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Abstract

A common objective in many applied problems is to infer properties of the interior of an
object based on tomographic (line-integral) projections. In a number of applications the
ultimate goal is to characterize (e.g., detect, locate) regions of the interior which are, in
some sense, anomalous. A major challenge is to develop methods which can characterize
anomalies directly in the data domain (i.e., without image reconstruction). In this thesis
we develop data domain techniques for the detection and localization of a single anomaly
from tomographic projections. These techniques are based upon a multiscale hypothesis
test (MSHT) framework. A MSHT represents an efficient alternative to a very large con-
ventional hypothesis test which may be computationally infeasible due to the overwhelm-
ing number of hypotheses which must be considered. Previous application of MSHTs to
anomaly localization problems has focussed on the intuitive idea of spatial zooming with
natural statistics [19-21]. A major contribution of this thesis is the broader interpretation
of multiscale hypothesis testing as statistical zooming on the set of hypotheses rather than
spatial zooming in the image domain. This broader interpretation leads naturally to the
formulation of an optimization problem, the solution of which provides a MSHT statistic
which yields improved performance.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering

Thesis Supervisor: W. Clem Karl
Title: Research Affiliate



Acknowledgments

The MIT graduate experience is a seemingly infinite sequence of hurdles. These hurdles are

made surmountable only with the support and guidance of advisors, friends, and family. I

first wish to express my gratitude to my thesis advisors: Professors Alan S. Willsky and

W Clem Karl. I find Alan's intellectual energy and dedication absolutely astounding. In

addition to his remarkable skills as an advisor/mentor, he creates a vibrant and supportive

research environment in which it is easy to excel. No less astounding is Clem's ability to

find time in his busy schedule to maintain a marginally stable computer network, sit in

on grouplets, and provide one-on-one assistance to many SSG group members. Thank you

Clem for your invaluable insight.

I also appreciate the interaction I've had with members of the SSG and other MIT

friends. I especially thank: Dr. Hamid Krim for the countless times he's patiently listened

to me struggle to express a new idea or approach; Dr. Paul Fieguth for knowing a bit about

everything and for being the group martyr and chef- Dr. Bill Irving, for his ability and

willingness to explain complex ideas simply; Mike Daniel for sharing his insight and technical

knowledge; Charlie Fosgate for listening to my gripes and taking my displaced abuse; Mike

Branicky, Patrick Maurer, Sekhar Tatikonda, Mike Schneider and Stark Draper for helping

me prepare for the OQE; the rest of the SSG for their camaraderie and for providing the

benefit of their experience.

I wish to recognize MIT's Electrical Engineering and Computer Science Department and

the Advanced Research Project Agency (ARPA) for their financial support of my graduate

studies. The former provided a full fellowship for my first year funded by generous alumni

donations. The latter continues to provide full support through a National Defense Science

and Engineering Graduate Fellowship.

Finally, I thank the members of my family for twenty-four years of unwavering trust,

emotional support, financial assistance, and unconditional love. Though you may under-

stand little of it, I certainly could not have written this thesis without you.



4



Contents

1 Introduction 13

1. 1 O verview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

1.2 Previous W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 O rganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Preliminaries 21

2.1 The Radon Transform and Its Inverse . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 The Radon Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Some Properties of the Radon Transform . . . . . . . . . . . . . . . 24

2.1.3 The Inverse Radon Transform . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Tomographic Projections and Reconstruction Methods . . . . . . . . . . . . 29

2.2.1 Tomographic Projections . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Methods for Tomographic Reconstruction . . . . . . . . . . . . . . . 34

2.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Binary Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Composite and Multiscale Hypothesis Testing . . . . . . . . . . . . . 42

2.4 Measures for Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Performance Bound and Ambiguity Analysis 55

3.1 The Ambiguity Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



6 CONTENTS

3.2 A Detection Performance Bound . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Ambiguity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Analysis of a One-Dimensional Signal . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 A One-Dimensional Problem . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Detection Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Simple Approach to Detection and Localization 75

4.1 M-ary Hypothesis Testing Problem Formulation . . . . . . . . . . . . . . . 75

4.2 Multiscale Hypothesis Testing Formulations . . . . . . . . . . . . . . . . . . 77

4.2.1 Single Candidate Algorithm . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Multiple Candidate Algorithm . . . . . . . . . . . . . . . . . . . . . 84

4.3 Exam ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Single Candidate Algorithm Examples . . . . . . . . . . . . . . . . . 86

4.3.2 Multiple Candidate Algorithm Examples . . . . . . . . . . . . . . . . 94

4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Optimized Multiscale Hypothesis Tests 103

5.1 Ambiguity Revisited: Statistical Sensitivity . . . . . . . . . . . . . . . . . . 104

5.2 Composite Hypothesis Test Quality Criteria . . . . . . . . . . . . . . . . . . 106

5.2.1 Criteria for Composite Hypotheses . . . . . . . . . . . . . . . . . . . 107

5.2.2 Criteria for Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 An Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Sub-Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 A Revised Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Exam ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7.1 Solutions to Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7.2 Solutions to Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.3 Coarse Scale Comparison . . . . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS 7

5.8 Another Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusion 123

6.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 Impact of Background Covariance . . . . . . . . . . . . . . . . . . . 124

6.1.2 Computationally Efficient Detection and Localization . . . . . . . . 124

6.1.3 Multiscale Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Anomaly Characterization . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.2 Multiscale Hypothesis Testing Theory . . . . . . . . . . . . . . . . . 128

6.2.3 Other Extensions and Issues . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Closing Rem arks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Fractal Field Covariance Matrix 1-31

B Maximum Likelihood Anomaly Estimation 135

C Anomaly Intensity Assumption 137

D Formulations for Exact Solutions of Pi 139

D.1 Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.2 The Primal Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D.3 The Dual Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D A Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



8 CONTENTS



List of Figures

1-1 A common applied problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-1 A typical line used in the calculation of the Radon transform . . . . . . . . . 22

2-2 The projection of a function at an arbitrary angle 0 . . . . . . . . . . . . . . 23

2-3 An example function and its Radon transform . . . . . . . . . . . . . . . . . 24

2-4 Tomographic data acquisition .. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-5 Tomographic projection matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2-6 Equal variance Gaussian probability density functions with different means. 41

2-7 Schematic of a composite hypothesis test . . . . . . . . . . . . . . . . . . . . 43

2-8 A multiscale hypothesis test . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2-9 One-sided Hausdorff metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-10 Fractal field covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2-11 Example anomaly and background field and its projections . . . . . . . . . . 53

3-1 A m biguity ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-2 Performance bound with white background . . . . . . . . . . . . . . . . . . . 60

3-3 Performance bound with fractal background . . . . . . . . . . . . . . . . . . 61

3-4 Anomalies considered in ambiguity analysis . . . . . . . . . . . . . . . . . . . 63

3-5 Ambiguity analysis for b, b4,32(2,2) with white background . . . . . . . . 64

3-6 Ambiguity analysis for b, b4,32(14,14) with white background . . . . . . . 64

3-7 Ambiguity analysis for b, b4,32(2,2) with fractal background . . . . . . . . 64

3-8 Ambiguity analysis for b, b4,32(14,14) with fractal, background . . . . . . 65

3-9 Local versus non-local ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . 66

9



10 LIST OF FIGURES

4-1 Multiscale hypothesis test example . . . . . . . . . . . . . . . . . . . . . . . . 78

4-2 Coarsest scale subdivisions for anomaly localization . . . . . . . . . . . . . . 81

4-3 SC algorithm output .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-4 Required intensity versus size of coarsest scale hypotheses. ; . . . . . . . . . . 88

4-5 ROCs for SC algorithm and optimal MHT: white background. . 89

4-6 ROCs for SC algorithm and optimal MHT: fractal background . . . . . . . . 90

4-7 ROC for SC algorithm with anomaly f, = 7b4,32(2,2) . . . . . . . . . . . . . 91

4-8 SC algorithm performance metric histograms for f, = 7b4,32(2, 2) . . . . . . . 92

4-9 ROC for SC algorithm with anomaly f, 7b4,32(14,14) . . . . . . . . . . . . 93

4-10 SC algorithm performance metric histograms for f,,, = 7b4,32(14,14). . . . . 93

4-11 MC algorithm output (part I) . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4-12 MC algorithm output (part II) . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4-13 ROC for MC algorithm with anomaly f,, = 7b,4,32(2,2) . . . . . . . . . . . . . 96

4-14 MC algorithm performance metric histograms for f,,, = 7b4,32(2,2) . . . . . . 97

4-15 ROC for MC algorithm with anomaly f, = 7b4,32(14,14) . . . . . . . . . . . 97

4-16 MC algorithm performance metric histograms for f,,, = 7b4,32(14,14) . . . . . 98

4-17 Computational complexity of algorithms . . . . . . . . . . . . . . . . . . . . 101

5-1 Statistical sensitivity with white background . . . . . . . . . . . . . . . . . . 105

5-2 Statistical sensitivity with fractal background . . . . . . . . . . . . . . . . . . 106

5-3 Relationship between Ci and ji . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5-4 Statistical sensitivity with Pi statistic and white background . . . . . . . . . 116

5-5 Statistical sensitivity with A statistic and fractal background . . . . . . . . . 116

5-6 Statistical sensitivity with Pi statistic and fractal background . . . . . . . . . 117

5-7 The difference ffi(l) ift-(') with fractal background . . . . . . . . . . . 118ij I Pi ij I PI
5-8 Probability of detection for simple statistic with fractal background. 119

5-9 Probability of detection for optimized statistic with fractal background. 119

5-10 Comparison of minimum probability of detection as a function of ABR. 120



List of Tables

4.1 Parameters for several variations of the SC algorithm . . . . . . . . . . . . . 88

11



12 LIST OF TABLES



Chapter 1

Introduction

1. I Overview

A common objective in many applied problems is to infer properties of the interior of an

object based on measurements obtained at the exterior. When these measurements take

the form of path-integrals, they are said to be tornographic and the problem falls under

the purview of tomography. Computed tomography (CT) is concerned with the study of

the interior of objects based on line-integral projections while in diffraction tomography

(DT) the integrals need not be over straight lines. In tomographic problems, a datum

is typically obtained by probing the object with a source of energy and measuring the

transmitted energy with some detector. Data from different source-detector positions are

then combined in the analysis of the interior.

For some problems, tomographic data are used to obtain a detailed image of the cross

section of an object. This pixel-by-pixel reconstruction is then used as input to a subsequent

processing stage or directly viewed for interpretation. A familiar example is the reconstruc-

tion of a cross section of the body from CT scan data for the purposes of medical diagnosis.

The problem of image reconstruction from projections arises in a variety of fields other

than medicine including geophysical exploration [19-21], astronomy [6], non-destructive

testing [1, 11], and others [8, 14].

The reconstruction problem has received significant attention and, as a result, several

13



14 CHAPTER 1. INTRODUCTION

Measurement Measurement

Object rement

Measurement

Figure 1-1: This figure illustrates the general applied problem of inferring properties of the
interior of some object (which may contain an anomalous region) based on measurements
obtained at the exterior.

standard general purpose methods exist for its solution (e.g., convolution back-projection

(CBP)) [8,13-17]. A well known drawback to these standard techniques is that they rely

crucially on the availability of a full set of low noise data for artifact free reconstructions. In

many applications, however, only limited or noisy data are available due to one or several

factors: object geometry, physical interference of other objects, time constraints, budget

constraints, safety considerations, modeling errors, etc. [30, 31]. In limited data or high

noise cases, the reconstruction problem is ill-posed and, unless appropriately regularized,

any reconstruction obtained suffers from streaking and other artifacts [7,20,31,33].

In a number of applications the ultimate goal is not to reconstruct a cross sectional

image. Often the primary objective is to characterize (e.g., detect, locate) regions of the

interior which are, in some sense, anomalous. Anomaly characterization is of interest in

a range of applications such as medicine (tumor detection) [31], electro-geophysical explo-

ration (conductivity inhomogeneity localization) [19-21], the non-destructive evaluation of

industrial parts and machinery like aging aircraft (corrosion detection) [1, 11], oceanogra-

phy (ocean-acoustic tomography), and spot-light mode synthetic aperture radar (automatic

target recognition) [22].

One general approach to anomaly characterization problems begins with reconstructing a

cross sectional image [7,20,31,33]. Anomalous regions are then analyzed by post-processing
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the reconstructed image. This reconstruct and post-process approach is rarely the best

way to attack the problem. First, it does not necessarily make optimal (or even good

suboptimal) use of the data. Second, as mentioned, in limited data or high noise cases (which

arise frequently in practice), reconstruction introduces artifacts which are, by definition,

anomalous. In this way, image reconstruction can make the problem of finding the true,

more difficult. Finally, reconstruction is a computationally non-trivial task and,

in light of the above, is a waste of computational resources when the ultimate goal is the

far more modest one of anomaly characterization.

A major challenge, therefore, is to develop methods which can characterize anomalies

directly in the data domain (i.e., without image reconstruction). This challenge consists of

at least five sub-problems:

1. The anomaly detection problem: Are anomalies present?

2. The anomaly enumeration problem: How many are there?

3. The anomaly localization problem: Where are they in space and scale?

4. The anomaly shape problem: What are their shapes?

5. The anomaly intensity problem: What do they look like?

In this thesis we focus almost exclusively on problems involving detection and localization

of a single anomaly. In the single anomaly case, the detection problem is equivalent to

the enumeration problem. Given answers to the first four questions, the last one is the

problem of local reconstruction which has received a good deal of attention in recent years

[23-25,40,431 but will not be addressed in this thesis. Our algorithms may be used, however,

as a pre-processing stage to cue a local reconstruction routine as to which areas of the cross

section to reconstruct.

In most data domain approaches to anomaly characterization problems it is assumed

that the anomaly belongs to a class of objects which are parameterized by one or several

parameters [7, 31]. These parameters are then estimated based on noisy observations of
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tornographic projections. Recently, several authors have introduced non-parametric ap-

proaches to the problem based on hypothesis testing [2, 19-21]. In this thesis we build on

this hypothesis testing approach and, in doing so, explore issues which have relevance to a

broad range of problems, not just tomographic.

Our focus is on the design of multiscale hypothesis tests (MSHTs) with tomographic

characterization as one particular application. A MSHT attempts to offer an effi-

cient alternative to a very large conventional hypothesis test, which may be computationally

infeasible due to the overwhelming number of hypotheses which must be considered. Instead

of selecting a single hypothesis on the basis of one large M-ary hypothesis test, the MSHT

philosophy is to zoom in on the true hypothesis via a scale-recursive sequence of smaller

composite hypothesis tests. Each test in the sequence consists of some decision statistics

and several subsets of the global set of hypotheses. Often no optimal (uniformly most pow-

erful (UMP)) tests exist for the composite hypothesis problems comprising a MSHT. In this

thesis we introduce criteria and methods for selecting subsets and statistics when no UMP

tests exist and apply these methods to the anomaly characterization problem with the aim

of obtaining performance near that of the optimal but infeasible M-ary hypothesis test.

Recent work in multiscale hypothesis testing methods for anomaly localization using

tornographic data has focussed on the idea of spatial zooming using intuitively natural

statistics to form decisions as to which regions to zoom in on. In spatial zooming, the

anomaly is localized first to a coarse spatial scale (with large area) and then to successively

finer scale regions (of smaller area). The areas to which the anomaly is sequentially local-

ized form a nested sequence of regions in the image domain. In this thesis we also consider

spatial zooming approaches to the anomaly localization problem but we emphasize that, in

general, the scale recursive nature of a multiscale hypothesis test need not have an inter-

pretation as a multiscale search in a spatial sense. It is more appropriately defined on the

domain of hypotheses. Rather than zooming in on the anomaly through a nested sequence

of spatial regions, we view the MSHT framework as providing a means of zooming in on

the true hypothesis through a nested sequence of composite hypotheses. The interpretation

of multiscale hypothesis testing as statistical rather than spatial zooming represents a sig-
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nificant generalization of recent work and leads naturally to the consideration of composite

hypothesis test statistics with improved performance.

1.2 Previous Work

-In the last decade and a half, significant progress has been made in. data-domain methods for

anomaly characterization. In [30,31], Rossi and Willsky consider the problem of estimating

the parameters (e.g., location, shape, and size) of an object superimposed on a known

deterministic background field using noisy and limited angle CT data. The problem of

estimating just the location of an otherwise known object is considered and it is shown that

nonlinear maximum likelihood (ML) estimation of the location involves a convolution back-

projection operation (CBP) operation where the ML convolution kernel is not the standard

CBP kernel. Thus it is explicitly seen that performing CBP as a first step in object location

would truly be a waste of computational resources.

The estimation-theoretic approach of Rossi and Willsky is extended by Devaney et al.

in [10,34,37] to the case of diffraction tomography (DT). And in [7], Bressler et al. consider

the estimation of the parameters of an unknown number of objects in a three-dimensional

volume from incomplete and noisy CT measurements. The maximum a posteriori (MAP)

estimate rather than the ML estimate is sought. An algorithm is provided which computes

an approximation to the MAP estimate through a sequence of stages. At the first stage

an ML estimate of object primitives is obtained. Then feasible objects are constructed by

combining primitives using a sequential hypothesis testing scheme. A hypothesis test is

performed to choose which combination of the feasible objects is most likely. Finally, object

estimates are obtained by smoothing the objects selected in the hypothesis test.

Several other authors have also developed methods for object estimation from noisy

and/or incomplete CT data. In [281, Prince computes the MAP estimate of the sinogram

(the image of the projection domain information) and then reconstructs an image domain

estimate using CBP. In forming the estimate, Prince relies upon a Markov random field

prior model for the sinogram and consistency conditions between the object field and its

sinogram. In [18], Milanfar exploits the relationship between the moments of an image to
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those of its sinogram to estimate object parameters from CT data. One advantage of this

approach is that it admits estimation of a much less restrictive class of objects than that

considered by Rossi and Willsky in [30,31].

In all the aforementioned work on object parameter estimation from CT and DT data it

-is assumed that the- background upon which the object is superimposed is deterministic and

The problem of data-domain characterization of anomalies which are superimposed

on an unknown but well modeled random field background has been considered only more

recently. In [2], Bhatia introduces a pixel-based method for the detection and localization

of a single anomaly superimposed on a fractal field background. The wavelet transform of

the CT data associated with each pixel is considered independently and a fixed number of

candidate pixels which seem most anomalous are selected on the basis of an approximate

chi-square test. From these candidate pixels, a subset are chosen by amplitude thresholding.

The chosen pixels represent an estimate of the anomaly's support.

In [19-21], Miller and Willsky consider the problem of detecting and localizing multiple

anomalies which are superimposed on a fractal. random field background based on DT data.

They propose a scale-recursive algorithm for which, at each scale, a composite hypothesis

test is conducted using a generalized likelihood ratio test. These composite hypothesis tests

are designed to zoom in on the anomalies through a scale recursive search in the image (i.e.,

spatial) domain. Anomalies are first localized to coarse scale regions and then to succes-

sively finer scale regions. This method represents a suboptimal but efficient alternative to

implementing the computationally daunting optimal hypothesis test which would include

a hypothesis for each combination of anomaly locations and sizes. Additionally, analysis

techniques based upon a binary hypothesis testing framework are introduced which provide

insight into performance limits of the detection and localization algorithm.

1.3 Contributions

This thesis presents the following main contributions:
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1. InChapter2wedefinethegeneralstructureofamultiscalehypothesistest. While

use of such a hierarchy of composite hypothesis tests is not novel, abstracting the

structure from a particular application is a valuable exercise. The insight which this

abstraction provides motivates our development of optimized MSHTs in Chapter 5.

-2. In Chapter 3 we investigate the role of the background field statistics in the ultimately-,

performance limits of a MSHT approach to the anomaly detection and localization

problems. With a simple one-dimensional example, we show that these performance

limits rely on the background covariance in an exceedingly complex and seemingly

intractable way.

3. In Chapter 4 we apply methods similar to those in [19-21] to the CT anomaly detection

and localization problems. Two algorithms are introduced, one which tests for the

presence of an anomaly at a coarse scale and another which does so at a finer scale.

We show that delaying this crucial decision to a finer scale results in an improvement

in detection performance.

4. As forshadowed in Chapter 3, the performance of the algorithms presented in Chap-

ter 4 depends upon the background covariance. In Chapter 5 we present another way

of investigating this dependence which motivates the development of a MSHT statistic

optimality condition. We propose several ways of solving (or approximately solving)

the resulting optimization problem. Finally, we apply optimized statistics so found to

the anomaly detection and localization problems.

1.4 Organization

This thesis has two main themes. They are: (1) the generalization and investigation of

multiscale hypothesis testing and (2) the application of multiscale hypothesis testing meth-

ods to the tomographic anomaly detection and localization problems. These themes are

treated, to some degree, in parallel as they are both developed in each chapter.

We begin our development of the two main themes in Chapter 2 which covers the

relevant mathematical background. The mathematics of tomography are developed from
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the mathematics of the Radon transform and its inverse. Our approach to the anomaly

detection and localization problems relies on hypothesis testing; therefore, much of Chapter

2 is devoted to elements of detection theory. Included in Chapter 2 are discussions of

composite hypothesis testing and multiscale hypothesis testing. We conclude the chapter

with a precise problem statement including a summary of all modeling assumptions.

In Chapter 3 -we introduce a binary hypothesis testing framework which admits the

computation of a detection performance bound and the investigation of anomaly ambigu-

ity. This framework provides insight into the structures of the detection and localization

problems and our results indicate the feasibility of a spatial zooming approach to anomaly

localization. A one-dimensional problem is discussed to provide insight into the nature of

these results.

Several detection and localization algorithm are discussed in Chapter 4. These algo-

rithms are multiscale hypothesis tests which also have a spatial zooming interpretation.

The structure of these tests is motivated by intuition and not by any criterion of optimal-

ity. We show that these ad hoc methods are not suitable for a certain class of problems.

Chapter 4 concludes with a comparison of the computational complexities of the optimal

anomaly detection/localization algorithm and our multiscale methods.

In Chapter 5 we emphasize our broader interpretation of multiscale hypothesis testing

as statistical rather than spatial zooming. Criteria for good MSHTs are introduced. These

criteria lead to the formulation of a non-linear optimization problem. We show how to

solve this non-linear problem exactly and also propose a closely related linear programming

problem. The solution of the non-linear optimization problem (or its linear programming

approximation) is an optimized MSHT statistic which yields better detection performance

than the ad hoc statistics of Chapter 4.

Concluding comments and directions for future research are provided in Chapter 6.



Chapter 2

Preliminaries

The main focus of this chapter is the presentation of the mathematical concepts upon which

our anomaly characterization work is based. Clearly the mathematics of tomography play

a central role; a discussion of tomography and reconstruction methods is found in Section

2.2. We preface the discussion of tomographic projections and reconstruction methods

with a review of their idealizations-the Radon transform and its inverse (Section 2.1).

Our work also draws heavily from hypothesis testing theory and the theory of stochastic

processes. The relevant elements of these disciplines are introduced in Section 2.3. Also

in Section 2.3, we introduce the general notion of a multiscale hypothesis test. A brief

discussion of metrics for convex sets is found in Section 2.4. We conclude this chapter with

precise statements of the anomaly detection and localization problems and a summary of

all modeling assumptions in Section 2.5.

2.1 The Radon Transform and Its Inverse

A discussion of the mathematics of tomography naturally begins with the Radon transform

(equation (2.1)). Indeed, we shall see in Section 2.2 that tomographic projections are

samples of the smoothed Radon transform of some real function of two dimensions. In this

section we define the Radon transform and introduce a few of its basic properties. We also

briefly discuss the inverse of the Radon transform.

