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ABSTRACT

The Multiple Model Adaptive Control algorithm has been used in appli-
cations of advanced control technology. However, in these applications,
many undesirable characteristics of the method, such as high amplitude
limit cycles, have been uncovered. In this thesis the basic types
of behavior exhibited by the method are explored. This is done through
the simulation and analysis of the method as applied to a sample system
structure. This structure has been carefully chosen to exhibit the
major phenomena of interest while remaining amenable to detailed analysis.
Two major types of results are presented. First of all, detailed conditions
for the existance of each of the types of behavior are developed for the
special system structure under consideration. Of possibly greater signi-
ficance are the qualitative insights which result from extrapolating the
detailed conclusions to problems of more general structure. It is believed
that the qualitative understandings developed in this thesis can form the
basis for the introduction of design modifications (two of which are
suggested in this thesis) and the development of a systematic methodology
for the design of adaptive control systems using the Multiple Model
Adaptive Control algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In many applications of control theory, the dynamics of the plant
are incompletely known at best. Furthermore, the dynamics are often time-
varying and non-linear. In such an environment, control becomes a very
difficult task and the problem of the optimal control of such systems
remains unsolved. However, such systems need to be controlled and so
a myriad of suboptimal schemes have emerged.

The many methods which have been proposed can, in general, be di-
vided into two classes: the passive methods which rely on the robustness
of a time-invariant feedback controller to maintain good performance and
the active methods which involve changing the controllers as necessary.
For example, much of the work of Horowitz [1,2] has been aimed at de-
riving a single, time-invariant control law which gives acceptable be-
havior for all plant parameter va;ues (a passive approach). The work
of Wong [3, 4] has similarly been aimed at analyzing the robustness
pfoperties of feedback controllers using a geometric approach, and
Ssafonov [5] has derived robustness conditions for controllers when the
parameter variations are due to a change in the operating point of a non-
linear system. It should be pointed out that the ad hoc approach of
increasing the plant noise design parameter (see Section 2.1) often
mentioned for the standard Linear—-Quadratic-Gaussian (LQG) problem [6]
is also a passive method of overcoming plant uncertainty.

A major problem with such methods is that they are, by design,

compromises. Performance for normal conditions is sacrificed in order

-8-
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to improve performance for other conditions. 1In the ext;eme, it ma§ be
impossible to maintain the desired performance for the full range of con-
ditions using a fixed controller.

In contrast to the passive methods, the active methods make use of
a time-varying controller. Thus, they employ mechanisms which force the
controller to adapt to changes in the operating environment. This, at
least in theory, improves performance under all operating conditions
since the controller can be tuned to the actual, rather than the averagde
or even worst case, conditions. |

As previously mentioned, the optimal control of such systems is aﬁ
unsolved problem. Thus ad hoc, suboptimal techniques have been proposed.
However, partly because of the non-linearities (due to adaption) of such
methods, they have not been subject to careful study regarding qualitative
performance characteristics such as deterministic stability. In applica-
tions, many of these methods have exhibited difficulties which have been
mitigated by further ad hoc modifications of the design [16, 23]. 1In
general, thése modifications were not the product of exten;ive, systematic
analysis of the system's behavior and no general désign methedology has
emerged.

The reSearch which is reported herein attempts to qualitatively and
quantitatively examine the properties of one method of adaptive control
which has been discussed in the literature, namely, the Multiple Model
Adaptive Control (MMAC) method [7]. The MMAC method, which is discussed
further in Chapter 2 of this thesis, has a very pleasing structure: a
cascade of something which resembles a Maximum Aposteriori Probability

(MAP) identifier [15] (basically a bank of Kalman Filters) and a bank of
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linear quadratic regulators. However, in use it has become clear that

the MMAC method can exhibit unacceptable behavior - such as high amplitude
limit cycles. In this thesis the major gqualitative properties of the
MMAC method are exémined and the principle reasons for the unacceptable
behaviof explored. It is believed that a through understanding of the
behavior will lead to guidelines for the modification of the design

which will ultimately yield a general design methodology.

1.2 Background

The general area of adaptive control has received much attention
recently. For example [26] and [27] both contain numerous references
to a wide variety of approaches., The basic subject which is addressed

is to generate a control u(t) for a system given by
x(£) = A(£)x(t) + Bltlult) + T(t)

with observations
y(t) = Cle)x(t) + n(t) .

The state x(t) is an n-vector while the input u(t) is an m-vector and
y(t) is a p-vector. The vectors g (t) and n(t) represent system un-
certainties and observation noise respectively. The condition which
introduces the most complexity is that the system matrix A (nxn), input

matrix B (nxm) and output matrix C (pxn) are only incompletely known.

The performance measure which is often used to judge such systems is

a quadratic one, given by
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J( = [ [x'(£)Q x(t) + u'(t)Ru (t)]dt
0

where Q is an nxn positive semi-definite matrix and R is a mxm positive
definite matrix.

The solution to this control problem has not been found and the
work in [7] clearly indicates that the optimal system, assuming it can
be found, will prove to be far tooc complex tébimplement. Thus, numerous
suboptimal solutions have been proposed.

The MMAC method was largely inspired by the work of Magill [8] who
was the first to examine a parallel -adaptive estimation algorithm in
which the basic gstimation is done by a bank of filters which are then
éoordinated by a centralized controller (see Figure 1.1). Further work
in the area has been done by Lainiotis whose work has been summarized
in [9]. The major thrust of this work has been aimed at adaptive esti-
mation and parameter identification and not the control problem.

Many authors [10, 11, 7] have examined feedback controllers based
on the structure of Magill's estimator, however. For example, Stein
[10] has been able to derive upper and lower bounds on the cost in the
optimal control problem and using the upper bound, has obtained a control
law exhibiting a parallel structure. Saridis and Dao [1l] have ex-
ploited Stein's lower bound to obtain a different control law. One
major drawback of both algorithms is that they require significant
on-line computation.

Willner [7] proposed the MMAC algorithm as discussed in this

thesis and showed that it performed well in relation to both the
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upper and lgwer bounds of Stein. Independently, Deshpande et al [12]
arrived at the same algorithm as an ad hoc extension of the estimation/
identification algorithm of Magill [8]. The method has been further
considered by Lainiotis [13].

To our knowledge, no one has been successful in establishing any
definitive properties on the behavior of the MMAC method. Specifically,
the convergence properties of the identification problem (i.e., with
the adaptive mechanism disabled) have only recently been proven. Both
Hawkes and Moore [14] and Baram [15] have provided useful results, but
both results do not hold in an adaptive situation (i.e., when the con-
trol law is a function of the system output).

The MMAC method has been applied to various settings. For example,
in Athans et al. [16, 23] the method has been used to control the F-8
aircraft. Also, the F-8 controller of Stein et‘al. [17] can also be
considered to be a multiple model design. Additional experience with
and insight into the MMAC method has been gained by applying the esti-
mation/identification algorithm to the detection of accidents on free-
ways [18].

To a great extent, the F-8 project [16, 23] has provided the moti-
vation for our work. In that project, where the true system does not
correspond exactly to any of the hypothesized models, several problems
were encountered. »First of all, the probabilities often oscillated
rapidly between two models, exhibiting behavior very much like a limit
cycle. This problem led to a design modification consisting of the

insertion of low pass filters to slow the probability transitions.
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A second problem which was encountered involved the choice of which
models to include in the set of possible models. The aircraft, of course,
responds in a continuous way to parameter changes, and model set seléction
was found to have a considerable effect on performance.

It is issues such as these which have motivated our study. Our
goals have been to understand the characteristics of the MMAC method

and develop a useful design methodology based on the MMAC algorithm.

1.3 Contributions of This Thesis

This thesis presents the results of a detailed study of the MMAC
algorithm. The major conclusions of this study, which are detailed in
Chapter 6, are of two basic types. First of all, there are specific
conclusions which the analysis of Chapters 4 and 5 yield. However,
since the analysis of these chapters relies heavily on a special cése,
the results are of relatively little direct applicability. However,
they are indicative of the types of and basic causes for behavior which
has been observed in more general situations. Thus, of possibly greater
importance are the gualitative conclusions which result when the specific
conclusions are extrapolated to general problem structures. These
qualitative results are also detailed in Chapter 6.

The following are the major results of this thesis.
1. The neutral stability of the MMAC method is established.
2. Conditions which guarantee state convergence are derived.

3. The MMAC algorithm consists of a bank of Kalman Filters,

each corresponding to a hypothesized linear time-invariant model of
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the system generating the observations (referred to as the true system).

The outputs of each filter are used to calculate the aposteriori prob-

ability that each filter matches the true system. The feedback control

is then given-by the probabilisticly weighted average of the controls

calculated for each hypothesized model. (See Chapter 2 for a complete
discuséion). This results in a highly non—linearfclosed loop system.
However, if the probability is constrained to be constant, then the
closed loop system becomes linear time-invariant. In this thesis it
is shown that even if the closed loop system is unstable for all
constant values of the probability, the overall system may have a
bounded (in fact "hyperbolicly stable" - see Section 4.6) response.

