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Abstract

A recently developed multiresolution estimation framework offers the possibility of
highly efficient statistical analysis, interpolation, and smoothing of extremely large
data sets in a multiscale fashion. This framework enjoys a number of advantages not
shared by other statistically-based methods, particularly in terms of the ability to
evaluate estimates and error variances in a computationally efficient manner, however
there remain several barriers which constrain the widespread use of this framework:

• The multiscale framework has been characterized as well-suited for large-scale
estimation problems such as in remote sensing, however no such scientific en-
deavors have been undertaken which might motivate the use of the framework
among scientists.

• Past research efforts have developed a rich class of multiscale models; how-
ever given the selection of a particular multiscale model structure or class, the
identification of unknown parameters within the model remains unclear.

• The estimates produced by the estimator typically possess artifacts introduced
by the multiscale structure; these artifacts are distracting to the human eye,
limiting the use of the framework in certain image processing applications.

This thesis directly addresses each of the above limitations:

• Two problems of current scientific interest are addressed: the estimation of
the ocean surface height from satellite data, and the estimation of the earth's
gravitational equipotential. Both lines of research produce results of potential
interest to the scientific community.

• We demonstrate a technique for estimating multiscale parameters in simple
models by developing an estimator for the fractal dimension of fractional Brow-
nian motion processes. Furthermore, for a 1/f-like class of multiscale models a
Cramer-Rao bound can be determined for the maximum-likelihood estimation
of model parameters.



Significant improvements in estimate smoothness are achieved using a novel
overlapping multiscale framework capable of reducing artifacts below the level
of delectability with a modest computational burden. The performance of the
overlapping framework is demonstrated in the context of the surface reconstruc-
tion problem of computer vision.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

roadly speaking, this thesis addresses the development of computationally

efficient algorithms for solving statistical estimation problems; that is,

estimation problems characterized by an explicit statistical prior model

and by an explicit statistical measurement model. A wide variety of algorithms have

been developed addressing such estimation problems, emphasizing varying degrees of

statistical structure or computational efficiency. The classical tool to apply in such

problems is the Kalman filter[4]; other examples (from the remote sensing community)

include objective analysis[20] and kriging[91].

For the estimation problems of interest in this thesis, specifically large estimation

problems in which estimation error statistics are required, the straightforward appli-

cation of any of the above estimation methods fails to be practical for computational

reasons. Indeed, the straightforward estimation approach implied by any of these

methods, applied to a random field representing a square image, N pixels on a side,

involves the inversion of a matrix having N 4 elements, requiring O(N') computa-

tions! Clearly if the estimation of images having N > 256 is to be commonplace a

new approach is required.

The key to the approach to be used in this thesis is that we begin by focusing

explicitly on scale. In particular, rather than starting with the statistical description

of the phenomenon to be estimated at a single, fine scale of resolution - the typical

Kalman filter implementation - we describe its statistical structure at a hierarchy
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of scales. Such a multiscale approach is not new; signal processing has seen intense

interest in multiscale / multiresolution methods, applied to a broad range of signal

analysis, compression, and estimation problems. Much of this interest has been fueled

by the following three motivations:

• Many natural and human systems exhibit features or behavior across a broad

range of space or time scales (for example, the earth's oceans[271, critical phe-

nomena in physics[112], or the distribution of galaxies in the universe).

• Many surface-reconstruction[441 and Markov random field problems[34, 35] use

local models to characterize systems which possess long-range correlations. It-

erative approaches to solving such problems on a single fine scale invariably lead

to a kind of critical slowing down: the computational effort per pixel growsi with

the size N of the random field. Multiresolution approaches[102], still using lo-

cal models but now on a pyramidal hierarchy of scales, have been conspicuously

effective in providing efficient solutions.

• The development of wavelet theory[681 has provided a powerful new rigorous

framework for multiscale analysis.

Motivated by one or more of the above aspects, quite a variety of multiscale ap-

proaches have been developed. Among these multiscale approaches are methods such

as multigrid[39, 74, 1021 and hierarchical basis functions[100]. While such approaches

have proven well-suited and computationally efficient for solving certain relaxation

problems (in particular, elliptic PDE problems) these approaches have not, however,

been particularly successful in attacking statistical estimation problems. Broadly

speaking, there are two aspects of statistical estimation problems which are not ade-

quately dealt with by most multiscale algorithms:

1. Most statistical estimation problems are characterized by an- explicit prior sta-

tistical. model, parameterized in terms of a number of random variables with

'The computational effort per pixel for solving Laplace's equation using Gauss-Jacobi/Seidel
iterations grows as Ndfor a field in d dimensions having N pixels on a side(38].
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Figure 1-1: An example multiscale tree. The coarsest scale is shown at the top of the
figure, with finer scales below. An explicit statistical relationship is specified between
those tree nodes connected by thin lines. This figure shows only a relatively simple
example; any tree (i.e., any acyclic graph) may actually be used.

specified probability distributions. The behavior of most multiscale algorithms,

on the other hand, is parameterized by a set of variables which implicitly specify

a prior model, but where the relation between these variables and the associated

prior model is unclear and difficult to discern.

2. We are interested in those problems where estimation error statistics are re-

quired (e.g., in oceanographic remote sensing). The computation of these statis-

tics for large problems is notoriously difficult.

FFT methods are available which can accelerate such computations, but only

under relatively strict conditions: the random process resides on a rectangular

grid, is stationary, and is densely sampled with a stationary measurement noise

covariance. The problems investigated in this thesis will not satisfy all of these

conditions.
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A recently-introduced class of multiscale stochastic models[14, 62] has begun to

address both of the above two problems by developing a framework in which the

models possess explicit statistical priors, and for which error statistics are not only

computable, but indeed efficiently computable even for very large estimation prob-

lems. These multiscale stochastic models live on trees, such as the one shown in

Figure 1-1. It should be emphasized that a great variety of tree structures are possi-

ble; the structure shown in the figure is just one possibility, although a rather common

and convenient one for representing two-dimensional processes. This framework pos-

sesses further advantages: the production of estimates and estimation error variances

on a hierarchy of scales (e.g., on each scale of the multiscale tree) facilitating resolu-

tion/accuracy tradeoffs leading to the direct extraction of estimates of coarser scale

features, and the fusion of data of differing resolution with no change in algorithmic

structure. It is this multiscale framework which forms the basis for this thesis.

This introduction should serve only to introduce the notion of multiscale estima-

tion; a more thorough description of the motivation for multiscale approaches and a

greater explanation of the multiscale estimation procedure may be found in Chap-

ter 2. The next section will outline the contributions of this thesis, followed by a

description of the thesis organization.

1.1 Thesis Contributions

This thesis continues the earlier research efforts of Chou[14] and Luettgen[62]. Specif-

ically, to put the work of this thesis into context, at the point in time when this thesis

research was begun the following research goals had been accomplished:

9 The establishment and definition of the multiscale estimation framework.

* The development of the multiscale estimation algorithm and the multiscale

likelihood calculation algorithm.

* The development of two classes of multiscale prior models: 11f priors and

Markov random field priors.
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o The application of the multiscale framework to problems such as optical-flow

estimation, texture synthesis, and texture discrimination.

The further contributions of this thesis, listed below, build upon these accomplish-

ments.

1.1.1 Multiscale Model Identification

Given some random process with unknown or very complicated statistics, there are

two basic steps in developing a model for the process:

1. the selection of the parameterized model (e.g., first-order Gauss-Markov,

second-order Gauss-Markov, 11f etc.),

2. the quantitative determination of the unknown parameters within the selected

model.

The selection of a parameterized model is usually accomplished based on a physical

or intuitive understanding of the random process in question; the determination of

parameters forms the subject of system identification. Although these steps are still in

their relative infancy with respect to multiscale models, we can report some progress.

Certain previous multiscale applications[63] determined multiscale model param-

eters by trial and error; with the development of the multiscale likelihood calculation

algorithm[65] the maximum-likelihood estimation of such parameters is possible, at

least in principle. A contribution of this thesis is the derivation of a Cramer-Rao

bound for the maximum-likelihood estimation of the parameters for a particular class

of multiscale models with 1/f-like properties. The bound is compared with Monte-

Carlo simulations and with tests on real remote-sensing data.

A further contribution is made in the estimation of the fractal dimension of frac-

tional Brownian motion[69] processes. We present the development of a new 11f -like

multiscale model which gives unbiased estimates of the fractal dimension, and com-

pare its performance with other proposed estimators[49, 114].
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1.1.2 Remote Sensing Applications

There are several aspects to estimation problems in remote sensing which make them

well-suited to multiresolution methods:

1. The problems are typically very large and multidimensional, requiring the esti-

mation of millions (or more) of random variables.

2. Since remote sensing measurements are typically made by satellite or by ship,

the measurements are spatially irregularly sampled, precluding the use of FFT

methods.

3. Many natural systems, the object of study in remote sensing, are characterized

by 1/f-like behavior, which is readily modeled using multiscale techniques.

4. Estimation error statistics are required in many applications to make proper

use of the computed estimates; such error statistics are frequently very difficult

or impossible to compute.

This thesis makes contributions to two remote sensing problems, oceanography and

geodesy;2 both of these problems are subject to the four characteristics just listed.

The oceanographic remote sensing problem involves the estimation of the height

of the ocean surface, given measurements taken from a satellite in orbit. Empirical

studies of the satellite data show the ocean surface to possess a 11f like behavior,

from which an appropriate multiscale model is developed. The contribution of this

thesis to this oceanographic remote sensing problem is a demonstration to the remote

sensing community of the applicability and efficiency of novel multiscale estimation

techniques.

The geodetic remote sensing problem� involves the estimation of the height of the

geoid,' again using satellite data. A Joint model, simultaneously estimating the ocean

height and the geoid, is developed The contribution of this thesis to geodesy is more

2The study and determination of planetary gravitational fields.
'The geoid represents a surface of constant gravitational equipotential on the earth. In the

absence of ocean currents and winds, the surface of the ocean would conform to the shape of the
geoid.
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scientific in nature: the models which we develop are strongly motivated by existing

models in the geodetic literature. and the goal of the chapter is an improved set of

geoid estimates - estimates of immediate use to researchers studying ocean altimetric

data.

1.1.3 Multiscale Estimation and Smoothness

In the opinion of the author, one of the most significant stumbling blocks in the

application of the multiresolution framework has been the presence of blocky artifacts

in the resulting estimates. In many cases the quality or quantity of the measurements

may not justify the production of smoother estimates[63], however there are at least

two cases in which the production of smoother estimates may be required:

1. In certain applications (e.g., computer vision) the resulting estimates will be

displayed and require smoothness for aesthetic reasons.

2. In other cases (e.g., oceanographic remote sensing) one may wish to compute

gradients of the estimated field, in which case blocky discontinuities are unac-

ceptable.

A significant contribution of this thesis is the development of a novel multiscale struc-

ture known as an overlapping tree, which is able produce smooth estimates, even with

sparse measurements. This approach is not a specific multiscale model, rather it is a

general technique which may be applied to a broad variety of multiscale models. We

derive theoretical conditions for the applicability of the overlapping tree technique,

and demonstrate its use in texture estimation.

1.1.4 Multiscale Implementation of Variational Priors

The final contribution of this thesis is to the problem of surface reconstruction in

computer vision. Typically, surface reconstruction problems are formulated in terms

of a variational cost function; the desired surface is the one which minimizes the cost

function. The most common solution to this problem involves discretizing the partial
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differential equation (PDE) resulting from the variational formulation, and solving

the PDE by relaxation methods.

In this thesis we propose a novel alternative: rather than solving the variational

equation directly we determine a multiscale model which has a similar behavior.

Coupling this multiscale model with the overlapping technique just described results

in an estimated surface which is computed quickly, for which estimation error statistics

are available, and which is aesthetically pleasing.

1.2 Thesis Organization

Chapter 2 presents background material relevant to multiscale estimation. The

chapter begins by presenting a broad overview of statistical modeling and optimal

estimation, highlighting the computational difficulties that may be encountered in

a straightforward implementation of optimal estimation techniques, and motivating

alternative implementations such as the multiscale approach of this thesis. The dis-

cussion assumes relatively little in terms of a statistical background and was written

to familiarize members of the remote sensing community with matters of optimal

estimation. A second section parallels the development of the first, but explores an

alternative manner of posing estimation problems using variational methods.

The next two sections discuss our multiscale estimation framework more specif-

ically. We first introduce the multiscale tree and the basic nomenclature needed to

talk about stochastic processes on such a tree. Next, we define the basic multiscale

dynamic and measurement equations which characterize the class of multiscale mod-

els in our framework. Two subsections follow, containing high-level descriptions of

the two most significant multiscale algorithms to be used in this thesis: the multiscale

estimation algorithm and the multiscale likelihood calculation algorithm.

Next we present an overview of multiscale model development. This development

falls into two broad classes: (i) relatively high order modeis motivated by Markov

random field processes, and (ii) relatively low order models motivated by 11f and

simple variational prior models.
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Finally we overview the specific computational implementation of the multiscale

framework that was used for all of the examples in this thesis. Although such soft-

ware considerations are not among the research subjects of this thesis, this particular

implementation has been found to be conspicuously versatile and efficient.

Chapter 3 presents the first of the two remote sensing applications considered in

this thesis: oceanography. We begin with a brief definition of terms and a discussion of

the ocean elevation estimation problem and the reasons why this problem is of interest,

both to researchers in signal processing and in remote sensing. We develop a 11f -like

model for the ocean and show the results of applying this model to remote sensing

measurements. Finally we demonstrate the versatility of our multiscale approach

by developing a heterogeneous multiscale model to account for the effect of ocean

currents or for the effect of space-varying geoid-errors.

Chapter 4 begins by presenting the problem of estimating the fractal dimension of

a fractal Brownian motion process, beginning with the development of an appropriate

model, followed by a demonstration of estimation results based on synthesized data

sets. The second half of the chapter discusses the problem of system identification

for multiscale models. We specify the 1/f-like multiscale model class of interest

possessing two free parameters, and determine a Cramer-Rao bound for the maximum

likelihood estimation of these parameters. We present two examples comparing the

Cramer-Rao bound to the actual performance of the estimator:

(i) based on synthesized measurements, and

(ii) based on the oceanographic measurements used in Chapter 3.

Chapter 5 presents the second remote sensing application: in this chapter we

explore the joint estimation of the geoid and the ocean surface. The chapter begins by

reviewing the various methods and measurements which have been used in the past for

estimating the geoid. The next two sections seek to characterize the spatial variation

of the geoid error by estimating high frequency terms of the geoid from topographical

data, and by computing the distribution of statistically significant oceanographic

residuals. Finally a joint model is posited and the estimated geoid is presented.
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Chapter 6 presents the novel overlapping-tree technique. Although the

overlapping-tree concept is not intrinsically complicated, a rigorous explanation of

the concept is relatively difficult, and the reader is advised to read carefully and to

study the (superficially simple) examples in some detail. The chapter begins with a

discussion of smoothness, and presents several interpretations as to why the multiscale

estimation approach may lead to blocky artifacts.

After some preliminaries, the discussion of the overlapping-tree technique begins

with a simple example, which is meant to make some of the abstract overlapping-tree

notions more concrete; the example is broken into two parts: multiscale modeling

and multiscale estimation. Next we present a rigorous derivation of the conditions

placed on the overlapping tree such that the resulting estimates equal the optimal

least-squares estimates of interest. Next we discuss the manner in which a particular

overlapping tree structure may be selected to be consistent with the conditions just

derived. The chapter ends with three applications of the overlapping-tree technique

to the estimation of a texture characterized by a Markov random field model.

Chapter 7 presents the work on multiscale approaches to surface reconstruc-

tion. The chapter begins by deriving the most common variational costs used for

surface reconstruction based on the "membrane" and "thin-plate" models of classical

physics[18]. The gradient integrability problem[31, 43] is discussed, and a variational

equation which requires the simultaneous estimation of a surface and its gradients is

presented. The next section of the chapter discusses the multiscale analog to each

of the various components of the variational equation, which ultimately leads to a

complete multiscale model appropriate for surface reconstruction. A wide variety of

experimental results are shown based on problems with sparse or dense measurements

and discontinuous surfaces; the results are compared with other relaxation methods

(Gauss-Seidel, conjugate-gradient, and multigrid).

Chapter 8 summarizes th- results of this thesis, presents the major contributions,

and details a number of avenues for further research.
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Chapter 2

Background

he purpose of this chapter is to introduce and to motivate the multiscale

framework which is used throughout this thesis. Sections 2.1 and 2.2

discuss two alternative methods of formulating estimation problems,

and discuss the computational difficulties which motivate an exploration of alter-

native approaches, such as our multiscale one. Section 2.3 presents the multiscale

framework which we will use throughout this thesis. A subsection is dedicated to

each of the two principle algorithms which have been developed for this framework:

a multiscale estimation algorithm, and a multiscale whitening / likelihood calcula-

tion algorithm. Section 2.4 discusses the basic philosophy behind the development of

multiscale models to solve estimation problems, and then presents simple multiscale

analogs to three statistical prior models: Markov random field priors, 1/f-like priors,

and quadratic variational priors. Finally Section 2.5 outlines the manner in which

the multiscale algorithms were implemented on a computer.

2.1 Statistical Models and Optimal Estimation

Consider the basic problem of estimating a collection of random variables, repre-

sented abstractly by the vector x, based on a set of noise-corrupted measurements,

39



CHAPTER 2. BACKGROUND

represented by y:

Y = CX + V E [v] = 0 E IVX T] = 0 E [VVTI = R (2.1)

where v represents the measurement noise or error. In general, for the problems to

be considered in this thesis the components of v are assumed to be uncorrelated but

possibly with non-constant variances - i.e., R is diagonal but not a multiple of the

identity. The matrix C describes the nature of the measurement process. Frequently

the components of x represent a dense grid of unknowns, and C is a "selection matrix"

indicating which of the components of x are measured and which xi corresponds to

each yj. This is a convenient, but not necessary, arrangement; more general definitions

of x and C are possible.

We can view our estimation problem as estimating the deviations of x from its

mean, thus for simplicity, we assume that x is zero-mean and has prior covariance

E 1XX T] = PX (2.2)

For problems of substantial size, the explicit specification of the correlation structure

of x through the full covariance matrix Px is neither feasible nor useful unless Px is

extremely sparse with known structure - e.g., if Px is banded, implying only local

correlation among the components of x. However, such sparse or banded structures

are not particularly appropriate or useful for problems of interest here, as we are

interested in representing phenomena possessing correlations at many (and not just

local) scales. Furthermore, as we will see, banded or sparse covariance structures do

not necessarily lead to simple algorithms for statistical data analysis.

Consequently we are led instead to construct an implicit model of the statistical

structure of x of the form

MX=W (2.3)

P-1 = M TP;1m (2.4)
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where P,, is the covariance of w. There are several reasons why representations

as in (2.3),(2.4) can be attractive. One is that processes with complex correlation

structures can be represented in a very compact manner. For example consider the

linear state space model

x(t + 1) = Ax(t) + w(t) E [X(O)WT(t)] = 0 (2.5)

If we construct the vectors

XT = [XT(0) x'(1) x'(2) ... W T - [XT(0) WT(0) WT(j) ... (2.6)

then we obtain a representation as in (2.3) with P,, block diagonal and M lower

bidiagonal:

I 0 0 0

M -A I 0 0 ... (2.7)
o -A I o ...

L

As we now show, it is the inverse of Px, which according to (2.4) involves only M

and P,,,, that is critical in constructing solutions to optimal estimation problems.

Specifically, the problem of interest here is the computation of the minimum vari-

ance linear estimate of x based on y, as well as a statistical characterization of the

error ;i = x - -b. There are numerous ways in which to represent the solution to

this problem, but the one that is most convenient for our discussion is that given by

the normal equations for this least squares problem:

(p-1 + CT -'C)�i = CT -'y (2.8)

This problem formulation and the normal equation solution are well known in

many disciplines, however approximations or suboptimal solutions have generally been

required in order to use (2.8) to estimate x. Consider the formal explicit solution,
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to (2.8) and the resulting error covariance

p;i = Ly - XCTR-1Y (2.9)
-I - P-1 + CT -IC

PX X R (2.10)

Note that if Px has a sparse or banded structure, indicative of local correlations, this

structure is not generally preserved either in the estimation gain matrix L (2.9) or

in the estimator error covariance Px. Thus simple, local, smoothing algorithms (e.g.,

local least squares, local interpolation) while efficient computationally, generally rep-

resent a suboptimal approximation to (2.9) even in situations in which they appear

to be best matched, i.e., when the field to be interpolated has local correlations.

Moreover, a very important point is that the statistical structure of the resulting esti-

mation error field, 15, is not local, despite locality in Px. Furthermore the calculation

of Px is- generally prohibitively complex (since, in particular, the inversion of the

prior covariance Px is extremely demanding). Thus the use of simple local algorithms

generally involves a compromise in statistical consistency, in the explicit and faithful

use of prior statistical models and information, in the calculation of accurate error

statistics, and in the ability to account for correlations at many scales.

The situation looks much different, however, if we examine the normal equations

(2.8) directly. If we begin with an implicit model for x as in (2.3) - or equivalently

with a decomposition of Px-' as in (2.4) with M and P;1 having sparse or local

structure - then from (2.10) we see that this structure is maintained in PX_ 1 and in

the normal equations. In particular, when the measurements are point measurements

of components of x with uncorrelated errors - so that C is a selection matrix and R

CT 1 = p-1 + CT -IC maintainsdiagonal - then R-'C is also diagonal, so that 16; X R

the same structure as Px-1.

The significance of these observations is considerable. For example, for the time-

recu.csive state space model (2.5) with local nieasurenidnts, i.e.,

Y(t) = Ctx(t) + V(t)
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we have from (2-4) and (2.7) that P-1 is block tridiagonal, a structure that is shared

by As a consequence, the normal equations can be solved in an extremely

efficient fashion, namely Gaussian elimination - also known as the Kalman filter[41 -

followed by back-substitution - known as the Rauch-Tung-Striebel (RTS) smoothing

algorithm[89]. Furthermore in the process of performing these calculations we directly

compute the diagonal elements of P - ie., the estimation error covariance matrices

for x(t) for each value of t. Moreover, perhaps less widely known, these calculations

also yield a model for -i without any additional work. In particular since Px-1 has the

same structure as Px-', we might hope to model :i as

1�1:i = iv- (2.12)

where iv' is block diagonal and �1_ has the same structure as M in (2.7) - i.e., so that

�c has a time-recursive model as in (2.5). Such a model does in fact exist, and its

parameters are directly and very simply computable from the original model (2.5)

parameters and from the error covariances computed by the Kalman filter and RTS

smoother.

Furthermore, since we have a model (2.12) for the estimation errors in this time-

recursive statistical estimation problem, we can use the measurement residuals

'� - Y - C �e - C.�V- + V (2.13)

to detect statistically significant deviations from the assumed statistics. In addition,

the recursive Kalman filter algorithm allows whitening of the data y and thus the

efficient computation of likelihood functions, leading to statistically optimal methods

for estimating parameters of the model (e.g., parameters embedded in M, P, C, and

R).

The critical question, then, is whether we can find analogous classes of models for

phenomena that vary in space rather than time, i.e., models that have a similar set of

properties and that also allow us to capture rich classes of spatial phenomena includ-

ing those with multiple correlation scales. One class of such models that has been
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widely proposed used is the class of Markov random fields (MRF's). As discussed in

[591, such fields have models as in (2.3) in which M is an elliptic (symmetric, positive

definite) partial difference operator and where P,, = M. In this case P` - M, em-

phasizing the correspondence between models and inverse covariances. Furthermore

such models can capture multiple correlation scales. Moreover M = P` in (2.10)

is also an operator of the same structure as M so that subsequent data assimilation

stages, in which the error statistics at one stage form the prior model for the next,

face structurally identical estimation problems. The normal equations in this case

correspond to an elliptic partial differential equation and the error covariance to the

inverse of an elliptic operator. Consequently the required computations for estima-

tion, error covariance calculation, anomaly detections, and likelihood evaluation are

not simple and can in fact be prohibitively complex except in the case of stationary

models and uniform data (so that Fourier techniques can be applied).

Section 2.4 will present an alternative to MRF's for the modeling of random fields

that overcomes these difficulties through the use of scale-recursive models, permitting

the realization of the full set of advantages found for the time-recursive state model

(2.5).

2.2 Variational Problems and Optimal Estima-

tion

Variational methods[18, 111] offer an alternative means for the formulation and

solving of estimation problems. Variational formulations lead directly to Euler-

Lagrange[18] partial differential equations (PDEs) to be solved in order to obtain

the'desired- reconstructions.- Except -in those specified cases where the surface model

and the measurement statistics are homogeneous, permitting FFT techniques to be

applied, the solution of these equations can be a significant computational task, espe-

cially for problems of large size. Furthermore, the calculation of reconstruction error

covariances[5.1,. 981, for. such approaches are, for all. practical purposes,'completely in-
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feasible, as their computation corresponds in essence to the calculation of the full

inverse of the partial differential operator arising from the variational problem. As a

result, we are motivated to explore the relationship between variational problems and

estimation problems with the hope of developing an alternative solution technique.

Variational problems have a dual interpretation as statistical estimation

problems[63, 99]. Specifically, a variational problem with quadratic costs (i.e., a

least squares problem) may be interpreted as a Gaussian statistical model:

• A variational quadratic penalty term on the deviation between the estimated

surface and its measurements corresponds to an estimation problem with a

measurement model in additive white Gaussian noise.

• Quadratic penalty terms on various linear functionals of the process have the

statistical interpretation as a prior Gaussian model on the unknown process.

We will make the above dual interpretations more concrete in the context of the

following linear-functional quadratic-cost variational problem:

min (Y - C(z))'R-'(Y - C(z)) + C(z)',C(z)dxdy (2.14)Z f fR2

2where z is the function to be estimated on R , L is a column vector of linear functionals

of z, and where Y is a set of measurements modeled by the column of linear functionals

C. Although such a variational expression is elegantly represented in continuous space,

the goal of implementing a practical estimator on a computer motivates the shift to

discrete space.

Let Z' - [. . . , Z(Xi, Yj),. . .]T represent a vector of samples of z(x, y); then (2.14)

may be discretized as

min � (Y - CZ)' R-1 (Y - CZ) + f LZIT fLZjj (2.15)
Z

where L is a matrix representing a discrete approximation of the linear functionals in

,C over the discrete grid, and where C is a matrix which describes the measurements

of Z.
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Each discrete optimization problem of the form of (2.15) possesses an estima-

tion counterpart. Specifically, the optimization of (2.15) corresponds exactly to the

problem of estimating Z given the measurement model'

YC`Z+V V - V(O, R) (2.16)

and a prior model

LZ -- w w , Ar(O, I) (2.17)

The solution to this estimation problem is given by the Euler-Lagrange equation:

(LT L + CTR-IC) 2 = CTR-ly (2.18)

and for which the estimation error covariance is

J5 - (L T L + CTIZ-1 C) (2.19)

The computation of (2.18) corresponds to the solution of a PDE, a computationally

difficult task. However it is (2.19) that is orders -of magnitude more complex, as it

corresponds to the complete inversion of a higher-order PDE operator.

At this point in our discussion of variational problems we have reached the same

impasse as in our discussion in the previous section on MRFs: the computational

difficulty in solving (2.18) and (2.19). What we propose to do is to replace the prior

(2.17) by a similar multiscale model, such that computing (2.18) and any element

of (2.19) is easy; Section 2.4 will present a multiscale framework in which it will be

possible to construct appropriate variational-lik6 models.

'The notation M(p, R) represents a Gaussian random vector with mean It and variance R.
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2.3 Measurements and Prior Models

Given a Bayesian estimation problem, there is a dual interpretation which we shall

find to be useful: the dual interpretation between statistical prior models and mea-

surement models.

The following discrete estimation problem is motivated by the discussion on vari-

ational problems in Section 2.2. Consider a measurement model

Y = CZ + V v , Ar(O, R) (2.20)

and a prior model

Li Z - W w - Ar(O, 1) (2.21)
L2

The essential observation here is that portions of the "prior" model may be interpreted

as "measurements"; specifically, the above estimation problem is the same as the

following problem, now having a modified measurement model which incorporates

one part of the prior information

Y C R 0
Z + v , Ar 0, (2.22)

0 LI 0 1

and a corresponding prior model

L2Z - W Fv , Ar(0, 1) (2.23)

The solution to both of these estimation problems is the same, given by the usual

Euler-Lagrange equations:

Li T Li
L2 L2 + CT R-'C CTR-'Y (2.24)
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and for which the estimation error covariance is

TLI Li
L2 L2 + CT R-Ic (2.25)

This relatively simple dual interpretation may be helpful in the development of

efficient estimators under circumstances in which a process Z has a statistical prior

of the form (2.21), such that we have a highly efficient estimator capable of capturing

prior model L2, but where the prior statistics of LI are not simple to capture efficiently.

We shall find it useful to reinterpret LI as part of the measurement model. An example

of such a reinterpretation will be given in Chapter 7.

2.4 Multiscale Processing

The multiscale models of interest in this thesis and originally introduced in [14, 621

are scale-recursive models defined on index sets that are organized as multilevel trees

(a simple example of such a tree for a 2-D random field was illustrated in Figure 1-1).

Each level of the tree corresponds to a different scale of resolution in the representation

of the random field, with coarser scales toward the top of the tree, and where the

components of x correspond to variables defined at the various nodes of the tree.

This modeling framework is more flexible than the figure might suggest however,

because it is applicable to higher dimensional trees or to asymmetric and unusually

shaped trees. This flexibility can be used to match the particular multiscale structure

of the phenomenon being modeled or to capture local differences in scale structure

(e.g., if the field has finer scale details in particular regions). For the purposes of the

discussion in this section the quadtree structure of Figure 1-1 will suffice.

Let 'T represent the set of nodes on a multiscale tree; let s E 'T index the nodes

of the tree. All of the tree structures to be used in this thesis can be described in

terms of two parameters:

q represents the order of the tree; that is, q, equals the number of descendants of
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each node (except for those on the finest scale).'

M represents the number of scales (or levels) in the tree.

Each node s E T is associated with scale m(s), where 0 < m(s) < M; larger values

of m(s) refer to finer levels of the tree. The root node of the tree is denoted by 0,

m(O) = 0; the root is the unique node of the tree possessing no parent.

Two operators are used to traverse the tree:

s,�7y represents the parent node of s 54 0-7

sozi represents the ith child node of s- I < i < q.

The specific model class of interest here is inspired by the successes of the time-

recursive model (2.5). In particular, components of x at these nodes are related by a

coarse-to-fine recursion:

x(s) = A(s)x(s,;7y-) + B(s)w(s) Vs E TS:� 0 (2.26)

where w(s) is a white noise process with identity covariance. The initial condition of

the process at the root node is given by

T(0)] = pE[x(O)] - 0 E[x(O)x (2.27)

Moreover, the general measurement model associated with this framework also allows

measurements at multiple scales:

Y(S) - C(S)X(S) + V(S) Vs E M C T (2.28)

where v(s) is white, with covariance R(s). M is an arbitrary subset of T and contains

those nodes at which measurements are present. With only the occasional exception,

the applications considered in this thesis will have all of the measurements at the

'In principle, different nodes on the tree could have different numbers of descendants; i.e., the
order q(s) varies with s. Such generality is permitted by our multiscale framework, but will not be
needed at any point in this thesis.
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a) Upwards Pass b) Downwards Pass

Figure 2-1: The processing of nodes in the multiscale framework proceeds in two
passes. First (left figure) information is propagated up the tree; at each tree node,
the conditional estimate is formed based on all measurements on that node and its
descendants. Next (right figure) information is propagated back down the tree; at
each tree node the estimate is formed based on all measurements on the tree.

finest scale - i.e., at a sparse and irregular subset of nodes at the lowest level on

the tree - and we will focus principally on the estimates at this finest scale as well.

However, the statistical algorithm for the model (2.26),(2.28) can handle data at

multiple resolutions and produces estimates (and error statistics) at all scales.

Optimal estimation, error model characterization, data whitening and likelihood

calculation have extremely efficient realizations for this class of multiscale models.

Broadly speaking, these efficiencies are a result of the structure of the tree and the

model (2.26),(2.28) which leads to a divide-and-conquer structure for statistical anal-

ysis: conditioned on any node on the tree, each of the subtrees connected to this node

are conditionally independent (for example, conditioned on the top node in Figure 1-1,

each of the four distinct subtrees below this node are conditionally independent). The

following two subsections discuss the multiscale estimation and likelihood calculation

al orit hms

2.4.1. Multiscale Estimation

The previous paragraph possessed the key to efficient estimation on multiscale trees:

conditioned on any node on the tree, each of the subtrees connected to this node
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are conditionally independent. Thus for any node s the processing of the data in

the subtree beneath it can be decomposed into independent processing of the data in

each of the descendent subtrees. As illustrated in Figure 2-1, optimal estimation of

x (i.e., the collection of all x(s)'s) based on y (all y(s)'s) can be implemented as two

sweeps on the tree. The fine-to-coarse sweep generalizes the Kalman filter and results

in the calculation at each node s of the best linear estimate of x(s) based on all of

the data in the subtree below s. The usual predict and update steps of the Kalman

filter are used without modification; the adaptation of the Kalman filter to the tree

stems from the addition of a merge step, which combines the predicted values from

several children at a common parent. Next the coarse-to-fine sweep generalizes the

Rauch-Tung-Striebel algorithm and produces the best estimate and error variances

at every node based on all of the data.

