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Abstract 2

IDENTIFYING MULTISCALE STATISTICAL MODELS

USING THE WAVELET TRANSFORM

I by

Stuart A. Golden

Submitted to the Department of Electrical Engineering
on Tuesday, April 23, 1991 in partial fulfillment of the

requirements for the Degrees of Electrical Engineer
and Master of Science in Electrical Engineering

ABSTRACT

Recently much attention has been focused on methods for performing
multiple resolution decompositions of signals based on wavelet transforms. In this
thesis we develop an algorithm to determine optimal wavelet transforms based upon
the statistical characterization of the signal being analyzed. Our criterion is based
upon the desire to find the optimal wavelet transform approximation of a Karhunen-
Loeve expansion, i.e. we would like the transformed coefficients to be as close to
white as possible. We determine the optimal wavelet transform in a level-by-level
procedure. Using Vaidyanathan and Hoang's parameterization [11 of quadrature
mirror filters (QMFs), we chose the QMF pair such that the I-level coarser
approximation of the signal and the wavelet coefficients at that level are as close to
being statistically uncorrelated with each other as possible. This procedure is then
repeated for an arbitrary number of levels. We examine the ability of the transform
to achieve an approximate Karhunen-Loeve expansion by considering several
examples. The examples that we consider are a first-order Gauss-Markov process, a
second-order under-damped process, and fractional Brownian motions.
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Title: Professor of Electrical Engineering
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CHAP R 1

MOTIVATION

In recent years there has been considerable interest and activity in the signal

and image processing community in developing multi-resolution processing

algorithms. Among the reasons for this are the apparent or claimed computational

advantages of such methods and the fact that representing signals or images at

multiple scales is an evocative notion-- it seems like a "natural" thing to do. One of

the more recent areas of investigation in multiscale analysis has been the emerging

theory of multiscale representations of signals and wavelet transforms [2-121. 'Ibis

theory has sparkled an impressive flurry of activity in a wide variety of technical

areas, at least in part because it offers a common, unifying language and perspective

and perhaps the promise of a framework in which a rational methodology can be

developed for multiscale signal processing, complete with a theoretical structure that

pinpoints when multiresolution methods might be useful and why.

It is important to realize, however, that the wavelet transform by itself is not

the only element needed to develop a methodology for signal analysis. To

understand this one need only look to another orthonormal transform, namely the

Fourier transform which decomposes signals into its frequency components rather

than its components at different resolutions. The reason that such a transform is

useful is that its use simplifies the description of physically meaningful classes of

signals and important classes of transformations of those signals. In particular

stationary stochastic processes are whitened by the Fourier transform so that

individual frequency components of such a process are statistically uncorrelated.
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Not only does this greatly simplify their analysis, but, it also allows us to deduce

that frequency-domain operations such as Wiener or matched filtering (or their time

domain realizations as linear shift-invariant systems) are not just convenient things

to do. They are in fact the right, i.e. the statistically optimal, things to do. In analogy,

what is needed to complement wavelet transforms for the construction of a rational

framework for multi-resolution signal analysis is the identification of a rich class of

signals and phenomena whose description is simplified by wavelet transforms.

Having this, we then have the basis for developing a methodology for scale domain

filtering and signal processing, for deducing that such operations are indeed the right

ones to use, and for developing a new and potentially powerful set of insights and

perspectives on signal and image analysis that are complementary to those that are

the heritage of Fourier.

When approaching a signal or image analysis problem, there are three

distinct ways that a theory of multiresolution statistical signal processing may be

particularly beneficial. First, the phenomenon under investigation may possess

features and physically significant effects at multiple scales. For example, fractal

models have often been suggested for the description of natural scenes, topography,

ocean wave height textures, etc [13-17]. Also, anomalous broadband transient events

or spatially-localized features can naturally be thought of as the superposition of

finer resolution features on a more coarsely varying background. As we will see, the

modeling framework we describe is rich enough to capture such phenomena. For

example, we will see that 1/f -like stochastic processes as in [18,191, fractional

Brownian motions [201, and many other useful models are captured in our

framework.

Secondly, whether the underlying phenomenon has multi-resolution features

or not, it may be the case that the data that has been collected is at several different

resolutions. For example the resolutions of remote sensing devices operating in
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different bands -- such as IR, microwave, and radar -- may differ. Furthermore, even

if only one sensor type is involved, measurement geometry may lead to resolution

differences (for example, if zoomed and un-zoorned data are to be fused or if data is

collected at different sensor-to-scene distances). In [21], we formulate an optimal

estimation problem for the purpose of fusing these measurements at multiple

resolutions by using the wavelet transform.

Finally, whether the phenomenon or data have multi-resolution features or

not, the signal analysis algorithm may have such features in order to minimize the

complexity of many signal processing problems. One such use of a multiresolution

algorithm is to combat the computational demands of signal processing problems by

solving coarse (and therefore computationally simpler) versions and using these to

guide (and hopefully speed up) their higher resolution counterparts. Multigrid

relaxation algorithms for solving partial differential equations [22-241 are of this type

as are a variety of computer vision algorithms. Another such use of a multiresolution

algorithm stems from the fact that a multiresolution formalism allows one to

exercise very direct control over "greed" in signal and image reconstruction. In

particular, many imaging problems are, in principle, ill-posed in that they require

reconstructing more degrees of freedom then one has elements of data. In such cases

one must "regularize" the problem in some manner, thereby guaranteeing accuracy

of the reconstruction at the cost of some resolution. Since the usual intuition is

precisely that one should have higher confidence in the reconstruction of lower

resolution features, we are led directly to the idea of reconstruction at multiple

scales, allowing the resolution-accuracy tradeoff to be confronted directly.

These issues of complexity are addressed in [25,26] where efficient

multiresolution signal processing algorithms are obtained by modeling stochastic

processes on dyadic trees. Specifically, a generalization of the Rauch-Tung-Striebel

smoothing algorithm [271 is developed in [261 by performing a Kalman filtering



Motivation 11

sweep from fine-to-coarse resolution signals followed by a smoothing sweep that

proceeds from coarse-to-fine resolution signals. Algorithms such as these arise from

using a multiscale framework that provide both the analytical tools for assessing

resolution versus accuracy and for correctly accounting for fine scale fluctuations as

a source of "noise" in coarser scale reconstructions.

In this thesis we concentrate on the question of when the signal itself

possesses such multi-resolution features. If the process does possess these

multiresolution features then various signal analysis and processing tasks -- such as

filtering, smoothing, detection, classifications, segmentation, etc. -- can be

performed quite quickly by using the wavelet transform. Specifically, if the

transformed coefficients are uncorrelated, i.e. white, then smoothing algorithms, e.g.

a Rauch-Tung-Striebel smoother, can be implemented efficiently in the wavelet

transform domain. Even though this implementation would require transforming the

data as well as inverse transforming the estimate, the overall procedure would be

very efficient due to the fact that the wavelet transform is a very efficient operation

(for a discussion on the efficiency of the wavelet transform see Section 2.4).

In order to obtain a greater insight as to what processes have these multiscale

features, consider constructing a multiscale stochastic process. The construction of a

multiscale stochastic process can most naturally be thought of in terms of the

synthesis of a signal via the wavelet transform. T'hat is, as one proceeds from coarse

to fine scales, additional detail is added at each scale, yielding a coarse-to-fine

dynamic evolution of finer and finer approximations to a signal. In particular the

class of coarse-to-fine Markov processes, in which fine level detail is uncorrelated

with coarser-level approximations, has substantial structure which can be exploited

to construct optimal algorithms.

Specifically, if we perform a wavelet transform analysis of such a signal, we

produce a fine-to-coarse sequence of signals, where at each stage, we extract the
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signal components at that scale and produce a coarser level approximation to be

used at the next stage. If the signal is in fact a multiscale Markov process and if the

correct wavelet transform is used, the sequence of extracted signal components will

be uncorrelated with each other. This suggests an approach to the identification of

multiscale Markov models via the determination of an optimal wavelet transform,

where optimality is specified in terms of the degree of decorrelation of the resulting

sequence of multiscale signal components. In standard signal processing

terminology, this problem corresponds to the specification of a pair of optimal

Quadrature Mirror Filters (QMFs) which produce optimally decorrelated outputs. In

more classical statistical terms, we are seeking the best approximations to a

Karhunen-Loeve expansion in terms of a set of approximate eigenfunctions

specified by these filters.

In Chapter 2, we discuss the existing theory of multiresolution signal

processing. We show that the wavelet transform coefficients can be computed

recursively without explicit computation of the continuous-time basis functions but

with only a knowledge of the Quadrature Mirror Filters (QMFs). In order for the

wavelet transform to be an orthogonal transformation, we show in Section 2.2 that

the QMFs must satisfy the perfect reconstruction condition (9]. In Section 2.3 we

show a recursion for parametrizing all QMFs that satisfy this condition RI.

In Chapter 3, we develop an algorithm that is based upon the desire that the

optimal wavelet transform maximally decorrelates the transformed coefficients of a

given stochastic process. In order to reduce the computational complexity of

determining the optimal wavelet transform, we determine the optimal wavelet

transform using a level-by-level procedure. Specifically, consider a one-level

wavelet transform, in this case, our desire is to find the best QMFs that decorrelate

the coarse approximation from the wavelet coefficients at that level when the

autocovariance of the signal is known. We find this QMF pair by minimizing the
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norm of the cross-covariance between the coarse approximation and the wavelet

coefficients at that level. This minimization yields the optimal wavelet transform for

the first-level which is used to determine the autocovariance of the coarse-

approximation of the signal. The procedure is then continued for an arbitrary

number of levels.

In Chapter 4, we investigate, in general, the ability of the wavelet transform

to achieve a Karhunen-Loeve expansion of the transformed coefficients of particular

classes of well-known processes. Specifically, we show images of the

autocovariance matrices of the following processes transformed by their optimal

wavelet transforms: a first-order Gauss-Markov process, a second-order under-

damped process, and fractional Brownian motions. As we will see these transformed

autocovariances have a very special structure. Specifically, there are bands of high

correlation in the transformed autocovariance that we refer to as "fingers." The

procedure we will describe attenuates these "fingers" in attempting to diagonalize

the transformed autocovariance.

Chapter 5 deals with modeling processes by assuming that the transformed

coefficients are indeed white. Specifically, we consider approximating the first-order

Gauss-Markov process and fractional Brownian motions. We show images of the

processes approximated in this manner and quantify how close the approximation is

to the true process by using the Bhattacharyya distance [281.

The final chapter summarizes many of the key issues we have addressed in

this thesis. We also discuss modifications that can be made to improve the

performance of our optimization algorithm.
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CHAPTER 2

MULTISCALE SIGNAL PROCESSING

2.1 THE WAVELET TRANSFORM

As developed in (5,6] the multi-scale representation of a continuous-time signal

x(t) consists of a sequence of approximations of that signal on finer and finer subspaces

of functions. 'Me entire representation is completely specified by a single function 0(t),

where the approximation at the mth scale is given by:

xm(t)= x(mnlomn(t)

n=-oo (2. 1)

0m,(t)=2m/20(2mt-n) (2.2)

Thus as rn--�- the approximation consists of a sum of many highly compressed,

weighted, and shifted versions of 0(t). This function is far from arbitrary in its choice.

First of all, one desirable property is that the approximations of Equation (2. 1) improve

for larger values of m. For this to be true we want the space spanned by

( On4n (t) I -- < n < - I to be a subspace of the space spanned by [ Om+,,n (t) I - < n < - I -

Secondly the coefficients of the expansion, x[mn], will be particularly simple to compute
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if for each m the functions (Or,,.. (t) I -- < n < -I are orthonormal. It is easy to show that

if the functions ( Omm (t) I -- < n < - I are orthonormal for any particular m, such as m--O,

then the functions (0mn (t) I -- < n < -I are orthonormal for any choice of m.

In the case that Omm(t) forms an orthonormal basis for fixed m, the coefficents,

x[mn], can be written in terms of an inner product:

x(mn] = <Omx(t), xm(t)> Omn(t)xm(t)dt

(2.3)

A property of this choice of orthogonal functions is that the inner product of the O's

differing only by one level of m are not a function of m and can be expressed as:

h [2k-n] = < Om- 1, k (t), Om, n W > (2. 4)

The representation just described is closely related to the wavelet transform. The

wavelet transform is based on a single function V(0. In a similar fashion to O(t), the

function Nf(t) has the property that for fixed m, the set of functions V.(t)=2mf2Nf(2mt-n)

are orthonormal for all n. Furthermore, V(t) is also chosen such that the space spanned by

fom+1,0) I -- < n < is exactly equal to the subspace spanned by
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( O= (t) I -- < n < - I plus an orthogonal subspace spanned by ( Nfmn W I -- < n < 00 1. In

order for these two subspaces to be orthogonal we require that Om.n(t) be orthogonal to

Vrmk(t) for all n and k. If VW is chosen in this fashion, then [29,30,2] refer to (Vmn) as

forming an orthonormal wavelet basis since in fact Vmi, n i W and WI n2(t) are orthogonal

whenever (ml, ni) # (m2, n2).

We relate the approximation of x(t) at the mth scale to the approximation at the

rn- 1 st scale:

xM(t)=xM-l (t)+UM- I W (2. 5)

UM(t)= u[rnn1Ajfmn(t) -

(2. 6)

Taking the inner product of (2. 5) with Om-1,0) and using the orthogonality of Om-1,0)

and um-i(t) we obtain a dynamical relationship between the coefficents x[mn] at one

scale to those at its coarser approximation x[m- lk] in the following manner:

x[m-lk] = I h[2k-n]x[mn]
n (2. 7)

Similarly we can take the inner product of (2. 5) with Vm-lk(t) and use the orthogonality
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of Nfm- ik W and xm- i W to obtain: I

u[m-1,k] g[2k-nlx[mn] (2. 8)
n

g[2k-n] = < Nfm- 1. k (t), Om n (t) > (2. 9)

As well as obtaining coarser approximations from finer ones, we can also obtain finer

approximations from coarser ones. If we were to take the inner product of (2. 5) with

Omri(t) we would obtain:

x[mn] h[2k-nlx[m-lk] + I g[2k-nlu[m-lk]
k k (2. 10)

Equations (2. 7), (2. 8), and (2. 10) show that we can achieve coarser or finer

approximations of xm(t) without explicitly specifying 0(t) and W(t) but with only

knowledge of the sequences h[n] and g[n] defined in (2. 4) and (2. 9).

Ingrid Daubechies in [2] introduces an additional constraint referred to as the

regularity condition that will not be discussed in this thesis. The constraint arises in order

to insure that the continuous-time signal xm(t) converges to x(t) as M-->-. In this thesis

we will concentrate on analyzing a discrete-time signal. A discrete-time signal, x[n], can

be analyzed in the same framework as its continuous-time counterpart, x(t). Simply think

of the process starting at some finite level m instead of m-,,. 'Me signal x[n] can then be

represented as the coefficents x[mn]. It is important to realize that if the signal is discrete

1. Note g[2k-nl, like h[2k-nl, is not a function of the scale rn.
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in nature then convergence to the continuous-time signal is not an issue.