For a special case, specific conditions are derived.

4., The effects of numerical roundoff are examined and a form of

implementation which behaves well is proposed,

5. The specific results of this thesis can be used to predict the
gualitative behavior of MMAC systems which have a more complex structure

than the ones analyzed herein.

4.1 Overview of this Thesis

In Chapter 2, the MMAC algorithm is introduced in the form which
will be used in the reaminder of this thesis. Both the continuous and
discrete time versions of the algorithm are presented, although the
discrete version is employed for the majority of the analysis.

vIn Chapter 3, the canonical problem which forms the focus for the

entire thesis is introduced. This problem, about which various structural
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assumptions are made, has been carefully selected in order to provide a
situation which retains many of the qualitative properties (such as the
existence of oscillations) which have been observed in more general
problems while éimultaneously being amenable to detailed analysis. The
remainder of the chapter contains a discussion of the various types of
behavior which have been observed in simulations of the canonical problem
along with sample simulation results to illustrate each behavior. The
basic responseé are shown to be of three types. In the first, termed
"exponential" or "geometric", the states are geometrically stable. 1In
this case, all of the states are decreasing for all constant values
of the probability. The second type termed "oscillatory" results in the
probability oscillating between zero and one, which in turn results in
the states exhibiting an oscillatory behavior, alternately increasing
and decreasing along with the probability. The third type termed
"mixed", results’ in a behavior which, depending on the magnitude of the
initial conditions, exhibits either an oscillatory or exponential
behavior. These simulations have been used to motivate the analysis
in the remainder of the thesis.

Chapter 4 contains the majority of the analysis of the MMAC method.
In this chapter, each type of behavior described in Chapter 3 is analyzed
in order to yield an understanding of the underlying causes of the
behavior. This results in conditions which guarantee the existance of
the exponential mode. Furthermore, various approximations are used to
characterize the major modes of behavior which lead to conditions for

the presence and absence of each behavior for the special case of the
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canonical problem. Beyond this, more general gualitative results are
also presented.

In Chapter 5, various aspects of the problem of implementing the
MMAC method using a digital computer are discussed. By far the most
important of these is the modification to the analysis of the oscilla-
tory behavior when the finite precision nature of the computer becomes
a factor in the behavior. Also discussed are the effects of using
each of the various forms of the equations as far as numerical accuracy
is concerned. The chapter concludes with the proposal of a new form
of the equations which is believed to allow the designer greater latitude
in design without encountering numerical problems.

Chapter 6 contains a discussion of various ad hoc design modifica-
tions which have been proposed in order.to overcome the shortcomings of
the MMAC method. Also included there is a summary of the conclusions

of this thesis as well as some suggestions for future research.

1.5 Notation

The following is a brief list of the notation employed in the
thesis. Except for the notation for the components of the residual

of a Kalman Filter, all are believed to be standard.

Matrices are represented by upper'case letters which are
underlined.

Vectors are represented by lower case letters which are
underlined.

Scalars are represented by lower case letters (not under-
lined).
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(a,b)

[a,b]
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the transpose of A.

the norm of a matrix = Max A(A'A)
the set of eigenvalues of a matrix.
the Null Space of a matrix.

the 6™ l-norm of a vector x given by
V&'O-lx for 9-1 positive definite.
the norm of a vector given by'V;T; )
magnitude of a real or complex a.

change in x(-) from k-1 to k.

Product for i=1 to N

Sum for i =1 to N

vector of true state variables

scalar true state component i
.th

scalar j— component of I

open interval between a and b.

closed interval between a and b.



CHAPTER 2

REVIEW OF THE MMAC METHOD

The purpose of the present chapter is to introduce the Multiple
Model Adaptive Control (MMAC) algorithm. A full discussion will not be
given as that is available from other sources [7, 12].

The MMAC algorithm is composed of two parts. The first, which
performs an estimation/identification function, is similar to a Maximum
Aposteriori Probability (MAP) algorithm [15] which is discussed in Section
2.1 for the discrete time case. The MAP algorithm is structured as a
bank of Kalman Filters with some decision logic. The second part, which
is cascaded with the MAP-like algorithm, is a control computation which
is discussed in Sections 2.2 and 2.3 for the discrete time case.

The remaining sections of this chapter contain a development
and discussion of the special forms of the equations for the MMAC algorithm

which prove useful in the remaining chapters of this thesis.

2.1 Maximum Aposteriori Probability (MAP) Identification

2.1.1 The Kalman Filter (XF)

Assume that a linear, time-invariant (LTI) discrete time system is

given by:

x(k+l) = A x(k) + Bu (k) + (k) (2.1a)

with observations:

y(k) = Cx (k) + n(k) (2.1b)

-19-
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where x{k) is the n-dimensional state vector, u(k) is the m-dimensional
control vector and y(k) is the p-dimensional observation vector. The
noise sources g(k) and n(k) are taken to be zero mean white Gaussian
noises of covariances = and J respectively. The matrices A (nxn), B
(nxm) , and C (pxn) are the system, input and output matrices respectively.

We will use the notation
(A, B, ©) (2.2)

to refer to the above system. The system (A, B, C) which generates the
cbservations y(k) will be called the true system.

| In practice, the actual values of the matrices A, B, C, £ and J are
unknown. However, estimates of these parameters are often available from

a knowledge of the system. Thus, (A.,, B.,, C.) will be used to denote
, 1" =" =i

the ith model of the system, given by:
x(k+1) = A,x(k) + B.u(k) + C(k) (2.3)
X X =1} S
y(k) = ¢ x(k) + n(k) .

For the purposeé ofthe present study the values of Y and = will not
vary from model to model, although exfensions to that case could be con-
sidered.

It is well known thét‘the steady state Kalman Filter (KF) [19, 20]

which estimates the state x(k), based on the model

(A-I B-I C.)
= =1

is given by
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®.(k+l) = A R. (k) + B,u(k) + H.r, (k+1)
=i == == —i—i

(2.4)

r(k+l) = y(k+l) - C. [A. X (k) + B, u(k)]

= =1 —i—i —i—-

. . .th
where Ei is the Kalman gain for the i— model:

B o=Lcow - (2.5)

-1 == )
and Ei is the nxn solution to the familar Riccati equation

-1 -1t
L, = [Cly "C, + (A. Z.A! + 3) 7] . (2.6)
—A =+ =i ——i— =

The state estimate gi(-) is n-dimensional, while the residual vector,

gi(-), is‘p-dimensional.

2.1.2 Properties of the Kalman Filter

The Kalman Filter has many interesting properties, (see for example
[19]), a few of which are useful in understanding the MMAC method. These
are now discussed. A few definitions are useful.

Definition 1: The ith Kalman Filter is said to be matched if the matrices

used in the filter design (i.e., the model) and the matrices of the true

system are identical; that is, if A, = A B. =B and C. = C.
-1 -, - -1 -

14

Definition 2: The Filter is called mismatched if it is not matched.

Property 1l: If the ith Kalman Filter is matched then in steady state:
E{r. (x)} =0 (2.7a)
L 2

E{Ei(k) g;lgi‘(e)}= 18(k-e) (2.7b)
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where §(.) is the impulse function, E{:} denotes expectation, and Gi is

given by

=y+cCci.c . (2.7¢)
Furthermore, if the ith filter is matched, then gi(-) gives the optimal
estimate of the state x(-).

Property 2: 1If the ith Kalman Filter is matched, then the probability

density function for the residual Ei(;) is given by [20]:

(2.8a)

with

-1
B, = (\/(z )™ l) . (2.8b)

Property 3: If the ith Kalman Filter is mismétched then

E{r. (k)} =, (k) ‘ (2.9a)
r, .

T,

Y
—_— _l — f _ =

el(z, () - kNG Tz, () - x, ()"} = 8, (k-2) (2.9@)

where E:in general is nonzero and E; is a function of the system and the
noise covariances (see [28]) with, in general, E;(O) > I.
It follows that if two filters (one matched and one mismatched) are

computed then
E{r'(k)e-lr (k) } < E{r'(k)e-lr (k) } | (2.10)
=] -1 =1 =3 -2 =2 , °

whexre r

1 is from the matched filter and r, is from a mismatched filter

2
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[(16]1. Thus, if equation (2.8) is evaluated for both a matched (1) and

a mismatched (2) XF, then

Elp(z)} > Elp(z)} . (2.11)

2.1.3 The Probability Equation

Assume that we are interested in identifying a dynamic system from
its outputs and that the true system is known only to be one of N speci-
fied models. Baye's rule and Properties 1-3 imply [15, 7] that the
probability that the ith model matches the unknown system (Pi) is given

by

P, (k) p(zr, (k+1))
a8

Pi (k+1) = (2.12)

I o2 e

P:.| (k)p(g_:j (k+1))

51

whexre p(ri(k+l)) is given by equation (2.8). The structure of the re-

sulting system is shown in Figure 2.1.

