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ABSTRACT

A systematic method for the improvement of the safety and

reliability of automated guideway transit (AGT) vehicles via a
failure detection algorithm is developed. This algorithm is

based on the generalized likelihood ratio (GLR) method which de-

tects failures by observing a departure of the vehicle system

from an idealized linear vehicle model.

The research explores the effect of model choice and complexity

and the use of dual-redundant sensors on key detection performance

issues.

Detection ability of vehicle failures is demonstrated by

vehicle simulations and experiments, and sensitivity to wind,

grade, and maneuvers is examined.

Detection methodology is developed for single AGT vehicles,

and is extended to AGT systems employing vehicle-follower

longitudinal control.
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CHAPTER I

INTRODUCTION

Public use of future automated guideway transit (AGT) systems [1] will

depend in part on the development of safe and reliable control systems.

The design of reliable failure detection and identification technology will

play a key role in reaching this goal.

Systems must be designed to accurately and rapidly detect and identify

failures which occur in AGT vehicles and their sub-systems. Such detection

systems are essential for high capacity systems since headways between

vehicles may be on the order of one-half second.

In this research study, a systematic methodology for AGT vehicle failure

detection employing a generalized likelihood ratio (GLR) approach will be

developed. This work will be centered on the design of a software algorithm

for digital processing of vehicle measurements.

A failure detection system which employs a generalized likelihood ratio

approach has many advantages over conventional methods (i.e., those relying

on comparisons of dual or triple redundant physical sensors). A GLR system

makes use of 'analytic redundancy', the known relationships between outputs

of unlike sensors. This use of analytic vs. physical redundancy can sig-

nificantly reduce hardware costs since fewer sensors are required with this

approach. In addition, a system based on analytic redundancy is less

likely to miss the detection of generic sensor failures (for example, a

temperature change similarly affecting all like sensors in a physically

redundant set).
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An added bonus of the use of the GLR approach is that during unfailed

operation, optimal estimates of vehicle states (i.e., optimally filtered

measurements) are readily available to the control system for use in control

law calculations. Finally, a GLR based detection system can permit a 'fail-

operational' response (continued vehicle operation) to certain types of

vehicle failures, since estimates of failure location, type, and magnitude

can be determined by the algorithm and made available to the control system

for compensation.

1.1 Background

Much work has appeared on the design of real-time AGT control systems

[2-27]. Most notably, the design of vehicle-follower type longitudinal

control systems appears to permit stable control of closely packed strings of

vehicles. The successful implementation of a vehicle-follower control

strategy depends on accurate knowledge of vehicle and neighboring vehicle

states and the availability of a responsive propulsion system. Undetected

faults in propulsion or in the sensors providing measurements of vehicle

states to the control system will certainly cause problems, and may lead to

collisions.

In this light, relatively little has appeared on the systematic develop-

ment of methodologies for the detection of and response to vehicle failures.

One report which has recently appeared, however, is the work of Vander Velde

at M.I.T. [28]. Vander Velde employs a failure detection filter approach,

developed by Beard [29] and Jones [30]. The detection filter incorporates a

-15-



linear system model specifying nominal system behavior (Figure 1.1). Any

deviation from nominal behavior of the system, due to an actuator failure,

a sensor failure, or a significant change in some parameter describing the

system, will result in a discrepancy between the observations of the actual

system and the outputs, or predictions, of the model. This difference is

often called the error, e(t), or the residual signal vector. The detection

filter uses the system model with a feedback gain matrix D which not only

makes the filter stable, but in the presence of a failure, holds the error

signal vector e(t) to be uni-directional. The direction of e(t) indicates an

element which has failed. Thus elements of e(t) are compared to fixed

thresholds to declare the occurrance of various failures.

The detection filter approach has many advantages over other failure

detection strategies, most notably its simplicity in terms of required on-

line computations. In addition, the filter design does not require a-priori

specification of vehicle component failure modes, i.e., the way in which

components will fail. However, the detection filter technique has a number

of limitations:

(1) It is sometimes not possible to design detection filters in

such a way that sensor failures can be unambiguously

identified.

(2) More than one detection filter is usually required to

detect failures in all the components for which

failure detection is desired. Choosing the failures

to be associated with each filter still remains an

ad hoc procedure.

-16-
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(3) The detection filter can only declare that a failure has

occurred in a given component. It is unable to

determine or estimate the type of failure or the extent

(magnitude) of the failure. Thus failure compen-

sation by the control system cannot be done unless

all components appear in dual-redundant pairs, in

which case the faulty component is completely removed

from operation.

The generalized likelihood ratio method for failure detection is not as

simple to implement as the detection filter. Whereas the detection filter

algorithm simply compares the residual at a single instant of time to a

threshold, the GLR algorithm examines the entire trajectory over a period of

time of the residual. However, the added complexity of the GLR algorithm

results in a highly sophisticated failure detection and identification

system.
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CHAPTER II

AN IDEALIZED AGT VEHICLE MODEL

2.1 Introduction

A key component of a failure detection system based on the generalized

likelihood ratio method is a simplified, linear model of the AGT vehicle.

Failures of vehicle components will be detected in real-time by observing

and analyzing sudden discrepancies between the idealized model and the actual

AGT vehicle.

In order to illustrate the GLR methodology, we will present a simple

model of an AGT vehicle, and will show how the GLR algorithm would be

developed for the vehicle based on the model.

2.2 Vehicle Description

A block diagram of a typical AGT vehicle which was used in this study

is shown in Figure 2.1. A wayside computer transmits control commands to

the vehicle via a communication link. The control commands are processed

by an on-board control computer which translates these commands into an ap-

propriate motor voltage command, E . The voltage command is amplified by a

power conditioning unit (PCU), which applies a voltage E to a DC traction

motor. The PCU will be referred to as the voltage actuator. The PCU, DC

motor and the vehicle drive train will be referred to as the propulsion

system.

On board the vehicle also exists a set of sensors. These sensors measure

the vehicle's position and velocity. We will assume that these two sensors

-19-
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are independent devices. The outputs of the sensors are used as feedback

signals by the on-board control computer. The sensor outputs are also

transmitted back to the wayside computer.

2.3 Control System

The on-board control computer consists of two components: a velocity

command generator and a velocity regulator. The velocity command generator

doubly integrates jerk commands sent to the vehicle from the wayside computer.

Jerk is used as the control input so that vehicle jerk and acceleration can

be constrained within service limits for passenger ride comfort. The wayside

computer can thus control the vehicle's line speed by transmitting a jerk

profile to the vehicle. A jerk profile which would command the vehicle to

increase its line speed by 3 m/s is shown in Figure 2.2. The velocity com-

mand computed by the velocity command generator is fed to the velocity

regulator. The velocity regulator's function is to compute a motor voltage

command which will keep the vehicle at the commanded velocity. The velocity

regulator chosen for this study was developed in [26]. This regulator is

shown in Figure 2.3.

2.4 Vehicle Dynamics

The dynamics of the AGT vehicle and its DC motor are modelled by Pitts

[19]. A block diagram for this model is shown in Figure 2.4. Parameter

values for a typical personal rapid transit AGT vehicle are given in

Table 2.1. Pitts' model includes the effects of guideway grade and non-linear

aerodynamic drag forces. Drag force can be linearized around a nominal

-21-
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Figure 2.3 - Velocity Command Generator and Velocity Regulator
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Figure 2.4

Non-Linear AGT Vehicle and DC Motor Block Diagram; Pitts [191



TABLE 2.1

AGT VEHICLE AND MOTOR PARAMETERS

Represented is a 4-6 passenger personal rapid tra

by a 60 hp. DC traction motor.

Parameter

Motor Torque Constant

Motor Back emf Constant

Armature Inductance

Armature Resistance

Motor Shaft Inertia

Vehicle Wheel Radius

Gear Ratio

Vehicle Mass

Motor Viscous Friction

Vehicle Wheel Inertia

Total Rotational Inertia

Drag Coefficient

Vehicle Frontal Area

Air Density

Linearized Drag

Symbol

K
T

K
B

L

R

J

r
w

n

M

K
V

L

J
T

CD

A

P

WD

nsit (PRT) vehicle propelled

Nominal Value

.827 N-M/A

.88 V/RAD-S

.00052 H

,0203 ohms

,461 Kg-M
2

.35 M

3.82

979 Kg.

~0

~0

2
8.679 Kg-M

,7

3,4 M 2

1.22

9.67 x 10-4

no wind, 15m/s veh. velocity
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wind and vehicle velocity, with the resulting linear model shown in

Figure 2.5. This model can be transformed via a change of variables into

phase-variable cannonical form (so that the integrator states are position,

velocity, and acceleration) and is shown in Figure 2.6. The details of the

model transformation are given in [19]. The transfer function from motor

voltage to velocity can be shown to be [19]:

V(s) KM

E(s) 2
s +C0 s+CO

The constants KM, C0 , and C1 depend on the characteristics of the vehicle

and the DC motor, the load, and the nominal wind and vehicle velocities.

Typical values of these parameters are given in Table 2.2.

The transformed, linear vehicle model can be written in state-space

form as:

x~) 0 1 0 x (t) 0 0

[0j) =[0 0 1 v(t) + 0 E(t) + 0 (2.1)

[a t) L0 -C -C 0 a(t) .K ., (t)-

where x(t), v(t), and a(t) are the position, velocity, and acceleration

state variables, and E(t) is the voltage applied to the motor.

Position and velocity measurements, x (t) and v (t), are represented
m m

via:

-26--
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Figure 2.6

Transformed, Linear Vehicle and DC Motor Block Diagram; Pitts [19]



MASS(Kg) 663 979 1295

Km (m/S3 Volt) 24.18 16.79 12.86

C0 (3-) 234.84 162.98 124.78

C1 (S1) 39.10 39.08 39.07

Table 2.2

Transformed Vehicle Model Parameters [26]

IMF

EMPTY VEHICLE NOMINAL VEHICLE FULL VEHICLE

I



(2-2)
vL0 1 0 ] v(t)n

a (t)

We will refer to (2-1) as the vehicle state equation and (2-2) as the

measurement equation.

The effects of external disturbances (i.e., wind, grade) and modelling

errors are included in the vehicle state equation via the plant noise

process W(t). These modelling errors are the errors made by representing

the complex dynamics of the actual AGT vehicle with a simplified linear

model. The errors are due in part to the linearization of the drag force,

the assumptions made about the vehicle's propulsion system and load in the

choice of K , C 0 , and C , and the effects of unmodelled dynamics such as

rolling friction, bearing loss, and slippage.

The measurement noise vector n(t) represents the difference between the

vehicle's actual position and velocity and the measured values.

A block diagram of the vehicle model given by equations (2-1) and (2-2)

is shown in Figure 2.7.

2.5 Discrete Equivalent of the Continuous-Time Model

The continuous-time vehicle model equations (2-1) and (2-2) represent

the behavior of the vehicle at all time instants t. An equivalent discrete-

time representation can be developed [31] which characterizes the vehicle

behavior by quantities defined at equally spaced, discrete instants of time
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kAt, k=0,1,..., where the time period At is called the sampling interval

and 1/At is the sampling rate. The discrete-time vehicle model, required

for the implementation of the GLR algorithm in a digital computer, will be

of the following form:

x(k+l) = 4x(k) + Bu(k) + w(k) (2-3)

z (k) = Cx (k) + n (k) (2-4)

T
with state vector x(k) = [x (k) , v (k) , a (k) ] , measurement vector

z(k) = [xm(k), vm (k) ] and control input u (k) = E (k). The discrete-time

plant noise and sensor noise processes w(k) and n(k) are modelled to be

statistically equivalent to the continuous-time processes W (t) and n (t) .

The details of the transformation from continuous-time to discrete-time

are presented in Appendix B.

One significant difference between the continuous-time and discrete-

time state equations is that the discrete-time model assumes that the

control input u(k) is piece-wise constant over the sampling interval (eg.,

using a zero-order hold). The actual control, u(t), applied to the vehicle

plant, however, may be a continuous signal. The effects of this assumption

on the detection system is discussed in section 4.3.5.

2.6 Vehicle Failure Detection

It is essential that accurate knowledge of vehicle states is available

to the control system. It is also essential that the vehicle's propulsion

system be able to respond effectively to the control system's commands.
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Both the sensor and propulsion systems are critical to the safety of the

vehicle. Sudden failures of these systems have the potential to create

disasterous results. It is desirable to provide a system to detect and

respond to such vehicle component failures.

A failure detection system must have the ability to detect safety

threatening failures with high probability. However, in order to minimize

unnecessary delays, the systems must have a small probability of signalling

alarms when no failure has occurred. Un-modelled external forces such as

wind and guideway grades are likely to cause such false alarms.

The failure detection method to be presented in this report operates

by comparing observations from sensors with what those observations are

expected to be based on predictions from the discrete-time vehicle model.

Failures will cause the predicted and actual observations to behave sig--

nificantly different. Simplistically, the strategy is similar to failure

detection via a dual redundant set of sensors; failures are detected when

the sensor outputs differ. Analogously, the vehicle model will serve as

half of the redundant pair.

To determine how the modelled observations will differ from the actual

observations in the event of a failure, simple failure models will be de-

veloped for components of the vehicle. The components which will be examined

are sensors, which measure vehicle states (eg., position and velocity), and

actuators which implement control commands (eg., the propulsion system).
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2.7 Sensor/Actuator Failure Models

Sensors and actuators can both be modelled by the simple block diagram

below:

--------- i DEV IC E
INPUT I OUTPUT

The input to a sensor is a state to be measured (e.g., the vehicle's actual

velocity), and the output is a measurement of that state. The input to an

actuator is a control signal,and its output is an appropriate action neces-

sary to implement the control (eg., the application of a force or voltage).

Noise is assumed to be always present in the sensor or actuator, and represents

the difference between the actual state and its quantified measurement, or

the difference between the desired control and the control action actually

implemented by the actuator.

Failures in sensors and actuators can both be modelled in similar fashions.

We have compiled a list of possible failure types or modes which are likely

to occur in these devices:

1) Additive Bias - the output of the device is

continually offset by a constant level.

2) Jump - the output of the device is momentarily

offset by a constant level, eg., the occurrence

of a brief disturbance such as a sudden noise

spike or "glitch".
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3) Scale Factor Change - the gain of the device has

changed such that the output is in error by a

constant percentage.

4) Zero Output - the output remains at the lowest

or "zero" level.

5) Hard-Over - the output remains at the highest

or maximum level.

6) Stuck - the output remains at an intermediate level.

A block diagram of. the device which can be used to model these failures

is shown in Figure 2.8.

The input/output relationships for these sensor or actuator failures

are shown in Figure 2.9. A hypothetical output trajectory is shown in

Figure 2.10a for an unfailed device. The output which would be obtained if

a failure had occurred at time 0 is shown in Figure 2.10b-g.

The effect of these failures on the failed device outputs shown in

Figure 2.10b-g is similar in that there occurs a sudden departure of the

output from its expected behavior. The similarity between the failed output

trajectories is especially apparent when the state, x(t), or the control,

u(t), remain constant over a time interval, as is the case immediately fol-

lowing the failure in the hypothetical examples of Figure 2.10. This will

always be the case when the dynamics of the system are relatively slow com-

pared to the sampling rate of the control and detection systems, as in an

AGT vehicle.

The similarity of the various failure modes to additive bias failures will

be employed in the development of the detection algorithm, as failures modelled-

as biases have special properties which can be utilized.
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2.8 Summary

In this chapter, a mathematical model of an AGT vehicle has been

presented which will be used in developing a methodology for failure detection

based on the generalized likelihood ratio method. Models of various failure

modes have been developed. An important feature of these failure modes is

that under certain conditions they can be modelled in a similar fashion, i.e.,

as additive biases. In the following chapter, we show how this approach to

modelling failure modes can be exploited to develop a computer-based algorithmic

procedure for detecting when a failure has occurred.
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CHAPTER III

THE GLR APPROACH FOR FAILURE DETECTION

3.1 Introduction

The generalized likelihood ratio method for event detection in linear

dynamic systems was developed by Willsky and Jones [32,33]. The generalized

likelihood ratio is an easily implemented software algorithm. It processes

data in real-time to detect the occurrance of sudden departures of a real

system from a simple idealized linear model. The technique has successfully

been applied to a wide variety of complex systems, such as for failure detec-

tion in aircraft systems [341, detection of incidents on freeways [35], and

detection of cardiac arrythmias [36]. The GLR method has been shown to be a

flexible and systematic approach, capable of detecting and identifying numerous

types of failures and events.

As shown in Figure 3.1, the entire GLR algorithm consists of three main

components: I) a Kalman-Bucy Filter, II) a correlator, and III) a decision

rule. A linear model of the vehicle is embedded in a Kalman-Bucy filter [37].

Predictions of vehicle states generated by the model are compared to actual

measurements from the vehicle's sensors; the difference between the two is

called the residual. When a vehicle failure occurs, the residuals will have a

unique behavior, or signature, depending on the type of failure. In the GLR

calculations, the residuals are compared, or correlated, to each member of a

precomputed set of signatures. The resulting likelihood ratios are measures of

the correlation to each of the failure signatures. These likelihood ratios

are then used in a decision rule to determine whether a failure has occurred,

and if so, to decide among the possible failure types.
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The details of the GLR algorithm will now be presented.

