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Abstract

A recently developed multiresolution estimation framework offers the possibility of
highly efficient statistical analysis, interpolation, and smoothing of extremely large
data sets in a multiscale fashion. This framework enjoys a number of advantages not
shared by other statistically-based methods, particularly in terms of the ability to
evaluate estimates and error variances in a computationally efficient manner, however
there remain several barriers which constrain the widespread use of this framework:

e The multiscale framework has been characterized as well-suited for large-scale
estimation problems such as in remote sensing, however no such scientific en-
deavors have been undertaken which might motivate the use of the framework
among scientists.

e Past research efforts have developed a rich class of multiscale models; how-
ever given the selection of a particular multiscale model structure or class, the
identification of unknown parameters within the model remains unclear.

e The estimates produced by the estimator typically possess artifacts introduced
by the multiscale structure; these artifacts are distracting to the human eye,
limiting the use of the framework in certain image processing applications.

This thesis directly addresses each of the above limitations:

e Two problems of current scientific interest are addressed: the estimation of
the ocean surface height from satellite data, and the estimation of the earth’s
gravitational equipotential. Both lines of research produce results of potential
interest to the scientific community.

e We demonstrate a technique for estimating multiscale parameters in simple
models by developing an estimator for the fractal dimension of fractional Brow-
nian motion processes. Furthermore, for a 1/ f-like class of multiscale models a
Cramer-Rao bound can be determined for the maximum-likelihood estimation
of model parameters.




e Significant improvements in estimate smoothness are achieved using a novel
overlapping multiscale framework capable of reducing artifacts below the level
of detectability with a modest computational burden. The performance of the
overlapping framework is demonstrated in the context of the surface reconstruc-
tion problem of computer vision.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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[0 spatially varying geoid error function 77 124 135
Y fractional overlap 173
0 correlation coefficient 108 111
o standard deviation 60 95 100
¢ ocean surface elevation relative to the geoid 66 122 124
A generic covariance matrix 53 57 102
Y actual realized covariance 154 159
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Chapter 1

Introduction

roadly speaking, this thesis addresses the development of computationally

L |efficient algorithms for solving statistical estimation problems; that is,

estimation problems characterized by an explicit statistical prior model

and by an explicit statistical measurement model. A wide variety of algorithms have
been developed addressing such estimation problems, emphasizing varying degrees of
statistical structure or computational efficiency. The classical tool to apply in such
problems is the Kalman filter[4]; other examples (from the remote sensing community)
include objective analysis[20] and kriging[91].

For the estimation problems of interest in this thesis, specifically large estimation
problems in which estimation error statistics are required, the straightforward appli-
cation of any of the above estimation methods fails to be practical for computational
reasons. Indeed, the straightforward estimation approach implied by any of these
methods, applied to a random field representing a square image, N pixels on a side,
involves the inversion of a matrix having N* elements, requiring O(N®) computa-
tions! Clearly if the estimation of images having N > 256 is to be commonplace a
new approach is required.

The key ‘o the approach to be used in this thesis is that we begin by focusing
explicitly on scale. In particular, rather than starting with the statistical description
of the phenomenon to be estimated at a single, fine scale of resolution — the typical

Kalman filter implementation — we describe its statistical structure at a hierarchy
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of scales. Such a multiscale approach is not new; signal processing has seen intense
interest in multiscale / multiresolution methods, applied to a broad range of signal
analysis, compression, and estimation problems. Much of this interest has been fueled

by the following three motivations:

o Many natural and human systems exhibit features or behavior across a broad
range of space or time scales (for example, the earth’s oceans|[27], critical phe-

nomena in physics[112], or the distribution of galaxies in the universe).

e Many surface-reconstruction[44] and Markov random field problems[34, 35] use
local models to characterize systems which possess long-range correlations. It-
erative approaches to solving such problems on a single fine scale invariably lead
to a kind of critical slowing down: the computational effort per pizel grows! with
the size N of the random field. Multiresolution approaches[102], still using lo-
cal models but now on a pyramidal hierarchy of scales, have been conspicuously

effective in providing efficient solutions.

e The development of wavelet theory[68] has provided a powerful new rigorous

framework for multiscale analysis.

Motivated by one or more of the above aspects, quite a variety of multiscale ap-
proaches have been developed. Among these multiscale approaches are methods such
as multigrid[39, 74, 102] and hierarchical basis functions[100]. While such approaches
have proven well-suited and computationally efficient for solving certain relaxation
problems (in particular, elliptic PDE problems) these approaches have not, however,
been particularly successful in attacking statistical estimation problems. Broadly
speaking, there are two aspects of statistical estimation problems which are not ade-

quately dealt with by most multiscale algorithms:

1. Most statistical estimation problems are characterized by an explicit prior sta-

tistical model, parameterized in terms of a number of random variables with

!The computational effort per pixel ‘f(\)f solving Laplace’s equation using Gauss-Jacobi/Seidel
iterations grows as N¢ for a field in d dimensions having N pixels on a side[38].
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Figure 1-1: An example multiscale tree. The coarsest scale is shown at the top of the
figure, with finer scales below. An explicit statistical relationship is specified between
those tree nodes connected by thin lines. This figure shows only a relatively simple
example; any tree (i.e., any acyclic graph) may actually be used.

\
\
\
\

specified probability distributions. The behavior of most multiscale algorithms,
on the other hand, is parameterized by a set of variables which implicitly specify
a prior model, but where the relation between these variables and the associated

prior model is unclear and difficult to discern.

2. We are interested in those problems where estimation error statistics are re-
quired (e.g., in oceanographic remote sensing). The computation of these statis-

tics for large problems is notoriously difficult.

FFT methods are available which can accelerate such computations, but only
under relatively strict conditions: the random process resides on a rectangular
grid, is stationary, and is densely sampled with a stationary measurement noise
covariance. The problems investigated in this thesis will not satisfy all of these

conditions.
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A recently-introduced class of multiscale stochastic models[14, 62] has begun to
address both of the above two problems by developing a framework in which the
models possess explicit statistical priors, and for which error statistics are not only
computable, but indeed efficiently computable even for very large estimation prob-
lems. These multiscale stochastic models live on trees, such as the one shown in
Figure 1-1. It should be emphasized that a great variety of tree structures are possi-
ble; the structure shown in the figure is just one possibility, although a rather common
and convenient one for representing two-dimensional processes. This framework pos-
sesses further advantages: the production of estimates and estimation error variances
on a hierarchy of scales (e.g., on each scale of the multiscale tree) facilitating resolu-
tion/accuracy tradeoffs leading to the direct extraction of estimates of coarser scale
features, and the fusion of data of differing resolution with no change in algorithmic
structure. It is this multiscale framework which forms the basis for this thesis.

This introduction should serve only to introduce the notion of multiscale estima-
tion; a more thorough description of the motivation for multiscale approaches and a
greater explanation of the multiscale estimation procedure may be found in Chap-
ter 2. The next section will outline the contributions of this thesis, followed by a

description of the thesis organization.

1.1 Thesis Contributions

This thesis continues the earlier research efforts of Chou[14] and Luettgen[62]. Specif-
ically, to put the work of this thesis into context, at the point in time when this thesis

research was begun the following research goals had been accomplished:
e The establishment and definition of the multiscale estimation framework.

e The development of the multiscale estimation algorithm and the multiscale

likelihood calculation algorithm.

e The development of two classes of multiscale prior models: 1/f priors and

Markov random field priors.
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e The application of the multiscale framework to problems such as optical-low

estimation, texture synthesis, and texture discrimination.

The further contributions of this thesis, listed below, build upon these accomplish-

ments.

1.1.1 Multiscale Model Identification

Given some random process with unknown or very complicated statistics, there are

two basic steps in developing a model for the process:

1. the selection of the parameterized model (e.g., first-order Gauss-Markov,

second-order Gauss-Markov, 1/f etc.),

2. the quantitative determination of the unknown parameters within the selected

model.

The selection of a parameterized model is usually accomplished based on a physical
or intuitive understanding of the random process in question; the determination of
parameters forms the subject of system identification. Although these steps are still in
their relative infancy with respect to multiscale models, we can report some progress.

Certain previous multiscale applications[63] determined multiscale model param-
eters by trial and error; with the development of the multiscale likelihood calculation
algorithm[65] the maximum-likelihood estimation of such parameters is possible, at
least in principle. A contribution of this thesis is the derivation of a Cramer-Rao
bound for the maximum-likelihood estimation of the parameters for a particular class
of multiscale models with 1/f-like properties. The bound is compared with Monte-
Carlo simulations and with tests on real remote-sensing data.

A further contribution is made in the estimation of the fractal dimension of frac-
tional Brownian motion[69] processes. We present the developmert of a new 1/ f-like
multiscale model which gives unbiased estimates of the fractal dimension, and com-

pare its performance with other proposed estimators[49, 114].
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1.1.2 Remote Sensing Applications

There are several aspects to estimation problems in remote sensing which make them

well-suited to multiresolution methods:

1. The problems are typically very large and multidimensional, requiring the esti-

mation of millions (or more) of random variables.

2. Since remote sensing measurements are typically made by satellite or by ship,
the measurements are spatially irregularly sampled, precluding the use of FFT

methods.

3. Many natural systems, the object of study in remote sensing, are characterized

by 1/ f-like behavior, which is readily modeled using multiscale techniques.

4. Estimation error statistics are required in many applications to make proper
use of the computed estimates; such error statistics are frequently very difficult

or impossible to compute.

This thesis makes contributions to two remote sensing problems, oceanography and
geodesy;? both of these problems are subject to the four characteristics just listed.

The oceanographic remote sensing problem involves the estimation of the height
of the ocean surface, given measurements taken from a satellite in orbit. Empirical
studies of the satellite data show the ocean surface to possess a 1/f like behavior,
from which an appropriate multiscale model is developed. The contribution of this
thesis to this oceanographic remote sensing problem is a demonstration to the remote
sensing community of the applicability and efficiency of novel multiscale estimation
techniques.

The geodetic remote sensing problem  involves the estimation of the height of the
geoid,® again using satellite data. A joint model, simultaneously estimating the ocean

height and the geoid, is developed The contribution of this thesis to geodesy is more

>The study and determination of planetary gravitational fields.

3The geoid represents a surface of constant gravitational equipotential on the earth. In the
absence of ocean currents and winds, the surface of the ocean would conform to the shape of the
geoid.
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scientific in nature: the models which we develop are strongly motivated by existing
models in the geodetic literature, and the goal of the chapter is an improved set of
geoid estimates — estimates of immediate use to researchers studying ocean altimetric

data.

1.1.3 Multiscale Estimation and Smoothness

In the opinion of the author, one of the most significant stumbling blocks in the
application of the multiresolution framework has been the presence of blocky artifacts
in the resulting estimates. In many cases the quality or quantity of the measurements
may not justify the production of smoother estimates[63], however there are at least

two cases in which the production of smoother estimates may be required:

1. In certain applications (e.g., computer vision) the resulting estimates will be

displayed and require smoothness for aesthetic reasons.

2. In other cases (e.g., oceanographic remote sensing) one may wish to compute
gradients of the estimated field, in which case blocky discontinuities are unac-

ceptable.