21
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Figure 2-1: This figure illustrates a typical line used in the calculation of the Radon trans-
form.

2.1.1 The Radon Transform

The two-dimensional Radon transform, A(L), of a function of two variables, f (XI Y), is

defined by the line integral of f (x, y) along the line L:

A(L) Rf (x, y) JL f (x, Y) ds, (2.1)

where ds is an increment along the line L and the function f is infinitely differentiable and

rapidly decreasing. In many real world problems f has compact support in ff? 2 and, thus,

is rapidly decreasing in a trivial way.

To use equation (2.1), we parameterize the line L by two parameters, t and 0. Referring

to Figure 2-1, we see that all points (r, 0) on the line L satisfy

t = rcos(O - 0)

or, equivalently, in terms of (x, y),

t = x cos 0 + y sin

Therefore, the Radon transform is a function of two variables, t and 0, and may be written
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Figure 2-2: This figure represents the projection of a function, f (x, y), with constant inten-
sity over local support at an arbitrary angle 0. While the t-axis passes through the origin
of the x-y axes, we show it shifted here for clarity.

asi

A (t, 0) = JR2 f (x, y)b(t - x COS y sin 0) dx dy. (2.2)

From equation (2.2) and Figure 2-1 we see that the Radon transform maps a function which

has domain ff?2 to one with domain P x [0, 27]. For a fixed 0 = 00, the one-dimensional

function fR(t, 00) is termed a projection of f (x, y). For example, if 00 = 0 then fR(t, 0)

represents the projection of f (x, y) along the y-direction and, in this case, t coincides with

x. Figure 2-2 illustrates a projection at an arbitrary angle 0.

There are many equivalent ways of writing the Radon transform and we will find it conve-

A COS 0 Sin O]Tnient to adopt a more compact notation. To this end, we define the vectors
A

and x = [X y]T. Now the Radon transform may be written more compactly as

1 The function 6 (x) is the Dirac delta function which is defined by the properties f " f (x) 6 (x) dx

f (0), VE > 0 and 6(x) = 0, Vx =A 0.
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Figure 2-3: Figure (a) is an image domain view of a binary function which has support
over a square region. Figure (b) is a sinogram domain view of the Radon transform of the
function in (a). The horizontal axis is proportional to the angle 0 in the range [0,7r) and

the vertical axis is proportional to the offset variable t.

A (t, 6) = fR 2 f (X)6(t _ 6T x) dx. (2.3)

The notation of equation (2.3) is useful because it generalizes for n 0 2 rather nicely. For

a general n, � is a unit position vector, x = [XI X2 ... X'J, and the integral is over a

hyperplane. In this thesis we consider only two-dimensional problems and, when n = 2, the

Radon transform will be written as A(t, 6) and fR(t, 0) interchangeably.

Before we proceed to a discussion of properties of the Radon transform, we present

an example function and its Radon transform. Figure 2-3(a) shows a function which is

one over a small square region and zero elsewhere. We call the domain of this function the

image domain. Figure 2-3(b) shows a discrete version of the Radon transform (tomographic

projections-to be introduced later) of this function. The domain of the Radon transform

is referred to as the sinogram domain. Notice that the square function with local support

in the image domain maps to a sinusoidal swath with non-local support in the sinogram

domain.

2.1.2 Some Properties of the Radon Transform

The Radon transform possesses many useful and interesting properties. In this section we

mention only the few which are used in this thesis. A more complete consideration of the
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Radon transform and its properties may be found in [13-17].

Property 1 (Linearity) 7Z is a linear operator.

Proof. This follows trivially from the definition of the Radon transform, specifically from

-the fact that it is an integral transform.

Property 2 (Symmetry) fR(t, 0) = fp,(-t, 0 + 7r).

Proof. This symmetry property follows from the definition of the Radon transform and

the fact that sin(o + 7r) = - sin 0 and cos(O + 7r) = - cos

Property 3 (Homogeneity) fR(st, s�) = 1 fR(t,
IS1

Proof. This follows from the property of the Dirac 6-function: 6(sx) 6(x). El

There exists a connection between the Radon transform and the Fourier transform. This

connection, which we explain next, leads to the well-known projection slice theorem (PST)

which is also known as the Fourier slice theorem. We define the n-dimensional continuous

Fourier transform Mk) of a function f (x) on En as

27rikT
fF (k) =' J7n f (x) f (x)e- x dx. (2.4)

f)R.

The n-dimensional inverse Fourier transform is

_1fF 627rikT

(X) = -Fn (k) fF(k) x dk.
flRn

To make the connection between the Fourier transform and the Radon transform, rewrite

equation (2.4) as

Mk) dp L f (:x)e_27rip6(p - k TX) dx.
n

Notice that the exponential term is only a function of p and, therefore, can be moved outside

the integral over X. And if we let p = st and k = s� where s k then
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27r f (X)6(StfF(SO = 181 e- 71st dt _ S�T x) dx.

By virtue of the homogeneity property of the Radon transform, it follows that

fF (8 0 = J'I'Rf X , (2-5)

where the one-dimensional Fourier transform is applied to the variable t (not to or �).

In words, for a fixed direction unit vector �, the n-dimensional Fourier transform of f (x)

evaluated along this direction is the same as one-dimensional Fourier transform of the n-

dimensional Radon transform of f (x) taken at this direction. Since we are focusing only on

f on R2, F,, =.F2 and we obtain the famous projection slice theorem (PST). To state and

prove t he P S T, view fF (k, ky) F2 f (x, y) in p olar co ordinates: fF (k, 0).

Theorem 1 (PST) fF(k, 0) F2f (x, y) = FllZf (x, y) = FifR(t, 0) where the one-

dimensional Fourier transform is over t.

Proof. This theorem follows directly from equation (2.5). In words, the two-dimensional

Fourier transform evaluated on the central slice taken at angle 0 is equivalent to the one-

dimensional Fourier transform of the projection of f (x, y) taken at angle El

2.1.3 The Inverse Radon Transform

Formal mathematical development of the inverse of the Radon transform of a function of

two variables was first published by Johann Radon in 1917 [29]. Mathematically rigorous

treatments of the inverse transform may also be found in [8,13] and most proofs will be

omitted here.

Back-Projection (BP)

Our discussion of the inverse Radon transform begins with the back-projection (BP) op-

erator. The BP operator appears in several factorizations of the Radon transform and,
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thus, back-projection plays a role in many tomographic reconstruction techniques. The BP

operator will be denoted as B and is defined as

hB(XY) Bh(t,�) f0'r h(x cos 0 + y sin 0, �) do,

'"."'_.-,,-,where and h(t,�) is an arbitrary function with t = �T x and x and � are as defined in

Section 2.1.1. An alternative definition of the back-projection operator yields hB in polar

coordinates:

7r
hB (r, 0) h(r cos(O - 0), 0) do.

The back-projection operation appears at first glance to be close to the inverse of the

Radon transform. By letting h = fR, we see that BfR(t, 0) evaluated at a particular point

(XI Y) is a summation (integration) of all points of fR(t, 0) which correspond to lines L which

pass through (XI y). The following analysis, however, shows that back-projection does not

exactly invert the Radon transform.

By the PST, F2f (x, y) = TRf (x, y). Therefore, the Radon transform can be factored

as

Let hB (r, 0) be the result of back-projecting Mt, 0). Then

hB (r, 0) = B-FT 1 -F2 f (XI Y) = 13-FT I fF (k, 0) I (2.6)

where the one-dimensional inverse Fourier transform operates on the variable k. Substitut-

ing the definitions of the operators into equation (2.6) we get

hB (r, 0) = f0'r dO f 00 fF (k, 0) e27r?"kr cos(O-0) dk .

Finally, by introducing a factor of k in the integrand and recognizing that the double integralk
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becomes an integral over the plane in polar coordinates, we have

hB (r, 0) =fOT F k-'fF(k, 0) .2-xz'kr cos(O-0) k dk do = J7' Ik-'fF(k, 0)]
00

Since multiplication in the Fourier domain corresponds to convolution in the "time" domain,

hB(r, 0) = f (r, 0)
r

where F2 1r

So we see clearly that the result of back-projection is related to the original function

f through a two-dimensional convolution. The BP operator is the adjoint not the inverse

of the Radon transform operator. Many techniques have been developed to rid the back-

projection of the 1/r blurring induced by this convolution. These techniques and their

relation to the inverse of the Radon transform are discussed in Section 2.2.

Inverse Radon Transform Factorizations

In this section we introduce the classical inverse Radon transform factorization and show

its equivalence to a more useful form. The classical factorization is close to the form

of the inverse as expressed by Johann Radon in 1917 but is impractical far numerical

implementation. We present this form without proof. From this classical form we derive

a factorization which lends itself to numerical implementation and provides the basis for

many standard tomographic inversion techniques.

In the classical factorization of the inverse Radon transform, R-1, the BP operator

appears with the Hilbert transform operator, 'Ht:

f (X, Y) = RVR(t, 0) -B-Ht- A(t, 0) , (2.7)
27r at

where

A "O f (t, 0) I 1
'Htf (t, 0) = dt = -- f (t, 0) * -

f "O t - 'T 7r t



2.2. TOMOGRAPHIC PROJECTIONS AND RECONSTRUCTION METHODS 29

By inserting the identity 171-T, between the B and the 'Ht operators in equation (2.7) and

applying the definition of the Hilbert transform we get that

1 1 J71 a I
f (x, Y) 13J7 - - * A(t, 0) (2.8)27r2 at t

where we have used the fact that the (linear) Hilbert transform operator commutes.with

differentiation. Before continuing, we will find it useful to recall the following facts:

• Fla h(t) = 27rikJ-1 h(t).
49t

• The Fourier transform of hi (t) * h2 (t) is the product of the Fourier transforms of hi (t)

and h2 M -

• F1 1 = -i7rsgn(k)t

Applying these facts to equation (2.8) we find that

f (x, y) = L3)71 [I k I _'F1 fR (t, 0) (2.9)

Equation (2.9) shows clearly (again) that the BP operator alone does not invert the

Radon transform. Instead, the inverse consists of a ramp filtering (with Jkl) of the projec-

tions in the Fourier domain followed by a Fourier inverse and finally back-projection. Notice

that Fj-1 [Ikl.Fl] in equation (2.9) corresponds to - 1 'Ht '9 in equation (2.7).
27r at

2.2 Tomographic Projections and Reconstruction Methods

In the previous section we introduced the Radon transform and its inverse. In this section

we relate tomographic projections to the Radon transform and discuss how several factor-

izations of its inverse are used as bases for different tomographic reconstruction routines.

Our treatment of the reconstruction problem is brief and details may be found in [13-17].
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2.2.1 Tornographic Projections

Ideal CT projections of an object consist of line integrals through the object of some pa-

rameter associated with the object. Prototypical examples of tomographic projections are

those obtained from x-rays. When a narrow, mono-energetic x-ray.beam passes through an

object, the intensity, 1, of the beam is attenuated exponentially with distance:

I = -fL I-L(xy) ds (2.10)
-TO 7

where 10 is the initial intensity of the beam which travels along the straight line L, ds is an

incremental distance along line L, and tt(xy) is the (possibly) space-varying attenuation

coefficient of the medium. The attenuation coefficient is a function of the density, p, and

the atomic number, Z, of the medium, both of which may vary with space. That is,

1-t (X, Y) = /-t (P (X, Y), z (X, O -

Therefore, I contains non-local information about the density and atomic structure of

the medium through which the x-ray traveled. By taking the natural logarithm of equa-

tion (2. 10), we see the connection to the Radon transform of p(x, y):

AR(L) In I-t(x, y) ds = IZ/,t(x, y) (2.11)
10 L

In practice, however, data are not available for all angles 0 and all offset values t. Fur-

ther, the x-ray beam is not infinitesimally thin (nor is it exactly mono-energetic). Therefore,

while ideal tomographic projections are directly connected with the Radon transform (equa-

tion (2.11)), actual tomographic projections are connected to the Radon transform in a more

indirect way. Since the x-rays (and any probe) have finite width, the projections obtained

in practice correspond to a Radon transform which has been smoothed in the t direction.

And, since projections at all angles and all offsets are not obtainable, actual tornographic

data correspond to a sampling in 0 and t of this smoothed Radon transform.

Suppose, for example, that the beam width is such that the obtained -projections cor-
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respond to the Radon transform of f (x, y) convolved with a smoothing filter, S(t). The

function

Mt, 0) = lZf (X, Y) * SM 2f (X)b(t _ �T x) dx * S(t)

is the smoothed Radon transform. Since the Radon transform is linear, it commutes with

convolution so we can bring the convolution under the integral over x to get

A (t, 0) 2f (x) dx 00 6(t _ �TX _ 7) S (,r) dT .

We can see immediately that the smoothing function, S(t), replaces the delta function as

the kernel of the Radon transform so that

A (t, 0) = fR2 f (X)S(t _ �T x) dx.

The smoothing function, S(t), models the finite width of the x-ray beam and, more gener-

ally, the finite width of any measurement probe or detector. Therefore, while S(t) is not

infinitesimally thin, it is often rapidly decreasing and may have compact support.

As mentioned above, any measurement process must acquire samples of fR(t, 0). Here

we sample Nt, 0) at constant intervals in t and 0. The angle 0 will be sampled in the

interval [0, 7r) with sample spacing AO. There will be No such projections . By virtue of

the symmetry of the Radon transform, samples at angles greater than 7r are redundant.

The offset variable t will be sampled at each angle between the values t = -to to t = to

with spacing At. There will be N, such samples per angle. Thus there are a total of NNk

data samples.

We intend to place the measurement values in a vector and it is irrelevant how this

vector is ordered so long as it is consistent with the ordering of other vectors and matrices

in the problem. One such ordering (and the one we use, though this is not of any particular

2Analogous to the Radon transform of f (x, y), the one-dimensional function fR (t, (ki) is termed the
projection of f (x, y) at angle Oi
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consequence) is obtained by simply stacking the N,-length data vectors obtained at each of

the No projections on top of one another. To do so, we begin sampling at 0 = 0 and t = -to

and denote this sample number I and number the samples at = 0 in order of increasing

offset value t such that the last sample at 0 = 0 (the one at t to) will be indexed by N,

and sample N, + I will be taken from angle 0 = AO and t = -to. Continuing in this way,

the Z" sample will be at 0 = [' -']AO and t = -to + (i - 1)(modN,)At. Denote these as
N,

Oi and ti respectively. The sampled, smoothed Radon transform is

Mti, Oi) x cos Oi - y sin Oi) dx dy. (2.12)
JR2 f (X'Y)S(t'

Let us call the ith sample gi and the corresponding smoothing function which appears

in equation (2.12) Si (x, y). Also, in general, when each tomographic measurement is made

there will be additive measurement noise. Denote the ith sample of this noise by ni. Putting

all this together, we have that

9i f (x, y)Si(x, y) dx dy + ni. (2.13)
2

Typically the smoothing function, S(t), turns the line integrals of the Radon transform

into strip integrals. That is, Si (x, y) is an indicator function which is one over the i1h

strip and zero elsewhere. Data acquisition with these indicator functions is illustrated in

Figure 2-4. Finally, for computational purposes, the object, f (x, y), is discretized in a basis.

We take as our basis for expansion of the field, f (x, y), the rectangular pixel basis so that

Np

f (X, Y) E fjpj (X, Y) (2.14)
j=1

where pj (x, y) is one over the /h pixel and zero elsewhere and there are Np pixels. Com-

bining equations (2.13) and (2.14) we find that

g = Tf + n, (2.15)

where g, f, and n are vectors containing the measured data values, field pixel values, and
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Y S
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Figure 2-4: This figure is a representation of the projection process with strip indicator
functions Si(xy). Projections are shown at two different angles (NO = 2 with N, = 8).
Three of the sixteen strip integral indicator functions (S1, Sq, and S16) are labeled.

additive noise values, respectively, in some consistent order. That is,

9 [91 92 ... 9NN�, ]T'

f V1 f2 ... fN,]T,

n [n, n2 ... nN,, N., ] T

The components of the matrix T are given by,

[T]i3- = JR2 Si (x, y)pj (x, y) dx dy ,

where
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i = NON,

j = NP.

Equation (2.15), coupled with whatever a pr'or' knowledge we have'about n and f I repre-

sents our observational model. Notice that equation (2.15), like the Radon transform itself,

is linear. The tomographic projection matrix, T, captures a discrete representation of the

smoothed line integrals. The application of T to f is called the projection of f. Recall

that the back-projection operator is the adjoint of the Radon transform. Analogously, the

discrete back-projection matrix is the transpose (adjoint) of the projection matrix.

Figure 2-5 illustrates the projection matrix used in this thesis (except where explicitly

stated otherwise). The number of projections is No = 32 and the number of samples in

each projection is N, = 50. Therefore, the number of rows is NON, = 1600 and Np = 1024

corresponding to a 32 x 32 pixel field.

2.2.2 Methods for Tornographic Reconstruction

Section 2.1.3 concluded with equation (2.9) which we reproduce here:

f (XI Y) = L3JT' [JkJY:'1fR(t, 0)] . (2.16)

Equation (2.16) forms the basis of many reconstruction algorithms and any reconstruction

technique which is based upon equation (2.16) is called filtered back-projection (FBP). From

the FBP factorization it is simple to derive another widely used factorization which leads

to the convolution back-projection (CBP) algorithm. Again making use of the fact that the

Fourier transform of a convolution is the product of Fourier transforms and equation (2.16)

we get that

f (X, Y) = B [V(t) * A(t, 0)] I
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Figure 2-5: This figure illustrates a tomographic projection matrix for which N'k 32,
N, = 50, and Np = 1024 corresponding to a 32 x 32 pixel field. Notice that this matrix is
extremely sparse.
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where

'771v(t) = lklw(k).

The window function w(k) has been introduced because )T1JkJ is a singular distribution-.

-�.,.--.���,-�-�,�,.whichdoesnotlenditselftonumericalcomputation. Additionallyw(k) isusedto-attenuate

high frequencies which tend to be dominated by noise.

Other tomographic reconstruction techniques follow from other factorizations of the

inverse Radon transform. Some of these factorizations involve filtering or convolution after

back-projection. Other popular techniques, such as the algebraic reconstruction technique

(ART) [14,16], are iterative and are based on the discrete representation developed in the

previous section. CBP and FBP are the most popular and widely used methods, however.

2.3 Hypothesis Testing

Our anomaly characterization methods are based on hypothesis testing. In this section

we review the relevant elements of this theory which is also commonly known as detection

theory. Our notation and terminology is consistent with that of [35,38,42]. A hypothesis

test is a mapping of the observed data to a decision as to which one of many hypotheses

is most likely true. We may write this mapping abstractly as h: D -* 'H, where D is the

data domain (e.g., R') and 'H is the (finite) set of hypotheses. When there are just two

hypotheses, Ho and H1, the problem is said to be a binary hypothesis testing problem. When

there are M > 2 hypotheses, the problem is said to be an M-ary hypothesis testing problem.

Most of the essential aspects of hypothesis testing theory are revealed in the study of the

simpler binary hypothesis test (BHT). In Section 2.3.1 we review binary hypothesis testing

and indicate how the concepts generalize to the M-ary hypothesis testing (MHT) case. In

Section 2.3.2 we discuss the concept of multiscale hypothesis testing which is relevant only

to MHT problems.
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2.3.1 Binary Hypothesis Testing

In a BHT problem exactly one of the two events (or statements) Ho and Hi is true. The two

events are interpreted as two hypotheses about reality and the event labeled Ho is called the

null hypothesis. In such problems data are available which depend, in some way, on which

-hypothesis is true. Let us assume that the available data are discrete and comprise a -data

vector y. In problems where the observed data are continuous (e.g., a continuous waveform)

techniques exist to reduce the continuous data to an equivalent set of discrete data (e.g.,

Karhunen-Loeve expansion). These techniques are beyond the scope of this thesi's but we

mention them to emphasize that our discrete data assumption is more general than it may

appear.

To apply Bayesian detection techniques we must know the probability distributions of y

conditioned on each of the two hypotheses. In addition, we must know the probability that

each hypothesis is true. In the absence of this latter information, Bayesian techniques may

not be applied and a different type of optimality criterion must be used. Let us assume that

this is the case-we do not know the probability that Ho is true or the probability that Hi

is true. Let us apply the Neyman-Pearson criterion to the BHT problem.

The Neyman-Pearson Criterion

The Neyman-Pearson criterion is stated in terms of the probability of detection, Pd, and

probability of false alarm, Pf. These are defined as

A
Pd = Pr [h(Y) = Hi assuming that Hi is true] (2.17)

A
Pf = Pr [h(Y) = HI assuming that Ho is true] (2.18)

where Y is the particular observed realization of the random vector y. The Neyman-Pearson

criterion is that the decision function, h(.), is such that it maximizes Pd while satisfying the

constraint that Pf is below a certain value a > 0. The optimal decision rule is the likelihood

matzo test (LRT) as is stated in the following theorem.
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A py(Y;Hl)
Theorem 2 (Neyman-Pearson Rule) Let3 L(Y) Py(Y;Ho). The decision rule h(Y)

which satisfies the Neyman-Pearson criterion has the form

h(Y) Ho if L (Y) < -y

Hi if L(Y) > -y

We note that the function L(Y) is called the likelihood ratio function and the resulting

decision rule is called the likelihood ratio test (LRT). The LRT happens also to be the

optimal Bayesian decision rule under a symmetric cost assignment and when Pr[Ho] =

Pr[Hi]. Also note that any monotonically increasing function, f(.), of L(Y) (e.g., the

logarithm) may be inserted in place of L(Y) without affecting the outcome of the LRT (as

long as -y is also replaced by f(-ffl.

Proof. We wish to minimize

J=1-Pd+-y(Pf -a)

where -y is the Lagrange multiplier associated with the constraint on Pf. Let Di be the

domain of D for which we decide Hi. Then we can rewrite J as

j I - ( Py (Y; HI) dY + 7 Py (Y; HO) dY - a
J Di fD 1

1 - -Ya + f I -ypy (Y; Ho) - py (Y; Hi) I dY'i

Therefore, to minimize J we ought to assign Y to Di (i.e., declare Hi for Y) whenever the

integrand is negative. Equivalently, we arrive at the decision rule

3The the function px (X; oz) is the probability density function for the random vector x and is parame-

terized by a.
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Hi

L (Y)

Ho

where -y is chosen to s at isfy t he Pf co ns t r aint. This co mpletes t he pro of F-1

The LRT generalizes in a straight forward way in the case of an MHT. A likelihood ratio

function is defined for each hypothesis (other than the null hypothesis). These likelihood

ratio functions are then compared with each other and with a threshold, -y, in the decision

rule

h(Y) Ho if max, Lj (Y) <

Hi if maxj L.- (Y) > 7 where i = arg maxj Lj (Y)

where the likelihood ratio functions are defined as

Lj (Y) Py (Y; Hj)
py (Y; Ho)

Gaussian BHT

When the conditional probabilities py(.; have certain forms the LRT has a particularly

simple structure. One special form is the Gaussian probability density function. A further

special case arises when the conditional probabilities share the same covariance but have

different means. In this section we derive the form of the LRT and the forms of Pf and Pd

as functions of the LRT threshold -� for this special case.

Let the conditional probabilities have the form 4

Ho y - jV(mo, A),

HI y - jV(ml, A).