In order to specify a wavelet transform, we can determine 0(t) and W(t) by

obtaining the functions that satisfy the necessary properties discussed earlier. However

there has been a great deal of interest in determining the sequences h[n] and g[n] without

ever explicitly determining 0(t) and V(t) since we can achieve coarser or finer

approximations of the signal without this knowledge. The literature C9,31] that attacks the

problem from this perspective typically does not mention the wavelet transform but refers

to the sequences h[n] and g[n] as Quadrature Mirror Filters (QMF). In the next section we

discuss the properties that the QMF sequences must satisfy for them to be used in the

multiscale analysis discussed in this section.
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2.2 PERFECT RECONSTRUCTION OF QMF FILTERS

In this section we investigate the constraints on the sequences h[n] and g[n] rather

than the functions 0(t) and V(0. Let us consider the three major equations from the last

section that allow us to achieve finer or coarser approximations:

x[rn-lk] = 1: h[2k-nlx[mn]
n (2. 11)

u[m-1,k] = 1: g[2k-n]xfmn]
n (2. 12)

x[mn] h[2k-n]x[m-lk] + Y, g[2k-nlu[m-lk]
k k (2. 13)

Clearly if we substitute (2. 1 1) and (2. 12) into the right-hand side of (2. 13) we

obtain the following equation:

X[mn] = I h[2k-n]h[2k-pJx[mp] + I g[2k-n]g[2k-plx[mp]
kp kp (2. 14)

'Me above equation shows that we need to choose h[n] and g[n] in such a manner that an

arbitrary input x[mn] is mapped back to itself. Since (2. 14) must hold for all choices of

x[rnn], we can express a constraint on the operator that maps the sequence x[mn] back

to itself:
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I (h[2k-n]h[2k-pl + g[2k-nlg[2k-pl) (2. 15)
k

'Ibe above constraint is referred in the QMEF literature (311 as the perfect reconstruction

condition. In order to gain additional insight we now derive this constraint in a slightly

different manner.

In order to analyze the constraints on the sequences h[n] and g[n], let us consider

the operator acting upon the signal x[mn] of Equation (2. 1 1):

1: h[2k-nl
n (2. 16)

This operator can be performed in two separate steps. The steps being convolution

followed by 2:1 decimation. Since both of these steps are easily represented using z-

transforms, we will depict these steps as:

HW 12

Fig. 2. 1. A key operation, convolution followed by 2:1 decimation, in the computation of
the wavelet transform of a signal.

Using the idea that we can express the operator of Equation (2. 16) pictorially as

Fig. 2. 1, we display Equations (2. 1 1) and (2. 12) in block diagram form, as shown on

the left-hand side of Fig. 2. 2. The division of a signal in this manner is typically referred

to in the signal processing community as a sub-band coder [9]. The block diagram for

(2. 13) is depicted on the right-hand side of Fig. 2. 2 and referred to as a sub-band
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decoder.

H(z) - 12 T2 H(Z-l)
x[n] A

T2 - G(Z-')G(z) - 12

Fig. 2. 2. Sub-band coder and decoder

If x[n] is the input to Fig. 2. 2, then the z-transforrn of the output _[n] is:'

Y(z) [H(z)H(z-1) + G(z)G(z-1)] X(z) + 1 [H(-z)H(z-1) + G(-z)G(z-1)] X(-Z)
2 2

(2. 17)

In order to achieve perfect reconstruction we require that 3�(z) = XW, and to achieve this

we would like the second term (the aliasing component) of (2. 17) to be identically zero,

as expressed below:

0
2 (2.18)

We also require that the first term of (2. 17) to be identically X(z). This requirement

becomes:

2. Note R(z), X(z), G(z), and H(z) are the z-transforms of _x[n], x[n], g[n], and h[n] respectively.
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-j1[H(z)H(z-1)+G(z)G(z-1)1 = 1 (2.19)

Note that Equations (2. 18) and (2. 19) provide exactly the same information as the

perfect reconstruction condition, Equation (2. 15).

A compact notation [311 for expressing Equations (2. 18) and (2. 19) is by

requiring that the matrix:

H(z) HW G(z)
fT H(-z) G(-z)] (2. 20)

be orthogonal3 [321. Therefore the prefect reconstruction condition can be stated as

requiring H(z) to be an orthogonal matrix.

Although many choices of G(z) will satisfy (2. 18) as discussed in [2,91, the one

that seems particularly important at this time is the following:

G(z) z4w-l)H(-z-1) (2. 21)

or in the time domain:

g[n] 1)n+l h[W- 1 -n] (2. 22)

It is easy to verify that Equation (2. 21) satisfies Equation (2. 18) for any W that is an

even integer. Although h[n] and g[n] can have infinite impulse responses (IIR), we will

limit our attention to the case when they are finite length sequences (FIR). We will

typically choose W to be the support of the filter h[n]. This guarantees that the filter 9[n]

is non-zero in the same region as h[n]. For example, if we choose h[n] to be the causal

filter being non-zero between 0 and W-1, then Equation (2. 21) will generate a filter g[n]

3. The reader should note that since z is being evaluated on the unit circle, the adjoint operation of H(z) is
H T(Z- 1).
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that is also causal and non-zero between 0 and W-1. Note that there is no loss of

generality in assuming that the support of the filter h[n] is even. As shown later in this

thesis, the only filters that satisfy Equation (2. 19) with the substitution of Equation

(2. 21) are filters with even support.

If we substitute Equation (2. 21) into Equation (2. 19), then we obtain the

following equation:

11 H(z)H(z-l)+H(-z)H(-z-1)]
2 (2. 23)

'Me constraint of (2. 23) typically appears in the context of sub-band coding. The

constraint is commonly referred to as the Quadrature Mirror Filter (QW) Condition [9].

An important point to realize is that if the choice of the FIR filter h(n] is made, the filter

g[n] can be determined by using (2. 22). Thus the procedure is completely defMied, once

h[n] satisfying the QMF condition is specified.
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2.3 PARAMETRIZATION OF QMF FILTERS

The purpose of this section is to parametrize the class of FIR filters that obey the

QMF condition. We will show that we can construct a parametrization, originally

developed by Vaidyanathan [31], such that for any choice of the parameters we are

confined to stay within the set of QMF filters. Furthermore as stated in (331 the

parametrization we will describe actually characterizes all FIR filters that obey the QMF

condition.

To begin let us consider the cascade of the following matrices:

I H(z) (z) 1 0 cos 0 sin 0
JT H(- z) -Z) 0 Z-2 _sin 0 cos 0 (2. 23)

If the sequences h[n] and g[n] were chosen such that the first matrix is an orthogonal

matrix, then the cascade of these matrices is also orthogonal, since the second and third

matrices are orthogonal. Also note that the matrix that results in the cascade of these

matrices will have the desired property that its second row is equivalent to its first row

with z replaced by -z. Thus we are led to believe that we can develop a recursion for

creating filters that satisfy the QMF constraint.

'Mis recursion can be stated as follows, where we introduce a superscript to denote

the level of the recursion:

1 0 cos 0ij sin 0ij
Hi+1 (Z) = H1(z) Z-2

0 _sin 6i+j cos 0i+j (2. 25)
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H i(z) Hi (z) G i (z)
fT Hi(-z) Gi(-z) (2. 26)

'Mus we obtain a recursive method for creating QW filters in the z-transform domain:

Hi+1 (z) = cos Oi+l Hi(z) - sin Oi+l Z-2 G'(z) (2. 27)

Gi+I (z) = sin Oi+l Hi(z) + cos Oi+l Z-2 G'(z) (2. 28)

or equivalently, in the time domain:

hi+1 [n] = cos Oi+l hi(n] - sin Oi+l gi[n-.2] (2. 29)

gi+1 [n] = sin Oj+j hi[n] + cos Oi+j gifn-21 (2.30)

Note that if h'[n] and gi[n] are FIR with support W then hi+1 [n] and gi+1 [n] will be

FIR with support W+2. Thus a method for obtaining even length fdterS4 that satisfy the

perfect reconstruction property is to use the recursive relationships of Equations (2. 29)

and (2. 30) with some type of initialization. The initialization that is the most relevant

involves the parametric description of all two-tap filters. Then using the above recursion

we can describe all two-tap, four-tap, six-tap, ... filters. 'ne two-tap initialization [341 can

be expressed as follows:

4. 'Me support of perfect reconstruction filters is necessarily even as discussed in the following section.
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Cos O I n = 0
h1[n] - sin 01 n = I

0 Otherwise (2. 31)

-sin 0 n = 0
91[n] Cos (I n = 1

0 Otherwise (2. 32)

where gl [n] was obtained from Equation (2. 22).

It is easily shown that these initializing sequences (2. 31) and (2. 32) satisfy the

perfect reconstruction property for all values of 0 1. Furthermore, we can show that these

sequences actually characterize all two-tap filters that are QMF. The sequences produce a

particularly interesting example when 0 1 IC In this case the sequences are the ones that
4'

are used in the well known Haar Transform (2].

Thus we have described a procedure to generate W-tap filters expressed as a

function of L = W/2 free parameters 101, 02,- - -A). For notational simplicity, we will

subsequently denote this set of parameters as 0 = [ 01, 02,- - -A). We have shown that

we can construct filters such that any choice of 0 corresponds to a sequence h[n] that

satisfies the QMF condition. Also note that we can generate g[n] simultaneously as we

construct h[n] from the recursive relationships or, equivalently, we can construct g[n] via

the one-to-one relationship between h[n] and g[n] as expressed in Equation (2. 22).
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2.4 THE DISCRETE-TIME WAVELET TRANSFORM

FOR FINITE LENGTH SEQUENCES

In this section we address the issues that arise when dealing with signals that have

finite length. If a signal has finite length and undergoes linear convolution and 2:1

decimation, then, in general, the resulting sequence will have support greater than half of

the support of the original sequence. However, we desire the resulting sequence's support

to be exactly half of the support of the original sequence. This requirement will be useful

to develop a wavelet transform that preserves the number of degrees of freedom in going

from the time domain to the wavelet domain.

Suppose that we wish to perform an M-level wavelet transformation of our

original signal. In this case our original signal is denoted by x[Mn], and its coarser scale

transforms by x[mn], 0 < m < M-1. We assume also than x[Mn] has finite support of at

most length N, i.e., x[Mn] = 0 if n < 0 or n > N. Also to preserve the number of degrees

of freedom, we perform the convolution step on the original fine-scale signal as an N-

point circular convolution. Furthermore we assume that N is a multiple of 2M, i.e.

N = C 2M, Ce � 1,2,3,... ) which guarantees that the support of x[mn], for rn < M, is at

most C 2m. Note that since we are using cyclic convolution, we may encounter edge

distortion due to cyclic wrap-around. Typically the support of the QMF filters h[n] and

g[n] is quite small compared to N so this effect is only seen in small boundary regions. In

our context, in which we are considering the transformation of stochastic processes and

the (hoped-for) approximate diagonalizations of their covariance matrices, the use of

cyclic convolution will introduce some edge effects. While these edge effects would need

to be recognized and dealt with in practice, we will not concern ourselves with them here
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in order to focus our attention on the new issues concerning the use of the wavelet

transform.

Note further that all of the previous analysis using z-transforms is still valid even

though we are using cyclic convolution. For example, suppose that we consider

performing the analysis on an approximation of the signal x[mn]. In this case, we simply

consider the z-transforms (H(z), G(z), X(z), X(z)) to have the property that zK is

identically equal to one, where K = N/2M-m.

A useful method for describing the analysis and synthesis operations on finite

length sequences involves the use of matrix notation. Let Xmc= IRK denote the column

vector whose entries are the values of x[nin] over its support. That is,

X[M'

x(m, 2]
XM

Arn, KI (2. 33)

Since we are using circular convolution and have chosen K to be even, we know

that the coarser approximation Xm-,,r= IRK/2 . The matrix Hm-1 that performs the mapping

of Xm to Xm-1 must have dimension Hm-,(-= IR(K'2, 10. In a similar manner, we define Gm-1

as the matrix that maps Xm to the detail at its coarser level Uj. We rewrite Equations

(2. 11)(2. 12) and(2. 13) in equivalent matrix equations:

Xm-,=Hm-,Xm (2. 34)
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Umj=-GmjXm (2. 35)

Xm=H T jXm-, + G T IUM-1 (2.36)

M_ M_

Note that Equation (2. 36) uses the transpose of the matrices that are used in Equations

(2. 34) and (2. 35). This is due to the fact that the operator in (2. 1 1) is the adjoint [21 of

the one in (2. 13).

We illustrate the particular form that the matrices Hm-1 and Gm-, must take on by

considering an example when K=8 and the support of the filter is four. In this case the

matrices Hm-1 and Gm-, are:

h[l] h[O] 0 0 0 0 h[31 h[2]
h[3] h[2] h[1] h[O] 0 0 0 0Hm-1 = -

0 0 h[3] h(21 h[l] h[O] 0 0
0 0 0 0 h[31 h[2] h[l] h[01 (2. 37)

g[l] g[O] 0 0 0 0 g[3] g[2]
Gm-, g[3] g[21 g[l] g[01 0 0 0 0

0 0 g[31 g[2] g[l] g[O] 0 0
0 0 0 0 g[31 g[2] g[l] g[O] (2. 38)

Note the use of cyclic convolution has introduced the wrap-around effect we have

mentioned earlier. In this example the first coefficient of Xmj has a contribution from

both the last two coefficients of Xm as well as the first two coefficients. Further note that

there is no wrap-around effect when the support of the filter is two.
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Using this matrix notation we can rewrite the perfect reconstruction condition of

Equation (2. 15) in the following form, which could also be obtained by substituting

Equations (2. 34) and (2. 35) into Equation (2. 36):

H T jHm-1 + G T -1

M_ mjGm (2. 39)

Furthermore, if we define the matrix Am-ic- IR�K, 10 as follows then Equation (2. 39) has a

very simple form

Am-, = Hm-1
Gm-1 (2. 40)

so that (2. 39) becomes:

Al Am-, = 1 (2. 41)

Equation (2. 41) and the fact that Am-, is a square matrix implies that Am-, is an

orthogonal matrix so that we also have:

Ajj�_r I (2. 42)

Equation (2. 42) expresses four equations that are functions of the matrices Hm-1

and Gm-1. These equations are stated as follows:

HmjH T 1 HmjGTM_ M-1 = (I 0)
GmjH T_, Gm-,G T 0 1 (2. 43)m M-I
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We can express these matrix equations using the index notation discussed earlier. The

first of these equations:

H,,,-,H T =I (2. 44)M-1

could be described using index notation as:

I h[n]h[n-2k] = 5,0 (2. 45)
n

It is easily verified that Equation (2. 45) is equivalent to Equation (2. 44).

We can use Equation (2. 45) to show that if the QMF filter has finite support (and

the support of the QMF filter is greater than one) then the support of the QMF filter must

be even. To do this we need only show that if the support of h[n] is less than or equal to

W, for W odd (and greater than one), then the support of h[n] must actually be less than

or equal to W- 1. This claim is proven by choosing k=(W- 1)/2 in Equation (2. 45). For

this choice of k, Equation (2. 45) implies that h[O]h[W-1] = 0. Thus since either h[O] or

h [W- II must be zero, we see that the support of h[n] must indeed be less than or equal to

W_ 1.

Consider now an M-level circulant wavelet transformation. Specifically, we

consider transforming a fine-scale scale signal Xm to a coarser approximation XM-1 and

the detail at that level UM-1. The approximation XM-1 is then transformed into a coarser

approximation XM-2 and the detail at that level UM-2- This procedure is continued for all

M-levels obtaining the transformed coefficients (XO' U0, U1, - - -, UM-1). Let yME IRN

denote the column vector that is formed from the transformed coefficients in the

following manner:
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XO
UO

YM U1

UM-2

_UM-1 (2.46)

Note that the dimensionality of the vector YM is exactly equal to the dimensionality of the

original signal XM. This is due to the fact that the circular wavelet transform preserves

the number of degrees of freedom in going from one domain to the other. Further-more

the transformation TM from the signal XM to its transformed coefficients YM is an

orthogonal transformation. Specifically, we use Equations (2. 34) and (2. 35) to express

TM as:

HOH1 .... HM-1
GoHl .... HM-1

TM GjH2 .... HM-1

GM-2Hmj
GM-, (2. 47)

To show that the matrix TM is an orthogonal matrix, we simply express Equation (2. 47)

as the cascade of M matrices:
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HM-2 0

TM =... Gm-2 0 HM-1
... Gm-1

0 (2.48)

We know that the right-most matrix of Equation (2. 48) is an orthogonal matrix. The

matrices to its left are all orthogonal since they are composed of orthogonal matrices

along their diagonal. Using the fact that the cascade of orthogonal matrices is orthogonal,

we conclude that the matrix TM is an orthogonal matrix.