3.2 System Model

The GLR method assumes a discrete-time state space description of a linear

dynamical systems(*) described by:

State equation:

x(k+l) = x(k) + Bu(k) + w(k) (3-1)

Measurement equation:

z(k) = Cx(k) + n(k) (3-2)

Here x is the state vector and u is a known control input; _w and n are

modelled as independent, zero mean, uncorrelated Gaussian random sequences

with covariances:

T
E[w(j) w (k)] = Q j=k

f 0  jfk

E[n(j) n (k)] = R j=k

0 jfk

In section 4.2.1 more will be said about the modelling of these noise

processes.

3.3 Kalman-Bucy Filter

A Kalman-Bucy filter [37] is designed for the system model (3-1 ) and

(3-2). The filter is given by:

We will restrict our attention to time-invariant systems, although extension

to the time-varying case is easily done.
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Predicted State Estimate:

x(klk-1) = @x(k-lk-l) + Bu(k-l) (3-3)

Residual:

y(k) = z(k) - Cx(kIk--1) (3-4)

Updated State Estimate:

x(kjk) = x(k k-1) + Ky (k) (3-5)

where x(kl j) is the estimate of the state x(k) given the measurements

z (O) , z(l) z_(j). With Gaussian disturbances w and n, X(k k) is the

optimal minimum mean squared error state estimate. The process y(k) is

called the residual or innovations. sequence, and will be a zero mean,

uncorrelated, Gaussian process when no failure has occurred. For time-

invariant systems, the optimal steady-state gain K is computed by solving

the discrete algebraic matrix Riccati equation for the steady-state error

covariance of x(klk-1), I
p

- + T+ Q- C [C C + RI C p (3-6)

p p p p

Then the error covariance of x(kjk) is given by:

-P C T[C CT + R~1 C - (3-7)

and the Kalman gain K can then be found:

K = 1CT R- (3-8)
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The steady-state covariance V of the residual is given by:

V = CY C + R (3-9)

3.4 Failure Signatures

3.4.1 Modelling of Failures

Failures in the system's actuators or sensors can be modelled by the

addition of two failure vectors, f and f , to the system model (3-1),
-D --s

(3-2) as follows:

x(k+l) - x(k) + Bu(k) + w (k) + f (k+1,0) (3-10)

z(k) = Cx(k) + n(k) + f (k,O) (3-11)
-s

The vector f (k,O) represents the effect (on the system dynamics) at time k

of an actuator failure which occurred at time 0. The vector f (k,8)
-S

similarly represents sensor failures. The failures discussed in section 2.7

can be modelled by appropriate specification of f and f . These specifica-

tions are shown in Table 3.1. Biases are modelled by the addition of a

constant vector, V, to the state or measurement equation. For example, assume

that the measurement equation (3-11) represents two independent sensor

measurements. A bias of size S to the first sensor is represented by the

choice.

f [(3-12)
-s- 01
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TABLE 3.1

FAILURE VECTOR SPECIFICATION; MODELLING OF FAILURES MODES

FAILURE MODE

Actuator Bias

Sensor Bias

Actuator Jump

(State Jump)

Sensor Jump

Actuator Scale factor

change, zero output

Sensor Scale Factor
change, zero output

Hard-over Actuator
Stuck Actuator

SPECIFICATION

f (k+l,e)

f (k,G) =

f (k+1,O) =
0

f (k,6)

f (k+l,O) =

f (k,Q) =

f (k+1,0) =

ABu(k)

0

ACx(k)

0

k+1>6
k+1<8

k=8

k+1=0
k+13/e

k=8
k7 6

k+1>

k+1<3

k>9

K< 9

{ABu (k)+ v
0

ACx(k)+V
Hard-over Sensor,
Stuck Sensor

f (ke)

k+l>0

k+l<0

k>O

k<8
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and a bias in the second sensor by

f = V = [1 (3-13)
--s -1

We say that the vector [ or [ represent the locations (i.e., the first

or second sensor) or direction (i.e. direction in state-space) of the failure,

and that the size of the scalar (i.e., the size of the bias) is the magnitude

of the failure.

Jump failures are modelled in a similar fashion as biases, except for

the fact that the additive constant vector V appears only for a single time

step.

Scale factor change failures are modelled by a change in one or more of

the elements of the B or C matrices. Zero output failures are actually a

subset of scale factor change failures. They are modelled by a change (to zero)

in elements of the B or C matrices. Hard-over and stuck device failures are

modelled by a scale factor change to zero in the gain matrices B or C, and

the addition of a constant value representing the maximum or stuck value of

the failed device's output.

3.4.2 Effects of Failures

Failures in the physical system will have a noticeable effect on the

Kalman-Bucy filter; the predicted observations generated by the system model

will begin to differ from the actual observations from the sensor. The dif-

ference between the two will appear in the residual sequence y(k). When no

failure has occurred, the mean of the residual will be zero; if a failure has

occurred, the residual will no longer be zero mean but will behave in a manner
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characteristic of the failure. This behavior will be exploited to detect the

failures.

The effect that one of the above failure types will have on the Kalman-

Bucy filter (3-3)-(3-5) can be computed. Since the system model and the

filter are linear, the state estimates and the residuals can each be decomposed

into two sequences:

x(kjk) = (kjk) + 2 (k) (3-14)

y(k) y y (k) + y2 (k) (3-15)

where x 1(klk) and y 1 (k) are the state estimates and residuals, respectively,

which would have appeared if the failure had not occurred. The effect of the

failure is given by "2 (k) and Y 2 (k). The sequence 2 (k) can be computed from

one of the following recursive relations:

ACTUATOR FAILURES:

2 (k) = (I-KC) x (k-1) + KCf (k, ) (3-16)
-2 -2

or,

SENSOR FAILURES:

x (k) = (I-KC)@x (k-l) + Kf (k,O)
-2 -2 -s

with

x (k) H O for k<O (3-17)
-2

The sequence y2(k), the effect of the failure on the residuals, is then

given by:
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ACTUATOR FAILURES:

12(k) = Cf (k,O) - Cx (k-1) (3-18)
D -2

or

SENSOR FAILURES:

12(k) = f S(k,6) - Cx2 (k-i) (3-19)

After the occurrence of a failure at some unknown time e, the residual

process y(k) will no longer be a zero mean sequence; its mean will now be

yj 2 (k).

The sequence Y 2 (k) is called the failure signature; it is the "unique"

effect of a failure on the residuals. Can we somehow use (3-16)-(3-19) to

determine a-priori the behavior of the signature for various failures, so

that by looking for the signature in the residuals the failure can be

detected? By a re-examination of the failure vector specifications in Table

3.1 we can conclude that the answer in some cases is "yes".

Notice that the failure specifications for bias and jump failures are not

state-dependent or control-dependent; the specifications do not depend on the

knowledge of x(k) or u(k). We can thus use (3-16)-(3-19) and the linearity

of the filter to write:

2(k) = G(k,O)V (3-20)

where G(k,0) is a set of precomputable matrices called the failure signature

matrices [38,39). The matrices G(k,0) will depend on the type of failure
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(i.e., sensor/actuator, bias/jump) but are independent of the unknown

a-priori direction or magnitude of the failure vector V.

Unfortunately, the failure specifications (Table 3.1) for the failure

types other than biases and jumps are state or control-dependent; their

failure signatures will behave differently for different state or control

trajectories, which are unknown a-priori. Thus their failure signatures can

not be precomputed. However, as we have discussed in section 2.7, these

failure types appear similar to bias failures, especially when the state or

control remains relatively constant over a detection interval. We will thus

develop a detection methodology which is designed to detect solely additive

bias failures; we will show via experiments that the detection system can

detect the other failure types as well.

The detection of jump failures can be performed in a manner parallel to

the methodology to be presented for the detection of bias failures. We have

chosen to limit ourselves to bias failures, however, since failures which

persist over time are likely to have the worst effects on AGT vehicle safety.

Development of failure signatures for jump failures can be found in [38] and

[39).

3.5 Detection of Failures

3.5.1 Hypothesis Testing

The problem of detecting a failure can now be reduced to the problem

of deciding between different hypotheses:
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H : the residuals are zero mean (no failure)

Hi: the residuals are not zero mean (a failure has occurred

in location i)

Since failures in different locations in the system have characteristic

effects on the residuals, the above hypotheses can be re-written as follows:

H y(k) =y (k) (no failures)
0 -- l

H.: X(k) = y (k) + G(k,6)f.3 (failure of magnitude S in

direction f.)

Here we have constrained the failure vector V\=f. to lie in a finite set

of directions {f.} in either state-space (actuator failures) or output-

space (sensor failures) [38,39]. Each of these directions correspond to an

individual sensor or actuator in the system. G(k,G) is either the state

bias or sensor bias signature matrix, depending whether the failure direction

vector f represents an actuator or a sensor.

3.5.2 Likelihood Ratio Tests

The hypothesis testing problem can be reduced to the construction of a

likelihood ratio test [31]. A likelihood ratio for each hypothesis is given

by:

p(y(l),...,y(k) H., ,)

(k) = ~~()ykj)(3-22)

L. (k) is a random variable having a different mean under each hypothesis.

It can thus be used in a decision rule, such as comparing it to a threshold,

to decide among the hypothesis.
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For each hypothesis i, the maximum likelihood estimates [31] of the

failure time 0 and the failure magnitude S can be computed. They are the

values which maximize the probability density function for the residuals con-

ditioned on the occurrence of a failure in direction i, i.e.,

$.(k), S.(k) = arg max p(y (1),...,y(k) H. , =0, B=B) (3-23)

The maximum likelihood ratio (MLR) for each hypothesis to be used in the

decision rule is then given by:

L.(k --p(Y(1), ... ,1(k) 1H. O=e. (k), S=$ (k)) (-4
L.(k) =1(3-24)

i p(Y(1),..., (k)I H0

3.6 Maximum Likelihood Ratio Computation

Since the residuals have the multivariate Gaussian density, we can take

the logarithm of the likelihood ratios, obtaining:

k T
2. (k) = 2kn L. (k) = k - (j)V Y(j (3-25)

1=1

k ]T -l ]T
- y (j)-G(j V [y(j)-G(j,0. (k))f.. (k)]

1111-
j=1

By differentiating with respect to . (k), setting the result to zero, and

solving for f (k), we can express . (k) as an explicit function of $ (k):

b. (k;0 . (k))

.(k) = 1 1 (3-26)

a. (k;0. (k))
1 1
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with

b.(k; f) = (k,
f- -~k) (3-27)

k
k T T -l

= f. G (j,e)V y(j)
j=1

k
T

s . (j,O)Y(j)
j=1

and

T
a. (k,O) = f. C(k,6)f.

1-21 -1 (3-28)

k
k T T -l
= f. G (jO)V G(jO)f.

j=1

The scalars a. (k;O) are a precomputable, determ, inistic sequence. The scalar

b (k,O) are linear combinations of the residuals, which represent a correlation

or matched filter [31] operation between the failure signatures and the

residuals. The sequence s.(j,O), used in the computation of b.(k,e), is the

failure signature G(j,e)f which would appear in the residuals weighted by

-l
V , the inverse of the residual covariance matrix. We will thus refer to

s. (j,6) as the weighted failure signature. The weighting process has the ef-

fect of giving more attention to elements of the residual which are expected

to contain the least amount of background noise.

The likelihood ratio can now be written as:

2
b. (k,O)

k. (k;O) = 3 (3-29)
a.(k,e)
1
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The maximum likelihood estimate $. (k) is the value of 0<k which maximizes

(3-29). Then the maximum likelihood ratio (MLR) for a failure in direction

f. is given by

(k) (k; O.(k)) (3-30)

3.7 Decision Rule

The maximum likelihood ratios V*, each representing the likelihood of a

failure in the sensor or actuator represented by f., can be used in a decision

rule to decide 1) if a failure has occurred, and 2) if so, in which sensor

or actuator.

A possible decision rule is to compare the largest maximum likelihood

ratio to a threshold as follows:

NO FAILURE

max (3-31)
i FAILURE

The estimated location of the failure is found by choosing the i which

maximized , i.e.,

1 = arg max (3-32)
i 1

The location of the failure is then given by f

The threshold 6 can be chosen to maximize the tradeoff between the

false alarm and missed detection probabilities.
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3.8 Information Measures

The scalars b. (k;6), equation (3-27), have been given intuitive meaning;

they represent the amount of "match" between the signatures and the residuals.

However, we have yet to comment on the set a. (k;O), equation (3-28). These

scalars are derived from the matrices C(k;0), which are called the "information

matrices". (An insightful analysis of the information matrices can be found in

[39].) Intuitively, a. (k;O) measures the information available in the re-

siduals at time k from a failure of direction f. which occurred at time 0.

For this reason we shall coin the name "information measure" to refer to

a. (k;0). In essence, the information measures can be thought of as a signal to

noise ratio, measuring the ratio of energy in the biased part of the residual

sequence (assuming a bias is present) to the energy in the background noise.

The information measures a. (k;O) can provide insight into the behavior of
1

the likelihood ratios following the occurrence of a failure. When no failure

has occurred, the likelihood ratios are chi-squared random variables with mean

one. After occurrence of a bias failure at time 6 of magnitude in direction

f., the likelihood ratios t. (k;0) are non-central chi-squared random variables

with mean given by:

2
E[. (k;)= 1 + 2a .(k;0) (3-33a)

and variance:

Var[Z. (k;O)] = 2 + 4 2a. (k;O) (3-33b)

A failure, therefore, has the effect of moving the mean of the likelihood

ratios away from one, as shown in Figure 3.2.
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The relative ease with which a bias failure can be detected thus depends

on the magnitude of the bias, r, and the behavior of the information measures;

the farther apart the means of the distributions are, the higher the proba-

bility the failure will be detected.

3.9 Simplifications

3.9.1 Time Invariance

Since the system (3-1), (3-2) is assumed time invariant, the failure

signatures are functions of

r k- (3.34)

i.e., the time since the occurrence of the failure. Thus, at each time

step k, the following set of k correlations are computed

r
ST

b. (1,r) = s. (j) (k-r+j) for r=O to k-1 (3-35)

with

T T T -l
s. (j) = f. G (j)V (3-36)

the weighted failure signature. At each time step k we are thus hypothesizing

the possible occurrence of a failure for every time 0 between 1 and k inclusive.

We are in essence "sliding" the failure signatures across the residuals

y(l),...,Y(k), correlating it with the residuals at each step along the way

(Figure 3. 3) ,
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3.9.2 Detection Window

As k increases, however, so does the number of possible values of 0.

Thus implementation of the above scheme involves a growing number of cor-

relation or matched filter computations at each step, and we need the entire

precomputed signature s (r) , r=O,.. .,k-l. Willsky and Jones [32, 33] suggest,

as a solution to this problem, limiting the maximization over 0 to a finite

window k-M < 0 < k-N. The assumptions made in the use of this simplification

are that no decision can be made with less than N+l observations, and that

failures which occurred before time k-M should have already been detected.

With the use of this detection "window", the signature, s(r) , need be

precomputed for N < r < M.

The set a. (k;0) is also a function of r = k - 0 only. The shape of the

curve a. (r), r=O,..., can provide information useful to the determination of

an appropriate detection window. For example, the number of steps until

convergence of a. (r) to a steady-state value is a useful indicator for the

length of the window to be chosen, for additional observations will provide no

additional information about a failure in direction f. . Failures for which
-

a. (r) do not reach steady-state values imply that these failures, no matter
1

how small the magnitude may be, will eventually be detected given a long

enough detection window, since more information about the failure is obtained

at each succeeding step.
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3.10 GLR Algorithm Summary

A summary of the steps required for the implementation of the GLR

algorithm is provided below. The steps are divided into those done a-priori

and those performed during on-line operation of the algorithm (Figure 3.4).

I. Pre-Computable Calculations

1) System Model [Sec. 3.2, equations (3-1)-(3-2))

Determine a linear, discrete-time state-space system

model:

x(k+l) = Cx(k) + Bu(k) + wg(k)

with measurements

z(k) = Cx(k) + n(k)

Choose plant and sensor noise covariance matrices

Q and R.

2) Kalman-Bucy Filter [Sec. 3.3, equations (3-6) - (3-9)]

Solve the discrete algebraic matrix Riccati equation for

the predicted error covariance matrix E .
p

Compute the updated error covariance matrix E.

Compute the Kalman gain matrix K.

Compute the residual covariance matrix V and
-1

its inverse V .

3) Detection Window [Sec. 3.9.2]

Choose the detection window parameters O<N<M such that

the search for failures will be done in the interval

k - M < 0 < k-N
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UPDATE KALMAN-BUCY FILTER

CORRELATE FAILURE SIGNATURES

COMPUTE LIKELIHOOD RATIOS
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TEST DECISION RULE
NO FAILURE 4FAILURE

COMPUTE FAILURE TIME ESTIMATE
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FAILURE COMPENSATION
I

ON-LINE
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Figure 3.4 - GLR Algorithm Steps
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4) Failure Direction Vectors [Sec. 3.5.1]

Determine the set {f .} of failure direction vectors.

Each vector will correspond to a sensor or actuator for

which failure detection is to be performed.

5) Failure Signature Matrices [Sec. 3.4.2, references 38,39]

Compute the set of actuator and/or sensor failure

signature matrices G(r) r=O,...,M.

6) Weighted Failure Signatures [Sec. 3.6, equations (3-27), (3-36)]

Compute the weighted set of failure signatures s. (r)

r=N,. .. ,M for each failure direction f..

7) Information Matrices [equations (3-28), references 38,39]

Compute the set of actuator and/or sensor failure infor-

mation matrices C(r) r=N,.. ,M.

