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Abstract
The focus of this thesis is on the identification of multiscale autoregressive (MAR)
models for stochastic processes from second-order statistical characterizations. The
class of MAR processes constitutes a rich and powerful stochastic modeling framework
that admits efficient statistical inference algorithms. To harness the utility of MAR
processes requires that the phenomena of interest be effectively modeled in the frame-
work. This thesis addresses this challenge and develops MAR model identification
theory and algorithms that overcome some of the limitations of previous approaches
(e.g., model inconsistency and computational complexity) and that extend the breadth
of applicability of the framework. One contribution of this thesis is the resolution of
the problem of model inconsistency. This is achieved through a new parameterization
of so-called internal MAR processes. This new parameterization admits a computa-
tionally efficient, scale-recursive approach to model realization. The efficiency of this
approach stems from both its scale-recursive structure and from a novel application of
the estimation-theoretic concept of predictive efficiency. Another contribution of this
thesis is to provide a unification of the MAR and wavelet frameworks. This unifica-
tion leads to wavelet-based stochastic models that are fundamentally different from
conventional ones.

A limitation of previous MAR model identification approaches is that they require
a complete second-order characterization of the process to be modeled. Relaxing this
assumption leads to the problem of covariance extension in which unknown covariance
elements are inferred from known ones. This thesis makes two contributions in this area.
First, the classical covariance extension algorithm (Levinson's algorithm) is generalized
to address a wider range of extension problems. Second, this algorithm is applied to the
problem of designing a MAR model from a partially known covariance matrix. The final
contribution of this thesis is the development of techniques for incorporating nonlocal
variables (e.g., multiresolution measurements) into a MAR model. These techniques are
more powerful than those previously developed and lead to computational efficiencies
in model realization and statistical inference.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering and Computer Science
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dj (n) detail coefficient at scale j and shift n
hi g discrete-time analysis filters

hi � discrete-time synthesis filters

00 00 scaling and dual scaling functions
Oiln 0j'n scaling and dual scaling basis function at scale j and shift n,

i-e-, 0jn = v"2_j0(2jt - n) and similarly for �j'n

10 H 0 0 wavelet and dual wavelet functions
V)ini V)iln wavelet and dual wavelet basis function at scale j and shift

n, i.e., 0jn = -\/2_jV)(2jt - n) and similarly for 0jn
R, R the supports of h and h
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Chapter 1

Introduction

N the last two decades, multiscale techniques, many of which are based on the wavelet
transform, have been widely and successfully applied in signal' processing. This

is due both to their ability to capture compactly the salient scale-to-scale properties
that many signals exhibit and to the efficiency of the algorithms to which they lead.
With both of these attractive features in mind, the multiscale autoregressive (MAR)
framework was introduced [28-30] to support the development of optimal multiscale
statistical signal processing. Recent work [37-40,96-98, 100] has focussed on systematic
approaches to MAR model identification. This thesis extends this recent identification
work and develops a consistent and complete realization theory that leads to efficient
algorithms.

The utility of the MAR framework has already been established in a wide variety
of applications [39,41,66-69,74,90,91,99,106-108,111, 114,128,162,165]. The success
that the framework enjoys stems from two sources: (1) its ability to model compactly
a rich class of phenomena and (2) its ability to address efficiently complications that
arise in many signal processing problems. With respect to the former, it has previously
been shown that the class of processes that can be effectively modeled within the MAR
framework includes one-dimensional Markov processes [127,129], 11f -like phenomena
[28, 29, 37, 38, 40, 63, 68, 127, 128], some Markov random fields [1 27, 129], and others
[96,97,1001.

Fast and flexible signal processing algorithms have been developed for MAR pro-
cesses. Sample-path generation, linear least-squares estimation [28,29], and likelihood
calculation [127,130] have computational complexity that scale linearly with problem
size (under certain conditions to be discussed in the sequel). Moreover, these algorithms
are capable of simultaneously handling a variety of challenging features that are typical
of real-world statistical signal processing problems such as:

• large data sets,

• nonstationary processes with correlations at many length- or time-scales,

• irregularly spaced, nonlocal, and multiresolution measurements,

'Unless specified otherwise, "signal" refers to signals, images, and higher-dimensional processes.
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the need for error statistics.

While a variety of multiscale frameworks for representing and processing signals have
been proposed [12,24-27,29,30,35,36,47,50,62,75,76,83,133,142,178,190-192], only the
MAR framework can simultaneously and efficiently address all of the aforementioned
challenges.

To harness the power of the MAR framework, of course, requires that the phenomena
of interest be effectively modeled in the framework. This thesis develops MAR model
identification theory and algorithms that overcome some of the limitations of previous
approaches and that extend the breadth of applicability of the framework. In particular,
the following topics are addressed:

• model consistency,

• computationally complexity,

• unifying wavelets and MAR processes,

• model realization from an incomplete second-order characterization,

• incorporating nonlocal variables systematically.

These topics, and the way they are addressed, are motivated by the prior work of others,
which is reviewed in the following section.

E 1.1 History of the MAR Framework

Figure 1.1 illustrates the progression of work on MAR processes, algorithms, and ap-
plications. While the publications by those named in the figure [12-14,16,28-30,37-41,
43,44,63,66-69,73,74,77-79,96-100,110,111,127-131,140,160,1621 do not represent all
of the work associated with MAR processes (see, for example, [106-108,114,153,165]),
they certainly cover all of the theory and most of the applications. A line linking two
authors indicates that the work of the later author builds primarily on that of the earlier
author although the research lineage could, in fact, be ordered in other ways.

MAR processes grew out of a research effort begun by Basseville, Benveniste, and
Willsky in the late 1980s [13,14]. This effort was aimed at developing a statistical
system theory for multiscale analysis and synthesis of signals. The main result of
[13] is to establish that the only suitable parameterization of isotropic processes on
dyadic trees is via a generalization of Schur-Levinson parameterization for standard
time series. Additional theoretical developments such as lattice structures for whitening
such isotropic processes is the topic of [14]. In [16] a deterministic realization theory is
developed.

Building on the work in [13,14], Chou considers a variety of processes indexed by
lattice and tree structures. In [12, 28] multiscale stochastic models of and optimal
estimation algorithms for processes that are whitened by the wavelet transform are
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Figure 1.1. MAR research lineage.

developed. Generalizations of the notion of stationarity give rise to several classes of
autoregressive processes defined on lattices and trees.

One of these classes is the class of MAR processes which generalize discrete-time
state-space processes. 2 Chou developed a computationally efficient linear least-squares
estimation algorithm [291 for MAR processes which generalizes the Kalman filter [104,
105] and Rauch-Tung-Striebel smoother [155] for state-space processes. Although not
the main focus of his work, Chou provides several one-dimensional examples which
hint at the great variety of applications for which the MAR framework is suited. Not
surprisingly, 11f processes, which are approximately whitened by the wavelet transform
[190-192], are well-approximated by simple MAR models. Chou's work also suggests
that one-dimensional Markov processes are also well-approximated.

Once an efficient estimation algorithm had been developed, a natural question to
ask was: how rich a class of processes could MAR models capture? This question
formed the basis of the work by Luettgen in [127,129] which represents the first steps
toward a MAR stochastic realization theory (although it was not couched in those terms
at the time). The work in [127,129] provides three fundamentally important results.
First, it definitively demonstrates that the class of processes effectively modeled by
MAR processes is at least as rich as all one-dimensional Markov processes and includes
many two-dimensional Markov processes. Second, it shows that to represent a two-

2As we will discuss in detail, a MAR process, like a state-space one, consists of a collection of vectors,
called states, that axe related by affine dynamics. The difference is that a MAR process may be indexed
by the nodes of any tree, while a state-space process is indexed by a monadic tree (i.e., the integers).
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dimensional Markov random field exactly with a MAR model requires state dimensions
that scale with the linear size of the image leading to statistical inference algorithms
that, asymptotically, do not scale linearly with problem size. To circumvent this com-
plexity, Luettgen introduces a class of approximate models which brings us to the third
significant contribution of his work. What is shown in [127,129] is that the state di-
mension may be reduced (essentially through subsampling of the wavelet transform) so
that the exact desired Markov random field is not captured by the MAR model but,
nevertheless, the essential statistical features of the field are retained.

In [127,128] Luettgen provides the first fully developed two-dimensional application
of MAR models. Interpreting a quadratic gradient smoothness penalty in a variational
formulation of the optical flow problem as a 11f prior and then approximating this
11f prior with a MAR process, Luettgen demonstrates the efficacy of the application
of MAR models to the problem of optical flow. In doing so, he suggests (correctly)
that MAR models may be successfully applied to a broad range of image processing
problems.

Luettgen's other work [127,130,131] is of a more theoretical nature. In [127,131]
he develops a statistical characterization of the estimation error associated with linear
least-squares estimates of a MAR process. The main result is that the error is also a
MAR process. In [127,130] an efficient likelihood calculator is developed and applied
to the problem of texture discrimination.

Fieguth primarily builds on the range of applications of MAR models in [63,66,68,69]
and provides the first application to an extremely large problem-estimating the shape
of the north Pacific ocean surface from satellite altimetry measurements. This work
is presented in [63, 66] and involves the estimation of 100,000 variables from 20,000
measurements. In [63, 68], Fieguth applies Luettgen's fast likelihood calculator to the
problem of Hurst parameter estimation for fractional Brownian motion. The work
of [63, 69] addresses the surface reconstruction problem and relies upon an ingenious
application of the interpretation of quadratic gradient penalties as fractal priors.

Fieguth's surface reconstruction approach also relies upon the theoretical work of
overlapping trees done jointly with Irving and presented in [63,96,97]. The overlapping
tree approach offers a way to trade off smoothness of estimates and sample-paths with
computational complexity. The motivation for this work is that low dimensional MAR
models, while admitting efficient estimation and sample-path generation, can exhibit
distracting blockiness in estimates and sample-paths. In some applications this is not
a statistically or practically significant issue. However, in others, such as surface recon-
struction which requires the calculation of gradients, smoothness is a significant issue.
An essential feature of Fieguth's and Irving's approach to the smoothness problem is
that it does not involve low-pass filtering the estimates. Therefore, fine-scale features
are not smoothed away, just the blocky artifacts.

Several authors have built upon the work of Fieguth. In [160, 162] Schneider ex-
tends Fieguth's surface reconstruction approach to accommodate the problem of image
segmentation. This work is, in essence, a multiscale counterpart to the variational
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formulation for segmentation proposed by Shah [167]. Ho [67], in collaboration with
Fieguth and other authors, extends Fieguth's ocean surface estimation work by simul-
taneously estimating sea level and orbit-induced errors from satellite altimetry data.
Ho has also extended the applicability of multiscale models to dynamic problems where
the model parameters change over time [90-92].

To a large extent, the work of Irving is motivated by Luettgen's work in'[127,129].
The main focus of Irving's work is the MAR stochastic realization problem [96, 98,
100]. Recall that Luettgen showed that modeling two-dimensional Markov random
fields requires prohibitively large state dimensions. Luettgen's approach-subsampling
the wavelet transform of Markov random field region boundaries-while effective, is
ad hoc and does not suggest a way to model non-Markov textures with reduced-order
models.

Irving's approach, on the other hand, provides a general framework for building ex-
act and reduced-order models for any process whose second-order statistics are known.
Irving's basic idea is to exploit the Markovianity of MAR processes3 which dictates
what information must be kept at each node to model exactly a given process. Irving's
approach, based on the concept of canonical correlations [6-8, 49, 54, 94, 96, 100, 1831,
not only finds this information but prioritizes it. Then, if a reduced-order, approximate
realization is desired, the least important information is discarded. Two weaknesses of
this approach are addressed in this thesis: (1) it leads to inconsistent models and (2) it
is computationally intensive.

Irving's final contribution is a modeling framework for synthetic aperture radar
(SAR) imagery [96,991. This approach has proved effective for a number of SAR pro-
cessing problems and has spawned several additional studies. In [96,99], Irving applies
his methodology to automatic target recognition while in [73,74], Fosgate applies it to
segmentation of SAR imagery and the enhancement of anomalies. In turn, Kim builds
on Fosgate's work using it as a basis for SAR image compression [110, 111].

Daniel's work [37-41] is of both a theoretical and applied nature and builds on
both that of Fieguth and of Irving. Daniel applies the MAR framework to the ground-
water hydrology problem of hydraulic conductivity estimation from measurements of
conductivity and head in [37,39] and to the problem of travel time estimation in the
advective transport of mass in ground-water aquifers in [37,41]. One of the primary
difficulties in these applications is that they require the fusion of data at different
resolutions. While the MAR framework can accommodate such data, doing so requires
some care. One of Daniel's contributions in [37,39] is to show how to augment a MAR
model to incorporate multiresolution variables.

In his other work [37,38,40], Daniel focuses on the efficient design of MAR models for
self-similar processes. He explores two approaches in an effort to find an approximate
MAR representation useful for the generation of fractional Brownian motion sample-
paths. One approach involves the synthesis of the wavelet model proposed by Fieguth
in [68] with the midpoint displacement model commonly used for fractal Brownian

3As we develop in the sequel, a MAR process is a Maxkov random field on a tree.
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coarse scale root node
(scale 0)

leaf nodes, J

fine scale
(scale M = 3)

Figure 1.2. A four-scale binary tree.

motion (see [9,129]). The second approach makes clever use of the machinery developed
by Irving. In particular, using the stationarity and self-similarity of the increments
of fractional Brownian motions, Daniel shows that one can circumvent some of the
computational effort required by Irving's canonical correlations approach to the general
MAR stochastic realization problem.

While the aforementioned authors have substantially developed the theory, algo-
rithms, and applications of MAR processes, there are a number of important issues
that are not addressed by their work. Some of these are raised in the following section
and further developed in the body of this thesis. Some of those that remain are posed
as challenges to future researchers in Chapter 8.

0 1.2 Main Problems Addressed

This thesis addresses three main problems which are summarized in this section.

* 1.2.1 Cornputationally Efficient Internal MAR Stochastic Realization

* MAR process is a collection of random vectors fx(s)j, called states, each of which
is indexed by a node s of a tree. These nodes are organized into scales as indicated
in Figure 1.2. MAR states are coupled with affine coarse-scale to fine-scale dynamics
that generalize those of a state-space process. One problem addressed in this thesis
and which motivates much of the theoretical development of subsequent chapters, is
choosing parameters for the dynamics of a MAR process to model the second-order
statistics of any given fine-scale random signal.

A similar stochastic realization problem arises in the state-space context [151,181].
Although a MAR process is a generalization of a discrete state-space one, the MAR
stochastic realization problem is not a generalization of the state-space realization prob-
lem. To see this, consider a one-dimensional, finite-length signal modeling problem in
which case the index set for the signal to be modeled is a subset of the integers (call this
subset J). In the state-space setting, the index set for the model is also J. However,
in the MAR setting, the index set for the model is a tree whose leaf nodes correspond
to J (see Figure 1.2). From a graphical modeling point of view, MAR models, unlike
state-space ones, have "hidden nodes" since the statistics to be modeled are provided
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only for the leaf node states. As shown in Figure 1.2, these hidden nodes are interpreted
as residing at coarser scales (with the leaf nodes comprising the finest scale). Building
a MAR model requires supplying the "missing" coarse-scale statistical information at
the hidden nodes, a step which has no counterpart in state-space modeling.

Although the MAR stochastic realization problem is not a generalization of the
state-space one, many of the concepts developed for state-space modeling have useful
counterparts in the MAR setting. One of these is the concept of internality. An internal
state-space process is one for which each state is a linear function of the observed
process [123]. The corresponding definition of an internal MAR process is one for
which each state x(s) is a linear function of the states indexed by the leaf nodes that
descend from node s.

Internal MAR processes, which we discuss in detail in Chapter 3, are important for
a variety of reasons. First, internality vastly simplifies model realization because, for an
internal process, the statistics for the "hidden" coarse-scale states can be determined
from the given finest-scale statistics (i.e., there is no exogenous randomness). Second,
as we will discuss, the MAR models developed in [37, 40, 96, 98, 100] are inconsistent
precisely because they are not internal (although the intent was to make them so). In
contrast, internal models are, by definition, consistent. Third, internal MAR models
admit the consistent inclusion of nonlocal linear functions at coarser-scale nodes and,
thereby, permit the statistically optimal fusion of multiresolution measurements [39].
The incorporation of nonlocal linear functionals, while aided by the property of inter-
nality, is a nontrivial problem in its own right. This thesis presents several techniques
for addressing this problem and their development represents important extensions to
the theory of internal MAR model realization.

The final important fact about internality is that it plays a role in overcoming the
computational burden of previous model building approaches [37,40,96,98, 100]. The
computational complexity of these methods stems from two sources. First, they are
not scale-recursive and, therefore, do not take advantage of the natural efficiency of
tree data structures. Second, they are based on canonical correlations, a burdensome
approach involving the inversion and singular value decomposition of large matrices.
Consequently, the approach developed in [96,98, 100] is quartic in problem size while
that of [40] is cubic in problem size.4

One of the contributions of this thesis is the development of a computationally
efficient realization algorithm with complexity quadratic in problem size.5 The effi-
ciency of this algorithm stems from the fact that it is scale-recursive and is not based
on canonical correlations. With respect to the former, the theoretical basis for the
scale-recursive realization algorithm developed in this thesis follows from a thorough
analysis of (wide-sense) Markovianity for internal tree-indexed processes. In addition to
internality, Markovianity is another important concept in the state-space setting that

4The approach in [40] is only applicable to self-similar processes with stationary increments while
that of [96,98, 100], as well as the approach developed in this thesis, is completely general.

'As discussed in Chapter 4, an approximation leads to a linear-time algorithm.
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generalizes to MAR processes and that plays a central role in the stochastic realization
problem. Moreover, and most importantly, it can be shown that, for internal processes,
this Markov property has an equivalent scale-recursive definition that is vastly simpler
to work with and leads to efficient model realization. Because of the structure it reveals
and the efficiency to which it leads, the development of this scale-recursive Markov
property is one of the important contributions of this thesis.

The efficiency of the realization approach developed in this thesis stems also from the
fact that it is based on the estimation-theoretic concept of predictive efficiency [8,154]
rather than on canonical correlations. In brief, predictive efficiency is the idea of finding
and prioritizing the best (in a minimum mean-square error sense) linear functionals of
one random vector for the purpose of linearly estimating another. An important feature
of predictive efficiency is the asymmetric way in which it treats data and variables to be
estimated. A consequence of this for our approach to the stochastic realization problem
is that state variables are chosen to provide maximal total reduction in estimation error
variance. This is in contrast to the canonical correlations approach which provides
maximal fractional error variance reduction and is therefore equally concerned with
low- and high-variance features. Another important advantage of predictive efficiency's
asymmetry is that it avoids the costly inversion and singular value decomposition of
large matrices, steps which cannot be avoided in the canonical correlations approach.

0 1.2.2 Unification of the Wavelet and MAR Frameworks

Like other methods [96,98, 100], the approach to the MAR stochastic realization problem
summarized in the previous section focuses on designing MAR states to, in some sense,
optimally match the statistics of the fine-scale process being modeled. As a consequence,
the resulting states typically have no discernible structure beyond the fact that they
represent solutions to specific optimization problems. Another approach, which does
not suffer from this limitation, is to choose the linear functionals that define the elements
of internal MAR states from a library of linear functionals that have some convenient
structure. This idea is one motivation for one of the contributions of this thesis-the
unification of the wavelet and MAR frameworks. This union proves to be a powerful
one because it combines the modeling efficacy of wavelets with the processing efficiency
and flexibility of the MAR framework.

MAR processes were motivated by and have much in common with wavelets. In
particular, MAR processes and wavelet synthesis both construct signals by adding detail
at each successive finer scale. Despite the apparent similarities, however, it seemed,
until recently, that the two frameworks could not be easily reconciled except in the
simplest case of the Haar wavelet [38, 68]. In this thesis, we show that through a
particular definition of MAR state vectors, MAR dynamics can be chosen to match
the reconstruction algorithm associated with any compactly supported orthogonal or
biorthogonal wavelet. Our ultimate objective, however, is not signal synthesis but rather
stochastic modeling. As mentioned previously, internality is a desirable property of a
MAR model because it simplifies MAR model identification.
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In the early attempts to marry MAR processes and wavelets, it was incorrectly
thought that the internal property doomed the union in all but the Haar case. This
is because, for all but the Haar wavelet, the supports of the wavelet functions overlap.
We will show the connection between the overlapping of the wavelet functions and the
internal property and illustrate how the non-overlapping property of the Haar wavelet
permits its simple union with the MAR framework. After proving some particular
relationships between wavelet coefficients and through appropriate state augmentation,
we show how to build internal MAR processes based on any compactly supported
wavelet.

Our main objective, after showing how to unify the MAR and wavelet frameworks,
is to build approximate internal MAR models for stochastic processes. To do so, we use
the statistics of the process to be modeled to derive the dynamics of our internal MAR-
wavelet models. While wavelets have nice decorrelation properties, the decorrelation
they provide is not exact in general. Therefore, our MAR models based on wavelets
are approximate. This does not mean that we assume in our internal models that the
detail coefficients are white. In fact, while (for comparison purposes) we do make this
assumption for what we shall call the standard MAR-wavelet model, our internal MAR-
wavelet models are more sophisticated. In particular, they incorporate the powerful
property of optimal stochastic prediction for the detail coefficients at a given scale from
both detail and scaling coefficients at coarser scales. This is different from the common
wavelet-based modeling in which the detail coefficients are assumed to be white. In
our internal models, we make the weaker assumption that the errors in predicting the
detail coefficients from coarser-scale coefficients are white.

MAR-wavelet states of low dimension can lead to surprisingly good models. We will
see that the state dimension of our MAR-wavelet models grows only linearly with the
lengths of the support of the scaling functions, which are related, in some cases, such
as orthogonal wavelets, to the number of vanishing moments of the analyzing wavelet.
However, the fact that wavelets with a large number of vanishing moments do a good
job of whitening a large class of processes [4,72,166,179,1991 does not imply that the
degree of statistical fidelity of our internal models necessarily increases with the num-
ber of vanishing moments. This is because we are not exclusively concerned with the
correlations between wavelet coefficients, but rather with the conditional correlation
between them (i.e., the correlation remaining after conditioning on coarser-scale co-
efficients). Therefore, as will be illustrated, with internal MAR-wavelet models, it is
possible to build accurate models using wavelets with fairly short supports and, thus,
without dramatically increasing the state dimension.

N 1.2.3 Covariance Extension

A limitation of all previous approaches to the MAR stochastic realization problem
(including those discussed in the preceding two sections) is that they rely on the com-
plete knowledge of the second-order statistics of the signal to be modeled. In many
real-world problems, it is unlikely that one will have this complete knowledge. More-
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over, in large image (and higher-dimensional) processing problems, such knowledge is
impractical due to the amount of memory it would require. Therefore, if the MAR
framework is ultimately to be applied to real-world problems of the type just described,
it is essential that model identification techniques be developed that do not rely on a
complete second-order characterization. A substantial contribution of this thesis is the
development of techniques for MAR model realization for circumstances in which the
covariance matrix of the signal to be modeled is only partially known.

The problem of inferring the unknown elements of a covariance matrix from known
ones is the covariance extension problem which has been extensively studied [2, 10,1 1,
33, 51, 58, 88, 102, 120, 132, 159]. One well-known result is that, for certain problems,
an efficient recursive algorithm-Levinson's algorithm [21, 89, 118, 119, 152]-may be
used to compute extensions. One of the contributions of this thesis is to provide a
generalization of the classical Levinson algorithm. This generalized-Levinson algorithm,
like its classical counterpart, computes a covariance extension one element at a time.
Each new element is parameterized by a so-called reflection coefficient and, collectively,
the reflection coefficients parameterize all valid extensions (i.e., those that are positive
semi-definite). The definition of generalized-reflection coefficients, the development of
the generalized-Levinson algorithm, and the precise characterization of the problems to
which it can be applied are based on the graph-theoretic concept of chordality, which
will be explained in detail.

While we will rely and build on the theory associated with covariance extension, we
are, ultimately, not interested in finding a full extension of the given, partially known
covariance matrix. Rather, our interest is in a MAR model for an extension. In partic-
ular, for one-dimensional signals, we show how to obtain an exact MAR model for the
maximum-entropy extension of a banded, partially known covariance matrix (i.e., corre-
lations among the k nearest neighbors of each point are known). To obtain this model,
only a small subset of the unknown covariance elements need to be computed, and they
may be computed using the generalized-Levinson algorithm we develop. This results
in an order of magnitude of computational savings relative to explicitly computing the
full extension. In fact, the complexity of computing the parameters of a MAR model
for the maximum-entropy extension of a banded, partially known covariance matrix is
equivalent (asymptotically) to computing the parameters of a standard autoregressive
model using the classical Levinson algorithm.

0 1.3 Thesis Organization and Main Contributions

The remainder of this thesis is organized as follows.

Chapter 2, Preliminaries

This chapter begins with a review of linear least-squares estimation with an emphasis on
structured models that lead to efficient algorithms. This discussion leads naturally to
a consideration of state-space models which are a special case of MAR models. After a
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formal introduction to MAR processes and their associated signal processing algorithms,
the chapter turns to a detailed discussion of previously-developed realization theory.
This discussion includes a review of MAR models based on the Haar wavelet which
have been used for modeling fractional Brownian motion [37,38,63,68], MAR models
for Markov processes [127,129], stochastic realization based on canonical correlations
[96, 98, 100], the overlapping tree approach to achieve smoothness [63, 96, 97], and a
state augmentation technique for incorporating nonlocal variables [37,39]. The chapter
concludes with a review of predictive efficiency [8,154], a technique which we will use
in Chapter 4 for MAR model realization.

Chapter 3, Internality and Markovianity

This chapter resolves the issue of MAR model inconsistency which is intimately related
to the notion of internality. While this issue has been recognized by previous authors,
it has, until now, not been addressed in a theoretically complete and computation-
ally tractable way. The approach developed in this chapter requires the consideration
of general tree-indexed processes, not necessarily MAR ones. The theory of internal
tree-indexed processes is formally developed and results in a new parameterization for
internal processes which leads to MAR models that are consistent. After the devel-
opment of internality, we consider its consequences for Markovianity and show that it
substantially simplifies this important property. The chapter closes with a discussion of
the implications of internality and the scale-recursive notion of Markovianity to which
it leads for stochastic realization algorithms and their computational complexity.

Chapter 4, Scale-Recursive Stochastic Realization

This chapter develops a MAR stochastic realization algorithm. This algorithm makes
use of the theory of internality and scale-recursive Markovianity as developed in Chap-
ter 3. Additionally, it is based on predictive efficiency which is introduced in Chapter 2.
These three ideas (internality, scale-recursive Markovianity, and predictive efficiency)
combine to result in a realization algorithm that has complexity quadratic in prob-
lem size. An approximation is then introduced that leads to a complexity linear in
problem size. An analysis of this approximation is provided and the chapter concludes
with examples that illustrate the degree of approximation error relative to the exact
algorithm.

Chapter 5, MAR-Wavelet Processes

This chapter unifies the wavelet framework and the MAR framework. While MAR pro-
cesses based on the Haar wavelet have been developed and applied by previous authors
(see Chapter 2), generalization to other wavelets has been difficult. This difficulty stems
from the constraints imposed by internality, constraints that were not well understood
until this thesis (see Chapter 3 and Chapter 4). After proving some particular proper-
ties of wavelets, internal MAR processes based on any compactly supported orthogonal
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or biorthogonal wavelet are developed. The chapter concludes with an application of
these MAR-wavelet processes to stochastic realization.

Chapter 6, Covariance Extension

All previous systematic approaches to MAR stochastic realization have required com-
plete knowledge of the second-order statistics of the process being modeled. The work
presented in this chapter takes a first step toward relaxing this assumption. The chap-
ter includes a detailed review of covariance extension and its relation to graph theoretic
concepts. A generalized-Levinson algorithm is developed that permits computation
of extensions under quite general conditions. This algorithm is then applied to the
problem of designing a MAR model for the maximum-entropy extension of a banded,
partially known covariance matrix. A significant feature of maximum-entropy covari-
ance extension using MAR models is that the complexity of the approach is an order
of magnitude below that of explicitly computing a full covariance extension. Moreover,
the complexity is comparable to that required to build a standard autoregressive model
using the classical Levinson algorithm.

Chapter 7, Incorporation of Nonlocal Variables

This chapter presents several methods for incorporating nonlocal linear functionals into
MAR models. Such linear functionals may represent coarse-scale measurements or vari-
ables to estimate and including them requires care because of the constraints imposed
by internality and Markovianity. Three approaches to this problem are developed and
they represent powerful alternatives to the approach of [37, 39] which is reviewed in
Chapter 2. The first approach incorporates nonlocal linear functionals approximately.
The second does so exactly but, in contrast to the method of [37,39], they are incor-
porated prior to model realization so that the information they carry may be exploited
in modeling signal statistics. Finally, an intellectual successor to the Markov property
is developed that focuses only on MAR states that carry information relevant for the
estimation problem at hand. This is in contrast to the usual Markov property that
focuses on all MAR states regardless of their importance for estimation.

Chapter 8, Contributions and Suggestions

This chapter summarizes the contributions of this thesis and provides suggestions for
extending the theoretical foundation developed in the preceding chapters. Other open
problems associated with the MAR framework are also discussed.



Chapter 2

Preliminaries

HIS chapter primarily focuses on MAR processes, associated signal processing algo-
Trithms, and previously-developed realization theory. The MAR framework, which
we review in Section 2.2, was principally developed to support efficient linear least-
squares estimation. To motivate the MAR framework and to provide additional insight
into its structure, we first provide, in Section 2.1, a review of linear least-squares esti-
mation with an emphasis on structured models that lead to computational efficiencies.
Much of the chapter is devoted to MAR realization theory, elements of which are re-
viewed in Section 2.3. The chapter concludes with Section 2.4 in which we review
predictive efficiency, a technique which we will use in Chapter 4 for MAR model real-
ization.

N 2.1 Linear Estimation and Structured Models

In this section we first consider a generic, finite-dimensional, linear least-squares esti-
mation problem and then consider several classes of such problems which have spe-
cial structure. Many of the topics covered here are discussed in greater detail in
[37, 63, 96, 126, 148, 168, 184, 188]. A finite-dimensional, linear estimation problem is
one of estimating a zero-meani vector of unknowns f with a linear function of a zero-
mean vector of observations g. That is,

fL = Lg (2.1)

is a linear estimate of f. The estimation error is eL f - fL = f - Lg and the
estimation error covariance matrix is

P11L qL - LPgf - PfgL (2.2)

where P A E[XXT] - E[x] E[X]T is our notation2 for the covariance matrix of random
[XYT] [y]Tvector x and Pxy E - E[x] E is our notation for the cross-covariance matrix

for random vectors x and y.

'The assumption of zero-mean results in no loss of generality because, for the case of non-zero mean,
we may consider the deviation from the mean. This results in an affine estimator rather than a linear
one.

2E[] is the expectation operator. All notational conventions axe summarized on pages 17-19.
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0 2.1.1 Linear Least-Squares Estimation

The linear estimator that minimizes the mean-square estimation error is called the linear
least-squares (LLS) estimator. The LLS estimate of f based on g will be denoted by
E[f 1g] or, when the dependence on 9 is clear, simply f. The form of the LLS estimator
and estimation error covariance is

f = E[f 1g] = PfgP;- g, (2.3a)
p = pf _ pfgp-lpT

g fg (2-3b)

where e f The LLS estimator possesses a number of theoretically and practically
useful properties including the following.

• The LLS estimator and error covariance depends only on the joint second-order
statistics of f and g.

• The LLS estimate is unbiased.

• The LLS estimation error is orthogonal to all affine functions of the data upon
which it is based.

• An estimator that is orthogonal to all affine functions of the data upon which it
is based is the LLS estimator.

• PI - PIL < 0, where P, is the LLS estimation error covariance and P,, is the
error covariance of any linear estimator Lg. Equality obtains if and only if Lg is
the LLS estimator and inequality is in the sense of negative-definiteness.

• Pig = P, where e is the LLS estimation error. That is, the conditional estimation
error covariance does not depend on the data g.

A special and important class of LLS estimation problems are those based on an
affine measurement model,

g=Hf +v (2.4)

where H is an Ng x NJ dimensional matrix. When v is zero-mean, uncorrelated with
f, and has a covariance P, the LLS estimator and error covariance have the form

pf HT T+P
(HPfH w1g, (2.5a)

P, = Pf - Pf H T (HPf H T + P,)-'HPf . (2.5b)

Another way of expressing (2.5) is

(P-1 TP-1 TP-1g,f + H V H)-'H V (2.6a)

P�l + HTp- 'H. (2.6b)Pe- V
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We point out for future reference that (2.6a) may be written as

Pe-'�= H V (2.7)

The computational complexity of implementing (2.5) or (2.6) depends on Nf and

Ng, the dimensions of the unknown vector and the data vector, respectively. For the case

in which Pv is diagonal but all other matrices in (2.5) and (2.6) are full, direct solution

(i.e., with explicit matrix inversions) of (2.5) requires O(N 3 + N 2N ) computations9 f g
and (2.6) requires O(N 3) computations. Thus, when Ng < Nf, (2.5) will be more

f
efficient to implement, and when NJ < Ng, (2.6) will be more efficient to implement.

In either case, the computational complexity of implementing (2-5) or (2-6) becomes

prohibitively burdensome as Ng and NJ become large. Additionally, explicit storage of

P, is prohibitive for large Nf.

If one requires only the estimates and not the estimation error covariance then

standard conjugate gradient-based methods [52,84] can be used to solve (2.7) iteratively

and, in many cases, with O(Nf) complexity. Recently, a new Krylov subspace method

has been developed [161,163,164] that extends the standard conjugate gradient methods

and iteratively computes both the estimates and the diagonal elements of the estimation

error covariance (i.e., the estimation error variances) with, asymptotically, no more

work than standard conjugate gradient. Moreover, this technique yields an implicit and

approximate model for the entire error covariance matrix. This approach is applicable in

cases where the matrix-vector product P9z can be computed quickly for any length-Ng

vector z and where the estimator can be interpreted as acting as a low-pass filter.

0 2.1.2 Structured Models

Computational savings can be achieved in some cases for which the matrices in (2.5)

and (2.6) have additional structure. One such case is when H is the identity matrix and

f is stationary with circular boundary conditions (i.e., in one dimension, f is indexed by

a circular lattice and in two dimensions, a toroidal one) - In this case, all of the matrices

that appear in (2.5) can be diagonalized by the discrete Fourier transform basis vectors

and the diagonalization may be implemented efficiently with the fast Fourier transform

(FFT) [96,182]. Hence, estimates and error statistics may be computed with complexity

0(NJ log(Nf)). Other fast transform techniques, like the wavelet transform, lead to

efficient estimation and the computation of error statistics in some cases in which f

is nonstationary [191]. However, one drawback to fast transform techniques (FFT or

otherwise) is that they require that H = 1, corresponding to a dense, regularly-spaced

set of measurements. Another is that they require that the statistics possess special

structure (e.g., stationarity in the case of the Fourier transform).

Another type of structured LLS problem that leads to some level of computational

savings arises when f is a wide-sense Markov random field (MRF). In this case, f can

be specified implicitly as [53,121,122,189]

Mf =�7 (2.8)



36 CHAPTER 2. PRELIMINARIES

where M is a symmetric matrix representing a discretization of an elliptic partial dif-
ferential operator and, so, is sparse. Moreover, M is the covariance matrix for TJ and,
hence, the inverse of the covariance matrix for f (i.e., P-1 = M). If the measurementsf
are point observations (i.e., the rows of H are a subset of the rows of the identity ma-

Tp- 1H is dia onal, assuming that P, is diagonal. Therefore, (2.7) is a
sparse system of equations where

p'-1 = p-1 + HTp- Tp- 1Hf 'H = M+H V (2.9)

has the same sparsity structure as M.
While there are a variety of iterative procedures one can apply to MRF problems

corresponding to sparse systems of equations of the type just described (e.g., relax-
ation and multigrid methods [20,178]), these do not produce estimation error statistics.
Nested dissection [57,61,82,187], on the other hand, can be used to compute directly
both the estimates with O(N 3/2 ) complexity and, with only a little extra work, the el-f
ements of P, that lie in the non-zero locations of a Cholesky factor of M. A significant
limitation of nested dissection, however, is that it cannot efficiently handle a substantial
number of nonlocal measurements as they destroy the sparsity of P,-'.

Having just discussed special classes of two-dimensional processes, we now turn to
one-dimensional ones. One-dimensional, wide-sense Markov processes can be written as
state-space processes, which are a sub-class of MAR processes. A state-space process
and corresponding observation equation have the form

x(n) = A(n)x(n - 1) + w(n), (2.10a)

y(n) = C(n)x(n) + v(n) (2. 1 Ob)

where x(-), w(.), and v(-) are all zero-mean, w(.) is white, uncorrelated with x(O) (the
assumed initial value of the Markov process), v(.) is white, uncorrelated with x(-), w(.).
If we define

f 4, [X(O)T X(1)T ... x(N - I)T] T (2.11a)

'q I [X(O)T W(1)T ... w(N - I)T] T (2. 1 lb)

then it is clear that (2.10a) can be written in the form of (2.8) with

I 0 0 ... 0 0
-A(l) I 0 ... 0 0

M 0 -A(2) I ... 0 0 (2.12)
0 0 -A(3) ... 0 0

0 0 0 -A(N - 1) IJ

However, in contrast to the MRF case, for a state-space process 77 is white and so
P� I =MT M and is block tri-diagonal. A similar correspondence can be made between
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(2.10b) and (2-4) in which H is block diagonal. Hence, (2.7) is a sparse system where

-. 1 - P-1 - Tp-1 H = MTM Tp-'HPe f 4- H + H (2.13)

is block tri-diagonal.
State-space processes are statistically rich and admit efficient inference algorithms.

Indeed, any wide-sense stationary process with a rational spectrum and many nonsta-
tionary processes can be written in the form of a state-space process. The Kalman
filter [104,105] and Rauch-Tung-Striebel smoother [155] may be used to solve for the
LLS estimates and estimation error variances. The former corresponds to Gaussian
elimination on the system (2.7), and the latter corresponds to back substitution. Due
to the tri-diagonal structure of P,-', these algorithms are extremely efficient, with com-
plexity linear in N, the temporal length of the state-space process, and cubic in the
dimension of the state vectors x(.). Moreover, in solving for the LLS estimates, these
algorithms produce, as a by-product, estimation error variances as well as a model for
the estimation error which is, itself, a state-space process. These algorithms may also
be used to whiten the data y(.) and, thus, admit efficient computation of likelihood
functions.

State-space processes are indexed by the integers. Therefore, they constitute a
natural modeling framework for one-dimensional signals. While they have been applied
to two-dimensional problems, doing so efficiently requires the imposition of a somewhat
unnatural and ad hoc ordering of image pixels (e.g., raster-scan ordering). A natural
question to pose is: how might one retain the attractive features of state-space processes
while obviating the inflexibility of integer indexing?

The answer is to generalize the index set from integers (which form a monadic tree)
to trees. This generalization gives rise to MAR processes which evolve, not in time, but
in scale. As we review in the following sections, there is no loss in statistical richness
or algorithmic efficiency associated with the generalization of state-space processes to
MAR processes. In&ed, the class of processes that can be modeled with MAR models
includes state-space processes and the MAR inference algorithms are generalizations of
state-space ones.

0 2.2 MAR Framework

In this section we provide our notational conventions for trees and tree-indexed pro-
cesses as well as a review of MAR processes and associated statistical signal processing
algorithms. In this thesis, we will consider processes indexed by q-adic trees, although
all the techniques developed are applicable to processes indexed by any tree, however
irregular. Our notation for referring to nodes of a q-adic tree is indicated in Figure 2.1.
The root node is labeled 0, the parent of node s is denoted by s�-y, and the children of
node s are, from left to right, sal, sa2, - - - , Saq,

There is a natural notion of scale associated with q-adic trees. The root node
represents the coarsest scale (scale zero), while the leaf nodes constitute the finest scale
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coarse root node 0
scale SY

Sy

leaf nodes S

fine / \0
scale Sal SOC2 - MI Sa2 Saq

(a) (b)

Figure 2.1. (a) A dyadic tree. The root node is indexed by s = 0. The parent of node s is denoted

s-�. The children of node s are labeled from left to right by sal, Sa2- (b) For a q-adic tree the children

of node s are labeled from left to right by SCel, S02.... ) Saq.

(scale M). More generally, the nodes f s I s`7y' = 01 reside at scale n. We denote the
scale of node s by m(s). The shift of node s is denoted by %(s) where the left-most node
at a given scale has shift %(s) = 0, and the right-most node has shift %(s) = q'(S) - 1.
For dyadic trees, q = 2 and scale n indexes a one-dimensional vector-valued signal of
length 2n. For quad-trees, q = 4 and scale n indexes a two-dimensional vector-valued
field of size 2n x 2'. Extensions to other values of q > 4 are straightforward.

A MAR process is a generalization of a discrete-time state-space process. Both are
graphical models with affine dynamics. However, a MAR process may be indexed by
the nodes of any tree3 and it reduces to a state-space process in time when the tree is
monadic. Precisely, a zero-mean MAR process x(.) has dynamics

x(s) = A(s)x(s�y-) + w(s) (2.14)

where w(s) is white with auto-covariance Q(s) and is uncorrelated with x(O), the value
of the MAR process at the root node. With these definitions, it is clear that (2.14)
is a generalization of the state-space dynamics of (2.10a). In analogy with state-space
processes and for other reasons that will be made clear in the sequel, x(s) is called the
state of x(.) at node s.

In this thesis, we will provide techniques for building MAR models for fine-scale
random signals which we view as indexed by the leaf nodes of q-adic trees. In our
development of theory and algorithms, we frequently refer to other scales and other
subsets of nodes. So, for simplicity of our subsequent presentation, we make the fol-
lowing definitions for subsets of the set of nodes of a q-adic tree to which we refer

3Strictly speaking, a MAR process may be indexed by the nodes of any directed tree where the edges
between nodes are directed from parent to child (coarse-scale to fine-scale). Our notation for nodes
(s, s-�, sai) and the orientation of our figures (coarser scales axe above finer ones) make this sense of
direction clear so our figures axe drawn with undirected (i.e., arrow-less) edges.
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X(

,n(s)+l n(s)+l
X X I

M MXs XS'

Figure 2.2. Notation for sub-processes of a tree-indexed process x(.).

frequently:

AS, - ft I t = s or t is a descendent of sl = nodes in subtree rooted at s,

S,' So - Ss = nodes other than those in subtree rooted at s,

T,(n) ftc S, I m(t) = nj = nodes at scale n descending from s,

T,' (n) To (n) - T,,(n) = nodes at scale n not descending from s.

Again, to simplify our development, we make the following definitions for sub-processes
of a tree-indexed process WS)LE& to which we refer frequently:

S fX(t)TtET,(n) process at scale n that descends from node s,
n

XSC fX(t)ItETc(n) process at scale n that does not descend from node S.

We often interpret these sub-processes as vectors. 4 Also, when referring to the entire
sub-process at a particular scale we often drop the 0 subscript. For instance xM = XM0
is the finest-scale sub-process. Some of this notation is summarized in Figure 2.2.

MAR dynamics provide a complete and implicit second-order characterization for
the collection of states f x (s) JEs, The state covariances satisfy the Lyapunov equation

P.(,) = A(s)Px(,;,-)A(,s )T + Q('9) (2.15)

which is a generalization of the more familiar state-space Lyapunov equation. The
cross-covariance between any two states is most easily written in terms of the state
transition matrix 5

I ifs = t'

-(D (s, t) = A (s) -cD (s;y-, t) if m(s) > m(t), (2.16)

4� (s, Vzy) A (t) T if M (t) > M (8)

4Using, for example, lexicographic ordering of the nodes comprising T,(n) or 'T,(n) in order to
construct a large vector from the component vectors x(t)-

'5 Note that (D (s, t) is only defined for nodes s, t such that s is an ancestor of t or vice versa. That is,
8 = V�lt or t = s,�� for some non-negative integer i.
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which is a generalization of the more familiar state transition matrix for state-space
processes. The cross-covariance between any two states x(t) and x(s) is

.,(,)x(t) = �D(s, s A t)P,(,At)-4� (s A t, t) (2.17)

where s A t is defined as the common ancestor of s and t with maximal scale. A
consequence of the foregoing discussion is that the MAR dynamics can be viewed as an
implicit representation of P,,m, the covariance matrix for the leaf-node states of a MAR
process.

The most important property that MAR processes possess is a wide-sense Marko-
vianity.

Definition 2.2.1 (Markov Property). A tree-indexed process x(.) has the Markov
property if for all s G So - 70-(M), conditioned on x(s), the sub-processes indexed by

the sets of nodes in the sub-trees separated by s, namely, fx(t)TtES.1' fX(t)1tGS-1`2'

Jx(t)jtEs,,, and fx(t)jtcs.�,�, are conditionally uncorrelated.

That MAR processes have the Markov property is easily shown [37, Appendix A]. If a

MAR process is Gaussian then it has the (equivalent) properties of "pairwise Marko-

vianity," "local Markovianity," and "global Markovianity" from the graphical modeling

literature [115]. The Markov property of Definition 2.2.1 is a wide-sense equivalent to

these notions of Markovianity.

The Markov property leads to fast statistical signal processing algorithms. Sample-

path generation is accomplished using (2.14) and has complexity so d2) where d,O(EIE S
is the dimension of x(s). Also, a linear least-squares estimator [28-30] (which generalizes

the Kalman filter [104,105] and Rauch-Tung-Striebel smoother [155]) and likelihood

calculator [127,130] have been developed based on a measurement model analogous to

the classical state-space one:

Y(S) = C(s)x(s) + V(s) (2.18)

where v(s) is white and uncorrelated with x(.) and w(.). The estimator and likelihood

calculator have computational complexity O(EIES. d3,). When the state dimension is a

constant d which is independent of ISOI, the complexity of the sample-path generation

and estimation/likelihood calculation is O(d 2ISo I) and O(d 3IS01), respectively. Since ISOI

is an affine function of the number of fine-scale variables, N = dqm, this corresponds

to a constant per pixel, or O(N), complexity. 6

We emphasize that this efficiency is only achieved if the state dimension, d, is inde-

pendent of ISO I or, equivalently, N. If d grows slowly with N, say, logarithmically, then

reasonably low complexity can also be achieved. However, if d is proportional to N or
/2even N' ,the complexity of these signal processing algorithms may be prohibitive for

large problems. While there are many examples of processes for which the state dimen-

sion is independent of, or grows slowly with, N (e.g., one-dimensional Markov processes,

6For a q-adic tree, ISol = qM+1 - 1. Since N = dqm, we have that ISol = q(N) - I which is affined
in N.
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11f -like processes), there is no theory that completely answers the question: what class
of processes can be well-modeled in the MAR framework with state dimensions that
grow sufficiently slowly with problem size?