With these definitions, we know that the signal and its wavelet coefficients are

related via the following equations:

YM = TMXM (2. 49)

XM = TIF YM (2. 50)

Furthermore, the computation of the wavelet transform and its inverse, i.e. Equations

(2. 49) and (2. 50), are very efficient. Specifically, the transform, or its inverse, can be

computed using a direct implementation that requires on O(WN) multiplies, where 0(

represents the order of the argument. This result is easily obtained by counting the

number of multiplies that are required to multiply the orthogonal matrix in Equation

(2. 48) by a signal, XM, that has support N. The right-most matrix of Equation (2. 48)

multiplied by XM would require NW multiplies since AM-1 has at most W non-zero

entries per row and N rows. The second matrix from the right in Equation (2. 48)

operating on AM-IXM would require WN/2 multiplies since multiplying by the identity

does not require any additional computation. Continuing in this manner we obtain a
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simple upper bound for the number of multiplies in computing the transform:

WN + WN/2 + VYrN/4 +... < 2WN (2. 51)

thus leading to the statement that a direct implementation of the wavelet transform

requires O(WN) multiplies. A more sophisticated implementation of the transform is

given in [81 where the authors show that the computation of the wavelet transform only

requires performing O(NIog2W) multiplies. Since, typically, W is much smaller then N,

the wavelet transform is a very efficient operation.
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CHAPTER 3

MULTISCALE STATISTICAL MODELING

3.1 MULTISCALE STOCHASTIC PROCESSES

Let us consider constructing a multiscale stochastic process by synthesizing it

using the wavelet transform. More precisely, by beginning with a coarse (stochastically

specified) approximation X0 of a signal we can add via Equation (3. 1), additional

stochastic detail U0 that is independent of the signal X0 to obtain a finer level signal, XI.

We can then continue with this process by adding an additional detail U1 that is

independent of XI to obtain an even finer scale, X2. This method can then be repeated to

an arbitrary number of scales. The general recursion then is a stochastic dynamic system

in scale:

T X TXM H I + G 1UM-I (3. 1): M-1 M- M-

The problem we are trying to solve can be stated as follows. Let us suppose that

we have a statistical characterization of a fine level signal. We wish to model the fine

level signal as being synthesized from the wavelet transform as prescribed in the above

manner, that is, we wish to model our signal as being XM for some value of M. The major

question to be answered is what are the best QMF filters h[n] and g[n] such that the

cross-covariance between the approximation of the process Xm, at any coarser level m,

and the detail at that level Um is as small as possible for all m.
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In other words, given the autocovariance Axmxm of the process Xm we would

like to determine the QUF filters h[n] and g[n] such that the following equations are

satisfied as closely as possible (in a manner to be made precise):

Cov(XM, UM) = 0 V m = 0, 1, 2, . . ., M-1 (3. 2)

where COA. I - ) represents the covariance between the two arguments.

'Mis problem, however, is very difficult to solve since the coefficients of the

matrix of equation (3. 2) is a high-order nonlinear function of the coefficents of h[n]. This

is demonstrated very easily. Recall that we can express Xm and Um as a function of the

finer scale signal Xm,,:

Xm = HmXm+l (3. 3)

Um = GmXm+l (3. 4)

By substituting Equations (3. 3) and (3. 4) into the left hand side of Equation (3. 2) we

obtain:

Cov(XmUm) = HmCov(Xm+,,Xm+,) GT (3. 5)

Hm Axm+lxm+l GTM (3. 6)

By using Equation (3. 3) we obtain the autocovariance of the mth scale signal from the

autocovariance of the m+ 1 st scale signal using the following equation:

Axmxm = HmAxm+lxm+,HTM (3. 7)

So by using Equations (3. 6) and (3. 7), we express the cross-covariance between Xm and
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U,,,, for any rn, as a function of the known autocovariance Axmxm For example when

m=M-2, the cross-covariance can be stated as:

T T
COV(XM-2,UM-2) = HM-2HM_1AXMXMHj4_1GM_2 (3. 8)

It is clear for the example m=M-2 that the coefficients of the above matrix have in

general a fourth-order dependency on the coefficients of h[n]. Thus, in general, the

cross-covariance between the coarsest signal approximation Xo and the detail at that level

U0 will be a nonlinear function of the coefficients of h[n] of order 2M.

Problems of this high nonlinearity are typically very difficult and cornputationally

intensive to solve. So in order to simplify the computation we win not require that the

same QMF filters be used at each level. We will now continue to use the same matrix

notation Hm and Gm but there matrices are now constructed from the sequences hm[n]

and gm[n], respectively, which may be different for different values of m. As is evident

from the subscript, the QMF sequences can be different for different levels. With this

assumption in mind let us proceed in formulating a criterion that captures our objective.

To begin let us recall that we can parametrize Hm and Gm to stay within the set of

perfect reconstruction filters. To denote the parametrization of Hm and Gm explicitly, we

will write these matrices as Hm(Om) and Gm(Om), respectively. Thus we restate our

problem as trying to find the Om for all m that best satisfies the following equations:

Hm(Om) Axmlx.,, GT((m) 0, 1, 2,. M-1 (3. 9)

where Axmxm is known and Axmx. for m < M can be computed recursively via the
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following equations:

Axmxm = Hm(O m)Axm.+.Ixm+,HT ((m) 0, 1, 2,.. ., M-1 (3. 10)

Ideally we would like every element of the matrices in the equations of (3. 9) to

be zero, so the criterion we use is to try to find the values of Om, for all m, such that a

weighted sum of the norm-squares of the matrices in the equations of (3. 9) is as small as

possible. Thus we state this criterion formally as:

M T 112

min 00, ( 1, OM-1 I 0cm I1Hmj(Omj)AXmXmC�n_1(OM-1) F
M=1 (3. 11)

where II - I IF represents the Frobenius norm5 (35] and Ctm is the weight associated with the

norm of the mth equation of (3. 9).

This minimization problem is difficult to solve since we are trying to perform the

minimization of a highly nonlinear criterion over such a large number of arguments. In

particular for each m, AXmXm is an implicit nonlinear function of OmOm+l . . . .I OM-1.

Thus the optimal choice of Om-1 is determined not only by the desire to decorrelate Xmj

and UM-1 but also by the influence this choice has on subsequent levels of the

decomposition. If we neglect this secondary influence on the choice of each Om, we

obtain a further simplification in which we perform M successive minimization problems

for each Om in turn. Specifically, we begin by performing the following optimization:

5. 'Me Frobenius norm of a matrix is the square root of the sum of the squares of the elements of the matrix.
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min OM-1 1�M-j(OM-j)AXMXMdM-j(OmAfF (3.12)

We can then use the optimal Om-1 to obtain the first level quadrature mirror filter pair and

to compute:

Axm_lxm_l = HM-j(OM-j)AXMXM1iMr-1(OM-1) (3.13)

This procedure can then be repeated for all M levels to find the best QMF pair at

each level. Although (3. 12) is computationally easier to solve than Equation (3. 1 1), it is

still highly nonlinear and deserves additional investigation as to the methodology used for

solving this optimization problem. In the next section we develop an efficient method for

obtaining the solution of Equation (3. 12).
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3.2 SOLVING THE MINIMIZATION PROBLEM

The purpose of this section is to describe an efficient and reliable method for

solving the following optimization problem:

min o I JH(0) Axx GT(O � fF (3. 14)

The optimization in Equation (3. 14) is equivalent to the optimization described in

Equation (3. 12). For notational simplicity we have simply dropped the subscript notation

that denotes the scale.

First let us note that Equation (3. 14) is a problem in nonlinear programming that

we can solve using standard methods [36]. The nonlinear optimization routines that solve

this problem typically work by finding the closest local minimum to the initial guess that

was passed to the routine by the user. The user must determine the locations of the initial

guesses for which the local minima will be computed. Then from this set of local minima

the smallest of these is chosen as the solution to the minimization problem.

'Me problem of designing an optimization routine is further complicated if the

optimization is over a vector of variables, as multidimensional searches for the local and

global minima are in general very time-consuming. In some problems, however, there are

natural ways in which to perform optimizations over a sequence of lower-dimensional

subspaces using the lower dimensional subspaces to guide the higher-dimensional ones.

One methodology for doing this is to first fix all but one of the variables and minimize

the function over the one free variable. Then as a second step one fixes an but two of the

variables and minimizes over the two free variables. 'Me solution of the first

minimization is typically used as the initial guess for the second minimization. This

procedure can be continued for all of the variables of the minimization.
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The problem here, of course, is finding a natural way in which to "fix" some of

the variables at each stage. Fortunately in our context there is an extremely natural way in

which to do that. Using the notation of Section 2.3 let us consider QMF filters that have

support W = 2L. 'Ibus 0 will consist of the L variables 0 = 01, 02, 03, - - -, OLI. The

recursive description in Section 2.3 for constructing a QMF from such a vector then

directly leads to the structure of the optimization procedure that we use. Specifically, we

begin by choosing 01 to yield the best QMF of support two. 'Ibis provides the starting

point for choosing 01, 02 to provide the best QMF of support four. Ibis procedure can

then be continued until we have reached the final desired support. To make this precise,

let us begin with the first step, where the two-tap QMF pair has the form:

Cos 01 n=O
h0 [n] = sin 01 n = I

0 Otherwise (3. 15)

-sin 01 n = 0
90 [n] = cos (1 n = 1

0 Otherwise (3. 16)

'Me subscript on the filters h[n] and g(n] is used to make clear that the filters are

functions of 0, and the superscript is used to denote the number of components of 0 on

which these filters depend. The first step of our minimization problem then is to solve the

following one dimensional minimization:
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GT(( 1 � 12min 01 I �(O 1) AXX F Q. 17)

1 1where H(O 0 and GO 0 are computed from h. [n] and go [n] as described previously.

Since the objective function of Equation (3. 17) has a periodicity of X/2 (see

Appendix A), we can perform the minimization of (3. 17) by choosing a number of initial

guesses evenly spaced between 0 and n/2 to obtain several local minima (using any

nonlinear programming routine) that can be compared to determine the global minimum.

It is important to realize that even though the objective function has a periodicity of 7C/2,

the filters do not. Therefore if 0 denotes the optimal solution to the one-parameter mini-

mization problem then both 0 and 0 + ir/2 are possible solutions to the minimization.

An interesting point about these solutions is that the two solutions correspond to the two

alternatives specifying which filter is h[n] and which is g[n] (see Appendix A).

The above comments regarding the periodicity of the function motivates our pro-

cedure for the following two-parameter minimization problem:

JJH(00,61)AXXGT(0o,01)JJ'F (3. 18)

A reasonable set of initial guesses for the two-parameter minimization problem would

then be to use 0 as the guess for 0 1 and to choose several guesses for 02 between 0 and

7c/2. However 0 + 7c/2 could also be a solution to the one-parameter minimization

problem so we should also try initial guesses of 0 + -x/2 and again vary 02 between 0

and n/2. Out of both sets of local minima resulting from these two sets of initial guesses,
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2 2
we obtain the global minimum ((1 ,02) for the two-parameter solution. Again using the

2 2 2 2
periodicity result of Appendix A, we find that both (O I ,(2) and (01 ,02+71/2) are solutions

to the 2-parameter minimization problem.

We can continue this procedure for all L parameters. We will then have two

L L
possible solutions to the minimization problem of Equation (3. 12): (01 , (2 Ob and

L L L
I,02 OL+7c/2). Either solution would yield the same global minimum but we

would like to choose the one that makes h[n] the low-pass filter and g[n] the high-pass

filter. Thus we pick the solution such that h[n] has the greatest DC content or

equivalently the solution that satisfies the following equation:

1: h(n] > 1: g[n]
n n (3. 19)
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CHAPTER 4

ANALYZING PROCESSES
USING THE WAVELET TRANSFORM

4.1 STATIONARY PROCESSES

In this chapter, we examine the ability of our models to approximate the statistical

description of several processes. In particular we examine the wavelet transformation of

the statistics of these processes and illustrate the ability of this transform to achieve

approximate block diagonalization of the covariance matrix of the transformed

coefficients. The first three sections of this chapter deal with analyzing stationary

processes. Specifically, we consider the fuist-order Gauss-Markov process and under-

damped second-order oscillatory processes. The final section of this chapter considers a

class of non-stationary processes known as fractional Brownian motions.

We will denote the covariance between the coefficients x[mi] and x[mj] as

AXMXM(ij)=C0v(x1rni1,x1mJ1). Of course with this notation, the covariance

Axmxm(i, j) is the element in the ith row and jth column of the autocovariance matrix

Axmx, For the case of stationary processes, Axmxm(i, j) does not explicitly depend upon

both i and j but only upon the difference i-j. In the case of these processes we write:

Ax,,Ixm(i, j) = Axmx,,,(i-j, 0) (4. 1)

We will abuse notation and drop the explicit dependence upon the origin to express the

autocovariance of the stochastic process as:

Axmx4i, j) = Axx4i-j) (4.2)
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A useful measure that we will use in analyzing the degree of correlation between

two samples of a stochastic process is the normalized autocovariance (correlation

coefficient). We define the ith row and jth column of the normalized autocovariance matrix

Pxmx. as:

PXMXM(i, D Axmxm(i, j)
-N'A�Xmx�m(i, �i)AX�MXMO, _j) (4.3)

Some of the properties that the normalized autocovariance possess are iPxmxm(i, il < 1 and

Pxnxm(i, i) = 1. Note that for stationary processes the normalized autocovariance

Pxmxm(i, D also depends only on the difference i-j and can be expressed as

PXMX4" D = PXmXnP-j) -

We have already seen that the correlation structure of Xm-, and Um-, depends upon

the QMFs h[n] and g[n] and the autocovariance Axmxm. 'Me correlation between any two

coefficients of Xm-, and Um-1 (when Xm arr, the samples of a stationary process) is easily

determined by using the relationships:

x[m-1,k] = Z h[nlxfm,2k-nj
n (4. 4)

u[m-1,k] = I g[n]x[rn,2k-n]
n (4. 5)

Using the above two equations we express the covariances of the one-level transformed

coefficients as:

AxM-IXMI(s,0 = 1: h[i]Axmxm(2s - i,2t - j)hU]
i, j (4. 6)

Aum_Ium_,(st) = g[i]Axxm(2s - i,2t - j)gU]
(4. 7)
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Ax._Ium_,(st) = 1: h[i]Axr,,xm(2s - i,2t - j)g[j] (4. 8)
i, j

If Xm is a stationary process then Equations (4. 6) to (4-8) imply that XmI and

Um-1 are jointly stationary and have the following covariances:

Axm_lxm_ 1 (c) = Y. hfi]Ax,,,xm(2r - i + j)h[j]
i, j (4. 9)

Aum I Um_ 1 (r) = Y, g[i]Axmxm(2,r - i + j)g[j]
i, j (4. 10)

Axm_lum_,(,r) =Y. hfi]Axmxm(2,r - i + j)g[j]
i, i (4. 11)

Therefore if the sampled process XM is stationary, then XM-1 and UM-1 will be jointly

stationary. Since XM-1 is stationary, we can use the same argument to show that XM-2 and

UM-2 are jointly stationary. We deduce that if the sampled process is stationary then the

coefficients at any particular level, e.g. (XMII Um), are jointly stationary; however, the

transformed coefficients, e.g. [U M-l'...,U(' X0), are not jointly stationary. The

transformed coefficients are not jointly stationary since the covariance of wavelet

coefficients at different levels do not depend simply on the time difference but they do

have the following dependence for fixed k and m:

AumL�(s, t) = Auml�(s - 2-k+mt) (4. 12)

Equation (4. 12) is easily proven for arbitrary m and k by using the continuous-time

wavelet notation from Chapter 2. Since it is more diffcult to show Equation (4. 12) via the

discrete-time wavelet notation we have been using, we will simply verify Equation (4. 12)

when m=M- 1 and k=M-2. Of course u[M- 1, s] and u(M-2, t] are:
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u(M-1, SI g(kl)x[M, 2s - k1l
ki (4. 13)

u[M-2, t] g(k3)h(k2)x[M, 4t - 2k3 - k2l
k k (4.14)3 2

Using the fact that XM is stationary, we obtain:

AL�j ,4(2(s - 20 - 2k3 - k2 - kj)

_JL�,_,(s, t) g(k3)h(k2)g(k,)A,
k3 k2 k, M, (4.15)

Therefore as in Equation (4. 12), we will use the notation that:

AL�14L�1-2(S't) = AL�44L�1-2 (s - 2t) (4.16)

In Appendix B we show that if the sampled process Xm is stationary then the

optimal two-tap one-level transformation is the Haar Transform (where optimality is

defined by the criterion of Chapter 3). We can combine this fact with our knowledge that

Xm for m < M is stationary to deduce that the optimal two-tap filters for all levels wiH be

the filters used in the Haar Transform.