8) Information Measures [Sec. 3.6, 3.8, equation (3-28))

Compute the set of information measures a (r) r=N,. . .,M

for each failure direction f

II. On-line Processing

The following steps are performed at each step k during the

on-line operation of the failure detection system.

9) Kalman-Bucy Filter Update [Sec. 3.3, equations (3-3)-(3-5)]

Compute the predicted state estimate x(kjk-1).

Compute the residual y(k). The residuals

y(k) , .-. ,y(k-M) are kept in storage.

Compute the updated state estimate x(kjk).
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10) Failure Signature Correlations [Sec. 3.6, 3.9.1, equations

(3-27) , (3-35)]

"Slide" the failure signatures s . (r) through the

detection window, computing the correlations b. (r)

at each step r=N,.. . ,M.

11) Likelihood Ratio Functions [Sec. 3.6, equation (3-29)]

Compute the likelihood ratios A .(r) r=N,.. . ,M for each

possible failure time in the detection window and for each

failure direction f..

12) Maximum Likelihood Ratios [Sec. 3.6, equation (3-30]

Choose the maximum (over the detection window) likelihood

ratio Z for each failure direction.

13) Decision Rule [Sec. 3.7, equations (3-31), (3-32)]

Use the maximum likelihood ratios A in a decision rule

to decide if a failure has occurred, and if so, its

location. If no failure, return to step 9.

Example decision rule: Choose the maximum k* of the

set 5T. Compare to a threshold S to decide if a

failure has occurred.

14) Failure Time Estimate [Sec. 3.61

Choose r which maximized k^ (r) . The maximum likelihood

estimate of the failure time is e = k - r.

15) Failure Magnitude Estimate [Sec. 3.6, equation (3-26)]

Compute the maximum likelihood estimate of the failure

magnitude S = be r)/ a^(r).
1 1
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CHAPTER IV

APPLICATION OF THE GLR METHOD TO THE AGT VEHICLE

4.1 Introduction

The GLR algorithm will be illustrated by applying the method to the AGT

vehicle failure detection problem described in chapter two. We will present

the results of computer experiments testing the algorithms' performance in

detecting sensor and propulsion system failures which can be modelled as biases.

The effects of non-failure external disturbances such as noise, maneuvers,

wind and grade on the algorithm will also be evaluated.

A number of important performance issues are to be examined via the examples

presented in this chapter, Tradeoffs exist among the following performance

indices:

1) Detection probability

2) False alarm probability

3) Time to detect

4) Probability of correct failure location identification

With the GLR algorithm as a foundation, systematic performance tradeoffs

are possible; the principal design variables include:

1) System model- Increasing model complexity can result in improved

detection algorithm performance, often at the cost of increased

sensitivity to disturbances and un-modelled effects, leading to

higher false alarm rates. Simplified models, on the other hand,

may be unable to detect certain failures altogether.
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2) Sensor configurations- Physically redundant sensors will improve the

distinguishability of different failure locations, at the- cost of

additional hardware.

3) Detection Window Length- For certain failures, correct detection and

identification can be assured at the expense of delayed decisions.

4) Detection sensitivity- Algorithm detection sensitivity can be optimized

subject to false alarm probability constraints through the choice

of decision rule thresholds and assumed plant and sensor noise

intensities,

Our methodology for illustrating these design variables is organized as follows.

In section 4.2 the GLR algorithm will be applied to a typical AGT vehicle,

using the vehicle model by Pitts. Experimental simulation results in detection

of bias failures will be presented in section 4.3. Problems in distinguishing

wind and grade forces from propulsion system failures when a detailed model is

used will be demonstrated, Then section 4.4 illustrates how simplified vehicle

models can decrease the algorithm's sensitivity to wind and grade. Section

4.5 provides an alternative to model choice by means of physically redundant

sensors to address the problem of identification delay. Finally, detection

of failure types other than biases will be addressed in section 4.6,
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4.2 Design of the Algorithm - Pitts' Vehicle Model

This section shows how the steps outlined in section 3.10 can be

followed to apply the GLR algorithm to the AGT vehicle.

System Model (Step 1)

4.2.1 Dynamics and Measurements

The transformed, linear, continuous-time vehicle model by Pitts [193

is chosen to represent the vehicle dynamics. The state equation is

repeated here:

x(t) 0 l 0 x(t) 0 0

=10 0 1 v(t) + 0 E c(t) + 0 (2-1)

(t) [0 -c - a(t) K (t)

The position and velocity sensor measurements are represented in the

measurement equation:

m +(2-2)v~Ct)
V (t) 1 0 1 0 n 2 (t)

mL - L- a (t)

For illustration purposes, the constants. C0 , C 1 , and KM were chosen to

represent the nominal personal rapid transit vehicle of Table 2.2. A 0.10

second sampling interval (10 HZ sampling rate) was chosen as representative

for AGT vehicles [26]. The discrete-time equivalent of the vehicle model

(2-1), (2-2) was computed (Appendix B) and is given below:
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x(k+l) = Dx (k) + BE (k) + W(k)

z (k) = Cx(k) + n(k)

with x(k) = [x(k)v(k)a(k)] , z(k) =

W(k) = [W1 (k)w (k)w 3(k)] , n(k)

[x (k)v (k)]T
m m

= [n (k)n 2(k)]T

and

1.0 8.

0 0.7

0 -3.2

1. 25E-3

BJ 2.92E-2

[3.35E-1J

9E-2

17

5

1.74E-3

1.99E-2

-6.25E-2

C =

10

0

1

0

0

4.2.2 Characterization of Plant and Sensor Noise

In section 3.1 we stated that the plant noise process Q_(k) and the

sensor noise process n(k) are modelled as independent, zero mean, uncorrelated

Gaussian sequences with covariances

T Rj=k

E[n(j)W (k)] =

EI~n(j)n T(k)] R j~k

0jk

The numerical values chosen for Q and R in essence determine the sensitivity

of the Kalman filter, and hence of the detection algorithm. This choice, in
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conjunction with the decision rule, will determine the algorithm's sensitivity

to both actual failures, and external disturbances which may cause false

alarms.

Finding appropriate numerical values for Q and R can often be a dif-

ficult task. If it is known that o(k) and n(k) are indeed Gaussian with

statistics which can be determined, these values should be used; the filter

will then be optimal. In reality, however, the processes which W(k) and

n(k) model are not necessarily, or even likely, Gaussian processes. This

nevertheless does not constrain systematic tradeoffs in algorithm performance

as measured by false alarms and missed detections. The matrices Q and R

can be used parametrically to facilitate the algorithm's performance tradeoffs.

In this study, in order to illustrate the GLR methodology, the charac-

terization of the plant and sensor noise was done in a relatively ad-hoc

procedure. Lacking accurate information, it was estimated that the standard

deviation (lr level) of the noise in the voltage applied to the motor, E(k),

compared to the voltage command, E (k) , might be on the order of 1.0 volt
c

(1% at 10 m/s line speed).

Noise in the voltage applied to the motor propagates into the position,

velocity, and acceleration states during each sampling interval. The noise

can be modelled in the discrete-time state equation (4-1) by the correlated

random variables w (k), (k) and w (k) which comprise the plant noise
1 2 3

covariance matrix Q was computed (Appendix B) to be a statistically equiyalent
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representation of the noise in the motor voltage, and is given in

Table 4.1.

Position measurements were modelled to contain noise having a la

level of 0.1 meter. The la level of the velocity sensor noise was chosen

to be 0.1 m/s and is assumed to be uncorrelated with the position sensor

noise. These values were chosen to be consistent with the simulations

done in [26]. The resulting covariance matrix R of the sensor noise

vector n(k) appears in Table 4.1.

If the statistics of the plant and sensor noise processes were known

with more accuracy, the same methodology which will be presented would

be applied.

4.2.3 Kalman-Bucy Filter Gain (Step 2)

With the above choices of <D, C, Q, and R, the Kalman-Bucy filter

was computed, via a computer solution to the discrete algebraic matrix

Riccati equation (Appendix C). The resulting values of the predicted error

covariance matrix E , updated error covariance Z, Kalman gain matrix K,
p

-1
residual covariance matrix V and its inverse, V , are given in Table 4.2.
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TABLE 4.1

PLANT AND SENSOR NOISE COVARIANCE MATRICES; PITTS' VEHICLE MODEL

PLANT NOISE

8. 50E-7

Q = Et (k)W(k)] = 1.51E-5

1. 56E-5

3,31E-4

1. 99E-3 1.19E-1]

States: 1) Position 2) Velocity 3) Acceleration

SENSOR NOISE

T
R = Efn(k) n(k)] =

.01

0 .01

Measurements: 1) Position 2) Velocity

STANDARD DEVIATIONS
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Table 4.2

Kalman-Bucy Filter Matrices

Pitts' Vehicle Model

F I L T E R

CLOSED LOOP EIGENVALUES
REAL PART

0.3268136302121680-01
0.573314240622441D+00
0.948811848384158D+00

CLOSED LOOP MATRIX
9.51128D-01 7.44609D-02
-1.271220-02 6.66327D-01
5.49864D-02 -3.258200+00

IMAGINARY PART
0.0
0.0
0.0

1.39982D-03
1.85410D-02

-6.26477D-02

KBF FILTER GAIN MATRIX H
4.887180-02 1.27122D-02
1.27122D-02 6.87491D-02

-5.498640-02 1.994930-02

PREDICTED ERROR COVARIANCE MATRIX
5.157480-04 1.43547D-04 -5.753590-04
1.435470-04 7.402050-04 2.063660-04

-5.753590-04 2.063660-04 1.26981D-01

UPDATED ERROR
4.887180-04
1.27122D-04

-5.49864D-04

COVARIANCE MATRIX
1.271220-04 -5.49864D-04
6.874910-04 1.994930-04
1.99493D-04 1.269450-01

RESIDUAL COV MATRIX (V) -
1.05157D-02 1.43547D-04
1.435470-04 1.07402D-02

RESIDUAL COV MATRIX INVERSE (V-INVERSE) -
9.511280+01 -1.271220+00

-1.27122D+00 9.31251D+01
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4.2.4 Detection Window (Step 3)

For purposes of fully illustrating the GLR methodology, a sliding

window containing the previous three seconds of data was chosen as the

detection window. The choice of a detection window with no delay was

done so that the behavior of the likelihood ratios would not be obscured.

The size window is represented by the parameter values N=0 and M=30,

since the sampling rate is 10HZ. The detection window is represented

in Figure 4.1.

4.2.5 Failure Direction VeQtoxs (Step 4)

Sensor Failures

The measurement equation (4-2) represents the position and velocity

sensor measurements. As was illustrated in Chapter 3, (3-12), (3-13)

the choice of failure direction vectors:

f Position sensor bias failure (4-3)
0l direction vector

and

0
f Velocity sensor bias failure (4-4)

1 direction vector
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can be used to represent position and velocity sensors failures. These

vectors lie in the two-dimensional output space of the measurement equation.

Propulsion System Failures

The failure direction vector for actuator failures can be found by

modelling the failure as a bias in the continuous-time state equation. The

equivalent discrete-time failure direction vector can then be found.

A failure in any component (e.g., PCU, DC motor, drive train) of the

vehicle's propulsion system which changes its overall effectiveness can be

modelled by the addition of a bias, S, to the voltage actuator, as shown in

Figure 4.2. The continuous-time state equation (2-1) with the inclusion of the

bias can then be written as:

x(t) = Ax(t) + B (E (t)+ ) + w(t) (4-5a)

Ax(t) + B u(t) + W(t) + B B (4.5b)
c c

where B is the continuous-time control matrix [0 0 KM ]T By comparison

of (4-5b) to equation (3-10) we see the failure vector is given by:

0
f =0 (4-6)
-D K

K M

Thus the direction in state-space of the bias failure is [0 0 KM] and the

magnitude is volts.

The equivalent discrete-time failure direction vector can be found in

the same manner as the discrete-time control matrix B is found from the

continuous-time control matrix B (Appendix B), and is thus given by:
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25E-3 1Propulsion system
_ 2.92E-2 bias failure (4-7)

3.35E-1 direction vector

The above vector can be scaled to be of unit magnitude; however, this was not

done, so that the magnitude of a propulsion system bias would remain in units

of volts.

We have thus defined the set of failure direction vectors {f } for a

position sensor failure (i=l), velocity sensor failure (i=2), and propulsion

system failure (i=3).

4.2.6. Failure Signatures

Failure Signature Matrices (Step 5)

The set of sensor bias and actuator bias failure signature matrices are

given in Table 4.3. They were computed from the equations given in [39,

Appendix A].

Weighted Failure Signatures (Step 6)

The failure signatures s.(r) = s. (r) s. (r)] i=1,2,3, for a position
il 1,2

sensor, velocity sensor, and propulsion system bias failure are shown in

Figures 4.3, 4.4, and 4.5.

Information Matrices (Step 7)

The sensor bias and actuator bias information matrices are given in

Table 4.4.
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Table 4.3a

Failure Signature Matrices

a.) Sensor Failures

G( 0) -

1.00000D+00
0.0

G( 1) -

9.50107D-01
-8.01500D-03

G( 2) -

9.02215D-01
-1.22066D-02

G( 3) -
8.564580-01

-1.42203D-02

G( 4) -
8.12862D-01

-1.50051D-02

G( 5) -

7.71393D-01
-1.51043D-02

G( 6) -
7.319870-01

-1.48283D-02

G( 7) -

6.945640-01
-1.43544D-02

G( 8)
6.59037D-01

-1.37830D-02

G( 9) -
6.25317D-01

-1.31712D-02

G(10) -
5.93317D-01

-1.25507D-02

G(11) -

5.62951D-01
-1.193900-02

G(12) -
5.34137D-01

-1.13456D-02

G(13) -

5.0679OD-01
-1.077490-02

G(14) -
4.80856D-01

-1.02292D-02

G(15) -
4.56243D-01

-9.70889D-03

0.0
1.00000D+00

-1.87876D-02
9.50329D-01

-3.96787D-02
9.21823D-01

-6.12611D-02
9.05677D-01

-8.274830-02
8.966140-01

-1.037140-01
8.91 6020-01

-1.239390-01
8.88903D-01

-1.43319D--Cl
8.875220-01

-1.61815D-01
8.868870-01

-1 .794280-0 1
8.86672D-01

-1.96174D-01
8.86691D-01

-2.120840-01
8.868360-01

-2.27192D-01
8.870460-01

-2.41533D-01
8.87288D-01

-2.55143D-01
8.87541D-01

-2.68059D-01
8.87795D-01

G(16) -
4.32889D-01

-9.21382D-03

G(17) -
4.107300-01

-8.74328D-03

G(18) -
3.897060-01

-8.296.350-03

G(19) -
3.697580-01

-7.87204D-03

G(20) -
3.508300-01

-7.46929D-03

G(21) -
3.328720-01

-7.087070-03

G(22) -
3.15833D-01

-6.72436D-03

G(23)
2.99666D-01

-6.38019D-03

G(24) -

2.843270-01
-6.053620-03

G(25) -

2. 69773D-01
-5.74376D-03

G(26) -
2.55963D-01

-5.44976D-03

G(27) -

2.42861D-01,
-5.170800-03

G(28) -
2.30430D-01

-4.90612D-03

G(29) -
2.18634D-01

-4.65498D-03

G(30) -
2.074430-01

-4.41670D-03

-2.80316D-01
8. 88 0440-01

-2.91945D-01
8.882850-01

-3.029800-01
8.885160-01

-3.13450D-01
8.887370-01

-3.23384D-01
8.88947D-01

-3.328100-01
8.89147D-01

-3.41754D-01
8.89337D-01

-3.502390-01
8.89517D-01

-3.582910-01
8.89688D-01

-3. 659300-01
8.89851D-01

-3.731780-01
8.90005D-01

-3.80055D-01
8.90152D-01

-3.865800-01
8.90291D-01

-3.92771D-01
8.90422D-01

-3.98646D-01
8.90547D-01
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G( 0) -
1.00000D+00
0.0