The resulting algorithm, the equations of which are summarized in Appendix B

(see [14, 62] for greater details) involves only local calculations following the structure

of the tree. Thus calculations for each node are performed once on each of the upward

and downward sweeps. Furthermore, if N denotes the number of nodes at the finest

scale of the tree, i.e., the number of pixels at the finest scale of resolution, then the

total number of nodes on the tree is 4N . Thus the total complexity of the algorithm3

is proportional to N, resulting in constant complexity per grid point independent of

3the size of the grid.

The multiscale estimation equations yield a model for the error -J-- (s) - x (8) - & (8)

which has a multiscale form[64], so that subsequent data assimilation stages can be

carried out in exactly the same fashion. Specifically,

i(s) = P(s I s)P,-'A(s)Ps;�P-'(s,;�y + fv(s) (2.29)

where P, is the prior covariance at node s and P(s I t) represents the estimation error

covariance of x(s) given all observations in the subtree below node t.

3The computational complexity of the tree is O(Nk3), where k represents the state vector length
of x(s). Constant complexity per grid point is achieved under the assumption (or assertion) that k
be a fixed value, independent of N.

51



CHAPTER 2. BACKGROUND

(a) (b) M

Figure 2-2: A rough sense of the information flow for the multiscale whitening algo-
rithm. The whitening proceeds in a depth-first approach, first conditionally whitening
each of the children of a parent node before whitening the parent. The notions sug-
gested by this figure are made more precise in [62, 65] and in Appendix C.

The estimation error covariances P(s I s) are computed for each node 8 on the tree;

that is, the block-diagonal components of the full estimation error covariance matrix

are computed. For problems of the size considered in this thesis (e.g., N -_ 10'), the

full error covariance matrix is too large (e.g., -_ 1010 elements) to be calculated or

even to be stored by any practical means. It may, however, be useful to calculate a

specific subset of the off-diagonal elements.

The model in (2.29) permits the calculation of the estimation error covariance

between any two arbitrary nodes in the tree (i.e., the calculation of arbitrary off-

diagonal elements in the full error covariance matrix); an example of the application

of this model will be demonstrated in the oceanographic context in Chapter 3.

2.4.2 Multiscale Likelihood Calculation

Another algorithm, closely related to the optimal estimation algorithm of the previous

subsection, allows us to whiten the data and compute likelihoods in an equally efficient

fashion[62, 65]. That is, given a set of multiscale model parameters A(s), B(s), C(s),

As), P,, (and possibly other parameters specifying-the structure of the tree such, as

,the order q) and a stacked vector Y of measurements, we can calculate the likelihood
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,C AO, Bo, CO), RO, Y - - log jAy I - I yT A-'Y - "Y" log 27r (2.30)
2 2 y 2

where JJYJJ counts the number of elements in Y, Ay represents the covariance of

random vector Y, and where we assume that the noise terms wv of (2.26),(2.28) are

Gaussian,

The direct evaluation of expressions such as (2.30) is typically difficult, even in

the straightforward time-recursive case (2.5). Instead, in the time-recursive case such

a likelihood calculation is made simpler by first computing the whitened residuals

process; such a residuals process is computed by the Kalman filter. Fortuitously, a

multiscale whitened residual process may be computed using the multiscale analog of

the Kalman filter. Essentially, information is passed about the tree in a "pre-order"'

traversal; a suggestive sketch of the information flow is shown in Figure 2-2.

The equations of the resulting algorithm are summarized in Appendix C (see

[62, 65] for greater details). The computational effort of the whitening algorithm is

similar to its estimation counterpart from the previous subsection; specifically, the

algorithm involves only local calculations following the structure of the tree, thus two

sets of calculations are performed at each node, leading to a total complexity of the

algorithm which is a constant multiple of the number of grid points, independent of

the size of the grid.

In principle, once we have a multiscale whitening algorithm (and hence a likeli-

hood calculation algorithm) the estimation of multiscale model parameters is possible.

Specifically, suppose that we have a family of multiscale models parameterized by a

vector H; then an estimate of H may be determined by maximizing the likelihood

function

ft = argH max C A(s, H), B(s, H), C(s, H), R(s, H), (2.31)

4There are three basic forms of tree traversal: "pre-order" (or depth-first), "in-order", and "post-
order"; the prefix describes the time of processing the parent node relative to its children.
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Chapter 4 will explore the identification of multiscale model parameters using ap-

proaches like that of (2.31).

2.5 Multiscale Modeling

Given the multiscale framework and the estimation and likelihood algorithms outlined

in the previous section, one remaining challenge lies in the selection or determination

of an appropriate multiscale model. In general, there are two basic approaches to

solving computationally difficult estimation problems with some given prior statistics:

1. Replace the prior model with another model (e.g., a multiscale one) which is

Similar to the original, but whose optimal solution can be found efficiently.

2. Develop a suboptimal algorithm and apply it directly to the original problem.

Applications of the multiscale frameworks, 651 have tended to follow the former

philosophy: we do not view our multiscale framework as an approximation to a given

estimation problem, rather the multiscale approach allows us to solve the problem

optimally under a multiscale prior that is similar; the development of multiscale

models in this thesis will follow the same spirit.

In addition to the computational efficiencies admitted by the multiscale framework

and its related algorithms of the last two subsections, multiscale models can also be

used to capture the statistical structure of rich classes of phenomena. The following

subsections will document several statistical models and their multiscale counterparts.

These next subsections are more than just examples: we will have occasion to build

upon these multiscale counterparts throughout this thesis.

2.5.1 Markov Random Field-Like Models

This subsection will describe exact and approximate multiscale counterparts to

Markov random field models. Although we will never implement or make use of

such-multiscale, models directly,, the in-tuition behind.the development of multiscale

MRF counterparts will be useful in the investigation of the smoothness of multiscale
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estimates in Chapter 6. A thorough development of the material in this section may

be found in [61, 621.

Q C R2 R2Let - be a closed set, and let r' be the boundary set of Q; r separates

into Q n IF', 1, and Q1 n r'. A continuous-space, two-dimensional process z (t), t G R2,

is said to be a Markov random field if the process inside of Q, f z(t) I t cz Q n rcl, is

independent of the process outside of Q, f z(t) I t E Qc n IF11, given the process on the

boundary set r, fz(t) I t cz Q.

On a discrete lattice (instead of on a continuous plane) the definition of a MRF

becomes more subtle[7, 22, 35]. Essentially, Z(t), t E Z2 is a MRF if there exists a

neighborhood set Dt, such that

Pz(t)lz(-)(Zt I fZ, I T c Dtj) -_ Pz(t)lz(,)(Zt I fZ, I T E f Z2 n f tjcj) (2.32)

For simplicity in this discussion, we restrict our attention to processes z(t) that are

Markov random fields under first order neighborhoods:

Dt - f (t, t + 1), (t + 1, t), (t, t - 1), (t - 1, t)j (2.33)

Consider the lattice shown in Figure 2-3. Let z(t) be a process defined on this lattice,

such that z(t) is a MRF under the first order neighborhood (2.33). Then conditioned

on the process values

f z(t) I t c Shaded region of Figure 2-31 (2.34)

the four processes (one per quadrant) f z(t) I t (E Qij are all mutually independent.

Recall that a property, similar to this last statement, is asserted on the multiscale

tree: conditioned on a parent node, the q children descendent from this parent are

independent. Consider modeling the process z(t) of Figure 2-3 on a quad-tree: let

x(O), the state at the root node of the tree, consist of the shaded elements of z(t) in

Figure 2-3; furthermore identify each of the quadrants Qi with the children of the

root node; now proceed recursively down the tree. Clearly such an approach leads to
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Figure 2-3: The figure shows a finite, two dimensional lattice. Consider a process
z(t) to be defined on the lattice sites, such that z(t) is a MRF under the first order
neighborhood (2.33). Then conditioned on the lightly-shaded states, the processes
z(t) in each of the four quadrants Ql,...,Q4, bounded by the shaded region, are
independent.

a multiscale model having large state vectors: for a first-order MRF representing N 2

pixels, the root node of the multiscale counterpart would contain (6N - 9) elements.

The development of multiscale counterparts to Nth order Markov random field pro-

cesses may be accomplished by setting the state of each parent node to capture the

boundary elements between and around its child nodes, but where the boundary is

taken to be N pixels thick.

In principle, multiscale counterparts with smaller state dimensions may be formed

by maintaining a low order approximation to the MRF elements; for example, the

shaded elements.-in Figure 2-3 �might b& represented by a set of Fourier or wavelet

coefficients. The arbitrary selection of a Fourier or wavelet basis is somewhat ad-

hoc; the next subsection will describe a more systematic approach to determining

16wer-order representations.
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2.5.2 Canonical Correlation-Based Models

The previous section outlined an approach for constructing multiscale analogs to

Markov random field models- however there are two limitations to that approach:

• The previous subsection does not yield any systematic approaches for determin-

ing good reduced-state-dimension multiscale counterparts to MRF models.

• The previous subsection does not suggest a means by which to develop multi-

scale counterparts to non-Markov processes.

The method of canonical correlations[l, 3] has allowed the above issues to be ad-

dressed.

Let x [XlX2] be a Gaussian random vector with a known correlation structure

E [XXT] = Ax - All A12 (2.35)
A T A2212

We would like to determine two orthogonal matrices TI, T2 such that X, = Tjxl and

X2 = T2X2 are in canonical form:

E [XTXI] - I E [XT X2] = 1 (2.36)1 2

E [XT X2] = D = diag (91.... 10 7P10, ... 10) (2.37)1

where a, > ... > up > 0. The appropriate orthogonal matrices are readily found

using the singular value decomposition. Let

- 1 -IA - All 2 A12A22 2 (2.38)

Compute the SVD

A - USVT UTU - 1, VTV = 1 (2.39)
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then

T, = UT A 2 T2 = VT A- 2 D - S (2.40)ll 22

Essentially, the singular value decomposition of A12 quantifies all interdependencies

between x, and X2; therefore by conditioning on the first p elements of Xi and X2, the

vectors x, and X2 become independent. In other words, the linear functionals

T, - VP 01 T, T2 Ip 0 1 T2 (2.41)

describe the information needed to decorrelate x, and X2. Furthermore, the ordering

of the singular values in the diagonal matrix D (2.37) suggests a natural reduced set

of linear functionals:

Ti -- [1k 01 TI 01 T2

'k T2, k [Ik k < p (2.42)

The ability to maintain a set of values to conditionally decorrelate multiple random

vectors can play a central role in the development of multiscale models. Two modifica-

tions to the canonical correlations approach described in this subsection are required

in order to develop multiscale counterparts to arbitrary Gaussian processes:

1. The canonical correlations procedure essentially just captures the correlation

between two random vectors. On'the tree, such correlations must be captured

on a hierarchy of scales.

2. The canonical correlations procedure conditionally decorrelates two vectors; on

multiscale trees with order q > 2, the procedure must be generalized to q random

vectors.

These generalizations have been researched[48] and have led to an effective multiscale

modeling technique; an example of the use of such multiscale models will be presented

in Chapter 6.
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Figure 2-4: An example of a natural phenomenon characterized by a 11f �'-like behav-
ior. This figure shows a rough characterization of the global power spectral density
of the ocean surface (from [33]).

2.5.3 11f -like Models

Our multiscale framework is directly suited to capturing phenomena that display a

multitude of correlation scales. Of particular interest is the class of so-called 11f

models[113], i.e., processes that display 1/f"-Iike spectra over a significant range of

frequencies. Many natural and human phenomena have been found to possess llf-

like spectral properties, which has led to considerable study of 11f processes. For

example, Figure 2-4 (from [33]) shows a typical power spectrum for the height of

the ocean surface, modeled as a 1/f�'-process with different values of p over different

wavenumber intervals.

One class of such processes that is frequently used because of its analytical con-

venience and tractability is the class of fractional Brownian motion (fBm) processes,

introduced by Mandelbrot and Van Ness[69]. Let F[k] be a sampled fBm process;

i.e.,

F[k] = F(kAt) k e Z (2.43)
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for which the associated nonstationary covariance is

2
E [F[k], F[m]] (At) 2H (1k 12H + jTnj2H _ Ik- M12H) (2.44)

where o- and H are scalar parameters which completely characterize the process: U

controls the overall power of the process, H determines the fractal dimension D

2 - H of the process. The modeling of fBm on multiscale trees, and the estimation

of H given samples of a fBm process will be studied in Chapter 4.

The class of fBm processes, although interesting, represents only a single possibil-

ity among a broad array of I/ f -like processes; furthermore the exact representation of

fBm processes on the multiscale tree is not particularly convenient. More generally,

phenomena with 11f Y-like spectra display so-called self-similar scaling properties in

that the variability of such a phenomenon scales geometrically with the spatial res-

olution at which the variations are measured. Such scaling rules are captured very

simply in our multiscale model through the imposition of a scaling relationship in the

gain B(s) in (2.26). Recall that m(s) denotes the scale of a node S; thus the choice

A(s) -_ I B(s) = Bo2(1-")-(')12 (2.45)

displays the same scaling behavior as that implied by a 11f A spectrum[1151. Changes

in scaling laws, corresponding for example to the changes in spectral slope in Fig-

ure 2-4, can- be captured simply by changing the value of [t over different ranges of

scale. Local changes in scaling structure can also be easily accommodated by local

modifications of B(s).

There are several motivations for the use of the multiscale model of (2.45):
implement an p' tafionally

The ""sifinplic"'if �y �of �fhe model' -mi-Ae" s it easy o d com u

very efficient.

o Since the model is described in terms of only two parameters the model identi-

fication process is relatively straightforward.

o The statistics of many natural processes are poorly understood, and in fact rep-
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Z(X)

x

D.

Figure 2-5: A collection of four curves, each equally penalized by the cost function
f(dzldx)'dT

resent an active area of research. For such processes, detailed and sophisticated

multiscale models based on poorly-known statistics are inappropriate; instead,

a simple model (such as (2.45)) which captures the known basic scale to scale

behavior of the process of interest may yield equally good results.

We will be using (2.45) as the basis for each of our remote sensing applications in

Chapters 3, 4, and 5.

2.5.4 Variational-Like Models

The discussion in Section 2.2 motivates the development of multiscale prior models

similar to the prior implied by simple variational constraints. This problem has been

investigated in the past[14, 63, 99] for the case of a single quadratic penalty on the

unknown function. The basic idea for this case is most easily visualized in 1-D; i.e.,

for variational costs of the form

dz 2
dx dT (2.46)
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Under the variational cost function of (2-46), each of the four profiles for z(x) depicted

in Figure 2-5 incurs the same penalty. Indeed, in I-D the penalty term (2.46) is

equivalent to a Brownian motion prior model[63]; i.e., a process with a 11f 2 spectrum.

Based on the discussion of I If -like multiscale models in the previous subsection, we

can posit the following model as a prior similar to that of (2.46):

z(s) - I z(s,;:y-) + B,2 -m(s)/2 W(S) (2.47)

As discussed in[63], an analogous interpretation also holds for 2-1) variational penal-

ties on derivatives of z(x, y), leading to quadtree models of the same form as (2.47).

We will be using and building upon this result extensively in Chapter 7.

2.6 Multiscale Framework Implementation

The computer implementation of the multiscale framework has proven to be a chal-

lenging and interesting task. Although computer implementations of such algorithms

are not the focus of this thesis, a brief discussion is warranted.

The framework does not pose inherent difficulties to implementation; for example,

a basic implementation of the multiscale estimator (see Appendix B) on a quad-

tree sufficient for preliminary oceanographic tests was accomplished in about two

days. Any difficulties associated with implementing the framework stem from the

remarkable variety of possible multiscale tree configurations and tree models. Indeed,

we encountered the following dilemma:

e An implementation which is targeted to a particular tree structure and multi-

scale model can reap considerable computational efficiencies by taking advan-

tage of the known structure, but a new or heavily modified computer program

is likely to be needed for each different tree structure or model.

-0 An implementation which is completely general and tolerant of any tree struc

ture, whatsoever would, be, slow and -awkward to. use (even a simple tree would

require a detailed and exact description, since nothing would be implicit or
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assumed).

We have developed the following creative compromise:

9 Develop a core "engine", which implements the multiscale estimator, likeli-

hood calculator, cross-covariance calculator, and sample path generator, with-

out making any assumptions whatsoever regarding the tree structure or multi-

scale model.

* Create a set of interfaces which operate between this core engine and the user-

supplied application program. Each interface asserts a different set of assump-

tions regarding the multiscale tree and model; these assumptions are asserted

at compile-time, allowing the general engine code to be modified, simplifying

itself based on the nature of the approximations asserted, and allowing it to

achieve the associated computational efficiency.

The above approach has enabled a single piece of code to perform all of the multiscale

calculations in this thesis in a computationally efficient manner. Further details

and an overview of the organiza tional structure of the software may be found in

Appendix A.
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Chapter 3

Ocean Surface Estimation

significant estimation problem in oceanography concerns the interpo-

lation of large oceanographic data sets; this chapter will describe the

application of our multiscale framework to such a problem. This appli-

cation, although significant in and of itself, is meant to illustrate the potential for the

utility of the multiscale approach in broader contexts; e.g., the geodesy application in

Chapter 5 is based heavily upon the results and insights acquired in the investigation

of this chapter.

Section 3.1 presents an introduction and the necessary background for the altimet-

ric interpolation problem. Section 3.2 discusses the development of an appropriate

multiscale model, followed by experimental tests in Section 3.3. Background infor-

mation on optimal estimation, which accompanies this chapter in its journal form[27]

for the benefit of the remote sensing community, may be found in Chapter 2.

3.1 Introduction

The problem of estimating the shape of the ocean surface from satellite altimetry

measurements is of considerable current interest both because of its importance in

global ocean modeling and climate studies and because of the relatively recent launch

of the joint American/French TOPEX/POSEIDON altimeter[32, 73, 95], a satellite-

based platform capable of measuring ocean height to an unprecedented accuracy of
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approximately 5 cm. The availability of data of this quality and coverage makes it

possible to address a variety of scientific questions ranging from producing regularly

gridded maps of ocean height (to be used, for example, in global ocean modeling stud-

ies) to the estimation of the spatial spectrum of ocean height variations. Achieving

objectives such as these, however, presents daunting challenges to the data analyst,

in particular in terms of the enormous size of the problems to be solved. The method

of this chapter permits the production of statistically optimal results, with computa-

tional loads that are extremely modest.

The various quantities involved in the satellite altimetry problem are sketched in

Figure 3-1. The TOPEX/POSEIDON altimetersa're mounted on a .satellite orbiting

at an altitude of approximately 15OOkm. The altimeters use microwave ranging tech-

niques to determine the precise distance, D, between the satellite and the surface of

the ocean. GPS navigation and laser tracking from ground stations[781 determine the

position, 0, of the satellite in three-dimensional space with respect to an idealized,

ellipsoidal, earth. Other details aside, the difference h - 0 - D measures the height

of the surface of the ocean with respect to the idealized ellipsoid.

In principle, the height h includes effects such as oceanic tides[90], solid body

tides, and atmospheric pressure influences. Although the study and quantification of

these effects are worthwhile efforts, we are not interested in estimating such quanti-

ties in this thesis, and we assume tidal and atmospheric perturbations to have been

subtracted from h. With this said, h - N + � is made up of two principle quantities:

N represents the geoid[42, 501 , i.e., the gravitational equipotential surface at sea

level. The geoid is very nearly an ellipsoid; deviations from the ellipsoidal shape

are due to spatial fluctuations of the density of the earth's mantle and crust,

and, due to the,- earth's,- -topography % (e.'g."', �� mountains and valleys)

represents the height of the ocean surface relative to the geoid. In the absence

of ocean currents, 0. Conversely, the spatial gradients of C allow elements

of the ocean circulation pattern to be deduced[116]; this observation forms one

of the main motivations for the estimation'of
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Figure 3-1: A general overview of the nomenclature associated with the TOPEX
POSEIDON measurements.

The importance of deducing ( from satellite data cannot be overemphasized. It

is impossible to match the breadth, uniformity, and frequency of ocean sampling

obtained by satellites by any other means; ship-borne experiments, while capable of

sampling the interior of the ocean, are slow to perform and prodigious in cost. The

importance of determining the circulation pattern itself stems from the fact that the

kinetic energy of the ocean circulation vastly exceeds that of the atmosphere, thus to

properly model and understand the earth's climate and global warming necessitates

an improved knowledge of oceanographic currents.
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Satellite Track Locations
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Figure 3-2: Set of TOPEX/POSEIDON measurement tracks in north Pacific. The
region shown in this figure will be the focus of the estimation efforts in this chapter.

Estimates have been developed for N based on satellite tracking data, previous

altimeter missions, and from direct measurements of gravity. The estimates of N used

in this chapter are the OSU91A[87] estimates developed at the Ohio State University.

The estimates are computed from a spherical harmonic basis to order and degree 360

(i.e., a resolution of approximately one degree).

Figure, .3-2, dopicts- a region of the- northeastern Pacific, from Hawaii to

Alaska. Overlaid on this region is the distribution of TOPEX/POSEIDON satel-

lite measurements[78] over a typical ten day cycle. Successive measurements along

track are separated by approximately 7km or 0.06 degrees; the spacing between

adjacent tracks:ls approximately 270km,.:.Gridded.imagesof the ocean are required
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at fine scales, both in order to observe features of interest, and to produce numerical

values compatible with fine scale ocean models. Even for the comparatively modest

portion of the ocean shown in Figure 3-2, we must estimate ocean surface heights at

more than 100, 000 grid points based on roughly 20, 000 altimetric measurements. For

a full ocean basin, or for the entire global surface, the problem is of truly formidable

proportions.

The size of data analysis problems such as this is not the only significant challenge.

In many cases, including the one of interest here, significant spatial nonstationarities

are present for several possible reasons:

1. The sampling pattern of the data is frequently nonuniform and irregular, in-

cluding occasional periods of data dropout as shown in Figure 3-2.

2. The sensed phenomenon is itself nonstationary, exhibiting differing spatial scales

and magnitudes of variability in different regions. Ocean surface statistics,

for example, differ between regions containing vigorous currents such as the

Kuroshio or the Gulf stream and those regions which are comparatively quiet

such as the northeast Pacific.

3. The quality of measurements may also be nonstationary. Recall that the

TOPEX / POSEIDON altimeter provides direct measurements, D, of the dis-

tance from the satellite to the ocean surface, whereas ( is the fundamental

quantity of interest as the ocean current field may be inferred from the deriva-

tive of this relative surface. The geoid estimates are subtracted from h to yield

measurements of (; thus the complex and nonstationary error structure of the

geoid estimates[87] translates directly into nonstationary errors in the altimetry

measurements.

Such nonstationarities or irregularities in the data pattern present a major

challenge[33, 117], as there is no regular structure that can be used to advantage.

In particular Fourier methods, with their noteworthy efficiencies, cannot be applied

directly or without significant approximations and idealizations.
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Furthermore, in addition to the estimation of quantities such as ocean surface

height, there are compelling reasons for desiring a characterization of the errors in

these estimates. In particular, to assess the value of a set of estimates we must

have a measure of their accuracy, requiring at the very least the calculation of error

variances. Moreover, there are strong motivations for the characterization of the

spatial correlation structure in the estimation errors. For example, the assimilation

of ocean surface estimates into global circulation models[33], which effects a blending

of the surface measurements and the underlying science, in principle requires the full

specification of the error correlations so that accurate model/data combinations can

be effected.

In addition, error covariance calculations are useful for a variety of other scien-

tific reasons. For example, geoid estimates have errors due to unresolved, spatially

localized perturbations such as sea mounts or trenches. Such errors can manifest

themselves as outliers in the data, or more precisely in the residuals (data minus

estimates); the availability of error statistics permits the identification of statistically

significant outliers and the estimation of localized geoid corrections implied by these

residuals.

Finally an important characteristic of many remote sensing problems, including

the one examined here, is that the phenomenon under study exhibits behavior across

a broad range of scales. For example, global ocean models predict behavior at (and

interactions among) a vast range of spatial scales'. Indeed, models for ocean height

spectra[331 are typically described in terms of inverse power-law relationships. Such

a spectral description corresponds directly to a scaling relationship between the ex-

pected amplitude and spatial scale of ocean features - i.e., it corresponds to a fractal

model. Statistical modeling of the ocean surface andthe processing of ocean height

data must account for this multiscale structure.

A number of smoothing and data assimilation algorithms (e.g., objective

analysis[20], kriging[91]) have been developed, each of which has emphasized varying

degrees of statistical structure or computational efficiency. The combination of the

issues we have mentioned - problem size, nonstationarity, statistical characterization
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of errors, and accounting for correlation structures over a range of scales - has gener-

ally required that compromises be made in the statistical consistency and optimality

of the results. The multiscale method to be illustrated in this chapter avoids the need

to make such compromises.

The multiscale algorithm has a total computational complexity per grid point inde-

pendent of the size of the grid, can accommodate nonstationarities in the model of the

phenomenon or the data, and allows the complete characterization of error statistics;

the results presented in Section 3.3 will highlight these capabilities. Our approach also

produces estimates at a hierarchy of scales, facilitating resolution/accuracy tradeoffs

and the direct extraction of estimates of coarser scale features. Finally, all of our

satellite data is taken at the same level of resolution, however in principle we could

incorporate data of differing resolution and coverage with no change in algorithmic

structure.

3.2 Multiscale Model Selection

The experimental results of this chapter are based upon data taken over a single

TOPEX/POSEIDON repeat cycle (about 10 days) [521. The altimetric measurements

of h are processed by subtracting the geoidal reference field[87, 88]; furthermore the

usual corrections are applied to the data: ionospheric[75], tidal[90], orbital[78], and

atmospheric pressure loading.

Recall the multiscale dynamic equations (2.26),(2.28) discussed in Section 2.2. The

first tasks in determining a specific multiscale model are the selection of the multiscale

tree structure, the nature of the model (in particular, the dimension of x(s)) and the

specific model parameters (e.g., the A(s), B(s), C(s) values of (2.26),(2.28)). Since

the finest scale of a quad-tree (e.g., as in Figure 3-3) is a 2-D process, we are motivated

to select such a quad-tree as the basis for our multiscale model. We let x(s) be a scalar

representing the ocean height at the particular scale and position corresponding to

node s. The determination of the scalars A(s), B(s) is then made by choosing these

parameters to match certain characteristics of the TOPEX/POSEIDON data.
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Figure 3-3: The multiscale tree structure to be used for the ocean elevation estimation
problem.
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Figure 3-4: A rough characterization of the global power spectral density (from [331);
the characterizationis 1/f7like, which motivates the selection. of a I If -like multiscale
model.
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Figure 3-5: Top: Empirical power spectral density based on TOPEX/POSEIDON
data.
Bottom: Power spectral density from multiscale model simulations.
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Figure 3-4[331 shows a rough characterization of the global power spectrum of

the ocean surface elevation ( from the oceanographic literature. The spectrum is

characterized as piecewise straight in the log-log domain of the figure, motivating

the selection of a 1/f-like multiscale model to represent the ocean surface elevation.

Rather than relying upon such a global spectrum, we can determine the empirical

power spectrum for the ocean surface within our region of interest directly from

TOPEX/POSEIDON data: the top spectrum of Figure 3-5 shows such a periodogram.

As in Figure 3-4, the spectrum falls as a relatively straight line in the log-log domain.

From the discussion in Section 2.5.3, we know that the following model possesses 11f P

characteristics:

A(s) = I B(s) = B,,2(1-jt)-(s)/2 (3.1)

It is a simple matter to choose B,, p such that the power spectrum associated with

the sample paths of the multiscale model (3.1) is similar to the empirical spectrum at

the top of Figure 3-5. Specifically, the choice B, = 35cm, y = 2 leads to the following

multiscale model (where x(s) is measured in cm):

x(s) = x(s,�) + 35 .2 -m(s)/2W(S) (3.2)

That is, the aggregate surface height of the ocean at some position and scale equals

the aggregate height of its parent node, i.e., at the same spatial position but at a

coarser scale, plus a perturbation offset whose variance decreases geometrically with

scale. The model (3.2) corresponds to the power spectrum shown in the bottom half

of Figure 3-5, which is very similar to the original empirical spectrum at the top of

the figure...: There, is a,second, manner� in�- whichl to determine the multiscale model

parameters using multiscale likelihood techniques. This approach will be discussed in

Chapter 4. We will continue to use (3.2) as the multiscale model for the computations

described in the next section.

Next, the prior variance-P, of x(s) ateach node of the tree can be determined

74



3.2. MULTISCALE MODEL SELECTION

12

10 -

8 -
E

C
6 -

6

Cc4

2 -

0
0 1 3 4 5 6 7 8 9

Crossover Time Difference (Days)

Figure 3-6: RMS statistics of altimetric offsets at orbit crossover points (i.e., at those
points in physical space where two satellite orbital paths intersect) as a function of
the time difference between the two paths. The figure supports the assumption that
the ocean surface is relatively constant over periods of time up to ten days.

from a recursion obtainable directly from (2.26):

PI = E [x(s)x'(s)] = A(s)P,,A'(s) + B(s)B'(s) (3.3)

The recursion is initialized with the prior variance P, of x(O) at the root node of

the tree. Roughly speaking, P, can be thought of as specifying the prior level of

uncertainly in the aggregate mean height of the ocean. Here, in order to avoid biasing

our estimate of overall ocean height, we have set P,, to be very large (-- 10').

The measurement model is straightforward, since our observations are direct mea-

surements of the fx(s)j on the finest scale of the tree, i.e., C is a selection matrix.

Every node s on the finest scale obeys m(s) = M - 1, thus

C (8) 0 m(s) < M - I or x(s) does not correspond to an observation. (3.4)

1 m(s) = M - I and x(s) corresponds to an observation point.

The final parameter that needs to be specified is the measurement noise variance R(s).
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In particular, in this study we will consider three sources of error in the measurement

data:

1. The error in estimating the distance from the satellite to the ocean surface; this

error is assumed to be 5cm white Gaussian noise[32].

2. The error in assuming that the ocean is a static surface. Specifically, the surface

model (3.2) is static and does not account for any time evolution of the surface,

even though the measurements fy(s)j are taken over time.

3. The error in the geoid model, which manifests itself as an error in the geoid-

corrected TOPEX/POSEIDON data.

Item (2.) in the above list may be addressed by an examination of the satellite

crossover statistics; a crossover is a point of intersection of two satellite orbits. Let

the set of crossover points be given by

f (yaj, ydi, tai, tdi, pi) (3.5)

where yaj, ydi represent the measured ocean elevations at the same physical point pi in

space, but on ascending and descending satellite orbits, at times tai, tdi respectively.

The difference yai - ydi is independent of any error in the geoid which is a function of

space only; the difference is primarily due to the ocean elevation change ((pi, tai) -

((pi, tdi) over the time interval A ti � tai- - tdi. Figure 3-6 plots the empirical variance

of ya - yd as a function of the time difference I At 1. Increases in this variance with

At I quantify the degree to which the ocean measurements do not correspond to a

static surface. From Figure 3-6 the variances are seen to be relatively independent of

I At: I;- that', is,. the,,assumption-thatthe,, ocean surface is static, over periods up to ten

days appears to be well justified for our region of interest in the north Pacific.

Item (3.) in the above list concerns errors in the geoid estimates. The highest

quality geoid models currently availa.ble[79, 87] are quite effective at capturing large

scale and moderate scale geoid fluctuations,, but are less accurate in regions of sharp

local changes. Such a result is not surprising: the OSU91A geoid model which we
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use is constructed as a spherical harmonic expansion (truncated to order and de-

gree 360); the truncated expansion can exhibit Gibbs-like phenomena near abrupt

changes. Furthermore, navigation errors in the satellite lead to errors in registering

satellite measurements with points on the earth, and thus in areas of steep geoid

gradient, such registration errors lead to greater uncertainty in the geoid reference

field than in other regions in which the geoid is slowly varying. As a result, altimetric

measurements in the vicinity of steep geoid slopes are determined relative to a poor

geoid reference and therefore represent a less accurate assessment of the ocean surface

height. Consequently we have used the following measurement variance model:

R(s) = (5cm)' + O(Geoid Slope) (3.6)

where 0() is an increasing function (detailed in Section 3.4).

Finally, it is important to make a comment about one of the consequences of using

a simple scalar version of our multiscale model. In particular, the spatial position

of the multiscale tree on the ocean is somewhat arbitrary; that is, there is no par-

ticularly natural orientation for the multiscale tree. Consequently we will want to

make sure that the estimates produced by our algorithm are insensitive to the precise

positioning of the tree. However, consider a node s at a relatively coarse scale on

the tree. Since the state at each node is a scalar, the correlation between the four

children of node s, each of which represent the height of the ocean over a large area,

is captured by only one degree of freedom. In particular, the finer scale decompo-

sitions of each of these four descendants proceed completely independently, and as

a consequence artifacts may appear along coarse tree boundaries due to inadequate

correlation. Techniques which attenuate such artifacts will be studied in some detail

in Chapter 6; in this chapter we will use a relatively simple method that is adequate

for our purposes. Specifically, we compute ocean surface estimates for each of ten tree

positions (each shifted with respect to the others) and average the results. It should

be made clear that this is not at all like spatial low-pass filtering or interpolation, as

strong nonstationarities, such as in the quality of the data as measured by R(s), are
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Altimetric Estimates - 5cm Intervals
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Figure 3-7: Estimates of the mean ocea In elevation based on a single ten day set of
data.

maintained.