2.2 Adaptive Control

If one knew with certainty which model matched the true system, it
would be a simple matter to design a controller using any of the standard
synthesis techniques. Therefore; one reasonable way to determine a

control law for the unknown system is to probabilisticly weight the con-

trols which would be used if one assumed that one of the models was

correct. That is, let

N
u(k) = I P, (k)u, (k) (2.13)
- j=1 1 — )
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where Pi(k) is given by equation (2.12) and Ei(k) is the control which
one would apply if model i were assumed to be matched to the true system.

It will be assumed that

u, = G, X, (2.14)
-1 bt Bt

although this is not necessary and is further discussed in Section 2.3.

Figure 2.2 thus summarizes the Multiple Model Adaptive Control method.

2.3 The Control Law

The MMAC method as developed in the literature [7, 16] has assumed
that the linear quadratic (LQ) methodology is used to design the controller.

Thus, the feedback gains 91 of equation (2.14) are chosen to minimize

J(u) (x' (k)0 x (k) + u' (k)Ru(k)) . (2.15)

]
I o1 8

k=1

It can be shown [21] that the optimal gains are given by
G. = [B'K.B, + Rl = B'K.A, A (2.16)
=i === = —1—i—i

where Ei is the solution to the steady state Riccati equation

Qi"' A'K.A, AKB[B'KB + R] lBKA . (2.17)
—1-1i-1 111 =111

Although to date, all references to MMAC have made use of the control
law (2.16), this is not a necessary part of the method. Thus, any control
law which gives good results for the respective model may be used. How-
ever, there is a strong interaction between control law choice and

adaptive performance due to the feedback, about which very little is known.
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For the purposes of this study we will for the most part restrict our
research to control laws based on the linear gquadratic (Equation 2.15)

form.

2.4 Comments on MMAC

A few comments are in order.

1) The MMAC algorithm, as shown by Willner [7] is suboptimal even
for the problem originally posed. Willner was able to show that the
algorithm is optimal for the final step of the dynamic programming
algorithm [7] but was unable to continue the calculation backward in

time.

2) As posed above, the true model is assumed to belong to a finite
set of known models. ZLainiotis [9, 13] has discussed the infinite set
case but concludes that a finite approximation is then required for use
in applications. Thus, for most real problems when the true model may
take values from an infinite set, a further suboptimal approximation is
required. The results of Baram ([15] (which apply only to the open-loop

case) may help in discretizing the model set.

2.5 Continuous Time MMAC

As developed in the preceeding sections, the MMAC method has been
based on discrete time systems. For analysis purposes, it will be useful
to considexr the related continuous time problem, largely because of the
simplified form of the probability equation.

The complete equations for the method will not be given here as they
are the continuous time regulator and continuous time Kalman Filter

equations [19, 6] with a set of equations for the probability of each model.
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Dunn [22] has shown that if P (t) is the probability of the 0

model at time t then

) N
P,(t) =P, (c.& - I P.CR)60T(y-
1 1l —1—1

) (2.18)
jop 3TFTS S

P.C.R,
1 37373

LU e I

3
where Ej' 3i and y are defined analogously to the discrete time case and
8 is the observation noise covariance. The property which makes Equation
(2.18) useful for analysis is the absence of either exponentials or a
denominator. These equations are examined further in the two model, two

state case in the following section.

2.6 A Special Case

Of special interest to the research at hand is the case when N=2
(i.e., the two modei case) with full state observation. Furthermore, Qe
shall assume that the input (B) matrix is the identity.

The special case captures all essential features of the problem that
we are interested in examining without adding unnecessary complexity, and

it forms the central focus for this reseaxrch.

2.6.1 Discrete Time Case

In the discrete time case, the true system is then given by

x(k+1) = Ax (k) + u(k) + Z(k)

(2.19a)
y (&) = x(k) + n(k)
with models
Model 1: 2 (k+l) = AR (k) + ulk) + (k)
1 : (2.19b)

y(k) = & (k) + n(k)
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Model 2: £, (k+l) = 2,2 (k) + ulk) + L(k)

(2.19¢c)
yk) = & () + nlk) .

Thus, the MMAC method reduces to the following set of discrete time

equations
x(k+1) = Ax (k) + ulk) + (k)
y &) = x(k) + n(k)
&, (k#1) = AR (k) + ulk) + H r, (k+1)
r; (k+1) = y(k+l) - A% (k) - ulk)

%) (k+l) = A X, (k) + ulk) + H,r, (k+l) (2.20)

2

r, (k+l) = y(k+l) - A%, (k) - ulk)
u(k) = -P G % (k) - 929232 (k)

1-1

P, (k) plz;)

P_(k+l) = .
1 Pl(k)p(gl) +'P, (k)p(£2)
l ] —l
T2 E2n)
plz;) = B.e .

The major goal of the research has been to understand such qualitative
properties of the MMAC method as stability. Since the phenomenon which
have been observed are largely due to the nonlinearities of the system
and occur even in noise-free simulations, the noise terms £(-) and n(.)
add an unnecessary complexity. Thus, these terms are ignored in the

remainder of this thesis. It should be noted that the KF's, designed



-30-

assuming the noises to be present, are an integral part of the MMAC method
and are therefore retained. Thus, the principle focus of the work is to

examine the deterministic properties of Equation (2.20) and the correspond-

ing continuous time system discussed in the next subsection. Since the

sum of the probabilities of the models must always be 1, it is known that

Pz(k) = (l-Pl(k)) .

Then, rewriting Equation (2.20) in terms of the residual Ei(k) we see

that the equations of the MMAC method can be summarized by

x(k+1) = A x (k) + u(k)
E (k+1) = (A-A,)x(k) + él(].‘_—ill)gl(k)
r, (k+l) = (a-a)x(k) + gg(gzgz)gz(k) (2.21)
ulk) = -(p,G, + (1-P)G)x(k) + PG, (I-H,)r, + (1-P,)G, (I-8,)x,
P, (k) plx))
P, (k+1) =
1 Pl(k) p(gl) + (l—Pl(k)) p(£2)
- -]2-'- [£!0 1x, ]
- —i
p(r,) = B.e .
-1 1

It will be useful notationally to combine the state and residual

equations into one vector equation. Therefore, we define the vector
w (k) =[x (), £y k), 000

Thus, Equation (2.21) can be rewritten as




= _ _ . _ . 1o o v
A~P Gy = (17Py)G,  ByG (I7H ) [ (1-P )G, (I7H ) | (5 Hop)
w(k+l) = (A—Al) : 51(I-H1) o w (k)
i (a-a)) : 0 LB, (I-H,) ]
or
w(k+l) = E(P)w (k)
with
P, (K)p(z,)
P, (k+l) = . (2.22b)

Pl(k) plr)) + (1-p, (k))p(x,)

These equations, along with their continuous time counterparts, form the

basis for the research which has been undertaken.

2.6.2 Continuous Time Case

Similar assumptions to those previously presented for the discrete
time case can be made in the continuous time case. Here, we will again
restrict our attention to the two model, state feedback case with B=I.

Thus, the MMAC method reduces to the following equations

x(t)

Ax (t) + u(t) + (k)

y(£) = z(t) + n)

Py N 2.23
2 (&) = A% (8) + u(t) + Hyr (t) ( )

ok

51(t) =y(t) - §1(t)

2, (6) = A2 (£) + ult) + Hyr, (t)
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r,(t) = y(t) - gz(t)

u(t) = -P.G,R (t) - PG & (t)

hd —- A -2 "‘1 o $ - _ ~
P (e)= P (R)P, () [X, (£)-X, (£)]'8 "[x-P (£)X -(1-P, (£))X (£)]

i t - .
with P2( ) 1 Pl(t)
For the same reasons as presented in the previous section the noise
sources (t) and n(t) will again be ignored for the majority of the
proposed research. It should be noted that under this condition, the

residual ri(t) exactly equals the estimation error x(t) - )’ii (t). Thus,

equations (2.23) can be rewritten as

() = Ax (£) + u(t)
£, () = (A ~H))x, (&) + (a-3;)x(¢) (2.24)

£, (8) = (A~H))z, (t) + (A-A )x(t)

u(t)

-p, (6)G) (x(8) -z (£)) - (1-P, (£)) G, (x(t) - r,(£))

. . _l _
BL(E) = P (£) 1~ (£) 1z, (£) -z, (81 07 IR (£)x, (&) + (1-P (£))r (£)] .