G( 1) -

1.95011D+00
-8.015000-03

G( 2) -
2.852320+00

-2.02216D-02

G( 3) -

3.708780+00
-3.44419D-02

G( 4).-
4.52t64D+00
-4.94470D-02

G( 5) -

5.29303D+00
-6.45513D-02

G( 6) -
6.02502D+00
-7.937960-02

G( 7) -

6.71959D+00
-9.37340D-02

G( 8) -
7.37862D+00

-1.075170-01

G( 9) -
8.00394D+00

-1.206880-01

G(10) -
8.597260+00

-1.332390-01

G(11) -
9.16021D+00

-1.451780-01

G(12) -
9.69434D+00

-1.56523D-01

G(13) -
1.02011D+01

-1.67298D-01

G(14) -
1.068200+01

-1.77528D-01

0.0
1.00000D+00

6.90786D-02
1.66705D+00

1.755330-01
2.051160+00

3.00036D-01
2.27013D+00

4.31 639D-01
2.394390+00

5.64229D-01
2.46441D+00

6.94462D-01
2.503400+00

8.20566D-01
2.52466D+00

9.41672D-01
2.535810+00

1.05741D+00
2.54122D+00

1.167710+00
2.54338D+00

1.27263D+00
2.54373D+00

1.37234D+00
2.54309D+00

1.46704D+00
2.54193D+00

1.55694D+00
2.54050D+00

Table 4. 3b

Failure Signature Matrices

b.) Actuator Failures

G(15) -
0.0 1.11382D+o1
0.0 --i.87236D-01

G(16) -
1.73816D-03 1.15711D+01
1.99336D-02 -1.964500-01

G(17) -
4.65822D-03 1.19819D+01
3.19735D-02 -2.05194D-01

G(18)
8.16637D-03 1.23716D+01
3.88584D-02 -2.13490D-01

G(19) -
1.19181D-02 1.27413D+01
4.27693D-02 -2.21362D-01

G(20) -
1.57204D-02 1.30922D+01
4.49763D-02 -2.288310-01

G(21) -
1.94672D-02 1.34250D+01
4.62082D-02 -2.359180-01

G(22) -
2.31019D-02 1.374090+01
4.688290-02 -2.42643D-01

G(23) -
2.659620-02 1.404050+01
4.72396D-02 -2.490230-01

G(24) -
2.99380D-02 1.43249D+01
4.74157D-02 -2.55076D-01

G(25) -
3.31236D-02 1.45946D+01
4.74896D-02 -2.608200-01

G(26) -
3.61549D-02 1.48506D+01
4.75063D-02 -2.66270D-01

G(27) -
3.90359D-02 1.50934D+01
4.74915D-02 -2.714410-01

G(28) -
4.17722D-02 1.53239D+01
4.745990-02 -2.763470-01

G(29) -
4.437020-02 1.55425D+01
4.74199D-02 -2.810020-01

G(30) -
1.57500D+01

-2.854190-01

1.64226D+00
2.53896D+00

1.72324D+00
2.537400+00

1.80008D+00

2.53586D+00

1.87300D+00
2.53436D+00

1.942.18D+00
2.532910+00

2.00783D+00
2.53153D+00

2.07011D+00
2.53022D+00

2.12921D+00
2.52896D+00

2.18528D+00
2.52777D+00

2.238490+00
2.52664D+00

2.288970+00
2.52557D+00

2.33686D+00
2.52455D+00

2.382310+00
2.52358D+00

2.42 543D+00
2.52266D+00

.2.466340+00
2.52179D+00

2.505160+00
2. 52 097D+00

4.68360D-02
4.737620-02

4.91762D-02
4.733140-02

5.13969D-02

4.728700-02

5.35041D-02
4.72438D-02

5.55035D-02
4.72022D-02

5.74007D-02
4.71623D-02

5.92008D-02
4.71243D-02

6.090870-02
4.70882D-02

6.252920-02
4.705370-02

6.406680-02
4.70211D-02

6.55257D-02
4.69900D-02

6.69099D-02
4.69606D-02

6.82232D-02
4.69326D-02

6.946940-02
4.69061D-02

7.06517D-02
4.688090-02

7.17735D-02
4.6 8571D-02~
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Table 4.4a

I nformation Matrices

a.) Sensor Failures

C( 0) -
9.511280+01

-1 .27122D+00

C( 1) -
1.80997D+02

-4.82633D+00

C( 2) -

2.58460D+02
-1.033730D+01

C( 3)
3.28277D+02

-1.751390+01

C( 4) -
3.91174D+02
-2.60924D+01

C( 5) -

4.47821D+02
-3.58322D+01

C( 6) -
4.938310+02
-4.631800+01

C( 7)
5.44760D+02

-1.271220+00
9.312510+01

-4.82633D+00
1.773080+02

-1.03370D+01
2.56684D+02

-1.751390+01
3.335680+02

C(16) -
7.98320D+02

-1.732130+02
-1.73213D+02
1.344230+03

C(17) -
8.14381D+02 -1.858080+02

-1.85808D+02 1.426480+03

C(18) -
8.288410+02

-1.981690+02

C(19) -

-2.60924D+01 8.41858D+02

4.092730+02 -2.10265D+02

-3.58322D+01
4.84561D+02

-4.651800+01
5.598850+02

-5.79585D+01

-5.795850+01 6.35516D+02

C( 8) -
5.86111D+02

-6.99858D+01

C( 9) -

6.23339D+02
-8.245280+01

C(10) -
6.56855D+02
-9.523150+01

C(11) -

6.870230+02
-1.082110+02

C(12) -
7.14191D+02

-1.212960+02

C(13) -

7.38645D+02
-1.344040+02

C(14) -
7.60660D+02

-1.474640+02

C(15) -

7.80478D+02
-1.60418D+02

C(20) -
8.535770+02

-2.22073D+02

C(21) -

8.64126D+02
-2.33576D+02

C(22) -
8.73623D+02

-2.447590+02

C(23) -
8.82173D+02

-2.556120+02

C(24) -
8.89870D+02

-2.66127D+02

C(25) -
8.96799D+02
-2.76300D+02

C(26) -

9.03037D+02
-2.86129D+02

C(27) -
9.08632D+02

-2.95614D+02

-6.998580+01
7.11621D+02

-8.24528D+01
7.88301D+02

-9.52315D+01
8.65621D+02

-1.08211D+02
9.43618D+02

-1.21296D+02
1.02231D+03

-1.344040+02
1.101720+03

-1.474640+02
1.18185D+03

-1.604180+02
1.262690+03

C(28) -
9.13708D+02
-3.04757D+02

C(29) -
9.18259D+02
-3.13560D+02

C(30) -

9.223560+02
-3.22029D+02

-1.981690+02
1.50942D+03

-2.10265D+02
1.59302D+03

-2.220730+02
1.677290+03

-2.335760+02
1.762200+03

-2.447590+02
1.84774D+03

-2.55612D+02
1.933880+03

-2.66127D+02
2.020610+03

-2.76300D+02
2.10792D+03

-2.86129D+02
2.19577D+03

-2.956140+02
2.284160+03

-3.04757D+02
2.37306D+03

-3.13560Di02
2.462460+03

-3.220290+02
2.55233D+03
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Table 4.4b

Information Matrices

b.) Actuator Failures

C( 0) -
9.51128D+01

-1 .27122D+00
0.0

C( 1) -
4.568650+02
6.165270+00
2.58119D-01

C( 2) -

1.23086D+03
4.24905D+01
1;34583D+00

C( 3) -
2.53958D+03
1.303580+02
3.919060+00

C( 4) -

4.48498D+03
2.912300+02
8.60260D+00

C( 5) -

7.15094D+03
5.43932D+02
1.594510+01

C( 6) -
1.06054D+04
9.04289D+02
2.64074D+01

C( 7) -
1.49025D+04
1..38522D+03
4.03652D+01

C( 8) -

2.00839D+04
1.99704D+03
5.81181D+01

C( 9) -
2.61809D+04
2.747770+03
7.98984D+01

C(10) -
3.321550+04
3.643460+03
1.058910+02

C(11) -

4.120170+04
4.638470+03
1.36193D+02

C(12) -
5.014660+04

5.885700+03
1.709160+02

-1.27122D+00
9.31,251D+01
0.0

6.16527D-r00
3.52085D+02
3.10055D+00

4.249050+01
7.45902D+02
9.26643D+00

1.30358D+02
1.23265D+03
1.76760D+01

2.912300+02
1.78164D+03
2.764210+01

5.43932D+02
2.37396D+03
3.87263D+01

9.04289D+02
2.999030+03
5.06819D+01

1.38522D+03
3.651380+03
6.33844D+01

1.99704D+03
4.328470+03
7.677980+01

2.747770+03
5.029370+03
9.08513D+01

3.64346D+03
5.75392D+03
1.05601D+02

4.68847D+03
6.50230D+03
1.210370+02

5.88570D+03

7.27483D+03
1.37170D+02

0.0
0.0
0.0

2.58119D-01
3.10055D+00
3.72022D-02

1.34583D+00
9.26643D+00
1.34089D-01

3.91906D+00
1.76760D+01
2.80242D-01

8.60260D+00
2.76421D+01
4.62801D-01

1.594510+01
3.87263D+01
6.728890-01

2.64074D+01
5.06819D+01
9.05487D-01

4.03652D+01
6.33844D+01
1 .15818D+00

5.81181D+01
7.677980+01
1.43009D+00

7.98984D+01
9.08513D+01
1.721090+00

1.05881D+02
1.056010+02
2.03147D+00

1.36193D+02
1.21037D+02
2.36160D+00

1.709160+02

1.371700+02
2.71186D+00

C(13) -

6.00513D+04
7.236860+03
2.101000+02

C(14) -
7.09119D+04
8.74255D+03
2.53762D+02

C(15) -
8.27202D+04
1.04025D+04
3.018940+02

C(16) -
9.546430+04
1.221570+04
3.54466D+02

C(17) -
1.091290+05
1.41805D+04
4.114280+02

C(18) -
1.236980+05
1.629480+04
4.72719D+02

C(19) -
1.33150D+05
1.855570+04
5.382590+02

C(20) -

1 .55466D+05
2.096040+04
6.079630+02

C(21) -

1.72621D+05
2.350560+04
6.81735D+02

C(22) -
1.9%593D+05
2.61877D+04
7.59470D+02

C(23) -
2.093580+05
2.90029D+04
8.41063D+C2

C(24) -
2.23891D+05-
3.194750+04
9.26400DA02

C(25) -
2.491660+05
3.501750+04
1.01537D+03

7.236860+03
8.07177D+03
1.54010D+02

8.74255D+03
8.89331D+03
1.71562D+02

1.040250+04
9.739550+03
1.89829D+02,

1.22157D+04
1.06104D+04
2.08811D+02

1.41805D+04
1.15059D+04
2.28504D+02

1.629480+04
1.24256D+04
2.48901D+02

1.855570+04
1.33693D+04
2.69993D+02

2.09604D+04
1.433670+04.
2.91768D+02

2.35056D+04
1.53271D+04
3.14213D+02

2.618770+04
1.63402D+04
3.373150+02

2.900290+04
1.73754D+04
3.61056D+02

3.19475D+04
1.84321D+04
3.85421D+02

3.501750+04
1.95&980+04

4.10391D+02

2.101000+02
1.54010D+02
3.08254D+00

2.537620+02
1.715620+02
3.47385D+00

3.01894D+02
1.898290+02
3.88587D+00

3.54466D+02
2.08811D+02
4.31859D+00

4.1 14230+02
2.285040+02
4.77189D+00

4.727190+02
2.489010+02
5.245600+00

5.33250D+02
2.69993D+02
5.73943D+00

6.07963D+02
2.91768D+02
6.25307D+00

6.817350+02
3.14213D+02
6.78612D+00

7.59470D+02
3.37315D+02
7.33817D+00

8.41063D+02
3.610560+02
7.908760+00

9.264000+02
3.85421D+02
8.49739D+00

1.015370+03
4.103910+02

9.10357D+00
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Information Measures (Step 8)

The information measures a. (r) i=1,2,3 for a position sensor, velocity

sensor, and propulsion system bias failure are shown in Figure 4.6.

4.3 Testing of the GLR Algorithm on a Simulated Vehicle-Detection

of Bias Failures

To test the performance of the GLR algorithm, a computer program was

developed to simulate the dynamics of an AGT vehicle. With this program,

the effects of maneuvers, grade transitions, and wind forces can be simulated.

Simulated sensor outputs, with or without additive Gaussian noise, can be

produced and stored for processing by a GLR detection algorithm under test,

implemented in another computer program. The vehicle simulator allows for

the emulation of a variety of vehicle failures, both in the sensors and in

the propulsion system. The details of the vehicle simulator and GLR programs

are provided in Appendix C. A block diagram representation of the

system which was simulated appears in Figure 4.7. In this simulated vehicle,

the motor voltage command and the velocity sensor and position sensor outputs

are digitized and sent to the failure detection computer which performs the

Kalman-Bucy filter and GLR algorithm calculations. The algorithm produces

three maximum likelihood ratios, Y. for the three possible failure locations:

position sensor (i=l), velocity sensor (i=2), and propulsion system (i=3).

In practice, these likelihood ratios would be used in a decision rule

to decide whether a failure has occurred; here, we will merely examine the

qualitative behavior of the maximum likelihood ratios, without choosing a
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specific decision rule. However, we will say that a failure can be

detected if one of the MLR's becomes "large" (i.e., relative to their nominal

values). If the largest of the three likelihood ratio 9*, i=1,2,3 corresponds

to the true location of the failure, then we will say that the location of

failure has been correctly identified.

The following sections will present the performance results of the GLR

algorithm in detecting bias failures in the simulated vehicle's sensors and

propulsion system. Detection of failure types other than biases will be

discussed in section 4.6.

Vehicle simulations were done both with and without additive Gaussian

noise in the sensors and vehicle plant. The simulations performed without

the noise were done to determine the mean trajectories of the likelihood

ratios, so that the expected performance could be seen without being obscured

by random effects. Noise will cause the likelihood ratios to have mean tra-

jectories which follow those to be shown in the figures plus a constant

value of 1. Likelihood ratios following a failure will have random fluctua-

2
tions with standard deviation 2+4S a (k;O) as a result of the noise.

4.3.1 Position Sensor Bias Failure

Scenario

The AGT vehicle was initialized to a constant velocity of 15 m/s at

position zero. At time 0=1.0 sec. a bias of magnitude 1.0 meter was added

to the vehicle's position sensor measurement, as shown in Figure 4.8. No

background noise was present in the plant or sensors.

-84-



'a=.Om

0 8 t

Figure 4.8

Position Sensor Output Trajectory, Bias Failure

-85-

z
0
F-

0
CL



Results

The simulated measurements and motor voltage command were processed

by the Kalman-Bucy filter and GLR algorithm. The likelihood ratios

Z.(r) i=1,2,3 for the hypothesized position sensor, velocity sensor, and

propulsion system failures, respectively, were computed. For each set, the

maximum over the detection window, Z* i=1,2,3, was chosen. This process

was repeated at each step in the simulation, producing the filter residuals,

Figure 4.9, and the trajectories of the three maximum likelihood ratios 2*,

Figure 4.10.

The maximum likelihood ratio (MLR) for the position sensor failure,

*, jumps to a value of 95.1 at the failure time a. At each succeeding time

step, 2 increases, tending toward an asymptotic value of about 900. The

asymptotic behavior is expected from the shape of a (r), Figure 4.6. The MLR

suddenly begins decreasing, however, three seconds following the failure.

This is because the onset of the bias begins to pass out of the three second

detection window and thus less of the signature is observed. It continues to

decay as time progresses, as less and less of the signature is present in the

residuals.

The maximum likelihood ratios for the other failure types, * and *',2 3

also increase after the failure, reaching a peak value approximately two

seconds after the failure, but then decay. At every step following the

failure, however, they remain well below 9*, the maximum likelihood ratio

for the actual failure type; this implies the failure is both detected and

identified correctly.
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The likelihood ratios in Figure 4.10 correspond to a position sensor bias

with a magnitude of 1.0 meter. The values of the likelihood ratios for a

bias of arbitrary magnitude S can be determined by scaling the curves in

2
Figure 4.10 by the constant .

The standard deviation of the fluctuations expected in the behavior of

91 following the failure as a result of the background plant and sensor noise

is shown in Figure 4.10. Nevertheless, the position sensor bias failure was

repeated, with Gaussian plant and sensor noise included in the simulation.

The variances of these disturbances were equal to the statistics assumed in

the system model and Kalman-Bucy filter, Table 4.1. The filter residuals

are plotted in Figure 4.11. Note the correspondence between the observed

residuals here and the position sensor bias signature, Figure 4.3. The

maximum likelihood ratio trajectories for the noisy run are shown in Figure

4.12. The magnitude of k* is only slightly less than it is in the case without
1

the noise, Figure 4.10.

It is common practice to relate the magnitude of a sensor failure bias

to the standard deviation, 0, of the additive Gaussian noise for that sensor.

The 1.0 meter bias magnitude used for the above simulated failure represents

a 10a failure. To examine the detection sensitivity, a la failure was also

simulated with a bias to the position sensor of 10cm. The signature in the

residuals is barely discernable by a visual examination (Figure 4.13). The

maximum likelihood ratios are shown in Figure 4.14. The MLR for the position

sensor failure, 2i, remains greater than the others from 0.5 second after the

failure until the true failure time passes out of the detection window. Thus,
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if a failure of this size is to be detected, it would have to be done during

this interval, as the failure signature rapidly disappears.

Summary of Results

The preceeding results can be sumxarized as follows:

1) The position sensor bias caused to approach an asymptotic
2

value proportional to .

2) * decayed rapidly once the failure time 0 left the detection

window.

3) The algorithm could unambiguously identify the true location

of the failure.

4) Background noise did not affect detection of a 1OU failure.

A la failure is barely detectable.

5) Lengthening the detection window will not improve detection

of small failures.

4.3.2 Velocity Sensor Bias Failure

Scenario

A velocity sensor failure was simulated with the addition of a 1.0m/s

bias to the velocity measurement. Since the velocity sensor is part of

the control feedback loop, the bias caused the vehicle behavior shown in

Figure 4.15. The velocity regulator, believing the vehicle to suddenly be

travelling 1.0m/s faster than the commanded velocity, ordered the vehicle

to decrease its speed, as shown in the figure. Before the failure, the

vehicle was travelling at a velocity of 15m/s. No background noise was

present.
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Results

The maximum likelihood ratiosi* following the sensor bias are shown
1

in Figure 4.16. At time 0, the MLR's 9*2 and * both jump to a value of 93.2 3

With the one observation at time 0, the algorithm can detect the failure,

but cannot uniquely identify the failure's location since and 2 are the2 3

same. This behavior is expected, since by looking at only the first point,

the velocity sensor and propulsion system failure signatures (Figure 4.4

and 4.5) are indistinguishable. As more observations are made, the algorithm

identifies the true failure location, and * grows larger than Z*.
2 3

The standard deviation of the expected random fluctuations of 2* following
2

the failure is shown in Figure 4.16. The time until V* leaves this "band"
3

around 9* provides an estimate of the time required for unambiguous identifi-
2

cation of the failure location.

