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ABSTRACT

For linear predictive coding (LPC) of speech, the speech
waveform is modelled as the output of an all-pole filter. The
waveform is divided into many short intervals (10-30 msec) during
which the speech signal is assumed to be stationary. For each
interval the constant coefficients of the all-pole filter are
estimated by linear prediction by minimizing a squared prediction
error criterion. This thesis investigates a modification of LPC,
called time-varying LPC, which can be used to analyze nonstationary
speech signals. In this method, each coefficient of the all-pole
filter is allowed to be time-varying by assuming it is a linear
combination of a set of known time functions. The coefficients
of the linear combination of functions are obtained by the same
least squares error technique used by the LPC. Methods are
developed for measuring and assessing the performance of time-varying
LPC and results are given from the time-varying LPC analysis of both
synthetic and real speech.
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CHAPTER I

INTRODUCTION

There are many applications which involve the processing and

representation of speech signals [1]. One class of applications is

concerned with the analysis of the speech waveform. Some examples

which use speech analysis include speaker verification or identifi-

cation, speech recognition, and the acoustic analysis of speech.

Another area of interest is in the synthesis of speech, which could

be used for automatic reading machines or for creating a voice

response from a computer. A third type of application involves

both the analysis and synthesis of speech. An example of this would

be the data rate compression used for the efficient coding of

speech for transmission and reproduction.

Many different techniques and models can be implemented for

these applications. One method, that is based on the structure

of the speech waveform, represents the physical speech production

system as a slowly time-varying linear system which is excited by

an appropriate input signal [1,3,16].

To illustrate why this is a reasonable model, an acoustical

waveform is shown in figure 1.la. It is evident from the signal

that even though the general characteristics of the waveform are

changing with time, there are segments where the form of the

signal remains relatively constant. These segments can be
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classified as voiced or unvoiced.

The voiced segments are nearly periodic, with the length of one

of the decaying oscillations being the pitch period, P (see figure

1.1b). The reciprocal of the pitch period is called the fundamental

frequency or pitch. The frequency of the oscillation is approximately

that of the major resonance of the vocal tract, while the bandwidth

of the resonance determines the rate of decay of the oscillation [3].

The unvoiced segments (figure 1.lc) are those that seem to be random

noise.

From the observation of the waveform, a reasonable model of the

system would be that of figure 1.2. The time-varying linear system

is excited by either a quasi-periodic train of impulses (of the

proper fundamental frequency) for voiced sounds or random noise

for unvoiced sounds. The digital filter represents the effect of

the vocal tract, the qlottal source, and the lips. The output of

the filter is the speech waveform.

To represent the signal using the model, the form of the

excitation signal and the parameters of the digital filter must

be specified. Many reliable methods have been developed for the

determination of the type of excitation function (impulses or

random noise) and its characteristics (amplitude and pitch) [1,3,4,5].

The subject of this thesis is the specification and determination

of the time-varying digital filter.

Usually the determination of the filter is simplified because
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the speech signal is divided into short segments (10-30 msec) during

which the signal is approximately stationary. For each one of these

segments a time-invariant filter with constant coefficients can be

used. Then the time-varying digital filter can be expressed as a

filter with constant coefficients that are updated regularly

throughout the speech signal.

The method of linear prediction has been used with much success

to estimate the constant coefficients for the stationary segments

of the waveform [3,6,7]. For linear predictive coding (LPC) the

coefficients for a stationary segment are determined by minimizing

a squared prediction error criterion. The LPC coefficients are

easily obtained by solving a set of linear equations.

Since the assumption of stationarity is an approximation, a

modification of LPC is examined in this thesis that enables the

method to be used to analyze nonstationary signals. For the

method (which we shall call time-varying LPC), each coefficient of

the digital filter is allowed to change in time by assuming it is

a linear combination of some set of known time functions. Using

the same least squares error technique as used for LPC, the

coefficients of the linear combinations of the time functions can be

found by solving a set of linear equations. Therefore the

determination of the digital filter parameters for time-varying LPC

is similar to that for traditional LPC, but there is a larger number

of coefficients that must be obtained for a given order model.
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There are many possible advantages of time-varying LPC, The

system model may be more realistic since it allows for the continuously

changing behavior of the vocal tract. This should enable the model

to have increased accuracy and sensitivity. In addition, the method

may be more efficient since it will allow for the analysis of longer

periods of speech. Therefore, even though time-varying LPC involves

a larger number of coefficients than traditional LPC, it will divide

the speech signal into fewer segments. This could result in a

possible reduction of the total number of parameters needed to

accurately model a segment of speech for time-varying LPC as compared

with regular LPC.

An interesting problem in itself is the question of how exactly

to measure and assess the performance of the time-varying LPC

estimation method. One of the goals of this thesis is to explore

methods for understanding the time-varying models and for evaluating

their performance.

1.1 Thesis Outline

In Chapter II the method of traditional LPC is reviewed and

the method of time-varying LPC is developed. Chapter III contains

a discussion of the computations needed for time-varying LPC.

In Chapter IV, the general characteristics of time-varying

linear prediction are determined by using the method to analyze

several synthetic data test cases. Chapter V presents the results
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obtained by using the method on actual speech data. Chapter VI

summarizes the experimental results, notes the limitations of the

method, and examines future research possibilities.
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CHAPTER II

TIME-VARYING LINEAR PREDICTION

The speech production model discussed in the introduction is

a linear digital filter excited by an input pulse train. One

representation for the digital filter would be a general rational

transfer function of the form

r
1 + b Z ~

H(z) = G (2.1)
p -i1 + a z

1=11

The parameters that describe the model are the coefficients (a ,b.)

of the denominator and numerator and the gain factor G. To specify

the system for a speech segment, the model parameters would need to

be estimated from the speech samples. For the general transfer

function that contains zeros as given by 2.1, the estimation of

the parameters involves the solution of a set of nonlinear equations

[1].

A simpler model and estimation problem arises by assuming

that the order of the numerator polynomial is zero, so that the

model reduces to an all-pole filter. As shown by Markel and

Gray [3], the transfer function of the speech production model can

be represented as

H(z) = G(z) V(z) L(z) (2.2)
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where G(z) is the glottal shaping model, V(z) is the vocal tract

model, and L(z) is the lip radiation model. The glottal shaping

model is of the form

G(z) = 1

1 - aTz~ )
(2.3)

where T is the time between speech samples. The lip radiation

model is

L(z) = 1 - z~ (2.4)

The vocal tract is modelled as a cascade of a number of two-pole

resonators. Each resonance is called a format with an associated

center frequency F1 and bandwidth B1 . Then the vocal tract model

is

I
k -rrB.T -l
r (1-2e cos(2TrF1T)z +e

-2B 1T 2
I z-)

For these models, the total speech production transfer function

is

aT _1
2 k

(-e-a z) [ f (1-2e
i=1

(1 - z_ + e-T ~ i T o ( ff F ) -'z 1 + e-2rBTz-2

(2.6)

V(z) = -

1=1

(2.5)

H(z) =

-



-14-

However since aT is usually much less than unity, the numerator term

nearly cancels one of the glottal terms (1 - e-aTz~) in the

denominator. Then the model can be further simplified by assuming

an all-pole synthesis model of the form

H(z) = ri (2.7)
p

(1 + ai=l1

The model is justified under many conditions, although nasal sounds

may require a model with zeros as provided in equation 2.1 [3].

For the all-pole synthesis model, the speech signal s(n) at

time n is given as a linear combination of the past p speech

samples and the input u(n)

p
s(n) = - i ags(n-i) + G u(n) (2.8)

i=l1

For a given speech signal (s(n), n=0,l,...,N-l) the coefficients

a, the gain factor G, and the pitch period of the input u(n)

for the model of 2.8 need to be determined.

The method of linear prediction (or linear predictive coding

LPC) has been used to estimate the coefficients and the gain

factor [3,6,7]. For LPC, it is assumed that the signal is

stationary over the time interval of interest and therefore

the coefficients given in the model of equation 2.8 are constants.

This is a reasonable approximation over short intervals (10-30 msec).
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Of course, the speech waveform never matches such a model

exactly, and in particular, the assumption of piecewise stationarity

is an obvious idealization. Since the vocal tract is changing

throughout each utterance a more realistic model would be one that

is time-varying. Therefore for the method of time-varying linear

predictive coding that is presented in this thesis, the all-pole

filter coefficients are allowed to change with time. Since there

is a strong relationship between LPC and time-varying LPC, the

method of estimating the filter coefficients by LPC will be reviewed

first.

2.1. Linear Prediction

The use of linear prediction in speech processing is well

documented in Markel and Gray [3] and Makhoul [6]. This section

will follow the derivation given by Makhoul. Additional

information may be found in the references given above.

For the model of the speech signal, the input sequence u(n)

is completely unknown. However, it can be seen from equation

2,8 that a speech sample can be approximately predicted in terms

of the past samples by

p
s(n) = - E a. s(n-i) (2.9)

i=l1

The error sequence from the predictor is given by
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e(n) = s(n) - A(n)

p
= s(n) + E a1 s(n-i) (2.10)

1=1

where the terms a1 , i=1,...,p, are the predictor coefficients.

The method of least squares estimation can be applied to

estimating the predictor coefficients. By this method, the

coefficients are obtained that minimize the total squared error

p 2
E e2(n) = E (s(n) + a s(n-i2 (2.11)

n n i=1

where the limits of the summation over n are left unspecified for

the moment, This optimization criterion is chosen because it

results in easily solved linear equations and it gives excellent

results for speech analysis [3].

The total error is minimized by setting the partial derivative

with respect to each coefficient equal to zero

S2Z (s(n) + Ea s(n-i)) s(n-j) = 0 (2.12)
j n i=1

which reduces to

p
E a1 Z s(n-i)s(n-j) = -E s(n)s(n-j) (2.13)

i=1 n n
1 < j < p
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By defining

c(i,j) = E s(n-i)s(n-j) (2.14)
n

the set of equations for the coefficients given by 2.13 becomes

p
I a c(i,j) = -c(0,j) 1 < j < p (2.15)
i=1

This set of p linear equations must be solved for the p predictor

coefficients. These are two specific methods for the estimation

of the parameters arising from different choices for the range of

summation over n.