4The notation x - JV(m, P) means that x is a Gaussian random vector with mean m and covariance P,
i.e., px (X) = exp f - 1 (X -M)Tp-l(X _ M)1/12-Pjl�2.2
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Then the log-likehhood ratio function (LRF) is

A (Ml _ MO)T T Tf(Y) = In L(Y) A-'Y + -MO A-'MO - -Ml A-'Ml. (2.19)
2 2

if IIM 1112 I IXI 12 A

_, = IIMO112 --assumeThe LRF simplifies further A A_J where P xTPx. We may

this to be the case without loss of generality for we may always adjust the LRT threshold
A

to cancel the last two terms of equation (2.19). Let us define A = (Ml - MO) T A-'.

Therefore the LRF is just a linear function of the data and so is itself a Gaussian random

variable with the conditional probability density functions

Ho f - Al'(Amo, AAA T),

HI f - Ar(Aml, AAA T).

Since the LRF is a Gaussian random variable it is easy to calculate Pd and Pf as a function
A

of the LRT threshold q = In -y. Expressing equations (2.17) and (2.18) in terms of q we get

that

Pr [f > y assuming that HI is true' Aml
VAAAT

Pf = Pr [f > q assuming that Ho is true] Q Am
VAAAT

where
A 1 foo Y2 1 Xv127 x 2Q W - - e- 2 dy = -erfc V2_

and

A 2 00 t2
erfc(u) 77= e- dt

In this equal variance, Gaussian BHT problem, performance is completely determined
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Figure 2-6: This figure depicts two equal variance Gaussian probability density functions
with different means. Here o-f = E [f HI ] = I 0 and E [f I Ho] = 0.

by the d statistic (which, when squared, is known as the d 2 statistic). The d statistic

measures the difference in the conditional mean of f relative to its standard deviation (see

Figure 2-6):

A E[f JHI] - E[f JHo]
d =

Plugging in the appropriate expressions, we get that

d = A(ml - mo) _ V(Ml _ MO)T A-'(ml - mo). (2.20)
-,AAA T

Also,

A
Q-'(Pf) - Q-'(Pd) 1 (2.21)

Equating the square of (2.20) with the square of equation (2.21) yields the equation for

an ellipsoid in ml - mo:
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(Ml _ MO)T MO) = r12(pf, pA-'(ml d) (2.22)

We shall make use of this ellipsoid in our performance analysis in Chapter 3. Note that

the preceding Pd, Pf performance analysis is rather complicated in the MHT case since it

involves integration over multidimensional Gaussian functions.

2.3.2 Composite and Multiscale Hypothesis Testing

The number of hypotheses which must be considered in some MHT problems is so large

that the optimal hypothesis test cannot be performed in any reasonable amount of time

(where reasonableness is determined by the particular application). Examples of such prob-

lems arise in computer vision where object recognition is often performed using a suite of

matched filters. Each matched filter represents a hypothesis about which object is present

and at what orientation and articulation... A similar approach to automatic target recog-

nition problems (e.g., synthetic aperture radar based ATR) results in the formulation of a

large number of hypotheses. In many applications in both these disciplines, near-real time

performance is crucially important. The anomaly characterization problem considered in

this thesis is similar to these two problems and, therefore, suffers the same combinatorial

explosion of hypotheses. An attractive alternative to conducting the computationally infea-

sible optimal MHT is the multiscale hypothesis test (MSHT). In this section we introduce

the general form of the MSHT and indicate some of the challenges associated with con-

structing one. Before discussing the multiscale hypothesis test, however, we first review

the notion of a composite hypothesis test. Optimal composite hypothesis tests are called

uniformly most powerful (UMP) tests. We will illustrate the concept of a UMP test with

an example.

Composite Hypothesis Testing

A MSHT involves a sequence of composite hypothesis tests. In this section we define the

notion of a composite hypothesis test. For some composite hypothesis testing problems an

optimal test can be formulated. These tests are called uniformly most powerful (UMP)
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Figure 2-7: This figure illustrates a general composite hypothesis test.

tests. We define and illustrate the UMP test idea with a simple example problem after our

introduction of composite hypothesis testing.

Figure 2-7 illustrates a general composite hypothesis test. A composite hypothesis test

is not defined on the original hypothesis space (the set R A fHjjM-1) as the optimal MHT'1=0

would be. Instead, it is defined on elements of a finite cover of 'H.

Definition I (Finite Cover) Let A be a set and N be a finite Positive integer. The family
of sets f Ai IN I Z's said to be a nite cover for A if A C U�v I Ai.

Z= fi - ?,=

If the Ai of Definition 1 also have the property that Ai n AJ 0, Vi 0 j then the finite

cover is said to be a Partition.

The elements of a finite cover of 'H comprise the composite hypothesis space which we

denote by '7�. Denote the j1h element of this cover by 'Hj (in Figure 2-7 these script letters

are italicized). The elements of 7�1 are called composite hypotheses because, in general, they

each contain one or more of the original hypotheses Hi. Note that the range of 'H and

11� are the same, viz., the set fH0,...,HM-jj. Also note that the number of composite

hypotheses is N where N < M and M is the number of original hypotheses.

Exactly one of the Hi E 'H is true. Let's suppose that H, is the one which is true. The
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hypothesis Hi also belongs to at least one of the composite hypotheses. Let us suppose,

for simplicity, that HI belongs to exactly one composite hypothesis, H2, say. Although

composite hypothesis 'H2 contains many false hypotheses, it also contains the true one (HI)

so we say that 'H2 is true. In general, all the composite hypotheses which contain the true

hypothesis are said to be true and all the composite hypotheses which do not contain the

true hypothesis are said to be false.

One decision statistic is associated with each composite hypothesis. These decision

statistics, �j, are functions of the observed data Y (e.g., LRFs). A decision rule is defined

in terms of these decision statistics (e.g., a LRT) and one composite hypothesis is selected

on the basis of this rule.

When considering a composite hypothesis test the following questions arise: what finite

cover should be used? What are the decision statistics? What is the decision rule? Once

these questions are answered then one may naturally ask: is my composite. hypothesis test

optimal (i.e., is it a UMP test)? If not, to what degree is it suboptimal? We illustrate the

notion of a UMP with an example.

An Example Problem

Consider the following MHT problem with scalar Gaussian data. Under hypothesis Hi the

observation y is a scalar Gaussian random variable with mean mi and variance O- 2. The mean

value mi belongs to the finite set 10, M'1) ... ) MM-2 1. Suppose we do not wish to formulate

the optimal MHT for this problem. In the following composite hypothesis reformulation, two

composite hypotheses are defined. Under 'Ho the observation, y is a zero-mean Gaussian

random variable with variance o-2. Under 'HI, y has mean Tn E JM1, - - -, MM-21 and

variance a2. Therefore 'Ho is a trivial composite hypothesis since it contains only the zero-

mean hypothesis and 'HI contains all the M - 1 other hypotheses.

The composite hypothesis testing problem, therefore, is to choose between 'Ho and 'HI.

The actual value of m is irrelevant and it is called an unwanted parameter [38]. There are

three cases to consider depending on the possible values of the unwanted parameter (i.e.,

the set 10,'M1, - -- , MM-2 1) - We consider each of these three cases in turn below.
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Case I Suppose that minf ml,. MM-21 > 0 and consider the decision rule satisfying

the Neyman-Pearson criterion. The optimal decision rule is [38]

R

y <

'H o

where Pf = Qf'y+ 1. Thus, the optimal test can be specified without knowledge of the true01

value of m.

Case II Suppose that maxjM1 ...... MM-21 < 0 and consider the decision rule satisfying

the Neyman-Pearson criterion. The optimal decision rule is [38]

R 0

y >

'Hi

where Pf = 1 - Qj'y l. Thus, the optimal test can be specified without knowledge of the

true value of m.

Case III Suppose that maxf`ml, MM-21 > 0 and minjmj,...,MM-2j < 0- If the

true value of m is positive then the optimal decision rule is given in Case I above. If the

true value of m is negative, the optimal decision rule is given in Case II above. Therefore,

without knowledge of the sign of m the optimal decision rule cannot be specified in this

case.

In Case I and Case II in the above example, knowing the value of the unwanted parameter

m does not increase the performance of the composite hypothesis test. For this reason,

the designed test in these cases is said to be uniformly most powerful (UMP). In Case

III, however, any test designed without knowledge of at least the sign of m is necessarily

suboptimal. Such a test is, therefore, not a UMP test.

Definition 2 (UMP Test) A UMP test Z's one which is as good as the optimal test one

could design if the values of all unwanted parameters were known.
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Property 4 (UMP Test Existence) A UMP test exists if and only if the LRT for ev-

ery value of the unwanted parameters can be completely specified without knowledge of the

unwanted parameters' values.

Proof. This property follows from the definition of a UMP test and the optimality of the

LRT. D

In many practical problems, finding a UMP test or proving its existence is extremely

difficult. If one cannot be found then a test must be designed based on some other convenient

optimality criterion or using heuristics. One common technique is the generalized likelihood

ratio test (GLRT). In a GLRT the unwanted parameters are first estimated under the

assumption that each composite hypothesis is true. These estimates are then used in a

likelihood ratio test. The form of the GLRT for a binary composite hypothesis test with a

scalar unwanted parameter and scalar data is

'H

maXME'H, PY (Y; M) >

maXmE'HoPY(Y;M) <

'H o

where m E 'Hi means that m spans the values allowed under 'Hi. The GLRT generalizes in

a straightforward way for a vector of unwanted parameters and vector data.

In the example above the unwanted parameter is discrete so the estimation part of the

GLRT is really a hypothesis test to decide the value of m. But this hypothesis test is

precisely the thing we wished to avoid! So other means are sought.

Multiscale Hypothesis Testing

A multiscale hypothesis consists of a sequence of composite hypothesis tests. Each test in

the sequence is associated with a finite cover of some subset of 'H and decision statistics.

And each test in the sequence is given an index which we call scale. The range of the

covers (i.e., the subset of H which they cover) becomes smaller in cardinality as the scale

index increases. At the coarsest scale a finite cover is defined for all of 'H. The finest scale

consists of a finite cover for just a subset of 'H. If the MSHT continues to the finest possible
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Figure 2-8: This figure illustrates a multiscale hypothesis test.

scale, the hypothesis test at the finest scale is just a BHT for two elements of 'H. Some of

the Hi E 'H are not included in the composite hypotheses at an intermediate scale. Those

which are not included are said to have been discarded. Any hypothesis, Hi, which has been

discarded cannot ultimately be selected as the one which we think is true. The efficiency of

a MSHT is achieved by discarding many Hi at each scale.

A particular example is illustrated in Figure 2-8. At each scale in the tree illustrated

in Figure 2-8 a choice is made between two composite hypotheses (written in italics) based

on two statistics. The chosen composite hypothesis is indicated with an arc with an arrow.

The superscripts on the composite hypotheses and statistics indicate the scale. Notice that

the subset of 'H for which a finite cover is defined at scale k is precisely the subset which is

contained in the composite hypothesis which has been selected at scale k - 1. The elements

of a MSHT discussed above and illustrated in Figure 2-8 apply equally to the case where

an arbitrary finite number of composite hypotheses N (k) are defined at scale k.

The challenge in designing a MSHT is to select good covers and statistics for every scale
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and for every possible sequence of decisions. These covers and statistics should be selected

so that the resulting sequence of composite hypothesis tests effectively zooms in on the true

anomaly via the multiscale search on the domain 'H. We discuss criteria for good covers

and statistics in Chapter 5.

Notice that in our discussion of MSHT we have not associated the scale of a composite

-hypothesis with a spatial or temporal scale. In fact, it need not be the case that the

multiscale zooming effected by a MSHT corresponds to spatial or temporal zooming. In

this sense the zooming is truly a statistical one, defined wholly in terms of the hypothesis

space H.

2.4 Measures for Convex Sets

The anomalies for which we search in our examples have support on a convex subset of Y? 2.

The regions to which we localize these anomalies are also convex. One means of evaluating

our anomaly localization algorithms is to measure, in some sense, the difference between

the true anomaly's support and the chosen region. In this section we describe two ways of

measuring this difference. One way is to use the Hausdorff distance which is a true distance

metric between two convex sets. Another way is to use the one-sided Hausdorff measure

which is not a distance at all but proves useful nonetheless.

A common measure between convex sets is the Hausdorff distance [12]. Denote the set

of all convex sets which are subsets of N2 by k. To define the Hausdorff distance we first

define the distance between a point x E ff?2 and a convex set A E )C as

d(x, A) =: min I Ix - al I.
acA

Then the Hausdorff distance h(A, B) between two sets A, B E IC is defined as

h(A, B) = max max d(b, A), max d(a, B)
bEB aEA

The Hausdorff distance has the following intuitive interpretation: maXbEB d(b, A) is the



2.5. PROBLEM STATEMENT 49

hi(AB)

hi(AB) B
B

A

(a) (b)

Figure 2-9: This figure illustrates the one-sided Hausdorff metric. In (a) hi (A, B) is positive
since A !7= B whereas in (b) hi (A, B) is negative.

minimum amount by which set A must grow uniformly in all directions to include set B.

The expression max,,,EA d(a, B) has a similar interpretation as the minimum amount by

which set B must grow uniformly in all directions to include set A. The Hausdorff distance

is the maximum of these two numbers.

While the Hausdorff distance is a standard measure of the distance between two convex

sets, we shall see that it is not well suited to our problem. The following measure is, however,

well suited to our problem. We will define the one-sided Hausdorff metric, hi (A, B), as

hi (A, B) maxaEA d(a, B) if A g B

- minaEA d(a, (A U B)') otherwise

where superscript c denotes complement. The one-sided Hausdorff metric is illustrated in

Figure 2-9 and has the interpretation as the amount by which set B must grow or shrink

uniformly in all directions to just enclose set A. If B encloses A (i.e., A is a subset of B)

then hi (A, B) tells us how much we must shrink B (this number is negative). If B does not

enclose A then hi (A, B) tells us by how much we must grow B (this number is positive).

2.5 Problem Statement

The main theoretical problems considered in this thesis are concerned with the development

of the multiscale hypothesis testing framework. We introduced the notion of multiscale
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hypothesis testing in Section 2.3.2 and consider criteria for good MSHTs in Chapter 5. The

main applied problems addressed in this thesis are single anomaly detection and localization

from tomographic measurements. In this section we outline all modeling assumptions and

state the anomaly detection and localization problems precisely.

The form of the measurement model is given in Section 2.2.1:

g = Tf + n. (2.23)

The field f is modeled as a superposition of a field with at most a single anomaly, f,', and

an anomaly-free background field, fb:

f == fa + fb (2.24)

The anomaly field is zero everywhere except over a square patch. We write

f. = cb,, N (i, A ,

where c is the unknown non-negative anomaly intensity and b,,0J) is the lexicographi-

cally ordered vector associated with the N x N field which is zero everywhere except over

the s x s area with upper left corner at pixel (Z', j) where b,,N (i, A takes the value one. The

exact size s and location (ij) of this square anomaly are unknown. We assume knowledge,

however, of the maximum possible size, Smax, the anomaly can be where Smax < N,

The background field is modeled as a zero-mean Gaussian random field with known

covariance A. In this thesis, the background covariance is either the diagonal matrix A
A 2IA,, = a (so the background field is white) or it is a fractal field covariance matrix Af (so

the background is correlated). A fractal background has been chosen as a comparison to the

white background because fractal fields have been found to accurately model a wide range

of natural textures [41]. The 32 2 x 32 2 fractal field covariance matrix used in this thesis

(except where stated) is illustrated in Figure 2-10. It has a spectral exponent of two. Details

regarding the the structure of the fractal field covariance matrix are found in Appendix A.

The additive measurement noise n is assumed to be a zero-mean white Gaussian random
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Figure 2-10: This figure illustrates the fractal field covariance matrix associated with a
32 x 32 pixel field. The spectral exponent is two.

vector with intensity A and is independent of the background and anomaly fields. Therefore,

the data are conditionally Gaussian:

g - )V(cTb,,N (i, j), Ag)

where A =TAT T + Al.9

Before proceeding to an example anomaly and background field, we present the defini-

tions of signal-to-noise ratio (SNR) and anomaly-to-background ratio (ABR):
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T
A trace (TAT

SNR(dB) 10 log
trace (AI)

A O.
ABR(dB) 10 log trace (A)

These two quantities measure the relative power between the projected background and

the additive noise and the relative power between the anomaly field and the background,

respectively.

Figure 2-11 illustrates an example of the kind of anomaly and background field which

are considered in this thesis. The projection of f,,, + fb is also shown with and without

the addition of noise. Throughout this thesis the domain in which the background and

anomalies are defined is referred to as the image domain or object domain. Figures (a) and

(b) of Figure 2-11 are views of the image domain. The range of the projection matrix T

is called the data domain or the sinogram domain. Figures (c) and (d) of Figure 2-11 are

views of the data domain and are referred to as sinograms.

Figure 2-11 illustrates some important relationships between the image domain and the

sinograrn domain. Comparing (a) with (c) we see that one effect of the projection matrix

has been to color the white noise present in (a). Comparing (b) with (c) (or (d)), we see

that the square anomaly (with local support) has a sinusoidal signature in the data domain

(with nonlocal support). For the purposes of illustration the anomaly in this example has

a particularly large intensity. The signature of lower intensity anomalies is much more

difficult to discern (especially with a fractal instead of white background).

The anomaly detection problem is to determine whether or not fa is identically zero. The

anomaly localization problem is to determine the values of the size 8 < sma, and location

(ij) of the anomaly if indeed one is present. The goal is to solve these problems directly

in the data domain. Referring to Figure 2-11, solving these problems in the data domain

means that we use the information present in figure (d) directly without first attempting

to reconstruct the information information provided by figure (b). Therefore the detection

and localization problems are essentially ones of detecting the presence of and determining
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Figure 2-11: Figure (a) illustrates a zero-mean white Gaussian background field. The
pixels are independent and identically distributed with variance about 3. Figure (b) is a
superposition of the background shown in (a) and a constant intensity square anomaly near
the upper left corner. The anomaly intensity is 10. Figure (c) illustrates the projection of
the anomaly plus background field. The horizontal axis is the projection number (there are
32 projections equally spaced between zero and 7r). The vertical axis is the sample offset
(there are 50 samples per projection). In figure (d), zero-mean white Gaussian measurement
noise has been added to the projections. The variance of the measurement noise is about
63.
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I 1. � .1 - -.- the properties (e.g., the width, amplitude, and phase) of a sinusoidal signature in the data

domain. In the next chapter we begin discussing our methods for attacking these problems. .



Chapter 3

Performance Bound and

Ambiguity Analysis

In this chapter we employ a relatively simple binary hypothesis testing framework to inves-

tigate the structures of the anomaly detection and localization problems. Specifically, we

derive a performance bound for any anomaly detection algorithm and characterize anomaly

ambiguity (i.e., we measure, in some sense, the degree to which an anomaly localization

algorithm may confuse the location and scale of the anomaly). The techniques presented

here are similar to those applied in [19-21]. We carry the analysis a bit further, however, by

studying the dependence of the performance bound and anomaly ambiguity on the back-

ground field statistics. We shall show that a change in the background covariance has a

drastic effect on the structure of the problem. The dependence of the performance bound

and anomaly ambiguity on the background covariance is an exceedingly complicated one,

which we attempt to elucidate with the analysis of a simple one-dimensional signal.

This chapter is organized as follows. In Section 3.1 we introduce the principal tool

with which we measure detection performance and anomaly ambiguity. In Sections 3.2 and

3.3 we apply this tool to the investigation of a detection performance bound and anomaly

ambiguity, respectively. Finally, in Section 3.4 we analyze a simple one-dimensional signal

to illustrate the complex way the background field covariance structure enters the problem.

Throughout this chapter we rely on the definitions and notation established in Chapter 2.

55
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3.1 The Ambiguity Ellipse

In this section we introduce the principal tool with which we measure detection performance

and anomaly ambiguity. This tool is called the ambiguity ellipse. The ambiguity ellipse is

a special case of the ellipsoid encountered at the end of Section 2.3.1. To derive the form of

the ambiguity ellipse, we consider the BHT where each hypothesis, Ho and HI, corresponds

to the presence of a different anomaly field. That is,

Ho f. = cobo,00jo) = cobo,
Hi fa = c1b, Z

1,N('Ijl) = cibi,

where we have introduced bk as shorthand for the indicator function b, Z

formulation includes the special case that one of the hypotheses corresponds to the ab-

sence of an anomaly by setting either intensity co or cl to zero. Applying equations (2.23)

and (2.24), the conditional observations are

Ho g coTbo + Tfb + n,

HI g cjTbI + Tfb + n.

The data are conditionally Gaussian since they are linear combinations of independent

Gaussian random vectors. The background field and noise vector have covariance A and

Al, respectively; therefore, under either hypothesis the data, g, have covariance

A = TATT +Al.9

The conditional means of the data differ so that

Ho : g - Ar(coTbo, Ag),
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co

goo C

Figure 3-1: This figure shows the ambiguity ellipse. Only the portion of the ellipse in the
first quadrant is relevant.

HI : g - Ar(cTbl, Ag).

We have, therefore, satisfied all the conditions assumed in deriving equation (2.22). Spe-

cializing equation (2.22) we arrive at an equation for an ellipse in the (co, cl) plane:

2 + 6OC2 _ 112(pf,

61ci - 2610c,co 0 d) = 0, (3.1)

where bj = bTT T A - 1 Tb for j = 1, 2 and 610 = b TT TA 9_1Tbo. Since cl and co are

restricted to be non-negative, only values in the first quadrant are valid. We call this ellipse

the ambiguity ellipse, an example of which is depicted in Figure 3-1. For all points on

or outside this ellipse, the specified (PfPd) performance is achieved or exceeded. For all

points within the ellipse, this performance level is not achieved. Two points on the cl axis

are labeled in Figure 3-1. The significance of the points c' and c" will be discussed in

Sections 3.2 and 3.3, respectively.
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3.2 A Detection Performance Bound

In this section we derive an anomaly detection performance bound and investigate how this

bound behaves as a function of background field statistics and anomaly location. To this

end we consider the special case of the BHT discussed above. Specifically, we assume that

co = 0 so that the BHT is a test for the presence of the anomaly c1bl. If HI is true then this

particular anomaly is present. If, on the other hand, Ho is true then no anomaly is present.

In essence, this BHT represents a vastly simplified instance of the full anomaly detection

problem for which the anomaly's structure and intensity are not known. Since we assume

this additional knowledge, the detection performance of this optimal BHT represents a

bound on the performance of any more general anomaly detection method.

There are several equivalent ways of measuring the performance of this BHT. One way

is to compute Pd as a function of Pf, cl, and bl. Equivalently, one could compute the d

or d 2 statistic which simply combines Pd and Pf through equation (2.21). The structure of

the ambiguity ellipse, however, admits a more elegant measure of performance.

Consider a particular choice of values in the range [0, 1] for Pd and Pf. We call the chosen

(Pf, Pd) pair the performance benchmark. Having chosen this benchmark, H(Pf, Pd) is set.

Letting co = 0, equation (3.1) provides a formula for determining the minimal value of cl

required to achieve the performance benchmark. This minimal value is denoted c' where

C/ - II (Pf , Pd) (3.2)

bTTTAI 9-'TbI

The value of c' is the value of anomaly intensity for which d is equal to II(Pf, Pd). Higher

1C/ values indicate poorer detection performance since a larger anomaly intensity is required

to meet the given (Pf, Pd) benchmark. From equation (3.2) it is clear that c' depends on,

among other things, the data covariance matrix and the anomaly location and size given

by bl. We shall explore these dependencies by considering two data covariance matrices

and several families of anomaly indicator functions. It is assumed that the performance

benchmark and the projection matrix are fixed. For a given data covariance matrix, Ag,

and (Pf, Pd) performance benchmark, c' is a function only of bl and it varies with b,
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precisely so that the d statistic is a constant viz., rl(Pf, Pd), Vbl.

