.6.

We first calculate the equivalent estimator gain for the approximate estimators and

then solve for their steady-state error covariance via (3-36). Figure 4-8 depicts results

for two different measurement locations, both far from a major tree boundary (where

we would expect our approximation to work best, e.g., at location 23) and right on

such a boundary (e.g., at location 32). Figure 4-8(a) shows the optimal estimator

FVR (whose performance is invariant to measurement location due to the circular

boundary condition). The variance reduction plots for the suboptimal estimators are

nearly indistinguishable from the optimal one at the resolution, and are therefore not

plotted. The differences between the FVRs of the suboptimal multiscale estimators

and the optimal estimator are displayed in panel (b) for a single measurement at

location 32 and in (c) for a single measurement at 23. In Figure 4-9 we plot the max-
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Figure 4-8: (a) The FVR of the optimal estimator in steady state for a 64-element
diffusion process on a ring with one point measurement at location 32. FVRs of
the optimal steady-state estimator for single point measurements at other locations
are simply shifted versions of (a), since the performance of the optimal estimator is
shift invariant. (b) The percent degradation in FVR of the suboptimal multiscale
estimators with respect to the optimal estimator for a single measurement at location
32. (c) The percent degradation in FVR for a single measurement at location 23.
(13 = 10, SNR -_ 0 dB, Ar = 2 x 10-1.)
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Figure 4-9: The maximum percent degradation in FVR of the suboptimal multiscale
models (internal model with linear functionals selected by CCR, internal model with
end-point linear functionals, non-redundant model with k - 4, and non-redundant
model with k -_ 3) with respect to the optimal estimator for a 64-element diffusion
process on a ring, plotted as a function of the location of the single measurement on
11 - 321. (O - 10, SNR = 0 dB, AT - 2 x 10-1.)

imurn percent degradation, i.e., the maxima of the curves in Figures 4-8(b) and (c),

of the suboptimal estimators for each of the measurement locations over f I - 321.

We observe the same general shape as in Figure 4-7, although the performance of the

various multiscale suboptimal estimators here do not differ a great deal. Since the

physical process is mapped differently onto the non-redundant models than the inter-

nal models, the worst case performance for the different estimators occur at slightly

different measurement locations. As expected, the suboptimal estimator has greater

degradations in performance for a measurement near major tree boundaries. How-

ever, even in this worst case the suboptimal estimators have FVRs of no more than

a few percent worse than the optimal FVR.

While the analysis done so far has focused on the case of a single point measure-

ment for only a single value of 0 and SNR, similar results are obtained for other

boundary conditions, measurement configurations, SNRs, etc. that we have tested.

We show two additional examples for the cases of dense measurements and two point

measurements in Figures 4-10 and 4-11 (with non-uniform,3, different values of SNR,

and non-circular boundary conditions). For large systems, CCR is cornputationally

impractical, but both the end-point linear functional models and non-redundant mod-
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Figure 4-10: (a) The FVR of the optimal estimator in steady state for a 64-element
diffusion process on a pinned fin with dense point measurements and non-uniform �:
0 - 0 at locations f I - 321 and � - 10 at f 33 - 641. (b) The percent degradation in
FVR of the suboptimal estimators (internal model with end-point linear functionals,
non-redundant model with k _- 4, and non-redundant model with k -_ 3) with respect
to the optimal estimator. (SNR - 0 dB, AT = 2 x 10-5.)

120



FVR, optimal
100

o-O 5 0

O -J_
o 1 0 20 30 40 50 60

location (a)

percent degradation in FVR w.r.t. optimal
1.5

end-pt
1 - - - non-red k=4

non-red k=3
0-0

0.5

0--
0 10 20 30 40 50 60

location (b)

Figure 4-11: (a) The FVR of the optimal estimator in steady state for a 64-element
diffusion process on a pinned fin with two point measurements at locations 14 and 53
with SNR = 10 dB. (b) The percent degradation in FVR of the suboptimal estimators
(internal model with end-point linear functionals, non-redundant model with k 4,
and non-redundant model with k - 3) with respect to the optimal estimator. (�3 0
at locations f I - 321, 0 = 10 at f 33 - 641, AT = 2 x 10-5.)
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els easily generalize to I-D processes of any size. Thus, in Figures 4-10 and 4-11, we

compare only the estimator performances of the end-point linear functional model and

the non-redundant models. The multiscale estimators generally perform comparably.

In the following sections, we will consider only the end-point internal model and the

standard non-redundant model with k - 3 for comparisons. The analyses and the

results discussed in this section lead us to conclude that both the end-point linear

functional models and the non-redundant models are more than adequate choices for

estimating I-D diffusion processes.

4.3 Multiscale Recursive Estimation Algorithm for

I-D Diffusion

4.3.1 Multiscale Prediction Step for 1-D Diffusion

For the examples in the preceding section we explicitly computed the optimal steady-

state predicted error covariance and consequently directly determined the linear func-

tionals and the parameters of the multiscale model for the steady-state prediction

error X(t + I It). The purpose of the analysis in Section 4.2 was to discover the ap-

propriate linear functionals and multiscale models. We showed that both the internal

model with end-point functionals and the non-redundant models can adequately cap-

ture the steady-state prediction error covariance as well as the steady-state process

covariance. For large problems, however, we must adopt the recursive procedure,

described in Chapter 3, to construct models for the prediction error process, without

assuming the availability of any full covariance matrices.

Recall from Chapter 3 that after the measurement update step, the multiscale esti-

mation algorithm gives us a multiscale model for the updated estimation error X(tIt),

which implicitly defines Px(tlt), the node covariances P(s; t1t), and child-parent co-

variances P(s, s,;7y; t1t). To construct the model for the one-step-ahead predicted esti-

mation error X (t + I It) we need the joint parent-child statistics for the predicted error

model, P (s; t + I I t) and P (s, s,�:y; t + I I t), which can be specified in terms of cross-
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covariances among nodes on the updated model. The mixing due to the dynamics

Ad requires that more distant correlations than just P(s; t1t) and P(s, s,�Y; t1t) on the

updated model be calculated.

We have already discussed in some detail in Sections 3.4.2 and 3.5.2 the multiscale

prediction step for internal models with end-point linear functionals and for non-

redundant models in the case of a tridiagonal Ad. This is exactly the situation we

have here. The discretized diffusion operator Ad is tridiagonal from a forward Euler

temporal discretization scheme and both the end-point internal model and the non-

redundant model have been found to be appropriate for modeling the steady-state

prediction error process. For 1-D problems, using non-redundant models holds clear

advantage. While estimators based on the end-point internal model is of 0 (N log N)

for the prediction step', those based on non-redundant models are faster with O(N)

complexity. The trade-off between accuracy and computational complexity is small.

We shall see in Section 4.4 that estimators based on the end-point internal model (with

'For end-point internal models, unlike non-redundant models (c.f., Section 3.5.2), keeping track
of which cross-covariances between nodes on the updated tree must be computed for the multiscale
prediction step can be complicated. Although the results and examples in Section 4.4 are produced
with all the needed entries computed exactly, for implementation reasons it can be advantageous
at times to compute only a subset of the cross-covariance pairs exactly, e.g., among nodes along
direct descendant lines, and approximate the remainder [48]. This essentially becomes a covariance
extension problem: we have a subset of the entries of P,(tlt) and from this knowledge we want to
estimate some of the other entries in this matrix. Because of the unusual pattern of the known entries,
a global solution to this problem is complex. However, our need for these missing entries is simply
to allow us to compute the parameters in the multiscale model for X(t + lit) using (2.18), (2.19).
Consequently we may adopt the approach of computing each of the needed elements independently
and using only local information.

For example, suppose that we need to compute the (k, 1) element P,, of P. (t It), i.e., the covariance
between X, (tIt) and X, (tIt). One approach assumes local stationarity: if Pk-1,1-1 or P.+,,,+, or both
are available, we might approximate Pk, as being equal to either of these or to their average. An
alternative, more general approach goes as follows: suppose we can find a third component X,, (t It)
so that the cross-covariances between this component and both X, (tIt) and X, (tIt) are known, i.e.,
so that only P,, is unknown in the 3 x 3 covariance matrix

Pkk Pk� FPk11

Pk. P- P.1
[Tkl] P.1 P11

ThenwechooseforPkl themaximumentropycompletion [27, 65] of thiscovariance: Pki :'- Pk.P.I/P..-
An interpretation of this choice is that it is equivalent to assuming that Xk(tIt) and X,(tlt) are
conditionally decorrelated given X,,(tlt); that is, if n is between k and 1 this assumes that the
components of X(tIt) form a linearly-ordered 1-D MRF, which is consistent with our choice of end-
point linear functionals.
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k = 4) often perform better than estimators based on the non-redundant model with

k - 3, although the difference in performance is mostly attributable to the difference

in state dimension and measurement configurations, and largely disappears for the

non-redundant model with k - 4.

4.3.2 Iterative and Recursive Implementations

The multiscale recursive algorithm can be used in one of two ways. Our original

motivation for using this approach was to obtain an approximate multiscale model for

the steady-state one-step prediction error process. For that purpose, the algorithm

is run iteratively off-line until convergence is achieved. Alternatively, we can use

this algorithm to provide a multiscale error model dynamically at each step of the

recursive estimation procedure for the transient phase of estimation or for problems

with temporal nonstationarities. Examples in Section 4.4 will cover both of these

cases.

Initialization

The initialization of our algorithm takes the form of specifying a multiscale model

for the prior estimation errors. To iteratively approximate the steady-state error

statistics, the choice of model is not so critical. For recursive estimation during the

transient phase or for time-varying problems we are more interested in using an initial

model that accurately reflects the prior statistics. For example, a common choice for

the initial covariance is the steady-state process covariance which are easily calculated

using the FFT, if the dynamics are space-invariant and circular boundary conditions

are assumed.

Stopping Criterion for the Iterative Algorithm

For the iterative calculation of a multiscale model for the steady-state estimation

errors, a critical issue is the iteration stopping criterion. From a theoretical view

point, the convergence of the solution of the time-varying Riccati equation to its
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steady-state limit is controlled by the slowest time constant of the steady-state error

dynamics Ad (I - K(OO)Cd), and thus choosing the number of iterations to be several

times this time constant provides a conservative bound. For the examples shown later

in this section, for which we can compute the slowest time constants of the steady-

state error dynamics TCK(oo), we terminate the iterations at about one time constant.

Although the estimator may not have converged, the results there demonstrate that

the performance of the resulting estimators is surprisingly close to the optimal Kalman

filter.

However, (i) for large problems this time constant will generally be unavailable,

and (ii) taking this conservative approach may lead to an excessive numbers of itera-

tions. In response to (i) an alternative, adaptive stopping criterion is to examine the

diagonal elements of Px(tlt) and stop when these suggest convergence (e.g., when the

average RMS difference between elements of the diagonal at two successive iterations

falls below a specified fraction of the average of the diagonal values). In response to

(h), we may restrict the number of iterations to be 0(logN) so that the total com-

plexity is 0 (N log N). This, of course, implies that the resulting multiscale estimator

may not have converged and is a poorer approximate steady-state estimator.

Accuracy

There are several sources of inaccuracy in the realized error covariance on the multi-

scale tree. One source is clearly the stopping of the iterations prior to convergence.

Two other sources are errors due to the temporal discretization of the dynamics and

choosing end-point linear functionals as the basis for the multiscale modeling of the

estimation error. While each of these sources of error can be reduced at the expense of

additional computational complexity, e.g., using more iterations, a smaller step size,

higher-order multiscale models with more linear functionals, we have found through

extensive testing that the choice made here provide excellent results while preserving

the computational advantages of our approach.
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4.4 Examples and Results

In this section we illustrate the application of our multiscale methodology to several

examples of size N - 64. At this size, performance comparisons with the optimal

estimator are possible because exact calculations for the optimal estimator are still

feasible. We emphasize again that the performance figures we saw before were for

suboptimal multiscale estimators built from the exact steady-state error covariance

for the purpose of designing the appropriate linear functionals and multiscale mod-

els. The steady-state suboptimal multiscale estimators shown here are constructed

iteratively using the multiscale recursive algorithm.

The multiscale recursive algorithm can in principle be applied more generally to

any dynamic process whose steady-state error process is adequately modeled using

end-point linear functionals and whose dynamics are local. To illustrate some of this

flexibility we include examples representing extensions and departures from the basic

diffusion problem described in the preceding sections.

4.4.1 Cooling Ring

We start with a cooling ring and a single measurement, which has been used as

an example in the previous sections. The steady-state process variance has been

normalized to 1. Figure 4-12(a) shows the variance reduction plots for several values

of SNR and heat loss parameter �3 - 10. On the whole, as the signal to noise ratio

increases, so does the percent variance reduction. In all cases, when compared to the

optimal estimator in steady state, the multiscale estimators perform less than one

percent poorer, as seen in panel (b) for an estimator using an internal model with

end-point linear functionals and in panel (c) for an estimator using a non-redundant

model with k - 3. The greatest degradation in performance occurs in regions furthest

away from the measurement, i.e., regions where the error variances are expected to

be large anyway.

The single measurement case is, in a sense, the worse case scenario, as the system

is only weakly observable. In multiple measurement cases, the performance of our

126



FVR, optimal
100

80 - - - - SNR=-lOdB -
SNR=OdB

o-O 6 0 - ------ SNR=lOdB -

40

20
0 10 20 30 40 50 60

location (a)

percent degradation in FVR w.r.t. optimal
0.2

0.15 - - - - SNR=-lOdB -
SNR=OdB

0-1 0.1 - ------ SNR=lOdB -

0.05

0
0 10 20 30 40 50 60

location (b)
percent degradation in FVR w.r.t. optimal

0.8

0.6 - SNR=-lOdB
SNR=OdB

-oO 0. 4 - SNR=1 OdB

0.2
0

0 1 0 20 30 40 50 60
location (c)

Figure 4-12: Cooling ring example for a 64-element diffusion process with one point
measurement at location 23 with SNR -_ - 10 dB, 0 dB, and 10 dB. (a) The FVR of
the optimal estimator in steady state. (b) The percent degradation in FVR of the
multiscale suboptimal estimator with end-point linear functionals with respect to the
optimal. (c) The percent degradation in FVR of the multiscale estimator with non-
redundant model with k - 3 with respect to the optimal. (TCK(,,,,,) - 1730 steps
0.0346 sec, multiscale iterations terminated at step 2000, 10, Ar - 2 x 10'.)
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steady-state multiscale estimator as compared to the optimal is generally better than

those shown in Figure 4-12; such plots are not repeated here.

4.4.2 Pinned Fin

In this example we introduce two variations. First, we replace the cyclic boundary

condition by the more realistic condition for a cooling fin: one end of the fin is pinned

to a heat source and the other end immersed in a coolant. The boundary condition

at the heat source is Dirichlet, i.e., z(O, -F) - zo. At the free end, the heat flux is set

to be equal to the heat loss, Oz(l, -F)1,91 = -Oz(1, T). The second variation recognizes

the fact that in practice the heat loss parameter 0 may be spatially varying if the

coolant is non-homogeneous [1], for example, when the fin is partially insulated or

cooled by air and partially immersed in a liquid coolant. The discretized dynamic

equation (4.6) will then have a non-circulant Ad and an extra term BdU(t) to account

for the boundary condition:

z(t + 1) -_ AdZ(t) + BdU(t) + Wd(t), (4.16)

where u(t) contains the boundary conditions which may be time varying.

While the development in the preceding sections demonstrated the adequacy of

the end-point linear functionals mostly for the cooling ring case, we find that for the

pinned fin and other examples in this section the end-point linear functional models

and the non-redundant models are robust enough to model the steady-state error

process accurately. Figure 4-13(a) shows the spatially nonstationary steady-state

process variance and the steady-state error variance of the optimal estimator for the

case of two point measurements. The steady-state error variances of the suboptimal

multiscale estimators are so close to that of the optimal estimator that they would

be indistinguishable in the plots and are therefore not plotted in either panel (a) or

(b). The performance degradation of the suboptimal estimators as compared to the

optimal is only a fraction of a percent as seen in panel (c). The near equality of the

true optimal error variance and the actual error variances of our suboptimal estimators
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Figure 4-13: Pinned fin example with two measurements at locations 14 and 53 with

spatially varying heat loss parameter 0 -- 0 at locations f I - 321 and 0 - 10 at

f 33 - 641. (a) The steady-state process variance, steady-state updated estimation

error variance of the optimal estimator, and the updated error variances realized by

the suboptimal multiscale estimators (internal model with end-point linear function-

als and non-redundant model with k = 3). The realized error variances are what

the multiscale estimators believe they are achieving. Both multiscale estimators un-

derestimate the actual error variances. The true steady-state error variances of the

suboptimal multiscale estimators are not plotted, as they are so close that of the opti-

mal that they would be indistinguishable in the plot. (b) The FVR of the steady-state

optimal estimator. (c) The percent degradation in FVR of the multiscale estimators

with respect to the optimal. (TCK(,,,z,) = 1017 steps - 0.0203 sec, multiscale iterations

terminated at step 1017, SNR - 0 dB, AT = 2 x 10-5.)
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Figure 4-14: Pinned fin example as in Figure 4-13 except that there is one measure-
ment update step for every 200 prediction steps. (a) The FVRs of the steady-state
estimators. (b) The percent degradation in FVR of the suboptimal multiscale esti-
mators with respect to the optimal. (TCK(,,,) = 1216 steps = 0.0243 sec, multiscale
iterations terminated at step 1200 after the measurement update there, 0 at
11 - 321 and 3 = 10 at 133 - 641, SNR - 0 dB, AT - 2 x 10-5.)

demonstrate the excellent performance of our multiscale method. Of course for truly

large problems we would not have access to either of these quantities because of

computational limitations. What we do have, however, is the multiscale approximate

model for X(tlt) which provides the values of the variances that this estimator believes

it is achieving. The realized updated estimation error variances are illustrated in

Figure 4-13(a). Note that these variances are also fairly accurate, although they

underestimate the actual error variance.

As we discussed in Section 4.1, in order to simplify the procedure for constructing

multiscale models for prediction errors we used a tridiagonal model for the discretized

dynamic matrix Ad. This model produces limited mixing among the scales in our

error models and consequently simplifies the model construction process during the

prediction step. In order to test the impact of these approximations and the ability

of our procedure to deal with substantial mixing we show an example here in which

the measurement sampling rate is substantially slower than the update rate for the
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dynamics. Figure 4-14 shows the same pinned fin example of Figure 4-13 except that

a measurement is only available every 200 prediction steps thus allowing substantial

mixing to occur between measurement updates. Since many predictions steps must

be taken for every update step, we expect that the effects of the approximations built

in to our multiscale recursive algorithm would be more pronounced. As expected,

the approximate multiscale estimators perform poorer now than in the previous case.

Yet in the worse case, it is still within 4% of the optimal estimators.

4.4.3 Advection-Diffusion

In order to test the breadth of utility of our methodology we extend its application

to a different and very important class of models, namely advection-diffusion pro-

cesses. Such models have been employed in a wide variety of applications, especially

in fluid dynamics, from pollution monitoring [74] to modeling tracer movements in

the ocean [95, 941. Although the end-point linear functional models and the non-

redundant models were justified by a detailed examination of diffusion in Section 4.2,

the robustness of our multiscale estimator gives us sufficient confidence to apply it to

advection-diffusion processes as well. Adding an advection term to (4.5):

OZ (1, _F) 192 Z (1, _F) + P -19Z(1, T) _ 3 (1) - Z (1, T) + -Y - W (1, T), (4.19)
19-F -512 191

which models the temperature distribution along a thin pipe. Note that we write the

heat loss parameter as 0(l) here to indicate possible spatial dependency.

10T6 calculate the optimal steady-state estimator, we can write an augmented dynamic equation
as follows. Given the one-step temporal dynamic equation, z(t + 1) = AdZ(t) + Wd(t), where the
process covariance isQd(t), over two steps we may write

z(t + 2) = A 2 Z (t) + AdWd(t) + Wd(t + 1)- (4.17)

Over i steps,
z(t + i) = Az(t) + Gw,(t), (4.18)

where A, = A 2, W, (t) Wd(t)' Wd(t + 1)T ... Wd(t + i)T ]T , G, = [A'-' A'-2 ... AOd d d d
and the covariance of w,(t), Q,(t) is block diagonal with blocksQd(t), Qd (t + 1), ... I Qd(t +

The matrices A,, G,, and Q,(t) are used in the Riccati equation (3.35) to solve for the steady-state
error covariance of the optimal estimator.
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Figure 4-15: Thin cooling pipe example of a 64-element advection-diffusion process,
in which a fluid flows to the right (p = -10) from a reservoir at 1 - 0 through
a thin pipe that is half insulated (�3 - 0 at locations f I - 321) and half exposed
(�3 - 10 at f33 - 641). (a) The steady-state process variance, steady-state updated
estimation error variance of the optimal estimator, and the updated error variances
realized by the suboptimal multiscale estimators (internal model with end-point linear
functionals and non-redundant model with k -_ 3). (b) The FVRs of the steady-state
optimal estimator and the multiscale estimators. (c) The percent degradation in
FVR of the suboptimal estimators with respect to the optimal. (Two measurements
at locations 14 and 53, SNR - O dB, TCK(,,,,) - 551 steps 0-011sec, multiscale
iterations terminated at step 551, AT - 2 x 10-5.)
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Figure 4-15 displays the results from a thin pipe example, in which a fluid flows

to the right from a reservoir at I = 0 through a thin pipe that is half insulated and

half exposed. For p - -10 in this example, it takes 0.1 sec or 5000 steps for a particle

to flow from one end of the pipe to the other end. Two point measurements are

available at locations 14 and 53. The multiscale approximate steady-state estimators

again track the performance of the optimal estimator closely. In addition, the error

variances realized by the multiscale models (shown in Figure 4-15(a)) provide a fairly

good approximation to the actual error statistics.