For the covariance method, it is assumed that there are N

speech samples available (s(n), n=0,l,...,N-l). The first sample

that can be predicted in terms of the past p samples is s(p).

Therefore the error is minimized over the interval [p,N-1]. For

the covariance method the coefficient c(ij) is given by

N-1
c(ij) = Z s(n-i)s(n-j) 0 < i < p (2.16)

n=p
1< j< p

which is the covariance of the signal s(n). This is called the

covariance method because the coefficients c(ij) in 2.15 form a

covariance matrix. From 2.16, it can be seen that the covariance

coefficients are symmetric
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c(i,j) = c(j,i) (2.17)

The autocorrelation method assumes that the error is minimized

over an infinite time interval. The coefficients of 2.14 become

00

c(i,j) = E s(n-i)s(n-j)
n=-0

= E s(n)s(n + li-ijl)
n=-*

(2.18)

= r(Ii-jI)

The coefficients for the autocorrelation method are only a function

of li-jl. The set of equations given by 2.14 reduces to

p
E ai r(li-ijl) = -r(j)
i=1

i < j < p (2.19)

Since the signal s(n) is known only over a finite interval [0,N-1],

s(n) is defined as being zero for n < 0, or n > N. Then r(Z) is

given as

r(P) = r(-Z) = r(li-ij) =

N-1-|Z|
E s(n)s(n+|l)

n=0
(2.20)

which is the definition for the short term autocorrelation for the

delay k = |i-jl. Therefore this method is called the autocorrelation
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method.

Note that there are effectively discontinuities between the

data inside and the data outside the interval [0,N-1] (since the

signal s(n) is set equal to zero for n < 0 or n > N) and these

discontinuities generally affect the determination of the

coefficients. To show why this is so, we can compare the limits

of the error summation for the autocorrelation method with the

limits for the covariance method. It can be seen that the

autocorrelation method attempts to predict more speech samples at

each end of the interval than the covariance method does.

At the beginning of the interval, the autocorrelation method

predicts

n
^(n) = - E a1 s(n-i) 1 < n < p - 1 (2.21)

i=l

Since the predictor does not have p past speech values to use, the

coefficients a1 will be distorted somewhat in order to reduce the

predictor error for the first samples. Similarly, at the end of

the interval, the method predicts

p
s(n) = - E a. s(n-i) N < n < N + p - 1 (2.22)

i=l 1

But since s(n) has been defined as zero for n=N, this causes

distortion in the estimates of the coefficients because the

system is attempting to predict an unrealistic signal.
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Usually in order to reduce the effects due to the end

discontinuities, the signal is multiplied by a window function

w(n) (such as a Hamming window [7]) which goes to zero at both

ends of the interval so that

s'(n) = w(n)s(n) 0 < n < N - 1 (2.23)

= 0 otherwise

The window signal s'(n) is then used in equation 2.20 to define

the autocorrelation coefficients. Markel and Gray [3] state that

the speech signal should be windowed for either the covariance or

the autocorrelation method when using data involving several pitch

periods. The use of a window can reduce the spectral distortion

caused by the end effects and may permit the estimation of more

resonances in the spectrum. A more complete discussion concerning

the use of windows for linear prediction is given in [3].

Both equations 2.15 and 2.19 are a set of p linear equations

and p unknowns. They can be expressed in matrix form as

P a = - (2.24)

For the covariance method the matrix 4 is symmetric and there is

an efficient procedure called Cholesky decomposition for solving

for the parameters [3]. For the autocorrelation method
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c(i,j) = c(i+l,j+l) = r(|i-jI) and the autocorrelation matrix form

is

r(O) r(l) r(2) ... r(p-1) a r(l)

r(l) r(O) r(l) a2 r(2)

r(2) r()

= - (2.25)

r(l)

r(p-1) r(l) r(0) ap r(p)

The matrix 4 is Toeplitz, for all the elements along any diagonal

are equal. Because 0 is Toeplitz, there is an even more efficient

method called Levinson's recursion for finding the predictor

coefficients for the autocorrelation method [3].

The least squares method for determining the predictor

coefficients is based on the assumption that the signal is

deterministic. However other methods for estimating the parameters

such as maximum likelihood or minimum variance estimation could

be used by assuming the signal is a sample from a random process.

These methods can be shown to yield the same solutions for the

predictor coefficients as the least squares method [3,5].
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2.2. Time-Varying Linear Prediction

For the method of time-varying linear prediction, the

prediction coefficients are allowed to change with time, so that

2.8 becomes

p
s(n) = - E a (n) s(n-i) + Gu(n) (2.26)

i=l

With this model, the speech signal is not assumed to be stationary

and therefore the time-varying nature of the coefficient a (n)

must be specified.

The actual time variation of a. (n) is not known, however as

suggested by Gelb [9], the coefficients can be approximated as a

linear combination of some known functions of time, uk(n), so that

q
a.(n) = Z aik uk(n) (2.27)

k=O

With a model of this form the constant coefficients aik are to be

estimated from the speech signal, where the subscript i is a

reference to the time-varying coefficient ai(n), while the sub-

script k is a reference to the set of time functions uk(n).

Without any loss of generality, it is assumed that u (n) = 1.

Possible sets of functions that could be used include powers of

time

uk(n) = nk (2.28)
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or trigonometric functions as in a Fourier series

uk(n) = cos (kwn) k even
(2.29)

uk(n) = sin (kwn) k odd

where w is a constant dependent upon the length of the speech

data. Liporace [10] seems to have been the first to have

formulated the problem as in equation 2.27. His analysis used

the power series of the form of 2.28 for the set of functions.

From equations 2.26 and 2.27, the predictor equation is

given as

p q
s(n) = E ( aik uk(n)) s(n-) (2.30)

i=l k=O

and the prediction error is

e(n) = s(n) - s(n)

(2.31)

p q
= s(n) + E ( E aik Uk(n)) s(n-i)

i=l k=O

As in LPC, the criterion of optimality for the coefficients is

the minimization of the total squared error

p q 2
E = e2 (n) = (s(n) + E E a ik uk(n)s(n-i)) (2.32)

n n i=l k=0
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when the limits are again left unspecified.

The error is minimized with respect to each coefficient by

setting

aEa = 2t[s(n) + Eik uk(n) s(n-i)]u , (n) s(n-j) = 0
3aj,, n 1= k=0 k

1 <j < p

0 < < q

By rearranging 2,33 and changing the order of the summation, the

equations for the coefficients become

p q
E E aik[E uk(n) u , (n) s(n-i) s(n-j)] = -E u2 (n)

1=1 k=0 n n

1 < <p

0 < k< q

By defining

ckt(ii) = E uk(n) u,(n) s(n-i) s(n-j)
n

2.34 can be rewritten as

p q
Z Z a ik ckX2(iiJ) = -c02 (0,j)
i=1 k=0

1 <j < p

0 < < q

s(n) s(n-j)

(2.34)

(2.35)

(2.36)

(2. 33)
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For the coefficient ckt(ij), the subscripts k and 9 refer to the

set of time functions, while the variables inside the parentheses,

i and j, refer to the signal samples. Since u0(n) = 1, the time-

varying LPC coefficients c00(i,j) are the same as the LPC coefficients

c(ij) given by equation 2.16.

The minimization of the total error results in a p(q+l) set

of equations that must be solved for the coefficients aik. The

form of 2.36 is very similar to that of equation 2.8 for the LPC

coefficients. The time-varying LPC equations reduce to the LPC

equations for q=O, that is when a.(n) is a constant, a.(n) = ai.

The limits of the sum over n can be chosen to correspond to

the limits for the covariance and autocorrelation methods of LPC

given earlier. For the covariance method, the sum over n goes from

p to N-1 so that the elements of the matrix become

N-l1
ckt(i,j) = Z uk(n) u,(n) s(n-i) s(n-j) (2.37)

n=p

For the covariance method, the following elements are equal

c k(i,j) = ctk(i,j) = CkZ(j9i) = ckk(j,i) (2.38)

Equation 2.36 can be expressed in matrix form by defining the

vectors
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T
a = [a1g,a2i.a3i'...,ap] 0 < i < q

T [c01(0,l),c=i(0,2),...,coi(0,p)] 0 < i < q

(2.39)

(2.40)

and the matrix

cki(l ,)

c kk(2,1)

Ckt(l 'P)Ckt(l ,2)

Cki(2,2)

0< k < q

0< k < q

From equations 2.38 and 2.41 it is clear that k = *Ekk

(2.41)

= T
= kk

so that equation 2,36 becomes

and

Lkt(p,1)



-27-

00 D01 ''' q 

- 2 12

= - (2.42)

0 qq

or

A = - (2.43)

This is a matrix equation that must be solved for the coefficient

vector A. Because k= =D the matrix D is block symmetric

matrix with symmetric blocks. In this arrangement 0 is a (q+l)x(q+l)

matrix composed of pxp blocks.

Equation 2.36 can also be expressed so that cD is a (pxp) block

synnetric matrix with (q+l)x(q+l) symmetric blocks by defining

a =[ai0,a i,...,aiq] 1 < i < p (2.44)

= [ 1 < i < p (2.45)

and
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D(i,j) =

c00 (ij)

c10(i,j)

c0 1(ij) c (i,j)

(2.46)

cqq(i j)

1< i < p

1< j < p

then 2.36 becomes

0(1,2)

(p,1)
F

I(p, p)
-p_

-ii

~p~p_

(2.47)

(2.48)A= -

To develop a method similar to the autocorrelation method,

the error must be minimized over an infinite time interval. The

equation for the coefficients is

Co

CkX(i,j) = E uk(n) u,(n) s(n-i) s(n-j) (2.49)
n=-00

or
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Letting n' n - i, this becomes

00

CkR,( i,j) = (2.50)E Uk(n'+i) uz(n'+i) s(n') s(n'+1.j)
n'=-00

However by this definition ckz(i,j) is not a function of (i-j) alone.