A significant contribution of this thesis is the development of a novel multiscale struc-
ture known as an overlapping tree, which is able produce smooth estimates, even with
sparse measurements. This approach is not a specific multiscale model, rather it is a
general technique which may be applied to a broad variety of multiscale models. We
derive theoretical conditions for the applicability of the overlapping tree technique,

and demonstrate its use in texture estimation.

1.1.4 Multiscale Implementation of Variational Priors

The final contribution of this thesis is to the problem of surface reconstruction in
computer vision. Typically, surface reconstruction problems are formulated in terms
of a variational cost function; the desired surface is the one which minimizes the cost

function. The most common solution to this problem involves discretizing the partial
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differential equation (PDE) resulting from the variational formulation, and solving
the PDE by relaxation methods.

In this thesis we propose a novel alternative: rather than solving the variational
equation directly we determine a multiscale model which has a similar behavior.
Coupling this multiscale model with the overlapping technique just described results
in an estimated surface which is computed quickly, for which estimation error statistics

are available, and which is aesthetically pleasing.

1.2 Thesis Organization

Chapter 2 presents background material relevant to multiscale estimation. The
chapter begins by presenting a broad overview of statistical modeling and optimal
estimation, highlighting the computational difficulties that may be encountered in
a straightforward implementation of optimal estimation techniques, and motivating
alternative implementations such as the multiscale approach of this thesis. The dis-
cussion assumes relatively little in terms of a statistical background and was written
to familiarize members of the remote sensing community with matters of optimal
estimation. A second section parallels the development of the first, but explores an
alternative manner of posing estimation problems using variational methods.

The next two sections discuss our multiscale estimation framework more specif-
ically. We first introduce the multiscale tree and the basic nomenclature needed to
talk about stochastic processes on such a tree. Next, we define the basic multiscale
dynamic and measurement equations which characterize the class of multiscale mod-
els in our framework. Two subsections follow, containing high-level descriptions of
the two most significant multiscale algorithms to be used in this thesis: the multiscale
estimation algorithm and the multiscale likelihood calculation algorithm.

Next we present an overview of multiscale model development. This development
falls into two broad classes: (i) relatively high order modeis motivated by Markov
random field processes, and (ii) relatively low order models motivated by 1/f and

simple variational prior models.
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Finally we overview the specific computational implementation of the multiscale
framework that was used for all of the examples in this thesis. Although such soft-
ware considerations are not among the research subjects of this thesis, this particular
implementation has been found to be conspicuously versatile and efficient.

Chapter 3 presents the first of the two remote sensing applications considered in
this thesis: oceanography. We begin with a brief definition of terms and a discussion of
the ocean elevation estimation problem and the reasons why this problem is of interest,
both to researchers in signal processing and in remote sensing. We develop a 1/ f-like
model for the ocean and show the results of applying this model to remote sensing
measurements. Finally we demonstrate the versatility of our multiscale approach
by developing a heterogeneous multiscale model to account for the effect of ocean
currents or for the effect of space-varying geoid-errors.

Chapter 4 begins by presenting the problem of estimating the fractal dimension of
a fractal Brownian motion process, beginning with the development of an appropriate
model, followed by a demonstration of estimation results based on synthesized data
sets. The second half of the chapter discusses the problem of system identification
for multiscale models. We specify the 1/f-like multiscale model class of interest
possessing two free parameters, and determine a Cramer-Rao bound for the maximum
likelihood estimation of these parameters. We present two examples comparing the

Cramer-Rao bound to the actual performance of the estimator:
(i) based on synthesized measurements, and
(ii) based on the oceanographic measurements used in Chapter 3.

Chapter 5 presents the second remote sensing application: in this chapter we
explore the joint estimation of the geoid and the ocean surface. The chapter begins by
reviewing the various methods and measurements which have been used in the past for
estimating the geoid. The next two sections seek to characterize the spatial variation
of the geoid error by estimating high frequency terms of the geoid from topographical
data, and by computing the distribution of statistically significant oceanographic

residuals. Finally a joint model is posited and the estimated geoid is presented.
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Chapter 6 presents the novel overlapping-tree technique.  Although the
overlapping-tree concept is not intrinsically complicated, a rigorous explanation of
the concept is relatively difficult, and the reader is advised to read carefully and to
study the (superficially simple) examples in some detail. The chapter begins with a
discussion of smoothness, and presents several interpretations as to why the multiscale
estimation approach may lead to blocky artifacts.

After some preliminaries, the discussion of the overlapping-tree technique begins
with a simple example, which is meant to make some of the abstract overlapping-tree
notions more concrete; the example is broken into two parts: multiscale modeling
and multiscale estimation. Next we present a rigorous derivation of the conditions
placed on the overlapping tree such that the resulting estimates equal the optimal
least-squares estimates of interest. Next we discuss the manner in which a particular
overlapping tree structure may be selected to be consistent with the conditions just
derived. The chapter ends with three applications of the overlapping-tree technique
to the estimation of a texture characterized by a Markov random field model.

Chapter 7 presents the work on multiscale approaches to surface reconstruc-
tion. The chapter begins by deriving the most common variational costs used for
surface reconstruction based on the “membrane” and “thin-plate” models of classical
physics[18]. The gradient integrability problem[31, 43] is discussed, and a variational
equation which requires the simultaneous estimation of a surface and its gradients is
presented. The next section of the chapter discusses the multiscale analog to each
of the various components of the variational equation, which ultimately leads to a
complete multiscale model appropriate for surface reconstruction. A wide variety of
experimental results are shown based on problems with sparse or dense measurements
and discon‘ginuous surfaces; the results are compared with other relaxation methods
(Gauss-Seidel, conjugate-gradient, and multigrid).

Chapter 8 summarizes th= results of this thesis, presents the major contributions,

and details a number of avenues for further research.
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Chapter 2

Background

he purpose of this chapter is to introduce and to motivate the multiscale

framework which is used throughout this thesis. Sections 2.1 and 2.2

discuss two alternative methods of formulating estimation problems,

and discuss the computational difficulties which motivate an exploration of alter-
native approaches, such as our multiscale one. Section 2.3 presents the multiscale
framework which we will use throughout this thesis. A subsection is dedicated to
each of the two principle algorithms which have been developed for this framework:
a multiscale estimation algorithm, and a multiscale whitening / likelihood calcula-
tion algorithm. Section 2.4 discusses the basic philosophy behind the development of
multiscale models to solve estimation problems, and then presents simple multiscale
analogs to three statistical prior models: Markov random field priors, 1/ f-like priors,
and quadratic variational priors. Finally Section 2.5 outlines the manner in which

the multiscale algorithms were implemented on a computer.

2.1 Statistical Models and Optimal Estimation

Consider the basic problem of estimating a collection of random variables, repre-

sented abstractly by the vector x, based on a set of noise-corrupted measurements,
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represented by y:
y=Cx+wv Ev]=0 E [va] =0 E [va] =R (21)

where v represents the measurement noise or error. In general, for the problems to
be considered in this thesis the components of v are assumed to be uncorrelated but
possibly with non-constant variances — i.e., R is diagonal but not a multiple of the
identity. The matrix C describes the nature of the measurement process. Frequently
the components of « represent a dense grid of unknowns, and C'is a “selection matrix”
indicating which of the components of  are measured and which x; corresponds to
each y;. This is a convenient, but not necessary, arrangement; more general definitions
of  and C are possible.

We can view our estimation problem as estimating the deviations of x from its

mean, thus for simplicity, we assume that x is zero-mean and has prior covariance
E [a::z:T] =P, (2.2)

For problems of substantial size, the explicit specification of the correlation structure
of x through the full covariance matrix P, is neither feasible nor useful unless P, is
extremely sparse with known structure — e.g., if P, is banded, implying only local
correlation among the components of . However, such sparse or banded structures
are not particularly appropriate or useful for problems of interest here, as we are
interested in representing phenomena possessing correlations at many (and not just
local) scales. Furthermore, as we will see, banded or sparse covariance structures do
not necessarily lead to simple algorithms for statistical data analysis.

- Consequently we are led instead to construct an implicit model of the statistical

structure of x of the form

Mz =w (2.3)

Pl=MTP'M (2.4)
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where P, is the covariance of w. There are several reasons why representations
as in (2.3),(2.4) can be attractive. One is that processes with complex correlation
structures can be represented in a very compact manner. For example consider the

linear state space model
z(t+1) = Az(t) + w(t) E [z(0)w”(t)] =0 (2.5)
If we construct the vectors
2" = [e7(0)2"(1)27(2) ...]  w’ = [2"(0) wT(0) wT(1) .. ] (2.6)

then we obtain a representation as in (2.3) with P, block diagonal and M lower

bidiagonal:
I 0 0 O
-A I 0 O
M= 0 —A I 0 (2.7)

As we now show, it is the inverse of P,, which according to (2.4) involves only M
and P,, that is critical in constructing solutions to optimal estimation problems.
Specifically, the problem of interest here is the computation of the minimum vari-
ance linear estimate of  based on y, as well as a statistical characterization of the
error £ =  — .  There are numerous ways in which to represent the solution to
this problem, but the one that is most convenient for our discussion is that given by

the normal equations for this least squares problem:
(P71 4+ CTR'ICYe =CTR™ Yy (2.8)

This problem formulatior. and the normal equation solution are well known in
many disciplines, however approximations or suboptimal solutions have generally been

required in order to use (2.8) to estimate . Consider the formal explicit solution, &,
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to (2.8) and the resulting error covariance P:

&=Ly =P,CTR 'y (2.9)

P7'= P71+ CTR-IC (2.10)

Note that if P, has a sparse or banded structure, indicative of local correlations, this
structure is not generally preserved either in the estimation gain matrix L (2.9) or
in the estimator error covariance P,. Thus simple, local, smoothing algorithms (e.g.,
local least squares, local interpolation) while efficient computationally, generally rep-
resent a suboptimal approximation to (2.9) even in situations in which they appear
to be best matched, i.e., when the field to be interpolated has local correlations.
Moreover, a very important point is that the statistical structure of the resulting esti-
mation error field, P,, is not local, despite locality in P,. Furthermore the calculation
of P, is generally prohibitively complex (since, in particular, the inversion of the
prior covariance P, is extremely demanding). Thus the use of simple local algorithms
generally involves a compromise in statistical consistency, in the explicit and faithful
use of prior statistical models and information, in the calculation of accurate error
statistics, and in the ability to account for correlations at many scales.