3.3 Estimation Results

Given a collection of observations and the multisc ale model as defined in the previous

section, the multiscale estimation algorithm (detailed in Appendix B) permits rapid

computation of multiscale estimates, estimation error variances, and measurement

residuals.

78



3.3. ESTIMATION RESULTS

60

55

50
Q_777!_ lo"iffW

AP;
0z

40

co
_J 35

30

25

20
180 185 190 195 200 205 210 215 220

Longitude (East)

Figure 3-8: Typical example of objective mapping using standard oceanographic tech-
niques, based on the same data set as in Figure 3-7.

3.3.1 Multiscale Estimates

A sample map of ocean surface estimates, taken from the finest scale of the tree, is

shown in Figure 3-7. This map is based upon a single repeat cycle, or ten days, of

data (about 20,000 data points). The 250,000 estimates and associated estimation

covariance information were computed in less than one minute on a Sun Sparc-10 (the

map is based on ten trees of estimates, each tree requiring 5 seconds of computation

time). Although Figure 3-7 shows estimates on one scale only, the one minute of

computer time produces estimates and error variances on all scales of the tree.

The ocean height variations shown in the figure are consistent with the known

large-scale oceanographic behavior of the region (that is, a predominant gradient in

the north-south direction with surface height offset on the order of one meter[52]).
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I

Moreover, the estimates such as those shown in the figure offer far higher resolution

than has heretofore been available (e.g., [12]). It is this very leap in resolution that

makes the quantitative assessment of our results difficult - we have come across no

other altimetric maps of sufficient resolution to compare with our plots. For example,

Figure 3-8 [52] shows an ocean altimetric map for the same region of the ocean and

the same period of time as we have considered. The figure, typical of the methods

used by oceanographers, is based upon gridding followed by spatial filtering. Clearly

a thorough validation of the enhanced resolution results provided by our method

will require alternate methods such as integration with global circulation models,

a problem that remains for the future. Nevertheless, the ability to produce such

estimates efficiently is itself of significance.

3.3.2 Multiscale Error Variances

Estimation error variances corresponding to Figure 3-7 are shown in Figure 3-9. These

values are based on the same ten day set of measurements as for the estimates just

discussed; the distribution of measurement dropouts along the satellite tracks in this

data set can be inferred from Figure 3-2. As before, the results are computed as the

average over ten multiscale trees, still within the same one minute of computer time

in which the estimates were computed.

Because of the spatially varying uncertainty in our measurements due to geoid

model error, the occurrence of data dropouts, and the irregular pattern of data col-

lection, we would expect that the uncertainty pattern in the optimal estimate of our

ocean height map would be highly variable and would, to some extent, reflect these

features. In particular, observe that the regions of lowest uncertainty (the lightly

shaded, regions .,in, the -figure)! correspond -,-Ao., the points, at. which we have satellite

measurements; a careful inspection of the figure will also reveal occasional darker

breaks along these lines, corresponding to data dropouts. In addition, because of

the spatially-varying noise model, the measurements near the Aleutian and Hawai-

ian chains (which induce a significant geoid gradient) are modeled. as, being noisier,

resulting in elevated covariance values. The large region of uncertainty at the top of
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Figure 3-9: Estimation error variances based on one repeat cycle of data; darker
regions represent greater uncertainty.

the figure is due to the Alaskan land mass.

Specific off-diagonal terms in the error covariance matrix may also be computed

using (2.29) with equal computational ease (as compared to other approaches which

would require the impractical calculation of the full error covariance matrix, contain-

ing -_ 10" elements). For example, by computing error covariances between a large

ensemble of tree nodes (here 50,000 pairs of nodes, randomly positioned in longi-

tude) one can determine averaged correlation coefficients of the estimation error as a

function of longitudinal separation, as shown in Figure 3-10.
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Figure 3-10: Off-diagonal elements of the estimation error covariance matrix can be

computed. This figure shows a Monte-Carlo determination of the correlation coeffi-

cient of the estimation error of two points as a function their longitudinal separation.

3.3.3 Oceanographic Anomaly Estimates

The shape of the ocean surface, as was estimated in Figure 3-7, is characterized by a

mean circulation shape upon which seasonal cycles and other variations (e.g., ocean

eddies, which do not appear predictably as a function of season) are superimposed.

Both the mean ocean shape and shorter period variations are of interest to oceanogra-

phers. However the shape of the ocean surface at any given point in time is dominated

by the mean circulation shape; as a result oceanographers compute anomalies, which

are the differences between �the mean ocean surface and surface estimates based upon

a short period of data.

Figure 3-11 shows a set of four such anomalies, computed as the difference between

the e'siim-ated average ocean elevation (estimated using the model (3.2), but with a

full year of satellite data) and ocean elevation estimates based upon relatively short

time intervals. The four anomaly plots of Figure 3-11 are spaced 2.5 days apart in
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Figure 3-11: Collection of four anomaly plots: anomalies are calculated as the differ-

ence between ocean surface estimates based on a short window of data and the mean

ocean surface elevation. Each of the four plots is based on a window of data about

eight days in length; the window is shifted by 2.5 days from one plots to the next.
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Figure 3-12: Approximate extent of the Kuroshio current off the coast of Japan.

time, each based on about eight days of data. The interpretation of such figures

requires a good deal of knowledge and intuition regarding ocean dynamics. We can

observe the evolution of a variety of features from one frame to the next, however a

physical understanding or justification of these evolutions is well beyond the scope of

this thesis.

3.3.4 Model Heterogeneities

One of the drawbacks with certain accelerated methods, such as those based on FFTs,

is the need for stationarity or uniformity of the phenomenon being modeled. In

contrast, our multiscale framework allows us to incorporate nonstationarities without

sacrificing computational efficiency.

Consider, for example, the Kuroshio current in the northwest Pacific off the coast

of Japan; the approximate extent of the current is illustrated in Figure 3-12. Due to

lhe� strength of this current, the gradient of the ocean surface in the neighborhood

of the Kuroshio is approximately four times larger[97] than in relatively quiescent

regions (the Pacific northeast, for example). To compensate for this effect, one can
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Figure 3-13: Estimates of ocean elevation (in cm) in the northwest Pacific using a
nonstationary model which accounts for the increased surface gradients in the vicinity
of the Kuroshio.

modify (3.1) by increasing those process noise values on those multiscale tree nodes

which overlap part of the Kuroshio. Such a process noise is highly nonstationary, and

by (3.3) implies a nonstationary prior covariance model. Since such adjustments to

the process noise remain compatible with the multiscale framework of (2.26), (2.28),

not only does our approach remain efficient in the face of such heterogeneities, but

in fact the increase in computational burden over the homogeneous case is essentially

nil.

Figures 3-13, 3-14 show estimates and error variances respectively for the north-

west region of the Pacific, using a heterogeneous process noise model as detailed

above. The distribution of the error variances shows the combined effects of irregular

spatial sampling by the satellite, loss of satellite measurements over land (Japan),
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Figure 3-14: Estimation error variances corresponding to the elevation estimates of
Figure 3-13. Darker regions represent greater uncertainty.

increased prior uncertainty over the Kuroshio, and nonstationary geoid-model error.

For purposes of comparison, Figure 3-15 shows the differences in the altimetry esti-

mates produced by multiscale models with and without Kuroshio compensation.

3.4 Calculation of Measurement Residuals

The examination,. of -m easurement� :residuals,.,,,,. the, differences between measurements

and the corresponding estimates, serves to test the validity of our multiscale models.

In particular, by normalizing these residuals with respect to their expected standard

deviations one can isolate statistically significant outliers. Such an approach may be

used to argue the inclusion of the gpoid slope d Iep.endent term in. the measurement error

(3.6). Figure 3-16 shows the distribution of statistically large residuals, calculated
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Figure 3-16: Overlay of geoid gradient map (in (a)) and of ocean bathymetry contours
(in (b)) with the distribution of locations of large residuals; regions of lighter shading
represent steeper geoid gradient. The striking correlation exhibited in these figures
motivates the correction of Figure 3-17.
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Figure 3-15: Differences (in cm) in the estimates produced by a homogeneous multi-

scale model and a model accounting for the presence of the Kuroshio.

using a simple measurement noise model

R(s) (5cm)' (3.7)

that is, a noise model which does not take any geoid model errors into account.

Figure 3-16 also plots the geoid gradient; the correlation between significant residuals

and steep geoid slope is unambiguous, and argues in favor of a geoid slope-corrected

measurement noise model. As an additional comparison, the same locations of large

residuals are shown superimposed on a plot of ocean bathymetry contours (the shape

of the ocean bottom) in the bottom half of the figure. To the extent that bathymetry

f6a'tures�'are responsible forfocally steep slopes in the geoid, the residual-bathymetry

correlation does not come as a surprise. Such residual-geoid correlation immediately
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Figure 3-17: This figure shows a sketch of the dependence of root-mean-square value
of measurement residuals as a function of the geoid gradient. This dependence is used
as a basis for taking geoid errors into account.

motivates the development of models to estimate the geoid; the development of such

a model is the subject of Chapter 5.

Figure 3-17 plots root mean square estimation residual magnitudes as a function

of geoid slope. This figure leads to the form, shown in Figure 3-18, for the geoid-slope

dependent term in the measurement noise model (function 0() of (3.6)) used for the

other results in this section. Such a heterogeneous set of measurement noise variances

may be used with no appreciable increase in computational burden (just as before,

with the heterogeneous process noise model for the Kuroshio).

3.5 Conclusions

This chapter has demonstrated the application of the efficient multiscale estimation

framework to the problem of ocean altimetry estimation based on irregularly sampled

satellite measurements. A number of significant difficulties which have led to signif-

icant suboptimalities and approximations in many other estimation algorithms are
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Figure 3-18: This figure plots the actual function 0() (see (3.6)) which was used
throughout this chapter; the form of the function is based on Figure 3-17.

resolved by our approach: our multiscale framework possesses the efficiency to deal

with truly enormous, possibly nonstationary, problems, computing both estimates

and error variances with relative computational ease. Furthermore the concept of

scale is made explicit, permitting the explicit characterization of phenomena possess-

ing interactions across a number of scales.

Although throughout this chapter the ocean altimetry application has been used

as a vehicle for demonstrating the use of the multiscale framework in such a modeling

context, the success of the application motivates many further possible applications

as well as extensions within the current context. With respect to the latter, we can

point to several problems of considerable interest, including the following:

The recise shape of power spectrum of the ocean remains a matter of current

scientific interest. Multiscale likelihood methods[62] provide an efficient and

statistically rigorous machinery for. examining problems of identifying the sta-

tistical structure of random fields. The identification of parameters in 1/f-like

multistate models such- as (12)z will be, explored in Chapter 4.
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• The distribution of measurement residuals (Figure 3-16) demonstrates clearly

the presence of geoid error as well as suggesting a way in which to correct for it

and thus provide local corrections to our estimate of the geoid. In particular, it is

possible that Joint estimation of the geoid and ocean height may simultaneously

improve estimates of both of these quantities. This extension forms the subject

of Chapter 5.

• There are a number of extensions of our multiscale modeling framework in

the development of higher-order methods for estimating both surface height

and surface gradients (a problem of independent interest in surface reconstruc-

tion problems in computer vision); such multiscale models will be developed in

Chapter 7.
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Chapter 4

1\4ultiscale Parameter

Identification

his chapter considers problems of multiscale system identification. Af-

ter the introduction, Section 4.2 demonstrates the application of the

multiscale framework to the problem of estimating the fractal dimen-

sion of a random process, and Section 4.3 deals with the development of a bound

on the uncertainty of estimated model parameters for a particular class of 1/f-like

multiscale models.

4.1 Introduction

There are two basic steps in developing a multiscale model for an unknown random

process:

1. the selection of a parameterized multiscale model (e.g., 1/f-like models (Sec-

tion 2.5.3), multiscale Gauss-Markov counterparts (Section 2.5.1), etc.),

2. the quantitative determination of the unknown parameters within the selected

model.

The selection of a parameterized multiscale model may be accomplished based on a

physical or intuitive understanding of the random process in question, or it may be
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accomplished using automated model generation techniques[47] if certain covariance

properties of the process are known. In any event, given a parameterized model the

determination of its parameters forms the subject of system identification[60] and will

be explored in this chapter.

Consider a parameterized multiscale model class, e.g.,

x (s) = A (s, H) x (s,�y) + B (s, H) w (s) w (s) - A((O, 1) Vs c 'T, s :A s,, (4. 1)

y(s) = Qs, H)x(s) + v(s) v (s) - V(O, R (s, H)) Vs E A4 C 'r (4.2)

which is similar to the basic multiscale equations (2.26),(2.28), except that (4.1),(4.2)

are parameterized by a vector H, and the noise terms w, v are assumed to be Gaussian

(to allow likelihood statistics to be calculated) - In principle, given a set of observations

y (s), s E A4 1, an estimator for the vector H may be written abstractly as

ft = argH max L A(s, H), B(s, H), C(s, H), R(s, H), y(s) (4.3)

The remainder of this chapter will explore the application of the abstract param-

eter identification scheme of (4.3) in two contexts:

1. In Section 4.2 we will demonstrate the estimation of the fractal dimension of

fractional Brownian motion[69] processes. We will present the development of

a new 1/f-like multiscale model which gives unbiased estimates of the fractal

dimension, and will compare its performance with other proposed estimators[49,

114].

2. In Section 4.3 we will postulate a class of 11f -like multiscale models having two

free parameters. This model class is of significant interest, since it is used in the

remote sensing applications of Chapters 3 and 5. We will derive a Cramer-Rao

bound for the maximum-likelihood estimation of the para-ineters for this class of

multiscale models, and compare the bound with Monte-Carlo simulations and

with tests on remote-sensing data.-,
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4.2 Fractal Dimension Identification

Fractional Brownian motion (fBm) processes[69] were introduced briefly in Sec-

tion 2.5.3. The second order (nonstationary) statistics of such processes are given

by

2
E [F[k], F[m]] (At)2H (1k 12H + IM12H _ Ik- M 12H) (4.4)

where g and H are scalar parameters which completely characterize the process. The

quantity H, which we wish to estimate, determines the fractal dimension (2 - H) of

the process; the power a is assumed to be known.

The exact maximum likelihood (ML) calculation for the fractal dimension of fBm

is computationally difficult (see [105]); fractal estimators have been developed based

on optimal algorithms applied to fBm-like 11f models[114], and based on approximate

or suboptimal algorithms developed directly from the fBm model[49, 105, 29]. Our

philosophy in multiscale statistical modeling falls into the former class: the statistical

self-similarity of fBm processes motivates us to develop a multiscale fBm counterpart,

parameterized by H which will allow us to use our statistically-optimal multiscale

likelihood calculation algorithm to estimate H in a manner similar to (4.3).

The approach in [114] is based on a 11f process constructed using a wavelet basis in

which the wavelet coefficients are independent, with variances that vary geometrically

with scale with an exponent equal to H. Geometrically varying variances are a poor

approximation to the fBm statistics for low H and lead to a biased estimator. The

method in [49] determines the exact statistics of the Haar wavelet coefficients of the

discrete fractional Gaussian noise (DFGN) process D[k] = F[k + 1] - F[k] and then

develops an estimator by assuming, with some approximation, that the coefficients

are uncorrelated; the use of the DFGN process D limits the estimator to those cases

in which the fBm process is densely and uniformly sampled.

The goal of the research of this section, on the other hand, is the development

of a fast estimator for H that functions under a broader variety of measurement

circumstances, for example in the presence of gaps in the measured sequence, mea-
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Figure 4-1: Dyadic tree structure used for the fractal Brownian motion estimator.

surement noise having a time-varying variance and higher dimensional processes (e.g.,

2-D random fields). The basis for accomplishing this is the utilization of our multi-

scale framework, in particular the multiscale likelihood calculation algorithm[65]. The

next section develops the multiscale estimator, followed by a description of estimation

results.

4.2.1 Fractal Model Development

The statistical self-similarity of fBm makes the application of wavelets to the fBm

process a logical choice. Kaplan and Kuo[49] apply the Haar wavelet to the incremen-

tal process D[k], and Wornell and Oppenheim[114] apply higher order Daubechies

wavelets to F[k]. We propose to use the multiscale framework to develop a Haar

wavelet multiscale stochastic model which applies directly to F[k]. This choice of

wavelet is motivated by the particularly simple realization of the Haar wavelet within

our framework by using a dyadic tree structure (see Figure 4-1):

X(S) = 1 +1 X(S,;:Y) + 0 B(s, H)w(s) s s,7yal
Coarse Scales 0 0 1 (4.5)

1 -1 0
X(S) = X B (s, H) w (s) _a2

0 0 (8';�Y) + I S 81Y
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X(S) = 1 +1 X(8�-Y) + 0 W(S) S = S�aj

Finest Scale X(S) = X(81Y (4.6)
Y(S) = X(S) + V(8)

where s = s,�7yaj implies that s is the left descendant of its parent, similarly S S�YCV2

the right. At coarse scales x(s) consists of two scalars: a coarse approximation to

the 11f process, and a detail coefficient. The detail coefficient equals the difference

in the coarse 1/f-like representation between node s and its two children, where the

sign of this difference depends on the parity of the child (i.e., left vs. right). At the

finest scale x(s) is a single scalar, representing a sample of a 1/f-like process, and

measurements of the actual fBm sequence appear as observations y(s) at the finest

scale. Note that the 11f process described by (4.5),(4.6) does not yield a finest scale

process that is exactly an fBm process (and thus, as with the technique in [114], our

model does not exactly match the statistics of the process to be estimated). However

by an appropriate choice of the remaining model parameters we can produce a process

with a similar type of 11f behavior.

The elements which remain to be determined in the above multiscale model are

the B(s, H): the standard deviation of the detail wavelet coefficients between node s

and its children. Expressions for the statistics of the wavelet decomposition of fBm

have been determined by others [29, 104], however the self-statistics for the special

case of the Haar wavelet are easily computed as follows:

• Let Fm-,[k] = F[k] which is the fBm process of interest.

• Define FM-,-,[k] as the process obtained by coarsening F[k] m times, such

that

F,-,,[k] = (F.+, [2k] + F.+, [2k + 11) /2 (4.7)

a r-31at-ioa which follows from the multiscale model of (4.5).
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• From (4.7) it follows that

2--1 -1 F [2m-lk +
Fm-m�kj = E (4.8)

i=O 2M-1
2(2--' -1) 2M-1 12M-1 - i - 11

Fm-m [k + 1] - Fm-m [k] = D [2m-'k + d (4.92M-1Z=0
2(2--' - 1)

D [2m-lk + i] ci (4.10)
i=O

• From the stationarity of the increments process D[k], and from the symmetry

Fm [k] - F,-,,+, [2k] -- - f Fm [k] - Fm+j [2k + 1] (4.11)

(4.10) reduces to the desired variance expression

E [(Fm-m-l [k] - Fm-m [2k] ) 21 =

1 2(2--' -1) 2(2--1 -1)+min(O,-i)
- A cici+j = B 24 E (s, H) (4.12)

Z= 2(2--l-1) j=- min(Oi)

where s is any node on scale (M - m - 1) of the tree, and where A D is the

covariance function of D[k]:

[i] 72 [ji + 112H + ji 2H jij2H]
A D 2 - 2 (4.13)

By way of comparison, it has been shown[114] that 11f processes, of which fBm is

a subset, may be approximated by wavelet synthesis in which the wavelet coefficient

variances are an exponential function of scale:

-2Hm(s) B H)B 2 (s, H) - �2 i.e., 1092 H (4.14)
B (s, H)

Table 4.1 shows the scale to scale variance ratios as predicted by (4.12). The deviation

from the approximate scaling law of (4.14) is most pronounced at low H; it is this
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Variance Ratio: H = 0.25 H 0.50 H 0.75 H 0.9

1092 (B01Bj) 0.250

1092 (BlIB2) 0.249

1092 (B21B3) 0.247 0.500

1092 (B3/B4) 0.242 0.499 0.750

1092 (B4/B5) 0.228 0.496 0.749 0.900

1092 (B51B6) 0.188 0.484 0.745 0.898

1092 (B6/B7) 0.091 0.437 0.727 0.892

1092 (B7/B8) -0.084 0.292 0.650 0.861

Table 4.1: Haar wavelet coefficient standard-deviation ratios as a function of H and
scale: B 2 represents the wavelet coefficient variance at scale M, where the coarsest
scale is m = 0. The deviation of the variance progression from an exponential law is
most pronounced at fine scales and for low values of H.

Variance Rule: H = 0.25 H = 0.50 H = 0.75 H = 0.90

Variances assumed ex- 0.05 0.40 0.70 0.91
ponential with scale

Variances based on ex-
act result H: 0.24 0.51 0.75 0.92

Table 4.2: The estimator in the top row is based on the premise that wavelet coefficient
variances are exponentially distributed, leading to a biased estimate ft.

deviation which leads to a bias for those estimators based on (4.14), as shown in

Table 4.2.

Our proposed estimator for H is based on the multiscale model of (4.5),(4.6), where

the process noise terms B(s, H) are given by (4.12). The estimator is implemented as

outlined in (4.3), in which the likelihood maximization is performed using standard

nonlinear techniques (e.g., the section search method of MATLAB).

4.2.2 Fractal Identification Results

Sixty four fBm sample paths, each having a length of 2048 samples, were generated

using the Cholesky decomposition method of [66], precisely the same approach as in
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Estimator H = 0.25 H = 0.50 H = 0.75 H = 0.90

W.O. 0.082 0.398 0.683 0.846

[114] 0_ff 0.022 0.021 0.026 0.021

(H - '�)RMS 0.169 0.109 0.072 0.058

K.K. ft 0.252 0.499 0.748 0.899

[49] 9� 0.017 0.017 0.017 0.017

(H - H) RMS 0.017 0.017 0.017 0.017

Multiscale ft 0.249 0.503 0.768 0.919

Haar U� 0.011 0.019 0.050 0.109

(H - H) RMS 0.011 0.019 0.054 0.110

Table 4-3: Estimation results for three estimators, based on 64 fBm sample paths,
each of length 2048 samples, with no additive noise. The experimental results for the
first two estimators are from [491.

Kaplan and Kuo[49] whose experimental results form the basis of comparison with

ours. The process power o- 2-- 1, and a is assumed to be known.

The performance of three fBm estimators is compared in Table 4.3. An evident

bias is present for low H in the estimator of Wornell and Oppenheim[114] as was

argued earlier based on Table 4.1. Also recall that the multiscale model of (4-5),(4.6)

assumed the wavelet detail coefficients to be uncorrelated; this assumption becomes

progressively poorer as H increases[29], leading to an increase in the error variance

for our estimator at large H. Nevertheless, our method still performs reasonably well

over quite a wide range of values of H. Moreover, using the techniques developed in

[61], we can construct higher-order multiscale models which account for most of the

residual correlation in the wavelet coefficients. The same likelihood procedure applied

to these higher-order models would then yield even better results, closely approaching

the exact ML estimator based on the exact fBm statistics. However since fBm itself

is an idealization, the benefit in practice of such higher-order models over that based

on the low-order model (4.5),(4.6) depends upon the application.

Fin& 11y. P.-, w-- Tinve said, our approach applies equalF, well in a variety of other

settings. For example, Table 4.4 illustrates the performance of our estimator under

non-uniform sampling (by randomly-discarding 10% of the measurements), and under
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Circumstance H 0.25 H 0.50 H = 0.75 H = 0.90

Irregular H 0.246 0.507 0.781 0.937

Sampling 9� 0.033 0.044 0.076 0.124
'i

(H - H)p 0.045 0.082 0.128

Nonstationary H 0.268 0.511 0.769 0.918

Measurement a- 0.011 0.019 0.051 0.109
'i

Noise Variance (H - H).s 0.021 0.022 0.054 0.110 I

Table 4.4: Performance of the fBm estimator for two examples: irregular sampling
(removal, at random, of 10% of the measurements), and nonstationary measurement
noise variance (noise standard deviation o7[k] = 1 expf-[(k - 1024)/500]21). In both

2
cases the results are based on 64 fBm sample paths, each of length 2048 samples.

a varying measurement noise variance. Both of these special cases are accomplished

with essentially no change in the algorithm (as opposed to the estimators of [114, 49]).

In addition, by using a quadtree rather than a dyadic tree we can also apply these

techniques in 2-D. An example of estimating non-isotropic fractal parameters for a 2-D

random field based on irregular, nonstationary data will be presented in Section 4.3.4.

4.3 Scalar Model Identification

The previous section considered the estimation of the fractal dimension, motivated

by a fairly specific class of processes (i.e., Mm). In this section we will consider a

more generic 11f model, motivated by the discussion in Section 2.5.3 and by the use

of this model in remote sensing applications (Chapter 3, Chapter 5). The canonical

11f -like multiscale model is as follows:

x(s) = x(s,;:y) + B-y-(S)W(8) X (0) - Ar (0, P.) (4.15)
W(s) - Ar(O, 1)

Y(8) = X(S) + V(S) V (8) - 'V (0, 07 2) M(S) = M - 1 (4.16)

i.e., measurements are made at the finest level of the tree only.

Figure 4-2 shows a contour plot of the model likelihood, as a function of B and
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Figure 4-2: This figure presents a contour representation of the likelihood surface
of the canonical model (4.15) based on synthesized data measurements on the finest
scale. The likelihood surface is maximized at B = 48, -y = 0.5, marked by a '+',
however the nearest likelihood contour, which is lower than the maximum by only
0.2%, extends for a very broad range of (B, -y) values.

-y, given a set of measurement data synthesized using the multiscale model of (4.15).

This figure possesses one curious feature: the portion of the likelihood surface within

0.2% of the peak (at B = 48, -y -- 0.5) is a ridge which extends over a considerable

range of B and -y. It is figures such as this which motivated the exploration of Cramer-

Rao bounds for the estimation of B and -y to acquire a deeper understanding of the

associated likelihood space.

4.3.1 Cramer-Rao Bound

Let y represent the collection of observations at the finest scale of the tree and Ay

the corresponding covariance matrix. Then the log-likelihood is given by

In �py(Y)� = -In �(27)liylljAyj� + yT A-1Y (4.17)
2 Y
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where Ilyll represents the number of elements in vector y. Furthermore, if we let X

represent the collection of finest scale states x(s) at which we have measurements,

then

Ay = Ax + Av (4.18)

where Av is diagonal, but where Ax possesses a great deal of structure (from the

multis-cale structure of the tree, that is, from (4.15)). Although analytical expressions

for the determinant JAyj are readily derived[65], closed-form expressions for JAyj are

very complicated and contribute little insight into the nature of (4-17).

Suppose that, in addition to the noisy measurements available on a subset of the

finest scale, we assume the availability of noiseless measurements on all coarser-scale

nodes of the tree. Although this may appear to be a poor assumption, the supposition

possesses three motivations:

1. The effect of the assumption is to add new measurements only, thus the Cramer-

Rao bound will still provide a strict lower bound on the estimation error vari-

ance for the multiscale model parameters.

2. The problem becomes analytically tractable.

3. Recall that on a densely-sampled quadtree (i.e., q = 4) 75 percent of the obser-

vations are located on the finest scale, so it does not necessarily follow that the

introduction of coarser-scale, noiseless measurements will significantly weaken

the Cramer-Rao bound on the estimation of multiscale model parameters.

Let us first consider the case in which the finest scale of the tree is densely sam-

pled with noisy measurements; the sparsely sampled case will be touched upon briefly

after the Cramer-Rao bound derivation. The introduction of noiseless coarser mea-

surements leads to an easily diagonalized determinant, making the CRB calculations

trivial. Let

V(s) = Y(s) - Vs�)' (4.19)
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then the statistics on v follow simply from our assumption:

0 i<M-2
2 2i 2) , Ar(o, 0(i + 072) U, i = m(s) - 1 (4.20)�V(O, B ly + ai i

o, i=M-2

where u was defined in (4.16), and where B, -� are reparameterized in terms of

for convenience.

Since noiseless measurements are available at all nodes except on the finest scale,

the random variables v v(s) are all independent; i.e., A, is diagonal. So

M-2 exp V(8)2 (4.21)
PV 1,3, 11 qi+1 i �+o �72 E 2(0(i + a?)

i=O (27) 2 11M(S)=i+1 M(S)=i+l

M-2 q+' M-2 M-2 (V(,3)2

In Pvl,3,( In( ]I (27r) 2 1 ln(o(' + u�) - E (4.22)
i=O 2 2 +1 200 + UT?)i=O M(S)=i+l i=O M(S)=i

From here the required derivatives are easily found, leading to the following Cramer-

Rao bounds:

1 < -E 92 In Pvl,3,( = M-2 (2i qi+1 (4.23)
a02 E

[�2 - i=0 (O(i + U?)2 2E ML] %

1 < -E 92 In Pvlo,( = M-2 (2(i-1)(i0)2 q'+' (4.24)
E pML�ML] - )(2 E (O(i + or?)2 2i=O 2

a2 In Pvl,3,( M-2 1 i 0 q'+ 1

< -E = E (O(i + or?)2 (4.25)
E [�MLJ 90,9( i=0 2

where �ML represents the error in a maximum likelihood estimation of similarly

�ML- It should be pointed out that the CRB derivation itself is not novel - it is very

similar to that of Worneil[113] - the novelty of this discussion is the assumption of the

previous page that made this CRB derivation applicable to our multiscale problem

at all.
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As stated earlier, it is implicit in equations (4.23)-(4.25) that measurements are

available at all nodes on the finest scale. Suppose now that measurements are available

at only a subset of the finest-scale nodes. Then the covariance Av will be diagonal

under the assumption of the availability of zero-noise measurements at all nodes on

the tree which are ancestors of those nodes on the finest scale at which measurements

are available. More specifically, let f SI, - - - , SN I be the collection of nodes on the

finest scale where noisy measurements are available. Then let

M-i-2,..., -M-i-21 11
Q(i) 81,��/ SN17Y (4.26)

where JJSJJ counts the number of different members in set S. Then Q(i) represents

the number of noiseless "measurements" that need to be assumed on scale (i + 1)

in order to diagonalize Av; for example, when the finest scale is densely sampled,

Q(i) = q('+'). The three CRB equations (4.23)-(4.25) are then modified by replacing

q'+' in each sum with Q(i); for example

I < -E 92 In Pv1p,( = M-2 (2i Q(i) (4.27)
a02i=0 (3(i + U�)2 2

E [�L] I

Finally there is the issue of estimating the prior covariance P, at the root node of the

tree. Two possibilities may be considered:

1. The root node covariance is some unknown P, not known to be related to the

process noise parameters �, (. In this case, the noiseless measurement y(o) at

the root node of the tree is a sufficient statistic for estimating P, giving the

usual CRB:

PY(O)IP. exp - y (0) (4.28)
-�/_27)7p=- _FP7

,92 p< -E Y(0)1P. (4.29)
2 2 P,,2E 2

[P-IMLI
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p2That is, the variance of the error in the estimate of P,, is bounded by 2 ".

2. The root node covariance is given by the extension of the process noise covari-

ances, i.e.,

P" (4.30)

then (4.20) remains valid at the root node, i.e., i = -1. The changes to the

CRB are thus accomplished by indexing all expressions in i from -1; e.g., (4.23)

becomes

a2 In Pvlo,( M-2 (2i q i+1
< -E (4.31)

E [�2 - (O(i + 07?)2 2ML]

Except in certain unusual circumstances (e.g., very small small M or small

q), the difference between (4.31) and (4.23) will be vanishingly small.

4.3.2 CRB - Synthetic Data Tests

Three tests were performed, in which data was synthesized on a multiscale tree using

a model with known parameters:

Basic Tree Parameters: 7 Level Quad-Tree (M = 7, q = 4)

(48CM)2

(0.5 )2

A non-linear optimization routine was used to maximize the multiscale likelihood

expression (4.3), leading to an estimate of the model parameters.

The three tests are as follows:

J. No noise is added to the measurements on the finest scale. The multiscale

likelihood calculation algorithm is given noiseless measurements on all scales

consistent with the assumption made in the derivation of the Cramer-Rao

bound.
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2. No noise is added to the measurements on the finest scale. Although the CRB

is still based on noiseless measurements on all scales, the likelihood calculation

algorithm is given measurements on the finest scale only which are noiseless.

3. Gaussian white noise, variance (2cm)', is added to the synthesized data. As in

test 2, the likelihood calculation algorithm is given measurements on the finest

scale only.

Each of the above tests were applied to 200 sets of synthesized sample paths; the

results corresponding to these tests are shown in Table 4.5. In the table, covariance

matrices always refer to the covariance of the joint vector [0 (] T, and p refers to the

correlation coefficient of the errors in � and �-

The conditions of Test 3, i.e., noisy measurements on a single scale, are similar to

those which we typically encounter in practice and thus represent the conditions of

greatest interest. There are two basic conclusions to be drawn from these results:

• The Cramer-Rao bound developed above was based on the assumption that

noiseless measurements are available on all scales above the finest. Although

this assumption might have appeared to destroy the usefulness of the bound

(i.e., make it excessively weak), the results of the table show the bound to be

relatively tight. Indeed in Test 3, a realistic test case, the empirical variances

exceeded the lower bound by at most 38%.