In addition to computational efficiency, there are a number of other advantages
to estimation within the MAR framework. One is statistically optimal fusion of mul-
tiresolution data. Indeed, since the MAR estimator computes the LLS estimate of
x(.) given y(.) for all s E So, it automatically fuses data at coarse nodes (which may
represent nonlocal measurements) with those at leaf nodes. This feature distinguishes
the MAR framework from nested dissection which cannot efficiently handle nonlocal
measurements.

A second advantage is that the MAR estimator can handle irregularly spaced data
and nonstationary statistics with no algorithmic changes. That is, the algorithm, much
like the Kalman filter and Rauch-Tung-Striebel smoother on which it is based, does not
require any additional structure such as regularly spaced data or stationarity to achieve
its efficiency. This is in contrast to fast-transform techniques such as those based on the
FFT or wavelet transform which require either regularly spaced data or stationarity, or
both.

A third important point is that the MAR estimator produces estimation error vari-
ances with no additional computations beyond those that are needed to compute the es-
timates themselves. This fact distinguishes the MAR framework from other approaches
(like multigrid) that lead to fast algorithms for estimates but which cannot efficiently
produce error statistics.

Lastly, the MAR estimator produces the parameters of a MAR model for the esti-
mation errors with only a small amount of additional work beyond what is needed to
compute estimates [127,131]. The MAR error model can be used compute individual
off-diagonal elements of the estimation error covariance. Moreover, the error model is
useful for generating conditional sample-paths [37,41], for performing sequential data
fusion, or for adapting the MAR estimator to time-dynamic problems [90-92].

0 2.3 MAR Stochastic Realization Theory

The MAR stochastic realization theory developed in this thesis is motivated by and,
to some extent, directly builds upon the prior work of others [37-39, 63, 68, 96-98,
100, 127,129]. In this section we review this previously-developed realization theory
which primarily addresses the following problem. Suppose we are given the covariance
matrix Pf m for the length N random vector f M which may represent a one-dimensional
signal or a multi-dimensional field, lexicographically ordered. The stochastic realization
problem is to specify the parameters of a MAR process x(.) so that the finest-scale sub-
process xM is an exact or approximate model for the random signal f M, i.e., so that
P.m ';:Z:� Pf M -

The parameters, A(.), Q(-) and P.,(O), that govern MAR dynamics are a function of
state covariances P and child-parent cross-covariances, P To see this, notice
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that the MAR dynamics of (2.14) represent the linear least squares estimate of x(s)
from x(s,�y) plus the estimation error w(s). Therefore,

A(s) Px(s)x(s;Y-)P-l (2.19a)
X(s) -1 DT

(8) X(s)X(s!) p (2.19b)
X(s'�Y)' X(s)X(s'7Y)

Thus, to specify a MAR process, we need only determine the joint second-order statistics
of all child-parent pairs. As developed in [96,98, 100], this task is vastly simplified by
considering a so-called internal MAR process 7 which is one with the property that each
state x(s) is linearly related to xM, the vector of states indexed by fine-scale nodes.
That is, for all s C So - To (M),

x(s) = Lxm (2.20)

for some set of matrices f Ls 1. A point recognized, but not resolved, in [96, 100] is that
(2.20) is not an appropriate parameterization for internal MAR states as it can lead to
inconsistent models. One of the main contributions of this thesis is to resolve this issue
of model consistency.

If our MAR model is exact, then Pxm =_ Pf m and the state covariances and child-
parent cross-covariances are given by

Px(,) = LPxmL T LPfmL T (2.21a)s S
Px(,)x(s,�) = LsPxmL T LsPfmL T (2.21b)

8'� s'7Y

As discussed in [96,98,100], (2.21) may be used to define Px(s) and Px(s)x(sry) even
when Pxm 7� Pfm. However, a clear interpretation of this step is not provided in
[96,98, 100] and another contribution of this thesis is to make this step precise. Despite
this imprecision and the consistency issues mentioned previously, (2.19)-(2.21) correctly
imply that the stochastic realization problem can be posed as a problem of finding a
set of linear functionals JLJ that define MAR states. In the remainder of this section
we discuss several ways of specifying these linear functionals and the consequences for
stochastic realization.

Each of the following five sections provides the background necessary for subsequent
developments. However, a reader interested in only certain specific topics need not
read all five sections. Table 2.1 serves as a guide and indicates to which contribution
of this thesis each of the following sections pertains and in what section or chapter the
development of that contribution may be found.

0 2.3.1 MAR-Haar Models for Fractional Brownian Motion

Perhaps the quickest route toward understanding MAR stochastic realization begins
with examining a conceptually simple example. In this section we will do just that

7The property of internality will be developed in much greater depth in Chapter 3.
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Section Background for Found in

2.3.1 MAR-wavelet unification Chapter 5
2.3.2 covariance extension Chapter 6
2.3.3 predictive efficiency Section 2.4
2.3.4 examples Section 4.3
2.3.5 incorporation of nonlocal variables Chapter 7

Table 2.1. Guide to Section 2.3.

by considering MAR processes based on the Haar wavelet. Our discussion is based on
ideas in [37,38,44,63,68] and we refer the reader to these papers for more detail.

The Haar scaling function, is

0(t) = 1 for0<t<1, (2.22)

0 otherwise.

For a fixed scale j, the family of functions given by 0jn _`�' V2j0(2jt - n) for n G Z
constitutes an orthonormal basis for functions that are piecewise constant on inter-
vals of length 2-j. Therefore, with increasing j, 10jnIn'Ez is a basis for finer resolu-
tion function approximation. Expanding a function in this basis we obtain for each j,
Enaj(n)Ojn where the scaling coefficients faj(n)I(jn)EZ2 associated with the scaling
functions 10jnI(jn)EZ2 obey the fine-to-coarse scale-recursive analysis equation

1 1aj (n) = 7=aj+l (2n) + 7=aj+l (2n + 1) . (2.23)2 2

Note that, while our convention of finer resolution corresponding to increasing j is
consistent with the indexing of MAR scales, it is opposite of the customary convention
adopted in the wavelet literature.

The detail required to obtain the j-th resolution approximation of a function from
the approximation at resolution i - 1 is given in terms of the Haar wavelet function:

I for 0 < t < 1/2,

,O (t) = -1 for 1/2 < t < 1, (2.24)

0 otherwise.

E Z2The family of functions indexed by (j, n) and given by'Ojn V '2jV)(2jt-n) consti-
tutes an orthonormal wavelet basis of L2 (R). The detail coefficients �dj(n)I(jn)EZ2 as-
sociated with the wavelet functions I'0jnI(jn)EZ2 obey the fine-to-coarse scale-recursive
analysis equation

1 1
dj (n) = -aj+l (2n) - -aj+l (2n + 1) . (2.25)

V2_ V/2-

8A more comprehensive review of wavelets is found in Chapter 5.
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The Haar synthesis equation obeys the coarse-to-fine scale-recursion

1aj(n) = 7=aj_1(Ln/2J) + dj-l(Ln/2]) (2.26)2 v/2

where L.] is the "floor" function and denotes the greatest integer that is no larger than
the argument. Thus, for the Haar system, each scaling coefficient aj (n) for the j-th reso-
lution approximation is derived from one scaling coefficient aj-,(Ln/2]) for the approx-
imation at resolution j - I and one detail coefficient dj_1 (Ln/2]). Using this fact and as-

suming that the detail coefficients are white noise, (2.26) can be easily written as a MAR

process, as shown in [63,68], by defining each x(s) as containing a scaling and detail

coefficient for scale m(s) and shift %(s). That is, let x(s) d .(,)(�(8))]T

The MAR dynamics for such a model are given by

X (s) I 1 ly(s) X (8,�Y) + 0 d", (2.27a)
vF2 0 0 1

W(S)

for scale m(s) < M and

X (s) [I (-1y(8)] X(s;Y-) (2.27b)
v/-2-

for scale m(s) = M. Notice that (2.27a) is simply a rewriting of (2.26) and (2.27b)

terminates the scale-recursive synthesis at scale M.

To use the MAR-Haar process just defined as a model for a random process f M

with covariance Pf m we must specify the covariance matrix for x(O) and the variance of

the detail coefficients dj (n) which act as driving noise in (2.27a). This is easy to do if

we view the state elements of the MAR-Haar process as consisting of scaling and detail

coefficients of f M. Indeed, then x(O) = Lof M where the matrix Lo is implicitly given

by recursive application of (2.23) and (2.25). Similarly, the dj (n) are linearly related to

f M via (2.25). Since Pf m is given, we may immediately derive the required statistics.

Notice that we do not need to derive the matrices A(.) because they are specified by

the Haar synthesis equation as indicated in (2.27a) and (2.27b). The simplicity of

this procedure (originally described in [63,68]) belies a major weakness-it leads to an

inconsistent model. This issue will be further developed in the subsequent chapters of

this thesis.

As an example, consider using the MAR-Haar process as a model for fractional

Brownian motion with Hurst parameter H (fBm(H)). Fractional Brownian motion

has received a great deal of attention in recent years [3, 70-72, 113, 179, 190-193] due

to the fact that it captures the 11f spectral behavior of many natural and engineered

phenomena [17,109,124,125,185,195]. The correlation function for fBm(H) is [135]

'rH (t1, t2) = 1 (It, 12H + It2 12H _ It, - t2 12H (2.28)
2
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Figure 2.3. (a) Exact covariance for 64 samples of fBm(O.3) on (0, 1]. (b) Realized covariance using
the MAR-Haar model of (2.27a) and (2.27b). (c) Realized covariance using the MAR-Haar model with
optimal prediction from parent to child.

Figure 2.3 (a) illustrates Pf m, 64 samples of fBm (0. 3) on the interval (0, 1]. Figure 2.3 (b)
illustrates the realized fine-scale covariance, P,,m, based on the MAR-Haar model just
described. It is immediately clear from Figure 2.3(a) and Figure 2.3(b) that the MAR-
Haar model is a crude approximation to the exact fBm(O.3) statistics. The approxi-
mation stems from two sources. First, the assumption that the detail coefficients are
white is very poor in general. Indeed, since the Haar wavelet has only one vanishing
moment, for most processes the resulting detail coefficients are strongly correlated both
in space and scale [72,179]. Second, due to the piecewise constant shape of the Haar
wavelet, any realized covariance matrix P,,m with this model will exhibit discontinuities
(i.e., will have "blockiness") in general. We point out however, that this model has
been successfully used for hypothesis discrimination. In [63,68] the authors applied the
MAR likelihood calculator to estimate accurately the Hurst parameter of fBm.

A simple way to improve upon the MAR-Haar model is to exploit fully the fact
that states are linearly related to the fine-scale process. Instead of using the dynamics
defined by (2.27a) and (2.27b), one can build a more accurate model, as shown in [37,38],
by computing the MAR parameters so that the multiscale autoregression is the optimal

Mprediction of x(s) from x(s;�). That is, using the fact that x(s) = Lx , we can directly
apply (2.19) and (2.21). Thus, while w(s) in the model defined by (2.27a) and (2.27b)
represents the detail coefficient d,,,(,) (s(s)), the process noise in the more accurate model
we are now considering represents the prediction error in the estimation of d,.,,(,) (%(8))
conditioned on the detail and scaling coefficient represented by x(s;�).

This new and more accurate multiscale model will capture correlations in scale
among the coefficients represented by states at neighboring nodes in the tree. Thus, it
will do a better job of approximating the statistics of the underlying process than does
the model defined by (2.27a) and (2.27b). The improvement is illustrated in the case of
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fBm(O.3) in Figure 2.3(c) which displays the realized covariance matrix associated with
the new MAR-Haar model. This shows the power of the optimal prediction procedure
in the simple case of the Haar wavelet.

Despite the improvement in modeling fBm(O.3) obtained by MAR-Haar dynamics
that perform optimal prediction of a child state from its parent, there is considerable
room for additional improvement. That is, Figure 2.3(c) is still a relatively poor approx-
imation of Figure 2.3 (a). In Chapter 5 we will extend the ideas presented in this section
and show how to build MAR models based on any orthogonal or biorthogonal wavelet.
As we illustrate, statistical fidelity improves as we consider more regular wavelets.

N 2.3.2 MAR Models for One-Dimensional Markov Processes

In this section we discuss another class of conceptually straightforward MAR models-
those for one-dimensional, wide-sense, bilateral Markov (a.k.a. reciprocal) processes
developed in [127,1291. These will be applied to the problem of maximum-entropy
covariance extension in Chapter 6. A discrete-time process z(.) is a k-th order wide-
sense9 bilateral Markov process if the LLS estimate of z(n) given all other values of the
process depends only on the k values on either side of z(n) [53]. More precisely, z(-) is
k-th order bilateral Markov if

E[z(n) I W01ion] = E[z(n) I fZ(')1iE[n-k:n+k]-fnj1 (2.29)

where [a : b] is the set of integers larger than or equal to a and smaller than or equal

to b. Equation (2.29) is equivalent to the statement that, conditioned on the size-k

boundaries of an interval J, the values of z(-) inside J and outside J are uncorrelated.

A unilateral Markov process is similar to a bilateral one but it is one-sided. That

is, if z(.) is a k-th order unilateral Markov process then the LLS estimate of z(n) given

the entire past depends only on the previous k samples. More precisely,

E[z(n) I fZ(01i<n1 = E[z(n) I fZ(01iE[n-k:n-1]1 (2-30)

Equation (2.30) is equivalent to the statement that, conditioned on a length-k interval

J, the values of z(.) subsequent to and preceding J are uncorrelated. Every unilateral

Markov process is bilateral Markov but the converse is not true [1,53]. We also point out

that every k-th order unilateral Markov process can be written as a state-space process

with state dimension k as follows. A k-th order unilateral Markov process obeys an

autoregression of the form

z(n) = anlz(n - 1) + an,2Z(n - 2) + + ankZ(n - k) + p(n) (2.31)

9In this thesis we axe concerned exclusively with second-order statistics. Therefore, whenever it is
not specifically indicated, statistical properties axe to be interpreted as wide-sense. Equivalently, there
is no loss in generality by assuming Gaussianity.
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Figure 2.4. MAR model for sixteen samples of a first-order Markov process. Each ellipse includes the
samples for a MAR state.

where /-t(.) is white. By defining

x(n) [z(n) z(n - 1) ... z(n - k + 1)]T (2.32a)
0] T

w (n) [p(n) 0 ... 7 (2.32b)

anj an,2 an,3 ... ank-1 ank

1 0 0 ... 0 0

(n) 0 (2.32c)

0 0 0 ... I 0

we arrive at the state-space representation

x(n) = A(n)x(n - 1) + w(n). (2.33)

The MAR models for Markov processes discussed in [127,129] are all based on a
"divide-and-conquer" philosophy. They qualitatively resemble nested dissection [57,
61,82,187] (particularly so the MAR models for two-dimensional MRFs) and quanti-
tatively resemble midpoint displacement for synthesizing Brownian motion [9,37]. To
begin, let us consider just one particular type of MAR model for a length N = 16,
one-dimensional, first-order Markov processes f '(.). The MAR model depicted in Fig-
ure 2.4 is an end-point model for this Markov process. Each state consists of four
end-points corresponding to two intervals. For instance,

x(O) -A [fm(O) fm(7) fm(8) fm(15)]T (2.34a)
]T

x(Oal) [fm(O) fm(3) fm(4) fm(7) (2-34b)
]Tx(Oa2) [fm(8) fm(11) fm(12) fm(15) (2.34c)
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Figure 2.5. The elements of a 17 x 17 MRF contained at the root node of a quad-tree MAR model
are indicated by filled circles (e).

and the other states are similarly defined as indicated in Figure 2.4. Notice that x(O)
consists of end-points of the intervals [O : 7] and [8 : 15]. Therefore, using (2.29), condi-

tioned on x(O), the sets of samples f f M(i)LE[0:7] and f f 'WLE[8:15] are uncorrelated.
It follows that x(Oal) and x(Oa2) are uncorrelated when conditioned on x(O). Hence,
the statistical relationships among x(O), x(Oal), and X(Oa2) can be captured exactly by

Ma MAR process. Moreover, since the MAR states are linear functionals of x , given
the fine-scale statistics, Pf m, for any Markov process, the MAR parameters are readily
computed (cf., (2.19) and (2.21)). A similar argument applies to the other states.

The MAR model just discussed can be generalized in a number of ways. Most
obviously, it can be extended to any length-N process where N =: 4 x 2M for some
integer M. It can also be extended to any order (k) Markov process. Roughly speaking,
one way to adapt the preceding approach to a general k is simply to replace every sample
(dot, e) in Figure 2.4 with k consecutive samples. To be more specific, a state .5 in an
(M + l)-scale MAR model for a k-th order Markov process consists of the samples of

the process indexed byq(S) ='ql(s) UR2(8) Uq3(8) where

771 (s) = % (s) 4k2m-'(s) + [O : k - 1] , (2.35a)

'q2(S) = t(s)4k2m-m(s) + 4k2M-m(s)-1 + [-k : k - 1] (2.35b)

'q3 (S) = t(s)4k2m-m(s) + 4k2m-m(s) + [-k : -1] (2.35c)

where [a : b] + c [a + c : b + c]. Notice that q(s) c q(sai) Uq(sa2) corresponding to

the fact that each parent state consists of a subset of the samples in its children states.

This approach can accommodate any k-th order Markov processes of length N = 4k2m.

Additional flexibility (i.e., the ability to handle processes of lengths other than

N = 4k2m) is accomplished by considering redundant (or overlapping) states and trees

that are not binary. The essential characteristics of these other models for Markov

processes are identical to the one we have discussed in detail. Since, in this thesis,

we have no particular need for the added flexibility they provide, we refer the reader
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to [37,127,129] for details. For completeness, we point out that in [90] yet another type
of model for Markov processes is discussed. For these models, each fine-scale sample
appears as an element of only one state, in contrast to the model we have discussed in
which a sample may appear in multiple states.

Finally, the Markov models we have discussed may be generalized to apply to wide-
sense, two-dimensional MRFs. The essential difference is that MAR states contain lines
that separate regions rather than end-points that separate intervals. For instance, the
elements contained in the root node of one type of MAR-MRF model are illustrated in
Figure 2.5. Notice that a consequence is that MAR states for an MRF model have a
maximum dimension proportional to the linear size of the MRF. That is, in modeling
a VN x ON field, the maximum state dimension is proportional to V"N. This means
that the MAR estimator, when applied to such a model, has complexity O(N 3/2) [160]
which is prohibitive for large N. Additional details regarding MAR-MRF models may
be found in [37,90,127,129].

N 2.3.3 Canonical Correlations Realization

The MAR realization approach discussed in the previous section is tailored specifically
for Markov processes. In this section we summarize a more general realization approach
based on canonical correlations and developed in [96,98, 100]. This approach has been
successfully applied to Markov as well as non-Markov processes. Moreover, it provides
a way to prioritize state information so that the least important information may be
discarded if a reduced-order, approximate realization is desired.

As mentioned, the heart of the MAR realization problem is to select the linear func-
tionals f L, 1. The MAR model parameters are then determined using these and Pf M
(cf., (2.19) and (2.21)). The realization procedure proposed in [96,98, 100] determines
these linear functionals by myopically focusing on the state at each node indepen-
dently. More specifically, the focus is on the decorrelation role that each state fulfills.
Recall that, by the Markov property, each MAR state, x(s), conditionally decorrelates
the states indexed by nodes that are separated by s. When considering an internal
model-in which every state depends linearly on the finest scale sub-process xm-this
decorrelation role simplifies. In this case, it is sufficient that x(s) conditionally decor-
relate the fine-scale sub-processes that are separated by s, namely those in the set
14 jq 1 U f xMC 1. We will make this precise in Chapter 3. Thus, the problem of deter-
mining L, is identical to that of deducing what information must be stored in x(s) to
fulfill this simpler decorrelation role.

The determination of the matrices f L, I is based on canonical correlations analysis
which is a technique first introduced in [94] and later employed to find minimal and
reduced-order realizations for state-space processes [6-8,49,54,183]. As discussed, for
a MAR process each state conditionally decorrelates several (generally more than two)
sets of variables. Canonical correlations analysis, however, shows how to find a pri-
oritized ordering of the information required to conditionally decorrelate two random
vectors, zi and Z2 with auto-covariances P, and P2, respectively, and cross-covariance
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P12 - We first review this technique and then show how it may be extended to deal with
more than two random vectors.

We first define the generalized correlation coefficient as

E [ (,T (Z, - E[z,])) (gT (Z2 - E[Z2]))]1 2
P(ZI, Z2) Max (2-36a)

91,92 var (gT Z1) 1/2 var (gT 1/2
1 2 Z2)

Tmax g, P1292 - (2-36b)
Tplgl=l

91
T92 P292=1

Similarly, the generalized conditional correlation coefficient is

P(ZI, Z2 I Y) Xil, i2) - (2.37)

where i, z, - �[zj I y] is the error in the LLS estimate of zi based on y. Canonical
correlations analysis provides a linear function of z = [z T zT]T that conditionally decor-1 2
relates z, and Z2, i.e., it provides a V to yield P(Zl, Z2 I Vz) = 0. Further, it tells us
which elements of Vz contain the most (and least) important decorrelating information.
The main result from canonical correlations analysis is the following proposition.

Proposition 2.3.1 Q96, 100]). Suppose Pi c Ri "i has rank mi for i = 1, 2 and
P12 G Rni n2 has rank M12. Then there exist matrices T, and T2 such that

0 PI PI 2 0 T 1,n 1 D
T (2.38a)0 T2 P2 I P2 0 T2 D 1M2

where Ij is the f x � identity matrix, Ti G Ri 'i and D R" X12 has the form

b O (2-38b)
0 0

The matrix B is a diagonal matrix b = diag(dj, d2, drnl2) with dj E (0, 1] and
I > di > d2 > ... > d-12 > O'

The numbers dj are correlation coefficients associated with different particular lin-
ear combinations of zi and Z2 called canonical variables. The canonical variables are
described by the rows of T, and T2. In essence, the dj, called canonical correlation
coefficients, measure how correlated z, and z2 are. The proof of Proposition 2.3.1 given
in [96, Appendix A. 1] is constructive and explicitly shows how to compute the matrices
Ti. While we shall not repeat the proof here, we show how to compute Ti and comment
on the computational complexity of doing so. The first step is to find the inverse of

p-112any matrix square root of Pi for i E f 1, 21. That is, find a matrix i such that

Pi-T/2 Pi- 1/2 = Pi-'. This requires O(n�) operations. The second step is to compute
Pi-1/2 _T/2.the singular value decomposition (SVD) [116,172] of P12 PUP� That is,

Pi 2 = U1 S U2T - (2-39)
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This requires O(n 3 + n 3) operations. Finally Ti = UTp-112 which requires O(n�)
3 3). We W!operations. Thus, the overall complexity of this computation is O(ni + n2 ill

refer to the computation of Ti as a canonical correlations decomposition.

The following proposition relies upon Proposition 2.3.1 and shows exactly what in-

formation is most and least important in decorrelating zi and Z2 subject to a constraint

on the number of elements in the vector used in the decorrelation.

Proposition 2.3.2 Q96, 100]). Let Ti for i = 1, 2 and dj for j = 1, 2,... , M12 be as

defined in Proposition 2.3.1 and let r be the number of elements in the vector used to
T TT

approximately decorrelate z1 and Z2. Let z = [Zi Z2 ] and define A4r to be the set of

matrices with no more than r rows (and the number of columns given by the context)-

Then'O, for i = 1, 2

min P(ZI, Z2 I VZ) min fi(Z1, Z2 I VZi) (2.40a)
VEM, VCM,

(zi, z2 I Ti (I : min(r, M12),:) Zi) (2.40b)

dr+1 r < M12, (2.40c)
0 otherwise

Proposition 2.3.2 has a number of important implications. First, it is sufficient to

condition on a linear function of either z1 or Z2. It is never necessary to consider all

of z. Second, the information which provides the maximal decorrelation subject to the

row constraint is provided by the first min(r, M12) rows of either T, or T2. Finally, one

need not compute both T, and T2, one or the other will suffice.

Now we consider the decorrelation of more than two random vectors. First define

(with an abuse of notation) the correlation between an arbitrary number of random

vectors, Z1, Z2, - - - , Zq+ 1, as

P(Zl, Z2, - - - , Zq+l) Max P(Zi, Zj) (2.41)
i0i

with the obvious natural analogue for the conditional correlation for an arbitrary num-

ber of random vectors. The problem is to find the prioritized ordering of the information
T T Tin z = IZI Z2 ... Zq+ J]T needed to conditionally decorrelate the q + 1 sub-vectors

in Z. Unlike the pair-wise problem discussed previously, there is no known solution

to this higher-order decorrelation problem. The suboptimal approach of [96, 98, 100]

is to decompose the problem into q pair-wise decorrelation problems identical to the

pair-wise problem which is the subject of Proposition 2.3.1 and Proposition 2.3.2. More

specifically, the i-th pair-wise decorrelation problem is the one of finding the essential

information required to conditionally decorrelate zi from the vector zi' which is a vector

- Z T ... T T T ZT J]T . For this
containing zj for j =A i, i.e., zi' '�' I I zi-i Z41 ... Zq q+

purpose, the following proposition is essential.

1OWe use MATLAB [137] notation in (2.40b). That is, for any matrix F, the object F(ri : r2,:) is
the submatrix of F consisting of the rows ri through r2 (inclusive) and all of the columns.
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Proposition 2.3.3 Q96, 100]). For i = 1, 2 and all matrices V

P(Zl, Z2 I VZO < XZ1, Z2) (2.42)

Proposition 2.3.3 tells us that conditioning on a linear combination of either z, or
Z2 alone cannot increase the correlation between the two. The linear functionals L,
can therefore be computed as follows. For each i E f 1, 2,... , qj, solve the following
pair-wise decorrelation problem: compute the linear combination of" M that condi-f1lai
tionally decorrelates it from the f!��, the rest of the finest-scale sub-process. This issa-
done via canonical correlations as described previously. Then, by stacking these linear
combinations column-wise into a large vector, L, is defined. Using Proposition 2.3.3,
it can be shown that the state so defined conditionally decorrelates the set of vectors
ff"Mai 11L U f fyj and, thus, the Markov property is satisfied. The model parameters
are then determined using (2.19) and (2.21). A proof that this results in an exact model
(P.m =_ Pf m) is given in [I 00].

If a reduced-order, approximate model is desired, the least important state infor-
mation may be discarded. This reduction in state dimension corresponds to discarding
certain rows of L, prior to computing the model parameters. The determination of
which rows are least important is made by ranking the canonical correlations coeffi-
cients. Of course, if state reduction is performed then the Markov property is no longer
satisfied. However, by assuming that it holds, we may still define an approximate MAR
model. A consequence is that any discrepancy between the realized covariance, P m,
and the given one, Pf m, can be attributed to state dimension reduction.

Having summarized the realization approach of [96,98, 100] we now comment on
some limitations.

• The higher-order decorrelation problem that must be solved at each node is done
so suboptimally via a sequence of pair-wise problems. This may lead to sub-
optimal state dimensions, i.e., states with more variables than are necessary to
fulfill the decorrelation role to the desired degree of approximation. Moreover,
any approach based on internality (including those proposed in this thesis) can-
not, with certainty, yield a minimal model-one with the smallest possible state
dimensions. Indeed, it is explicitly shown in [96] that the class of internal models
does not necessarily include a minimal model.

• The approach (as well as those proposed in this thesis) does not minimize any
measure of global error and, hence, it is not clear how state reduction translates
into an error in the realization.

"fZ, is the portion of fm that is indexed by Z,,j(M), the finest-scale nodes that descend from
sai. Similarly, is the portion of f M that is indexed by T,' j (M), the finest-scale nodes that do not
descend from sai.
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• The generalized correlation coefficient is normalized by the variance of both z,
and Z2 (cf., (2.36)). As such, the canonical correlations approach provides maxi-
mal fractional error variance reduction and is, therefore, equally concerned with
low- and high-variance features. In contrast, the predictive efficiency approach
developed in this thesis provides maximal total error variance reduction.

• The algorithm is computationally intensive. This is due to the fact that the design
of L, at every node s requires the computation of several canonical correlations
decompositions. Each one involves two vectors at least one of which has length
O(N) where N is the length of the fine-scale process xM. Thus, the overall
complexity of the algorithm is O(N 4) . The only way to apply such an algorithm to
large problems is to make approximations. Indeed, an approximation is proposed
in [96, 1 00] which is based on the idea of truncating the large, length- 0 (N) vectors.
We will elaborate on this idea in Chapter 4. Another type of approximation
that is introduced in [37,40] is applicable to self-similar processes with stationary
increments and leads to an O(N3) realization algorithm. In contrast, in Chapter 4,
we develop an O(N 2 ) approach and, with an approximation, an O(N) one.

• The approach of [96,98, 100] does not provide a way to incorporate specific non-
local linear functionals of the finest scale process. The ability to do just this
is important for data fusion problems involving measurements at multiple reso-
lutions. A method of augmenting the approach of [96,98, 100] so that specific
nonlocal linear functionals may be included is provided in [37,39] and is summa-
rized in Section 2.3.5 of this chapter. In Chapter 7 a different and more powerful
approach is described.

• The states are defined abstractly and have no structure beyond the fact that they
represent solutions to specific optimization problems. In Chapter 5 we address
this issue and develop internal MAR processes with states that consists of wavelet
coefficients associated with any orthogonal or biorthogonal wavelet.

• The approach assumes complete and detailed knowledge of PfM Which is an un-
reasonable assumption for many real-world problems. In Chapter 6 we discuss a
means of obtaining realizations without complete second-order characterization
of fm.

• Low-dimensional, approximate models lead to discontinuous artifacts in sample-
paths and estimates. This problem can be overcome by increasing the state dimen-
sion, but doing so leads to less efficient statistical inference algorithms. However,
another approach, the overlapping tree methodology of [63, 96, 97], provides a
means of obtaining smooth sample-paths and estimates without increasing the
state dimension. This technique will be reviewed in Section 2.3.4.

• Finally, the resulting MAR model is inconsistent and not necessarily internal.
This problem is addressed and resolved in Chapter 3.
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n n+1 1 2 3

(a) (b)

Figure 2.6. (a) T�ee nodes s and t correspond to temporal indices n and n + 1, respectively. While n
and n + 1 are temporal neighbors, s and t are distantly separated on the tree. (b) An overlapping-tree
representation of a length-three process. Nodes s and t correspond to the same temporal index, 2.

While some of these limitations are addressed in this thesis, others represent open
problems for future research and are discussed in greater detail in Chapter 8.

N 2.3.4 Overlapping Trees

In this section we summarize the overlapping tree approach of [63, 96, 97]. Overlap-
ping trees represent a way to overcome the distracting and, in some cases, practically
limiting problem of blockiness exhibited by sample-paths and estimates based on low-
dimensional MAR models (for an example, see Figure 4.9). While the intricacies of
implementation of overlapping trees are important they will not be found here as they
are clearly presented in [96,97] and in even greater detail in [63]. For the purposes of this
thesis, it is sufficient to sketch the main ideas which are conceptually simple and prac-
tically powerful. We provide this sketch for one-dimensional problems corresponding to
MAR models on dyadic trees. Extensions of the concepts we discuss to two-dimensional
problems corresponding to MAR models on quad-trees are straightforward and details
are found in [63,96,97].

In some cases, the visually distracting blockiness exhibited by low-dimensional MAR
models for images is a practical limitation. One such case is when gradients must be
taken [63,69]. While blockiness can be eliminated by post-processing sample-paths and
estimates with a low-pass filter, doing so will eliminate not only blocky artifacts but
also statistically meaningful fine-scale details. Moreover, such post-processing will ne-
cessitate additional and, possibly, computationally costly processing to compute the es-
timation error statistics. The overlapping tree approach provides an alternative method
that retains many of the attractive features of the MAR framework (e.g., efficient com-
putation of both estimates and error variances) and reduces blocky artifacts without
spatial averaging.

The source of blocky artifacts stems from the topology of trees. Consider a reduced-
dimension (i.e., approximate) MAR model indexed by the tree in Figure 2.6(a). The
fine-scale nodes labeled s and t correspond to temporal indices n and n + 1, respectively.
While n and n + 1 are neighbors temporally, s and t are distant on the tree. This distant
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separation is informally called a tree boundary although this terminology has no precise
meaning. The modeled correlation between variables indexed by s and t, namely, x(s)
and x(t), is a function of the statistics at all nodes on the path from .5 to t (cf., (2.17)).
Therefore, the modeled correlation suffers from approximations made at all nodes on
the path between s and t, of which there are many. So, while the exact correlation
between x(s) and x(t) may be high (as might be expected since they correspond to
temporally adjacent variables), this high correlation is poorly approximated by a low-
dimensional model. This results in a discontinuity in the model's statistics and leads
to blockiness.

The overlapping tree approach to eliminating blockiness is to oversample the pro-
cess being modeled to obtain a redundant one. The redundancy is designed specifically
so that a MAR model for the redundant process has multiple leaf nodes corresponding
to process values that would otherwise be distantly separated on the tree (see Fig-
ure 2.6(b)). Consequently, the tree distance between nodes is significantly reduced as
compared to a non-redundant model. After building a MAR model for the redundant
process, which we may do using any realization approach, we may use it to accomplish
sample-path generation and estimation. Then, the sample-paths and estimates may
be mapped back into the original (non-redundant) domain by simply averaging leaf-
node variables corresponding to each individual pixel. Thus, this averaging of MAR
variables does not introduce spatial averaging in the image domain. As demonstrated
in [63, 96, 97], to achieve the same degree of smoothness, overlapping MAR models
typically require substantially lower state dimensions as compared to standard MAR
models.

As a specific example, consider Figure 2.6(b) which illustrates an overlapping MAR
model indexed on a three-scale dyadic tree where the process to be modeled, f M, is
length-three. At the finest scale there are two nodes corresponding to temporal index
2 while there is just one node for temporal index 1 and one node for temporal index
3. That is, in our redundant representation of f M, we have sampled f M(2) twice
and associated each copy with a different finest-scale MAR state. More precisely, the
finest-scale redundant process is Gf M where

I 0 0
G = 0 1 0 (2.43)

0 1 0
-0 0 1-

To map back to the original (non-redundant) domain without spatial averaging, we
simply need to average the two variables indexed by nodes 8 and t. Thus, we are lead
to a left-inverse of G given by

-I 0 0 O_
H= 0 a b 0 (2.44)

-0 0 0 1-
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where a + b = I and HG = I3. For example, the choice of a = b = 1/2 would place
an equal weight on x(s) and x(t) and, intuitively, would lead to the greatest degree of
smoothness.

The concepts highlighted in the foregoing example generalize to any one-dimensional
processes as well as to two-dimensional ones. Moreover, as described in [63,96,97], there
is a complementary procedure for mapping fine-scale, point-wise measurements into the
overlapped domain. It is worth emphasizing two limitations of overlapping trees. First,
it is unclear how to accommodate nonlocal measurements, such as those that arise in
multiresolution data fusion problems, using the overlapping approach. Second, while
overlapping reduces statistically meaningless blocky artifacts by spreading the modeling
error more evenly, by itself it cannot substantially increase the overall statistical fidelity
of the model. The latter may only be done by increasing the state dimension.

0 2.3.5 Adding Nonlocal Variables by State Augmentation

To date, most of the applications of the MAR framework focus on the statistical infer-
ence of fine-scale phenomena based on fine-scale data. Therefore, in these applications,
coarser-scale MAR variables serve the hidden variable role of conditional decorrelation
and do not necessarily represent linear functionals of the finest scale that are useful
for any other purpose. However, data fusion problems in which data are available at
multiple resolutions are most naturally addressed in the MAR framework by mapping
the coarser-scale data to coarser-scale nodes [37,39]. In addition, in many applica-
tions, estimates of specific coarser-scale variables are of interest and these too are most
naturally mapped to coarser-scale MAR variables [37,41]. The problem of incorporat-
ing specific nonlocal linear functionals (representing either nonlocal measurements or
nonlocal variables to be estimated) of a fine-scale process into a MAR model is not
addressed by the realization approaches we have discussed so far. In this section we
discuss the method developed in [37-39] to address this issue.

The approach of [37-39] begins with an existing internal MAR model which is
assumed to capture the desired fine-scale statistics with sufficient accuracy to be con-
sidered exact. That is, the IL,} have already been determined. Since the model is, for
all practical purposes, exact and internal, xM is sufficiently close to f M so that MAR
states may be considered linear functions of the fine-scale process f M rather than of
XM. So, x(s) = Lj M and, thus, the MAR measurement equation (2.18) has the form

YW = C(s)x(s) + V(S) (2.45a)

= C(,s)Lf M + v(s). (2.45b)

Therefore, to represent a nonlocal measurement of the form y = a TfM + v exactly
requires that for some s E So, a T is in the row-space of L,. Similarly, if we wish to use
the MAR estimator to estimate and compute the estimation error variance for bTf M,

we require that bT is in the row-space of some L,. Having already chosen the linear
functionals IL, I in designing an exact, internal MAR model for f M, it is unlikely that
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an arbitrary a T or bT is in the row-space of any of them. However, by augmenting MAR
states to expand the set of linear functionals they can represent, the authors of [37-39]
incorporate nonlocal variables in such a way so as to maintain an exact and internal
model.

To maintain the exactness of the model corresponds to preserving its Markovianity.
To see how Markovianity can be destroyed with state augmentation, consider a MAR
end-point model for a length-16, first-order Markov process as described in Section 2.3.2
and illustrated in Figure 2.4. Suppose we wish to represent at the root node the sum of
the fourth and twelfth samples of f M, samples which are conditionally decorrelated by
the root node state. To do so, we might consider augmenting the root-node state with
a linear functional a T such that a TfM = f M (4) + f M (1 2). That is, consider redefining
the root-node state to be

Xnew (0) = Lo f M (2.46)
a T

where Lo is as indicated in Figure 2.4 and (2.34a). However, by incorporating this sum
into Xnew (0), f M (4) (which is an element of x (Oa,)) and f M (1 2) (which is an element
of x(Oa2)) are not conditionally decorrelated by Xnew(0). The incorporation of their
sum into the root node has destroyed the Markovianity of the model and, hence, has
destroyed its exactness.

To maintain Markovianity, the authors of [37-39] rely on a corollary of Proposi-
tion 2.3.3. This corollary states that we will not destroy Markovianity by adding to
any state x(s) (of an exact MAR model) linear functions of the portions of f M indexed
by finest-scale nodes that are separated by s. That is, we may add linear functions of
the form a T FM or bT fy. Therefore, if we wish to add the linear function g TfM to the

state at node s without destroying Markovianity, we may do so as follows. Let

T 0 ... 0 09sal
T0 g ... 0 0sa2

Gs (2.47)

0 0 ... 9T 0saq T
0 0 ... 0 9SC

where

q
TfM T M T IM

9 9sai f"ai + gSC f'5C (2.48)

With these definitions, we may augment x(s) to form

- Ls fm
Xnew (8) A Gs (2.49)



58 CHAPTER 2. PRELIMINARIES

without perturbing the Markovianity of the model. If none of the row-space of G, is
contained in the row-space of L, then this increases the dimension of the state at node
s from d, to d, + q + 1. If, on the other hand, part of the row-space of G, is in the
row-space of L, then the dimensionality of the augmentation may be reduced by a
commensurate amount.

While the foregoing procedure does maintain Markovianity, it will, in general, de-
stroy internality. Internality is destroyed if the information added to x(s) through
augmentation is not propagated down the tree to the finest scale. Therefore, some ad-
ditional state augmentation is required to achieve this propagation of information. We
illustrate the general procedure given in [37,39] to accomplish this with an example.

Consider again the end-point model for a length-16 Markov process as discussed in
Section 2.3.2 and illustrated in Figure 2.4. Suppose we wish to augment the root node
with the sum, h, of the entire finest-scale sub-process. As described above, we can do
so without destroying Markovianity by augmenting the root-node state with the linear
functions

7 15

hi=EfM(k) and h2=�7fm(k). (2-50)
k=O k=8

So, h = hi + h2 and x,,,w(O) = [X(O)T hi h2l T. Now, to ensure that the sum
h captured at the root node is indeed equal to the sum of fine-scale variables, this
information must be propagated from the root node to the finest scale. One way to
accomplish this with augmentation while simultaneously maintaining Markovianity is
with

x(Oal) x(Oa2)
xnew(Oal) T,'=Ofm(k) and xn,, We2) Ek11=8 f M(k) (2-51)

-E7= 5
k 4 f M(k)_ -Ekl=12 f M(k)_

Notice that xnew(Oal) contains the information provided in hi, and xnew(Oa2) contains
the information provided in h2. This completes the augmentation required for this
example. To obtain the new dynamical parameters, we may apply (2.19) and (2.21)
where we augment L, with the newly added linear functionals.

The preceding example illustrates the important aspects of the general approach
detailed in [37,39] for adding a linear functional to any state of an internal and exact
MAR model. The aspects of this procedure that are important for this thesis are as
follows.

• Adding a linear functional requires the augmentation of many states, not just the
one at which the linear functional is represented.

• The procedure may accommodate any number of linear functionals by iterating
the operations required to add just one.
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• The procedure begins with an exact, internal MAR model and does not address
the problem of building a reduced-order and internal MAR model with nonlocal
variables. While in [37] a procedure for constructing a reduced-order and internal
MAR model with nonlocal variables is provided, its computational complexity
severely limits its practical utility.

• For each linear functional added, the maximum state dimension increases by an
amount that is a function of the support of the linear functional and the space
spanned by the rows of JLJ. The increase may be as large as q + 1. This leads
to models with prohibitive complexity if the number of linear functionals added
is large.

• The resulting states may be singular, implying that the information they carry
is redundant. Similarly, augmented states always contain more information than
is necessary for Markovianity. Indeed, the information carried by the nonlocal
linear functionals is not needed for conditional decorrelation since it is assumed
that the model is exact prior to the incorporation of nonlocal variables.

In Chapter 7 several other approaches to incorporating nonlocal variables into a MAR
model are introduced which address the last three of these points.

0 2.4 Predictive Efficiency

As discussed in Section 2.3.3, at the heart of MAR stochastic realization is the problem
of conditionally decorrelating random vectors. Canonical correlations is one way to
approach this problem but it scales poorly with problem size and leads to computation-
ally burdensome realization algorithms. In this section we present a different approach
which is based on the estimation-theoretic concept of predictive efficiency 12 [8,154] and

which is much more attractive from a computational point of view. In Chapter 4 and
Chapter 7, predictive efficiency will be used to address the problem of stochastic real-
ization. To begin, we define -(Z2 I zi) to be the mean-square error in the LLS estimate
of the lengthen vector Z2 based on the lengthen, vector zj:

I ZJ]112)
,-(z2 I zi) EOIZ2 - 2[Z2 (2.52a)

(p ' 12 _'P12)
trace 2 _ rT Pi (2.52b)

where Pi is the positive-definite covariance matrix for zi, and P12 is the cross-covariance
matrix for zj, Z2 -

Consider now the problem of estimating Z2 not from z, but from no more than r
linear functionals of zi given by Vzj where V E M, which is the set of all matrices
of size t x nj with t < r. We can measure the quality of the estimate based on Vzj

12MOSt of the material of this section can be found in [77].
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relative to that which can be obtained from zj by

OZ2 I VZO *2 I VZO - E(Z2 I ZO (2.53a)
)PTP-lp (plTtrace(' 12 1 12) - trace 2VT(VpVT) -I VP12) (2-53b)

The idea of predictive efficiency is to minimize E(Z2 I Vzj) over A4,. Let

f7 A arg min E(Z2 I VZO - (2-54)
VEM,

Notice that the minimum is lower bounded by zero and equality obtains if and only
if Vzj conditionally decorrelates zi and Z2. Therefore, we can interpret E(- I .-) as a
measure of distance from Markovianity although it is not a true distance because it is
not symmetric. The optimal V G A4, according to the predictive efficiency measure is
provided in the following proposition.

Proposition 2.4.1. Let UAUT be the eigen-decomposition of P� 1/2 PI 2 PIT2 P� T/2 with
the eigenvalue matrix A = diag(Al, A2, AnJ and Ai > Aj for i < j. Let r < ni.

Tp�112Then arg minVEM, E(Z2 I VZ1) is given by the first r rows of U and

E(Z2 I f7ZI) = �7 Ai (2-55)
i=r+l

Proof. By definition of E( we have that

_'P12) - trace( OTVT(VpVT) (2-56)E(Z2 I Vzi) = trace(PIT2P� 112 -'VP12)

Therefore, we must show that

r
(plTmax f trace 2VT(VpVT) _1VP12 Ai (2-57)

VEM,

and that the maximum is achieved when V is the first r rows of UTpl-112. We may
assume without loss of generality that Vp1VT = I, i.e., that the transformation of z,
yields uncorrelated random variables. Indeed, if it did not we could use Gram-Schmidt
orthogonalization to find an equivalent set of uncorrelated random variables. Thus the
problem is reduced to the one of considering

r

max VTP12PIT2Vi (2-58)
fvi}

where J is the i-th row of V.
As shown in [149,154], the maximum of an expression of the form (2.58) with the

constraint that Vp, VT = I is Er , Pi where 31 > 02 > ... > Onj > 0 and 8i is thei= - - -
i-th eigenvalue associated with the symmetric-definite generalized eigen-problem

det (P12PIT2 - OP1 ) = 0. (2-59)
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Also the optimal f vi I are the associated generalized eigenvectors. Assuming, as we have
throughout, that Pi > 0 we can rewrite this eigen-problem as

det (p�1/2 P12 nT -T/2 -1) = 0 (2.60)1 12p, - 0

where the roots (the eigenvalues) of (2.60) are the same as those of (2.59). That is,
,3i =-= Ai. It is easy to verify that an eigenvector, u, associated with the problem (2.60)
is related to an eigenvector, v, associated with the problem (2.59) by v = P� T/2 u or
VT = UT pl- 1/ 2. Therefore, the optimal choice of the fvil is given by VT = UTpl-1/2 for
i = 1, 2,. r. This completes the proof. N

In the sequel, we call the pair of matrices (U, A) of Proposition 2.4.1 the predic-
tive efficiency matrices. The computational complexity of computing these matrices is
O(n 2n2 + n'). The n2n2 term comes from the formation of the matrix

-1/2 T -T/2
PI P12Pi2PI (2.61)

The n 3term comes from the fact that we must invert the matrix square root of P,1
and compute an eigen-decomposition of an n, x n, matrix. The inversion of P2 is not
required because the predictive efficiency method is asymmetric. In fact, P2 plays no
role in the computation of the predictive efficiency matrices. In contrast, canonical
correlations requires the inversion of both PI and P2 because it is symmetric. It is
precisely this difference in symmetry that accounts for the efficiency of the realization
algorithms developed in this thesis as compared to those based on canonical correlations.
As we will see, in the context of the MAR stochastic realization problem, n2 is related
to problem size, N, while nj is related to state dimension and can be chosen to be
independent of n2. Thus, the asymptotic complexity of the predictive efficiency method
is O(N) whereas that of the canonical correlations approach is O(N').