So the matrix formed by ckZ(i,j) could not be expressed as a block

Toeplitz matrix. By a slight change of definition the problem can

be corrected. The time variation of the coefficients of 2.25 will

be changed so that

q
a.(n) = E aik uk(n-i)

k=0
1 < i < p (2.51)

As an example of this, for the power series

q k
ag (n) = E aik(n-i)

k=0
1 < i < p (2.52)

where (n-i) is set to zero for i > n. By performing the minimization

of 2.31 again the resulting equations are

p q
E E aik Z uk(n-i) uj(n-j) s(n-i) s(n-j) = -E ug(n-j)s(n)s(n-j)

i=1 k=O n n

1 j p (2.53)

0 < Z <q

(2.53)
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The autocorrelation coefficients can be defined as

00

ck9i(i,j) = E uk(n-i) ug(n-j) s(n-i) s(n-j)
n=-0

(2.54)

00

= E uk(n) ut(n+i-j) s(n) s(n+i-j)
n=-O

A k2(i'-j)

The autocorrelation coefficients are cross-symmetric (a term used by

Flinn [12] to express the symetry relationships of yk9 and YtkI

because using 2.53, we have

(2.55)rkt(m) = rkt(i-j) = ckZ( 'j)

00

= E uk(n) uj(n+m) s(n) s(n+m)
n=-0O

and with n' = n + m, this becomes

Ek(m) = uk(n'-m)uj(n') s(n' ) s(n'-r)
n'=00

so
(2.56)rkt(m) = rik(-m)

but for kW'. rkt(M)rk(m). With the definition of rkZ(i-)9
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equation 2.53 is given as

p q
i E a k rk

1=1 k=0
O-j) = -r0t(.j)

which can be changed into matrix form by using 2.56 so that

rik(j-i) aik = -r0t(.j) 1 <j < p

0< £< q

By defining the following vectors

T
Ai = [ a ,2i a3i '. api]

[r 0 i(-1),r 0 1(-2),... ,r 0 i(-p)]

0 < i < q

0 < i < q

and matrix

rZk(O)

rak(l)

rYk(2)

rtk(P-1)

rgk(-l)

rtk(O)

rkk(l)

0 < k < q

0 < k < q

r k(0 ) 1

(2.61)

1 < j < p

0< . < q

(2.57)

p q
z z
i=1 k=0

(2.58)

(2.59)

(2.60)

0 Lk

r2,k(i'P1 )
rik (-2)
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then equation 2,58 is

4D1

00

.q0

aO

a

_a
(2.62)

or

OA = -TV (2.63)

For this problem, D is a (q+1)x(q+l) block matrix with each block
=T

(k being Toeplitz (see equation 2.61). In addition 0 k k

because the autocorrelation coefficients are cross-symmetric as

shown in equation 2.56, Equation 2.58 can also be arranged as a

pxp block matrix with the blocks being (q+l)x(q+l) by defining

ST = [ai0,a a,.. .,al] 1< i < p

< i< p

and

(2.64)

(2.65)

4qaq.

ii = [r00 -i,r01(-i ,...,r Oq -)
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r00 (m)

r10(m)

r01 W r0q(m)

rqq(i)LqO(m)

-P m M p (2.66)

Equation 2.58 becomes

R(-l)

R(0)

R(1)

R(-2) R(-p+l)

R(O)

a 2

(2.67)

or

RA =.4_ (2.68)

The matrix R is symmetric and block Toeplitz, but it is not block

symmetric. From equation 2.66 it can be seen that R(m) = R(-m)T.

Since the signal is only known between [O,N-1], it is assumed

to be zero outside of this interval and equation 2.54 becomes

00

rk(i-j) = Z uk(n) u,(n+i-j) s(n) s(n+i-j)

N-1-(i-j)
= Z uk(n) ut(n+i-j) s(n) s(n+

n=O

(2.69)

i-j) i > j

R(m) =

R(O)

R(1)

R(2)

R(p-1)
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The autocorrelation method can be viewed as a multichannel filtering

problem as considered by Wiggins and Robinson [11] and Flinn [12].

With this interpretation the multichannel input is s(n), ul(n)s(n),

u2(n)s(n), ... , u (n)s(n), and the output is the one-step predicted

estimate of s(n).

The covariance and autocorrelation methods of time-varying LPC

have been given these names because they have the same range for

the summation of the squared error as the corresponding methods in

traditional LPC. However the same physical interpretations of the

elements ckZ(lJ) and rkt(i-j) as given in LPC cannot be used for

time-varying LPC. The element ckZ(i,j) could be interpreted as

the covariance of the signals uk(n)s(n) and u2 (n)s(n). However

since the signal is not assumed to be stationary, it is not possible

to give a similarly meaningful "autocorrelation" interpretation for

the autocorrelation elements.

The limits of the error minimization for the time-varying

covariance method have been chosen so that the squared error is

sunined only over those speech samples that can be predicted from

the past p samples. However, the error for the time-varying

autocorrelation method is minimized over the entire time interval

(the same range that is used for the traditional LPC autocorrelation

method). Therefore, the same discussion concerning the distortions

of the LPC coefficients due to the discontinuities in the data at

the ends of the interval apply to the time-varying coefficients.



This distortion in the coefficients estimated by the autocorrelation

method may or may not be significant depending on the data at the

ends of the interval.

It was noted that the windowing of the speech signal is a usual

practice for the LPC correlation method in order to reduce the

distortion. However even though windowing might reduce the end

effects for the autocorrelation method, it also imposes an additional

time variation upon the speech sample. This can cause two problems.

The estimates of the coefficients by time-varying LPC will be

adversely affected since the method by its very formulation is

sensitive to any time variation of the system parameters such as

that caused by the windowing of the signal. In addition, the

window affects the relative weight of the errors throughout the

interval. Since the windowed data at both ends of the interval will

be smaller, there is more signal energy in the central data.

Therefore the minimization of the error will result in coefficients

that in general will reproduce the signal in the center of the

interval better than at the ends.

Because of distortion in the estimates caused by the end

effects when the data is not windowed and the possible adverse

effects on the estimates when the data is windowed, the autocorre-

lation method seems to have more disadvantages than the covariance

method. Since a window will have the same distortive effect for

the covariance method, the use of a window does not seem beneficial.
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This will be discussed in more detail in Chapter IV.

The method developed in this chapter estimates only the

coefficients of the time-varying filter of equations 2.26 and 2.27.

The method does not give an estimate of the gain factor, G, of

equation 2.26, (which for this method should be time-varying);

however, the regular LPC method can estimate the gain factor based

on the minimized errors [3,6]. The effects of not having a time-

varying gain on the resulting analysis are shown and discussed in

Chapter V.

In closing, it should be noted that the error summation method

used by Liporace [10], does not correspond exactly to either of

the two methods discussed in this chapter. In his method, the error

is minimized over all the data in the interval, however he does not

modify the definition of the time-varying coefficients in order to

create "autocorrelation" coefficients. In addition, he does not

discuss whether the data outside the interval should be set to zero,

or whether a window should be used for his method.
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CHAPTER III

COMPUTATIONAL ASPECTS OF TIME-VARYING LINEAR PREDICTION

For the time-varying linear prediction method outlined in

Chapter 2, the predictor coefficients (aik, i < i < p, 0 < k < q)

are obtained by solving a set of linear equations, given by

equation 2.36 which is repeated here

p q
1 E a ik cki(R-j) = -c0 (Oj) 1 < j < p (3.1)

1=1 k=0
0 <_ < q

This can be expressed in matrix form as (see equation 2.43)

A = -? (3.2)

where A is a vector of the coefficients.

Because the number of coefficients increases linearly with

the number of terms in the series expansion (q+l), the increase

in the amount of computation for time-varying LPC as compared with

LPC (where q=O) is significant. This chapter will discuss the

computational aspects of time-varying linear prediction.

The computations necessary for the determination of the

coefficients can be divided into two categories. Much of the

computational effort is involved with calculating the elements
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Ckt(ij) for P and T. The rest of the operations are needed for

taking the inverse of the p(q+l) square matrix 4 to obtain the

predictor coefficient vector A. Each category will be examined

separately.

3.1. Computation of the Matrix Coefficients

There are p2 (q+l)2 elements in the matrix 0 and p(q+l) elements

in the vector 1. However 0 is symmetric for both the covariance and

the autocorrelation methods that were discussed in Chapter 2. There-

fore, the largest number of matrix elements that need to be calculated

is p(q+1)(p(q+1)+1). But because 0 may have additional symmetry, this

number can be reduced further. In addition, the computational burden

can be reduced because some elements of the matrix can be calculated

easily from other elements that have been previously determined.

For the covariance method, the matrix elements are given by

(eq. 2.37)

N-1

cka(i,j) = n uk(n) u,(n) s(n-i) s(n.-j) (3.3)
n=p

with

ckZ(iJ) = cak(i,j) = ckk(j,1) = ctk(3,')

As it was noted in Chapter 2, the set of linear equations can be

expressed as a block symmetric matrix equation with each block being
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a symmetric matrix. (The matrix 4D can either be expressed as a

(q+l)x(q+l) block matrix with pxp blocks or as a pxp block matrix

with (q+l)x(q+l) blocks.) Because of this symmetry only

pIp+1) (q+1)(q+2) elements for the matrix 4) need to be calculated.

Also, many of the elements can be calculated from previously

computed elements without having to sum over all the data as given

in equation 3.3. For example, for k=2Z=O it is easy to see that [3]

N-1
c00 (ij) = E s(n-i) s(n-j) (3.4)

n=p

= c00(i-lj-1) + s(p-i) s(p-j) - s(n-i) s(n-j)

With this recursion only the coefficients c00 (O,j), 0 < j < p

require the complete summation of equation 3.3. The rest of the

coefficients c00(ij), 1 < i, j < p can be calculated using

equation 3.4.