• The large correlation coefficient, predicted by the CRB and observed empiri-

cally, confirm the behavior originally observed in Figure 4-2 which we had set

out to explain, i.e., the fact that the likelihood value deviates very little from

its maximum over a wide range of values of B, -y.

4.3.3 CRB - Oceanographic Data Tests

The previous subsection has provided an empirical verification of the CRB. In this

subsection we would like to explore the identification of the parameters in the same
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Test 1: Finest scale measurement noise variances: U2 = 0

Scales on which meas. available to m.s. likelihood calculator: ALL

Empirical: Error Covariance 9.57. 104 -2.12-100
-2.12-100 4.86.10-'

Correl. Coeff. P = -0-98

CRB: Covariance Bound 9.92-104 -2.26-100
-2.26-100 5.26. 10-5

Correl. Coeff. P = -0-99

Test 2: Finest scale measurement noise variances: 0-2 = 0

Scales on which meas. available to m.s. likelihood calculator: Finest

Empirical: Error Covariance 1.41-10' -3.10-100
-3.10-100 7. 11.10-5

Correl. Coeff. P = -0.98

CRB: Covariance Bound 9.92-104 -2.26-100
-2.26-100 5.26.10-'

Correl. Coeff. P = -0.99

Test 3: Finest scale measurement noise variances: u 2 = (2 CM)2

Scales on which meas. available to m.s. likelihood calculator: Finest

Empirical: Error Covariance 1.94-101 -4.76-100
-4.76-100 1.24. 10-4

Correl. Coeff. P = -0.97

CRB: Covariance Bound 1.45.1 05 -3.73-100
-3.73-100 1.00_10-4

Correl. Coeff. P -0.98

Table 4.5: This table compares the Cramer-Rao bound and empirically determined es-
timation error covariances for three different test scenarios. The empirical covariances
are subject to errors aue to insufficient Monte-Carlo runs and due to quantizetlion ef-
fects of the likelihood optimization technique. The significant aspects of the table are
the close agreement between CRB and empirical covariances, and the large correlation
coefficient p, which confirms the behavior originally observed in Figure 4-2.
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multiscale model (4.15),(4.16), but applied to oceanographic data. This identification

serves two purposes:

1. To estimate the values of B, -y in (4.15). The estimated values provide an

independent test of the model values deduced in Chapter 3 using power spectral

matching.

2. As a model validation exercise. If the ocean surface is reasonably described by

(4.16), then the empirical covariance of [0, �]T should be similar to the CRB.

Empirical tests were performed using about 12 months of Topex / Poseidon data

(measurements of the ocean height) on a 9-level quadtree. The satellite measure-

ments are sparse, and thus only a subset of the finest scale nodes of the tree possess

measurements (10000 measurements distributed among 65000 nodes). The satellite,

its measurements, and the measurement sampling pattern have been discussed in

Chapter 3.

We propose to identify the parameters of (4.15) for two different circumstances:

1. The measurements placed on the finest scale of the tree make up a ten day

set of direct satellite measurements of ocean height having an approximate

measurement noise variance of (5cm)'.

2. The measurements placed on the finest scale of the tree make up a ten day set of

measurements of the ocean anomaly - the difference between the ocean height

at some time t and the average ocean height. The measurement noise variance

is approximated as (5cm)'.

Under each of these two circumstances, a nonlinear optimization routine was used to

deduce the empirical values of 0, ( for each of 37 ten-day data sets. The covariance

of p �i Tis computed as the sample covariance. The results are tabulated in the

�(e.c�-Lpjiil-,_,al" sections of Table 4.6.

Next, for each of the two circumstances a Cramer-Rao bound on the estimation

error covariance was determined; as was discussed above and demonstrated in (4.27),
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the CRB calculation was modified to account for the sparsity of the finest-scale mea-

surements. In each test, the empirically determined values for '3, ( were used in the

Cramer-Rao bound computation, since this bound depends upon '3, C. Results corre-

sponding to each of the above tests are shown in the "CRB" sections of Table 4.6. As

in the previous subsection, the covariance matrices in the table refer to the covariance

of the joint vector [13 (]T , and p refers to the correlation coefficient of the errors in

and

Several conclusions may be drawn from the results of Table 4.6:

1. The estimated model values under test 1,

B = 30.5cm /t = I - 21092 _Y - 1-8 (4.32)

agree well with the model values determined by power spectral matching in

Chapter 3.

2. Despite the fact that we are applying a simple, idealized multiscale model to an

enormously complicated time-varying natural system, the Cramer-Rao bound

and the empirical parameter covariances are of comparable order, lending con-

siderable credence to the use of the multiscale model.

4.3.4 Anisotropic Model Identification

We would like to end this chapter with one final model identification example, which

simultaneously addresses a problem of oceanographic interest, and demonstrates the

ability to identify anisotropic fractal dimensions of higher order processes (as claimed

at the.end of Section 4.2).

Consider the -multiscale model (4-15),(4.16). On a tree of order q, this model

implies a certain kind of isotropic behavior: the statistics of the evolution from a node

s to -any of its children sai is the same for all i, regardless of the relative parent-child

orientation. An assertion of such an isotropic model may be inappropriate for the

ocean surface: the rotation of the earth produces a fundamental asymmetry between
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Test 1: Use Topex/Poseidon altimetry data as input.

Number of tree scales: 11 = 8.

Empirical: Error Covariance 2.57.1 04 -3.67-100
-3.67-100 5.86. 10-4

Correl. Coeff. p = -0.95

Estimated Offset: = (30.5CM)2

Estimated Slope: = (0.772)2

CRB: Variance Offset: = (30CM)2

Variance Slope: = (0.77)2

Measurement Noise: a 2= (5CM)2

4.11.1 03 -4.40.10-'
Covariance Bound -4.40-10-' 4.85. 10-5

Correl. Coeff. p -0.985

Test 2: Use Topex/Poseidon anomaly data as input.

Number of tree scales: M = 8.

Empirical: Error Covariance 4.74-100 -3.67. 10-2

-3.67- 10-2 4.25- 10-4

Correl. Coeff. P = -0.82

CM) 2Estimated Offset: = (4.66

Estimated Slope: = (1.07)2

CRB: Variance Offset: = (5CM)2

Variance Slope: = (1.0)2

Measurement Noise: u2 = (5CM)2

Covariance Bound 3.12-100 -2.02 _10-2

-2.02- 10-2 1.34. 10-4

Correl. Coeff. P = -0.985

Table 4.6: This table compares th.2 r-�ramer-Rao bound and empirically determined
estimation error covariances based on two oceanographic data sets: ocean height
and anomaly height (the difference between the instantaneous height and the time-
averaged ocean height)-
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Figure 4-3: Two possible tree orientations and associated node labels for investigating
anisotropic spectra using a quad-tree.

the east-west and north-south directions; this asymmetry is realized in the action of

the the Coriolis force. We can investigate the presence of such spectral asymmetries

by using a modified quad-tree model which contains separate parameters for the

statistics along two orthogonal directions:

X(s) = I x(s,;y) + Bi-y'(s) x(0) - Ar(O, P.) SE 181, 841 (4.33)
1 W (8) w(s) - A((O, 1)

X (8) = I X (S�) + -B '(s) (s) X(O) - �V(01 P.) S E 182, 831 (4.34)
2 _Y2 W W(S) - �V(0' 1)

Figure 4-3 shows two possible orientations of the quad-tree and the associated node

labels SI, - - - , S4-

Figure 4-3(a) shows the usual tree orientation which was used throughout Chap-

ter 3. The model equations (4.33) and (4.34) parameterize the spectra along the

orthogonal NW-SE and SW-NE directions; we do not expect the Coriolis force to

induce a difference in behavior between these two directions. The resulting identified

model parameters (Bi, -yi, B2, 72) for each of 37 ten-day data sets are shown in the top

half of Figure 4-4; indeed, the NW-SE and SW-NE spectral parameters are essentially

indistinguishable.

On the other hand, Figure 4-3(b) represents a rotation of the usual orientation
0by 45 , allowing the model (4.33),(4.34) to parameterize the spectra aloag the or

thogonal N-S and W-E directions; in this case we certainly expect the Coriolis effect

to act differently upon the two directions. The resulting identified model parameters

(BI, 71, B2, 72) are shown in the bottom half of Figure 4-4 - a clear separation between
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Figure 4-4: Two examples of isotropic oceanographic spectrum identification. In
each example one set of spectral parameters (Bi I yi) B2, 'Y2)was identi-
fied for each of 37 ten-day TOPEX/POSEIDON data sets.
Top Figure: spectral identification results along NW-SE and SW-NE
directions.
Bottom Figure: spectral identification results along W-E and N-S di-
rections.
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the N-S and W-E parameters is observed.

It is possible to postulate effects other than the Coriolis force which might induce

such spectral anisotropies;' however this does not affect the basic result of this sec-

tion: multiscale models such as (4.33),(4.34), coupled with the multiscale likelihood

function evaluator, are capable of assessing and quantifying certain anisotropies in

multidimensional processes.

'For example, the nature in which the curved surface of the earth is sampled onto the rectangular
grid which we process is also nonisotropic. Furthermore the predominant W-+E circulation in this
portion of the ocean introduces an asymmetry.
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Chapter 5

Geoid Surface Estimation

his chapter continues to investigate the oceanographic estimation prob-

lem considered in Chapter 3; however, whereas in Chapter 3 we consid-

ered the geoid as given (albeit with a spatially varying error variance),

in this chapter we will Jointly estimate the ocean elevation and the geoid. It must

be emphasized that the results of this chapter are of a preliminary nature; additional

work, particularly in the area of model validation, will be required in order to prop-

erly address the joint estimation problem. Furthermore some of the arguments in this

chapter are not yet adequately justified for this work to be considered complete.

5.1 Introduction

As this chapter represents, in a sense, a continuation of the ocean elevation estimation

study of Chapter 3, for basic introductory and background material the reader is

referred to Section 3.1.

There are at least two significant motivations for studying and estimating the

geoid:

1. Given the availability of accurate global ocean elevation data, which measures

the sum of the geoid N and the ocean height ( relative to the geoid, an improved

estimate of the N immediately implies an improved estimate of
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2. The geoid is correlated with features inside the earth: the thickness of the crust,

density variations within the crust, and the nature of the boundary between the

crust and the mantle. An improved estimate of the geoid leads to an improved

understanding of the earth's interior.

Although the geoid can be measured pointwise on the surface of the earth, it is es-

sentially impossible to densely sample the geoid on a global scale in this manner.

High-resolution global data sets are available which contain measurements strongly

correlated with the geoid, however the fine-scale estimation of the geoid remains a

challenge because of the difficulty of separating the geoid from other signals in the

data sets. For example, a detailed knowledge of the shape of the earth's surface is in-

sufficient to determine the gravitational effects of its crust because the space-varying

density of the crust is inadequately known, and because even the thickness of the

crust (i.e., the spatially-varying degree to which it projects into the mantle) is un-

known. Similarly the separation of the geoid N and the relative ocean height ( from

satellite altimetric measurements is a difficult task. There are certain consistency

relationships which must hold for (, which in principle allows the separation of the

satellite measurements into its geoidal and oceanic components, however the consis-

tency constraints involve sophisticated climatological models, difficult to incorporate

into an estimator.

Nevertheless, we have a strong reason to believe that our multiscale approach will

be able to deduce improved estimates of the geoid: the measurement residuals of

Figure 3-16 are strongly correlated with fine-scale topographic and bathymetric fea-

tures - precisely those features too small (i.e., local) to be captured in the OSU91A

geoid[87] used in Chapter 3. That is, since the measurement residuals are corre-

lated with certain aspects of the OSU91A error, in principle a part of that error is

estimatable from satellite measurements.

Motivatk�li by Figure 3-16, we propose to j,:=fly estimate the geoid N and the

relative ocean height ( from TOPEX / POSEIDON data and from the OSU91A

geoid estimates. This proceeds in three stages:
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1. We need to determinate an appropriate joint multiscale model. We will continue

to use the prior model for ( from Chapter 3, and a similar prior model for N

will be developed. The multiscale measurement model will need to relate N,

to two data sets:

(a) TOPEX / POSEIDON altimetric measurements of N +

(b) The OSU91A estimates of N

The key quantity to be specified is the error variance of the OSU91A data set;

this variance will be denoted by O(x, y) -1

2. We believe that O(x, y) is strongly correlated with the measurement residuals

v(x, y) of Section 3.4. We do not, however, wish to infer 0 directly from V, since

doing so asserts, without justification, that the value of each residual can be

attributed to the OSU91A error.

Instead, we wish to independently determine a function AG(x, y) which is cor-

related with the OSU91A error. We will demonstrate how two such candidate

functions may be determined from measurements of the earth's surface (or to-

pography) T(x, y).

3. Once we have determined v(x, y) and AG(x, y), we will correlate these functions

to infer O(x, y). Once we have determined 0 our joint multiscale model is

complete and can be used for joint estimation.

The above stages follow the logical flow of the chapter:

Section 5.2 - Background and previous work

Section 5.3 - Joint multiscale model definition

Section 5.4.1 - Computation of residuals v(x, y)

Section 5.4.2 - Computation of function AG(x, y)

'Measurements taken over a planet are usually indexed in terms of some spherical coordinate
system (e.g., latitude and longitude). On the other hand, when only a small fraction of the planet
is being studied we may assume the region to be flat and to index measurements and estimates in
terms of a Cartesian (x, y) system. This latter approach will be used throughout this chapter.
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Section 5.4.3 - Computation of O(x, y)

Section 5.5 - Joint estimation results

5.2 Past Efforts

To be sure, there have been a great number of efforts to estimate the geoid[30, 71, 79,

82, 86, 87] including efforts to jointly estimate the geoid and the ocean elevation[21,

23, 24, 72, 80, 101, 116]. Although the sheer number of efforts is large, they differ

primarily in terms of details of geodetic and oceanographic models, parameters, and

corrections. There is a significant common thread to most of these efforts; the goal

of this section is to briefly review some of this common ground in order to put the

work of this chapter into context.

There are four types of measurements which are widely used in estimating the

geoid:

1. Oceanographic Altimetry: altimetric measurements of the ocean elevation mea-

sure

Ys(x, y, t) = N(x, y) + ((x, y, t) + noise (5.1)

Since the range of ( is small (about one meter), frequently satellite altimetric

measurements have been considered noisy measurements of the geoid, Y, -_ N,

with ( being part of the "noise". Until recently, long-wavelength errors in the

estimation of the satellite orbit made this data of limited use when estimating

long-wavelength components of the geoid.

2. Orbit Tracking: the trajectory of a satellite orbiting the earth is perturbed

from an ellipsoidal shape by the undulations of the gravitational field felt by

the satellite. The transfer funct-:("'n of the gravitational field at the urf,,�ce of a.

flat earth to that at altitude z is given by the upwards continuation function

-Z W2+W 2e Y (5.2)

118



5.2. PAST EFFORTS

Negative Correlation Positive Correlation

Geoid N(Xy)

Surface T(xy)

Lower Density Crust

gher Density Mantle

Figure 5-1.: A simple example of positive and negative geoid-topography correlation.

(where w,,, wy are the spatial frequencies along the x and y directions). For typ-

ical satellites in orbit at altitudes z > 3OOkm, only relatively long wavelengths

(> 20OOkm) of the geoid may be estimated from orbital tracking data.

3. Surface Topography: A detailed knowledge of the shape of the earth's surface,

T(x, y), is insufficient to determine the gravitational effects of its crust. For

example, consider a single mountain on the earth's surface; even assuming that

its density is uniform and known, the gravitational field in the vicinity of the

mountain is difficult to predict because of the unknown response of the underly-

ing crust to the mass of the mountain (see sketch in Figure 5-1). In many cases,

a low density crustal root projects into the mantle under the mountain[17, 41],

such that the gravitational perturbation near the mountain may be one of re-

pulsion, rather than attraction.

Consequently the geoid may be negatively correlated with large structures, such

as mountains, but positively correlated with smaller hills, whose mass is too

small to generate a crustal root. The correlation between the topography and

the geoid, expressed as a function of wavenumber, is known as the coherence[42,

501. For high wavenumbers the coherence is positive; for low wavenumbers the

coherence is small and possibly negative.

4. Pointwise Measurements: direct measurements of the geoid are inadequate in

scope to serve as the basis for a global estimation of the geoid. These measure-

ments have primarily served as a validation points for geoids estimated by other
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means.

All of the cited geoid estimation efforts performed least-squares estimation of a

vector of unknowns using brute-force matrix inversion techniques (i.e., by directly

computing (2.9),(2.10)). Such an approach has clearly constrained researchers to

estimating relatively small numbers of unknowns. This constraint has motivated the

use of a global set of basis functions in which to represent the geoid: a spherical

harmonic basis is almost universally used for this purpose. That is, the geoid is

represented as[42]

n

N(A, K (01,,, cos(mA) + am sin(mA)) Pi""(sin (5.3)
1=2 m=-n

where K is some constant, Pi'm represents the fully normalized Legendre function[42],

A represents the longitude, and 0 counts degrees of latitude from the north pole. J is

chosen relatively small (J < 50) such that the vector of coefficients may

be estimated by matrix inversion.

To be sure, higher order estimates of the geoid have been produced; for example,

the geoid estimates used in Chapter 3 were based on a spherical harmonic expansion

to J = 360. The low and high order coefficients of high order geoid estimates are

typically computed separately (where a natural separation is frequently provided by

the measurement data):

1. The low order coefficients (e.g., up to degree and order J -_ 50) are estimated

using straightforward least-squares matrix inversion techniques. For example,

these low order coefficients may be estimated based on satellite orbital tracking

data[79, 82] (which is accurate at low orders).

2. The remaining, higher order, coefficients are computed as spherical harmonic

coefficients of the measurement data without any statistically-based processing.

For example, these coefficients may be computed as the spherical harmonic

integrals of topographic data[79, 82] (measurements of T(x, y)).

For low-order terms, the complete estimation error covariance is available, whereas
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no error statistics are available for the remaining higher order terms.

Prior models are chosen primarily to regularize the low order component of the

estimation problem (that is, to improve the conditioning of the matrix inversion),

rather than to assert prior statistical knowledge. The selected prior model is fre-

quently the weakest possible one which provides adequate regularization. Three prior

models are commonly used for the geoid:

1. No prior may be used[79, 80]. In low-order estimation problems there are typi-

cally far more measurement data than unknown coefficients.

2. A prior model[72, 101] based on Kaula's law[50], which states that

var(C,,,) (X - var(S,,,) oc - (5.4)
14 14

3. A prior model[21, 23, 82, 86] is chosen based on the estimation error covariance

matrix of previous geoid estimates.

A number of efforts[21, 23, 24, 72, 80, 101, 116] have jointly estimated the geoid

and the relative ocean height. The relative ocean height ( is written as a low-order

(typically J < 20) spherical harmonic expansion as in (5.3), and one of the following

three prior models is asserted:

1. No prior is used[80, 101]: the prior model chosen for the geoid is assumed

adequate for regularization purposes.

2. A prior model based on empirical power spectral laws, such as in ([33]), is

chosen.

3. A prior model is chosen[21, 23, 72] based on the error covariance matrix of

previous ocean height estimates, in particular that of Levitus[58].

The past efforts referenced in this section all used full matrix inversion to compute

least squares estimates; such an approach seriously constrains the number of coeffi-

cients to be estimated, and hence the resolution of the estimated field. Furthermore
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the use of global spherical harmonic functions introduces further problems[21, 231

(e.g., statistical questions regarding the meaningfulness of global estimates of ocean

height on a planet whose surface is 30% land).

In the next section we will explore an alternative means to perform joint geoid

ocean height estimation using our multiscale estimation framework. The efficiency of

this framework allows large numbers of coefficients to be estimated, allowing us, in

principle, to compute high resolution pointwise estimates without resorting to global

basis functions.

5.3 Multiscale Model Selection

As in Chapter 3, our physical region of interest will continue to be the region in the

north-east Pacific ocean, as shown in Figure 3-2. We will continue to use the same

multiscale model for the ocean surface (, selected in Chapter 3:

((s) - ((s,7y) + 35cm - 2-rn(s)/2W(8) (5.5)

a model which implicitly assumes the ocean surface to be static over time. We will

use Kaula's law[50] as the motivation for the multiscale prior model of the geoid.

Recall that Kaula's law asserts that

var(C,,,) cc - var (91,) oc - (5.6)1 4 14

Let

J n
N(A, K T cos(mA) 91,. sin(mA)) Pi,,(sin

1=2 m=-n
J

KEN1(A,0) (5.7)
1=2
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Then the variance of the total power in N, is given by

I
var N,2 sin (0) do dA OC 1: 1-4 OC 1-3 (5.8)

M=-1

That is, if we consider the order I to be a rough measure of scale, then Kaula's

law predicts a Ilf' prior spectrum. The above argument can be made more precise

by computing the exact one-dimensional wavenumber spectrum associated with the

spherical harmonic coefficient variances[118]:

i r(I - k + 1) r((1 + k + 1)/2)2m 7r 2
S(k) 1(21 + 1) :COS (-(I + k)) (5.9)

1=k 47rr(I + k + 1) 1'((l ± k)/2 + I)T-F 2

where I' represents the Gamma function. A numerical solution for (5.9), given a 2 (X1

i-4, predicts a 1 If 1.2 spectrum. Such a power-law form for the prior model of the

geoid suggests a multiscale model of the form

N(s) - N(s�) + BN2-(s)('-tLN )/2W(S) (5.10)

where AN = 3.2.

The likelihood techniques of Chapter 4 may be applied to the model of (5.10) as

a validation of our proposed value Of AN. The optimization of the likelihood, given

samples of the OSU91A geoid at the TOPEX/POSEIDON measurements locations,

as a function of BN, AN yields

BN -- 3600cm AN -_ 3.23 (5.11)

which agrees well with the value Of PN from Kaula's law. Consequently we propose

the following model for the geoid:

N(s) = N(s,�y�) + 3600cm - 2-'-"(s)w(s) (5.12)

Two data sets will be used as measurements: the set of OSU91A geoid estimates
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YN, and TOPEX/POSEIDON altimetric data Ys. Under the assumption that the

noise in the altimetric data has a variance of (5CM)2 [32], the multiscale measurement

model becomes

YS (8) (8) + 5 0 V(S) m(s) M - 1 (5.13)
YN 0 1 N 0

The function 0 describes the space-varying error variance in the OSU91A geoid. To

be sure, the creators of the OSU91A geoid have computed 0, but only at very low

resolutions, inadequate to capture the high-resolution variability implied by Figure 3-

16. We did perform an approximate evaluation of function 0 in Section 3.4 based

on the OSU91A geoid gradient; a more elaborate determination of 0 forms the topic

of the next section. Once 0 has been determined, the specification of the multiscale

model is complete, permitting joint estimation of the geoid and ocean height.

5.4 Determination of 0

In Section 3.4, the geoid error variance 0 was estimated via the observation that the

measurement residuals, resulting from a multiscale estimation of the ocean elevation,

were strongly correlated with the slope of the OSU91A geoid. That the OSU91A

geoid slope was chosen as the basis of comparison with the residuals was somewhat

ad-hoc; we should be able to do better by looking more closely at the error in the

OSU91A geoid estimates.

The OSU91A geoid estimates may be written as

Yv - N + 1� N + ]�, + (5.14)

That is, the OSU91A geoid Yv possess two sources of error:

9 Errors of commission errors in the coefficients in the geoid estimates.

* Errors of omission errors due to the truncation of the spherical harmonic

expression at some limit J.
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We propose to model the geoid error term li� and to ignore the error associated

with N,:

1. Much of the commission error occurs at long wavelengths[87], making this error

difficult to estimate from the relatively small area of study in the north Pacific.

2. The distribution of large measurement residuals from Chapter 3 (Figure 3-16)

is strongly correlated with local bathymetric features (i.e., those features too

small to be captured by the OSU91A geoid and hence contributing to 1�0).

Now recall from our discussion in the introduction that there remain three steps to

determine 0:

1. Compute the measurement residuals under the assumption that the OSU91A

geoid is exact; this is the subject of Subsection 5.4.1.

2. Independently compute a function AG which is believed to be correlated with

the OSU91A geoid error; this is the subject of Subsection 5.4.2.

3. Once the residuals v and the function AG have been calculated, we will correlate

v with AG to infer 0; this is the subject of Subsection 5.4.3.

5.4.1 Determination of Oceanographic Residuals

Our goal in this section is to compute statistically significant residuals, computed

ignoring errors in the OSU91A geoid; i.e., the residuals are based on the multiscale

model

((s) - ((s,;ry) + 35cm - 2 -m(s)/2W(S) (5.15)

Y( (8) - ( (8) + V (S) E [V2 (8)] = (5cm)2 (5.16)

where the data set Y( is computed as Y( = Ys - YN, and where the normalized

measurement residuals are computed as

YS YN
V (8) = (5.17)

VP (s) + R(s�)
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A simple set of residuals were computed in Section 3.4, however these were computed

based on a single ten-day set of data, whereas over one year of data is currently

available.

Recall that our multiscale prior model for the ocean surface (5.15) assumes the

ocean surface to be static, consequently it is not obvious how best to make use of

satellite data taken over long periods of time (i.e., periods sufficiently long such that

the static assumption may be poor). There exist at least two reasonable alternatives:

1. One year of satellite measurements corresponds to 37 repeats cycles; that is,

for our region of interest in the north Pacific, 37 independent measurements

are taken at each of the roughly 20,000 sample points. By averaging the 37

measurements at each of these sample points, we obtain a new data set K

containing "measurements" of the mean ocean surface The variance of the

�Cmeasurement" Y�( will be

(5cm) 2
var (XI y)) - - + (pointwise ocean surface variance over one year) (XI y)

37
(5.18)

that is, computing the pointwise average of the satellite measurements will

reduce the 5cm white measurement error by a factor of V"3--7, however additional

variance is added by the intrinsic variability of the ocean surface over time (over

one year) -

2 .Rather than averaging the measurements of the 37 repeat cycles, we can com-

pute a set of residuals for each of the 10-day repeat cycles, and then average

the residuals. The variance of the data set K (XI Y) = YS (XI y) - YN (XI y) for

each, of the rep eat cycles is

var (Y( (XI y)) - (5cm) 2 + (pointwise ocean surface variance over ten days)(XI Y)

(5.19)

The choice between these two alternatives is dictated by the size of the variances in
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Figure 5-2: A sample variance was computed at each TOPEX/POSEIDON mea-
surement location based on one year of data (36 samples). The solid line shows the
sorted sample variances; the dashed line shows the distribution of sample variances
computed from 36 samples of 5cm Gaussian noise.

(5.18), (5.19). We have chosen the latter approach - to divide the satellite measure-

ments into ten day periods and to compute measurement residuals for each period -

based on the following observations:

• Figure 5-2 plots the sorted pointwise sample variances of the ocean measure-

ments over a period of one year; it is clear that the variance of (5.18) is well in

excess of (5cm)2.

• From Figure 3-6 the ten-day variability of the ocean in the north Pacific is

known to be small (considerably less than 5cm). Consequently the variance of

(5.19) is on the order of (5cm)2.

A set of normalized residuals vi (x, y) was computed for each of 37 repeat cycles,

I < i < 37 as per (5-17). For each repeat cycle, multiscale estimates were computed

on a 512 x 512 grid based on the average of 17 multiscale trees (each with an origin

shifted relative to the others to attenuate artifacts due to the multiscale boundaries)

using the multiscale model of (5.5).
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Now since the ocean surface ( is close to static for the ten-day duration of repeat

cycle i (i.e., the spatial RMS variability of ( over the ten days is considerably less

than 5cm); i.e., for the duration of repeat cycle i; then

I
Vi (X, Y) YSi (XI Y) - YN (XI Y) - (i (X, Y) (5.20)

VPj (XI y) + R (XI y)

(i(XI Y) - ]�-(X' Y) - ��(X' Y) (5.21)
JP7j (XI y) + R (�xy)

a ]�� (X I Y) + ni (XI Y) (5.22)

where

a lqi(XI Y) (XI Y) - (i (XI Y) (5.23)
06i (XI Y) + R (XI y) 05i (XI Y) + R (XI y)

These equations are defined only at those (XI y) corresponding to sample points of

the satellite. What (5.22) implies is that the residuals contain one component pro-

portional to the error in the OSU91A geoid and a separate random component

E[,qi(x, y)] - 0 var (,qi (XI y)) -_ 1 (5.24)

Certainly the vi(XI Y) at a given (XI y) for different values of i may be correlated,

however to capture such correlations requires a multiscale model which is able to

capture the evolution of the ocean surface over time; the development of such models

remains an active area of research. Motivated by (5.22) it is reasonable to propose to

average the residuals over the repeat cycles

W
(XI Y Vi(XI Y)/W (5.25)

where, based on (5.22) we expect that for W sufficiently large,

(5.26)
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Figure 5-3: The figure shows the distribution of those measurement residuals (each
marked with a '+' sign) in excess of 1.5a.

The resulting normalized, averaged residuals which are in excess of 1.5 are shown

in Figure 5-3. In the next section we will independently compute two functions

AGANOM, AGTOPOG which we believe are correlated with high wavenumber errors

in the OSU91A geoid estimates. The need for such an independent function AG stems

from the following: without knowing anything about the geoid, we have no way of

discriminating between the geoid-related and random components of the residuals 0;

e.g., a single, large residual may be due to an underwater mountain or due to an

anomalously large satellite measurement error.

If such a function AG can be found, why not compute it and let (AG)'?

Proposed forms of the function AG (for example the function based on the OSU91A

geoid slope in Section 3.4) are correlated with the OSU91A geoid error, but the

quantitative form of the correlation between AG and 0 is unknown; it is the residuals

process 0 which will establish the form of this correlation (in Section 5.4.3).
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5.4.2 Computation of AG(x, y)

We wish to find a function AG(x, y) which is correlated with the OSU91A geoid error,

i.e., correlated with ]��. We propose to compute AG as the high-pass filtered geoid-

anomaly associated with the topography of the earth; this approach is reasonable,

since the high wavenumber features of the geoid are almost entirely dependent on

local topographic features (which follows from (5.28),(5.29) - two transfer functions

which relate the topography and the geoid); consequently we propose to ignore the

subtleties of global topographical data processing[30, 107] and to assume a locally

flat earth.

Consider a two-dimensional density anomaly Ap,,(Xl Y) at a depth z below the

2surface of the earth. The anomalous gravitational field, at depth z, associated with

this density plane is

A -y, (x, y) -_ 27r G A pz (x, y) (5.27)

where G is the gravitational constant. The corresponding anomalous gravitational

field at the surface of the earth is related to that at depth z by means of the upwards

continuity relationship[54]:

A -yo (x, y) -_ A -y, (x, y) z (5.28)
2,F(X2 + y2 + ZI)3/2

where * represents the two-dimensional convolution operator. Finally, the anomalous

gravitational field at the surface of the earth is related to the corresponding geoid

anomaly 3 at the earth's surface by means of Stokes' relationship[54]:

AG(x, 'Yo X, Y (5.29)
27go(X2 + Y2)1/2

2We ignore the curvature of the earth in our computations - a reasonable assumption for local
gravimetric processing

'The geoid anomaly is a surface of constant anomalous gravitational potential, where the anoma-
lous potential is that potential field associated with the density anomaly function Ap, (x, y). Thesurface isr typically chosen'to, have; a nfe, , h'ight of " a-level;geoid anomaly (�n- e se
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Figure 5-4: Airy-Heiskanen compensation for topographical data: mountains on the

crust have corresponding "roots" which project into the mantle, allowing the moun-

tains to "float" on the mantle; the opposite effect occurs over water.

where g,, is the gravitational acceleration at the earth's surface. In principle we

can apply (5.28) and (5.29) to the problem of computing a geoid anomaly associated

with an anomalous density distribution Ap(x, y, z) inside the earth: we discretize this

density distribution into a set of density anomaly planes f Apzi (x, y) I and approximate

the geoid anomaly as the sum of the geoid anomalies associated with each of the

A pz, (x, y).

For this chapter we will define the anomalous density distribution Ap(Xl Y, Z)

as the difference between the true density distribution of the earth and the density

distribution of a planet with a constant surface height and a constant crustal thickness

(the dashed lines of Figure 5-4). The "true" density distribution of the earth is, of

course, unknown. Instead, we will be approximating the shape of the crust based on

high resolution (5 minute) data of the earth's topography[77] for the north Pacific; the

thickness of the crust follows from a common assumption[82] regarding the response of

the mantle-crust interface to surface topography and is given by the Airy-Heiskanen

compensation method[42] (see Figure 5-4). Under this compensation, the crust is

divided up into vertical columns; the thickness of the crust in each column is chosen

so that the amount of mantle-mass displaced by the projection of the crust into the
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mantle equals the mass of the crust above sea-level (i.e., we are satisfying a buoyancy

constraint: the crust "floats" on the higher-density mantle). With respect to the

notation shown in Figure 5-4, the Airy-Heiskanen compensation implies the following:

t(PM - PC) - Tpc (on land) (5.30)

tl(p,-,, - p,) = T'(pc - P.) (on water) (5.31)

Typical parameter choices are[42]

H = 30km, p, = 3.27g/cm, p, - 2.67g/cm, P. - Ig/cm (5.32)

where H represents the mean thickness of the crust, and where the subscripts m, c, w

represent the mantle, crust, and water respectively.