The velocity sensor MLR, 2, continues to increase, even after the
2

failure time has left the detection window, in contrast to the behavior

of 9/ following the position sensor failure (section 4.3.1). The value of

.* continues to grow in this case as the residuals contain a non-zero mean
2

as long as the bias persists, as shown in Figure 4.17.

The velocity sensor bias failure simulation was repeated with the

addition of Gaussian plant and sensor noise. Noisy residuals for the 1.0m/s

bias are shown in Figure 4.18, and the resulting MLR's in Figure 4.19.

Addition of the noise produced only a slight degradation of performance.

As the 1.0m/s bias represents a 10a bias magnitude, a la failure was also
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simulated, via a bias magnitude of 0.lm/s. The resulting residuals and

MLR's are shown in Figures 4.20 and 4.21. Since Z* continues to grow,

independent of the length of the detection window, the failure would

eventually be detected.

Summary of Results

1) The velocity sensor bias caused * to grow linearly with time.
2

2) 22 continued to grow, although at a slower rate, even when
2

the failure time 0 left the detection window.

3) There was a delay until the true location of the failure could

be unambiguously identified to be a velocity sensor and not a

propulsion system failure.

4) Background noise did not affect detection of either a 10a

or la failure.

5) Small failures will be detected independent of the length of

the detection window, although they can be detected sooner

with a longer window.

4.3.3 Propulsion System Bias Failure

Scenario

A bias failure in the propulsion system was simulated by the addition

of a 10 volt bias to the PCU (voltage actuator) , as shown in Figure 4.2.

The bias caused the vehicle to rapidly accelerate from its initial velocity

of 15m/s to a velocity of 15.8m/s. The control system, sensing the overspeed
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condition via the velocity sensor feedback, began to slowly decrease the

motor voltage command (Figure 4.22). The vehicle's behavior is shown in

Figure 4.23.

Results

The signature of the propulsion system failure is clearly seen in the

filter residuals, Figure 4.24. Increasing in an exponential fashion, Z*
3

does not exhibit a large "jump" at the time of the failure. Not able to

initially determine the location of the failure, Z* and Z* both remain2 3

close for approximately one-half second following the failure. As more

observations are made, the location of the failure is identified, and Z3
3

grows larger than *, Figure 4.25. Since the residual remain non-zero, Z*
2 3

continues to increase after the failure time 0 has left the detection window.

With the addition of plant and sensor Gaussian noise in the simulation,

a 100 (10 volt) and la (1 volt) bias failure was performed. Detection of

the 10a failure was not significantly affected by the noise (Figure 4.26

and 4.27). Although the effect of the noise is apparent on the residuals

(Figure 4.28) and MLR's (Figure 4.29) detection of the 1cr failure is still

possible.

Summary of Results

1) The propulsion system bias caused A* to grow in an exponential
3

fashion, increasing slowly during the first one half second.

2) Although continuing to grow once 0 left the detection window,

the rate of increase was reduced.
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3) There was a delay until the true location of the failure

could be unambiguously identified to be in the propulsion

system and not the velocity sensor.

4) Background noise did not affect the detection of a 10a

failure.

5) Detection of a la failure is still possible.

Failure-Free Performance: Noise, Maneuvers, Grade and Wind

In the previous sections we have demonstrated the GLR algorithm's

ability to detect sensor and propulsion system bias failures. A key

performance characteristic which remains to be examined is the response

of the algorithm to failure-free noise, maneuvers, and unmodelled forces

such as wind and grade acting on the vehicle. The sensitivity of the

algorithm to these effects will determine the false-alarm characteristics

of the algorithm. The following sections present tests of the GLR algorithm

on simulated vehicle data which includes these disturbances and forces, but

is free of any vehicle failures.

4.3.4 Gaussian Plant and Sensor Noise

The effects of Gaussian plant and sensor noise on the likelihood ratios

in the presence of a failure have been examined. The variance, due to the

noise, of P* = 2. (k; 0=0) can be computed analytically (equation 3-33b).

Under failure-free conditions, each likelihood ratio Z . (k;e) in the

detection window k-M < 0 < k-N is a central chi-squared random variable,
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with mean 1 and a variance of 2. However, the density function for

(k), the maximum of the likelihood ratios over the detection window,

can not readily be determined (the LR's are mutually correlated). Since k*
i

is used in the decision rule, clearly its nominal behavior and range of

values must be determined. We shall do this via simulations.

Scenario

In this ten second simulation, the vehicle was commanded to maintain a

constant velocity of 15m/s. Gaussian plant and sensor noise was added to

the propulsion system and measurements. The intensity of the noise "matched"

the intensity assumed in the design of the Kalman-Bucy filter.

Results

The response of the vehicle to the random disturbances is illustrated

in Figure 4.30. Residual and maximum likelihood ratios appear in Figure 4.31

and 4.32. It is observed that the MLR's lie in a range 0-7. We could use

this observation in determining thresholds in a decision rule, since the

observed range of the MLR's implies that a lower bound on a failure decision

threshold must be at least 7 to avoid false alarms caused solely by the

background noise. However, as shall be seen, the effect of wind and grade

forces will in practice play the largest role in the determination of

decision thresholds.

4.3.5 Commanded Vehicle Maneuvers

It is clearly essential that the failure detection system not respond

to normal maneuvers of the vehicle. During maneuvers, however, the effects
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of sampling may be the greatest, thus adversely affecting the failure

detection system.

The discretized vehicle model embedded in the Kalman-Bucy filter

assumes that the input to the model, Ec (k) is the same as the input to the

motor, and is held constant over the time period k to k+l with a zero-order

hold (Figure 4.7); in fact the motor voltage command E c(t) is not constant

over the interval when maneuvers are being performed. This will cause a

slight discrepancy between the actual vehicle and the discretized model in

the failure detection system. The discrepancy will be the greatest when the

vehicle is at maximum acceleration, for then the rate of change of the motor

voltage command will be at its maximum, and the error (shaded area,

Figure 4.33) will be greatest. The amount of error in the approximation to

the voltage command will depend on the sampling rate.

Scenario

The vehicle was commanded to increase its velocity from 15m/s to 18m/s

at service limits, via the jerk profile, Figure 2.2. Vehicle response is

shown in Figure 4.34. No Gaussian noise was present.

Results

As predicted, the peak of the velocity residual (Figure 4.35) coincides

with the vehicle's period of maximum acceleration. The propulsion system

MLR 9i reaches a peak value of 12 during the maneuvers (Figure 4.36).
3
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Summary

The effects of errors induced by discrete-time sampling must be taken

into consideration, as these errors may become large during vehicle maneuvers.

If sampling rates are high enough, however, vehicle maneuvers will not cause

false alarms.

4.3.6 Wind and Grade

The two forces acting on the vehicle which are most likely to cause false

alarms are wind and grade forces. These unmodelled forces will appear to

the GLR algorithm as bias failures in the propulsion system. To gain an ap-

preciation for the magnitude of these forces, the propulsive force required to

maintain a constant velocity in the presence of a 6% grade or a 30m/s headwind

may be on the order of 5 times the propulsive force necessary to maintain that

velocity on a level guideway with no wind. Simulations were performed to

determine the GLR algorithm's sensitivity to these forces.

Scenario (Grade)

To determine the effects of grade, the transition from a level guideway

to a 6% grade was simulated. The grade transition, beginning at time t=1.0,

occurred at a constant rate of 10%/sec so that the 6% transition was completed

in 0.6 sec. (Figure 4.37). This represents a transition length of 9 meters.

The grade remained in effect for the remainder of the simulation. The response

of the vehicle to the grade force is shown in Figure 4.38.
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Results

The Kalman-Bucy filter residuals are shown in Figure 4.39. Observe

that they contain a signature similar to a propulsion bias failure. The

*
maximum likelihood ratio for the voltage actuator failure, k3, shows in

Figure 4.40, that this is indeed the case. Nine seconds after the transition

was begun, this MLR reaches a value near 125.

Scenario (Wind)

A simulation was performed in which the vehicle, at a velocity of 15m/s,

encountered an 18m/s headwind gust. Relative to the vehicle, the wind trans-

ition from 0-18m/s lasted one-half second, occurring at a constant rate

(Figure 4.41). Vehicle response to the headwind is shown in Figure 4.42.

Results

Filter residuals (Figure 4.43) and likelihood ratios (Figure 4.44) are

similar to those caused by the grade, although of a larger magnitude. Nine

seconds after the initiation of the gust, A* has reached a value near 1000.
3

Summary of Results

1) Wind and grade appear to the detection system as propulsion

failures, since although the motor voltage command is

increasing, observed velocity decreases.

2) The likelihood ratio t* continues to grow as long as3
the wind or grade force is present, even when the

transition time has passed out of the detection window.

3) Wind and grades are thus likely to cause false alarms.
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Discussion

Wind and grade forces may pose formidable problems for the failure

detection system, as the distinguishability between the effects of these

forces and failures in the propulsion system is difficult.

Decreasing the sensitivity of the algorithm, either by raising decision

thresholds or by increasing the assumed variance of the plant noise is not

a viable solution since 1) the likelihood ratios keep growing, and 2) this

will worsen propulsion failure detection performance.

One possible solution to the false alarm problem is to model wind and

grade explicitly in the vehicle model. This would require on-line measurements

of these forces. Although guideway grade information could be stored on-board

the vehicle (e.g., in a processor's read-only-memory), an on-board air speed

indicator is required for wind measurement; the cost of the additional hardware

would be prohibitive.

Another alternative is to replace Pitts' relatively detailed vehicle

model with a simplified model which will not contain modelling errors in the

presence of wind and grade. This possible solution will now be examined.

4.4 Simplified Vehicle Models

4.4.1 Introduction

The system model, (3-1) and (3-2) plays a key role in the GLR algorithms

ability to detect various failures, to identify the location of the failure

in the system, and to avoid false alarms caused by various disturbances. The

purpose of this section is to illustrate how the choice of different system
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models can provide tradeoffs of the algorithms performance under both

failure and failure-free conditions.

In Pitts' vehicle model (2-1), used in developing the GLR algorithm,

assumptions about the vehicle's motor characteristics, load, and forces

acting on the vehicle were made in the choice of the parameters CO' C1 , and

K . These uncertain parameters cause the modelling errors which cause false
M

alarms. The vehicle models we will now examine contain no parameter uncertainty;

they employ kinematic relationships which are known with certainty.

4.4.2 Model Descriptions

The first alternative vehicle model we will present makes only one as-

sumption about the AGT vehicle's dynamics - namely, that the vehicle's

velocity will follow, reasonably well, the velocity command generated by the

velocity command generator. The extent to which this assumption is valid,

even in the presence of winds and grades, will depend on the ability of the

velocity regulator to maintain commanded velocity. The assumption can be

modelled as follows:

x(t) = [0]x(t) + v (t) + W(t) (4-8)
c

where x(t) is the vehicle's position, v c(t) is the velocity command, and

w(t) represents the difference between the commanded and actual velocities.

A measurement of position is represented by:

x (t) = [1]x(t) + n1 (t) (4-9)
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where x (t) is the position sensor measurement and n (t) is the measurement

noise.

The above model's single state variable, position, prevents the repre-

sentation of a velocity sensor measurement. Through the addition of a

velocity state variable, and by modelling the kinematic relationship between

position and velocity (i.e., that the derivative w.r.t. time of position is

velocity) we are able to employ the available velocity measurement in the

model:

x(t) 0 1 x(t) 0 0
+ a (t) + (4-10)

(t) 0 0 Vt] c (t)

x (t) 1 0 x(t) n (t

+ (4-11)

v (t) 0 1 v(t) n (t)

where x(t) is the vehicle's position, v(t) its velocity, a (t) the commanded
C

acceleration (the derivative of v (t)),w (t) the difference between actual
C

and commanded acceleration, xm(t) and v m(t) the sensor measurements of position

and velocity, and n (t) and n 2t) the measurement noise. Due to the

structure of the velocity command generator of our study vehicle (Figure 2.3),

the acceleration command a (t) could be made readily available.

Intuitively, position and velocity sensor failures will be detected by

the GLR algorithm employing the above models by the apparent violation of the

kinematic relationship between position and velocity which is observed during
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a sensor failure. Propulsion system failures will be detected when the

commanded velocity (acceleration) differs greatly from the actual velocity

(acceleration).

Since the above models represent Kinematic relationships and use

velocity or acceleration Commands as input, we shall refer to (4-8), (4-9)

and (4-10), (4-11) as vehicle models KCl and KC2 respectively.

The discrete-time equivalents to the above continuous-time models can

be found (Appendix B) and are given below for a sampling interval of

At=0.l second:

KCl - Kinematic Vehicle Model; Velocity Command Input

State Equation

x(k+l) = [lx(k) + [O.1]v (k) + o(k) (4-12)
c

Measurement Equation

x (k) = [l]x(k) + n (k) (4-13)

KC2 - Kinematic Vehicle Model; Acceleration Command Input

State Equation

x(k+l) 1.0 .l - x(k) 5.0E-3 a (k)

v~kl) o] iZI+ [~~a (k) {+ ] (4-14)lv(k+1)l 0 1.0 [v k) 0.1 c 2(k)

Measurement Equation

x (k) 1 0 x k) n 1(k)
+ (4-15)

v (k) 0 l v k n (k)
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The above models can be simplified even further by a model which makes

no assumptions about the vehicles control or propulsion system. The following

model simply represents the kinematic relationship between position and

velocity measurements:

State Equation

x(t) = [0]x(t) + v (t) + n (t) (4-16)
M 2

Measurement Equation

x (t) = [l)x(t) + n (t)
m1

where x(t) is the vehicle's position, x (t) and v (t) the measured position
m m

and velocity, and n1 (t) and n2 (t) the measurement noise. This representation

is comparable to (4-8), except the velocity sensor measurement is used to

drive the state variable, instead of the velocity command. Notice the

manipulated model above contains no plant noise; only measurement noise is

present.

Intuitively, the GLR algorithm, when based on this vehicle model, will

detect sensor failures by the invalidation of the kinematic relation which

should relate the position and velocity measurements. Since the propulsion

system is not modelled, propulsion system failures can not be detected;

however, wind and grade will not cause false alarms, since these forces will

not affect the sensors' kinematic relationship. Thus we see the tradeoff

between detection ability and false alarms taken to one extreme.
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Since the above model employs Kinematic relationships and uses a Sensor

measurement as input, it will be referred to as KS1. The equivalent discrete-

time representation is given below:

KSl - Kinematic Vehicle Model; Velocity Sensor Input

State Equation

x(k+l) = [l]x(k) + [O.l1]v (k) + n (k)
m 2 (4-18)

Measurement Equation

x (k) [l]x(k) + n (k) (4-19)

m1

The three models KSl, KCl and KC2, whose block diagrams are shown

in Figure 4.45, were used in the GLR algorithm and tested under conditions

identical to those used in testing the algorithm based on Pitts' model. The

failure signatures are shown in Figures 4.46 - 4.48 for position sensor,

velocity sensor, and propulsion system bias failures. Tha plant and sensor

noise statistics chosen and the resulting Kalman-Bucy filter matrices are

given in Tables 4.5 - 4.7.

4.4.3 Performance Results with Simplified Models

4.4.3.1 Position Sensor Bias Failure

The GLR algorithm using the three simplified vehicle models KS1, KCl,

and KC2 was run on the position sensor bias failure data (section 4.3.1)

Maximum likelihood ratios, (including those previously shown when Pitts' model

was used) appear in Figure 4.49.
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Table 4.5

Noise Covariance and Kalman-Bucy Filter Matrices

Sensor Driven Kinematic Vehicle Model KS1

DISCRETE DRIVING NOISE COVARIANCE MATRIX (0) -

1.OOOOOD-04

MEASUREMENT NOISE COVARIANCE MATRIX (R) -

1.00000D-02

K A L M A N F I L T E R

CLOSED LOOP EIGENVALUES
REAL PART

0.904875078027496D+00
IMAGINARY PART

0.0

CLOSED LOOP MATRIX
9.04875D-01

KBF FILTER GAIN MATRIX H
9.51249D-02

PREDICTED ERROR COVARIANCE MATRIX
1.05125D-03

UPDATED ERROR COVARIANCE MATRIX
9.51249D-04

RESIDUAL COV MATRIX
1.10512D-02

RESIDUAL COV MATRIX
9.04875D+01

(V) -

INVERSE (V-INVERSE) -
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Table 4.6

Noise Covariance and Kalman-Bucy Filter Matrices

Velocity Command Driven Kinematic Model KC1

DISCRETE DRIVING NOISE COVARIANCE MATRIX (Q) -
6.40000D-03

MEASUREMENT NOISE COVARIANCE MATRIX (R) -
1.OOOOOD-02

K A L M A N F I L T E R -

CLOSED LOOP EIGENVALUES
REAL PART

0.458373630858480D+00

IMAGINARY PART
0.0

CLOSED LOOP MATRIX
4.58374D-01

KBF FILTER GAIN MATRIX H
3.41626D-01

PREDICTED ERROR COVARIANCE MATRIX
1.18163D-02

UPDATED ERROR COVARIANCE MATRIX
5.41626D-03

RESIDUAL COV MATRIX (V) -

2.18163D-02

RESIDUAL COV MATRIX INVERSE (V-INVERSE) -

4.58374D+01



Table 4.7

Noise Covariance and Kalman-Bucy Filter Matrices

Acceleration Command Driven Kinematic Model KC2

DISCRETE DRIVING NOISE COVARIANCE MATRIX (Q) -
1.25000D-05 2.50000D-04
2.50000D-04 5.000000-03

MEASUREMENT NOISE COVARIANCE MATRIX (R) -
1.0000OD-02 0.0
3.0 1.OOOOOD-02

F I L T E R-

CLOSED LOOP EIGENVALUES
REAL PART

0.503867959357659D+00
0.90381949472481 1D+00

CLOSED LOOP MATRIX
9.08219D-01 2.85807D-02

-6.22412D-02 4.99469D-01

K8F FILTER GAIN MATRIX H
9.17811D-02 6.22412D-02
6.22412D-02 4.94307D-01

PREDICTED ERROR COVARIANCE
1.10422D-03 1.36672D-03
1.36672D-03 9.943070-03

IMAGINARY PART
0.0
0.0

MATRIX

UPDATED ERROR COVARIANCE MATRIX
9.17811D-04 6.22412D-04
'.22412D-04 4.94307D-03

RESIDUAL COV MATRIX (V) -

1.11042D-02 1.366720-03
1.36672D-03 1.99431D-02

RESIDUAL COV MATRIX INVERSE (V-INVERSE) -

9.08219D+01 -6.22412D+00
-6.22412D+00 5.05693D+01
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The position sensor failure was detected and eventually identified

correctly with all of the models. The ability of the algorithm to initially

identify the location of the failure varies, however, with the use of the

different models. Only after a number of observations have been taken can

KSl and KCl properly identify the failure location, as the two MLR's in each

case jump initially to the same value. Intuitively, the situation is com-

parable to a dual-redundant set of sensors - when one fails, it can be

deduced that there has been a failure, but not which one has failed. In the

case of KS1 and KCl, the algorithm has two pieces of "analytically redundant"

information - the measurement and the input to the state equation; initially,

there is no way to determine which one corresponds to the failure. The

physically redundant sensors require a third sensor to properly identify the

location of the failure; the GLR algorithm uses the structure of the models

KS1 and KCl to act as the third piece of information required for proper

identification.