The difference between the two data covariance matrices considered here is that one

models a white background (with covariance A,, = o,2 1) and the other models a fractal

background (with covariance Af). So the data covariance is either

* = TA,,T T + Al,9

in the white background case or

* =TAfT T + Al,9

in the fractal background case. Throughout this thesis we consider only fractal covariance

matrices with a spectral exponent of two (see Appendix A for further details).

For each covariance structure, we consider several families of anomaly structures. Each

family corresponds to a dyadic tessellation of the N x N image domain field (N is assumed

to be an integral power of 2 and in the particular case considered here N = 32). We let El

be the set of all single pixel indicator functions which take on the value one over a pixel of

the image field. Similarly, 'T2 is the set of indicator functions which are one over 2 x 2 regions

within the image field which, together, tile the field. More generally, the set Ek consists of

(Nlk )2 indicator functions, each of which is one over the unique k x k region in the image
field with upper left corner at pixel (ki+ 1, k'+ 1) where iJ E 10, 1, 2,..., N - 11 and k is

I k

a non-negative integral power of 2. The elements of Ek are, therefore, bkN(ki + 1, kj + 1).

Figure 3-2 illustrates the values of c' for four families of anomaly structures with the

white background. Figure 3-3 illustrates the values of c' for the same four families of

anomaly structures but with the fractal background. To understand exactly what is plotted

in these figures, consider just one of them. Figure 3-2(c) is a view of the image domain.

Each 4 x 4 region in the image with upper left corner at pixel (4i + 1, 43' + 1) (where

i, j E 10, 1, . . . , 71) corresponds to the element b, = b4,32 (4i + 1, 4j + 1) E 'T4 which is one

over that region. The intensity of the region is the value of c' associated with that element

of T4 (i.e., the value obtained when b, = b4,32 (4i + 1, 4j + 1) in equation (3.2)). All the
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1. 1� 20 �5

(a) (b)

5 I 0 1 5 25

(c) (d)

Figure 3-2: Figures (a)-(d) illustrate the values of c' for anomalies associated with indicator
functions in T1, T2, T4, and T8, respectively. The background field covariance is white. The
SNR is about 3dB and Pd = 0.95, Pf = 0.1.

other plots in Figures 3-2 and 3-3 are similar.

There are several similarities but also some striking differences between the plots in

these two figures. Observe that all plots exhibit quadrantal symmetry. This is due to

the symmetry of the data collection, viz., equispaced projections between zero and 7r. In

general, the value of c' does not seem to vary in a smooth way from tessellation element1

to tessellation element. One might expect the value of c' at one tessellation element to be

between the values of c' for its neighboring elements. But this seems not to be the case.

For example, consider the plot in Figure 3-3(c). Look along one of the main diagonals of

the plot (it makes no difference which one). Notice that the value of c' is relatively low at a

corner, then increases toward the center, but then decreases again at the center of the plot.

This type of variation is most likely due to the detailed structure of the projection matrix

(i.e., exactly which pixels are intersected and by how much).
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(a) (b)

(c) (d)

Figure 3-3: Figures (a)-(d) illustrate the values of c', for anomalies associated with indicator
functions in El, T2, T4, and T8, respectively. The background field covariance is fractal. The
SNR is about 3dI3 and Pd = 0.95, Pf = 0.1.

The differences between the plots in the Figures 3-2 and 3-3 is startling. The values of

C' in Figure 3-2 are much smaller than those in Figure 3-3. This indicates that it is easier

to detect an anomaly superimposed on a white background than on a colored one which is

consistent with intuition. In general, it appears that anomalies at the center of the image

are easier to detect than ones at the corners when the background is white. The opposite is

true for the fractal background case. And the values of c' at the edges are between those at

the corner and center. It almost seems that the color map has been reversed from Figure 3-2

to Figure 3-3 (but it has not been).

Clearly the structure of the anomaly detection problem is intimately linked to the struc-

ture of the background covariance matrix. The nature of this link seems to be quite a

complicated one as we illustrate in Section 3.4 with a one-dimensional example. Regardless

of the spatial pattern, however, these anomaly intensity values (c') are lower bounds for

any anomaly detection method with performance benchmark Pd = 0.95, Pf = 0.1.
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3.3 Ambiguity Analysis

'In this section we use the ambiguity ellipse to investigate anomaly ambiguity. We wish to

measure, in some sense, the degree to which an anomaly associated with indicator function

b, may be confused with some other structure, bo, by an anomaly localization algorithm.

The results of this ambiguity analysis will indicate whether a scale-recursive spatial zooming

technique such as that employed by Miller and Willsky in [19-21] is feasible. (In spatial

zooming the anomaly is localized with a multiscale hypothesis test for which the sequence

of selected composite hypotheses corresponds to a nested sequence of regions in the image

domain.) If anomalies are most confused with structures which spatially overlap or are

adjacent to them then a spatial zooming technique seems appropriate. On the other hand,

if anomalies are most confused with structures which are spatially disjoint and far away

from them then a spatial zooming approach seems dubious. We shall see that, as was the

case with the detection bound, the nature of anomaly ambiguity depends critically on the

nature of the background covariance structure.

Consider a particular choice of indicator functions bo and bl and intensities co and cl.

The BHTof Section 3.1 is a test to decide which is present, cobo or c1bl. If the probability

of detection is relatively high while the probability of false alarm is relatively low (i.e., the

d2 statistic is high) then the two structures cobo, c1b, are disambiguated to a high degree.

On the other hand, if Pd is relatively low and Pf is relatively high (i.e., the d 2 statistic is

low) then the two structures are highly confused with one another. Clearly Pf, Pd, bi, bo,

co, and cl are not all independent. In our investigation of anomaly ambiguity, we choose a

particular (Pf, Pd) performance benchmark and consider several different choices of bl and

several families of bo.

The structure specified by b, is the anomaly's support. The indicator function bo

specifies the structure with which we wish to compare the anomaly. Having specified the

performance benchmark and indicator functions, the ambiguity ellipse is determined. Re-

ferring to Figure 3-1, for all values of the anomaly intensity, cl, greater than or equal to

d the performance benchmark is achieved or exceeded independent of intensity, co, of the1

comparison structure. Higher values of d indicates higher degree of ambiguity (lower d 2
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(a) (b) (c)

Figure 3-4: Figure (a) shows b, b4,32 (2, 2) which is a 32 x 32 field which is zero everywhere
except over the 4 x 4 area with upper left pixel at (2, 2) where it is one. Figure (b) shows
bl = b4,32 (14, 14). Figure (c) shows bi = b4,32 (5, 5).

between the structures bo and bl.

The three anomaly structures (bi) for which we present ambiguity analysis are shown

in Figure 3-4. We compare the structures depicted in Figure 3-4(a) and (b) to the families

of structures contained in several tessellation sets in Figures 3-5 and 3-6, respectively, with

a white background. In Figures 3-7 and 3-8 we compare the structures depicted in Figure 3-

4(a) and (b), respectively, to several tessellation sets with a fractal background.

To understand what is plotted in these figures, consider just one of them, Figure 3-

5(a), say. Figure 3-5(a) illustrates the ambiguity between the anomaly with support b, =

b4,32 (2, 2) with all elements of T4. Each element of T4 is associated with the value of c"

which achieves the performance benchmark (Pf, Pd) = (0.1, 0.95). Let the k 1h element of

T4 be associated with the value c" = ak. Then Figure 3-5(a) is an image domain view

of the function Ek,,3,CT, ak0k. That is, the region of the image domain associated with

A E T4 has the value ak. The other plots are similar but for different tessellation sets

and/or anomaly structures.

Figures 3-5, 3-6, 3-7, and 3-8 indicate that spatial zooming may indeed be a reasonable

way to localize the anomaly since the small scale anomalies are most confused with larger

structures which overlap them for both the fractal and white background cases. Comparing

Figures 3-5 and 3-6 with Figures 3-7 and 3-8 we see that, in the presence of a white

background, a smaller value of c" is required than in the presence of a fractal background.

This indicates that it is easier to distinguish the anomaly structure from other structures
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(a) (b) (c)
Figure 3-5: Figures (a)-(c) show the value of c" for each structure, bo, in 4, and 6 ,

I T T8 T1
respectively. The anomaly structure is bi ::= b4,32(2,2) and the background is white. The
performance benchmark is (Pf, Pd) (0.1, 0.95) and the SNR is about 3dB.

2m

..Q ON,

(a) (b) (c)

Figure 3-6: Figures (a)-(c) show the value o f c" for each structure, bo, in T4, T8, and T16,I

respectively. The anomaly structure is bi = b4,32(14,14) and the background is white. The
performance benchmark is (Pf, Pd) (0-1, 0.95) and the SNR is about 3dB.

(a) (b) (c)

Figure 3-7: Figures (a)-(c) show the value of c" for each structure, bo, in T4, T8, and T16,

respectively. The anomaly structure is bj = b4,32(2,2) and the background is fractal. The
performance benchmark is (Pf, Pd) = (0.1, 0.95) and the SNR is about 3dB.
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(a) (b) (C)

Figure 3-8: Figures (a)-(c) show the value of d for each structure, bo, in T4, T8, and T16,

respectively. The anomaly structure is bi ,::::: b4,32(14,14) and the background is fractal.
The performance benchmark is (Pf, Pd) = (0.1, 0.95) and the SNR is about 3dB.

when the background is white. This is consistent with intuition. For the fractal background

cases (Figures 3-7 and 3-8), the dynamic range of the d values is quite small (see the values

on the color bar to the right of the plots). From these plots it seems that there is hardly

any variation in ambiguity throughout the image domain.

We have seen that anomalies tend to be most confused with coarser scale structures

which overlap them. Another question to consider is whether or not anomalies are most

confused with structures which are of the same scale and nearby. Figure. 3-9 addresses this

question with the anomaly structure of Figure 34(c). This anomaly overlaps with exactly

one element of T4 since b4,32(5, 5) is an element of T4. Figure 3-9 illustrates the ambiguity

of this anomaly with all other elements of T4 both for the white and fractal background

cases.

Notice that in the case of the white background the maximal ambiguity (corresponding

to the maximum value of d) is local while for the fractal background the maximal ambiguity

is with structures which are on opposite sides of the image field. The results for the white

background provide further support for a spatial zooming approach since it seems to indicate

that anomalies in the same area of the image tend to look more like one another (in the

"eyes" of a detection algorithm) than anomalies which are spatially separated. The results

for the fractal background, on the other hand, raise some doubt as to whether spatial

zooming is appropriate when the background is not white. The implication of Figure 3-9(b)

is that distant, not adjacent, anomalies look most similar. If this is indeed true then a
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1.2 IF,

2. 21 11

(a) (b)

Figure 3-9: Figure (a) shows the value of c" for each structure, bo, in T4 for the anomaly1
with indicator function b, -::-- b4,32(5, 5) and white background. Figure (b) illustrates the
same thing but with a fractal background. The SNR is about 3dI3.

spatial zooming algorithm could easily zoom in on an area which is quite far from and does

not overlap with the anomaly. On the other hand, the dynamic range of Figure 3-9(b) is

very small, indicating that there is no significant variation in ambiguity across the image

domain. However, in Chapter 5 we shall see from another point of view that the fractal

background does indeed give rise to non-local ambiguity as suggested by Figure 3-9(b).

In the following section we address the curious phenomenon illustrated in Figure 3-

9. And in Chapter 5 we shall again consider anomaly ambiguity but from a different

perspective.

3.4 Analysis of a One-Dimensional Signal

There are two aspects of the foregoing performance bound investigation and ambiguity

analysis which seem puzzling. One is the difference in nature of the plots in Figure 3-2 and

Figure 3-3. Recall that these figures illustrate the detection performance bound as measured

by the value c', the minimum value of the anomaly intensity for which the performance

benchmark is achieved. Figure 3-2 illustrates values of c' for many anomalies with a white

background and Figure 3-2 does so for a fractal background. For the former, anomalies

at the center are easier to detect than ones at the corners. The exact opposite is true for

the latter. The other is the difference in nature of Figure 3-9(a) and Figure 3-9(b). Recall
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that -these figures illustrate ambiguity (as measured by d, the minimum value of anomaly

intensity for which the performance benchmark is achieved independent of the comparison

structure's intensity) between the anomaly with indicator function b4,32 (5, 5) as compared

with structures in the set T4 for the white and fractal background cases, respectively. For the

white case, the maximal ambiguity is local while for the fractal case the maximal ambiguity

is non-local.

In this section we aim to answer the question: what is it about the background covariance

structure which causes c' (performance bound measure) or d (anomaly ambiguity measure)

to be high or low for a particular tessellation element? We seek intuition for these curiosities

through the analysis of a one-dimensional signal. The relative simplicity of this signal

admits closed form analytical analysis of the dependence of performance and ambiguity on

background covariance structure. Even for this simple signal, however, the relationships are

complex and, seemingly, without pattern. This suggests that an analytical analysis of these

relationships for the full two-dimensional tomography problem would be extremely difficult

or impossible. We do not attempt such an analysis here.

In the next section we introduce the one-dimensional problem and an associated binary

hypothesis test. The structure of this one-dimensional problem is similar to that of the

two-dimensional tomography problem. Therefore, many intermediate steps and explanatory

comments are omitted. In Sections 3.4.2 and 3.4.3 we investigate the relationship between

the background covariance and detection performance and ambiguity, respectively.

3.4.1 A One-Dimensional Problem

Let x be a length N vector which is composed of the sum of a statistically known background

Xb and an unknown deterministic signal (anomaly) x,,,. That is,

X = X, +Xb-

The background is a zero-mean Gaussian random vector with known covariance:
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Xb - Ar(O, P) -

It is assumed that P is Toeplitz (not circulant) so that Xb is wide sense stationary (WSS)

but not necessarily periodic. The anomaly has constant intensity over part of the vector

and is zero elsewhere. We write x,, = cb,,NW, where c is the intensity and b,,N(j) is the

anomaly indicator function. It takes on the value one over the length 8 portion of the length

N vector beginning at position j and is zero elsewhere. For example,

b2,5 (2) = [O 11 0 O]T

Consider the noisy observation of the vector x:

y x+n

X,+Xb+n

cb,,N(j)+Xb+n.

The vector n represents zero-mean additive white Gaussian noise which is independent of

the background and anomaly vectors and has covariance AI. Therefore,

y - Ar (cb,, N W, P + AI)

A
We define Py = P + AI.

Consider a binary hypothesis test to decide which is true

Ho x,, coboNUO),

HI x,, c1b,,,N01) -
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The Neyman-Pearson optimal decision rule for such a binary hypothesis testing problem is

the log-likelihood ratio test (LRT) which has the form,

Hi

f(Y) =A (cjb,,,NU1) - cob,(,,N (jo))Tp Y-ly >Y)

Ho

The log-likelihood ratio function (LRF), f(Y), is conditionally Gaussian and has the same

variance (but different mean) under each hypothesis. Specializing equation (2.20), the d 2

statistic is

d2 (E(f jHj) - E(�JHo) )2
92

f
C2bTP _'bi + C2 bTp Tp

I 1 y 0 0 y-lbo - 2cocbo Y-1b, (3.3)

where we have made the notational simplification bk = bkN(jk)-

Since the d2statistic completely characterizes performance, we may use it to analyze

2performance and anomaly ambiguity. In the following sections we relate the d statistic to

the elements of the background covariance matrix P for a length three (N = 3) signal. For

such a signal, the background covariance matrix, P, and inverse data covariance matrix,

1py- , are related as follows. Define

PI P2 P3
A

P P2 PI P2

P3 P2 PI

Therefore,

PI + A P2 P3 a, a3 a4

I A
py- P2 PI + A P2 �Py a3 a2 a3

P3 P2 PI +A a4 a3 al
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The elements of P = P + AI may be related to those of P using Cramer's rule. Doingy y

so yields

2 _ 2 2a, = pi P2 + 2pjA + A (3.4)

2 _ 2 2
a2 = Pi P3 + 2pjA + A (3.5)

a3 = P2P3 - PlP2 - P2 A, (3.6)

2 _
a4 = P2 PIP3 - P3A. (3.7)

3.4.2 Detection Performance

As in the two-dimensional tomography problem, we investigate detection performance by

setting co = 0. Rather than selecting a performance benchmark and studying the behavior

of cl for various anomaly structures, bl, we instead consider the d 2 statistic which is an

equivalent performance measure. In this section, we fix cl = 1 and interpret high values

of d 2 as indications of higher detection performance and low values of d 2 as indications of

lower detection performance.

We are interested in understanding what causes d2 to be relatively high or relatively

2low. Specifically, we wish to study how the structure of d (as a function of bi) depends

on the background covariance matrix, P. To do so we consider a special class of anomaly
A

indicator functions, viz., the set S = jbj,3(j)j, for j G f 1, 2,31. The set S is the set of

all length three vectors which take the value one over one element and are zero elsewhere.

Since, throughout this section and the next, our indicator functions will always be from the

set S, we may drop the subscript 1, 3 and write the anomaly indicator function as bi(j). (In

the next section, co �4 0 and we shall use the analogous notation bo(j) for the comparison

structure since it also will always be an element of S.)

The d2 statistic, therefore, is only a function of j, the position of the anomaly. Thus,

using equations (3.3) and (3.4)-(3.7), we write
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d'(j) bT(j)p y-'bi(j)

al if 1,3
Tyl

a2 if J= 2
Tyl
PI'-P2'+PA+A21P Y1 if j = 1,3

p,2 -p32+2p, A+,\2 if j = 2
Tyl

Having expressed the d 2 statistic in terms of the elements of the background covariance

matrix, we can readily understand what, precisely, determines its structure. We can state

under what conditions a particular anomaly (b, (j)) is easier to detect than another. Specif-

ically, bl(2) is easier to detect than either bi(l) or bl(3) if and only if d 2 (2) is larger than

either d2 (1) or d2(3) which is true exactly when P2 is larger than P3. Notice that neither

the background variance, pl, nor the noise intensity, A, play a role in the relative structure-

2of d

3.4.3 Ambiguity

To investigate anomaly ambiguity, we imagine that the anomaly structure bj E S is set to

bi(l) and we wish to determine to what degree (as measured by the d 2 statistic) the two

other other structures in S are confused with it. That is, we are interested in investigating

the structure of d2 as a function of bo E S \ b I (1) and we also wish to relate this structure to

the background covariance matrix P. A smaller d 2 value indicates a higher ambiguity. The

converse holds for higher d 2 values. Throughout this section we assume that cl = co = 1.

There are only two possible d 2 values in this problem since N = 3 and we have fixed

b, = b, (1). One corresponds to the d 2 statistic using bi (1) and bo (2). Using equations (3.3)

this d2 statistic has the form

2 2 Ad = d1,2 = a2 + a, - 2a3,

where we have included the subscript 1, 2 to remind us that this value corresponds to the
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binaryhypothesistestbetweenananomalyatthefirstelementandthesecondelement.�

2Theremainingd statisticmeasurestheperformanceofthebinaryhypothesistestbetween

bi(l) and bo(3):

2 2d =dI,3=ai+ai-2a4-

If di,3 1,2 then the anomaly (at the first entry) is harder to distinguish from the

structure which is one at the second entry than the structure which is one at the third

entry. In other words, the maximal ambiguity is local (i.e., it is adjacent to the anomaly).

On the other hand, if d 23 < d 2 then the opposite holds and the maximal ambiguity is

nonlocal. For flat ambiguity (neither local nor nonlocal) we require the two d 2 values to be

equal. We define

2 2 2 _ 2
f (PI, P2, P3, A) di,2 - di ,3 = 3p2 P3 - 2P2P3 + 2p1P2 + 2P2A - PIN - 2P3A.

We have the following conditions on the elements of the data covariance matrix, PY: for

nonlocal maximal ambiguity we require that f (PI, P2, P3, A) > 0. This is satisfied, for

example, with pi = 3, P2 = 3, P3 = 1, and A = 1. For local maximal ambiguity we require

that f (PI, P2, P3, A) < 0. This is satisfied, for example, with pi = 4, P2 = 2, P3 = 3, and

A = 1. For flat ambiguity we require that f (PI, P2, P3, A) = 0. This is achieved, for example,

with pi = P2 = P3 = A = 1. (Note: it is not enough just to satisfy the sign constraint on

f (PI, P2, P3, A), but the pi and A values must also form a valid invertible covariance matrix,

Py-a matrix which is symmetric positive definite. The values provided above also satisfy

this additional constraint.)

We see that, for this small, structured, one-dimensional problem, any kind of ambiguity

may arise by proper choice of the background covariance matrix. While it is difficult to

analyze in as precise a manner as we have done here for this small one-dimensional problem,

we have seen that the same is true in the two-dimensional tomography problem. What this

one-dimensional case suggests, however, is that a great variety of background covariance

matrices (not just, say, fractal) satisfying certain conditions gives rise to nonlocal ambiguity.
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This, no doubt, holds in higher dimensions as well.

� I e , .; In the foregoing analysis we have assumed direct measurements of the underlying vector.

x. The measurement model we used does not contain a term analogous to the projection

matrix in the two-dimensional anomaly problem. This suggests that if we were to replace the

projection matrix with the identity matrix and repeat the performance bound and anomaly

ambiguity analysis we would continue to witness the variety of "strange" behavior which

we saw in Sections 3.2 and 3.3. Indeed, we have performed a few preliminary experiments

which indicate that non-local maximal ambiguity may arise without the projection matrix.

We have not conducted enough analysis on this direct measurement case to conclude under

what precise conditions non-local maximal ambiguity is achieved. This remains an open

problem.
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Chapter 4

Simple Approach to Detection

and Localization

In Chapter 2 we introduced the concept of a multiscale hypothesis test (MSHT) as an

efficient but suboptimal alternative to the optimal M-ary hypothesis test (MHT). In this

chapter we apply MSHTs to the anomaly detection and localization problems. In Section 4.1

we formulate these problems as MHT problems. These MHTs require the consideration of

a prohibitively large number of hypotheses even for the simple class of anomalies considered

in this thesis. Therefore, in Section 4.2 we develop two types of MSHTs. These MSHTs

are applied to several instances of the anomaly detection and localization problems in Sec-

tion 4.3. In Section 4.4 we compare the computational complexity of the optimal MHT

with several MSHT formulations.

4.1 M-ary Hypothesis Testing Problem Formulation

In this section we formulate the optimal MHT for the anomaly detection and localization

problems. This optimal test includes one hypothesis for every possible anomaly size, po-

sition, and intensity as these are the only unknown parameters associated with anomalies

considered in this thesis. As mentioned in Section 2.5, we assume that the anomaly has the

form

75
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f. = cb,, N (i, j) ,

where c is the unknown non-negative anomaly intensity and b,,N(ij) represents the field

which is zero everywhere except over the s x s area with upper left corner at pixel (i, j)

where it is one. The exact size, s, and location, (ij), of this square anomaly are unknown.