We computed the geoid associated with the topographical data as follows:

1. The topographical data as provided is regularly sampled in latitude and longi-

tude. Consequently pixels at high latitudes have a much smaller size than those

nearer the equator; in principle, such a change of scale would imply that a non-

isotropic transfer function would be required to compute (5.28) or (5.29); the

use of an isotropic transfer function (required in order to use FFT techniques)

would introduce distortions. To minimize such I distortions, we have regularly

resampled the field in latitude and sin(latitude)-longitude.

2. From the resampled topographical data and'the Air' Heiskanen compensation

method we determine the depth of the crust.

3. The crust is stratified into 1000m layers; for each layer we compute the upwards-

continuation and Stokes' convolutions (in the frequency domain using FFT tech-

niques), yielding the geoid anomaly associated with that layer. The total geoid

anomaly associated with the topographical data is equal to the sum of the geoid

nomalies y ayer.
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The effect of truncating the spherical harmonic expansion of the geoid at de-

gree and order 360 is emulated by applying a high-pass filter to the computed geoid

anomaly. The high-pass filter is implemented as the difference between the original

field and the field after low-pass filtering. To avoid possible ringing effects, the low-

pass filter is implemented in the time-domain as the convolution with a Gaussian

kernel having an effective cutoff wavelength of one degree. The resulting high-passed

geoid anomaly, denoted by A GANOM (X, Y), is plotted in Figure 5-5.

The computation of AGANOM has been somewhat involved. If we assume the to-

pography to be perfectly correlated with the geoid at high wavenumbers (i.e., ignored

the effects of Airy-Heiskanen compensation of Figure 5-4 and ignoring the effects of

(5.28), (5.29)) we can propose a function AGTOPOG (X, Y) which is computed by ap-

plying a high pass filter (the same filter as in the previous paragraph) directly to the

topography data T(X, Y). The resulting function is plotted in Figure 5-6.

By way of comparison, Figure 5-7 plots AGOsu, the gradient of the OSU91A

geoid estimates; this gradient was used (with some justification, see Section 3.2) as a

rough measure of the OSU91A error in Chapter 3.

Figures 5-5, 5-6, and 5-7 show three possible candidates for the function AG. It

is possible to identify the basic features of the topography - the Aleutian trench and

the Hawaiian island chain - from AGANOM (Figure 5-5). Furthermore there are a

fair number of more detailed features present here which are not visible in the geoid

slope map of Figure 5-7; this is encouraging, since by definition AGANOM is meant

to capture fine scale features not resolved by the OSU91A estimates.

AGTOPOG (Figure 5-6) possesses the finest structures of the three functions. Since

AGANOM is essentially a low-pass filtered version of Figure 5-6 (due to the nature

of the upwards-continuation transfer function), it should come as no surprise that

AGTOPOG shows the greatest amount of detail, including many seamounts not at all

visible in the crude picture of Figure 5-7.

Section 5.4.1 computed the normalized measurement residuals, P(X1 Y), which con-

tain a random component plus a component correlated with the OSU91A geoid error.

This section has independently computed two functions AGANOM, AGTOPOG, which
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Figure 5-5: A plot of the absolute value of high-pass-filtered geoid anomaly estimates
computed from topographical data. Darker regions represent greater values.
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Figure 5-6: A plot of the absolute value of high-pass-filtered bathymetry. Darker
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Fi ure 5-7: A plot of the geoid slope based on the OSU91A estimates. Darker regions9
represent higher slope.

we expect to be correlated with the OSU91A geoid error. The remaining task, to be

addressed in the next section, is to assess the correlation between P(X, Y) and AG

in order to propose 0: the space-dependent error variance of the OSU91A model in

(5.13).

5.4.3 -Selection of

The chief.difficulty in establishing a correlation between the normalized residuals

F,(x, y) of Section 5.4.1 and functions AGANOM, AGTOPOG, believed to be correlated

with the OSU91A error, stems from uncertainties in what it is that these functions

represent. For example, consider a zero-crossing of AGANOM located between a

large positive peak and a proximate large negative peak (e.g., point o in Figure 5-

9). To be sure, we do not expect the geoid error to be zero at that point, since the

precise position of the zero crossing in AG is subject to error (due to errors in the

topographical data T(X, y), due to 'approximations made in applying the upwards-

continuation and Stokes functions, and due to the choice of a high pass filter which

135



CHAPTER5. GEOID SURFACE ESTIMATION

�4i""P) !, MO.
.......... ... A . N W

Atlantic

WN

W V�.

T . ... . .

+

Y R114", i

Figure 5-8: A plot showing the distribution of those measurement residuals (each
marked with a '+' sign) in excess of 1.5c superimposed on AGANOM - a function
which we believe to be strongly correlated with errors in the OSU91A geoid estimates.
Darker regions represent. larger values of AGANOM.

only approximates the effect of spherical-harmonic series truncation); in fact, we

would expect a relatively large geoid error variance at such points. This expectation

is well supported by Figure 5-8: the 19 or so residuals in the top left corner of the

figure all lie on or very near to such a zero crossing (the white line threaded between

two darker regions); a number of other such examples may be found throughout the

figure.

In response to this observation, we propose to apply a local maximum filter to

AGANOM to raise such zero crossings to the largest nearby values in AGANOM:

AGANOM (X, Y) = Max ACIANOM (X', Y') X - X' I < Y - Y' I < 61 (5.33)

where 6 -- 'degree was chosen empirically as the typical size of the region separating4

large peaks of opposite sign. The'effect of such filtering is illustrated in Figure 5-9.

.The same, maximum filtering was applied to AGTOPOG.

We are interested in computing 0; specifically, we are interested in finding a linear
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AG

AG

Figure 5-9: The effect of applying a maximum filter to a function AG. The intent is
to increase the value at zero crossings such as o, which are expected to correspond to
regions of significant OSU91A geoid error variance.

relationship between AG and 0:

0(X, Y) -- K + AAG(x, y) (5.34)

Consider some scalar value g; under the assumption that 2K-G is roughly proportional

to the OSU91A geoid error, then

At all (x, y) D 2K-G (x, y) -- g O(x, y) -- r, + Ag (5-35)

Next, let

V - (x, y) E) 2K-G(x, y) - g (5.36)

represent a set of normalized, averaged residuals from (5.25). The OSU91A error N,

is modeled as a random process with variance 0, thus from (5.22) we expect each

residual in V to satisfy

(P + R) var 0 + 1 (5-37)
37

We can estimate this variance by examining the RMS value of the residuals in V; i.e.,

by computing the RMS value of binned residuals, where all of the residuals in the

bin are associated with approximately the same value of AG. Figures 5-10 and 5-11

characterize this RMS relationship between the averaged, normalized residuals (5.25)
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Figure 5-10: This figure plots the RMS value of binned normalized, averaged mea-
surement residuals F/ as a function of AGANOM - the function obtained by gravimet-
rically processing topographical data, followed by high-pass and maximum filtering.
Each bin consists of 100 residuals, all of which correspond to nearly the same value
of AG.

and the functions AGANOM, AGTOPOG (5.33).

The RMS values in the figure were computed as follows:

9 form the following set of two-vectors

V( (5.38)

[AGANOM(X, Y), - X, Y)]

over all points (XY) where 0 is defined (i.e., at all of the satellite sampling

locations);

• sort all of the elements of in ascending order of AGANOM;

• now divide this sorted list into successive groups, each containing 100 two-

vectors-

c 6 pu e the RM of th6''100"residuals contained in each 6fthese groups.
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Figure 5-11: This figure plots the RMS value of binned normalized, averaged measure-
ment residuals 0 as a function of AGANOM - the function obtained after high-pass
and maximum filtering. Each bin consists of 100 residuals, all of which correspond
to nearly the same value of AG.

Each of the horizontal lines in Figure 5-10 represents the RMS value of the residuals

of one group; the horizontal extent of the line goes from the minimum value to the

maximum value of AGANOM in each group. Figure 5-11 contains a similar plot, but

based on AGTOPOG instead of AGANOM. Several observations should be made:

o Consider the extrapolation of Figure 5-10 or Figure 5-11 leftward to the vertical

axis; i.e., to the point AGANOM -_ 0 or AGTOPOG = 0 respectively. Now

AGANOM -_ 0 implies an anticipation of a very small OSU91A error variance;

consequently from (5.22) we expect that any residuals vi(xj, yj), computed from

measurements taken over repeat cycle i, for which AGANOM (Xi, Yi) -_ 0 should

satisfy

E [vi(xj, yj)] -_ 0 var(vi(xjyj)) - 1 (5.39)
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furthermore implying that the averaged residuals (5.25) satisfy

E [F,(x,., yj)] _- 0 var (r, (xj, yj)) 1 (5.40)
37

Then the RMS value of such residuals will be

2
F,(X _Yj) 2

3 1 - - (5.41)- - 0.164�7

which is very close to the y-intercept suggested by both figures.

What does this agreement serve to validate? The value deduced in (5.41) relies

on the fact that the normalized residuals are in fact correctly normalized to unit

variance in (5.39), which relies upon the accuracy of the sum (R + P). In other

words, (5.41) and Figure 5-11 validate the selected value of the measurement

error variance R and the accuracy of the estimation error variance P.

• AGANOM and AGTOPOG, measured along the horizontal axis in the figures,

were constructed with the intent of being proportional to the error in the

OSU91A geoid. Furthermore, from (5.22) we expect that the averaged, nor-

malized residuals (5.25), measured along the vertical axis in the figure, be pro-

portional to the error in the OSU91A geoid. However the residuals P and the

AG functions were computed completely independently, thus it is encourag-

in that both' Figure 5-10 and Figure 5-11 admit relatively straight-line fits.

It should be pointed out that the geoid-slope based correlation determined in

Chapter 3 (Figure 3-17) was not sucha'straight line.

The relationship between 0 andAG in Figure 5-11 is straighter and more

convincing than that based on AGANOM in Figure 5-10. We offer two possible

explanations for this observation:

1. The true coherence between the topography and the geoid is greater than

that� associated with the Airy-Heiskanen. compensation of Figure 5-4.
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2. Some of the approximations made in the computation of AGANOM (i.e.,

the FFT implementation of the upward-continuation (5.28) and Stokes

(5.29) transfer functions) may be inappropriate.

A more careful assessment of the above explanations is a suggested matter for

future inquiry.

From Figures 5-10 and 5-11 we propose the following straight-line fits:

0.16 + AGANOM/(16. 107) (5.42)

0.16 + AGTOPOG/1500 (5.43)

We could use these two relationships to directly estimate the geoid. For example,

from (5.43) we can infer the following "measurements" of the OSU91A geoid error:

AGTOPOG = N - YN + VTOPOG (5.44)

The exploration of such an estimator is proposed as an avenue of future research.

For the remainder of this chapter, we will continue to use the model of (5.13), which

requires the determination of From (5.22) we can compute 0 as

- (R + P)(P - 0.16)2 (5.45)

- 35 AGANOM (5.46)
16 .107

or, alternatively,

AGTOPOG 2

35 1500 (5.47)

where the constant 35 represents an empirical average over all residual locations of

the quantity (R + P).
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5.5 Joint Estimation Results

Having established a form for 0 in the previous section, the computation of joint

estimates follows in a straightforward manner from the multiscale model (5.5), (5.12),

(5.13). Once again we may consider whether we are better off taking as measurements

the average of multiple repeat cycles of satellite data, or just a single ten-day cycle.

The answer here remains unchanged from the answer argued in Section 5.4-1:

• Estimate a geoid based on measurements from a single ten-day repeat cycle,

computed as the average of 13 multiscale trees, each having a tree origin shifted

with respect to the others.

• Perform the joint estimation for each of ten repeat cycles.

• Compute the final geoid estimates and estimation error variances as the average

of the ten estimates and error variances respectively, one from each repeat cycle.

Due to the large dynamic range of the geoid and the relatively small size of the

OSU91A geoid error, Figure 5-12 plots the difference

Nestimated - NOSU91A (5.48)

i.e., the estimated correction to the OSU91A geoid. The error variances corresponding

to Figure,5-12(a) are plotted in Figure 5-13. A number of observations are in order:

9 Some blockiness is evident in the estimated corrections, particularly along the

northern (upper) edge. The blockiness is this region is due to the presence of

land (i.e., an absence of measurements).

9 The satellite tracks are visible in the estimated corrections. Our multiscale es-

timator is trying to estimate high-resolution features of the geoid based in part

on sparsely sampled altimetric, measurements., Those high-resolution features

which lie on the satellite tracks may be resolved; other features which lie wholly

unsampled between the satellite tracks are not observed and cannot be esti-
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mated. Thus a certain degree of feature clustering about the satellite paths is

to be expected.

The dominant features of the estimated corrections are consistent with our

expectations based on the north-Pacific topography. The largest corrections

are predicted along the Hawaiian island chain (lower left) and the Aleutian

archipelago (top)

5.6 Conclusions

This chapter has considered the problem of estimating the error in the OSU91A geoid

by developing a joint multiscale model for both the ocean height and the geoid. The

separability of the satellite signal into oceanic and geodetic components was motivated

by the distribution of measurement residuals in Chapter 3, which formed the basis

for the work of this chapter. Guided by an understanding of the omission errors in

the OSU91A geoid estimates, we postulated two functions which were expected to

correlate with the geoid errors. Correlating these functions with the measurement

residuals completed the determination of the estimation of the space-varying geoid

error variances.

As was indicated in the first paragraph of this chapter, the results which have

been presented are only preliminary. There are several matters which should be

investigated before the revised estimates of the geoid in Section 5.5 can be accepted

as reasonable:

• We need to look more closely at the assumptions implicit in the calculation

of AGANOM- In particular, why was the determined function AGANom a

relatively poor indicator of the measurement residuals in Figure 5-10?

• We need to validate the multiscale model (5.12) which was asserted for the

geoid. This validation involves looking at more than just the two coefficients

in the selected 1/f-like model- we need to assess the appropriateness of the

1/f-like model in representing the geoid.
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Figure 5-12: The estimated corrections to the OSU91A geoid. The two plots differ in
the function 0 chosen to model the geoid error variance:
(a) 0 based on AGANOM (5.46).
(b) O'based on. AGTOPOG (5.47).,,-
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Figure 5-13: Estimation error variances corresponding to the geoid estimates of Fig-
ure 5-12(a). Darker regions represent greater uncertainty. The standard deviation
Near the satellite paths, the standard deviation of the error is a - 4cm; between the
satellite paths a - 2m; at the top edge of the figure (over Alaska), 07 - 10m.

Given that these validation have not yet been performed, it is somewhat premature

to embark on a variety of extensions to the joint estimation research of this chapter.

Nevertheless, there are a variety of research directions which could be followed once

a joint ocean / geoid estimator has been fully developed and validated. Indeed, the

flexibility of the multiscale framework suggests a number of interesting avenues for

future exploration:

• We are computing estimates based on a static prior model of the ocean surface.

A multiscale model which incorporates some understanding of the time evolu-

tion of the ocean surface should be capable of affecting a greater separation of

the oceanic and geodetic components of the altimetric measurements.

• A variety of sensitivity analyses are possible; e.g., the sensitivity of the esti-

mated OSU91A geoid errors to the power law in the prior model of the geoid.

The efficiency of the multiscale framework allows a large number of parameter

settings to be examined.
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• It is possible to perform an independent validation of the geoid estimates. Com-

plex ocean circulation models have been developed which can assess the self-

consistency of an ocean height field (. Such methods could be used to compare

the relative consistencies of ( estimated in Chapter 3 and the ( estimated jointly

in this chapter.

• It may be possible to jointly estimate (, N and T (where T represents the

surface topography). Although T is fairly well known over land, the shape of

the ocean floor is still subject to considerable uncertainties. In principle such

joint estimation is possible; for example, "bumps" that consistently appear in

the satellite measurements with no counterpart in the topographic data may

suggest the presence of an unknown seamount. Although it is not clear how to

go about developing a multiscale model for such joint estimation problems, this

problem may well represent an intriguing direction of future research.

i5
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Chapter 6

Overlapping 1\4ultiscale Trees

his chapter introduces and develops the concept of overlapping multi-

scale models. These models, which represent something of a conceptual

departure from other models developed for our multiscale framework,

were developed with the specific interest of producing smooth estimates (i.e., with-

out "blocky" artifacts). Section 6.1 introduces and motivates the overlapping tree

concept. Section 6.2 develops a simple example in some detail, considering both

multiscale modeling and multiscale estimation using overlapping trees; the example

is presented both in order to develop an intuition for the overlapping tree concept,

and in order to identify the important issues that must be confronted to turn the

technique into a systematic, useful tool. Section 6.3 outlines the process of selecting

a particular overlapping model and describes how to derive the projection operators

associated with that choice of model. Finally, in Section 6.4, we show three examples

of the effectiveness of the overlapping approach to estimation.

6.1 Introduction

In spite of the success of our multiscale approach to estimation with regard to com-

putational efficiency, mean-square estimation error, and ability to supply error co-

variance information, the multiscale approach, as developed up to this point in the

thesis, has a characteristic that would appear to limit its utility in certain appli-
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cations. Specifically, estimates based on the types of multiscale models previously

proposed may exhibit a visually distracting blockiness [63].

While various interpretations of and ways to overcome this blockiness have been

developed, discussed, and shown to be more than adequate in particular applications,

none of these offers a completely satisfactory resolution of this issue in general. For

example an interpretation is provided in [63] in which the authors argue correctly

that in many applications the construction of fine-scale estimates is not supported by

the quality of available data; instead, in such cases only coarser-scale estimates are

statistically significant. In these applications, one should be suspicious of any fine-

scale estimate of the field in question, and any corresponding blockiness has a complete

lack of statistical significance. However, in some applications such as the problem

of estimating the ocean surface height in Chapter 3, multiscale-based estimates are

subsequently used in a manner that requires the calculation of surface gradients and

normals; in these cases, there is an essential need for having smooth estimates, so

that the gradients and normals can be calculated meaningfully. Similarly in certain

applications of computer vision, such as investigation of surface reconstruction in

Chapter 7, there exist aesthetic reasons for desiring smooth estimates.

Although estimate blockiness can be eliminated by simple post-processing (e.g.,

the application of a low pass filter), the resulting increase in smoothness and visual

appeal comes at a price. In particular, such post-processing can render less clear the

proper interpretation of error covariance information provided by the smoothing algo-

rithm, and it limits the resolution of fine-scale details in the post-processed estimate,

since the added smoothness is achieved by spatial blurring..

The preceding remarks suggest that for applications in which the computational

efficiency ofthe multiscale framework is desired, but where blockiness is unaccept-

able, we have considerable motivation for seeking a new approach to both multiscale

modeling and estimation. There are several interpretations regarding the "blocky"

artifacts present in some multiscale estimates:

L The mtiltiscale, prior -model for �the- tre-0 Is,'n0hstationcqry.-
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2. Fine scale pixels separated by multiscale boundaries (in particular coarse scale

boundaries) are inadequately correlated.

3. The descendants of a given node (e.g., the q descendants of the root node)

evolve independently, leading to artifacts at their boundaries.

Each of these interpretations motivates a different solution:

1. The nonstationarity of the multiscale estimates is due to the boundaries between

tree nodes, the positions of which are determined by some (typically arbitrary)

origin for the tree. One can attenuate this boundary effect by computing esti-

mates as an average over an ensemble of W tree-origins:

�(X' Y) W (6.1)
W (Si (X, M

where the finest-scale node si (x, y) on tree i, I < i < W, corresponds to the

spatial position (X, Y); i.e., (6. 1) is strictly an average over an ensemble of tree

origins and bears no resemblance to spatial filtering. This technique was applied

in the oceanographic and geodesic applications of Chapter 3 and Chapter 5.

The computational complexity for determining �(x, y) from W trees is

O(Wk'K), where k represents the size of each multiscale state vector, and

where K counts the number of pixels being estimated; i.e., a complexity per

pixel of O(Wk 3) . The idea, then, is to select a relatively small value of k and

a fixed value of W independent of K. However the empirical observation that

large values of W may be required for smooth estimates from sparsely sampled

fields and the fact that we are unable to calculate error statistics for �(x, Y)

in a consistent manner motivate an exploration of other techniques for artifact

attenuation.

2. The correlation between the descendants of a common parent can increase as

the information (i.e., the state vector dimension, k) of the parent increases.

For example, a multiscale model of a smooth surface which passes height and
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gradient information from parent to child nodes may be expected to exhibit

fewer artifacts than a surface model which passes only height information.

In an extreme case of such an approach, discussed in Section 2.5.1, the state

vector at the parent contains a dense representation of the boundaries around

each of its four descendants. This approach can, in principle, exactly model

any first-order Gauss-Markov process on the multiscale tree and has been suc-

cessfully applied[65] to a problem of texture discrimination. A less extreme

approach, discussed in Section 2.5.2, leads to both optimal and reduced order

multiscale models for Gaussian processes.

3. That the children of a common parent evolve independently is due to the fact

that the children represent completely disjoint subsets of the process of interest

(typically the process residing on the finest scale of the tree).

To insist that the children of a common parent represent disjoint subsets of a

process would seem to be reasonable, or perhaps even necessary; it is possible,

however, to develop a novel "overlapping" framework, in which the regions

represented by the child nodes of a common parent may overlap, rather than

being strictly disjoint.

In this chapter we will consider a novel approach that blends the latter two approaches

just discussed to yield the desired artifact attenuation. Our approach simultaneously

achieves three objectives:

1. It yields low-dimensional multiscale models that are quite faithful to the pre-

specified random field covariance structure to be realized, and thus admits an

extremely efficient, optimal (or nearly optimal) estimation algorithm;

2. The resulting estimation algorithm retains one of the most important advan-

tages of the multiscale estimation framework, namely the efficient computation

of estimation error covariances;

3. Both the multiscale. models and. the corresponding estimation algorithm elimi-

nate the blockiness associated with previously developed multiscale models and
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Figure 6-1: Illustration of the first three levels of a quad-tree, which is useful for the
indexing of multiscale representations of two-dimensional random fields.

estimates.

In contrast to standard multiscale processing[27, 63], which achieves objectives one

and two, and to standard multiscale processing with simple post-processing[63], which

achieves objective one and partially achieves objective three, our approach is able to

accomplish all three objectives.

6.1.1 Higher Order Models

Recall the following important Markov property of our multiscale models: if x(s) is

the value of the state at node s, then conditioned on the value of x(s), the states

of the q children of s are independent. In light of the Markov property, the role of

the state at any node in a multiscale process is to store enough information about

the process in the parent to decorrelate the q subsets of the process corresponding

to the q children. It is this decorrelation which can lead both to efficient estimation

algorithms and to the source of the problem with blockiness.

We can clearly see the connection between the decorrelating role of state infor-

mation and the blockiness problem by considering Figures 6-1 and 6-2. Consider the

upper-left and upper-right quadrants of the image domain depicted in Figure 6-1:

the two quadrants are separated at the coarsest level of the tree, therefore all of the
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Figure 6-2: Two nodes, SI and 82, neighbors in physical space, but distantly separated
in tree space.

correlation between any two finer scale pixels in the two quadrants, such as SI and

82 in Figure 6-2, must be completely captured in their common ancestor, namely the

root node 0 at the coarsest scale of the tree. In this sense, the pixels SI and 82 may

be close physically, but they are separated considerably in terms of the distance to

their nearest common ancestor node. We refer to this latter distance as so-called

tree-distance; with respect to tree distance, pixels 31 and S2 are far apart. For fields

having a significant level of regularity or smoothness we may expect high correla-

tions between such spatially close neighbors. Such correlations imply a high state

dimension x(so), in essence to keep track of all of the correlations across quadrant

boundaries (basically leading to a MRF-like model, as in Section 2.5.1)_

One way to reduce this high dimensionality is to identify and retain only the

principal sources of correlation across boundaries at each level on the tree. Keeping

only these principal sources effectively achieves maximal decorrelation of descendants

with minimal dimension of state variables. Indeed, as discussed in Section 2.5.2, a

systematic procedure has been developed[47] to identify the needed principal sources

of decorrelating information, and thus to build multiscale models of any desired fi-

delity. The procedure is based on the application of canonical correlation analysis;

given a maximum model order and a finest-scale, desired correlation structure, an

appropriate multiscale model can be built. While'this approach by itself can yield
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low-dimensional models of sufficient fidelity for many applications (such as texture

discrimination [65] or problems such as that in [63] where only coarse-scale estimation

is meaningful), it cannot overcome the blockiness problem. In particular, neglecting

even a small amount of correlation at a coarse level of the tree can cause noticeable

irregularities across boundaries such as that separating s, and 82 in Figure 6-2.

6.1.2 Overlapping Trees

As was alluded to earlier, there is a means by which to correlate pixels such as 81

and S2 in Figure 6-2 without resorting to high-order multiscale models: we discard

the standard assumption that distinct nodes at a given level of our tree correspond to

disjoint portions of the image domain. Instead we construct models in which distinct

tree nodes correspond to overlapping portions of the image domain. As a consequence

of this idea, a given physical image pixel may now correspond to several tree nodes at

the finest scale. In this way, we remove the hard boundaries between image-domain

pixels such as s, and S2 in Figure 6-2, because now multiple tree nodes may contribute

to each of these pixels, thus reducing the effective tree distance' between the two sets

of nodes corresponding to these pixels and spreading the correlation that must be

captured among a set of nodes. For obvious reasons, we refer to these multiscale

models as overlapped-tree models.

We can use these overlapped-tree models for both modeling and estimation, as

depicted abstractly in Figure 6-3. In both of these contexts, we start with a knowledge

of the correlation structure P of some random field x. Corresponding to this random

field x, we devise a so-called lifted-domain version xi, where this lifted-domain field

lives at the finest-scale of an overlapped-tree multiscale representation of x. The

mapping from x to xi is denoted by xi := Gxx, where we emphasize that this operator

'The notion of an effective tree distance has not been carefully defined. Essentially, on an un-
overlapped tree the tree distance d(si, 82) = (M - 1), for s, and 82 in Figure 6-2. Now suppose we
have an overlapped tree, where the nodes f s Ii I correspond to pixel 1, and similarly f 82J 1 correspond
to pixel 2. Then d(,91,i, 82J) < (M - 1), and typically Averageij(d(,91,i,,52J)) < (M - 1). This last
expression is one possible effective tree distance measure; in any event it helps to explain why we
expect multiscale artifacts to be eliminated by the overlapping approach.
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Figure 6-3: An abstract, high level, view of our overlapped approach to multiscale-
based modeling and least-squares estimation. Fast multiscale estimation and sample-
path generation (producing possibly blocky �i and fi respectively) are accomplished
in the overlapped domain. G., projects the statistics of x into the overlapped domain;
Gy projects measurements y into the domain; H, which possesses certain smoothness
properties, projects the estimates fi back out of the overlapped domain.

Gx is one-to-many: the lifted-domain field xi has more pixels than the image-domain

field x. To map back from xi to x, we devise an operator Hx having two important

properties:

1. the field Hxxl has exactly, or nearly exactly, the same correlation structure as

X;

2. the field H.,xl is guaranteed to have the desired level of smoothness.

The boxes in the top half of Figure 6-3 depict the use of our overlapped-tree

models to efficiently generate sample paths of a random field having the prespecified

correlation structure P. Given P, a low-order multiscale model is built to approx-

imately realize the correlation structure of the overlapped field xi; we denote this

correlation by Pi,.,. where , P,,=,. GxPG'. .Because of the, low order of this multiscaleX

model, sample paths can be generated in a computationally efficient manner, and by

post-processing these sample paths with the smoothing operator H, we obtain sam-

ple paths of a random field that are guaranteed to be smooth and that approximately

have the desired correlation P. We will address the technical problem of constructing

both the tree model and the lifting and interpolation operators Gx and Hx; we will
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construct these to meet the objectives of low-dimensional states on the tree, accurate

approximation of the desired second-order statistics of the field x, and the generation

of fields without blocky artifacts.

The bottom half of Figure 6-3 depicts the application of our overlapped-tree mod-

els to optimally estimating the value of a random field x, given noisy observations

y. For this purpose, we devise an operator GY that plays a role directly analogous

to the role of Gx: the operator GY lifts the actual observations y of the random field

to yield lifted-domain observations y, - Gyy of the random field x1. These obser-

vations are then processed by our efficient multiscale tree algorithm to produce an

estimate -fi which is then projected back to yield & _- Hx&,, the desired estimate of the

random field. The low dimensionality of the multiscale model allows the estimation

calculations to be carried out in an extremely efficient manner, and the properties of

the operator Hx guarantee that the resulting estimates will have the desired level of

smoothness. We address the technical problem of justifying the optimality, or near

optimality of this estimation procedure, and we also demonstrate that estimation

error covariance information can be generated in an efficient and meaningful way.

6.1.3 Computational Complexity

To make the computational tradeoffs explicit, this subsection will present expressions

for the computational complexity of both the multiscale modeling 2 and estimation

algorithms. These expressions will highlight one of the strengths of the multiscale

framework and will also point to some of the challenges.

There are three multiscale model parameters of fundamental interest in our dis-

cussion:

(i) the number of pixels K in the image domain,

(h) the number of finest-scale nodes N in the multiscale model,

(iii) the maximal dimension k of any state vector x(s) in the multiscale model.

213y "modeling" we refer to the simulation of sample paths of the modeled process. This is
achieved by just simulating the multiscale recursion (B.1) based on initial conditions (B.4).
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In previous chapters, where the trees have not been overlapped, N has always been

identically equal to K. On the other hand, the use of overlapping trees leads to values

of N that are greater than K; we relate the two by K = qN, where 0 < q < 1 is a

measure of the degree of overlap, with smaller q corresponding both to more overlap

and potentially greater smoothness.

The two-sweep structure of our estimation algorithm (summarizedin Appendix B)

implies that each node of the tree is visited exactly twice, where the computations at

each node involve a number of floating point operations proportional to the cube of

the state vector at the given node. Thus the application of the estimation algorithm

requires a total of 0(k'N) floating point operations; that is, a computational effort

per pixel of

k3
0 - (6.2)

or, if the algorithm is fully parallelized on each scale,

0 k' log(K/,q) (6.3)
K

Similarly, the modeling algorithm visits each node only once, where the computations

at each node involve a number of floating point operations proportional to the square

of the state vector at the given node. Thus, we see that the application of the

modeling algorithm requires's total of 0(k 2N) floating point operations; that is, a

computational effort per pixel of

k2
0 - (6.4)

or, if the algorithm is fully parallelized on each scale,

20 k log(K/,q) (6.5)
K

we can ac Aa: nal dencies as
nt s hie�'v"'�e"'d'r"'a"matic'',&ffip"u ti6 6M long as the

156



6.2. FORMULATION OF MODELING AND ESTIMATION PROBLEMS

maximal dimension k of the state model and the amount of overlap (as measured by

11,q) are not too large. As we will illustrate, the overlapping tree procedure will allow

us to meet these criteria.

6.2 Formulation of the Problems of Modeling and

Estimation with Overlapping Trees

In this section, we identify the precise technical problems to be solved in order

to develop our new approach to multiscale modeling and estimation. Because our

overlapped-tree approach represents something of a conceptual departure from other

approaches, we make the ideas more concrete through the use of a simple example.

6.2.1 Modeling of Random Fields with Overlapped Tree

Processes

Let x be a zero-mean random field, written for simplicity as a vector, and having

covariance P. In this section we consider the problem of generating sample values

of x; more specifically, we consider the problem of generating sample functions of a

zero-mean random field with covariance equal to P or close enough to P so as to

capture its significant statistical characteristics.

From a computational point of view, this simulation problem poses nontrivial

challenges and has been the focus of a considerable amount of research in the signal

and image processing communities. One notable case in which computationally effi-

cient techniques do exist is for generation of sample functions of stationary random

fields, defined on regularly sampled toroidal lattices, in which case the 2-1) FFT can

be used to diagonalize the field's covariance matrix. However, for most other types of

fields, the generation of sample paths is computationally quite complex. For example,

sample paths may be simulated using the following three step procedure:

(i) compute the square root p1/2 of the covariance matrix,
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(ii) generate a vector w of unit variance uncorrelated random variables,

(iii) compute the sample path as x = P'I'w.

Although conceptually straightforward, there' is a considerable challenge in computing

the matrix square root p1/2 , requiring in general O(K') calculations for a random

field of K points. Similar computational difficulties are encountered with iterative,

generation methods, such as those for Markov random fields, which can frequently

require an exorbitant number of iterations, especially to capture significant large-scale

correlations. On the other hand, as discussed in Section 6.1.3, the simulation of a

random field having a multiscale model is extremely fast; thus we are led to consider

more completely the issues involved in an overlapping-tree approach to simulation.

We conveniently decompose the approach into three steps (Figure 6-3 depicts these

steps graphically).