Thus, if we again combine equations by defining the variable

—

[« (t)

w(t) = £l(t)

B

Equation (2.24) can be rewritten as
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| [
A-rpG - (.1-Pl)g2_'|§ P& i (1 - P))S,
]
w(t) = (A-2) E Al-_lii 0 w(t) (2.25a)
4 b
.'— :f
- 2 X -
(a-a)) AR YOS 1
or w(t) = Ae w(t)

with. (2.25b)

. -1
P {e) =P () [l—Pl(t)]]£2 (8) -z, (€)1 8 P, (B)r, (&) + (l-Pl(,t))Ez'(t)]

2.7 A Change of Variable

A change of variable which proves useful in the sequel is to let

q = 2Pl—l . (2.26)

Making this change in Equation (2.22) yields

w(k+1l) = A(q) w(k) (2.27)
(1+q)p(_:5_1) - (l—q)p(_{z)
(k+1) = —
E (1+a)p(x;) + (I-a)p(x,)
where
1 1 L1 Lo .
A - 5‘(l+q)§_1-3(l—q)g2 ! 5—(1+q)§_1(£-§_1) ' E(l'q)gz(l'gz)'
| |
I 1
Alq) = A-3 : A -H) ! 0
: :'
1 } .
L A- 5.2 ! ° ! é.z (E-EZ) J

In continuous time the corresponding change to Equation (2.25) yields
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w(t) = A(q) w (t)
. (2.28)
q(t) = 2(1-a%) [z -£.1'0 [ (l+q)r, + (1-g)x.]
4 2R = 41 =
where = . . _
1 1 T 1, . 1
3 - ()G -3 0ma)G, ¢ 30l 3G
A = Aol Ay -E 2
| é. - §.2 ' E g : :A_z = Ez

Note that the same basic notation is used for the A matrices of Equations
(2.22), (2.25), (2.27) and (2.28). However, no confusion should arise

as the meaning should always be clear from context. .

2.8 A Useful Definition

A further concept which will prove useful can be seen by considering
either the continuous or discrete time problems as summarized by either
Equation (2.25) or (2.22)

Continuous time: w(t) = Eﬁ?l)yﬁt) v (2.25)

Discrete time: wi(k+l) = ngllgﬂk) (2.22)

where

-p.G.~(1- ! (1-p
A-P.G,~(1-P;)G, | PG ! (1-P)) G,
l t ’
! |
Continous time: A-2 1A -H :[ 0
v i .
_ ! i -
_ A-3, H 9 b By Hy
A(P,) = [A— I - 1 _ IRTIRY
alPy A-P,G,-(1-P,)G, { P G, (T i) ; (1-P,)G, (I-H,)
| i
i 1
Discrete time.: - 1 1
l1screte time: . é_ él : A (I-H.) : 0
i L -1 -
1 ]
- l ] -
| A5 2 | Ry (I-Ey)
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Thus, it is clear that if Pl(-) is held constant, then Equations (2.25)

and (2.22) describe linear, time-invariant dynamical systems in the

variable w' = [E:’ Ei' Eé]" Thus, Equations (2.25) and (2.22) with

P constant will be referred to as the linear, time invariant system for

fixed P, or LTI for fixed P. As will be seen in Chapters 4 and 5, many
of the major properties of the MMAC method can be expressed in terms of
the properties of the LTI system for fixed P as a function of P.

A second important point to note is that in applications and

simulations of the MMAC system; another parameter becomes important due
to the finite precision usually available for computation. From the
equations of this chapter, it is clear that the MMAC method has the

property that
Pi(k) =0 =>Pi(-) = 0 for all future times.

Such a situation is usually to be avoided, as it reduces the flexibility
of the algorithm in a number of applications. For example, the parameter
of the true model are often changing in adaptive controi situations, and
one would like to require Pi to be nonzero for all time so that the MMAC
algorithm can respond to such changes. Thus, one almost always. applies

an additional constraint on the probability such as

P, (k) > P wi, ¥K .

lim
This has been done throughout this study with a value of Plim = 10 .

The effect of such a limit is examined in detail in Section 5.1.



CHAPTER 3

QUALITATIVE RESULTS

In order to guide and motivate the research, we have examined a
problem consisting of a system with two independent states ;nd two models.
This system, while simple, captures many of the basic issues which are
important to the method and sheds light on the fundamental problems in-
volved with the MMAC design. The problem is formulated in the next
section of this chapter. The remaining sections contain simulations
which demonstrate the various types of behavior which have been observed.

A discussion of the important properties is included.

3.1 Problem Formulation

In most applications of an adaptive control algorithm, a detailed
analysis of the behavior of the algorithm has proved intractable. This
is especially true for the MMAC algorithm. However, in the case of
MMAC, it is possible to find a simple example problem that lends itself
to analysis and simultaneously maintains the basic properties exhibited
in simulations of the more general systems. Thus, for the purposes of
this thesis, a sample problem structure has been chosen which displays
what we feel are the critical characteristics of the method and which
is also amenable to detailed analysis.

The chosen true system to be controlled is given by:

a 0
x(k+1) = x(k) + u(k) + z(k) (3.1)
0 a
y(k) = =x(k) + n(k)

-36-
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or a continuous time system of the same structure and A matrix

a 0

x(t) = x(t) + u(t) + (k) (3.2)
0 a

y(t) = x(t) + n(t)

where a takes on values in the range [0, 2]. The discrete time system
is useful for simulation studies and most of the analysis. However, use
of the continuous time system provides greater insight for the lineariza-
tion results in Section 4.1. The set of models for either the discrete

or continuous time case is given by

Model 1: (A, I, I)

Model 2: (Ay, I, I)
with
a o a o
y = 2,7
0o 4 (0] a

where & takes on various values frém 0 to 1.5. The parameters a and &
are varied to obtain different responses from the overall system.

For the purposes of KF design, the noise sources Z(-) and n(-) ére
assumed to be zero mean, white and Gaussian with covariances of Id(-).
where E_is‘the 2x2 identity matrix. This structure results in diagonal

Kalman Gain matrices such that
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where h is the gain corresponding to a and h is the gain corresponding

)

to &. Further, the control law weight gi and Ei are chosen diagonal such

that

35
q O g o

& = g = .
o 4 0 gq

This results in a diagonal control gain matrix

g o 8§ o

The structure described above will be referred to as the canonical problem.

The emphasis of this study has been on the examination of such quali-
tative properties as stability. Thus, we ignore the noise sources both
in the simulation and in the analysis of the properties of the MMAC
method. That is, in both the analysis and simulations, Z(-) and n(-) are
set equal to zero. Note, however, that the KF's designed with the assumed
non-zero noise sources are retained. It is clear that noise can have
a major effecﬁ on a system [29]. However, as we will see, many of the
. properties of the MMAC method are due to the nonlinearities of the
probability equation. Thus, it is our feeling that an anlysis of this
noise~free case is of considerable importance.

A few comments are in order concerning the the choice of the example
problem. First of all, the system is chosen to be the simplest possible

and still capture the important phenomena. Thus, we selected a two
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state, two model system. The choice of model is, admittedly, somewhat
extreme in the degree of symmetry and mismatch between the models and

the true system. However, this choice has been deliberately made in order

to investigate phenomena which have been observed in actual applications
[23]. Thus, it is felt that the analysis of this problem has yielded

insight into the more general case.

3.2 Basic Responses

Various types of responses have been observed in simulations of the
system presented in Section 3.1. Table 3.1 details the parameters used
for each simulation. The remainder of this chapter presents examples
of each of the major modes along with a discussion of the important
characteristics of each. The simulations, which have been performed on
an IBM 370 computer using double precision FORTRAN, have been used to
motivate and guide the analysis of Chapters 4 and 5. 1In fact, the types
of analysis described in fhese chapters and, in particular in Section
4.6, were to a large degree suggested by the simulations‘discussed in
this chapter.

For each simulation presented, three plots have been included. The
first is a plot of the probability of model one (Pl) versus time. The
second is a plot of the two true states xl and x, versus time. The third
is a plot of the quantity ln(xlxz). This quantity has been found to be
indicative of the stability of the closed loop, nonlinear system. This
variable is further discussed in Section 4.6 where it is linked with

the concept of "hyperbolic stability".
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Case # a a q g g g h R
la 2 0 1.02 1l.62 1 0 .809 .5
1b 2 0 0} 1.5 1 0 .80% .5
1lc 2 0 C* 1.4 1 0 .809 .5
2 1.5 1.0 1 1.09 1l .618 .7245 .62
3 .9 0 1 .538 1 0 .597 .5

" TABLE 3.1

Parameters of Sample Cases

Figures

3.2

3.3

*This value of the control can not result from an IO design.
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3.2.1 Exponential Mode

The first type of behavior is one in which the states of the true
system increase or decrease in an exponential manner (see Figure 3.1).
This type of behavior appears to arise in two situations. First,
examination of the equations of Chapter 2 indicate that if the KF resi-
duals»;i and 52 are equal with the true state components equal to each
other, then Pl(t) =0 or equivalently, Pl(k+l) = Pl(k). Thus, if the
system is symmetrically initialized (that is, the two true states are
equal with r, =z, = 0 and Pl(O) = .5) then Pl(t) = .5 ¥t or equivaléntly
Pl(k) = .5 ¥k . The closed loop system is then time invariant and sta-
bility analysis for the resulting LTI system follows as usual. Note that
the resulting system can be exponentially stable, neutrally stable or
exponentially unstable depending on the control gains 91 and §2. Al-
though this is clearly a singular condition, it nonetheless is important
from an applications poin; of view because one commonly attempts to
initialize the system with equal probability and with r, =z, (i.e.,

31 = 22). An analysis of this mode is presented in Section 4.1.