In the next section we look at a particular stationary process, the first-order Gauss-

Markov process, and examine in more detail the statistics of the wavelet transform of this

process.
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4.2 THE FIRST-ORDER GAUSS-MARKOV PROCESS

The first-order continuous-time model that generates a fust-order Gauss-Markov

process is of the form:

k(t) = -Px(t) + W(t) (4. 17)

In the numerical examples that follow we use a discretized version of Equation (4. 17). In

particular we sample the process at a sufficiently high rate to minimize any aliasing effects.

Of course this criterion means that the sampling rate, 2x/T where T is the sampling

interval, must be equal to twice the effective cutoff frequency (O . We choose the effective0

cutoff frequency to be the frequency such that

Sxx(coo) = 0.00222 (4. 18)

where S (w) is the power spectral density of x(t). The powerspectral density of EquationXX

(4. 17) is

S ((O) 2P
XX 2 2

P + (O (4. 19)

when the variance of x(t) is unity. When is normalized to unity, Equations (4. 19) and

(4. 18) imply that wo = 30. 'Ibis analysis yields the following discretized model that will be

used throughout this thesis:

x[n+l] = ccx[n] + w[n] (4. 20)

a = OT =.9006 (4. 21)
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where w[n] is a constant variance, zero-mean white noise process and x[n] has unit

variance. Since x[n] is stationary it is easily seen that the variance of w[n] must equals

(1 - (X2) . Assuming that (4. 20) is in steady-state, the autocovariance (which in this case is

also the normalized autocovariance) for the process is

Pxx(,r) = ad, (4. 22)

In Fig. 4. 1 we display the normalized autocovariance, as given in Equation (4. 22),

in several different ways. In Fig. 4. 1 (a) the normalized autocovariance is shown by

plotting Pxx(,r) versus r which is the method that is commonly used to view

autocovariances of stationary processes. A mesh plot of Pxx(s, O = Pxx(s-t) is depicted in

Fig. 4. 1 (b). In this plot Pxx(s, t) is plotted versus s and t. In Fig. 4. 1 (c) the same plot is

shown as Fig. 4. 1 (a) and (b) but plotted as a 2-D image. In this plot, the intensity of the

magnitude of Pxx(s, t) is plotted versus s and t. The plots in (b) and (c) are useful for

viewing autocovariances that are not stationary.

'Me mapping of the gray-scale to the correlation values that are used in all 2-D

images (unless shown otherwise) is shown in Fig. 4. 2. In order to show how the

correlation structure decays we will plot the magnitude of the covariance for all 2-D

images throughout this section. We use the word "decay" to denote a decrease in the

magnitude of the correlation between any two coefficients as the interval between those

coefficients increase and one of those coefficients remains fixed.

We now consider taking a one-level wavelet transform of a set of samples of the

Gauss-Markov process, which we again collect as a vector denoted by XM. The

transformed coefficients have the property that they decay at a rate faster than the original

process. Specifically, let us consider the cross-covariance between the processes XM-1 and

UM-1 for a Gauss-Markov process:
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AXM-1UM-I (T) I h[ij UJ2,r +I go]
j (4. 23)

An upper bound for the above covariance is obtained by the summation of the absolute

value of each term in Equation (4. 23).

AXM_j UM_ I (T) jhfi� IC42,, - i + j jgo]I
(4. 24)

The above expression is further bounded by realizing that

IC42,r - i + j < 102111 W + I 2111 > W - I
I J�<W- 1 (4. 25)

for any i and j, where W is the support of the QWs. Since the right-hand side of Equation

(4. 25) is not a function of i and j, we pull it out of the summation to obtain the bound:

IN 12 10j24 - W + I 2M>W- I
AXM_jUM_I(T)JI 11 I IN 12 211<W- I

II (4. 26)

where I 1.1 II represents the 11 norm' [35]. Note that we have used the fact that the 11 norm of

h[n] is equal to the 11 norm of g[n] which is easily verified by using Equation (2. 22). It is

trivial to show that the bound in Equation (4. 26) will also bound the covariances of the

processes XM-1 and UM-1.

The key point that we note about this bound is that the covariances of the wavelet

coefficients (computed by taking a one-level wavelet transform of a fuist-order Gauss-

Markov process) decays at a much faster rate than the original Gauss-Markov process.

1. The 11 norm of a sequence is the sum of the absolute value of each element of the sequence.
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Specifically, if the autocovariance of the original Gauss-Markov process decays as O(C6,

(where 00 represents the order of) then using the bound in Equation (4. 26) the

covariances that result from a one-level wavelet transform (Axmjumj('r), AXM_jXM_j('r),

and AUM_juMj('r)) decay as O(a��). We direct the reader to Beylkin, Coifman, and

Rokhlin tioi for a further discussion of obtaining bounds on the 2-D wavelet transform

coefficients when the kernel is in the class of Calderon-Zygmund operators. Although an

exponential decay is within this class of operators, the bound that Beylkin et al. determined

is much weaker than the bound in Equation (4. 26).

Let us now consider taking a one-level Haar Transform of XM. Using Equation

(4. 26) we know that the covariances that result from a one-level Haar transform of the

samples of the first-order Gauss-Markov process are upper bounded by:

�,(�2N - I r & 0

1 2 0 (4. 27)

Specifically, the covariances are:

i + OC + 0
AxM_jXM_j('r) 2 2

1 + a 'C 0
(4. 28)
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i + a 2) (X21ri - 1 0

AUM_jUM_j('r) 2

(4. 29)

sgn(,rx 1-a 2) (X21TI - I 0

AxM
0 0

(4.30)

where:

Sgn(r) -
_� -1 'C<0 (4.31)

The above covariances, for (x = 0.9006, are depicted in Fig. 4. 3 (a) to (d) The same

information is shown using a single mesh plot Fig. 4. 4 (a) and a 2-D image Fig. 4. 4 (b).

The gray-scale mapping that is used in Fig. 4. 4 (b) is different than the mapping used in

other images so the gray-scale is shown in Fig. 4. 4 (c). Note that the coarse scale

information is displayed on the far left-hand side of the mesh plot, while this information is

displayed in the upper-left-hand comer of the 2-D image. We will adhere to this

convention for future 2-D images. The mesh plots were introduced as a method for the

reader to have a better understanding of what we are plotting. Hopefully at this point the

reader understands these plots and only needs to visualize one of these forms. Therefore in

future plots we will only show the 2-D images.

Of course the normalized autocovariance decays at the same rate as the

autocovariance. The normalized autocovariance of the one-level Haar transform of XM is

given by:
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+ 0

PXM-1XM-1(,0 2
(4. 32)

- a a dTrI I 'r 0

PUM-1UM-1(,r) 2
(4. 33)

sgn(,r) OCI�Vrl1 0
2

PXMjUMj(,r)
(4. 34)

The above normalized covariances are depicted in Fig. 4. 5 (a) by showing the 2-D image

of the one-level normalized autocovariance of the Haar transform of a first-order Gauss-

Markov process. An important point about this plot is the band of correlation due to the

cross-covariance Axm_lum_,. We refer to this band of correlation as a "finger" of the

transformed autocovariance. Note that the autocovariance of an M-level wavelet transform

of a first-order Gauss-Markov process will create M-fingers in the transformed

autocovariance. This fact is illustrated in Fig. 4. 5 (b) to Fig. 4. 5 (d) where we show the

normalized autocovariances of the first-order Gauss-Markov process transformed by

higher level Haar transforms (two-level to four-level), respectively.

In Fig. 4. 6 (a) to (d) we show a representative cross-section (chosen carefully so

that it does not exhibit edge or windowing effects) of Fig. 4. 5 (a) to (d), respectively.

Specifically, we consider the correlation structure of the 100th transformed coefficient

when the transformed coefficients are stacked in a vector as shown in Equation (2. 46), i.e.



4 Analyzing Processes Using the Wavelet Transform 54

the correlation structure of the 36th element of U Although these plots do not displayM-11

the entire autocovariance, like the 2-D images, these plots do allow the reader to observe

the actual values of a subset of the normalized autocovariance. Observe from these plots

that the magnitude of the second finger of the 100th transformed coefficient is smaller than

the magnitude of the first and third fingers; however, certain neighboring coefficients, e.g.

the 99th transformed coefficient, do not have this property. This property is a result of the

fact that the covariance between the wavelet coefficients at different scales are not

stationary but have the structure shown in Equation (4. 12).

In Fig. 4. 7 (a) to (d) we show the variances of the one to four-level Haar transform

of the samples of the first-order Gauss-Markov process. Since for Gaussian random

variables information is proportional to the logarithm of the variance of the random

variable (371, we observe from these plots that this process has predominantly coarse-scale

information. Of course, this conclusion is obvious for the first-order Gauss-Markov

process since it has a power spectrum concentrated at low-frequency Fig. 4. 8. We make

this observation as a means of determining if a process is wen-suited to an approximate

Karhunen-Loeve expansion, i.e., approximately diagonal normalized autocovariance, using

the wavelet transform. We will observe in future sections of this chapter that processes

with predominantly coarse-scale information are well-suited to this type of diagonalization.

This observation should not be surprising since the wavelet transform effectively "zooms"

in on low-frequency signals by doing successive stages of low-pass filtering and

decimation.

We now consider a three-level wavelet transform where the filters that are used are

not necessarily the filters used in the Haar transform. We will make a comparison between

QMFs that are designed by using the criterion from Chapter 3 and QMFs designed by

Daubechies [2].

Recall that the criterion from Chapter 3 is motivated by our desire to obtain an
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approximate Karhunen-Loeve expansion of the transformed coefficients, i.e., we desire the

autocovariances PXM-JXM-l and PUM_juM_j to decay as quickly as possible and the cross

covariance PXM_1UM_1 to be as small as possible. We show here the normalized

autocovariances of the wavelet transformed coefficients using QMFs that were designed

using the criterion from Chapter 3 in order to visualize how well our optimization

procedure does in achieving an approximate Karhunen-Loeve expansion. The normalized

autocovariance of a three-level wavelet transform of samples of the fmit-order Gauss-

Markov process are shown in Fig. 4. 9 (a) to (d) as we increase the support of the optimal

QMFs from two-taps to eight-taps, respectively. A representative cross-section of Fig. 4. 9

is shown in Fig. 4. 10, i.e. the correlation structure of the 100th transformed coefficient.

'Me variances of the transformed coefficients (i.e. the values along the diagonals of

Fig. 4. 9) are plotted in Fig. 4. 1 1.

The QM[Fs derived by Daubechies have received considerable attention. Filters

derived by Daubechies with 2P-taps possess the property that the continuous-time wavelet

has P vanishing moments, i.e. such a wavelet Nf(t) satisfies

tPW(t)dt = 0 VP r= (0, 1, . . P- 1 (4.35)

For the purposes of comparison, we consider a three-level wavelet transform using eight-

tap QMFs. The normalized autocovariance of the transformed coefficients when the

optimal eight-tap QMFs are used is shown in Fig. 4. 9 (d), while the normalized

autocovariance of the transformed coefficients using eight-tap QMFs that were designed

by Daubechies is shown in Fig. 4. 12. The variances for these coefficients are shown in

Fig. 4. 11 (d) and Fig. 4. 12 (b). The correlation structure of the 100th transformed

coefficient is shown when using both of these methods on a linear scale Fig. 4. 13 (a) and
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a semi-logarithmic scale Fig. 4. 13 (b). We observe from these plots that the two methods

yield results that are very similar.

Summarizing our results, we have made the following observations. As we increase

the number of levels of transformation that we perform on the Gauss-Markov process, we

substantially increase the rate of decay of the transformed covariances. However, we also

introduce a new (undesired) "finger" of the covariance of the transformed coefficients for

each level of transformation that we perform on the sampled process. These fingers may be

undesirable since they represent an additional band of correlation that may need to be dealt

with. One method that can be used to lessen the correlation in these regions is to choose

QMFs that were derived using the criterion of Chapter 3. Although we have concentrated

on the first-order Gauss-Markov process, these results are valid for most processes that

have autocovariances that decay monotonically.

Further we have introduced the idea of examining the variances of the Haar

transform of a process in order to determine if the process is wen-suited to an approximate

Karhunen-Loeve expansion using the wavelet transform. Note other wavelet transforms

can be used other than Haar, but the Haar is computationally efficient and does not

introduce undesired edge, windowing, or wrap-around effects.
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Fig. 4. 1. Plots of the magnitude of the normalized autocovariance of the first-order Gauss-
Markov process in steady state when cc = 0.9006. The normalized autocovariance is
viewed as: (a) function of the time difference that is commonly used to view
autocovariances of stationary processes, (b) 3-D mesh plot, (c) 2-D image. Tle "time
difference" in (a) and in other plots corresponds to the relative time lag between the
elements of the quantities whose covariance function is being displayed. The plots shown
in (b) and (c) are useful for viewing autocovariances that are both stationary and
nonstationary.
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Fig. 4. 2. Mapping of the gray-scale to the correlation values that are used in all 2-D
images (unless shown otherwise).
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Fig. 4. I Plots of the four covariances that are used in the magnitude of the autocovariance
of the one-level Haar transform of the first-order Gauss-Markov process. The covariances
are viewed separately as: (a) Cov(XMjXMjj, (b) Cov(XmjUM_1), (c)
Cov(UmjXMjj, (d) Cov(UMj,`UMjj. The "time difference" in these plots
correspond to the relative time lag between the elements of the quantities whose
covariance function is being displayed.
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Fig. 4. 4. Plots of the magnitude of the autocovariance of the one-level Haar transform of
the first-order Gauss-Markov process, viewed as: (a) 3-D mesh plot, (b) 2-D image. The
additional band of correlation in the transformed autocovariance is due to the cross-
correlation between different transformed sequences, i.e. XM-1 and UM-1. We refer to this
band of correlation as a "finger". Since the 2-D image in (b) is not normalized, the gray-
scale mapping is different then other images. The gray-scale mapping for this image is
shown in (c).
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(a) (b)

(c) (d)

Fia. 4. 5. Plots of the magnitude of the normalized autocovariance of the L-level Haar
transform of the fuist-order Gauss-Markov process, where: (a) L=I, (b) L=2, (c) L=3, (d)
L=4. The Plots show that an L-level transform will produce L fingers in the transformed
�iuiocovariance.
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Fig. 4. 6. Plots of the correlation structure of the 100th transformed coefficient of the first-
order Gauss-Markov process. 'Me transform being used is an L-level Haar transform
where: (a) L=I, (b) L=2, (c) L=3, (d) L=4. These plots show a representative cross-section
of Fi-. 4. 5 that does not exhibit edge or windowing effects.
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Fig. 4. 7. Plots of the variances of the coefficients obtained by taking an L-level Haar
transform of the first-order Gauss-Markov process, where: (a) L=I, (b) L=2, (c) L=3, (d)
L=4. The plots show that for the first-order Gauss-Markov process the variances of the
transformed coefficients are larger at coarser levels.
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Fig. 4. 8. Plot of the power spectrum of the first-order Gauss-Markov process. This Plot
shows that the first-order Gauss-Markov process has most of the process's energy
concentrated at low-frequency.
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Fig. 4. 9. Plots of the normalized autocovariance of the three-level wavelet transform Of
the first-order Gauss-Markov process using QWs that were derived by using the
optimality criterion from Chapter 3. The QWs have support equaling W, wh;re (a) W=2,
(b) W=4, (c) W=6, (d) W=8. The plots indicate, as expected, that as the support of the
QMFs increase the transformed autocovariance more closely resembles a Karhunen-Loeve
expansion.
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Fig. 4. 10. Plots of the correlation structure of the 100th transformed coefficient of the
first-order Gauss-Markov process. The transform being used is a 3-level wavelet transform
using optimal QMFS with support W, where: (a) W=2, (b) W--4, (c) W=6, (d) W=8.
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Fig. 4. 1 1. Plots of the variances of the coefficients obtained by taking a three-level.
wavelet transform of the first-order Gauss-Markov process. 'Me QWs have support
equaling W, where (a) W=2, (b) W=4, (c) W=6, (d) W=8. The edge effects are due to
using circular convolution.