In the first step, we must specify the matrix G,, which serves to lift the random

field x into another random field xi via

xi = Gxx. (6.6)

This lifted-domain field xi corresponds to the finest scale of a tree process, and acts as

a particular, redundant, overlapped representation of x, having more pixels than the

original field. The matrix Gx is not chosen arbitrarily; it has a considerable amount

of sparse structure, as we discuss in greater detail in Section 6.3; furthermore, Gx is

chosen such that it has a left inverse H,

HxGX I, (6.7)

satisfying certain smoothness properties to be discussed shortly.

In the second step, we combine our knowledge of the covariance P and matrix

G to build'a low-dimensional multiscale model whose finest-scale statistics El are an

approximationjo P1, the, statistics of xi. As a. conseque4ce, of -(6.6), the -covariance of
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x, is given by

Pi G,, P GT (6.8)X

We denote by �j (see Figure 6-3) the random field living at the finest scale of this

multiscale tree; i.e., the covariance of �j is El.

The last step in generating a sample function of a random field qualitatively similar

to x is to apply the operator Hx to �1, thus yielding

Hx�j. (6.9)

This random field � is guaranteed to be smooth, by our assumed smoothness proper-

ties for Hx; also, � will have approximately the same statistics as x, since from (6.7),

cov(�) = HxF-IHT -_ HxPHT = HxGxPG THT = P = cov(x), (6.10)

Thus, the design problem confronting us is that of specifying the operators Gx and

Hx and then constructing the multiscale model for �1, so that the following properties

hold:

(i) Gx and Hx are sparse and local,

(ii) Hx achieves the desired smoothness,

(iii) the multiscale model is of sufficiently low dimension that simulation can be done

efficiently,

(iv) the approximation in (6.10) is sufficiently accurate so as to lead to sample

functions capturing the desired statistical characteristics.

The method we use here to construct the multiscale models is the canonical-

correlations-based stochastic realization method, described in detail in [48] and sum-

marized in Section 2.5.2. The focus of attention in the remainder of this and the next
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Mapping of Physical Space Aggregate Representations of
onto the Finest Tree Scale Tree Nodes in Physical Space

Coarse Scale Coarse Scale

Fine Scale Fine Scale
1 2 2 3 1 2 3

Indices into Physical Space Physical Space

Figure 6-4: Illustration of an overlapping-tree representation of a process of length
three showing both the dyadic tree (left) on which the representation is based, and a
depiction (right) of the representation of each tree node. The bar H associated with
each tree node represents the subset of the finest-scale process aggregated by that
node.

section is on the design of G,, and H,,. Following that, computational examples will

demonstrate that our approach does indeed achieve objectives (i)-(iv).

To introduce the basic issues involved in specifying G., and H, let us consider

a very simple I-D example of a random process of length 3. Collecting the process

values into a vector x T [XI I X21 X3 ]T, suppose that the covariance of x is given by

XI 1 0.5 0
[XXT] _ p =

X X2 E 0.5 1 0.5 (6.11)

X3 0 0.5 1 J

Let us index our multiscale model on a dya ic tree that has four finest-scale

nodes, thereby providing only a minimal amount of redundancy; Figure 6-4 displays

an example of such a tree. On the right 'side' of the figure, we depict the tree with an

indication of the subsets of real, physical points (i.e., subsets of f 1, 2, 31) to which each

node4 cdrre'8'p6nds. Thus, the� top�-nbde `66ir"e-sip"" ond's to' a'll'thre'e ':!points' (i.e., f 1, 2, 31)

and the two nodes at the second level correspond to f 1, 21 and 12, 31 respectively.

At the bottom level there is a single node corresponding to process element XI and

another for X3, but there are two nodes corresponding to X2: in the lifted domain

on:,. the tree, process; element X2 -is. -lifted to .- have- two finest-scale tree nodes. Thus

160



6.2. FORMULATION OF MODELING AND ESTIMATION PROBLEMS

if we order the four fine-scale nodes from left to right (as shown in the left half of

Figure 6-4), we are led to the following choice of G,,:

I 0 0
0 1 0

Gx (6.12)
0 i 0
0 0 1

which implies that

1 0.5 0.5 0

T 0.5 1 1 0.5
Pi GxPG (6.13)

X 0.5 1 1 0.5

0 0.5 0.5 1

This example illustrates the basic constraints that we place on any lifting matrix

Gx:

1. It consists entirely of zeros and ones.

2. Each column has at least one nonzero entry.

3. Each row has exactly one nonzero entry.

These conditions ensure the following basic properties:

1. Every position in the original domain corresponds to at least one position in

the overlapped domain.

2. Every position in the overlapped domain corresponds to exactly one position in

the original domain

Thus, the lifting process is local and is in fact trivial to compute once Gx has been

specified. The specification of Gx is typically carried out implicitly in terms of the

overlapping structure of the tree: any given overlap structure uniquely specifies a

corresponding Gx. We can certainly imagine more general lifting schemes, allowing

for example for fine-scale lifted nodes that are associated with more than one real
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data point- however, we will find our restricted lifting scheme to be sufficient for our

purposes.

Turning to the smoothing operator, we note that the inverse relation (6.7) between

H., and G.,, together with our imposed constraints on the structure of G,,, lead to an

important constraint on the structure of H,,. In particular, the value of any element

of H.,�,, the projection of the simulated process back into the original domain, is

equal to a weighted average of the corresponding elements in �, (that is, each row of

H,, must sum to one). For example, with G,, as in (6.12), the possible choices for H.,

are of the form

I 0 0 0
H�, 0 a b 0 (6.14)

0 0 0 1

where a + b = 1. Here a and b can be thought of as the weights being placed on

the value of the two nodes corresponding to physical index 2 in order to specify X2-

For example, an equal weighting a - b would intuitively lead to the greatest
2

smoothness in the correlation structure of �. On the other hand, it is important

to emphasize that the averaging implied by (6.14) is not at all the same as spatial

averaging, since we average only over those tree points corresponding to the same

point in real space. A general method for choosing Hx will be presented in Section 6.3.

6.2.2 Estimation of Random Fields with OV'erlapped Tree

Processes

We now turn to the problem depicted in the bottom half of Figure 6-3. The objective

is to ex-ploit the efficiencv of the multiscale estimation algorithm to perform optimal

or near-optimal estimation of a random field x, while avoiding blocky artifacts.

Suppose that we have noisy measurements of x

Y - CX + V v Ar(O, R) (6.15)
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such that two conditions hold:

(i) each component of y represents a measurement of an individual pixel, so that

each row of C has only one nonzero entry,

(ii) the noise on these measurements are uncorrelated with each other, so that the

covariance R of v is diagonal.

From Section 2.1 we know that the optimal estimate is given by Ly, where L

is given by (2.9), assuming that x has prior covariance P. However for a K-pixel

field the calculation of L is generally O(K') and the calculation of the product Ly is

O(KM) where M is the number of measurements. Virtually the only case in which

this computational load can be reduced to a practical level is when the field x is

stationary and we have dense, regularly sampled measurements of identical quality

(implying that C and R are both multiples of the identity) such that FFT methods

can be applied (reducing the computational load to O(KlogK)). However in other

cases the O(K') computational load cannot be reduced in this manner, compelling

us to turn to iterative methods for the computation of -�. Not only can these iterative

methods be slow, but they also do not yield error covariance information.

We are thus motivated to consider the estimation approach illustrated in the

bottom half of Figure 6-3. To develop this approach we will extend the results from

our approach to modeling. In particular, we will need the lifting and projection

operators Gx and Hx for our random field, as well as a multiscale model for �1, such

that Hx�l is an adequate approximation of the field x; the issues related to determining

these were discussed in the preceding section. In addition, specific to the estimation

problem, we need to define a lifting operator Gy for the measurements:

y, - GYY (6.16)

and a lifted measurement model

Y1 ::� C1X1 + Vi (6.17)
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which involves the specification of C, and of the covariance of vl. The definition of

this measurement model allows us to carry out estimation as a three-step procedure:

1. Compute the lifted measurements as per (6.16).

2. Apply the multiscale estimation algorithm to estimate x, based on yl (which

satisfies (6.17)).

3. Apply Hx to the resulting estimate, thereby yielding a near-optimal estimate of

x based on y.

For step (2.) to be feasible, the components of y, must represent observations of

individual fine-scale tree nodes, where the observation noises (the elements of vi) are

uncorrelated. In other words, each row of C, must have only one non-zero entry and

the measurement covariance R, of vi must be diagonal. To clearly see the requirements

for the success of step (3.), let us write the multiscale estimation solution in input-

output form:

T.�l = Lly, - ElCl (CECT + Rl) (6.18)

Combining (6.18) with (6-16), we see that our step (3.) objective of satisfying

Hxi-l is equivalent to satisfying

pCT (CpCT + R) L HxLGy = HxECT (CY',,CT + Rl) -1 GY (6.19)

Assuming that G, H, and the multiscale model (which specifies El) have been

chosen, the remaining quantities to be specified are Gy, Cl, and Rl. Given the value

of .Gx,, which implicitly. Dissociates, ea& pixel with a set of fine-scale nodes, the most

natural choice for Cl is one that yields lifted measurements at each fine-scale tree

node associated with any pixel having a measurement. For example, let us consider

again the three-point process and dyadic tree lifting illustrated in Figure 6-4; let us
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suppose we have measurements of x, and X2, namely

y Yi C_ I 0 0 R =_ 3 0 (6.20)
Y2 0 2 0 0 4

Then, in our lifted domain we should have three measurements, one measurement

corresponding to the single node associated with xj, and measurements corresponding

to each of the two nodes associated with X2. That is,

I 0 0 0
0 2 0 0

C, - (6.21)
0 0 2 0
0 0 0 0

(for reasons of notational convenience in defining GY, a dummy measurement is added

here to the last row to make C, diagonal;' the reader is free to ignore this last row) -

The question at this point is how to create three measurement values on the tree

when only two real measurements are available. The answer here, and in our general

procedure, is that we simple copy the measurement value at any pixel to all fine-scale

nodes associated with that pixel. In our example,

I 0 Yi

Gy 0 1 yj = Gyy - Y2 (6.22)
0 1 Y2

0 0 0

At first glance, this procedure appears to create a significant problem: for the multi-

scale estimation algorithm to work we require that the measurements at distinct nodes

have uncorrelated errors. With yj and C, defined as in (6.22) and (6.21) this uncor-

relatedness certainly does not hold, since two of the "measurements" are identical.

This problem turns out to not be serious; we simply model these two measurements

3In Section 6.3 and in Appendix E, we shall find that having a measurement at every finest-
scale node will make the precise description of operator GY enormously simpler. Consequently the

measurement matrix C, is padded with zero-rows (i.e., dummy measurements) to make it diagonal.

It must be stressed that this is purely a notational matter and has no consequences on the theory

or practical implementation of overlapping trees.
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as being measurements of the states at their corresponding nodes with uncorrelated

measurement errors. This approach appears to have created another difficulty: by

modeling yj in this way we appear to be saying that we have more information than

we actually do; in particular in our example we now have two independent measure-

ments of the nodes corresponding to X2. To compensate for this we need to ensure

that the't6tal information represented by these"twonea'surem'ents' is the same as that

represented by the single real measurement; this is accomplished simply by doubling

the corresponding measurement noise variances in our model for each of the replicated

measurements, i.e., we define

1 .3 0 0 0

R, 0 2. 4 0 0 (6.23)
0 0 2. 4 0

0 0 0 *_

(where * corresponds to the dummy measurement of (6.21); the value of * is irrele-

vant)

In the next section we show that if El -_ P1, i.e., if no approximation is made

in the canonical correlations-based realization of xi on the tree, then one can indeed

choose GxH�,;,GyCj, and R, so that the resulting estimate :� = Hx.,�j is exactly

equal to the optimal estimate of x based on y (i.e., so that (6.19) is an equality)

and the same is true of the resulting error covariances. The example we have given

illustrates one very simple choice for these matrices, and as we will see there is actually

considerable flexibility in their choice. Note also that what this result implies is that

any suboptimality- in using the procedure we describe can be traced completely to

the approximation in building a low-dimensional approximate model for xl, allowing
xplicit� control of-the'complekity-accutdcy tradeoff., Of --edu- e that tradeoff may be

e rs

different for different choices of G, Hx etc; e.g., for different amounts of smoothness in

the resulting fields and estimates; we will provide some illustrations of these tradeoffs

in Section 6.4.
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6.2.3 Optimal Estimation Through Lifting and Projection

In this section we present a set of conditions on G,,,GyH.,,Cl, and R, that will

guarantee that if an exact covariance model is used in the lifted domain then we

can indeed compute the optimal estimate using the procedure depicted in Figure 6-3.

Specifically, let x be a random field with covariance P and let y = Cx + v be noisy

measurements of individual pixels of this field. That is, C is a weighted selection

matrix, i.e., each row of C has exactly one nonzero entry, and each column has at

most one nonzero entry' and R, the covariance of v, is diagonal.

Motivated by the discussion in the preceding subsections we first begin by speci-

fying the lifting matrix Gx. As in the simple example we restrict ourselves to choices

of G,, that meet three criteria:

1. Gx consists entirely of zeros and ones;

2. each column of Gx has at least one nonzero entry;

3. each row of Gx has exactly one nonzero entry.

We then must choose Hx such that HxG., = I; while this requirement severely con-

strains H, it does leave some remaining degrees of freedom.' In particular, as we

have seen, the choice of Gx is directly related to the overlapping structure that we

have chosen, which in turn specifies which fine-scale tree nodes correspond to which

real pixels. Hx then performs a weighted averaging among each set of tree nodes that

correspond to each individual pixel, where there is flexibility in the choice of these

weights. Thus there is considerable freedom in the choice of G., and H,,. Further-

more the resulting matrices are quite sparse. On the other hand, for 2-1) problems of

practical interest these matrices will be extremely large, and thus any structure that

can be imposed or discerned about the sparsity in Gx and Hx will be of considerable

'These conditions are equivalent to saying that each measurement is of a distinct pixel and any
pixel has at most one measurement associated with it. The latter assumption is for simplicity only
- i.e., if there are multiple measurements of a single pixel, since R is diagonal we can replace these
by a single measurement obtained as the weighted average of the redundant measurements where
each measurement is weighted proportionally.

'In fact, the number of degrees of freedom equals N - K.
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benefit. Section 6.3 will describe how these matrices can be specified in an implicit

manner that achieves a considerable reduction in storage requirements.

Once G,, and H., have been chosen, we next turn our attention to the choice of

Gy and C1. In particular our real measurements are y = Cx + v while our lifted

measurements are computed as yj = Gyy and modeled as yi - Cjxi + vi, where

xi = G.,x. Thus we have two expressions for how the real random field x affects the

lifted measurements yl, namely CGxx and GyCx. A logical requirement on C, and

Gy then is to require these two expressions to be equal for any x; i.e.,

CiGx = GYC (6.24)

Thus, since C has full row rank, once the value C, is determined the value of GY is

automatically determined.

We now construct an appropriate matrix for C, exactly as we did for our example.

Specifically, we assume that for each real pixel measurement we have an analogous

measurement for each of the tree nodes corresponding to that real pixel. Furthermore,

for reasons of convenience, we will pad Ci with zero rows (dummy measurements) to

make C, diagonal; that is, yj has the same dimension as xi. Thus if the jth component

of y is yj -_ ajxi+ noise (where x- is a component of x) then yj will have measurements

of the form

(yi),,, aj (xi),, + noise (6.25)

for each n such that finest-scale node (xl)n corresponds to the real pixel xi. Since C

is a weighted selection matrix, so is Ci. Since C has full row rank, from (6.24) we see

that

Gy CjGxCT(CCT)-1. (6.26)

While this expression for GY is correct, it obscures the simple, sparse structure of the

(CCT) - Imatrix. However, 'once we note that is -a diagonal matrix and that the diag-
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onal. weights in C, are the same as those in C, it follows fairly easily that Gy is a lifting

matrix, just as G,, is (in fact, because dummy measurements were added to C, to make

it diagonal, Gy is just a particular subset of columns of G.,). This structural property

of GY is consistent with our simple example: we define lifted-domain observations to

exist for those lifted-domain nodes where corresponding original-domain observations

exist, and then we assign overlapped-domain values to these measurements by simply

replicating the appropriate original-domain measurement values.

The construction of RI is facilitated by defining g(j) to be the number of ones

in the jth column of Gy; in other words, g(j) is the number of times that the jth

original-domain measurement is replicated. We then define RI, the covariance of the

measurement noise vector v1, to be a diagonal matrix with the ith diagonal entry

RI (i, i) given by

Ri(ii) = g(i)R(ii), (6.27)

where j is the unique index for which Gy(ij) = 1, (i.e., finest-scale node i corre-

sponds to pixel j). This choice for RI, which is exactly what was done in our simple

example, provides the observation covariance amplification required in the lifted do-

main to counter the apparent increase in information caused by the replication of the

measurements by GY, We note that this choice for RI leads to the following important

identity:

YTR-'Gy = R-1 (6.28)

We have the following Proposition.

Proposition: Let x be a random field with covariance P and let y - Cx + v

be a set of measurements with C a weighted selection matrix and R, the covariance

of v, diagonal. Suppose we then choose G, H, Gy, C, and RI as just described.

Furthermore, define

L - pCT (CpCT + R) (6.29)
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Li = Pi C1T (Ci Pi C1T + Ri) (6.30)

where Pi is defined in (6.8). Then the optimal estimates, computed as

Ly (6.31)

are the same as those estimates computed as the projection of the optimal lifted-

domain estimates; that is

.� = H.,,�i - H.LiGYY (6.32)

Moreover, if -P denotes the estimation error covariance in estimating x based on y,

and A the estimation error covariance in estimating xi based on yl, then

15 = H.151 Hx (6.33)

Two proofs for this proposition may be found in Appendix D: the first proof

succinctly demonstrates the correctness of the above proposition, the other proof is

much longer but tries to provide a deeper understanding of the structures possessed

by G, Gy, H,,, and R1.

6.3 Specification of the'Overlapping Framework

In this section we describe an implicit, compact, and efficient method for specifying

the operators G, GY and Hx directly from the overlapping structure that is chosen in

order to achieve our desired objective of producing randomfields and estimates with

some desired level of smoothness. The intent of this section is to provide an accessible,

reasonably intuitive, notion of the means of specifying these operators; the discussion

in Appendix E parallels the subject matter of this section, but in greater generality

and detail.

Asw6 have already discus'sed'and will'see in our examples, as q decreases (i.e.,
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as the amount of overlap increases) the resulting simulated or estimated fields (i.e.,

those fields in the original domain after projection by H,,) become smoother, but

the computational complexity of the resulting simulation and estimation algorithms

increases. For simplicity in exposition we focus on the most important case, namely

the one in which the tree and overlap structure are regular. Specifically, we focus here

on regular overlapping q-adic trees representing 1-D random fields, where each node

above the finest scale possesses q descendants. The overlap structure is presumed to

be spatially stationary; that is, for any two nodes s, and S2 on the same scale of the

tree, the manner in which their descendants overlap is the same. Our focus on the

one-dimensional case is strictly for reasons of clarity; Appendix E extends the results

of this section to regular trees in d dimensional space, where each node above the

finest scale possesses

q --:::: q, , q2 qd (6.34)

descendants; that is, the descendants of any node form a hyper-grid with qi descen-

dants along the edge of the grid parallel to dimension i.

While it is certainly possible to develop the lifting and projection procedures

for non-regular trees or non-regular overlapping schemes, we have never found this

necessary in any applications which we have considered (including the nonstation-

ary example in Section 6.4). Furthermore, with the regularity assumption comes a

significant simplification in that the complete specification of G,' and H', can be ac-

complished by determining a total of (M - 1) parameters as follows (M is the number

of scales in the tree). Recall that each node on the multiscale tree is associated with

a connected interval of points in the original domain. On each scale m, the size of

each of these connected intervals (one interval per tree node) is the same; we let this

size be denoted by w,,, (see Figure 6-5). In addition, the intervals associated with

neighboring nodes (i.e., successive children of a common parent) may be overlapping;

the amount of overlap between neighboring multiscale nodes on scale m is denoted
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IM-1

Scale (m-1)
Parent

Scale rn
Child q

Child 1

0 WMM

Figure 6-5: Basic overlapping-tree notation: o,,, represents the degree of overlap
between the regions represented by sibling multiscale nodes on scale m; w,.,, represents
the width of the region represented by each node on scale rn. .

by on > 0. Further, we insist that neighboring nodes do not completely overlap:

0 < 0, < W, (6.35)

Finally, from Figure 6-5, the fwj and for values are related by the following

recursion:

w.-I - qwm (q - 1)on (6-36)

The M - 1 parameters 0 == (ol,..., om-1) uniquely characterize the overlapping

nature of the tree.

Now suppose that we wish to represent a one-dimensional random field having a

length of K pixels on an overlapping tree having M scales, using a given overlapping

structure characterized by 0. For such a tree to represent our random field, two

constraints (in addition to (6.35),(6.36)) must be satisfied by the overlap parameters:

1. Each multiscale, node on: the finest:-level: of-the tree must 'correspond to a single

pixel:

WM-1 (6-37)

2. The root node of the multiscale tree must be associated with the entire random
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field:

wo K (6-38)

From these constraints it follows that M and the 0 may not be chosen arbitrarily

(upper and lower limits for M are specified in Appendix E).

Even subject to the constraints (6.35)-(6.38), each process of length K pixels still

admits a large class of possible overlapping tree structures. We have frequently chosen

the following heuristic: the fractional overlap should be close to a constant function

of scale; i.e.,

0" - �b (6.39)
Wm

Appendix E outlines a recursive process by which to select 0 to simultaneously satisfy

this heuristic and (6.35)-(6.38). Our interest is by no means limited to overlapping

structures satisfying (6.39) however; in Chapter 7 we will make use of other possibil-

ities.

Now suppose that MfoJ have been specified (i.e., the characterization of the

overlapping tree is complete); the unique value of G,, determined by the choice of

MJ oJ may be found as follows. Consider a node s on the finest scale of the tree;

we can describe s as a descendant of the root node in the following manner:6

8 oailai2 ... aiM-1 j. C- II,-, qJ (6.40)

where we orient the tree such that tal is the leftmost child of node t and taq is the

rightmost child. The effect of (6.40) is to code node s as a (M-1)-tuple (jl,. - -,im-1).

Knowing the ancestry of s, the position of s on the multiscale tree is readily

'Recall that tai is the ith descendant of multiscale tree node t.
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calculated. Let

M-1
(j. - 1)qm-M-1 (6.41)

M=1

then s is the pth node on the finest scale of the tree, measured from the left end of

the tree. Furthermore, knowing M, 0, we can also infer the point in physical space

with which s is associated. Define

M-1
P - �', OM - ')(Wm - Om), (6.42)

M=1

then s is associated with the pth element of the one-dimensional process which we

are representing on the tree. It follows then that

Q, (p, p) = I and G., (p, p) = 0, Vp =A p (6.43)

Given s (and its associated coding (6.40)) it i's straightforward to calculate p, p; by

repeating this calculation for all s on the finest scale (that is, for all ji G 11, 21, 1 <

i < M), Q, is constructed implicitly.

The construction of Gy follows immediately from that of G,,: Gy just consists of

the subset of columns of G,, at which we have measurements. Recall that GY copies

measurements from the original domain into the lifted domain. Consequently, if the

ith measurement yi measures the jth pixel xj of the one-dimensional process, i.e.,

Yi = &j + Vi (6.44)

then the ith column of G is set equal to the jth column of Gx.Y

e uc'tion o H. on the'' 6ther"I"and, 1�s` no" t fully determined by MO; inTh confirm I

fact, Hx must only satisfy HxGx = 1. The matrix Hx determines the interpolation

of elements from the lifted domain back into the original domain. We desire that

this interpolation be purely an en8emble average; that is, Hx must perform no spatial
kind ea h 16 t, 'f e n on'a linear combination

averaging, of an c e men o �Ixxi, Is, Eas''a'o''ly"
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Child j+1
Child j

see

C
:3

0 0-

Region of Overlap

(a)

1 2 3 1 1 1 1 1
Child j F4f_41 4,

Child j+1
1'1' 3-2111

F-H
One finest scale pixel

(b)

Figure 6-6: Two overlapping nodes: the set of relative contributions to each finest-

scale pixel must sum to one. The contributions are tapered linearly over the region

of overlap. Figure (a) shows this tapering pictorially; Figure (b) provides a specific

example for two nodes which overlap by three pixels.

of the corresponding elements in For H,, to eschew any spatial mixing, it follows

that

G. (i, 0 H. (j, i) = 0 (6.45)

i.e., the distribution of non-zero elements in H,, is the same as in GT. Note thatX

the choice H,, = G+, the Moore-Penrose inverse of Gx[21, satisfies (6.45) and alsoX

HxGx -- 1. A smoother selection of Hx, outlined below, is also possible.

Consider two nodes on some scale m, such as the two child nodes j, (j + 1) shown

in Figure 6-6(b); now consider some pixel that lies within the overlapping regions

of these two nodes (e.g., the pixel marked * in the figure). We need to specify the

contributions of child j and child (3'+ 1) (and their descendants) in determining the
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value of pixel for example, in Figure 6-6(b), child (j + 1) (and its descendants)

will have a contribution three times that of child j. In order to maintain a total

contribution of unity at each pixel, we will normalize the contributions at each pixel

to sum to one; these normalized values will be referred to as relative contributions.

We propose to achieve smoothness in H,, as follows:

• The relative contributions of a node to its associated pixels should be a smooth

function of the pixel's spatial position.

• The relative contributions of a node should taper towards zero as one approaches

an overlapped end of the interval associated with the node (e.g., pixel * repre-

sents the end of the interval associated with child j in Figure 6-6(b)),

Figure 6-6(a) sketches one possible choice of relative contributions consistent with the

points just listed: we propose to taper the relative contributions linearly across the

region of overlap.

The previous paragraph outlined a procedure for determining the relative contri-

butions of two overlapping nodes. Suppose this procedure has been applied to all

neighboring nodes on all scales; how can we determine H,,? Consider a node 8 on the

finest scale, and define pp as in (6.41),(6.42). H,(pp) controls the participation of

the value at node s in determining _-�p - the estimate of the pth component of the

original domain vector x. The participation of node s on the finest scale is deter-

mined as the product of all relative contributions associated with position p on all

ancestors of s. This construction is illustrated in Figure 6-7; the figure illustrates an

overlapping tree representation of a process having four points: (a, b, c, d). Process

points b and c have a triply-redundant representation on the finest scale of the tree;

points a and-&each correspond to only,,q;1'single finest scale tree node. Now consider

finest scale node s -- � (second from the left end of the tree). The participation of s

in determining the value of b is given by the product of the relative contributions to

b of all ancestors of s - i.e., the numerical values above each� in Figure 6-7. Thus

theparticipation.,of s is. equalto I 1; sothe weightdn, Hx associated with 83: 2- 3

is The weights in Hx corresponding to each of the finest-scale nodes are shown in
3
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Root Node

a Q)'c'd'

2 1 1 2
_3 3 3

Processa b c d
Elements

1 1 1 Relative
2 2 2 2 Contributions

a (b b c

1
F-� F----1 F-� F----i F-i F---i

a b C b C C d

1 1 1 1 1 Weights in H
3 3

H. - 3 -3
-3

L

Figure 6-7: An example of the construction of H,,. A four-level tree is used to
represent a process having four points (a, b, c, d). The process points associated with
a multiscale node are indicated below the node. The relative contributions of each
node to its associated process points are indicated above each node. Products of these
relative contributions determine the elements of H.,.

Figure 6-7.

For all but the smallest estimation problems, a dense representation of the G,,, GY7

and H., matrices is completely impractical. The observation that each row of G, Gy

and each column of H,, contains only one non-zero entry suggests that a sparse repre-

sentation based on storing only these non-zero entries might be adequately compact.

However for large multidimensional problems even this sparse representation may be

very large (indeed, the combined number of of non-zero entries in G, Gy and H,, may

exceed the number of values in the entire multiscale tree). As has been discussed

in this section (and demonstrated more rigorously in Appendix E) the overlapping
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k -2 -1 0 1 2

2 -0.0085 0.0139 -0.0058

1 -0.0008 -0.1164 0.2498 -0.1405 0.0091

1 0 -0.0517 0.5508 0.5508 -0.0517

-1 0.0091 -0.1405 0.2498 -0.1164 -0.0008

-2 -0.0058 0.0139 -0.0085

Table 6.1: Coefficients fhk,11 of the Markov random field "wood" model[53].

structure parameterization f M, f o, II, in which there are only M parameters, forms

a sparse and implicit representation of G, Gy and H,,. We have found the construc-

tion of G, Gy and H,, from the overlap parameters 10MI to be so rapid that we have

exclusively used this latter representation in our software.

6.4 Experimental Results

The overlapping tree framework has given us a powerful new tool with which to

perform estimation. In this section we will demonstrate three applications of this

tool to problems of texture estimation.

An anisotropic Markov random field will form the basis of all three of our estima-

tion examples. The Markov random field model takes the form

z(x, y) hklZ(X- k, y - 1) + v(x, y) (6.46)
klE'D

where v( is a Gaussian noise process having the following correlation structure:

a2 k = 1 0
E [v(x, y)v(x + k, y + 1)] 2hkl (k, 1) D (6.47)

0 (k, 1)

E [v(x, y)z(x + k, y + 1)] 72 k 1 = 0 (6.48)
0 Otherwise

2where we will use o7 I throughou We will assume that the Markov
an om- 1 s�on a nsequ6nt y t e corre ation structure becomes

t- 'A '' e -,4 lle:� oroiaa',1ratt1ce,;,-c6 7''', �' -� 1,
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Figure 6-8: Original "wood" texture, 64 x 64 samples, simulated using Markov Ran-
dom Field techniques.

circulant, such that efficient FFT techniques may be applied if the field is densely and

uniformly sampled. The specific choice of coefficients jhk,11 to be used in our examples

are those of the "wood" texture[53], tabulated in Table 6.1. The texture shown in

Figure 6-8 shows a 64 by 64 pixel sample path, generated using FFT techniques,

based on the "wood" texture coefficients. The image possesses an obvious grain -

that is, a much stronger correlation in the vertical direction than in the horizontal.

The long correlation length in the vertical direction is of particular interest: it is such

correlations which non-overlapped multiscale trees find difficult to preserve, even using

relatively high order models[611.

Based on the overlapping-tree construction (i.e., the determination of

0, G, Gy, H.,) outlined in the previous section, there are three basic parameters to

be specified in developing an overlapping tree model:

1. The order q of the tree structure. For the two dimensional problem considered

here, q = 4 = 2 2 is the most natural.

2. The number of scales M in the overlapped tree
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3. The order k of the multiscale model

Other parameters, for example the parameterization 0 of the overlapping tree, follow

from M and q per our discussion in the previous section.

In each of the examples of this section we will be using a canonical correlations

technique (from Section 2.5.2) to develop multiscale models of any specified order.

The development of a multiscale model proceeds as follows:

1. The prior model of the estimation problem (here a Markov random field model,

as in (6.46)) determines the correlation structure P of the field to be estimated.

2. The overlapping tree structure determines the projection operator G.,; together

G-- and P specify the correlation structure of the finest-scale nodes on the

overlapped multiscale tree.

3. Using canonical correlations, determine the q sets of linear functionals that must

be kept at each node s in order to conditionally decorrelate the q children of S.

In each case, keep only the k most significant components.

4. Express the linear functionals at each node as a deterministic function of the

the linear functionals kept at its parent plus some unknown component. This

decomposition precisely describes the A(s) and B(s) matrices of the multiscale

model.

This procedure is described in greater detail in [48].

6.4.1 Densely Sampled Field, Homogeneous Model

The original texture, shown in Figure 6-,8was corrupted to OdB SNR -by white Gaussian

noise, and estimated in three different ways:

1. Using an optimal FFT technique (Figure 6-9)

2. Using a non-overlapped multiscale tr 'ee (i.e., a tree having seven scales) with a

multiscale model of order k 40 (Figure 6-10)
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Figure 6-9: Estimated texture using optimal FFT techniques, based on noisy mea-
surements of Figure 6-8.

Figure 6-10: Estimated texture using a multiscale tree model, but without using an
overlapping tree. Note the artifacts across the boundaries of the image quadrants.
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Figure 6-11: Estimated texture using a multiscale tree model applied to an overlapped
tree. The computational burden of this estimator is the same as that in Figure 6-10.

3. Using an overlapped multiscale tree having nine scales, and a multiscale model of

order k = 16 (Figure 6-11)

The model orders of the two multiscale techniques were chosen such that the to-

tal computational burden is the same for both; that is, Figures 6-10 and 6-11 each

represent an equivalent computational effort. The RMS error of each of the three

estimates is compared in Table 6.2. Since the FFT method implements the optimal

least-squares estimator, its mean square error (MSE) is the lowest of the three estima-

tors; however given that the measured process (i.e., the noisy version of Figure 6-8)

possessed a MSE of 1.0, the reduction in MSE offered by the tree-based estimators is

actually a large fraction (> 97%) of the optimal reduction.