While c E ff?+ U 101, s, i, and j are elements of finite sets:

IL
S E 11, 2.... I Smax S,

i, j 2,..., N - s + 11

If we restrict the range of c to the finite set

A
C E fala2,- -- ,aN,,,l = C

then an optimal MHT may be formulated as follows. Let Hk represent the hypothesis that

f. = CkbkN(ikjk) where Ck E C, Sk E S, and ikjk E J,. For each allowable anomaly size

and intensity there is one hypothesis for every possible anomaly location. We shall find it

convenient to use the simplified notation

Hk : fa = Ckbk

A
where bk = bkN(ikJk). Therefore, the conditional probability function for the data is

Gaussian (cf., equation (2.5)):

Hk : g - Ar(Ck Tbk, Ag) ,

where A =TAT T + Al, and A is the covariance matrix for the background field fb.
9

Letting Ho represent the hypothesis that there is no anomaly (i.e., that fa =_ 0), the
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log-likelihood ratio functions (LRFs) have the form

fk (G) A In [Lk (G)j

In pg (G; Hk)

pg (G; Ho)

)TA 2 )TACk (Tbk 9_1G - 2Ck(Tbk 9_'(Tbk),

where G is the particular observed realization of the random vector g. The optimal decision

rule, h(G), is the log-likelihood ratio test

h(G) Ho if maxj f 3-(G) <,q

Hi if maxj fi (G) > q where i = arg maxj fj (G)

If c is not restricted to a finite set as above, then suboptimal methods must be used.

The generalized likelihood ratio test (GLRT) described in Section 2.3.2 is one such method.

Another possible approach is to estimate the anomaly field f"' from the data g. The maxi-

mum likelihood (ML) estimator is considered in Appendix B and it is shown that -such an

estimator is not well suited to the problems posed in this thesis.

4.2 Multiscale Hypothesis Testing Formulations

A multiscale hypothesis test possesses three main high level characteristics: the form of the

covers (the composite hypotheses), the form of the statistics, and the form of the decision

structure. In this section we formulate MSHTs for the anomaly detection and localization

problems. The form of the covers and statistics we use are motivated by the work of

Miller and Willsky in [19-21] and are chosen to effect spatial zooming. In particular,

the composite hypotheses of the MSHTs introduced in this chapter are associated with

spatially contiguous regions of the image domain. The particular statistics we use have

an interpretation as log-likelihood ratios and are, in some sense, intuitively natural. They

are not, in any sense, optimal. We discuss optimal statistics in Chapter 5. The decision
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HI (2) (2) (2) H (2)
3 4'

(3) (3) (3) (3)
2 3 4

HI (3) H H (3) (3) H (3)
4'

(4) (4) (4
1 2 3 4

Figure 4-1: This figure illustrates a multiscale hypothesis test with a decision structure
which is different from that of Figure 2-8. The selected composite hypotheses are indicated
with directed arcs. The MSHT tree terminates after four scales and the dashed lines indicate
the post-processing stage which selects one of the remaining Nl,,,f candidate hypotheses.

structure reflects how the covers and associated statistics are used to test for anomaly

presence and to deduce localization. Figure 2-8 illustrates one particular decision structure:

one composite hypothesis, H�k)' is selected at each scale k.Z

Figure 4-1 illustrates another decision structure in which two of three composite hy-
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potheses are selected at the coarsest scale: 'Hi and R3 are selected. These two composite

hypotheses are then considered independently in subtrees A and B, respectively. At each

scale in each of these subtrees only one of two composite hypotheses is selected. The scale

recursive selection continues until only one hypothesis remains at the bottom of each sub-

tree. The processing in subtrees A and B ends with the choice of hypothesis H3 and H8,

respectively. All other hypotheses have been discarded. The final processing stage is indi-

cated with dashed lines and compares these two hypotheses. In this example, H3 is selected

and H8 is discarded. Alternatively, the scale recursion may be terminated at a coarser scale

in which case one of the composite hypotheses is ultimately selected. For example, if in

Figure 4-1 the scale recursion were terminated at scale k = 3 then either 'H (31 or 'H (3) Will2 3

be selected in a post-processing stage.

A general decision structure selects r (k) composite hypotheses at each scale k where

r(k) E 11, 2,. N (k) I and N (k) is the number of composite hypotheses at scale k. Each

selected composite hypothesis spawns a subtree and the finer scale processing along a subtree

is independent of processing along other subtrees (e.g., the processing along subtrees A and

B in Figure 4-1 are independent of one another and may be done in parallel). At the finest

scale of the entire MSHT tree there are Nleq hypotheses which have not been discarded

(e.g., in Figure 4-1 Nl,,,f = 2 since H3 and H8 remain at the bottom of the tree). The Nl,,f

hypotheses are called candidates, one of which is selected in a post-processing stage.

In this section we develop two types of MSHTs for the anomaly detection and localization

problems. These two types differ in their decision structure. One aspect of this difference

is how the two algorithms conduct the test for the presence of an anomaly (the detection

test). Another difference is the number of composite hypotheses selected at each scale

(this relates to localization determination). We shall first discuss the single candidate (SC)

algorithm which tests for the presence of an anomaly at the coarsest scale before attempting

localization. Then, localization is only attempted if it is determined that an anomaly

exists. The SC algorithm, like the example depicted in Figure 2-8, selects one composite

hypothesis per scale and, thus, terminates with a single candidate hypothesis. In contrast,

the multiple candidate (MC) algorithm, like the example depicted in Figure 4-1, terminates
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with several candidates, at most one of which is selected in a post-processing stage. In

the MC algorithm, a detection is not conducted before localization as is done in the SC

algorithm. Instead, detection is conducted at a fine scale by comparing the log-likelihood

ratio function values associated with the Nl,,,f selected regions with a threshold. In other

words the MC algorithm assumes that an anomaly exists and then computes many (Nle.f)

estimates of the anomaly's location (candidates) using a MSHT. The most likely candidate

is then selected only if the LRF values are sufficiently high. If none is sufficiently high then

it is determined that no anomaly exists.

4.2.1 Single Candidate Algorithm

As emphasized in Chapter 2, the scale recursion of a MSHT need not have any interpreta-

tion in a spatial domain. As a starting point for our application of MSHTs to the anomaly

detection and localization problems, however, we consider MSHTs which do have a spa-

tial zooming interpretation. We begin with a discussion of the composite hypothesis test

conducted at the coarsest scale of the SC MSHT. The processing at other scales is similar.
A

Recall that the hypothesis Hk� E R _= JHo,..., Hm-11 is associated with the indicator
A

function bk = bkN(ikJk) and the anomaly intensity Ck- We make two additional assump-

tions. The first is that Sk E 11, 2,. .. ) Smax I where Smax, the maximum possible size of the

anomaly, is much less than N, the linear dimension of the image domain field. The value

Of Smax is known. The second is that Ck is known and is independent of k. In Appendix C

we show that this latter assumption results in no loss of generality.

Figure 4-2 provides an image domain interpretation of the composite hypotheses at

the coarsest scale. There are four composite hypotheses: for i E 11,2,3,41. Each

composite hypothesis corresponds to a square Shyp X Shyp region of the image domain as

shown. We associate each composite hypothesis with an indicator function 0) which is one

over the shyp X Shyp region corresponding to 'Hi and zero elsewhere. The hypothesis Hk

belongs to composite hypothesis if and only if bTO) = 82 . For example, compositek i k

hypothesis R(l) corresponds to the shaded region in Figure 4-2. All and only hypotheses1

associated with anomalies with support entirely within this shaded region belong to
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S hyp

§4

2

3 4

Figure 4-2: The field is divided into four subdivisions at the coarsest scale. Subdivision
i corresponds to Subdivision 1 is shown shaded and with a solid border; the other
subdivisions are unshaded with dashed borders. The subdivisions overlap so that the chosen
anomalous subdivision contains the entire anomaly.

The composite hypothesis regions overlap by at least 1 pixels so that each possible

anomaly lies entirely within at least one region.

The composite hypothesis test conducted at the coarsest scale selects one of 'HO I 1

'H(l), Ml) and Ml) where2 3 4

no anomaly,0

anomaly has support in region i.

One of these composite hypotheses is selected on the basis of a comparison of four LRF

statistics, f(l), f(l) &) f(l). These statistics are derived by imagining that the composite1 2 ) 3 7 4

hypothesis test is really the test

f 0,-H 0 (4.1)

-0) f,,, c0) (4.2)

where i E f 1, 2, 3, 4

In this test, the null hypothesis, 'H(l), is that no anomaly exists and composite hypoth-0
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esis for i E 11, 2, 3, 41 is that the anomaly has intensity c and support over the entire

region i indicated in Figure 4-2. Note that, in general, there does not exist a hypothesis

Hk E 'H which corresponds to an anomaly with support over the entire region i (the over-

lapping ensures this). While does not exactly match any Hk E the hope is that

the statistic derived from this formulation may be interpreted as the likelihood that the

associated region contains the anomaly.

A log-likelihood ratio test is used to choose which one of the five hypotheses is most

likely true. The form of this test is

0 for maxj [A')(G)l <,q(')

arg maxj (G)] otherwise

where

Al)(G) = cjO) )T A9_1G, (4.3)7 3

and j E 11, 2, 3, 41, 77(l) is a constant threshold. So, after this coarse-scale test, either no

is selected (i.e., 'H( ) is chosen) or one of the four overlapping regions of Figure 4-0

2 is selected as the anomalous subdivision. The statistics are the log-likelihood ratio

functions associated with the hypothesis test specified by equations (4.1) and (4.2). In

deriving equation (4.3), we have used the fact that

(0) )T T T A _'TO) = (b�') )T T T A21 -'Tb(')9 9 3

for all i, j E f 1, 2, 3, 4 1. This follows from the symmetry of the composite hypothesis regions,

the fact that we have a complete set of data, and the wide sense stationarity of g. Note,

however, that this type of relation need not hold at subsequent scales since the composite

hypothesis regions do not have the requisite symmetry at other than the coarsest scale.

Despite this, we have found that, to a good degree of approximation, such a relation holds

at all scales. Notice that the scalar c appears in all the statistics (G) which are compared.

Since the result of a comparison is not affected by the value of c, we may remove it from all
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of the t(l)(G) statistics.

The composite hypothesis test at subsequent scales is similar to the one just specified

for the coarsest scale. At the second scale, for example, the region associated with the

composite hypothesis selected at the first scale is subdivided in the same way that the

entire image domain was subdivided at the coarsest scale-with four overlapping squares.

Each square is associated with a composite hypothesis, one of which is selected on the basis

of a log-likelihood ratio test. This scale-recursive, decision-directed process continues until

the anomaly (if any) is localized.

One difference between the first and subsequent levels of the SC algorithm is that the

null hypothesis takes on a slightly different meaning after the first step. In the first step,

if the null hypothesis is chosen then it is assumed no anomaly exists in the field and no

further processing is conducted-the search ends. If the null hypothesis is not declared in

the first step then an anomaly is assumed to exist and further processing is done. Therefore,

in subsequent steps, when the null hypothesis is declared it does not mean that no anomaly

exists. It means that none of the corresponding log-likelihood ratio function values are

larger than the threshold at that step. Possible interpretations of such a result include:

(1) the anomaly is larger than any of the subregions being tested; (2) the data do not

warrant finer scale localization. (Note that a slightly different algorithm could include a

4cno anomaly" hypothesis at every scale so that the detection determination can be deferred

to finer scales.)

The following is high level pseudo-code for the SC algorithm. The inputs to the algorithm

are the region to investigate (initialized to the entire image domain) and the scale number

(initialized to one). The output is the region corresponding to the estimate of the anomaly's

support.
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Algorithm I (Single Candidate)

H = SingleCandidate(R, scale)

Step 1. If scale is the maximum Possible scale, H = R, stop.

Step 2. Otherwise, subdivide the region R into four overlapping squares

where the amount of overlap is at least Sax - 1. Denote these

squares Ri for i E 11, 2,3,41.

Step 3. For each subdivision Ri compute the LRF value fi.

Step 4. Let k arg maxi If f k < 'q, the threshold at the current scale,

H = R, stop.

Step 5. Otherwise call the SC algorithm again with

H = SingleCandidate(Rk, scale + 1).

4.2.2 Multiple Candidate Algorithm

The MC algorithm is a simple extension of the SC algorithm. There are some important

differences however. The main difference is that more than one composite hypothesis may be

selected at each scale. Another difference is that the test for the existence of an anomaly (the

detection test) is conducted at a fine rather than coarse scale. We discuss these differences

in detail in this section by specifying the coarsest scale processing. Finer scale processing

is similar.

At the coarsest scale the image domain is again subdivided as shown in Figure 4-2. It

is assumed that an anomaly exists so the hypothesis test conducted at this coarsest scale

consists of only four composite hypotheses. The test has a similar form to the one used in

the SC algorithm: is that cb�'), where b�') is as defined in the previous section.

Any number r(l) E 11, 2, 3, 41 of these composite hypotheses may be selected for finer

scale investigation (in the examples provided in Section 4.3, r (k) at each scale k is a program

parameter chosen by the user). The ones selected are those with the r(l) highest LRF values.

As show in Figure 4-1, each selected composite hypothesis spawns a tree along which finer

processing is conducted. For example, if it is decided that and R(l ) are most likely4
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to contain the anomaly then each is subdivided just as the image domain was subdivided

at the coarsest scale-with four overlapping squares. Any number of these squares may be

selected and the ones which are selected are themselves subdivided.

This process continues until the finest scale has been reached at which point there are

Nl,,,,f hypotheses to be compared in a post-processing step. It is at this stage that the

anomaly detection test is conducted. If the LRF values of the Nl,,,f hypotheses are too low,

it is determined that no anomaly exists. Otherwise, the hypothesis corresponding to the

highest LRF value is chosen.

The following is high level pseudo-code for the MC algorithm (the post-processing step

is not included). The inputs to the algorithm are the region to investigate (initialized to

the entire image domain) and the scale number (initialized to one). The output is a list of

regions corresponding to the Nl,,,f candidates.

Algorithm 2 (Multiple Candidate)

H = MultipleCandidate(R, scale)

Step 1. If scale Z's the maximum possible scale, H = [H R], stop.

Step 2. Otherwise, subdivide the region R into four overlapping squares

where the amount of overlap Z's at least 8,ax - 1. Denote these

squares Ri fort' E 11, 2,3,41.

Step 3. For each subdivision R- compute the LRF value fi.

Step 4. Let L be the set of R- associated with the fi with the r(,,ale) highest

values. Call the MC algorithm with

H = MultipleCandidate(Ri, scale + 1) for each Ri E L.
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4.3 Examples

In this section we provide examples and evaluate the performance and complexity of the

SC and MC algorithms.

4.3.1 Single Candidate Algorithm Examples

Example Output

Our first example illustrates the output of the SC algorithm at each scale. The anomaly

considered in this example is f, = 5b4,32(2,2). The background is white with a variance of

about 1.5 and the white additive measurement noise has a variance of about 14 (SNR = OdB,

ABR = -8.9dB). The value of s,,,, has been set to 4 and the minimum size region considered

by the algorithm is 4 x 4. In other words, the algorithm continues to localize the anomaly to

finer scales until the scale corresponding to regions of size 4 x 4 has been reached. Figure 4-3

illustrates the output at each scale.

Coarse Scale Performance

Intuition suggests (and experimentation supports) that the larger the difference between

Shyp, the size of the hypothesized regions, and s, the size of the anomaly, the worse the

performance. In the following example we explore this relationship by considering different

types of coarse scale tests. Four tests are considered and they differ in the number of

composite hypothesis regions formulated. One of the four tests is the coarsest scale of the

SC algorithm. The other three tests are slight variations of the coarsest scale of the SC

algorithm. The composite hypothesis regions in each of these three variations are squares

but there are more than four of them and they differ in size. We adopt the following name

convention for these tests: SC refers to the SC algorithm and SCM refers to the variation

which has m rather than four coarse scale regions. Table 4.1 summarizes the dimension and

number of regions defined at the coarse scale (the only scale considered) for each of these

algorithms.

In this example, a 2 x 2 anomaly in a 16 x 16 field is considered. The anomaly has its upper
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(a) (b)

(C) (d)
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2 2 1� 14 1.

(e)

Figure 4-3: These figures illustrate the output of the SC algorithm. Figure (a) is a super-
position of a zero-mean white background (variance about 1.5) and a constant intensity
anomaly (size 4 x 4, intensity 5) near the upper left corner. The ABR is about -8.9dB. Fig-
ure (b) is the sinogram of the anomaly plus background field shown in (a) with zero-mean
Gaussian additive measurement noise (variance about 14, SNR about OdB). Figures (c)-(f)
illustrate the regions selected by the SC algorithm at each scale. Figure (f) represents the
final selection and it corresponds precisely to the region of support of the anomaly.
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Test Name Coarsest Scale Regtons Linear Dimension

SC 4 10
SC9 9 8

SC16 16 6
jj SC49 j 49 4

Table 4.1: This table lists the number of composite hypotheses defined at the coarsest scale
and the respective linear dimension for several variations of the SC algorithm.
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Figure 4-4: This figure indicates the required intensity for a 2 x 2 anomaly with upper
left corner at (3,3) to achieve (PfPd) of roughly (0.1,0.95) using the coarsest scale test
of four variations of the SC algorithm. The variations differ in the number and size of
the composite hypothesis test regions formulated. The horizontal axis is the size of the
composite hypothesis regions and the vertical axis is the required intensity to achieve the
performance benchmark. The noise intensity is 14.4 corresponding to an SNR of OdB.

left corner at pixel (3,3) and the performance benchmark is set to (PfPd) = (0.1,0.95).

The background field covariance is fractal, A = Af. Figure 4-4 illustrates the anomaly

intensity required to achieve this performance benchmark for each of the four coarse scale

tests. A detection is declared if the anomaly exists and if a composite hypothesis region is

chosen which entirely overlaps the anomaly. A false alarm is declared if the anomaly is not

present but the null hypothesis is not selected.

Note that as the linear dimension of the composite hypothesis regions increase, so does

the required intensity. For all of the tests, the required intensity is larger than that required

by the BHT of Section 3.2 (around 1.8). For example, for the SC49 test the required

intensity is 5.

As suggested by the analysis in Chapter 3, the structure of the background covariance
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Figure 4-5: These ROCs illustrate the performance of the SC algorithm and the optimal
M-ary hypothesis test when the background is white. The field size is 16 x 16 and the
anomaly is 4 x 4 with upper left hand pixel at (2,2) and intensity 2.5 (SNR about OdB and
ABR about -5.7dB). The ROC for the SC algorithm seems asymptotic to Pd = 1 while the
ROC for the M-ary hypothesis test seems roughly constant at Pd = 0.95. Each data point
corresponds to one-thousand Monte Carlo runs. Error bars are drawn plus and minus one
standard deviation.

matrix affects performance. In the next example, we compare the performance of the SC

algorithm to the optimal M-ary hypothesis test (in which all hypotheses are exhaustively

searched) both with a fractal and white background. Again, only the coarsest scale test is

considered. The field size is 16 x 16 and the anomaly is 4 x 4 with upper left hand corner at

pixel (2, 2) and intensity 2.5. The noise intensity is 14.4 (SNR = OdB). Figure 4-5 illustrates

performance comparison for the white background (ABR = -5.7dB). Note that for Pf < 0.3

the optimal test outperforms the SC algorithm. However, for Pf > 0.3 it seems that the SC

algorithm outperforms the optimal test. This is slightly misleading since the SC algorithm

has, in some sense, an easier task: it is only localizing the anomaly to a coarse scale region

(10 x 10) while the optimal test attempts to select exactly the right 4 x 4 region. The

ROC for the optimal test indicates a probability of a miss (i.e., selecting the wrong region

when an anomaly exists) is about 0.05 while the ROC for the SC algorithm seems to have

a probability of a miss asymptotic to zero.

Figure 4-6 illustrates performance comparison for the fractal background. The top curve

is the ROC for the optimal test and the bottom curve is the ROC for the coarse scale SC

algorithm. We see that, in the case of a fractal background and for this particular anomaly

(4 x 4 with intensity 2.5 (ABR = -0.51dB, SNR = OdB) and upper left pixel at (2,2)), the
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Figure 4-6: These ROCs illustrate the performance of the SC algorithm (bottom curve) and
the optimal M-ary hypothesis test (top curve) when the background is fractal. The field
size is 16 x 16 and the anomaly is 4 x 4 with upper left hand pixel at (2, 2) and intensity 2.5
(SNR about OdB and ABR about -0.51dB). Each data point corresponds to one-thousand
Monte Carlo runs. Error bars are drawn plus and minus one standard deviation.

optimal test outperforms the SC algorithm by a wide margin.

Full Algorithm Performance

In this section we illustrate the performance of the full SC algorithm (not just the coarsest

scale). The two anomalies depicted in Figure 34(a) and (b) are each considered superim-

posed on a white noise background with variance 3 and field size 32 x 32. Both anomalies

have intensity 7 and the additive measurement noise has variance 63. The SNR is 3dI3

and the ABR is -5.7dB. The maximum linear size, is set to 4 and the smallest region

considered in the SC algorithm is 4 x 4. That is, the algorithm continues to localize the

anomaly to finer scales until the scale corresponding to regions of size 4 x 4 has been reached.

A detection is declared if the anomaly is present and the chosen region overlaps at least

one-quarter of the anomaly's area. A false alarm is declared if an anomaly is not present

and the null hypothesis is not selected at the coarsest scale. In the examples provided in

this section, there is no null hypothesis at any scale other than the coarsest one. Therefore,

once it is determined that an anomaly is present, the algorithm localizes the anomaly to a

4 x 4 region.

Figure 4-7 is a ROC curve corresponding to the anomaly 7b4,32(2,2). Figure 4-8

contains two histograms which indicate how well the chosen region matches the anomalous
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Figure 4-7: This figure contains an ROC which illustrates the performance of the SC algo-
rithm with anomaly f,,, 7b4,32 (2, 2). The background is white, the SNR is about 3dB and
the ABR is about -5.7dB. One-thousand Monte-Carlo runs were conducted for each data
point and the error bars are drawn plus and minus one standard deviation.

region. The Hausdorff distance and the one-sided Hausdorff measure discussed in Chapter

2 are used for this purpose. The histograms of the values of these two metrics appear in (a)

and (b), respectively where the parameters of the SC algorithm are set so that Pd and Pf

are about 0.85 and 0.2, respectively. The argument of the Hausdorff distance, h(A, H), are

the convex set representing the support of the anomaly, A, and the convex set representing

the support of the estimate, H. These are also supplied to the one-sided Hausdorff measure,

hi (A, H).

What is of interest in this problem is knowledge of how much larger (or smaller) one

could make the estimate's support in order to completely enclose that of the anomaly's. Such

information is useful, for example, if one used the anomaly localization algorithm to cue

a local reconstruction method as to which area to reconstruct. The reconstruction routine

might then reconstruct not just the area specified but also a buffer region if it is known that

the localization algorithm tends to under-estimate the anomaly's size by a certain amount,

for example. This information is provided by the one-sided Hausdorff measure and not by

the Hausdorff distance.

We can conclude from Figure 4-7 that the particular anomaly f,, = 7b4,32(2,2) can be
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1. 1� 211 21
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Figure 4-8: This figure contains two histograms which illustrate the performance of the SC
algorithm with anomaly f, = 7b4,32(2,2). The background is white, the SNR is about 3dB
and the ABR is about -5.7dB. Figure (a) is a histogram of the Hausdorff distance and figure
(b) is a histogram of the one-sided Hausdorff measure. Both were calculated during 1000
runs of the algorithm. Thresholds were chosen so that Pd and Pf are about 0.85 and 0.2
respectively.

detected with relatively high probability of detection and low probability of false alarm (e.g.,

the ROC curve passes through (PfPd) = (0.2,0.85)). What is more telling, however, is

Figure 4-8 which shows that the SC algorithm does a good job of localizing this anomaly at

the operating point (Pf, Pd) = (0.2,0.85). From Figure 4-8(a) we can see that only roughly

twenty percent of the time the anomaly's support and estimate's support are quite far off

(by about 25 as measured by the Hausdorff distance). However, by looking at Figure 4-8(b)

we see that, even when the Hausdorff distance is large, the amount by which we would need

to grow or shrink the estimate's support to contain that of the anomaly's is rarely non-zero.