4 Analyzing Processes Using the Wavelet Transform 68

(a)

6�

5

3

2

0 140
0 1.0 40 60 80 100 120

Cxwne.tO.Fine Trwdonned Coefficiem

(b)

Fig. 4. 12. Plot (a) shows the normalized aut(covariance of the three-level wavelet
transform of the first-order Gauss-Markov process using eight-taP QNTs that were derived
by Daubechies. Plot (b) shows the variances of these transformed coefficients.
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Fig. 4. 13. A representative cross-section (that does not exhibit edge effects) of the
normalized autocovariance of the three-level wavelet transform of the first-order Gauss-
Markov process using eight-tap QM[Fs. The plots show the correlation structure of the
1.00th wavelet transformed coefficient using QMFs derived by the optimality criterion
from Chapter 3 (solid line) and QMFs derived by Daubechies (dashed line) where the
correlation (y-axis) is plotted on: (a) linear scale, (b) logarithmic scale.
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4.3 UNDER-DAMPED SECOND-ORDER PROCESSES

In the preceding section we have discussed the first-order Gauss-Markov process.

The first-order Gauss-Markov process is an example of a process that has a power

spectrum concentrated at low frequency. We now consider a class of processes that do not

have this property. Specifically, we consider the following second-order oscillatory model

in steady-state:

x(n] = 2cc cosO x[n-1] - oc2 x[n-21 + w(n] (4. 36)

or in the z-transform domain:

X(Z)

W(z) (l-(xej0z-1)(l-ae-j6z-1) (4. 37)

where w(n] is Hd white noise, and X(z) and `W(z) are the z-transforms of x[n] and w[n],

respectively.

Again we collect a set of samples of this process into a vector and denote the vector

as XM. The power spectrum of the process is trivially obtained by using Equation (4. 37)

and is plotted in Fig. 4. 14 when cc = .9006 and 0 = x/4. 'Me normalized autocovariance is

easily obtained by inverse Fourier transforming the power spectrum and is shown in

Fig. 4. 15. In Fig. 4. 15 (a) we show the normalized autocovariance as a plot that is

commonly used for visualizing autocovariances of stationary processes. 'Me magnitude of

this normalized autocovariance is plotted as a 2-D image in Fig. 4. 15 (b). In addition, we

also plot only the positive values of the normalized autocovariance in Fig. 4. 15 (c) so that

we can clearly illustrate the oscillations of the process. Note that neither Fig. 4. 15 (b) nor
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Fig. 4. 15 (c) viewed by itself illustrates the autocovariance of the process, but by viewing

both plots the reader has an accurate description of the autocovariance.

The period of oscillation of the autocovariance for a process in the form of

Equation (4. 36) is 2x/6. The period of oscillation when 0 = ic/4 is simply 23. Therefore

the cross-correlation between any coefficient above the M-3 level, i.e. an element of

(Um-1, Um-2), and any other transformed coefficient will show some form of oscillation.

This fact is illustrated by observing the 2-D images of the transformed autocovariances.

In Fig. 4. 16 (a) to (d), we plot the magnitude of the normalized autocovariances of

a one to four-level Haar Transform of this process. Again in order to display the

oscillations of the process, we only plot the positive values of the normalized

autocovariances in Fig. 4. 17 (a) to (d). Note the 2-D images of the positive values of the

normalized autocovariances depict the oscillations as "patterns" in the plot of the

transformed autocovariance. In Fig. 4. 17 (c) and (d) the covariances of the transformed

coefficients at or below the M-3 level do not have any of these "patterns", i.e., there exists

only regions that have a solid shading that is either completely dark or completely white.

Since some of the transformed coefficients have covariances that oscillate, we conclude

that the sampled process has not been transformed into a sufficiently simple form, i.e.

approximate Karhunen-Loeve expansion.

In Fig. 4. 18, we again plot the correlation structure of the 100th transformed

coefficient; however, these plots are not strictly cross-sections of Fig. 4. 16 or Fig. 4. 17.

'Me plots in Fig. 4. 18 show both positive and negative correlation values. Of course,

cross-sections of Fig. 4. 16 are obtained by considering the magnitude of the correlation of

the plots in Fig. 4. 18. The cross-sections of Fig. 4. 17 are obtained by displaying only the

nonnegative correlation values of the plots in Fig. 4. 18, i.e. by clipping negative values.

The variances of the transformed coefficients are shown in Fig. 4. 19 (a) to (d).

Note that the transformed coefficients with the largest variances are the coefficients of



4 Analyzing Processes Using the Wavelet Transform 72

UM-3 which were obtained when using a decimation factor that is equal to the period of

oscillation. Of course, if the magnitude of a is small then Equation (4. 36) can be

approximated as a first-order Gauss-Markov process and we would observe that a plot of

the variances of the transformed coefficients would be similar to the plots of the variances

in the preceding section. If 0 was chosen such that the period of oscillation was not a

power of two, e.g. six, then we would observe that the transformed coefficients with the

largest variances would be the wavelet coefficients that were obtained when using

decimation factors that were closest to the period of oscillation. For example, if the period

of oscillation was six then we would expect that the variances Of UM-2 and UM-3 to be

large compared with the variances of the other transformed coefficients.

Recently, Coifman et al. (I 1 ] have investigated the use of a modified version of the

wavelet transform that is called the wave packet transform. As pointed out in [II], the wave

packet transform is especially well-suited to kernels that have oscillatory behavior. 'Me

wavelet transform effectively "zooms" into the low frequen6y component of the signal;

however, the wave packet transform "zooms" into desired frequencies. Coffman and

Wickerhauser (12] describe several techniques for choosing the wave packet transformation

that "zooms" into specified frequencies. We will refer to the complete wave packet

transform as a transformation that "zooms" into all frequencies and this transform is

described in the following manner.

Recall that we expressed the wavelet transformation matrix TM as a cascade of M

orthogonal matrices:

AM-2 0

TM = ... ... [AM-,]
L 0 I -1 (4. 38)
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'Me complete wave packet transformation matrix Cm is specified by the cascade of M

orthogonal matrices where the jth orthogonal matrix from the right is constructed by

repeating AMj along the diagonal. Specifically, the transformation matrix Cm is given by:

AM-2 0
Cm = ... ... [Am-1]

(4. 39)
L 0 AM-2.j

and XM transformed by a M-level complete wave packet transform is denoted:

ZM = CMXM (4. 40)

Of course, the autocovariance of the coefficients of the complete wave packet transform of

XM is:

TAZMZM= CMAXMXMCM (4.41)

To illustrate the transformation more clearly, Fig. 4. 20 (a) shows the block-diagram of the

two-level wavelet transform, while Fig. 4. 20 (b) shows the block-diagram of the two-level

complete wave packet transform.

We now consider performing a complete wave packet transform of XM, where XM

consists of the samples of the under-damped second-order oscillatory process. In Fig. 4. 21

(a) to (d) we show the magnitude of the normalized autocovariances of the complete wave

packet transformed coefficients of XM when cc =.9006 and 0 = n/4. Again these

illustrations depict the normalized autocovariances when Haar QMFs are used and the

number of levels of transformation performed on the process range from one to four-levels.
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'Mese plots illustrate that if a process has a decaying autocovariance then an M-level

complete wave packet transform of the samples of that process will have 2M - 1 "fingers".

From the plots of the positive values of the normalized autocovariance of these

same transformed coefficients Fig. 4. 22 (a) to (d), we observe that the autocovariances

obtained from a three-level (or higher level) complete wave packet transform of XM do not

have any covariances that oscillate. The correlation structure of the 100th transformed

coefficient is shown in Fig. 4. 23. The variances of the transformed coefficients (obtained

by the complete one to four-level wave packet transform of XM when Haar filters are used)

are shown in Fig. 4. 24 (a) to (d).
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R2. 4. 14. Plot of the power spectrum of a second-order under-damped processwith

a = 0.9006 and 0 = Tc/4. This process does not have most of the process' energy
concentrated at low-frequency.
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Fig. 4. 15. The normalized autocovariance of a second-order under-damped process with

(x = 0.9006 and 0 = n/4 is shown by: (a) plotting the autocovariance as a function of the
time difference, which is commonly used for showing the autocovariance of stationary
processes (b) plotting the magnitude of the autocovariance as a 2-1) image, which is useful
for observing how the autocovariance decays, (c) plotting only the positive values of the
autocovariance as a 2-D image, which is useful for observing the oscillations of the
process.
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(c) (d)

Fig. 4. 16. Plots of the magnitude of the normalized autocovariance of the L-level Haar
transform of a second-order under-damped process, where (a) L=I, (b) L=2, (c) L=3, (d)
L=4. The autocovariances have the same "finger" structure as the first-order Gauss-
Markov process.



4 Analyzing Processes Using the Wavelet Transform 78

X

(a) (b)

(c) (d)

Fig. 4. 17. Plots of the positive values of the normalized autocovariance of the L-level
Haar transform of a second-order under-damped process, where (a) L=l, (b) L=2, (c) L=3,
(d) L=4. Covariances that oscillate are depicted as "patterns" in the transformed
autocovariances.
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Fig. 4. 18. Plots of the correlation structure of the 100th transformed coefficient of a
second-order under-damped process. The transform being used is an L-level Haar
transform where: (a) L= 1, (b) L=2, (c) L=3, (d) L=4.
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Fig. 4. 19. Plots of the variances of the transformed coefficients that are obtained by taking
the L-level Haar transform of a second-order under-damped process, where (a) L=l, (b)
L=2, (c) L=3, (d) L=4.



4 Analyzing Processes Using the Wavelet Transform 81

H(z) - 12

H(z) 12

GW 12

GW 12

(a)

H(z) - 12

H(z) 12

G(z) 12

H(z)- 12

G(z) - 12

G(z) - 12

(b)

Fig. 4. 20. Block diagrams of the two-level (a) wavelet transform and (b) complete wave
packet transform.
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Fig. 4. 21. Plots of the magnitude of the normalized autocovariance of the L-level
complete wave packet transform, using Haar filters, of a second-order under-damped
process, where (a) L=l, (b) L=2, (c) L=3, (d) L=4. These autocovariances have 2 L_1
"fingers."
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Fig. 4. 22. Plots of the positive values of the normalized autocovariance of the L-level
complete wave packet transform, using Haar filters, of a second-order under-damped
process, where (a) L=I, (b) L=2, (c) L=3, (d) L==4. The autocovariances shown in (c) and
(d) do not have any covariances that oscillate.
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Fig. 4. 23. Plots of the correlation structure of the 100th transformed coefficient of a
second-order under-damped process. The transform being used is an of the L-level
complete wave packet transform where: (a) L=I, (b) L=2, (c) L=3, (d) L=4. The plots in
(c) and (d) show that the correlation does not oscillate.
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Fig. 4. 24. Plots of the variances of the transformed coefficients that are obtained by taking
the L-level complete wave packet transform, using Haar filters, of a second-order under-
damped process, where (a) L=1, (b) L=2, (c) L=3, (d) L=4,.
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4.4 FRACTIONAL BROWNIAN MOTIONS

Recently there has been a great deal of attention (17-20] focused on analyzing the

class of nonstationary processes known as fractional Brownian motions (fBm's) by using

the wavelet transform. In this section we perform optimal wavelet transforms on samples

of a fractional Brownian motion process (again optimality is defined by the criterion of

Chapter 3). We compare optimal wavelet transforms to wavelet transforms that use QMFs

that were derived by Daubechies for a sampled Brownian motion process. Further by

considering the class of fractional Brownian motions we investigate, in general, the ability

of the wavelet transform to achieve an approximate diagonalization of the normalized

autocovariance of the transformed coefficients.

'Me Mm denoted by BH(t), is a nonstationary zero-mean Gaussian random

function. It is defined as f 151:

0 t
B14t) (t-S)H-0.5 - (-S)H-0-5 dB(S) + (ts�i_0.5 dB(s

IIH+0.5) (4. 42)

where 0 < H < 1, B140) = 0, B(t) is ordinary Brownian motion, and the gamma function is

defined by:

r'(n) tn- 1 e-tdt
(4. 43)

which yields the recursion IF(n+1) = n F(n). The autocovariance of BH(t) is given by:
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ABjjS't) = VH (1�2H + 112H - lt_SFH) s, t E=- IR (4. 44)
2

where

-112-2H) cos(nH) 0 < H <.5
(2H- 1) 7cH .5 < H < 1

VH=
H--0.5

(4. 45)

We let XM be the column vector formed from N uniformly spaced samples of a

segment of BH(0 where (without loss of generality) the sampling interval is normalized to

unity, i.e.:

B14 1)
B142)

XM BIJ3)

_B14N)j (4.46)

Of course, the autocovariance of XM is:

AXMXN4St) = VH (I',fH + jq2H - jt-�M S, t e (1,2, . N) (4. 47)
2

Equation (4. 42) becomes ordinary Brownian motion when H--0.5 and the autocovariance
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of XM, in this case, can be expressed as:

AXMXast) = min(s, O (4. 48)

This autocovariance is shown in Fig. 4. 25.

The Haar transform of the samples of a segment of Brownian motion has a

particularly simple form. The covariances that result from a one-level Haar transform of

Brownian motion are obtained by substituting Equation (4. 48) into Equations (4. 6) to

(4. 8):

AXM_IXM_l(st) = 4 mi4s, t) - 1 - I 8(s-t)
2 (4. 49)

Aum_,Um_,(st) 5(s-t)
2 (4.50)

s > t

AXM_,Um_,(st) s = t
2

0 s < t (4. 51)

A key fact about these equations is that the wavelet coefficients Um-1 are white and have a

constant variance. In fact by considering higher-level Haar transforms we can show that

the wavelet coefficients are white and have a variance that obeys the following

relationship:

Va4u[m- lk]) = 4 Va4u[mj]) -
2 (4. 52)

When the sampling interval is not unity but T, Equation (4. 52) becomes:
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Va4u[m- 1,k]) = 4 Va4u[mjl) - iT (4
2 s . 53)

A more general statement of Equation (4. 53) (for continuous-time wavelet

transforms, i.e. in the limit when T, approaches 0) is presented in [201. Tewfik and Kim

show that the coefficients obtained from a continuous-time wavelet transform of fractional

Brownian motions are stationary and have the following variance:

Va4u(m- lk]) = 2(2H+I) Va4U[Mj]) (4.54)

In Fig. 4. 26 (a) to (d), we plot the magnitude of the normalized autocovariances

of a one to four-level Haar transform of Brownian motion. In Fig. 4. 26 (e), we show the

seven-level Haar transform of the sampled Brownian motion process. This is the highest

level transformation of this process that we can consider since XM is constructed from N

samples, where N = 27 . A representative cross-section of these plots is shown in Fig. 4. 27.