Recursions can also be developed for the elements when k / 0

or X / 0. For example, for the power series expansion where

ur(n) = n r, the matrix elements are

N-1 k+2d
Ckt( -) E n s(n-i) s(n-j) (3.5)

n=p

As an example, when k + k = 1
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N-1
c10 ,= c01(ij) E n s(n-i) s(n-j)

n=p

Letting n' =n-i

c10(i,j) =

N-2

n'=p-1
(n'+l) s(n'+l-i) s(n'+l-j)

n's(n'+1-i) s(n'+1-j) +
N-2

E
n'I=p-1

s(n'+l-i) s(n'+l-j)

But the last two terms can be seen to be given as

N-2
E n's(n'-i+1)s(n'-j+l) = c10(i-1,j-1) + (p-1)s(p-i)s(p-j)

ni=p-l

- (N-l)s(N-i)s(N-j) (3.8)

and

N-2
E s(n'-i+l)s(n'-j+1) = c0 0(i-l,j-1) + s(p-i)s(p-j) - s(N-i)s(N-j)

n =p-l

By using 3.8, equation 3.7 becomes

c10(i,j) = c10(i-1,j-1) + c00(i-lj-l) + p s(p-i)s(p-j) - Ns(N-i)s(n-j)

(3.9)

which gives a simple recursion for c10(i,j). In general for k+Z=m,

N-1
cm0(ij) = E nm s(n-i) s(n-j)

n=p

(3.6)

N-2

n'=p-l

(3.7)

(3.10)
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N-2

n '=p-1
(n'+1)m s(n-i+1) s(n-j+1)

= I (n'+l)' s(n-i+1)s(n-j+1) + pms(P-i)S(P-j)
n'i

- ms(N-i)s(N-j)

By using the binomial expression

m
(n+1)m

r=0

where

m r

m rM

- m!
(m-r)!r!

we obtain

(3.11)

N-1

CM(i Vj)= EmO n =p
m nm-r)

r=O
s(n-i+1 )s(n-j+1)

+ p Ms(p-i)s(p-j) - Nms(N-i)s(N-j)

I + pms(p-i)s(p-j)

- Nms(N-i)s(N-j)

which gives the recursion for cmO J)'

(3.12)

r=O
c m-r,0(i -1,qj-1)
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The power series covariance method has the additional

advantage that for k+X=m

cm0(i j) = CkX(ij) (3.13)

so that only the elements ck0(i~j), 0 < k < 2q, need to be computed.

It should be noted that for the power series case, the matrix

1 of equation 2.40 is a (q+l)x(q+l) block Hankel matrix (where all

the (pxp) matrices along the secondary diagonal, northeast to

southwest, are equal). This is significant when attempting to

invert (D efficiently to obtain the predictor coefficient vector, A.

This will be discussed in more detail later in the chapter.

Table 3.1 summarizes the reduction of computations for the

covariance power series method as well as several others yet to

be discussed. Column 2 lists the indices of ckZ(i,j) that must be

calculated for the matrix 0 and the vector Y. Column 3 lists the

only elements that need to be calculated by summing over all the

data as given in equation 3.5. The number of elements that can be

calculated in terms of the elements previously computed elements

are given in column 4. The rest of the elements of the matrix

can be found by using the symmetry equations. The computation of

the remaining elements involves just a few more operations. For

the determination of each one of the elements listed in column 3,

the summation involves approximately N additions and (k+l)N
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TABLE 3.1

MATRIX COMPUTATIONAL EFFORT FOR TIME-VARYING LPC

Indices of Elements
to be Calculated

Indices of Elements
to be Calculated by

Summation
[total number]

Number of Elements
to be Determined

Recursively

Covariance*
Power Series
ckt(i,j)

1<i jgO O<k<q

i=0 j=0 k=0 0<k< q

i=0 1<jg O<k<q
i=1 j l O<kq
i=1 l<jg q k<2q

[p(2q+l)+q+l]

k=0
Z=0
k=0

qp2 + P (+ ~ q~

Covariance
Fourier Series
ckt(i9j)

as above i=0 l<jp O<k<q 0=O
i=1 j l O<k:zq 0=O
1=1 I<jp 1-k<q 1<A<k

p 2 +3q+2 +q+j

q 2+3+2)
2 j [ p;F.Pj+(q+l )(p-i)

Autocorrelation*
(for either series)
rkk(m)

-p+1<mg-1
m=-p k=0

0< k ,
0<<q

O<mP-l
m=p

0<k<q
0<k<_q

0< < k
= 0- ) (P-i)

p 2+3q+2 3 +q+j

*The computational effort for the corresponding LPC method can be found by using q=0.

Method

CA
3

W MW
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multiplications, where k is the index denoting the power of n used

in the summation.

The elements for the covariance method with the Fourier series

expansion can also be calculated recursively. The Fourier series

titne functions are

ur(n) = cos (run)

= sin (rwn)

r even

r odd

(3.14)

0 < r < q

The constant o can be chosen to be 2 or 7, where N is the totalT or

number of speech data points. If W = N , the time-varying

coefficients will be the same at each end of the interval. However

for w = E, this constraint is eliminated. A discussion of the

differences between these constants will be given in Chapter 4.

To show the type of recursion for the Fourier series, the

element for k=, k=O is

N-1
c 1 0 (i9j) E sin n s(n-i)s(n-j)

10 n=p I
(3.15)

N-2
- E sin (n'+l)i s(n'+l-i)s(n'+l-j)
n '=p-l

N-1
= I sin -(n'+1) s(n'+l-i)s(n'+l-j)
n '=p

+ sin p s(p-i)s(p-j) - sin (Tr) s(N-i)s(N-j)
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and by expanding the sine term

c10 (i,J) = cos E sin n' s(n'+1-i)s(n'+1-j) (3.16)
n=p

N-1
+ sin n cos n'J s(n'+1-i)s(n'+1-j)

n =p

+ sin p1 s(p-i)s(p-j)

so

c10(i,j) = cos 1 c10 (i-l,j-1) + sin N c20 (i-lj-1) (3.17)

+ sin IN p) sin (p-i) s(p-j)

Similarly c20(i,j) can be found in terms of c10(i-1,j-1) and

c20(i-1,j-1). Recursions for larger values of k and 
k can be found,

although the form of the recursions cannot be expressed as compactly

as for the covariance power recursion of equation 3.13. It is

also easy to see that the symmetry equation 3.14 for the power

method elements is not true for the Fourier method. Therefore more

elements must be calculated for the Fourier covariance matrix than

for the power covariance matrix, as shown in column 3 of table 3.1.

The summation for the covariance Fourier elements of column 3

involves approximately N additions, 3N multiplications and 2N

triqonometric evaluations (for k>l and Z>1). There are N fewer
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multiplications and N fewer trigonometric evaluations for the elements

with either k=O or 9=0.

The autocorrelation method has matrix elements that are given by

(see equation 2.66)

N-1-m
rkk(m) = ckZ(i,j) E uk(n)ut(n+m)s(n)s(n+m) m = (i-j) > 0

n=0 (3.18)

with rkn(m) = r k(-m). Because the elements are only a function of

i-j, a smaller number of elements need to be calculated by equation

3.18.

The elements for the autocorrelation method can also be calculated

recursively in order to save computations. For the power series

method, ur(n) = n r, and

N-1-m k
rk(m) = n (n+m) s(n)s(n+m) m > 0 (3.19)

n=0

With k=1, Z=0, this becomes

N-1-m
r10 (m) = r01(-m) = E n s(n)s(n+m) (3.20)

n=0

However for k=0, Z=l,

N-1-m
r01(m) = r10(-m) = E (n+m)s(n)s(n+m) (3.21)

n=0
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N-1-m N-i-m
= E n s(n)s(n+m) + m E s(n)s(n+m)

n=O n=O

so that

r01 (m) = r10(m) + m r00(m)

This illustrates the type of recursion for the power autocorrelation

method elements. A general form for the recursions can be found

by using equation 3.19 and the formula for the binomial expansion.

As an example of the recursion for the Fourier series, for

k=1, Z=0 -

N-1-m
rlo(m) = I sin (Nn) s(n) s(n+m)

n=O
(3.23)

and with k=O, k=1

N-1-m 7

r01 (m) = E sin 1 (n+m) s(n) s(n+m)
n=O

N-1-m
= cos ( ) I sin (zn) s(n) s(n+m)

n=O

N-I-m
+ sin (hm) E cos (Wn) s(n) s(n+m)

(3.24)

= cos (tm) r 10 (m) + sin m) r20(m)

(3.22)
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General recursion formulas can be found for other values of k and k so

that an element with Z>k can be expressed in terms of the elements

with k>Z.

The number of elements that must be calculated for the auto-

correlation methods are shown in Table 3.1. The summation for each

autocorrelation power or Fourier element takes approximately the same

number of operations as for the corresponding covariance power or

Fourier element.

From the table it can be seen that q>Q, the power covariance will

take the least amount of computations for determining the matrix

elements because of its special symmetry given by equation 3.13. The

autocorrelation methods result in slightly more calculations and the

Fourier covariance method needs the most computations.

Since the computation of a trigonometric function is more complex

than the evaluation of an integer raised to a power, each method

(covariance or autocorrelation) using the Fourier series will take

longer than the same method using the power series.

There is another advantage of the power series method for the

situation when the time-varying coefficients for an interval of

speech data have been estimated and the interval is to be increased

to include new data. The new matrix elements for the power series

method can be calculated by using the matrix elements that were

computed for the smaller interval and adding on the appropriate

sums of the new data. However for the Fourier series methods, the

period of the coefficients is dependent upon the interval of the data.
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The addition of more data changes the interval length and the constant

w. The new matrix elements must be calculated by summation over all

the data using the new w. There is no way to use the matrix

elements that were computed for the smaller interval (except for

the elements with k=2=0, which are not dependent on w). Of course,

if the data is being windowed the matrix elements for the power

series method also have to be totally recalculated.

3.2. Solution of the Equations

The solution of the equations is simplified due to the symmetry

of the matrix. All of the methods so far discussed result in

symmetric matrices. Therefore Cholesky decomposition can be used

to invert the matrices to obtain the predictor coefficients. For

a (q+l)px(q+l)p matrix this will take 1 (q+l) 33+2(q+l) 22 (q+l)p-2

operations [3]. Since the number of computations increase

approximately as (q+l) 3 , for very large q the computational burden

is significantly greater than for traditional LPC using the covariance

method where q=O. In addition, the constant LPC autocorrelation method

for q=0 can use Levinsons recursion to solve the matrix equation.