A somewhat similar type of behavior occurs when the LTI system for
fixed P is stable for all P. This, of course, is a fairly restrictive
condition which in essence requires extreme robustness of each controller.
However, such a condition does imply exponential stability. This occurs in-
dependently of how the probability behaves. Note that *his is a non-
trivial result since A(P(k)) is time-varying because P(k) is. Section

4.2 contains the analysis of this situation and Figure 3.1 is an example

of the type of simulation results obtained.
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3.2.2 Oscillatory Reponse

Probably the most unusual behavior which has been observed both in -
the current work and in applications of the MMAC algorithm f23] has been
an oscillatory response in which the probability jumps between near-
zero and near-one* in what appears to be (but strictly speaking is not)
a limit cycle.

Figures 3.2 through 3.4 are examples of this type of behavior. Figure
3.2 is a case in which the peaks of the state trajectories are approxi-
mately constant while the pericd of oscillation increases. Figure 3.3
is a case in which both the peaks and the period are constant while in
- Figure 3.4, the system is unstable. These three cases are obtain=d by
changing the value of the control gain. Note that each gain would yield
stable behavior for the model used in its design.

It is interesting to note that the states of the system are also
highly oscillatory., It might be expected that the plant dynamics would
smooth the rapid probability transitions to form a smoother "average"
state response. However, as shown in Chapter 4, the oscillatory state
behavior is a direct consequence of the model mismatch problem in the
MMAC algorithm.

The reasons for this oscillatoxry behavior, which are discussed in
Sections 4.4 through 4.6 and again in Section 5.1, are closely related

to the fact that neither of the hypothesized models individually yields

*This is the one set of simulations in which the lower limit on the
probability (see Section 2.8) of 10730 is achieved. Section 5.1 dis-
cusses the analysis in this case in detail.
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a control which stabilizes the true system, Basically, the adaptive
coﬂtrol law then attempts to achieve stability by alternately controlling
each mode of the system. This results in unusual behavior which may be
bounded (Figure 3.2 and 3,3) or unstable (Figure 3.4). Chapters 4 and

5 contains analysis which gives conditions for each type of behavior.

The principle conclusion is that stability will result when the controller
at any time stabilizes some modes faster than it destabilizes the re-

mainder, Thus, for the two state problem, a state must be reduced more

when the controller stabilizes it than it is increased when the control
results in unstable behavior for that state.

One variable which appears useful in characterizing the above condi-
tion is the product of the true states, that is, £he quantity X X, This
variable is plotted for each simulation (i.e., see Figure 3.2(c)). A
complete analysis of the properties of this variable is given in Section
4.5. 'While not strictly a Lyapunov‘function, examination of this variable
provides a type of analysis which permits a characterization of the sta-
bility behavior of the MMAC method. Furthermore, it captures the important
observed characteristics of the simulations. For example, the analysis
of Section 4.6 uses this &ariable to predict the stability of the three
cases of Figures 3.2 - 3.4, The connection with stability can best be
seen by considering a plotkofxl versus Xx,. Figure 3.5(a) is such a
plot corresponding to the simulation of Eiguré 3.2. The state trajectory

for this example tends to look like a family of hyperbolas
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If the overall system is bounded, the trajectory then changes as in
Figure 3.5(a). Likewise, unbounded behavior occurs whenever b is
greater than zero (see Figure 3.5(b)).

It should be noted that simply bounding the product of the states
is not sufficient to guarantee the boundedness of the individual states
since the states could still go to infinity along a hyperbola. However,
an analysis of the probability equation (Sections 4.4 and 5.1) provides
bounds on the values of the state at which probability transitions will
occur. This leads to the conclusion that the peaks of the state tra-
jectories will be bounded whenever the product of the states is bounded.
Thus when a constant value of P results in a stabilizing control, the
system may still be bounded but not asymtotically stable. Further,
when the system is bounded and b is less than zero, then the period of
oscillation is increasing since the stable mode decreases more than the
unstable mode increases and the peaks of the curves are constant re-
sulting in the unstable mode having to increase more on each cycle of

the probability.

3.2.3 Mixed Case

When the LTI system for fixed P is stable for some P but not for
all P, depending upon the initial conditions, we can obtain simulations
which exhibit characteristics of either of the preceding types of be-
havior in that either an oscillatory or an exponential response may be
observed depending on the initial conditions. For large initial con-

ditions the response will initially be oscillatory but usually will
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(a) Stable

(b) Unstable

Fig. 3.5 Phase-Plane Plot
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finally decay to a constant value of P.* Furthermore, this limiting
value of P will be such that A(P) is a stable matrix. Figure 3.6 is a
simulation of the Case 2 configuration with large initial conditioms.
When the initial conditions are small, a second type of response
occurs. Assume that A(P) is a stable matrix for P € [1/2-€, 1/2+€]
and unstable otherwise. If P(0) = 1/2, then there exists some non-zero
w(0) such that ||g(k)|| decays sufficiently quickly so that the resulting
change in P does not. take it beyond 1/2 + €. This is a direct consequence
of the fact derived in Section 4.1 that the change in the probability is
proportional to IIEJ|2 while the change in w is proportional only to
IIEJ|~ Figure 3.7 is é simulation of the Case 2 configuration for small
initial conditions. Note that the probability merely makes a small
jump and that it shows little tendency to return to 1/2. Section 4.7

details a procedure which can be used to estimate the range of w(0)

which results in this non-oscillatory behavior.

3.3 Summary

The preceeding sections have given an overview of the types of
behavior which the MMAC method can produce. Table 3.2 summarizes the
major characteristics of each. Each type of behavior requires a dif-
ferent form of analysis in order to understand the dominant effects.

This analysis is given in Chapters 4 and S.
Exponential behavior occurs primarily when the basic characteristics

of the closed-loop system are independent of the probability, either

*Whether or not the oscillations always die out in this case remains
an open question.
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Values of
P yielding
Stable LTI perioed
. . b, bound . .
Section Fig. System i °“§ ed of oscillation
3.2.1 3.1 all decreasing Yes NA
. 3.5 . . .
3.2.3 3.6 Some decreasing Yes increasing
3.2.2 3.4 None increasing No ’ *
3.2.2 3.3 None constant Yes constant
3.2.2 3.2 None decreasing Yes increasing
N A = resulting behavior not periodic
* = period approaches a constant
TABLE 3.2

Principle Modes of Response
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because the probability is held constant by the dynamics or because all
states either increase or decrease regardless of the value of P. Sections
4.1 through 4.3 provide significant insight in this case. Section 4.1
contains the analysis of the local behavior, concluding that the prob-
ability equation is neutrally stable because the rate of change of the
probability is proportional to the square of the system states. Section
4.2 considers the only case in which exponentially stable behavior can
be guaranteed. This is shown to occur when E(P) is a stable matrix for
all values of the probability. Section 4.3 provides an asymtotic result
when one of the models matches the true system.

The oscillatory mode of behavior is analyzed in detail in Sections
4.4 through 4.6 and includes criteria as to when the overall system will
be stable or unstable. It is shown that the important parameter de~
termining stability is the relationship between the stabilizing time
constants of each state. Thus, if the controller stabilizes one state
faster than it destabilizes the other, the overall system will be stable.
Section 4.4 contains a detailed analysis of the probability equation
which shows why state oscillations are an integral part of the oscillatory
behavior. Finally, Section 4.7 discusses the reasons for the mixed type
of behavior. It concludes with a procedure for determining the range of

initial conditions such that non-oscillatory behavior will occur.



CHAPTER 4

STABILITY ANALYSIS

It is the purpose of the present chapter to provide the analysis
necessary to understand the basic stability properties and qualitative
behavior of the MMAC method. At present, there is no single stability
result which totally describes these properties. Thus, it becomes
necessary to examine several approaches, each of which adds to the over-
all picture, but with none providing a whole view. Furthermore, it
often is necessary to combine the results of differing methods to deduce
a single property. An example of this is the combining of the Lyapunov
results of Section 4.5 with the analysis of the behavior of the probability
equation in Sections 4.4 and 4.5 to arrive at a stability result which
neither type of analysis alone could provide.

Chapter 3 contains simulations of carefully selected special cases
of systems controlled by the MMAC algorithm. The purpose of the present
chapter is to attempt to provide an understanding of the properties of
the MMAC method by first noting various features from the simulations
and then, guided by the simulations, attempting to understand the features
by analyzing some special cases. This results in some specific conclusions
for the special cases and, more importantly, it yields considerable in-
sight into the gualitative behavior of the MMAC system in more general

situations. The major conclusions of this chapter are:

1) At best, the MMAC system is neutrally stable about an equilibrium

point in that the probability has no tendency to return to its initial

-67-
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value following a perturbation. This is not an unexpected property for an

adaptive controller.

2) If é(P) is an unstable matrix for P=1/2 then the special case

of Section 3.1 results in the probability oscillating.

3) This oscillatory behavior results in the states being either
bounded or unstable. Specific conditions for two special cases are given.
Qualitatively, the requirement for the baundedhess of the states is that
the modes of é}P) which are unstable for P=1(P=0) must be dominated
by the stability of the same mode when P=0 (P=1) in that they must grow

slower for P=1 (P=0) than they decay for P =0 (p=1).