'Me variances for the one to four-level and seven-level Haar transformed coefficients are

shown in Fig. 4. 28 (a) to (d) and (e), respectively. The Haar transform has localized the

correlation between coefficients to "fingers" of the transformed autocovariance. The values

of the autocovariance of the transformed coefficients between these fingers is equal to

zero.

Also in [201, the authors show that a bound for the covariances of the

transformed wavelet coefficients, e.g. (AUM-lUM-11 AUM-1UM-21 ... ), decay more rapidly

as the number of vanishing moments of the wavelet increases. Recall that in order to

achieve an approximate Karhunen-Loeve expansion, we desire not only that the

covariances of the wavelet coefficients at any fixed level, e.g.
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AUM_,Um_,, AUM-2UM-21 ... )7 to decay rapidly but also that the covariances of wavelet

coefficients between levels, e.g. (AUM-lUM-21 AUM-IUM-31 ... 11 be as small as possible.

Since the QMFs with 2P-taps derived by Daubechies have the property that the

continuous-time wavelet has P vanishing moments, we will compare the autocovariance of

the wavelet transformed coefficients using QM[Fs constructed by Daubechies and QMFs

obtained by using the criterion from Chapter 3.

The normalized autocovariance of a three-level wavelet transform of samples of

ordinary Brownian motion is shown in Fig. 4. 29 (a) to (d) using optimal two-tap to eight-

tap QNIFs. A cross-section of these plots is shown in Fig. 4. 30. The variances for the

transformed coefficients are shown in Fig. 4. 3 1. We compare the normalized

autocovariance of samples of ordinary Brownian motion using the optimal eight-tap QNIFs

Fig. 4. 29 (d) to the normalized autocovariance of samples of ordinary Brownian motion

using eight-tap QMTs designed by Daubechies Fig. 4. 32 (a). The variances of the

coefficients for these two methods are shown in Fig. 4. 31 (d) and Fig. 4. 32 (b). Again we

consider a representative cross-section of these normalized autocovariances (that do not

exhibit edge effects) by showing the correlation structure of the 100th transformed

coefficient The correlation structure obtained when using both of these methods is shown

on a linear scale Fig. 4. 33 (a) and a semi-logarithmic scale Fig. 4. 33 (b).

From these plots we observe that QMFs designed by Daubechies do an excellent

job in minimizing the "fingers" of the transformed autocovariance; however, the

transformed autocovariance shows a substantial amount of correlation due to edge effects.

This should not be surprising since these QMFs have been designed for signals that do not

have finite support. Recall that our QMFs are derived by minimizing the cross-covariance,

in a mean-square sense, between the coarse approximation and the wavelet coefficients.

Thus we are minimizing both the "fingers" and the edge effects that are within this cross-
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covariance.

Note that these edge effects are much more prominent for Brownian motion than

the first-order Gauss-Markov model. This fact is due to the non-stationarity of Brownian

motion. Recall that in order to perform a K-point circular convolution, K-samples of a

segment of the process are periodically replicated. For stationary processes, this periodic

replication will not introduce a substantial amount of undesired edge effects since all of the

samples of the segment of the process have the same distribution. However, since Mm's

have variances that increase the coefficients near the edges of the segment will have a

substantial amount of undesired correlation. For example, the coefficient with the largest

variance will have a substantial amount of correlation with the coefficient that has the

smallest variance since, due to the periodic replication, these are adjoining coefficients.

We will concern ourselves with the issues that arise in minimizing the "fingers"

rather than the effects that are due to cyclic wrap-around. We therefore make the

observation that QMFs designed by Daubechies do a considerably better job than the filters

designed by the criterion from Chapter 3. However these observations do suggest a method

that we can use to modify the criterion from Chapter 3. Rather than minimizing the norm

of the cross-covariance between the coarse-approximation and the wavelet coefficients

I IAxM_1UM_1 I IF, we would minimize the norm of only the coefficients of the cross-

covariance (between the coarse-approximation and the wavelet coefficients) that do not

exhibit the effects due to cyclic wrap-around.

We now examine the autocovariance of the wavelet transform of samples of

processes that have an fBm parameter that is either greater than or less than the fBm

parameter that represents Brownian motion (H--0.5). In Fig. 4. 34 we show the

autocovariance of the fBm when H--0.25. The autocovariance of the full seven-level Haar

transform of this process is shown in Fig. 4. 35 (a). A cross-section of Fig. 4. 35 (a) is
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shown in Fig. 4. 35 (b). The variances of the transformed coefficients are shown in

Fig. 4. 35 (c). In Fig. 4. 36 we show the autocovariance of the fBrn when H--0.75. And

again we show the full seven-level Haar transform of the Mm when H--0.75 in Fig. 4. 37

(a). A cross-section of Fig. 4. 37 (a) is shown in Fig. 4. 37 (b). The variances of the

transformed coefficients are shown in Fig. 4. 37 (c).

We observe from these plots that, even though the autocovariances of the Haar

transform of these fBm's all have the same finger structure, only Brownian motion has

exactly zero correlation in between these fingers. We also observe from these plots that the

magnitude of the bands of cross-correlation between coefficients at different levels, i.e. the

fingers, increase as the fBm parameter H increases. Therefore fBm's with smaller H

parameters, e.g. 0 < H < 0.5, seem to be especially well-suited to an approximate

Karhunen-Loeve expansion using the wavelet transform.
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Fig. 4. 25. The autocovariance of samples of ordinary Brownian motion shown as a 2-D
imaze.
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Fig. 4. 26. Plots of the magnitude of the normalized autocovariance of the L-level Haar
transform of samples of Brownian motion, where (a) L=l, (b) L=2, (c) L--3, (d) L=4, (e)
L=7 (largest level possible). The correlation between fingers is equal to zero.
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Fig. 4. 27. Plots of the correlation structure of the 100th =sformed coefficient of
Brownian motion. 'Me transform being used is an of the L-level Haar transform where: (a)
L=1, M L--2, (c) L=3, (d) L--4, (e) L=7 (largest level possible).
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Fig. 4. 28. Plots of the variances of the transformed coefficients that are obtained by taking
the L-level Haar transform of samples of Brownian motion, where (a) L=l, (b) L=2, (c)
L=3, (d) L=4, (e) L=7 (largest level possible). 'Me plots show that the wavelet coefficients
at any level are stationary.
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Fig. 4. 29. Plots of the magnitude of the normalized autocovariance of the three-level
wavelet transform of samples of Brownian motion using QMFs that were derived by the
optimality criterion from Chapter 3. The QMFs have support equaling W, where: (a) W=2,
(b) W=4, (c) W=6, (d) W=8.
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Fig. 4. 30. Plots of the correlation structure of the 100th transformed coefficient of
Brownian motion. The transform being used is a three-level wavelet transform using
optimal QMFS with support W, where: (a) W=2, (b) W=4, (c) W=6, (d) W=8.
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Fig. 4. 31. Plots of the variances of the coefficients obtained by taking a three-level
wavelet transform of samples of Brownian motion. The QMFs have support equaling W,
where: (a) W=2, (b) W=4, (c) W=6, (d) W=8.
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Fig. 4. 32. Plot (a) shows the normalized autocovariance of the three-level wavelet
transfon-n of samples of Brownian motion using eight-tap QMFs. Plot (b) shows the
variances of these coefficients. The plot shows that edge effects are much more significant
using QM[Fs derived by Daubechies.
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Fig. 4. 33. Plots of a representative cross-section (that does not exhibit edge effects) of the
normalized autocovariance of the three-level wavelet transform of samples of Brownian
motion using eight-tap QMFs. The plots show the correlation structure of the 100th
wavelet transformed coefficient using QMFs derived by the optimality criterion from
Chapter 3 (solid line) and QMFs derived by Daubechies (dashed line) where the
correlation (y-axis) is plotted on: (a) linear scale, (b) logarithmic scale. The QMFs derived
by Daubechies did better for the correlation structure of coefficients that do not exhibit
edge effects.
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Fig. 4. 34. Plot of the autocovariance of samples of an fBm process with parameter
H=0.25.
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Fig. 4. 35. (a) Plot of the autocovariance of the full (seven-level) Haar transform of an
fBm process with parameter H--0.25. Plot (b) shows a cross-section of the plot in (a). Plot
(c) shows the variances of the transformed coefficients.
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Fig. 4. 36. Plot of the autocovariance of samples of an Mm process with parameter
H=0.75.
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Fig. 4. 37. (a) Plot of the autocovariance of the full (seven-level) Haar transform Of an
fBm process with parameter H--0.75. Plot (b) shows a cross-section of the plot in (a). Plot
(c) shows the variances of the transformed coefficients.
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CHAPTER 5

MODELING PROCESSES
USING THE WAVELET TRANSFORM

5.1 MODELING PROCESSES

As we have discussed, there are very efficient signal processing algorithms that are

based on the assumption that the wavelet transform coefficients of the samples of the

process are uncorrelated. This in fact provided the motivation for our investigation of

methods to achieve maximal decorrelation via the wavelet transform. In this chapter we

take another look at these methods by examining the implications on the modeling of

processes by assuming that the wavelet transform coefficients are indeed white. We

compare the statistics of the samples of a given process with those of a process that

approximates the given (or true) process by neglecting the correlation between wavelet

coefficients. Specifically, the autocovariance of the approximated process is obtained, in a

manner to be made precise, by transforming the autocovariance of the samples of the

process into the wavelet transform domain, the transformed autocovariance is then

approximated by assuming whiteness among coefficients, and then the transformed

autocovariance is transformed back to the domain of the original process. First, we win

compare the approximation of the process to the true process by showing the 2-D images

of the autocovariance of these processes. Second, we will be able to quantify how close the

approximated process is to the true process by using the Bhattacharyya distance [281. Third

we will show that sample paths generated from the approximated processes become

increasingly similar to the true process as the support of the QMFs increase.

We investigate the effect of making such an approximation by using the following
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analysis. We collect the samples of a process into a vector and denote the vector as XM.

We again denote the autocovariance of this process as AXMXM and the autocovariance of

the wavelet transform of XM as Aymym. Of course the autocovariance of XM and the

autocovariance of the wavelet transform of XM are related via the following equation:

TAXMXM =T�jAymymTm (5. 1)

'Me autocovariance of the wavelet transformed coefficients can be represented as the sum

of two terms:

Aymym = Dymym + Fymym (5. 2)

where the first term Dymym is constructed from the diagonal elements of Aymy" i.e. the

variances of the transformed coefficients, and all off-diagonal elements are set to zero. The

second term Fymym is constructed from the off-diagonal elements of Aymym with the

diagonal elements being set to zero. Of course using this decomposition, the elements that

constitute the "fingers" of the transformed autocovariance are contained in the matrix

Fymym.

Substituting Equation (5. 2) into Equation (5. 1) we obtain the following

relationship:

AXMXM = T + TTWYMYMTM TUyMyMTM (5. 3)

In order to refer to these two terms in a more concise manner, we let:

TAm = TMDymymTm (5. 4)

TEM = TmFymymTm (5. 5)

'Me matrix Am is the autocovariance of the Karhunen-Loeve approximation using the
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wavelet transform. The matrix EM represents the error in the approximation or, in other

words, the contribution of AXMXM that we would ideally like to be equal to zero. In order

to investigate how-well Am approximates Axmx�,t we examine the information that is lost

when we make this approximation, i.e. Em.

For simplicity, in our analysis and in order to isolate the key aspects of the

approximation errors, let us examine a one-level wavelet transform, i.e. where we

transform Xm to ( Xm-i, Um-i I and then approximate the statistical description at this

stage. Using the method we have described, our method for approximating processes using

a one-level wavelet transform would be to only keep the variances of the elements of XM-1

and UM-1, i.e. to force the covariance of the vector YM (which is formed from the vectors

XM-1 and UM-1) to be diagonal. As we have seen in Chapter 4, this would seem to be a

reasonable approximation for UM-1 since Aum-lum-1 is typically nearly diagonal. However,

we also know from Chapter 4 that it is typically unreasonable to approximate AxMjxMj

by a diagonal matrix. It makes more sense to keep the entire matrix Axm_lxm-l and

approximate AUM_juMj as a diagonal matrix or to perform a higher-level transform that

further decomposes and whitens XMj. In the following analysis, we will show that,

whether we approximate Axm_lxm_l as a diagonal matrix or keep the entire matrix, the

autocovariance of the approximation of XM will have a periodic structure along its

diagonals.

To begin this analysis let us consider transforming the covariance AxMjuMj back

into the domain of the original signal. This transformed covariance will be one of the terms
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that makes up the er-ror in the approximation, i.e. one term of EM, and as we have argued in

the preceding paragraph, this term and its transpose should be the dominant portion of EM

(since we will keep all of Axm_lxm_,, and AUM_1UM_1 is nearly diagonal). Specifically, this

transformed covariance is:

A7X HT I AXM -1

M_,Um_l M- _1uM_IGM (5. 6)

where Rm-1 and Um-1 are the projections of XM-I and UM-1 back into the domain of the

original signal. Note that ARM-IUM-1 should not be interpreted as a covariance matrix since

this matrix is not positive definite; however, Xx-M '_,am-, is one of several terms that

constitute Em. The sequences Xm-I and Um-1 can be obtained by using the operators in

Equation (2. 13); however, an equivalent way of obtaining Xm-I and UM-1 is more useful

for our analysis:

5�[M-l's] h[i]x[M-l'S+-1-'
2

ic= QS (5. 7)

il[M-l't] gulu[M-1,

je Qt

where QS = even integers if s is even (5. 9)
odd integers if s is odd

These equations yield the following relationship between ARM-1UM-1 and AxM_1uM-I:
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A7XMjUM h[ijgU]AXM_juM

(s, t) _,(S+' t + J)
2 ' 2

ir= Qs ic- Qt (5.10)

We have shown in Chapter 4 that if XM is stationary then Axm_lum_l will depend only

upon the time difference. In this case, Equation (5. 10) becomes:

Y t+i-'

A7XM_jUM_j(s, t) = . Y, h(i]gU]AXM_jUM_j S 2 i)

ie Qs jE Qt (5.11)

Since the values that we are summing over in Equation (5. 1 1) depend upon s and t,

AxRmj�mj is not strictly a function of the time difference s-t- However A7xMj'GMj does

have a very special structure. Specifically, let us consider the diagonals of ARM-1-um-1, i-e-

when s - t is a constant. We observe that the diagonals of the matrix are periodic along the

diagonal with period two. This fact becomes clear by considering two different alternatives

when s - t is a constant. 'Me first alternative is that s - t is even: in this case, the summation

in Equation (5. 1 1) would be summed over all even integers i and i or all odd integers i and

j. 'Me important point being that along the diagonal there are only two possible values and

these values alternate along the diagonal. The second alternative is that s - t is odd: in this

case, the summation is over all even integers i and all odd integers j or all odd integers i

and all even integers j. And again the two possible values alternate along any given

diagonal.