The situation looks much different, however, if we examine the normal equations
(2.8) directly. If we begin with an implicit model for  as in (2.3) — or equivalently
with a decomposition of P;! as in (2.4) with M and P_! having sparse or local
structure — then from (2.10) we see that this structure is maintained in P, and in
the normal equations. In particular, when the measurements are point measurements
of components of & with uncorrelated errors — so that C' is a selection matrix and R
diagonal — then CTR~!C is also diagonal, so that P;! = P;! + CTR~'C maintains
the same structure as Pt
The significance of these observations is considerable. For example, for the time-

recussive state space model (2.5) with local measurements, i.e.,
y(t) = Cyx(t) + v(t) (2.11)
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we have from (2.4) and (2.7) that P! is block tridiagonal, a structure that is shared
by }3; 1. As a consequence, the normal equations can be solved in an extremely
efficient fashion, namely Gaussian elimination — also known as the Kalman filter[4] —
followed by back-substitution — known as the Rauch-Tung-Striebel (RTS) smoothing
algorithm[89]. Furthermore in the process of performing these calculations we directly
compute the diagonal elements of P, — i.e., the estimation error covariance matrices
for z(t) for each value of t. Moreover, perhaps less widely known, these calculations
also yield a model for & without any additional work. In particular since f’; ! has the

same structure as P, !, we might hope to model & as
Mz = (2.12)

where @ is block diagonal and M has the same structure as M in (2.7) - i.e., so that
& has a time-recursive model as in (2.5). Such a model does in fact exist, and its
parameters are directly and very simply computable from the original model (2.5)
parameters and from the error covariances computed by the Kalman filter and RTS
smoother.

Furthermore, since we have a model (2.12) for the estimation errors in this time-

recursive statistical estimation problem, we can use the measurement residuals
Jg=y—-C2=C%+v (2.13)

to detect statistically significant deviations from the assumed statistics. In addition,
the recursive Kalman filter algorithm allows whitening of the data y and thus the
efficient computation of likelihood functions, leading to statistically optimal methods
for estimating parameters of the model (e.g., parameters embedded in M, P,, C, and
R).

The critical question, then, is whether we can find analogous classes of models for
phenomena that vary in space rather than time, i.e., models that have a similar set of
properties and that also allow us to capture rich classes of spatial phenomena includ-

ing those with multiple correlation scales. One class of such models that has been
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widely proposed used is the class of Markov random fields (MRF’s). As discussed in
[59], such fields have models as in (2.3) in which M is an elliptic (symmetric, positive
definite) partial difference operator and where P, = M. In this case P;! = M, em-
phasizing the correspondence between models and inverse covariances. Furthermore
such models can capture multiple correlation scales. Moreover M = P;! in (2.10)
is also an operator of the same structure as M so that subsequent data assimilation
stages, in which the error statistics at one stage form the prior model for the next,
face structurally identical estimation problems. The normal equations in this case
correspond to an elliptic partial differential equation and the error covariance to the
inverse of an elliptic operator. Consequently the required computations for estima-
tion, error covariance calculation, anomaly detections, and likelihood evaluation are
not simple and can in fact be prohibitively complex except in the case of stationary
models and uniform data (so that Fourier techniques can be applied).

Section 2.4 will present an alternative to MRF’s for the modeling of random fields
that overcomes these difficulties through the use of scale-recursive models, permitting
the realization of the full set of advantages found for the time-recursive state model

(2.5).

2.2 Variational Problems and Optimal Estima-
tion

Variational methods[18, 111] offer an alternative means for the formulation and
solving of estimation problems. Variational formulations lead directly to Euler-
Lagrange[18] partial differential equations (PDEs) to be solved in order to obtain
- the desired reconstructions. Except in those specific cases ‘where the surface model
and the measurement statistics are homogeneous, permitting FFT techniques to be

applied, the solution of these equations can be a significant computational task, espe-
: cially for problems‘ of 1arge size. Furthermore, the calculation of reconstruction error

covariances[51,. 98] for such approaches are, for all. practical purposes, completely in-
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feasible, as their computation corresponds in essence to the calculation of the full
inverse of the partial differential operator arising from the variational problem. As a
result, we are motivated to explore the relationship between variational problems and
estimation problems with the hope of developing an alternative solution technique.
Variational problems have a dual interpretation as statistical estimation
problems[63, 99]. Specifically, a variational problem with quadratic costs (i.e., a

least squares problem) may be interpreted as a Gaussian statistical model:

e A variational quadratic penalty term on the deviation between the estimated
surface and its measurements corresponds to an estimation problem with a

measurement model in additive white Gaussian noise.

e Quadratic penalty terms on various linear functionals of the process have the

statistical interpretation as a prior Gaussian model on the unknown process.

We will make the above dual interpretations more concrete in the context of the

following linear-functional quadratic-cost variational problem:

' min {(y —CE)RMY — ) + [ /R 2 E(z)Tﬁ(z)dxdy} (2.14)

where z is the function to be estimated on R?, £ is a column vector of linear functionals
of z, and where Y is a set of measurements modeled by the column of linear functionals
C. Although such a variational expression is elegantly represented in continuous space,
the goal of implementing a practical estimator on a computer motivates the shift to
discrete space.

Let ZT =[...,2(zi,y;),..]" represent a vector of samples of z(z,y); then (2.14)

may be discretized as
min {(v=cz)' R (Y - C2) +{LZ}" {LZ}} (2.15)

where L is a matrix representing a discrete approximation of the linear functionals in
L over the discrete grid, and where C' is a matrix which describes the measurements

of Z.
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Each discrete optimization problem of the form of (2.15) possesses an estima-
tion counterpart. Specifically, the optimization of (2.15) corresponds exactly to the

problem of estimating Z given the measurement model!
Y=CZ+wv v~ N(O,R) (2.16)
and a prior model
LZ =w w~ N(0,I) (2.17)
The solution to this estimation problem is given by the Euler-Lagrange equation:
(L7L+CTR7IC) Z = CTRY (2.18)
and for which the estimation error covariance is
P=(L"L+C"RVC) (2.19)

The computation of (2.18) corresponds to the solution of a PDE, a computationally
difficult task. However it is (2.19) that is orders of magnitude more complex, as it
corresponds to the complete inversion of a higher-order PDE operator.

At this point in our discussion of variational problems we have reached the same
impasse as in our discussion in the previous section on MRFSs: the computational
difficulty in solving (2.18) and (2.19). What we propose to do is to replace the prior
(2.17) by a similar multiscale model, such that computing (2.18) and any element
of (2.19) is easy; Section 2.4 will present a multiscale framework in which it will be

~ possible to construct appropriate variational-liké models.

!The notation NV(u, R) represents a Gaussian random vector with mean p and variance R.
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2.3 Measurements and Prior Models

Given a Bayesian estimation problem, there is a dual interpretation which we shall
find to be useful: the dual interpretation between statistical prior models and mea-
surement models.

The following discrete estimation problem is motivated by the discussion on vari-

ational problems in Section 2.2. Consider a measurement model

Y=CZ+w v~ N(0,R) (2.20)
and a pridr model
L |
L Z=w w~ N(0,1) (2.21)
2

The essential observation here is that portions of the “prior” model may be interpreted
as “measurements”; specifically, the above estimation problem is the same as the
following problem, now having a modified measurement model which incorporates

one part of the prior information
Y C RO
= Z4+7 U~ 0 2.22
ol=lo]zee enCGl)  em
and a corresponding prior model
LyZ =w @ ~ N(0,1) (2.23)

The solution to both of these estimation problems is the same, given by the usual

Euler-Lagrange equations:

T
Lol i) L orprie) 2= TRty (2.24)
Ly| | Ly
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and for which the estimation error covariance is

P= ([ Z r [ﬁ; } + CTR"lC) ) (2.25)

This relatively simple dual interpretation may be helpful in the development of
efficient estimators under circumstances in which a process Z has a statistical prior
of the form (2.21), such that we have a highly efficient estimator capable of capturing
prior model Ly, but where the prior statistics of L; are not simple to capture efficiently.
We shall find it useful to reinterpret L, as part of the measurement model. An example

of such a reinterpretation will be given in Chapter 7.

2.4 Multiscale Processing

The multiscale models of interest in this thesis and originally introduced in [14, 62]
are scale-recursive models defined on index sets that are organized as multilevel trees
(a simple example of such a tree for a 2-D random field was illustrated in Figure 1-1).
Each level of the tree corresponds to a different scale of resolution in the representation
of the random field, with coarser scales toward the top of the tree, and where the
components of & correspond to variables defined at the various nodes of the tree.
This modeling framework is more flexible than the figure might suggest however,
because it is applicable to higher dimensional trees or to asymmetric and unusually
shaped trees. This flexibility can be used to match the particular multiscale structure
of the phenomenon being modeled or to capture local differences in scale structure
(e.g., if the field has finer scale details in particular regions). For the purposes of the
discussion in this section the quadtree structure of Figure 1-1 will suffice.

Let T feprésérit the set of nodes on a multlscale t‘ree; lét‘s € 7 index the nodes
of the tree. All of the tree structures to be used in this thesis can be described in

terms of two parameters:

¢ represents the order of the tree; that is, ¢ equals the number of descendants of
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each node (except for those on the finest scale).?
M represents the number of scales (or levels) in the tree.

Each node s € 7T is associated with scale m(s), where 0 < m(s) < M; larger values
of m(s) refer to finer levels of the tree. The root node of the tree is denoted by 0,
m(0) = 0; the root is the unique node of the tree possessing no parent.

Two operators are used to traverse the tree:
s% represents the parent node of s # 0;
sa; represents the ith child node of 5; 1 <i <gq.

The specific model class of interest here is inspired by the successes of the time-
recursive model (2.5). In particular, components of  at these nodes are related by a

coarse-to-fine recursion:
z(s) = A(s)z(s) + B(s)w(s) VseT,s#0 (2.26)

where w(s) is a white noise process with identity covariance. The initial condition of

the process at the root node is given by
E[z(0)] =0 E[z(0)z7(0)] = P, (2.27)

Moreover, the general measurement model associated with this framework also allows

measurements at multiple scales:
y(s) = C(s)z(s) + v(s) Vse MCT (2.28)

where v(s) is white, with covariance R(s). M is an arbitrary subset of 7 and contains
those nodes at which measurements are present. With only the occasional exception,

the applications considered in this thesis will have all of the measurements at the

2In principle, different nodes on the tree could have different numbers of descendants; i.e., the
order ¢(s) varies with s. Such generality is permitted by our multiscale framework, but will not be
needed at any point in this thesis.
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Figure 2-1: The processing of nodes in the multiscale framework proceeds in two
passes. First (left figure) information is propagated up the tree; at each tree node,
the conditional estimate is formed based on all measurements on that node and its
descendants. Next (right figure) information is propagated back down the tree; at
each tree node the estimate is formed based on all measurements on the tree.

a) Upwards Pass b) Downwards Pass

finest scale — i.e., at a sparse and irregular subset of nodes at the lowest level on
the tree — and we will focus principally on the estimates at this finest scale as well.
However, the statistical algorithm for the model (2.26),(2.28) can handle data at
multiple resolutions and produces estimates (and error statistics) at all scales.
Optimal estimation, error model characterization, data whitening and likelihood
calculation have extremely efficient realizations for this class of multiscale models.
Broadly speaking, these efficiencies are a result of the structure of the tree and the
model (2.26),(2.28) which leads to a divide-and-conquer structure for statistical anal-
ysis: conditioned on any node on the tree, each of the sﬁbtrees connected to this node
are conditionally independent (for example, conditioned on the top node in Figure 1-1,
each of the four distinct subtrees below this node are conditionally independent). The
following two subsections discuss the multiscale estimation and likelihood calculation

algorithms.