The main message of Proposition 2.4.1 is that N1 does the best job (in the sense
of (2.54)) of conditionally decorrelating z1 and Z2 subject to the constraint that V may
have no more than r rows. We have a need to generalize this idea to consider the
problem of (approximately) conditionally decorrelating more than two random vectors.
Consider, for instance, conditionally decorrelating the set of random vectors f Zi1q+1i=1
with a linear function of zo I [ZT ZT ... ZT T1 2 q , For this purpose, we define (with
an abuse of notation) the following generalizations of iff

��(Zl' Z2, Zq+ I I VZO) Max I E(Zi Vi'ZO) (2.62)
Z

where Vi'zo is the sub-vector of Vzo that does not include a the contribution from zi,
and where we assume that V is block diagonal. That is, V diag(V1, V2,. .. , Vq) so

13 We interpret ��(zi I Vi'zo) as E(zi I Vi'zo) = s(zi I Vi'zo) 6(zi I zf) where zf
ZT Z T ... ZT 1 Z T 1 ... ZT] T.1 2 %- i+ q
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that

Vi zi
VI zi
V2 Z2

VZO and CZ0 Vi-izi-i (2.63)
Vi Vi+izi+i

Vq-lzq-1
L Vq zq _J L Vq Zq J

The block diagonal structure imposed on V is motivated by Proposition 2.3.3 which
shows that conditioning on a linear function Of Zk cannot increase its correlation with zj
for j 54 k. In Chapter 4 we will provide a more compelling reason, based on internality,
to focus on block diagonal matrices. To be sure, one can consider instances in which it
makes sense to relax this block diagonal structure and consider full matrices. We will,
in fact, do just this in Chapter 5 when we consider MAR models based on wavelets.
For now, however, we restrict attention to block diagonal matrices V.

The corresponding predictive efficiency problem is

arg min �*I, Z2, Zq+1 I VZO) (2-64)
VE d

where A4* is the subset of Md which consists of matrices with the block diagonald
structure just described. Note that we can view E as a measure of Markovianity since
Vzo conditionally decorrelates f ziJ'+1 if and only if ��(Zl' Z2, -- - , Zq+1 I Vzo) = 0. Un-
fortunately, unlike the case for a pair-wise predictive efficiency problem (cf., Proposi-
tion 2.4. 1), there is no known procedure for solving this higher order predictive efficiency
problem. However, by considering q pair-wise predictive efficiency problems instead of
(2.64), we can obtain a good suboptimal solution.

Rather than attempt to conditionally decorrelate all q + I random vectors in the set
IZilq+l at once, we instead consider each one in turn. That is, for each i G [1 : q], wei=1
seek a linear function of zi that (approximately) conditionally decorrelates it from the
others. Using the predictive efficiency criterion, this becomes formally

arg min C I VZO (2-65)
Vi'ri VEMri If (Zi

T, T'... , T T Z'Twhere the ri satisfy E? ri < d and zic = [z z +,]T , a vectort=1 1 2 Z�-DZ�+D- q

consisting of zj for j =,4 i. This pair-wise problem is solved by computing the predictive
efficiency matrices (Ui, Ai) as explained in Proposition 2.4. 1.

Having solved these q pair-wise problems, we concatenate the resulting matrices
Vi,,i to form V, our suboptimal solution to (2.64):

diag(Vir�, V2,r2l Vqrq) (2-66)

To completely define our suboptimal solution V, we need to specify exactly how the ri
are chosen. The first step of our approach is to compute all of the q sets of predictive
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efficiency matrices I (Uj, Ai) I q 1 - Then, we create one ordered list consisting of all of
the eigenvalues and select the largest d eigenvalues from our list, thereby determining
the number, ri, of rows taken from each Ui. To be sure, one can consider other ways of
specifying the ri. Some of these are discussed in Chapter 8.
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Chapter 3

Internality and Markovianity

HILE this thesis is primarily concerned with the identification of MAR models,VV before we turn to stochastic realization, we need to take a step back to consider
tree-indexed processes more generally. There are two basic concepts introduced in this
chapter.' The first of these is internality which we develop in Section 3.1. Internality
has both intellectual and practical importance. First, as described in Chapter 1, it
is a natural extension of the well-studied time-series concept. Second, internal MAR
models have coarse-scale states that include nonlocal linear functions of fine-scale states.
This allows for efficient fusion of nonlocal and local measurements with no increase
in computational complexity as compared to the case of fusing only fine-scale data
[37,39]. Lastly, while non-internal MAR processes can be constructed, their states have
exogenous random components, a property that is not suitable in many problems such
as the fusion of multiresolution data. For an internal model, all the statistical properties
can be derived from the signal being modeled-there is no exogenous randomness.

The second basic concept associated with tree-indexed processes is Markovianity.
As discussed in Chapter 1, we develop a scale-recursive formulation of this concept
for internal processes (Section 3.2) that leads to efficient model realization. Once we
develop these two basic concepts for tree-indexed processes, we apply them to the MAR
stochastic realization problem in Chapter 4. In doing so, we deduce the structure of
internal MAR models that both must be satisfied (and which is not satisfied by previous
methods) and which reduces computational complexity.

N 3.1 Internality

In this section, we first define internality for an arbitrary tree-indexed process and then
seek to understand what structure must be imposed on the states of a MAR process to
make it internal.

Definition 3.1.1 (Internal Tree-Indexed Process). A tree-indexed process x(.) is
internal if for all 8 E So - To (M), x(s) is a linear function of xM, the process indexed
by finest-scale nodes that descend from s. That is, for some set of matrices JWJ,

MX(s) = WSxS (3.1)

'Most of the material of this chapter may be found in [77].

65
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The matrices f W, I are called internal matrices. If x (.) is also a MAR process then x (s)
defined by (3. 1) is called an internal state. For a general tree-indexed process, internality
places no restrictions on the internal matrices. However, we are interested in internal
MAR processes which also obey the MAR dynamics of (2.14). A consequence is that the
internal matrices cannot be chosen independently. This can be seen intuitively because
fine-scale states are derived from coarse scale ones by (2.14) and must be consistent
with the information contained in coarse scale states (given by (3.1)). That is, (2.14)
and (3.1) together place constraints on finer-scale states and, thereby, on the internal
matrices associated with those states.

The constraints imposed by (3.1) are not enforced in previous systematic realization
approaches [40, 96, 98, 100]. As a consequence the MAR models developed in these
works are not internal and their states are not consistent with one another. This
fact is illustrated with a specific example in [96, pages 98-99]. Although the authors
of [40, 96, 98, 100] were aware of this inconsistency issue, it has, until now, not been
dealt with in a theoretically consistent and complete framework. We not only develop
a framework that incorporates the constraints of (3.1) but we show how doing so vastly
simplifies the construction of internal MAR models. The key is that (3.1) is not the
right parameterization for internal MAR states. The right parameterization comes from
the following.

Definition 3.1.2 (Locally Internal Tree-Indexed Process). A tree-indexed pro-
cess x (-) is locally internal i for alls c So - To (M), x (s) is a linear function of x ,n(s)+l

f 8 I
the process indexed by the children nodes of s. That is, for some set of matrices JVJ,

X(S) = V M(S)+l.
'5X8 (3.2)

Notice that (3. 1) places all of the focus on the fine scale while (3.2) is scale-recursive. We
call Vs a local internal matrix. The following proposition shows that the local internal
matrices provide the right parameterization for an internal MAR process.

Proposition 3.1.1. A MAR process, x(.), is internal if and only if it is locally internal.

Proof. The "if" direction is trivial. If x(.) is locally internal then we may write x(s)
as a linear combination of its children. In turn, each x(sai) is a linear combination
of its children and so on, scale-recursively down the tree. Therefore, x(s) is a linear
combination of its finest-scale descendents xM. This holds for all s E So - To(M) so
x(.) is internal.

For the "only if" direction, assume that x(.) is internal. For any s E So - To(M),
we may write

x(s) = ER [x(s) I xM(S)+1 + 35(s) (3-3)S I
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(S)+1where i(s) is uncorrelated with xm Since x(8) and the x(saj) which comprise
rn(s)+1 are assumed to be internal states, Y(s) must be a linear function of xm. We

S S
Tn(s)+lshow that 3F(s) must be zero (so that x(s) is indeed a linear function of xS By

(3.3), Y(8) is a linear combination of x(s) and x'(s)+l so we may write

5F(s) [Y(s) I x(s), Xm(s)+I] [i(s) I xn(s)+I] = 0 (3.4)8 S

where the second equality follows from the fact that Y(s) must be a linear function of xMS
and the fact that conditioned on xm(s)+l, x(s) and xM are conditionally uncorrelated (by

s S
the Markov property). The third equality follows from the fact that iF(s) is uncorrelated
with the x(8ai). This completes the proof. 0

Note that, given the local internal matrices f Vs I it is easy to derive the internal
matrices W, I recursively as follows:

Ws = Id if M, (3-5)
V, diag(Wsal, Wsa ..... . W,,,) otherwise

2where d dim(x(8)) is the dimension of the state vector x(s). Since an internal MAR
process has states satisfying (3.2) as well as (2.14), we immediately have the following
complete characterization of the parameters A(8) and Q(s) for such a process in terms
of the local internal matrices and the covariance matrix for xm(s)+l .

Proposition 3.1.2. Suppose x(.) is a MAR process. Let J,,i be the selection matrix
such that Jsixm(s)+i = x(sai). Then x(-) is a locally internal MAR process with

'5X(s) = VSXM(S)+1 if and only if for all s E So -TO (M),

A(saj) s sp m(s)+l VT (3.6a)
X, X, S

Q(8ai) = Js,,,i P M(S)+1 - P M(3)+1VT(V'P mw+�VsTrlv�'P JSTC�i (3.6b)( X, X, X, X,

Proof. See Appendix A. N

The relations of (3.6) may be written in another form (cf., (2.19)) which empha-
sizes that A(8ai) and Q(sai) depend only on state covariances and parent-child cross-
covariances:

A(saj) = Px(sa,)x(5)P-1 (3.7a)X(S)
Q(saj) = Px(s.,) - Px(sa,)x(s)P-1 j9T (3.7b)

X(S)' X(Saj)X(S)

Together, Propositions 3.1.1 and 3.1.2 provide the necessary and sufficient conditions

for a MAR process to be internal.

2For clarity of presentation, we restrict attention to processes with constant state dimension, d.
However, our results are applicable and easily generalizable to cases in which the state varies with

8 E So
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C

X(S)

------- ---

---------- -------------------------

Figure 3.1. For an internal process x(.) indexed by a dyadic tree, the following are equivalent: x(s)
conditionally decorrelates the sub-processes indexed by the three sets of nodes (1) in the solid-lined
regions labeled "A", "B", and "C" (Markov property), (2) in the dashed-lined regions (fine-scale Markov
property), (3) in the shaded regions (scale-recursive Markov property).

0 3.2 Notions of Markovianity

For internal tree-indexed processes, the Markov property of Definition 2.2.1 is equiv-
alent to two other notions of Markovianity. These notions, which we develop in this
section, are much simpler to work with and lead to a scale-recursive realization algo-
rithm, presented in Chapter 4, with substantially reduced computational complexity
as compared to previous methods. The first alternate notion of Markovianity is the
fine-scale Markov property, which is the focus of the approaches in [40,96,98, 100].

Definition 3.2.1 (Fine-Scale Markov Property). A tree-indexed process x(-) has
the fine-scale Markov property if conditioned on x(s) for any s E So -TO(M) the q + I
vectors in the set f X Mijq 1 U fX Ye I are conditionally uncorrelated.sa i=

Figure 3.1 provides some intuition about the relationship between the Markov prop-
erty and the fine-scale Markov property. The Markov property focuses on the condi-
tional decorrelation of the states indexed by the nodes in the subtrees extending from
s (the three sets of nodes enclosed by solid lines and labeled "A", "B", and "C" in
Figure 3. 1). The fine-scale Markov property, in contrast, places its attention on the con-
ditional decorrelation of finest-scale sub-processes (dotted-lined regions in Figure 3.1).
While there are fewer leaf nodes than nodes in the tree, this does not provide a sub-
stantial amount of simplification because the number of tree nodes and the number of
leaf nodes are of the same order. This is the key to why previous realization meth-
ods [40,96,98, 100], which make extensive use of the fine-scale Markov property, scale
poorly with problem size. We now show that, for internal processes, the fine-scale
Markov property is equivalent to the Markov property.

Proposition 3.2.1. Assume that x(-) is an internal tree-indexed process. Then it has
the fine-scale Markov property if and only if it has the Markov property.
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X(t)
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Figure 3.2. Proof of Proposition 3.2.1, case 1: t is not an ancestor of s and s is not an ancestor of t.

X(S)

X(r)

X(t)

XM X X Mr t rc

MFigure 3.3. Proof of Proposition 3.2.1, case 2: s = Vy'. The shaded region indicates xt

Proof. First, if x(.) has the Markov property it clearly has the fine-scale Markov prop-
erty since the Markov property subsumes the fine-scale Markov property. Assume, then,
that x (.) has the fine-scale Markov property and let sr, t C So such that the unique
shortest path from s to t goes through r. Subject only to this condition, 's, r, t are
arbitrary so we need to show that x(s) and x(t) are conditionally uncorrelated when
conditioned on x(r). There are two cases.

Case 1. First consider the case where t is not an ancestor of s nor is 8 an ancestor
of t (see Figure 3.2). Formally, there does not exist an integer n such that t n

'M Ms = t,�'. It is clear from Figure 3.2, that the index sets for the vectors xt and x.
do not overlap. Formally, there is no set in the collection JT,,i(M)JqZ=1 U ITICMI
that contains elements of both Tt(M) and T,(M). Therefore, by assumption, x(r)
conditionally decorrelates xM and XtM. It follows that x(r) conditionally decorrelates8
X(S) = W'XM and x(t) = WtxmS t

Case 2. Next consider the case where s = t;yn for some n (see Figure 3.3). Therefore
s is also an ancestor of r and consequently xM is contained in xM. It follows that x(t)t r
is a linear function of xM so it suffices to show that x(s) and xM are conditionallyr r
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decorrelated by x(r). Because by assumption x(.) is an internal process, we may write
x (s) as

X(s) == W'xM == LrXM + LxM, (3-8)8 r r

for some matrices Lr and L where L, = DrW,, for some matrix Dr. Therefore,

rowspace(Lr) C rowspace(Wr). (3.9)

Thus, LrX M can be linearly estimated from x(r) = Wrx M without error. Also, con-r r
ditioned on x(r), x M and x M are conditionally uncorrelated by hypothesis. Therefore,rc r
x(r) conditionally decorrelates x(s) and xMr

As we now develop, another notion of Markovianity which is equivalent to the

Markov property is the scale-recursive Markov property. The development of this scale-

recursive formulation of the Markov property is one of the major contributions of this

thesis. It is significant because it permits us to view the stochastic realization problem

scale-recursively and, thereby, develop an efficient algorithm.

Definition 3.2.2 (Scale-Recursive Markov Property). Tree-indexed process x(.)

has the scale-recursive Markov property if conditioned on x(s) for any s G So - TO(M)

the q + I vectors in the set f x(sai)J� U f xmC(')+' I are conditionally uncorrelated.%=1

Referring to Figure 3.1, we see that the scale-recursive Markov property is similar

to the fine-scale Markov property except that rather than focusing on the leaf-node

states, it focuses on those at the preceding finer scale (in the shaded regions). Since the

sets of nodes associated with the scale-recursive Markov property are asymptotically

of strictly smaller order than those associated with the Markov property (solid-lined

regions labeled "A", "B", and "C") or the fine-scale Markov property (dotted-lined

regions), the realization algorithm based on scale-recursive Markovianity (developed in

Chapter 4) is orders of magnitude more efficient than previous approaches. Specifically,

at scale M - 1, the total number of variables considered is the same for both the fine-

scale Markov property and the scale-recursive Markov property. However, at coarser

scales, the sets involved in the scale-recursive Markov property are smaller than those

involved in the fine-scale Markov property. Indeed, at each successive coarser scale, the

total number of variables considered in the scale-recursive Markov property is reduced

by a factor of q. We now show that the scale-recursive Markov property is equivalent

to the Markov property for internal processes.

Proposition 3.2.2. Assume x(.) is an internal tree-indexed process. Then x(.) has the

scale-recursive Markov property if and only if it has the Markov property.

Proof. First, if x(.) has the Markov property then, by definition, it has the scale-

recursive Markov property. Next, assume that x(-) has the scale-recursive Markov
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X(S oc X(S C(2

X

X M X M -- o" M
Sal Sa2 Xs, __'O'

Figure 3.4. As shown in the proof of Proposition 3.2.2, if x(s) conditionally decorrelates the vectors in
(S)+1 M MS . Sa ?-the set I X (9-0 U IX, }thenitconditionallydecorrelatesthevectorsinthesetfx X 1UfX

This figure illustrates the case for q = 2.

property. We show in Appendix A that for an arbitrary s in So - 7-o(M), X(s) condi-
tionally decorrelates the vectors in the set 14 jq I U f xsmc I (see Figure 3.4). Having
shown this, then x (.) has the fine-scale Markov property and thus, by Proposition 3.2. 1,
it has the Markov property. N

0 3.3 Implications for Stochastic Realization

The theory of internality and scale-recursive Markovianity developed in this chapter, as
well as that of predictive efficiency developed in Section 2.4, forms the foundation for
the remainder of this thesis. In Chapter 4 we will combine the notions of internality,
scale-recursive Markovianity, and predictive efficiency in developing an efficient, general-
purpose, and scale-recursive MAR model identification algorithm. In Chapter 5 we
rely on the theoretical development of internality in order to design MAR states that
consist of wavelet scaling and detail coefficients associated with a fine-scale process.
In Chapter 6 we develop internal MAR models for the maximum-entropy extension of
partially specified covariance matrices. Finally, in Chapter 7 we present several ways
of incorporating nonlocal variables into internal MAR models. One of these relies on
an intellectual successor to the Markov property.

We now highlight the features of the foregoing theory which are of greatest impor-
tance for the remainder of this thesis. First, previously-developed systematic MAR
realization algorithms lead to model inconsistencies precisely because they are based
on an incorrect parameterization of internal states, (3.1). In contrast, the models de-
veloped in this thesis are based on (3.2) which guarantees internality and consistency.
In turn, internality provides the theoretical foundation for the identification of con-
sistent MAR models with states defined by specific linear functionals like scaling and
wavelet functionals or other nonlocal functionals of importance in particular estima-
tion problems. Moreover, internality also plays an important role in overcoming the
computational burden of previously-developed realization algorithms [37,40,96,98, 100].
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The computational complexity of these previous approaches stems from several
sources, two of which have now been exposed. First, because they are based on the fine-
scale Markov property and use canonical correlations, they must consider the statistics
(covariance matrix) for a large number of variables, those indexed by the fine-scale
nodes. Second, they must do this at every node. In contrast, in Chapter 4 we focus
on the (equivalent) scale-recursive Markov property which alleviates the latter source
of complexity as described in this chapter. We also use predictive efficiency and not
canonical correlations which alleviates the former source of complexity as described in
Chapter 2.



Chapter 4

Scale-Recursive Stochastic
Realization

HIS chapterl addresses the MAR stochastic realization problem which we defined
Tand discussed in Section 2.3. Recall that the MAR stochastic realization problem is
one of choosing MAR parameters, P,,(O), A(.), and Q(.), such that the realized fine-scale
sub-process xM has a covariance matrix Pxm that well-approximates a given covariance
matrix Pfm associated with the fine-scale process fm. For convenience only, it is
assumed that f M has length N = dqm. In Section 4.1 we develop an algorithm to
address this problem that has complexity quadratic in problem size (i.e., it is O(N 2)).

In Section 4.2 we introduce an approximation that reduces the complexity to linear
in problem size. In the examples in Section 4.3 we illustrate the performance of our
methodology and the degree of error introduced by the approximation of Section 4.2.

The algorithm presented in this chapter is based on predictive efficiency, which we
discussed in Section 2.4. Additionally, it relies on the theory of internality and scale-
recursive Markovianity developed in Chapter 3. The development of Chapter 3 makes
clear that the notion of Markovianity is related to the information content of MAR
states. We have also seen that the information of internal MAR states is parameterized
by local internal matrices. Hence, at the heart of our approach is the design of local
internal matrices. From these, MAR model dynamics are easily derived as discussed in
Section 2.3.

The algorithm developed in this chapter overcomes two weaknesses of those previ-
ously developed [37,40,96,98, 100]. First, the resulting models are internal and, hence,
possess states that are consistent with one another. Second, the algorithm is consider-
ably more computationally efficient than previously-developed ones. In contrast to the
quadratic (and, with an approximation, linear) complexity of our approach, the canon-
ical correlations approach of [96,98, 100] has complexity quartic in problem size while
the approach of [37, 40], which is applicable to self-similar processes with stationary
increments, has complexity cubic in problem size.

For notational simplicity, we assume in our development that our models have con-
stant state dimension d. However, our approach is applicable and easily generalizable

'Most of the material of this chapter may be found in [77].

73
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to cases for which state dimension varies from node to node as we show by example.

0 4.1 Predictive Efficiency-Based Internal Realization

In this section we first present an O(N') algorithm for internal MAR model identifica-
tion (Section 4.1-1). Following that we provide some analysis (Section 4.1.2).

0 4.1.1 Algorithm

In this section we discuss an O(N 2) algorithm for internal MAR model identification. In
constructing an internal MAR model x (.) for Pf m we define another locally internal tree-
indexed (and not necessarily MAR) process as an intermediate step. This intermediate
process f (.) has as its finest-scale sub-process f M, the signal to be modeled. At any
node s not at the finest scale, we define the value of f (.) at node 8 scale-recursively as

f (s) Vf,(')" where each local internal matrix V, is derived based on a predictive
efficiency criterion (detailed shortly).

From the set of local internal matrices f V,} and the given fine-scale covariance Pf m,
the statistics Pf (8) and Pf (sa,)f (,) are easily computed. In turn, these may be used to
define the dynamical model for f (.):

f (saj) A(saj)f (s) + p(saj), (4. 1 a)

Q(sai) E[p(scei)p(saj] (4. 1 b)

where A(saj) and Q(saj) are computed from Pf (,) and Pf (,c,,)f (,) as described in Propo-

sition 3.1.2 and (3.7) (in which xm(s)+I, x(saj), and x(s) are replaced by fm(')+', f (sai)
and f (s), respectively).

If the process f (.) has the scale-recursive Markov property then P(-) is a white noise
process, uncorrelated with f (0). Hence, (4.1) is an exact MAR model for f M [100]. As
we will explain, this will occur if no approximation is made in the predictive efficiency
step that defines the local internal matrices. If, on the other hand, we do make an
approximation in the predictive efficiency step, then p(-) will not be a white noise
process, uncorrelated with f (0). However, in this case, we can define an approximate
model by assuming that /-z(.) is white and uncorrelated with f (0). That is, we define
the internal MAR process2 x(.) to approximate f (-) as

x(saj) = A(saj)x(s) + w(saj), (4.2a)

E[w(sai)w(sai )T] = Q(saj) (4.2b)

where A(-) and Q(.) are the same as in (4.1) and w(-) is white, uncorrelated with
x(O). Note that, while this results in an approximate model (P,;m :A Pfm), the state
covariances Px(,) at each node s and the child-parent cross-covariances P':(sa,)x(s) for

2A formal proof of internality is provided in Section 4.1.2.
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each child-parent pair of nodes exactly match Pf(s) and Pf(sa,)f(,), respectively. Con-
sequently, the d x d diagonal blocks of P f

,,m exactly match those of
It remains only to specify the predictive efficiency step in which we define the local

internal matrices IV, 1. To obtain an exact model requires that f (-) have the scale-

recursive Markov property which it does (by definition) if f (S) = Vf,-(S)+' condition-

ally decorrelates the set of vectors f f (sai) J� I U f fT(s)+' I for all s E So - To (M). As
discussed in Section 2.4, this occurs exactly when

I V'�(f (Sal), f (Sa2), f (saq), f,,T(s)+l '5f'5M(S)+1) =: O (4-3)

Typically, any V, satisfying (4.3) has too many rows, leading to models with imprac-
tically high state dimensions. Therefore, to obtain lower dimensional states, we may
apply the procedure described in Section 2.4 to find a suboptimal solution to the pre-
dictive efficiency problem

arg min ��(f (Sal), f (Sa2),. f (saq), f,,T(5)+l I Vf'5M(8)+l) (4.4)
VEMd*

thereby constraining Vs to have no more than d rows.
The asymptotic computational complexity of our realization approach stems from

two sources. The first is the computation of the local internal matrices. If d is chosen
independent of problem size N then, as described in Section 2.4, the complexity of
finding our suboptimal solution to (4.4) is O(q') because m(s)+l (which plays the rolefl'a�

of z' of Section 2.4), is length O(q'). Summing this up over all nodes we arrive at
an O(q 2M) complexity which is equivalent to O(N 2) because N oc qM. The second
source of complexity is the computation of Pf., the statistics of f (-) at scale n which
are needed to compute the local internal matrices at scale n - 1. We have that

Pfn = VnPfn+� VT (4-5)
n

where Vn is a block diagonal matrix whose diagonal blocks are V, for 8 G TO(n), lexico-
graphically ordered. By construction, each row of Vn has at most d non-zero elements.
Taking advantage of this sparsity, we can compute JPf-JM-1 with complexity O(N 2).n=O

0 4.1.2 Analysis

In this section we provide formal justification for the scale-recursive realization algo-
rithm presented in the previous section. First, the fact that f (.) as defined by (4.1) is
internal follows from the the following simple lemma.

Lemma 4.1.1. Let Q be the covariance matrix for

A = [M(sal)' /-Z(Sa2)' - - - M(saq ),] T (4.6)
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where p(saj) is as defined in (4.1). Then Q has the form

Q(Sal) Q(8al, Sa2) ... Q(saj saq)
Q(Sa2, sal) Q(sa2) ... Q(sa2: Saq)

Q (4.7)

\Q (saq , sal) Q (8aq, Sa2) ... Q(saq)

and VQVT = 0.

Proof. That Q has the form of (4.7) is clear. That VQVT = 0 follows from the fact

that the dynamics of f (.) represent the optimal prediction of fm(s)+' from f (s)
V'5fSM(S)+1

The proof of the internality of f (.) follows from Lemma 4.1.1 and is nearly identical in
form to that of Proposition 3.1.2.

Next, we address the internality of the MAR process x(.) as defined by (4.2). If
the local internal matrices fVsj are arbitrary, then there is no guarantee that x(.) is
internal. The problem is that the relationship x(s) = Vxm(s)+l must be a deterministic
one. However, the x(saj) have contributions from uncorrelated noises w(saj). Thus, it
is necessary that the driving noise be in the null-space of V,. As the following proposition
shows, if each Vs is block diagonal (as ours are), then the relationship x(s) = Vxm(s)+l
is deterministic for all s and x(-) is internal.

Proposition 4.1.1. Let V, have a block structure given by

V11 V12 ... V1 q

VI = V21 V22 ... V2 q (4-8)

Vq1 Vq2 ... Vqq)

where in the expression Vfm(s)+l , the submatrix Vij acts on f (saj). If Vij 0 for all
i 0 j then x(.) as defined by (4.2) is internal.

Proof. See Appendix B. N

We emphasize that the condition that V, is block diagonal is a sufficient but not nec-
essary one for x(.) to be internal. Indeed, by an argument similar to the one in the
proof of Proposition 3.1.2, it is easily shown that it is both necessary and sufficient
that VRVT = 0 where R = diag(Q(sal), Q(sa2), - - - , Q(saq)) is the covariance matrix
for [w(saj)' w(sa2 )T ... w(saq )T]T and w(8ai) is as defined in (4.2). That is,
R is derived from Q (cf., (4.7)) by setting the off-diagonal blocks to zero. As we will
see in Chapter 5 (in which the V, are defined by wavelet bases), there are important
cases for which VRV;r = 0, and yet V, is not block diagonal. However, in general, it is
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unclear how to obtain VRVT = 0 without restricting V, to be block diagonal. When
we do restrict V, to be block diagonal, the realization procedure is particularly simple,
as is evidenced by the developments of this chapter. This, then, provides substantial
motivation and justification for imposing a block diagonal structure.

0 4.2 Boundary Approximation

The predictive efficiency-based MAR realization method proposed in the previous sec-
tion has complexity proportional to N 2 (where the signal or (lexicographically ordered)
image to be modeled has total size N). While this is relatively efficient as compared
to other approaches [37, 40, 96, 98, 100], it is still too burdensome for some problems,
particularly those arising in image processing. The source of this complexity stems from
the fact that, in computing the predictive efficiency matrices, we focus on estimating
every element of a large random vector, Z2, from a small one, z1. In Section 4.2.1, we
propose the boundary approximation which focuses on estimating only a small number
of elements Of Z2 which are temporally or spatially close to z1. As we will show, this
boundary approximation leads to a realization algorithm that has complexity propor-
tional to N. We note that a similar approximation is employed in conjunction with
canonical correlations in [96, 100]. However, in some sense it is more severe because,
due to the symmetry of canonical correlations, it requires truncating both Z2 and Z1.
Since predictive efficiency is not symmetric, we need only truncate Z2 to obtain an O (N)
algorithm.

Intuitively, the boundary approximation should not be a severe one for processes
that are Markov (or nearly so) or have quickly decaying long-range correlations. In the
former case, the boundaries of z, contain all the relevant information for estimating the
more distant random variables. Therefore, a summary of zi (i.e., Vzl) that does a good
job of estimating these local variables ought to be sufficient for estimating the distant
ones. In the latter case of quickly decaying long-range correlations, distant random
variables are negligibly correlated with z, and, therefore, do not substantially contribute
to the mean-square estimation error. We will make this intuition precise in Section 4.2.2.
In our examples in Section 4.3, we will show that the class of processes for which the
boundary approximation results in small modeling error is, in fact, considerably richer
than Markov and fast-decorrelating processes. A theoretical understanding of this fact
is a topic for future research, as we discuss in Chapter 8.

In this section we will rely on the following notation which was introduced in Sec-
tion 2.4. The zero-mean vectors z, and Z2 have lengths nj and n2 and covariances PI

T] = pand P2, respectively. Their cross-covariance matrix is E[Z2Z1 21.

0 4.2.1 Algorithm

Let us begin by examining the two sources of the N 2 complexity of our realization
approach in the context of building a MAR model for a one-dimensional random signal
(as opposed to a two-dimensional random field, to which we return later). The first
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Figure 4.1. HkZ2 selects the 2kd elements Of Z2 (shaded) that are temporally closest to zi.

source comes from finding the local internal matrices which are suboptimal solutions

to (4.4). The second is the computation of Pf - for all scales n E f 0, 1, . . . , M - I 1.

With respect to the former, we noted in Section 2.4 that summarizing a lengthen,

vector z, for the purposes of estimating a lengthen vector z2 has complexity 0(n2). In

the context of the stochastic realization problem, this translated into a complexity of

O(N) per node which, when summed over all O(N) nodes, lead to an overall O(N 2)

complexity for computing the internal matrices. This suggests that we can reduce the

overall complexity to O(N) by somehow ignoring all but a small portion Of Z2 (whose

size is independent of N).

To this end, let k be an integer chosen independent of n2, and let Hk be a selection

matrix such that, when post-multiplied by Z2, it selects the 2kd elements Of Z2 that are

temporally closest to z, as illustrated in Figure 4.1 (i.e., the kd elements on either side

of z, are selected). We will call the 2kd elements selected by Hk the size-k boundary of

zj. With this notation, consider

A
Vk - a.Lr, min �f(HkZ2 I VZJ (4.9)

VEM,

Since the complexity of computing HkP2H T (a quantity needed to solve (4.9)) is inde-k
pendent n2, the solution of (,�.9) can be computed with complexity that is also inde-

pendent of n2. We then view Vk as a suboptimal solution to (2.54). Using this idea in

our stochastic realization approach, we arrive at a complexity of O(N) for computing

the internal matrices.

We now turn to the second source of the N 2 complexity of the MAR stochastic

realization approach of Section 4.1-the computation of the Pf.. The boundary ap-

proximation reduces this source of complexity as well since using (4.9) implies that we

need not compute all of Pf.. Rather, only a diagonal band of size that is a function

of k is needed because we never consider cross-correlations involving elements that are

further than kd away from the node at which the current predictive efficiency matrices

are being computed. It is not hard to show that the total complexity of computing

the required diagonal bands of the Pf. matrices for all n EE f 0, 1, . . . , M - 1 1 is 0 (N).

Hence, the overall asymptotic complexity of the MAR realization algorithm with the

boundary approximation is O(N).

We now discuss the boundary approximation for modeling two-dimensional random
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HkZ2

SM,

Z2

Figure 4.2. HkZ2 selects the elements Of Z2 (shaded) that are spatially closest to zi, those in the k
concentric square annuli around zi.

fields using quad-trees. In this case, the vector z, represents a pixe13 of a random
field and Z2 the rest of the random field as illustrated in Figure 4.2. The matrix Hk

selects the elementsOf Z2 that lie in the k concentric square annuli, each of which is one
pixel wide, that surround z, (with the obvious modifications for boundary effects as
illustrated). All of the complexity analysis provided previously for the one-dimensional
case is identical for the two-dimensional case.

E 4.2.2 Analysis

In this section we provide some theoretical justification for the intuition that motivated
the boundary approximation, namely that the boundary approximation ought not be a
severe one for processes that are Markov (or nearly so) or have quickly-decaying long-
range correlations. For this purpose we will rely on the notation developed in previous
sections as well as the following. Let Jk be a selection matrix that complements Hk in
the sense that Jkz2 selects all the elements of z2 that are outside the size-k boundary
of z1. Referring to Figure 4.1 and Figure 4.2, AZ2 selects the elements of z2 that are
not shaded. Therefore, every element Of Z2 is an element Of HkZ2 or JkZ2-

In making the boundary approximation, we choose a matrix V to minimize ��(HkZ2
Vzl) rather than the exact criterion E(Z2 Vzi). The two criteria are related by

i��(z2 I Vzi) = E(Hkz2 Vzi) + E(Jkz2 I Vzi). (4.10)

Therefore, for a given V, one measure of the quality of the boundary approximation
is the value Of E(AZ2 I VZI). Since E(. I .-) is lower-bounded by zero, the boundary
approximation is, in fact, equivalent to the exact implementation (cf., (2.54)) when

3In a quad-tree, each scale is composed of pixels. At coarser scales the state vector at each pixel
(here written as zi) provides an abstract summary of a multi-pixel region of the fine-scale image.
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E(AZ2 f7kZl) = 0- In the two propositions of this section, we bound the quantity
E(AZ2 Vzl) given certain conditions. We first consider processes whose long-range
correlations are small. That is, the correlations between elements of z, and elements of
AZ2 are, in some sense, small.

Proposition 4.2.1. Let A be the maximum singular value Of COV(AZ2, ZO = JkP21 and
let

a A max pl-T,2 (:, j)
3.

2 2Then E(AZ2 I Vzl) < n1a A

Proof. See Appendix B.

There are a number of important points to emphasize regarding Proposition 4.2.1.

• As the long-range correlations (those between z1 and JkZ2) go to zero, A goes to
zero and �f(AZ2 I Vzl) goes to zero.

• The bound holds for all matrices V and, therefore, holds for the optimal choice
under the boundary approximation f7k as defined by (4.9).

• The bound is loose and depends on n1. No doubt tighter bounds can be obtained.

Proposition 4.2.1 is intended to provide some theoretical justification for the bound-
ary approximation when the covariance matrix for the underlying process is exactly or
approximately banded. When the inverse of the covariance matrix is exactly or approx-
imately banded, we are dealing with a process that is exactly or approximately Markov.
For nearly k-th order Markov processes, HkZ2 approximately conditionally decorrelates
z, and AZ2. Therefore, the entries of

)T] (Hk p jT)
A -A E [JkZ2 (ZI - t[Zl I HkZ21 JkP21 - JkP2H T 2T -'HkP21 (4.12)k A-L k

will be small. The following proposition shows that, in this case, the quantity E(AZ2 I

Vzl) is related to two sources of error. One source stems from the degree to which the
process can be approximated by a k-th order Markov process and is related to the size
of the entries of A. The other source stems from how well we are able to estimate the
boundary Hkz2 from the summary of z, given by Vzl. That is, the second source of
error is related to ��(HkZ2 I VZI)-

Proposition 4.2.2. Let J be the maximum singular value of A as defined in (4.12)
and let i��(HkZ2 I VZO < O' 2. Let A be the maximum singular value of

A A (Pi-1 - VT(VpVT)-IV) pT T T)-lHkpH P2H 2 iT (4.13)21 k k k k

Then

E(AZ2 I Vzl) < ni (a Y + 2 1 JA 1) + n3,32 0,2 (4.14)
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where

a A max�l [(p�-l _ VT(VpVT)-IV)112 (4.15a)
3 L'A

13A max�l [(HkP2HkT)-'HkP2JkT]:,j (4.15b)
3

and n3 is the length of the vector Jkz2.

Proof. See Appendix B.

It is worth noting the following regarding Proposition 4.2.2.

• The interpretations of the matrix A and the variables a and are unclear. A
more precise theoretical justification for the boundary approximation is an open
problem.

• The first term of the upper bound, nl(a262 + 216AI), is related to the degree to
which the process is k-th order Markov. It depends on 6 which is small when the
process is nearly k-th order Markov and is zero if the process is exactly k-th order
Markov.

• The second term of the upper bound, n3,320,2, is related to how well the infor-
mation contained in Vzl performs in estimating the boundary HkZ2- It depends
on a 2 which bounds E(HkZ2 I Vzl). Notice that this term is indirectly related to
the number of linear functionals used for summarizing zi (rows of V) since, as
the number of (linearly independent) linear functionals increases, E(HkZ2 I VZJ)

2decreases leading to a smaller bound cr

• The bound holds for all matrices V and, therefore, holds for the optimal choice
under the boundary approximation Vk as defined by (4.9).

• The bound is loose and depends on n, and n3. Tighter bounds can likely be
obtained.

• Note that, for one-dimensional processes, n3 = n2 - 2dk so that the n3 can be
eliminated and the bound may be expressed in terms of n1, n2, d, and k as

i��(AZ2 I Vzl) < ni (a 262 + 216AI) + (n2 - 2dk) 02U2. (4.16)

For two-dimensional processes, a similar expression can be found where n2 is

n3 less the number of elements in k concentric, one-pixel wide annuli (ignoring
boundary effects).

In this section we have provided some formal justification for the intuition behind
the boundary approximation. Nevertheless, Proposition 4.2.1 and Proposition 4.2.2
have a number of limitations. In addition to those stated, the explanatory power of
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Proposition 4.2.1 and Proposition 4.2.2 is limited for two reasons. First, these two
propositions rely on the statistical structure of the underlying signal z A 1ZT Z T]T

- 1 2While it is, perhaps, easily verified that the fine-scale process to be modeled, fm,
has the required structure (quickly decaying long-range correlations or approximate
Markovianity), whatever statistical structure is present in f M is typically not preserved
at coarser scales. That is, the statistical properties of coarser-scale variables are derived
from f M filtered by the linear functionals that define the internal matrices. Therefore,
if f M is Markov, say, it is by no means clear that f ' for n < M is Markov or even
approximately so.

The second limitation of Proposition 4.2.1 and Proposition 4.2.2 is that they focus
on the error caused by a single application of the boundary approximation. However, in
in building an entire MAR model, many applications are made (specifically, q at each
node). It is not clear how the bounds of Proposition 4.2.1 and Proposition 4.2.2 (which
pertain to local errors) translate into the overall quality of a model. We will return to
these limitations in Chapter 8.

0 4.3 Examples

In this section we provide several examples illustrating the performance of the O(N 2)

realization algorithm of Section 4.1 as well as the boundary approximation discussed in
Section 4.2.

N 4.3.1 One-Dimensional Processes

Fractional Brownian Motion

Our first example is the realization and estimation of fractional Brownian motion (dis-
cussed in Section 2.3.1) with Hurst parameter H = 0.7 (denoted fBm(O.7)). The true
fBm(O.7) covariance matrix, Pf m, associated with 128 samples of fBm(O.7) on (0, 1]
is illustrated in Figure 4.3(a). The realized covariance matrix, P,,m, associated with
a MAR model with state dimension d = 4 and based on our full O(N 2) algorithm
is illustrated in Figure 4.3 (b) - In Figure 4.3 (c) we have plotted I Pf m - P,,m I where
I - I is element-wise. Notice that even for this relatively low dimensional model, the
approximation is quite good, with the largest element-wise error on the order of 10-3.

In addition, the fact that the 4 x 4 diagonal blocks of JPfm - P,,m I are zero can be
plainly seen in Figure 4.3(c). Notice also that some of the largest errors correspond
to correlations between elements that are spatially close. This is due to the fact that
spatially close elements (like those at sample numbers 64 and 65) can be quite far apart
in tree distance and the correlation between them suffers from errors induced by the
approximation made at all the tree nodes between them.

In Figure 4.3(d), we have plotted the realized covariance, P m, based on a MAR
model for fBm(O.7), again with state dimension d = 4, but derived using the boundary
approximation. The boundary size is k = 1 which corresponds to designing local internal
matrices to (approximately) conditionally decorrelate variables at a given node from
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Figure 4.3. Realization of 128 samples of fBm(O.7) on (0, 1]. (a) Exact covariance, Pf m (b) Realized
covariance, P,, m (d = 4). (c) I Pf m - P,,m I where P,,m is from (b) (d) Realized covariance, Pxm, using
the boundary approximation (d = 4, k = 1). (e) JPf m - P.,m I where P,,m is from (d).

those indexed by the two nearest nodes at the same scale (or one nearest node if the given
node is on the boundary). The modeling error I Pf m - P,,m I is illustrated in Figure 4.3 (e)
and should be compared with Figure 4.3(c). Notice that the errors, while different, are
of the same order, 10-3. Since fBm(O.7) is not Markov and has slowly (polynomially)
decaying correlations [17], this illustrates that the boundary approximation is effective
for a broader class of processes than those that motivated it.

Next, we apply the MAR model for fBm(O.7) associated with Figure 4.3(b) to an
estimation problem based on incomplete measurements corrupted by nonstationary
noise. We emphasize that this is a problem that cannot be handled with fast transform
techniques due to the nonstationarity of the process to be estimated and the process
noise and the fact that the measurements are incomplete. Figure 4.4(a) is a sample-path
of fBm(O.7) based on the exact statistics.4 Figure 4.4(b) illustrates noisy, incomplete
measurements of Figure 4.4(a). Measurements are taken over the first and last third
of the interval (0, 1]. No measurements are available over the middle third. The white
measurement noise has variance 0.3 over the first third sub-interval and 0.5 over the last
third sub-interval. Figure 4.4(c) shows the output of the MAR estimator [29] based on

4Exact realizations of fBm axe obtained by multiplying white Gaussian noise by the matrix square
root of Pf m. This requires O(N 2 )computations if Pf m is N x N. In contrast, the MAR sample-path
generator is O(N).
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Figure 4.4. Estimation of fBm(O.7) using the model of Figure 4.3(b). (a) Sample-path using exact
statistics. (b) Noisy, incomplete observations of (a). (c) MAR estimates (solid line), optimal estimates
based on the exact statistics (dashed line), and plus/minus one standard deviation error bars (dotted
lines). (d) Error standard deviation given by the MAR estimator (solid line) and based on the exact
statistics (dashed line).

the model associated with Figure 4.3(b) (solid line) with one standard deviation error
bars (dotted lines). The optimal estimate based on the exact fBm(O.7) statistics (rather

5than our approximate model of them) is also plotted (dashed line) in Figure 4.4(c).
However it is not easily distinguishable from the MAR estimate since the two nearly
coincide. Moreover, the difference between the two is well within the one standard
deviation error bars. This demonstrates that the degree to which our MAR model
deviates from the exact model is statistically irrelevant. The MAR estimator also
produces estimation error statistics with no additional computations beyond what are
needed to compute the estimates themselves. In Figure 4.4(d) we have plotted the
MAR error standard deviations (solid line) and the optimal error standard deviations
(dashed line). The two nearly coincide, again illustrating that the degree to which our
model deviates from an exact one is not relevant to this estimation problem.

Markov Process

In our next example, we illustrate MAR realizations using our O(N 2) algorithm for a

12-th order stationary Markov process. The purpose of this example is to show that,

while fBm can be well modeled with state dimension d = 4, some processes require

a higher state dimension. In Figure 4.5(a) we illustrate the true covariance matrix,

m. Figure 4.5(b) illustrates the realized covariance matrix, P m, associated with aPf

'5The optimal estimates axe obtained by solving the normal equations based on the true fBm and
measurement statistics. Note that solving the normal equations requires O(N') computations while
the MAR estimator is O(N) where N is the size of the signal to be estimated [28-30].
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Figure 4.5. Realization of 128 samples of a 12-th order stationary Markov process. (a) Exact covari-
ance, Pf m. (b) Realized covariance, P,, m (d = 4). (c) I Pf m - P. m I where P. m is from (b). (d) Realized
covariance, P.,m, (d = 8). (e) JPf m - P,,m I where Pm is from (d).