This method needs p2 - . computations [3], so at least at first

glance, it appears that the time-varying LPC method increases the

number of computations by approximately p(q+l) 3 as compared with

the constant LPC autocorrelation method.

However there are ways to exploit the symmetrical form of the

matrix equation in order to further reduce the computations. For
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For the autocorrelation methods, the matrix (D can be arranged

as a pxp block Toeplitz matrix with (q+l)x(q+1) matrices as elements.

To solve this set of equations, a method which is an extension of

Levinson's recursion algorithm to the multichannel filtering problem

can be used [11]. This method is a special case of Rissanen's

algorithm for the decomposition of block Toeplitz matrices. The

multichannel Levinson's recursion requires 0((q+l) 3p2 ) operations.

From the discussion in this chapter, it can be seen that

generally more computations are needed for determining the elements

of the matrices than for solving the equations. For example with

p=10, q=2, N=1000, the number of computations needed to set up

the matrix for the covariance power method is well over 100,000,

while the number of computations used for solving the equations by

Cholesky decomposition (which is the least efficient method) is

less than 12,000. For this same case, the Fourier series method

will be less efficient than the power series because of the

additional time it takes to compute the trigonometric functions.

In general, it seems that time-varying LPC would involve more

computations to accurately represent a given segment of nonstationary

speech than would be needed for regular LPC, for which the speech

segment has been divided into quasi-stationary intervals. Whether

this increase is excessively large is not known.
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CHAPTER IV

EXPERIMENTAL RESULTS FOR SYNTHETIC DATA

For the evaluation of time-varying linear prediction, the method

was used to analyze synthetic data created by all-pole filters with

known time-varying coefficients. The purpose of these test cases was

to determine the general characteristics of time-varying LPC and to

obtain some insight into methods for evaluating the performance of

time-varying parameter identification techniques.

The first set of test cases was generated by all-pole filters

with each coefficient changing as a truncated power or Fourier series.

Therefore for these cases, the form of the system model of the time-

varying linear prediction analysis matched the actual system generating

the data. The results of these cases indicated the differences between

using the power or Fourier series for analysis, between using the

covariance or autocorrelation method of error summation (as developed

in Chapter II), and between windowing or not windowing the signal.

The signal shown in figure 4.1 was generated by a 6 pole filter

(p=6) with each time-varying coefficient being a quadratic power

series (q=2). We shall call this a 6-2 power series filter. For

example, a 6-0 filter is one with 6 poles and constant coefficients

such as one used for regular LPC, and a 6-4 power series filter is

one where the highest power in the series for each coefficient is n

A 6-2 Fourier series filter has one constant term, one sine term and

.0
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Figure 4.1 Synthetic Speech Example Generated by 6-2 Power Series Filter
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one cosine term in the series for each coefficient.

The sampling rate for this (and for all the synthetic examples

of this chapter) was 10 KHz. The "pitch period" of the excitation

impulse train was 100 samples, corresponding to a fundamental frequency

of 100 Hz. The signal length was 2000 samples, corresponding to a

time interval of .2 sec.

For the evaluation of time-varying linear prediction using the

different options, the "trajectories of the time-varying poles" of

the all-pole filters were compared. By time-varying poles, we mean

the zeros of p(z,n) (for each n in the interval [0,N-1]), where p(z,n)

is defined as (from equation 2.26)

p -i
p(z,n) = 1 + E ai(n) z (4.1)

i=1

Note that in the time-varying case, the time-varying poles do not

have the same significance as poles for a time-invariant filter.

However when these "poles" change slowly in time, one should be able

to deduce some qualitative aspects of the system behavior by

observing the "pole trajectories". Hence we have used the ability of

our parameter estimation system to track these poles as one possible

measure of performance.

Using this comparison method does not imply that two filters

with different pole trajectories are necessarily significantly different

in impulse response or general characteristics. Instead, the comparison

of the pole trajectories of the filters using the coefficients
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estimated by time-varying LPC with the pole trajectories of the

filter generating the data will show qualitatively the effect of the

different options on the accuracy of the analysis. The poles of the

filters for each instant of time were calculated by Muller's method

[19].

Figures 4.2 and 4.3 show the pole trajectories of the filters

using the estimated coefficients. The graphs plot the real part of

each pole on the ordinate and the imaginary part on the abscissa.

The location of each pole of the filter is plotted every 25 msec of

the analysis interval. The unit circle is also shown on the graphs

for comparison purposes.

The angle of each pole, 0, is related to the center frequency,

F, of the corresponding formant in the vocal tract model given in

Chapter 2 by F = 0/27rT where T is time between samples. The radius

of each pole, r, is related to the formant bandwidth, B, by

B -(lnr)/TrT.

Figures 4.2a shows the pole trajectories for the 6-2 filter

estimated by using the covariance power series method with no

windowing. Since these trajectories matched the pole trajectories

of the generating filter so well, the original trajectories are not

shown. Figure 4.2b shows the trajectories for the estimated 6-2

covariance power series filter using a Hamming window. The two

trajectories 4.2a and 4.2b are only slightly different, illustrating

the small effect of windowing for this example. The main differences
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occur at each end of the trajectory, where the effect of the window

is the most significant.

Figures 4.2c and 4.2d are the pole trajectories for the filters

estimated by the 6-2 autocorrelation power series method with no

windowing and windowing respectively. The general characteristics of

the trajectories for the autocorrelation method without windowing are

correct, but there is also a considerable amount of trajectory

distortion. This is most evident in the third pole (the poles are

numbered by having the one with the smallest angle be the first, etc.)

where both the angle and radius of the pole at the end of the interval

differ significantly from the correct values as shown in figure 4.2a.

This would seem to verify the discussion at the end of Chapter II,

where it was said that since the autocorrelation method attempted to

minimize (unrealistically) the error at the extreme ends of the

interval, there might be some distortion in the coefficients at the

ends.

Figure 4.2d shows the pole trajectories for the filter for the

6-2 autocorrelation power series method with windowing. The

windowing reduces the effect of the errors at the ends of the interval

and therefore the pole trajectories are not as distorted as for those

of figure 4.2c. In fact, these trajectories compare favorably with

those of figures 4.2a and 4.2b. The only major differences are those

of the third pole.

Figure 4.3 shows the trajectories for the filters estimated

by the time-varying method using a 6-2 Fourier series (with w = ).
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Each plot is remarkably similar to the corresponding plot of figure

4.2 for the power series method. For the 6-2 Fourier covariance

method, both the non-windowed method shown in figure 4.3a and the

windowed method shown in figure 4.3b differ significantly only for

the third pole.

The 6-2 Fourier autocorrelation method without windowing

(figure 4.3c) yields poles that show the same type of distortion as

for the 6-2 power autocorrelation method. The use of a window for

the Fourier autocorrelation method (figure 4.3d) again reduces the

distortion.

To illustrate how well the pole trajectories of the Fourier

method can match those of the original trajectories (generated by a

power series filter), the pole angles (or formant center frequencies)

for both trajectories are shown in figure 4.4. Figure 4.4a shows

the center frequencies of the three poles for the estimated 6-2

covariance Fourier method without windowing as compared with the

poles of the 6-2 power filter used to generate the data. The only

significant differences between the two occur at the ends of the

interval. By using the 6-4 covariance Fourier method even these

slight differences can be removed. The center frequency trajectories

for the estimated 6-4 covariance Fourier (shown in figure 4.4b) are

nearly identical with the original trajectories.

The Fourier analysis methods shown so far have used a constant

w of ff. However, in Chapter II, it was noted that a constant w of
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27r could also be used, but that the coefficients would be constrained

to be the same at both ends of the interval. To illustrate the effect

of using this constant, the pole trajectories for the analysis of

the data of figure 4.1 estimated by a 6-4 covariance Fourier filter

without windowing and with w = are shown in figure 4.5a. It is

easy to see that there are significant differences as compared with

the trajectories of figure 4.2a. The three center frequency

trajectories for the 6-4 Fourier method and the original 6-2 power

generating filter are shown in figure 4.5b. There are differences

in the estimated poles throughout the interval with significant

distortion at both ends because the 6-4 Fourier filter is constrained

to have the same poles at the ends of the interval. The center

frequencies of the estimated 6-4 Fourier filter with w = as shown

in figure 4.4b are clearly more accurate than the center frequencies

of 6-4 Fourier filter with w = ,

To demonstrate further the differences between the different

options the pole center frequency trajectories for all the methods

are shown in figure 4.6. Figure 4.6a shows the pole center

frequencies for the methods which didn't window the signal. The

major differences in the center frequencies occur at the ends with

significant deviations for the autocorrelation methods. Figure 4.6b

is a plot of the center frequencies for the methods using a Hamming

window on the data. The use of the window tends to reduce the

differences between the methods.
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As we said earlier, the differences in the pole trajectories

are not necessarily significant. Therefore the impulse train used

to generate the data was passed through some of the estimated filters.

The response of the estimated 6-2 covariance power filter (no

windowing) was virtually identical to the original and therefore is

not shown. The response of the 6-2 covariance Fourier filter (no

windowing) is shown in figure 4.7a. There are very few differences

between the 6-2 covariance Fourier filter response and the original

data shown in figure 4.1. The 6-2 autocorrelation power filter

response (no windowing) is shown in figure 4.7b and the 6-2 auto-

correlation power filter response (windowing) is shown in figure 4.7c.

It can be seen that the major differences between the responses of

the autocorrelation filters and the original data occur at both ends

of the interval. The autocorrelation response estimated without

windowing the data does not match the original data as well as the

autocorrelation response estimated with windowing, as we would expect

from the pole trajectories of figures 4.2 and 4.3.