The detection algorithms based on Pitts' model and KC2, are able to

initially identify the true failure location. This result is useful, as it

implies that with these models no delay is required to detect and identify

a position sensor failure.

Summary of Results

1) Detection of the failure is comparable using all four

vehicle models.

2) The single-state variable models KS1 and KCl require a

delay before the location of the failure can be identified.
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3) The algorithm using Pitts' model provides the minimum

identification delay.

4.4.3.2 Velocity Sensor Bias Failure

The MLR's from the simulated velocity sensor bias (section 4.3.2) are

shown in Figure 4.50. The model KCl is not included as it does not model

a velocity measurement. The velocity sensor failure was detected and

eventually identified correctly by the algorithm with the three models KS1,

KC2, and Pitts'. Even after the true failure time has passed out of the

detection window, the MLR's continue to increase, so that biases of small

magnitudes will eventually be detected.

Initially, the algorithm based on KC2 and Pitts' models cannot distinguish

between the velocity sensor failure and a propulsion failure. A strategy

to improve this failure location identification delay will be discussed in

section 4.5.

Summary of Results

1) Detection ability is comparable using the models KS1, KC2,

and Pitts'.

2) A delay before the location of the failure can be identified

is required with the three models.

4.4.3.3 Propulsion System Bias Failure

The GLR algorithms based on the models KS1, KCl, KC2 and Pitts were

run on the simulated 10 volt PCU bias failure data (section 4.3.3). Maximum
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likelihood ratios are shown in Figure 4.51.

The algorithm based on the model KS1 could not detect the failure, as

the propulsion system is not modelled in the algorithm.

With KCl used in the algorithm, the propulsion system likelihood ratio

grows due to the continued discrepancy between the commanded and actual

vehicle velocities. With KC2, the transient acceleration, causing a

temporary discrepancy between commanded and actual acceleration, produces

a peak in the likelihood ratio.

Summary of Results

1) The kinematic sensor model KSl could not detect the failure.

2) The velocity command driven model KCl performed better

than the acceleration command driven model KC2.

3) Initial identification of failure location was not pos-

sible with any of the models used in the algorithm.

4.4.3.4 Wind, Grade, Maneuvers, and Noise

The MLR's obtained from the wind and grade disturbance runs appear

in Figures 4.52 and 4.53. The improvement in false alarm performance af-

forded by the models KSl, KC1, and KC2 compared to Pitts' is clearly evident.

The MLR's obtained when the model KS1 was used remain extremely small,

as expected, since the wind or grade forces do not affect the sensors'

kinematic relationship. The slight increase which is observed is due

solely to the effects of sampling.

The wind and grade forces appear to the algorithm using the model

KCl as a small propulsion system failure, due to the difference between
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the vehicle's commanded velocicty and its actual velocity which has

decreased slightly as a result of the force. With the vehicle model and

the control system we have simulated, in the presence of the wind the MLR

reaches a peak of only 4.0 and then decreases. In general, the peak value

of the MLR will depend on the control system's ability to keep the vehicle's

velocity at the commanded velocity; if the control system has a high enough

bandwidth we would not expect a false alarm with this model used in the

algorithm.

The algorithm with the model KC2 detects the temporary acceleration as

a result of the application of the wind and grade forces. The MLR reaches

a maximum value of 3.0 and then decays rapidly.

The peak values of the MLR's for both models KCl and KC2 are seen to

be insignificant when compared to the MLR's obtained during the line speed

change maneuver (Figure 4.54) and random Gaussian noise (Figure 4.55).

Since the thresholds in the decision rule would have to be set to tolerate

these values, it is unlikely that false alarms would be generated solely

by the wind or grade forces.

Regardless of the numerical values of the MLR peaks as a result of

the wind or grade, the behavior of the MLR's contrasts significantly with

their behavior when Pitts' vehicle model was used in the algorithm. The

fact that they do not continue to increase, as they do with Pitts, il-

lustrates how the choice of the vehicle model can have a significant effect

on false alarm performance.
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To illustrate the improvement in performance afforded by the simplified

models, we have simulated a worst case situation in which a fully loaded

vehicle is commanded to increase its velocity just as a 6% grade and 18m/s

headwind are encountered. The behavior of the vehicle is shown in Figure

4.56. The MLR's from the algorithm using the models KCl and KC2 (Figure

4.57) reach peaks values sightly higher than those from the 10 volt pro-

pulsion system bias failure. By setting thresholds at these levels, pro-

pulsion system bias failures greater than 10 volts could still be detected

and false alarms could be avoided.

Since the detection of sensor failures is not compromised with the

use of the simplified vehicle models, the added complexity of Pitts'

vehicle model may not to be required to maintain acceptable detection

performance.

Summary of Results

1) The simplified vehicle models provide improved false alarm

performance for wind and grade disturbances. The likelihood

ratios produced by these forces are less than those

produced from maneuvers and background noise.

2) Decision rule thresholds could be set so that the algorithm

using a simplified model would not cause a false alarm

during a worst case combination of wind, grade and load,

and still retain the ability to detect propulsion system

failures.
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4. 4. 4 Summary

The models discussed in this section were chosen to illustrate how

varying degrees of model complexity can be used in the GLR algorithm. On

one end of the spectrum lies the simple kinematic model KS1, valid for any

vehicle; on the other, Pitts' model represents the dynamics of a particular

DC motor driven vehicle.

The models we have examined can be divided into three model classes,

and generalizations made about the algorithm's performance using each model

class:

1) Kinematic, Sensor Driven Models (KSl)

a) Can detect sensor failures

b) Cannot detect propulsion system failures

c) Will not false alarm from external disturbances

2) Kinematic, Control Command Driven Model (KCl and KC2)

a) Can detect sensor failures

b) Can detect propulsion failures

c) Distinguishability between sensor and propulsion

system failures can be achieved with a delay

d) Disturbances will not cause false alarms, although

the extent to which this is true will depend on the

vehicle control system
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3) Parameterized Models (Pitts)

a) Can detect sensor failures

b) Parameter uncertainty must be dealt with

c) Failure detection may be superior than with the

simplified models when the parameters are

"matched" to true vehicle conditions.

d) When parameters are not matched, false alarms

will occur.

It appears that very simple vehicle models are the least sensitive

to external disturbances, but can still maintain failure detection

capability. In the long run, they may thus prove to be the best suited

for use in AGT vehicle systems.

4.5 Physically Redundant Sensors

4.5.1 Introduction

Failure detection and identification, in general, can nearly always

be improved with the use of redundant sets of like sensors. Such re-

dundancy is called "physical" redundancy. The performance of the GLR

algorithm, based on the concept of "analytic" redundancy, can also be im-

proved with the addition of physically redundant sensor measurements.

The modification to the algorithm is (trivially) straightforward - the

improvement in failure detection and identification can be significant.

The GLR algorithm is well suited to the management of redundant

sensors; additional voting algorithms or voting hardware is not required.

In the absence of failures, the algorithm produces the minimum-mean-squared-

error estimate of the true state being measured (i.e., optimally filtered
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measurements), employing information from not only the redundant set of

sensors, but from all other analytically redundant sensors as well. If

a failure occurs, the algorithm uses all available information in producing

a set of maximally informative statistics (the MLR's) which can then be

used to identify the failed sensor. Whereas voting algorithms require at

least three redundant sensors to identify which sensor has failed, the

GLR algorithm uses the analytic redundancy provided by the system model and

measurements from un-like sensors to provide the "third vote."

With the vehicle models we have examined up to this point, we have

seen that there is a delay before velocity sensor and propulsion system

failures can be unambiguously identified - the algorithm cannot initially

distinguish between these two failures. The different forms of action

required in response to these failures make identification delays extremely

undesirable.

We will illustrate how physically redundant sensor measurements can

be used in the GLR algorithm by examining the use of a dual set of velocity

sensor measurements; we will see that the use of the additional velocity

sensor greatly improves the correct identification of and distinguishability

between, velocity sensor and propulsion system failures.

4.5.2 Modelling of Dual Sensors

The effects of a set of dual velocity sensors will be examined via

the use of the vehicle models KC2 and Pitts'.

The measurement equation (4-15) for the modek KC2 is modified to

reflect an additional velocity measurement:

-146-



x (k) 1 0m

v M,1(k) = 0 1

m,lu [ (]
vm, 2()0 1

x 
(k)

v (k) I
n (k)

+ n 2(k)

n 3 (k)

where v (k) and v (k) are the dual velocity measurements and the velocity
m,l m,2

sensor noise processes n2 (k) and n3 (k) are assumed to have equal, but mutually

uncorrelated, zero-mean Gaussian statistics, with:

T
R = E [n (k) n(k) =

[0.1

0

-0

0.1

0 0.1

The measurement equation (4-2) from Pitts' vehicle model is similarly

modified:

x (k) 1

v (k) 0

Vm, 2 (k) 0

0 0 x(k)

1 0 v (k)

1 0 a(k)

n (k)

+ n2 (k)I

Sn3 (k)

(4-22)

with the same sensor noise statistics defined above.

4.5.3 Failure Signature

The GLR algorithm can now be applied to the two vehicle models, as

before. However, since the additional measurement increases the dimension

of the output space from two to three dimensions, the failure direction

(4-20)

(4-21)



vectors in output space are re-defined as follows:

f = 0 Position Sensor (i=l)

f= 1 Velocity Sensor 1 (i=2)-2 
[

f = 0 Velocity Sensor 2 (i=3)

Propulsion system failures will have the same direction in state space

as found in section 4.2.5., but the direction vector will be renumbered

f (i=4).

The Kalman-Bucy filter matrices for the two models are given in

Tables 4.8 and 4.9. Note that the error covariance of the updated state

estimates (diagonal elements of the updated error covariance matrix ,)

have decreased (compared to Tables 4.2 and 4.7) as a result of the ad-

ditional information provided by the second velocity sensor.

The failure signatures, now having three components are shown in

Figures 4.58 and 4.59 for the two vehicle models. The effect of the

redundant velocity sensor is to produce signatures which are unique to

each failure location at every point following the failure. The behavior

of a third component of the signature provides the "third vote" in

distinguishing velocity sensor failures from propulsion system failures.
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Table 4. 8

Kalman-Bucy Filter Matrices

Acceleration Command Driven Kinematic Model KC2

Dual Velocity Sensors

K A L M A N F I L T E R-

CLOSED LOOP EIGENVALUES
REAL PART

0.3830425809132850+00
0.931537 369320 263D+0 0

CLOSED LOOP MATRIX
9.33305D-01 3.14386D-02
-3.09460D-02 3.81 275D-0 1

KBF FILTER GAIN MATRIX H
6.66946D-02 3.094600-02
3.094600-02 3.07815D-01

PREDICTED ERROR COVARIANCE
7.72119D-04 8.672750-04
8.67275D-04 8.07815D-03

IMAGINARY PART
0.0
0.0

3.09460D-02
3.07815D-01

MATRIX

UPDATED ERROR COVARIANCE MATRIX
6.66946D-04
3.09460D-04

RESIDUAL COV
1.07721D-02
8.672750-04
8.67275D-04

RESIDUAL CDV
9.333050+01
-3.09460D+00
-3.09460D+00

3.09460D-04
3.07815D-03

MATRIX (V) -
8.67275D-04
1.80782D-02
8.07815D-03

8.67275D-04
8.07815D-03
1.80782D-02

MATRIX INVERSE (V-INVERSE) -
-3.094600+00 -3.094600+00
6.921850+01 -3.078150+01
-3.078150+01 6.921850+01
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Table 4.9

Kalman-Bucy Filter Matrices;

Pitts' Vehicle Model, Dual Velocity Sensors

F I L T E R

CLOSED LOOP EIGENVALUES
REAL PART

0.331197206172607D-0
0.5319612156653360+0
0.9545701258590290+0

I
0
0

CLOSED LOOP MATRIX
9.56146D-01 6.901030-02

-1.04660D-02 6.270300-01
4.74776D-02 -3.28997D+00

KBF FILTER GAIN MATRIX H
4.38540D-02 1.046600-02
1.046600-02 6.19163D-02

-4.74776D-02 3.15103D-02

IMAGINARY PART
0.0
0.0
0.0

1.244750-03
1.74480D-02

-6.35246D-02

1.04660D-02
6.191630-02
3.15103D-02

PREDICTED ERROR COVARIANCE MATRIX
4.61390D-04 1.24963D-04 -4.88807D-04
1.24963D-04 7.08165D-04 3.537990-04

-4.88807D-04 3.53799D-04 1.26313D-01

UPDATED ERROR COVARIANCE MATRIX
4.38540D-04
1.04660D-04

-4.74776D-04

RESIDUAL COV
1.04614D-02
1.24963D-04
1.24963D-04

RESIDUAL COV
9.561460+01

-1.04660D+00
-1.04660D+00

1.046600-04
6.19163D-04
3.15103D-04

MATRIX (V) -
1.24963D-04
1.07082D-02
7.08165D-04

-4.74776D-04
3.15103D-04
1.26268D-01

1.24963D-04
7.08165D-04
1.07082D-02

MATRIX INVERSE (V-INVERSE)
-1.046600+00 -1.04660D+00
9.380840+01 -6.191630+00

-6.19163D+00 9.38084D+01

K A L M A N
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4.5.4 Performance Results

The failure scenarios described in sections 4.3.2 and 4.3.3 were

repeated, with the addition of a redundant velocity measurement. No

background Gaussian noise was included.

4.5.4.1 Velocity Sensor Bias

Results

Filter residuals from the two vehicle models are shown in Figures

4.60 and 4.61. The residuals produced when only one velocity measurement

was available are reproduced for comparison.

Improvement in the algorithms' ability to identify the true failure

location can be seen in the maximum likelihood ratios, Figures 4.62 and

4.63. Using the dual sensor set, the MLR for the failed velocity sensor,

k*, is initially significantly larger than the propulsion 
system MLR.

This will improve the performance of the algorithm in that:

1) the probability that the correct failure location is

identified will be higher.

2) the delay until a decision is made as to the failure's

location can be shortened.

Since wrong failure location decisions and/or long detection delays may

have disasterous effects, the improvement will significantly affect

vehicle safety.
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4.5.4.2 Propulsion System Bias

Results

Filter residuals appear in Figures 4.64 and 4.65.

Improvements in failure location identification can be observed in

the likelihood ratios, Figures 4.66 and 4.67, for the propulsion system

failure.

4.5.5 Summary

Physically redundant sensor sets can significantly improve failure

detection and identification. The cost of the additional hardware must

be weighed agains the improvements in detection algorithm performance.

Use of the GLR algorithm with physically redundant sensors has

advantages over simple voting schemes. Information from other analytically

redundant sensors can improve identification of failed members of the

phsyically redundant set. Failures affecting all members of a physically

redundant set can also be detected with the GLR algorithm, whereas voting

methods can not do so.

4.6 Detection of Stuck Outputs and Scale Factors Changes in

Sensors and Actuators

4.6.1 Introduction

We claimed in chapter three that the GLR algorithm, designed for the

detection of additive bias failures, could be applied to the detection of

other types of failures as well. In this section the GLR algorithm's ability
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to detect some of these other failure modes will be demonstrated.

Two of the more subtle failure modes, scale factor change and stuck

sensor/actuator failures, will be examined. The magnitudes of zero-output

and hard-over failures are such that they can easily be detected, and

thus will not be examined in detail.