MAR model with state dimension d = 4. Notice that the errors I Pf m - P m 1, which
are plotted in Figure 4.5(c), are much larger (25% of the process variance) than those
associated with the fBm(O.7) model of Figure 4.3(c) which also has state dimension
d = 4. If, however, we increase the state dimension to d = 8, we achieve a MAR
realization with errors on the order of 7% of the process variance. This is illustrated
in Figure 4.5 (d) which shows P,,m and Figure 4.5 (e) which shows I Pf m - P m I for this
higher state dimension model. A more accurate model of the 12-th order stationary
Markov process than the one associated with Figure 4.5(d) requires a maximum state
dimension larger than d = 8.

To achieve modeling errors on the order of those depicted in Figure 4.5(e), one need
not use a model with state dimension d = 8 at all nodes. It is possible to achieve similar
performance with state dimensions that decrease at coarser scales. We illustrate this
point in Figure 4.6. Figure 4.6(a) is the realized covariance matrix, P,,m, associated
with a four-scale MAR model with state dimension 8 at scales 3 (the finest) and 2,
state dimension 6 at scale 1, and state dimension 4 at scale 0 (the coarsest). The error
lpf m -P,,m I is plotted in Figure 4.6(b) and is on the order of 8% of the process variance,
comparable to that achieved with the d = 8 (at all nodes) model of Figure 4.5(e).

Figure 4.6(c) illustrates the realized covariance for another MAR model of the 12-th
order stationary Markov process with state dimensions that vary with scale as described.
However, in this case, the boundary approximation was used with boundary size k
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Figure 4.6. Realization of 128 samples of a 12-th order stationary Markov process. (a) Realized

covariance, Px m (state dimension varies with scale (see text)). (b) I Pf m - P., m I where P,, m is from (a).
(c) Realized covariance using boundary approximation (k = 3). (d) I Pf m - Px m I where Px m is from

(c) -

3. Errors are plotted in Figure 4.6(d) and should be compared with Figure 4.6(b).
Notice that the errors, while slightly different, are on the same order (roughly 10% of
the process variance). This illustrates that little modeling fidelity is lost in making
the boundary approximation. In this case, this result is consistent with our intuition
because the underlying process is 12-th order Markov and a boundary size k = 3
corresponds to keeping kd state elements on either side of the node being designed. In
this example d varies from 4 to 8 so the number of boundary elements is always at least
as large as the Markov order. However, this intuition is deceptive because, as discussed
at the end of Section 4.2.2, the fact that f M is Markov does not guarantee that f I
is Markov for n < M. The results depicted in Figure 4.6(b) and Figure 4.6(d) are
different because we are designing internal matrices to do different jobs. In the former
case, we are attempting to conditionally decorrelate MAR variables at a given node
from all other variables at the same scale. In the latter case, we are only considering
the nearby variables at the same scale. Naturally, these two criteria lead to a different
emphasis and different linear functionals that comprise the internal matrices.

Next we illustrate model fidelity as a function of boundary size. We again consider
MAR models for the 12-th order stationary Markov process where the state dimension
varies with scale as described previously. For different boundary sizes k E f 1, 2, 3, 4, 5, 61
we computed a realization. We then compared the realized covariance to the true one
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Figure 4.7. Boundary approximations for 12-th order stationary Markov process. I JPf m P,,m I I is
plotted as a function of boundary size k for three different norms: Frobenius (solid line), maximum
singular value (dashed line), maximum element-wise absolute difference (dash-dot line). The last of
these is multiplied by 10 so that it is on the same scale as the first two.
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Figure 4.8. Estimation of a 12-th order stationary Markov process using the model of Figure 4.6(a).
(a) Sample-path using exact statistics. (b) Noisy, observations of (a) over [65 : 96]. (c) MAR estimates
(solid line), optimal estimates based on the exact statistics (dashed line), and plus/minus one standard

deviation error bars (dotted lines). (d) Error standard deviation given by the MAR estimator (solid
line) and based on the exact statistics (dashed line).

with three different norms II Pf m - P,,m II: the Frobenius norm, induced 2-norm (maxi-

mum singular value), and maximum absolute value of the difference I Pf m - P,,m 1. We

point out that, in our realization procedure, we are not explicitly minimizing any of

these norms. Figure 4.7 illustrates the value of these three norms as a function of bound-

ary size. As expected, modeling fidelity improves as boundary size increases. Notice

that boundary size k = 3 seems to be the appropriate choice under these norms since

negligible improvement can be expected for larger sizes and substantial degradation

obtains for smaller sizes.

As pointed out previously, the most significant modeling errors occur for samples

that are close spatially but distant on the tree. In our next example, we explore the

impact of this phenomena on an estimation problem that is, in some sense, most likely

to test this modeling weakness. Figure 4.8(a) is a sample-path of a 12-th order sta-

tionary Markov process. Figure 4.8(b) illustrates noisy and incomplete measurements
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of Figure 4.8(a). Measurements are taken only over the interval [65 : 96] which is
just to the right of the largest tree boundary and the point of greatest modeling error.
The white measurement noise has variance 0.3. Figure 4.8(c) shows the output of the
MAR estimator based on the model associated with Figure 4.6(a) (solid line) with one
standard deviation error bars (dotted lines). The optimal estimate based on the exact
statistics is also plotted (dashed line) in Figure 4.8(c). We can see that the largest
estimation error due to modeling occurs just to the left of the largest tree boundary
(left of sample 64) as expected given the pattern of modeling error in Figure 4.6(b) and
our measurement locations. Nevertheless, the differences between the optimal and the
MAR estimates are well within the one standard deviation error bars and, therefore,
are not particularly significant statistically. In Figure 4.8(d) we have plotted the MAR
error standard deviations (solid line) and the optimal error standard deviations (dashed
line). Again, the most significant errors are just to the left of sample 64 as expected
and are small.

0 4.3.2 Two-Dimensional Processes

Wood Texture

We now turn to some image processing examples. First, we consider building a MAR
model for a Markov random field that mimics the texture of wood [112]. An exact
64 x 64 sample-path 6 is illustrated in Figure 4.9(a). Notice that this wood texture
is highly correlated vertically and less so horizontally. Figure 4.9(b) is a sample-path
generated by a MAR model with state dimension d = 16. A distracting blockiness is
apparent in this figure and is due to the quad-tree structure of our model and the small
state dimension. Additionally, the extreme directionality of the wood texture makes
this blockiness particularly easy to see. In some applications such blockiness is of no
practical significance while in others, such as surface reconstruction where gradients
must be taken [69], smoothness is required.

There are two techniques for reducing blockiness. One is to increase the state di-
mension. This is illustrated in Figure 4.9(c) which is a sample-path based on a MAR
model with state dimension d = 64. Unfortunately, increasing the state dimension leads
to less efficient image processing algorithms. However, there is another approach: the
overlapping tree approach [63,96,97] discussed in Section 2.3.4. A sample-path for a
MAR model based on this overlapping approach with state dimension d = 16 is illus-
trated in Figure 4.9(d). Finally, Figure 4.9(e) represents a sample image from a model
constructed again using the overlapping approach but in this case also employing the
boundary approximation. The boundary size is k = 1 which corresponds to condition-
ally decorrelating MAR variables with those residing at nodes one pixel away. Notice
that there are no blocky artifacts in either Figure 4.9(d) or Figure 4.9(e), and both
models produce wood textures comparable to that in Figure 4.9(a).

6To compute exact sample-paths for random fields we use the FFT techniques described in [56].
Note that this requires 0 (N log N) computations while MAR sample-path generation is 0 (N)
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Figure 4.9. Sample-paths for wood texture of [112]. (a) Exact. (b) MAR model (d = 16). (c) MAR

model (d = 64). (d) MAR model based on the overlapping tree approach (d = 16). (e) MAR model
based on the overlapping tree approach with boundary approximation (d = 16, k = 1).

Isotropic Random Field

Next we consider sample-path generation of a two-dimensional, isotropic random field
of interest in the geological sciences [103,169]. The correlation function is

I _ 3,y + 103 if 0 < 0 < f,
ri V 27 (4.17)

0 if 'O > f

V%7--where o 2 + j2 and i, j are indices into a two-dimensional grid. An exact sample-
path for i = 40 is illustrated in Figure 4.10(a). In Figure 4.10(b) and Figure 4.10(c)
we provide a sample-path associated with a MAR model with state dimension d = 16
and d = 64, respectively. In Figure 4.10(d) the overlapping tree approach is used
with d = 16. Finally, in Figure 4.10(e), the boundary approximation is employed with
boundary size k = 1 in conjunction with the overlap method (d = 16). As in the
previous example, little degradation is evident when the boundary approximation is
used.



90 CHAPTER 4. SCALE-RECURSIVE STOCHASTIC REALIZATION

2

2.5

1 21.5

30 0 130
0.5

40 1 40 0

3 -0.610 so so
-2 -1

20 60 60 -1.5

10 20 30 40 50 60 10 20 30 40 60 60
0 1

40 0 (b) (C)
50 2.5 2

-1 10 2 10

-2 20 1.5 20
10 20 30 40 so 60 1

30 0.5 30 0

(a) 40 0 40
.5,5 0.5

-1
6 -1, 60 -1,

10 20 30 40 50 60 10 20 30 40 50 60

(d) (e)

Figure 4.10. Sample-paths for the isotropic random field of (4.17). (a) Exact. (b) MAR model

(d = 16). (c) MAR model (d = 64). (d) MAR model based on the overlapping approach (d = 16). (e)
MAR model based on the overlapping approach with boundary approximation (d = 16, k = 1).



Chapter 5

MAR-VVavelet Processes

HIS chapter provides a unification of the MAR framework with wavelets.' Al-
Tthough the structure and development of MAR processes was motivated by and
modeled on wavelet synthesis, until now the two frameworks had only been unified in
the simplest case of the Haar wavelet. Recall from Section 2.3.1 that in the case of the
Haar wavelet this unification is quite simple since wavelet and scaling functions do not
overlap. In contrast, incorporating compactly supported and overlapping orthogonal
or biorthogonal wavelets into the MAR framework is less straightforward-particularly
so if we insist on internality. After a review of wavelets in Section 5.1, we show, in
Section 5.2, how to build an internal MAR-wavelet process based on any compactly
supported wavelet.

After developing MAR-wavelet processes, we apply them to the problem of model
identification in Section 5.3. In doing so, we provide a new view of the stochastic real-
ization problem. Previous approaches to the stochastic realization problem (including
those of the preceding chapters of this thesis) focussed on designing internal matrices
that define MAR states to, in some sense, optimally match the statistics of the finest
scale process being modeled. As a consequence, the resulting states typically have
no discernible structure beyond the fact that they represent solutions to specific opti-
mization problems. The approach of this chapter differs in that the design of internal
matrices is not closely tied to the intricate details of the fine-scale statistics. The phi-
losophy which, in part, motivated this work is to restrict the class of linear functionals
that define internal matrices to the small but rich class of wavelet bases. We thus force
the states to contain meaningful multiscale representations of the fine-scale process and
avoid the computationally burdensome search over all possible linear functionals. On
the other hand, the approach in this chapter does bear some resemblance to previous
work on the MAR stochastic realization problem: dynamics of internal MAR-wavelet
models are derived from the fine-scale statistics by exploiting the linear relationship
between coarse-scale and fine-scale states given by the internal matrices.

In order to be consistent with the conventional wavelet notation and to simplify
our presentation, in this chapter we adopt a slightly different notation for referring to
tree-indexed variables. This notation is summarized in Table 5.1 in which the scale of

'Most of the material in this chapter can be found in [43,44].

91
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Variable Other Chapters This Chapte7r

tree node s = (M (s), % (8)) (j, n)
parent node s,;y7 = (m(s) - 1, [%(.s)/2j) 1, [n/2])

left child sal - (m(s) + 1, 2z(s)) (j + 1, 2n)

right child sa2 = (m(s) + 1, 2z(s) + 1) (j + 1, 2n + 1)

state vector X(s) Xj (n)

process noise W(s) Wj(n)

autoregression matrix A(s) Aj (n)

process noise covariance Q(s) Qj (n)

internal matrix WI Wj(n)

local internal matrix Vs Vj (n)

Table 5.1. Notational conventions for Chapter 5.

node s = (m(s),z(s)) is denoted by j m(s) and the shift of node s is denoted by

n A Z(s).

N 5.1 Wavelet Background

This section provides a brief review of wavelets; additional details may be found in

[31,32,46-48,133,134,141,156,173-175]. The wavelet representation of a continuous-

time signal id (t) consists of a sequence of approximations of O (t) at coarser and coarser

scales where the approximation at the j-th scale consists of a weighted sum of shifted

and dilated versions of a basic function 0 called the scaling function. By considering the

incremental details added in obtaining the j-th scale approximation from the approxi-

mation at scale j - 1, one arrives at the wavelet transform based on a single function

called the analyzing wavelet.

The reconstruction is performed using the functions, called the synthesis wavelet,

such that the two families f'oj,,n I (j,,,,) EZ 2 and f �jn I (j,,) EZ 2 are a biorthogonal Riesz basis

2of L (R) where Oj,,,(t) _" v/'2j,0(2it - n) and similarly for 0jn. The synthesis wavelet

is obtained from the function 0 which is dual to 0, i.e., which satisfies

(O(t), �(t - n)) = 6(n) (5.1)

where < - > is the standard inner product in L 2(R) and J(.) is the discrete-time Dirac

function given by

I ifn=O,

6(n) 0 otherwise. (5.2)
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The scaling functions 0 and � must satisfy

0(t) = N/-2- E h(n)0(2t - n) (5.3a)
n

0(t) = V2 (5.3b)
n

where h and � are discrete filters satisfying the biorthogonality condition in f2p

�7 h(k)�(k - 2n) E �(k)h(k - 2n) J(n) . (5.4)
k k

The wavelets and � are given by

(t) = V2 (5.5a)
V/_ n

2 E �(n) �(2t - n) (5.5b)
n

where

g (n) n), (5.6a)

�(n) (-1)1-nh(l n). (5.6b)

The discrete filters h, g, � and � must satisfy the perfect reconstruction condition which
can be found in [134]. When h = � and 9 = �, then h is a conjugate mirror filter and
the family 1'Oin1Un)EZ2 constitutes an orthonormal wavelet basis of L2(R).

The fast wavelet transform computes the wavelet coefficients of a discrete signal.
The fast wavelet decomposition algorithm is

aj (n)=E h(p - 2n)aj+l (p) (5.7a)
P

dj (n) = E g(p - 2n)aj+l (p) . (5.7b)
P

The reconstruction algorithm is

aj+,(n) = �7�(n - 2p)aj(p) + E �(n - 2p)dj(p). (5.8)
P P

The variables aj (n) and dj (n) are called, respectively, the scaling and detail coefficients
at the j-th scale and n-th shift. In Section 2.3.1 we discussed (5.7) and (5.8) for the
special case of the Haar wavelet, the latter of which is illustrated in Figure 5.1.

In the remainder of this chapter, we consider only the case when h and � are
finite impulse response (FIR) filters, i.e., when they have a finite number of non-zero
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aj-1 +
dj- 1 (n12) (n12 + 1)

aj(n) aj(n+l) aj(n+2) aj(n+3)

Figure 5.1. The Haar dependency graph is a dyadic tree. Here, n is even.

aj-1 ( - aj-1 aj-1 +

djj (n12-1) djj (n12) djj (nl2+1)

aj(n-1) aj(n) aj(n+]) aj(n+2)

Figure 5.2. Dependency graph for the Daubechies 4-tap filter. Here n is even.

coefficients. For sake of notational simplicity, we assume that the lengths of h and
are both even. Without loss of generality, we choose

supp(h) = [-R + I : R] and supp(�) = [-F? + F?] (5.9)

for some integers R and _� such that F? > R > 1. Thus, using (5.6) we have

supp(g-) = [-R + 1 : R] and supp(g) = [-k + I F?]. (5.10)

We also assume that R and F? have the same parity. We point out, however, that all
the results in this chapter hold for all perfect reconstruction FIR filters with minor
modifications.

The wavelet reconstruction algorithm (5.8) defines a dynamical relationship between
the scaling coefficients aj(n) at one scale and those at the next finer scale, with the
detail coefficients dj (n) acting as the input. Note that these dynamics are with respect
to scale rather than time. This suggests that it is natural to think of constructing MAR
processes within the wavelet framework. This construction is, in fact, obvious in the case
of the Haar wavelet because each scaling coefficient depends only on time-synchronous
parents2 as discussed in Section 2.3.1 and illustrated in Figure 5.1. The link between
MAR processes and wavelets is not obvious if one considers wavelets other than those

2The time-synchronous parents of aj(n) (or di(n)) are aj-,(Ln/2]) and dj-l(Ln/2j).
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in the Haar system. This is due to the overlapping supports of such wavelets (which
does not occur in the Haar case). Indeed, to compute a scaling coefficient aj(n) one
needs not only the time-synchronous parents of aj(n) but also a number of neighboring
coefficients depending on the supports of the analysis and synthesis wavelet. Thus, if
we build a multiscale process where the states are defined as in the Haar case, i.e.,
Xj(n) = [aj(n) dj(n) ]T , but where we consider that the scaling and detail coefficients
are computed using more regular wavelets, we will end up with a more complex graph
structure of the scale-to-scale autoregression instead of a tree. This is illustrated in
Figure 5.2 in the case of the Daubechies 4-tap, filter [46-48].

In order to unify wavelets and MAR processes, the first issue, then, is to redefine
the states so as to arrive at a tree dependency structure rather than a more complex
graph. We will see that this can be done easily using state augmentation. The second
and more difficult issue we must address is how to provide internality. These two issues
will be the focus of the next section.

0 5.2 MAR-Wavelet Processes

In this section, we first address the issue of defining the states of a MAR-wavelet process
to obtain a tree dependency structure. We then address the issue of internality.

0 5.2.1 Tree Structure for Synthesis

To see the intuition behind how to define the states in order to arrive at a tree structure,
let us consider the simple case where h is the Daubechies 4-tap filter [46-48]. In this
case, we have supp(h) = [-1 : 2]. Then, the wavelet reconstruction algorithm (5.8)
implies that for every even integer n,

n n
2 2

aj(n - 1) E h(n - 2p - 1)aj-,(p) + E g(n - 2p - 1)djj(p), (5.11a)
P.nj P. n -1

2 2

n n
2 2

aj(n) E h(n - 2p)ajj(p) + E g(n - 2p)djj(p), (5-11b)
P=n_l P=n-l

2 2

n+1 n+1
f 2

aj(n + 1) E h(n - 2p + 1)ajj(p) + E g(n - 2p + I)dj-l (p) , (5.11c)
p=n P.n

2 2

n+1 n+1
f 2

aj (n + 2) E h(n - 2p + 2)aj-, (p) + 1: g(n - 2p + 2)dj-l (p) (5-11d)
P=n p=n

2 2
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aj-1 (n12)

dj- I (n12-1) dj- I (n12) dj- I (nl2+])

(n-1) aj(n) aj(n+]�

j(n-1) dj(n) dj(n+l),'

Figure 5.3. Through state augmentation, the dependency graph for the Daubechies 4-tap filter can
be made into a tree. Here n is even.

Therefore, for every j = 0, M and for every n = 0, 2i - 1, if we choose each
state xj (n) to be

aj(n - I)-
aj (n)

xj(n) aj(n + (5-12)
dj(n - 1)

dj (n)
Ldi(n + I)j

it is clear from (5. 1 1) that the scaling coefficients carried within each xj (n) depend only
on the parent xjj (Ln/2]) of xj (n) (see Figure 5.3).

In the general case (i.e., for any orthogonal or biorthogonal compactly supported
wavelet), for every j = 0, M and for every n 0, ... , 2i - 1, the state at scale j and
shift n is defined as

aj(n - R + 1)

aj(n + R - 1) if 0 < j < M,
dj (n - F?+R + 1)

xj (n) 2 (5-13)

dj (n + k+RL 2

aj (n) otherwise.

The details showing that (5.13) implies that each state depends only on its parent, can



Sec. 5.2. MAR-Wavelet Processes 97

be found in Appendix C. We then can show that

Aj(n)xj_1(Ln/2])+wj(n) ifO<j<M,
xj (n) (Aj(n)xj-l (Ln/2]) if =M. (5.14a)

where

0

0
wj (n) (5.14b)dj (TI R+R + 1

2

dj (n + R+R -2

and where the first 21� - I entries of wj (n) are zero. The proof of (5.14a) and the
expression for the matrices Aj (n) can also be found in Appendix C. Assuming that w (.)
is a white noise process uncorrelated with the root node state xO (0), (5-14a) represents
a MAR process with dynamics matching the reconstruction algorithm associated with
any compactly supported orthogonal or biorthogonal wavelet. In the sequel, we refer
to this process as the standard MAR-wavelet process.

M 5.2.2 Augmentation for Internality

If the coefficients dj(n) are considered as the detail coefficients computed using the
wavelet decomposition algorithm and thus are deterministic inputs, then (5-14a) and
(5.14b) is just a rewriting of the wavelet reconstruction algorithm (5.8). If, on the
other hand, the coefficients dj(n) are generated as random variables, then (5.14a) and
(5.14b) constitute a statistical model for a fine-scale process. However, almost surely,
the states generated by this model do not consist of scaling and detail coefficients of
the realized fine-scale process xM. This is because the standard MAR-wavelet process
is not internal. Indeed, as shown in Chapter 3, a necessary and sufficient condition
for internality is that each state depends linearly on its immediate children. However,
for each state xj(n), only aj(n) and dj(n) can be expressed as linear functions of the
children states. From the wavelet decomposition algorithm, one can easily see that,
when � > 1, each state of the standard MAR-wavelet process is not a linear function
of just its immediate children but of range of states at the next finer scale depending
on the supports of the scaling functions.

The question now is how to build an internal MAR-wavelet process in order to
ensure that the states consist of scaling and detail coefficients of the realized fine-scale
process. This issue is, in fact, the one which seemed to doom the union between MAR
processes and wavelets, and one of the contributions of this chapter is to solve this
problem. This will be done by exhibiting and exploiting some relationships between
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scaling and detail coefficients and by appropriately modifying the state definition. We
emphasize that this is purely deterministic analysis.

As explained above, the states of the standard MAR-wavelet process contain the
information necessary for synthesis. To achieve internality, we need to augment each
state so that the children of each state contain all the information necessary for analysis.
Before showing how we augment the states, we need the following intermediate result
which allows us to add only a few coefficients in the process of defining internal states.

Proposition 5.2.1. There exist four matrices LI, J1, L2, J2 such that

dj (n - R R + aj(n-R+I) aj+l (2n - T? +
2

L + J, (5.15a)

L dj(n - 1) Laj (n - 2 _j Laj+I (2n + R - 2)_j
1) k-R

dj(n + aj (n + 2 aj+1(2n - R + 3)

L2 + J2 (5-15b)
k+R

Ldi (n + _2 L aj(n+R-1) L aj+l (2n + R)

Proof. See Appendix C.

Proposition 5.2.1 tells us that the detail coefficients that are contained in state xi (n) of
the standard MAR-wavelet process (cf., (5.13)) can be expressed in terms of the scaling
coefficients in xj(n) and the scaling coefficients of the child states of xj(n), namely
Xj+1(2n) and xj+1(2n + 1). As we now show, the significance of this fact is that, in
order to achieve internality, we need only augment xj+l (2n) and xj+l (2n + 1) with a
relatively small number of scaling coefficients and need not include any additional detail
coefficients.

The idea behind constructing internal states is to define new states Xj (n) in such a
way so that the left child of xj(n) contains

aj(n-R+I)

(5.16a)

aj(n - R-R - 1)_2

and the right child of xj(n) contains

-a (n + R-R + I)-3 2

(5.16b),,jr
- aj(n + R - 1)

However, having copied and ar from xj (n) to its children xj+l (2n) and xj+l (2n + 1),
�3

we must continue to pass and a� down to the children (and grand-children and so
-3

on) of xj+1(2n) and xj+1(2n + 1) to maintain internality. Of course we must do this



Sec. 5.2. MAR-Wavelet Processes 99

for all j and n. This seems to suggest that the state dimensions will explode. However,
by simply splitting at each step the necessary information between the two children,
the state dimension remains bounded. The construction of the states is depicted in
Figure 5.4 in the simple case of Daubechies 4-tap filter. To define rigorously the internal
states in the general case, we define recursively the sequence of partitioned vectors:3

ao (-J� +

GI (0) ao (_ R-R - i2

(0) - - - - - - - - - - - (5.17a)
�2 (0) (F?-R + 1)

L 0 ao 2

L ao

and for j 1,... M and n 0,... 2j - 1,

1(n/2)
----------

aj-1 (n/2 - T? + if n is even,

aj-1 (n/2 - F?-R _ 1

�j (n) A - A (5.17b)

(n)3 (Ln/2])
-----------

aj-1 ([n/2] + R-R + if n is odd.2

aj-1 (Ln/2j 1)

We then have the final result in which we have augmented the states corresponding to
the standard MAR-wavelet model in order to achieve internality.

3The notation -_ - - means that a = c and b = d.
'b d'
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Proposition 5.2.2. The MAR process for which the states are defined by

ao +

ao
d 0 (_ F?+R + if i 0

2

do (R+R
2

al(n-R+I)

a, (n +

di (n - k+R + if i I
Xj (n) 2 (5.18)

di (n + R+R -2
�n+l (0)

L 0

ai (n + 1)

aj (n +
dj (n - T?+R + 1) otherwise

2

dj (n + R+R - 1)2

�j (n)

is internal.

Proof. See Appendix C.

We refer to this new process as the internal MAR-wavelet process. Notice that the
size of each �j(n) is F? + R - 2. Thus the maximal state dimension of the internal
MAR-wavelet process is 4F? + 2R - 4. With Proposition 5.2.2, we have shown how
to build internal MAR processes based on any compactly supported orthogonal or
biorthogonal wavelet. For future reference, we point out that Proposition 5.2.1 and the
wavelet analysis equation (5.7a) implicitly define the local internal matrices fVj(n)j
each of which relates a state to its children states. Moreover, each state depends only
on the scaling coefficients of its children states and not on the detail coefficients. This
completes our unification of wavelets with MAR processes.
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ao(l)
d (4)

a,

a, a,
dl(-]) d 0

di(])
ao(--I)

a
a

a2(1) a2(2) a2(3) a2(4)
d2(-]) d2(0) d 2(1) d2(2)

Id,(O) 7,77)
d2 (1 d2(2) d2(3) d2(4)
ao(- a0N) ao(l) ao
a, a, a, a,

a, a3 a, a, a, a3

a3(2) a3(3) a3(4 a3(5) a3 (6) a3 a3(8
d3 (0) d3 (1) d3 (2)) d'(3) d3(4) d3(5) d '(6))

d (2) d (3) d (4) d3(5) d3(6) d3 (7) d3(8)
a, a, ao a a (0) a (1) a (2)

2 a2

Figure 5.4. Example of the internal MAR-wavelet process with the Daubechies 4-tap filter. Scaling
coefficients in bold illustrate the necessary information transmitted from one scale to the next. The
boxed coefficients axe a lineax function of the coefficients of their children by virtue of the wavelet
decomposition algorithm.
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0 5.3 MAR-Wavelet Models

In this section, we apply the MAR-wavelet processes developed in the previous sections
to the problem of modeling a fine-scale random signal, f M. The standard MAR-wavelet
process, defined by (5.14a) and (5.14b), can be used as an approximate model for a
stochastic process by assuming that the detail coefficients are white noise. We will
call this model the standard MAR-wavelet model. However, the states realized using
this model are not consistent with the fine-scale realized process xM in the sense that

Mthese states do not represent, with probability one, scaling and detail coefficients of x
This is because of the lack of internality, as discussed in Section 5.2.2. Notice that the
assumption of the whiteness of w(.) (defined by (5.14b)) is an approximation if F? > 1.
Indeed, for n and m such that 0 < in - ml < R +.� - 2, it is clear that, at a given scale
j, wj(n) and wj(m) are correlated since they share at least one detail coefficient.

By achieving internality, the states of the internal MAR-wavelet process (5.18) are
forced to be consistent with the fine-scale realized process. We can use the internal
MAR-wavelet process to build what we shall call the internal MAR-wavelet model to
approximate the given statistics of a fine-scale process. Given these fine-scale statistics
and using internality, the statistics of any MAR state and the statistics between each
state and its parent are readily computed as we have seen in previous chapters. As a
result, we can immediately define the linear dynamics of a MAR model, dynamics that
incorporate optimal prediction from parent to child. The prediction errors are then
modeled as white driving noise in order to satisfy the Markov property.

The implications of this are twofold. First, the resulting internal model, in general,
produces fine-scale statistics that only approximate the desired ones (because of our
insistence on modeling the coarse-to-fine prediction errors as white). To be sure, our
internal MAR-wavelet model does produce the correct marginal statistics at each node
and the correct joint statistics for each state and its parent, but other statistics (e.g.,
cross-covariance for two nodes at the same scale) are only captured approximately. The
second point is that the coarse-to-fine dynamics so defined are in general very differ-
ent from standard wavelet modeling. In particular, these dynamics exploit correlation
between detail coefficients and coarser scale scaling and detail coefficients by perform-
ing optimal prediction and then assuming that only the errors in these predictions are
white. This is in marked contrast to one common approach in using wavelets for model-
ing stochastic processes in which the detail coefficients are themselves modeled as white
(i.e., the wavelet representation is assumed to be the Karhunen-Loeve decomposition).
In our case, since we allow MAR dynamics, we do not need to have K-L diagonalization.
Rather, the success of our method in approximating stochastic processes relies only on
the weaker requirement that the errors in predicting finer scale detail coefficients from
coarser scale coefficients are white. As we illustrate, an implication of this is that we can
use fairly short wavelets, implying lower state dimensions, which certainly do not do
a good job of whitening the details (as evidenced by our results using the non-internal
standard MAR-wavelet models), but which do remarkably well for our internal models.

Using the optimal prediction procedure of the internal MAR-wavelet model, we thus
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incorporate a synthesis algorithm for the detail coefficients themselves, in addition to
the usual wavelet reconstruction algorithm for the scaling coefficients. The initialization
for this new synthesis algorithm is given by the statistics of the scaling and detail

= WO(O)pcoefficients contained in the root node state, P fmWO(O)T�,o (0) . To specify the
dynamics for the detail coefficients which complement the usual synthesis algorithm for
the scaling coefficients (cf., (5.8)), let dj (n) represent the detail coefficients carried by
the state xj(n) defined by (5.18), then

dj(n) = Pd (n)xj_1(Ln/2J )P-1 1 (Ln/2J) xj_1 (Ln/2]) + i�j (n) (5-19)!±i Xi-

where the covariance matrix for i�5j(n) is

X_ I PT (5.20)
POj(n) = Pd.(n) - Pd-(-)-j-1(Ln/2J)P i_1(Ln/2J) dj(n)xj_1(Ln/2J)�3 �3

The matrices -1�di(n)i Pd.(n)xj_1(Ln/2J)) and Pxj-l(Ln/2j) are submatrices Of Pxj(n) and

Pxj(n)xj_1(Ln/2J), the state covariance and child-parent cross-covariance. These are com-

puted, as described in previous chapters, via

Pxj(n) = Wj(n)PfmWj(n)T' (5.21a)

Pxj(n)xj_1(Ln/2J) = Wj(,n)PfmWj_1([n12J )T (5.21b)

where the internal matrices Wj(n) are implicitly given by Proposition 5.2-2. Note that

only the detail coefficients have a driving noise component and the dynamics of the

scaling coefficients are deterministic. This property is what ensures that our models

are, in fact, internal. Indeed, as discussed at the end of Section 5.2, the local internal

matrices, Vj(n), for an internal MAR-wavelet process only act on scaling coefficients.

The detail coefficients are in the null-space of Vj(n). Since the driving noise is in the

null-space of Vj(n), the relationship

xj (n) = Vj (n) Xj+j (2n) (5.22)
xj+1(2n + 1)

is deterministic and the model is internal (recall our discussion of this point in Sec-

tion 4.1.2).

The prediction errors �j(n) are not white in general. This can be easily seen from

the fact that the states of the internal MAR-wavelet model contain duplicated detail

coefficients. Yet, we assume that the prediction errors �j(n) in (5.19) are white noise

so that we arrive at a MAR model. This internal MAR-wavelet model is, therefore,

approximate. Note that an advantage of the internal MAR-wavelet model and, in fact,

of any internal model is that it achieves the correct variances (i.e., the diagonal elements

of Pxm match exactly those of Pf M) -

We emphasize another important point. In real world problems, the user may not

know how to choose the appropriate wavelet which will do a good job in decorrelating

the process under study. Thus, the resulting detail and scaling coefficients may be
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strongly correlated. In this case, our internal MAR-wavelet model based on optimal
prediction from parent to child may still be quite accurate because it exploits these
potential correlations, as well as those between detail and scaling coefficients. We will
illustrate this later in our examples.

In Section 2.3.1 we compared the standard MAR-Haar model with the internal one
for modeling fBm. Recall that with the Haar wavelet, the detail coefficients which are
not neighbors (in space and scale) are in general strongly correlated. Therefore, even
with the optimal prediction procedure of the internal MAR-Haar model the resulting
realized covariance matrix is quite crude (see Figure 2-3) since it captures only the
correlations between a detail coefficient at a given scale and the time-synchronous detail
and scaling coefficients at the previous coarser scale.

One way to overcome the limitations of the Haar wavelet is to build an internal
MAR-wavelet model using an analyzing wavelet with a large number of vanishing mo-
ments. With such a wavelet, the detail coefficients which are not neighbors in space and
scale will, in general, be better decorrelated and the potential correlations will reside
only between neighboring coefficients. Then, our optimal prediction procedure will ex-
ploit these residual correlations between detail and scaling coefficients and do the best
job in linearly predicting the detail coefficients.

However, this is not the only solution. One can still build accurate models without
necessarily using an analyzing wavelet with large number of vanishing moments. Indeed,
all we need in order to have accurate models is to provide a good approximation to
the Markov property. Therefore, accurate models will be provided using any wavelet
yielding scaling and detail coefficients such that the states they form approximatively
fulfill the conditional decorrelation role of the Markov property.

0 5.3.1 Realized Covariance Examples

In this section, we apply our MAR-wavelet models to approximate the statistics of fBm
using different wavelets. Figure 5.5(a) and Figure 5.5(b) show Pfm for 64 samples of
fBm(O.3) and fflm(0-7), respectively, on the interval (0, 1]. For purposes of comparison,
Figure 5.5(c) and Figure 5.5(d) illustrate lpfm - P,,m I where P p

.,m has been com uted
using the scale-recursive, predictive efficiency realization method of Section 4.1 (with
state dimension 8) and Pfm is from Figure 5.5(a) and Figure 5.5(b), respectively. We
will compare internal MAR-wavelet models to these predictive efficiency models and to
standard MAR-wavelet models which assume the whiteness of the detail coefficients.
We use the Daubechies orthogonal wavelet with 2 vanishing moments (Daub4), the
Daubechies orthogonal wavelet with 3 vanishing moments (Daub6), the spline biorthog-
onal wavelet (Spline13) such that4 fj(Z) (respectively H(z)) has 3 (respectively 1) zeros
at z = -1, and the spline biorthogonal. wavelet (Spline3l) such that ft(z) (respectively
H(z)) has 1 (respectively 3) zeros at z = -1.

Figure 5.6(a), Figure 5.6(b), and Figure 5.6(c) display the element-wise absolute

'H(z) (respectively iY(z)) is the z-transform [144,145] of h(n) (respectively �(n)).
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Figure 5.5. (a) Exact covariance matrix Pf m for 64 samples of fBm(O-3) on (0, 1]. (b) Same as (a)
but for fBm (0. 7). (c) I Pf m - P,, m Iwhere P,,m is based on the method of Section 4.1 (state dimension

8) and Pf m is from (a). (d) Same as (c) but Pf m is from (b).

value of the difference between Pfm and P,,m obtained by the standard MAR-wavelet
model for an fBm(O-3) using, respectively, Daub4, Daub6, and Spline13. The im-
provement with respect to the standard MAR-Haar model of Section 2.3.1 is clear, as
expected, since we are using analyzing wavelets with more than 1 vanishing moment.
However, the approximation is not satisfactory which is not surprising since the detail
coefficients are not exactly decorrelated using these wavelets. Note that Daub6 does
better than Sp1ine13 because Daub6 is an orthogonal wavelet and is smoother than the
analyzing wavelet of Spline13.

Now, with the internal MAR-wavelet model, the detail coefficients are no longer
assumed to be white noise. Instead, they are computed using the optimal prediction
procedure described previously. Therefore, the internal MAR-wavelet model will bet-
ter approximate the statistics of fBm. Figure 5.7(a), Figure 5.7(b), and Figure 5.7(c)
display the element-wise absolute value of the difference between Pf m for
fBm(O.3) using, respectively, Daub4, Daub6, and Spline13. The improvement with
respect to the standard MAR-wavelet model is clear. Figure 5.8(a), Figure 5.8(b),
and Figure 5.8(c), display the same element-wise absolute value of the difference ob-
tained using the internal MAR-wavelet model for fBm(O.7). Note that the internal
MAR-wavelet models do not perform as well as the internal models based on predictive
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efficiency developed in Section 4.1, even in cases for which the internal MAR-wavelet
model has a higher state dimension than its predictive efficiency counterpart. This
can be seen by comparing the images in Figure 5.7 and Figure 5.8 with Figure 5.5(c)
and Figure 5.5(d), respectively. All of the internal MAR-wavelet models considered in
these figures produce errors two or more orders of magnitude larger than the predictive
efficiency models. This fact is not surprising considering that the predictive efficiency
method is based on selecting internal matrices to provide optimal conditional decorre-
lation given a state dimension constraint. In contrast, the MAR-wavelet method avoids
solving optimization problems by simply selecting the internal matrices from a wavelet
basis.

To illustrate, in the case of fBm, the fact that even with relatively non-regular
wavelets, our internal MAR-wavelet model can provide very accurate models, we use
the biorthogonal wavelet Spline3l. The analyzing wavelet for Spline3l has only I van-
ishing moment and the synthesis wavelet is extremely singular (see Figure 5.9). Fig-
ure 5.10(a) displays the element-wise absolute value of the difference between Pfm and
P,,m using the standard MAR-wavelet model. One sees that the approximation is ex-
tremely bad, which is not surprising given the properties of Spline3l and the weakness
of the assumption that the detail coefficients are white. However, using the internal
MAR-wavelet model, the approximation is very accurate as displayed in Figure 5.10(b).
Furthermore, notice that this approximation is more accurate than the one illustrated
in Figure 5.8(c) in which the state dimension is larger. Indeed, in Figure 5.10(b) we
have R = F? = 2 and thus the maximum state dimension is 8 while in Figure 5.8(c)
we have R = F? = 3 and thus the maximum state dimension is 10. This shows the
power of the optimal prediction procedure in approximating the Markov property even
without considering analyzing wavelets with a large number of vanishing moments. Not
surprisingly, however, the errors of Figure 5.10(b) are orders of magnitude larger than
those of the predictive efficiency model of Figure 5.5(d).

0 5.3.2 Sample-Path Generation and Estimation Examples

Next, we use the fast signal processing algorithms associated with the MAR frame-
work to synthesize fBm sample-paths and to perform estimation from incomplete mea-
surements corrupted by nonstationary noise. Figure 5.11(a) and Figure 5.11(b) dis-
play 256-point sample-paths using the internal MAR-wavelet model with Daub,6 for
fBm(0.3) and fBm(O.7), respectively. Figure 5.12(a) displays an exact 64-point realiza-
tion of fBm(O.3). Figure 5.12(b) displays noisy observations of Figure 5.12(a) where
observations are only available on (0, 1/3] (over which the white measurement noise has
variance 0.3) and (2/3, 1] (over which the white measurement noise has variance 0.5).
Figure 5.12(c) displays the MAR estimates based on Figure 5.12(b) using the internal
wavelet model with Daub,6. The MAR estimates are the solid line and the optimal esti-
mates based on the exact statistics are the dash-dot line. The plus/minus one standard
deviation error bars are the dashed line.

Figure 5.12(d)-Figure 5.12(f) illustrates the same processing but for fflm(0.7). No-
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Figure 5.6. JPf m - P,,m I for fBm(O.3) using the standard MAR-wavelet model. (a) Daub4 (state
dimension 6). (b) Daub6 (state dimension 10). (c) Spline13 (state dimension 8).
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tice that in both Figure 5.12(c) and in Figure 5.12(f) the optimal estimate based on
the exact statistics is not easily distinguishable from the MAR estimate since the two
nearly coincide. Also, the estimation error standard deviations that the MAR estima-
tor provides are very close to the ones based on the exact statistics (although we have
not plotted the latter in our examples). More importantly, the difference between the
optimal estimate and the MAR estimate is well within the one standard deviation error
bars. This demonstrates that the degree to which our internal MAR-wavelet model
deviates from the exact model is statistically irrelevant.
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Figure 5.12. MAR estimation of fBm(0.3) using the internal MAR-wavelet model with Daub6. (a)
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Chapter 6

Covariance Extension

HIS chapter addresses a major limitation of all previously-developed systematic
TMAR model identification methods (including those presented in the preceding
chapters of this thesis). This limitation is the requirement of complete and precise
knowledge of every entry of Pfm, the covariance matrix of the signal being modeled.
For large problems involving hundreds of thousands or millions of variables, such as
those that arise in geophysical or remote sensing applications [60,99,138,139,143,194],
it is unreasonable to assume that one will have complete knowledge of the statistics
of the underlying processes. Further, even in cases for which every element of PfM is
known, such knowledge is practically useless because, unless structure can be exploited,
the amount of memory required to store Pfm is prohibitive, even for image process-
ing problems of modest size.' Moreover, elements of Pfm about which information is
available are unlikely to be specified with precision. Rather, bounds are likely to be
given.

If the MAR framework is ultimately to be used to address large image processing
problems with the features just described, there is considerable motivation to develop
model identification techniques that do not require complete and precise knowledge of
all of Pf m. In this chapter we take a first step toward this goal. In particular, while we
still require that elements of Pf m are precisely specified (i.e., we cannot accommodate
bounds), we relax the assumption that every element is known. We then address the
problem of building a MAR model that is consistent with the known elements of Pf M
and which implicitly provides reasonable values for the unknown ones (i.e., the realized
covariance matrix must be a valid one and so must be symmetric and positive-definite).

The problem of inferring unknown covariance elements from known ones is the
covariance extension problem which has been extensively studied in recent years. In
particular, much has been written about maximum-entropy covariance extension, its
applications in spectral estimation [22, 23, 101, 147, 171] and VLSI modeling [55], its
connection with autoregressive (all-pole) models [21, 86, 95, 120, 171], and its link to
lattice structures for FIR filters [81,89,117]. We will introduce the maximum-entropy
covariance extension problem in Section 6.1 and indicate in what sense this chapter

'Memory requirements for a covariance matrix associated with a 256 x 256 image are on the order
of tens of gigabytes.
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addresses it. Many of the results on covariance extension are most naturally expressed
in graph-theoretic terms and we provide, in Section 6.2, a brief review of the relevant
graph-theoretic concepts and results. Following this, we review some of the previously-
developed theory regarding covariance extension in Section 6.3. In Section 6.4 we build
upon the known results by providing a Levinson-like algorithm which may be applied to
the computation of covariance extensions under very general conditions. Our ultimate
interest is not in extending a partially specified covariance matrix to a fully specified one
but, rather, in directly building a MAR model for such an extension (without explicitly
calculating every or even most of the unknown elements of Pfm). This is the topic of
Section 6.5 in which we consider MAR models for the maximum-entropy extension of
covariance matrices that are specified on diagonal bands including and adjacent to the
main diagonal. An important result which we show is that building a MAR model for an
extension of this type can be done with vastly fewer computations than finding the full
covariance extension explicitly. Moreover, the computational complexity of building
a MAR model is comparable to that which is obtained by Levinson's algorithm in
designing an autoregressive (AR) time-series model.

0 6.1 Covariance Extension and Completion

In this section we introduce the covariance extension and completion problems and
discuss the classical Levinson algorithm. The covariance extension and completion
problems begin with a partial covariance matrix which we define shortly. Let V =

0, 1, . . . , N - I I and let E be a subset of V x V. Then a partial matrix, PE, is the set2

PE f i, Pij) I (i, j) E El . (6.1)

We shall call E the support set for PE. One can also think of PE as a partially filled
matrix where

pij if (i, j) G E ,
PE (i, A ? otherwise. (6.2)

Hereafter, we will only consider support sets that are symmetric. By a symmetric
support set we mean that (i, j) E E if and only if i) G E. Additionally, in order to
avoid pathologies (to be discussed), we assume that E contains all pairs of the form
(i, i). Notice that if the elements of PE are drawn from a positive-definite covariance
matrix, then every maximal principal minor 3 of PE is positive definite, a property we
denote by PE > 0.

2In other chapters the notation PE denotes a covariance matrix for random vector E. In this chapter
E is not a random vector, and we define objects of the form PE differently as discussed in the text.

'3A principal minor of PE is a subset (which we view as a matrix) of PEgiven by JPE(ij)1(iJ)EcXa
where a x a C E. A principal minor is maximal if it is not a subset (submatrix) of any other principal
minor.
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Definition 6.1.1 (Partial Covariance Matrix). PE is a partial covariance matrix
if it is a partial matrix (i. e., it is a set of the form given by (6. 1)) with PE (i, PE

and PE > 0.

Given a partial covariance matrix PE, the covariance extension problem is to find
another partial covariance matrix PF where E C F and PF C PE so that PF agrees
with PE on the index set E. A partial covariance matrix PF that satisfies these criteria
is called an extension of PE. A covariance completion is a covariance extension with
F = V x V. That is, the covariance completion problem is to find a fully-specified valid
covariance matrix P > 0 that agrees with PE on the set E. If any completion of PE

exists then there exists a unique completion with maximal entropy which also coincides
with the completion with maximal determinant [88,1201. There are two additional
points worth emphasizing. First, PE > 0 is a necessary condition for the existence of
extensions and completions. As we shall see, however, it is not a sufficient condition.
Second, note that the diagonal elements of the partial covariance matrix PE (i.e., PE (i, i)

for i G V) are defined because E contains all pairs (i, i) - This is a necessary, but
not sufficient, condition for the existence of a maximum-entropy completion. Indeed,
if it were otherwise the case then the determinant (and, hence, the entropy) of the
completion could be made arbitrarily large by increasing the value of any unspecified
diagonal element.