A similar test case was generated with a 6-2 Fourier filter

(W =k) and the sample data is shown in figure 4.8. Time-varying

linear prediction gave such similar pole trajectories for the

different methods that the trajectories are not shown. Instead the

pole center frequency trajectories for the estimation methods

without windowing are shown in figure 4.9a and the pole center

frequency trajectories for the methods with windowing are shown in



200 msec

Figure 4.7a Response of 6-2 Covariance Fourier Filter
(without windowing the original data)

Figure 4.7b Response of 6-2 Autocorrelation Power Filter
(without windowing the original data)

Figure 4.7c Reponse of 6-2 Autocorrelation Power Filter
(with windowing the original data)

I
cn



w

Figure 4.8 Synthetic Speech Example Generated by 6-2 Fourier Series Filter

w w IRW



-66-

figure 4.9b. The differences between the 6-2 Fourier and 6-2 power

series and between the covariance and autocorrelation methods can

be seen to be minor. In addition, the use of a window has only a

small effect.

For this example the window has caused slightly more variation

in the poles at the ends of the interval. However for the power

series example shown in figure 4.6, the window reduced the end

variation of the poles. This difference cannot be fully explained,

but it does indicate that the general effects of windowing cannot

be characterized precisely. Instead, the influence of the window

on the resulting estimation is dependent to a large degree on the

data in the interval and particularly to the data at each end.

There are many conclusions to be drawn from these examples.

The differences between using a power series or a Fourier series for

the analysis seems to be insignificant. In general, a filter using

one series can be represented almost exactly by a filter using the

other series with either the same or a slightly larger number of

terms in the series. For example, the 6-2 power series filter could

be represented accurately as a 6-4 Fourier series filter and a 6-2

Fourier series filter needed a 6-3 power series filter to represent

it almost exactly.

The covariance method of summation gave better results than the

autocorrelation method. Under some circumstances the differences

between the two methods were minor, however this is not a general

rule.
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The use of a window had only a slight affect on the analysis

results. Windowing did not significantly degrade the performance

of the covariance methods and in fact the autocorrelation methods

that used a window seemed to give more accurate results than the

autocorrelation methods without a window.

However, these results can be explained by the fact that the

test cases were generated by a system whose form was the same as

that of the analysis model. Therefore, these methods can estimate

the coefficients of the series for the time-varying filter even with

a window superimposed upon the signal because of the sample data in

the central part of the interval.

However, actual speech signals are not generated by the system

model of time-varying LPC and the use of a window will degrade the

method's ability to track the time variation of the parameters

accurately throughout the entire time interval. The basic problems

with the use of a window were discussed in Chapter II, and, because

of these problems, it does not seem that windowing is generally a

good practice. In Chapter V, the effect of windowing actual

nonstationary speech on the analysis results will be shown.

All of this analysis indicates that the covariance method

without windowing should be used. Since the results seems to be

similar for either the power or Fourier series, the power series

is preferred because of its computational advantages over the Fourier

series method as discussed in Chapter III.



-69-

The next set of cases involve the response of the system to

step changes in the center frequency of the formants. These cases

were generated by a four pole system. The center frequency of two

poles changed discontinuously sometime during the interval.

The first case has one set of poles with a center frequency of

475 Hz and a bandwidth of 75 Hz, with the other set of poles having

a center frequency of 1175 Hz and a bandwidth of 150 Hz. The sampling

frequency was 10 KHz and the "pitch period" was 100 Hz. The length

of the data was 600 samples (60 msec), At 30 msec, the center

frequency of the 475 Hz poles was increased by a value ranging from

50 to 250 Hz. An example of the data for one test case is shown in

figure 4.10 for the jump of 150 Hz (from 475 Hz to 625 Hz). The

6-3 covariance power method without windowing was used to analyze

the data. Of interest is the trajectory of the center frequency of

the first pole. The pole angle trajectories for different changes

in the center frequencies are shown in figure 4.lla. The trajectory

response for the time-varying linear prediction method is somewhat

like the response of a low pass filter. However the response is

anticipative since the entire interval is used to estimate the

coefficients. In general the system response is almost homogeneous

in that the pole angle trajectory for a given center frequency charge

has a response that is approximately twice that of a pole trajectory

for half the given frequency change.

The pole trajectories for the 4-3 covariance method and the 4-5

covariance power method are compared with the response for the
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Figure 4.10 Data for 150 Hz Center Frequency Step Change
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traditional LPC covariance method (the 4-0 covariance method) in

figure 4.12b. The LPC method used intervals of 15 msec (150 data

points) to estimate the coefficients. The starting location of

the analysis interval was shifted by 5 msec for each successive LPC

case, so that there was some overlap of the data on each interval.

The overlap effectively smoothed the pole trajectory for the standard

LPC method. The center frequency of the pole for each interval is

plotted at the time corresponding to the center of the interval.

Windowing was not used for any of these methods.

From the graph it can be seen that traditional LPC has a

response time that is faster than that of the 4-3 covariance power

method and is similar to that of the 4-5 covariance power method.

However the 4.5 power method shows some irregularities at both ends

of the interval.

Since the method is approximately homogeneous its response to

the size of the jumps, the next set of cases were developed to see if

the method is additive (and hence linear). Specifically, we have

tested to see if the response to two different jumps in one interval

is the same as the sum of the responses to each jump taken separately

in the same interval. The sample case shown in figure 4.12 has the

same initial poles as given for the sample case of figure 4.11.

However the data interval is 1000 points (100 msec) and the first

pole changes from a center frequency of 475 to 575 Hz at data-point

450 and then from 575 to 675 Hz at data point 550. The pole angle

trajectory for the 4-4 covariance power method is shown in fioure 4.12a.
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The response for the same method for only the pole jump from 475 to

575 Hz at step 450 is shown in figure 4.12b, while the response for

the method for the pole center frequency starting at 575 Hz and

and then changing at step 550 to 675 Hz is shown in figure 4.12c.

Combining these two responses, the total response given by the

dotted line of figure 4.12a is obtained. The similarity between

the response of the 4-4 power filter for both jumps and the sum of

the responses of the filters for each jump is remarkable.

A very similar test case is shown in figure 4.13, where the

only difference is that the changes in the center frequency of

the pole occur at step 300 and step 700. Again, there is very

little difference between' the 4-4 power method response for both

jumps and the combined response of the filters as shown in

figure 4.13a.

These test cases would indicate that the method can be thought

of as acting like a linear low pass filter in response to changes

in the location of the poles. The method tends to smear abrupt

changes in the pole locations, but it should react well to small

or slowly-varying changes.

An estimate of the frequency response of the method's "low-pass"

action is given by the unit pulse frequency response. Since we have

the "step responses" of the system for the 4-3 and 4-5 covariance

power filters as shown in figure 4.11, we can find the "unit pulse

response" by passing the step response through a (1-z ) filter

(i.e,, we are taking the first difference of the sequence containing
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the 600 center frequency values). Since the time between center

frequency values is .1 msec, the output of the (1-z ) filter can

be thought of as the response of the method to a unit pulse of

width .1 msec.

By taking the discrete Fourier transform of the unit pulse

response, we obtain the unit pulse frequency response. Because the

unit pulse is so narrow, it represents a useful approximation to

the frequency response of the system. The unit pulse frequency

response for the 4-3 covariance power filter is shown in figure

4.14a and the response for a 4-5 covariance power filter is shown

in 4.14b. A comparison of the two responses for the frequency range

of 0-2000 Hz is given in figure 4.14c (for which the frequency

response curves have been smoothed). As we would expect from the

"step response" of the two methods, the 4-5 method has a better unit

pulse frequency response, that is, it has more high frequency

content, Therefore it should be able to track changing center

frequencies more accurately than the 4-3 method, because it has a

higher "cut-off" frequency.

The unit pulse frequency response for the regular LPC method

is not shown because there are not enough sampled values of the

center frequency "step response" to obtain the unit pulse response.

However, LPC tracked the step change of the center frequency

slightly better than the 4-5 covariance power method did (as shown

in figure 4.11). Therefore, it should have a unit pulse frequency

response that is similar to the 4-5 covariance frequency response,
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but the response should have a slightly higher "cut-off frequency".

The next set of test cases were used to evaluate the filter's

ability to represent slowly varying changes. The same sample case

used in the previous examples was used, however the first pole

changed linearly from 475 to 675 Hz over a variable but prescribed

time interval. These test cases were 2000 data steps in length and

the 4-3 covariance power method was used for analysis. Figure 4.15a

shows the pole angle response for a step change of 200 Hz and

figure 4.15b shows the response for a linear change of 200 Hz over

200 steps (change begins at step 900 and ends at step 1100). The

slope of the change is 10 Hz/msec. The plot of figure 4.15c is for

a linear change of 200 Hz beginning at step 700 and ending at step

1300 (slope of 3.33 Hz/sec). The pole trajectory is nearly the

same for all three cases (indicating that the changes are still

beyond the "cut-off frequency" of the system), however only for

the last case does the response follow the change well. The response

for the change of 200 Hz over 1000 steps (starting at step 500

and ending at step 1500, which a slope of 2 Hz/msec) is indicated

in figure 4.15d. For this example the response matches the slope

well. Another test case was created with the same pole trajectory

slope, to see if the method could consistently respond well to this

slope value. For this example, the pole changed from 475 to 595 Hz

(a smaller jump) over 600 time steps (a smaller time interval). The

response is shown in figure 4.16a. The method matches the slope of

2 Hz/msec similarly for both of these cases.
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Two additional cases were used to determine if the method

could duplicate these slopes using a smaller overall analysis

interval of 1200 samples. Figure 4.16b shows the response to a

change of 120 Hz starting at step 420 and ending at step 780 (for a

slope of 3.33 Hz/msec), and figure 4.16c shows a response to a change

of 120 Hz over 600 samples (for a slope of 2 Hz/msec). The response

for each case is very similar to the response for the same slope

shown earlier. The only significant difference is the time offset

of the response slope of the pole angle trajectory for the 2 Hz/msec

case.

The conclusion is that time-varying linear prediction can handle

linearly changing poles very well if the slope is small. For larger

slopes the variation of the pole tends to be smeared over a larger

interval. This supports the studies discussed earlier in this section

in which we displayed results that indicated the method acted as a

low-pass filter. Evidently, the higher slope changes are beyond the

cut-off frequency of the method, yielding the same estimated pole

trajectory as for an abrupt step change.