4.6.2 Stuck Position Sensor Failure

Failures in which the output of a sensor or actuator becomes stuck at

an intermediate level may be difficult to detect, for a sudden jump in the

output is not observed (Figure 2.10). We will begin by examinig a stuck

position sensor.

Scenario

A simulation was performed in which the position sensor remained stuck

at a value of 15 meters on a vehicle travelling at 15m/s. The GLR

algorithm using the four vehicle models, KS1, KCl, KC2, and Pitts, was

evaluated on the data.

Results

The maximum likelihood ratios are shown in Figure 4.68. Using the

models KS1 and KCl, the algorithm detected a failure, but incorrectly

identified its location. With the model KC2, the algorithm detected the

failure and initially identified the location correctly. However, one
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second later the decision was changed and the wrong location identified.

The algorithm with Pitts' model detected the failure and correctly

identified the location.

4.6.3 Stuck Velocity Sensor Failure

Scenario

A simulation was performed in which the velocity sensor remained stuck

at a reading of 15m/s just as the vehicle was commanded to decrease its

velocity from 15m/s to 12m/s. Commanded, actual, and measured velocities

are shown in Figure 4.69. The vehicle control system, believing the

vehicle to be travelling constantly at 15m/s, continues to apply increasingly

smaller voltages to the motor, which causes the vehicle to undershoot the

commanded velocity.

Results

Maximum likelihood ratios using the vehicle models KS1, KC2 and

Pitts, are shown in Figure 4.70. With all three models, the GLR

algorithm detected and identified the failed sensor.

The algorithm's ability to determine the error in the measured

velocity, even when the failure is not a true bias failure, is shown

by the bias magnitude estimates (Figure 4.71) produced by the algorithm

using KSl. The estimate of the bias size, E, could be subtracted from

the velocity measurement to estimate the vehicle's true velocity.
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4.6.4 Stuck PCU (Motor Drive Voltage Actuator)

Should the power conditioning unit fail in an "ON" state, es-

sentially operating open-loop from the control system, the results would

be catastrophic if the failure not detected.

Scenario

A simulation was performed in which the voltage applied to the motor

remained at a constant value of 145 volts, independent of the voltage

command. The vehicle remained at a constant velocity of 15m/s, although

it was commanded to decelerate to 12m/s. The commanded and actual velocities

are shown in Figure 4.72.

Results

Maximum likelihood ratios are shown in Figure 4.73. The algorithm

using the kinematic sensor model KS1 did not detect the failure since the

propulsion system is not modelled. The algorithm using the models KCl,

KC2, and Pitts was able to detect the failure and identify its location.

The use of Pitts' vehicle model clearly produced the best detection

performance.

4.6.5. Velocity Sensor Scale Factor Change

At a constant velocity, a sudden scale factor change in the velocity

sensor would appear identical to a bias failure, which we have already

examined. Much more subtle is a scale factor change which occurs before
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a vehicle at rest begins to accelerate, as a sudden jump is not observed

in the output.

Scenario

The gain of the velocity sensor was decreased 10% from 1.0 to 0.9. The

vehicle was commanded at time 1.0 sec to accelerate at service limits.

Commanded, measured, and actual velocities are shown in Figure 4.74.

Results

The GLR algorithm using the models KS1, KC2 and Pitts' was run on the

data. KC1 was not used as the velocity sensor is not modelled. The

likelihood ratios for a failed velocity sensor (Figure 4.75) reach significant

values by the time the vehicle has reached a velocity of 3m/s. Using Pitts'

model produced the best failure location identification results, as the

likelihood ratios for the other possible failure locations remain small.

This is an example of the increased detection ability afforded by more

detailed models.

4.6.6. PCU (Voltage Actuator) Scale Factor Change

Scenario

PCU gain was changed to be 90% of its normal value. Initially at

rest, at time 1.0s the vehicle was commanded to accelerate at service limits.

Commanded and actual velocities are shown in Figure 4.76.
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Results

The algorithm using KCl, the kinematic model driven by the velocity

command, detected and identified the failure location (Figure 4.77). The

likelihood ratio continues to grow throughout the maneuver. Using KC2, the

kinematic model driven by the acceleration command, however, the algorithm

produced a likelihood ratio which peaks 1.5 seconds after the maneuver is

begun, and then decays.

The differences in the behavior of the two likelihood ratios using the

two different vehicle models can be explained. by examining the filter

residuals, Figure 4.78. The signature of the failure remains continuously

visible in the residuals using the velocity command driven model, as there

is a continued discrepancy between commanded and actual velocity.

With the acceleration command driven model, the failure signature

appears only temporarily.

This example illustrates how the same failure can produce signatures

with significantly different characteristics depending on model choices.

We thus see the key role system model choice plays in detection algorithm

design to achieve desired performance goals.

4.7 Summary

In this chapter, the GLR method has been applied to an AGT vehicle for

on-board detection of position sensor, velocity sensor, and propulsion

system failures.
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We have seen that detection of these failures is feasible, and can be

done in the presence of random plant and sensor noise.

External disturbances, such as winds and grades, pose problems for the

detection system, since their effect on the vehicles' transient response

is qualitatively similar to propulsion failures.

Tradeoffs between detection probability, false alarm probability, time

to detect, and failure location identification have been established. We

have concentrated on how the choice of a system model and how the use of

physically redundant sensors affect these tradeoffs.

It has been demonstrated that as model complexity is increased, so is

false alarm sensitivity to unmodelled effects and external disturbances.

Simple vehicle models employing kinematic relationships have been shown to

provide acceptable detection ability coupled with a decreased sensitivity

to external disturbances.

Physically redundant sensor pairs have been shown to improve algorithm

performance by decreasing failure identification delay.

Finally, the GLR algorithm, designed for the detection of additive

bias failures (which cause sudden jumps in measurements or actuators),

can be shown to detect failures involving sensor or actuator scale factor

changes or stuck outputs (whose effects appear gradually).
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CHAPTER V

FAILURE DETECTION IN VEHICLE-FOLLOWER SYSTEMS

5.1 Introduction

In chapter four, vehicle failure detection strategies have been examined

involving single vehicles only; the methods explored would be implemented on-

board the vehicle for detection of position sensor, velocity sensor, and

propulsion system failures. It was assumed that the only communication the

vehicle had with the outside world was the acquisition of control commands from

a wayside computer.

In practice, however, proposed AGT vehicle systems will require vehicles

to travel in closely packed strings, with inter-vehicle headways on the order

of one-half second. Such short headways are required to permit large passenger

throughput, especially in personal rapid transit (PRT) class systems where

vehicle capacity may be limited to four to six persons. In short-headway

systems, much of the vehicle longitudinal control functions will be performed

on-board the vehicle, and will likely be based on vehicle-follower control

strategies [8, 9, 10, 22, 23, 26]. Vehicle-follower control requires accurate

measurement of inter-vehicle spacing and relative velocity, and will thus re-

quire communication of vehicle states from one vehicle to another (possibly

via the wayside) or the use of an inter-vehicle spacing sensor on-board each

vehicle; such spacing sensors may employ radar, sonor, microwave or laser

technologies. The control system requires the determination of inter-vehicle

spacing with a high degree of reliability; thus adequate redundancy must be

designed into the system, and a method implemented for failure detection.
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In this chapter, we extend the GLR methodology for failure detection to

a vehicle-follower system. The GLR algorithm will be applied to detection of

failures in the spacing sensor and in measurements communicated to each vehicle

from its predecessor. This will be done by augmenting a model of a single

vehicle with a simple kinematic model of the vehicle it is following. Using

this dual-vehicle model in the GLR algorithm, the detection of failures will

be tested.

First, however, we will present a brief discussion of vehicle-follower

control strategies and give the details of a specific operating policy to

provide the background for our experiments.

5.2 Vehicle-Follower Longitudinal Control

In a vehicle-follower longitudinal control scheme, AGT vehicles travel

in closely packed strings with each vehicle following the preceeding vehicle

according to a specific operating policy. A wayside controller communicates

control commands to the lead vehicle, and can thus control the behavior of the

string. Vehicles may merge into or diverge from the string at intersections

along the guideway.

A number of operating policies for maintaining inter-vehicle spacing

have been developed I26]. These include constant-separation, constant-time

headway, constant K-factor and safe-approach policies. The GLR method for

failure detection can be used in conjunctionwith any of these policies.

To illustrate how the GLR algorithm can be applied to vehicle-follower

control systems, the safe-approach control method of 126] has been chosen as

the operating policy to be used in the simulations.
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The safe-approach method can be viewed as a composite steady-state

operating policy combining constant-time headway and constant-separation policies.

The unique feature of the strategey is the way in which it governs the speed

of a vehicle approaching its predecessor with the intention of achieving steady-

state spacing. The overtaking vehicle is slowed down as it approaches proper

spacing to insure that it can stop safely should the preceeding vehicle stop

on service or emergency limits at any time.

The safe-approach controller on-board each vehicle employs velocity and

spacing measurements to generate the vehicle's velocity command in accordance

with the safe-approach policy, as follows:

S - S.
min

v = v + (5-1)
2 (Cl)v + C2 + C3

2

with

2 2
s = Cl (v - v ) + C2 (v -v) + C3 v + C4 (5-2)
min 2 1 2 1 2

where v is the following vehicle's velocity command, v 2 is the following
c2

vehicle's velocity, v, is the preceeding vehicle's velocity, s is front-to-

front spacing and Cl, C2, C3 and C4 are constants. Values for these constants

can be found in 126]. A block diagram of this "velocity command generator"

is shown in Figure 5.1. The velocity command computed by the safe-approach

velocity command generator can be sent to the velocity regulator of Figure

2.3 to implement the command. In practice, a blending function can be used

to blend the velocity commands during transitions for wayside control to

vehicle-following mode.
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5.3 Application of the GLR Method

5.3.1 Modelling Vehicles in Vehicle-Following Mode

The single vehicle models examined in chapter four can be augmented

to include a description of each vehicle's predecessor. The GLR algorithm

can then be applied to this dual-vehicle model and implemented on-board

each vehicle for detection of failures.

Complexity of the preceeding vehicle's model, which will be implemented

in the detection algorithm on-board the following vehicle, will depend on

the amount of information available to each vehicle about its predecessor.

In this study, we assume each vehicle has a spacing sensor, and in

addition, receives communicated measurements of its predecessor's position

and velocity. The spacing measurement is used directly in the vehicle-

follower control calculations; should a failure be detected in this sensor,

spacing is computed via the difference of each vehicle's position measurement.

If a subsequent failure is detected in a position sensor, the estimated

failure magnitude provided by the GLR algorithm could be used to permit

the vehicle to continue operation, although in a degraded mode, so as not

to block the guideway. This configuration of sensors and communicated

measurements thus gives each vehicle (fail-operational)2 capability. In

addition, it permits an accurate kinematic model of the preceeding vehicle

to be used in the failure detection algorithm.

For illustration purposes, we will use the kinematic sensor driven

model KSl to represent the dynamics of each vehicle. This model can be
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augmented with a similar model of each vehicle's predecessor, as follows:

Veh. Model x(t) 1 F [L) + 1 0 v (t) +n (t)

Prec. Veh. x (t) j 0 0 x (t) 0 1 jv m(t n 2 1p(t)

Model measurement equati2,p

with the measurement equation:

s (t)
m

xm(t) _= ~ )

x (t) 01 x (t)
m,p - - p -l

n (t)
3

+ nl (t) -

n (t
L 1,p -

where the state variables are the vehicles' positions, the velocity

measurements are used to drive the state equation, and n. (t) are sensor

noise processes. We assume that the spacing measurement s (t) is front-

to-front spacing.

Discretization of the above model with a sampling interval of

At = 0.1 seconds produces:

x(k+1) -1 0 x (k) 0.1 0 v M(k) n 2(k)
+)m

11k+) 011 1x1(k)1 + 11 0.1111v(k)1 n2. (kj
pkm,p 2,p

s (k)
m

x (k)
m

x (k)
SMp J

ln -l-3 (k)

= 1 0 x (k) + n (k)

0 1j Lkj n1, (k)
- - _-
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The sensor noise processes are assumed to be uncorrelated, zero-mean,

Gaussian, with la levels given in Table 5.1.

Using the above model which uses only the kinematic relationships among

the sensors, the GLR algorithm will not be sensitive to external disturbances

or modelling errors, and can be expected to have low false alarm rates.

5.3.2 GLR Algorithm Design

The design of the GLR algorithm is done as before, following the steps

outlined in chapter three.

Kalman-Bucy filter gain and covariance matrices are given in

Table 5.2.

Failure direction vectors are chosen and indexed for the following

possible failure locations:

f = 0 (e Output-Space) Spacing Sensor

f 0 (e Output-Space) Preceeding Vehicle

[2 
Position Sensor

0

f =1 (e Output-Space) Position Sensor
-:-3

0
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Table 5.1

Dual Vehicle Model Sensor Noise Characterization

Sensor Noise l Levels

nI(k) n2(k) n 3 (k)

Position Velocity Spacing

Preceeding Vehicle

Following Vehicle :

0. 1 m

0. 1 m

0. 1 m/s -

0.1 m/s 0.01 m

Noise Covariance Matrices For Kalman-Bucy Filter

R = E[ (n 3 n 1 n 1 ) T (n 3 n 1 n )

1. Oe-4
0.
0.

1.Oe-2
0.

)

1.0e-2]

Q = (0.1)2 E[ (n2 n2,p T(n2 n2,p)

[1.Oe-4
0. 1.Oe-4I
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Table 5.2

Kalman-Bucy Filter Matrices; Dual Vehicle Model

F I L T E R

CLOSED LOOP EIGENVALUES
REAL PART

0.267178087374890D+00
0.904875078027504D+00

CLOSED LOOP MATRIX
5.860270-01 3.188480-01
3.188480-01 5.860270-01

KBF FILTER GAIN MATRIX H
3.64560-01 4.938540-02

-3.64583D-01 4.57395D-02

IMAGINARY PART
0.0
0.0

4.57395D-02
4.93854D-02

PREDICTED ERROR COVARIANCE MATRIX
5.93854D-04 4.57395D-04
4.573950-04 5.93U540-04

UPDATED ERROR COVARIANCE MATRIX
4.938.,40-04
4.573J50-04

RESIDUAL CCV
3.729160-04
1.364590-04

-1 .364590-04

RESIDUAL COV
2.70824D+03

-3.6450380-01
3.645880+01

4.573950-04
4.933540-04

MATRIX (V) -
1.364590-04 -1.364590-04
1.059390-02 4.57395D-04
4.57395D-04 1.059390-02

MATRIX INVERSE (V-INVERSE) -

-3.645880+01 3.64588D+01
9.506150+01 -4.57395D+00

-4.573950+00 9.50615D+01
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O

f= F (State-Space) Preceeding Vehicle
Velocity Sensor

= L (State-Space) Velocity Sensor

0

The failure signatures for each of these failure locations are shown

in Figure 5.2. The behavior of the failure signatures is unique for each

of the possible failures.

The information measures a. (r) for each of the possible failure

locations are shown in Figure 5.3. Observe that a relatively large

amount of information about a spacing sensor failure is available im-

mediately following the occurence of the failure.

5.4 Performance Results

Simulations were performed of a pair of AGT vehicles with the first

under wayside control and the second following the first. Gaussian noise

was not included in the simulations.

Initially, both vehicles are at a velocity of 15m/s, and at steady-

state front-to-front spacing of 7.7 meters. Vehicle length is assumed

to be 2.5 m; thus 5.2 meters actually separate the vehicles.
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5.4.1 Line-Speed Change Maneuver

A vehicle-following maneuver was performed to test the operation of

the safe-approach controller and to examine the detection algorithm's

sensitivity to a maneuver.

Scenario

The preceeding vehicle was commanded to accelerate from 15m/s to

18m/s at service limits. Behavior of the two vehicles is shown in

Figure 5.4.

Results

Likelihood ratios, Figure 5.5, reach peak values of 5.0 during the

period of maximum acceleration. The increase of the MLR's is due solely

to the effects of sampling.

The controller performs as expected, and the maneuver will not cause

false alarms.

5.4.2 Preceeding Vehicle Position Sensor Bias

Scenario

A 1.0m bias appears in the preceeding vehicle's position measurement

received by the following vehicle at time e=l.os. The bias could be

caused by a failure of the sensor or a component of the communication link.

Since the measurement is not used directly in control law calculations, the

failure does not affect vehicle behavior.
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Results

The failure is detected instantly, and the location identified without

delay or ambiguity by the detection algorithm on-board the following vehicle.

The likelihood ratio, Z2 , for the preceeding vehicle's position sensor

(Figure 5.6) grows until the failure time leaves the 3.0 second detection

window. The likelihood ratio then decays, and soon thereafter, the algorithm

becomes unable to determine whether the failure is in the preceeding or the

following vehicle's position measurement. In this case, the size of the

detection window is critical to the identification of the failure's

location; detection and identification must be accomplished before 0 leaves

the window.