An interesting comparison is provided by Figures 6-10 and 6-11: the choice be-

tween a high order model (k = 40) versus a lower order model (k = 16) coupled with

an overlapped tree. Specifically, we are interested in the presence of artifacts, particu-

larly anomalous breaks in the vertically-correlated bands of the Markov random field
�b d' ''rie§' D " �it- ig 0 the recon-

tree! otin a es e itg�re]atively h"' hill' del order,
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Estimator Figure# MSE

Noisy Field: 1.0000

FFT (Optimum): 6-9 0.1130

MS, No Overlap: 6-10 0.1253

MS, Overlapped: 6-11 0.1311

Table 6.2: Performance comparison of the random field estimators of Figures 6-9,
6-10, 6-11.

struction computed by the non-overlapped tree in Figure 6-10 shows obvious breaks

in the vertical bands, whereas these breaks are eliminated by using the low-order

overlapping tree model estimates in Figure 6-11. It must also be emphasized that the

smoothing operation of H,, in the overlapping tree has not blurred the estimates in

Figure 6-11: H,, does not perform any spatial smoothing and is capable of preserving

discontinuities and decorrelations.

It is also interesting to compare the overlapping tree estimates (Figure 6-11) with

the estimates produced using FFT methods (Figure 6-9). Although the FFT method

is optimal in a MSE sense, a lower MSE value does not necessarily imply a better

reconstruction from an aesthetic point of view (indeed, this point is made admirably

clear by Figures 6-10 and 6-11). In the eyes of the thesis author the FFT recon-

struction seems excessively smooth compared to the original process in Figure 6-8,

such that the overlapping reconstruction in fact appears to be closer in nature to the

original wood texture.

Although the FFT technique is both efficient and optimal, it suffers from a lim-

ited applicability to special circumstances; in particular, each of the following cases

preclude the use of the FFT, but may be solved using our multiscale method:

• irregularly sampled measurements,

• spatially varying measurement noise,

• spatially varying prior model.
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Figure 6-12: This figure shows a sample pat h of an inhomogeneous Markov random
field, where each pixel belongs to a horizontally or vertically correlated texture.

For those very special estimation problems such as the one of this subsection, the

FFT approach may be the method of choice. The next two subsections will consider

more general estimation problems for which the FFT approach cannot be used.

6.4.2, Densely Sampled Field, Heterogeneous Model

In this section we consider an estimation problem for which FFT techniques are

inapplicable: the computation of estimates for a random field having a nonstationary

prior model. Figure 6-12 shows a sample path of the nonstationary model. The 64x64

pixels of the process were divided into groups gi and 92: g, contains the pixels in the

upper left and lower right of the image, and 92 contains the pixels in the diagonal
nning rou'i- e ce er e prior model for the pixels in g,'r.u" th,ban th " nt ' ofth6 image. T�'9

is the "wood" MRF model of Table 6.1; the prior model for the pixels in 92 uses the

the same coefficients in Table 6.1, but with the whole table rotated by 90 degrees.

The cross correlation between groups gi and 92 is zero.

The.'choice 'of such -a, nonstat'io'naiy "prior , 'model" as'- opposed to the simple prior
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Figure 6-13: Observations of Figure 6-12 in the presence of OdB white, Gaussian,
noise.

model of the previous example, just implies a change in the prior statistics on the

finest scale of the multiscale tree. Otherwise there is no essential difference, and the

multiscale model development and estimation procedure proceed unaffected.

Figure 6-13 shows a noisy version of the original sample path, corrupted by white

Gaussian noise to OdB; Figure 6-14 shows the corresponding multiscale reconstruction

based on an overlapping multiscale model of order k = 32. Two observations should

be made:

• As mentioned in the previous example, the smoothing operation H', of the

overlapping framework has not at all blurred the edge between the two prior

models - the edge stands out distinctly.

• Essentially no artifacts are visible along the correlated bands in either orienta-

tion.
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Figure 6-14: The estimated texture using an inhomogeneous overlapped multiscale
model, based on the measurements of Figure 6-13 and given the correct prior texture
model at each pixel.

6.4.3 Locally Sampled Field, Homogeneous Model

In this last example we will consider one further estimation problem in which FFT

techniques would be inapplicable: the computation of a set of estimates given a

stationary prior model, but with measurements available at only a small subset of the

pixels. Figure 6-15 shows a sample path of the "wood" texture, based on the MRF

coefficients of Table 6.1; the small ellipse in the figure indicates the subset of pixels

which will be measured. Figure 6-16 shows the measurements of Figure 6-15: no

noise was added to the measurements, however since a measurement error variance

of zero is not permitted in the particular implementation of the multiscale estimator

7 of�,10:-A,a-.measurement noisevariance was specifiedi

Being given measurements at a subset of 'the image pixels, as opposed to a dense

set of measurements as in the previous two examples, just implies a trivial change in

the measurement projection operator G and, consequently, in the multiscale mea-

_7'Althougl'si-ich an -esti'mator'could b'6 implemented.'
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FEE

Figure 6-15: Original "wood" texture, 64 x 64 samples, simulated using Markov
Random Field techniques. The small ellipse indicates the set of pixels to be measured.

Figure 6-16: Noiseless observations of a small subset of Figure 6-15.
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Figure 6-17: The estimated texture using an overlapped multiscale model, based on
the measurements of Figure 6-16. Despite the use of a multiscale estimator, the
estimates evolve smoothly from the region in which measurements are present to the
surrounding area without measurements.

surement matrices on the finest scale of the tree. Otherwise there is no essential

difference, and the multiscale model development and estimation procedure proceed

unaffected. It is rather significant to note, however, that while the multiscale frame-

work is readily adapted to the loss of measurements, a change from dense to sparse

sampling immediately makes FFT-based approaches inapplicable.

Figure 6-17 shows the multiscale reconstruction based on the limited set of mea-

surements given in Figure 6-16. Again, two observations should be made:

The multiscale estimator does capture the coarse features of the original texture

of Figure 6-15 outside of the measured region- Even certain aspects of the

vertical bands to the left and right of the measured region are properly captured.

Despite the fact that we are using a multiscale estimator, the estimated texture

evoIves smoothly as we move away from the measured pixels.
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6.5 Conclusions

This chapter has presented and developed an overlapping tree approach to modeling

and estimation on a multiscale tree. We defined three projection operators G.,, GY

and H.,, which relate the original or physical domain to the finest scale of the over-

lapped tree. If a multiscale model is chosen which is faithful to the statistics of the

process on the finest level of the overlapped tree, then under certain sufficient con-

ditions the estimates which are computed by the overlapping method can be shown

to be optimal. Coupling this overlapping framework with a multiscale stochastic re-

alization technique based on canonical correlations yields a powerful estimation and

modeling tool which offers tradeoffs between estimate smoothness, statistical fidelity,

and computational effort.

The examples at the end of the chapter demonstrated some of the potential for

the overlapping multiscale framework. Three examples were presented, two of which

could not be solved by FFT methods; in each case the overlapping multiscale tree

computed estimates free from obvious artifacts, Chapter 7 will continue the study of

overlapping multiscale models, although with a different sort of prior model, and will

present a further set of estimation examples based on overlapping multiscale trees.
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Chapter 7

Surface Reconstruction

Z 7 hapter 6 discussed the development of an overlapping framework, ca-

pable of computing smooth and aesthetically appealing estimates on a

multiscale tree. This capability motivates an exploration of the applica-

tion of our multiscale framework to a problem in computer vision: this chapter will

develop multiscale models for surface reconstruction. The chapter is organized as fol-

lows: Section 7.2 reviews variational model development for surface reconstruction;

Section 7.3 details the construction of multiscale models corresponding to a given

variational counterpart; and Section 7.4 presents several experimental results.

7.1 Introduction

The problem of surface reconstructions, 31, 40, 44, 103, 111] has been a topic of

considerable interest in the field of computer vision for some time, involving the

estimation of an unknown surface based on a set of noisy measurements of some

function of the surface and its derivatives and based on a prior model for the surface

(generally necessary to regularize the problem). Variational methods[18, 111] have

enjoyed considerable success in dealing with surface reconstruction problems, both

as an analytical means of formulating the problem, and as a means of determining a

method of solution. However, as discussed in Section 2.2, the solution of the associated

Euler-Lagrange[18] partial differential equations (PDEs) may represent a significant
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computational task, and the calculation of reconstruction error covariances[51, 98]

are, for all practical purposes, completely infeasible for large problems.

This chapter is motivated by a class of problems for which FFT techniques are in-

applicable, and for which the solution of the Euler-Lagrange equations via variational

approaches is impractical, but for which the multiscale framework of this thesis, and

more specifically, the overlapping multiscale framework of the previous chapter, may

yield significant improvements. We will be taking advantage of a dual interpretation

of variational problems (Section 2.2): variational problems with quadratic costs may

be interpreted as Gaussian least-square statistical estimation problems. Specifically,

as has been noted by others[99], the membrane and thin-plate variational models

commonly used in surface reconstruction allow interpretations as I /f2 prior statisti-

cal models, for which we can develop multiscale counterparts.

In fact, the method of this chapter allows a broader class of surface models than

just thin-plate and membrane. The flexibility of the multiresolution framework al-

lows us to define a far richer class of surface reconstruction models and algorithms

corresponding to different prior models which have either more complicated or no

variational counterparts, but that admit the same efficient solutions.

7.2 Background

7.2.1 Notation

The general surface reconstruction problem[103] involves estimating the shape of a

surface given a discrete (and possibly sparse) set of noisy observations of some function

of the surface and/or its gradients. The surface of interest is a two-dimensional

function z (X Y)'ptesumed twice differentiable' 6' h" ; denote by

P (X, Y) - zX (X, Y) - '9z (X, Y) q(x, y) zy(x, y) - 9z(x, Y) (7.1)
ax 09Y

the gradients of the surface at each point. Normally we shall refer simply to z, p, q

etc;lthe dependence on x and y will be implicit. We are interested in least squares
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problems of the following type:

�(Y) = min, f (Y - C(z))'R-'(Y - C(z)) +3(z)J (7.2)

Y = C(Z) + V (7.3)

where Y is a discrete vector of observations, corrupted by white noise V, and where

V has covariance 1Z. C is the measurement function, and Z represents a prior model

for the surface z. The specific nature of the measurement function C will typically

depend on the specific surface reconstruction problem of interest; for example we may

directly observe a sparse subset of the surface heights,

- Z(XJ' YJ)

C(Z) == Z(X2, Y2) (7.4)

or we may just observe a subset of the surface gradients,

P(X1' yi)
q(X1' Y1)

C(Z) P(X2, Y2) (7.5)
q(X2, Y2)

7.2.2 Surface Prior Models

A least-squares solution for the surface z given the measurements alone is typically

ill-posed, i.e., there is not a single optimum solution for the surface. In order to

guarantee a unique solution the problem is regularized by asserting a prior model Z

for the unknown surface, typically reflecting our prior knowledge about the surface

to be reconstructed or, equivalently, asserting certain desired smoothness properties

for the reconstructed surface.

One of the simplest and most common surface prior models is to assert a smooth-
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ness constraint [44]:

2 2Z,(Z) - a PX + P + q,2, + q,21 dxdy (7.6)
f f � Y

This constraint is also referred to as a "thin plate" term, in that (7.6) represents the

potentia energy in an isotropic thin plate[18].

An alternative function, representing the potential energy contained in a stretched

membrane[18], punishes variations from p = 0, q -_ 0:

f f �P2 2Z", W = + q I dxdy (7.7)

Combining (7.6),(7.7) yields a variational formulation familiar to researchers in

computer vision[44]:

�(Y) = min (Y - C(z))'R-'(Y - C(z)) + ff Ce �P2 + P2 + q2 + qY2 I + 0 �P2 + q21 dxdy
Z x Y x

(7.8)

There are two common interpretations of this formulation:

e The regularization term of (7.8) is a special case of the class of two-dimensional

generalized spline functionals[103, 1091

2
'9MZ

2 f j dxdy (7.9)1 Z Irn
p,2 9xiqYM-ii=O

for the cases m - 1, 2, where the value of m determines the order of continuity

in the solutions for z.

* The regularization term of (7.8) represents a deformable sheet[1111 or a stiff

surface, being acted upon by forces (i.e., the observations), where the resulting

deformation is a function of the specific stiffness properties of the sheet. In

particular, a membrane term Z, minimizes the surface "area" (like a rubber
`S'16et), whereas t e-t in p ate term Zp minim s' Su-

h- ize 66' ' rface curvature (like a
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steel plate).

7.2.3 Explicit Estimation of Surface Gradients

One final addition to the variational formulation is appropriate. In many surface

reconstruction applications, the gradients of the surface play a central role (the most

notable example being the shape-from-shading problem[44, 45]). It is frequently of

interest to estimate the gradients explicitly, rather than to infer them implicitly as a

function of the estimated surface.

For example, consider a problem in which the measurements are functions of the

surface gradients only, not the surface heights themselves. In such problems, we may

be motivated to use the following common variational equation[44]:

a (P2 + P2 + qX2 + 2) + '3 (P2 2min (Y. - C(p, q))'IZ-'(Yg - C(p, q)) + q; + q ) dxdy
pq 9 f fR2 X Y

(7.10)

where Yg represents gradient-dependent observations, and where the measurement

function C. (p, q) explicitly depends upon gradient terms only. In general, the esti-

mates of p, q resulting from such a variational equation will not correspond to the

gradients of any surface z - this is the well known integrability problem[31, 43, 551.

Our multiscale surface reconstruction model (to be outlined in Section 7.3), will simi-

larly be estimating the surface gradients explicitly, hence the relevance of the following

discussion.

In order for p, q to be gradients of a surface, the consistency constraint

j (pdx + qdy) = 0 (7.11)
,C

must hold over all closed paths L in the plane[40]. In other words,

py - qx (7.12)
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at all points in the plane, leading to the revised variational problem[401

min � (Yg - Cg (p, q))'7Z-'(Yg - Cg (p, q)) +pq 9

a (P2 + P2 + q 2+ q 2) + 0 (P2 + q 2) + _Y (p, _ qx)2 dxdy (7.13)
J fR2 X Y X Y

The inclusion of the additional penalty term in the above expression does not

guarantee that (7.11) is exactly satisfied, although using a large value for -Y will in

general result in nearly consistent (p, q) fields. Even if this consistency relationship is

exactly satisfied, however, we still have the non-trivial problem of computing z from

the (p, q) fields. On the other hand, this problem and the consistency problem may

be avoided by explicitly reconstructing z as well as (p, q) through a simple surface-

gradient consistency penalty

f f " (ZX _ P) 2 + (ZY - q )2 dxdy (7.14)

This leads to the following variational problem, where for generality, we allow both

direct measurements Y, = C,(z) + V,, as well as gradient measurements Y9:

� (y _ C' (Z)) TR- I (y _ C' (Z)) + (y )TR-l(ymin S 9 - Cg(p, q) g - Cg(p, q))+ZPlq 9

Ce (P2 + P2 + q2 + q2) + 0 (p' + q 2) + _Y ((Zx _ P)2 + (zy - q)2 ) dxdy (7.15)X Y X Y

This variational problem, whicl� is similar to one introduced in [40], forms the point

of departure for our analysis and in particular for the development of efficient multi-

scale counterparts to problems of this type. We will restrict our attention to linear

measurements of the surface and its gradients, as in [102, 103].

7.2.4 Euler-Lagrange Equations

After a specific variational expression has been selected, the solution for the opti-

mal estimated surface �(Y) can be characterized in a straightforward manner. For
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example, the Euler-Lagrange equation[18, 103] corresponding to (7.8) is

(y _ C(Z))R-l(y _ C(Z))T _ a 91Z 92Z (94Z (94Z (94Z
+ - + - + 2 + - = 0az 9X2 ay2 9X4 19X2Y2 '9Y4

(7.16)

This is an elliptic PDE which, after specifying appropriate boundary conditions, may

be solved numerically by discretizing the PDE and applying numerical solution tech-

niques. In special cases extremely efficient FFT techniques may be applied. Typically,

however, FFT techniques are not applicable, leading researchers to propose a variety

of other techniques[44, 83, 111]. These techniques successfully estimate the surface by

solving the PDE in a comparatively efficient manner, however they are unable to pro-

duce estimation error statistics for reasons outlined in Sections 2.1 and 2.2. Instead,

we propose to replace the variational model by a similar multiscale one, allowing

efficient computation of the surface estimates and estimation error variances.

7.3 Multiscale Model Development for Varia-

tional Problems

This section begins by developing multiscale counterparts to each of the terms in

a variational cost function such as (7.15). Next, once a tentative multiscale model

has been established, the model is adapted for use in the overlapping framework of

Chapter 6.

7.3.1 Equivalent Estimation Problem

Consider the following variational problem, a variation of (7.15):

min �(Y-C(zpq))'R-'(Y-C(zpq))+
zpq

)T Lj(z, p, q) + L )T dxdy (7.17)
R, [L1 (z, p, q 2(Zpq L2(Zpq)]
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where LI, L2 are column vectors of linear functionals of z, p, q, and where Y may con-

tain both height and gradient measurements (e.g., the Y, Yg of (7.15)) corresponding

to the linear measurement functional C.

Let ZT .... z(xi, yj),...] Trepresent a vector of samples of z(x, y); similarly

define P, Q. Then, based on our discussion in Section 2.2, (7.17) may be discretized

as

Z T Z

min Y C P 7Z +
Z'P'Q Q Qj

Z_ T Z_ Z_ T Z_

LI P Li P + L2 P L2 P (7.18)

- Q Q Q Q -

where LI, L2, C are matrices representing discrete approximations of the linear func-

tionals LI, L2, C respectively.

From Section 2.2 we know that optimization problems such as (7.18) have coun-

terparts as statistical estimation problems; furthermore from the prior-measurement

duality discussed in Section 2.3 we know that there is a certain degree of flexibility in

the choice of the measurement and prior models. Taking advantage of this flexibility,

we propose to consider the following estimation problem:

Z
Y C 7Z 0

P +V ;V 0) (7.19)
0 LI 0 I

Q

Z
L2 P Ar(O, 1) (7.20)

The estimation problem (7.19),(7.20) is the same as the original estimation problem

in (7.18).

The next three subsections discuss the determination of appropriate values of C,

followed by the synthesis of.the.com-Dlete multiscale model appropriate for

surface estimation.
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7.3.2 Measurement Model

In our multiscale model the nodes at the finest scale correspond to the scale at which

we both have measurements and wish to perform surface reconstruction. Thus the

measurements (2.28) in our multiscale model are defined only at the finest scale, i.e.,

C(s) = 0 except for nodes at the finest scale (and even at that scale C(s) may be zero

at some nodes if the surface measurements are sparse). For example, in Section 7.4

we will focus primarily on direct surface measurements. In such cases, if z(s) is

the first component of x(s), then our measurement will take the form of (2.28) with

C(s) -_ [Cl (s), 0, . . .] where C, (s) -_ I at those finest scale nodes at which we have

direct measurements of the surface.

7.3.3 Quadratic penalties on state derivatives, e.g., z 2X

The basic idea for this case, first discussed in [14, 63, 99], was outlined in Section 2.5.4.

Essentially, a variational cost

[ZX2 + Z2] dxdy (7.21)Y

is similar to a Brownian motion prior model[63], that is, a process with a 1 /f2 spec-

trum. Consequently we propose the following multiscale prior model which possesses

a similar 11f 2-like power spectrum:

z(s) = I - z(s,;zy) + B,2 -m(s)/2 W(S) (7.22)

7.3.4 Quadratic penalties on linear combinations of state

variables:

The other components of the prior model involve quadratic costs of linear functions

of variables, e.g.,

((Zx _ P)2 + (Z y - q)2 ) dxdY (7.23)
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which asserts the relationship between the surface and its gradients. As discussed in

Section 2.3, we can (and do) choose to interpret such terms as part of the measurement

model. For example, the penalty f f (Zx - p)2 has the direct statistical interpretation

as a measurement of the form

0 - zx(x, Y) - AX, Y) + V(X, Y) (7.24)

where v(x, y) is a spatially white "measurement noise" with a variance reflecting the

weight placed on the (zx - p) penalty in the variational problem.

"Measurements" of the form (7.24) are not in the most convenie nt form for mul-

tiscale implementation. However observe that

)2 = - )2 + )2
zX - P)' + (zy - q ' (zx + zy - p - q 1 (z. - zy - p + q (7.25)2 2

which leads to the following types of measurements:

0 - zx(x, Y) + ZY(X, Y) - p(x, y) - q(x, y) + vi(x, y) (7.26)

0 - zX(X1 Y) - zy(x, y) - p(x, y) + q(x, y) + V2(X, Y) (7.27)

As we describe next, these measurements are readily captured in our quadtree struc-

ture.

Now in order to incorporate a discretized version of (7.26) or (7.27) into our

multiscale framework we must define appropriate approximations to the derivatives

Z, (X, Y) and zy (x, y). In particular, we will want to define such an approximation

at all scales. Since the concept of the gradient of a I/P-like surface is ill-defined

at best, we have some I flexibility. in, how We choose. to do this, and we have taken

advantage of this flexibility to specify an approximation that leads to a very simple

model. Consider Figure 7-1, in which we have portrayed a parent pixel S�Y- and its four

descendants 81, 82, 83,84- We consider each node on the tree to represent a particular

point on the surface, chosen to be the point in the center of the region aggregated by

each node: the points are marked as a filled circle for each of the descendent nodes,
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S

Sy
\SOO,/

Y
S S2 4

X

Figure 7-1: A set of five node labels for gradient discussion purposes. 81, 82, 83, 84 are
each children of coarser node s,;:y. The x indicates the point represented by node 81;
the solid circles 9 specify the points represented by nodes 81, - - - , 84 -

and as a cross x for node s,;�y- Measured in units of finest-scale pixels, the point 0 in

each of the child nodes is separated from x by a distance V2_-2-(s0-M. One possible

approximation to zx ± zy is to define the surface gradients in terms of values at the

four child nodes; e.g.,

Zx(83) + Zy(S3)- 2'( S3)-M+l (453) - Z(82)) (7.28)

where 2'(13)-M+lmeasures the separation between nodes 82 andS3 along the x and

y directions. This approach has the undesirable property of leading to a higher-order

model than an alternative choice. Instead, we define our approximation to gradients

at each child node in terms of the parent value as well:

Zx(S3) + Zy(83)-- 2-(S3)-M (_Z(S,�y�) + Z(83)) (7.29)

Zx(84) - Zy(84)- 2-(S4)-M (_Z(SAy) + Z(84)) (7.30)

with analogous definitions at nodes 81,82-

Consequently, if we wish to view (7.26) as a "measurement" we are led to discrete
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measurements of the form

0 2-(83)-M (-Z(8,;;y�) + Z(83)) - P(83) - q(83) + V(S3) (7.31)
(S2)-M -) + Z(82)) + P(82) + q(82) + V(82) (7.32)

0 2m (- Z (8';;Y

which we will interpret as a measurement at node S3 and 82 respectively. In a similar

fashion we can defined measurements corresponding to (7.27):

0 -- 2m(sl)-m (-z(s,�) + z(si)) + p(si) - q(sl) + v(sl) (7.33)

0 - 2m(S4)-M (-*�) + Z(84)) - P(S4) + q(84) + V(84) (7.34)

For these "measurements" to be in the form of (2.28) all of the variables in (7.31)-

(7.34) (other than the noise terms v(si)) must be in the respective state vectors

x(si). The measurements (7.3l)-(7.34) require that x(si) include the parent value

z(s,;�y); this is accomplished easily through state augmentation as described in the

next subsection.

7.3.5 Elementary Multiscale Model Synthesis

Combining the model components described in the preceding subsections leads to the

following elementary multiscale estimation problem corresponding to the deformable-

sheets variational problem (7.15). Specifically, the state dynamics are given by

z 1 0 0 0 z B,,2-m(s)/2 0 0

0 1 0 0 P 0 B 2-m(s)/2 0
P + 9 (s)/2 W(S)
q 0 0 1 0 q 0 0 B.2-m

LzP i I 0 0 0 zP 0 0 0

(7.35)

Here the first component of the dynamics captures the thin membrane term (7.7)

.. and the next two the thin plate penalty (7.6). The last component accomplishes

the state!,� augmentation required: for, the. penalty (7.14) as- discussed in the preceding
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section: zp(s) is simply z(s,�). The measurement equation accompanying this model

includes both the actual measurements (at the finest scale) as well as measurements

like (7.3l)-(7.34) which assert the surface-gradient consistency. For example, if we

have only direct surface height measurements, the measurement equation at each of

the four nodes Si, 1 < i < 4 in Figure 7-1 would take the form

d(si) Ci (Si) 0 0 0 Z
P (Si) + V (Si) (7.36)

0 -2m(si)-m ai bi 2m(si)-m q
ZP J

where C, (Si) (from Section 4. 1) equals one at those nodes at which we have measure-

ments (zero otherwise) I and ai, bi are given by

a, = -1 a2 - -1 a3 - a4

bi - I b2 = -1 b3 - I b4 = -1 (7-37)

where ai and bi specify the orientation of Si with respect to s�y- along the x and y axes

respectively (see Figure 7-1).

There are several final points that we should make about this multiscale model.

First, there is the issue of specifying the unknown parameters, e.g., the B, Bg of

(7.35). This is the same type of problem as the the selection of appropriate weights

a, 0, -y in the original variational formulation (7.15); for example, by adjusting the rel-

ative sizes of these quantities we can control the relative importance of the thin-plate

and membrane terms. However, now that we have a precise statistical interpretation

of these terms, we can use that to advantage in determining these quantities. In

particular B, B. have an explicit physical meaning, measured in real physical units,

that represent the prior statistical knowledge of the surface; e.g., if the surface varies

over a range of ±15cm, then B, = 10cm would make a reasonable choice. In addi-

tion, based on the multiscale likelihood and parameter identification methods that

our models admit (as described in Chapter 4), one can estimate the optimal values

of these parameters from the data and perform model validation. Finally, while the

model (7.35),(7.36) does capture many of the features of the variational problem with
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60,

40,

20,

01

-20,

-40,
0

2

0
20

0 30

80 70

Figure 7-2: Four sparse measurements used in testing the elementary multiscale sur-
face reconstruction model.

which we started, there is one last issue that is of consequence in some applications

and which necessitates a change in the multiscale model. This is discussed next.

7.3.6 Advanced Multiscale Model Development

The straightforward application of the elementary multiscale model (7.35),(7.36) de-

rived in Section 7.3 would be to implement it directly on a quad-tree. Figure 7-3

demonstrates the result of such an approach, based on the set of four, sparse mea-

surements from Figure 7-2. The computation of this set of estimates and estimation

error variances (not shown) required about 3 seconds of SPARC-10 computer time.

One striking feature of these estimates is their blockiness, or lack of smooth-

ness, characteristic of As argued in Chapter 6, in some

problems the quality and quantity of information available for reconstruction may

be sufficiently low that no statistically significant fine scale estimates can be com-

puted. Nevertheless, in many applications there are compelling reasons for producing

smooth� reconstructions something that the- originate variational formulations gener-
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80-
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-60-
0

40 0 20 0 0
80 70

Figure 7-3: The surface estimates resulting from a straightforward implementation of
the elementary multiscale model.

ally do. We propose to apply the overlapping framework of Chapter 6 to produce

smoother estimates; that is, we wish to select projection operators H, G,' and GY

which relate the original domain and the finest scale of the overlapping tree structure.

Since the projection onto an overlapping tree involves a change in the multiscale

tree structure from that used in the preceding subsection, it is also necessary to

make a corresponding change in the model parameters on the tree. Because of the

interpretation of thin-plate and membrane models as fractal priors, we can readily

develop such a model motivated by results on hierarchical fractal surface synthesis

in[93]. In particular, a key quantity in this construction is the ratio of the dimensions

of the multiscale pixels in going from scale to scale. Specifically, if w, denotes the

size at scale m, then the key quantity is

r = WM+1 (7.38)
Wm

which is related to the lacunarity[70, 93], or texture, of the synthesized surface. Then

in constructing a 11f 2model on such a pyramidal structure the variance of the detail
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added in going from the mth to the (m + 1)st scale is proportional to (1 - r)r-. In

a non-overlapped tree r -- 1, resulting in variances that decrease by a factor of two
2

from scale to scale as in (7.35). For an overlapped tree r > ', and thus when we2

use an overlapped tree with lacunarity r we modify the model (7.35), replacing noise

gains 2-,(,)/2 by 2(1 - r)r-(s)/2 . Note also that since we are decreasing the size of

the regions more slowly as we move to finer scales, our trees will necessarily require

more scales than in the non-overlapped case. In particular, if we require M scales

in the non-overlapped case, we will need MI 1092 (1/r) scales in the overlapped case.

Since there is an increase in the computational complexity as the number of tree

levels increases, we have a tradeoff between the amount of overlap (corresponding to

r closer to one, and to greater smoothness in the reconstructions) and computational

effort.

7.4 Reconstruction Examples

This section presents four surface reconstruction experiments, illustrating the appli-

cation of our multiscale framework in a variety of surface-reconstruction scenarios:

densely sampled surfaces, sparsely sampled surfaces, discontinuous surfaces, and sur-

faces not characterized by variational thin-plate/membrane priors. For each multi-

scale example an overlap vectorl 0 - (ol, . . . , om-1) will be given, which character-

izes the overlapping tree structure. The means of determining the operators G., GY)

and H., from 0 is summarized in Appendix E.

7.4.1 Densely Sampled Measurements

Figure 7-4 summarizes -our experimental results for surface reconstruction of a densely

sampled surface. A smooth surface of size 64 x 64 pixels is shown in Figure 74(a)

and the corresponding dense measurements with added Gaussian noise (variance 25)

are shown in (b). The particular surface used does not correspond exactly to either

lo,, defined in Figure 6-5, represents the numb'r of, pixels by which neighboring nodes on the
mth scale overlap.
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60 �0�40

20 20 0
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(a) Original surface to be estimated. (b) Original surface plus noise.

40, 40,

30, 30,

20, 20,

10, 10,

01 01

-10 -10
80 80

80 80

40 60 40 60

0 0 0 0

(c) Multigrid Reconstruction. (d) Multiscale reconstruction.

Figure 7-4: Dense measurement reconstruction example: a surface is reconstructed
based on dense measurements with 5cm Gaussian noise. The multiscale and multigrid
approaches involve the same number of computations. B, = 80, Bg = 0.4, 0
(12,6,4,3,0,0,0).

the variational or multiscale prior (and, in fact, is synthesized as a weighted blend of

the two) and thus a comparison between variational and multiscale reconstruction is

not biased in favor of either formulation.

Figure 7-4(c) shows the reconstructed surface using an iterative multigrid

algorithm[39, 74, 102, 103, 110] to solve the variational problem based on a thin-

plate prior model (i.e., a - 1, 0 - 0 in (7.15)). The multigrid algorithm was chosen

as it represents one of the most efficient methods for solving the Euler-Lagrange PDE

arising in surface reconstruction variational formulations and thus provides a fair test
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16

14 - Multiscale
Multigrid
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Fraction of 64 x 64 Pixels Made Available as Measurements

Figure 7-5: RMS error in surface estimation using multiscale and multigrid methods
as a function of the proportion of noisy measurements retained.

of our claim that our non-iterative multiscale approach is superior. In particular, in

all comparisons involving our multiscale approach and an iterative method (such as

multigrid), the number of iterations for the iterative methods is selected such that

the total computational effort of each method is the same. Figure 74(d) shows the

reconstructed surface using our proposed multiscale algorithm computed using an

overlapping tree with 8 scales (a non-overlapped tree for this surface would require

7 scales) and a thin-plate-like prior model (i.e., the prior model is dominated by

gradient constraints by choosing B, > 16Bg). As indicated in the figure caption,

0 -_ (12, 6, 4, 3, 0, 0, 0), so the regions corresponding to nodes on the first level below

the root node have an overlap with a width of 12 pixels; at the next level the overlap

is 6 pixelsetc-...

The multigrid and multiscale reconstructions of Figure 7-4 are arguably equally

good both give reasonable estimates of the original surface, and our multiscale

approach shows no signs of blockiness. A more precise comparison is provided by

Figure 7-5. Here we, consider a set of reconstruction problems..in which only a ran-

domly sampled subset of the noisy surface measurements is used. What Figure 7-5
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(a) Original "truth" surface. (b) Four sparse measurements.

Figure 7-6: The "truth" surface is shown in (a). Our sparse-data reconstruction
examples will be based on the four surface samples shown in (b).

depicts is the RMS reconstruction error for both the multiscale and multigrid methods

as a function of the fraction of noisy surface measurements used. Observe that for the

same computational effort, the multiscale algorithm performs as well or better than

the multigrid approach in an RMS sense. Thus the multiscale model which we have

developed should not simply be viewed as an approximation to a variational equation,

rather we are motivated by a certain variational form to develop a surface prior model

- indeed, a conspicuously effective one - that leads to competitive reconstructions.

Moreover it must be emphasized that the multiscale algorithm is computing surface

estimates and estimation error variances in the time that multigrid computes surface

estimates only.

7.4.2 Sparse Data and Multiscale Preconditioning

The preceding example demonstrated that our algorithm provides competitive solu-

tions for problems in which we have either dense or (randomly sampled) sparse data.