2.4.1 Multiscal_e Estimation

The prev1ous paragraph possessed the key to efﬁaent estlmatlon on mu1t1scale trees:

condmoned on any node on the tree each of the subtrees connected to this node
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are conditionally independent. Thus for any node s the processing of the data in
the subtree beneath it can be decomposed into independent processing of the data in
each of the descendent subtrees. As illustrated in Figure 2-1, optimal estimation of
z (i.e., the collection of all z(s)’s) based on y (all y(s)’s) can be implemented as two
sweeps on the tree. The fine-to-coarse sweep generalizes the Kalman filter and results
in the calculation at each node s of the best linear estimate of z(s) based on all of
the data in the subtree below s. The usual predict and update steps of the Kalman
filter are used without modification; the adaptation of the Kalman filter to the tree
stems from the addition of a merge step, which combines the predicted values from
several children at a common parent. Next the coarse-to-fine sweep generalizes the
Rauch-Tung-Striebel algorithm and produces the best estimate and error variances
at every node based on all of the data.

The resulting algorithm, the equations of which are summarized in Appendix B
(see [14, 62] for greater details) involves only local calculations following the structure
of the tree. Thus calculations for each node are performed once on each of the upward
and downward sweeps. Furthermore, if N denotes the number of nodes at the finest
scale of the tree, i.e., the number of pixels at the finest scale of resolution, then the
total number of nodes on the tree is %N . Thus the total complexity of the algorithm
is proportional to N, resulting in constant complexity per grid point independent of
the size of the grid.?

The multiscale estimation equations yield a model for the error Z(s) = z(s) — Z(s)
which has a multiscale form[64], so that subsequent data assimilation stages can be

carried out in exactly the same fashion. Specifically,
i(s) = P(s|s)P7 A(s)P P (57 | 5)%(57) + (s) (2.29)

where P, is the prior covariance at node s and P(s | t) represents the estimation error

covariance of z(s) given all observations in the subtree below node ¢.

3The computational complexity of the tree is O(INk®), where k represents the state vector length
of z(s). Constant complexity per grid point is achieved under the assumption (or assertion) that &
be a fixed value, independent of N.
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Figure 2-2: A rough sense of the information flow for the multiscale whitening algo-
rithm. The whitening proceeds in a depth-first approach, first conditionally whitening
each of the children of a parent node before whitening the parent. The notions sug-
gested by this figure are made more precise in [62, 65| and in Appendix C.

The estimation error covariances P(s | s) are computed for each node s on the tree;
that is, the block-diagonal components of the full estimation error covariance matrix
are computed. For problems of the size considered in this thesis (e.g., N &~ 10%), the
full error covariance matrix is tco large (e.g., ~ 10'0 elements) to be calculated or
even to be stored by any practical means. It may, however, be useful to calculate a
specific subset of the off-diagonal elements.

The model in (2.29) permits the calculation of the estimation error covariance
between any two arbitrary nodes in the tree (i.e., the calculation of arbitrary off-
diagonal elements in the full error covariance matrix); an example of the application

of this model will be demonstrated in the oceanographic context in Chapter 3.

2.4.2 Multiscale Likelihood Calculation

Another algorlthm closely related to the opt1ma1 estlmatlon algorlthm of the previous
subsectlon allovvs us to Whlten the data and compute likelihoods in an equally efficient
fashion[62, 65]. That is, given a set of multiscale model parameters A(s), B(s), C(s),
»R(s) » (and possibly other parameters specifying the structure of the tree such, as

_the order ¢) and a stacked vector Y of measurements we can calculate the likelihood

o A i_-»gr'«;;a’z;“fs‘-,:«.v.cq»;a T R R T It I AT S8 S
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c[40, B0, co, RO, Y| = —%10g|Ay| - %YTA;,IY—— “g—“logZW (2.30)
where ||Y]| counts the number of elements in Y, Ay represents the covariance of
random vector Y, and where we assume that the noise terms w,v of (2.26),(2.28) are
Gaussian, k

The direct evaluation of expressions such as (2.30) is typically difficult, even in
the straightforward time-recursive case (2.5). Instead, in the time-recursive case such
a likelihood calculation is made simpler by first computing the whitened residuals
process; such a residuals process is computed by the Kalman filter. Fortuitously, a
multiscale whitened residual process may be computed using the multiscale analog of
the Kalman filter. Essentially, information is passed about the tree in a “pre-order”*
traversal; a suggestive sketch of the information flow is shown in Figure 2-2.

The equations of the resulting algorithm are summarized in Appendix C (see
[62, 65] fof greater details). The computational effort of the whitening algorithm is
similar to its estimation counterpart from the previous subsection; specifically, the
algorithm involves only local calculations following the structure of the tree, thus two
sets of calculations are performed at each node, leading to a total complexity of the
algorithm which is a constant multiple of the number of grid points, independent of
the size of the grid.

In principle, once we have a multiscale whitening algorithm (and hence a likeli-
hood calculation algorithm) the estimation of multiscale model parameters is possible.
Specifically, suppose that we have a family of multiscale models‘pa,rameterized by a
vector H; then an estimate of H may be determined by maximizing the likelihood

function

H = argy max £ |A(s, H), B(s, H), C(s, H),R(S,H),Y} (2.31)

4There are three basic forms of tree traversal: “pre-order” (or depth-first), “in-order”, and “post-
order”; the prefix describes the time of processing the parent node relative to its children.
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Chapter 4 will explore the identification of multiscale model parameters using ap-

proaches like that of (2.31).

2.5 Multiscale Modeling

Given the multiscale framework and the estimation and likelihood algorithms outlined
in the previous section, one remaining challenge lies in the selection or determination
of an appropriate multiscale model. In general, there are two basic approaches to

solving computationally difficult estimation problems with some given prior statistics:

1. Replace the prior model with another model (e.g., a multiscale one) which is

similar to the original, but whose optimal solution can be found efficiently.

2. Develop a suboptimal algorithm and apply it directly to the original problem.

Applications of the multiscale framework[63, 65] have tended to follow the former
philosophy: we do not view our multiscale framework as an approzimation to a given
estimation problem, rather the multiscale approach allows us to solve the problem
optimally under a multiscale prior that is similar; the development of multiscale
models in this thesis will follow the same spirit.

In addition to the computational efficiencies admitted by the multiscale framework
and its related algorithms of the last two subsections, multiscale models can also be
used to capture the statistical structure of rich classes of phenomena. The following
subsections will document several statistical models and their multiscale counterparts.
These next subsections are more than just examples: we will have occasion to build

upon these multiscale counterparts throughout this thesis.

2.5.1 Markov Random Field-Like Models

This subsection will describe exact and approximate multiscale counterparts to
‘Mar_kov random field models. Although we will never implement or make use of
such. multiscale models directly, the intuition behind the development of multiscale

MRF counterparts will be useful in the investigation of the smoothness of multiscale
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estimates in Chapter 6. A thorough development of the material in this section may
be found in [61, 62].

Let Q2 C R? be a closed set, and let T be the boundary set of Q; I' separates R?
into 2NT*, T, and Q°NT*. A continuous-space, two-dimensional process 2(t),t € R?,
is said to be a Markov random field if the process inside of Q, {z(t) |t € QN I'e}, is
independent of the process outside of Q2, {z(¢) | ¢t € Q¢ N '}, given the process on the
boundary set I', {2(¢) | t € T'}.

On a discrete lattice (instead of on a continuous plane) the definition of a MRF
becomes more subtle[7, 22, 35]. Essentially, 2(¢),t € 22 is a MRF if there exists a
neighborhood set Dy, such that

Pz (Ze [ {Z: | 7 € Di}) = Poyjue)(Ze | {Z: | T € {220 {t}*})  (2.32)

For simplicity in this discussion, we restrict our attention to processes z(t) that are

Markov random fields under first order neighborhoods:
Dy ={(t,t+1), ¢+ 1,1),(t,t = 1), (t = 1,8)} (2.33)

Consider the lattice shown in Figure 2-3. Let 2(¢) be a process defined on this lattice,
such that z(t) is a MRF under the first order neighborhood (2.33). Then conditioned

on the process values
{z(t) | t € Shaded region of Figure 2-3} (2.34)

the four processes (one per quadrant) {z(¢) | t € Qi} are all mutually independent.
Recall that a property, similar to this last statement, is asserted on the multiscale
tree: conditioned on a parent node, the ¢ children descendent from this parent are
independent. Consider modeling the process z(t) of Figure 2-3 on a quad-tree: let
z(0), the state at the root node of the tree, consist of the shaded elements of z(t) in
Figure 2-3; furthermore identify each of the quadrants Qi with the children of the

root node; now proceed recursively down the tree. Clearly such an approach leads to
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Figure 2-3: The figure shows a finite, two dimensional lattice. Consider a process
z(t) to be defined on the lattice sites, such that z(t) is a MRF under the first order
neighborhood (2.33). Then conditioned on the lightly-shaded states, the processes
z(t) in each of the four quadrants Q1,...,Q4, bounded by the shaded region, are
independent.

a multiscale model having large state vectors: for a first-order MRF representing N?
pixels, the root node of the multiscale counterpart would contain (6N — 9) elements.
The development of multiscale counterparts to Nth order Markov random field pro-
cesses may be accomplished by setting the state of each parent node to capture the
boundary elements between and around its child nodes, but where the boundary is
taken to be N pixels thick.

In principle, multiscale counterparts with smaller state dimensions may be formed
by maintaining a low order approximation to the MRF elements; for example, the
shaded elements in Figure 2-3 might be represented by a set of Fourier or wavelet
coefficients. The arbitrary selection of a Fourier or wavelet basis is somewhat ad-
hoc; the next subsection will describe a more systematic approach to determining

lower-order representations.
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2.5.2 Canonical Correlation-Based Models

The previous section outlined an approach for constructing multiscale analogs to

Markov random field models; however there are two limitations to that approach:

e The previous subsection does not yield any systematic approaches for determin-

ing good reduced-state-dimension multiscale counterparts to MRF models.

e The previous subsection does not suggest a means by which to develop multi-

scale counterparts to non-Markov processes.

The method of canonical correlations[1, 3] has allowed the above issues to be ad-
dressed.

Let x = [z122] be a Gaussian random vector with a known correlation structure

Ay A
ElzzT|=A, = | 2 12 2.35
[#+7] [Aﬂ Az (233)

We would like to determine two orthogonal matrices 77,75 such that x; = Tix; and

X2 = Thxy are in canonical form:

Eldv]=1  E}dx]=I (2.36)
E [\Ix2] = D = diag (01, ., 05,0,...,0) (2.37)
where 01 > ... > 0, > 0. The appropriate orthogonal matrices are readily found

using the singular value decomposition. Let
_1 _1
A - A112 A12A222 (2.38)
Compute the SVD

A=USVT Ul =1,VIv =1 (2.39)
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then
1 1
T, = UTAHQ, T, = VTA222, D=S (2.40)

Essentially, the singular value decomposition of Ajs quantifies all interdependencies
between z; and z»; therefore by conditioning on the first p elements of x; and x», the

vectors z; and x, become independent. In other words, the linear functionals
T = [Ip O] T1 Ty = [Ip O] T2 (241)

describe the information needed to decorrelate x; and z,. Furthermore, the ordering
of the singular values in the diagonal matrix D (2.37) suggests a natural reduced set

of linear functionals:
ik = [Ix 0] T4 Tox = I, 0] To k<p (2.42)

The ability to maintain a set of values to conditionally decorrelate multiple random
vectors can play a central role in the development of multiscale models. Two modifica-
tions to the canonical correlations approach described in this subsection are required

in order to develop multiscale counterparts to arbitrary Gaussian processes:

1. The canonical correlations procedure essentially just captures the correlation
between two random vectors. On the tree, such correlations must be captured

on a hierarchy of scales.