4.4.4 Recursive Implementation and Temporally Nonstation-

ary Performance

Finally, we illustrate the performance of the recursive version of our algorithm in

order to see how well it does in temporally nonstationary situations. In particular, in

Figure 4-16 we illustrate results for one such experiment using the advection-diffusion

dynamics in (4.19). We start this process from a nonequilibrium initial condition, as

shown in Figure 4-16(a), which may, for instance, represent a segment of warmer gas

in the leftmost quarter of the pipe. As time goes on, this segment of warm gas moves

to the right and cools down. The measurements are taken once every 100 prediction

steps and are highly nonstationary in time: the number of measurements at each

measurement time is randomly generated as a Poisson process with a mean value of

4, and the measurement locations are uniformly distributed.

Since there are no steady-state performance figures to speak of, we have depicted

a snapshot of the process and estimation results at time step 500 (i.e., after the fifth

update) for a particular simulation. The actual process at this time (displaying both

advection to the right and diffusion), is depicted in Figure 4-16(a), while estimation

results just after the measurement update at this time are shown in Figure 4-16(b).

There are three measurements taken at this particular update step with the locations

and values indicated by the small circles. As these figures illustrate, the estimates

produced by the optimal Kalman filter and by our multiscale recursive estimators are
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Figure 4-16: Thin cooling pipe example as in Figure 4-15 except that there is one
measurement update step for every 100 prediction steps. The number of measure-
ments at each update step is a Poisson distribution with mean 4. The locations of
the measurements are uniformly distributed. (a) The initial values of the process
and the true process at step 500. (b) The updated estimates of the optimal and the
suboptimal multiscale estimators (internal model with end-point linear functionals
and non-redundant model with k -_ 3) at step 500. The locations and values of the
measurements at this particular update step are labeled with circles. (c) Differences
between the updated estimates from the multiscale estimators and those from the
optimal. The dotted curves show the magnitude of one standard deviation of the up-
dated estimation error of the optimal estimator at step 500. (SNR - 0 dB, boundary
condition zo = 0.)
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virtually identical. In fact the differences between the estimates are statistically in-

significant when compared to the estimation error standard deviations of the Kalman

filter, as seen in Figure 4-16(c), where the differences between the multiscale esti-

mates and the optimal estimates are plotted in comparison with the error standard

deviations of the Kalman filter.
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Chapter 5

1\4ultiscale Dynamic Estimation of

2-D Diffusion

5.1 Challenges in Modeling 2-D Random Fields

While the multiscale modeling and recursive estimation formalism in the preceding

chapters was developed and illustrated with examples of I-D spatial processes, our

ultimate goal is the application of this formalism to dynamic systems in two or even

three spatial dimensions, where we encounter truly large-scale problems and where the

real potential benefit of our approach is to be reaped. Although the basic concept of

multiscale modeling and recursive estimation is general, the added spatial dimension

means that the computational efficiency and near-optimal performance achieved in

I-D cannot be easily duplicated in 2-1) without resolving some important issues. The

choice of multiscale states in the representation of estimation error fields represents

a first important problem.

We saw in Section 2.3.2 that the direct extension to 2-1) Markov random fields

(MRFs) of the exact internal realizations of I-D MRFs, which keep mid- and end-

points of subintervals as linear functionals (depicted in Figure 2-5), requires keeping

dense boundary and midline points of subregions as linear functionals (depicted in

Figure 2-6). We refer to the functionals in Figure 2-6 as boundary-point linear Junc-

tionals, just as we referred to the functionals shown in Figure 2-5 as end-point linear
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functionals. The major difference between the I-D and 2-D exact realizations of

MRFs is the dependence of the multiscale state dimension k on the scale of node 8,

m(s), and on the size of the field of interest N. In I-D models, k is constant, inde-

pendent of m(s) and N, so that estimation on the tree with the multiscale smoothing

algorithm has computational complexity O(N). In 2-D, the state dimension of the

exact model is a function of m(s) and N such that the computational complexity

becomes 0 (N 3/2 ). The major challenge in multiscale modeling of 2-D random fields

is the construction of accurate models with low state dimensions to achieve better

computational efficiency, either with a lower asymptotic complexity, e.g., 0 (N log N),

or of the same 0 (N 3/2) but with a significantly smaller constant of proportionality

requiring less computation.

Previous efforts in realizing 2-D Markov random fields [67, 731 have had to grapple

with the trade-off between state selection and computational complexity. Since the

linear functionals at a node conditionally decorrelate the random variables on the

subtrees connected to that node, the number of linear functionals needed for decor-

relation reflects, in a sense, the correlatedness of the subtrees. Reduction in state

dimension is possible if there exists additional structure in the correlations. The

texture modeling examples in [67, 70] exploit additional correlations by keeping the

coefficients of the wavelet transform of the boundary point set as states. Depend-

ing on the type of texture or, equivalently, the correlation structure, a much smaller

number of coefficients than the number of boundary and midline points are needed

to capture most of the conditional correlations.

For more general Gaussian random fields, the CCR method provides a general

method for determining the set of suitable linear functionals and for ranking their

significance for conditional decorrelation. However, more so in 2-D than I-D, the

computational complexity of CCR at O(N') is simply infeasible for anything but the

smallest 2-D random fields. In applications where we have reasons to believe that

most of the conditional correlation is captured by the boundary point set and that

neighboring points along each such boundary are highly correlated, we may choose

to keep only a subsampled set of the boundary points as the linear functionals at

138



that node. This approach is used to model ocean hydrography in [73, 31]. For a

fixed subsampling rate, the number of linear functionals kept at a node, i.e., the state

dimension, still grows with the size of the random field, N, such that the asymptotic

computational complexity is no different from the dense boundary point case. Nev-

ertheless, the amount of computation may be reduced to the point that problems too

large to be solved by other methods can now be solved.

In the following sections, we first analyze what type of linear functionals and

multiscale models are suitable for modeling the steady-state 2-1) diffusion process as

well as the steady-state prediction errors. The multiscale models we consider include

internal models with functionals selected by a CCR analysis, internal models with

boundary points of 2-1) subregions, and non-redundant models. We examine how

accurately each of these types of models and their reduced-order versions capture

the steady-state prediction error statistics. More importantly we are interested in

understanding how difficult the prediction step in the multiscale recursive algorithm is

for each type of model and what the trade-off is between computationally complexity

and performance of the multiscale recursive estimators. We conclude the chapter with

several examples.

5.2 Linear Functionals for 2-D Diffusion

Consider a normalized isotropic 2-1) diffusion process, governed by a PDE similar

t o (4-5):

19Z (II, 12, T)-92Z(11, 12, -r)+02Z(11, 12, T) Z(11, 12,T) + _Y - W(11, 12, T), (5.1)
012 012

07 1 2

where Z(11, 12, T) is the temperature at location (11, 12) at time 7, W(12,12, 7) is the

white Gaussian process noise with unit variance. Similar to what was done in the

1-1) case, we discretize this PDE into a system of difference equations in the form of

(3. 1) or (4.6):

z(t + 1) = AdZ(t) + Wd(t), (5.2)
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where the process vector z(t) is a lexicographically ordered vector containing the

elements of the 2-D field. A larger heat loss term shortens the correlation length of

the diffusion process and needs finer spatial resolution. Since the linear dimension for

the 2-D examples shown in this chapter, at 16 or 17 (i.e., 16 x 16 or 17 x 17 2-D fields),

is smaller than the 64-dimensional I-D examples, a smaller heat loss parameter 0 = I

is used here. Also, for the examples in this chapter, we often assume, for symmetry,

circular boundary conditions, in which case the 2-D field represents the temperature

distribution on a toroid. In other cases, for the more realistic setup of a cooling

sheet we assume Dirichlet conditions, where the temperature is fixed, and type 3

homogeneous boundary conditions, in which the temperature gradient is equal to the

heat loss term �3z along the edge.

A number of properties associated with I-D diffusion can be generalized to the 2-D

case. Of importance is the near Markov spatial correlation structure of the steady-

state diffusion process. Generalizing from I-D diffusion, we expect the steady-state

process of the discretized 2-D diffusion process to be nearly a first-order Markov

random field. Indeed the inverse covariance matrix P-1 of the steady-state process is

found to be almost exactly block penta-diagonal, where the main diagonal blocks are

penta-diagonal submatrices, the first off-diagonal blocks are tridiagonal submatrices,

and the second off-diagonal blocks are diagonal submatrices. This pattern corresponds

to a second-order Markov structure, although the entries in the second off-diagonal

blocks and the second off-diagonal entries of the main diagonal blocks are much

smaller compared to the other entries. Furthermore, with decreasing time step size,

entries of P-1 corresponding to a second-order MRF become smaller and the steady-

state process approaches a first-order MRF.

Similar to the I-D case, the steady-state prediction error field in 2-D is not Markov.

However, entries of the inverse covariance of the steady-state predicted estimate error

P-1 outside of the set of non-zero entries associated with a second-order MRF areP
small. The earlier results on I-D diffusion gives us some confidence that the MRF

approximation and multiscale models built for MRFs may be adequate for 2-D dif-

fusion too. We will illustrate our analysis with a relatively small 16 x 16 field in the
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following discussion. Note that (5.2) is a already a 256-dimensional state equation in

time at this size. Even though our multiscale algorithms are aimed at solving much

large problems, our choice of 16 x 16 examples is mainly for comparison with the

optimal solutions, which are computationally infeasible for much larger sizes.

5.2.1 Analysis via CCR

We first apply the canonical correlations realization method to identify the linear

functionals to be used for constructing a multiscale model for the steady-state process.

In particular, we examine the linear functionals chosen by CCR to decorrelate the

"northeast" quadrant, (1 - 8, 1 - 8), from the remaining elements of a 16 x 16 2-D

diffusion process in steady state. Circular boundary conditions are used so that the

process covariance is spatially stationary and symmetric. Figures 5-1 and 5-2 show

the seven most significant linear functionals chosen by CCR.

We note several features of the linear functionals produced by CCR- First, the

singular values associated with the linear functionals, shown in Figure 5-3 in decreas-

ing order, exhibit a jump after the first 28 functionals and another after the next 20

linear functionals. The singular values associated with the most significant 28 func-

tionals are on the order of 1, as seen in Figure 5-3(a), while those associated with the

next 20 functionals are on the order of 10-5 , as seen in panel (b). The singular values

associated with the remaining functionals are on the order of round-off errors. That

is, the first 28 linear functionals essentially capture all the conditional correlations,

while the additional 20 capture what little that remains. Notice that the number of

points along a border of width I of an 8 x 8 field is 28, and is 48 along a border of

width 2. Secondly, although the region of support for all the linear functionals is the

entire (1 - 8, 1 - 8) quadrant, the values of the first 28 linear functionals are significant

only along the boundary, i.e., the four edges. Seven of the most significant functionals

are depicted in Figures 5-1 and 5-2. The values of the next 20 linear functionals are

significant only along the inside rim of a border of width 2.

From Section 2.3.2 we know that the 28 boundary points of (I - 8,1 - 8) are

sufficient to exactly decorrelate (I - 8, 1 - 8) from the remainder of a 16 x 16 first-
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Figure 5-1: The three most significant linear functionals chosen by CCR to decorrelate
elements in the "northeast" quadrant, (I - 8, 1 - 8), from the remaining elements of a
16 x 16 steady-state 2-D diffusion process on a toroid. (� - 1, AT - 4 x 10'.) The
maximum magnitude of the linear functionals is normalized to 1. The panels on the
left show the values of the linear functional over its region of support on (1 - 8, 1 - 8).
The singular value (sv) associated with each linear functional is displayed above the
plots. White is -1; black is 1. The panels on the right show plots of the values of the
linear functionals along the boundary of (I - 8, 1 - 8), starting at (1, 1) and circling
the quadrant counterclockwise. The values at the four corners, i.e., at (1, 1), (1, 8),
(8, 8), and (8, 1), are plotted at half of their actual values to account for the corner
effects.
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Figure 5-2: The fourth to the seventh most significant linear functionals chosen by
CCR to decorrelate elements in the "northeast" quadrant, (I - 8,1 - 8), from the
remaining elements of a 16 x 16 steady-state 2-D diffusion process on a toroid. The
plots are similar to those in Figure 5-1.
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Figure 5-3: Singular values associated with (a) the 28 most significant linear function-
als and (b) the next 20 linear functionals produced by CCR that maximally decor-
relate elements (I - 8, 1 - 8) from the remaining elements of a 16 x 16 steady-state
2-D diffusion process on a toroid. 1, AT - 4 X 10-5.)
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order MRF. To exactly decorrelate (I - 8, I - 8) of a second-order MRF, boundary

points along the border of (I - 8, 1 - 8) of width 2 are sufficient, i.e., requiring another

20 functionals comprised of the inside rim of the border. The structure of P-1 tells us

that the steady-state diffusion process on a toroid is essentially a first-order MRF, but

is better approximated as a second-order MRF mostly due to the discretization effects.

It is then not surprising that the linear functionals chosen by CCR are equivalent to

the functionals chosen for modeling MRFs. The set of the 28 most significant linear

functionals and the set of the next 20 most significant functionals selected by CCR

are equivalent to, i.e., new bases for, the set of points on the outside and the inside

rim of a width-2 border of (I - 8, I - 8), respectively.

Thirdly, and more interestingly, are the functional shapes of the CCR linear func-

tionals. Focusing on the distribution of the values along the boundary points of the

linear functionals shown in Figures 5-1 and 5-2, we see that the functionals look al-

most like the Fourier basis functions, except at the corner points at (1, 1), (1, 8), (8, 8),

and (8, 1), where the values seem to be doubled. The functional in Figure 5-1 (a) is

almost a constant function; in Figures 5-1 (c) and (e), we have two sines of period

equal to the total length of the boundary and out of phase; and in Figures 5-2(a) and

(c), two sines of period equal to half the length of the boundary and out of phase,

etc. The panels in the right column show plots of the values of the linear functionals

along the boundary of (I - 8, 1 - 8), starting at (1, 1) and circling the quadrant coun-

terclockwise. The values at the four corners are plotted at half of their actual values

to account for the corner effects. Given the symmetry of the setup, the I-D process

along the edges of a square region is spatially stationary except at the corners and is

thus approximately diagonalizable with a Fourier decomposition.

With different boundary conditions, for instance Dirichlet boundary conditions, or

type 3 homogeneous boundary conditions [54], the steady-state diffusion process be-

comes spatially nonstationary, although it still appears to be approximately Markov.

The number of linear functionals needed for decorrelating a subregion on the edge

of the 2-D field is now less than the full boundary point set [49] because of the

non-circular boundary conditions. For instance, with type 3 boundary conditions
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Figure 5-4: The two most significant linear functionals chosen by CCR to decorrelate
elements in the "northeast" quadrant, (I - 8, 1 - 8), from the remaining elements
of a 16 x 16 steady-state 2-D diffusion process on a sheet (�3 - 1, type 3 homoge-
neous boundary conditions, A-F -_ 4 x 10-5) . The maximum magnitude of the linear
functionals is normalized to 1. White is -I- black is 1.

corresponding to a square sheet rather than a toroid, decorrelating (I - 8,1 - 8)

from the rest of the 16 x 16 field requires only 15 functionals, equal to the number

of boundary points of the (I - 8, 1 - 8) quadrant that do not fall on the edges of

the 16 x 16 field. As an illustration, Figure 5-4 depicts two most significant linear

functionals produced by CCR for the case of a cooling sheet.

5.3 Multiscale Realizations of the Exact Steady-

State Prediction Error

The exact steady-state prediction error covariance Pp solved by the Riccati equa-

tion (3.35) is generally not only nonstationary but also non-Markov. Similar to the

I-D case, we claim that the linear functionals and the multiscale models designed to

exactly model MRFs can also adequately model the non-Markov steady-state predic-

tion errors. To validate this proposition, we test several types of multiscale models

and examine their performance. The purpose here is to determine what linear func-

tionals and multiscale models are suitable for capturing the steady-state prediction

error statistics. In the next section, we will examine whether these models are suitable
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Figure 5-5: The four most significant linear functionals chosen by CCR to decorrelate
elements (1 - 8, 1 - 8) from the remaining elements of the 16 x 16 steady-state predic-
tion error field of a 2-D diffusion process on a toroid with a single point measurement
at (6, 7). (� -_ 1, SNR -_ 0 dB, A-r = 4 x 10-5 .) The maximum magnitude of the
linear functionals is normalized to 1. White is -1; black is 1.

for the multiscale recursive algorithm.

5.3.1 Internal Models with Linear Functionals by CCR

The linear functionals generated by CCR for an exact multiscale model of the steady-

state prediction error as compared to those for the steady-state process exhibit several

features similar to what was observed in the I-D case in Section 4.2.2. Take the

example of estimating the 16 x 16 diffusion process with a single measurement at

(6, 7), whose four most significant functionals are depicted in Figure 5-5.

(i) The first 28 most significant functionals still dominate. However, the drop in the

singular values associated with the functionals after the first 28 is less drastic.
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The singular values associated with the next 20 most significant functionals are

on the order of 10-2 . This means that the residual correlation not captured by

the first 28 functionals is larger now for modeling the error field than before for

the process.

(ii) The values of the 28 most significant functionals are still concentrated on the

boundary. Their values at the interior points, although still tiny, are larger than

those functionals for the steady-state process.

(iii) The spatial nonstationarity of the error field results in a distribution of the val-

ues of the linear functionals that appear less like sinusoids along the boundary.

On the other hand, when the functionals are arranged in decreasing order of

their associated singular values, as depicted in Figure 5-5, the general feature

of increasing spatial frequencies of the functionals along the boundary is still

evident.

Full-Order Internal Models with CCR Functionals

The results from CCR show that for the single measurement example' essentially all

the conditional correlations between any n, x ny subregion and the remainder of the

2-D steady-state diffusion process or the error field are captured by the 2 (n,, + ny) - 4

most significant linear functionals generated by CCR, which equals the number of

boundary elements of the n,, x ny block. In addition, the region of support for these

functionals concentrate predominantly on the boundary. The actual state dimension

at node s on an internal model with CCR generated functionals for an n x n 2-D field

is k(s) - 8 x (n/2-(')) - 16, where m(s) is the scale of node s. For example, the

state dimension at the root node of an internal model for 16 x 16 field at the finest

scale is 4 x 28 accounting for the four sets of linear functionals that decorrelate each

of the four quadrants. We refer to such internal models with state dimensions equal

'Since the system is only weakly observable, the single measurement case is, in a sense, a severe
test. We use the single measurement example throughout this chapter to illustrate the development
of our multiscale methods. We do, however, show examples with other system setups in the results
section in Section 5.5.
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2to the number of boundary points as full-order models

As we have said in our discussion in Section 2.3.2 about exact multiscale models for

2-D MRFs, which are full-order models, if the state dimension grows with the number

of variables, N - n , of the n x n field of interest, the computational complexity of

the multiscale smoothing algorithm is 0 (N 3/2 ). Reduced-order models may aim

to cap the state dimension to a constant independent of s or N, in which case the

computational complexity becomes the far more desirable O(N). However, reduction

in state dimension is almost invariably accompanied by a decrease in model fidelity

and consequently estimator performance. The trade-off depends on whether a few

of the linear functionals capture most of the conditional correlations. Capping the

state dimensions to a constant is an especially stringent requirement for modeling

2-D random fields. It is reasonable to expect that at coarser scales of the tree model,

more linear functionals must be kept to capture the conditional correlations over

a large spatial area. The relationship between state dimension and the size of the

2-D field depends on the structure in the correlations. For exact models of 2-D

MRFs, the state dimension, i.e., the number of functionals, is proportional to v"'N-.

It was asserted in [67] that with additional structure in the correlations of certain

textures, the state dimension may be independent of N. However, the computational

complexity properties we have spoken so far are asymptotic properties. For practical

purposes on images of possibly large but fixed size, it may be good enough to reduce

the state dimension, for instance by subsampling of the boundary points [73] to a

fixed percent of the number of boundary points. The resulting multiscale model

and smoothing algorithm are more efficient than conventional estimation methods,

even though the asymptotic complexity remains the same as the full-order model at

0 (N 3/2). From a computational point of view, a desirable compromise may be a

slow growth of state dimension, e.g., logN, while capturing most of the conditional

correlations.

2Full-order models, without additional qualification, are simply models whose state dimension is
equal to the number of boundary points. Full-order models do not necessarily imply exact models.
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Reduced-Order Internal Models with CCR Functionals

Linear functionals produced by CCR are naturally ordered according to the singular

values associated with the functionals. However, the decrease in the singular values

for the 2-D diffusion process is slow and gradual as seen in Figure 5-3(a) before the

jump at the full-order size, which equals the number of boundary points. There is

not an obvious cut-off point where a reduced-order model is particularly suitable. We

expect a trade-off between lower state dimension, thus computational complexity, and

performance. However, it is not immediately clear how low we may limit the state

dimensions and still obtain reasonable performance figures. As an example, we show

some results for the simple case of one point measurement at (6, 7).