'Me analysis using Equation (5. 1 1) is sufficient to show that the diagonals of EM

must be periodic with period two. This statement is shown by realizing that for a one-level

transform EM is the sum of four terms. 'Me first and second of these term are ARM-1UM-1

and its transpose, which we know to have this periodic structure. The third term is
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constructed from A-um-1UM-1 with the main diagonal of AXm_1Xm_1 set to zero. Thus the

computation of AU-M-1UM-1 is analogous to the computation of ARM-1UM-1. 'Me only

differences are that h[n] is replaced by g[n] and a different matrix that also has a Toeplitz;

structure is used instead of Axm_lum_,, i.e. AxMjxMj with its main diagonal set to zero.

Thus this third term of Em must have the same periodic structure as the first two terms. If

the entire matrix AxMjxMj is kept in the approximation of XM then there would not be a

fourth term; however, if only the diagonal of Axm_lxm_l is kept then the fourth term would

be constructed in a manner analogous to the construction of the third term. Thus EM will

have the afore mentioned periodic structure, and since AXMXM is a Toeplitz matrix the

approximation AM will also have this periodic structure.

There is also a periodic structure in Am and EM when we carry out the

approximation to more than a single level. Specifically, the approximation Am of a

stationary process when using an L-level wavelet transform will be periodic along the

diagonals with the period being equal to 2L. (Of course there does not necessarily have to

Lbe any periodicity along the diagonals if the period, 2 , was equal to the length of the

segment.) Due to this periodicity, we believe that processes that are cyclostationary (381 are

especially well-suited to this method of modeling, since cyclostationary processes have

autocovariances with periodic diagonals. Specifically, the autocovariance of a

cyclostationary process has the property [381:

AXX(i + nT, j + nT) = AXX(i, j) (5. 12)

where n is any integer and T is the period.

In this chapter, we use the Bhattacharyya distance as a means of measuring how
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close the approximation is to the true sampled process. The Bhattacharyya distance allows

us to determine an upper bound on the probability of error of deciding whether a sample

path originated from the true process or its approximation.

The Bhattacharyya distance is defined as [28]:

B =-In [Pl(Z)P2(Z)P2dZ (5. 13)

where pl(z) and P2(Z) are the probability density functions of the two random vectors

under consideration. Using the assumptions that the two random vectors under

consideration have equal means, unequal covariances (i.e. the covariances be Al and AD,

and the random vectors consist of Gaussian random variables then Equation (5. 13)

becomes (281:

B In Al + A2 1 In �,A�
2 H2 1-4 (5. 14)

where represents the determinant of the argument. An upper bound on the probability of

error of deciding whether a sample path originated from two equally likely processes is

obtained via the Bhattacharyya distance [281:

P, < I e-B
_ 2 (5. 15)

Also in this chapter, we briefly consider the situation in which the process in

question is observed in the presence of additive white Gaussian noise. Specifically, we

consider observations of the form:

XM = XM + Wm (5. 16)

where XM is the vector of samples of either a first-order Gauss-Markov process (Section

5.2) or an fBm (Section 5.3), and Wm denotes the vector of samples of white Gaussian
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noise that is independent of X M. The variance of the samples of Wm are chosen so that the

Signal-To-Noise ratio (SNR) of X M to Wm can be controlled and varied. In particular, we

consider SNR values of infinity (no noise), five, two, and one, where the SNR of the ith

coefficient of Xm is calculated as the standard deviation of the ith coefficient of Xm

divided by the standard deviation of the ith coefficient of Wm.
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5.2 MODELING THE FIRST-ORDER
GAUSS-MARKOV PROCESS

Recall the first-order Gauss-Markov process that we considered in Chapter 4.

Specifically, the process is of the form:

x(n] = ax(n- 1 ] + w[n] (5. 17)

We again collect the samples of this process into a vector denoted by XM. The

autocovariance of this process when oc is equal to 0.9006 is shown as a 2-D image in

Fig. 4. 1 (c).

We achieve better approximations of the true process by using higher-level wavelet

transforms. Recall that the L-level wavelet transform of Xm yields the transformed

coefficients (UM-1, UM-21 ... I UM-L' XM-L). As we have seen in the preceding chapter, the

covariance of X M-L typically exhibits a great deal of correlation; that is the sequence X M-L

is a coarse approximation of the original process, and thus X is typically not well-M-L

approximated by a white sequence. Of course by increasing L the number of elements, i.e.

the support, of XM-L will decrease which will typically reduce the error term, Em. Thus we

would expect that the best approximate Karhunen-Loeve expansion of a process using the

wavelet transform will consist of using an L-level wavelet transform where L is as large as

possible. Ideally we would like to choose the maximum value of L, i.e. L= L1092(N) J,

where N is the length of the segment andL- J represents the greatest integer that is less than

or equal to the argument; however, a problem arises when L approaches this value and the

support of the QMFs are greater than two. Recall that a K-point circular convolution is

performed at the mth level of the wavelet transform where K = N/2m-m+'. The problem

arises as to decide how to perform the convolution step when the support of the QMFs, W,
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is greater than K. We avoid this issue by simply choosing the level of the wavelet

transform, L, such that W is always less than or equal to K. 'Mat is we choose L via the

equation:

(2N
L= L1092 W (5. 18)

In Fig. 5. 1 (a) to (d), we show the autocovariances of the approximation of the

first-order Gauss-Markov process obtained from a Karhunen-Loeve expansion using the

wavelet transform, i.e. Am, with QMFs that were derived by Daubechies and have support

ranging from two to eight-taps. The number of levels of the wavelet transform that were

used in each of these plots was determined using Equation (5. 18). That is since N=128, we

used a seven-level transform for two-tap QMFs, a six-level transform for four-tap QMFs,

and a five-level transform for both six-tap and eight-tap QMEFs. The errors in these

approximations, EM, is shown in Fig. 5. 2 (a) to (d).

As we can see from the 2-D images, the main difference between the

autocovariance of the original Gauss-Markov process and the autocovariance of the

approximation is the periodicity along the diagonals. We examine the periodicity along the

main diagonal by observing the plots of the variances of the approximations, Fig. 5. 3 (a)

to (d). Note from these plots that the variances are periodic and, in some cases, the period

Lis even smailer than 2 .

We use the Bhattacharyya distance to quantify how close the sampled Gauss-

Markov process is to the approximation of the Gauss-Markov process when using the

wavelet transform. In Fig. 5. 4 (a) we show the Bhattacharyya distance, calculated by using

Equation (5. 14), between the Gauss-Markov process and the approximation of the Gauss-

Markov process when using the wavelet transform. In this plot the distance is'shown as the

support of the QMFs increase from two to eight-taps. We also consider, in this plot, that

the process being modeled is not simply a first-order Gauss-Markov process but a first-
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order Gauss-Markov process in the presence of additive white Gaussian noise. The

Bhattacharyya distance is shown when the variance of the samples of Wm are chosen so

that the Signal-To-Noise ratio (SNR) of XM to Wm is five, two, and one. Equation (5. 15)

is used to determine an upper bound on the probability of errox of deciding whether a

sample path originated from the first-order Gauss-Markov process in the presence of white

noise or from its approximation. This probability of error is shown in Fig. 5. 4 (b).

We observe, as expected, that the Bhattacharyya distance decreases as the support

of the QMFs increase, i.e. the Gauss-Markov process and the approximation of the Gauss-

Markov process becomes more similar as the support of the QMFs increase. Also, as

expected, the upper bound on the probability of eiroi of deciding whether a sample path

originated from the Gauss-Markov process or the approximation of the Gauss-Markov

process increases as the support of the QN[Fs increase. That is since the Gauss-Markov

process and the approximation of the Gauss-Markov process are becoming more similar

(as the support of the QMFs increase), the ability of determining which process the sample

path originated from is becoming more difficult.

To provide a point of comparison it is useful to relate the Bhattacharyya distance

between the true and the approximated process to the value of the Gauss-Markov

parameter that corresponds to a Gauss-Markov process that is at an equivalent distance

from the true process. Specifically, consider Fig. 5. 5 where we show the Bhattacharyya

distances between Gauss-Markov processes with various parameters a and the true Gauss-

Markov process with parameter (x = 0.9006. Suppose that the approximated process is at a

distance d from the true process. We can use Fig. 5. 5 to find the parameter of the Gauss-

Markov process that is a distance d from the true process. In Fig. 5. 6 (a) we plot the

equivalent (in the sense that the distance between the true and approximated process is the

same as the distance between the true process and another Gauss-Markov process) Gauss-

Markov parameter of the approximated process when we use the portion of the mapping
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for cc < 0.9006. In Fig. 5. 6 (b), we show the same plot but using the portion of the

mapping for a > 0.9006.

From Fig. 5. 6, we observe that the equivalent parameter of the Gauss-Markov

process is very close to the true process. For example consider approximating a Gauss-

Markov process with parameter (x = 0.9006 using a wavelet transform with eight-tap

QMFs when the SNR equals one. 'Me distance between the approximation and the true

process is the same as the distance between a Gauss-Markov process with parameter

cc = 0.9006 and a Gauss-Markov process with either a parameter cc = 0.882 or a parameter

cc = 0.916. In many applications simply trying to estimate the Gauss-Markov parameter

will result in errors of this amount implying that this difference is not particularly

significant.

Finally, in Fig. 5. 8 (a) to (d) we show that the sample paths generated from the

approximated processes become increasingly similar to a sample path generated from the

true process, Fig. 5. 7, as the support of the QMFs increase. The sample path in Fig. 5. 7

was generated by collecting 128 identically distributed samples of white noise into a vector

Wm and then multiplying this vector by the square root of the autocovariance of a first-

order Gauss-Markov process. That is

1/2
XM = AXMXMWm (5. 19)

1/2
where AxMXM was obtained by a Cholesky factorization [351 of Axmx�+ Similarly, the

sample paths generated from the approximated processes were obtained by replacing

1/2 1/2
AXMXM in Equation (5. 19) with Am and using the same samples of white noise that were

used in the generation of the Gauss-Markov sample path.
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Fig. 5. 1. Plots of Am, the autocovariances of the approximations of the first-order Gauss-
Markov process, when using QMFs that have support equaling W, where: (a) W=2, (b)
W=4, (c) W=6, (d) W=8. The approximations are periodic along the diagonal illustrating
that the modeled process is cyclostationary.
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Fig. 5. 2. Plots of Em, the errors of the approximations of the fmit-order Gauss-MarkOv
process, when using QMFs that have support equaling W, where: (a) W=2, (b) W--4, (c)
W=6, (d) W=8. 'Me errors are periodic along the diagonals.
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Fig. 5. 3. Plots of the variances of the approximated coefficients of the first-order Gauss-
Markov process, when using QM.Fs that have support equaling W, where: (a) W=2, (b)
W=4, (c) W=6, (d) W=8. The plots show that the variances are periodic and, in some

Lcases, the period is even smaller then 2
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Fig. 5. 4. (a) Plot of the Bhattacharyya distance between the first-order Gauss-Markov
process and its approximation using the wavelet transform for SNR values of infinity (-),

five (... ), two (--- ), and one (- --- -). (b) Plot of the upper bound on the probability of error
of deciding whether a sample path originated from the first-order Gauss-Markov process
or its approximation for SNR values of infinity (-), five ( ... ), two (--- ), and one (-- - --).
The plots quantify how the approximation improves as the support of the QMFs increase.
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Fig. 5. 5. The x-axis shows the parameter for the Gauss-Markov process that is at the
distance (as shown on the y-axis) from the Gauss-Markov process with parameter
(x = 0.9006.
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Fig. 5. 6. These plots show the Bhattacharyya distance, after undergoing the
transformation shown in Fig. 5. 5, between the first-order Gauss-Markov process and its
approximation for SNR values of infinity (-), five (- ), two ( --- ), and one (- --- -). We used

the portion of the plot shown in Fig. 5. 5 for a < 0.9006 to obtain plot (a) and the portion
of the plot for a > 0.9006 to obtain plot (b).
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Fig. 5. 7. Plot of a sample path of the first-order Gauss-Markov process.
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E2. 5. 8. Plot of sample paths of the approximations of the first-order Gauss-Markov
process when using QMFs that have support equaling W, where: (a) W=2, (b) W=4, (c)
W=6, (d) W=8. The plots show that the sample paths are becoming more similar to the
Gauss-Markov process as the support of the QMFs increase.
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5.3 MODELING FRACTIONAL BROWNIAN MOTIONS

In this section we examine modeling a particular fBm, ordinary Brownian motion,

by using the wavelet transform. That is we consider modeling the process described by

Equation (4. 42) when H=O. 5.

The 2-D image of the autocovariance of samples of ordinary Brownian motion is

shown in Fig. 4. 25. We compare this image with the 2-D images of Am in Fig. 5. 9, where

Am is the autocovariance of the approximation of samples of ordinary Brownian motion

that are obtained when using wavelet transforms that have QMFs with support ranging

from two to eight-taps. The level of the wavelet transform, L, that is being used is obtained

from Equation (5. 18). 'Me errors, EM, are shown in Fig. 5. 10.

We again use the Bhattacharyya distance as a means to quantify how close the

autocovariance of our approximation of Brownian motion, Am, is to the autocovariance of

the true Brownian motion process. In Fig. 5. 11 (a), we show the Bhattacharyya distance

when using an SNR of infinity, five, two, and one. An upper bound on the probability of

error of deciding whether a sample path originated from the Brownian motion process or

the approximation of the Brownian motion process is shown in Fig. 5. 11 (b) using the

same SNR values.

From these plots we observe that there is a significant difference between the

approximation and the true process. Comparing the plot of the Bhattacharyya distance for

Brownian motion Fig. 5. 11 (a) to the Bhattacharyya distance for the Gauss-Markov

process Fig. 5. 4 (a), we observe that the distances between Brownian motion and its

approximations are greater than twice the distances that were obtained between the first-

order Gauss Markov process and its approximations. The fact that these distances have

more than doubled imply that the probability of error for Brownian motion is less than the

square of the probability of error that was obtained for the Gauss-Markov process (cf.
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Fig. 5. 4 (b) and Fig. 5. 11 (b)). Therefore, we come to the conclusion that the fingers of

the transformed autocovariance should not be neglected in modeling ordinary Brownian

motion.

Although the technique we have described does a poor job at modeling fBm's, we

believe that certain processes (that may be more representative of real phenomena) are

well-modeled by using the wavelet transform. Specifically, Womell [181 considers a related

class of models that generate "almost" I/f processes. A 1/f process is defined as a process

whose empirical power spectrum S(w) is proportional to

S(w) - 1
14 (5. 20)

where 7 is some parameter in the range 0 < 7 < 2. Note that these processes are not

stationary since the process has infinite variance. For the range 1 < 7 < 2, fBm's are often

thought of as I/f - like processes, where the parameter H is

H -
2 (5. 21)

However, fBm's have the undesirable and unrealistic property of having growing variances

with time. Consequently it is of considerable interest to develop models with less drastic

nonstationary features. In [181, Wornell develops models of almost I/f processes by

assuming that the coefficients in the wavelet transform domain are uncorrelated. The

wavelet transform coefficients U are modeled as being stationary at every level with theM

following variance

Var(Um 'yVar(Uml

_I) =2 (5. 22)

Note that this model is exactly of the type that we have described in this thesis.