The maximum-entropy completion of PE, denoted by PME, can be characterized by
the pattern of zeros in its inverse. In particular, P�4-1 (i, j) = 0 if (i, j) V E (i.e., PE (i, j)E
is undefined). This fact follows from the well-known solution to the problem of finding
the entropy-maximizing probability density function given moment constraints [34,120].
In this case, the entropy-maximizing density has the functional form

C exp E Aijzizj (6.3)
(ij) E E

where C is a normalization constant, Aij is a Lagrange multiplier, and PE(ij)

cov(zizj) are the given constraints. The form of the density of (6.3) is Gaussian
(i.e., it has the form Cexp(- IZTp-IZ) ) and clearly indicates that P -1 (i, j) = 0 for2 �4 E
(i, j) V E.

In this chapter our ultimate goal is not to compute PME but, rather, to design a
MAR model for it. As we have noted in previous chapters, often an implicit representa-
tion of a covariance matrix is of greater practical utility than an explicit one. Implicit
representations in the form of -parameterized stochastic models often have structure
that can be exploited to achieve efficiencies in computation and storage. Two such
representations have been discussed in this thesis: MAR and state-space models. The
well-known connection between AR processes4 and maximum-entropy covariance com-

4An AR process can be written in state-space form as discussed in Section 2.3.2. However, not every
state-space process is an AR process.
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Figure 6.1. PE where E is given by (6.4).

pletion will be discussed shortly. The connection to MAR processes has, until now,
been unknown and is the topic of Section 6.5.

To make the connection between AR models and maximum-entropy covariance com-
pletion, consider the classical and simple case for which PE is specified on 2k +I diagonal
bands that include and are adjacent to the main diagonal (see Figure 6.1). That is, the
support set E is

E _' J(m, n) I Im - nj < kJ. (6.4)

Hence, Pj�', the inverse of the maximum-entropy extension of PE, has zeros off theE
2k +I diagonal bands specified by E. This fact and the correspondence between inverse-
covariance zeros and conditional decorrelation [45,170] implies that PME is a covariance
matrix for a k-th order Markov process. Since any k-th order Markov process can be
written as a k-th order AR (all-pole) process, there exists a state-space model for PME

with state dimension k (as discussed in Section 2.3-2). For the case for which the known
diagonals of PE are constant-valued 5 so that pij pi-j, the autoregression has the form

z(n) = a kz(n - 1) + a kz(n - 2) + - + akZ (n - k) + M(n) (6-5)1 2 k

where p(-) is white and [z(O) z(1) ... z(N - 1)] T has covariance matrix PME. The
superscript k of a� reminds us that the autoregression parameters are associated with
a k-th order model.

We now turn to the problem of computing the parameters of (6.5), a stationary
AR process corresponding to PME, using Levinson's algorithm [21,89,171]. Levinson's
algorithm, in its most basic form, can be used to solve a Toeplitz linear system that
arises in LLS estimation order-recursively by first considering a small linear system
and then sequentially increasing the system's size. This procedure can be harnessed

5This corresponds to the assumption that the known elements of PE correspond to a stationaxy

process. We relax this assumption of stationaxity later.
6A Toeplitz linear system is a system of lineax equations Ax b in which A has constant-valued

diagonals (i.e., is a Toeplitz matrix).
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to compute the parameters of (6.5) order-recursively with complexity O(k 2) as follows.
The first-order LLS prediction of z(n) based on z(n - 1) has the form

V(n) = alz(n - (6.6a)

where

al Pi (6-6b)
1 PO

The superscript of V(n) and a' reminds us that this is a first-order prediction. This
notation is necessary because, for j =A 1, V (n) 0 'z'j (n) and a' zA a where aj is the firstI I I
AR coefficient associated with the j-th order LLS prediction -z'3 (n). For reasons that
will become clear shortly, we define pi A al11

Continuing, the second-order LLS prediction has the form

(n) = a 2Z (n - 1) +a 2Z (n - 2). (6.7)1 2

To obtain a recursion, we need to relate (6.7) to (6.6a). This relation is achieved by
first decorrelating z (n - 2) from z (n - 1) using Gram-Schmidt orthogonalization. Doing
so results in

22(n) = piz(n - 1) +P2 (z(n - 2) - 2[,z(n - 2) 1 z(n - 1)] (6.8a)
I.- I., -.1 I ).1

(n)

where

E[z(n)bl]
P2 = (6-8b)E[bl]2

There are two important things to notice about (6.8a) - First, it is a sum of V (n) and
a term orthogonal to V (n) which we have denoted PA. Second, P, [z (n - 2) 1 z (n - 1)]
is a one-step backward temporal prediction. Due to the assumption of stationarity, this
one-step backward prediction has the same form as the one-step forward prediction of
(6.6a). That is, we may rewrite (6-8a) as

22(n) = piz(n - 1) + P2(z(n - 2) - piz(n - (6.9a)

and, with a bit of algebra,

P2 PIP1P2 = - (6.9b)
(I PDPO

Notice that P2 can be obtained recursively from pi and values of PE.

Analogous reasoning leads to the third-order LLS prediction:

V (n) = piz(n - 1) + P2 (z(n - 2) - piz(n - 1))

+ P3 (z(n - 3) - piz(n - 2) - P2 (z(n - 2) - plz(n - 1))) (6-10)

�2

-----------
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where b2 is orthogonal to the first two right-hand side terms and the only quantity that
needs to be computed is P3- Just as with P2, P3 can be computed recursively and is
based on the previously computed p, and P2 and some elements of PE. Continuing this
order-recursive process, we ultimately arrive at the k-th order LLS prediction -z*(n).
Finally, the k-th order AR model is given by

z(n) = 'z(n) + M(n) (6-11)

where the variance of the white-noise process p(n) is

k
var(p(n)) =Po P2) (6.12)

The parameters pi are called reflection coefficients and are also known as PARCOR
coefficients or Schur coefficients and have the following interpretation. The i-th reflec-
tion coefficient, pi, is the correlation coefficient of z(n) and z(n + i) conditioned on the
i - 1 intervening values fZ(j)1jc[n+1:n+i-11. That is,

Pt' __ � � E[i(n)i(n + i)] (6.13)
var (i(n)) 1/2 var (i(n + i)) 1/2

where

i(n) z(n) - E[z(n) I jz(j)jjE[n+1:n+i-1]1, (6.14a)

i(n + i) z(n + 0 - t[z(n + i) I fZ(j)1jE[n+1:n+i-1]1 (6.14b)

Due to our assumption of stationarity, the reflection coefficients do not depend on n.
Levinson's algorithm can be used to compute recursively the reflection coefficients

which, as shown, can be used to form LLS predictors order-recursively. An impor-
tant fact about Levinson's algorithm is that it establishes a one-to-one correspondence
between the covariance elements fpil and the reflection coefficients fpij. Any valid
set of covariance elements corresponds to a set of reflection coefficients, each of which
is bounded above in magnitude by unity. Therefore, any set of fPjlj>k with jpjj < I
yields a valid AR model corresponding to a particular completion of PE. The maximum-
entropy completion corresponds to setting pj = 0 for j > k. Levinson's algorithm can
be generalized in a variety of ways for application to extension problems other than
the banded one we have considered. For nonstationary banded problems [117,118],
the reflection coefficients depend on n and, so, are doubly indexed. The extra com-
putations required lead to a complexity of 0(k2N) for computing the k parameters
required at each temporal index of a length N process. By allowing the autoregressive
order k to vary with n as well, Levinson's algorithm can be applied to block-banded
extension problems [58,59]. Other generalizations are suggested by the extension prob-
lems considered in [11,33,88,102,120]. Precise characterizations of these problems and
the corresponding generalized-Levinson algorithm are most easily described in graph-
theoretic terms, and we shall return to these topics in Section 6.3 and Section 6.4 after
a review of the relevant graph theory.
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Figure 6.2. (a) Not chordal. (b) Chordal. (c) Not chordal (cycle [t, U, V, W, t] has no chord).

M 6.2 Some Graph Theory

In this section we introduce the aspects of graph theory required for the remainder of
this chapter. For more on graph theory see [18,19,33,85,115,146,186]. A graph G is an
ordered pair of sets G = (V, E) where E C V x V. V is the set of vertices of G and E is
the set of edges of G. We will use the notation vert(G) V and edge(G) "�' E. There
is no loss of generality in assuming that V = to, 1'... , V - 11. An edge of a graph
will be denoted by the pair (a, b) where a and b are vertices. All graphs considered in
this chapter are undirected meaning that if (a, b) is an edge so is (b, a) so that E is a
symmetric subset of V x V. This is equivalent to assuming that (a, b) is an unordered
pair, i.e., that (a, b) = (b, a). A graph is complete if E = V x V.

Associated with any graph G = (VE) is a unique IVI x IVI matrix called the
adjacency matrix. The element in the i-th row and j-th column of the adjacency matrix
for G is one if (i, j) E E and zero otherwise. There is a notion of equivalence among
graphs which can be expressed in terms of adjacency matrices.

Definition 6.2.1 (Isomorphism). Let G' be a graph associated with adjacency matrix
2A' for i = 1, 2. Then G' and G are said to be isomorphic (to one another if A'

RA 2R T for some permutation matrix R.

For a graph G = (V, E), a path of length n from vo to vn is a sequence of distinct
vertices [VO, vi, - - - , VnI such that (vi-1, vi) E E. For example, referring to the graph
of Figure 6.2(c), [t, u, v] is a path from vertex I to vertex 3. A graph is said to be
connected if for every pair of vertices in the graph there is a path between them. All
graphs of Figure 6.2 are connected.

A cycle of length n + I is a sequence of vertices [VO, vi) ... 7 Vn 7 vo] where the sub-
sequence [VO, vi, - - , vn] is a path (of length n) and (vn, vo) C: E. For the graph of
Figure 6.2 (c), [t, u, v, w, t] is a cycle. Throughout this chapter, unless indicated other-
wise, we assume that a graph contains all cycles of length one (self-loops). That is,
(v, v) E E for all v E V. A cycle [VO, vi, - -- , Vn, vo] is said to have a chord if (vi, vj) E E
for 1 < I i - j I < n. The cycle [t, u, v, w, t] of the graph in Figure 6.2 (c) has no chord.



118 CHAPTER 6. COVARIANCE EXTENSION

d

4
5

7
a b

Figure 6.3. The numbers indicate the order in which edges are added to form a sequence of chordal
graphs.

Adding either the edge (t, v) or (u, w) to the graph of Figure 6.2 (c) would provide the
cycle [t, U) V, W, t] with a chord. There are two classes of graphs that are characterized
by properties of their cycles and which are of particular relevance to this chapter: trees
and chordal graphs.

Definition 6.2.2 (Tree). A graph G = (V, E) is called a tree if it is connected and
has no cycles.

It is well-known [146,186] that G = (V, E) is a tree if and only if IVI = JEJ + 1.

Definition 6.2.3 (Chordal Graph). A graph is called chordal (also called triangu-
lated) if all cycles of length greater than three have a chord.

Examples of chordal and non-chordal graphs are illustrated in Figure 6.2.
As will be explained in detail in Section 6.3, the set of edges, E, of a graph G

(V, E) specifies the known elements of a partial covariance matrix. Covariance extension
corresponds to adding edges. In this chapter we are interested in constructing extensions
one element at a time, which corresponds to a sequence of graphs where each subsequent
graph has a new edge. We shall see that sequences of chordal graphs have properties
crucial to the extension problem.

Definition 6.2.4 ((Complete) Chordal Sequence). Let G' = (V, E') be a chordal
graph for i E 10, 1, - - - , nj. Then [GO, G', . . . Gn] is a chordal sequence if E' = E'- 1 U e'
with e' � E'-'. If, in addition, Gn is complete then [G', G',... Gn] is a complete
chordal sequence.

The following important proposition pertains to chordal sequences.

Proposition 6.2.1 Q33]). If G = (V, E) and G' = (V, E') are chordal graphs with
E C E' then there exists a chordal sequence [G, .. - , G'] between them.

Figure 6.3 illustrates a chordal sequence. The edge labels indicate the sequence in which
edges are added (i.e., edge labeled "1" is added first, edge labeled "2" is added second,
etc.). We note that a chordal sequence [G, . . . , G'] that begins with G = (V, E) and
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ends with G' = (V, E') is not unique. Proposition 6.2.1 does not address the problem of
efficiently finding a chordal sequence between G and G'. However, for the special case in
which G' is the complete graph, there exists an algorithm with complexity 0(JVJ + JEJ)
for finding one [88,158]. This algorithm is also easily extended to the special case for
which G contains no edges other than self-loops. For more general circumstances, one
may always find a chordal sequence [GO, G',... , G'] between chordal graphs Go and Gn
by forming graph G' = (V, E') by searching over En - E'-' for an edge that preserves
chordality. For each candidate edge in En - E'- 1, the complexity of checking chordality
is no larger than 0(JVJ + JE'J) [177].

If U C V then by GU = (U, EU) we denote the subgraph of G induced by U where

Eu = f(uv) E E I uv G UJ = En (U x U). (6-15)

A special type of subgraph is given in the following definition.

Definition 6.2.5 (Clique). U is called a clique if GU is a complete subgraph.

Notice that, by definition, a clique is not a complete subgraph, rather it is a set of
vertices that induces a complete subgraph. A clique is maximal if it is not a proper
subset of another clique. Referring to the graph of Figure 6.3, the set la, bJ is a clique
but is not maximal. However, the set la, b, cl is a maximal clique. As we develop in
the sequel, covariance extension will be associated with the maximal cliques of chordal
graphs. One important result upon which we will rely is the following.

Lemma 6.2.1 Q88]). Let G' = (V, El) and G 2 = (V, E2 ) be chordal graphs. Suppose
E2 = El U e where e = (a, b) � El. Then the unique maximal clique of G 2 containing a
and b is of the form Q = f a, bJ U (A n B) where A, B are maximal cliques of G', such
that a G A and b E B.

In the preceding lemma, we have created a new chordal graph G 2 with a new
maximal clique Q out of a chordal graph G' by adding a new edge e = (a, b). We will
call the end-points a and b of e the active elements of the maximal clique Q. This
is illustrated with a specific example in Figure 6.3. Let G' = (VE') be the chordal
graph for which V = fabcdeJ and where El includes edges 1-6 as depicted in
Figure 6.3. Let G 2 = (V, E2) where E 2 contains edges 1-7. When the seventh edge

2(a, b) is added to form graph G , the maximal clique containing the active elements a
and b is Q = f a, b, cl. Notice that Q can be written as Q = la, bJ U (A n B) where
A = f a, c, dJ and B = lb, c, e}, both maximal cliques of the G'.

Consider the set IC of maximal cliques of some graph G and let T be a tree whose
vertex set is IC. Such a tree is called a clique tree or junction tree if it has the following
intersection property.

Definition 6.2.6 (Intersection Property). A tree T = (KS) with IC = IFil, a
family of sets, has the intersection property if Fi n Fj C Fk whenever Fk lies on the
(unique) path from Fi to Fj.
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F, F2 F3

la, b, c b, c, e

Figure 6.4. A junction tree for the graph of Figure 6-3.

Definition 6.2.7 (Junction Tree). Let G = (V, E) be a graph and let IC be the set of
maximal cliques of G. A tree T = (KS) whose vertices are the maximal cliques of G
is called a junction tree if it has the intersection property.

A junction tree for the graph of Figure 6.3 is illustrated in Figure 6.4. Notice that the
vertex labeled F2 = la, b, cl is on the path between F, = f a, c, dl and F3 = f b, c, e}
and contains their intersection. It is shown in [33] that an equivalent definition of a
junction tree is given as follows.

Definition 6.2.8 (Junction 'I'ree II). A junction tree for a graph G = (V, E) is a
tree T = (IC,,F) whose vertex set IC is the set of maximal cliques of G and where for
any v E V, each induced subgraph T)C, is connected (and, hence, a subtree), where K,
consists of those maximal cliques of G that contain v.

The following provides a connection between chordal graphs and junction trees.

Proposition 6.2.2 Q85]). G is chordal if and only if there exists a junction tree for
G.

For any graph J = (L, 9) such that L is a family of sets L = JFij� 1, we will denote
by ucli(J) the set

ucli(J) U Fi. (6.16)
i=l

Notice that when J is a junction tree for some graph G = (V, E) then ucli(J) is equal
to V. The notation ucli(-) is intended to remind us of this fact and stands for "union
of cliques."

0 6.3 Covariance Extension and Chordal Graphs

In Section 6.1 we considered the partial covariance matrix PE where E (m, n)
im - nj < kJ. In this section we consider more general support sets. Any support set
E0 C V x V can be associated with an undirected graph Go = (V, EO) that contains
all self-loops (which are not included in our figures). In this way, covariance extensions
can be conveniently described graphically as follows. Extending PEo by defining one
new covariance element with indices (a, b) V E0 corresponds to adding the new edge
el -A (a, b) to Go. If we define G' = (V, El) where El = E0 U el then, in making
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this one-element extension, we have obtained a new partial covariance matrix PEi.
More generally, an extension from PEo to PE. corresponds to adding n new covariance
elements with indices e' = (a',b') E0. These new indices represent edges rely'

n) where E n EO Un
of graph Gn = (V, E i=l e'. Conditions for the existence of an
extension PE. of PEo are found in the literature and reviewed in this section.

We begin with the case for which En = V x V which corresponds to the problem
of finding a completely specified covariance matrix P such that fli, PEo(ij) for
all (i, j) (E E0.

Proposition 6.3.1 Q33,88]). Completions exist for all values fPEo(iJ)J(iJ)EE- Of

the partial covariance matrix PEo if and only if Go = (V, EO) is a chordal graph.

It is worth emphasizing that when Go is not chordal, there may exist completions for

partial covariance matrices PEo for specific choices of the entries fPEO(iJ)1(iJ)C-EO-

However, if the entries are unconstrained (other than what is required to satisfy P o >E
0), then Proposition 6.3.1 tells us that completions exist for all choices of the entries
exactly when Go is chordal. Since, as shown in Section 6.1, completions exist for banded
partial covariance matrices (cf., (6.4) and Figure 6.1), Proposition 6.3.1 shows that the
graph G = (V, E) where E is as given in (6.4) is chordal.

Consider now the case for which for which EO c En c V x V. Extensions, PEn, of

PEo exist when Go is chordal because we may simply restrict any completion (whose
existence is guaranteed by Proposition 6.3.1) to En. This is not very satisfying, however,
because it implies that one must first compute a completion (which requires inferring
all of the unspecified covariance entries) even if one is interested in an extension to
just a few elements. However, as we show shortly, under certain conditions there is a
way to compute just the covariance entries of interest without computing all of them.
Moreover, there is a way to compute the entries sequentially rather than in batch. In
developing this sequential extension technique, we will rely on the following proposition.

Proposition 6.3.2 Q11]). Let Go = (V, EO), G' = (V, El) be chordal graphs and
e = (a, b) � EO be an edge such that El = E' U e. Let Q be the unique maximal clique
of Gl containing a, b. Let G" = (Q, E' ) be the sub-graph of G' induced by Q for i = 0, 1Q Q
(See (6.15)). If P is the unique maximum-entropy completion of PEo and PE1 is the

Q
unique maximum-entropy completion of PEo . Then PEi (a, b) = fla, b).

Q Q

Proposition 6.3.2 tells us that to find the maximum-entropy value of a specific unknown
covariance element indexed by e = (a, b), one need not find a full completion. Rather,
it is sufficient to consider the completion of the maximal principal minor defined by
the maximal clique Q of Proposition 6.3.2. We emphasize that each maximal clique of
G = (V, E) defines a maximal principal minor of PE. The existence and uniqueness of a
maximal clique Q as defined in Proposition 6.3.2 is guaranteed by Lemma 6.2.1. Since,
in Proposition 6.3.2, Go is chordal, so is Go , hence, completions of PEo and PEo existQ Q
by Proposition 6.3. I. The existence and uniqueness of maximum-entropy completions
P and PE1 is guaranteed by the following proposition.

Q
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Proposition 6.3.3 Q88]). If any completions of PEo exist then there exists a unique
completion with maximal entropy.

Proposition 6.3.2 suggests that we can build up a completion one element at a time
by considering a complete chordal sequence [GO, Gl,... , G n] . Associated with this
sequence is a sequence of edges je'J�' I where e' = (a', b') is added to Gi-' to form
G'. This sequence of edges, in turn, defines a sequence of new maximal cliques Wif
where a', b' are the active elements of Q". By Proposition 6.3.2, we may find the (ai, bi)
element of the maximum-entropy completion of PEi-1 by restricting the problem to
the vertices in Q' and solving this smaller completion problem. The same idea is also
discussed in [33,88].

Building up the maximum-entropy completion with this sequence of one-element
extensions turns a seemingly highly nonlinear problem into a sequence of quadratic
maximizations each of which requires the solution of a linear equation. That is, at
each step we maximize the determinants of a matrix with just one unknown element
indexed by e' = (a', b'). Of course, we are free to terminate this process at any step
and need not find every unknown element. An important property of this sequence of
one-element extensions based on a chordal sequence is that each new covariance element
depends only on ones that have been previously computed (or have been provided in
PEo). Therefore, we may obtain extensions without computing the full completion as
the following corollary states.

Corollary 6.3.1. Let Go = (V, EO) and G' = (V, E') be chordal graphs with E0 C E'.
Let P be the maximum-entropy extension of PEo then the elements of f P(i, Al(ij),EE",

are not a function of fP(iM(ij)�En.

Proof. By Proposition 6.2.1 a complete chordal sequence exists that begins with the
chordal sequence [Go,... , Gn]. Now iteratively apply Proposition 6.3.2 and terminate
the iteration at step n. 0

While Corollary 6.3.1 pertains to maximum-entropy extensions, it can be generalized
to all possible extensions. That is, if Gn and Go are as in Corollary 6.3.1 then any
extension of PEn of PEo can be obtained via a sequence of one-element extensions
associated with a chordal sequence where, at each step, the new covariance value is
constrained only by the previously computed (or given) ones. A constructive proof of
this fact is provided in the following section in which we present a generalization of the
Levinson algorithm discussed in Section 6.1.

0 6.4 A Generalized-Levinson Algorithm

In this section we provide a generalized-Levinson algorithm and illustrate how it can
be applied to the problem of covariance completion and extension. The generalized-
Levinson algorithm is applicable to a substantially broader class of completion problems

7As was stated in Section 6.1, maximizing entropy and maximizing the determinant axe equivalent
[88,120].
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than the classical Levinson algorithm. Indeed, it may be used to compute a completion
of a given partial covariance matrix PEo corresponding to any chordal graph G =
(V, EO). The completion is performed one element at a time, ensuring at each step that
the obtained extension is positive-definite. This corresponds to a sequence of graphs
[GO, G',... ] where G' = (V, E') has one more edge than G'-'. It has been shown
previously [33] that any completion may be obtained by such a sequence of one-element
extensions if the corresponding sequence of graphs is a complete chordal sequence. Of
course, terminating the complete chordal sequence prior to arriving at the complete
graph results in an extension rather than a completion. Therefore, extensions PE. may
be obtained for any chordal graph G' = (V, En) such that E0 C En. The contribution
of this section is to provide a recursive procedure for covariance completion.

We will show that the condition of positive-definiteness, i.e., PEi > 0, holds for
all i if and only if each new covariance element added at each step i is in a certain
range of values. At each step i, this range is parameterized by a (generalized) reflection
coefficient which is completely determined by previously computed (or given) covariance
elements PEi-1. That is, there is a one-to-one correspondence between the covariance
elements and the reflection coefficients. The magnitude of each reflection coefficient
is bounded above by unity and setting the reflection coefficients to zero leads to the
maximum-entropy extension [33].

Since our approach to covariance completion is via a sequence of one-element ex-
tensions we need only describe an arbitrary step. To this end, suppose that PE is a
partial covariance matrix and G = (V, E) is chordal. Consider computing the (currently
undefined) covariance element indexed by e = (a, b) where a, b E V and where the graph
G' = (V, F = E U e) is also chordal. That is, consider the one-element extension of PE
to PF. Let Q = la, bj U (A n B) be the unique maximal clique of G' for which a, b are
active where a G A, b E B and A and B are maximal cliques of G (cf., Lemma 6.2. 1). To
simplify the notation of our subsequent development, we make the following definitions

UAAnB, (6.17a)

Ua far U U = far U (A n B), (6-17b)

Ub JbI U U = f bj U (A n B). (6.17c)

So, using these definitions, Q la, bj U U = Ua U Ub and U = Ua n Ub.

In the following example we introduce a simple covariance extension problem to
which we will return in our subsequent discussion. The example also illustrates the
relationships among the sets Q, U, Ua, and Ub.

Example: 4 x 4 Banded Partial Covariance Matrix

Consider the 4 x 4 partial covariance matrix whose rows and columns are indexed by
f a, u, b, vj as illustrated in Figure 6.5. The filled circles indicate elements that are
known and the question marks indicate unknown elements. In the sequel we will use
this simple case to illustrate the application of our generalized-Levinson algorithm to



124 CHAPTER 6. COVARIANCE EXTENSION

a U b v

a ? ?

U ?

b ?

V ? ?

Figure 6.5. 4 x 4 banded partial covariance matrix. Filled circles represent known elements, question
marks represent unknown ones.

a u b V

3

Figure 6.6. Chordal sequence for completing the matrix of Figure 6.5. The edge sequence is indicated
by the numbered labels: graph G1 is formed by the addition of edge "1", graph G2by the addition of
edge "2," and graph G3by the addition of edge "I"

covariance completion. The sequence of chordal graphs which will be used to accomplish
the covariance completion is illustrated in Figure 6.6. The dashed lines indicate the
original graph, Go, and the solid lines indicate the sequence of additional edges. The
edge labeled "I" is added first to form graph G', the edge labeled "2" is added second

2 3to form graph G , and the edge labeled "T' is added last to form graph G
Consider computing the element indexed by (a, b). Computing this element corre-

sponds to adding the edge labeled "1" in Figure 6.6 to form graph G1. The new maximal
clique of G' formed for which a and b are active elements is Q = la, u, bl. Notice that
Q can also be written as Q = f a, bJ U (f a, u} n f u, bl) where the sets f a, u} and f u, bJ
are maximal cliques of the original graph, G'. Hence, for this one-element extension
step, la, ul plays the role of A which, in this case, is equal to Ua, while f u, bJ plays the
role of B which, in this case, is equal to Ub, and Jul plays the role of U = Ua n Ub.

0 6.4.1 Generalized Reflection Coefficients

Our first objective is to characterize the range of possible values of the new covariance
element, which we will denote by Pab, so that PF is positive-definite. Because maximal
principal minors correspond to maximal cliques,8 PF > 0 if (and only if) the maximal
principal minor given by

PQ2 PF (i, j) I (i, j) E Q X Q = Q21 (6.18)

8Recall that by PF > 0 we mean that all maximal principal minors axe positive-definite.
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PU2 F - -IJ__ Pab

F (ba
U

ab

I 1 PU2

L PU2
b

Pab
L

Figure 6.7. The maximal principal minor PQ2 contains principal minors PU2 (upper left), PU2 (lower
a b

right), and PU2 (center). The vectors (ab and (ba and the element Pab axe also indicated.U U

is positive-definite. Indeed, it is assumed that PE > 0, and since Q is the unique
maximal clique containing the new edge e, it is sufficient and necessary that PQ2 > 0.

Since Q contains the sets U, Ua and Ub, the maximal principal minor PQ 2 contains the
principal minors PU2, PU.2 and PU2 where these are defined analogously to 2. That

b PQ
is,

PU2 = f PF (i, j) (j, j) E U X U = U21, (6.19a)

pUa2 = fpF (j, j) (j, j) E Ua X Ua U2
a (6.19b)

2 = f PF (i, j) (j, j) E Ub X Ub U'2 (6.19c)
Pub b

These principal minors, as well as some of the other notation to be used in this section,
are illustrated in Figure 6.7. The matrix 2 contains all but last row and column of PQ2PUa
and is indicated in upper left of Figure 6.7; PU2 contains all but first row and column

b
Of PQ2 and is indicated in lower right of Figure 6.7; and PU2 contains all but the first

2, is the intersection of 2 and PU2, and is indicated in
and last row and column of PQ PUa b

the center of Figure 6.7. The only unknown covariance element Pab occupies the upper
right and lower left corners Of PQ2.

After introducing some basic concepts and notation which we will use in both this
section and the next, we will provide several propositions which characterize the range
of values Of PO and the maximum-entropy value. To this end, let z be a zero-mean
random vector indexed by Q with covariance matrix PQ 2. We will denote by ZD the
sub-vector of z indexed by D C Q. When D = jdj is a singleton set, we will often
write Zd rather than Zfd}- Consider the LLS estimate of the scalar random variable Zb

based on the random vector zu which has the form

��b = L b ZU. (6.20)
U
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The row-vector L b satisfies the so-called normal equations which are derived as follows.U
Because Fb - Zb is orthogonal to zu we have

[O ... 0] E[(zb b)ZT (6.21a)Ul
E[(Zb - Lb ZU)ZT] (6.21b)

U U

L' 1] E ZU ZT (6.21c)
U Zb U

By defining E b to be the LLS estimation error variance we haveU

EU = E[(Zb b)2] (6.22a)

=E[(Zb -4)41 (6.22b)

E[(Zb - L bZU)Zbl (6.22c)

= [-L b 1] E Zb (6.22d)U

Combining (6.21) and (6.22) we obtain the normal equations:

[0 ... 0 Eb] [-L b 1] E T (6.23a)U U IZU Zb1

[-L b 1] PU2 (6.23b)
N. U b

V
BbU

where Bb is as defined in (6.23). By augmenting B bwith a zero and expanding 2U U PUb
by one row and column we have

[O B b ]PQ2 6 ab0 ... 0 - b (6.24a)U U U

where

jab A Bb (ab (6.24b)
U = U U

and

ab Zu E[zuza]
(U E Za = (6.24c)

Zb Po

Notice that only the last element of CO depends on Po and the remaining elementsU
belong to the previously defined principal minor 2 (see Figure 6.7). We can, therefore,

PUb
relate jab to PO as follows. Using (6.24c) and the definition of B b given in (6.23),U U

6 ab L b E[ZUZa1 + Po (6.25)U U
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In the sequel we will provide a bound on J" b which, in turn, will bound the range ofU
values for Pab-

Next, we consider the LLS estimate of the scalar random variable za based on the
random vector zu which has the form

La zu (6.26)U

Using reasoning similar to that of the previous paragraph, the row-vector La mustU
satisfy the following normal equations:

-L- ] PU2 = [E' 0 ... 0] (6.27)U a U

aAu

where -a is the estimation error variance, and A' is as defined in (6.27). By augmentingU U
A' with a zero element and expanding PU2 by one row and column, we haveU

[Aa 0] PQ2 a 0 ... 0 jba (6.28a)
U U U

where

6ba A Aa (ba (6.28b)
U = U U

and

ba Za Pab
G A E Zu Zb [ZUZbl (6.28c)

The quantity 6ba is related to Pab byU

jba -La E[ZUZbl +Pab (6.29)U U

where we have used (6.28c) and the definition of Aa given in (6.27). The followingU
proposition shows the equivalence of (6.25) and (6.29).

Lemma 6.4.1. jab and jba, of (6.25) and (6.29), respectively, are equal.U U

Proo Using (6-28a) and the fact that [O B b [0 -L b 1] we haveU U

[A' 0] PQ2 [O B b 6ba (6.30)
U U U

On the other hand, using (6.24a) and the fact that [Aa 0] [I -La 0], we haveU U

b 0] T ab[O B PQ2 [Aa 6u (6.31)U U

From (6.30) and (6.31) it follows that jab = jba.
U U
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The following corollary follows immediately.

Corollary 6.4.1. The quantities L b E[zuza] and L a E[ZUZbl which appear in (6.25)U U
and (6.29), respectively, are equal.

To characterize the range of possible values Of Po it will be convenient to define
pabthe (generalized) reflection coefficient, U I as

ab 6 abU
PU (6-32)

_UebE UU U

We can rewrite (6.25) and (6.29) in terms of PO and, with a bit of rearrangement,U
obtain

b + pa,'Va _bpab LU E[Zuzal U UU (6-33a)

+ pab�,,aUEbL a E[ZUZbl U (6-33b)U U

All quantities on the right-hand side of (6.33a) and in (6.33b) other than PO can beU
deduced from the values Of PQ2 that are known. That is, they can be determined without

knowledge Of Po. Therefore, through (6.33), pab parameterizes all possible values ofU
Pab. Next, we provide a bound on the magnitude of Po that, in turn, characterizes allU
possible values Of pab that are consistent with the known values Of PQ2. The following

proposition, together with (6.33), establishes a one-to-one correspondence between pabU
and any valid Pab-

Proposition 6.4.1. Using the notation defined previously, PQ2 > 0 if and only if

Po < 1. The choice of Pab = 0 maximizes the determinant Of PQ2.
U U

Proof. To show that I pab Icannot exceed unity when PQ2 > 0, it suffices to show thatU

P ab is a correlation coefficient. Therefore, by (6.32), we need to show that 6abU U
E [ (za - 2a) (Zb - �'b) ]. This is easily done as follows:

E [ (za - 2a) (Zb - �Fb) I = E [ (za - 2.) Zb1 (6.34a)

Pab - L' E[ZUZbl (6.34b)

= 6ab (6.34c)
U

where in (6.34a) we have used the fact that za - 2a is orthogonal to zu and, hence, to ib;

in (6.34b) we have taken expectations; in (6.34c) we have used (6-29) and Lemma 6.4. I.

A different proof of the fact that lpabl is bounded by unity and the completion of theU
proof of Proposition 6.4.1 is found in Appendix D.
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There are two important implications of Proposition 6.4.1. First, the range of
values for A , namely -1,I), provides a range of possible values for Pab throughU
(6-33). Second, the choice of P,,b = 0 provides the determinant-maximizing value ofU
Po- Since, as stated previously, determinant maximization and entropy maximization
coincide,

Pab = Pab ME A L b EkUzal (6-35)

is the entropy-maximizing value Of Nb- Using Corollary 6.4.1 we can write this equiv-
alently as

ME L a E[ZUZbl (6-36)

Our final expression for Pab is

PME + PabV6UebPalb ab U U (6-37)

We now continue with the example begun on page 123 and illustrate the one-element

extension step.

Example: 4 x 4 Banded Partial Covariance Matrix, Continued

Consider again the partial covariance matrix illustrated in Figure 6.5 and the sequence

of chordal graphs used to complete it as illustrated in Figure 6.6. We first discuss

determining a value for the element indexed by (a, b) which we denote by PO. This

corresponds to adding the edge labeled "I" in Figure 6.6 to form graph G1. Recall that

the new maximal clique of G' for which a and b are active elements is Q = f a, u, bj =

f a, bj U (f a, ul n f u, bj) so that f ul plays the role of U. Thus, all possible values of

Pab are given by (6.33) in which the U is replaced by the set ful. That is, all possible

values Of Pab are given by

+ palb ,usPO = L' E[zlu} us (6.38a)lu} Zal f u}

= L a E[zlu}Zbl + PO (6.38b)
ju} f u} V--,U} Ellul

The quantities Aa , (equivalently, L a b b b

-1' B (equivalently, Lf.,} are func-fu f j I WI:d are readily computed
tions of the given covariance data a, �y choosing a value for

Pab we fix Pab. A similar procedure is applied to determine a value for pu,, and cor-
f u}

responds to adding the edge labeled "T' in Figure 6.6 to form graph G 2 . The new

maximal clique formed in this step lu, b, v I = f u, v I U ff u, bj n f b, v I) where f u, b} and

f b, vj are maximal cliques of G'. Therefore, to determine puv we again use (6.33) with

a replaced by u, with b replaced by v, and with U replaced by f bl. To do so, the quan-

tities Au } (equivalently, Lu ), Bv ) (equivalently, L'lb lb lb M), Eufb}l '-'lb} are first computed

from the original given covariance data and the reflection coefficient pu'v is selected.lb}
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0 6.4.2 Generalized-Levinson Recursion

The procedure described in the previous section is one step in a sequence of one-
element extensions corresponding to a sequence of chordal graphs. In performing the
one-element extension corresponding to (a, b), the quantities Aa , B b ,Ea , and 6b areU U U U
computed and p" b is selected. Having determined these quantities, they may then beU
used to solve higher-order systems of (normal) equations 9 which may arise in subse-
quent one-element extension steps. This leads to the generalized-Levinson recursion
which we describe in this section. We emphasize that the quantities Aa, Bb, Eq, EbU U U U,

and A b have been computed previously. In particular, the first four quantities haveU
been constructed based on elements of the original partial covariance matrix, PEo, and
elements computed in previous steps in the recursion. The quantity PO is selected atU
will. The quantities Aa, B b , Ea , Eb appear in the normal equations (6.23) and (6.27)U U U U
which we repeat here for the reader's convenience:

[-Lb 1] PU2 = [O ... 0 Eb (6.39a)
U b U

BbU

[I -La] pU2 = [Ea 0 ... 0] (6.39b)
U-.1 a U

AaU

Recall the augmented normal equations (6.24a) and (6.28a) which we repe4t:

[O B b ]PQ2 = 6ab 0 ... 0 E b] (6.40a)
U I U U

[Aa 0] PQ2 = E a 0 ... 0 jba (6.40b)
U I U U

where, as we have shown, Jab = 6baU U
Equation (6.39a) and (6.40a) are concerned with the LLS estimate Of Zb given zu

which arises in the one-element extension step involving element Pab- We now consider
the higher order normal equations associated with the LLS estimate Of Zb given zu", =

1z, ZT] T . The estimator has the form Lb zua where the row-vector Lb satisfies theU Ua Ua
normal equations

[-Lb 1] PQ2 = [O ... 0 Eb (6.41)
Ua U.

BbUa

where eb is the estimation error variance and Bb is as defined in (6.41). The followingUa Ua
proposition shows that Eb and Lb (or, equivalently, Bb ) are uniquely determined byUa Ua Ua

b b -a _b abthe previously computed quantities BU, Au , ,U , U, and PU

9By a higher-order system of equations we mean one involving more variables.
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Proposition 6.4.2. Using the notation previously defined,

b b .,b E[-L 11 = [O B P [Aa 0] (6.42a)
Ua U U a U

U
Bb

Ua

and

E b = Eb (1 _ (pab)2) (6.42b)
Ua U U

Proof. Using the augmented normal equations (6.40) we have

6ab jab) 2

[O B b U [Aa 0] 2 = 0 . . . 0 Eb U (6.43a)
U E a U PQ U a

U U

= [0 ... 0 Eb (I (pab)2 (6.43b)
U U

Hencewe conclude that

[-Lb 1] [O Bb 6a�b [Aa 0] (6.44a)
Ua U a U

U
Bb

Ua

[O B b PO [Aa 0] (6.44b)
U U a U

U

and

Eb 6b (1 _ (pab)2) (6.44c)
Ua U U

Proposition 6.4.2 shows that B b and 6b can be computed recursively. Substantial
Ua Ua

ab
simplification in this recursion results when pu = 0, corresponding to the maximum-

entropy case. Indeed, in this case we have

Bb = [O B b (6.45a)
Ua U

and

b b
EUa =EU (6.45b)

T T
Next, we consider the LLS estimate Of Za given zub = 1Z U Zb1 . The estimator has

the form La zub where the row-vector La satisfies the normal equations
Ub Ub

[1 -L a ] PQ2 = [,a 0 ... 0] (6.46)
Ub Ub

Aa
Ub



132 CHAPTER 6. COVARIANCE EXTENSION

where E' is the estimation error variance and A' is as defined in (6.46). As the
Ub Ub

following proposition shows, we can also compute these quantities recursively.

Proposition 6.4.3. Using the notation previously defined,

[1 -La [Aa 0] -, ab [O Bb (6.47a)
Ub U PU b U

U
Aa

Ub

and

6 a Ea (1 _ (Pab) 2) (6.47b)
Ub U U

Proof. Using the augmented normal equations (6.40) we have

6 ab jab) 2
[Aa [00] __ lu B b 2 = a U (6.48a)

U Eb PQ U Eb 0 ... 0
U U

= [_a (1 (pab)2) 0 ... 0] (6.48b)
U U

Hence, we conclude that

[I -La [Aa 0] 6au [O B b] (6.49a)
Ub U b U

EU
Aa

Ub

0] ab b[Aa U [O B (6.49b)
U Eb U

U

and

E a 6a (I _ (pab)2) (6.49c)
Ub U U

Again, in the maximum-entropy case for which pab 0, we haveU

Aa= [Aa 0] (6.50a)
Ub U

and

a a
Eub= EU (6.50b)

We now illustrate how the recursions of Proposition 6.4.2 and Proposition 6.4.3

may be applied to address covariance extension by continuing the example discussed

previously.
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Step I Element Quantities Computed Can Recursively Compute
Pab Aa b a b ab Aa a

W, fu W lub} 6fub}
2 PuV Au BV Bv , 11Vfbp lb}, -'uIb}l 6vfb}l Pufb'v} Ju b} f ub}

Table 6.1. Summary of the first two one-element extensions of the partial covariance matrix of
Figure 6.5.

Example: 4 x 4 Banded Partial Covariance Matrix, Continued

Consider again the partial covariance matrix illustrated in Figure 6.5 and the sequence

of chordal graphs used to complete it as illustrated in Figure 6.6. On page 129 we

discussed determination of the elements Pab and puv. The quantities computed in

determining these covariance elements are listed in Table 6. I. We now discuss the final

step-the computation of element p,,,,. To determine the value of this element we will

rely on the recursions of Proposition 6.4.2 and Proposition 6.4.3. This final one-element

extension step corresponds to adding edge "Y of Figure 6.6 to form the complete graph

G 3 . The maximal clique of G 3 is f a, u, b, vJ = f a, vjUff a, u, binju, b, vJ) where f a, u, bJ

and f u, b, vJ are maximal cliques of G 2. Therefore, to apply (6.33) to determine Pav,

we need to compute A' Bv E a and Evlubl, lubWv Jub}1 lub}'
Consider first the quantities and -v As indicated in Table 6.1, these are

lub) f ub}'
uniquely determined by certain previously Determined quantities. Specifically, using

Proposition 6.4.2, the quantities Bv may be computed recursively fromf b}
Au PV U V and A' all of which are available from the second one-element

lb}, -fb}l 'lb}, 61b}l �b}
extension step. Similarly, using Proposition 6.4.3, the quantities Aa -a

be computed recursively from Aa b a b abJup B and all of which are available
W, 'M, Efu}1 Pful

from the first one-element extension step, as indicated in Table 6.1.

In the example just discussed, we were able to use the generalized-Levinson recursion

to simplify covariance completion. Actually, the structure of this problem does not

require the generality that the generalized-Levinson algorithm provides. In fact, in the

case of computing a completion of a banded covariance matrix, the generalized-Levinson

algorithm is equivalent to the classical one. We emphasize that the generalized-Levinson

algorithm is applicable to a much wider range of extension problems. For instance, it is

applicable to problems for which the initial known covariance data corresponds to any

chordal graph, not just the case for which the initial known covariance data correspond

to a banded pattern. The following example provides a simple extension problem that

cannot be addressed with the classical Levinson algorithm but can be solved using our

generalized algorithm.

Example: Simple Tree

Consider the partial covariance matrix illustrated in Figure 6.8. The known elements

(indicated with filled circles) correspond to Go, the simple tree shown in Figure 6.9

with dashed lines. Also shown in Figure 6.9 is the sequence of edges used to form
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d a b C

d (9 (a (9 �

a � ? ?

b ? (a ?

C ? ? (9

Figure 6.8. Partial covariance matrix corresponding to the tree illustrated in Figure 6.9. Filled circles
represent known elements, question marks represent unknown ones.

d

I

2 C

b

Figure 6.9. Chordal sequence for completing the matrix of Figure 6.8. The graph Go has edges
indicated by dashed lines and is a tree. The edge sequence is indicated by the numbered labels: graph
G1 is formed by the addition of edge `1", graph G 2 by the addition of edge `2," and graph G 3 by the
addition of edge "I"

the sequence of one-element extensions for this problem. Each edge corresponds to
the determination of one of the unknown elements of the partial covariance matrix
of Figure 6.8 (each unknown element is indicated with a question mark). The edge
(ab) (labeled "I") is added first, the edge (ac) (labeled "2") is added second, and
the edge (bc) (labeled "Y) is added last. The generalized-Levinson recursion can be
applied to compute the quantities needed for Pb,, (the last element to be computed)
from previously computed quantities. However, this problem is outside the purview of
the classical Levinson algorithm.

The generalized-Levinson algorithm, but not its classical counterpart, is also ap-
plicable to problems for which an extension to a pattern of entries corresponding to
any chordal graph is sought rather than a full completion. The latter case arises in
the context of building a MAR model for the maximum-entropy extension of a banded
partial covariance matrix, a topic we develop in Section 6.5.

To compute the completion of a banded partial covariance matrix it is always pos-
sible to arrange the order of calculations to take advantage of the efficiency provided
by the recursion of Levinson's algorithm. That is, it is always possible to choose a
chordal sequence upon which to base the sequence of one-element extensions so that
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New Edge I New Max. Clique

(a, d) f a, dl
(c, d) f c, dl
(c, C) fcel
(b, e) f b, el
(a, c) f a, c, dl
(b, c) f el b, el
(a, b) f a, b, el

Table 6.2. Edges and maximal cliques for which the edge end-points axe active corresponding to the
chordal sequence indicated in Figure 6.3.

the quantities required for extension are also those provided by the Levinson recursion.
For banded partial covariance matrices, determining unknown covariance elements one
diagonal band at a time and working outward from the main diagonal toward the
upper-right and lower-left corners always works. However, for a more general extension
problem (one outside the purview of classical Levinson techniques) it is unclear whether
such a chordal sequence exists. Indeed, it is possible to devise chordal sequences that
do not allow one to make use of the generalized-Levinson recursion. An illustration of
this is shown in the next example.