The purpose here is to examine whether the linear functionals produced by CCR

and the resulting full- and reduced-order internal models can adequately model the

steady-state prediction errors of 2-D diffusion for the purpose of estimation. Perfor-

mance is measured via the fractional variance reduction (FVR) of the suboptimal

multiscale estimators using the internal models. We first solve for the exact steady-

state prediction error covariance PP via (3.35). We then apply CCR to find the

linear functionals and keep a subset of the most significant functionals on the multi-

scale model for the prediction error. The steady-state error covariance of the resulting

suboptimal multiscale estimator is found via the Lyapunov equation of (3.36). The

FVR of the optimal steady-state estimator for the case of a single point measurement

at (6, 7) is shown in Figure 5-6(a). In panels (b)-(d), we compare the steady-state

performance of the suboptimal multiscale estimators using a full-order model and

two reduced-order models. Note that the full-order model simply keeps the same

number of functionals as the number of boundary points. It is not exact, but the

multiscale estimator using the full-order model is nearly optimal, as seen in Figure 5-

6(b). The degradation in performance with respect to the optimal estimator of two

reduced-order estimators are shown in panels (c) and (d). The state dimensions of the

full-order model are 112, 48, 16, 4, 1 from coarse to fine at scales 0 - 4. The reduced-

order model in panel (c) keeps half as many functionals as the full-order model (except
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Figure 5-6: (a) The FVR of the optimal steady-state estimator for a 16 x 16 2-D
diffusion process on a toroid with a single point measurement at (6,7). FVRs of the
optimal steady-state estimator for single point measurements at other locations are
simply shifted versions of (a), since the performance of the optimal estimator is shift
invariant. The percent degradation in FVR with respect to the optimal estimator of
the suboptimal steady-state multiscale estimators with linear functionals selected by
CCR are shown in (b) for a full-order model with state dimensions equal to 112, 48,
16, 4, 1 at scales 0 - 4, in (c) for a reduced-order model with state dimensions 56,
24, 8, 4, 1, and in (d) for a reduced-order model with state dimension 12, 8, 4, 4, 1.
(3 _- 1, SNR - 0 dB, AT - 4 x 10-5.)
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at scales near the finest). The model in panel (d) keeps roughly 10% as many; its

state dimensions are 12, 8, 4, 41 1. That is, only three functionals, instead of 28, are

used to decorrelate (I - 8, 1 - 8) from the rest of the 16 x 16 field at the root node,

for example. In relative terms, the reduced-order estimator performed two to three

orders of magnitude worse than the full-order estimator. However, in absolute terms,

the reduced-order estimator, even at severely restricted state dimensions, performed

at most a few percent worse in FVR than the optimal estimator.

The results here suggest that in principle a small number of well chosen linear

functionals, far fewer than the number of boundary points, are enough to capture

most of the conditional correlations of the steady-state error field of 2-D diffusion,

such that the resulting approximate multiscale model and estimator perform more

than adequately. However, computational complexity of CCR and of solving the

Riccati equation prevents us from blindly applying this approach. Thus, finding

CCR functionals for large problems is prohibitively complex. Moreover, with an eye

towards the multiscale recursive algorithm as we shall see shortly in Section 5.4.1,

we note that the multiscale prediction step is computationally costly with the CCR

functionals even if we could compute them.

5.3.2 Internal Models with Boundary-Point Functionals

Full-Order Internal Models with Boundary-Point Functionals

We saw that the values of the linear functionals produced by CCR for decorrelating

a subregion of either the steady-state diffusion process or the estimation error field

from the rest of the 2-D field are small except at the boundary points of the subre-

gion. We know that the full set of boundary points and any full-order set of non-local

functionals whose region of support is exactly the boundary point set are equivalent

via a basis transform. Therefore, we would expect a full-order internal model with

boundary-point linear functionals, an example of which is shown in Figure 2-6, to

be almost the same as a full-order model with CCR linear functionals whose region

of support are nearly the boundary point set. Since the CCR functionals do have
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Figure 5-7: The percent degradation in FVR with respect to the optimal estimator
of the suboptimal steady-state multiscale estimator using a full-order internal model
with dense boundary-point linear functionals, whose with state dimensions equal to
112, 48, 16, 4, 1 at scales 0 - 4. (0 = 1, circular boundary conditions, one point
measurement at (6, 7), SNR - 0 dB, AT = 4 x 10-5.)

nonzero values at element other than the boundary set, they are expected to result

in a slightly more accurate model and better estimator. Figure 5-7 shows the degra-

dation in FVR of the suboptimal multiscale estimator using a full-order model with

boundary-point functionals. Compare Figure 5-7 with Figure 5-6(b), and we see that

the suboptimal estimator using full-order model with boundary point functionals per-

formed somewhat poorer than the estimator with CCR linear functionals, although

both are nearly the same as the optimal estimator.

Reduced-Order Internal Models with Boundary-Point Functionals

Constructing reduced-order models using CCR selected linear functionals is relatively

straightforward, since the CCR algorithm orders the functionals. It is less clear which

boundary points should be chosen and which discarded for reduced-order models

with boundary-point linear functionals, since it is not clear which boundary points

are more important. One method is to subsample the boundary points, as is done

in [73, 31] for modeling ocean hydrography. The method is based on the simple

premise that neighboring points in the random field are usually highly correlated

and that the subsampled points capture the essential correlation information. We

surmise that points at the corners of subregions and around areas with more detailed
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features in the correlation structure of the underlying field, such as the area around a

measurement, are more important. If we have a fixed budget of state dimension, then

boundary points falling in the more important areas should be more densely sampled

while those in relatively featureless areas may be more sparsely sampled. Aside from

the freedom to choose what subset of boundary points should be kept as functionals,

we also have the freedom to choose the state dimensions. For problems of the size

we are considering here most of the order reduction occurs at the root and scale 1.

Nodes at the finer scales keep the full-order set of functionals. The real computational

advantage is to be seen for much larger problems.

In Figures 5-8 and 5-9 we show two examples of reduced-order models with sub-

sampled boundary-point functionals. Our purpose here is to see whether models using

subsampled boundary-point functionals yield adequate approximate estimators. In

Figure 5-8(a) we show the performance of a suboptimal multiscale estimator using a

reduced-order model with subsampled boundary-point linear functionals. The func-

tionals kept at the root node of the quad tree and those kept at one of the nodes at

scale I are depicted in panels (c) and (d), respectively. Boundary-point functionals

kept at the other three nodes at scale I have the same pattern as those shown in

(d) but are located in the other three quadrants of the 2-D field. Dense boundary

points are kept at the finer scales. The state dimensions are 48, 48, 16, 4, 1 at scales

0 - 4. To make the comparison with estimators using CCR generated functionals

more meaningful, the performance of a reduced-order model with CCR functionals of

the same state dimensions are shown in panel (b). A lower dimensional example with

state dimension 16, 16, 16, 4, 1 is depicted in Figure 5-9. Even in the latter example,

the reduced-order estimator performed no more than 2% worse than the optimal es-

timator. Not surprisingly, the reduced-order estimators with subsampled boundary

points performed worse than those with CCR linear functionals. Given a fixed state

dimension, the CCR algorithm generates an optimal set of functionals in the sense

that they maximally decorrelate the subregions under consideration. No other set of

functionals does a better job at the decorrelation. Thus, it is reasonable to expect the

resulting multiscale model based on the CCR functionals to be the most accurate and
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Figure 5-8: The percent degradation in FVR with respect to the optimal estimator of
the suboptimal steady-state multiscale estimator using (a) a reduced-order internal
model with subsampled boundary-point linear functionals and (b) a reduced-order
internal model with CCR linear functionals of the same state dimensions. The func-
tionals kept at the root node and one of the nodes at scale I of the model for (a)
are shown in (c) and (d). The state dimensions are 48, 48, 16, 4, 1 at scales 0 - 4.
(3 1, circular boundary conditions, one point measurement at (6, 7), SNR = 0 dB,
AT 4 x 10-5.)
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Figure 5-9: The percent degradation in FVR with respect to the optimal estimator
of the suboptimal steady-state multiscale estimator using (a) a reduced-order model
with subsampled boundary-point linear functionals and (b) a reduced-order model
with CCR linear functionals of the same state dimensions. The functionals kept at
the root node and one of the nodes at scale I of the model for (a) are shown in (c)
and (d). The state dimensions are 16, 16, 16, 4, 1 at scales 0 - 4. (� - 1, circular
boundary conditions, one point measurement at (6, 7), SNR - 0 dB, AT = 4 x 10-5.)
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Figure 5-10: The linear functionals of a non-redundant model for a first-order 2-D
Markov random field. The elements marked with filled circles are the states kept at
(a) the root node and (b) the four nodes at scale 1 of a 17 x 17 2-D MRF.

in turn the resulting estimator to perform the best. Of course, the construction of

models using CCR functionals require more computation since the CCR functionals

must be computed via SVDs.

5.3.3 Non-Redundant Models

Full-Order Non-Redundant Models

In Section 3.5 we introduced the class of non-redundant models for I-D random

processes primarily for modeling I-D MRFs. Exact non-redundant models for 2-D

MRFs are directly analogous to the I-D models. An example for a 17 x 17 field is

shown in Figure 5-10. The linear functionals kept at the root node consist of the

edges and the midlines of the 2-D field, instead of the end- and midpoints in the I-D

case. Functionals at the first-scale nodes similarly keep the edges and the midlines of

the four subregions under the root node. Since dense boundary and midline points

are kept as functionals, we will refer to a model with functionals shown in Figure 5-10
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Figure 5-1 1: (a) The FVR of the optimal steady-state estimator for a 17 x 17 2-
D diffusion process on a toroid with a single point measurement at (6,7). (b) The
percent degradation in FVR with respect to the optimal estimator of the suboptimal
steady-state multiscale estimator using a full-order non-redundant model with state
dimensions 93, 33, 4 at scales 0 - 2. (O - 1, SNR - 0 dB, AT - 4 x 10-5.)

as a full-order non-redundant model3. Unlike the functionals of the boundary-point

internal models (c.f., Figure 2-6), the point functionals kept on non-redundant models

are not repeated at multiple nodes.

For convenience, we choose a 2-D field of size 17 x 17, so that the distribution of

the elements of the field of interest in the non-redundant model is symmetric. Similar

to I-D models in Section 3.5.1, a 2-D field of any size is just as easily placed on the

non-redundant model, or for that matter, is just as easily placed at the finest scale

of an internal model. The two different sizes for internal model examples and for

non-redundant models examples are close enough for comparisons between them to

be meaningful. In Figure 5-11 (a), we show FVR of the optimal steady-state estimator

for a 17 x 17 2-D diffusion process on a toroid with a single point measurement at

(6, 7), which resembles the 16 x 16 result shown in Figure 5-6(a). The largest variance

reduction occurs near the measurement. The percent degradation in FVR of the

suboptimal steady-state multiscale estimator using a full-order non-redundant model

is shown in Figure 5-11(b). The performance of the estimator using a non-redundant

model is nearly optimal and compares favorably with estimators using internal models

3Full-order simply means that the state dimension is equal to the number of boundary points. It

does not necessarily imply optimality.
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with either CCR linear functionals or boundary-point linear functionals as depicted

in Figures 5-6(b) and 5-7.

Reduced-Order Non-Redundant Models

A critical difference between 2-D non-redundant models and internal models arises

when we construct reduced-order models by keeping subsampled boundary points

as state variables rather than the full dense boundary point set. For reduced-order

internal models, the reduced-order state at node s, simply no longer decorrelates

the subtrees connected to s as effectively as a higher-order state. Whether coarse-

scale linear functionals are local or non-local, the field of interest is mapped to the

finest scale on internal models. Therefore, the estimates and error variances for

individual elements of the field of interest and the point measurements of the field

are always available at the finest scale. If the coarse-scale functionals are non-local,

then estimates and measurements of these non-local quantities are also available, and

the state variables at all nodes on the tree form an overcomplete basis for the field of

interest.

On the other hand, reduced-order non-redundant models face, in addition to less

effective conditional decorrelation, a problem with representing all elements of the

field of interest on the tree. Because of the non-redundancy property, subsampling

the boundary points in non-redundant models means that some elements of the field of

interest simply do not appear in the tree model anymore. The state variables in non-

redundant models forms a complete basis only in the full-order version. The number

of state variables in a reduced-order model is less than the number of elements in the

field of interest. Therefore, if applied directly, we encounter two potential problems:

(i) no estimates or error statistics for these elements are directly available, and

(ii) point measurements of these elements can not be placed on the tree (although

this problem can be solved by simply adding such elements onto the tree)-

The issues at hand with representing the random field of interest in reduced-order

non-redundant models are similar in spirit to the last two requirements we laid out
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in Section 3.3.3 for the choice of linear functionals, i.e., the ability of the functionals

to represent the quantities for which we want estimates and quantities for which we

have measurements. In the following subsections, we propose several ways of dealing

with elements of the field of interest that are not modeled on the tree.

Reduced-Order Non-Redundant Models with Deterministic Interpolation

Denote the field of interest by X. Denote the subset of X that is modeled in the

reduced-order model by �, i.e., � is a vector containing all the state variables in the

reduced-order model. We may write � - MX and use a deterministic interpolation

scheme to compute the the entire X from �: X - M*�, where M* is the interpolation

matrix and also a pseudoinverse of M. This interpolation can be done node by node.

Let C(s) denote the set of boundary points that would normally be the state at node

s in a full-order model. The state x(s) in the reduced-order model is then related to

C(s) by x(s) -- M(s)C(s), where M(s) is a selection matrix. At each node we may

write the interpolation equation

C(S) = M'(8)X(8)- (5-3)

A simple interpolation scheme that results in very sparse MO (s) is a one-dimensional

linear interpolation method. A boundary point that is not represented in the reduced-

order model is simply interpolated from the two nearest boundary points that are

represented.

Denote the estimate of x(s) by :;�(s) and its estimation error covariance by P(s).

Then, the estimate of C (s) is � (s) - M* (s);i: (s), and the covariance of the estimation
T

error, C(s) - �(s), is P((s) - M*(s)P(s) (M* (8)) - Of course, the sparser x(s) is

with respect to C(s), the less accurate the estimator using such a model is, and the

more pronounced the artifacts are in the resulting interpolated estimates for the field

of interest.

Highly subsampled reduced-order models also make placing point measurements

more difficult. If a point measurement of X is not modeled in the tree, we may simply
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add that element to the state at the node where it would normally be placed on a

full-order model. This is adequate as long as we have only a small number of point

measurements that need to be augmented, since each augmentation increases the state

dimension by 1. However, if the number is large, for example in the case of dense

measurements, adding state variables to accommodate all measurements reverts the

augmented model to a full-order model. This is similar to the state augmentation

problem studied in [25], where the added state dimension roughly equals the number of

measurements to be augmented. Alternatively, we may model the point measurements

not modeled on the tree using the interpolation equation of (5.3),

Y(S) = C(SX(s) + V(S) = C(S)M*(S)X(S) + V(8). (5.4)

We found that for 2-D diffusion, the simple linear interpolation scheme works well

in many cases. More sophisticated deterministic interpolation scheme generally do

not provide better results or less noticeable artifacts. Figure 5-12 shows the perfor-

mance results and the linear functionals for estimating a 17 x 17 2-D diffusion process

on a toroid with a single point measurement at (6,7). The suboptimal multiscale

estimators are realized from the exact steady-state prediction error covariance PP

using non-redundant models with subsampled boundary-point linear functionals. We

show two different sampling rates. As depicted in Figure 5-12(c) and (d) respectively,

every fourth and every eighth boundary-point functional is kept at the root node. At

scale 1, the size of the subregion is small enough such that we use the same sampling

rate of 3 in both cases. At scale 2, full-order sets of functionals are kept. As shown in

panels (a) and (b), the resulting suboptimal multiscale estimators perform no worse

than within two percent of the optimal. The results here give us sufficient confidence

to use reduced-order non-redundant models with linear interpolation for multiscale

recursive estimation later in Section 5.4.
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Figure 5-12: (a)-(b) The percent degradation in FVR with respect to the optimal
estimator of the suboptimal steady-state multiscale estimators using reduced-order
non-redundant models with linear interpolation. The boundary-point linear function-
als are sampled at a rate of 4 in (a) and 8 in (b) at the root node. The sampling rate
at the scale I is 3, and at scale 2 is 1. The boundary-point functionals kept at the
root node and one of the nodes at scale I for (a) are shown in (c) and (e); and for
(b) in (d) and (f). (�3 -_ 1, circular boundary conditions, one point measurement at
(6, 7), SNR _- 0 dB, AT -_ 4 x 10-1.)
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Reduced-Order Non-Redundant Models with Statistical Interpolation

Deducing X from � using linear interpolation ignores the statistical structure of X.

We may treat � = MX as a measurement equation and compute the LLSE of X given

observation �. This is possible if we have the joint statistics between � and X, which

is the case so far with the assumption that we have the full covariance of the field of

interest. Of course, for large-size problems, computing the estimate of X globally is

computationally infeasible, which is the reason for using multiscale methods in the

first place. Done node by node, we may write C(s) as its best estimate based on x(S)

plus the orthogonal error in this estimate. That is,

C (S) = M* (S) X (8) + WC (Sao, (5-5)

where M*(s) -_ P(,,,(s)P-'(s) and the covariance of wc(sao is Qc(sa() = P((s) -

P(,x(s)P-'(s)P'x(s). Here P((s), P(s), and P(,x(s), respectively denote the co-

variance of C(s), the covariance of x(s), and the cross-covariance between the two.

The particular values of P((s), P(s), and P(,x(s) depend on the covariance of the

field of interest PX1

Similar to deterministic interpolation, the estimate of C(s) is �(s) = M*(s):i(s),

but the error covariance is corrected with an additional noise covariance term: PC (s) =

M*(S)P(S) (M#(S) )T + Q�(sao. The cross-covariance between C'(s) and i:(s) is

M#(sjl(s) since the noise w�(sao is uncorrelated with x(s).

Figure 5-13 shows the performance results of suboptimal multiscale estimators

using statistical interpolation, for the same system in Figure 5-12. The interpolation

parameters, M#(.) and QC(.) are computed from the exact steady-state prediction

error covariance PP, The estimators in Figure 5-13(a) and (b) have the same state

definitions as those in Figure 5-12(a) and (b), respectively. The suboptimal multiscale

estimators with statistical interpolation perform comparably to, although somewhat

poorer than, those with linear interpolation. We shall see later in Section 5.5 that for

the iteratively implemented multiscale steady-state estimators, statistical interpola-

tion scheme yields better estimator performance results.
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Figure 5-13: The percent degradation in FVR with respect to the optimal estimator of
the suboptimal steady-state multiscale estimators using reduced-order non-redundant
models with statistical interpolation. The state definitions of the estimators in (a)
and (b) are the same as those in Figure 5-12(a) and (b), respectively. (O -_ 1, circular
boundary conditions, one point measurement at (6, 7), SNR - 0 dB, AT = 4 x 10-5.)

Non-Redundant Models with Offshoot Nodes

Equation (5-5) looks very much like the multiscale dynamic equation (2.6). Let

x( denote the elements of C(s) that are not part of x(s), we may rewrite (5.5) as

X( _- A((sa()x(s) + w((sa(). We may create a new child node sa( for s and put

x( there, i.e., let x(sao = x(. The subscript ( indicates that these are quantities

associated with the new o hoot nodes. For models with large subsampling rate, the

dimension of x(sa() may be much larger than x(s), in which case we may replace

the statistical model represented by (5.5) with a multiscale model for the offshoot

process.

Let us take the example of the root node of a 17 x 17 2-D field, as shown in

Figure 5-14. Suppose that nine subsampled boundary-point functionals are kept at

the root node. These are labeled as solid black circles. On an ordinary reduced-order

non-redundant model, the skipped boundary points, labeled as shaded gray circles,

are not represented on the tree. We have said earlier that the steady-state process

and prediction error of 2-D diffusion are approximately 2-D MRFs. This does not

necessarily mean that rows or columns of the 2-D field are themselves I-D MRFs. We

found by examining the correlation structure of the field along single rows or columns
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Figure 5-14: Linear functionals kept at the root node and at the offshoot nodes
connected to the root of a non-redundant model for a 17 x 17 field. The subsampled
boundary-point functionals kept at the root node are labeled as solid black circles.
The shaded gray circles indicate the boundary points that are to be kept on offshoot
nodes. The offshoot tree modeling the right vertical edge is drawn in more detail.
The arrowed dash lines indicate on which offshoot node the skipped boundary points
are kept. Similar I-D offshoot trees, illustrated with ovals, are grown for each of the
other five vertical and horizontal edges consisting of the boundary point set. The
region of support for the four regular child nodes of the root are marked with empty
circles. Functionals kept at these child nodes may consisted of all or a subsampled
set of these points.
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that they are approximately I-D Markov, although the quality of the approximation

is generally worse than those obtained in Chapter 4 for I-D diffusion. Nevertheless,

suppose that we assert that the rows and columns of the 2-D field can be modeled

by I-D non-redundant models. For example, take the right-most vertical edge which

is shown in more detail in Figure 5-14. We assert that the top, middle, and bottom

three boundary points, labeled as solid black circles, conditionally decorrelate the two

segments of skipped points, marked as shaded gray circles. Furthermore, the end- and

midpoints of those individual segments also conditionally decorrelate their respective

subintervals. That edge is modeled by a 1-D non-redundant model attached to the

main quad tree. Similar I-D offshoot trees are grown for each of the other five vertical

and horizontal edges consisting of the boundary point set. The region of support for

the four regular children of the root node are marked with empty circles. Functionals

kept at the children may consisted of all of or a subsampled set of these points, and

are not specifically shown in the figure.