2. The canonical correlations procedure conditionally decorrelates two vectors; on
multiscale trees with order ¢ > 2, the procedure must be generalized to ¢ random

vectors.

These generalizations have been researched[48] and have led to an effective multiscale
‘ r‘nodellzi?nvg' technique; an example of the use of such multiscale models will be presented

ot

in Chapter 6. =~ .
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Figure 2-4: An example of a natural phenomenon characterized by a 1/ f#-like behav-
ior. This figure shows a rough characterization of the global power spectral density
of the ocean surface (from [33]).

2.5.3 1/f-like Models

Our multiscale framework is directly suited to capturing phenomena that display a
multitude of correlation scales. Of particular interest is the class of so-called 1/f
models[113], i.e., processes that display 1/f*-like spectra over a significant range of
frequencies. Many natural and human phenomena have been found to possess 1/f-
like spectral properties, which has led to considerable study of 1/f processes. For
example, Figure 2-4 (from [33]) shows a typical power spectrum for the height of
the ocean surface, modeled as a 1/ f*-process with different values of p over different
wavenumber intervals.

One class of such processes that is frequently used because of its analytical con-
venience and tractability is the class of fractional Brownian motion (fBm) processes,
introduced by Mandelbrot and Van Ness[69]. Let F[k] be a sampled fBm process;

ie.,

Flk] = F(kA?) ke Z (2.43)
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for which the associated nonstationary covariance is
2
o
E [k}, Flml] = < (A0 (| + [ml* — [k — m[*") (2.44)

where ¢ and H are scalar parameters which completely characterize the process: o
controls the overall power of the process, H determines the fractal dimension D =
2 — H of the process. The modeling of fBm on multiscale trees, and the estimation
of H given samples of a fBm process will be studied in Chapter 4.

The class of fBm processes, although interesting, represents only a single possibil-
ity among a broad array of 1/ f-like processes; furthermore the ezact representation of
fBm processes on the multiscale tree is not particularly convenient. More generally,
phenomena with 1/ f#-like spectra display so-called self-similar scaling properties in
that the variability of such a phenomenon scales geometrically with the spatial res-
olution at which the variations are measured. Such scaling rules are captured very
simply in our multiscale model through the imposition of a scaling relationship in the

gain B(s) in (2.26). Recall that m(s) denotes the scale of a node s; thus the choice
A(s) =1 B(s) = B,2(t—#1m()/2 (2.45)

displays the same scaling behavior as that implied by a 1/ f* spectrum[115]. Changes
in scaling laws, corresponding for example to the changes in spectral slope in Fig-
ure 2-4, can be captured simply by changing the value of y over different ranges of
scale. Local changes in scaling structure can also be easily accommodated by local
modifications of B(s).
There are several motivations for the use of the multiscale model of (2.45):
e The snnph(:lty ‘of the model makes it easy to implement and computationally
very efficient.

@ Since the model is described in terms of only two parameters the model identi-

" fication process is relatively straightforward.
e The statistics of many natural processes are poorly understood, and in fact rep-
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Figure 2-5: A collection of four curves, each equally penalized by the cost function
[(dz/dz)*dT
resent an active area of research. For such processes, detailed and sophisticated
multiscale models based on poorly-known statistics are inappropriate; instead,
a simple model (such as (2.45)) which captures the known basic scale to scale

behavior of the process of interest may yield equally good results.

We will be using (2.45) as the basis for each of our remote sensing applications in

Chapters 3, 4, and 5.

2.5.4 Variational-Like Models

The discussion in Section 2.2 motivates the development of multiscale prior models
similar to the prior implied by simple variational constraints. This problem has been
investigated in the past[14, 63, 99] for the case of a single quadratic penalty on the
unknown function. The basic idea for this case is most easily visualized in 1-D; i.e.,

for variational costs of the form

/ (%)2 dr (2.46)
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Under the variational cost function of (2.46), each of the four profiles for z(z) depicted
in Figure 2-5 incurs the same penalty. Indeed, in 1-D the penalty term (2.46) is
equivalent to a Brownian motion prior model[63]; i.e., a process with a 1/ f? spectrum.
Based on the discussion of 1/ f-like multiscale models in the previous subsection, we

can posit the following model as a prior similar to that of (2.46):
2(s) = 1+ 2(s7) + B,2 ™ 2q(s) (2.47)

As discussed in[63], an analogous interpretation also holds for 2-D variational penal-
ties on derivatives of z(z,y), leading to quadtree models of the same form as (2.47).

We will be using and building upon this result extensively in Chapter 7.

2.6 Multiscale Framework Implementation

The computer implementation of the multiscale framework has proven to be a chal-
lenging and interesting task. Although computer implementations of such algorithms
are not the focus of this thesis, a brief discussion is warranted.

The framework does not pose inherent difficulties to implementation; for example,
a basic implementation of the multiscale estimator (see Appendix B) on a quad-
tree sufficient for preliminary oceanographic tests was accomplished in about two
days. Any difficulties associated with implementing the framework stem from the
remarkable variety of possible multiscale tree configurations and tree models. Indeed,

we encountered the following dilemma:

e An implementation which is targeted to a particular tree structure and multi-
..., Scale model can reap considerable computational efficiencies by taking advan-
tage of the known structure, but a new or heavily modified computer program

is likely to be needed for each different tree structure or model.

.. .o An implementation which is completely general and tolerant of any tree struc-
ture whatsoever would. be slow and awkward to use (even a simple tree would

require a detailed and exact description, since nothing would be implicit or

62




2.6. MULTISCALE F RAMEWORK IMPLEMENTATION

assumed).
We have developed the following creative compromise:

e Develop a core “engine”, which implements the multiscale estimator, likeli-
hood calculator, cross-covariance calculator, and sample path generator, with-
out making any assumptions whatsoever regarding the tree structure or multi-

scale model.

o Create a set of interfaces which operate between this core engine and the user-
supplied application program. Each interface asserts a different set of assump-
tions regarding the multiscale tree and model; these assumptions are asserted
at compile-time, allowing the general engine code to be modified, simplifying
itself based on the nature of the approximations asserted, and allowing it to

achieve the associated computational efficiency.

The above approach has enabled a single piece of code to perform all of the multiscale
calculations in this thesis in a computationally efficient manner. Further details
and an overview of the organizational structure of the software may be found in

Appendix A.
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Chapter 3

Ocean Surface Estimation

significant estimation problem in oceanography concerns the interpo-

lation of large oceanographic data sets; this chapter will describe the

+ |application of our multiscale framework to such a problem. This appli-

cation, although significant in and of itself, is meant to illustrate the potential for the
utility of the multiscale approach in broader contexts; e.g., the geodesy application in
Chapter 5 is based heavily upon the results and insights acquired in the investigation
of this chapter.

Section 3.1 presents an introduction and the necessary background for the altimet-
ric interpolation problem. Section 3.2 discusses the development of an appropriate
multiscale model, followed by experimental tests in Section 3.3. Background infor-
mation on optimal estimation, which accompanies this chapter in its journal form[27]

for the benefit of the remote sensing community, may be found in Chapter 2.

3.1 Introduction

The problem of estimating the shape of the ocean surface from satellite altimetry
measurements is of considerable current interest both because of its importance in
global ocean modeling and climate studies and because of the relatively recent launch
of the joint American/French TOPEX/POSEIDON altimeter[32, 73, 95|, a satellite-

based platform capable of measuring ocean height to an unprecedented accuracy of
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approximately 5 cm. The availability of data of this quality and coverage makes it
possible to address a variety of scientific questions ranging from producing regularly
gridded maps of ocean height (to be used, for example, in global ocean modeling stud-
ies) to the estimation of the spatial spectrum of ocean height variations. Achieving
objectives such as these, however, presents daunting challenges to the data analyst,
in particular in terms of the enormous size of the problems to be solved. The method
of this chapter permits the production of statistically optimal results, with computa-
tional loads that are extremely modest.

The various quantities involved in the satellite altimetry problem are sketched in
Figure 3-1. The TOPEX/POSEIDON altimeters are mounted on a satellite orbiting
at an altitude of approximately 1500km. The altimeters use microwave ranging tech-
niques to determine the precise distance, D, between the satellite and the surface of
the ocean. GPS navigation and laser tracking from ground stations|[78] determine the
position, O, of the satellite in three-dimensional space with respect to an idealized,
ellipsoidal, earth. Other details aside, the difference h = O — D measures the height
of the surface of the ocean with respect to the idealized ellipsoid.

In principle, the height h includes effects such as oceanic tides[90], solid body
tides, and atmospheric pressure influences. Although the study and quantification of
these effects are worthwhile efforts, we are not interested in estimating such quanti-
ties in this thesis, and we assume tidal and atmospheric perturbations to have been

subtracted from h. With this said, h = N + ( is made up of two principle quantities:

N represents the geoid[42, 50] , i.e., the gravitational equipotential surface at sea
level. The geoid is very nearly an ellipsoid; deviations from the ellipsoidal shape
are due to spatial fluctuations of the density of the earth’s mantle and crust,

~and' due to the earth’s topography: (e.g.;’ mountains and valleys).

¢ represents the height of the ocean surface relative to the geoid. In the absence
- of ocean currents, ¢ = 0. Conversely, the spatial gradients of ¢ allow elements
of the ocean c1rcu1at10n pattern to be deduced[116] thls observatlon forms one

o 'of the main motlvatlons for the estlmamon of C
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Figure 3-1: A general overview of the nomenclature associated with the TOPEX /
POSEIDON measurements.