Example: Failed Recursion

Consider the sequence of chordal graphs indicated in Figure 6.3 in which the sequence
of new edges is indicated with the integers 1-7. The sequence of new edges and the
sequence of new maximal cliques for which the edge end-points are active are indicated
in Table 6.2. Notice that, when edge (a, b) is a added, the new maximal clique is
f a, b, el = f a, bl U (f a, el n f b, el). Therefore, to perform this one-element extension step
we must compute A' pb a Eb The quantities A' and 01c, can in principle,

W, -ICP V , ICY IC} I
be computed recursively a and Bc. However, for the particu ar chordal sequence0 0
selected, these quantities are not available from previous computation. This is due
to the fact that the maximal clique f a, el has not been formed in a previous graph.
Indeed, Aa and B' are only computed when the maximal clique f a, el is formed with a0 0
and c the active elements. Note that this does not mean that we cannot perform this
extension step. It just means that we cannot rely on the generalized-Levinson recursion
to do so. Instead, we must solve the necessary normal equations directly rather than
recursively.

The previous example shows that, in order to make use of the generalized-Levinson
recursion, we require that our chordal sequence possess an additional property. What
is required is that the chordal sequence also be efficient, a property defined formally as
follows.

Definition 6.4.1 (Efficient Chordal Sequence). Let [Go,... G'] be a sequence of
chordal graphs with G' = (V, E') and E' = E'- 1 U e' where e' = (a', b') 0 E` Let U' a
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041 40 7 7

1 40 6

24 5

34 4 - - - -

(a) (b)

Figure 6.10. (a) Go = (V, EO) where E0 is given by (6.51) for N = 8 and k = 1. (b) The edges added
to Go to form G' are those with solid lines.

clique of G'-' such that the unique maximal clique of G' containing a', V is f a', YJ U U'.
Then this sequence of graphs is said to be an efficient chordal sequence if, for some

j < i, and k < i,

(i) G3 has a maximal clique f a'j U U' with a' an active vertex, and

(ii) G k has a maximal clique f bi I U Ui with b' an active vertex.

Given an arbitrary choice of two chordal graphs Go = (V, EO) and Gn = (V, E') such
that E0 C E', it is unclear (as of this writing) whether there exists an efficient chordal
sequence between them. That not every chordal sequence is efficient was shown by
the example illustrated in Figure 6.3 and Table 6.2. If the chordal sequence on which
the order of one-element extensions are based is efficient, then the generalized-Levinson
recursion may be used and the computational complexity of each step is, generally,
linear in the cardinality of the set U. However, consideration of the maximum-entropy
extension results in some simplification. In -particular, since PO = 0, the recursiveU
computation of (6.42) and (6.47) corresponds to the augmentation of Bb and Aa byU U
zero. Therefore, in the maximum-entropy case, the complexity of each one-element
extension is a constant size, independent of the cardinality of the set U.

0 6.5 MAR Models for Maximum-Entropy Completions

We are now in a position to consider designing a MAR model for the maximum-entropy
completion, PME, of the banded partial covariance matrix PEo where

E' f (,rn, n) I Im - nj < kj (6-51)

is the set of edges for graph Go (V, E') and V = f 0, 1, N - I 1. For the case
for which N = 8 and k = 1, the graph Go is depicted in Figure 6.10(a). As has been
discussed, PME is the covariance matrix for a k-th order Markov process. Thus, when
N = 4k2m for some integers k and M, PME can be modeled exactly by an (M + I)-
scale end-point MAR model for a k-th order Markov process of the form described in
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scale 0

scale I

scale M=2

0 4 8 12 15

Figure 6.11. MAR model for a first-order Maxkov process: M 2, k 1.

Section 2.3.2. Thus, each internal matrix, W, is a selection matrix that picks out end-
points of intervals. In particular, as discussed in Section 2.3.2, the indices selected by
W, are

'q(8) = M(S) UR2(S) Uq3(S) (6.52a)

where

,qi(s) = %(s)4k2M-"(s) + [O : k (6.52b)

772(s) = z(s)4k2M-'(s) + 4k2M-m(s)-1 + [-k : k - 1] (6.52c)

'03(8) = z(s)4k2M-"(8) + 4k2m-m(s) + [-k : -11. (6-52d)

An example for the case of M = 2 and k = 1 is illustrated in Figure 6. 11 (the significance
of the dashed lines in this figure will be discussed in the sequel).

Having defined the internal matrices of our MAR model for PME as those of an
end-point MAR model, we may use them to determine the joint statistics for child-
parent pairs (P.(,), P.(sa,)7 Px(sa,)x(s)) as discussed in Section 2.3 where PME plays
the role of Pfm. In turn, the state covariances and child-parent cross-covariances are
used to determine the MAR parameters as in (3.7). Therefore, it would seem that
the heart of the problem is to compute PME. However, as we will show, only O(N)
elements out of a total of N 2 elements in PME are actually needed. We point out that
the fact that the elements in each state are a subset of those in its children states (i.e.,
n(s) Cq(sai) U 77(sa2)) implies that our end-point MAR model is internal.

To compute the joint child-parent statistics for node s, we need only the elements of
PME indexed by C, Aq(s) Uq(&;zy). This holds for all s E So - f0j. Therefore, we need
not compute the maximum-entropy completion of PEo. Rather, we require an extension
to PE. where

En U C, X C'. (6-53)
SOO



138 CHAPTER 6. COVARIANCE EXTENSION

20
0.8

40-

0.6
60-

80- 0.4

100 - 0.2

120 -
0

20 40 60 80 100 120

Figure 6.12. The adjacency matrix for G' = (V, E') when k 1, M 5. Black indicates the subset
of entries needed for PE..

The graph G' = (V, E') is illustrated in Figure 6.10(b) for the case in which M = I
and k = I (i.e., a first-order AR process with N = 8 points). The dashed lines are edges
of E0, and the solid lines are edges of E' - E0. We illustrate G' to show that, while
it possesses considerable structure, it is also quite complex. These facts are also clear
from the adjacency matrix for G' = (V, E'), illustrated in Figure 6.12. This matrix
indicates (in black) the subset of the elements Of PME that are in PE. for the case for
which k = I and M = 5 (i.e., a first-order AR process with N = 128 points). Figure 6.12
clearly shows that there are a vast number of entries Of PME that are not needed to
build a MAR model. We now make this statement precise. Since 177(s)l = 4k we have
that IC, I < 8k and IC, x C, I < 64k 2. These are upper bounds because the sets q(s) as
well as the sets C, x C, are not mutually exclusive, which can be seen by inspection
of Figure 6.11. Therefore, the total number of elements in E' is bounded above by
64k2IS0I = 64k 2(2m+l - 1). Finally, since N = 4k2m, we have that IE'I < 32kN.
While this is an upper bound, it is of the right order and it indicates that we require
only O(N) elements Of PME.

We now discuss the application of the generalized-Levinson algorithm of Section 6.4
to compute PE., the required elements Of PME. For the moment, assume that (1)
E0 C E', and (2) G' = (V, E') is chordal. We will prove these two facts shortly.
Assuming these, there exists a chordal sequence from Go to G'. We may, therefore, find
the elements of PE. using the generalized-Levinson algorithm of Section 6.4 by setting
the generalized reflection coefficients to zero. We now show that doing so results in
O(N) computational complexity even when the chordal sequence upon which we base
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CSCt 1 - CSa2

Sal al- CS 1 2 a2Cel- C 2 2

1 1 LsC12

Figure 6.13. The graph L'.

our one-element extensions is not efficient. Recall that if our chordal sequence is not

efficient we must solve some (in the worst case, all) of the normal equations that arise

in the generalized-Levinson algorithm explicitly, rather than recursively. However, the

largest maximal clique of G' has cardinality JCJ < 8k. Hence, at worst, each one-

element extension requires O(k 3) computations. This leads to an overall complexity

of O(N) for computing PE. under the assumption that k is independent of N. The

complexity of computing PE. using an efficient chordal sequence is also O(N) so there

is no computational advantage (asymptotically) in using an efficient sequence. In the

sequel we do not assume that our chordal sequence is efficient. Note that the preceding

discussion shows that the complexity of computing a MAR model for PME is of the

same order as computing an AR model using the classical Levinson algorithm (in the

nonstationary case) -

We now turn to the facts we assumed in the previous paragraph: (1) EO C El, and

(2) G' = (V, El) is chordal. First, we address (1). The following proposition shows

that EO C El, and the proof is based on the fact that the states of the end-point MAR

model collectively contain all intervals of length k + 1.

Proposition 6.5.1. EO C El where these are defined by (6.51) and (6.53).

Proof. The proof follows from the fact that, by construction, every interval of length

k+1 is contained in one of the sets C, This is most easily seen by considering Figure 6.11

which represents a MAR model for a first-order Markov process (k = 1, M = 2). It

is clear from this figure that every interval of length 2 can be found in some C, The

algebraic details proving this fact for a general k and M are provided in Appendix D. N

The next task is to show that G' is chordal. We will show this by exhibiting a

junction tree for G n and using Proposition 6.2.2. For these purposes, we define Ls to

be the graph with vertex set vert(Ls) = fCt I t E S, - fsJJ and edge set

edge(L') = f (Ct.1, Cto,�!) I t E Ssl U f (Ctoi, Cta�.��) I t E SSI U f (Ct",2 I Ct"'2C'l) I t E SsJ.

(6-54)

An illustration of Ls is provided in Figure 6.13. Notice that Ls has as subgraphs L"I
112and L
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Proposition 6.5.2. G' is chordal.

Proof. Lo is a junction tree for G'. This fact can be seen intuitively from Figure 6.13
which, when specialized to the case of s = 0, is clearly a tree on the set of maximal
cliques of G', namely JCJ. A rigorous proof of this fact is provided in Appendix D.
The proposition then follows from Proposition 6.2.2. 0

While we have completed the formal description of how to build a MAR model
for PME there is one remaining algorithmic detail-that of finding a chordal sequence
between Go and G'. As mentioned in Section 6.2, this may always be done by brute
force search. However, the structure of the particular problem at hand suggests a more
elegant approach to finding a chordal sequence that includes a subsequence of chordal
graphs with an appealing scale-recursive structure.

Consider, for n C [I : M], the graph given by Hn = (V, K') where

K n E0 U C' X C'. (6.55)
s:m(s)>M-n+1

2Therefore, with the sequence IF A [GO, H', H ... , HM = Gn] we are building up from
Go to Gn by adding the necessary cliques scale-recursively. The recursion begins by
adding edges corresponding to covariance elements for finest-scale statistics. With each
successive graph Hn, edges for covariance elements at the next coarser scale are added.
For example, referring to Figure 6.11, the child-parent joint statistics

PX(S) PX(S)X(S'�)
pT (6-56)

X(S)X(S;Y-) PX (,;Y- )

are first computed for all child-parent pairs linked by solid lines. Then, proceeding to
the next coarser scale, the joint child-parent statistics are computed for the pairs linked
by dashed lines. By showing that Hn is chordal (which we do in the next proposition),
we are assured by Proposition 6.2.1 that there is a chordal sequence that contains r as
a subsequence.

Proposition 6.5.3. Hn = (V, Kn) where Kn is defined in (6.55) is chordal.

Proof. See Appendix D.

While Hn is chordal, ris not a chordal sequence because the transition from Hn-1
to Hn involves more than one edge. However, having decomposed the problem scale-
recursively, finding a sequence of edges to transition from Hn-1 to Hn while maintaining
chordality is not hard. In fact a chordal sequence may be obtained with the property
that, for a given scale m(s) = m(t), the edges of C, are added prior to those of Ct for
all s 0 t such that t(s) < t(t). This ordering of the sets fC111ET,,(0) corresponds to
deducing the statistics Px(,), P (,)x(s;-y), Px(87y) prior to P .,#), Px(twvy)' Px(t;Y-)-
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Proposition 6.5.4. Using the notation previously defined, there exists a chordal se-
2 nquence that contains [GOH',H ... HM = G I as a subsequence with the property

that the transition from Hn-1 to Hn is accomplished in such a way that for all s and t
such that m(s) = m(t) = M - n + 1 and t(s) < �(t), the edges of C, are added prior to
those of Ct.

While a formal proof of Proposition 6.5.4 is not provided in this thesis, a sketch is found
in Appendix D. We also point out that this fact is easy to check by computer for any
particular case (i.e., any choice of k and M).

In this section we have shown how to build efficiently (with a complexity linear in
problem size) a MAR model for the maximum-entropy completion of a banded partial
covariance matrix. Our approach is based on the generalized-Levinson algorithm which,
in turn, relies on a sequence of chordal graphs. We have exhibited a particular sequence
of chordal graphs and we emphasize that the computational complexity of our approach
does not require that this sequence be efficient. It is unclear how to build efficiently
MAR models for other (non-maximum-entropy) completions. The reason is that it is
unclear what the state definitions ought to be. In the development presented in this
section, we were able to select our states to be those corresponding to an end-point
MAR model precisely because we sought the maximum-entropy extension (which, as
we showed, corresponds to a Markov process). This problem of state definition must
be addressed if one is to generalize the approach developed in this chapter.
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Chapter 7

Incorporation of Nonlocal Variables

N this chapter we extend the realization framework developed in previous chapters
to accommodate estimation problems involving nonlocal variables. We present three

different approaches to incorporating nonlocal variables into a MAR model all of which
differ in important ways from the approach discussed in Section 2.3.5 [37,39]. These ap-
proaches represent a different modeling philosophy than adopted in preceding chapters.
In preceding chapters we have considered a MAR model as an implicit and (possibly)
approximate representation of a covariance matrix, Pfm, for a fine-scale random pro-
cess. In this chapter we take a substantially different point of view and we consider a
MAR model to be a means of implicitly and exactly or approximately representing an
estimator. As we will show, for the purposes of well-approximating an estimator, in
many cases it is neither sufficient nor is it necessary to well-approximate Pfm.

The exclusive focus of the preceding chapters on the finest scale is reasonable if one
is only interested in producing fine-scale sample-paths or one is interested only in fine-
scale estimates based on a reasonably dense set of fine-scale measurements. However,
when one is interested in estimating or fusing multiresolution variables, this is not a
justifiable approach for several reasons. First, the realization algorithms of preceding
chapters cannot accommodate arbitrary nonlocal variables. That is, a given nonlocal.
variable cannot generally be represented as a linear function of the elements of a single
state in the realized model (recall our discussion of this point in Section 2.3.5). Indeed,
to accommodate nonlocal variables, another constraint (in addition to internality and
Markovianity) must be imposed: internal matrices must include specific linear function-
als that represent nonlocal measurements or variables to estimate. This new constraint
can be accommodated approximately (as is done in Section 7.1 using what we shall call
the approximate nonlocal method) or exactly (as is done in Section 7.2 using what we
shall call the exact nonlocal method).

Another reason why focusing on the finest scale is not appropriate in some mul-
tiresolution estimation problems is that, in doing so, the resulting models may allocate
resources (i.e., state dimension and computation) in capturing fine-scale statistical fea-
tures that are irrelevant for the estimation problem at hand. The degree to which
resources are ill-spent depends on details of the estimation problem (i.e., the measure-
ment geometry and the particular estimates of interest). Roughly speaking, the source
of this poor allocation of resources is that the Markov property is overkill and using it

143
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risks trying to conditionally decorrelate variables that are of no relevance to estimation.
As we show in Section 7.3, in designing a MAR state x(s) for an estimation problem,
one need only consider the conditional decorrelation of the (in some cases, many fewer)
variables that represent data or estimates that are separated by S. This idea leads to
what we shall call goal directed modeling.

Throughout this chapter we consider the following type of LLS estimation problem.
Let f M be a vector representing a fine-scale signal or (lexicographically ordered) image.
Let g be the vector of data which is related to f M by

g=Hfm+v (7.1)

where P, is diagonal and v is uncorrelated with f M. We are interested in the LLS
estimate not of f M, but of the linear function of f M given by Df M. So that we may
evaluate the quality of our estimates, we are also interested in the estimation error
variances P, (i, 0 (i.e., the diagonal elements of P,) where e - Df M - P[Df M I g]. If D
and H both consist of rows of the identity then we have a fine-scale estimation problem
with point-wise measurements, which is a case that is adequately handled by the theory
and algorithms of preceding chapters. Therefore, we will consider cases in which one
or both of D and H contain nonlocal linear functionals (i.e., one or both have rows
which contain more than one nonzero element). The LLS estimation equations for this
problem are

P [Df M 1g] = PDfmg (PHf m + P,) g (7.2a)
T T+p

DPfmH (HPfmH )-Ig (7.2b)

and
[p -1 pT M,

(i, i) = [pDf M Dfm"(pHfM +p
') -' Df gh'i (7.3a)

[DPfmD T],,, _ [DPfmH T (HPfm HT + p -I Hp T],,,.
fmD (7.3b)

To well-approximate an estimator, a MAR model must well-approximate the matrices
that make up (7.2) and (7.3), namely PDfmg, PHf m, P,, and [PDf m ]ii. Doing so places
an additional constraint on the internal matrices, as mentioned, and dealing with this
constraint is the subject of this chapter.

In addition to the notation just introduced, we also define L, to be a matrix such
that

WI M - L fm. (7.4)f 11 - 8

That is, L, contains the internal matrix W, as a submatrix and is appropriately zero-
padded so that right multiplication by f M makes sense. This is identical to the definition
of the linear functionals IL, I given in Section 2.3.
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0 7.1 Approximate Representation of Nonlocal Variables

In this section we assume that an internal and, possibly, approximate MAR model,
x(.), for Pfm has already been determined. Then, we seek to accommodate the nonlo-
cal variables associated with a particular estimation problem. If nonlocal variables are
to be incorporated exactly, state augmentation is required as discussed in Section 2.3.5
(see also [37,39]). This increase in state dimension leads to less efficient signal process-
ing algorithms. As an alternative, in this section we consider incorporating nonlocal
variables approximately and in such a way that results in no increase in state dimension.

To begin, recall that the MAR measurement equation (cf., (2.18)) is

YGS) = C(s)x(s) + V(S) (7.5)

where v(.) is white and v(s) has covariance R(s). We now discuss the problem of
reconciling (7.1) with (7.5) so that nonlocal measurements may be incorporated in the
MAR model. Consider the i-th row of (7.1) which corresponds to a scalar nonlocal
measurement of the form

gi = h7f M + vi (7-6)

where it is assumed that J is a nonlocal linear functional. If there is node 8 such
that hT is in the row-space of L, then gi can be represented exactly as, say, the j-th
measurement' at node s by

gi = Yj (8) = Cj (8),X (S) + Vj (S) (7.7)

where Cj (8) Tis the j-th row of C(s) and Cj (8) TL, = J. Typically, however, there will
be no s such that J is in the row-space of L,. However, there is some node 8 such
that J is closest to the row-space of L, in a mean-square error sense. Therefore, the
measurement gi can be approximately captured as follows. Let 2[hTf M I Lj M] be
the LLS estimate of gi using the information contained at node s. Then, in representing
gi in terms of �j', there are two sources of error, a measurement error vi and a modeling
error §i` hTf M - �j'. That is,

gi + V, + �'s (7.8a)

where

var(§i`) = hTPfm hi fmCj(S) (7.8b)

and

Cj (8) T= hTPfmL T (LPfmL T)-1 (7.8c)2 S S

'There may be more than one measurement at a given node.
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Thus, the optimal node at which to incorporate measurement gi is given by

ti = arg min (var (�j')) (7.9)
SESO

Suppose now that we have placed all measurements (all elements of 9) optimally'
using (7.9). Consider any node s that contains measurements. The rows of C(s) are
given by (7.8c) and we now consider the measurement error covariance R(s). If the
measurements at node s are captured exactly (i.e., modeling error �j' is zero for all gi
placed at node s) then the only measurement error stems from v which is white. Thus
R(s) is diagonal with the diagonal elements (the variances) given by the corresponding
ones from P,. However, for those measurements at node s that are only approximately
captured, the modeling errors �j' are nonzero and possibly correlated with one another.
Therefore, the diagonal elements of R(s) are of the form var(vi) + varQs) where the
first term comes fro P, and the second from (7.8b). Note that the variables Vi and �j'
are uncorrelated because the former is uncorrelated with f M and the latter is a linear
function of f M by definition.

We now turn to the off-diagonal terms of R(s). These are readily computed by a
generalization of (7.8b) to the vector case. To this end, let ? be the vector of modeling
errors associated with measurements placed at node s. That is, ? consists of several

Let H. be the matrix whose rows consist of the corresponding h T. Then

T _ C(S)pP��, = H, Pf m Hs f M C(S)T. (7.10)

The off-diagonal terms of R(s) are equivalent to the off-diagonal terms of P�� and

account for the fact that the modeling errors for the measurements placed at node s

are correlated. Of course, the modeling errors are also correlated across nodes. That is,

the modeling errors ? at node s are correlated with those at node t, namely �'. This

cross-correlation is not captured by our model and this fact represents another source

of error.

This completes the specification of the approximate representation of nonlocal mea-

surements in the MAR framework. In the sequel, we will refer to the technique de-

veloped in this section as the approximate nonlocal (AN) method. The complexity of

the AN method when used to incorporate a single nonlocal measurement gi depends

on the supports of J, L, and Cj (S) T. In the worst case, the complexity is O(N 2)

where N is the length of f M. This complexity stems from the need to compute matrix-

vector products like Pf m hi (cf., (7.8b)). The complexity is, at best, 0 (N) per nonlocal

measurement because (7.9) is a search over all O(N) nodes.

We now turn to the approximate representation of nonlocal estimates. That is,

consider the LLS estimate of variable z = d-Tf M where J is a nonlocal linear functional2 71

2We emphasize that placing measurements optimally using the criterion of (7.9) does not imply that

the model is good. The ultimate measure of the quality of the model is the degree to which the resulting
estimates and error variances deviate from those which are obtained by solving the normal equations
using the exact statistics.
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contained in the i-th row of D. Assuming that the MAR model well-approximates
f ", a good approximation to the exact LLS estimate of z may always be obtained
based on 5FM which is provided by the MAR estimator. That is, using the fact that
5FM ;Z11 we have J_5�m. Efficiently computing a good approximation to thez
estimation error variance var(z - ��) is a more difficult issue. The reason is that the
MAR estimator provides estimation error covariances for each x(s) but not the global
estimation error covariance for all states collectively. Therefore, when J. is in the row-
space of L, for some s, the error variance is readily computed as dT-P,(,)di where the
quantity P,(,) is the covariance for the estimation error e(s) = x(s) - ii�(S) at node s
and is provided by the MAR estimator. However, when d T is not in the row-space
of any L, computing an approximate error variance is more difficult since it involves
off-diagonal blocks of the global estimation error covariance. The off-diagonal blocks
corresponding to states close in tree distance can be computed with a only a little extra
work using the MAR model for the estimation error (which is also provided by the
MAR estimator [127,131]). Therefore, using the MAR error model to compute some
(but not all) of the off-diagonal blocks, it may be feasible to compute an approximate
error variance for 2. Clearly there are several open issues associated with this idea,
namely which off-diagonal blocks to compute and how to bound the modeling error
induced by ignoring the ones not computed.

0 7.2 Exact Representation of Nonlocal Variables

In contrast to the previous section, in this one we consider capturing nonlocal linear
functionals exactly and in a manner similar in spirit to the method of [37,39] and dis-
cussed in Section 2.3.5. The difference is that in [37, 39], states of an existing model
are augmented to incorporate linear functionals whereas the approach of this section is
to incorporate linear functionals first and then build a model around them. There are
several advantages to the latter approach. First, in building a model around previously
incorporated linear functionals, we may condition on the information they carry. Con-
sequently, there is no redundancy and we avoid the singularity problems that arise using
the approach of [37,39]. Second, because we use the information carried by nonlocal
linear functionals to aid in the decorrelation of random variables, our states are lower
dimensional while fulfilling the same roles (decorrelation and representation of nonlocal
linear functionals) as those of derived using the method of [37,39]. Third, our approach
provides a natural and computationally efficient way to build exact or approximate
models that are always internal. In contrast, the approach of [37,39] must begin with
an exact model.

Our procedure begins with an (M + I)-scale q-adic tree commensurate with the
length N of signal f M. We will represent nonlocal linear functionals at nodes of this
tree, however, in contrast to all previously discussed methods, we do not first define
internal matrices. Consider a nonlocal linear functional of the form bTf M which may
represent a measurement or a variable to be estimated. The first step is to decide at
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what node to represent bT. While a procedure for choosing the best node (in some
sense) is elusive, 3 let us assume that (somehow) we have selected a node s at which to

Trepresent b
The second step is to enforce explicitly our desire to be able to represent bT at node

s. This is done in a manner similar to the procedure described in Section 2.3.5. That
is, we will reserve q rows of the internal matrix L, (which is not yet defined) in which

T - I of L, will contain theto place pieces of b More specifically, rows j through j + q
matrix 4

bT 0 ... 0
sal
0 bT ... 0

Sa2
Gs (7.11)

0 0 bTsaq

where

q
bTf M T IM (7.12)

bsa fSai

Notice that in breaking up the linear functional bT into its components in this way, we
are forcing L, to be block diagonal. In turn this ensures that, ultimately, we end up
with an internal model (cf., Proposition 4.1.1).

Having placed b T at node s, we must ensure that the information contained in b is
propagated to the leaf nodes so that each state element is a linear function of its children
states. This is done in a manner similar to the procedure just described for adding b.
Specifically, we are going to add b,,i to Lsi by defining a submatrix, Gsi, of Lsi.
Each row of G,,i will contain the component of b,,i that acts on the states indexed by
the descendents of one of the children of sai. Continuing this process scale-recursively
until the finest scale is reached will ensure that our model is internal and that the linear
functionals we have added are consistent with the fine-scale process ultimately defined
by our MAR model.

To add several nonlocal linear functionals we may repeat the foregoing procedure.
After doing so, the measurement model (7.5) is easy to specify since every measurement
is, by construction, captured at some node exactly. Additionally, every nonlocal variable
to estimate is represented exactly. The last step is to build a MAR model around the
linear functionals previously added. This is done by applying either of the procedures of

3What is known is that the freedom in choosing a node is constrained by internality. For internality
to hold, bT can only be captured at node s if b TfM = a T ff for some vector a. Thus, every linear

functional can be represented at the root node and, generally, a linear functional can be represented
at more than one node. The only other criteria axe that, ultimately, we want a model that is low-
dimensional and does a good job of approximating the Markov property. However, how to translate
these into a formal procedure for choosing a node at which to represent a linear functional is unclear.

4If b is the first linear functional to be added at node s then i = 1. In general, however, other linear

functionals have already been added to node s.
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Chapter 4 (the O(N') one or the O(N) boundary approximation) with the additional
step that, when computing a given local internal matrix at node 8, we first condition
the relevant random quantities on the information already present at node 8 due to
the prior incorporation of the nonlocal linear functionals. Therefore, the additional
information added for the purposes of approximately or exactly achieving Markovianity
is not redundant. In the sequel, we will refer to the technique developed in this section
as the exact nonlocal (EN) method.

If the number of nodes at which nonlocal linear functionals (or parts thereof re-
quired for internality) are incorporated using the EN method is independent of N then
the overall asymptotic complexity of the EN procedure is O(N') or O(N) where, in the
latter case, the boundary approximation is used. If, however, nonlocal linear functionals
are incorporated at a number of nodes proportional to N then the computational com-
plexity is, at worst, O(N 3) or, for the boundary approximation, O(N 2) - This worst-case
complexity arises, for example, if every node represents a nonlocal linear functional (or
• part thereof as required for internality). To see this, consider the problem of designing
• local internal matrix at node s at scale n - 1. In doing so, we will need to condition-
ally decorrelate variables f n at the preceding finer scale, n, after conditioning on the
information carried by the nonlocal linear functionals at s. Suppose, for example, that
bTf M is represented at node s. Then, conditioning f ' on b Tf M requires computing
the conditional correlation matrix Pf'nlbTfM. This matrix has 0(d 2q 2n) entries so to
compute it requires an amount of work proportional to 0(d 2q2n). To design the local
internal matrix at each node, a different conditional correlation matrix must be com-
puted because the nonlocal information carried by each node is different. Summing this
over all nodes in the tree leads to an O(N 3) complexity. In the case of the boundary
approximation, however, only 0(dqn) entries Of PfnlbTfm need to be computed, leading
to an O(N 2) complexity.

0 7.3 Markovianity and Estimation

When considering a MAR model as an implicit representation of an estimator involving
nonlocal variables, the Markov property is neither necessary nor is it sufficient to achieve
exact estimates and error variances. In this section we will elaborate on this point and
provide an intellectual successor to the Markov property that is more appropriate for
model identification in the context of addressing a particular estimation problem. Our
focus is on the quantities relevant for the estimation problem of (7.2) and (7.3), namely

TPDfmg = DPf m H (7.13a)

PHfm = HPf m HT, (7.13b)

PI I (7.13c)
[PDfm]ii = [DPfmD T],,, (7-13d)
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To build a MAR model for the estimation problem of (7.2) and (7.3) we need to capture
the four quantities (7.13a)-(7.13d). As described in the Section 7.2, we can represent
exactly the linear functionals given by the rows of D and H in our model by explicitly
incorporating them. A consequence of this is that [DPf m D T],,, = dT-Pf m di can be

5captured exactly by some state of the MAR model. Therefore (7.13d) is accommo
dated. Similarly, because each measurement is captured exactly we have that, for each
i, [P,]ii = [R(s)ljj some node s and index j. Therefore (7-13c) is also accommodated.

It remains only to accommodate (7.13a) and (7.13b). The former corresponds to the
cross-covariance between the variables to be estimated and the noise-free measurements.
The latter corresponds to the covariance for the noise-free measurements. Since the rows
of D and H are exactly represented by states in the model, exactly capturing (7.13a)
and (7.13b) corresponds to ensuring that the cross correlations among certain states are
exact. In particular, capturing (7.13a) exactly requires the cross-correlations between
all states with variables to estimate and all states with measurements to be captured
exactly. Similarly, capturing exactly (7.13b) requires the cross-correlations between all
pairs of states with measurements to be captured exactly. The crux of the modeling
problem, therefore, is, given two states x(s) and x(t) at specific nodes s and t, to ensure
that E[x(t)x(s)'] = LtPfmL T. As we will see, this condition can be satisfied with states
of lower dimension than is required to achieve an exact model for f " by designing the
internal matrices that define x(.) appropriately.

To develop the procedure for achieving E[x (t)X(S)T] = LtPfmL T, we first consider
a tree-indexed process f (.) whose fine-scale covariance is Pfm defined by

f (saj) A (sai) f (s) + p (sai) , (7.14a)

Q(Sai) E[p(saj)p (Saj] (7-14b)

where, as in previous chapters, /t(.) is not necessarily a white noise process. The param-
eters A(saj) and Q (sai) are computed from Pf (,) and Pf (,,,)f (s) which are, themselves,
defined by Pf m, Ls, L,,i via

T- LsPfmL., (7.15a)Pf (') ,
Pf (sa,)f (s) -A Lsai Pf m LT (7-15b)s

where we have used the fact that f (s) = Ls f M. As described in Section 4. 1, if is
a white noise process then (7.14) is a MAR process. However, in the event that is
not a white noise process then we can define a MAR process as

x(sai) = A(sai)x(s) + w(sai), (7.16a)

E[w(saj)w(sai )T] = Q(saj) (7.16b)

5Recall from Chapter 4 that, even for approximate MAR models, state covariances and child-parent
cross-covariances axe exact.
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t-n+l
7 ,,�,n+l

t,;zn n

t 8

Figure 7.1. A visual interpretation of the relationship among the variables of Proposition 7.3.1. Nodes
t and s reside at the same scale andr is their common ancestor of maximal scale. A dashed line indicates
a path through the tree connecting the line's end-points.

where A(.) and Q(.) are the same as in (7.14) and w(.) is white, uncorrelated with x(O).
As discussed in Section 4.1, the state covariances P,,(,) at each node s and the child-
parent cross-covariances Px(saj)x(s) for each child-parent pair of nodes exactly match
Pf(,) and Pf(,.,)f(,), respectively.

We now turn to the conditions that the JLj must satisfy so that E[x(t)x(S)T]
TLtPf m L. . In our development of these we will rely on the following lemma.

Lemma 7.3.1. Conditioned on GOz the vectors Glz and G2z are uncorrelated if and
only if

GPG T = GjPzG T (GoPzG T) -'GoPG T (7.17)2 0 0 2

Proof. By definition, GOz conditionally decorrelates Glz and G2Z if

E [(Glz - t[Glz I Goz]) (G2Z - t[G2Z I Goz] )T I = 0 (7.18)

The proof follows by expanding the expression under the expectation and taking the
expected value of the resulting terms.

Using Lemma 7.3.1, we first provide the sufficient conditions so that that E[X(t)X(S)T]

LtPf m LT for the case where s and t are at the same scale. For a visual interpretation
of the relationship among the variables of Proposition 7.3.1 see Figure 7.1.

Proposition 7.3.1. Let x(.) be an internal MAR process defined by (7.16). That is,
the parameters of the process x(.) are the ones derived for the process f (.) defined by
(7-14). For t, s G So suppose m(t) = m(s) _' m. Let r = t A s be the common ancestor
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r t As

8
t-3

t

Figure 7.2. A visual interpretation of the relationship among the variables in Proposition 7.3.2 for
which m(t) > m(s). A dashed line indicates a path through the tree connecting the line's end-points.

of t and s with maximal scale. Then, E[x(t)x (S)T] LtPfmLT if the process f (.), hasS
the property that for n cz f m - m (r) m - m (r) 2,. 01,

f (t,�y') is uncorrelated with f (S,�yn when conditioned on f (t;�'+'), and (7.19a)
f (S,;zy n+1)

f (8,;zyn) is uncorrelated with f (pzyn) when conditioned on f (7.19b)
f (t;-,n+l

Proof. See Appendix E.

Next, we provide the sufficient conditions such that E[X(t)X(,S)T] = LtPfmL T for8
the case where s and t are at different scales. Figure 7.2 provides a visual interpretation

of the relationships among the variables of Proposition 7.3.2.

Proposition 7.3.2. Let x(.) and f () be as defined in Proposition 7.3.1. Suppose for

t, s E So, m(t) > m(s). Let t' = twym(')-m(1) and r = t A s, the common ancestor of t

and s with maximal scale. Then, E[x (t)X(s)T] = LtPfmL T if the process f (.) has the8
property that, for n E Im (s) - m (r) - 1, m (s) - m (r) - 2,. 01,

f (t,,7yn) is uncorrelated with f (s,�n ) when conditioned on f (tjn+1 ), and (7.20a)
f wr+l )

f (sYn) is uncorrelated with f (t,,wyn) when conditioned on f (szyn+l)
f (tl7yn+l) (7.20b)

and also, for j c f m(t) - m(s) - 1, m(t) - m(s) - 2,... , 01,

f (t;�3) is uncorrelated with f (s) when conditioned on f (t;�j+') . (7.21)
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Proof. See Appendix E. 0

While the algorithm of Chapter 4 focuses on the scale-recursive Markov property,
Proposition 7.3.1 and Proposition 7.3.2 suggest a slightly different notion of Markovian-
ity. Indeed, in designing the local internal matrix at node s, rather than focus on every
state at the next finer scale (as the scale-recursive Markov property does), we need only
consider the subset of states that carry information about variables to estimate or mea-
surements. In the remainder of this section, we will make this idea precise as we develop
an algorithm based on the conditional decorrelation conditions of Proposition 7.3.1 and
Proposition 7.3.2. This algorithm will produce an internal and exact or approximate
model that incorporates nonlocal linear functionals associated with any particular es-
timation problem. Since it exploits the structure of the given estimation problem, it
provides a better allocation of both state dimension and computational resources.

The description of the algorithm for designing a MAR model x(.) for an estimation
problem involving nonlocal variables is simplified by labeling the nodes of the tree that
indexes x(.). There are six kinds of node labels and any node may have any number
(including none) of them. An unlabeled node will be called an empty node. The labels
are e, ec, ep, m, mc, and mp which denote, respectively:

• estimate (e) node,

• estimate consistency (ec) node,

• estimate path (ep) node,

• measurement (m) node,

• measurement consistency (mc) node,

• measurement path (mp) node.

A node s is labeled e (m) if a variable to estimate (a measurement) is placed at s, which
is done as described in Section 7.2. A node is denoted ep (mp) if it is along the path
from a node labeled e (m) to the root node. An example is illustrated in Figure 7.3
in which a variable to estimate and a measurement are represented at nodes 2 and 4,
respectively. Notice that all nodes along the path from 2 to 0 and from 4 to 0 are
labeled ep and mp, respectively. A node s is labeled ec (mc) if both for some n 8�Y
labeled e (m) and also at least one descendent of sl is labeled either e or m. Therefore,
no nodes in the tree in Figure 7.3 are labeled ec or mc. Consider, however, Figure 7.4, in
which the node labels of Figure 7.3 have been augmented to indicate that a variable to
estimate appears at node 1. Thus, nodes 3 and 4 are labeled 6 ec because 37Y = 4'�Y = I
is an e node and a descendent of 31 = 4,�y (namely, node 4) is an m node. No other node

r'As will be explained, it is not necessary that node 3 be an ec node. However, the subsequent
development is simplified if every node either has its full complement of children labeled or has none of
them labeled.
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0

scale 0 ep, MP

2

scale I MP 1

3 4 5

scale 2

scale 3

Figure 7.3. An example of e, ep, m, and mp labels. A variable to estimate and a measurement are
represented at nodes 2 and 4, respectively.

0

scale 0

2
B!g

scale I

3 5 6

scale 2

scale 3

Figure 7.4. Nodes 3 and 4 are labeled ec because 1 is labeled e and 4 is labeled m (see text). The
shaded nodes represent the nodes in the pruned tree described in the text.

satisfies the criterion for an ec or mc label. For instance, while node 5 does have an
ancestor (at node 2) that is labeled e, there are no descendents of 5,�y7 that are labeled
e or m.

Consider building a MAR model for an estimation problem with the characteristics
implied by Figure 7.4. That is, there is one (nonlocal) measurement characterized by
a linear functional we shall call h which has been placed at node 4. There are two
(nonlocal) variables to estimate which have been placed at nodes 1 and 2 which are
characterized by linear functionals d, and d2, respectively. To arrive at an internal
and consistent model, we must augment states descending from e and m nodes so that
the information they carry is propagated down the tree (as described in Section 7.2).
However, there is no need to propagate information to all descending nodes because
many of them will play no role in the estimation problem. That is, the empty (unla-
beled) nodes of Figure 7.4 are roots of subtrees which contain no measurements and no
variables of interest to estimate. These nodes may, therefore, be removed and we arrive
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at a pruned tree which contains only the shaded nodes of Figure 7.4. It is clear from
this pruned tree that, for consistency, only nodes 3 and 4 need to carry information
regarding a coarser-scale variable (namely, the d, linear functional at node 1). Note
that the information at node 3 exists only so that the d, can be written in terms of
variables at nodes 3 and 4. That is, the propagation of part of d, to node 4 is required
so that it is consistent with h (as described in Section 7.2). The other part of d, is
propagated to node 3. While this latter propagation is not necessary, our development
is simplified if every node either has its full complement of children labeled or has none
of them labeled.

Using the node labels of Figure 7.4, we may design states to capture exactly the
cross-correlations between the measurement (at node 4) and the variables to estimate
(at nodes I and 2) as follows. The internal matrices at nodes 2, 3, and 4 are already
completely defined since they contain linear functionals corresponding to measurements
and variables to estimate or parts of linear functionals needed for consistency (as is
indicated by the labels e, ec, and m). All of these linear functionals are built into the
internal matrices at nodes 2, 3, and 4 as described in Section 7.2. Consider designing
the internal matrix for node 1. Some of the rows are already defined so as to capture
J which represents the variable to estimate at node 1 (indicated by the label e). Since
we seek to capture the cross-correlations between the measurement and the variables
to estimate exactly, the role of the variables at node 1 is to conditionally decorrelate
the variables at node 4 (which contains a measurement) and those of node 2 (which
contains a variable to estimate). This is a pair-wise decorrelation problem which is easily
solved using the techniques of Section 2.4 (after conditioning on the information present
at node I as described in Section 7.2). Notice that there is no need to conditionally
decorrelate the variables at node 3 and node 2 since those of node 3 play no role in
the estimation problem other than providing internality. Now consider the root node.
The variables at the root node must conditionally decorrelate the measurement at
node 4 from the variable to estimate at node 2. To do so, it is sufficient to satisfy the
conditions of Proposition 7.3.2 (cf., (7.21)) and, thus, we must conditionally decorrelate
the variables at nodes 1 and 2. This too is a pair-wise decorrelation problem.

We may generalize the procedure illustrated by the preceding example as follows.
The first step is to choose a q-adic tree with M + I scales commensurate with the length
of f M. The second step is to choose nodes at which to represent measurements and
variables to estimate. These are the m nodes and the e nodes. The mp, ep, mc, ec,
and empty nodes are also defined by this choice. The empty nodes may be pruned
from the tree as they will play no role in defining the model. The internal matrices of
the leaf nodes (those with no children) of this pruned tree are already defined as they
contain linear functionals (or parts thereof) corresponding to nonlocal measurements
and variables to estimate. Next, we proceed scale-recursively,7 beginning with scale
M - 1 and followed by scale M - 2, etc. For each scale, we visit each node at that scale

7We still think of the pruned tree as having nodes organized into scales where the scale of node s of
the pruned tree is the same as in the original (unpruned) one.
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and determine the local internal matrix for that node. The order in which the nodes at
a given scale are visited is irrelevant. It suffices to describe the procedure for defining
the internal matrix for an arbitrary node.

To describe this procedure we will make use of the following notation. Let So denote
the set of nodes in the pruned tree while, as always, So is the set of nodes in the original
regular tree. Similarly, using the notation of Section 2.2, we define

- A -s, so n s,= nodes in subtree of pruned tree rooted at s,

'T, (n) t E S, I m(t) = nj = nodes of pruned tree at scale n descending from S.

Consider the set of ancestors of node s in the original (unpruned) tree,

A, = It G so I t = 8';Zy� for some f > 01, (7.22)

and the subset of the set of ancestors that remain after pruning,

As = A, n So. (7.23)

There is a unique node in is of maximal scale. Denote this node by 9 which is defined
formally as

arg max m (t) . (7.24)
tEJ�

For example, referring to the tree of Figure 7.4, 2 because the node in the pruned
tree which corresponds to the ancestor (in the original tree) of 5 with maximal scale is
2. Similarly, if s is a descendent of 5 (or, for that matter, 6) in the original tree '9 = 2
as well. Next, define

- A

Us (n) = T, (n) U t E 7,-, (n) (n) (7.25)

where T, (nj is the subset of nodes of S, that reside at scale n (as defined in Section 2.2).
Basically, Us (n) is the set of nodes at scale n that descend from s in the pruned tree
with the modification that, if a node t at scale n has been pruned away, the node of
the pruned tree that is its ancestor (in the original tree) of maximal scale, _t, is included
in U,(n). Thus, considering again Figure 7.4, Uo(2) = I3,4,21. Finally, define the
following subsets of igo(n):

')�, (n) t c ago (n) I t is labeled m, mc, or mpl , (7.26a)

b,(n) A It E 2�o(n) I t is labeled e, ec, or epl. (7.26b)

Returning now to the procedure for defining t he local internal matrix at node s
which resides at scale n, we proceed in a fashion similar to that of Section 7.2. That is,
we are going to build a local internal matrix for node s by considering several pair-wise
decorrelation problems, one for each child of s. For each such problem, we are going
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first to condition the relevant random variables on the linear functionals that have been
placed at s. The solutions to these pair-wise problems are then concatenated as in (2.66).
The structure of a particular pair-wise problem depends on the label of the node sai
we are considering. If sa- is an m or mp node (e.g., node 4 in the tree of Figure 7.4) then
it indexes a measurement or is an ancestor of a node that does. Therefore, one of the
roles of the state at node s is to conditionally decorrelate all of the measurements that
reside at or descend from sai from all other measurements and variables to estimate in
the tree so as to capture exactly (7.13a) and (7.13b) - Sufficient conditions for achieving
this decorrelation are given in the statements of Proposition 7.3.1 and Proposition 7.3.2.
Since we are designing an internal model (in which each state is a linear function of
its children states), these conditions further simplify. Indeed, we need only consider
the pair-wise problem of conditionally decorrelating the variables at sai from all other
variables at scale n + I pertaining to measurements and variables to estimate, namely
those indexed by ')�, (n + 1) U 'b, (n + 1) - f sail. For example, referring again to
Figure 7.4, it is sufficient that the variables at I conditionally decorrelate the variables
at node 4 (an m node) from the variables at nodes 2 (an e node) and 3 (an ec node),
both of which belong to the set DI (2).

If, on the other hand, sai is an e or ep node (e.g., node 2 in the tree of Figure 7.4)
then the role of x(s) is to conditionally decorrelate all of the variables to estimate that
reside at or descend from sai from all measurements so as to capture exactly (7.13a).
Therefore, we need to consider the pair-wise problem of conditionally decorrelating the
variables at sai from those indexed by W, (n + 1) - f sail. For example, referring again
to Figure 7.4, the variables at node 0 need to conditionally decorrelate the variables at
node 2 from those at node 1 which belongs to �qo (I). Notice that the asymmetry in this
procedure mimics the asymmetry of estimation. That is, measurements and variables
to be estimated are not treated equivalently because, in solving an estimation problem,
information flows from measurements to estimated variables but not vice versa. In the
sequel, we will refer to the technique developed in this section as goal directed modeling
(GDM).

The computational complexity of the foregoing procedure depends critically on the
number, type (e or m), and node placement of nonlocal. linear functionals. Clearly
the complexity of this procedure is no greater than the one described in Section 7.2
and is typically smaller for two reasons. First, some nodes are pruned away and are,
therefore, never visited in model realization. Second, as described in the previous
paragraph, while variables at an m node must be conditionally decorrelated from many
variables (those relating to both measurements and variables to estimate), variables at
an e node must only be conditionally decorrelated from a smaller set of variables (those
relating to measurements). Thus, the marginal computational cost of accommodating
an additional e node is smaller than that of accommodating an additional m node.
However, precise characterization of the computational complexity as a function of the
number, type, and placement of nonlocal linear functionals is an open problem to which
we will return in Chapter 8.
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Figure 7.5. (a) MAR (solid line) and optimal (dashed line) estimates of fBm(O.3) based on sparse
point-wise measurements and the sum over (3/4, 1], approximately incorporated using the AN method
(d = 4). Plus/minus one standard deviation error bars (dotted lines) are also shown. (b) MAR error
standard deviations (solid line) and optimal ones (dashed line). (c) and (d) represent processing similar
to (a) and (b) but the nonlocal measurement is incorporated exactly using the EN method rather than
approximately.

0 7.4 Examples

In this section we provide several examples illustrating the algorithms described in this
chapter.