A reduced-order non-redundant model with offshoot nodes is a non-redundant

model with an irregular structure, in which the number of children at each node varies

from node to node. For instance, the root node of the example in Figure 5-14 has

a total of 16 child nodes. With the offshoot nodes, we reduce the state dimensions

of the nodes on the main quad tree by adding more nodes. We are claiming that

the subsampled boundary-points at the root node can decorrelate not only its regular

main subtrees, but also the offshoot subtrees. Similar to the full-order non-redundant

model, the non-redundant model with offshoot subtree models all elements of the field

of interest. Computing estimates and error statistics on offshoot trees are no different

from computing these quantities on the main quad tree. Point measurements are

easily modeled on the non-redundant model with offshoot trees, unlike the situation

for reduced-order models with interpolation. Full representation of the field of interest

is a main advantage of the offshoot model.

It may seem that the offshoot model is the same as a reduced-order model with

statistical interpolation. The difference become apparent when we use these models

in the multiscale recursive algorithm. The statistical interpolation parameters M* 0
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and QC (-), once computed, do not change over time even though the statistics of the

error field evolve in time. The model parameters A(-) and B(-) on the offshoot trees,

on the other hand, are updated along with the parameters on the main tree.

The computational complexity of the offshoot non-redundant models depends on

whether measurements are placed on the offshoot nodes. When measurements are

only present on the main tree, the complexity of the smoothing algorithm is no

different from the reduced-order models using interpolation. On the other hand,

if measurements are placed on the offshoot nodes, the asymptotic computational

complexity of the multiscale smoothing algorithm in offshoot non-redundant models

can reach up to 0 (N'), higher than even the full-order model. The key reason

is the merge step of (A.15) and (A-16) in the smoothing algorithm. The number

of matrix inversions, each of which is on the order of the state dimension k(s), in

the merge step is equal to the number of child subtrees of s on which there are

measurements. On normal trees, whether dyadic or quad, and in offshoot models

with no measurements on the offshoot nodes, this number is constant independent

of N. In offshoot models with measurements on the offshoot nodes, the number of

matrix inversions can be equal to the number of offshoot nodes at a node on the main

tree s. Designed in the fashion shown in Figure 5-14, an offshoot tree is spawned

between every two point functionals at a node the main tree, so that the number

of offshoot tree is equal to the state dimension k(s) itself. Therefore, at each node

on the main tree, the computational complexity may reach k (S)3 - k(s) rather than

k(S)3 - 4 for normal quad trees or offshoot tree without measurements on offshoot

nodes. The overall complexity of the smoothing algorithm 4 may then reach 0 (N').

However, the asymptotic figure is somewhat misleading. The O(NI) complexity of

offshoot models has a much smaller constant factor of proportionality in front of N'

than the constant factor for the 0 (N 3/2) of full-order models, so for 2-D fields of

practical size, the higher asymptotic complexity of the offshoot non-redundant model

4Summing over all nodes on the main tree, the smoothing algorithm costs on the order
of T1092 V/N 4mk(s)4. For a constant state dimension, the sum comes out to be O(N). For

'm=0k(s) = CVY/21(1), the sum is 0 (N'). The additional computational cost for smoothing on the
offshoot nodes in either case is O(N).
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Figure 5-15: The percent degradation in FVR with respect to the optimal estimator of
the suboptimal steady-state multiscale estimators using reduced-order non-redundant
models with offshoot subtrees. The functionals kept at the root node are subsampled
boundary-point functionals sampled at a rate of 4 in (a) and 8 in (b). The functionals
at scale I of the main tree are subsampled at a rate of 3 in both cases. The functionals
kept on the main tree are the same as those shown in Figure 5-12(c-f). (3 = 1, circular
boundary conditions, one point measurement at (6, 7), SNR - 0 dB, AF - 4 x 10-5.)

is essentially irrelevant.

The steady-state performance plots of suboptimal multiscale estimators using off-

shoot non-redundant models built from the exact steady-state prediction error co-

variance are shown in Figure 5-15. The state definitions on the main tree for the two

cases in Figure 5-15 are the same as those depicted in Figure 5-12. The structure of

the offshoot trees are similar to the example shown in Figure 5-14. The offshoot non-

redundant models perform comparable to, although worse than, the reduced-order

5Suppose that the state dimension at node s of the full-order model, which is a regular quad

tree, is k. Suppose that the number of operations for each of the matrix inversions in (A.16) is
3V, so that on the quad tree the computational cost at s is 4k . If we keep every other point

along the boundary as the state variables on the main tree, and grow k/2 offshoot nodes, the

number of child nodes becomes 4 + k/2. The cost of the smoothing algorithm at node 8 is then

(k/2)3(4 + k/2) = k 4/16 + 0/2. Comparing this quantity with 40, we see that for k < 56, the

offshoot non-redundant model is less computationally costly than the full-order model. If we keep

every fourth boundary point as the state variable on the main tree, i.e., with a subsampling rate of

4, this break-even point becomes 1008, corresponding roughly to a 169 x 169 2-D field, which is much

larger than the size we are showing here. If every eighth point along the boundary is kept on the

main tree, smoothing in offshoot models takes less computation than in full-order models for fields

smaller than 2727 x 2727. Since offshoot non-redundant models should really be used only when

sparse sampling can be used for reducing the state dimensions on the main tree, for 2-D fields of

practical size, the higher asymptotic complexity of the offshoot non-redundant model is essentially

irrelevant.
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models with linear interpolation. The poorer performance results we see here for the

offshoot model suggests that the 1-D MRF approximation is actually less accurate

than simple linear interpolation.

Up to this point we have looked at several types of multiscale models for modeling

the steady-state prediction error of 2-D diffusion. These include internal models with

CCR selected linear functionals, internal models with boundary-point linear func-

tionals, non-redundant models, and their reduced-order versions. The steady-state

suboptimal multiscale estimators built directly from the exact steady-state prediction

error covariance of the optimal estimator are all of acceptable quality, performing not

more than a few percent worse than the optimal estimator in the examples that we

have shown. Whether these multiscale models lead to computationally efficient and

effective multiscale recursive algorithms is examined next.

5.4 Multiscale Recursive Estimation Algorithm for

2-D Diffusion

Recall from Chapter 3 that the multiscale prediction step propagates a model for the

updated estimation error X(tIt) to a model for the one-step-ahead predicted estima-

tion error X (t + II t). The model structure and the definition of the linear functionals

remain the same through the prediction step. Model parameters for the prediction

error model, A (s; t + 1 1 t), B (s; t + I I t), and P (0; t + I I t), are computed from the

j oint statistics, P (s; t + 1 1 t) and P (s, s,�y; t + 1 1 t), between parent and child nodes

in the prediction error model, which are in turn computed from the joint statis-

tics between parent and child nodes, as well as additional pairs of nodes, on the

updated error model. Recall that a state variable anywhere in the predicted error

model is related to the finest-scale variables of the update error model through (3.26):

Xi (S; t + I It) = 1T (s) Ad X (t I t) + 1' (8) Wd (t) - We attempt to write xi (s; t + I I t) morei i

succinctly in terms of the state variables, rather than just the finest-scale variables,

on the updated error model via (3.30): xi(s, t+ lit) = h'(s)�(tlt) +1'(S)Wd(t), where
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�(tlt) is the vector containing all the states on the tree model for X(tIt). The effort

in computing the joint statistics between parent-child pairs in the predicted error

model and the complexity of the prediction step depends on how sparse and struc-

tured hT(s) is, which is determined by the particular temporal dynamics Ad and the

choice of linear functionals 1T (8). In I-D, the computational complexity of the pre-

diction step is O(NlogN) for internal models with end-point linear functionals and

is O(N) on non-redundant models. We use the same general approach, laid out in

Section 3.3, for multiscale prediction in 2-D, and analyze the four types of multiscale

models discussed so far in this chapter.

-5.4.1 Multiscale Prediction Step on Internal Models

Internal Models with Boundary-Point Linear Functionals

We had assumed earlier for I-D diffusion, that the dynamics matrix Ad is tridiagonal

resulting from an explicit temporal discretization scheme. The 2-D version of Ad

is a block-tridiagonal matrix of tridiagonal blocks. This Ad introduces sparse and

spatially local mixing. We first consider multiscale prediction for internal models with

boundary-point functionals and then those with non-local functionals, e.g., functionals

calculated by CCR.

For point linear functionals 1T ('5), 1T (s)Ad has exactly five nonzero elements and

can be written as the weighted sum of five linear functionals, consisting of spatially

neighboring elements of X(tIt). Suppose that we need the covariance P(O; t + I it)

at the root node of an internal model with boundary-point linear functionals for

the prediction error. The linear functionals at the root node are labeled as solid

circles in Figure 5-16 for an example of a reduced-order model in panel (a) and a

full-order model in (b). Assume that we have the covariance among these linear

functionals, P(O; t1t), on the updated error model, from the measurement update

step. Due to dynamic mixing, computing P(O; t + I It) on the predicted error model

requires the covariance among not only those functionals marked with solid circles

but also their neighboring elements marked with x. Compare with pictures of the
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Figure 5-16: The cross-covariances needed in (a) an reduced-order and (b) a full-order
internal model with boundary-point linear functionals for the updated estimation
errors for multiscale prediction. The linear functionals kept at the root node are
labeled as solid circles. The covariance among these functionals are assumed available.
The x marks indicate the additional functionals on the updated error model that are
required for the prediction step due to temporal dynamics. Some of these additional
functionals can be found at scale 1; others are found at the finest scale. To compute
the covariance at the root node of the predicted error model, joint statistics among
nodes with either solid circles or x on the updated error model must be computed.

linear functionals kept at scale I for the reduced-order model and the full-order model

shown in Figures 5-9 and 2-6. For the reduced-order model in Figure 5-16(a), the

additional linear functionals due to dynamic mixing are found only at the finest scale

(or at the third finest scale, which is scale 2 for the 16 x 16 example, since the finest

two scales on the internal model replicates the state variables at the third-finest scale

to make finest-scale states scalar, as illustrated in Figure 3-3). For the full-order

model, some of the additional point functionals can be found at the immediate child

nodes of the root, while most others are found at finer scales.

In general, computing the joint statistics between parent and child nodes in the

predicted error model requires the cross-covariances between node pairs that are often

far from each other in the updated error model. The computational complexity of

calculating all the needed pairs of cross-covariances depend on the state dimensions

of the tree model. For a reduced-order model whose state dimension k is constant,
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independent of the size of the field of interest N, the total cost of the prediction step 6

is then upper-bounded by O(NlogN). This is the same result as that obtained in

Section 3.4.2 for I-D models with end-point linear functionals.

The accounting is more difficult for the case of variable state dimension that is a

function of N. Suppose that we use a fixed subsampling rate for the boundary-point

linear functionals, which includes the case of full-order model (for a sampling rate

of 1). The state dimension is then proportional to the length of an edge of the 2-D

field and decreases at finer scales: k(s) = cv/_N_/2'('). The total cost of computing

all the necessary cross-covariances in the updated model for the prediction step 7 is

0 (N 5/2 ).

Internal Models with Non-Local Linear Functionals

For linear functionals 1T (8) with spatially non-local region of support, such as those

produced by CCR, it is not clear whether or how 1T (s)Ad can be succinctly written as

the sum of a few functionals on the tree as in (3.27). It is, of course, always possible

to write 1T (s)Ad as the sum of point linear functionals at the finest scale. If the

non-local functionals have region of support consisting of the boundary and midline

'There are 0 (0) entries in P (s, t + 1 It). Since each state variable in the predicted error
model is being expressed as a weighted sum of at most five state variables in the updated error
model, the cross-covariances of a fixed number (at most 25) of pairs of state variables need to be
calculated in the updated error model. The cost of computing the cross-covariance between each pair

is no more than 0 (k1 log vfN- ), the product of computing cross-covariance across one scale (c.f.,

the Lyapunov equation (2.10)) and the maximum number of scale between any pair of nodes. Since
the number of nodes at scale m is 4', the total cost of the prediction step is then upper-bounded
by 1:1092 4mk2 kllogvfN- whichisO(NlogN).M=O

'There are k(s)k(s�y-) = C2N/2m(8)+rn(s)-1 OC N/2m(') number of entries in P(s, s,;y7; t+1 It), each of
which can be derived from a fixed number of pairs of cross-covariances of in the updated error model.
Computing cross-covariance across several scales between nodes s and direct ancestor is a is pro-
portional to E'7-,, k(u)k(u,;/)2. For k(s) that geometrically decreases as a function of m(s), the sumU_ 3/2 2(-(u)-1)) 3/2 TO'=,9 3m(u). This last sum is proportional tobecomes E"=,, c N (2m M 2 oc N 1/2U U

3m(sAa) -covariance between two nodes s anda is dominated1/2 , i.e., the cost of computing the cross
by computing the cross-covariance at their lowest-scale common ancestor s A o, and its children. Sup-
pose that computing P(s, s,7y-; t + I It) at node s involves only new computation of cross-covariances
among nodes below s, because the cross-covariances among nodes above s have already been com-
puted for P (u, w7y; t + II t) for some node u at a coarser scale than s. Summing over all nodes, the

092V 2- 3/2 3m),total cost of computing all the needed cross-covariances is then Oc El N 4' (N /2
i.e., 0 (N5/2).
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points only, and 1'(s)Ad cannot be written accurately as the sum of only a few

functionals on the tree as in (3.27) but only as the sum of point linear functionals at

the finest scale, then the amount of computation required for multiscale prediction is

the same as that for the full-order model with boundary-point functionals, regardless

of whether the model is of full-order or reduced-order. While non-local functionals,

such as those computed by CCR, can better capture conditional correlations as we

saw in Section 5.3.1, the non-local support of these functionals makes the multiscale

prediction step computational costly.

5.4.2 Multiscale Prediction Step on Non-Redundant Models

Full-Order Non-Redundant Models

Multiscale prediction on non-redundant models is much simpler than prediction on

internal models in terms of both computational complexity and computer implemen-

tation. The reason is the same as for I-D models discussed in Section 3.5.2. For full-

order non-redundant models, the additional functionals on the updated error model

needed for prediction due to dynamic mixing (with an Ad that is block-tridiagonal

with tridiagonal blocks) are always found at either a parent or a child node. (Refer

to Figure 5-10 for a graph of the linear functionals at the root node and the nodes at

scale I for a 17 x 17 example.) Thus, to compute either the covariance P(s; t + I It)

or the cross-covariance P (s, s,;�y-; t + 1 It) at node s on the predicted error model, the

cross-covariances of no more than stay, s,�y, s, and sai on the updated error model

need to be computed. Therefore, the cost of computing P(s, s�; t + I It) at a node

s is 0 (k (S)3) . For full-order models, where k(s) - 6VY/2'(s) - 9, the total com-

1092 VN 3/2putational cost of the prediction step is (x EM=0 4m (v'-N/2m)' (x N , the same

computational complexity as the smoothing algorithm. Furthermore, keeping track

of which cross-covariance pairs in the updated error model must be computed is much

simpler for a non-redundant model, lessening overhead and making implementation

easier.
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Figure 5-17: The cross-covariances needed in a reduced-order non-redundant model
for the updated estimation errors for multiscale prediction. The linear functionals
kept at the root node are labeled as solid black circles. The covariance among these
functionals are assumed available. The x marks indicate the additional functionals
on the updated error model that are required for the prediction step due to temporal
dynamics. Some of these additional functionals can be found at scale 1, where the
functionals are labeled as shaded gray circles. Functionals at scale 2 are labeled as
unfilled circles. To compute the covariance at the root node of the predicted error
model, joint statistics among nodes with either solid black circles or x on the updated
error model must be computed.

Reduced-Order Non-Redundant Models with Interpolation

For reduced-order non-redundant models with interpolation, since some elements of

the field of interest are not represented on the tree model, some of the additional linear

functionals required for prediction due to dynamics mixing are not found on the tree.

In Figure 5-17 the functionals at the root node are labeled as solid black circles; fune-

tionals at scale I are labeled with shaded gray circles; and those at scale 2 with unfilled

circles. Since the model is non-redundant, we can plot the boundary-point functionals

at more than one scale in the same figure without any confusion. The additional func-

tionals needed for the updated model for computing the covariance at the root node

of the predicted error model P (0; t +II t) are marked with x. Some of these x do not
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overlap the shaded gray circles, i.e., these additional functionals are not represented on

the tree. However, for the purpose of the prediction step, we may approximate their

statistics via the interpolation equations of (5.3) and (5.5). That is, for linear inter-

polation the covariance of the entire boundary C (s; t I t) is MO (s) P (s; t I t) (M*(8)) T

and for statistical interpolation, M*(s)P(s; t1t) (M*(S)) T + Qc (sac).

The interpolation matrix MO (s) is sparse for linear interpolation and generally

dense for statistical interpolation. Let the state dimension be k(s) at node 8 and the

number of elements on the boundary be d(s), which is proportional to vFN-/2-(').

Then, computing the covariance of the entire boundary �(s- t1t) is on the order of

d(s)k (S) 2for a dense interpolation matrix MO (s) and on the order of d(s) for a sparse

matrix. In either case, for a constant state dimension k the cost of interpolation' is

O(N). For a variable state dimensions k(s) = cVN_12-(), the cost of interpolation

for a dense MO W is (x Elog' VW 4' (V-N12- ) 3oc N 3/1 , and for a sparse MO (8) isM=0
1092 V'N_

0C EM=0 4m (VN12m) oc N. The complexity of interpolation, therefore, does not

exceed the cost associated with computing covariances and cross-covariances among

the states in the reduced-order non-redundant model itself, which is similar to the

smoothing algorithm at O(N) for a fixed k(s) and at 0 (N 3/2) for a variable k(s).

Non-Redundant Models with Offshoot Nodes

Non-redundant models with offshoot trees reduce the state dimensions by keeping

subsampled boundary point functionals on the main tree and moving the skipped

ones onto the offshoot tree connected to the same node, while maintaining full rep-

resentation of all elements of the field of interest. Some of the state variables that

were modeled at a node on the full-order model are now distributed on the offshoot

trees connected to the node. To derive the model parameters on the predicted error

model, we need parent-child joint statistics at all nodes, both on the main tree and

on the offshoot trees. Such statistics are derived from the updated error model in-

volving some additional functionals due to dynamic mixing. For a node on the main

8 "12 , N 2For a dense M* (s), the total cost of interpolation is on the order of Y,.M=o 4mv/N/2mk oc N.

For a sparse M*(s), the cost is on the order 'IN 4mVN/2m, again O(N).
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multiscale models full-order reduced-order

constant k k(s) oc vNY/2-W

internal, boundary-point N 5/2 N log N N 5/2

internal, non-local N 5/2 N 5/2 N 5/2

non-redundant N 3/2

non-red., interpolation N N 3/2

non-red., offshoot N N 3/2

Table 5.1: Asymptotic computational complexity of the multiscale prediction step for
several types of multiscale models. N is the size of the 2-D random field. k(s) is the
state dimension at node s.

tree these additional linear functionals can be found at either a parent or child node

or on the offshoot trees connected to those nodes. For a node on the offshoot tree

connected to s, the additional functionals can be found either somewhere on the same

offshoot or on the offshoot trees connected to s`�l or sa. That is, computing the joint

statistics between a parent and child pair on the predicted error model requires the

joint statistics of only a fixed number of nodes on the main tree and their offshoot

trees on the updated error model.

The cost of computing the needed covariances and cross-covariances on the main

tree is O(N) for a fixed k(s) and 0 (N 3/2) for a variable k(s). The cost of computing

the necessary statistics on the offshoot trees' is also O(N) for a fixed k(s) and at

0 (N 3/2) for a variable k(s).

To summarize, in Table 5.1 we list the asymptotic computational complexity of

9Computing the needed cross-covariances between parent and child node pairs on the main tree
2of the updated error model is of order k(s)k(sa) . Since the offshoot trees have a constant state

dimension of 3, computing the cross-covariance between node s on the main tree and its children
is of order 3k(8)2. Subsequent computation of cross-covariances between s on the main tree and
the finer-scale offshoot nodes is of order 9k(s). Given that there are oc v1N__12'(')1k(s) nodes on
the offshoot tree connected to s, the total cost of computing cross-covariances on the offshoot tree
is 3k(S)2 + 9v,"N/2-(I). Summing over all nodes, the cost of the prediction step, for a fixed k, is
OC F1092 3 + T1092 v/N 2 + 9 For a variable k(s), the total

VN 4mk 4m 3k vW/2 which is O(N)M=0 M=0

cost is C)c Elog, 4mN3/2/23m + E1092 4m 3N/22m+9-�,/N_/2m c<N3/2+NlogN+NwhichM=0 M=O
is 0 (N312).
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the multiscale prediction step for the several types of multiscale models considered in

this section. Modeling a 2-D field with constant state dimension without substantial

sacrifice in model fidelity is difficult. Decorrelating large 2-D regions, especially at the

coarser nodes on the tree, generally requires more state variables. Therefore, the cost

figures in the rightmost column in Table 5.1 are of more relevance to us. It is clear that

non-redundant models are computationally more efficient for multiscale prediction.