5.4.3 Preceeding Vehicle Velocity Sensor Bias

Scenario

At time O=l.Os a 1.0m/s bias developes in the preceeding vehicle's

velocity sensor. On-board the preceeding vehicle, the velocity regulator,

observing what it believes to be an overspeed conditions, slows the

vehicle (as in section 4.3.2). On-board the following vehicle, the safe-

approach controller, believing the preceeding vehicle to now be at a

velocity of 16m/s, commands the vehicle to increase its velocity, as shown

in Figure 5.7. Vehicle spacing decreases, and if corrective action is

not taken, the vehicles collide 7.0 seconds following the failure.
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Results

Likelihood ratios are shown in Figure 5.8. The MLR for the failed

sensor, k* , jumps to a value of 27 at the occurrence of the failure, has

reached 260 one-half second later, and is near 3000 by the time 0 has left

the detection window. A delay is observed, however, before the location

of the failure can be confidently decided. The standard deviation of

z*, is shown in the figure; it is not unti 1.0s following the failure that
4

k* leaves the la region around k* . If the failure decision was deferred
5 4

until this point, vehicle spacing will have decreased only slightly more

than a meter, from 7.7 to 6.5 meters.

Since the likelihood ratios are proportional to 2, and their

standard deviations proportional to 3, there will be even less of a delay

before the location of larger failures can be confidently determined.

Summary of Results

1) If undetected, the failure will cause a collision.

2) The likelihood ratio k* grows linearly following the

failure.

3) X* remains large even after 0 has left the detection
4

window.

4) Although £* always remains larger than the other 4LR's,
4

there is a slight delay before the algorithm confidently

determines whether the failed velocity sensor is on-board

the following or preceeding vehicle. The length of this

delay will be less for larger magnitude failures.
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5.4.4 Spacing Sensor Bias Failure

Failures in the spacing sensor must be quickly and accurately detected,

as this sensor is critical to vehicle safety.

Scenario

At time 0=1.0s, a 1 meter bias develops in the following vehicle's

spacing sensor, so that measured spacing jumps from 7.7 to 8.7 meters.

The safe-approach controller commands the following vehicle to increase

velocity to close the observed gap (Figure 5.9). Actual spacing begins

decreasing past the safe distance. Should the preceeding vehicle now

execute an emergency stop, the vehicles may collide.

Results

At time 0, the spacing sensor likelihood ratio 9* immediately jumps1

to a value near 3000 (Figure 5.10). However, there is an apparent

ambiguity whether the location of the failure is the spacing sensor or one

of the velocity sensors, as k* and 9* are within one standard deviation
4 5

of k*.
1,

As another observation is made, the algorithm identifies the failed

spacing sensor, and k* and Z* decay rapidly.
4 5

The spacing sensor MLR, 9i, continues increasing until the failure

time 0 leaves the detection window, at which time Z* falls below Z* and
1 2

2*. This illustrates the importance of the first few residuals which
3

are observed after the failure, for without them, the failure signature
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appears to the algorithm as a position sensor failure.

Summary of Results.

1) The spacing sensor bias causes safe spacing limits

to be violated.

2) Detection of the failure is instantaneous, due to

the redundancy afforded by each vehicles position

measurement and the spacing sensor.

3) Correct and confident identification occurs within

0.2 sec.

4) The failure location will be incorrectly identified

once the failure time leaves the detection window.

5.5 Summary and Conclusions

In this chapter, the GLR method has been applied to failure detection

in a vehicle-follower AGT system. An algorithm has been designed for

implementation on-board each vehicle for detection of failures in the

vehicle's sensors, as well as detection of errors in state measurements

received from its predecessor, as shown in Figure 5.11.

The algorithm has been shown to be able to detect and identify bias

failures in the preceeding vehicle's communicated position and velocity

measurements, and in the spacing sensor. These failures, if undetected,

are likely to cause collisions.

The algorithm presented is applicable to any vehicle and any vehicle-

following operating policy, as the vehicle model used employs only the

kinematic relationships among the vehicles' sensors.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Overview

The successful implementation of proposed automated guideway transit

(AGT) transportation systems will depend on the development of safe and

reliable longitudinal control systems. In high capacity AGT systems having

headways on the order of one-half second, methods for the rapid detection

of, and response to, vehicle failures are critically important to passenger

safety. The success of these methods will play a part in determining

achievable headways having adequate margins of safety.

Vehicle-follower control schemes, capable of providing short vehicle

headways, necessary for high capacity, require accurate and reliable measure-

ments of vehicle states (e.g. position, velocity, inter-vehicle spacing);

detection of failures, especially in vehicle sensors, takes on ever

increasing importance in such systems.

In this study, a methodology has been developed for the detection and

identification of vehicle failures in an AGT system. This approach, based

on the generalized likelihood ratio (GLR) algorithm, permits rapid detec-

tion of sensor and propulsion system failures. We have applied the method

both to a single AGT vehicle operating in isolation and to a pair of

vehicles operating at close headway governed by a vehicle-follower control

law.
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The GLR method has been previously proven successful in detecting

sudden events (e.g., failures) in a variety of applications. It is an

easily implemented software algorithm which processes data in real-time to

detect the occurrence of sudden departures of an actual system from a simple,

idealized linear model. The difference between observations of the actual

system and predictions made by the model, called the residual, has a

characteristic behavior when failures occur which is unique to different

failures in various components of the system. By looking for these charac-

teristic behaviors (failure signatures) in the retained past history of

observations (detection "window") the algorithm detects the occurrence of

failures. A set of maximally informative statistics (likelihood ratios)

are generated which represent the likelihood that one of these failure sig-

natures has been found. These likelihood ratios can be used in a decision

rule with parametric thresholds to make detection decisions.

The GLR approach for failure detection in AGT vehicles has many

advantages over both traditional methods for reliability enhancement (e.g.

voting among redundant. sets of instruments) and new methodsrecently

proposed (the "detection filter" approach by Vander Velde at M.I.T.).

This approach is unique in that in addition to rapid failure detection

capability the algorithm:

1) provides optimal estimates (using modern system-theoretic

techniques) of key system variables which can be fed directly

to the longitudinal control system when there are no

failures,
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2) provides analytic redundancy for key sensors to save

hardware costs, and most importantly,

3) allows for continued (possibly degraded) operation in

the presence of certain failures by providing estimates

of the extent (magnitude) of the failure; these estimates

can be employed by the control system to compensate for

the effect of the failure on the vehicle.

6.2 Research Summary and Discussion of Results

In this study, an idealized model of an AGT vehicle was developed.

Possible failure modes for the vehicle's sensors and propulsion system

were identified and a simple model to describe these failures developed.

The GLR algorithm was designed for the detection of position sensor,

velocity sensor, and propulsion system failures in the vehicle, and tested

using computer simulations. Rapid detection of a variety of failure types

was shown to be feasible, and could be performed in the presence of

Gaussian sensor and vehicle plant noise. The effects on the detector

algorithm of vehicle maneuvers and wind and grade forces were studied, as

these disturbances may cause false alarms. It was shown that with

systematic algorithm design tradeoffs false alarms from these external

disturbances can be avoided.

After examination of detection algorithm issues for an isolated

vehicle, the GLR method was applied to detection of failures in vehicles

operating at close headways operating under a vehicle-follower control
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system. Using simulations of a vehicle pair, it was shown that failures

in the spacing sensor and errors in measurements communicated from the

preceeding vehicle could rapidly be detected. Without detection of these

faults, collisions of the vehicles occurred.

In both the single and dual vehicle tests, the GLR algorithm provided

accurate estimates of the failure time and the magnitude of the error;

these estimates would be used by the control system to compensate for the

failure, thus permitting a fail-operational response.

The concentration of the study has been on the methodological algorithm

approach, and not on the issues of developing specific decision rules or

failure compensation schemes. Wherever possible we have emphasized the

qualitative aspects of the results, to emphasize the generality of the ap-

proach and how the results could be applied to automated transit systems

different than the examples studied.

Important measures to characterize failure detection algorithms in

general and the GLR approach in particular were found to be

1) detection feasibility;

2) false alarm characteristics;

3) detection delay;

4) failure location identification ability.

These performance attributes when considered in the framework of the GLR

algorithm were found to be closely related to:
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1) choice of vehicle model used in the algorithm;

2) sensor configurations employed;

3) history of system observations retained for processing

in the detection algorithm (length of detection window);

4) settings of detection thresholds and ratio of modelled

plant to sensor noise intensities.

The impact of each of these factors on performance is summarized below.

Vehicle Model Used in Detection Algorithm

The vehicle model used in the GLR algorithm critically affects detec-

tion performance. We have found that complex (detailed) models which

contain uncertain parameters, although providing the best detection ability

with minimum detection delay under ideal conditions, are sensitive to

external disturbances and unmodelled effects and may thus produce unac-

ceptable false alarm rates.

We found that simplified models which model kinematic relationships

are less sensitive to external (wind and grade) disturbances since the

kinematic relationships are known with certainty and continue to accurately

model the vehicle's behavior even in the presence of disturbances. Use of

these models in the algorithm produces lower false alarm rates and still

permits failure detection capability, although a degradation in performance

was observed in some cases (e.g. difficulty identifying a stuck position

sensor). Using models which describe only the kinematic relationships
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between sensor outputs was found to eliminate false alarms from wind

and grade altogether, and still allowed detection of sensor failures.

However, propulsion system failures could not be detected since the

propulsion dynamics are not modelled.

Sensor Configurations

The GLR approach does not require physically redundant sensors for

failure detection, as the algorithm provides analytic redundancy by em-

ploying measurements from other, analytically related, sensors, However,

the use of physically redundant sensor sets in conjunction with the

algorithm will always improve failure identification. We found that

although detection of certain failures may not be improved, the use of

dual-redundant sensors significantly reduces the delay before the location

of the failure can be unambiguously identified.

Although traditional voting algorithms require three identical sensors

to permit fail-operational/fail-safe capability following two subsequent

sensor failures, only dual-redundant sensors are required to permit an

equal failure response capability using the GLR algorithm.

Detection Window

In the framework of the GLR algorithm, the "detection window" re-

presents a period in time of past system observations which are retained

for processing by the detection algorithm; this window is searched for

the onset of a failure signature. The length and location of this

window relative to "current" time plays a key role in algorithm performance.
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It was found that certain failures produce signatures which grow with

time; longer or delayed windows will assure eventual detection of these

failures, although with possible delays. Other failures produce signatures

which decay with time, longer windows will not improve detection of these

failures. Tradeoffs between computational burden and detection window

length also clearly exist.

Decision thresholds; Noise intensities

The sensitivity of the detection algorithm to failures and disturbances

can be adjusted parametrically to optimize false alarms vs. detection

probabilities. Although detailed decision rules were not developed in

this study, decision rule thresholds can be selected in a systematic

fashion to facilitate performance tradeoffs.

In addition, the relative detection sensitivity to failures which

occur in sensors vs. vehicle dynamics (propulsion) can be parametrically

adjusted via the relative intensities of the modelled plant and sensor

noise used in algorithm design; the modelled noise intensities in essence

set the detection algorithm's bandwidth, which affects false alarms

sensitivity to background noise and detection speed.

6.3 Computational Complexity

The scope and complexity of the calculations required for the a-priori

design of the GLR algorithm for a specific implementation requires the use

of a general purpose computer, However, the calculations required during

on-line operation of the algorithm can be minimal, as recursive expressions
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can easily be found for these computations. The detection algorithm should

thus be implemented in an on-board computer (e.g. a micro-processor based

architecture). In addition, the modular nature of the GLR algorithm suggests

parallel processing implementations.

To give the reader a feel for the simplicity of the on-line calculations,

the algorithm was implemented in this study (ignoring I/0) in approximately

60 FORTRAN statements, most of which were devoted to matrix operations.

For an algorithm design having n state variables, p measurements,

q possible failure locations and r data points in the detection window, each

time step of algorithm operation requires:

multiplications additions

2 2
Kalman-Bucy n +2nm+2n n +2np+n+p

Filter Update

Likelihood Ratio q(p+2)r q(p)r
Computation

For the three state vehicle model and the full three second detection

window used in this study, 400 multiplications and 212 additions were

required at each time step.

6.4 Areas for Future Research

Additional research is needed for the development and testing of

decision rules and methods for coupling the detection algorithm to the

control system. An adaptive filtering scheme employing the GLR algorithm
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for failure compensation is given in [32]. Testing of such approaches in

the context of AGT vehicle systems is still required.

In this study, the GLR algorithm was tested on simulated data from

an idealized AGT vehicle model. Analysis and testing of the approach on

actual recorded data is still necessary.

The GLR algorithm for failure detection can provide significant

improvements in vehicle safety and reliability. The resulting reliability

enhancement, however, is limited by the reliability of the computer hardware

implementing the algorithm. Although the state-of-the-art in digital

hardware reliability is ever-increasing, this issue must still be addressed.

Processor hardware failures may either cause failure detection capability

to be lost, or may themselves produce. false detection alarms needlessly

hindering efficient operation of the vehicle system; processor failures

(e.g. memory errors causing algorithm constants to be zeroed or biased,

A/D converter faults, etc.) could appear to the GLR algorithm as vehicle

sensor failures.

Although we have briefly examined possible methods for detection of

processor faults within the framework of the GLR algorithm (e.g. the de-

velopment of "processor failure signatures"), it appears that detection of

these failures is best left to redundant, fault-tolerant computer

architectures [40,41]. Additional study is clearly needed, however.
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APPENDIX A

NOTATION

Chapters are divided into sections, which are numbered 1.1, 1.2, etc.

Sections may be divided into subsections, numbered 1.1.1., 1.1.2., etc.,

and so on. Figures, tables, and equations are numbered consecutively

within each chapter, prefixed by the chapter number. Equation numbers ap-

pear in parentheses ( ), and references in brackets [ ].

Vectors are denoted by lower case letters and are underlined, e.g.,

x. Scalars are lower case but not underlined. Matrices are written as

uppercase letters. These rules are occasionally broken (e.g. the constants

C , C , K , Cl, C2, C3, C4) to be consistent with other sources.
O l M

Variables with a (A), e.g., x, are estimates of the variables true

value.

Notation for Mathematical Operations

x transpose of the vector x

AT transpose of the matrix A

A inverse of the square matrix A

x(t) time derivative of the time-varying vector x(t)

max the maximum with respect to 0

0

arg max the value of 0 which produces the maximum

e
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Abbreviations

AGT Automated Guideway Transit

GLR Generalized Likelihood Ratio

KCl Kinematic Velocity Command Driven

Vehicle Model

KC2 Kinematic Acceleration Command Driven

Vehicle Model

KS1 Kinematic Sensor Driven Vehicle Model

LR Likelihood Ratio

MLR Maximum Likelihood Ratio

PCU Power Conditioning Unit

Pitts Refers to Vehicle and DC Motor Model
by Pitts [19]
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APPENDIX B

DISCRETIZATION OF CONTINUOUS-TIME SYSTEMS

Given the linear continuous-time stochastic system:

x(t) = Axx(t) + B u(t) + w3 (t)
C- -c

z(t) = Cx(t) + n (t)
_ - -c

(B-1)

(B- 2)

where the zero mean white noise processes wc (t) and nc (t) have covariance

matrices 9 = QT > 0 and R = RT > 0 a statistically equivalent discrete-

time linear stochastic system can be computed:

x(k+At) Ox(k) + Buk) + W(k)

z(k) = Cx(k) + n(k)

(B-3)

(B-4)k=0, At, 2*At,....

where the zero mean, uncorrelated, Gaussian processes w(k) and n(k) have

T T
covariance matrices Q = Q > 0 and R = R > 0, and

= eAAt

At

B =(f

0

At

Q =f

e do I B) c

T

e Q e do
C

If the continuous-time control u(t) is not held piecewise constant

over the interval (k, k + At), the system (B-3), (B-4) will contain errors
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caused by the effects of sampling u(t) .

The matrix exponentials can be computed on a digital computer

using a Pade approximation [42].
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APPENDIX C

AGT VEHICLE SIMULATOR AND GLR ALGORITHM PROGRAMS

This appendix briefly describes the computer programs used to simulate

the behavior of an AGT vehicle and to test the GLR algorithm.

A FORTRAN program was written to simulate the general, linear,

discrete-time system:

x(k+l) = Ax(k) + Bu(k) + Lw(k) + f (k) (C-l)

z(k) = Cx(k) + Du(k) + v(k) + f (k) (C-2)

with state vector x, controls u, measurements z, Gaussian noise processes

w and v, and failure vectors f and f

This program was used to simulate the vehicle with the structure given

in Figure 4.7, the dynamics of Figure 2.7, and the controller of Figure 2.3.

The dual-vehicle simulations used the controller of Figure 5.1.

Plant noise, wind and grade were added via the disturbance process

w(t), (Figure 2.7), with

-w(t) = w (t) + w (t) + w (t)
n g w

where w is a Gaussian noise process, w is the effect of grade, and w
n g w

the effect of wind. The grade and wind disturbances are given by

w (t) = C 2Wg(t) + C3 Wc (t) (C-3)

w (t) = C W v (t) + C W v (t) (C-4)
w2 Dw 3D w
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where

W = Vehicle Weight

- f M =(9.807)M

g ray

g(t) = percent grade (e.g. .06=6% uphill grade)

v (t) = wind velocity (headwind positive)

W = linearized drag

= PACD (V+V )sgn(V+V )
D w w

V = nominal vehicle velocity

V = nominal wind velocity

C _ w )2 R(r)2 J
2 n J TL

T

r2

C = w 1
3 ( J

T

r 2
J = J + M -

T jM +Mn )

Values used are given in Tables 2.1 and 2.2.

The system (C-1) and (C-2) was entered in the continuous-time form,

and the equivalent discrete-time system computed, using the method given

in Appendix B. Simulated data was written to disk files for storage and

processing.

The GLR algorithm was implemented in a FORTRAN program which processed

the simulated data from the AGT vehicle simulator.

Both programs were run on the MIT-IPS IBM 370 under VM/370 - CMS.
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