Figures 4-9 and 4-10 are similar to Figures 4-7 and 4-8 except that the anomaly is

now 7b4,32(14,14), which is illustrated in Figure 34(b). We see from Figure 4-10 that

this anomaly, like the last, is localized with little error nearly all of the time. Notice that

performance is a bit better for this anomaly as compared to the one considered previously.

This is consistent with the performance bound results of Chapter 3 which indicated that

anomalies closer to the center of the field are easier to detect in the presence of a white

noise background.
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Figure 4-9: This figure contains an ROC which illustrates the performance of the SC algo-
rithm with anomaly f, = 7b4,32(14,14). The background is white, the SNR is about 3dB
and the ABR is about -5.7dB. One-thousand Monte-Carlo runs were conducted for each
data point and the error bars are drawn plus and minus one standard deviation.
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Figure 4-10: This figure contains two histograms which illustrate the performance of the
SC algorithm with anomaly f,, = 7b4,32 (14,14). The background is white, the SNR is about
3dB and the ABR is about -5.7dB. Figure (a) is a histogram of the Hausdorff distance and
figure (b) is a histogram of the one-sided Hausdorff measure. Both were calculated during
1000 runs of the algorithm. Thresholds were chosen so that Pd and Pf are about 0.85 and
0.2 respectively.
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Figure4-11: ThisfigureillustratesoutputfromtheMCalgorithm. Figure(a)isasuper-
position of a zero-mean white background (variance about 1.5) and a constant intensity
anomaly (size 4 x 4, intensity 5) near the upper left corner. The ABR is about -8.9dB. Fig-
ure (b) is the sinogram of the anomaly plus background field shown in (a) with zero-mean
Gaussian additive measurement noise (variance about 14, SNR about OdB). Figures (c) and
(d) show the regions selected at the coarsest scale.

4.3.2 Multiple Candidate Algorithm Examples

Example Output

Our first example is a sample output of the MC algorithm. The set up is the same as

that for the sample output for the SC algorithm provided in Section 4.3.1. Namely, the

anomaly considered in this first example is f,, = 5b4,32(2,2). The background is white with

a variance of about 1.5 and the white additive measurement noise has a variance of about

14 (SNR = OdB, ABR = -8.9dB). The value of s,,,,, has been set to 4 and the minimum

size region considered by the algorithm is 4 x 4. Two composite hypotheses are selected at

the coarsest scale and then one is selected at each scale along each subtree defined by the

two selected coarse scale regions. Figures 4-11 and 4-12 illustrate the output at each scale.
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Figure 4-12: This figure illustrates the MC algorithm and is a continuation of the previous
one. Figures (a) and (b) show the chosen regions for the second level. Figures (c) and (d)
show the chosen regions for the third level. Finally, figures (e) and (f) show the chosen
regions for the fourth level. Figure (e) is the correct region.
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Figure 4-13: This figure contains an ROC which illustrates the performance of the MC
algorithm with anomaly f, = 7b4,32 (2, 2). The background is white. The SNR is about 3dB
and the ABR is about -5.7dB. One-thousand Monte-Carlo runs were conducted for each
data point and the error bars are drawn plus and minus one standard deviation.

Full Algorithm Performance

The exact same analysis as is presented above for the SC algorithm is presented here for

the MC algorithm. In this case, the MC algorithm selects two composite hypotheses at

the coarsest scale and then just one at at each scale along each subtree defined by the

two selected coarse scale regions. Unless explicitly stated, all parameters remain the same

as specified above for the SC algorithm analysis. Figures 4-13 and 4-14 correspond to

f, = 7b4,32 (2, 2) and Figures 4-15 and 4-16 correspond to f. = 7b4,32 (14, 14).

Essentially the same statements made about the SC algorithm can be made about the

MC algorithm when considering the anomalies f,,, = 7b4,32 (2, 2) and f,,, = 7b4,32 (14, 14). The

performance for the latter is a bit better than that for the former which is consistent with

the performance bound results of Chapter 3. Comparing the results of the SC algorithm

with those of the MC algorithm we see that the latter performs better (i.e., with higher

probability of detection). This is due to the fact that the detection decision is delayed

until a finer scale in the MC algorithm. For example, comparing the results depicted in

Figure 4-13 with those depicted in Figure 4-7 we see that for a probability of false alarm

of 0.2 the SC algorithm yields a probability of detection of 0.85 while the MC algorithm

yields one of 0.99.
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Figure 4-14: This figure contains two histograms which illustrate the performance of the
MC algorithm with anomaly f,, =: 7b4,32(2,2). The background is white. The SNR is about
3dB and the ABR is about -5.7dB. Figure (a) is a histogram of the Hausdorff distance and
figure (b) is a histogram of the one-sided Hausdorff measure. Both were calculated during
1000 runs of the algorithm. Thresholds were chosen so that Pd and Pf are about 0.99 and
0.2 respectively.

..........

f. 0.8 ............. ......... ......... ... ....... .....

0.7

0
.6 .... ... .

0 06, 0.2 0.3 0" 0.6 0.7

P,.b.bility f F.N. Al-

Figure 4-15: This figure contains an ROC which illustrates the performance of the MC
algorithm with anomaly f,, = 7b4,32(14,14). The background is white. The SNR is about
3dB and the ABR is about -5.7dB. One-thousand Monte-Carlo runs were conducted for
each data point and the error bars are drawn plus and minus one standard deviation.
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Figure 4-16: This figure contains two histograms which illustrate the performance of the MC
algorithm with anomaly f,,, = 7b4,32(14,14). The background is white. The SNR is about
3dB and the ABR is about -5.7dB. Figure (a) is a histogram of the Hausdorff distance and
figure (b) is a histogram of the one-sided Hausdorff measure. Both were calculated during
1000 runs of the algorithm. Thresholds were chosen so that Pd and Pf are about 0.99 and
0.2 respectively.

4.4 Complexity Analysis

Our primary motivation for considering anomaly detection and localization algorithms based

on multiscale hypothesis testing is that the optimal hypothesis test (for which each possible

combination of anomaly intensity, location, and size is represented by a hypothesis) is too

computationally costly. Our multiscale algorithms formulate fewer hypotheses than the op-

timal test and are therefore more efficient. Here we measure and compare the computational

complexity of the optimal algorithm with our sub-optimal ones. To do so, we will compute

the number of hypotheses formulated in each algorithm and the number of operations per

hypothesis.

First consider the optimal test. Suppose the linear size of the square field is N-there

are Np = N 2 pixels in the field. Suppose that we know that the maximum size of the

anomaly is We require
s- N

Xpt (N _ r + 1)2 k2
r=1 k=N-s-,,.+l

hypotheses for each possible intensity value (hereafter, we assume that there is just one

intensity value)-one for every possible shift and every possible anomaly size. Consulting
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[36], we find that the sum is

1 3 2 + I
M.Pt=- -+(a+b+c) N -- (ab+ac+bc) N+abc (4.4)

3 2 2

where

a = Smax

b = Smax

C = Smax
2

It is easily verified that equation (4-4) gives Mrpt - N 2when Sax 1 as it should. Also

2notice that, for Smax constant, Mpt grows as N

Now consider the SC algorithm in which four overlapping subdivisions are defined at

each level. The amount of overlap is at least Smax - 1, one pixel less than the maximum

possible size of the anomaly. Since we know there are four hypotheses at each level, all we

have to figure out is how many levels are required. For simplicity, we neglect the overlapping.

The accuracy of our answer will not suffer much from this simplifying assumption so long

as the overlap is small relative to the size of the field.

To compute the number of hypotheses for the SC algorithm, we need to make one

additional assumption. Let us assume that our algorithm localizes the anomaly to an area

which is sn,,x X 8,ax, though this is not necessarily always the case in practice. Such an

assumption will give us a reasonable estimate which will be of the correct order of magnitude.

At each level, we divide the area of our search by one quarter. First our subdivisions

are N x N, then they are N x N, etc. We stop searching when2 2 4 4

N
Tk- == Smax
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where k is the number of levels we need to search. Therefore the number of hypotheses is

MSC = 41092 N (4-5)
Smax

Notice that when sm,,x = N equation (4.5) gives Msc = 4 which makes sense. In contrast to2

the N 2 growth in the number of hypotheses required by the optimal algorithm, the number

required by the SC algorithm grows with the logarithm of N.

Finally, the MC algorithm will require the same number of scales as the SC algorithm

but will formulate at least as many (and usually more) hypotheses at each scale. Recall

that in the MC algorithm r (k) < N (k) composite hypotheses are not discarded at scale k

(k) kwhere N is the number of composite hypotheses formulated and is at most 4 . Consider

first the worst case in which we do not discard any hypotheses. In such a case, the number

of hypotheses formulated in the MC algorithm is

log N
2 -a.

MMCworst 1: 4i
j=1

( N
41092 4

3
4 ( N2 4

S
3

Thus Mmcwo,-�,t is quadratic in N.

Now consider a more realistic case where we do not retain all 4k composite hypotheses at

scale k of the MC algorithm. Suppose we instead retain only half of the available composite

hypotheses at each scale. At the first scale four composite hypotheses are formulated but

only two are retained. Having retained only two at the first scale, eight are formulated

at the second scale of which four are retained. Continuing, at scale k we formulate 2 k+1

hypotheses. Therefore the total number of hypotheses which are formulated in this case is
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Figure 4-17: This plot shows the complexity of the optimal algorithm (top curve), the SC
algorithm (bottom curve), the the MC worst case algorithm (curve second from top), and
the MC algorithm for which half the available hypotheses are retained at each scale (curve
second from bottom). The horizontal-axis is the number of hypotheses formulated (on a
log scale) and the vertical-axis is the linear dimension of the field size. Here smax :-- 4.

log N

MMChalf 2 21
j=1

( N )+1
2 2 1092 '-ax 2

N
4 4

Smax

ThereforeMMChalf is linear in N. In Figure 4-17 plots of Mopt, Msc) Mmcworst, and

MMChalf are shown as a function of N forSax= 4. We see clearly that the SC algorithm is

far more efficient than the optimal test. The worst case MC algorithm, while still quadratic

in N, also requires fewer hypotheses than the optimal test. Finally, the MC algorithm for

which half of the available hypotheses are retained, while linear in N, is more complex than

the SC algorithm.

We now consider the number of operations required per hypothesis. We have considered
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only the log-likelihood ratio statistic which is linear in the data and, thus, requires 2NoN, � 1.,

operations (adds and multiplies). This result follows from the fact that the linear. statistic

is an inner product between two length NON, vectors. Since each hypothesis requires a

constant amount of work (2NON, - 1 operations), the overall complexity of an algorithm

(SC, MC, or optimal) is proportional to the number of hypotheses formulated. Hence we

take the number of hypotheses formulated as a measure of algorithmic complexity.



Chapter 5

Optimized T\4ultiscale Hypothesis

Tests

In Chapter 4 we introduced two algorithms for anomaly detection and localization. These

algorithms are based on multiscale hypothesis testing and, therefore, consist of sequences

of composite hypothesis tests. Each of these tests is associated with a set of composite

hypotheses and statistics. The composite hypotheses are chosen to effect spatial zooming

and the statistics are coarse scale log-likelihood ratio functions. While these choices of

composite hypotheses and statistics prove useful (both for our work and that of [19-211),

they are by no means the "best" choices. In fact, we saw in Section 4.3.1 that the SC

algorithm performs poorly relative to the optimal MHT when the background field has a

fractal covariance.

In this chapter we take a broader view of multiscale hypothesis testing by recognizing

that the statistics employed need not be of the form introduced in Chapter 4. (Additionally,

a MSHT need not correspond to spatial zooming however we do not explore this degree of

freedom in significant depth in this thesis.) Our more general view of multiscale hypothesis

testing naturally leads to the consideration of MSHTs with improved performance. We

begin our broader consideration of MSHTs in Section 5.1 with another look at anomaly

ambiguity. We shall see more precisely why the SC algorithm is not well suited to the

case for which the background field has a fractal covariance structure. This new notion of

103
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anomaly ambiguity, which we call statistical sensitivity, will lead us to a set of quality criteria

for MSHTs which we discuss in Section 5.2. This set of criteria motivates an optimization

problem (Section 5.3), the solution of which is an optimized MSHT statistic. Sub-optimal

solutions to the optimization problem are presented in Section 5.4 and optimal solutions

are discussed in Section 5.5. A revised algorithm and examples are provided in Sections 5.6

and 5.7, respectively.

5.1 Ambiguity Revisited: Statistical Sensitivity

The ambiguity analysis of Chapter 3 suggests spatial zooming is easier in the case of a

white noise background relative to the case of a fractal background. Indeed, in Chapter 4

we show that the SC algorithm performs reasonably well in the former case but relatively

poorly in the latter relative to the optimal MHT. In this section we endeavor to discover

more precisely why spatial zooming is more difficult in the fractal background case. To do

so, we develop another measure of anomaly ambiguity which we call statistical sensitivity.

This statistical sensitivity analysis is based upon the composite hypothesis testing scheme

which underlies multiscale hypothesis testing. The results of our analysis will, therefore,

directly provide insight into the performance of the algorithms developed in Chapter 4.

Recall that at each scale k of a MSHT there are a set of statistics, which we

wish to interpret as likelihoods. In other words, we wish f �k) to have a relatively large value

whenever 'H �k) is true (i.e., it contains the true hypothesis Hj for some j). And we wish71

t�k) to have a relatively small value whenever 'H �k) is false (i.e., it does not contain the true71 t

hypothesis Hj for some j).

The statistics, �V (k) dom variables. We can get a sense of their magnitude

by taking their expected values. We define the conditional expected value of f� k) given that

the true hypothesis is Hj as

m =A: E[t�k',Hj]

The conditional expected value of alone is not so meaningful if the corresponding
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Figure 5-1: This figures illustrates 7n-(1) with a white background (SNR about OdB). Pixelij
n) corresponds to f,,, = b4,16 (m, n).

variance is not also considered. Therefore, we define the standard-deviation-normalized

mean as

(k) A
M ij =

0- (k) I Hj
fi

Figures 5-1 and 5-2 illustrate values of ffi(l) (the normalized conditional mean of statis-ij

tic one at the coarsest scale) for the case of a white and fractal background respectively

(SNR = OdB). Recall that f is associated with the upper left-hand region of the image

domain (see Figure 4-2) and is given by

f(l)(G) = (Tb3(') )T A -'G.
3 9

The hypotheses, Hj, considered in these figures is the set of all 4 x 4 unit intensity anomalies

in a 16 x 16 field. The point * n) in the plots of Figures 5-1 and 5-2 corresponds to the

hypothesis that f, = b4,16(m, n) where m, n E 11, 2,...,131.

The values of in('.) in Figure 5-1 exhibit precisely the type of behavior we desire. The
13
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Figure 5-2: This figures illustrates fin(l) with a fractal background (SNR about OdB). Pixel13'

n) corresponds to f,,, = b4,16 (m, n) -

mean value of f(1)jHj is relatively high for Hj E 'H(l) and relatively low for Hj �'H('). The1 1 1

values of fin(l) in Figure 5-2, on the other hand, do not exhibit good behavior. In fact thereij

exist Hk 0 'H(l) and Hj E 'H(l) for which ffi(l) > ffi(l). This means that, in the case of aI 1 Ik ij

fractal background, the statistic cannot be reasonably interpreted as the likelihood that

contains the anomaly. It is sensitive to the wrong hypotheses.

The above sensitivity analysis suggests that, in the case of the fractal background, either

the type of statistic or the type of composite hypotheses ought to be changed. For example,

the same statistics may be used if we redefine the composite hypothesis setsO) to consist of

the hypotheses to which the log-likelihood ratio function statistics are sensitive. Or, perhaps

the spatial zooming approach may be feasible if the statistics are chosen differently. In the

next section we consider these issues in more detail.

5.2 Composite Hypothesis Test Quality Criteria

Having seen that the composite hypotheses and/or the statistics introduced in Chapter 4

are inadequate, we wish to change them to achieve better performance. But what criteria
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ought to guide our choices? What properties do good composite hypotheses and statistics

have? We shall address these questions in this section for the composite hypothesis test

at the coarsest scale of a MSHT. Analogous conclusions may be made for the composite

hypothesis tests at other scales. Therefore, we shall drop the superscript (k), the scale

index, in our notation.

5.2.1 Criteria for Composite Hypotheses

First consider the composite hypotheses. While associating composite hypotheses with

contiguous regions (as was done in Chapter 4) is intuitively appealing, they need not be

defined in this way. Indeed, in many large M-ary hypothesis testing problems for which a

multiscale hypothesis testing scheme is of interest, there may be no natural way to group

hypotheses (e.g., in computer vision problems in which object recognition is of interest

it may not be clear which objects and orientations ought to be grouped). Even when a

natural grouping exists, as does for the anomaly detection and localization problems, such

a grouping may not yield good results for a particular choice of statistics.

No matter what the structure of composite hypotheses, there are several criteria which

we would like them to satisfy: (1) the number of composite hypotheses, N, at the coarse

scale must be much less than the number of original hypotheses, M; (2) the composite

hypothesis sets at every scale must form a cover for the subset of 'H which has not been

discarded; and (3) the amount by which the composite hypothesis sets overlap should be

as small as possible. The reasons for criteria (1) and (2) are clear. Criterion (3) strives for

maximum efficiency because if the overlap is small then discarding a composite hypothesis

(i.e., not selecting it for finer scale investigation) discards many hypotheses Hj E 'H. Below

we shall make these criteria precise for the coarsest scale. Generalization to other scales is

conceptually straight forward (although notationally cumbersome).

The cardinality constraint is simply N < M. The covering constraint is

N

'H U 'Hi. (5.1)
i=1

To make the overlap criterion precise we define
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A
nij I-Hin-H-1,3

A F_Vjoi nij
Ai = �

nii

The quantity Ai is the number of hypotheses Hj which are in 'H- and also in some other

composite hypothesis set divided by the cardinality of 'Hi. In other words, it is the relative

amount of 'Hi which is shared with other composite hypotheses. It is the quantity Ai which

we wish to make small for all i subject to the constraints N < M and equation (5.1).

Of course having composite hypotheses with small Ai is not enough to ensure a good

multiscale hypothesis test. This is clear from our sensitivity analysis above. It is also

important that the statistics associated with the composite hypotheses have good properties.

We elaborate on these properties next.

5.2.2 Criteria for Statistics

As a starting point for our discussion of criteria for statistics we restrict attention to statistics

which are linear in the data: fi(G) = a7G. The coarse scale log-likelihood ratio functions

considered previously are of this form but may not be the "best" linear statistics. In this

section we define criteria that good linear statistics ought to satisfy.

There are two criteria which apply to the statistics. First, we wish the conditional means

to have the property that

Tnij >Mik, (5.2)

Vj, k such that Hj E 'Hi and Hk V 'Hi, Vi E NJ. Ensuring a spread in conditional

means as described by equation (5-2) is not enough, however. For if the standard deviation

of the statistics is sufficiently large, any spread in conditional means will be overshadowed.

Therefore, the second criterion is that the standard deviation remain small. The conditional

standard deviation is
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O'i Vvar (fi I Hj)� = �ajTAgai

The standard deviation is independent of the true hypothesis H and we wish it to be small

relative to the spread in means. At the same time, we wish the spread in means to be large.

These criteria form the basis for an optimization problem introduced next.

5.3 An Optimization Problem

Having specified the criteria by which we measure the quality of the composite hypotheses

and statistics in a multiscale hypothesis test, we are in a position to formulate an optimiza-

tion problem. The solution to the optimization problem we formulate in this section is an

optimized' MSHT statistic. We shall only consider the optimization problem at the coarsest

scale as it is similar at other scales. Therefore, we shall have no need for the superscripts

(k) which refer to scale; these will be dropped.

While one could in principle combine the quality criteria for the composite hypotheses

and statistics into one optimization problem, such a problem would be extremely complex

and likely intractable. Therefore, we begin with a simpler optimization problem which

we arrive at by fixing the composite hypotheses to be the ones with which we have been

working all along (the contiguous square regions depicted in Figure 4-2). The quality criteria

associated with composite hypotheses discussed in Section 5.2.1 are, therefore, automatically

satisfied.

The optimization problem is, therefore, concerned with the statistics. We formulate the

problem as follows. The generalized notion of the d statistic in this problem is

A Tnij -Tnik aTTb a7Tbk
dijk

U i VaTAgai

where Hj E 'Hi and Hk � 'Hi, Vi E I 1, . . . , N (We have assumed unit intensity anomalies

'By "optimized" we mean with respect to the optimization problem formulated.
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for convenience.) This generalized d statistic measures the normalized spread in conditional

'means of the statistic fi conditioned on a hypotheses Hj associated with the composite

hypotheses 'Hi and conditioned on a hypotheses Hk not associated with 'Hi. It is this

generalized d statistic which we want to be large for all ij, k.

Continuing, we define the modified d statistic for which we use the notation j as

A
ji = min dijk,

(jk)GAj

A
where Ai (j, k) I Hj E -Hi and Hk 0 H The ji statistic measures the smallest difference

between two sets of numbers. One set consists of all standard-deviation-normalized mean

values of fi each of which is conditioned on a hypothesis Hj which is in the composite hy-

pothesis set associated with f namely 'Hi. The other set consists of all standard-deviation-

normalized mean values of fi each of which is conditioned on a hypothesis Hj which is not

in the composite hypothesis set associated with �i, i.e., it is not in 'Hi. Finally, it is the

quantity ji which we want to maximize as a function of ai, the linear statistic weights.

Therefore, the optimization problem is

�tZTTb aTTbk
Ai= arg max min Z

ai (jk)EAi VlaTAgai

We shall find it useful to adopt a more compact, but more abstract, notation for this

optimization problem. To this end, we transpose the numerator and write the problem as

T
arg max min,(EAi qmaj

ai FaTAgai�

A
where q. = q(ij) = Tbj - Tbk It is clear from this latter formulation that the numerator is

a piecewise linear concave function of ai. The denominator is the square root of a quadratic

form and, since the covariance matrix is positive definite, is strictly positive.

An additional simplification may be made by recognizing the fact that it is sufficient to

consider linear weights ai for which aTAgai = 1. Therefore we may write the optimization71
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problem in the form

arg max z
ai

z < qTai, Vm E Aisubject to - M (5.3)

11aill' < 1Ag -

where, since we are maximizing z, we may substitute an inequality for an equality in the

quadratic constraint of equation (5.3). From this formulation of the optimization problem

(which we label Pi) we see that the problem is one of maximizing a linear cost subject
A

to many linear constraints and one quadratic constraint. Further, the set Ci = I (a, z) I z <

qT a, Vm E Ai and 11all' < 11 is the intersection of two convex sets and is itself convex.M Ag -

There is one such convex optimization problem, Pi, for each i E 11, 2,..., NJ where N

is the number of coarse scale composite hypotheses. To find the optimized statistics at the

second scale, another set of optimization problems must be solved, etc. Therefore, there

are many such optimization problems to be solved to determine the statistics for an entire

multiscale hypothesis test. In the next section we discuss a sub-optimal solution to one

such problem.