Asymptotic computation complexity, however, does not paint the full picture. For

instance, reduced-order models are certainly less computationally costly than full-

order models, even though both may be of the same order. The asymptotic complexity

figures ignore the constant factor of proportionality in computational cost associated

with each algorithm, i.e., whether an algorithm grows as 1ON or 100N. Because

of this constant factor and implementation overhead, when comparing models and

algorithms with different growth rate, it is possible that the size of the problem may

need to be very large for a slower growing method to be less costly, e.g., regarding the

complexity of the smoothing algorithm for offshoot non-redundant models discussed

towards the end of Section 5.3.3. In practice, applications in 2-D often focus more on

what size problem can be solved in reasonable amount of time rather than what the

asymptotic behavior of the particular model or algorithm used. Among the several

types of non-redundant models, the reduced-order models with linear interpolation

are the fastest. Non-redundant models with offshoot nodes are also contenders as

they hold the advantage of full representation of field of interest. In the next section,

we will focus on these two types of models and show some results for the iterative

and recursive implementation of our multiscale dynamic estimation algorithm.

5.5 Examples and Results

In Section 4.4, we had shown 1-D examples of size N -_ 64. The added spatial dimen-

sion for 2-D problems makes the comparison of our multiscale estimators with optimal

ones much more difficult. Solving the Riccati equation for the optimal estimator and

the steady-state error covariance or the Lyapunov equation for the steady-state per-
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formance of the suboptimal multiscale estimator are computationally intensive for

systems not much larger than the 17 x 17 examples we have shown, even though the

benefits and advantages of using multiscale estimators are to be seen for much larger

problems.

In this section, we showcase two diffusion examples in more detail. The first is the

diffusion example on a toroid, which we have used so far in this chapter. The other

is a pinned cooling sheet, which represents a more realistic setup, for instance, for a

radiator fin. We continue with the single measurement case, but add a multiple mea-

surement case and other variations, such as temporally subsampled measurements.

We show results for the iterative implementation of steady-state multiscale estimators

as well as recursive implementation results for time-varying systems. We compare the

several types of non-redundant models that we discussed before.

5.5.1 Iteratively Implemented Steady-State Estimators

First, we show several examples of suboptimal steady-state multiscale estimators that

are implemented iteratively using the multiscale recursive algorithm. The iterative

procedure does not assume the availability of the exact steady-state prediction error

covariance PP1 It starts from a model realized from the steady-state process co-

variance P, and iteratively computes the predicted error models. The procedure is

terminated at about one time constant of the slowest mode of the optimal steady-

state estimator. We then solve the Lyapunov equation (3.36) for the steady-state

performance of the multiscale suboptimal estimator. The optimal steady-state error

covariance ilp is explicitly solved to allow comparisons with the suboptimal estima-

tors.

Single Measurement

We continue the 17 x 17 examples shown previously for a 2-D diffusion process on

a toroid with a single measurement at (6,7). The FVR of the optimal steady-state

estimator was shown before in Figure 5-11(a). Here, we compare the steady-state
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Figure 5-18: Performance of the steady-state multiscale estimators for a 2-D diffusion
process on a toroid with one point measurement at (6, 7). The percent degradation in
FVR with respect to the optimal estimator of the suboptimal steady-state multiscale
estimators using (a) a full-order non-redundant model, (b)-(c) a reduced-order model
with linear interpolation, (d)-(e) a reduced-order model with statistical interpolation,
and (f) a non-redundant model with offshoot nodes. The boundary points modeled
on the reduced-order models or the main tree of the offshoot model are subsampled at
rate of 4, 3, 1 or 8, 3, 1 at scales 0 - 2, as indicated. (TCK(,,,) -_ 1654 steps - 0. 0661 sec,
iterations terminated at step 1800, �3 = 1, SNR -_ 0 dB, A-F = 4 x 10-5.)
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performance of several suboptimal multiscale estimators. Figure 5-18 depicts the

percent degradation in FVR of the iterative derived suboptimal multiscale estimators

with respect to the optimal. In panel (a), we see that the multiscale estimator using

a full-order non-redundant model performs no more than 1% worse than the opti-

mal. This result, as well as later ones for the full-order models, confirms our findings

that the exact multiscale models built for MRFs and the multiscale recursive algo-

rithm yield high-quality suboptimal steady-state multiscale estimators for diffusion

processes. The iterative procedure for constructing a multiscale steady-state estima-

tor works well given that the full-order model adequately captures the estimation

error statistics.

The more interesting question in 2-D is how much we may reduce the state di-

mensions of the multiscale models and still obtain reasonable steady-state estimator

performance. In Figures 5-18(b)-(e), we show the performance results of four estima-

tors using reduced-order non-redundant models whose linear functionals are spatially

subsampled boundary points, the same as those used in Figure 5-12. We use the

sampling rate as a label to distinguish the different models in the figure. The skipped

boundary points are interpolated with a simple linear interpolation scheme for the

estimators in panel (b) and (c) and with a statistical interpolation scheme, whose

parameters are computed from the initial condition P, in panels (d) and (e). We

observe that the two interpolation methods yield comparable performance results.

The statistical interpolation method is more accurate since its interpolation of the

elements of the error field not modeled are better tailored to the statistical structure

of the error process. For both interpolation methods, the lower-dimensional mod-

els, as expected, yield poorer results than the higher-dimensional models, and show

more pronounced artifacts due to interpolation, especially at the root node where

the boundary points are more sparsely sampled. If we use the steady-state process

covariance P, which has correlation length of about four or five pixels, as a guide,

it seems reasonable that a sampling rate of 4 for the reduced-order model yields ac-

ceptable multiscale estimators that are no more than 5% worse than the optimal, as

depicted in Figures 5-18(b) and (d). On the other hand, a rate of 8 yields estimators
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that are much worse.

The performance result for an estimator using the offshoot tree model whose

functionals on the main tree are subsampled at 4, 3, 1 is depicted in Figure 5-18 (d).

Even though we already knew from Figures 5-12 and 5-15 that estimators realized

from the exact P on offshoot tree models yielded poorer performance results, it is still

surprising that the estimator using this more sophistical ed offshoot model performs

poorer than simple interpolation in panels (b) and (d). It must be noted, however,

that around the measurements, where one cares most about the estimation quality, the

degradation in performance for the estimator using the offshoot model is only a few

percent, although in areas far from the measurements, the estimator performs much

worse. The offshoot model may be thought of as a statistical interpolation method

whose interpolation parameters M* (_) and QC (.) are time varying to better match the

statistics of the error field. The use of offshoot trees is based'on the assumption that

sampled boundary points kept on the main tree can cleanly conditionally decorrelate

the offshoot trees. For it to be valid, Q((-) would have to be block diagonal. By

examining the models using statistical interpolation in Figure 5-18(d) and (e), we

find that the Q((.) are not close to block diagonal. It is then not so surprising that

the offshoot models do not perform as well as the statistical interpolation. Rather, it

is surprising that simple linear interpolation can work so well.

For large systems, it is not computationally feasible to solve the Lyapunov equa-

tion (3-36) for the steady-state performance figures for the suboptimal multiscale

estimators. The error variances realized by the multiscale estimator, i.e., what the

estimator believes it is achieving, is used as a proxy. In Figures 5-19 we compare

the optimal steady-state updated error variance with those realized by the multiscale

estimators. The full-order model captures the error variances essentially correctly as

seen in panel (b). The reduced-order models all show obvious artifacts. The vari-

ances realized by the two reduced-order models with linear interpolation are shown

in panels (c) and (d). Both of these overestimate the true magnitude of the error

variances. The variances realized by the reduced-order model with statistical inter-

polation, shown in panel (e), are the most accurate among the reduced-order models.
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Figure 5-19: A comparison between the steady-state updated error variance of the
optimal estimator in (a) and the realized error variances of the suboptimal multiscale
estimators in Figure 5-18. The realized error variances are for multiscale estimators
using (b) the full-order non-redundant model, (c)-(d) the reduced-order model with
linear interpolation, (e) the reduced-order model with statistical interpolation, and
(f) the offshoot model.
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Figure 5-20: (a) The steady-state process variance of a 2-D diffusion process on a
cooling sheet. (b) The FVR of the steady-state optimal estimator with a single point
measurement at (6, 7). (O = 1, SNR = 0 dB, A-F = 4 x 10-1.)

Not surprisingly, the estimator also had the best performance. The offshoot model

underestimates the true magnitude of the error variances.

The performance of the multiscale estimators hinges on whether the models can

accurately capture the error statistics. Since the error statistics depend on system

parameters, such as number and quality of measurements, boundary conditions, etc.,

the performance of the multiscale estimator is influenced by the same parameters. For

example, the same multiscale estimators we have examined in Figure 5-18 perform

worse for estimating a diffusion process on a cooling sheet, such as a radiator fin. The

steady-state process is no longer spatially stationary since one edge of the cooling sheet

is at a fixed temperature and the other three are freely immersed in the coolant. The

steady-state process variance, shown in Figure 5-20(a), is lower near the pinned-down

edge, and higher along the other three edges. The steady-state updated error variance

has a similar shape but dips to lower values near the measurement. The FVR of the

optimal estimator is depicted in Figure 5-20(b).

The iteratively constructed multiscale model using a full-order model is, in fact,

highly accurate. Its percent degradation in FVR with respect to the optimal, shown

in Figure 5-21(a) is less than 1%. However, the reduced-order models faired worse

than for the case of toroidal boundary conditions. This is essentially a modeling issue,

namely that the same reduced-order models are not as good at capturing the error
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Figure 5-21: Performance of the steady-state multiscale estimators for a 2-D diffu-
sion process on a pinned cooling sheet with one point measurement at (6, 7). The
percent degradation in FVR with respect to the optimal estimator of the subopti-
mal steady-state multiscale estimators using (a) a full-order non-redundant model,
(b) a reduced-order model with linear interpolation, (c) a reduced-order model
with statistical interpolation, and (d) a non-redundant model with offshoot nodes.
(TCK(,,z,) - 1874 steps - 0.0750 sec, iterations terminated at step 1800, 1,
SNR - OdB, AT - 4 x 10-5.)
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statistics on a sheet with the added asymmetry due to the non-cyclic boundary con-

ditions. Note that the statistical interpolation method still yields acceptable results,

as seen in panel (c), while the percent degradations in FVR of the estimator using

linear interpolation in panel (b) and the estimator using offshoot model in panel (d)

are only acceptable near the measurement.

With a single point measurement the system is very weakly observable. It is, in

a sense, the worst case situation. The performance of the multiscale steady-state

estimators improve with more measurements, as the examples we show next indicate.

Multiple Measurements

First, we illustrate the estimator performance results with a four-measurement ex-

ample on a toroid. The measurement locations, (6, 7), (3, 12), (10, 5), and (1 1, 14),

are selected such that they are all modeled in the reduced-order models. The FVR

of the optimal estimator has its peaks, i.e., the most reduction in uncertainty in our

knowledge about the process due to measurements, near the measurements, and is not

plotted here. Figure 5-22 shows the steady-state performance degradation of our sub-

optimal multiscale estimators with respect to the optimal estimator. All four perform

better than their counterparts for the one measurement case in Figure 5-18. Again,

the full-order model yields the best and near-optimal estimator performance. The

reduced-order estimators, including the offshoot model, are all within a few percent

worse than the optimal estimator.

The steady-state performance results of multiscale estimators for estimation on

a pinned cooling sheet with four measurements are shown in Figure 5-23. Again,

all four multiscale estimators perform better than their counterparts for the single-

measurement case in Figure 5-18. As in the single-measurement case, estimation

results are poorer on the cooling sheet than those on the toroid. The full-order

model, shown in Figure 5-23(a), again yields the best and near-optimal estimator

performance, validating the iterative method itself. The reduced-order estimators

with interpolations, in panels (b) and (c), show acceptable performance; while the

offshoot model in panel (d) exhibits the worse performance numbers.
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Figure 5-22: Performance of the steady-state multiscale estimators for a 2-D dif-
fusion process on a toroid with four point measurements at (6, 7), (3, 12), (10, 5),
and (11, 14). The percent degradation in FVR with respect to the optimal estima-
tor of the suboptimal steady-state multiscale estimators using (a) a full-order non-
redundant model, (b) a reduced-order model with linear interpolation, (c) a reduced-
order model with statistical interpolation, and (d) a non-redundant model with off-
shoot nodes. (TCK(,,) -_ 782steps - 0.0313sec, iterations terminated at step 1000,
,3 = 1, SNR - OdB, AF = 4 x 10-5.)
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Figure 5-23: Performance of the steady-state multiscale estimators for a 2-D dif-
fusion process on a pinned cooling sheet with four point measurements at (6, 7),
(3, 12), (10, 5), and (II, 14). The percent degradation in FVR with respect to the
optimal estimator of the suboptimal steady-state multiscale estimators using (a) a
full-order non-redundant model, (b) a reduced-order model with linear interpolation,
(c) a reduced-order model with statistical interpolation, and (d) a non-redundant
model with offshoot nodes. (TCK(,,,,) 766 steps = 0.0306 see, iterations terminated
at step 1000, 1, SNR - 0 dB, AT 4 x 10-5.)
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Multiple Prediction Steps for Each Update Step

The results so far on the iteratively implemented steady-state multiscale estimators

suggest that the poorer performance of some of the estimator examples are mostly

due to the reduced-order models' inability to fully capture the error statistics rather

than the effectiveness of the recursive procedure itself. Similar to what we did for

I-D diffusion process, we examine the cumulative effect of the multiscale prediction

steps by temporally subsampling the measurements. Inaccuracies in the multiscale

prediction steps would be amplified by having multiple prediction steps for each up-

date step. Furthermore, the rate of available measurements in practical problems may

indeed be much slower than the particular temporal discretization step size we use

for modeling the dynamics. In Figure 5-24, we show the results for the same cooling

sheet example as in Figure 5-23 except that there is only one measurement update

step for every 100 prediction steps. With fewer measurement updates per unit time,

the reduction in uncertainty in our knowledge about the process due to measurements

is less, as indicated by the lower FVR of the optimal estimator in Figure 5-24(a). In

panels (b), we show the percent degradation in FVR of the estimator using a full-

order non-redundant model. While its performance is not as good as before with

temporally dense measurements, the estimator using the full-order model is still only

a few percent worse than the optimal estimator. The performance plots of the two

estimators using reduced-order models with interpolation, depicted in panels (c) and

(d), show comparable results as before with temporally dense measurements. The

results here confirm effectiveness of the iterative algorithm and that the quality of

the steady-state multiscale estimators depends mostly on how accurately the models

capture the statistics of the estimation error field.

5.5.2 Recursive Implementation

Lastly, we show an example of recursive implementation of our multiscale algorithm

to estimate a 2-D diffusion process using temporally nonstationary measurements.

We compare the estimation results from the Kalman filter with those from estimators
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Figure 5-24: Performance of the steady-state multiscale estimators for a 2-D diffusion
process on a pinned cooling sheet with four point measurements at (6, 7), (3, 12),
(10, 5), and (11, 14) and only one measurement update step for every 100 prediction
steps. (a) The FVR of the optimal steady-state estimator. The percent degradation in
FVR with respect to the optimal estimator of the suboptimal steady-state multiscale
estimators using (b) a full-order non-redundant model, (c) a reduced-order model
with linear interpolation, and (d) a reduced-order model with statistical interpolation.
(TCK(,,,) 927 steps = 0.0371 sec, iterations terminated at step 1000, 1, SNR -
0 dB, AT 4 x 10-5.)
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Figure 5-25: The recursive estimation of a 2-D diffusion process on a pinned cooling
sheet with temporally nonstationary measurements and only one measurement update
step for every 100 prediction steps. (a) The initial values of the process. (b) The
measurement locations at step 900. The number of measurements at each update
step has a Poisson distribution with mean 12. Estimates are shown in Figures 5-26
and 5-27.

using the reduced-order non-redundant models with interpolation. We set the non-

equilibrium initial condition to the temperature distribution shown in Figure 5-25(a),

where one corner of the 2-D field is set to a higher temperature. The measurements

are available once every 100 prediction steps. The number of measurements at each

measurement time is randomly generated as a Poisson process with a mean of 12. At

step 900, for example, there are 14 point measurements whose locations are plotted

in Figure 5-25(b). For convenience, the measurement locations are randomly selected

from the set of elements that are represented on the reduced-order models.

Starting from the same initial conditions, we run a Kalman filter in parallel with

the multiscale estimators using reduced-order non-redundant models with linear and

statistical interpolation. A comparison of the updated estimates after the measure-

ment update step at step 900 is shown in Figure 5-26. The optimal updated estimates

produced by the Kalman filter is displayed in panel (a). The updated estimates from

the multiscale estimators are shown in panels (c) and (e). The differences between

the multiscale and the optimal estimates, shown in panels (d) and (f), exhibit some

artifacts due to interpolation. The estimates from the multiscale estimator using sta-

tistical interpolation are more accurate than those from the estimator using linear
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Figure 5-26: A comparison of the estimation results after the measurement update at
step 900 for estimating a 2-D diffusion process on a pinned cooling sheet with tem-
porally nonstationary measurements and one measurement update step for every 100
prediction steps. (a) Updated estimates of the optimal Kalman filter. (b) Standard
deviation of the optimal updated estimation errors. (c) Updated estimates the sub-
optimal multiscale estimator using a reduced-order non-redundant model with linear
interpolation. (d) The different between the multiscale and the optimal estimates.
(e) Updated estimates the multiscale estimator using a reduced-order model with
statistical interpolation. (f) The different between the multiscale and the optimal
estimates. 1, SNR = 0 dB, A-r = 4 x 10-5.)
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Figure 5-27: A comparison of the estimation results after prediction at step 950
for estimating a 2-D diffusion process on a pinned cooling sheet with temporally
nonstationary measurements and one measurement update step for every 100 pre-
diction steps. (a) Predicted estimates of the optimal Kalman filter. (b) Standard
deviation of the optimal predicted estimation errors. (c) Predicted estimates the sub-
optimal multiscale estimator using a reduced-order non-redundant model with linear
interpolation. (d) The different between the multiscale and the optimal estimates.
(e) Predicted estimates the multiscale estimator using a reduced-order model with
statistical interpolation. (f) The different between the multiscale and the optimal
estimates. 1, SNR - 0 dB, AT = 4 x 10-5.)
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interpolation as seen in panels (d) and (f), but both are well within the standard

deviation of the estimation errors of the Kalman filter.

A similar comparison of the predicted estimates at step 950, which is half way

between the measurement updates at steps 900 and 1000, is shown in Figure 5-27.

The multiscale estimates are exactly propagated in time while the statistics of the

errors are propagated approximately. The diffusion dynamics smooth the predicted

estimates over time. Indeed, the estimates, as plotted in Figures 5-27(a), (c), and (e),

at 50 prediction steps after the previous measurement update, are much smoother

than the updated estimates. The differences between the multiscale estimates and

the Kalman filter estimates are also smoother, as seen in panels (d) and (f), and are

well within one standard deviation of the prediction errors of the optimal filter. The

difference is again smaller for the multiscale estimator using statistical interpolation

than the one using linear interpolation.

5.6 Concluding Remarks

In Chapter 4 we showed that for I-D diffusion, multiscale models built for exact

I-D MRFs can accurately model the estimation errors and result in nearly optimal

multiscale estimators. In this chapter, we analyzed analogous multiscale models for

2-D diffusion. The direct extension from 1-D to 2-D are full-order models designed

to model 2-D MRFs exactly. The performance of multiscale estimators using such

full-order models in all cases are nearly optimal. These results validate the multiscale

recursive estimation algorithm discussed in Chapter 3.

The chief challenge in 2-D is the design of reduced-order models to lessen the

computational cost, while maintaining a minimum level of performance. Unlike I-D

models whose state dimensions are constant, the state dimensions of full-order 2-D

models grows with the size of the field of interest. This dependence increases the

computational complexity from O(N) in 1-D to 0 (N 3/2) in 2-D for the multiscale

smoothing algorithm. It also rendered the multiscale prediction algorithm on internal

models, still manageable at O(NlogN) in I-D, infeasible in 2-D. This leaves non-
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redundant models the only known alternative.

We examined two approaches to reducing state dimensions on non-redundant mod-

els. The first approach models only subsampled boundary points as functionals and

interpolates the skipped ones using either a simple linear interpolation scheme or a

more sophisticated statistical interpolation method by taking advantage of our knowl-

edge of the statistics of the field of interest. The second reduces state dimensions by

extending the tree model with additional offshoot nodes of lower state dimension.

Our experiments in fact show that the former approach is not only faster but also

more accurate. In general, whether and how low-dimensional linear functionals can be

chosen to accurately model a given random field but still allow efficient and effective

multiscale prediction, remains an open research problem.
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Chapter 6

1\4apping 1\4editerranean Altimeter

Data

Applications in oceanography provided the original motivation for this investigation

into multiscale modeling and estimation of large-scale dynamic systems. Data as-

similation with ocean circulation and climate models presents particularly daunting

challenges to the data analysts for several reasons:

• The number of variables to be estimated, given the size of the ocean basins and

the desired resolution, can easily reach hundreds of thousands if not hundreds

of millions, and is too large for conventional statistical estimation methods.

• Precise knowledge of the statistical structure of the ocean is lacking. For data

analysis purposes, the oceanographers often assume a simple Gaussian function

for spatial as well as temporal correlations.

• The dynamic models of the ocean derived from the underlying physics are im-

mensely complicated. However, statistical methods for data assimilation in this

area is so lacking that even the assumption of a simple dynamic model such as

diffusion-advection represents a significant step forward.

Multiscale models and estimation algorithms have previously been employed with

great success in oceanographic applications - Ilf models in mapping altimeter
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data in the North Pacific Ocean [33], and internal models in mapping hydrographic

data [73]. The principal advantages of the multiresolution scheme are its high compu-

tational efficiency, the specification of explicit statistical models for the oceanographic

signal and the measurement errors, and the production of error variances for all esti-

mates at multiple scales.