N 7.4.1 One-Dimensional Examples

In our first example we illustrate the AN method of Section 7.1 and the EN method of
Section 7.2 and show that accurate estimation results can be obtained even when nonlo-
cal measurements are approximated. Figure 7.5 illustrates the estimation of 64 samples
of fBm(O.3) over (0, 1] from nine noisy measurements. Eight of the measurements are
local point measurements of the samples indexed by perfect squares in [1 : 64]. This cor-
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responds to measurements at times t = 0.02,0.06,0.14,0.25,0.39,0.56,0.77, 1.00. The
ninth measurement is a nonlocal one representing the sum over the quarter-interval
(3/4, 1]. For all measurements, the measurement noise has variance 0.01. The MAR
model to be used to solve this estimation problem has state dimension d = 4 and we first
consider a model for which the nonlocal measurement has been added approximately
using the AN method. Specifically, the MAR process used as a model for this problem
is indexed by a dyadic tree with five scales. The point-wise measurements are mapped
to the finest scale, as has been done in the estimation problems considered in previ-
ous chapters. The single nonlocal measurement (the sum over (3/4, 1]) is represented at
scale m(s) = 2 and shift t(s) = 4 which is, in some sense, the most natural node because
the fine-scale descendents of this node correspond to the interval (3/4, I]. Figure 7.5(a)
illustrates the MAR estimates (solid line), optimal estimates based on exact statistics
(dashed line) and one standard deviation error bars (dotted line). The largest difference
between the exact and MAR estimates is in the interval (3/4, l]-precisely the region
associated with the approximately represented nonlocal functional. However, the MAR
estimates are close to the optimal ones and well within the error bars indicating that
the impact of the modeling error (due both to the approximate MAR model of fBm(O.3)
and the approximate incorporation of the nonlocal linear functional) for this estimation
problem is not significant. Figure 7.5(b) illustrates the MAR estimation error standard
deviations (solid line) and the optimal ones (dashed line).

Next, we continue to consider the estimation problem described in the previous
paragraph but we apply a MAR model (again, with state dimension d = 4 and indexed
by a dyadic tree with five scales) for which the nonlocal measurement is added exactly
using the EN method. Specifically, first the nonlocal linear functional is incorporated
at scale m(s) = 2 and shift %(s) = 4 and the information carried by it is propagated
down the tree as described previously. Then, a model is built around the information
contained in node (m(s),%(s)) = (2,4) and its descendents by conditioning on it as
described in Section 7.2. Figure 7.5(c) and Figure 7.5(d) illustrate estimates and error
standard deviations associated with this model (solid lines) as well as the optimal ones
(dashed lines). Notice that the estimates of Figure 7.5(c) are better (i.e., closer to the
optimal ones) than those of Figure 7.5(a). This is most easily seen in the region (3/4, 1].
Additionally, the error standard deviations of the MAR model depicted in Figure 7.5(d)
are noticeably closer to the optimal ones than are those of Figure 7.5(b). Again, this is
most evident in the region (3/4, 1].

In our second example, we compare the EN method of Section 7.2 to the GDM
method of Section 7.3 for the problem of estimating 64 samples of a 15-th order sta-
tionary Markov process. There are three measurements in this problem: a point mea-
surement at location 32, the sum of the four samples [I : 4] and the sum of the four
samples [61 : 64]. The measurement noise has variance 0. 1 for all three measurements.
Figure 7.6(a) illustrates MAR (solid line) and optimal (dashed line) estimates based on
a model with state dimension d = 3 designed using the EN method in which the lin-
ear functionals representing the two nonlocal measurements are incorporated exactly.
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Figure 7.6. (a) MAR (solid line) and optimal (dashed line) estimates of a 15-th order stationary
Markov process based on one point measurement (sample 32) and two nonlocal ones (sums of first and
last four points) incorporated exactly using the EN method (d = 3). Plus/minus one standard deviation
error bars (dotted lines) axe also shown. (b) MAR error standard deviations (solid line) and optimal
ones (dashed line). (c) and (d) represent processing similar to (a) and (b) but the model is built using
the GDM procedure.

Plus/minus one standard deviation error bars (dotted line) are also shown. As ex-
plained in Section 7.2, the technique for computing the model parameters is based on
the procedure of Section 4.1 (with the difference that we first condition on the nonlocal
variables). The procedure of Section 4.1 relies on scale-recursive Markovianity which,
as we will illustrate, is overkill for this problem because it focuses on variables that
play no role in estimation. Notice that the MAR estimates are poor approximations
to the optimal ones, with the maximum difference larger than one standard deviation.
MAR (solid line) and optimal (dashed line) error standard deviations are shown in Fig-
ure 7.6(b). This plot illustrates that the MAR error standard deviations are also crude
approximations to the optimal ones.

Figure 7.6(c) and Figure 7.6(d) illustrate estimates and error standard deviations,
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Figure 7.7. (a) Sample-path based on the statistics of (4.17). (b) Measurement geometry: point
measurements (grey), line-integral measurements (black).

respectively, derived from a different MAR model designed using the GDM technique
(solid line) and based on the optimal statistics (dashed line). The MAR model has state
dimension d = 3. The GDM technique is not based on the scale-recursive Markov prop-
erty and exploits the structure of the estimation problem. It focuses its attention only
on conditionally decorrelating variables that do play a role in estimation and, therefore,
achieves a higher fidelity model with no increase in state dimension. The improvement
in estimates and error standard deviations is clear from the figures. This improvement
is due to the fact that the GDM technique focuses state dimension resources on the
estimation problem at hand and does not waste them on modeling parts of Pfm that
are not relevant to this problem.

N 7.4.2 Two-Dimensional Multiresolution Data Fusion Example

In the next example, we illustrate a random field data fusion problem based on irregular
local and nonlocal measurements. In particular, we estimate the field illustrated in
Figure 7.7(a) based on measurements whose locations are indicated in Figure 7.7(b).
The sample-path in Figure 7.7(a) is identical to the one depicted in Figure 4.10(a) and
is drawn from the statistics of (4.17). Each grey point in Figure 7.7(b) corresponds to
a point measurement. Only about 20% of the fine-scale pixels are measured and, as can
be seen, the point measurements are scattered irregularly. The four horizontal black
lines correspond to nonlocal sums. That is, we have four line-integral measurements
taken over the regions indicated with black lines. The measurement noise variance
is 0.2 for all measurements. Applying a MAR model designed using the EN method
(and with d = 64) to the data fusion problem at hand, we obtain the MAR estimates
and estimation error variances shown in Figure 7.8(a) and Figure 7.8(b), respectively.
Figure 7.8(c) and Figure 7.8(d) illustrate estimates and error variances for the same
estimation problem but associated with a MAR model with state dimension d = 32.
Notice that the estimates of Figure 7.8(c) are nearly identical to those of Figure 7.8(a).
Additionally, the estimation error variances of Figure 7.8(d) are on the same order as
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Figure 7.8. Random field multiresolution data fusion example. (a) Estimates based on the measure-
ment geometry of Figure 7.7(b) using a MAR model designed using the EN method (state dimension
d = 64). (b) Error variances. (c) and (d) represent processing similar to (b) and (c) but with a MAR
model with state dimension d = 32.

those of Figure 7.8(b), and some blocky artifacts can be seen in the former due to the
lower dimensionality of the model.

The estimates and error variances for a data fusion problem similar to the one just
discussed are illustrated in Figure 7.9. The data for this case are identical to those for
the previous example. However, in this case we are interested in viewing the problem at
a coarser scale. That is, rather than estimating exclusively fine-scale pixels, we instead
wish to design a MAR model which provides coarser scale estimates and error variances.
Specifically, we build a MAR model that includes the average over 4 x 4 regions tiling
the underlying 64 x 64 field. Additionally, we have used the GDM method in which each
of these nonlocal linear functionals 8 is placed in the quad-tree at the unique node with
maximal scale with the property that the support of the linear functional is contained in
the fine-scale region (abstractly) represented at that node. Figure 7.9(a) illustrates the
estimates for the 4 x 4 coarse-scale pixels based on a MAR model with state dimension
d = 64 while Figure 7.9(b) illustrates the corresponding estimation error variances.
Figure 7.9(c) and Figure 7.9(d) illustrate the 4 x 4 coarse-scale pixel estimates and
error variances, respectively, but for a model with state dimension d = 32. Figure 7.9(c)

8There are 260 nonlocal linear functionals in this problem, 4 representing nonlocal measurements
and 256 representing the the 4 x 4 coaxse-scale pixels tiling the 64 x 64 field.
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Figure 7.9. (a) Coarse-scale estimates (4 x 4 averages) based on the measurement geometry of
Figure 7.7(b) (d = 64). (b) Error variances associated with the estimates of (a). (c) and (d) represent
processing similar to (a) and (b) but with a MAR model with state dimension d = 32. (e) Absolute
value of the fractional difference between (a) and (c). (f) Absolute value of the fractional difference
between (b) and (d).

appears to be very similar to Figure 7.9(a), and Figure 7.9(b) appears to be very similar
to and Figure 7.9(d). However, there are some significant differences. These can be
seen in Figure 7.9(e) and Figure 7.9(f). The former illustrates the absolute value of
the fractional difference between Figure 7.9(a) and Figure 7.9(c) where Figure 7.9(a) is
used for normalization. That is, if F,, and F, represent Figure 7.9(a) and Figure 7.9(c),
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respectively, then

F. - F,
(7.27)

F.

is plotted in Figure 7.9(e) where the subtraction, division, and absolute value in (7.27)
is pixel-wise. Similarly, Figure 7.9(f) illustrates the absolute value of the fractional
difference between Figure 7.9(b) and Figure 7.9(d) where Figure 7.9(b) is used for
normalization. Figure 7.9(e) and Figure 7.9(f) show that for many pixels the normalized
difference between the 64-th order model (of Figure 7.9(a) and Figure 7.9(b)) and the
32-nd order model (of Figure 7.9(c) and Figure 7.9(d)) is insignificant. However, for
some pixels the normalized difference is significant, indicating that some important
statistical features are not captured by the lower-dimensional model.

The examples of this section have shown that, in certain circumstances, one can
achieve excellent estimation results with lower dimensional models (e.g., using the GDM
technique of Section 7.3) or with models for which nonlocal functionals are only incor-
porated approximately (e.g., using the AN technique of Section 7.1). In some cases,
exact incorporation of nonlocal functionals is required (e.g., using the EN technique of
Section 7.2) to achieve good performance. Further development of these techniques and
characterizing the circumstances in which they are appropriate is an open problem.



Chapter 8

Contributions and Suggestions

HIS thesis makes significant contributions in the general area of stochastic model-
Ting and, in particular, to the theory of internal MAR processes and MAR model
identification. These are summarized in Section 8.1. Notwithstanding these contri-
butions, there are a number of important open problems associated with the MAR
framework. Some of these are extensions of work presented in this thesis, and these
too are summarized in Section 8.1. Other suggestions for future research are found in
Section 8.2.

E 8.1 Thesis Contributions and Extensions

This thesis addressed three main topics in stochastic modeling with MAR processes.
These topics were summarized in Section 1.2 as:

• computationally efficient internal MAR stochastic realization (Chapter 3, Chap-
ter 4, Chapter 7),

• unification of the wavelet and MAR frameworks (Chapter 5), and

• covariance extension (Chapter 6).

Each of these main topics can be further subdivided into several problems, the solutions
of which represent important contributions in their own right. Indeed, the resulting al-
gorithms will serve as invaluable tools to researchers wishing to apply the MAR frame-
work. Additionally, the conceptual framework developed in this thesis for addressing
these problems represents a fertile foundation for future theory and algorithms. In this
section we summarize these problems, their solutions, and possible extensions.

A Theory for Internal MAR Processes

Non-internal (i.e., external) MAR models have been developed and successfully ap-
plied to several signal processing problems. For example, the 11f -like models described
in [28,29] and applied to one-dimensional [28,29] and two-dimensional [127,128] optical
flow, oceanographic problems [63,66], and surface reconstruction [63,69] are external.

165
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Additionally, high-fidelity and low-dimensional external models for fBm and other pro-
cesses are developed in [37, 40, 96, 98, 100]. These facts beg the question: why restrict
attention to internal models?

There are several important reasons to focus on the property of internality, many
of which were discussed in Section 1.2.1 and Chapter 3. Included among these are the
following:

• internality vastly simplifies model identification and reduces the problem to one
of finding internal matrices;

• internality provides model consistency which is of critical importance when de-
signing states to include specific nonlocal linear functionals (e.g., wavelet-based
functionals, tomographic (line-integral) functionals, area averages, etc.); and

• internality leads to a scale-recursive notion of Markovianity and thereby plays a
role in achieving computationally efficient realization algorithms.

In addition to these reasons there are others. One is that, given noisy (local or non-
Mlocal) observations of the fine-scale process x , only the internal part of a state may

be estimated. That is, any external component is in the null-space of the estimator.
Another and more fundamental reason to focus on internality is that it is an important
pillar in the foundation of state-space stochastic realization theory. Indeed, much of the
success that state-space modeling has enjoyed stems from theoretical and algorithmic
simplifications that internality provides. This thesis has shown that a MAR stochastic
realization theory based on the concept of internality possesses many of the attractive
features of its state-space counterpart. It is fair to say, then, that internality is an
important concept in its own right and one that deserves precise characterization and
development.

Chapter 3 provided such a development. The main result is that the correct pa-
rameterization of internal MAR states is through local internal matrices that linearly
relate each state to the sub-process at the previous finer scale. This new parameteri-
zation differs from previous attempts to parameterize internal MAR states [96,98, 100]
in which each state is parameterized by a matrix that relates it to the finest scale sub-
process. Not only did these previous approaches lead to inconsistent (i.e., external)
models, they lead to computationally burdensome realization algorithms because the
determination of the linear functionals relating each state to the fine scale relies on a
number of variables proportional to the number of fine-scale nodes. In contrast, the
scale-recursive parameterization developed in Chapter 3 leads to an efficient and con-
sistent realization algorithm based on a scale-recursive notion of Markovianity (and on
predictive efficiency).

Notwithstanding the motivation for and the success of the theory of internal MAR
processes developed in this thesis, a corresponding theory for external MAR processes
is attractive. Perhaps the most compelling motivation for the development of such a
theory is the fact that to find a minimal MAR model (one with smallest possible state
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dimensions) one may need to look beyond internal models and consider the larger class
of external ones [96]. However, as of this writing, there is no known path through the
wilderness of external processes and, therefore, there is no known systematic procedure
for searching for minimal models. The external models mentioned at the start of this
section were all developed either by ad hoe means or as an unintended consequence of
an improper parameterization for internal processes.

One possible (but, as of yet, not well thought out) approach to understanding ex-
ternal processes stems from the following observation. An external state can be written
as a sum of an internal part and a (purely) external part. Therefore, beginning with a
state of an exact, internal model, it is, perhaps, possible to add external randomness to
achieve a lower dimensional state that fulfills the same decorrelation role as the original
internal one.

Consistent and Efficient MAR Model Realization

To harness the utility of the MAR signal processing algorithms, one must translate the
problem at hand into the MAR framework. Doing so means endowing a MAR process
with all (or at least the most salient) statistical features of the underlying processes. For
problems which can be characterized exclusively by the second-order statistics of a fine-
scale random process (i.e., there are no nonlocal variables of interest), this corresponds
to choosing parameters of a MAR process so that its fine-scale variables have second-
order statistics that well-approximate the given ones.

It is precisely this MAR stochastic realization problem that is the topic of [40,96,98,
100]. However, the approach taken in these works suffers from several weaknesses, two of
which are addressed by the algorithm developed in Chapter 4 of this thesis: consistency
and computational complexity. A general-purpose algorithm based on the notion of fine-
scale Markovianity was presented in Chapter 4 with complexity quadratic in problem
size. Application of the boundary approximation further reduced this complexity to
linear in problem size. In contrast, the general-purpose algorithm of [96, 98, 100] has
complexity quartic in problem size. Another feature of the approach of Chapter 4 not
shared by others is that it leads to internal (and, hence, consistent) models.

One important component of the model identification approach of Chapter 4 is pre-
dictive efficiency (Section 2.4). This estimation-theoretic tool is used to conditionally
decorrelate random vectors and also plays a role in computational efficiency. The use
of predictive efficiency in MAR model identification leads to a computational simpli-
fication of two orders as compared to using canonical correlations (the method used
to conditionally decorrelate random vectors in previous MAR model identification ap-
proaches) because it treats the two vectors to be decorrelated asymmetrically. In the
context of MAR stochastic realization, this asymmetry permits the organization of cal-
culations so that the inversion and singular value decomposition of large matrices is not
required-steps that cannot be avoided when using canonical correlations.

Additional computational savings are achieved by the boundary approximation in
which one only attempts to conditionally decorrelate elements of a random process from
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nearby elements, rather than from all other elements. The intuition that motivated
the boundary approximation is that for nearly Markov processes or processes with
quickly-decaying long-range correlations the boundary elements summarize the salient
statistical features. In Section 4.2.2 some theoretical justification for this intuition was
provided in the form of bounds on the approximation error. While the bounds do show
that as the process becomes closer to Markov (in a certain sense) or has faster decaying
long-range correlations the boundary approximation is closer to the exact method, they
are rather crude and certainly far from tight. Therefore, one obvious extension is to
refine and tighten these bounds. Another extension stems from the observation made
in Section 4.3 that the boundary approximation is an accurate one for a richer class
of processes than Markov or quickly decorrelating ones. Characterizing the class of
processes for which the boundary approximation is accurately applicable is an open
problem.

The boundary approximation is not the only kind of approximation one can imagine
making. Indeed, taking a broader view of the problem suggests some alternatives. The
problem is to estimate a large vector Z2 from a small one zi and, therefore, the estimate
lives in a subspace with dimension equal to the length of z1- Hence, it is reasonable to
expect that consideration of the estimate of a low-dimensional summary Of Z2 Ought to
be sufficient. There are a variety of ways, other than the boundary approximation, to
reduce the dimensionality Of Z2 and the heart of the problem is to find ones that are
both useful and efficient. One idea is to use Krylov subspace methods [84,161,163,164]
to project Z2 onto a small subspace that captures most of the variability that can be es-
timated from z1. Another idea is motivated by multipole-like or mean-field-like approx-
imations [64,65,87,196-198]. Approximations of this type summarize distant variables
by aggregating them rather than ignoring them as the boundary approximation does.
Therefore, while they provide a means to account for some of the statistical features of
distant variables, they are not as greedy or as computationally costly as exact methods
or as myopic as local methods such as the boundary approximation. Developing effi-
cient and effective alternatives to the boundary approximation and characterizing the
class of processes for which they make sense is an open problem.

Unification of Wavelet and MAR Frameworks

The unification of wavelets and MAR processes provided in Chapter 5 is both theo-
retically satisfying and practically important. It is satisfying because, while wavelets
motivated the development of MAR processes and while the two frameworks are tan-
talizingly similar, they seemed, until this thesis, irreconcilable except in the case of the
Haar wavelet. It is important because MAR-wavelet processes combine the renowned
modeling power of wavelets with the flexibility and efficiency of the MAR framework.
Additionally, MAR-wavelet processes provide another route toward stochastic modeling
with the MAR frameworks route that is less closely tied to the minute and (in many
cases) irrelevant or poorly known details of the statistics of the signal being modeled.

There were two issues to address to achieve the unification. The first was model con-
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sistency (i.e., internality) which is crucial if MAR state elements are to be wavelet and
scaling coefficients of the fine-scale process. Once internality was understood (Chap-
ter 3), the second issue was how to design the MAR-wavelet states associated with any
compactly supported orthogonal or biorthogonal wavelet to provide internality while
keeping the state dimension low. This latter issue is resolved in Section 5.2.2.

In Section 5.3 MAR-wavelet processes were applied to the problem of stochastic
realization. One main result is that internal MAR-wavelet models (for which the MAR
process driving noise represents the prediction error in estimating detail coefficient from
coarser scale scaling and detail coefficients) outperform standard MAR-wavelet models
(for which the MAR process noise represents the detail coefficients themselves). This
result can be explained as follows. While the standard MAR-wavelet models make the
assumption that wavelets perform a Karhunen-Loeve decomposition of the process be-
ing modeled, the internal MAR-wavelet models are more sophisticated. Indeed, they
make the weaker assumption that the parent-to-child prediction errors are white and
thereby incorporate a synthesis algorithm for the detail coefficients complementing the
customary one for the scaling coefficients. An important consequence of the fact that
internal MAR-wavelet models exploit the correlations among neighboring wavelet coef-
ficients is that models of relatively low dimension, corresponding to wavelets of small
support and few vanishing moments, can achieve a surprisingly high degree of statistical
fidelity.

The MAR-wavelet processes developed in Chapter 5 are applicable to the modeling
of one-dimensional signals. The extension to two dimensions poses a number of impor-
tant and challenging problems, some of which are currently being studied [42]. Among
these are the two-dimensional generalizations of Proposition 5.2.1 and Proposition 5.2.2.
Even a casual glance at the proof of Proposition 5.2.1 in Appendix C makes clear that
this generalization is far from straightforward.

The MAR-wavelet work of Chapter 5 is an instance of a more general concept,
namely the idea of selecting internal matrices from a library of linear functionals. This
idea is an extremely important one in many applications, some of which have been
highlighted in this thesis. For example, if one is interested in estimating nonlocal
variables from data collected at multiple resolutions, the MAR states must be able
to represent the coarser variables in addition to playing a conditional decorrelation
role. This corresponds to selecting internal matrices from a library of linear functionals
which include ones that not only do a good conditional decorrelation job but also include
ones that represent nonlocal variables to estimate or to include as measurements. The
problem of developing and selecting from a more general (not necessary wavelet-based)
library suitable for a rich class of modeling problems is an open one.

Model Identification from Incomplete Covariance Information

All previous approaches to MAR stochastic realization rely on the assumption that
the covariance matrix of the signal to be modeled is precisely and completely known.
Relaxation of this assumption is critical if the MAR framework is to be applied to large
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real-world problems-ones for which full specification of a covariance matrix is unlikely
to be available. Consideration of the problem for which only a subset of the covariance
elements are known leads to the covariance completion (or extension) problem which
was the focus of Chapter 6.

To address the specific problem of building a MAR model for the maximum-entropy
completion of a partially specified (banded) covariance matrix, we developed a general-
ization of the classical Levinson algorithm in Section 6.4. In doing so, we showed that
completions of any partially specified covariance matrix for which the known entries
correspond to a chordal graph may be computed via one-element extensions. Applying
this generalized-Levinson algorithm to the MAR maximum-entropy completion mod-
eling problem, we showed that the parameters of a MAR model can be computed
efficiently. Indeed, the complexity of doing so is comparable to that which is achieved
by the classical Levinson algorithm in computing the parameters of an autoregressive
model.

The specific problem considered in Chapter 6 represents a first step in the devel-
opment of techniques for MAR model identification from incomplete covariance infor-
mation. Indeed, there are many conceivable extensions and open problems. The most
obvious one, perhaps, is the relaxation of the rather rigid requirement of Chapter 6
that the 2k + I main diagonal bands are known. The banded partial covariance case
is a convenient one because its maximum-entropy completion corresponds to a Markov
process, and the internal matrices that define MAR states are clear. One challenge in
considering more a more general (but still chordal) pattern of known covariance ele-
ments is that, in general, it is unclear what the internal matrices ought to be. The same
problem arises if one considers completions other than the maximum-entropy one.

A seemingly more difficult challenge arises when one considers covariance informa-
tion that does not correspond to a chordal graph. This situation may occur because,
in addition to information about the correlation between fine-scale random variables,
the correlation between some coarse-scale, nonlocal. variables are also provided. Non-
chordal graphs also arises naturally in two-dimensions where nearest-neighbor covari-
ance information does not give rise to a chordal graph (recall the nearest-neighbor graph
of Figure 6.2(c)). However, non-chordal graphs can arise in important one-dimensional
problems as well, for instance in two-point boundary value problems [5] such as the
Brownian bridge which has applications in finance [176], polymer science [136], ther-
modynamics [I 50], and immunization theory [15]. In the Brownian bridge problem, in
addition to diagonal bands, the covariance between the end-points of a one-dimensional
random process are known.

At first glance, the Brownian bridge problem seems like a simple variation on the one
considered in Chapter 6 since it involves only one additional covariance element-the
one associated with the end-points of the process. Heightening this sense of simplicity,
the process end-points are both available in the root node state of the MAR end-point
model used in Chapter 6. Therefore, it would seem that knowledge of the additional
covariance element only impacts the computation of the root node statistics. Unfor-
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tunately, however, once we leave the world of chordal graphs the entire procedure for
computing the extension necessary to build the MAR model must be revamped. The
reason is that all of the theory of Chapter 6 is premised on chordality and it is un-
clear how to modify it or the resulting extension algorithm for the case of non-chordal
graphs. Some optimism can be gleaned from the fact that there has been some work
on non-chordal completions [10,33,82,159]. Other covariance completion work differ-
ent from that previously discussed in this thesis is found in [2] and [132]. The former
considers the completion of banded partial covariance matrices for which there are gaps
(i.e., non-adjacent bands are known). The latter considers the completion of partial co-
variance matrices under linear constraints on the unknown elements. Harnessing these
techniques for application to MAR model identification is an open problem.

There are a number of open graph-theoretic questions raised by the covariance
extension work of Chapter 6. One is the development of fast algorithms for finding
chordal sequences. Another is the existence and construction of efficient chordal se-
quences (which are defined by Definition 6.4.1). While solutions to these problems
are not necessary for the particular problem addressed in Section 6.5 (that of building
a MAR model for the maximum-entropy completion of a banded covariance matrix),
they are important for the efficiency of the generalized-Levinson algorithm developed
in Section 6.4.

Another type of problem arises when considering the identification of MAR mod-
els from no covariance information, i.e., when considering identification from directly
from data. No doubt many of the techniques developed in this thesis, including those
of covariance extension, have data-based counterparts. Additionally, there are likely
approaches not found in this thesis that are better suited to model identification from
data-for instance, approaches based on iterative learning algorithms or adaptive fil-
tering which are currently being investigated [180]. Although this work is preliminary,
it appears that one of the fundamental difficulties is finding internal matrices. One
possible way around this difficulty is to simply select internal matrices from a class that
is known to be broadly effective (e.g., the class of wavelet bases or the class given by
end-point MAR models for Markov processes). Then these initially selected internal
matrices can, perhaps, be evolved iteratively in a data-driven way to arrive at ones
more appropriate for the particular statistics of the data.

Incorporation of Nonlocal Variables

The challenge of MAR model identification resides in the number of conflicting con-
straints that a MAR model must satisfy. These include: possessing low dimensional
states, achieving high statistical fidelity (equivalently, providing a good approximation
to Markovianity), and possessing internality (or, consistency). Consideration of these
constraints is sufficient to address the modeling of a fine-scale random process. How-
ever, to address estimation problems involving nonlocal variables one must add another
constraint: that each of the specific nonlocal. variables of the problem at hand be ex-
pressible (at least to good approximation) as a linear function of a MAR state. Dealing



172 CHAPTER 8. CONTRIBUTIONS AND SUGGESTIONS

with this additional constraint is the topic of Chapter 7.
Three techniques are developed in Chapter 7. The approximate nonlocal (AN)

method of Section 7.1 incorporates nonlocal variables approximately and results in no
increase in state dimension over that which is required to model fine-scale statistics.
As is shown by example in Section 7.4, there are problems for which approximate rep-
resentation of nonlocal measurements has an acceptably small impact on the accuracy
of the estimates and error variances. Approximating measurements is also consistent
with the point of view that any model is an idealization of the true statistics. There-
fore, this provides motivation and justification for making approximations for the sake
of computational efficiency if the approximation remains faithful to the statistical fea-
tures that are important for the problem at hand. A precise characterization of when
such approximations are effective is an open issue.

Another technique developed in Chapter 7, the exact nonlocal (EN) method of
Section 7.2, incorporates nonlocal variables exactly, a problem that has been considered
in [37,39]. One significant difference between the EN method and that of [37,39] is that
the latter begins with a model while in the former a model is built around the nonlocal
linear functionals. Therefore, the information carried by the nonlocal linear functionals
may be conditioned upon leading to a more efficient allocation of state dimension and
higher fidelity models.

The final technique of Chapter 7, the goal directed modeling (GDM) technique of
Section 7.3, exploits the structure of the estimation problem to simplify model real-
ization. We showed with an example that there are instances in which the Markov
property leads to a poor allocation of resources because it conditionally decorrelates
random variables that are irrelevant for estimation. GDM is based on an intellectual
successor to the Markov property and our example showed that a model designed using
this technique can outperform one based on the Markov property. A major unresolved
issue associated with this technique is computational complexity. The challenge in as-
sessing complexity is to understand the impact of the number, type, and node placement
of nonlocal linear functionals. While the modeler is free to select the nodes at which
to represent nonlocal variables, it is unclear how to make this choice to minimize the
complexity of model realization or of estimation.

The work of Chapter 7 suggests a modeling philosophy substantially different from
those of previous chapters-that of designing a model with a specific purpose in mind
(e.g., an estimation problem or a class of related estimation problems). In turn, this
philosophy suggests fundamental questions. It is clear from the work of Chapter 7 that,
given the additional structure provided by a particular modeling goal, one can achieve
models better suited for that goal as compared to those designed in the absence of this
additional structure. However, it is far from clear precisely how one ought to exploit
this additional structure or even what all the degrees of freedom are. The concept of
goal directed modeling presents significant problems many of which are raised but not
conclusively resolved by the work in Chapter 7.
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N 8.2 Additional Suggestions for Future Research

While many extensions of the work presented in this thesis were discussed in the previous
sections of this chapter, there are a number of other open issues associated with the
MAR framework. Some of these are discussed in this section.

Variations of and Alternatives to Predictive Efficiency

In Chapter 4 we based our approach to conditionally decorrelating several random vec-
tors on predictive efficiency. The only aspects of predictive efficiency that are crucial
to stochastic realization are computational efficiency and an interpretation as a mea-
sure of conditional decorrelation or distance from Markovianity. It is conceivable that
there are other criteria (e.g., those based on information-theoretic concepts like mutual
information) that also have these properties and which may lead to more accurate (in
some sense) realizations or are more appropriate for other types of MAR model identi-
fication problems not discussed in this thesis (like the estimation of MAR parameters
from data).

In the remainder of this section we discuss some open problems associated with
predictive efficiency. As stated in Section 2.4, finding a procedure for solving the higher-
order predictive efficiency problem (2.64) is an open problem. Our suboptimal solution
of solving several pair-wise problems also raises issues. One issue is how to choose ri,
the number of linear functionals of zi to keep. Our approach of choosing ri implicitly
by keeping the linear functionals corresponding to the d highest eigenvalues has one
unfortunate consequence: the collection of linear functionals may contain redundant
information.

A way to avoid this redundancy is to consider adding linear functionals sequentially
where at each sequential step we add one or more linear functionals that have the highest
predictive efficiency conditioned on the linear functionals that have been chosen during
previous steps. One simple way to do this is first to incorporate linear functionals from
z1, then from Z2, etc., an approach that requires specifying the ri sequentially rather
than collectively. This will produce models that depend on the order in which the zi
appear in the sequence. More complex alternatives (e.g., cycling through the zi several
times, incorporating smaller numbers of linear functionals at each step) can potentially
achieve greater statistical fidelity with an increase in computational load.

Another way to determine the ri is minimize the maximum cost of the pair-wise
problems. Since the predictive efficiency matrices (Ui, Ai) for the pair-wise problems
(2.65) do not depend on one another, we may compute them all before determining the
ri 1. Then, letting M be the j-th eigen-value in Ai, consider the discrete optimization

problem

d

min max E(Zic I Vi'rizi) = min A� (8-1)n X 3'Jri} iC-[l:q] fri} i�E[alqj
3=ri+l

subject to the constraint that Eq ri < d. It is worth emphasizing that there is no
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guarantee that the matrix

V _`�' diag(V,,,,, V2,,,,... , Vq,,,) (8.2)

which is formed based on these "optimal" fril is optimal in the sense of minimizing
the cost function of (2.64) which we repeat:

4z" Z2, - - - , Zq+1 I vzo) . (8-3)

There may be another choice for the fril that both decreases (8.3) yet increases the
cost function of (8.1). How to select the fril to minimize (8.3) is an open problem.

Overlapping with Nonlocal Variables

We reviewed the overlapping tree method of [63, 96, 97] in Section 2.3.4 and applied
it to reduce the blockiness of our examples in Chapter 4. Although not employed
in this thesis, the overlapping method can be applied to estimation, not just sample-
path generation. However, a significant limitation of the current understanding of
estimation with overlapping is that it is unclear how to apply the method to problems
with nonlocal measurements-problems of the type discussed in Chapter 7. That is, to
date the overlapping method has only been applied to fine-scale estimation problems
based on point-wise measurements.

To see the difficulty in extending the overlapping method to the case of nonlo-
cal measurements we first review how the method is applied in the case of point-
wise measurements. For this purpose, consider Figure 2.6(b). This figure depicts an
overlapping tree with four fine-scale nodes, however the underlying fine-scale process
f M = [f M(1) f M(2) f M(3) ]T is length-three. The sample f M (2) is mapped to two
different fine-scale nodes, s and t. Suppose we wish to use a MAR model indexed by
the nodes of this tree for an estimation problem involving a point-wise measurement
of f M (2). The way this is handled in [63, 96, 97] is to duplicate this measurement and
incorporate it at both nodes s and t. Duplicating the measurement in this way seems to
imply that twice the amount of information will be provided to the estimator. However,
this is easily remedied by doubling the variance of the measurement noise.

Now consider an estimation problem involving the nonlocal measurement

g = f M(1) + f M(2) + v (8.4)

where v is measurement noise. It is clear from Figure 2.6(b) that a natural node at
which to represent g is &� since both f M (1) and f M (2) are represented by states residing
at nodes descending from s,�. However, f M(2) is also represented by a state indexed
by a node (namely t) that descendents from Vy-. Therefore, in some sense, part of the
measurement g should be represented at t;�. Additionally, the measurement noise also
ought to be somehow divided up among s,� and t,�y in such a way so as not to increase
the overall amount of information provided to the estimator.
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Based on the current theory of overlapping trees, it is unclear, in general, how
to distribute nonlocal measurements (or parts thereof) among coarse-scale nodes in
an overlapping tree. However, for the particular problem described in the previous
paragraph there is a simple solution. The measurement g can simply be represented
at the root node since all of states representing fm(l) and fm(2) descend from the
root node. This suggests a way to handle more general problems involving nonlocal
measurements. For any overlapping tree and any nonlocal measurement 9 = h TfM+V

there is a unique node s with maximal scale such that the descendents of s index all
of the variables in the tree that comprise hTf M. Therefore g may be unambiguously
represented at node s or at any ancestor of node s. Evaluation of the merit of this idea,
fleshing out the theoretical details, and turning this idea into an efficient algorithm is
left for the future.

Global Error

The MAR stochastic realization techniques developed in this thesis, as well as those
previously developed, myopically focus on local criteria when designing MAR states.
However, typical measures of a MAR model's fidelity and utility are global (e.g., mea-
sures such as the complexity of the MAR estimator, the element-wise maximum of
I Pf m - P m 1, or mean-square estimation error). Since currently available realization
algorithms do not specifically minimize a global error criterion, when state reduction
is done, there is no clear way to tell how the reduction will affect the overall degree
of approximation. In this section we present some preliminary analysis which may be
of use in future work on developing a realization approach to minimize a global error
criterion.

One natural and less myopic, but as of yet elusive, realization approach is to choose
internal matrices while minimizing the complexity, c, of the estimation algorithm which
is the sum of the cubes of the state dimensions:

3c ds, (8-5)
SESO

Since, in some cases, it is important to obtain a realized fine-scale covariance that
is close to Pfm, another approach is to constrain the degree of approximation of the
realization. That is, to minimize

Eg = Ilpf M - Pm (8-6)

where is an appropriate norm. The quantity eg is referred to as the global error.
Combining the two criteria (minimizing c subject to a constraint on E9 or vice versa)
is a reasonable approach to take. We emphasize that this approach is decidedly not
the right way to proceed in the context of certain estimation problems. As discussed
in Chapter 7, in the context of some estimation problems, designing a MAR model to
match a specific fine-scale covariance may put resources (modeling fidelity) where it is
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not needed. In such circumstances, a notion of global error that is related to estimation
error is more relevant. However, for the not insignificant class of problems where it is
important to match a pre-specified fine-scale covariance (e.g., for the purpose of sample
path generation or because the data and estimates are dense and fine-scale) minimizing
some measure of global error E9 and/or controlling the overall complexity c makes sense.

While this global error problem is far from solved, there is a scale-recursive de-
composition of Pf ,m which may present a way to break the problem down into
more manageable pieces. To present this scale-recursive decomposition, we need a few
definitions. Using the MAR dynamics we can write

x n = An Xn-1 + Wn (8.7)

where, as always, Xn is the process at scale n. Also, An is a block matrix whose blocks
consist of all the A(s) matrices for m(s) n. The noise Wn has a block diagonal
covariance matrix Qn = diag(Q(80), Q(81), , Q(Sq--I)) where 480 = k, the shift of
node Sk and Tn(Sk) = n for all k. Using (8.7), we define the scale transition matrix,

as

-1 if i j,

T (i, j) Ai T (i - 1, T (i, i + 1) Aj+, if i > j, (8-8)
T (j, i)T if i < j.

Next, we define Pn' to be the realized covariance at scale n based on the covariance, Pf
(defined in Chapter 4) at scale m < n. What we mean by this is that, if we begin with
the Pfm as the covariance for scale m and use the dynamics to propagate from scale m
to n, the resulting covariance at scale n is Pn". Therefore, the realized covariance at
scale n, PXn, can be written equivalently as Pno. It follows from (8.7) that

n

Pnm = T (n, m) Pfm T (m, n) + 1: T (n, k) Qk T (k, n) (8-9)

k=m+l

The error associated with Pnm is defined as Pnm where

- I A P
Pn' - f PnT (8-10)

The matrix -PnT represents the accumulation of errors induced by each scale between

n and m. We can extract the contribution to this error from one scale by taking the

difference -PnT i;nm+'. We define this difference to be Pn". Some algebraic manipulation

reveals that

A +1
PnT PnT - PnT (8.11a)

TT(n, m + 1) [Pn+l - Am+lPmAm+l _ Qm+l] T(m + 1, n). (8-11b)
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Intuitively this makes sense since term in the brackets is PM 1 and this is projectedM+
down to scale n with the scale transition matrix.

Finally, by definition of P.M, we can decompose the error at any scale as a sum of
errors contributed by coarser scales:

n-1
pm -k

4Pn (8.12)

k=m

where we have used the fact that Pn' = Pf. - Pnn =_ 0. In particular we can expand this

out for the case where n = M and m = 0:

M-1
0 E -k

PX1 P�r (8.13a)
k=O

M-1

T(M, k + 1) [Pk+, - Ak+iPkA T I - Qk+l] T(k + 1, M) . (8.13b)k+
k=O

Since the global error is -g 0 11, one possible way to build in some control overP�r

global error is to attempt to minimize some norm of the scale-to-scale errors kPk'+ 1
,Pk ATPk+1 - Ak+ -k+l - Qk+l. The computational complexity of computing all of these

scale-to-scale errors is O(N 2) . To see this, note that _k has no more than d 2q 2k+2Pk'+ 1
elements and that Ak+1 has no more than d non-zeros per row. Thus we can compute

k with 0(d5 q2k+2) operations. Summing over all scales yieldsPk'+ I

M-1
d5q2 Y 2)k 0(d5q2M) (8-14)., (q

k=O

Since the number of elements in the fine-scale process is N = dqm this translates to

0(d 3N 2) complexity. If d is chosen independent of N the complexity is O(N 2).

Precisely how to use the scale-to-scale errors is an open research problem. One

possibility which has yet to be explored is to use the scale-to-scale errors in an iterative

procedure to allocate state dimensions. The idea is to build a model with some nominal

state dimensions and then to compare (somehow) the scale-to-scale errors. The states

indexed by nodes of scales which give rise to relatively larger errors can be increased

while states indexed by nodes of scales which contribute relatively smaller errors can

be decreased. This procedure may be iterated until the scale-to-scale errors are all of

the same magnitude.

An exploration of the type described in the previous paragraph could yield deep

results about how state dimensions ought to scale with problem size. Specifically, given

a particular class of processes (fBm, say) and an error budget, one may be able to

specify what the state dimensions ought to be as a function of problem size in order to

meet the error budget. Conversely, given an overall complexity constraint (the sum of

the cubes of the state dimensions, say), one may be able to say something about how

to allocate state dimensions in order to minimize global error.
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Characterizing the Limitations of the MAR Framework

The theory and algorithms developed in this thesis have substantially broadened the
range of problems to which the MAR framework may be applied. This breadth notwith-
standing, the MAR framework cannot efficiently address every problem. Clearly the
purview of the MAR framework does not extend beyond the class of linear problems
(or those which can be effectively linearized) that can be well-characterized by second-
order statistics. However, even within the class of second-order/linear problems there
are certainly some that are not well-suited to the MAR framework because, perhaps,
they require impractically large state dimensions. Characterizing the limitations of the
MAR framework is a challenging and important open problem.

Pairing this challenge down may provide some degree of simplification. For instance,
consider the problem of MAR model realization for a fine-scale process (as opposed
to model realization with the additional constraint of incorporating nonlocal coarse-
scale variables). MAR models offer substantial computational advantages for statistical
inference as long as they have state dimension that is small relative to the problem size,
N. This raises the question: what class of fine-scale processes can be captured with a
MAR model with state dimension that is independent of (or a slowly growing function
of) N?

Perhaps one approach to addressing this problem is to restrict attention to a specific
parameterized class of MAR models for which the internal matrices are already defined
(e.g., the MAR-wavelet models of Chapter 5). Doing so permits one to rephrase the
problem as: what processes can be well-modeled (i.e., realized at the fine scale) using
models chosen from this parameterized class? For the specific class of MAR-wavelet
processes one (incomplete) answer to this question is: all processes whose Karhunen-
Loeve transform is well-approximated by the wavelet transform can be well-modeled.
However the class of processes well-modeled by MAR-wavelet models is, no doubt,
substantially larger than this.

Questions of the type posed in this section are, in some sense, the deepest open ones
concerning the MAR framework and the work presented in this thesis represents one
step toward their resolution.
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Proofs for Chapter 3

In this appendix a proof of Proposition 3.1.2 (Section A.1) is provided as well as the
completion of the proof of Proposition 3.2.2 (Section A.2).

0 A.1 Proof of Proposition 3.1.2

Proof. We begin with the "only if" direction. Given that x(.) is a locally internal MAR
process, it has dynamics of the form (2.14). Thus, for all s G So -To (M)

x(saj) = A(saj)x(s) + w(saj). (A. 1)

Since w(-) is white and uncorrelated with x(O), it follows that w(saj) is uncorrelated
with x(s). Therefore, (A.1) represents the linear least-squares estimate of x(saj) from
x(s) plus the estimation error w(saj). Then, (3.6) follows from (3.2) together with
standard linear least-squares formulae.

To show the "if" direction, notice that (3-6) implies that by the MAR dynamics

J'al W(sal)-

XM(S)+l - J.2 P M(S)+1VT(VP -(")+1VT)-IX(8) + W (sa2) (A.2)S Xs X,

P.11 Msal,)_

AW

Pre-multiplying (A.2) by Vs results in Vsxm(s)+l = x(s) + Vs w. To conclude the proof
we now show that the term Vw is zero. For notational simplicity, let us define

R P -(s)+l - P rn(s)+IVST(Vsp -(")+1VT)-1VP M(8)+1 - (A.3)Xs Xs X" X,

The covariance matrix for Vw is
TVT] = Vs diag [Q(sal), Q(saA Q*eq)] VT

E[Vww , (A.4a)

= V, diag I J�I a J R JsT,,, 1, Js., R JTc,,, J., a, R J2�, I VST (A.4b)

= VsRV;r (A.4c)

=0 (A.4d)
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where the first equality follows from the definition of w in (A-2) and the second equality
follows from the definition of Q(saj) given in (3.6) and of R. The third equality follows
from the fact that R is block diagonal because it is the estimation error covariance
matrix in estimating xm(s)+l from x(s) and x(s) conditionally decorrelates fx(sai)17.1
by the Markov property. The fourth equality follows from the definition of R. Since
Vw has zero-mean and zero covariance it is deterministically zero. This completes the
proof.

N A.2 Completion of Proof of Proposition 3.2.2

To complete the proof we need to show that for an arbitrary s in So -To(M), x(s),
which has the scale-recursive Markov property, conditionally decorrelates the vectors
in the set f XM, U f xMC 1. We do this by induction starting at the next to finest
scale (scale M - 1) and proceeding to coarser scales. First, we note that the assertion
is trivially true for m(s) = M - I since the two sets fx(saj)j� I U Ix M(S)+l I and

Xmi jq I U f X8MC I coincide. Next, suppose the assertion holds at scale n, that is, for allsa '=
8 (E To (n), x(s) conditionally decorrelates f xMi jq I U fxsmc I and consider the case forSa Z=
which s Cz To (n - 1). For an arbitrary node s at scale n - 1 and for an arbitrary child
of s we have that

XMi [XMi Xn] + yM (A-5a)
sce Sa Sai

[xm, x(saj)] + im (A-5b)
Sa Sai

and

M n
Sa XsaC X ] + (A-6a)i

Mc n + YM
Xsai Xsai sag (A-6b)PI I Cl

where in these identities we've used the induction hypothesis. It follows that the errors
and aimc are uncorrelated with each other (due to the induction hypothesis) andi��i Sai

with Xn (due to the orthogonality property of linear least-squares estimation). By
assumption, x(s) is an internal state, and it is a linear combination of its children.
That is, we have that for some V., x(s) = V,xn

M MWe now use these facts to show that x and x C are uncorrelated when conditionedSai sai
on x(s). By assumption, x(s) conditionally decorrelates Xn C from x(saj). Therefore,

sai
Mc I Xn Creferring to (A.5b) and (A.6b), the two terms P [xm, I x(saj)] and X , areSa Sai Sai I

conditionally uncorrelated when conditioned on x(s). As mentioned, the terms arm
and im, are uncorrelated with each other and with Xn SaiSai 8 .