Geoid Model =>

The importance of deducing ¢ from satellite data cannot be overemphasized. It
is impossible to match the breadth, uniformity, and frequency of ocean sampling
obtained by satellites by any other means; ship-borne experiments, while capable of
sampling the interior of the ocean, are slow to perform and prodigious in cost. The
importance of determining the circulation pattern itself stems from the fact that the
kinetic energy of the ocean circulation vastly exceeds that of the atmosphere, thus to
properly model and understand the earth’s climate and global warming necessitates

an improved knowledge of oceanographic currents.
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Satellite Track Locations
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Figure 3-2: Set of TOPEX/POSEIDON measurement tracks in north Pacific. The
region shown in this figure will be the focus of the estimation efforts in this chapter.
Estimates have been developed for IV based on satellite tracking data, previous
altimeter missions, and from direct measurements of gravity. The estimates of IV used
in this chapter are the OSU91A[87] estimates developed at the Ohio State University.
The estimates are computed from a spherical harmonic basis to order and degree 360
(i.e., a resolution of approximately one degree).
. Figure-v--3-2'- d‘ébiéts»' a regibjn" of the northeastern Pacific from Hawaii to
Alaska. Overlaid on this region is the distribution of TOPEX/POSEIDON satel-
lite measurements|78] over a typical ten day cycle. Successive measurements along
a trackare ‘.svéf)ar‘aféd By approx1mate1y ‘7km or 0.06 deg’rvees; the spacing between

| adjac;ént tracks is approximately 270km. Gridded images of the ocean are required
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3.1. INTRODUCTION

at fine scales, both in order to observe features of interest, and to produce numerical
values compatible with fine scale ocean models. Even for the comparatively modest
portion of the ocean shown in Figure 3-2, we must estimate ocean surface heights at
more than 100, 000 grid points based on roughly 20, 000 altimetric measurements. For
a full ocean basin, or for the entire global surface, the problem is of truly formidable
proportions.

The size of data analysis problems such as this is not the only significant challenge.
In many cases, including the one of interest here, significant spatial nonstationarities

are present for several possible reasons:

1. The sampling pattern of the data is frequently nonuniform and irregular, in-

cluding occasional periods of data dropout as shown in Figure 3-2.

2. The sensed phenomenon is itself nonstationary, exhibiting differing spatial scales
and magnitudes of variability in different regions. Ocean surface statistics,
for example, differ between regions containing vigorous currents such as the
Kuroshio or the Gulf stream and those regions which are comparatively quiet

such as the northeast Pacific.

3. The quality of measurements may also be nonstationary. Recall that the
TOPEX / POSEIDON altimeter provides direct measurements, D, of the dis-
tance from the satellite to the ocean surface, whereas ¢ is the fundamental
quantity of interest as the ocean current field may be inferred from the deriva-
tive of this relative surface. The geoid estimates are subtracted from A to yield
measurements of (; thus the complex and nonstationary error struoture of the
geoid estimates[87] translates directly into nonstationary errors in the altimetry

measurements.

Such nonstationarities or irregularities in the data pattern present a major
challenge[33, 117], as there is no regular structure that can be used to advantage.
In particular Fourier methods, with their noteworthy efficiencies, cannot be applied

directly or without significant approximations and idealizations.
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Furthermore, in addition to the estimation of quantities such as ocean surface
height, there are compelling reasons for desiring a characterization of the errors in
these estimates. In particular, to assess the value of a set of estimates we must
have a measure of their accuracy, requiring at the very least the calculation of error
variances. Moreover, there are strong motivations for the characterization of the
spatial correlation structure in the estimation errors. For example, the assimilation
of ocean surface estimates into global circulation models[33], which effects a blending
of the surface measurements and the underlying science, in principle requires the full
specification of the error correlations so that accurate model/data combinations can
be effected.

In addition, error covariance calculatiens are useful for a variety of other scien-
tific reasons. For example, geoid estimates have errors due to unresolved, spatially
localized perturbations such as sea mounts or trenches. Such errors can manifest
themselves as outliers in the data, or more precisely in the residuals (data minus
estimates); the availability of error statistics permits the identification of statistically
significant outliers and the estimation of localized geoid corrections implied by these
residuals.

Finally an important characteristic of many remote sensing problems, including
the one examined here, is that the phenomenon under study exhibits behavior across
a broad range of scales. For example, global ocean models predict behavior at (and
interactions among) a vast range of spatial scales. Indeed, models for ocean height
spectra[33] are typically described in terms of inverse power-law relationships. Such
a spectral description corresponds directly to a scaling relationship between the ex-
pected amplitude and spatial scale of ocean features - i.e., it corresponds to a fractal
model. Statistical modeling of the ocean surface and the processing of ocean height
idatai rnrlst account for this multiscale structure.

A number of smoothing and data assimilation algorithms (e.g., objective

analysis[20], kriging[91]) have been developed, each of which has emphasized varying
degrees of statlstlcal structure or computatronal efﬁ01ency The combmat]on of the

issues we have mentloned problem 31ze nonstatronanty, statlstlcal characterization

70




5.2. MULTISCALE MODEL SELECTION

T et

of errors, and accounting for correlation structures over a range of scales — has gener-
ally required that compromises be made in the statistical consistency and optimality
of the results. The multiscale method to be illustrated in this chapter avoids the need
to make such compromises.

The multiscale algorithm has a total computational complexity per grid point inde-
pendent of the size of the grid, can accommodate nonstationarities in the model of the
phenomenon or the data, and allows the complete characterization of error statistics;
the results presented in Section 3.3 will highlight these capabilities. Our approach also
produces estimates at a hierarchy of scales, facilitating resolution/accuracy tradeoffs
and the direct extraction of estimates of coarser scale features. Finally, all of our
satellite data is taken at the same level of resolution, however in principle we could
incorporate data of differing resolution and coverage with no change in algorithmic

structure.

3.2 Multiscale Model Selection

The experimental results of this chapter are based upon data taken over a single
TOPEX/POSEIDON repeat cycle (about 10 days)[52]. The altimetric measurements
of h are processed by subtracting the geoidal reference field[87, 88]; furthermore the
usual corrections are applied to the data: ionospheric[75], tidal[90], orbital[78], and
atmospheric pressure loading.

Recall the multiscale dynamic equations (2.26),(2.28) discussed in Section 2.2. The
first tasks in determining a specific multiscale model are the selection of the multiscale
tree structure, the nature of the model (in particular, the dimension of z(s)) and the
specific model parameters (e.g., the A(s), B(s), C(s) values of (2.26),(2.28)). Since
the finest scale of a quad-tree (e.g., as in Figure 3-3) is a 2-D process, we are motivated
to select such a quad-tree as the basis for our multiscale model. We let z(s) be a scalar
representing the ocean height at the particular scale and position corresponding to
node s. The determination of the scalars A(s), B(s) is then made by choosing these

parameters to match certain characteristics of the TOPEX/POSEIDON data.
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Figure 3-3: The multiscale tree structure to be used for the ocean elevation estimation
problem.
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Figure 3-4: A rough characterization of the global power spectral density (from [33]);
the characterization is 1/ f-like, which motivates the selection of a 1/ f-like multiscale
model.
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Figure 3-5: Top: Empirical power spectral density based on TOPEX/POSEIDON
data.
Bottom: Power spectral density from multiscale model simulations.
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CHAPTER 3. OCEAN SURFACE ESTIMATION

Figure 3-4[33] shows a rough characterization of the global power spectrum of
the ocean surface elevation ( from the oceanographic literature. The spectrum is
characterized as piecewise straight in the log-log domain of the figure, motivating
the selection of a 1/f-like multiscale model to represent the ocean surface elevation.
Rather than relying upon such a global spectrum, we can determine the empirical
power spectrum for the ocean surface within our region of interest directly from
TOPEX/POSEIDON data: the top spectrum of Figure 3-5 shows such a periodogram.
As in Figure 3-4, the spectrum falls as a relatively straight line in the log-log domain.
From the discussion in Section 2.5.3, we know that the following model possesses 1/ f#

characteristics:
A(s) =1 B(s) = B,2t=wm(e)/2 (3.1)

It is a simple matter to choose B,, it such that the power spectrum associated with
the sample paths of the multiscale model (3.1) is similar to the empirical spectrum at
the top of Figure 3-5. Specifically, the choice B, = 35cm, y = 2 leads to the following

multiscale model (where z(s) is measured in c¢m):
z(s) = z(s7) + 35 - 27 2q(s) (3.2)

That is, the aggregate surface height of the ocean at some position and scale equals
the aggregate height of its parent node, i.e., at the same spatial position but at a
coarser scale, plus a perturbation offset whose variance decreases geometrically with
scale. The model (3.2) corresponds to the power spectrum shown in the bottom half

of Figure 3-5, which is very similar to the original empirical spectrum at the top of

.- - the figure.- There is a second manner in: which' to determine the multiscale model

parameters using multiscale likelihood techniques. This approach will be discussed in
Chapter 4. We will continue to use (3.2) as the multiscale model for the computations
" described in the next section.

. Next, the prior variance P; of z(s) at each node of the tree can be determined
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Figure 3-6: RMS statistics of altimetric offsets at orbit crossover points (i.e., at those
points in physical space where two satellite orbital paths intersect) as a function of
the time difference between the two paths. The figure supports the assumption that
the ocean surface is relatively constant over periods of time up to ten days.

from a recursion obtainable directly from (2.26):
P, = E [x(s)a" (s)] = A(s) Py A7 (s) + B(s)B"(s) (3.3)

The recursion is initialized with the prior variance P, of z(0) at the root node of
the tree. Roughly speaking, P, can be thought of as specifying the prior level of
uncertainly in the aggregate mean height of the ocean. Here, in order to avoid biasing
our estimate of overall ocean height, we have set P, to be very large (~ 10°).

The measurement model is straightforward, since our observations are direct mea-
surements of the {z(s)} on the finest scale of the tree, i.e., C is a selection matrix.

Every node s on the finest scale obeys m(s) = M — 1, thus

Cls) = { 0 m(s) < M —1 or z(s) does not correspond to an observation. (3.4)

1 m(s) =M —1 and z(s) corresponds to an observation point.

The final parameter that needs to be specified is the measurement noise variance R(s).
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CHAPTER 3. OCEAN SURFACE ESTIMATION

In particular, in this study we will consider three sources of error in the measurement

data:

1. The error in estimating the distance from the satellite to the ocean surface; this

error is assumed to be 5cm white Gaussian noise[32].

2. The error in assuming that the ocean is a static surface. Specifically, the surface
model (3.2) is static and does not account for any time evolution of the surface,

even though the measurements {y(s)} are taken over time.

3. The error in the geoid model, which manifests itself as an error in the geoid-

corrected TOPEX/POSEIDON data.

Item (2.) in the above list may be addressed by an examination of the satellite
crossover statistics; a crossover is a point of intersection of two satellite orbits. Let

the set of crossover points be given by

{(yai, ydi, tai, tdi, pi) } (3.5)

where ya;, yd; represent the measured ocean elevations at the same physical point p; in
space, but on ascending and descending satellite orbits, at times ta;, td; respectively.
The difference ya; — yd; is independent of any error in the geoid which is a function of
space only; the difference is primarily due to the ocean elevation change ((p;, ta;) —
¢(pi, td;) over the time interval At; = ta; —td;. Figure 3-6 plots the empirical variance
of ya — yd as a function of the time difference | A¢ |. Increases in this variance with
| At | quantify the degree to which the ocean measurements do not correspond to a
static surface. From Figure 3-6 the variances are seen to be relatively independent of
‘| At |;-that is; the.-assumption-that the-ocean surface is static over periods up to ten
days appears to be well justified for our region of interest in the north Pacific.