This chapter details the application of a modified 11f multiscale model for map-

ping the sea level anomaly of the Mediterranean Sea based on TOPEX/POSEIDON

and ERS-1 data. Similar to [33], the oceanographic signal is modeled as a stationary

110 process, where k is the horizontal wavenumberl. Unlike in previous applications,

measurement noise is modeled as the sum of two separate random processes: a Gaus-

sian white noise process, and a correlated process of low wavenumber representing the

uncertainties in the orbital position of the satellite and in the atmospheric load cor-

rections. The correlated measurement noise process is augmented onto the multiscale

model for the oceanographic signal, and is jointly estimated along with the anomaly

signal. Section 6.2 details the specification of the multiscale model employed. The

efficiency of the multiscale scheme allowed the testing of more than 16,000 sets of

hypothesized statistical prior model parameters in order to determine the most likely

parameters. Mapping results with and without low-wavenumber error corrections are

presented and compared in Section 6.3.

The issue of temporal dynamics is sidestepped by assuming the ocean to be static

for the duration of one repeat cycle of the satellite measurements. In [33], temporal

dynamics are taken into account by adjusting the measurement quality, i.e., mea-

surements further from the point in time of interest is assumed to be of a higher

uncertainty. While we are addressing data fusion with a spatial model of the ocean

here, fusing data with a spatial model as well as a temporal dynamics model of the

ocean remains a goal for further research.

'In oceanography literature, the spatial frequency is denoted k and referred to as wavenumber,
rather than f as we have used in the previous chapters.
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6.1 Altimetric Data Assimilation

The study of ocean circulation had traditionally been hampered by the lack of data.

Significant progress has been made in the last ten years thanks in large part to

the accurate satellite data such as those provided by the joint U.S.-French altimet-

ric mission TOPEX/POSEIDON and the European Space Agency ERS-1 satellites.

Measurement data from TOPEX/POSEIDON and ERS-1 exhibit different character-

istics. The repeat cycles of the two satellites are respectively 10 days and 35 days and

the cross-track distances, i.e., distance between two parallel satellite tracks', are 2.80

and 0.7'. The spatial coverage of ERS-1 is denser while the TOPEX/POSEIDON

are more frequent. Further, because of poor tracking, the ERS-1 orbit is determined

with an accuracy of 15 cm, whereas the TOPEX/POSEIDON orbit is accurate to

3 cm [90, 4]3.

The sea level signal represents the height of the ocean surface relative to the

geoid, i.e., the gravitational equi-potential surface at sea level. As the sea level signal

is measured with respect to the geoid, it contains errors in the geoid. Systematic

orbit errors as well as geoid errors have been treated simply as white measurement

noise since the dynamic range of sea surface height is on the order of 100 cm [33]. In

our present application, oceanographers are interested in the anomaly signal, i.e., the

variation of the surface level with respect to its temporal mean. The sea level anomaly

signal, obtained by removing a four-year temporal mean of the sea level signal at

every point is essentially free of any geoid errors, except for those due to lateral orbit

errors 4 over steep topography. The major sources of low wavenumber uncertainty are

the satellite orbit errors [71] and, in the Mediterranean, the atmospheric loading, i.e.,

distortion of the ocean surface due to pressure systems, not removed by the inverse

'An illustration of the TOPEX/POSEIDON and ERS-1 satellite tracks, gridded to the resolution
of the sea level map, is shown in Figure 6-8

'The ERS-1 data used here contain corrections of the ERS-1 orbit errors based on a global
minimization of TOPEX/POSEIDON-ERS-1 crossover differences [87], so its accuracy is similar to
that of the TOPEX/POSEIDON. More in Section 6.3.

4Lateral orbit error refers to the following: The satellite does not repeat its orbit exactly on every
pass but wanders laterally from its nominal orbit by a kilometer or so. Over steep geoid topography,
this wandering translates into a sea surface elevation error because the sea surface reproduces geoid
gradients.
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barometer correction [12, 88].

While the sea level anomaly signal is free of geoid errors, it has a much smaller dy-

namic range, resulting in a poor signal-to-noise ratio [64]: the sea level anomaly signal

is at most 10 cm RMS in the energetic regions of the Mediterranean while the residual

altimeter noise, including orbit and atmospheric load errors, is of order 5 cm RMS

or more. The sea surface maps generated without correcting for the systematic orbit

and atmospheric load errors, show obvious inconsistencies (c.f., Figure 6-4).

Orbit and atmospheric loading errors are removed in practice, along with some of

the oceanic signal, by fitting and subtracting low order polynomials or cubic splines

from each altimeter track so as to minimize track-to-track crossover differences [87, 64,

10, 91, 79, 85, 83], i.e., minimizing the difference of the surface height measurements

from two tracks at the location at which the tracks cross. Measurements corrected

for the low wavenumber errors are then used in some type of interpolation algorithm

to produce a map of the sea surface. The problem with these methods is that they

do not make use of any explicit statistical model for the low wavenumber errors. The

crossover difference minimization algorithms are ad hoc. The estimation of sea-surface

topography and of orbit/atmospheric load corrections are treated as two separate

steps, i.e., the uncertainties in the orbit correction step are not taken into account

when estimating the sea surface topography.

Joint estimation of sea level anomaly and the low wavenumber measurement errors

would allow the uncertainties in the errors to be naturally reflected in the estimates

and vice versa. However, conventional estimation algorithms are not feasible, as the

specification of a statistical model of the sea anomaly in the form of a correlations

matrix would result in an estimation problem of impossibly high dimension. On the

other hand, multiscale Ilf models have previously been used for mapping altime-

ter data in the North Pacific Ocean by [33] with great success, although substantial

modifications are needed here to allow for the joint estimation of sea level anomaly

and orbit/atmospheric loading errors. The approach developed here provides explicit

statistical models for the sea level anomaly and for the orbit and atmospheric load er-

rors, and produces estimation error variances for all estimates at multiple scales. The
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major advantage of the multiresolution scheme is that its numerical implementation

is extremely efficient, and therefore the estimation can be repeated a large number of

times in order to test different statistical models and to obtain consistent results. It

is flexible enough to accommodate two datasets - TOPEX/POSEIDON and ERS-1

- that have different characteristics.

6.2 Multiscale Modeling of the Anomaly Signals

6.2.1 Statistical Models of Altimeter Data

An abstract statistical description of the TOPEX/POSEIDON or ERS-1 altimeter

data may be written as follows:

Measurement equation: h(t) - ((x, y, t) + v(t) (6-1)

Sea surface prior covariance: P(xt, y, 9, t, E [((x, y, t) - ((.t, 9, �] (6.2)

Measurement error covariance: R(t, E [v(t) - v(O], (6.3)

where ((x, y, t) represents the oceanographic sea level anomaly signal taken at time

t and location (x, y), and h(t) represents the altimetric measurement of ((x, y, t)

subject to noise v(t) which includes residual tidal, atmospheric, and orbit errors.

The sea-surface height ( and the measurement noise v are modeled to be zero mean

(i.e., systematic signal components are assumed to have been removed), so that

E [v(t)] = 0, E [((x, y, t)] = 0. R(t, 0 and P(X, It) Y7 97 t) 0 represent the second-order

prior statistics of v(t) and ((x, y, t), respectively. Solving for the time-varying process

( (x, y, t) based on the prior statistics and measurements in (6.1)-(6.3) is extremely

difficult, predominantly due to the complicated ocean surface dynamics captured by

P(x,:t, y, 9, t, 0. The lack of precise knowledge of P(x, �tYPto compounds the

problem. Instead, as a first step towards ultimately solving the dynamic estimation

problem, we consider the ocean surface to be temporally static (a reasonable assump-

tion for the large-scale, baroclinic modes of variability over periods up to ten days in
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length) and statistically spatially stationary:

E [((x, y, t) - ((j�, 9, 0] = P(x -:t, y - (6.4)

Motivated by spectral analyses of the altimetric data and earlier work [93, 33, 45, 36]

we model the surface ((x, y, t) as a Ilk" process, where k is the horizontal wavenum-

ber.

Studies [44, 90, 87] of the measurement noise suggest that the TOPEX/POSEIDON

or ERS-I noise process v(t) can be modeled as the sum of two separate random pro-

cesses:

V M - VWGN M + VCORR M (6.5)

On the one hand, the random measurement error of each altimeter has a very short

correlation period and is here modeled by a Gaussian white noise process vWGN (0'

On the other hand, the uncertainties in the orbital position of the satellite and in the

atmospheric load correction are a correlated process of low wavenumber, represented

here by vC01R M -

For relatively small geographic areas such as the Mediterranean Sea, the low-

wavenumber error may be modeled as a low-order polynomial, leading to the following

noise model:

V (0) -:-:: VWGN M + aj (i) ti, (6.6)
j=0

where J represents the order of the polynomial correction, and aj(i) represents the

unknown jth-order polynomial coefficient for satellite track i. We model the individ-

ual coefficients aj(i) as being uncorrelated with one another and with - that is,

each track is modeled as having independent errors. Although the estimator is capa-

ble of polynomial corrections to arbitrary degree, only a first-order (J - 1) correction

is applied, i.e., to estimate bias and tilt corrections only. This is consistent with the

low-order corrections applied by other authors (J = 0 used in [64]; J = I used in [91])

so as to minimize the attenuation of the low-wavenumber oceanographic signal.

Earlier altimetric optimal interpolation efforts have either ignored vCORR [33] or
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tried to remove it via a preprocessing step [64], i.e., choosing the polynomial correc-

tion coefficients that minimize differences near satellite track crossovers. This latter

approach requires ad-hoc assumptions and fails to take into account the posterior

error statistics of the preprocessing step when estimating ((x, y, t). In contrast, the

multiscale models, to be described next, is flexible enough not only to model the

ocean surface but also to specify the noise model (6.5) explicitly.

6.2.2 Multiscale Models

In principle, the optimal interpolation (minimum variance) solution for the above esti-

mation problem could be obtained by matrix inversion within the conventional linear

least squares estimation framework. However, the fields computed in Section 6.3 are

100 x 225 pixels in size and directly estimating such fields would require the inver-

sion of a 22, 500 x 22, 500 matrix. In practice, such an approach is computationally

infeasible. Multiscale external models, as described in Section 2.3.5 have been ap-

plied successfully in a number of large estimation problems including mapping the

sea surface height in the Pacific Ocean [33], with a modest amount of computational

effort, while still computing estimation error statistics. The significant challenge here

is to develop multiscale models which capture the desired statistics of not only the

sea level anomaly signal but also the systematic portion of the measurement errors.

The correlated noise term in (6.5) and (6.6), which was ignored in the model of [33],

required a nontrivial effort to model. The resulting model will be capable of jointly

computing the sea surface and the orbit/atmospheric load errors.

The ocean surface of interest is modeled as the finest scale of a multiscale stochastic

process z(s) defined on a quad-tree, i.e., a tree on which each node has four descen-

dents (except those nodes on the finest scale). The process z(s) and its associated

measurement process h(s) are modeled as

z (s) = A (s) z (s,�y-) + B (s) w (s), (6.7)

h (s) = C (s) z (s) + v (s), (6-8)
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where E [z(O)] _- 0, P(O) = E [z(O) z'(0)], E [v(s)] = 0, R(s) = E [v(s) v'(s)], and

w(s) is a unit-variance white noise process. For our altimetric problem, measurements

exist only at the finest scale of the tree. The multiscale state z(s) is made up of bias

and tilt parameters for each track, along with a multiresolution process ((s) which

represents the ocean surface ( (x, y, t):

z(s) = [((s) ao(l) al(l) ... ao(M) al(M)]T, (6-9)

where M counts the number of satellite tracks present in the measurements and

where we have assumed that J = 1, i.e., a first-order polynomial correction for the

low-wavenumber errors. As in [33, 36], ((9) is a multiresolution description of the sea

surface height: on fine scales of the tree ((s) captures the local sea surface height and

on coarse scales ((s) captures broad averages. The actual software implementation

uses a reduced order z(s). In particular, only those aj(i) corresponding to tracks

which are measured by children of s need to be kept in z(s). However, for clarity we

shall retain the state definition of (6-9) throughout this chapter.

Given this definition of the state, (6.9), three quantities must be specified to

complete the multiscale model: (i) a prior covariance, P(O), at the root node of the

[aj(,)2];tree consistent with E z (ii) a multiscale state model, A(S) and B(S), consistent

with (6.9) and the 11kP prior on ((s); and (iii) a multiscale measurement model, C(S)

and R(s), consistent with (6.1), (6.6), and E [V"' (t)2].

The prior model P(O) can be written

P(O) -_ diag (E [((0)2 ] E [ao (1)2 ] E [Ce 1 (1) 21 ... E [al (M)2] (6-10)

where E [((0)2 ] describes the prior sea level anomaly variance at the coarsest scale of

the multiresolution tree.

For the sea surface ((s) we use the 11kP multiscale model of [33]: the scale-

to-scale variations in ((s) are random with exponentially decreasing variance. The

ocean surface has been observed to have 1/0-like power spectrum [45]. As explained

in [33, 36], phenomena with 1/0-like spectra display self-similar scaling properties
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such that the variability of such a phenomena scales geometrically with the spatial

resolution. Such scaling rules are captured in the external models through a scaling

relationship in the gain B(s) for the multiscale process noise. That is,

((s) = ((s,7y) + B,,2('-M)-(s)12W(S)' (6-11)

where m(s) denotes the scale of node s on the multiscale tree. The particular values

of B, /-t, and E [((0)2] - 2B2 are determined through a set of multiscale likelihood

tests (described in Section 2.2.3). The numbers are shown in Section 6.3. The model

for z(s) due to the aj(z') is simple: the coefficients aj(i) are just copied unchanged

from parent to child. The resulting multiscale model with the combined state of ((8)

and the aj (i) is then

A (s) = I, (6.12)

B(s) = diag (B,,2(1-,u)-(s)/2 0 0 ... 0) (6.13)

While the prior models for the sea level anomaly and for the correlated measure-

ment noise are specified separately as uncorrelated random processes. The coupling

between the two, i.e., joint estimation, comes through the measurement equations.

The multiscale measurements at the finest scale of the tree, consistent with (6.1)

and (6.6), are defined:

((X'Y'tJ) + ceo(ii) + ai(ii) - (1(s) - 37')

C (8) z (8) (6.14)

(X, Y, tN) + aO (iN) + al (iN) (8) - 37)

where N is the total number of tracks, il, - - -, iN, which pass through the finest-scale

pixel corresponding to node s. At a finest-scale pixel where measurements exist, each

measurement is one row in (6.14). The N measurements are taken at times t,.... i tN)

and I(s) represents the latitude in degrees at which these measurements were taken.

Since the satellite measurements are taken sequentially in time and in space, the
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latitude, 1(s), relative to 37'N is used as a convenient surrogate for time, t, in (6-6.

This replacement is possible because along each track the measurement latitude is a

nearly linear function of the measurement time. The correlated measurement noise

in (6.5), treated as a low-order polynomial, is part of the multiscale state z(s), while

the remaining measurement noise is v(s). Thus,

R(s) = diag (EIVWGN (tl)2] ... EIVWGN (tN )2]), (6-15)

where the value assumed by each EIVWGN (t)2 ] along the diagonal of R(s) depends

upon the satellite which took the measurement.

At this point the description of the multiscale model structure is complete, and

it is this model which will be used to compute the experimental results in the next

section.

6.3 Experimental Results

To illustrate the application of the multiresolution estimator described above, we

have mapped sea level anomaly TOPEX/POSEIDON and ERS-1 data in the Mediter-

ranean. TOPEX/POSEIDON data were processed and interpolated onto a fixed 6 km

equidistant alongtrack grid by [63]: they include the standard environmental, inverse

barometer, and orbit error corrections. Tidal corrections are from the CSR3.0 [29]

model. ERS-1 data are from the files distributed by AVISO [86]. In addition to the

standard environmental corrections, the AVISO data include corrections of the ERS-1

orbit errors based on a global minimization of TOPEX/POSEIDON-ERS-1 crossover

differences [87]. (This ad hoc orbit correction is not necessary since the multiresolu-

tion estimation framework can accommodate different bias and tilt priors, E [OZj (i) 2 ],

for each altimeter track. Nevertheless, sufficient orbit/atmospheric load errors remain

to demonstrate the power of the multiresolution estimator.) A four-year (one-year

for the ERS-1 altimeter) mean sea level is computed and subtracted from the data in

order to obtain sea level anomaly.
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The following subsections compare and contrast sea level anomaly maps of the

Mediterranean Sea produced using several different methods: a) simple interpola-

tion, b) multiscale estimation without polynomial corrections as in [331, c) multiscale

estimation with first-order polynomial corrections as discussed in Section 6.2, and d) a

suboptimal space-time optimal interpolation algorithm. Each map is computed from

the measurements of one 10-day TOPEX/POSEIDON repeat cycle; in particular, we

used TOPEX data from repeat cycle 24 (May 9-19, 1993) which exhibited significant

correlated measurement errors and visually demonstrates the removal of residual or-

bit/atmospheric load errors. Finally, we show results from a joint TOPEX/ERS-1

estimation.

In each case, the anomaly map is a grid of 100 x 225 estimates. The multiscale

estimates are computed on a tree having 9 scales, which corresponds to a finest scale

of 256 x 256 pixels in size; each pixel is square, 23km on a side. Our algorithm

requires that the measurements be defined on the finest scale of the multiscale tree

and therefore the data need to be repositioned by up to ±1/2 pixel width. For this

reason the pixel size must be chosen sufficiently fine for this repositioning to be trivial.

The associated map is then just a particular 100 x 225 pixel subset of the finest scale.

Prior statistics were obtained empirically from TOPEX/POSEIDON repeat cycles

3 to 161 (October 1992 to February 1997) and from ERS-1 repeat cycles 6 to 18

(October 1992 to January 1994).

6.3.1 Prior Statistics

As mentioned earlier, the efficiency of the multiresolution estimator permits the test-

ing of a large number of hypothesized statistical prior models. We conducted a

series of tests to determine the most likely prior model parameters [68, 35]. (In all,

more than 16,000 tests, one test per hypothesized parameter setting, of the Mediter-

ranean sea level anomaly were created to obtain the results summarized below; each

test required about one tenth the computational effort of the estimates which fol-

low.) Figure 6-1 displays the optimal value for the white measurement error variance,

E [V"' (t)2], for individual repeat cycles of each of the three altimeters. These values
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Figure 6-1: Optimal standard deviation for the measurement noise of the TOPEX,
POSEIDON, and ERS-1 altimeters.
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Figure 6-2: Optimal oceanographic model parameters of the measured sea level
anomaly signal for TOPEX data in repeat cycles 18 through 161. The horizontal axis
plots B, the standard deviation of ((s) at the coarsest scale, and the vertical axis
plots the spectral exponent, p in (6.13). The dashed line plots B,,2(1-/'),3 = constant;
the distribution of points along and across the curve reflect coarse-scale and fine-scale
variability, respectively.

are determined by computing the statistical likelihood of the satellite data and the

multiscale prior model for a variety of choices of E [V"" (t)2]; the optimal choice is

the one corresponding to the greatest likelihood. The results are unambiguous: they

suggest measurement noise standard deviation values of 3 cm, 6 cm, and 6.5 cm for

the TOPEX, POSEIDON, and ERS-1 altimeters, respectively.

Figure 6-2 displays the results of jointly optimizing the model parameters B" and

p in (6.13), based on the measurement noise values established for TOPEX in the

previous paragraph. (The data are distributed along the exponential B02(1 -p)-3
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Map RMS of Estimate (cm) RMS of Std. Error (cm)

Map 1: B,, 2.5, 1.24 4.771 3.024

Map 2: B,, 3.5, 1.40 4.932 3.142

Map 3: B, 4.5, 1.53 5.014 3.183

(Map 3 - Map 1) 0.344 0.277

Table 6.1: Sensitivity of the multiscale estimates and error statistics to the multiscale
model parameters for TOPEX repeat cycle 24. These figures imply an estimate
sensitivity of 3.5% and a standard error sensitivity of 4.4%, per unit of B,.

constant, shown as a dashed line in Figure 6-2. The distribution of points away from

the dashed line reflects fine-scale statistical variability while the distribution along the

line reflects coarse-scale variability. Essentially, the multiscale decomposition allows

fine-scale statistics to be determined in great detail, whereas coarse-scale statistics

are subject to larger uncertainty.) Despite this spread, Figure 6-2 suggests that

B,, = 3.5 cm and 1-t - 1.4 constitute a reasonable choice as prior model parameters.

Table 6.1 shows the results of a sensitivity test for this multiscale model: the estimates

and error statistics are not particularly sensitive to the choice of model, varying by

3.5% and 4.4%, respectively, per I cm change in Bo and corresponding change in A

(about 0.15) along the dashed line plotted in Figure 6-2.