5.4 Sub-Optimal Solutions

The optimization problem, Pi, posed in the previous section would be a simple linear pro-

gramming problem if it were not for the single quadratic constraint. The presence of this

constraint turns an otherwise relatively simple optimization problem into one which is ap-

parently quite difficult. In this section we derive an approximation to this optimization

problem which is a linear programming problem. The optimal solutions to this linear pro-

gram, however, are not necessarily optimal solutions to Pi, the original non-linear problem.

The linear programming (LP) formulation we propose here simply replaces the bother-

some non-linear constraint of the problem Pi posed in Section 5.3 with many linear con-

straints. This is done as follows. Consider a particular instance of Pi. Let the length of the
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2 A 1/2vector y = Ag ai be Ny. The problem A is defined as

arg max z
ai

z < qT ai, Vrn E Ai- M

subject to Ag'/2 ai < 1 eVN-; (5.4)

A 1/2 ai>- 1 e9 VN--;

where e is the length Ny vector with a one in every entry. The inequalities of equa-

tion (5.4) are understood to be component-wise. Denote the feasible set as di =A I (a, z) I z <

qT a, VM E Ai and v/N__yAg1/2 a < e and VNyAg 1/2 a > -el. The following theoremM

demonstrates that any feasible solution to problem A is also a feasible solution to Pi.

Theorem 3 Ci C Ci but the converse does not hold in general.

ProoL Let x = la Z]T E ei. Therefore z < q T a, Vm E Ai, and NyAg 1/2 a < e, andM

,\I-N-y A g 1/ 2a > -e. The latter two constraints imply that aT Aga < 1. It follows that x E Ci.

To show that the converse does not hold in general, consider the following trivial counter

example. Let a = [1 01T and Ag = 1. Then, while a T Aga < 1, Ag 1/2 a :� [ 1 / vl'2- 1 / -,f2-] T. M

The relationship of the feasible set C- for the original non-linear optimization problem

Pi to the feasible set ei for the LP problem Pi is illustrated abstractly in Figure 5-3.

Qualitatively, the difference between the two sets is that C- restricts the linear weights ai to

be inside a Ny-dimensional ellipsoid while ei restricts them to be within a Ny-dimensional

box which is inscribed in the ellipsoid.

Since the feasible set for problem A is a subset of that for problem Pi, the optimal cost

of the former is no higher (and most likely lower) than that of the latter. The optimal

solution for Pi is a suboptimal one for Pi. Nevertheless, the linear weight vectors which

are solutions to Pi are better than the log-likelihood ratio function statistics previously

2Al /2 is the unique positive (semi) definite symmetric square root of matrix A when A is itself symmetric
positive (semi) definite. That is, A1/2 A1/2 = A.
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Figure 5-3: This figure abstractly illustrates the relationship between Ci and ji.

introduced. We shall demonstrate this in Section 5.7.

We conclude this section with a few technical details regarding the LP problem Pi.

First, it is not an infeasible problem because the zero vector is an element of ji. Second,

the optimal cost is bounded since the elements of ai are bounded. Therefore, an optimal

solution exists with bounded optimal cost. Such a solution may be found exactly using,

for example, the simplex method (e.g., using MATLAB's 1po function), or approximately

using, for example, an interior point method. It is important to keep in mind, however,

that exact solutions to the LP problem A are not exact solutions to the original non-linear

problem Pi.

Finally, we arrived at a LP formulation by approximating an ellipsoid by an inscribed

high-dimensional box. The solution to the LP is one of the corners of this box. In the

y = Ag 1/2 ai coordinate system, the edges of this box are of equal length since each element

of the right-hand sides of equation (5.4) has the same value (11VN-y). Changing these

right-hand side values (so that they are not all equal) changes the box to a Ny-cell (for

Ny = 2 this is like changing a square to a rectangle). Such a change would move the corners,

of the cell around and, hence, change the optimal cost of the LP. In principle, for any given

point on the original ellipsoid, there exists a set of right-hand side values of equation (5.4)

so that a corner of the cell coincides with this ellipsoid point. Therefore, if right-hand side

values could be found such that a corner of the inscribed Ny-cell coincided with the point

on the ellipsoid which corresponds to the optimal solution to Pi then the optimal solution

to A would also be optimal for Pi.
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5.5 Optimal Solutions

We have shown how to find sub-optimal solutions to the problem Pi using linear program7

ming. In this section we show how to solve Pi exactly using quadratic programming. We

leave the details of this quadratic program (QP) formulation to Appendix D and merely

state the results here. Unfortunately, the work presented in this section was completed too

late to include many examples in Section 5.7 with these optimal solutions to Pi.

As is shown in Appendix D, using Lagrange duality theory it can be shown that Pi is

equivalent to the QP

arg min yT Q.A-1 QTY
Y

eTY
subject to

Y > 0

where

A [I 1 1 ... 1]T,e

and

(Tbh - Tbk, )T

A
Q (Tb - Tbk, )T

and all pairs (j, k,,,) E Ai. The optimized weight vector is given by

A-1QT:�
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5.6 A Revised Algorithm

Earlier in this chapter we discussed desirable criteria for good covers and statistics. In

the previous three sections we focussed only on finding optimized statistics, not optimized

covers. Our algorithms of Chapter 4 are easily modified to accommodate these optimized

statistics-we replace the simple statistics of Chapter 4 with the ones found by solving either

the LP problem -Pi (sub-optimal) or the non-linear problem Pi. Since the form of the covers

stay the same, the interpretation of the composite hypotheses in terms of contiguous regions

in the image domain is still valid for our revised algorithm using the optimized statistics.

In particular, the scale recursion of the revised SC algorithm (called SC-revised) begins as

shown in Figure 4-2. At most one of the four overlapping regions illustrated is selected on

the basis of a comparison among the optimized statistics and the chosen region (if any) is

further subdivided in the scale-recursive, decision-directed way described in Chapter 4.

5.7 Examples

5.7.1 Solutions to Pi

Figures 5-1 and 5-2 illustrate the value of 7�n'(') corresponding to the statistic introduced in

Chapter 4 for the set of all 4 x 4 unit intensity anomalies in a 16 x 16 field. For comparison

we illustrate ?�n-(') for the same set of anomalies but corresponding to the statistic associatedij

with the solution of P1. Figure 5-4 is for the white background and Figure 5-5 is for the

fractal background.

Comparing Figure 5-4 with Figure 5-1 we see that there is a very modest amount of

improvement in the behavior of the statistic. The best that can be said is that the transition

between regions for which the statistic is designed to be high and where it is designed to be

low is sharper. Generally speaking, however, it appears that when the background is white,

the statistic of Chapter 4 seem to be comparable in quality to the one found by solving Pi.

Comparing Figure 5-5 with Figure 5-2 we see a dramatic improvement in statistic per-

formance. The value of ffi(l) is consistently high where we wish it to be and low elsewhere.

Additionally, the transition between high and low values is sharper in Figure 5-5. This
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Figure 5-4: This figure illustrates ffi(l) corresponding to the statistic found by solving PIij
with a white background (SNR about OdB). Pixel (m, n) corresponds to b4,16 (m, n).
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Figure 5-5: This figure illustrates an(') corresponding to the statistic found by solving Pi13
with a fractal. background (SNR about OdB). Pixel (m, n) corresponds to f. = b4,16 (m, n).
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Figure 5-6: This figure illustrates ffi(l) corresponding to the statistic found by solving Piij
with a fractal background (SNR about OdB). Pixel (m, n) corresponds to f,, = b4,16 (m, n).

result is encouraging and, as we shall see, translates into a real gain in performance.

5.7.2 Solutions to Pi

In this example we illustrate results of sensitivity analysis similar to that shown in Figures 5-

5 and 5-2 but now with the statistic corresponding to the exact solution of P1. Figure 5-6

illustrates the value of ffi(i)13'

It is a bit difficult to see the difference between Figures 5-6 and 5-5 so in Figure 5-7 we

have plotted the difference between these plots. That is, we plot

- (1) ffi(i)
7nij IP, - ij 1 j51

We see from Figure 5-7 that the exact solution to PI provides a higher standard-deviation-

normalized conditional mean when the composite hypothesis associated with the statistic is

true and a lower one when other composite hypotheses are true (the seemingly high "wings"

at the right and bottom of the figure stay below zero).
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Figure 5-7: This figure illustrates the difference ffi(l) in(') with a fractal backgroundij IP, - ij IP1
(SNR about OdB). Pixel (m, n) corresponds to f,, = b4,16 (m, n).

5.7.3 Coarse Scale Comparison

In this section we compare the performance of the SC-revised algorithm with the SC al-

gorithm of Chapter 4. We shall only do this comparison for the coarsest scale composite

hypothesis test. That is, both algorithms are terminated after the first scale. For the fol-

lowing comparison we define a detection to mean that the region selected by the algorithm

is the one which contains the anomaly. In Figures 5-8 and 5-9 we illustrate the probability

of detection for each possible 4 x 4 anomaly in a 16 x 16 field. Pixel (i, j) in each of these

figures corresponds to the 4 x 4 anomaly with upper left corner at (i, j) in the image domain.

The value associated with that pixel is the probability of detection. Figure 5-8 illustrates

the probability of detection values for the SC algorithm (using the simple statistic of Chap-

ter 4). Figure 5-9 illustrates the probability of detection values for the SC-revised algorithm

(using the optimized statistic found by solving -Pi). The background for both is fractal, the

SNR is OdB and the ABR is -0.5dB. Carefully examining the color bar, we can see that the

optimized statistics have higher worst case performance. The optimized statistic seems to

trade off the excellent performance at the corners for better worst case performance. This is

consistent with the form of the optimization problem Pi and its approximation A, namely,
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Figure 5-8: This figure illustrates the probability of detection for 4 x 4 anomalies using
the simple statistic with a fractal background (SNR about OdB, ABR about -0.5dB). The
standard deviation for each Pd value is less than 0.03 and 250 Monte Carlo runs were
conducted for each data point. Pixel (m, n) corresponds to f, b4,16 (m, n).
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Figure 5-9: This figure illustrates the probability of detection for 4 x 4 anomalies using the
optimized statistic (solutions to Pi) with a fractal background (SNR about OdB, ABR about
-0.5dB). The standard deviation for each Pd value is less than 0.03 and 250 Monte Carlo
runs were conducted for each data point. Pixel (m, n) corresponds to f, = b4,16 ('M, n).

that they are max-min problems.

We have repeated the analysis illustrated in Figures 5-8 and 5-9 for both a white and

fractal background and at a number of different ABR values (to vary the ABR we simple

changed the anomaly intensity). This analysis is summarized in Figure 5-10 which compares

the performance of the coarse scale test for four different cases. What is plotted in this figure

is the minimum probability of detection as a function of ABR. The minimum is taken over
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Figure 5-10: This figure compares the minimum probability of detection as a function of
ABR for each of four cases: white background and simple statistic (top curve), white back-
ground and optimized statistic (solutions to Pi, curve second from top), fractal background
and optimized statistic (solutions to Pi, curve second from bottom), fractal background and
simple statistic (bottom curve). The standard deviation for each Pd value is less than 0.06
and 250 Monte Carlo runs were conducted for each data point. In all cases SNR=OdB.

all possible 4 x 4 anomalies (e.g., taking the minimum value of Figure 5-8). The top curve

corresponds to a white background and the simple statistic. The curve just below the top

corresponds to a white background and the optimized statistic (solutions to Pi). The curve

second from the bottom corresponds to the fractal background and the optimized statistic

(solutions to Pi). The bottom curve corresponds to the fractal background and the simple

statistic.

Taking into consideration the standard deviation error bars (all less than 0.06 but not

shown in Figure 5-10 for visual clarity), the top two curves are essentially identical. This

implies that the simple statistic is about as good as the optimized (Pi) one for the white

background case. Turning to the bottom two curves we see that the optimized statistic

is significantly better than the simple one for the fractal background case. For all curves,

Pd,,i,, increases with increasing ABR which is as expected.
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5.8 Another Optimization Problem

The solution to the optimization problem, Pi introduced in Section 5.3 is a set of linear

weights for one statistic, fi, corresponding to one composite hypothesis, 'Hi. There is no

guarantee, however, that the set of statistics so found will work well together. For example,

consider the following situation. Suppose we have a set of optimized statistics found by

solving Pi for i E f 1, 2, 3, 41. Suppose el tends to be small when a particular hypothesis,

say H3 � 'Hl, is true. This is good since H3 is not in the set of hypotheses for which we

want fl to be large. But, what if none of the other statistic is particularly large when H3 is

true either? The general difficulty is that each statistic may be optimized with respect to

Pi but there may still exist some hypothesis to which none seem particularly sensitive. Put

another way, there may be a hypothesis which does not seem to belong in any composite

hypothesis set. In this section we formulate a different optimization problem to address

this potential difficulty. We do not attempt to solve this new problem but merely formulate

it to indicate another type of optimization procedure one might consider when designing a

MSHT.

Recall the definition of the standard-deviation-normalized conditional mean of fi:

- A mij a7(Tbj)Mij (5.5)
01fi I Hj VraTAg�ai

Again, it will be sufficient to consider only a- for which 11aillAg = I. We wish ffiij of

equation (5.5) to be large for the values of j such that Hj C 'Hi. Ensuring that ffiij to be

large for the appropriate set of hypotheses Hj is obviously desirable but we need something

more to avoid the difficulty alluded to in the introduction of this section. We don't just

need fi to be large, we need it to be larger than all the other statistics when Hj is true and

is an element of 'Hi - This desire may be captured by maximizing the cost function

T Tmin a Tbk -a. Tbk (5.6)
k � ik Z I I

where ik = r if k is such that Hk E R, for r =,4 i. In words, the argument of the min
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is the difference in the conditional mean value of two statistics conditioned on the same

-hypothesis, Hk. The right term of this difference is the conditional mean of �i. The left

term of this difference is the conditional mean Of fik . The index ik takes on the value r such

that Hk E 'H,. The hypotheses Hk range over all hypotheses which are not in 'Hi. This cost

function attempts to measure how much more sensitive ti, is to hypothesis Hk than ti.

We wish to maximize equation (5.6) as a function of ai. Rather than do so for each

i separately, we may take advantage of the symmetry of the composite hypothesis test

structure and measurements at the coarsest scale and find the optimal weights for all the

coarse scale statistics at once. Since our data are wide sense stationary, our measurements

are equispaced in angle in [0, 7r) and taken at regular offset intervals, and since our composite

hypotheses have a quadrantal symmetry, there is no need to do this maximization for each

i. The ai will simply be permuted versions of one another: ai = Rial for some permutation

matrix Ri. Putting all this together, we arrive at the optimization problem

h, = arg max min (Tbk )T (R ik -1) a, VHk � -Hi
a, k f

where ik = r Hk E 'H,, r E 12,3,41

subject to 11ail 12 <Ag -

It is a straight forward exercise to recast this problem as a linear programming one as we

have done for Pi above.



Chapter 6

Conclusion

In Section 6.1 of this chapter we highlight the most significant contributions of this thesis.

The work discussed in the main body of this thesis (Chapters 3 through 5) raises a variety

of questions and issues for future research. Some of these are outlined in Section 6.2. We

conclude this thesis with some closing remarks in Section 6.3.

6.1 Thesis Contributions

The primary applied goal in this thesis was to develop computationally efficient data do-

main methods for the single anomaly detection and localization problems from tornographic

data. The essence of these problems is to characterize a region of an image which differs

statistically from a well modeled background field. A secondary, but no less important

goal, was to understand the structure of these problems-specifically, how the nature of the

problems change with background covariance. A binary hypothesis testing framework was

employed for this purpose.

In our approach to the anomaly detection and localization problems we developed the

abstract framework of the multiscale hypothesis test. The notion of a MSHT is conceptually

simple. It is a sequence of composite hypothesis tests where the range of the composite

hypotheses considered at a stage in the sequence is a strict subset of the range of the

composite hypotheses considered at the previous stage. The main difficulty associated

123
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with a MSHT is in determining the detailed structure of the test. Challenges include how

to choose the form of the composite hypotheses and statistics so that the resulting test

effectively zooms in on the correct hypothesis. In the following subsections we emphasize

the main results of our efforts.

6.1.1 Impact of Background Covariance

At each stage of our analysis of the anomaly detection and localization problems we com-

pared results for two different types of background field statistics: white and fractal. Our

main analytical results in this comparison are found in Chapter 3 where we showed, using

a binary hypothesis framework, that the structure of the problem depends crucially on the

background covariance matrix. Our performance bound results in that chapter indicate

that detection is easier in the presence of a white, rather than fractal, background. Our

ambiguity analysis suggest that a spatial zooming approach to anomaly localization may

be feasible in the white background case but may prove difficult in the fractal background

case. (Analysis later in the thesis, which we review below, showed that spatial zooming

is indeed feasible in both cases provided the statistic is chosen appropriately.) The anal-

ysis of a simple one-dimensional problem provided some additional insight as to how the

background covariance relates to performance and ambiguity.

6.1.2 Computationally Efficient Detection and Localization

In this thesis we have viewed the anomaly detection and localization problems as M-ary

hypothesis testing problems. The optimal M-ary hypothesis test is easy to formulate but

computationally infeasible even for a relatively restricted class of anomalies due to the

overwhelming number of hypotheses which must be considered. One main contribution of

this thesis has been the development of computationally efficient alternatives to the full

M-ary hypothesis test. Our idea, introduced in Chapter 4, is to localize the anomaly in a

spatial scale-recursive manner. The efficiency of such a method is achieved by discarding

many hypotheses with a few small composite hypothesis tests. One such method (the SC

algorithm) first localizes the anomaly to a coarse scale (large area) region and then to
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successively finer scale (smaller area) regions. We also introduced another algorithm (the

MC algorithm) which retains more hypotheses at each scale, effectively delaying the difficult

decision as to which ones to discard until a finer scale. We showed that by retaining more

hypotheses at each scale, the MC algorithm achieves better performance at the expense of

higher computational complexity.

Both the SC and the MC algorithms of Chapter 4 are based on a sequence of composite

hypothesis tests. At each stage a set of statistic values (each value associated with a

different region) are compared and one (SC) or several (MC) regions are selected based

on these values. Both algorithms rely upon an intuitively natural, but not necessarily

good, choice of statistic. We showed that this statistic yields reasonably good performance

compared to the optimal M-ary hypothesis test for the case of a white background but poor

performance in the fractal background case. Finding a good statistic is one of the main

challenges of multiscale hypothesis testing. We elaborate on this, and other, challenges in

the next section.

6.1.3 Multiscale Hypothesis Testing

The main conceptual contribution of this thesis is the general multiscale hypothesis testing

framework, first introduced in Chapter 2. We have discussed the three main aspects of

a MSHT: the form of the composite hypothesis sets, the form of the statistics, the deci-

sion structure. We emphasized that the multiscale nature of a MSHT need not have an

interpretation in a spatial or temporal domain. The view that MSHTs effect statistical

rather than spatial (or temporal) zooming led to the issue of how to define the composite

hypothesis sets which comprise a MSHT. We did not exploit this degree of freedom in this

thesis, however, and restricted attention to composite hypotheses which are associated with

contiguous regions of the image domain.

The issue of how to choose appropriate statistics for a MSHT was addressed in Chap-

ter 5. We introduced an optimization problem based on natural criteria. We solved this

problem both approximately (with a linear programming approximation) and exactly (using

Lagrange duality and quadratic programming). The solution to this optimization problem
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is an improved MSHT statistic. We explored the structure of optimized statistics and com-

pared them to the ad hoc statistics introduced in Chapter 4. A significant conclusion is that

the intuitively natural statistic introduced in Chapter 4 is close to the optimized statistic

for a white background case but quite different for the fractal background case.

Finally, we used these optimized statistics in place of natural ones of Chapter 4 in the SC

algorithm. Our results showed a vast improvement in the fractal background case and no

improvement in the white background case. This indicates that the statistics of Chapter 4

are not necessarily good ones for all background types.

6.2 Directions for Future Work

In this thesis we have made some significant contributions to the anomaly characterization

problem and established the general multiscale hypothesis testing framework. Our work in

these areas only scratch the surface of possible research directions, however. And where we

have made our mark, we have opened up a host of issues and questions. In this section we

outline some of these issues and questions as we indicate directions for possible future work.

6.2.1 Anomaly Characterization

There are a variety of ways to build on the anomaly detection and localization methods

developed in this thesis. In this section we mention a few.

Performance and Ambiguity Structure

In Chapter 3 we investigated a performance bound and anomaly ambiguity using a BHT

framework. Analysis of a one-dimensional signal provided some insight into our results.

Our one-dimensional analysis was quite simple in several respects: the signal length was

small (length three) and we assumed direct signal measurements (not something analogous

to tornographic measurements). Extensions of this work in one dimension might focus

on lifting these simplifications. And extending the analysis to the full two-dimensional

tomography problem would be difficult but likely insightful.
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Multiple Anomaly Detection and Localization

In this thesis we have considered only the single anomaly case. There are at least two main

ways to apply multiscale hypothesis tests to the multiple anomaly problem: sequential

and parallel. A sequential method might first localize one anomaly and then subtract its

estimated contribution from the data before localizing a second anomaly. This is repeated

until all anomalies are localized.

A parallel method attempts to localize all the anomalies simultaneously. One such

method is discussed in [19-21] for geophysical inverse problems. This method is similar to

the MC algorithm presented in Chapter 4 which represents a reasonable way to approach

the multiple anomaly problem. Key difficulties in augmenting the MC algorithm include

finding data-driven ways to decide how many composite hypotheses ought to be further

subdivided and how many ought to be selected in the post-processing stage.

Non-Constant Intensity Anomalies

We have assumed that the anomaly has constant non-negative intensity. This assumption

may be relaxed in two stages. Non-constant but still non-negative anomalies ought to be

considered first. It is likely that such anomalies may be detected and localized quite well

with the methods presented in this theses. The next step is to consider arbitrary intensity

anomalies. Such anomalies, however, most likely will not be easily detected and localized

by our methods and new techniques will be needed.

A model based approach for the arbitrary intensity anomaly seems promising. With a

probabilistic model for the intensity, the generalized likelihood ratio test (GLRT) may be a

useful tool: the anomaly intensity field is estimated assuming a certain support (indicator

function) yielding a generalized likelihood. Ratios of these likelihoods are then compared

as discussed in Section 2.3.2.

Arbitrary Shaped Anomalies

Arbitrary shaped anomalies pose a bigger challenge than arbitrary intensity square ones.

One possibility is to view arbitrary shaped anomalies as many square (or rectangular)
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primitive anomalies and apply a multiple anomaly localization method (see above). Then,

in a post-processing stage, the primitives may be merged when appropriate.

6.2.2 Multiscale Hypothesis Testing Theory

In this thesis we have defined the general notion of a MSHT and indicated how optimized

ones might be discovered. While we have treated MSHTs independently from the anomaly

detection and localization problems, we have developed multiscale hypothesis testing theory

with these problems in mind. Therefore, the range of applicability of our methods (e.g.,

those of Chapter 5) is limited to problems with similar structure (e.g., linear, Gaussian).

Since multiscale hypothesis testing is of interest in many disciplines, a more general theory

would be of great value.