Hence, it follows that xM and xMC are uncorrelated when conditioned on x(s). SinceSai sa.
sai was an arbitrary child of s, this'holds for all children and the proposition is proved.
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Proofs for Chapter 4

In this appendix proofs of Proposition 4.1.1 (Section B.1), Proposition 4.2.1 (Sec-
tion B.2) and Proposition 4.2.2 (Section B.3) are provided.

0 B.1 Proof of Proposition 4.1.1

Proof, Let Q be as defined in Lemma 4.1.1 and let R be the covariance matrix for
w = [w(sal )T w(sa2 )T ... w(saq )T] T where w(saj) is as defined in (4.2). Then,
since x(.) has the Markov property R has the form

R = diag(Q(sal), Q(sa2), - - - , Q(saq)) (B. 1)

Note that R can be obtained from Q by setting all off-diagonal blocks to zero. (This,
in fact, is precisely how the MAR model x(-) is obtained from the tree-indexed model
f (.).) By an argument similar to the one made in the proof of Lemma 4.1.1 and also
made in the proof of Proposition 3.1.2, x(.) is internal if and only if VRV7 = 0. We
have from Lemma 4.1.1 that VQVT = 0. Notice that the m, n block of VQVT is given
by

[VQVTlmn block = VmmQ(sam, san)VZ if m =,4 n, (B.2)
VmmQ(sam)VmTm if m = n

where we have used the fact that V, is assumed to be block diagonal. It follows that
VRVT = 0.

0 B.2 Proof of Proposition 4.2.1

Proof.

(jkp2,VT(VpVT)-IVpT T)E(AZ2 I Vzj) = trace(JkP2jP�-'P2TjJkT) - trace 21 jk (B.3a)
1/2pT Tj -T/2)

trace (P,- 21 p� (B-3b)

< n1a 2A2 (B.3c)

0
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M B.3 Proof of Proposition 4.2.2

Proof. Let

R var(JkZ2 - P[JkZ2 I Vzj]) - var(JkZ2 - P[JkZ2 I Z11) (B.4a)
-1 DT TT _ jkp2,VT(VpVT)-IVpT T.

AP21pi - 21-k 21 jk (B.4b)

Substitute JkP21 A + JkP2HkT(HkP2HkT)-1HkP2j to get

R VT(VpVT)-lV)AT

(a)
VT(VpvT)-lv T 1 Hk P2 JkT

P21 HkT (Hk P2 HD

(b)

• jkp2HkT(Hkp2 HkT) - 1 Hk p2l (p�- I _ VT (Vpl VT) - 1 V) A T

Jk p2 HkT (Hk p2 HkT) - I Hk p21(p�-1_VT(Vp1VT)-1V)pT T(Hkp2HkT)-JHkp T.

21 Hk 2 jk

(B.5)

Let

E var (Hk z2- P,[HkZ2 I Vzj]) - var(HkZ2 - P[HkZ2 I Z11) (B-6a)

Hkp2lp�-IpT T -1V T T2,VT(VpVT) P21 Hk (B.6b)

Note that �f(HkZ2 I Vzj) = trace(E) < a 2 - Hence, the maximum eigenvalue of of E is
2bounded above by a

First consider the term marked (c) in (B.5) and make the substitution
Hkp2,VT(VpVT)-lVpT T = Hkp -1pT T

21Hk 21 p� 2JHk _E. (B.7)

Cancelling terms, we have (c) = JkP2HkT(HkP2HkT)-'E(HkP2HkT)-'HkP2JkT. Note

that

E(A Z2 I Vzj) trace (R) < I trace (a) I + 21 trace (b) I + I trace (c) I . (B.8)

We will provide bounds for each of these terms. First,

Itrace(a)l trace (IPT 1 - vT(vP1vT)-1viT/2ATA[P;-1 - vT(VpVT)-lV]112)

(B.9a)

< n1a 262. (B.9b)

Next,

I trace (b) trace (AA) I < trace (AAT)1/2 trace(AA T) 1/2 < njjjAj (B.10)

where we have used the Cauchy-Schwarz inequality, interpreting the trace as an inner

product [93]. Finally, it is clear that trace(c) < n3U 2,32 . This completes the proof. M



Appendix C

Proofs for Chapter 5

In this appendix a discussion of (5.13) and proofs of (5-14a) (Section M), Proposi-
tion 5.2.1 (Section C.2), and Proposition 5.2.2 (Section C-3) are provided.

N CA Discussion of (5.13) and Proof of (5-14a)

To see that (5.13) implies that each state depends only on its parent, consider two states
Xj (n) and xj (n + 1) at scale j, for some even integer n C 10, 2i - 21. The parent of
these two states is

- aj(n/2-k+l) -

xi_i(n/2) aj(n/2 + F? - 1) (C. 1)
dj (n/2 - fi+R +

-2

_dj (n/2 + R+R -2

Then, for every integer i El -- h + 11, we have

n+Li+k-li n+Li+R-li
2 2 2

aj (n + E �(n + 2p)aj-l(p) + E �(n + i - 2p)dj-,(p) (C.2)
n Fi-k n+ri-R]

2-1 2 2

and

n7+L'+2kJ
aj(n + I + 1: �(n + i + I - 2p)aj-l(p)

n+ri+I-Fi
7 2

n+[i±Rj
f 2

+ E �(n+i+1-2p)djj(p). (C-3)
n+ri+l-Ri
i 2

In order to check that every aj-1(p) and dj-,(p) in (C.2) and (C.3) is carried by
xi_i(n/2), one can easily check that

i-I : ['+'�] ] C [-k + 1 : 1� - 1] Vi E J-k + 1, ... , F? - 11 (C.4)2 2

183
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and that

[[i-R] : [i+R]] C [-P-,+R + I : k+R
2 2 2 2 Vt E + 1, ... , F? - 11 (C-5)

Then, using (C. 2) and (C. 3), we get (5.14a) where, for every j C f 1, . . . , M - I
the matrices Aj (n) are (3-fi + R - 2) x (3R + R - 2) are defined as follows. Let

[1 :2R - 11, (C-6a)

P, E n+�-2k n+t-l (C-6b)
I 1 2 1 2 11 ,

Pd E n+t-k- [n+�+R-k-lfl (C-6c)
2 2

Then,

Aj(n)(fp. - Ln/2] + �(n + f 2p,,), (C-7a)

Aj(n) fPd - [n/2] + 5F?+l - 1) �(n + f - 2Pd) - (C.7b)2

When j M, Am (n) are vectors of length 3-� + R - 2 and are defined as follows. Let

P, E n+1-2T?] : [n]] (C.8a)
11 2 2

Pd E n+I-F?-R] : [n+R-P.]] (C-8b)
2 2

Then,

Am (n) (1, p. - Ln/2] + ji) = �(n + I - 2p,,), (C.9a)

Am (n) 1, Pd - Ln/2] + 5k+1 - 1) = �(n + 1 - 2Pd) - (C.9b)2

0 C.2 Proof of Proposition 5.2.1

The proof of Proposition 5.2.1 relies on the following lemma.

Lemma C.2.1. Let i be an integer in f 1,... I k+R - 11, then,2

2p)aj(n - i +p) + �(R - 2p)dj(n - i +p)2
P=O

k-2

ai(k)aj+1(2n+k) (C.10)
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and

i-I
Y�(-F?+1+2p)aj(n+ F?-R +i-p) +�(-R+ 1+2p)dj(n+i-p)2
P=O

3i(k)aj+1(2n+k) (C.11)

k=-k+3

where

�(F? - 2p)h(k + 2i - 2p + R) + �(R - 2p)g(k + 2i - 2p) if k <- 2R 2,
aj (k) P=O

�(R - 2p)g(k + 2i - 2p) if k > 2R - 2
P=O

(C.12)

and

)3i (k)

I:h(-R+1+2p)h(k+2p-2i+R-R)+�(-R+1+2p)g(k+2p-2i) ifk->.h-2R+3,
P=O
i-1
E �(-R + I + 2p)g(k + 2p - 2i)

P=O if k < 2R + 3.

(C-13)

Proof. We will first show (C-10) holds. Using the wavelet decomposition algorithm
(5-7) we have

2n+2R-F?-2i+2p

aj (n - + p) --2 E h(k-2n+-�-R+2i-2p)a,j+j(k) (C.14a)
k=2n-2i+2p-R+l

-2i+2p+2R-k

�7, h(u + 2i - 2P + J� - R)aj+,(u + 2n) (C. 14b)

u=-2i+2p-k+l

2R-F?-2

E h(u + 2i - 2p + R)aj+,(2n + U) (C. 14c)

u=-2i-F?+l

where (C-14b) is obtained by making the change of variables k = u + 2n, and where
(C-14c) follows from the fact that

u < -2i + 2p - k + 1 u + 2i - 2p +.h - R < -R + 1 (C -15a)

h(u + 2i - 2p + J� - R) = 0 (C.15b)

and

u > -2i + 2p + 2R - J� u + 2i - 2p + F? - R > R (C. 16a)

h(u + 2i - 2p + F? - R) = 0. (C. 16b)
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Therefore,

2p)aj (n - 11- R + P)
2

P=O

2R-F?-2 i-1

E (1: �(-� - 2p)h(k + 2i - 2p + R) aj+1(2n+k). (C.17)

k=-2i-F?+l P=O

Using again the wavelet decomposition algorithm we have

2n-2i+2p+F?

dj(n - i +p) I: g(k - 2n + 2i - 2p)aj+l (k) (C. 18a)

k=2n-2i+2p-i-?+l

-2i+2p+F?

E g(u + 2i - 2p)aj+l (u + 2n) (C. 18b)

u=-2i+2p-F?+l

F?-2

1: g (u + 2i - 2p)aj+l (2n + u) (C. 18c)

u=-2i-k+l

where (C. 18b) is obtained by making the change of variables k = u + 2n and (C. 18c)
follows from the fact that

u < -2i + 2p - -h + I =�> u + 2i - 2p < -T? + => g (u + 2i - 2p) = 0 (C.19)

and

u > -2i + 2p + F? =�, u + 2i - 2p > T? g(u + 2i - 2p) = 0. (C.20)

Therefore,

i-1 F?-2 i-1

E�(R - 2p)dj(n - i +P) = T, (1: �(R - 2p)g (k + 2i - 2p)) aj+l (2n + k) .
P=O k=-2i-F?+l P=O

(C.21)

Using (C.17) and (C.21) and the fact that F? - 2 > 2R - 2 we have

2p)aj (n - k-R + P) + �(R - 2p)dj(n - i + p)2
P=O

F?-2

�7 ai(k)aj+1(2n+k) (C.22)

k=-2i-F?+l
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where ai (k) is as in (C. 12).

To prove (C. 10), we need to show that ai(k) = 0 fork c [-2i-,�+l : -R-]. Notice
that when k < -F? then k < 2R - F? - 2 so

i-I
ai(k) �(F? - 2p)h(k + 2i - 2p + R) + �(R - 2p)g(k + 2i - 2p). (C.23)

P=O

Using (5.6) we have

�(R - 2p)g(k + 2i - 2p) = (_I)k+R h(I - R + 2p)�(l + 2p - 2i - k) (C.24)

We are going to distinguish between the case where k + R is odd and k + R is even.
Notice that k + R is even (respectively odd) if and only if k + F? is even (respectively
odd) since R and F? have the same parity.

Case 1: k + F7 is odd. In this case we have

i-I
ai(k) = Y�(F? - 2p)h(k + 2i - 2p + R) - h(I - R + 2p)�(l + 2p - 2i - k).

P=O

(C.25)

Recall that k E [-2i - F? + 1 : -F?]. We can therefore write k = -F? - 2i + 2f + I where
f = 0, 1, i - 1. Proving that ai (k) = 0 is equivalent to showing that

2p)h(2f - 2p - R + 1) - h(I - R + 2p)�(2p - 2f + 0 (C.26)
P=O

where the left-hand side follows from (C.25) with the change of variables k
2i + 2f + L Continuing, we have

2p)h(2f - 2p - R + 1) - h(l - R + 2p)�(2p - 2f + ji)
P=O

�(F? - 2p)h(2f - 2p - R + 1) - h(I - R + 2p)�(2p - V + (C.27)
P=O P=O

The equality in (C.27) holds because

p > f =�- 2f - 2p - R + I < -R + 1 h(2f - 2p - R + 1) = 0 (C.28)

and

p > f J� - 2f + 2p > F? �(k - 2f + 2p) = 0. (C.29)
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Consider now the second term of (C.27). By making the change of variables p
-u + f we have

h(I - R + 2p)�(2p - V + h(2f - 2u - R + 1)�(J� - 2u). (C.30)
p=0 U=0

Therefore, from (C.27) we conclude that ai(k) = 0 for every k C [-2i - -� + I -R-]
such that k + R is odd.

Case 2: k + F? is even. In this case we have

i-1
ai(k) 2p)h(k + 2i - 2p + F? - R) + h(I - R + 2p)�(l + 2p - 2i - k).

p=0
(C.31)

Let us write k 2i + V where 1, i. Then, showing that ai (k) = 0 is
equivalent to showing that

�(F? - 2p)h(2f - 2p - R) + h(l - R + 2p)�(2p - V + k + 1) = 0. (C.32)
p=0

Continuing, we have

2p)h(2f - 2p - R) + h(l - R + 2p)�(2p - 2f + k + 1)
p=0

2p)h(2f - 2p - R) + h(I - R + 2p)�(2p - 2f + F? + 1) (C.33)
p=0 p=0

The equality in (C-33) holds because

p > f => V - 2p - R < -R => h(V - 2p - R) = 0 (C.34)

and

p > 1 + V + 2p > T? + 1 => �(l + F? - 2f + 2p) = 0. (C.35)

We have

V-2 V

Y 1: �(F? - OhPf - v - R) 1: �(k + u - V)h(-R + u) (C-36)
V=0 U=1

v even u even
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where the last equality is obtained by the change of variables 2f - v u. We also have

V

z 1: �(F? + v - 2f)h(v - R). (C.37)
V=1

v odd

Therefore,

V

Y + Z E h(-R + v)�(-� + v - 2f). (C-38)
V=1

Applying (5.4) with n = f - R+R we get
2

-R+V

E h(k)�(k + R + F? - 2f) = 0 (C.39)
k=-R+l

because n 7� 0. Therefore, by making the change of variables k -R + v,

V

1: h(-R + v)�(-h + v - V) = 0. (C.40)
V=1

Hence, ai (k) = 0 is zero for every k 2i - J� + I : -R-] such that k + R is even. This
concludes the proof of (C.10).

We now show that (C-11) holds. Using the wavelet decomposition algorithm (5.7)
we have

2n+i7?+2i-2p

aj (n + R-R + i - p) h(k - 2n - J� + R - 2i + 2p)aj+l(k)2 E
k=2n+2i-2p+F?-2R+l

(C.41a)

2i-2p+k

Y, h(u-2i+2p-f?+R)aj+,(u+2n) (C.41b)

u=2i-2p+F?-2R+l

2i+F?
h(u - 2i + 2p - -� + R)aj+1(2n + u) (C.41c)

u=k-2R+3

where (C.41b) is obtained by making the change of variables k = u + 2n and where
(C.41c) follows from the fact that

u < 2i - 2p + 2R + 1 => u - 2i + 2p - F? + R < -R (C.42a)

=:�,h(u-2i+2p--h+R) =0 (C.42b)
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and

u>2i-2p+f?=�-u-2i+2p-,�+R>R=�,.h(u-2i+2p-k+R)=O- (C.43)

Therefore,

i-1
�(-F? + 1 - 2p)aj (n + F?-R + i - P)

2
P=O

2i+k i-1

E (E �(-J� + I + 2p)h(k - 2i + 2p - J� + R)) aj+l (2n + k) - (C.44)
k=F?-2R+3 P=0

Using again the wavelet decomposition algorithm we have

2n+2i-2p+F?

dj(n + i - p) E g(k - 2n - 2i + 2p)aj+l (k) (C.45a)
k=2n+2i-2p-F?+l

2i-2p+k

�7' g(u - 2i + 2p)aj+,(u + 2n) (C.45b)
u=2i-2p-F?+l

2i+k

g(u-2i+2p)aj+1(2n+u) (C.45c)

u=-F?+3

where (C.45b) is obtained by making the change of variables k = u + 2n and (C.45c)
follows from the fact that

u < 2i - 2p - T? + 1 =�- u - 2i + 2p < -T? + I =>. g(u - 2i + 2p) = 0 (C.46)

and

u > 2i - 2p + T? =�, u - 2i + 2p > g(u - 2i + 2p) = 0 (C.47)

Therefore,

i-1
E �(-R + 2p + 1)dj(n + i - p)
P=O

2i+F? i-1

= �7, (E�(-R+1+2p)g(k-2i+2p)) aj+1(2n+k). (C.48)
k=-F?+3 P=O
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Using (C.44) and (C.48) and the fact that F? + 3 < F? - 2R + 3 we have

+ I + 2p)aj (n + k-R + i - P)2
P=O

2i+k
+ �(-R + I + 2p)d, (n + p) = T �3j(k)aj+j(2n+k) (C-49)

k=-k+3

where Oj(k) is as in (C. 13).
To prove (C�11), we need to show that 3i(k) = 0 for k c [R + I : 2i + R]. Notice

thatwhenk>R+1thenk>.fi-2R+3so

i-1
,3i(k)=E�(-F?+1+2p)h(k+2p-2i-k+R)+�(-R+1+2p)g(k+2p-2i).

P=O
(C-50)

Using (5.6) we have

�(-R + I + 2p)g(k - 2i + 2p) = (_,)-k+R+lh(R - 2p)�(l - k - 2p + 2i). (C.51)

We are going to distinguish between the case where -k + R is even and -k + R is odd.
Notice that - k + R is even (respectively odd) if and only if - k + F? is even (respectively
odd) since R and F? have the same parity.

Case 1: -k + k is even. In this case we have

i-1
Oj(k) E�(-k + I + 2p)h(k - 2i + 2p - T? + R) - h(R - 2p)�(l + 2i - 2p - k).

P=O
(C-52)

Recall that k E [F? + I : 2i + F?]. We can therefore write -k 2i + V where
0, 1, . . . , i - 1. Therefore, showing that Oi (k) = 0 is equivalent to showing that

+ 1 + 2p)h(2p - 2f + R) - h(R - 2p)�(V - 2p - k + 1) = 0 (C-53)
P=O

Continuing, we have

i-1
+ I + 2p)h(2p - V + R) - h(R - 2p)�(V - 2p - k + 1)

P=O

=Y�(-k+2p+l)h(2p-2�+R)-Eh(R-2p)�(2�-2p-.h+l). (C-54)
P=O P=O
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The equality in (C.54) holds because

p > f =:�, 2p - 2f + R > R =:�, h(2p - 2f + R) = 0 (C.55)

and

p > f =�> 2f - 2p -. � + I < -P, + I =�, �(V - 2p - J� + 1) = 0. (C-56)

Consider now the second term of (C.33). By making the change of variables p
-u + f we have

h(R - 2p)�(V - 2p - J� + 1) = E�(2u - J� + I)h(R + 2u - 2f). (C-57)
p=0 U=0

Therefore, from (C -33) we conclude that 3i (k) = 0 for every k E [J� + 1 : 2i + such
that -k + -fi is even.

Case 2: -k + F? is odd. In this case we have

,3i(k) + I + 2p)h(k - 2i + 2p - J� + R) + h(R - 2p)�(l - 2p + 2i - k).
p=0

(C-58)

Let us write - k = -F? - 2i + 2f - I where f = 1, . . . , i. Showing that Oi (k) = 0 is,
therefore, equivalent to showing

i-1
E �(-F? + 2p + 1)h(2p - 2f + R + 1) + h(R - 2p)�(V - 2p - (C-59)
p=0

Continuing, we have

+ 2p + 1)h(2p - 2f + R + 1) + h(R - 2p)�(V - 2p -
p=0

t-1 t-1
E �(--h + 2p + 1)h(2p - 2f + R + 1) + h(R - 2p)�(V - 2p - (C.60)
p=0 p=0

z

The equality in (C.60) holds because

p > f => 2p - 2f + R + 1 > R + I h(2p - 2f + R + 1) = 0 (C.61)

and

p > f =:�> 2f - 2p - F? < -F? =:�> �(V - 2p - 0. (C.62)
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We have

2�

y 1: + v)h(-2f + v + R). (C.63)
V=1

v odd

We also have

V-2 2f

z �(-T? v + V)h(R v) + u)h(R + u 2f) (C-64)
V=O U=1

v even u even

where in the last equality we have made the change of variables u V - v.
Therefore,

2f

Y + Z = E �(-k + v)h(R + v - 2f). (C-65)
V=1

Applying (5.4) with n k+R we get2

�(k)h(k+R+k-2f)=O (C-66)
k=-k+1

because n =A 0. Therefore, by making the change of variables k + v, we have

2f

E�(-k + v)h(R + v - 2f) == 0. (C-67)
V=1

Hence, Oi (k) = 0 for every k E [F? + 1, 2i + such that -k + F? is odd. This concludes
the proof of Lemma C.2.1. 0

We now prove Proposition 5.2.1.

Proof of Proposition 5.2. 1. Define

(aA±R -1(-R+I) ak+R_l (-R + 2) ... ak+R_,(R - 2)
2 2 2 -

K, A a j�+R-2 (-R + 1) a k+R -2 (-R + 2) ... ak+R -2 (R - 2)
2 2 2 (C.68a)

al (-R + 1) a, (-R + 2) ... al 2)

,81 (-R + 3) 01 (-R + 4) ... 31 (R)

A 02(-R + 3) 32(-R + 4) ... )32 (R)
K2 - (C-68b)

13.TZ + R + 3) 3k+,_1 (-F? + 4) ... 13FI+R_I(P,)
2 2 2
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and the (F?+R _ 1) X (J6,+R _ 1) triangular matrices Hi, H2, GI, G2 as
2 2

h(R - 2(c - f)) for � E [I : R+R - 1], c C R+R -
Hi C) A 0 otherwise, 2 2 (C.69a)

) � �(R - 2(c - f)) for f E [I -k+R 1], C C F?+R _ I
GI C 2 2 (C.69b)

0 otherwise,

h(-R + 1 + 2(f - c)) for fe [I : R+R - 1], c C [I f] ,
H2 V, C) A 0 otherwise, 2 (C.69c)

) �. �(-R + I + 2(� - c)) for f C [I :�+R _ 1], C C: [I
G2 (�!' C 2 (C-69d)

0 otherwise.

Then (C. 10) and (C. 11) imply that

dj (n - R+R + 1)- aj(n-R+I) aj+1(2n - R- + 1)
2

GI + HI Ki

L dj(n - 1) Laj (n - R-R - 1), Laj+l (2n + R - 2),2

(C-70a)

dj(n + 1) aj (n + k-R + aj+1(2n - R- + 3)
2

G2 + H2 K2

LA (n + R+R - aj(n+R-1) L aj+l (2n +2

(C-70b)

Since �(R) =,4 0 and �(-R + 1) =,4 0 , then GI and G2 are invertible and (5.15a) and
(5.15b) follow with Li = -G-'Hi, J, = G-'Ki, L2 = -G-1H2, J2 = G-'K2. 01 1 2 2
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0 C.3 Proof of Proposition 5.2.2

Proof First, let us define for notational simplicity R+R Now consider the children2
xj+1(2n) and xj+1(2n + 1) of xj(n) which are defined as

aj+1(2n - R + 1)

aj+1(2n - 1)
aj+1 (2n)

aj+ I (2n + 1)

aj+1(2n + R - 1)

Xj+j (2n) dj+l (2n - j� + 1) (C.71a)

dj+l (2 n - 1)
dj+1(2n)

dj+1(2n + 1)

dj+1(2n + R - 1)
�j+j (2n)

and

aj+l (2n - R + 2)

aj+l (2n)
aj+1(2n + 1)
aj+l (2n + 2)

aj+l (2n + R)

Xj+j (2n + 1) A dj+l (2n - f? + 2) (C.71b)

dj+l (2n)
dj+l (2n + 1)
dj+l (2n + 2)

dj+l (2n +
�j+j (2n + 1)
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where
T

�j+1(2n)= ��(n) aj(n-f?+l) ... aj (n - R-R (C.72a)
2

and

-k-R + T�j+j (2n + 1) [�j2 (n) aj (n + 2 ... aj(n + (C.72b)

Then we have the following:
T

• [aj(n-k+l) ... aj (n - R-R - is clearly a linear function of xj+1(2n)
2

since it is simply copied in �j+1(2n).

• [aj (n + k-R + 1) ... aj(n + T is clearly a linear function of xj+l (2n +
2

1) since it is simply copied in �j+1(2n + 1).

• Using Proposition 5.2. 1, [dj (n - j� + 1) ... dj (n - 1)] Tis a linear function of

Xj+1(2n).

• Using Proposition 5.2. 1, [dj (n + 1) ... dj(n + 1)] Tis a linear function of

xj+1(2n + 1).

• The wavelet decomposition formulas (5.7) imply that dj(n) is a linear function
of xj+l (2n) and xj+l (2n + 1) since they contain aj+l (m) for m E f 2n - h +
1, - - - 2n + '�J.

• The wavelet decomposition formulas (5.7) also imply that

aj (n - F?-R) ... aj (n + F?-R )]T (C.73)
1 2 2

is a linear function of xj+1(2n) and xj+1(2n + 1). Indeed, for i E -E A FZ-R2

F?-R] (5.7) implies that
2

2n+2i+R

aj(n + E h(p - 2n - 2i)aj+l(p). (C.74)
P=2n+2i-R+l

Since 12n + 2i - R + 1,.. - 2n + 2i + RJiE-T = f 2n -. � + 1,... 2n +.�J, it follows
that the vector in (C-73) is a linear function of xj+l (2n) and xj+l (2n + 1).

• Finally, �j (n) is a linear function of xj+l (2n) and xj+l (2n + 1) since the two parts
�jl (n) and �j2 (n) that compose �j (n) are carried by �j+j (2n) and �j+j (2n + 1),
respectively.



Appendix D

Proofs for Chapter 6

In this appendix we provide proofs for Proposition 6.4.1 (Section D. 1), Proposition 6.5.1
(Section D.2), Proposition 6.5.2 (Section D.3), Proposition 6.5.3 (Section DA), and a
sketch of a proof of Proposition 6.5.4 (Section D.5).

0 D.1 Proof of Proposition 6.4.1

Proof. Using (6.24a) which states that

[O B' ] PQ2 = [6." 0 ... 0 Fb (D. 1)U U U

we have

0 0 T a b
6 1U

0 PQ2 0 PU.2 (D.2)
0

b b ab�O BO �O BU) 6u 0 ... 0 1 EU
-- e- _1

K

By Sylvester's law of inertia [84], we conclude that PQ2 > 0 if and only if the matrix
on the right-hand side of (D.2), which we have denoted by K, is positive-definite. The
identity

F, F2 I 0 F, 0 0 T
FT F FTF;-' I 0 F - FTF�-'F FTF�-' I (D.3)

2 3 2 3 2 2 2

implies that " F2 > 0 if and only if F1 > 0 and F3 - F2TF�-'F2 > 0. Applying this
( 2FT F3

fact to K and using the fact that PU2 > 0, we conclude that PQ2 > 0 if and only if

b _ (jab) 2 [1 0 ... 0] p-1 [1 0 ... O]T > 0. (DA)
U U U.2

The positivity condition (DA) can be simplified by using (6.27) which states that

[I -Lau] Pug = [,-a 0 ... 0] (D-5)
U

AaU

197
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Therefore,

I = A a [I 0 ... 0], (D-6a)U
.,a [I 0 ... 0] p-1 [I 0 ... 0] T (D-6b)

U 2Ua

and (DA) simplifies to

b _ (6al) 2 [1 0 ... 0] p-1 [1 0 ... 0] T (6al 2
E = eb U 0 (D-7)2 U aU U Va EU

or, using the fact that a is positive,U

ab)2 < a ,b (D.8)
U U U.

Thus, by the definition of pab (cf., (6.32)),U

pab 6 abU
U (D.9)

UEbU

That the choice of pab = 0 maximizes the determinant Of Pn2 can be seen as follows.
U b -

Using (D.2), (D.3), (DA), and the fact that B b = [-L 1] we have thatU U

b - (jab) 2 [I 0 ... 0] _-I [I 0 ... 0] T]
det(PQ2) = det(Pug) E U U 2 (D. I 0)

I Ua

Applying (D.7) and the definition of PO (cf, (6.32)), we have
U

det(PQ2) = det(PU2)e b [I _ (Pab) 2] (D. 1 1)
a U U

Hence, the choice of pab = 0 maximizes the determinant. 0
U

0 D.2 Proof of Proposition 6.5.1

Proof Choose e E E0. For some a E [O : N - k], e E t x t where [a a + k],

an interval of length k + 1. We will show that every such t is a subset of C, for some

s. This will complete the proof because C, is a clique so t x t C C, x C, c E n . Now

either t contains both elements i4k - 1 and i4k (elements on a tree boundary) for some

i G f 1, 2,... 2M - I I or it does not. If not, then t C 77 (s) C C, such that m (s) = M

and

z(s)4k < a, (D.12a)

(z(s) + 1)4k - 1 > a + k. (D.12b)
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Sa 2

Figure D.1. The graph L' for m(s) = M - 1.

Indeed, t(s)4k and (%(s) + 1)4k - I are the maximum and minimum elements of 'q(s)
which contains an interval of length 4k by definition (for m(s) = M).

Next, consider the case that i contains i4k - I and i4k. Then it crosses a tree
boundary and belongs to some C. for m(s) < M because, by construction, the fCJ
collectively contain all sets [Ak - k : i4k + k - 1], an interval of length 2k around i4k - 1
and i4k. In particular, we have f C q (s) C C, for s such that

%(s)4k2"--(s) + 4k2M-m(s)-1 - k < a, (D. 13a)

t(,9)4k2M-m(8) + 4k2M-m(s)-1 + k - I > a + k . (D.13b)

0 D.3 Proof of Proposition 6.5.2

To prove Proposition 6.5.2 we require several intermediate results concerning the graph

LI which is defined in Section 6.5 and illustrated in Figure 6.13. The first lemma, which

follows, is clear from Figure 6.13.

Lemma D.3.1. LI is a tree.

Proof. We will show this by induction. For m(s) = M - 1, LI has Nm(s) = 2 vertices

and Nem(s) = I edge as shown in Figure D.I. For s such that m(s) = n, LI has

Nn = 2Nn-1 + 2 (D. 14a)

vertices and

Nn, = 2Nen-1 + 3 (D. 14b)

edges, where we have used the fact that LI has subtrees L sal and L'12 each of which

has N,'-' vertices and Nen-1 edges and are joined to form LI as shown in Figure 6.13.

Using (D.14) and the inductive assumption that Nn-1 = Nen-1 + 1, it is straightforward

to show that N,' = N,,' + 1. 0

We will show that LI is a junction tree for a specific subgraph of G n . The fact that

Lo is a junction tree for G n will follow immediately. We will need the following lemma.
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A

TI T2

Figure D.2. The junction tree T is formed by joining two others T' (which has a vertex A') and T2
(which has a vertex A2). To join them, an edge is added between Al and A2.

Lemma D.3.2. Let T' = (I0, S') be junction trees with the IC' disjoint. Suppose A' c
IC = ICI U IC2 2)1 U El U S2V, i = 1, 2. Let T = (IC, 9) where and 9 (Al, A Then T

is a junction tree if ucli(Tl) n ucli(T 2) C Al n A'.

The following proof follows from a straightforward application of the intersection prop-
erty of junction trees (cf., Definition 6.2.6). Indeed, as shown in Figure D.2, T is
comprised of V and T 2 which are, themselves junction trees and have the intersection
property. Junction trees V and T 2are joined by an edge between A' (a vertex of V)
and A 2 (which is a vertex of T2) . The condition that ucli(Tl) n ucli(T 2) CA, n A 2
guarantees that the intersection property holds for all of T.

Proof. T is a tree because, using the fact that the IC' are disjoint, IKI = lIC11 + lIC21
jell + IS21 + 2 = 191 + 1. We will show that for any v E ucli(T), Tk,, is a subtree.
First, consider v E ucli(Tl) but v � ucli(T 2) . Then IC, = IC1 U IC2 = IC' - Hence,V V V
T)CV = Tv = T.', is a subtree because T' is a junction tree. By a similar argument TKvV V
is a subtree for v 0 ucli(Tl) but v C ucli(T 2).

Next, consider v C ucli(Tl) n ucli(T2) which implies, by assumption, that v C A' for
i = 1, 2. Using this, and the fact that T' is a junction tree for i = 1, 2, it is clear that
T)cv has the intersection property. So it is a junction tree and a subtree of T. 0

Having shown that L, is a tree in Lemma D.3.1, we will use Lemma D.3-2 to show,
in the following proposition, that it is a junction tree for a particular subgraph of G'.

Proposition D.3.1. L' is a junction tree for G'uch(Ls)'

Proof. It is clear that the vertex set for L' is the set of maximal cliques of G'ucli(L-1) - it

is also clear that L' is a junction tree for s such that m(s) = M - 1 (see Figure D.1).
We now proceed inductively. For a general s such that m(s) < M - 1, L' has as
subtrees Lai for i = 1, 2 which are themselves junction trees. To form L' we need
to join these two junction trees with the junction tree D' which has vertices C,,i for
i = 1, 2 and an edge Wsal 7 C,,2)' (Note that D' is isomorphic to L' for m(r) = M - 1.)
That is, we need to add edges (C,,l, Cala2)1 (C$a2l C.,211) to join L"i and D' for
i = 1, 2. Notice that vert (D'), vert (L"), and vert (Lsa2) are disjoint. Finally, note
t hat uch (L " 1 ) n ucli (L I a 2 ) = 0 and uch (D') n ucli (L,5 ai )= q(sai) c C,,, nC,,iaj where

j = 3 - i. Hence, by Lemma D.3.2 the proposition follows. M
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scale 0

scale I

scale M=2

0 4 8 12 15

Figure D.3. An illustration of the set B,, (shaded) for the case M 2, k = 1, 1, 0.

B, + I Bs Bs + 2

Figure DA. An illustration of vert(F') for the case of k = 3. Each of the k = 3 elements of vert(F')
is an interval of length k + I = 4 and the intervals are offset by one.

The proof of Proposition 6.5.2 follows immediately.

M D.4 Proof of Proposition 6.5.3

We show that H', as defined in Section 6.5, is chordal by exhibiting a junction tree for

it. The maximal cliques of H' take two forms. First, recall that the maximal cliques

of the original graph, Go, are length k + 1 intervals. Some of these intervals are also

maximal cliques of H' while other intervals have been subsumed by sets of the form

C,. Thus, in addition to some intervals, the maximal cliques of H' includes a subset of

fC11,ESo-J0}- Specifically, C, for s such that m(s) > M - n + 1 is a maximal clique of

H n. Hence, to define a junction tree for H n we will need to account for both types of

maximal cliques, intervals and C,.

In this section, we will rely on the notation and definitions of Chapter 6. However,

to simplify notation, we make the following definitions. Let B, be the length-(k + 1)

interval that overlaps a tree boundary (as illustrated in Figure D.3) defined by B, -'

(z(s) + 1)4k2m-'(') + [-k : 0]. And, let 8, -"" B, + k - 1. Also, let F' be the graph

whose vertex set is vert(F') -' JB�, + jj�- 1 (see Figure DA) and whose edge set is
3=0

edge(F') z1, f (L3�' + j, B, + j + 1)1�-2 1 Notice that the vertex set for F' includes B,
3=0 '

and that F' is a tree. In fact, it is a junction tree as the following lemma verifies.

Lemma D.4.1. F' has the intersection property.

The lemma follows from the fact that F' consists of a collection of intervals offset by
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. . . ta 1- ta tal- 13tc, S Sa 'r a f- a ...

l I FtQ2 I I I I

L : : Ls : : Lr

Figure D.5. The graph T' where m(r) = m(s) m(t) M - n and i(t) = t(s) - 1 = i(r) - 2.

0 0 0 0 0 0 0 .011 0 0 0 * 0 0 0 a 0 0 0 0 0 0 0 0 0 0

0 4 8 12 16 20 24 28 31

Figure D.6. The enclosed elements represent the vertices of T' for the case k = 1, M = 3. Included
among these axe the shaded boxes which represent the sets (from left to right) B(mll), B(M,3), and
B(M,5). The other boxes represent the C(mi)- Also shown axe the edges of V.

one as shown in Figure DA. An algebraic proof follows.

Proof. Let Ai, for Z' = 1, 2, 3 be vertices of F' where, A2 is on the (unique) lengthen
path from Al to A3. Let a* (i) (a* (i)) be the maximal (minimal) element of Ai. Assume,
without loss of generality, that the maximal element of a*(1) < a*(3). Of course, we
must have a* (1) < a* (2) < a* (3) and a* (1) < a* (2) < a* (3). By definition of F',
A, n A3 [a* (1) + n : a* (3) - n]. Suppose the path from Al to A2 is length f < n.
Then A2 a* (1) + f < a* (1) + n. Suppose that the path from A2 to A3 is length

p < n Then A2 D a* (3) - p > a* (3) - n. The lemma follows because A2 D [a* (1) + i :

a* (3) - p] D [a* (1) + n : a* (3) - n]. M

To define a junction tree for H', we combine a collection of graphs f L'I (the graph

L' is defined in Section 6.5 and discussed in Section D.3) with a collection of graphs

f F'J. Each graph L' is a dyadic tree corresponding to a subset of the collection of

maximal cliques fCJ (see Figure 6.13). The collection fL'J represent some of the

maximal cliques of H', namely 1C11s:m(s)>M-n+1. The remaining maximal cliques

of Hn are intervals and these are represented by fF'J. We will join together several

dyadic trees, L', by linking pairs of them with graphs of the form F'. This is illustrated

abstractly in Figure D.5 and for a concrete example in Figure D.6 (to be described in

greater detail shortly). Specifically, we define Tn to be the graph whose vertex set is

the disjoint union

vert (T n) U (vert (L') U vert (F 112)) (D. 15)

sE'To(M-n)
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0 3 4 7 8 11 12 15

4 5 6 7 .8 9 10 11

Figure D.7. A subgraph of the graph depicted in Figure D.6.

and whose edge set is

edge(T') U (edge(L') U edge(F112) U f (C"2113,12) I U f (C111 I 8111,
s Ero (M - n)

(D. 16)

The graph T n is depicted in Figure DA Notice that T n contains as subgraphs L' and
F'12 for all s E 'To (M - n) as indicated in Figure D. 5. Figure D. 6 illustrates T' for the
case in which k = 1, M = 3. The shaded boxes represent the sets (from left to right)

L3(M,1), 13(M,3), and B(M,5) where we are using the notation .9 = (m(s), z(s)). The other
boxes represent the C(Mi). The arcs linking boxes are the edges of V. Figure D.6 is a
bit cluttered and the structure of T' is hard to see. However, by focusing on a subgraph
of T', its structure is revealed a bit more clearly (see Figure D.7).

Proposition D.4.1. Tn is a junction tree for Hn.

The proof follows, more or less, by construction and, intuitively, it is clear from Fig-
ure D.5 and Figure D.6 that T' is a junction tree for Hn. It has already been shown
that each graph L' and F' is a tree. Since Tn is just a linking of such graphs, a proof
follows from Lemma D.3.2.

Proof. T' is a tree. Indeed, a careful count reveals that the number of vertices of Tn
is one more than the number of edges. By an argument similar to the one made in the
proof of Proposition 6.5.1 it can be verified that vert (Tn) are the maximal cliques of H1.
It is easy to check that ucli(L') n ucli(F 112 )c C, nB'C'2 and ucli(L') n ucli(Fla2) C
C,.J n Pt, for %(t) = %(s) - 1. We also have that ucli(L') n ucli(Ls) = ucli(F112 ) n
ucli(F S12 )= ucli(L') n ucli(F"2) = 0 for t =A s and for all r such that i(r) 54 t(s) ± 1.
Therefore, by Lemma D.3.2 the proposition follows. N

That Hn is chordal follows immediately from Proposition 6.2.2 and Proposition DAL

N D.5 Sketch of a Proof of Proposition 6.5.4

In this section we sketch a proof of Proposition 6.5.4 pictorially for the case of M = 3
and k = 1. Specifically, we will illustrate a sequence of junction trees corresponding to a
sequence of graphs beginning with H'-' and ending with Hn. Moreover, this sequence
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0 0 0 0 0 0 - - - - - - -

0 4 8 12 16 20 24 28 31

Figure D.8. The graph Ho Go for M 3, k 1.

0 4 8 12 16 20 24 28 31

(a)

0 4 8 12 16 20 24 28 31
(b)

0 0. 0 0

0 0 0 0 0 0 0 0

0 4 8 12 16 20 24 28 31

M

Figure D.9. (a)-(c) The vertices for junction trees in the sequence of junction trees for graphs starting
with Go and ending with H1 for the case M = 3, k = 1.

of graphs will have the property described in Proposition 6.5.4, i.e., that for all s and t

such that m(s) = m(t) = M - n + 1 and %(s) < z(t), the edges of C, are added prior to

those of Ct. Our starting point is graph Ho _"' Go for the case M = 3, k = I which is

illustrated in Figure D.8. The maximal cliques of Ho (i.e., the vertices of the junction

tree for HO) consist of length-k + 1 intervals and are illustrated in Figure D.9(a). The

boxed and shaded cliques of Figure D.9(a) are those that will remain in HI as shown

in Figure D.6. Each of the others will be subsumed by a set C,.

Consider adding edges to form maximal cliques C,, and C,, for s, and S2 the two

left-most leaf nodes (i.e., m(si) = M(S2) = M and z(si) = %(S2) -1 = 0). The vertices of

the resulting junction tree are shown in Figure D.9(b). Notice that some of the maximal

cliques representing intervals illustrated in Figure D.9(a) have been subsumed by C,,

and C,,. Now consider adding the edges to form the maximal cliques Ct, and Ct2 where

tj and t2 are the left-most leaf nodes just to the right Of 82 (i.e., m(ti) = M(t2) = M

and z(ti) = Z(t2) - 1 = 2). The vertices of the resulting junction tree are shown in

Figure D.9(c). Again, some of the interval cliques have been subsumed. Continuing
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this process of adding the edges for C, according to increasing t(s), we arrive at the
junction tree for H1 whose vertices are illustrated in Figure D.6. Three of the original
interval cliques remain.

A similar procedure-adding the C, in order of increasing z(s)-can be applied
scale-recursively, beginning at the next coarser scale (M - 1) and continuing until
scale 1. Doing so will yield a sequence of graphs with the properties described in
Proposition 6.5.4. Although not explicitly shown here, this procedure can be applied
for any M and k. This completes our sketch of a proof of Proposition 6.5.4. Formalizing
this sketch requires carefully defining the sequence of junction trees we have illustrated
(for a special case). However, doing so will not provide any insight and the formality
will, no doubt, obscure the simplicity of the procedure.
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Appendix E

Proofs for Chapter 7

In this appendix we provide proofs for Proposition 7.3.1 (Section E.1) and Proposi-
tion 7.3.2 (Section E.2).

0 E-1 Proof of Proposition 7.3.1

Proof Let us proceed by induction on n E f m - m(,r) - 1, m - m(,r) - 2,... Of. First
note, that P,(,) = Pf(,) = LPfmL'r

Base Case: n = m - m(r) - 1: For this case t;�n+i = ,,�n+i Let tj tjn and
si Then,

E[x(tj)x(r)'] = E[(A(tl)x(r) + w(ti))x(r)'] (E. I a)

= A(tj)E[x(r)x(r)T] (E.1b)

= LtPfmL T(LrPfmL T) -'Lr Pfm L T (E.1c)r r r

= LtPfmL T (E.1d)
r

We also have,

E[x(tj)x(sj )T] = E[x(tj)(A(sj)x(r) + W(.31))T] (E.2a)

= E[x(tl)x(r)T ]A(s, )T (E.2b)

= LtPfmL T(LPfmL T) -'LPfmL T (E.2c)r r S1

LtPfmL T (E.2d)
S1

where we have used (E.1) and (7.19a) (or, equivalently, (7.19b)) with Lemma 7.3.1.

Inductive Assumption: Assume that for some n + 1 E Im - m(r) - 1, m - m(r) -

2,... , 01, E[x (t,�n+1)X(8jn+1)Tj TLt7yn+l Pf m Lryn+l

207
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Inductive Step: We have

E[x(V:y')x(s`;�y')'] = A(t;y-') E[x (t,;y,+1)X(S,�n+1)T ]A(8,�n)T (E.3a)

T T T= Lt,�n PfM Ltzyn+l (Lt,7yn+l PfM LtFyn+l Ltjn+1 Pf m L87yn+l

T -'L�,FYn+1PfML
(L,,�n+lpfMLS,� ,,+I) S,7y (E.3b)

T T T
= LtFyn Pf m L s,�7yn+l(L,;�n+lPfmLs,;-Yn+l)-'L,,�yn+lPfL S;7Y (E.3c)

T= Lt,�nPfmLs;�n (E-3d)

where in (E.3a) we've used the MAR dynamics, in (E-3b) we've used the inductive

assumption, in (E.3c) we've used (7.19a) and Lemma 7.3.1, and in (E.3d) we've used

(7-19b) and Lemma 7.3.1. This completes the proof

0 E.2 Proof of Proposition 7.3.2

Proof. We will proceed by induction on j m (t) - m (s), 01

Base Case: j = m(t) - m(s): In this case t,�j = tTm(t)-m(s) = t' by definition. Note

that m(t') = m(s). Then, by Proposition 7.3.1 and (7.20a) and (7.20b) we have

E[x (t,)X(S)T] = LtPfmL T (E.4)
S

Inductive Assumption: Assume that for some j + 1 Im M - M (8), M M - M (8) -

2,. 01 we have that

E[x (tTj+1)X(S)Tj = Lt�y-j+iPfmL T (E.5)
S

Inductive Step: We have

E[x(t,;yj )X(S)T] = A(Myj) E[x(tTj+l )X(S)T] (E.6a)

= Ltyj Pf ML T .+1 (Lt;p+1 Pf m L T -+�)-'E[x(f�j+' )X(S)T] (E.6b)
vp trY3

= Lt,�j Pf m L T -+, (Lt;�j + 1 Pfm LT .+,)-'Lt,;Yj+lPfmL T E.6c)
t,�3 til S

= Ltryj Pf ML T (E-6d)
S

where we have used the inductive assumption, (7.21) and Lemma 7.3. I. This completes

the proof. N
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