4) The oscillations observed in Section 3,2 may be bounded even if
no constant value of P results in a stabilizing control. The controller
then attempts to achieve stability by alternately controlling each mode
of the system. This alternating of controls also occurs for iEESé
initial conditions when éﬁP) is a stable matrix fof some but not all
values of P.

As seen in Section 3.2, two major types of behavior have been ob-
served in simulations: oscillatory.and exponential (non-oscillatory).

The analysis of the present chapter is aimed at understanding each.

Thus, Sections 4.1 through‘4.3 deal largely with.the exponential bhehavior
while Sections 4.4 through 4.6 consider the case in which the probability
oscillates. Section 4.7 considers the case in whiéh either type of
behavior can occur and contains a discussion of the initial conditions
that lead to each type of behavior. A detailed overview of the chapter

follows.
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Section 4.1 through 4.3 contain preliminary material dealing with
the exponential case. For example, the neutral stability of the prob-
ability exhibited in the simulations of Figures 3.6 and 3.7 is derived
in Section 4.1. The other major conclusion of the section is that
changes in the probability are proportional to the norm of the state
squared while changes in the states are only proportionai tc the state
to the first power. Thus, for small values of the state, the state tends
to change faster than the probability. This further explains the switch-
ing behavior exhibited in the oscillatory responses in Section 3.2. 1In
Section 3.2.1, the case in which both models result in stabiliéing con-
trols for all values of the probabilities has been simulated. It is
shown that under some conditions the probability dynamics can effectively
be ignored in determining stability. Section 4.2 contains the analysis
of this case and proves that é}P) must be a stable matrix for all P in
order to guarantee that the states will be exponentially stable for
all initial conditions,

Section 3.2.2 includes simulations in which the probability tends
to look like a switch, taking on values near one or zero but seldom in
between. Section 4.4 contains a detailed analysis of the probability
equation which leads to an understanding as to why the probability jumps
so rapidly. Sections 4.5 and 4.6 continue this analysis to present two
methods of analysis for ascertaining when the oscillatory behavior will
be bounded or unstable. These sections, which result in basically the
same criteria, take different points of view; Section 4.5 contains

approximations to the general solution over several time intervals while
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Section 4.6 employs a function which resembles a Lyapunov function.

From Section 3.2.3, it is clear that the size of the initial con-
ditions partly determines whether the probability will oscillate or not.
In Section 4.7 the situation is analyzed in detail and a procedure de-
veloped which allows for the determination of the limits of the initial
conditions which result in the probability not oscillating.

The majority of the analysis in this chapter has been performed in
the discrete time domain. In many ways this is to be preferred as this
is the form in which the method is most often implemented in practice.
However, some of the analysis is done using the continuous time version
because the results are simpler and lend themselves to interpretation
more easily. No claim is made as to the complete equivalence of the
two forms. In fact, one could expect somé differences between them due
to the different assumptions on the availability of sensor data (i.e.,
discretly versus continuously available). However, the qualitative
conclusions of one are applicable to the other, as can be seen by the
examination of the two sets of equations. It should also be born in
mind that the analysis of this chaptexr is aimed at understanding the
phenomena exhibited in the simulations of Chapter 3. Thus, unless
stated, it can be assumed that the canonical structure of Section 3.1
is under consideration. However, the structure of the canonical prob-
lem has been carefully selected to accentuate certain types of behavior
observed in more general MMAC simulations [16, 23]. Thus, the intuition
and qualitative results are believed to provide significant insight in-

to the behavior for more general systems.
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It should be noted that throughout this thesis, the terms "oscillatory",
"non-oscillatory"” andi"exponential" refer to qualitative behavior of the
probability. Although not observed in the simulations in Chapter 3, it
is pdssible to have the LTI system for fixed P display a second-order
response and it is important to note that this is not considered an

oscillatory response for the purposes of this thesis.

4.1 Linearized Analysis

In Chapter 3, simulation results have indicated that the probability
may tend to be neutrally stable in that it shows no tendency to return to
its initial value following a perturbation. Greater understanding of the
causes and consequences of this can be gained by examining the local
behavior of the states and the probability about an equilibrium point.
Examination of Equation (2.22) or (2.28) shows that the MMAC algorithm
results in a closed loop system which has a set of equilibrium points:
any point of the form w=0, with any value of P is an equilibrium point
since when w=0, there is no information in the system that would lead
to a change in P.* The value of the state about which the present
analysis is performed is w=20, P=1/2. The reasons for considering this
point in preference to others stems largely from the high degree of
symmetry inherent in the problem formulation given in Section 3.1l. For

example, the range of P for which the LTI system for fixed P is stable

*Similar reasoning indicates that neutral stability is a general property
of any adaptive controller.
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is easily seen to be symmetric about P=1/2 (i.e., about gq=0).
In order to lend clarity to the results, the continuous time equations
are considered. Examination of the discrete time equations results in

similar conclusions. The continuous time algorithm is rewritten as

w(t) = A(q) w(t) (2.28)
1,. 2 v a-l
a(t) = 7(1-q Yry-z, 1" 8 [(1+q)z, + (1-q)z,]
Lo, 20 o
=219 w'iQ -aQ,lw
where
1 1 1 1 .
Fé-;(l+q)§l-5(l-q)§2 e, F(l-ag,
é(q) = é-‘—l él - El Y
i ‘A‘-—Z 0 ) .A_—B_Z _J

Simple calculations then lead to the linearized system equation

(4.1)
&v_ _ é(CIO) A¥, | Aw
ba| |-k w0, ma 01wy - 200 -0 1w ||is
U279 Bl m90% ] T wpl3a50, - 29,9, -9, 1w, .
with
1 1 1
306 -8 2 & 2 %
A= 0 Q
0 0
0 0 0o 0 0
9= [0 - o g, =0 &+ o7t
o o g7t o -o7t g7t
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where the linearization is done about the values [30, qol. Note that

if HO = 0, then the linearized system reduces to

Lol B 2 o (4.2)
Aq 0 ol lba) )

Thus, the system is, at best, neutrally stable to first order (i.e., the
linearized system has a zero eigenvalue). This should not be particularly
surprising; when the state is zero, there is no need or basis for changing
the identification results. It should be further noted that if éﬁqo) is

an unstable matrix, then the resulting linearized equations are unstable.
Thus, in order to have asymtotic non-oscillatory behavior in a system sub-
ject to perturbations, it is necessary that there exists a value of 94 such
that éﬁqo) is a stable matrix.

Equation (2.28) can also be rewritten exactly as:

w(t) = X(0) w(t) + Aw(t) q(t) (4.3a)

5(E) = 2 w0 ~Q.a-0.a° + Q.q 1w (4.3b)

ale) = 7 w0 =2d =29 + 2,3 JW - .
(This is the full Taylor series expansion about w=0, q=0): ‘A few ob- |

servations can now be made. First of all, for g near zero, the rate of
change of the state is proportiocnal to ||w|| while the rate of change

of the probability is proportional to ||w||2-hence the neutral stabi-
lity of the linearized system. Thus, the probability tends to change
slowly for small values of w. Furthermore, again for g small, the higher
order terms in g can be ignored so Equation (4.3b) can be approximated

by
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. 1 2 2
s x5 [z, 12 - g 4 - S
62 el :

Thus, the changes in g are such that g increases if |L£2|| > |L£l|l and
decreases if |L£2|| < |L£l||, which agrees well with the intuitive
notions of how an adaptive controller should behave. Furthermore, when
51 = EQ' there is no information as to which model provides the better
match to the true éystem<and so no change in the identification results
can be made. It should be noted that this may result in exponentially
unstable. behavior when é}q0=0) is an unstable matrix and the system is
initialized with g(0) = qo = 0 and, for example, 51(0) = 52(0) = 0. This
is an important special case since in practice one often attempts to
initialize an MMAC system with just such initial conditions. Egquation
(4.4)lalso illustrates the neutral stability of the probability.

In summary, if 5}0) is an unstable matrix, the equilibrium EF’Q'
g=0 is unstable and small perturbations in the state cause a divergence
from the equilibrium which will most likely result in the oscillatory
behavior of the probability (resulting in either bounded or unstable
state responses) observed in Figures 3.2 through 3.4. However, if A(0)
is a stable matrix, then two modes of behavior are possible. For pertur-
bations large enough that éﬁq) becomes an unstable matrix, at least
temporary oscillations most likely occur as seen in Figure 3.6. For
smaller perturbations, the state, w, will return to zero and the
probability will simply move to a new value which is such that éﬁq) is

stable. This occurs since, by Eguation (4.4), the probability has no

tendency to return to zero unless ||r2l| —l|r l[z changes sign. This
gt 1 grl
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is precisely the behavior observed in Figure 3.7.

The next section discusses the conditions such that the latter type
of non-oscillatory behavior occurs for all initial conditions. This
can be viewed as an extension of the results of this section for the
case in which A(P) is stable for all P. Following an analysis of the
stability of the oscillatory behavior, attention again is focused on
the linearized system in Section 4.7 where a procedure is derived for
determining how large the above perturbations can be and still have non-

oscillatory behavior guaranteed.