6.2.3 Other Extensions and Issues

Optimal Experiment Design

In our work we have assumed that the projection angles and spacing are fixed. Clearly

better performance may be achieved if the projection positions are not fixed. There are two

general ways of incorporating such flexibility. With a prior model of the anomaly location

and size, one could determine the optimal positions for all the projections. Without a prior

model, one could do so sequentially. For example, a few judiciously place projections could

be used to make an initial crude estimate of the anomaly's location and size. Then, based

on this estimate, the optimal positions of the next few projections may be set. Using this

new data, the anomaly localization may be re-estimated, etc.

Multiscale Reconstruction and Imaging

A long-term goal in tomography research is the development of reconstruction methods

with are sensitive to the quantity and quality of the available data in a space-adaptive

way. Standard reconstruction methods (e.g., convolution back-projection) reconstruct the

entire image at the finest scale regardless of the available data. Hence when data are

noisy, sparse, irregularly sampled, or angle-limited, the reconstruction suffers from severe



6.3. CLOSING REMARKS 129

streaking artifacts. Spatially-varying, multiscale reconstruction, however, would control

this reconstruction greed by estimating regions of the image at varying scales as warranted

by the data. Several authors have already begun work towards this goal. See, for example,

[2-5,9,26,27,32].

The methods presented in this thesis represent means of multiscale detection. Extending

these methods to multiscale estimation might be done in stages, first considering multiple

anomalies and then considering multiple anomalies with arbitrary intensity. Each link in

this research chain is a step toward the goal of multiscale imaging.

6.3 Closing Remarks

In this thesis we have investigated the structure of the anomaly detection and localization

problems from tomographic data, developed efficient methods for solving these problems, in-

troduced the general multiscale hypothesis testing framework, and provided ways of finding

good statistics for a MSHT. Our investigation of the structure of the anomaly detection and

localization problems has shown that performance of detection and localization algorithms

relies crucially on the nature of the background field covariance.

In a first step toward the anomaly detection and localization problems, we developed

methods which do not take into consideration the unique difficulties associated with a par-

ticular background structure; our first detection and localization methods used intuitively

natural statistics which were not well suited for all classes of background fields. A deeper

consideration of the flexibility of the MSHT framework led naturally to the consideration

of an optimization problem whose solution provided a better statistic given the particular

background structure of the problem.

One additional and significant aspect of our application of multiscale hypothesis testing

to the anomaly detection and localization problems is that all processing is conducted en-

tirely in the data domain. Image reconstruction plays no part in our techniques. Therefore,

we have addressed a major challenge associated with the tomographic anomaly characteri-

zation problem. We have presented efficient and effective data domain anomaly characteri-

zation methods.
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The most general of our contributions is the elucidation -of the flexibility of the MSHT

framework. Multiscale hypothesis testing may be applied to a host of problems in a wide

range of fields including computer vision and remote sensing. Problems in these fields often

take the form of M-ary hypothesis testing problems where M is prohibitively large. As we

have shown in the tomographic anomaly characterization problem, a MSHT is an efficient

and effective alternative to the daunting optimal M-ary hypothesis test.



Appendix A

Fractal Field Covariance 1\4atrix

In this appendix we describe the structure of the fractal field covariance matrix and show

how it is used to generate a fractal field background. We assume that this background

is wide sense stationary (WSS) and periodic. That is, we imagine that the field is on a

periodic toroidal lattice. The WSS and periodicity assumptions imply that the fractal field
A

covariance matrix is doubly circulant or, equivalently, that it is diagonalized by F = D 0 D

where D is the discrete Fourier transform (DFT) matrix and 0 represents the Kronecker,

product. We show here that this DFT diagonalization may be exploited for fast computation

of the fractal field covariance matrix, its positive definite symmetric square root, and sample

paths.

The background, fb, is discretized on a N x N grid (Np = N 2) so that

N 2

A (X, Y) �', fbj Pi (X, Y) ,
j=1

where pj(x, y) takes on the value one over the j1h pixel and zero elsewhere. The fbj are

ordered in a vector denoted by fb and the pixel located at (a,, bl) is mapped to the jth

location in fb by

j = (b, - I)N + a, ,
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where bl, a, G 11, 2,..., NJ.

If Af is the covariance matrix for the fractal-field background with spectral parameter

then the correlation between the pixel (al, bi) and (a2, b2) is given by the mn 1h element

of Af where

m = (b, - 1)N + a,,

n = (b2-I)N+a2-

The entries of the covariance matrix Af are given by

I .3'(w,, a+w, b) 1 N -Y
N2 (W2 + W2)^112 + N2 27r (A.1)

(C""C')EX U V

where

a = a, - a2,

b = bj - b2,

2,7r
W, - C,

N
27r

WV - CV
N

and
N N N N

X= (CU'CV)1CU:=--+1) ... )-;Cv=--+l.... - \ f (01 0)12 2 2 2

Once Af is obtained, the fractal field is generated as follows. Let v be a zero-mean,

white Gaussian random vector with unit intensity. That is,

v - Ar(O, 1) -

Then a fractal field background sample path is obtained by computing



133

fb = A 1/2
f

where A 1/2 is the positive definite symmetric square root of Af.f
While equation (A. 1) provides a straight forward way to compute the mn th of Af, direct

application of it does not take advantage of the structure of Af. Specifically, since Af is
A

diagonalized by F = D O D and since we know the eigenvalues of Af, we can specify Af in

the Fourier and then transform to the spatial domain.

Let the diagonal matrix A contain the eigenvalues of Af on its diagonal. These eigen-

values are the coefficients in the sum of equation (A.1). That is, the eigenvalues, Au'V,

are

Au,V (W2 + W2)-yl2 I
u V

where wu and w, take on the same values as above. We must also include the eigenvalue

for the DC value,

Aoo N
27r

Therefore, Af is obtained by

Af F-AF,
N2

where the superscript * indicates Hermitian (conjugate) transpose.

With no more work in the Fourier domain, Af can be obtained using the inverse two-

dimensional FFT. To do so, one must reshape the eigenvalue matrix, A, so that it is

N x N. This reshaped matrix, A, has an eigenvalue of Af in each entry. Applying the

two-dimensional FFT to k yields a matrix H which contains all the information necessary

to build Af. To build Af out of H, one must take each column of H and build a circulant
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matrix. This yields N circulant matrices. The fractal field covariance matrix is obtained

by arranging these circulant matrices in a block circulant matrix, Af. Notice that direct

application of equation (A.1) requires O(N 4) operations while the FFT implementation is

O(N 2 log N2).

Finally, to generate sample paths we require the positive definite symmetric square root

of Af. While this can be obtained by blind application of any number of matrix factorization

algorithms (e.g., MATLAB's sqrtmo function), it can be computed very quickly using the

DFT factorization. Assume we have generated the eigenvalue matrix A. Then let B be

the diagonal matrix with each diagonal entry the square root of the corresponding diagonal

entry of A. Then the positive definite symmetric square root of Af is given by

1/2 _ 1
Af - N2 F*BF

Again, this may be computed using the two-dimensional FFT.



Appendix B

A4aximum Likelihood Anomaly

Estimation

In this appendix we consider the maximum likelihood (ML) estimation of the anomaly field

f,,. Recall that the observational model is

g = Tf, + Tfb + n,

where

fb - A'(0, A),

n - Ar(O, Al).

Viewing the anomaly field as a vector of non-random parameters, the data are jointly

Gaussian:

pg (G; fb) exp - I(G - Tf,, )T Ag-'(G - Tf,,)
127rAg 11/2 2

Therefore, the ML estimate of f,, is
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argmaxpg(G;y)
y

arg min(G - Ty)T A9_1(G - Ty)
y

The minimum is found by setting the gradient of (G - Ty)TA9-'(G - Ty) with respect

to y to zero. Doing so yields

T Tf. J Ag-'T)-'T A9_1G.

There are several problems associated with this ML estimate. First, recall that the

dimension of the tomographic projection matrix T is NkN, x Np, i.e., the number of pro-

jection angles times the number of samples per angle by the number of image domain pixels.

In low data cases (e.g., limited angle or low offset sampling rate) it may be the case that

NON, < Np in which case the rank of T is less than Np. In such a case, when the data have

fewer degrees of freedom than the dimensionality of the estimate, T T A _'T is not invert-9

ible and the ML estimate must be approximated in some way. Even if the ML estimate may

be computed, it will not exhibit the assumed structure of the anomaly field, namely that

f, = cb,,N (i, j) because no such structure has been imposed on the ML estimate. Further,

the ML estimate does not directly provide an indication of whether or not an anomaly exists

and, so, it cannot be used to directly solve the anomaly detection problem.



Appendix C

Anomaly Intensity Assumption

In this appendix we justify the statement made in Section 4.2.1 that assuming knowledge

of the anomaly intensity, c, results in no loss of generality. The hypothesis test considered

in Section 4.2.1 is of the form

Ho f. 0,

Hi f, cbi

where i E f 1, 2, 3, 41. And the form of the statistic is

fi(G) = Tb7A -'G. (C. 1)

If the anomaly's intensity were not known, we would have to estimate it in some way

and, in that case we rewrite the above hypothesis test as

Ho f. = 0,

Hi f,, = �i bZI

where ai is an estimate of the anomaly's intensity assuming Hi is true. The form of the
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statistic would also include a �i term:

fi(G) = �Jb7A -'G. (C.2)

Here we consider the maximum likelihood (ML) estimate of ai (see Appendix B for a

discussion of ML estimation). Conditioned on Hi, the data are jointly Gaussian:

H, : g - A�(cjbi, Ag)

Therefore, the ML estimate is

(Tb -)T A -'G

(TbJ1 Ag- Tbi

Plugging this into equation (C.2) yields

fi (G) = ((Tbi )T Ag-'G)' - (C.3)
(Tbi)_,rA9-1Tbi

Except at the coarsest scale, where the bi have quadrantal symmetry, the denominator of

equation (C.3) is not independent of i. However, we have seen in our experiments that the

denominator is, to a good approximation, nearly independent of i at each scale. So, for

the purposes of comparing statistics at the same scale, the denominator may be ignored.

Therefore, the only difference between the statistic employed in Section 4.2.1 and that of

equation (C.3) is that the later is the square of the former. However, since the anomaly

intensity is known to be non-negative, � will be non-negative so that comparing statistics of

the form of equation (C.3) is equivalent to comparing their square root (i.e., equation (C.1)

and statistics of the form used in Chapter 4). Hence assuming knowledge of the anomaly

intensity results in no loss of generality.



Appendix D

Formulations for Exact Solutions

0 f Pi

In this appendix we describe in detail how to exactly solve the non-linear optimization

problem, Pi posed in Section 5.3. The results of the analysis in this appendix are presented

in Section 5.5 without proof.

I - In composite hypothesis testing problems for which there is no uniformly most powerful

test it is not clear what choice of statistics will yield good performance. Yet performance

relies critically on the ability of the statistics to distinguish between composite hypotheses.

Therefore, finding good statistics is of crucial importance. In this appendix we are concerned

with finding a statistic which is well matched to a composite hypothesis in the following

sense. We want the statistic to be as large as possible when its associated composite

hypothesis contains the true hypothesis and as small as possible otherwise, in some sense to

be made precise. Toward this goal, we formulate a convex non-linear optimization problem

whose solution provides a statistic with maximal composite hypothesis distinguishability.

We will provide several reformulations of this optimization problem, each providing its own

insight. We shall show that the dual of this problem is a quadratic programming problem

which can be solved with off-the-shelf software.
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D.1 Assumptions and Definitions

Consider a problem in which, under hypothesis Hk, the observed data vector, g has the

form

Hk: g = Tbk + 19,

where T E ff?"' andd is zero mean Gaussian additive noise which is independent of k and

has positive definite covariance A. (Note, the anomaly detection and localization problems

have this form.) This measurement equation and associated modeling assumptions are

all that are required to apply our method for finding optimized statistics for composite

hypothesis testing problems.

Denote the global set of hypotheses by 'H:

'H = f Ho, Hj,..., Hm-11.

In a composite hypothesis formulation, the elements of 'H are grouped into subsets 'Hi with

the property that

N-1

'H U 'Hi,
i=O

where N < M. Note that these subsets need not be mutually exclusive but they must be

collectively exhaustive as is indicated by the above property.

We are concerned with finding a linear statistic fi = a7g to associate with composite

hypothesis 'Hi for each i. With the intention of using these statistics in a comparison test

(i.e., we shall declare 'H- true if fj > ej for all we will formulate an optimization problem

to choose the linear weight vector ai so that f is maximally sensitive to 'Hi. Put simply,

we will impose a condition that forces fi to be, on average, large when 'Hi is true (i.e., it

contains the true hypothesis) and small otherwise.

Before introducing the problem, we make the following definitions and observations.

Define the conditional mean and variance of the statistic fi as
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A
Mi E[�-JHj] = a7Tbj,

A
var[filHj] = aTAai.

Notice that the conditional mean is linear in ai while the conditional variance is quadratic

in ai. Also note that the conditional variance is independent of j.

D.2 The Primal Problem

The optimization problem we consider is

hi = arg max min Mi3'- Mik
a (jk)EAi 01i

IL
where Ai (j, k) I Hj E 'H and Hk 0 'H Reading from right to left, we see that in this

optimization problem we are considering the difference between two standard-deviation-

normalized conditional means. One element in the difference is Mij and we want this

element to be large since we constrain Hj E 'Hi. The other element in the difference is Mik

and we want this element to be small since we constrain Hk �'Hi- Therefore, we want the

difference to be large. Taking the worst case difference (with the min), we maximize this

with respect to a.

Plugging in definitions, the optimization problem is

ELTTb - - aTTbk
hi= arg max min 3

a (j, k) E Ai -�fa�TAai

We shall find it useful to adopt a more compact, but more abstract, notation for this

optimization problem. To this end, we transpose the numerator and write the problem as

T
arg max minEAi q,,,a

a VaTAa
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A
where qm = q(ij) = Tbj - Tbk- It is clear from this latter formulation that the numerator

is a piecewise linear concave function of a. The denominator is the square root of a quadratic

form and, since the covariance matrix is positive definite, is strictly positive for non-zero a.

An additional simplification may be made by recognizing the fact that it is sufficient to

consider linear weights a for which a T Aa - 1. Therefore we may write the optimization

problem in the form

arg max z
a

z < qTa, Vm E Ai
subject to - M

a TAa < I

From this formulation of the optimization problem we see that the problem is one of maxi-

mizing a linear cost subject to many linear constraints and one quadratic constraint. Fur-
A

ther, the set Ci = 1(a, z) Iz < qT a, Vm E Ai and aTAa < 11 is the intersection of convexM

sets and so is itself convex.

We now make a few minor notational modifications to the optimization problem posed.

First note that we may write the problem as

argmaxz
a

subject to ze < Qa
aTAa < 1

where we define

T
q1

T
Q q2

and
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A [1 11 ... IjT.e =

Finally, we make a change of variables by defining

A 1/2
X = A a,

A 1/2
P QA-

Our final formulation of the problem, which we shall call the primal problem, is, therefore

argmaxzX

ze < Px
subject to T

x x<

D.3 The Dual Problem

The primal problem posed at the end of the previous section is a convex optimization

problem. In particular it belongs to the class of problems known as quadratically con-

strained quadratic programs (QCQPs). While methods exist for directly solving QCQPs

(e.g., semidefinite programming, see [39]), we shall find it convenient to solve the primal

problem by first solving a different (and simpler) problem. The simpler problem we consider

is the dual of the primal problem. In this section we pose the dual problem and show how

to obtain the optimal primal solution from the optimal dual solution. We then prove that

the problem we pose in this section is indeed the dual to the one posed in the previous

section.

We will later show that the dual is
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arg min y TPPT Y
Y

eTy
subject to

Y > 0

From the optimal dual solution, the optimal primal solution is obtained by

PT s,

X 6F-Plp -T:�

assuming that � is not identically zero. In the case that it is then R is also identically

zero. Finally, ii is trivially recovered from:k by multiplying by A- 1/2 . Notice that this dual

problem is a quadratic program (QP) problem. It has quadratic cost with linear constraints.

Duality has moved the quadratic constraint of the primal problem to a quadratic cost in

the dual. We next show how this is done.

The rough idea behind duality is simple. The primal problem is made difficult due to

the presence of constraints. These constraints can be removed if they are incorporated into

the cost function with Lagrange multipliers (turning the cost function into what we shall

call a Lagrangian cost function). These Lagrange multipliers penalize deviation from the

constraints. The key point is that if appropriate values of the Lagrange multipliers (i.e.,

appropriate penalties) could be found then the optimizing values for the unconstrained

Lagrangian cost function are the same as the optimizing values of the original cost function

subject to the original constraints. The dual problem aims to find the appropriate values

for the Lagrange multipliers. In other words, solving the dual amounts to finding the right

multipliers (penalties) so that solving the unconstrained problem (with the Lagrangian cost

function) is the same as solving the original constrained problem (with the original cost

function). We now show how to form the dual to the primal problem posed in the previous

section.

Making minor modifications, the primal problem is
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arg max zX

Px - ze > 0
subject to

1 - X T X > 0

Let us call the optimal cost to the primal problem �. In other words, z when x =:k, the

optimal solution to the primal. Let us also assume that R exists and that � < 00, i.e., the

primal problem is feasible and has bounded optimal cost. These assumptions are not crucial

but are reasonable and will allow us to sidestep some distracting technicalities. Introducing

Lagrange multipliers y and /t, we define the Lagrangian cost function as

A Z + YT(pX XTX).L (z, x, /-t, y) = - ze) + /_t(l (D. 1)

Our aim is to find values for the Lagrange multipliers such that maximizing L is the same

as solving the primal problem. Toward this end we define

A
J(fty) = maxL(zxpy).Z'X

The function J is the maximum of the Lagrangian cost as a function of the Lagrange

multipliers. For the right values of Lagrange multipliers (which we do not yet know but

shall call :� and A), J(A, S�) = �, the optimal cost of the primal problem.

The dual problem, in essence, is a search over y and /t space to find the right values

and A. We now come to the first subtlety. What is this space? Can we allow any

component of y and /t to be any real value? The answer is no, we must constrain the

Lagrange multipliers to be non-negative. To see this, suppose we allow one of the Lagrange

multipliers to be negative. For simplicity, let's consider letting /-I be negative (though this

argument applies equally to all the multipliers). Focus on the last term of equation (DA).

If /-t is negative then we can make the Lagrangian cost arbitrarily large by making 1 - x T X

arbitrarily small. However, doing so would violate the original quadratic primal constraint.
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If we allowed IL to be negative then maximizing L would never be the same as solving

the original primal problem because we would always end up violating a constraint (and,

furthermore, we would end up with unbounded optimal cost which violates our original

assumption that � is bounded). What we have just argued is that, in searching for the

and A, we must consider only non-negative values.

Having defined the space of our search for Lagrangian multipliers, we will now introduce

a function (the dual cost function) which is optimized when y = :� and [t = A. This brings

us the the second subtle point. For an arbitrary choice of y and p is there a relationship

between J(I-ty) and �? Yes, that relationship is

J (/-t, Y) >

which holds for all values of y and p. This is so because the problem of maximizing L is

an unconstrained one, while the primal is a constrained problem. We may trivially achieve

J(ft, y) > � by letting the Lagrange multipliers all be zero (see equation (D.1)). What we

have just argued is that J(It, y) is an upper bound on �. This fact is know as weak duality.

The dual problem attempts to find the smallest such upper bound. In our case this

smallest upper bound is, in fact, tight. In other words

min J(I-t, y)
It'y

This fact is known as strong duality. We shall prove strong duality in the last section

of this appendix. Therefore, the dual cost function we seek is J(/,ty). The Lagrange

multipliers which minimize this cost function will be the ones which also cause the problem

of maximizing the Lagrangian cost function, L, to be the same as solving the primal problem.

We have now found both the search space for Lagrange multipliers and the cost function

which is minimized when the right multipliers are found. Putting these together we get the

dual problem:
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�T] = arg min J(I-t, y)
IL'Y

subject to
Y > 0

All that remains is to put the dual problem into a more useful form. To begin doing so,

recall that J is the maximum of L over all z and x. A necessary condition at the maximum

of L is that the gradient of L is zero. Setting the partial derivative of L with respect to z

and the gradient of L with respect to x to zero yields the conditions

aL T 0 T 1,
az Z=�

and

aL PT y - 2/-t�c 0 :k PT Y. (D.2)
ax X=R 21-L

These are conditions, as functions of the Lagrange multipliers, which must be satisfied at

the optimum of L. Plugging these conditions back into L yields

J(I-ty) = maxL(zx,[ty) L(�,�c,/-ty)Z'X
= �+Y T(p�C _ �e) + p(l _ RT,�C)

�+Y T ppTY �e Y TppT Y

2p 4/.t2

YTppT y
+ 4/t

where in the last equality we have used the fact that y Te

Having found a workable expression for J, the dual problem is to minimize it. We shall

first find a necessary condition for tt at the minimum which will still leave the problem of

finding y. We will return to this latter problem in a moment. First note from equation
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(D.2) that if p = 0 then :k is unbounded. From the form of the primal problem, such an

R is not a feasible solution. Therefore, the optimal value of JL cannot be zero. A necessary

condition for [t at the optimum is

19i yTppT Y 0 VY- TP �PT Y� (D-3)
'Oft 4A2 2

It remains, therefore, to formulate the problem whose solution is the optimal value for

y. But now this is easy. Having found the optimal p we plug this into J to get

J (A, Y) =: VFY �Tp P �Ty - (D.4)

Putting all this together, the dual problem is

arg min Y TPPT Y
Y

eTy
subject to

Y > 0

which is the problem proposed at the start of this section. (Minimizing yTppT y is equiv-

1/2 = 1/2alent to minimizing � �yTP�PTy�.) Recalling the fact that P A QA- and x A A a, we

may rewrite the dual problem and the primal optimal solution as

:k = arg min yT QA-1QTY
Y

eTy
subject to

Y > 0

and

A-'QT:�
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Therefore, solution of the problem does not require the computation of a matrix square

root and may be found by solving the dual quadratic program (e.g., with MATLAB's qp()

function).

DA Strong Duality

Recall earlier we showed weak duality, i.e., that J(p, y), the cost obtained when optimizing

the Lagrangian cost function with Lagrange multipliers /.t and y, is an upper bound for �,

the optimal cost of the primal problem. In this section we prove strong duality; we show

that the least such upper bound is tight, i.e., that J(A,:�) = �.

We begin by considering again equation (D.1) but now evaluated at the optimal values

of its argument:

�T(p:� T:��e) (D.5)

By the definition of the function J we also have that

J(A,:�) = L (�, R, A,:�) .

To show strong duality, therefore, we need only show that J(A,:�) = L(�, R, A, S�)

Therefore, we will argue that the last two terms of equation (D.5) are zero.

It is clear from the form of R (see equations (D.2) and (D.3)) that 1 - R TR = 0. So we

turn our attention to the term :�T(pR _ �e). Consider one term in the sum:

where p7' is the i1h row of P. We shall show that each such term must be zero and so the

entire sum of such terms (:�T(pR - �e)) must be zero.

There are two cases, either p7R - 0 or P7'R - > 0. In the former case we are done.

If the latter is true then �j = 0. This is so because to obtain J(A,:�) we have minimized

over all :� and A. Therefore if it were the case that p7R - � > 0 and > 0 then we would
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not be at a minimum (recall that we argued previously that �i > 0). We have just argued

that :�T(pR - �e) = 0 and, hence, J(A,:�) = L(�, R, A,:�) = �. The optimal dual cost is the

same as the optimal primal cost: the least upper bound is tight. (Incidentally, the condition -

that �i(pTR - �) = 0, Vi is known as complementary slackness.)71
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