Figure 6-3 displays the optimal bias and tilt coefficient standard deviations, with

the prior model and measurement noise parameters set as determined in the above

two paragraphs. The most striking feature is the seasonal modulation of the opti-

mized values. During the summer months, the bias is on the order of 2.5 cm, but

it increases to 4-8 cm during the winter. This seasonal modulation is consistent

with the hypothesis that the low-wavenumber error budget in the Mediterranean is

dominated by relatively small orbit errors during the summer months and by larger

atmospheric load and other environmental correction errors during the winter months

when more and stronger storm systems move through the region. The tilt standard

deviations demonstrate a similar, although less pronounced, variation, going from
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Figure 6-3: Optimal standard deviation of the bias and tilt coefficients, (ao (i)) and
(a, (i)) in (6-6), for each TOPEX. repeat cycle. The dashed lines show four-month
averages.
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TOPEX measurement noise variance, E [v,,, (t)']: (3 CM)2

ERS-1 measurement noise variance, E [V", (t)2]: (6-5 CM)2

Bias variance, E [ao (i)2]: (4 CM)2

Tilt variance, E [a, (i)2]: (0.4 cm/' latitude)2

Spectral slope, p, in 110 model: 1.4

Coarse scale standard deviation, B,,: 3.5 cm

Mean sea level anomaly variance, E [((0)2]: 25 cm 2

Table 6.2: Prior model parameters for multiresolution estimates of TOPEX repeat
cycle 24.

about 0.3 (cm/' latitude) in the summer months to about 0.7 (cm/' latitude) in the

winter months. The actual bias and tilt statistics chosen will clearly depend on the

repeat cycle being studied.

Table 6.2 summarizes the prior statistics which we used in the multiscale process-

ing of data from repeat cycle 24; the various results are described and contrasted in

the following subsections.

6.3.2 Basic Interpolation

Figure 6-4 displays the coverage of the TOPEX altimeter and a surface height anomaly

map obtained using a simple interpolation scheme [9, Section 12-3] that iteratively

applies an FFT to fill the gaps between the TOPEX altimeter data locations. The

points in the gaps are first approximated with the average, i.e., the D.C. component,

of the available data. An FFT is applied, followed by an inverse fast Fourier trans-

form (IFFT) on the first two Fourier coefficients. The results, which contains only

the lowest two frequencies, are used to fill the data gaps. The procedure is repeated

with one more Fourier coefficient kept for the IFFT at each iteration until all fre-

quencies in the FFT are added to the data gap. This approach does not attempt

to remove correlated measurement errors, nor does it produce any sort of estimation

error statistics.
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Figure 6-4: Top: Mediterranean coverage of the TOPEX altimeter for the period
May 9-19, 1993 (repeat cycle 24), with each data point gridded to the finest scale of
the multiscale tree. Bottom: sea level anomaly map for this period created using a
simple interpolation scheme. Contour intervals are 3 cm.
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6.3.3 Multiscale - No Correlated Error Model

Figure 6-5 shows the surface height estimates and associated uncertainties based on

a multiscale model as in [33]: the multiscale model is identical to that described

in Section 6.2 but does not take into account correlated measurement errors, i.e.,

v (i, t) - v,,,, (t) in (6.6). The maps in Figure 6-5 are based on the same TOPEX

data as in Figure 6-4. The results are computed in 50 seconds on a Sun SPARC-10.

On scales in excess of 500 km, the multiscale estimates and those of the interpo-

lated map in Figure 6-4 are similar. However, noticeable differences appear on shorter

scales. In particular, the interpolated map suffers from a very large variability at fine

scales; this variability is considerably ameliorated in the multiscale results of Fig-

ure 6-5 because the prior model constrains the ocean surface estimates. However,

both maps suffer from obvious flaws in the vicinity of altimeter tracks due to low-

wavenumber orbit and atmospheric load errors. In addition to the improved quality

in the estimates, the point that distinguishes this multiscale model from the simple in-

terpolation scheme is the ability to compute estimation error statistics. Qualitatively,

the estimated uncertainty map in the bottom half of Figure 6-4 is not surprising: the

uncertainty is lowest near the satellite measurements and increases as one moves away.

6.3.4 Multiscale - Correlated Error Model

Figure 6-6 shows the surface height estimates and associated uncertainties based

on the multiscale model of Section 6.2 which models the correlated component of the

satellite measurement error as a first-order polynomial. Again, the maps are produced

based on the same TOPEX data as in Figure 6-4. The increase in the multiscale

state dimension, i.e., the dimension of z(s) in (6.9), increases the computational

requirements - 4 minutes on a Sun SPARC-10.

The difference between the correlated error model and its primitive cousin, pre-

sented in the previous subsection, becomes clear when comparing the estimates of

Figures 6-5 and 6-6. The obvious inconsistencies present in the estimates of Fig-

ure 6-5 along the altimeter tracks have largely disappeared in Figure 6-6. Indeed,
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Figure 6-5: Multiscale estimates (top) and standard deviation of uncertainty (bottom)
of sea level anomaly. The maps are based on the same 10-day TOPEX data as in
Figure 6-4, and they do not take correlated errors into account. Contour intervals of
the estimates are 3 cm. Contour intervals of the error estimates are 0.5 cm with the
2 cm contour marked in bold.
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Figure 6-6: Multiscale estimates (top) and standard deviation of uncertainty (bottom)
of sea level anomaly. The maps are based on the same 10-day TOPEX data as in
Figures 6-4 and 6-5, but this time a first-order polynomial model has been used to
remove the correlated component of measurement error along each satellite track.
Contour intervals are as in Figure 6-5.
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whereas the dominant features in the estimates of Figure 6-5 (and also of Figure 6-4)

are light and dark lines, each due to the correlated error of a single track, the es-

timates of Figure 6-6 most prominently reveal broad regions of higher or lower sea

surface elevation, with the satellite tracks appearing only as secondary features re-

suiting from the higher accuracy (smaller uncertainty) of the estimates in the vicinity

of the measurements.

In addition to the error statistics of the surface, shown in Figure 6-6, it should

be pointed out that the error statistics of the correlated measurement error are also

computed, i.e., the error statistics of the coefficients aj(i) in (6.6).

6.3.5 Suboptimal Space-Time Interpolation

The map and uncertainty estimates of Figure 6-6 can also be compared and con-

trasted to those of Figure 6-7 which were produced using suboptimal space-time

interpolation [4], and which are an example of maps that have been used to study

Mediterranean circulation [4]. The interpolation algorithm starts from the usual

LLSE formulation

h -_ FC + v, (6-16)

where C is the ocean surface level at all spatial grid points over all time, h is mea-

surements over all time, F is a selection matrix picking out those element of C where

a measurement is made, and v is the measurement noise. The linear least squares

estimates and the associated estimation error covariance are

PChPh_'h, (6-17)

Pe = E PC - PChP-l pT (6.18)h Ch7

where PCh = E [Ch T], PC = E [CCTI, P, -_ E [hh T] , and Each entry of

PC is derived from an analytical expression written as the product of a polynomial

spatial correlation term and a Gaussian temporal correlation term, both of which

are empirically obtained [4]. Clearly, (6.17) and (6.18) are computationally infeasible
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Figure 6-7: Maps of sea-level anomaly (top) and normalized mapping error variance
as a percentage of the total signal variance (bottom) for a sub-optimal space-time
optimal interpolation scheme. The maps are based on the same 10-day TOPEX data
as in Figures 6-4, 6-5, and 6-6. Contour intervals are 3 cm for the estimates and 20%
for the uncertainty. The white areas in the sea-level anomaly map (top) are values
outside of the range of the contour intervals, which is the same as those in Figure 6-5.
(Courtesy of Nadia Ayoub and Pierre De May.)
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due the high dimensionality of both and of h. The first approximation made in

the interpolation algorithm avoids the matrix inversion P-1 by replacing it with Qh,

whose (ij)-th element is the reciprocal of the (i, ')-th element Of Ph [89]. Further

reduction in computation is attained by considering only those measurements that fall

into a "sphere of influence" [4]. That is, each element of ((x, y, t), is computed using

a different subset of h within a spatial decorrelation scale of 150 km and temporal

decorrelation of 15 days. No correlation is assumed outside of this sphere and thus

no measurements outside are used for estimation of ((x, y, t).

The qualitative difference between the multiscale and the space-time interpolation

maps results primarily from the use of different statistical priors. For the multiscale

maps, the ocean is modeled as the 110 process described earlier which makes al-

lowance for correlations at multiple scales. The space-time interpolation maps were

obtained assuming a spatial decorrelation scale and a temporal decorrelation scale

beyond which no correlation is assumed. We have compared a series of maps for

TOPEX/POSEIDON repeat cycles 2-75 created using the multiscale interpolation

scheme with maps created using the space-time interpolation scheme. The conclusion

is that both sets of maps are in general consistent to within the uncertainty of the

multiscale estimates. The major difference between the two interpolation schemes lies

in the estimates of uncertainty which are a very sensitive function of prior statistical

assumptions. On the one hand, the decorrelation scales for the space-time interpola-

tion scheme were chosen somewhat arbitrarily to produce reasonable-looking results.

On the other hand, the computational efficiency of the multiscale estimates permitted

a systematic search for a set of statistical parameters which are consistent with all of

the available data. Realistic estimates of uncertainty are of primary importance for

quantitative studies of the circulation and for blending the altimeter data with other

observations or with model output.
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Figure 6-8: Additional coverage provided by the ERS-1 altimeter for the period May

9-19, 1993 (repeat cycle 24), concurrent with that of Figures 6-4, 6-5, 6-6, and 6-7.

The small dots indicate tracks of the TOPEX altimeter while the larger dots indicate

ERS-1 tracks- the dots are shown gridded to the finest scale of the multiscale tree.

6.3.6 Multiscale - Joint TOPEX/POSEIDON-ERS-1 Esti-

mation

One final application will demonstrate the ability of our model to fuse TOPEX/

POSEIDON and ERS-1 data. Since the ERS-1 repeat cycle spans 35 days, only

the subset of ERS-1 measurements falling within the 10 day period of TOPEX/

POSEIDON repeat 24 were used. The additional coverage provided by the ERS-

I altimeter during that period is illustrated in Figure 6-8. Figure 6-9 shows the

resulting estimates and error statistics, computed using the correlated measurement-

error model of Section 6.2. The inclusion of the ERS-1 data introduces additional

tracks, hence additional aj(i) coefficients, hence a higher multiscale state dimension.

Therefore estimates and error statistics are computed in about 5 minutes on a Sun

SPARC-10, as compared to 4 minutes without the ERS- I measurements. The addition

of the ERS-1 data does not substantially modify the estimate of sea level anomaly.
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Figure 6-9: Multiscale estimates (top) and standard deviation of uncertainty (bottom)
of sea level anomaly. The maps are computed from TOPEX and ERS-I data using
the same multiscale model as that used to create Figure 6-6. Contour intervals are
as in Figures 6-5 and 6-6.
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However, the reduction in the uncertainty is significant over most of the domain.

Since the ERS-1 measurements are of poorer quality, error variation reduction is less

dramatic around the ERS-I tracks than that around the TOPEX/POSEIDON tracks.

6.4 Concluding Remarks

Most of the past efforts [18, 66, 331 with respect to the multiscale framework have

concentrated on developing models and on understanding the statistical properties of

the framework. We now believe that our understanding has improved to the point

where our framework can make real scientific contributions and be used by other

researchers as a tool for solving related estimation problems [73, 72].

The particular mapping example discussed in this chapter assumes a model on

a square grid which is stationary, 1/k-like, and static in time. The assumption of

a stationary model on a square grid admittedly restricts this software to regional

investigations, since at ocean basin scales the curvature of the earth is inconsistent

with such a model. The use of a I/f -like prior model leads to a simple model in our

multiscale framework. Other prior models, such as the subsampled internal models

used in [73], are possible, but require more complicated multiscale implementations.

Finally, the assumption that the ocean is static limits the time window of measure-

ments to be used in producing a single map. However, three aspects of the multiscale

method lend themselves to processing dynamic data:

1. The computational efficiency of the framework makes it practical to compute

large numbers of maps, successive in time, which could then be interpolated.

2. The present framework's tolerance for nonstationarities allows the definition of a

time-varying measurement noise variance. For example, (6.15) can be modified

such that the diagonal elements of R(s) take the form

E [VW" (t,)21 + o(It, _ t. 1) (6.19)

where O(Iti - t,,I) is a positive, monotonically increasing function, and t, is a
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given time origin. Such a definition of R(s) would have the effect of down-

weighting measurements which lie away from the time origin t" [36].

3. In principle an oct-tree could be constructed - multiscale in two space dimen-

sions and one in time. This would be a very elegant solution to the nonstation-

arity issue. However, the development of efficient models on such trees presents

formidable challenges and is the subject of ongoing research.

It must be pointed out, however, that the regional and time-stationary limitations

are inherent in our particular chosen model, not in the multiscale framework itself.

The development of nonstationary [33, 36] or temporally dynamic multiscale models

is also the subject of ongoing research. The primitive development of multiscale

dynamic estimation algorithms described in the previous chapters unfortunately have

not yet reached a point of sophistication and maturity to effectively deal with an

estimation problem as complex and as large as the ocean.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis we have developed a new approach to suboptimal recursive estimation

of space-time dynamic systems. The point of departure for our work is the basic

equations of Kalman filtering, which can be prohibitively complex because of the

growth in computational complexity with the dimensions of the spatial domain of

interest. Indeed this is one of the most significant challenges faced in data assimila-

tion of remote sensing data for large-scale geophysical studies. Our solution to this

problem involves making use of the observation that each update step in recursive

estimation can be viewed as a static spatial estimation problem in which the errors in

the predicted estimates are estimated based on the latest measurement innovations.

Thus, rather than explicitly propagating the full error covariance for this spatial pre-

diction error field, we consider propagating a model for these estimation errors. In

particular, rather than using standard models for these error fields such as Markov

random fields (MRFs), we have chosen to use multiscale models, which can lead to

extremely fast algorithms for estimation. Propagating the error field model through

the update step is exactly the same as deriving the a posteriori error model in static

estimation, and is known. The major challenge in applying the multiscale recursive

estimation methodology is in developing a method for propagating multiscale error

field models through the mixing due to the temporal dynamics of the process being
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estimated.

We know from multiscale internal realization methods that constructing a multi-

scale internal model, i.e., computing the model parameters, requires a certain set of

covariances and cross-covariances among states at nodes in the tree model. Such re-

quired statistics in the predicted estimation error model can be derived from a larger

set of covariances and cross-covariances among nodes in the updated estimation error

model. The mixing due to temporal dynamics determines what set of statistics in the

updated error model must be computed. The cost of computing this set of statistics

is also determined by the choice of linear functionals that define the states in the error

models. The linear functionals must satisfy the dual objectives of not only accurately

modeling the estimation error statistics for a given dynamic process and measure-

ment configuration but also minimizing the computational cost of propagating the

error model through the prediction and update steps.

We examined 1-D and 2-D diffusion processes in detail. We found that the inter-

nal models originally designed for modeling MRFs are able to accurately model the

steady-state estimation errors as well as the steady-state process. However, the in-

ternal models do not facilitate a computationally efficient multiscale prediction step;

that is, the required set of statistics on the updated error model is costly to compute.

This difficulty leads to the development of the class of non-redundant models, in which

the linear functionals are better distributed to allow more efficient calculations of the

required set of statistics. The estimation results obtained indicate that near-optimal

performance can be achieved using this multiscale recursive estimation procedure.

The quality of the suboptimal multiscale estimators hinges mostly on the accuracy

of the models for the estimation errors. Where the models are highly accurate, e.g.,

models for I-D diffusion and full-order models for 2-D diffusion, the multiscale esti-

mators are nearly optimal. The challenge lies in building lower-dimensional models

that further reduce computational cost yet still accurately model the error field. The

reduced-order non-redundant models with sampled boundary-point linear functionals

introduced for 2-D diffusion represents one method of trading off estimator perfor-

mance for computational efficiency.
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While the multiscale recursive algorithm and the non-redundant models have been

applied successfully to I-D and 2-D diffusion processes, with satisfactory estimation

results for the relatively small examples we have shown, the real benefits of this

methodology are to be seen in truly large-scale estimation problems. One such prob-

lem is the estimation of ocean surface height in the Mediterranean Sea using satellite

altimetric measurements. Following the strategy of similar problems examined before

for the Pacific Ocean, we use the highly efficient and low-dimensional Ilf model as a

prior model for the Mediterranean sea level anomaly signal. The particular problem

we addressed here is the treatment of the correlated component in the measurement

noise, which is augmented as a part of the multiscale states and jointly estimated with

the sea level anomaly signal. Sea level maps generated from models that take the

correlated measurement noise into account are free of the obvious artifacts present in

maps generated from models that do not. Temporal dynamics are taken into account

by adjusting the measurement quality, i.e., measurements further from the point in

time of interest are assumed to be of higher uncertainty. The use of Ilf for the

modeling of the sea level signal and the complexity of the ocean dynamics makes

the direct application of the multiscale recursive estimation premature at this point.

A number of issues regarding multiscale modeling and prediction, which we discuss

next, must be addressed before such application is possible.

7.2 Open Problems and ]Future Directions

7.2.1 Multiscale Prediction

The multiscale recursive estimation algorithm developed in Chapter 3 takes advan-

tage of the fact that the states in internal models can be expressed as linear functions

of the fine-scale variables where the field of interest is placed. States in non-redundant

models are themselves elements of the field of interest. Temporal dynamics, specified

for the field of interest, can then be used to express the temporal relationship between

the states in the predicted error model and states in the updated error model. The
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ability to write this temporal relationship for the state variables in the error models

allows us to deduce the necessary statistics for the predicted error model from statis-

tics for the updated error model. On the other hand, in many of the oceanographic

applications, 11f external multiscale models are used. One wide-open area of research

that this thesis has not addressed is multiscale prediction for external models where

states at the coarser nodes cannot be written as linear functionals of the field of the

interest. The temporal evolution of the coarser states must be specified via other

means, and must be consistent with the dynamics specified for the field of interest,

usually modeled at the finest scale.

The multiscale recursive estimation algorithm assumes a fixed set of linear func-

tionals. In the iterative implementation of the algorithm for constructing a steady-

state estimator, this set of functionals is assumed to be the "correct" functionals for

the steady-state prediction errors. The justification is that even though the func-

tionals may not be the best set for the initial conditions, they are the "correct" set

for the steady-state model, to which the iterative procedure will eventually converge.

For the recursive implementation of the algorithm, the justification is that the same

set of functionals may be robust enough to capture the time-varying error statistics

or that the error statistics do not change very much over time, both of which are

true for the I-D and 2-D diffusion examples we encountered. A more sophisticated

recursive algorithm can make use of time-varying linear functionals and fine-tune the

accuracy of the error model for the time-varying changing error field. For example,

for reduced-order internal models or non-redundant models, we may choose to sam-

ple linear functionals more densely near measurements, where more details of the

statistical structure may need to be captured. If the measurement locations change

over time, then the locations around which the functionals are sampled more densely

should also change over time. For another example, refer to the CCR generated func-

tionals for the steady-state 2-D diffusion process in Figures 5-1 and 5-2 and those

for the steady-state prediction errors in Figure 5-5. If the recursive estimator is ini-

tialized from a steady-state process P, and converges to PP, it is conceivable that

the linear functionals we use to model the error field in a recursive procedure should
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evolve from the ones in Figures 5-1 and 5-2 to the ones in Figure 5-5.

The use of non-local linear functionals for multiscale prediction is appealing be-

cause, as we saw in Section 5.3.1, for a given limit on state dimensions, i.e., when

reduced-order models are desired, properly chosen non-local functionals, e.g., by CCR,

are better at capturing the conditional correlations of the field of interest and yield

better estimators. Whether multiscale prediction is feasible for non-local functionals

centers on if and how (3.27) can be written succinctly for non-local functionals; that

is, whether the non-local functionals are almost the left eigenvectors of the dynamics

matrix Ad- We mentioned in Section 3.3.3 that non-local functionals of simple aver-

ages and end-point functionals are almost left eigenvectors for I-D diffusion. It is not

known, though, how multiscale prediction can be done for more general functionals,

such as those computed by CCR.

In Section 3.6.1 we touched upon the issue of convergence of the multiscale re-

cursive algorithm. We noted that there is no compelling reason to believe that the

multiscale model realized from the exact steady-state predicted error covariance PP

is the same as the steady-state model to which the iterative procedure converges.

We have not experienced convergence problems for the multiscale recursive algorithm

with the approximations used in the examples in this thesis. Whether the iterative

procedure converges under more general conditions, under what conditions it con-

verges, and to what steady state it converges are all important theoretical questions

that need to be addressed.

7.2.2 Multiscale Modeling

Multiscale modeling issues and multiscale prediction issues are closely related. The

invention of non-redundant models was aimed primarily at satisfying the requirements

of multiscale prediction. We saw that the different ways of placing the same type of

point linear functionals in internal models and in non-redundant models resulted in

different computational complexity for the multiscale prediction step. The linear

functionals must satisfy a host of other objectives, most of which were discussed and

listed in Section 3.3.3. The challenge in multiscale modeling is one of balancing the
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different and often conflicting objectives. For the diffusion processes we considered

in this thesis, we have fortuitously found a happy compromise that satisfies the two

most important of these objectives. The point linear functionals on non-redundant

models adequately capture the statistics of estimation errors of diffusion processes

and allow computationally efficient prediction. On the other hand, internal or non-

redundant models, having only point linear functionals, cannot accommodate non-

local measurements. For the applications we considered this is a mild restriction and

thus less important to us. In Section 7.2.3 we show an example of optical flow on a I-D

contour in some detail and describe a new type of hybrid model that is neither internal

nor non-redundant but has desirable features of both. Such hybrid models satisfy the

three objectives of accurate statistical realization, efficient prediction, and placement

of non-local measurements. In other applications, such as data fusion of disparate

types of measurements with physical models, the ability to model non-local, as well

as local, measurements is far more critical. State augmentation on internal models in

order to accommodate non-local measurements has been studied before [25, 23], but

the incorporation of non-local measurements, e.g., tornographic data that represent

line integrals of spatial variables, on either 11f models that we have used for modeling

the ocean or on non-redundant models, has not been examined.