Item (3.) in the above list concerns errors in the geoid estimates. The highest
quahty géoid models currenﬂy éJ\}ailable[79, 87] are quite effective at capturing large ‘
scale and moderate scale geoid fluctuations, but are less accurate in regions of sharp

local changes. Such a result is not surprising: the OSU91A geoid model which we

76



T PRI R Qo et R R R TR R T

3.2. MULTISCALE MODEL SELECTION

use is constructed as a spherical harmonic expansion (truncated to order and de-
gree 360); the truncated expansion can exhibit Gibbs-like phenomena near abrupt
changes. Furthermore, navigation errors in the satellite lead to errors in registering
satellite measurements with points on the earth, and thus in areas of steep geoid
gradient, such registration errors lead to greater uncertainty in the geoid reference
field than in other regions in which the geoid is slowly varying. As a result, altimetric
measurements in the vicinity of steep geoid slopes are determined relative to a poor
geoid reference and therefore represent a less accurate assessment of the ocean surface

height. Consequently we have used the following measurement variance model:
R(s) = (5cm)? + ¢(Geoid Slope) (3.6)

where ¢() is an increasing function (detailed in Section 3.4).

Finally, it is important to make a comment about one of the consequences of using
a simple scalar version of our multiscale model. In particular, the spatial position
of the multiscale tree on the ocean is somewhat arbitrary; that is, there is no par-
ticularly natural orientation for the multiscale tree. Consequently we will want to
make sure that the estimates produced by our algorithm are insensitive to the precise
positioning of the tree. However, consider a node s at a relatively coarse scale on
the tree. Since the state at each node is a scalar, the correlation between the four
children of node s, each of which represent the height of the ocean over a large area,
is captured by only one degree of freedom. In particular, the finer scale decompo-
sitions of each of these four descendants proceed completely independently, and as
a consequence artifacts may appear along coarse tree boundaries due to inadequate
correlation. Techniques which attenuate such artifacts will be studied in some detail
in Chapter 6; in this chapter we will use a relatively simple method that is adequate
for our purposes. Specifically, we compute ocean surface estimates for each of ten tree
positions (each shifted with respect to the others) and average the results. It should
be made clear that this is not at all like spatial low-pass filtering or interpolation, as

strong nonstationarities, such as in the quality of the data as measured by R(s), are
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Altimetric Estimates - 5cm Intervals
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Figure 3-7: Estimates of the mean ocean elevation based on a single ten day set of
data.

maintained.

3.3 Estimation Results

Given a collection of observations and the multiscale model as defined in the previous

sectlon the multlscale estlmatlon algorlthm (detalled in Appendlx B) permits rapid

computatmn of multlscale est1mates estlmatlon error variances, ‘and measurement

residuals.
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Figure 3-8: Typical example of objective mapping using standard oceanographic tech-
niques, based on the same data set as in Figure 3-7.

3.3.1 Multiscale Estimates

A sample map of ocean surface estimates, taken from the finest scale of the tree, is
shown in Figure 3-7. This map is based upon a single repeat cycle, or ten days, of
data (about 20,000 data points). The 250,000 estimates and associated estimation
covariance information were computed in less than one minute on a Sun Sparc-10 (the
map is based on ten trees of estimates, each tree requiring 5 seconds of computation
time). Although Figure 3-7 shows estimates on one scale only, the one minute of
computer time produces estimates and error variances on all scales of the tree.

The ocean height variations shown in the figure are consistent with the known
large-scale oceanographic behavior of the region (that is, a predominant gradient in

the north-south direction with surface height offset on the order of one meter[52]).
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Moreover, the estimates such as those shown in the figure offer far higher resolution
than has heretofore been available (e.g., [12]). It is this very leap in resolution that
makes the quantitative assessment of our results difficult - we have come across no
other altimetric maps of sufficient resolution to compare with our plots. For example,
Figure 3-8 [52] shows an ocean altimetric map for the same region of the ocean and
the same period of time as we have considered. The figure, typical of the methods
used by oceanographers, is based upon gridding followed by spatial filtering. Clearly
a thorough validation of the enhanced resolution results provided by our method
will require alternate methods such as integration with global circulation models,
a problem that remains for the future. Nevertheless, the ability to produce such

estimates efficiently is itself of significance.

3.3.2 Multiscale Error Variances

Estimation error variances corresponding to Figure 3-7 are shown in Figure 3-9. These
values are based on the same ten day set of measurements as for the estimates just
discussed; the distribution of measurement dropouts along the satellite tracks in this
data set can be inferred from Figure 3-2. As before, the results are computed as the
average over ten multiscale trees, still within the same one minute of computer time
in which the estimates were computed.

Because of the spatially varying uncertainty in our measurements due to geoid
model error, the occurrence of data dropouts, and the irregular pattern of data col-
lection, we would expect that the uncertainty pattern in the optimal estimate of our
ocean height map would be highly variable and would, to some extent, reflect these
features. In particular, observe that the regions of lowest uncertainty (the lightly
- .shaded . regions.‘in. the figure) correspond«to-the points at- which we have satellite
measurements; a careful inspection of the figure will also reveal occasional darker
breaks along these lines, corresponding to data dropouts. In addition, because of
~ the spatially—varying noise model, the measurements near the Aleutian and Hawai-
ian chains (which induce a significant geoid gradient) are modeled as being noisier,

resulting in elevated covariance values. The large region of uncertainty at the top of
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Figure 3-9: Estimation error variances based on one repeat cycle of data; darker
regions represent greater uncertainty.
the figure is due to the Alaskan land mass.

Specific off-diagonal terms in the error covariance matrix may also be computed
using (2.29) with equal computational ease (as compared to other approaches which
would require the impractical calculation of the full error covariance matrix, contain-
ing &~ 10'° elements). For example, by computing error covariances between a large
ensemble of tree nodes (here 50,000 pairs of nodes, randomly positioned in longi-
tude) one can determine averaged correlation coeflicients of the estimation error as a

function of longitudinal separation, as shown in Figure 3-10.
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Averaged Correlation Coefficients
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Figure 3-10: Off-diagonal elements of the estimation error covariance matrix can be
computed. This figure shows a Monte-Carlo determination of the correlation coefhi-
cient of the estimation error of two points as a function their longitudinal separation.

3.3.3 Oceanographic Anomaly Estimates

The shape of the ocean surface, as was estimated in Figure 3-7, is characterized by a
mean circulation shape upon which seasonal cycles and other variations (e.g., ocean
eddies, which do not appear predictably as a function of season) are superimposed.
Both the mean ocean shape and shorter period variations are of interest to oceanogra-
phers. However the shape of the ocean surface at any given point in time is dominated
by the mean circulation shape; as a result oceanographers compute anomalies, which
_are the differences between the mean ocean surface and surface estimates based upon
a short period of data.

Figure 3-11 shows a set of four such anomalies, computed as the difference between
“the estimated average ocean elevation (estimated using the model (3.2), but with a
full year of satellite data) and ocean elevation estimates based upon relatively short

time intervals. The four anomaly plots of Figure 3-11 are spaced 2.5 days apart in
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Figure 3-11: Collection of four anomaly plots: anomalies are calculated as the differ-
ence between ocean surface estimates based on a short window of data and the mean
ocean surface elevation. Each of the four plots is based on a window of data about
eight days in length; the window is shifted by 2.5 days from one plots to the next.
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Appoximate Extent of Kuroshio Current
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Figure 3-12: Approximate extent of the Kuroshio current off the coast of Japan.

time, each based on about eight days of data. The interpretation of such figures
requires a good deal of knowledge and intuition regarding ocean dynamics. We can
observe the evolution of a variety of features from one frame to the next, however a
physical understanding or justification of these evolutions is well beyond the scope of

this thesis.

3.3.4 Model Heterogeneities

One of the drawbacks with certain accelerated methods, such as those based on FFTs,
is the need for stationarity or uniformity of the phenomenon being modeled. In
contrast, our multiscale framework allows us to incorporate nonstationarities without
’ .sacrlﬁcmg computatlonal efﬁmency o

Consider, for example, the Kuroshlo current in the northwest Pacific oﬁ the coast
of Japan; the approximate extent of the current is illustrated in Figure 3-12. Due to
- the strength of this current, the gradient of the ocean surface in the neighborhood
of the Kuroshio is approximately four times larger[97] than in relatively qulescent

| reglons (the Pacific northeast, for example) To compensate for this eﬂ"ect, one can
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Figure 3-13: Estimates of ocean elevation (in c¢m) in the northwest Pacific using a
nonstationary model which accounts for the increased surface gradients in the vicinity

of the Kuroshio.
modify (3.1) by increasing those process noise values on those multiscale tree nodes
which overlap part of the Kuroshio. Such a process noise is highly nonstationary, and
by (3.3) implies a nonstationary prior covariance model. Since such adjustments to
the process noise remain compatible with the multiscale framework of (2.26), (2.28),
not only does our approach remain efficient in the face of such heterogeneities, but
in fact the increase in computational burden over the homogeneous case is essentially
nil.

Figures 3-13, 3-14 show estimates and error variances respectively for the north-
west region of the Pacific, using a heterogeneous process noise model as detailed
above. The distribution of the error variances shows the combined effects of irregular

spatial sampling by the satellite, loss of satellite measurements over land (Japan),

85



CHAPTER 3. OCEAN SURFACE ESTIMATION

50

45

40

Latitude (North)
W W
o (§)]

N
&)

130 135 140 145 150 155 160 165 170
Longitude (East)

Figure 3-14: Estimation error variances corresponding to the elevation estimates of
Figure 3-13. Darker regions represent greater uncertainty.

increased prior uncertainty over the Kuroshio, and nonstationary geoid-model error.
For purposes of comparison, Figure 3-15 shows the differences in the altimetry esti-

mates produced by multiscale models with and without Kuroshio compensation.

3.4 Calculation of MeaSufement Residuals

The- exaxﬁiha’cionﬁof ‘measurement Tesiduals; the differences between measurements
and the corresponding estimates, serves to test the validity of our multiscale models.
In partlcular by normahzmg these residuals with respect to their expected standard
ﬁdev1at10ns one can isolate statlsmcally 51gn1ﬁcant outliers. Such an approach may be
“used to argue the inclusion of the geoid slope dep,endént term in the measurement error

(3.6). Figure 3-16 shows the distribution of statistically large residuals, calculated
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Figure 3-16: Overlay of geoid gradient map (in (a)) and of ocean bathymetry contours
(in (b)) with the distribution of locations of large residuals; regions of lighter shading
represent steeper geoid gradient. The striking correlation exhibited in these figures

motivates the correction of Figure 3-17.
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Figure 3-15: Differences (in cm) in the estimates produced by a homogeneous multi-
scale model and a model accounting for the presence of the Kuroshio.

using a simple measurement noise model
R(s) = (5cm)? (3.7)

that is, a noise model which does not take any geoid model errors into account.
Figure 3-16 also plots the geoid gradient; the correlation between significant residuals
and steep geoid slope is unambiguous, and argues in favor of a geoid slope-corrected
measurement noise model. As an additional comparison, the same locations of large
residuals are shown superimposed on a plot of ocean bathymetry contours (the shape
of the ocean bottom) in the bottom half of the figure. To the extent that bathymetry
features are responsible for locally steep slopes in the geoid, the residual-bathymetry

correlation does not come as a surprise. Such residual-geoid correlation immediately
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Figure 3-17: This figure shows a sketch of the dependence of root-mean-square value
of measurement residuals as a function of the geoid gradient. This dependence is used
as a basis for taking geoid errors into account.

motivates the development of models to estimate the geoid; the development of such
a model is the subject of Chapter 5.