Specifically, given the autocovariance of a 1/f process, the method that we have described
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will find both the optimal wavelet transform and the correct value of the variances of the

corresponding wavelet coefficients. For the processes described in [181 the coefficients

would be exactly decorrelated and the coefficients would have variances satisfying

Equation (5. 22).
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Fig. 5. 9. Plots of Am, the autocovariances of the approximations of samples of Brownian
motion, when using QWs that have support equaling W. where: (a) W=2, (b) W--4, (c)
W=6, (d) W=8. The plots show that approximations do a poor job of modeling ordinary
Brownian motion.
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Fig. 5. 10. Plots of EM, the errors of the approximations of samples of Brownian motion,
when using QMFs that have support equaling W, where: (a) W=2, (b) W--4, (c) W=6, (d)
W=8.
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Fig. 5. 11. (a) Plot of the Bhattacharyya distance between the samples of Brownian
motion and its approximation using the wavelet transform for SNR values of infinity (-),

five (--- ), two ( --- ), and one (- -- -). (b) Plot of the upper bound on the probability of error
of deciding whether a sample path originated from the samples of Brownian motion or its
approximation for SNR values of infinity (-), five (--- ), two ( --- ), and one (-- -- -). The
plots show that the approximations are not doing a good job of modeling Brownian
motion.
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CHAPTER 6

CONCLUSION

In this thesis we have investigated the use of the wavelet transform for the scale-to-

scale decorrelation of stochastic processes. We have seen that we can determine the

optimal wavelet transform in a level-by-level procedure. Specifically, at each level we

obtain the QMFs that minimizes the correlation between the coarse approximation and the

wavelet coefficients at that level. We obtain the se QMFs by using a parameterization that

stays within the set of perfect reconstruction filters. The construction of the

parameterization led us to a natural way of performing the minimization. Specifically, we

solved the problem using QMFs with smaller support to allow these solutions to guide us

in solving the more complex problems that use QWs with larger support.

We investigated the ability, in general, for the wavelet transform to achieve a

Karhunen-Loeve expansion by considering several classes of processes. The first such

class of processes that we examined were stationary processes. We examined the statistical

properties of the transformed coefficients when the process being analyzed was stationary.

We saw that the covariance between the coarse approximation and the wavelet coefficients

at any particular level were also stationary. Although the covariance of the wavelet

coefficients at different levels were not simply a function of the time-difference, the

covariance did have a very special structure. Specifically, the cross-covariance is only a

function of the time-difference after the difference in sampling rates are taken into

consideration. This special structure leads us to believe that efficient algorithms can be

created that will model processes without assuming that the "fingers" in the transformed

autocovariance are zero.

We then examined two particular classes of stationary processes: the first-order



6 Conclusion 133

Gauss-Markov process and a second-order under-damped process. By using images to

depict the transformed autocovariances of these processes we showed that the wavelet

transform is more appropriate for modeling the first-order Gauss-Markov process than the

second-order under-damped process. The reason for this was that the first-order Gauss-

Markov process is an example of a process whose power spectrum is concentrated at low-

frequency. The wavelet transform does a good job of modeling processes of this type

because the transform "zooms" into the low-frequency components of the signal. We have

also seen that the wave packet transform is more appropriate for the second-order under-

damped process since the wave packet transform can be chosen to "zoom" into the desired

frequency range.

We also examined using the wavelet transform to model a class of nonstationary

processes known as fractional Brownian motions. The autocovariance of the Haar

transform of ordinary Brownian motion has a very special structure. The transformed

autocovariance is comprised of "fingers" where the values between the "fingers" is exactly

zero. When we used QMFs that have support greater than two, we saw that edge effects

(due to windowing and cyclic convolution) were quite substantial in the transformed

autocovariance. The edge effects were more prominent for Brownian motion than the first-

order Gauss-Markov process because the variances of Brownian motion increase over

time. 'Merefore, due to the fact that we are using circular convolution, the coefficients with

the largest and smallest variances will exhibit a substantial degree of correlation.

Finally, we considered approximating processes by assuming that the transformed

coefficients were indeed white. We compared the approximation of processes to the

original processes by showing images of the approximated autocovariances. We used the

Bhattacharyya distance to quantify the ability of being able to use the wavelet transform to

approximate processes. Our results showed that the first-order Gauss-Markov process is

well-approximated by assuming that the transformed coefficients are white; however, we
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also observed that when modeling Brownian motion with the wavelet transform that the

"fingers" can not be neglected, although there are other, more realistic models for 1/f

processes where the "fingers" are either negligible or identically zero.

The Bhattacharyya distance can also be used to determine the support of the QMF

that will be used in the transform. Specifically, when given a design constraint (such as the

desire that the approximation is to be within a certain distance of the true process) the

figures we have presented can be used to determine the support of the QMF that should be

used to achieve this desired performance level.

When we compared our results of determining the appropriate QWs with the

QM[Fs that was derived by Daubechies, we were surprised to find out that the QM[Fs

derived by Daubechies yielded results (on several occasions) that were superior to ours.

We attributed this problem to two difficulties with our algorithm. First, minimizing the

entire cross-covariance matrix between the coarse approximation and the wavelet

coefficients at a particular level implies that attention is being paid to terms distorted by

edge effects. Since other methods (such as windowing) can be used to minimize the edge

effects, we might alternatively consider minimizing the norm of that portion of the cross-

covariance matrix that is not subject to edge effects. Secondly, the efficient method that we

devised to search the local minima for the global minimum results in a solution that is a

local minimum (typically a very good one) but may not be the desired global minimum.

In order to improve our results, we investigated improving the performance of our

algorithm by making two modifications to correct for these difficulties. The first

modification is to minimize the norm of the portion of the cross-covariance Axmu. that

does not include the elements of the matrix that exhibit edge effects. Specifically, this

cross-covariance AXmU. will have W/2 - I rows and W/2 - 1 columns that do exhibit edge

effects, where W is the support of the QM[Fs. Depending upon the index of the first
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coefficient of the signal being analyzed, these W/2 - 1 rows (or columns) may be either the

first or the last rows (or columns) of the cross-covariance or a combination of both.

Wherever these rows (or columns) are located, the optimization procedure is improved by

ignoring them in the i i ization. As we have seen, the rows that exhibit edge effects are

typically much more prominent than the columns since the rows that exhibit edge effects

are due to cyclic wrap-around of Xm while the columns that exhibit edge effects are due to

cyclic wrap-around of Um. 'Mat is consider the elements Ax,,,um(s, 0 of the matrix Ax,,,u,,,

when the coefficient u[M, tI does not exhibit edge effects and the coefficient x[m, SI does

exhibit edge effects, in this case, the row of the matrix AXmU,,, that corresponds to x[M, SI

will be corrupted by edge effects. The second modification would be to use a better search

technique to locate the global minimum: that is make a better choice for the initial guess to

obtain smaller local minima. In some further tests we used the QMEFs derived by

Daubechies as the initial guesses for our minimization. Thesc experiments led to superior

decorrelation performance indicating, in particular, that the QMEFs derived by Daubechies

are not local minima of our criterion. Thus we can obtain QM[Fs that will do at least as well

as our previous solution and better than the QMFs derived by Daubechies.

In certain applications the efficiency of the optimization is not as important as

finding the true global minimum. We obtain the true global minimum of the norm of the

cross-covariance AxMjuMj, where Xm is the first-order Gauss-Markov process described

in Section 4.2, by comparing the local minima that result fi-om many initial guesses. Our

set of initial guesses are obtained by simply taking all possible combinations of a uniform

sampling of each unknown parameter. In Fig. 6. 1 (a), we show the normalized

autocovariance of the three-level transformed coefficients of the first-order Gauss-Markov

process using the eight-tap QMFs that correspond to the global minimum. The variances of
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these transformed coefficients are shown in Fig. 6. 1 (b). The normalized autocovariance

that we show in Fig. 6. 1 can be compared to the normalized autocovariance shown in Fig.

4. 12, where the autocovariance of the same transformed coefficients are shown but when

using QMFs derived by Daubechies. In Fig. 6. 2, we show a comparison between Fig. 6. 1

and Fig. 4. 12 by showing the correlation structure of the 100th twsformed coefficient.

We also compare the particular values of h[n] that we obtained in this experiment to the

one derived by Daubechies by plotting the impulse responses obtained from both of these

methods in the time domain Fig. 6. 3 (a) and in the frequency domain Fig. 6. 3 (b).

From these plots we observe that our solution yields better results than the QMFs

derived by Daubechies for the first-order Gauss-Markov process. Since our algorithm is

based upon the particular signal's characteristics, we believe that our algorithm can obtain

even more dramatic results when applied to other processes.
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Fig. 6. 1. Plot (a) is the normalized autocovariance of the three-level wavelet transform of
the first-order Gauss-Markov process using eight-tap QMFs obtained by modifying the
optimization algorithm presented in Chapter 3. Plot (b) shows the variances of the
transformed coefficients.
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Fig. 6. 2. Cross-sections of the normalized autocovariance of the one-level wavelet
transform of the first-order Gauss-Markov process using eight-tap QNTs derived by
modifying the optimization algorithm presented in Chapter 3 (solid line) and derived by
Daubechies (dashed line). 'Me correlation (y-axis) is plotted on: (a) linear scale, N
logarithmic scale.
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Fig. 6. 3. Plot of the impulse responses h[n] for the filters that are used in the optimal
three-level wavelet transform of the first-order Gauss-Markov process, where optimality is
defined by the modified optimization algorithm of Chapter I 'Me optimal filters are
represented by: ( --- ) for the first level, (-- --- ) for the second level, and (--- ) for the third
level. These filters are compared to the eight-tap filter derived by Daubechies (-). 'Me
impulse responses are shown in the (a) time domain and (b) frequency domain.
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APPENDIX A

PERIODICITY PROPERTIES OF

THE OBJEC FUNCTION

The purpose of this Appendix is to prove two statements about the periodicity of

the objective function from Equation (3. 14):

0) = I IH(O) Ax GT(O � fF (A. 1)

Recall that 0 0 1, 0 2,- 0 L I E IRL 1 and let ej r= IRL be the sequence composed of all

zeros except for a one in the jth position. For example 0 + 7tej would be expressed as

0 + icej = [(I, 02, (j+7t, OL).

We will show the following two properties regarding f(O):

(1) That f(O) has a periodicity of n in the Oj variable for any j.

f(O) = f(O + nei) (A. 2)

(2) 'Mat f(O) has a periodicity of n/2 in the OL variable.

f(O) = f(O + n/2eL) (A. 3)
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To prove (1) we first show the following equations are true using induction in L.

h L[n] hL [n]
0 0 + Nei (A. 4)

9 L[n] gL [n]
0 0 + 7rei (A. 5)

Recall that the superscript on the filters are used to denote the number of elements in 0.

To prove the above statements by induction we must first prove them for the case L=l.

For the case L-- I we can express 6 + nej as simply 0 1 + x. We prove (A. 4) and (A. 5)

for L= 1 by simply replacing 0 1 + 7t for 0 1 in Equations (3. 15) and (3. 16). Using wen-

known trigonometric identities it is trivial to show that the L=I case is satisfied.

To prove the general case we will assume:

h L-1 [n] hL-1 [n]
0 0 + 7rei (A. 6)

L-I L-1
g( [n] 90 + nej [n] (A. 7)

and recall the recursive equations of (2. 29) and (2. 30):

L L-1
hWn] = COS O L h( [n] - sin OL g( [n-2] (A. 8)

L L-I L-I
9( [n] = sin 0 L h( [n] + COS 0 L 9( [n-2] (A. 9)

In order to prove Equations (A. 4) and (A. 5) in the general case we substitute 0 + nej for
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0 in Equations (A. 8) and (A. 9). If we consider j < L- 1 we verify Equations (A. 4) and

(A. 5) by using the assumptions (A. 6) and (A. 7). If j=L then we verify Equations (A. 4)

and (A. 5) directly from the recursive equations.

Relying on the fact that H(O) and G(O) are composed of the elements of the filters

hL[n] and 9L[n] respectively, we note that (A. 4) and (A. 5) imply:

H(O) = - H(O + ne) (A. 1 0)

G(O) = - G(O + irej) (A. 1 1)

'Mus using (A. 10) and (A. 1 1) we infer:

H(O)AXGT(O) = H(O +,xej)AXGT(O + xej) (A. 12)

Equation (A. 12) proves Equation (A. 2) showing that f(O) is periodic by n for any Oj

variable.

To prove Equation (A. 3) we will substitute 0 + x/2eL for 0 in Equations (A. 8)

and (A. 9) to yield the following results:

hL [n] gL[n]
0 + ic/2eL 0 (A. 13)

L [n] hL[n]
90 + -x/2eL 0 (A. 14)

Equations (A. 13) and (A. 14) imply:
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H(O + 7r/2eL)AXGT(( + 7c/2eL) = - G(O)AxHT(O) (A. 15)

We make use of the facts that Ax is symmetric and the norm of a matrix is equal to the

norm of its negative transpose to conclude that the function that we are minimizing is

periodic with period 7c/2 in the OL variable.
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APPENDIX B

OPTIMAL TWO-TAP QMF FILTERS FOR

STATIONARY PROCESSES

The purpose of this appendix is to show that for the class of stationary processes

the optimal two-tap QMF filters are the filters used in the Haar Transform. Optimality is

defined by the criterion of Chapter 3, specifically to minimize the following function over

all two-tap QMF filters:

f(e) = I IHM- I (0) Axmxm Gj- I (O (B. 1)

To begin let us write f(O) as a sum of squares of the elements of Axm_lum_,:

N N 2
f(o) = Y. Y. AX-M-lum-l(i-j

i=1 j=1 (B. 2)

where the second index is introduced to denote explicitly that Axm_lum_l is a function of

0. Exploiting the Toeplitz structure of the matrix Axjum_j, we rewrite Equation (B. 2)

in the following manner:

2 N-i 2
f(O) = NAX (N-,c) AX xm_,umM-lum-0; 0) + M-lum-l(r; 0) + A�

(B. 3)
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By substituting the parametrization of all two-tap QMIF filters of Equations (2. 31) and

(2. 32) into Equation (4. 1 1), we can describe Axm- jum- I (r ; () as a function of 0:

Axm_lum_,(,r; 0) = cos2O Axmxm()t-1) - sin2O Axmxm(2t+l) (B. 4)

For'r = 0, Equation (B. 4) becomes:

AxM-1UM-I(O; 0) = cos 20 Axmx.(l) (B. 5)

For'r > 1 the following equation holds:

2 2
A�XM-IUM-I(C; 0) + A XM-1UM-1(-'C; 0) = (cos4O + sin4O) mxm(2,r+l) + ARmxm(2,r-1)

- 4 sin2( COS2( AXMXM(2r+l) Axmxm(2r-l) (B. 6)

For notational simplicity, we define the following constants that are not a function of 0:

N-I
C (N-,r Ax2mxm(2,r+ 1) + A2xmxm(2,r- 1

1 (B. 7)

N-1
C2 =2 Y (N-,r)Axmxm(2r+ 1)Axmxm(2,c- 1)

(B. 8)
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We now write f(E)) as:

2 S2 20 + Cj(1- 1 in2 20) sin2 20

f(0) = N Axmxm(l) co s CA
2 2 (B. 9)

In order to obtain the minimum of f(O) we determine its derivative with respect to

0.

(2N,�2xmxm(l) + C, + C2 sin 40
(B. 1 0)

Since we know from Appendix A that f(O) has a period of n/2, the only values of 0 we

need to consider are values of 0 between 0 and ic/2. 'Me values of 0 that satisfy the first

derivative test in this range are 0 = 0 and 0 = ir/4. The second derivative test and the fact

2
that 2N A-Xmxm(l) + C, + C2 > 0 imply that 0 = 0 is a maximum and 0 = 7C/4 is a

minimum. Recall that the filters are not periodic with period 7r/2, so we want to choose

from the pair of values (7r/4, 3ir/4) the value of 0 such that h(n] is the low-pass filter, i.e.

we take 0 = n/4 as the value of 0 that minimizes f(0). When 0 = -X/4 the filters are the

ones used in the Haar Transform:

n=O

h[n] n

0 Otherwise (B. 1 1)
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1 n = 0
fT

g[n] -- 1 n = I
fT
0 Otherwise (B. 12)
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