4.2 Universal Stability

For any adaptive control algorithm one would at least like to be
able to conclude that the overall system is asymptoticly stable about
the point w=0 in spite of any uncertainties about the true system. As
seen in the previous section, the MMAC method always results in a system
with neutral stability in the probability. However, it is also shown
that it is possible for the states to locally converge to zero despite
the behavior of the probability. The present section discusses one
case in which global asymptotic convergence of the states can be
demonstrated.

Consider the discrete time MMAC system given by Equation (2.22):

w(k+l) = A(P) w(k)
(2.22)
P (k) p(;i)

Pﬂdp@f + (1-P(k)) p@?

P(k+1)
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We now make the following assumption, which will be termed Universal
Stability: Assume ||Z(P)|| <& <1 ¥ P e [0,1] where ||a|[ is the

norm of A. It should be noted that this is a fairly restrictive
assumption as it requires that the control law associated with each
hypothesized model stabilize the true system. 1In general, this regquires
that the condition ||§(P)|] < 1 be explicitly tested for all values of
P. However, as discussed in Section 4.3 in some cases such as when

the true system and all of the hypothesized models are diagonal, it
becomes sufficient to perform the test for extreme values of P only.

When the assumption is valid, the following theorem is useful.

Theorem: Under the assumption of universal stability, w(k) > O geo-
metrically as k.
Proof: By assumption, |l§(pllll fex<l V\PlEZIO,lJ. Thus, taking

norms in Equation (2,22) yields

|lwoer || = | [E@pwaa || < [Ee 1] [yl

- _ (4.5)

| A

e |fwoa|] .

Thus, l|w(k)|l f_skllw(01| , Since by assumption €< 1, the conclusion
follows. A
It should be noted that by a suitable redefinition of the matrix
A(P), this theorem can be extended to the N-model case where E_becomes a
vector. of probabilities such that IIEII < 1 and each P, is non-negative.

The value of this theorem in applications is, of course, severely

limited by the assumption on the stability of g(Pl)‘ However, as
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demonstrated by the analysis in the remainder of this chapter and the
simulations of Section 3.2, a condition such as this is necessary to
guarantee geometric convergence. Any weakening of the hypothesis admits

the possibility of at least transitory oscillatory responses.

4.3 An Asymptotic Result

As discussed in Chapter 1, the MMAC method was developed with the
implicit assumption that one member of the set of hypothesized models
exactly matches the true system. Under this assumption, Baram [15] has
shown that the identification algorithm (i.e., the value of the proba-
bility when all feedback gains are set to 0) converges to the matched
model when the input is ergodic. However, he also shows that when de-
terministic inputs are used and rione of the models match the true system
the convergence properties are indeterminate - the model to which the
probability converges is a function of the input. Furthermore, his
results require the ergodicity of the residual which clearly is not
guaranteed when the probabilisticly weighted control is applied*.

Thus, no general convergence result has been derived for the closed

loop adaptive situation.

*Ljung et al [24, 25] have considered closed loop identification for
some specific model structures and identification methods. However,
we have not attempted to apply their results to the MMAC method;
this remains as a topic for the future.
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However, the following theorem provides some insight into the
expected behavior. It should be pointed out that no assumption as to

the number of models is made.

Theorem: Assume the following for a discrete time MMAC System:
(1) There are N hypothesized models.
(2) Model #1 exactly matches the true system.

(3) All models (and therefore by (2) the true system) have
diagonal A-matrices with C=B=I (as in Chapter 3).

(4) 51(0) =0
(5) . Pl(O) >0

Then, ||x(k)|| 0 as k>=.
Proof: Since'gl(O) = 0, and model 1 matches the true system, gi(kj =0 ¥k.
Thus, Pl(k) is non-decreasing and either:

Case 1) Pl(k) +1 as k»+® or

Case 2) F€ >0 3 1-P. (k) > e  ¥k.
(equivalent, 3i > Pi(k) > 0.)

Consider Case 1:

Pl(k) >1=>3K 3k>K=>_i_(P(k)) is a stable matrix since A(1) is

stable by hypothesis. This in turn implies the convergence of [!x||.

Consider Case 2:

1-P(k) > € ¥k together with P(k) non-decreasing implies } at
least one other model such that its residual approaches zero since
othexwise Pl(k) would increase to 1. Assume for the moment that there

is only one such other model, denoted by model i. (That is, assume
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that only £1L-) and £i approach zero.) Due to the use of full state
observations in the canonical problem, the equation for Ei(:l can be

rewritten from Equation (2.22) as
r. (k+1) = A, (I-H) r. (k) + (A=A )x(k)
=i -1 == =i — —i'=

Since Ei(k) + 0, x(k) must approach an element of N(A—Ail.* The dynamic
equation for x(k) is now rewritten as

N .
x(k+l) = B (k)x(k) + X P, (k)G (I-H)r, (k)
= o= =1 33T

where

B (k) = [P, (k) (A&G,) + (1-P, (k) (A-A;) + (1-P(k)) (A;-G;)

N
- I p,(k)G,]
jep 3T
j#L

if r. (+), 3#1 orjvis bounded, then, since Pj(k) -+ 0, PjGj(I-Kj)rj(t) - 0.

JH

If r (), j#1 or i,>~, then, since Pp_. > 0 as e-rjrj, P, r, ~ 0.
—J J J 3]
N
This implies that I Pj(k)gi(zﬂijlgj(k) + 0. Thus, consider the un-
=1

undriven system

x(k+1) = B (k)x(k)

which, since Pl(w), Pi(m) exist, can be rewritten as

*N (-) represents the null space of a matrix.
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x(k+1)

[P, () @-6) + (1-P (*)) (A,-G,)1x (k)

+

[(Pl(k) - P (™) (A—gi) - (.Pl(.k)-Pl(“))(éi-(iillz(k)

(1-P, (X)) (&-A, ) x(K)

+

(A-gl) and (L-\i—%) are stable by design. Then since they are also
diagonal, the convex combination of stable matrices is stable. Thus,

there existé a b<l D
[ 12 (= @-g,) + (1-p (=) (_Ai-gi)lg(k) [l <b||xtx)] ]|
Then, for some € 3 b+€<1 and any given §, we can find a K %
I|[(Pl(k)-Pl(oo))(A-gl>-(91(k)-pl<m))(§i—c_;i)1§(k)|| <e [lzxmf]
(since Pl(k) > Pl(°°)) and

[ (1-p () @-a)x00 || <8

(since x(k) ~> N(A-Ai)) . Combining these yields
[zk+) || < +e) [|x) ][] +8 = ¥k >k

or, using the variation of constant formula,

k-1 .
Hxto || < wre)* ™ [lx@ ||+ T oo s vk >«
j=K
kK
k~K S - (b+e) &
or |[x0a[] < @)™ [z | + 00 ,

Taking the limit as k >
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8

Lim ||§_(k)l|i0+m)

k-0

since K was selected such that (b+€) < 1. But § was arbitrary. Thus
Lim ||§ﬁk)|[’= 0. The case in which more than two models have non-
koo

vanishing probabilities follows similarly.

Some comments on this theorem are important.
1. Assumption (5) merely guarantees that the probability of model 1

can change since

Pi(O) = 0=>P(k) =0 ¥k

2. Assumption (4) has been made for convenience. It is used to
guarantee that Pl(-) is non-decreasing, thus preventing oscillations in

the probability due to ||£1(-)|| - ||£i(°)|l changing sign.

3. Assumption (3) is, of course, very restrictive. It is necessary
to enable one to conclude stability when a convex combination of stabi-
lizing controls is applied. Given a non-diagonal matrix A and controllers

gl and §2 with
ra-g | <1, i=1, 2

it can be shown by counterexample that

A-bG -(1-b)g, be [0,1] (4.6)

is not necessarily a stable matrix. It may be possible to overcome this
problem by using the fact that_El(k) + 0 as k * « which restricts the

kinds of state interactions which can occur in Expression (4.6). It
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should be pointed out that assumption (3) can he relaxed to any situation
in which the convex combination of stable matrices is stable. For example,
if A and all of the éi are in Jordan form with identical Jordan structure,
then our result holds. This is equivalent to assuming that the shapes

of the modes of the system are known but that the eigenvalues are not.

This is less restrictive than the diagonal case.

4. Note that no claim is made about the convergence of the
probability even when one model matches the true system. This is, of
course, another example of the need for persistently exciting inputs

in order to guarantee the convergence of identification algorithms [36].