From these synthetic test cases, it has been decided that the

covariance power method without windowing is probably the best

method for analysis. It was shown for at least one example with a

4 pole filter, that the method acts as a low pass filter with

respect to step changes in the pole locations of the generating

filter. In addition for small linear changes in the poles with

respect to time, the time-varying method can duplicate the actual
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pole trajectories very well. It is hoped that the results of this

chapter not only shed light on time-varying LPC, but also provide

some tools and perspectives for gaining insight into time-varying

modell-ing methods.
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CHAPTER V

EXPERIMENTAL RESULTS FOR A SPEECH EXAMPLE

In the last chapter, we presented the results obtained by

applying time-varying LPC to synthetic test cases. In this chapter,

we will give an example of the application of time-varying LPC to

a nonstationary speech waveform. The performance of the method

will be examined in depth so that its characteristics can be better

determined. In order to evaluate time-varying LPC, its performance

will be compared with the results obtained with regular LPC, when it

is applied to much smaller "quasi-stationary" segments of the speech

waveform.

Several different methods for evaluating the performance of the

filters will be used. The pole trajectories of time-varying LPC

will be compared with the poles of the time-invariant filters

estimated by regular LPC. The log spectrum of each time-invariant

LPC filter will also be compared with the log spectrum of the time-

varying filter evaluated at the time corresponding to the center of

each of the analysis intervals used for regular LPC. As a measure

of how well these spectra compare, a log spectral measure given by

Markel and Gray [17] and Turner and Dickinson [18] will be used.

In addition, the impulse responses of both regular and time-varying

LPC will be compared with the original speech data.

The nonstationary speech waveform that was used for this example
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is shown in figure 5.la. It contains 1600 data points, which

corresponds to a time of .16 sec, since it was sampled at a rate of

10,000 Hz. In order to estimate the spectral properties of the vocal

tract, the waveform was pre-emphasized by a simple one-zero filter

of the form 1-pz to remove the glottal effects, as suggested by

Markel and Gray [3]. For this example, the value of p was .95 (the

value is not critical to the results, i.e. any value between .9 and

I could be used). The pre-emphasized waveform is shown in figure 5.lb.

Markel and Gray [3] state that a reasonable value for the order

of a prediction filter for speech data is usually between 12 and 16.

For this example, we have chosen a value of p=12. The time-varying

model that was used was a 12-5 power series filter. (Because of

the results of the last chapter, the use of a Fourier series seemed

repetitious and unnecessary.) The time-varying LPC analysis was

performed on an interval containing the first 1500 samples.

For regular LPC, a 12 pole filter was used and the length of

each analysis interval was 200 samples. The center of the interval

was shifted by 150 samples for each successive LPC analysis,

resulting in some overlap of the data contained in each interval.

The only exception to this was for the first analysis interval, which

contained only the first 100 data points. The second interval was

200 points in length and had its center at time step 150. The

very last interval was also 200 points in length and started at

time step 1400. Therefore it contained samples of the speech
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waveform for the time 1500 to 1599 that were not used for the time-

varying LPC method.

For the regular LPC analysis, the covariance method was used,

both with and without windowing the data. The results for both

methods were so similar that only the covariance LPC method without

windowing will be compared with the time-varying LPC method.

The pole trajectories for the covariance power series method

both with and without windowing the data are shown in figure 5.2.

This illustrates dramatically the effect of windowing, because there

are poles of the filter for the windowed data that are outside the

unit circle. For a time-invariant filter, this would mean that the

filter was unstable. For a time-varying filter, this is not

necessarily true. However the few time-varying filters we have

examined that have had some poles outside the unit circle have had

impulse responses that usually remain bounded but excessively large.

In general, the time-varying filter with poles outside the unit

circle would seem to be of no practical value.

The pole trajectories for the 12-5 autocorrelation power series

filter are shown in figure 5.3. Again, the autocorrelation filter for

the windowed data has poles outside the unit circle. The results of the

autocorrelation method (without windowing) agrees favorably with

that of the covariance method. The most significant differences

occur at each end of the interval (as we would expect from our

discussion in chapter 4).
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Figure 5.2b Pole Trajectories for 12-5 Covariance Power Filter

(data windowed)



Figure 5.3a Pole Trajectories for 12-5 Correlation Power Filter
(data not windowed)

Real

Figure 5.3b Pole Trajectories for 12-5 Correlation Power Filter

(data windowed)
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This example shows that for any of the time-varying methods

developed in this thesis, there is no guarantee that the poles of

the filter will remain inside the unit circle. This is a limitation

of the time-varying method, but whether it is a serious problem

in general practice is not known. Because windowing the data seems

to increase the probability that the resulting filter will have

poles outside the unit circle, it seems that the data should not be

windowed. Since the covariance method seems better justified

analytically than the autocorrelation method, the covariance power

method (without windowing) will be used for comparison with regular

LPC.

For the covariance power method, it can be seen that there are

only 5 sets of complex poles over much of the interval. The other

two poles were generally real. This was also true occasionally for

the time-invariant filters determined using regular LPC. For

comparison purposes, only the five sets of poles that were always

complex will be compared with the time-invariant LPC poles.

The center frequency trajectories of the complex poles are

shown in figure 5.4. The radius trajectories for each pole are

shown in figure 5.5. The center frequencies and radii of the

poles for the time-invariant filters are also shown on the figures.

The values are plotted at the time corresponding to the center of

the analysis interval.

The trajectories of the center frequencies for both methods
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agree favorably. The main deviations between the time-varying

method and regular LPC occur in the first and second poles in the

time interval of 150 to 600, where the "low-pass" nature of the

time-varying LPC method is most evident. But after time step 600

the correspondence between the two methods is very good. The

time-varying method can be seen to be "smoothed" values of the center

frequency locations of regular LPC. The radius trajectories of the

poles agree fairly well, except for the fifth pole. It is interesting

to note that the center frequency trajectory of the fifth pole matches

very well, while the radius trajectory does not. The radius

trajectory deviations seem to be a result of the "low-pass" nature

of the time-varying LPC method.

Next we will compare the log spectra of the all-pole time-

invariant and time-varying filters with log spectra of the speech

signal. The spectra will be compared because LPC can be thought of

as attempting to match the spectral envelope speech with the spectrum

of the all-pole filter, This is discussed in detail in [3,6]. The

spectrum X(e"J) is found by taking the discrete Fourier transform

(DFT) of the sequence (x(n),n=0,1,...,N-l) [3]. To obtain better

frequency resolution, zeros can be appended to the end of the

sequence. The log spectrum LM(X) is given by

LM(X) = 10 log 10 |X(e) 2 (5.1)

The speech spectra have been calculated by taking the DFT of the
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speech samples in the intervals used for the regular LPC analysis.

The spectrum of the all-pole time-invariant filter,

H(z) = l/A(z) (where the filter has p coefficients (a.,i=1,2,. .. p))

is found by taking the DFT of the sequence [l,a 1 ,a2,...,ap]. The

log spectrum LM(H) is given by

LM(H) = LM(1/A) = -10 log 1 |A(ejw) 1 2 (5.2)

For a filter with time-varying coefficients one can only talk

about spectrum in an intuitive way. However, when the coefficients

vary slowly, the following approach appears to have merit in

allowing us to understand the performance of time-varying LPC. Let

(a1(n),i=0, ...,p; n=O, ... ,N-1) be the coefficients of the time-

varying filter. Then a spectrum can be calculated at time n=k by

taking the DFT of the sequence [1,al(k),a 2(k),... ,a p(k)], with the

log spectrum LM(Hk) being

LM(Hk) = LM(1/Ak) = -10 log 10|Ak ejw) 2  (5.3)

(where the subscript k denotes that the coefficients of the

time-varying filter have been evaluated at time n=k). The spectra

of the time-varying filter have been calculated for the values of

n corresponding to the center of each interval used for the regular

LPC analysis. Since the pitch period of the excitation function is
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usually rather large, the concept of a spectrum for the slowly

changing time-varying filter is reasonable and provides some insight

into the filter's characteristics.

The spectra for the regular LPC and time-varying LPC filters

are shown superimposed upon the speech spectra in figures 5.6 and

5.7. For these spectra, the length of the DFT was 1024 points. The

spectra have been adjusted so that the largest value is 0 dB.

We shall use a log spectral measure to determine quantitatively

the difference between the spectra for both LPC methods [17,18].

Following the derivation given by Turner and Dickinson [18], the

RMS log spectral measure, d2, for the comparison of two all-pole

filters (G/A(z) and G/A'(z)) is given by

(d22 = ln(G2/A(ejO) 2) - ln(G2/IA'(eje)12) (5.4)

The Taylor series expansion for ln A(z) (assuming A(z) is stable) is

in A(z) = - ck z- (5.4)
k=1

with the cepstral coefficients given by

c = ln(G 2 ) (5.4)

ck = -a ~ k- c (k-n) k > 0
n=1
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By applying Parseval's relationship to 5.4, the log spectral measure

is

(d = E (ck - c) 2  (5.5)
k= -O

with ck = C-k. By using only the first p terms and scaling for a dB

variation in the power spectrum, the spectral measure SPDIFF is given

by

-- 1/2r 10 . p
SPDIFF ln 10' 2 E (ck - cI)i (5.6)

Markel and Gray [17] have reported that there is a high correlation

between SPDIFF and d2. Turner and Dickinson [18] state that

perceptual studies have shown that SPDIFF changes of 2 dB are barely

noticeable, but that changes of 3.5 dB are consistently perceptible.

Turner and Dickinson also develop an average SPDIFF for filters

with time-varying coefficients. For the examples in this chapter,

we want to compare a filter that has constant coefficients

(a ,i=1,...,p) with a filter that has time-varying coefficients

(a (n),i=l,...,p), where n is evaluated over an interval of interest

(which, for now, we will assume to be [1,L]). For this, the time

average spectral difference is

L p -1/2

AVG SPDIFF [110 E 2 E (ck - cI(n))2 (5.7)
Tnl- n= 1 k=1
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where the cepstral coefficients ck(n) are calculated from 5.4 using

the coefficients (a.(n),i=l,...,p). This is a measure of the

average spectral difference between the time-invariant filter and

the time-varying filter over the interval [1,L].