There are a number of issues concerning non-redundant models that have not

been fully explored or resolved. The most obvious difference between 2-D reduced-

order non-redundant models and internal models is that the field of interest is not

fully represented on the non-redundant models. Since the field is always placed at

the finest scale of an internal model, estimates and estimation error variances are

always available there. The state variables in an internal model collectively form an

overcomplete basis for the field of interest. On the other hand, the state variables in

a reduced-order non-redundant model forms an incomplete basis. In Section 5.3.3,

we have used interpolation schemes to address this problem with some success. It

is an open problem what other computationally efficient and statistically accurate

methods can be devised.

We also saw in Section 5.3.2 that for internal models given a limit on state di-
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mension, the non-local functionals produced by CCR more accurately model the

estimation errors than the spatially sampled boundary-point linear functionals of the

same state dimensions. We may be motivated, therefore, to keep non-local linear

functionals on non-redundant models too. For instance, denote by C(s) the dense

set of boundary points that would ordinarily be kept at node 8 on a full-order non-

redundant model. Denote by x(s) the state variables. In an ordinary full-order

non-redundant model, x(s) -_ C(s). However, we may keep non-local linear function-

als as state variables such that x(s) - M(s)C(s), where M(s) may be dense, but

square and invertible. Then, x(s) and C(s) are equivalent via a basis transform. The

set of non-local functionals, x(s), e.g., calculated and ordered by CCR according to

their ability of conditional decorrelation, provides a better way of defining reduced-

order states. Rather than keep a sampled subset of the boundary points, we may

keep the most significant elements of x(s), in which case the reduced-order M(s)

is non-square, non-invertible, and dense. For such non-redundant models, the state

variables x(s) are no longer even selected elements of the field of interest, but some

linear functions of the field of interest. Thus, no estimates and error variances of the

individual elements are available, but only estimates and error variances of certain

linear functions of the elements of the field of interest. One way of deducing C(s)

from x(s) may to compute a pseudo-inverse M*(s). The proposal here illustrates

again the competing requirements we place on the functionals. The set of functionals

that best realize the statistics of the field of interest are not the most convenient for

modeling the quantities, i.e., the individual elements of the field of interest, that we

either want to estimate or for which we have measurements.

We have examined only diffusion [74] and advection-diffusion problems [95, 94] in

this thesis. It is of considerable interest and practical value to understand how to

adapt our methodology to dynamics that allow wave-like behavior for applications in

geophysical estimation problems. It has been demonstrated that although dynamic

models for the ocean used by oceanographers are generally very complex, relatively
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simple PDEs, such as the barotropic Rossby wave equation,

a 02 T1 02 77 aTj
0, (7-1)

at aX2 ay2 ax

where x and y are the two spatial dimensions and 77 is the ocean surface height,

are adequate in explaining part of the ocean surface variability [451. There are two

main issues in extending our multiscale recursive estimation methodology to the wave

equation. First, we need to understand the dynamic mixing of (7.1) at each step of the

multiscale recursive algorithm. For such models we would expect that the propagation

of error models over time need to account for the modes of wave pro' agation. Second,

and more importantly, is the selection of appropriate linear functionals for modeling

the estimation error field, especially since there is no statistical steady state for the

wave equation. The feasibility of our multiscale method for diffusion depended in

large part on the ability of the linear functionals to model the error fields accurately.

It remains for the future to determine whether similar functionals can be used to

model the error field of the wave-like dynamics, and if not, what functionals can.

7.2.3 Optical Flow and Hybrid Models

Optical flow computation in computer vision applications has been referred to in

several places in the thesis. The estimation theoretic interpretation of optical flow

deserves more detailed mention here. More importantly, the latter part of this sub-

section documents some results regarding the multiscale modeling of a simple 1-D

example of optical flow computation on a contour [47]. We introduce a hybrid model

that is neither non-redundant nor internal, but designed to accommodate non-local

measurements.

Optical flow refers to the apparent velocity vector field corresponding to the ob-

served motion of brightness patterns in successive image frames. The starting point

of optical flow computation is a brightness constraint [53], which assumes that the
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changes in image brightness are due only to motions in the image frame:

0 -_ d E (x, y, t) 19 E(x, y, t) + VE(x, y, t) - f (x, y, t), (7.2)
dt at

where E (x, Y, t) is the image intensity as a function of time t and space (x, y) and

f (x, Y, t) is the optical flow vector field, and

ax 19Y T
f [fx fy]T (7.3)

C')t at

VE OE aE (7.4)
ax ay

The brightness constraint of (7.2) provides only one constraint for two unknowns at

each point, so it does not completely specify the flow field f(xyt); that is, the

problem is ill-posed. In [53] asmoothness constraint is introduced as a regularization

term so that solving for the optical flow field is formulated as an optimization problem:

2 2
arg min R-1 aE + aE fX + a-Efy + a fx + a fy dx dy, (7-5)

f ff at ax 19Y 19X 19Y

where the first term of the integrand corresponds to the brightness constraint and the

second term is the smoothness constraint, which penalizes large gradients in the op-

tical flow field and favors a solution with the least amount of variation. The constant

R, allows a trade-off between the relative importance of the brightness constraint and

the smoothness constraint.

The optimization problem of (7.5) can be interpreted as an estimation prob-

lem [66, 15, 32]. Let us rewrite (7.2) and (7.5) in vector form since in practice

images are available on a discrete space-time grid. Let zx be the vector of the x-

components of the optical flow vectors f (x, y, t) at all N grid points, zY be the vector
T T] Tof the y-components, and z - 1ZX ZY ' Let g be the vector of temporal gradients

_'9 E(x, y, t). Let Hx be the matrix whose diagonal contains the x-components of the5t-

spatial gradient terms, i.e., aElax, Hy be the matrix containing the y-components,

231



TiiT HTand H - I X Y such that the brightness constraint of (7.2) can be written as

g - Hz. (7-6)

Let Mx be a discrete approximation of the gradient operator 191,9x in (7.5), My be

an approximation of 9/0y, and

MX 0
M= (7-7)

L 0 my j

such that (7.5) can be written as

+ IIMZ112 (7-8)argminjjg-Hzjj'
z R

arg min (g - Hz)T R-' (g - Hz) + ZTMIMZ, (7-9)
z

where R RI. The maximum likelihood estimate of z based on measurements

g HZ+V (7-10)

0 Mz + W, (7-11)

where v N(O, R) and w - N(O, I) are uncorrelated Gaussian noise, is exactly the

same as the solution of (7.9) [15, 66]. In this maximum likelihood estimation inter-

pretation, the two sets of measurements in (7.10) and (7.11) correspond to the bright-

ness and smoothness constraint terms in (7.9), respectively. Notice that (7.11) can

be rewritten as -Mz - w, which resembles (2.27) from Section 2.3.2. The Bayesian

interpretation views the smoothness constraint as a prior model for z. If M is invert-
MTMible, it follows directly from (7. 1 1) that z - N (O' P-1 where Pz

The LLSE estimate of z, satisfying the following normal equation (similar to (3.17)

in Section 3.2.1)

(HT R-'H + MTM) z -- H T R-'g, (7-12)

is again the same as the solution of (7.9).
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There are a number of possible prior models that can play the role of the regular-

ization term:

(i) The smoothness constraint is interpreted as a statistical prior for z. Since M is

an approximation to the gradient operator, it is non-invertible [66]. However, we

MTM +,EJ _1can specify a prior covariance of z by choosing Pz where c

is small.

(ii) The smoothness constraint is interpreted similar to a MRF prior [15]. Since

M is an approximation to the gradient operator, it is sparse. The inverse of

the prior covariance for z in the Bayesian formulation, P-1 = MTM' is thenZ

also sparse, indicating a Markov random field structure. Although MTM is

singular, the issue is sidestepped because (i) P-1 rather than Pz is explicitly

solved and (ii) with measurements the a posteriori estimation error covariance
, = (IIT +MTM)-'P R-1H is invertible. Furthermore, H from the bright-

ness constraint is sparse, so P-1 is also sparse. This is the reason why the

Markov structure is preserved in the a posteriori estimation error, as we men-

tioned in Section 3.2.1.

(iii) The smoothness constraint is interpreted as a fractal prior [661 and is specified

with a multiscale Ilf model. The multiscale model realizes a covariance for the
MTM +,joptical flow field that approximates ( Y

Analogous to the smoothness constraint in space in the case of single-frame op-

tical flow computation, a smoothness constraint in time, i.e., temporal coherence, is

imposed in the multi-frame case [15, 14]. The optimization problem of (7.5) now

has an additional term p 11 a f 112 . Analogous to the interpretation of the smoothnessat

constraint as (7.11), the estimation-theoretic interpretation of the temporal coherence

constraint is a temporal dynamic equation a f (x, y, t) - q(t), q(t) , (0, p-1I), whose

first-order approximation is

Z(t) = Z(t - 1) + U(t), (7.13)
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where u(t) - (0, p-'I) is of length 2N. Higher-order approximations to the continuous-

time temporal coherence constraint result in the much more complicated dynamics

necessitating the use of descriptor systems formulation [14, 13]. However, the first-

order approximation has been shown to be adequate [15] and has the particular simple

dynamics, i.e., Ad -_ I as we mentioned in Section 3.4.1.

The MRF-based recursive estimation algorithm for multi-frame optical flow com-

putation in [15] (c.f., Section 3.2.1), imposes a MRF neighborhood structure on the

estimation errors in estimating z(t). Both the brightness constraint and the smooth-

ness constraint are interpreted as measurements at each time step. As we have seen

in Section 2.3.2, MRFs can be exactly modeled on multiscale models with linear func-

tionals consisting of end points of subintervals in I-D or boundary points of subregions

in 2-D. Thus, instead of imposing a MRF structure on the estimation errors, we may

alternatively impose a multiscale model with a fixed set of linear functionals known

to be suitable for realizing MRFs, as we saw in Chapter 3. The remaining question

is whether the measurements corresponding to the brightness and the smoothness

constraints at each time step can be easily accommodated within such multiscale

models.

Consider the problem of computing optical flow on a contour [47] as a I-D example.

It is I-D in the sense that the flow vectors are computed on a I-D grid, but at each

grid point there are still an x- and a y-component to the flow vector. We model the

optical flow field along the 1-D contour on an internal model shown in Figure 7-1.

The x- and y-components of the optical flow field, zx and zY are mapped to the

finest scale. Each pair of closely spaced circles indicate the two components at the

same spatial grid point, i.e., zxi and zyj at location i. The state dimension at each

multiscale tree node is 8.

The measurements corresponding to the brightness constraints involve only the

two components of the flow vector at the same spatial location. That is, the i-th row

of g in (7.10) has two non-zero elements, zxi and zyj. These measurements are local

and readily placeable on the multiscale tree, since the zxi, zyj pair always appear

at the same node. If we used 11f models to model the flow field in the single-frame
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Figure 7-1: A multiscale internal model for optical flow field along a I-D contour.
The x- and y-components of the optical flow field, zx and zY are mapped to the finest
scale. Each pair of closely spaced circles indicate the two components at the same
spatial grid point. The state dimension at each multiscale tree node is 8.

case [66], we will have no trouble placing the measurements corresponding to the

brightness constraint, since the state variables at the finest scale consist of exactly

zxi and zyi -

The measurements corresponding to the smoothness constraints, on the other

hand, involve elements of zx at two spatially adjacent points or of zY at two spatially

adjacent points. That is, a row of (7.11) has two non-zero element, zxi and zxi+,,

or zyi and zyi+,, for some i. Such non-local measurements cannot be placed on the

Ilf models, since the coarse-scale variables cannot be written as linear functionals

of the fine-scale variables, and the non-local measurements always span two adjacent

nodes at the finest scale. This problem did not exist in the single-frame case where

the smoothness constraint itself was interpreted as the prior model [66], so that the

issue of placing non-local measurements on the tree was avoided. Fortunately, for

internal models with end-point linear functionals, a variation of which is the one in

Figure 7-1, these measurements can always be placed at some coarser-scale node. For

instance, the measurement 0 = Zx,9 - Zx,8 + W8 can be placed at the root node of the

tree.
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Since for prediction with a tridiagonal Ad, non-redundant models are compu-

rationally more efficient (as explained in Section 3.4), we may desire the use of

non-redundant models. However, the non-local measurement corresponding to the

smoothness constraint cannot be placed on non-redundant models. In the case of op-

tical flow with a first-order approximation to the temporal coherence constraint, i.e.,

Ad - I, the computational complexity of multiscale prediction is not an issue. Pre-

diction would be an issue if a higher-order approximation is used such that Ad is no

longer a diagonal matrix. This simple example of I-D optical flow illustrates that the

different objectives of easy multiscale prediction and easy modeling of measurements

may lead us to conflicting choices of linear functionals and multiscale models.

Fortunately, given a tridiagonal dynamics matrix Ad, non-local measurements

over adjacent spatial grid points, and approximate MRF correlation structure of the

error process, in the case of the 1-D optical flow example here, a hybrid model with

functionals shown in Figure 7-2 can satisfy all three objectives of easy prediction, easy

measurement placement, and accurate statistical realization. In this model, element

of the process at adjacent grid points always appear at the same node, permitting

easy placement of measurements. The model is capable of exactly realizing second-

order I-D MRFs, although the need for the higher order multiscale model is due

to non-local measurements. Similar in spirit to the non-redundant models shown in

Figures 3-5, 3-8, and 3-9, the state variables at a child node uses linear functionals

that are "offset" from the functionals at its parent, such that the additional linear

functionals needed for multiscale prediction are readily available at nearby nodes as

illustrated in Figure 7-2. The hybrid model shown here is not non-redundant as some

of the elements of the process of interest appear twice on the tree. However, it is

not strictly speaking an internal model either as the coarse-scale states are not linear

functionals of the finest scale, although they are of the overall process of interest.
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Figure 7-2: A hybrid model that achieves the three objectives of easy prediction,
easy measurement placement, and accurate statistical realization for the case of non-
local measurements over adjacent spatial grid points, a tridiagonal Ad, and first- or
second-order I-D Markov random field correlation structure. The linear functionals
are labeled with circles. The joint statistics between nodes s and 8,;:Y, whose functionals
are labeled with filled circles, on the updated error model are assumed to be available.
The x marks indicate the additional functionals on the updated error model that are
required for the prediction step due to temporal dynamics. The nearest locations on
the tree where such linear functionals are found are marked with shaded circles.
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Appendix A

A4ultscale Smoothing Algorithms

The essential equations of the multiscale smoothing algorithm are listed here. More

detailed development of these equations can be found in [18, 69].

The multiscale smoothing algorithm has been loosely referred to as the multiscale

estimation algorithm at various places before. If we treat the multiscale process as a

whole, the algorithm presented here produces the best estimate of the process given all

available measurements. In this sense the algorithm is an estimation algorithm. On

the other hand, the algorithm is scale recursive. Considering the multiscale process

scale by scale, the algorithm consists of an estimation procedure upward in scale and

a smoothing procedure downward in scale. The algorithm parallels the Rauch-Tung-

Stribel smoothing algorithm [751, but scale now takes the role of time. In this sense,

the algorithm is a multiscale smoothing algorithm or a multiscale smoother.

Suppose that we are given the multiscale process and measurement equations:

x(s) A(s)x(s,�) + B(s)w(s) (A. 1)

Y (S) C (8) x (8) + V (S) (A.2)

where w(s) is a zero-mean unit-variance white noise process and v(s) is a zero-mean

white noise process with covariance R(s). We are also given the statistics of the

states at the root node: zero mean with covariance P(O). First, the prior covariances

239



of all states at individual nodes on the tree are computed via a Lyapunov equation

P(s) = A(s)P(s,;y7)A'(s) + B(s)B'(s) (A.3)

The core of the multiscale algorithm consists of an upward estimation sweep and

a downward smoothing sweep, but first let us define the following quantities:

• Y, - ly(o,) lo, is a descendant of sl is the collection of measurements at all

nodes below s but not including s.

• ;i(ojs) = E [x(u)jo, E Y, U y(s)] is the best estimate of x(o') given measurement

at node s and all nodes below s.

• _,�(o-js+) - E [x(a) lo, c Y,] is the best estimate of x(o,) given measurement at

all nodes below s.

0 P (0, I 8) - Cov [x (0) - '� (a I 8)

'D P(0'18+) - Cov [X(Or) -. '�(Orls+)]

The upward sweep initializes at the finest level from the prior covariances:

�C(818+) - 0 (A.4)

P(SIS+) - P(S) (A.5)

It requires the following upward model, -corresponding to the the downward model

in (A. 1),

x (s,;7y) = F (s) x (s) + iv- (s) (A.6)

y (S) = C (s) x (S) + V (S) (A.7)

where

F (s) = P (s,;!y) A' (s) P (s) (A.8)

E [jV-(S)jV-(S)T] = P(s,�) - P(s,�y)A T(S)p(S) -'A(s^ s�) Q(s) (A.9)
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The upward sweep computes the best estimate of the state at a node given all mea-

surements at or below that node. It consists of three steps at each scale:

(a) Update step:

,�(sjs+) + K(s) [y(s) - C(s);i(sIs+)] (A. I 0)

P(sIs) [I - K(s)C(s)] P(sls+) (A. I 1)

K(s) P(sIs+)C'(s) [C(s)P(sIs+)C'(s) + R(s)] (A. 1 2)

The updated estimate is the best estimate of x(s) given all measurements at or

below S.

(b) Prediction step:

;i(sIsaj) F(saj).,�(sajjsaj) (A. 13)

P(sIsaj) F(saj)P(sajIsaj)F'(saj) + Q(saj) (A. 14)

The predicted estimate is the best estimate of x(s) given all measurements at

node sai (i - I ... q) or below.

(c) Merge step:

q,b(SIS+) -'(sIsaj).,b(sIsaj)P(SIS+) P (A. 15)

q
P(sls+) (I - q)P(s)-' + P-' (SI Sai) (A. 16)

The merge step combines the predicted estimate of x (s) given each of its child

subtrees. The merged estimate is the best estimate of x(s) given all measure-

ments below node S.

The downward sweep computes the best estimate of the states at a node given all

available measurements everywhere on the tree:

,b (S I 0) (S I S) + J (S) [;k (S'WY I 0) - ,� (S,::y- I S) (A. 17)
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P(SIO) = P(818)+J(S)[P(s-10)-P(S,;:Y-18)]J'(S) (A.18)

J(s) = P(sjs)F'(s)P-'(s,7yjs) (A.19)

The smoothing error is itself a multiscale process and can be modeled as

+ (A.20)

where Jv-(sjO) - x(s) - -�(sjO), and

E [fv (s) iv (S)T] = P(s1s) - P(,sls)F T(S)p-1(8,;:y- js)F(s)P(sjs) (A.21)

Note that the state covariances at individual nodes of the smoothing error model have

already been computed in (A.19) and (A.21).
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Appendix B

A4ATLAB Programs

B.1 Data Structure

The majority of the code for the implementation of the multiscale algorithms are

written in MATLAB. Version 5 of MATLAB provides two new data types - struc-

tures and cell arrays. Different types of information that are very naturally associated

with a node, such as its scale, the indices of its parent and of its children, the model

parameters, etc., can now be gracefully grouped together in a user defined "node"

structure. All the nodes can be placed in a cell array, which in turn is put in a

user defined "tree" structure along with other pieces of information pertinent to the

whole tree. Function calls are greatly simplified by passing a tree structure as a unit,

whereas in older versions of MATLAB the different types of data must be stored in

separate matrices and passed as individual parameters of function calls.

A "node" structure may contain the following elements:

node.scale scale m(s)

node.parent-pt location index of node 8--y

node.child-pt location indices of node(s) sai

node.A A(s)

node.BB BB'(s)

node.L linear functionals L(s)
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node. P state covariance P(S)

node. y measurements y(s)

node. C C (S)

node. R measurement noise covariance R(s)

Additional elements are easily appended to the above list. For example, the multiscale

smoother may add the estimates -�(sjO) as well as the estimation error covariances

P(sJO) onto the above list.

A "tree" structure may contain a cell array of nodes, the index of the root node,

and the number of scales on the tree:

tree.nodesO cell array of nodes

tree.root-Pt location index of the root node

tree.scales total number of scales

Additional elements related to the properties of a multiscale tree can be added as

well as housekeeping information such as a field that lists the type of data available

in the nodes.

MATLAB codes written for the multiscale recursive estimator are available at

http://ssg.mit.edu/group/hot/code/.

B.2 Sea Level Anomaly Interpolation Code

The implementation of the multiscale estimation algorithm in its full generality is

a rather complicated undertaking. A complete set of computer code for the multi-

scale smoothing algorithm is available publicly. The front-end visible to the user is

written in MATLAB; the multiscale computational engine is written in C by Paul

Fieguth and optimized for speed. No programming experience is needed to try the

software, although a significant understanding of MATLAB scripts would be required

to customize our program for a different application.

Anyone interested in compiling and running our code will require MATLAB (4.x

or higher) software and an ANSI-compatible C compiler (precompiled versions of
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the code, not requiring any compilation, are available for Sun-SPARC and SGI plat-

forms). Most workstations should have ample computational power. However, large

multiscale trees require a large amount of memory, particularly for high state dimen-

sions.

The programs may be obtained via anonymous FTP to ocho. uwaterloo. ca from

directory pub/Sof tware/Mediterranean. The file README describes the purpose of

each program and how to get started.
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