Figure 3-17 plots root mean square estimation residual magnitudes as a function
of geoid slope. This figure leads to the form, shown in Figure 3-18, for the geoid-slope
dependent term in the measurement noise model (function ¢() of (3.6)) used for the
other results in this section. Such a heterogeneous set of measurement noise variances
may be used with no appreciable increase in computational burden (just as before,

with the heterogeneous process noise model for the Kuroshio).

3.5 Conclusions

This chapter has demonstrated the application of the efficient multiscale estimation
framework to the problem of ocean altimetry estimation based on irregularly sampled
satellite measurements. A number of significant difficulties which have led to signif-

icant suboptimalities and approximations in many other estimation algorithms are

89



CHAPTER 3. OCEAN SURFACE ESTIMATION

50 T T T T T T

45} -

sart( ¢) (cm)

0 200 400 600 800 1000 1200
Geoid Gradient (cm / degree)

Figure 3-18: This figure plots the actual function ¢() (see (3.6)) which was used
throughout this chapter; the form of the function is based on Figure 3-17.

resolved by our approach: our multiscale framework possesses the efficiency to deal
with truly enormous, possibly nonstationary, problems, computing both estimates
and error variances with relative computational ease. Furthermore the concept of
scale is made explicit, permitting the explicit characterization of phenomena possess-
ing interactions across a number of scales.

Although throughout this chapter the ocean altimetry application has been used
as a vehicle for demonstrating the use of the multiscale framework in such a modeling
context, the success of the application motivates many further possible applications
as well as extensions within the current context. With respect to the latter, we can

point to several problems of considerable interest, including the following:

e The precise shape of power spectrum of the ocean remains a matter of current
scientific interest. Multiscale likelihood methods[62] provide an efficient and
statistically rigorous machinery for examining problems of identifying the sta-
tistical structure of random fields. The identification of parameters in 1/ f-like

multiscale models such- as (3:2) will be éxplored in Chapter 4.
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e The distribution of measurement residuals (Figure 3-16) demonstrates clearly
the presence of geoid error as well as suggesting a way in which to correct for it
and thus provide local corrections to our estimate of the geoid. In particular, it is
possible that joint estimation of the geoid and ocean height may simultaneously
improve estimates of both of these quantities. This extension forms the subject

of Chapter 5.

e There are a number of extensions of our multiscale modeling framework in
the development of higher-order methods for estimating both surface height
and surface gradients (a problem of independent interest in surface reconstruc-
tion problems in computer vision); such multiscale models will be developed in

Chapter 7.
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Chapter 4

Multiscale Parameter

Identification

his chapter considers problems of multiscale system identification. Af-

ter the introduction, Section 4.2 demonstrates the application of the

" |multiscale framework to the problem of estimating the fractal dimen-

sion of a random process, and Section 4.3 deals with the development of a bound
on the uncertainty of estimated model parameters for a particular class of 1/ f-like

multiscale models.

4.1 Introduction

There are two basic steps in developing a multiscale model for an unknown random

process:

1. the selection of a parameterized multiscale model (e.g., 1/ f-like models (Sec-

tion 2.5.3), multiscale Gauss-Markov counterparts (Section 2.5.1), etc.),

2. the quantitative determination of the unknown parameters within the selected

model.

The selection of a parameterized multiscale model may be accomplished based on a

physical or intuitive understanding of the random process in question, or it may be
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accomplished using automated model generation techniques[47] if certain covariance
properties of the process are known. In any event, given a parameterized model the
determination of its parameters forms the subject of system identification[60] and will
be explored in this chapter.

Consider a parameterized multiscale model class, e.g.,

z(s) = A(s, H)z(s%) + B(s, H)w(s) w(s) ~ N(0,1) Vs e T,s# s,(4.1)
y(s) = C(s, H)z(s) + v(s) v(s) ~ N(0, R(s, H)) Vse MCT (4.2)

which is similar to the basic multiscale equations (2.26),(2.28), except that (4.1),(4.2)
are parameterized by a vector H , and the noise terms w, v are assumed to be Gaussian
(to allow likelihood statistics to be calculated). In principle, given a set of observations

{y(s), s € M}, an estimator for the vector H may be written abstractly as
H = arg,; max L A(S,H),B(S,H),C(s,H),R(S,H),y(s)] (4.3)

The remainder of this chapter will explore the application of the abstract param-

eter identification scheme of (4.3) in two contexts:

1. In Section 4.2 we will demonstrate the estimation of the fractal dimension of
fractional Brownian motion[69] processes. We will present the development of
a new 1/f-like multiscale model which gives unbiased estimates of the fractal

dimension, and will compare its performance with other proposed estimators[49,

114].

2. In Section 4.3 we will postulate a class of 1/ f-like multiscale models having two
free parameters. This model class is of significant interest, since it is used in the
remote sensing applications of Chapters 3 and 5. We will derive a Cramer-Rao
bound for the maximum-likelihood estimation of the parawmeters for this class of
multiscale models, and compare the bound with Monte-Carlo simulations and

with tests on remote-sensing data:
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4.2 Fractal Dimension Identification

Fractional Brownian motion (fBm) processes[69] were introduced briefly in Sec-

tion 2.5.3. The second order (nonstationary) statistics of such processes are given
by

BF(E], Fiml] = (A0 (kPH + mf — [k - m) (4.4)

where ¢ and H are scalar parameters which completely characterize the process. The
quantity H, which we wish to estimate, determines the fractal dimension (2 — H) of
the process; the power ¢ is assumed to be known.

The exact maximum likelihood (ML) calculation for the fractal dimension of fBm
is computationally difficult (see [105]); fractal estimators have been developed based
on optimal algorithms applied to {Bm-like 1/f models[114], and based on approximate
or suboptimal algorithms developed directly from the fBm model[49, 105, 29]. Our
philosophy in multiscale statistical modeling falls into the former class: the statistical
self-similarity of fBm processes motivates us to develop a multiscale fBm counterpart,
parameterized by H which will allow us to use our statistically-optimal multiscale
likelihood calculation algorithm to estimate H in a manner similar to (4.3).

The approach in [114] is based on a 1/ f process constructed using a wavelet basis in
which the wavelet coefficients are independent, with variances that vary geometrically
with scale with an exponent equal to H. Geometrically varying variances are a poor
approximation to the fBm statistics for low H and lead to a biased estimator. The
method in [49] determines the exact statistics of the Haar wavelet coefficients of the
discrete fractional Gaussian noise (DFGN) process D([k] = Fk + 1] — F[k] and then
develops an estimator by assuming, with some approximation, that the coefficients
are uncorrelated; the use of the DFGN process D limits the estimator to those cases
in which the fBm process is densely and uniformly sampled.

The goal of the research of this section, on the other hand, is the -development
of a fast estimator for H that functions under a broader variety of measurement

circumstances, for example in the presence of gaps in the measured sequence, mea-
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Figure 4-1: Dyadic tree structure used for the fractal Brownian motion estimator.

surement noise having a time-varying variance and higher dimensional processes (e.g.,
2-D random fields). The basis for accomplishing this is the utilization of our multi-
scale framework, in particular the multiscale likelihood calculation algorithm[65]. The
next section develops the multiscale estimator, followed by a description of estimation

results.

4.2.1 Fractal Model Development

The statistical self-similarity of fBm makes the application of wavelets to the fBm
process a logical choice. Kaplan and Kuo[49] apply the Haar wavelet to the incremen-
tal process D[k], and Wornell and Oppenheim[114] apply higher order Daubechies
wavelets to F[k]. We propose to use the multiscale framework to develop a Haar
wavelet multiscale stochastic model which applies directly to F[k]. This choice of
wavelet is motivated by the particularly simple realization of the Haar wavelet within

our framework by using a dyadic tree structure (see Figure 4-1):

o= {5 5 e+ |V B i) 5= s
Coarse Scales : . [g 01}56 { } B Hele) 5= s (4.5)
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1 +1|z(s9)+0-w(s) s=sya
1 =1 x(sy)+0-w(s) s=syas (4.6)
y(s) = o(s) +0(s)

Finest Scale : z(s) =

where s = sya; implies that s is the left descendant of its parent, similarly s = sya;
the right. At coarse scales z(s) consists of two scalars: a coarse approximation to
the 1/f process, and a detail coefficient. The detail coefficient equals the difference
in the coarse 1/f-like representation between node s and its two children, where the
sign of this difference depends on the parity of the child (i.e., left vs. right). At the
finest scale z(s) is a single scalar, representing a sample of a 1/f-like process, and
measurements of the actual fBm sequence appear as observations y(s) at the finest
scale. Note that the 1/f process described by (4.5),(4.6) does not yield a finest scale
process that is exactly an fBm process (and thus, as with the technique in [114], our
model does not exactly match the statistics of the process to be estimated). However
by an appropriate choice of the remaining model parameters we can produce a process
with a similar type of 1/f behavior.

The elements which remain to be determined in the above multiscale model are
the B(s, H): the standard deviation of the detail wavelet coefficients between node s
and its children. Expressions for the statistics of the wavelet decomposition of fBm
have been determined by others [29, 104], however the self-statistics for the special

case of the Haar wavelet are easily computed as follows:
o Let Fj_1[k] = F[k] which is the fBm process of interest.

o Define Fj_i_n|k] as the process obtained by coarsening F[k] m times, such

that

Fm[k] = (Fm+1[2k] + Fm+1[2k + 1]) /2 (4-7)

a rclation which follows from the multiscale model of (4.5).
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e From (4.7) it follows that

T L F 2+ )

Fyomlk] = > BT — ' (4.8)
1=0
2(2m~1-1) om—1 _ |gm—1 _, _1
Fyemlb+1] = Fy_mlkl = Y. D [2’"”116 + z'] IZm__l i1 (4.9)
=0
2(2m—1-1)
= D[2" k +1i] (4.10)
=0

¢ From the stationarity of the increments process D[k], and from the symmetry

Folk] — Fra1[2k] = — {Fnlk] — Frnp1[2k + 1]} (4.11)
(4.10) reduces to the desired variance expression

E [(Fu—mo1[k] = Far—m[2K])] =

1 2(2m~1-1) 2(2™~! —1)+min(0,—1)
12 ol > ciciys = B*(s, H)  (4.12)
i==2(2m~1-1) j=—min(0,%)

where s is any node on scale (M — m — 1) of the tree, and where A, is the

covariance function of D[k]:
. 0'2 . 2H . 2H 1 2H
Aolil = 5 [li+ 127+ [i = 127 = 2Ji]] (4.13)

By way of comparison, it has been shown[114] that 1/f processes, of which fBm is
a subset, may be approximated by wavelet synthesis in which the wavelet coefficient
variances are an exponential function of scale:

B(sy,H)

BZ(S, H) = [32—2Hm(s) i.e., lOgZ —m— =H (414)

Table 4.1 shows the scale to scale variance ratios as predicted by (4.12). The deviation

from the approximate scaling law of (4.14) is mo