The spectral difference, SPDIFF, between the regular LPC

estimated filter and the time-varying LPC filter evaluated at the

time corresponding to the center of the regular LPC analysis interval

is given in figures 5.6 - 5.8. The time average of the spectral

difference between the regular LPC filter and the time-varying filter

for all the time steps n in the corresponding regular LPC analysis

interval is also listed (i.e., we compute 5.7 for the data interval

used in the correspondinq LPC analysis). As an indication of

how quickly the speech spectrum is changing, the spectral difference

between the regular LPC filters for successive analysis intervals

is given.

There are large spectral differences between the successive

regular LPC time-invariant filters for the comparison times of 50

and 150, 450 and 600, 600 and 750. These are the times where the

signal characteristics are changing significantly. The largest

average spectral differences between the time-varying LPC filter

and the regular LPC time-invariant filters occur at the times of

300 and 450, (as to be expected from the comparison of the pole

trajectories in figures 5.4 and 5.5). The values of the average

spectral differences were 2.5 and 3.4 respectively, which would
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indicate that the differences between the two methods would be

perceptible. After time step 600, the average difference between

the time-varying spectra and the time-invariant spectra were generally

less than the difference between the time-invariant spectra for

successive intervals, which would signify that the time-varying

method is "tracking" the changing spectra very well.

The relatively large deviation of the time-varying spectrum

from the actual speech spectrum for the times around 450 can be

explained in part because of the "low-pass" action of the time-

varying filter. However the severity of the deviation is probably

also due to the unequal energy distribution of the speech signal

and of the impulse driving the system. There is much more energy

in the latter part of the signal (after time step 600). It was

determined by examining the error sequence, e(n), that there was

also more energy in the impulses driving the system after time step

600. Therefore the least squares error techniques will produce

filters that fit the latter data better. This is especially evident

from the center frequency trajectories (fig. 5.4), where it can be

seen that the center frequencies of the poles of the time-varying

and regular LPC filters compare very well for the time after point

600, The conclusion is that the time-varying filters should match

the high energy areas of the nonstationary signal the best. In order

to have a relatively good match over all the data in the interval,

the energy of the signal or the driving impulses throughout the entire

interval should be approximately equal.
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To test this hypothesis, the original pre-emphasized signal

was modified and used for analysis. For the first modification,

the initial portion of the signal [0,574] was multiplied by 2 (the

data for [575-1499] was not changed) so that the average energy of

the signal was approximately equal throughout the entire interval.

The modified signal was analyzed by time-varying LPC and it was

found that the resulting center frequency trajectories matched the

LPC center frequency estimates somewhat better than for the time-

varying LPC analysis of the original pre-emphasized signal.

By examining the error sequence, e(n), it was evident that the

driving impulses still had more energy for the latter portion of the

signal. Therefore to equalize the input energy over the interval,

the initial part [0,574] of the original signal was multiplied by

4, which resulted in the modified signal of figure 5.9a.

Using this signal for analysis by the 12-5 covariance power

method resulted in the pole trajectories of 5.9b. The center

frequency trajectories are shown in figure 5.10. These trajectories

matched the LPC estimated center frequency values for the interval

of [0,600] much better than the original 12-5 covariance power

filter did.

The spectra for the 12-5 covariance power filter for different

time steps are shown in figure 5.11. The values of the average

spectral difference, AVG SPDIFF, between the spectra of the regular

LPC filter (the filter that was estimated using the original data)

and the time-varying 12-5 power filter for each LPC analysis interval
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(data not windowed)
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are given in the figures. The equalization has resulted in the

reduction of the average spectral difference to 1.5 dB for the time

steps of 150, 300, and 450. These values are considerably lower

than for the original 12-5 filter.

The only average spectral difference that was larger than 2.0 dB

occurred for the interval around time step 600 (which is approximately

the time of the abrupt change in system parameters). After time

step 600, the average spectral differences were small.

This brief example of equalization would indicate that the

method is better able to track the changing parameters throughout

the entire interval if the signal is equalized. The best equalization

would seem to be that based on equalizing the energy of the input

impulses.

The next type of comparison that we have performed involves

the impulse response for the original time-varying and time-invariant

filters (estimated from the unequalized signal). The impulse response

for both filters are shown in figures 5.12 and 5.13 for the various

times indicated. The time-varying filter had an input train of

impulses separated by 150 steps, so that each impulse occurred at

the center of the corresponding LPC analysis interval. The impulse

responses are almost identical after time step 600. However as

the earlier analysis would indicate, there are significant differences

for the times of 300 and 450. These figures give a visual indication

of the severity of the spectral differences between the two methods.

As a final brief attempt to reproduce the original pre-emphasized



Figure 5.12a Respodse of 12-5 Covariance Power Filter
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Figure 5.13a Response of 12-5 Covariance Power Filter
to input train of impulses (continued)
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signal, a 15-4 covariance power filter (no window) was estimated and

used. (The 15-4 filter gave a better reproduction of the original

than the 12-5 filter.) The input to the 15-4 power filter was a

train of constant amplitude impulses separated by 100 data points,

corresponding to a pitch period of 100 Hz. The reproduced signal

is shown in figure 5.14.

The limitation of not having a time-varying gain estimation

procedure is very evident in the reproduced signal. The magnitude

of the signal is much too large at the beginning of the interval,

and for the latter portion of the interval, the signal is too small.

However the general characteristics of the original speech signal

of figure 5.lb are there. The Hlow-pass" effect of the time-varying

filter is evident in the time around 300-500.

In this chapter, we have examined the performance of time-varying

LPC for one example of speech. This example was rather extreme in

that there was a clear, significant, and relatively abrupt change in

the shape of the waveform during the interval.

The "low-pass" effect of time-varying LPC was present but even

so there was still fairly good agreement between the results for

time-varying LPC and regular LPC. The significance of the low-pass

effect was shown to be reduced by equalizing the signal or input

impulse energy throughout the interval.

The attempt at reproducing the signal emphasized the need for

a method to estimate the time-varying gain for the filter. However,

this need might be eliminated by the use of signal equalization as
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Figure 5.14 Reproduction of Original Signal Using 15-4
Covariance Power Filter.
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mentioned above. If the equalization could be done in such a way

so that the impulses driving the system could be thought of as

approximately equal, then there would not be a time-varying gain.

When attempting to reproduce the signal, the inverse of the signal

equalization could be used.
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CHAPTER VI

CONCLUSIONS

In this thesis, we have developed a method of time-varying

linear prediction for the analysis of nonstationary speech signals.

For this method, the coefficients of the speech production model were

represented as linear combinations of a set of known time functions.

In addition, an important contribution of this thesis is the investi-

gation of methods for the evaluation of the performance of time-

varying LPC. By using synthetic test cases, the general characteristics

of time-varying linear prediction were determined. Time-varying

LPC was shown to perform equally well when using either a power series

or a Fourier series as the set of time functions. Since the time-

varying method for the power series is computationally more efficient,

the power series should be used as the set of time functions. It was

demonstrated that time-varying LPC with the covariance method of error

summation was better able to estimate the time-varying characteristics

of the test cases than the autocorrelation method.

As discussed in the thesis, the autocorrelation method should

not perform as well since it is based on an assumption that the speech

waveform is stationary, which is not valid for this class of problems.

In addition, we determined that the data should not be windowed

because windowing degrades the accuracy of the estimation and also

increases the likelihood that the estimated time-varying filter will
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have poles outside the unit circle.

We also demonstrated that the response of time-varying LPC to

rapidly changing formant values is "low pass" in nature. Therefore

this method is most effective in tracking slowly varying nonstationary

speech characteristics, while for abrupt changes, it would provide

a "smeared", less accurate estimate.

The performance of time-varying LPC for a speech example

verified these characterizations of the method. It also demonstrated

some of the limitations of the method. These limitations indicate

the areas of future research for time-varying LPC.

The method does not perform as well for intervals of speech

that contain an abrupt change in the system parameters. Therefore

a method for detecting the abrupt changes needs to be developed.

For this, the methods of failure detection [20] could possibly be

used.

Another limitation of the method is that the resulting time-

varying filter might be unacceptable because the "pole" trajectories

may go outside the unit circle (as demonstrated by the filters

estimated for the windowed speech data of Chapter V). The probability

of this occuring is reduced if the data is not windowed; but even so,

there is no guarantee that the time-varying filter will be stable.

It may be possible to develop a time-varying estimation method that

will necessarily result in a stable filter, however this has not been

investigated in this thesis.

For the speech example, the time-varying filter "tracked" the
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parameters better during the high energy portions of the signal.

This is a result of the least squares error technique of the method.

One possible modification of the method to enable it to track the

parameters equally well throughout the interval would be to have some

form of automatic equalization of the signal. For this, the signal

would be equalized so that it contains approximately equal energy

throughout the interval. A simple way of implementing this would

be to divide the interval into segments and estimate the energy in

each segment (one estimate of the energy could be the c00(0,0)

covariance element). The magnitude of each segment could be adjusted

proportionally depending on whether its energy was above or below

the average energy.

However, a more sophisticated technique might be necessary,

because the equalization of the magnitude of the impulses driving

the system is probably more important for the uniform tracking of

the system parameters than the equalization of signal energy. There-

fore the equalization should be also based on an estimate of the

impulse magnitude.

Another serious limitation shown by the speech example is the

lack of a time-varying gain estimate. Perhaps a method could be

developed that would both equalize the signal in conjunction with

providing a time-varying gain.

In spite of these limitations, the method of time-varying LPC

seems promising. It can possibly reduce the total number of
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coefficients needed to model a segment of speech. It also provides

a smoothed trajectory of the formants of the vocal tract. Time-

varying LPC might also be used to provide higher quality speech

reproduction than available with regular LPC if it is used over the

same "quasi-stationary" intervals. This is because it can follow

the small variation in the parameters that are present even in these

"stationary" speech segments.

Additional research is needed to overcome the limitations of

the method of time-varying LPC that has been developed in this

thesis. Also, a more extensive evaluation of the method should be

made by using it to analyze a wide variety of speech examples.

Listening to speech reproduced by time-varying LPC should be an

important part of future evaluation of the method.
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