4.4 BAn Analysis of the Probability Equation

The simulations of Section 3.2 have indicated that the behavior of
the probability often resembles the output of a switch, alternately
taking on values near 2zero aﬁd near one but seldom ih between; By now,
it should be clear that this property is largely determined by thé
equation for the probability, Equation (2.22b). Therefore, the present
section contains a detailed examination of the characteristics of this
equation. The principal conclusion is that the equation for the
probability can be rewritten as a scalar, static nonlinearity and
a summation (the log likelihood ratio). This decomposition aids the
analysis since attention can be focused on each part separately. Thus,
this section examines the characteristics of the nonlinearity and shows
that the swiéch—like behavior of the probability is largely due to this
nonlinearity. Section 4.5 continues the analysis by examining in de-

tail how the true system and set of models affect the log likelihood
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ratio and therefore, by the analysis of this section, the probability
and ultimately the closed loop behavior.
Equation (2.22b) is repeated for convenience;:

P(k)p (51)

P(k+l) = P(k)p(z,) + (1-P(k))p(L,)

(2.22b)

'% ] 8, 15'1]
where p(ri) = Bie . This can be rewritten as

P (k)y(k+l)

P(k+1) = 5y (kel) + (1-B(K))

(4.7)

where Y(k) is the instantaneous likelihood ratio

1 =1
-=[r'8.7r.]
2 =11 1
P(rl(k)) Ble
P(rz(k))

Y (k)

=R e . (4.8)

It is now possible to rewrite Equation (4.7) such that the probability

does not appear recursively:

K
P(0) T v(k)
P(k) = 1:1 (4.9)
P(0) 1 v(k) + (1-P(0))
i=1
Finally, let
k [r!® f r'e-lf ]
k) = § -l T2 . (4.10)
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Thus, Equation (4.9) becomes

. - 3a(k)
P(0)Be
P(k) = T . (4.11)
_=Za(k)
P(0)Be + (1-P(0))

Note that a(k) is the Log Likelihood Ratio. Thus, Equation (4.11)

provides the connection between the Log Likelihood Ratio and the
probability. Figure 4;la is a plot of P(k) versus a(k) for a few
values of P(0) and é==l. Figure 4.1b is a detail of the same curve

for P(0) = 1/2. Define o to be the value of a(-) for which P(-) = 1/2.
It is‘then clear that

a(+) > a => P(-)x=0
s (4.12)

a(-) << OLS=> P(*)x~1 '

Thus, qs will be called the switch point for o(-). Equation (4.11)

can be solved to give

1-p
o = -2 ln|—=2

s POB

. (4.13)

Now, consider Equation (4.11) evaluated in the vicinity of as. For

example, if
. a(-) = d + 2¢e
s

where € is any positive or negative number we see that the resulting
probability is

-£
p(.) = —

-€
l+e
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which is totally indpendent of any parameters of the MMAC method. Finally,
simple calculations reveal that the curve of p(-) versus a(*) is anti-
symmetric about the point as. Thus we see that the switch point us is
determined solely by the apriori information P(0) and é and that no
parameters of either the true system or the models (except for the

assumed noise covariances contained in é) affect the switching character-
istics of the system other than by determining a(k). Various approxi-
mations to P(-) can thus be calculated from o(-). One example, shown

is the dotted line in Figure 4.1lb, is

1 a(.) <ao_ -5
S
P(k)={ O a(-) >‘as + 5 (4.14)
.5-(a(-)-—as)/10 otherwise.

Examination of Equation (4.11l) or Figure 4.1 reveals the reason for
the zero-one type behavior so often noted in the simulation results in

Chapter 3. Only for values of a(+) such that

la¢) =a_] <5
S

will an intermediate value of P occur. As seen in Equation (4.10)
(see also Section 4.1), a(.) is proportional to the square of the norm
of gi(-). Thus, for Ei(-) large, G(+) tends to change at a rate twice
as large as that for ||£i(-)|| and may never fall in the range.

One potential advantage of using Equation (4.11) in a MMAC con-
troller is that a wealth of information has been accumulated about
the behavior of the log likelihood ratio [34, 35]. Thus, use of this

approach allows full use of this information while still permitting a
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simple control to be calculated.

The approximation (4.14) is also useful for characterizing the
length of the half-periods of the oscillations observed in Section 3.2.
By the definition of as, it is clear that jumps in the probability (i.e.,
from 0 to 1 or from 1 to 0) correspond to transitions of a(-) through
as. It is thus possible to ealculate a bound on the half-period of an
oscillation. Define Tl to be the time of a transition in the probability
(assume from P=0 to P=1) and (Tli-TZ) to be the next transition. (sée

Figure 4.2). Thus, by the above analysis and the definition of as

a(Tl) = OLS = oc(Tl + T2) . (4.15)

By the definition of a(-)
a -1 -1
iz=j1 [x] (D)8, ", () - r} (D)8 r, ()]

T*Ty . o (4.16)
= _é,“l [z (1)8)7x (1) - £} ()8, r, (i)]

T2+T1

or S et @6 e (d) - rt(1)07 e (1)1 =0 . (4.17)

. =1'"'=1 =1 =2""'=2 =2

i=7 +1

1
Equation (4.17) thus provides a condition which.T1 and T2 must satisfy.
This equation is explored further in the next section where an approxi-
mation for Ei(!) is employed.
This section has presented a detailed analysis of the probability

equation (2.22). It has been shown that :the equation can be broken

down into a static nonlinearity and a summation (the log likelihood

ratio). Attention has then been focused on the static nonlinearity.
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The next section continues the analysis by considering the behavior of

a(-) for one class of systems.

4.5 An Analysis of the Oscillatory Behavior

Many of the simulations of Section 3,2 display an oscillatory be-
havior involving all states and the probability. The preceeding section
contains an analysis of the equation for the probability of a model, one
of the conclusions of_which is an observation that Equation (2.22b) can be
divided into two parts; one containing a static nonlinearity (4.10) and

a relatively simple summation

k 5 5
at) = I ||zo0ll7 ;- el
i=1 B 6
-1 =2
(4.15).
k -1 -1
= 'Z.;l(k)el ;1ﬁk) - EQ(k)Bz';z(k) .
i=1
Furthermore, the approximations
al-) >> aé => P(.) ~ 0
(4.11)

a(-) << a_=>B() ~1

have been found to be very good for Ia(-) - asl greater than about 5
where ds can be determined solely in terms of P(0) and 8. Note that
for the present study we can take as = Q since we can assume that the

system started in the remote past in which case P(0) can be chosen

arbitrarily.
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The present section continues the analysis of the oscillatory behavior k
of the probability by considering the behavior of the variable a (k) for
the canonical problem of Section 3.1. The approach taken is to isolate
the basic modes of the state of the canonical problem by partitioning w
in a new fashion. This partitioning emphasizes the two basic modes
inherent in the structure, namely those associated with true state #1
and those associated with true state #2. Because of the diagonal nature
of the canonical system, this partitioning allows a(*) to be bounded by
simple exponentials which are then analyzed.

In this section extensive use has been made of the observation
from Chapter 3 that during periods of oscillatory behavior the prob-
ability tends to be virtually constant for long periods of time and then
abruptly changes. This square-wave 1ike behavior, clearly seen in
for example Figure 3.2, is a key element of the approximations employed
in this section.

Recall from Chapter 2 that
w(k+l) = A@)w(k) (2.22)

where w'(-) = [x'(+) _gi(v) rj()1 . BAs seen in Section 3.2, during
periods of oscillatory behavior, each component of w(:) is alternately
stable and then unstable. It thus is natural to regroup the states
such that components which are simultaneously stable are grouped to=
gether. To this end, define zl(.) to be those states of w which cor-

respond to the first component of the true state and ch'l those which

correspond to the second. That is,
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xl (o) 'xz (o)
= (1) . . 0y = (2) .
11(') rl () ; 12( ) = ry ()
(1) (2)
fz (!U fz (dJ

where rél)(-) is the iE}—1 component of the residual of the KF for the
.th . .th .
j=— model and xi(-) is the i~ component of the true state x. Using
this decomposition Equation (2.22) can be rewritten as

(k+1) A (P) 0 (x)
Xl -1 - Zl (4.18)

7, (k+1) 0 A, (P) ¥, (k)

where él (P) and éz(P) contain the appropriate elements of 5._(13) .  The
block diagonal nature of Equation (4.18) is a direct consequence of
the assumption that the true system and each model is diagonal. If

'gl andg2 are defined to be the appropriate partitioned versions of Q;land

el

‘_; , Equation (4.15) becomes

k i i
a(k) =LZ Xé(O) -II éé(P(j))gz '1'[ éz(P(j))zz(O) -
=] :|=l ]=1
(4.19)
i ~
xi(O) HA_]_(P(j))qll .

i
. i Al(P(j))zl(O)]
J=l =

1

We will consider £he initial conditions shown in Figure 4.3(a)
in which a(0) < 0 (but a(-1) > 0), Illl(O)ll2 > ||’12,<o> |12 and P =1.
Note that this corresponds to the case in which a change in probability

(from P=0 to P=1) has just occurred. The equation (4.12) and the
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simulations of Sectién 3.2 indicate that if oscillatory behavior occurs,
the trajectories of |lzi(°)| lz, a(-) and P(-) must be as sket.ched in
Figure 4.3, since ILzl(-)llz is decreasing by design for P(-) * 1.

It will be assumed for the present analysis that P can be closely
approximated by either O or 1. As seen in the previous section, this
cqrresponds to assuming that Ia(') - asl is greater than about 5. From
the simulations of Chapter 3, this is a reasonable approximation during
periods of oscillatory be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>