In this section we use a second sparse data example to illustrate several additional

issues. Figure 7-6(a) shows the true surface we wish to estimate from the sparse set

of four measurements in Figure 7-6(b). Once again, the true surface does not exactly

match either the variational or multiscale priors. Also, in our reconstructions we
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(a) Gauss-Seidel reconstruction. (b) Conjugate-Gradient reconstruction.
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(c) Multigrid reconstruction. (d) Multiscale reconstruction.

Figure 7-7: Sparse measurement reconstruction examples: each reconstruction is
based on tli6 � measurements --of Figure'' 7'6. ' Each f of the methods uses the same
number of total computations, except that the multiscale approach provides both
surface estimates and error statistics. The contours of the error variance sur-
face are shown in (d); the minimum of the error surface is marked with an W.
B, 80, B9 - 0. 05, 0 (38, 29, 24, 0, 0, 0, 0, 0).
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continue to use thin-plate variational priors as this model is the more challenging one

for our multiscale algorithm: it asserts a high degree of smoothness - an attribute

often difficult to achieve with multiscale algorithms.

Figure 7-7, (abcd) show the surfaces reconstructed from the measurements of

Figure 7-6(b) by means of four different approaches: Gauss-Seidel[19], conjugate-

gradient[19], multigrid, and multiscale. The Gauss-Seidel and conjugate-gradient

approaches are generally not practical algorithms for the surface reconstruction prob-

lems of interest, however they are well understood and many researchers have a sense

for the performance of these algorithms. Meaningful comparisons are achieved be-

tween these different algorithms by examining the surface estimated after a common

amount of computational effort - the effort to produce estimates and error variances

on a multiscale tree having nine scales (about 35 seconds on a Sun SPARC-10). Given

the extreme sparsity of the measurements, a detailed comparison of reconstructions

and truth is not particularly meaningful. Nevertheless from Figure 7-7 we can im-

mediately see the problems associated with the Gauss-Seidel and conjugate-gradient

methods, as neither is near to convergence. In contrast, both the multigrid and mul-

tiscale algorithms yield smooth estimates of arguably equal quality. In addition, the

multiscale algorithm computes estimation error variances, as shown in Figure7-7(d),

which provide useful information regarding the accuracy that can be expected from

the reconstruction. Furthermore the multiscale algorithm in fact produces surface

estimates, gradient estimates, and error variances on all scales, much more than just

the finest scale results shown here.

The tradeoff between the degree of smoothness in the estimates and the level

of computational effort may be explored by changing the number of levels in the

multiscale tree: Figure 7-8 shows a set of four surface reconstructions paralleling the

approaches of Figure 7-7, but with one fourth the computational effort (the effort

to produce estimates and error variances on a multiscale tree with eight scales).

The multiscale-reconstructed surface of Figure 7-8(d) possesses discontinuities in its

gradients, however it is able to capture certain aspects of the true surface better

than its multigrid competitor of Figure 7-8(c) (compare in particular the upper-
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(a) Gauss-Seidel reconstruction. (b) Conjugate-Gradient reconstruction.
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Figure 7-8:' Spdrs-e`me'dsureiii'ent' r'e�`6n'structions using' the same four methods of
Figure 7-7, but using one fourth of the computational effort in each case. Each
minimum of the error surface in (d) is marked by an W. B, 80, B9 0.05, 0
(16,10, 7,0,0,0,0).
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Figure 7-9: Surface reconstructions computed by applying one multigrid iteration to
the two surfaces Figure 7-8(c),(d). B, - 80, B_q = 0.05, 0 = (16,10,7, 0, 0, 0, 0).

left portion of the two estimated surfaces); the Gauss-Seidel and conjugate-gradient

reconstructions in Figure 7-8(a),(b) are far from convergence. The ability of the

multiscale approach to capture certain elements of the surface with relatively little

computational effort motivates its use as a highly sophisticated preconditioner for the

solution of the Euler-Lagrange PDE. The reconstructions in Figure 7-9 are computed

by the application of one multigrid iteration to each of the two surfaces in Figures 7-8

(c), (d).

Figure 7-10 presents a more quantitative comparison of preconditioning. Figure 7-

11 depicts the exact thin-plate solution to the surface reconstruction problem based

on the four measurements of Figure 7-6; i.e., it is to this solution that the multi-

grid algorithm will converge. Let rmsmG(i) represent the rms difference between the

thin-plate solution of Figure 7-11 and the reconstruction achieved after i multigrid

iterations. Let rmsms(i) represent the rms error of the surface using multigrid, pre-

conditioned by the multiscale estimates from a seven-level tree, such that the total

computational effort is the same as that of i multigrid cycles. Figure 7-10 plots

rmsms (i)
100% (7.39)

rMSMG (i)

that is, the percentage rms improvement brought about by multiscale preconditioning.
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Figure 7-10: Percent reduction in RMS error from just using i iterations of multigrid,
to preconditioning the surface reconstruction problem using the multiscale algorithm
followed by multigrid iterations such that the total computation is equal to that of i
multigrid iterations. The horizontal axis measures i.
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Figure 7 1.1:,, The exact thin-plate reconstruction�-,based, on: the measurements in Fig-
ure 7-7 (b).
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Figure 7-12: The multiscale reconstruction from the height measurements in Figure 7-
7 (b), plus regularly sampled measurements (4% measurement density) of the surface
gradients.

Note that this percentage is significant, averaging more than 20%.

7.4.3 Surface Reconstruction with Sparse Surface and Gra-

dient Measurements

The examples of the preceding two sections have exclusively considered surface re-

construction based upon direct measurements of the surface height. However our

multiscale model readily lends itself to measurements of both height and gradient

at the finest scale as well as at coarser resolutions via trivial modifications of (7.36).

Figure 7-12 presents a single example to demonstrate this potential. The figure shows

the estimated surface, given the four height measurements of Figure 7-7(b), and given

regularly but sparsely sampled (one sample per 5x5 block of pixels) gradients of the

true surface in Figure 7-7(a).
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7.4.4 Surfaces with Discontinuities

A topic of particular interest in surface reconstruction involves the estimation of sur-

faces possessing known discontinuities, or the estimation of unknown discontinuities.

The overlapping multiscale tree model possesses a number of attributes which make

it appropriate for such tasks:

• Unlike FFT-accelerated PDE methods, which require space-invariant surface

models, the performance of the multiscale approach is unaffected by space-

varying models (e.g., a piecewise thin-plate model broken by discontinuities).

• The smooth projection operator H,, of the overlapping tree does not blur the

surface estimates spatially. As a result, the overlapping model is quite capable

of capturing abrupt changes such as discontinuities.

• Because the multiscale estimator takes as input a statistical model for the un-

known surface, not only the position of the discontinuities, but also the statistic's

of the discontinuity height may be specified.

• Moreover, since our multiscale algorithms directly produce error variance statis-

tics, we are able to detect statistically significant anomalies in the observed data

which in turn allows us to detect and locate discontinuities.

The example surface which we use in this section is shown in Figure 7-13. The

64x64 surface has four step discontinuities of height 10. The step edges are oriented

diagonally so as to avoid a convenient alignment with the multiscale tree boundaries.

The surface was measured by randomly sampling 30% of the surface elements and

adding unit-variance Gaussian noise.

I We first consider the- situation in' which we'know'the location of the discontinuities.

We do not model each discontinuity line as a step of constant height, rather we

assume that we have much less prior information and simply model each point along

the discontinuity with independent zero-mean random variables. Specifically, in the

context. we proposeto�. model � the, discontinuities,. as follows: every time a

branch of the multiscale tree crosses a discontinuity we will addq = 100 to the process
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Figure 7-13: Example discontinuous surface.
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Figure 7-14: This figure demonstrates the behavior of the function q(st), which
measures the increase in the variance of the surface due to discontinuity crossings.
The position of the circles o, o represent the coordinates (C,'(S)' Cy (s)) associated with
the labeled multiscale nodes. The thick lines represent the locations of discontinuities,
consistent with Figure 7-13.
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noise variance for z(s) of that branch; Figure 7-14 illustrates this procedure for the

example of Figure 7-13:

• Let (C'(s), cy(s)) be the coordinate of the center of the region represented by

multiscale node s; Figure 7-14 shows these coordinates for the coarsest three

tree scales (plus two fourth-scale nodes).

• Let 1 (s, s,�y) be the line segment from (c,, (s), cy (s)) to (c__ (s'zy), cy (s�)).

• Letq(s, s,�y) be the sum of the variances of the discontinuities crossed by 1(s, s'zy).

That isq(s, s,�y) represents the variance of (z(s)-z(ey)) that can be attributed to

the presence of the modeled discontinuities, thus q(s, s,7y) represents the amount

by which the process noise variance for z(s) will be increased at node S.

For example, the line segment I (Oa4, 0) in Figure 7-14 crosses one discontinuity, hence

'q(Oa4, 0) = 1 - 100; five other such examples of qo are listed in Figure 7-14. Note

that it is certainly possible for a given point of discontinuity to be crossed more than

once in traversing the multiscale tree, i.e., in following a path from coarse to finer

nodes. While one can certainly imagine adding differing amounts of uncertainty at

each of these stages, we have used the simple procedure here of adding a variance of

100 at each such crossing. For example, the tree branches from node Oa3 to Oa3a3aj

in Figure 7-14 cross the same discontinuity twice, however the full variance (,q - 100)

will be added each time: q(Oa3a3, OG3) - 100 and'O(Oa3a3al, Oa3a3) - 100.

We require a modified model at each node s for which q(s, s,�y) > 0; that is,

for those nodes s where a discontinuity lies between s and its parent 8`:Y. When

> 0, (7.35),(7.36) must be modified to reflect the increased variance of the

surface and the loss (or, more precisely, the irrelevance) of gradient information across

the discontinuity:

z I 0 0 0 z B 22-m(s) 2 0 0

P 0 0 0 0 P ( S 1
8) + 2 W (S)

q 0 0 0 0 q 0 (P-9) 0

zP 1 0 0 0 zP 0 0 (Pg) 2

(7.40)
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Figure 7-15: Reconstruction of the surface of Figure 7-13 and associated estimation
error variances based on a knowledge of discontinuity locations and a sampling, at
random, of one third of the surface pixels having unit variance Gaussian noise added.
The lower half of the figure plots the estimation error variances; darker regions rep-
resent greater uncertainty. B, - 20, Bg = 0. 2, 0 = (26, 19, 14, 9, 0, 0, 0, 0).

d(s ) = [ Cl (,Si) 0 0 0 ] [ Z P q ZP ] (S) + V ('3) (7.41)

where Pg represents the gradient prior variance at the root node. Figure 7-15 shows

the estimated surface and estimation error variances, based on this model, applied

to an overlapping tree having nine scales. The presence of the discontinuities is clear

and well-preserved.

We now look at the case in which we have no prior information about the presence

or location of discontinuities, and thus use the same multiscale prior surface model

(7.35) as that use in the previous sections without any modifications. Figure 7-16
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Figure 7-16: Reconstruction of the surface of Figure 7-13 based on the same surface
measurements as in Figure 7-15 but using a prior model possessing no discontinuity
information. B, = 20, B9 - 0. 2, 0 - (26, 19, 14, 9, 0, 0, 0, 0).
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Figure 7-17: Distribution of those measurement residuals, in excess of 3a, correspond-
ing to the estimates of Figure 7-16.
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Figure 7-18: A simple estimation of surface discontinuities based on the measurement
residuals of Figure 7-17.

shows the estimated surface based on the same set of measurements as was used in

Figure 7-15. That the estimated surface looks like a smoothed version of Figure 7-13

comes as no surprise. However, by examining the measurement residuals (residual =

measurement - estimate) one can formulate a procedure for estimating the discontinu-

ity locations. Specifically, since estimation error variance statistics are available, we

can determine a set of statistically significant residuals (e.g., those in excess of three

standard deviations). Aggregations of such residuals outline regions in which the prior

model may be inappropriate; for example, a thin-plate model is inappropriate in the

vicinity of a surface discontinuity. Figure 7-17 shows the location of all residuals with

magnitudes in excess of three times the expected standard deviations; the implied

location of the discontinuities is obvious. As a simple example, Figure 7-18 estimates

the discontinuity locations as the locus of points whose nearest two residuals differ by

least 5. Coupling Figure 7-18 with prior information of discontinuities (e.g., piecewise

straight lines) would lead to a set of discontinuity estimates, which could in principle

be incorporated back into a prior model such as (7.40) to give a result such as in

Figure 7-15.
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Figure 7-19: A plot of the estimated ocean height, viewed from the north-east. B,
35cm, Bg = 0.5. 0 = (16,10,5,3, 1, 1, 0, 0).

7.4.5 Non-Variational Priors

While the multiscale surface reconstruction models used to this point are motivated by

a certain variational thin-plate/membrane model (7.15), the results in the preceding

sections demonstrate that our multiscale prior stands on its own as an equally valid

prior model to those used in variational formulations. Moreover, one of the strengths

of the multiscale framework is its flexibility. In particular, there are many surface

statistical models which do not correspond to a thin-plate/membrane prior model,

and for which a variational optimization expression may be difficult to write and

much more difficult to solve. Due to the flexibility of our framework, many of these

surface models may be readily realized in a multiscale setting.

One such example is the class of 11f P pr ,ior models for /t 2 (and possibly

non-integer). Consider, for example, our remote-sensing problem of interest from

Chapter I The oceanographic estimation problem is of interest for two reasons:

The prior model for the. ocean is based on., a 11f A-like prior, where /'t -_ 2

(recall that in Chapter 4, values for /-t were identified using multiscale likelihood
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Figure 7-20: The circulation field implied by the surface estimates of Figure 7-19.

techniques, and these values did not exactly equal 2).

e There is significant interest in being able to estimate ocean surface gradients

(and hence current flow) directly. Using the joint surface-gradient estimation

models of this chapter would allow gradients estimates to be computed on all

scales. In particular, the direction of the ocean circulation at any point is (due

to Coriolis effects) at right angles to the gradient of the ocean surface.

Recall the oceanographic prior model from Chapter 3:

x(s) = x(,5,;:y) + 35cm - 2-(s)(1-A)12 (7.42)

where [z -- 2. The above oceanographic prior model is not incompatible with the

models explored in this chapter; by setting B. = 35cm and by selecting a reasonable

scale-to-scale variance for the gradient, e.g., B9 = 0.5, we can use the model (7.35)

to jointly estimate the surface height and gradients from altimetric data. Figure 7-

19 shows a set of ocean height estimates for the north-east Pacific; the circulation

pattern, inferred from the estimated gradient field, is shown in Figure 7-20. The

223



CHAPTER 7. SURFACE RECONSTRUCTION

10,

5,

01

-5,

J_ 6,
00A

40 0

Q//-_ 60 60 0 scaae

Figure 7-21: An instance of a zero-mean surface, with spatially dependent variance
and feature scale.

results of Figure 7-20 are reasonable: the dominant circulation in this area of the

Pacific is the eastward flow of the Kuroshio[97]. Deviations from a uniform flow are

to be expected due to interference from land and due to eddies.

Another example which illustrates the flexibility of multiscale surface reconstruc-

tion is shown in Figure 7-21. The figure shows a zero-mean surface z(x, y), where the

surface variance is a decreasing function of y:

64 - y
var (Z (X, Y)) - Io (7.43)

64

and the scale length (i.e., the size of surface features) decreases with x:

Feature Size (z(x, y)) - 40 - 0.5x (pixels) (7.44)

A multiscale model capable of approximating such a prior is

z (s) = z (s,�) + B (s) w (s) (7.45)
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Figure 7-22: Each of the four plots shows the variance B 2 ( 8 ) for one scale. Darker
regions represent larger variances. Observe how the variance is concentrated in the
upper-right (large-feature portion of surface) at coarse scales, moving to the upper-left
(small-feature portion of surface) at finer scales.

The B(s)'are chosen to satisfy the variance and scale properties of the surface. In

particular, suppose that a finest-scale node s corresponds to position (X, Y), then the

B(s) should satisfy

B 2 ( 8 ) + B 2 ( 8,;:y ) + B 2 ( Szy2 + B 2 ( jm(s) - 1 1 0 64-y (7.46)
64

arg,,, max B 2 ( ,xm 1092(40 - 0.5x) (7.47)

Figure 7-22 plots the spatial distribution of the scale-to-scale variance for four tree

scales. Observe how the variance is consistently small near the bottom of the surface,
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Figure 7-23: The estimation of the surface of Figure 7-21 based on noisy measure-
ments (unit variance). The lower half of the figure plots the corresponding estima-

tion error variances. The peak of the error variance surface is marked with a

0 = (12, 6, 4, 3, 2, 1, 1, 0).

consistent with (7.46), and how the scale-to-scale variance shifts from right to left as

we move to finer scales, consistent with (7.47).

Figure 7-23 shows the reconstructed surface, given dense measurements of Fig-

ure 7-21 with modest added noise (variance 1). Particularly significant are the es-

timation error variances, which reflect not only the expected dependence along the

y axis, but also exhibits a decrease in estimation error variance as the feature size

increases (along x).
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7.5 Conclusions

This chapter has described and illustrated a multiresolution methodology for surface

reconstruction. By using the dual interpretation of variational formulations as es-

timation problems and the relationship between standard variational penalties such

as thin-plate and membrane models and fractal priors, we were able to define mul-

tiresolution estimation problems that possess very similar interpretations and yield

reconstructions of equal or better quality at lower computational burden than effi-

cient iterative methods for solving the variational formulations. Furthermore, with

this same computational effort, our multiscale method also produces reconstructions

at multiple resolutions as well as estimation error variances, a task extremely difficult

to accomplish within a variational setting. We have illustrated the potential value of

these error statistics in detecting and localizing surface discontinuities. In addition, we

have also shown that our multiscale estimator can serve as an effective preconditioner

for the solution of variational formulations of the surface reconstruction problem.

The breadth of uses for the multiscale framework is broader than just as an ap-

proximation of certain variational problems however. The variational formulation

which motivated the multiscale model developed in this chapter does not represent

"truth", rather it is a convenient form of mathematical expression. Similarly, the mul-

tiscale formulation offers not only a computationally attractive alternative, but also

offers a flexible setting in which to construct surface prior models directly, including

many meaningful ones that have no simple variational counterparts.
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Chapter 8

Contributions and Future

Research

his final chapter reviews the primary contributions of this thesis and

outlines possible avenues for continued research.

8.1 Thesis Contributions

Chapters 3 and 5 demonstrated the application of the multiscale framework to

very large scale estimation problems of current interest in oceanography and geodesy.

For both problems, existing models from the literature and empirical observations

motivate the selection of a 1/f-like multiscale model class.

With this selection of multiscale model, the multiscale estimation algorithm can

compute ocean elevation estimates on a 512x512 grid with error variances in about

1 minute on a Sparc-10 workstation. This level of computational efficiency makes

practical the estimation of the ocean surface over regions as large as ocean basins.

An investigation of the measurement residuals shows them to be strongly corre-

lated to bathymetric (and hence gravimetric) features. This observation motivates

the joint estimation of the ocean height and the gravitational equipotential (geoid)

surface based on the satellite measurements of ocean height. A close look at the

existing spherical harmonic model for the geoid and at the statistics of the measure-
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ment residuals allows us to estimate the space-dependent variance of the geoid which

leads to the desired joint multiscale model and to a computationally efficient joint

estimator.

The contribution of these chapters goes beyond the solution of an oceanographic

problem of interest using multiscale methods. Although the multiscale framework

has been considered a promising tool for the large, irregularly sampled, estimation

problems which occur in a variety of scientific disciplines and particularly in remote

sensing, research into our multiscale framework has not been disseminated in this

scientific community. These chapters are meant to begin this dissemination, and are

written specifically with the remote sensing community in mind.

Chapter 4 contributed a deeper understanding of multiscale likelihood and pa-

rameter estimation techniques in the form of a multiscale estimator for the fractal

dimension of fractal Brownian motion processes, and the determination of a Cramer-

Rao bound on the maximum-likelihood estimation of parameters in a commonly used

1/f-like class of multiscale models.

To estimate the fractal dimension (2 - H) of fBm, a multiscale model was chosen

which represents an fBm-like process based on a Haar wavelet decomposition. Using

the multiscale likelihood function algorithm, an estimator was developed for H and

compared with existing estimators in the literature. Our estimator competes favor-

ably in performance, while at the same time offering greater flexibility: the fractal

dimension of sparsely sampled processes or of multidimensional processes may also

be estimated.

The repeated use of the 1/f-like multiscale model in Chapters 3, 5, 7 and in [63]

motivates the development of a technique to estimate the parameters in the model,

and motivates an understandimy- of the bounds in makimy- such estimates. Such an

understanding is provided by the Cramer-Rao bound which is derived for this multi-

scale model class. The bound is derived under the assumption of the availability of

noiseless measurements on all nodes above the finest scale. Despite such an assump-

tion the bound is demonstrated, via Monte-Carlo simulations, to be fairly tight (the

variance bounds are at most 40% below their 'empirical counterparts).
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Chapter 6 contributed the method of overlapping trees: a new approach to mul-

tiscale estimation. The use of overlapping trees offers a considerable reduction in

multiscale artifacts at a modest computational effort. A simple multiscale model-

ing and estimation example is considered in some detail to motivate and illustrate

the overlapping approach. Under certain theoretical conditions, an extended deduc-

tive derivation of which is presented in Appendix D, the estimates produced by the

overlapping approach can be shown to be optimal. Three projection operators are

defined which project measurements and estimates between the original domain of

interest and the overlapping domain in which the multiscale tree is constructed. A

means for constructing an overlapping tree structure and for determining the associ-

ated projection operators is developed. The ability of the overlapping technique to

reduce or eliminate artifacts is demonstrated via the multiscale estimation of strongly

correlated, anisotropic textures.

Chapter 7 contributed a development of multiscale counterparts to a certain class

of variational cost functions commonly used for surface reconstruction, extending the

results of [631. Many computer vision problems are formulated in terms of variational

equations which provide a convenient, albeit frequently computationally demanding,

approach for estimating images; Chapter 7 presents an alternative approach using

our multiscale framework. Whereas the results of previous multiscale approaches may

have been less than compelling to the computer vision community due to the presence

of artifacts, the coupling of the overlapping framework with a multiscale surface model

gives rise to computationally efficient and aesthetically smooth reconstructed surfaces.

8.2 Topics for Future Research

There are many interesting directions for continued research. A few of the more

promising directions, organized by topic, are listed in the following subsections.

231



CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH

8.2.1 Ocean Surface Estimation

While perhaps not a research extension per se, one useful extension of the oceano-

graphic research of Chapter 3 would be to actually use the multiscale algorithm to

produce regular estimates of the ocean surface and to make these available to inter-

ested researchers. Some fundamental open questions do arise, however, once ocean

surface estimation is attempted on a grand scale:

• The north-Pacific subset of the planet may be approximated as being flat, and

therefore is simply represented by a quadtree structure. A whole globe, on the

other hand, is not usually meaningfully approximated by any flat plane. Thus,

once ocean surface estimation is attempted on a global scale, it is unclear what

choice of tree structure would be appropriate.

• A system as complex as the earth's oceans is unlikely to be meaningfully char-

acterized by a single model, based on some sort of globally-averaged power

spectrum. The space-dependent nature of the earth's ocean should be reflected

in a space-varying multiscale model (similar in spirit to the Kuroshio example

in Chapter 3). It remains to be determined how such a global model should be

parameterized and identified.

8.2.2 Likelihood Methods

The canonical 1/f-like multiscale model used throughout this thesis,

x(s) = x(s,7y) + B2'(')(1-j,)/2W(8) (8.1)

is parameterized in terms of two, values B, p having intuitive interpretations: B con-

trols the low-frequency "power" in the process, and p is related to its fractal dimension

(i.e., B and p essentially control the offset and slope of the power spectrum of the

finest-scale process of x, plotted in the log-log domain). It is not obvious, however,

that this intuitive parameterization. is the most appropriate. Recall from Chapter 4

that the error in estimating B is very strongly correlated with the error in estimating
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/-t; that is, one component in B, /t space (that component along the contour lines in

Figure 4-2) is estimated very poorly, whereas the perpendicular component is esti-

mated rather well. The contour lines in Figure 4-2 obey

B2-(' (8.2)

very closely (to about one part in 104 over a wide range of values of tt) for some

particular value Of T. An alternative parameterization of (8.1), for example in terms

of (B, 8), may be more meaningful (and almost certainly better numerically condi-

tioned) for multiscale likelihood purposes than (B, /_t).

There is a second, related topic. Suppose we have observations 9 of a physical

process �T. Furthermore suppose that the prior statistics of xT are unknown, but that

the periodogram of 9 is observed to have 11f -like behavior, and that the measurement

noise in 9 is known to be well approximated as Gaussian. Motivated by the observed

1/f-like behavior we consider a multiscale model of the form

x(s) - x(s,�) + B2-(s)(1-y)12W(8) (8.3)

VS) - X(S) + V(S) (8.4)

on a multiscale tree having M scales, where the finest-scale measurement process is

a subsampled version of 9. Now suppose that we use multiscale likelihood techniques

to estimate B and p in (8.3). We have found certain processes t such that the

estimated values b, A can be a strong function of M (e.g., if we let 9 be sparsely

sampled measurements of the geoid, then changing the number of scales from 9 to

10 can induce b to change by two orders of magnitude, although the corresponding

change in A is much less - a factor of two or so). The cause of this discrepancy is

unknown, however it again suggests that the B, /j, parameterization of (8.3) may be

inadequate.
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8.2.3 Joint Geoid - Ocean Surface Estimation

The development of a joint estimator for the ocean surface and the geoid is only the

first of many possible scientific matters to be addressed. Indeed, there are a number

of scientific investigations which could follow upon the work of Chapter 5:

• Independent validation: a revised geoid estimate N implies a revised set of

ocean height measurements Y( and a revised set of estimates Sophisticated

global climate models have been developed which can assess the consistency

of a set of estimates �. Such a consistency assessment would provide a solid,

scientific, validation of our joint estimates.

• Likelihood experiments: many oceanographic statistical quantities, such as

the power law of the ocean surface or of the geoid, are still an active area of re-

search. The availability of the efficient multiscale likelihood function calculator

may allow us to compute certain statistical parameters of interest.

• Sensitivity Tests: the assertion of a prior statistical model for the geoid

serves not only to regularize the estimation problem, but also to contribute

statistical information about the geoid. It is unclear, however, to what degree

the estimated geoid is sensitive to the choice of a particular prior model (e.g.,

Kaula's law). The computational efficiency of the multiscale estimation proce-

dure would allow us to deduce such sensitivities by observing the dependence

of geoid estimates to a variety of prior models.

8.2.4 Overlapping Models

The demonstrated potential of the overlapping framework for attenuating or eliminat

ing artifacts in multiscale estimates motivates further research of a variety of aspects

of the framework, four of which are listed below:

1. There is a considerable amount of flexibility inherent in the overlapping frame-

work (i.e., there are a great variety of'possible overlapping trees). Two heuristics
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were proposed in order to make practical the selection of a particular overlap-

ping tree:

(a) Given an image of K pixels and a multiscale tree having M scales, what is

the "best" choice of 0 -_ f oJ? The heuristic proposed in Chapter 6 was

to set

Om _- �b = a constant function of scale (8.5)
W,-"

However in preparing the surface reconstruction examples of Chapter 7, it

was found that the coarse scales required proportionately more smoothing

(i.e., greater overlap) than the fine scales; for example, improved surface

reconstructions were achieved using

Om > 0, small m Om < 0, large m (8.6)
Wm Wm

Is it possible to develop a more general set of rules to determine O?

(b) M and 0 uniquely define the projection G.,, however many degrees of

freedom remain to be specified in H,,. What is the "best" choice of H,,

subject to H,,G' =- I? The proposed heuristic was to linearly taper the

relative weights of Hx across the interval of overlap between two sibling

nodes (as in Figure 6-6, Section 6.3). Certainly other kinds of tapering

(e.g., quadratic) are possible, however these have not yet been explored;

an exploration of such other choices of H__ and their associated smoothness

properties is a recommended direction for future research.

2. In the proposition of Chapter 6 (and in the associated proofs in Appendix D) we

investigated the conditions to be satisfied in order for an overlapped estimator

to produce the optimal estimates. Throughout the discussion we assumed that

the desired correlation structure PI = GxPG T was realized in the multiscale

model. A precise realization is possible with sufficiently high order models,

however in the interest of computational efficiency we have always used lower
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order models which are unable to precisely realize P1. A compelling desire to

use such low order models leads to two questions:

(a) Can we develop bounds for the deviation of the estimates from optimality

(& - &,,pt) as a function of the deviation of the realized model E, from its

desired form GxPG'?

(b) Given that the realized correlation structure is an approximation to the

T - theideal one, i.e., El GxPGX , what is the optimal choice of R,

measurement error covariance in the lifted domain? One possibility is

considered here.

Suppose that some element x(i) has a redundant representation of n ele-

ments in xi: xi (ii), . . . , Xi (i'). Furthermore, suppose that we have a mea-

surement y = x(i) + v with noise variance r; this single measurement is

copied into n measurements in the lifted domain:

Y = Xi (ip) + vi (P) I < p < n (8.7)

From Chapter 6, the overlapping measurement noise variances are set using

the heuristic

cov (vi (p)) = ri (p) = n - r (8.8)

TIt was shown in Chapter 6 that if El = GxPGX , then by using this heuristic

one can compute the optimal estimates. The matter is less clear if El

T:GxPGX

e, Should the ri (p) of (8.8) all be set to the 'same value?

If all of the ri (p) are set to the same value, which value is most appro-

priate?

In the following we take a preliminary look at the latter question.

The heuristic (8.8) was motivated by the following:
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u 0.25 u 0.5
2 2

1.9 1.9

1.8 1.8

1.7 1.7

1.6 1.6

1.5 1.5

1.4 1.4

1.3 1.3

1.2 1.2

0 0.5 1 8 0'5 -1
t t

Figure 8-1: The values t, u refer to (8.12). The solid line depicts the optimal value of
rl, in the sense of optimizing (8.14); the dashed line depicts the value of ri based on
the heuristic (8.9). In both cases, ri refers to the measurement variance associated
with each of the doubly-redundant elements in (8.12). The method of Chapter 6
would just have set rl = 2, regardless of u, t.

A single measurement of noise variance r is the same as n inde-

pendent measurements, each having noise variance n - r, but each

measuring the same unknown.

The crucial point is that all of the measurements are measuring the

same unknown; i.e., xi (ii), . . . , xi (in) are perfectly correlated; i.e., the set

f xi (i 1), . . . , xi (in) I possesses one effective degree of freedom.

Now suppose a correlation structure El = cov(xi) is realized. We propose

the following heuristic for rl:

rl = n - r/effective degrees of freedom inf xi (ii), . - - , Xi (in) (8-9)

= n - r/deff (8.10)

We can test this proposition on the example of Section 6.2:

1 0.5 0.5 0 1 0
0.5 1 1 0.5 0 1

Pi G r0.5 1 1 0.5 Y 0 1

0 0.5 0.5 1 -0 0-
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where P, represents the desired statistics for x, in the lifted domain. Sup-

pose that the following statistics are actually realized for xl:

1 0.5 u 0

Y1 0. 5 1 t u
'l u t 1 0.5 (8.12)

0 u 0.5 1

The covariance matrix of the redundant elements and the associated effec-

tive degrees of freedom are given by

I t 2
A deff = EEA-� - (8.13)

t I 1 + t

Let x,,pt represent the optimal least-squares estimate of x given y. Let

&1 represent the estimate produced by the multiscale estimator based on

prior model El and measurements yl Gyy. Then Figure 8-1 compares

the optimal value of rl, the value of'r, that minimizes the mean square

error

(x"Pt _ Hx&,)T(X"pt _Hx&,) (8.14)

with the value of rl based on our heuristic (8.9). Our prediction is clearly

not exact, however it captures much of the behavior of the optimal solution;

in any event our prediction is much better than just setting rl -_ 2, the

procedure recommended by Chapter 6.

3. The availability of a technique to attenuate artifacts and to produce smooth

estimates permits., us to consider applications that rely upon such smoothness.

For example, Luettgen[62] considered solving the relaxation problem

Tx - y (8.15)
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that is, solving for x given T and y; T incorporates smoothness constraints (i.e.,

T possesses a differential-like nature). T is a very large matrix, so solving

x = T-ly (8.16)

is impractical. However recall that the multiscale estimator can efficiently solve

= T7�ly (8.17)
S

for special T,,, which possesses a certain multiscale structure. Luettgen consid-

ered finding a multiscale model Tm, similar to T and iterating

:�k - '4-1 - T�J (T-_4-1 - Y) (8.18)

If the eigenvalues of (I - T,�'T) all lie inside the unit circle then the iteration

(8.18) is guaranteed to converge. However the iteration was found to be un-

stable: the overlapping framework had not been developed, so T'�'y possessed

certain artifacts (similar to those of Figure 7-3). These artifacts, essentially

discontinuities, were amplified in the next iteration by the differential nature of

T, leading to even greater artifacts etc. - the iteration is unstable. It would

be interesting to return to this problem, now using an overlapping T", perhaps

investigating the stability of the iteration (8.18) as a function of the smoothness

of Tmr, (i.e., as a function of the number of overlapping scales M).

4. Finally, the overlapping framework proposed in this thesis can be viewed as

a special case of a much broader class of modeling and estimation problems

solved by multiscale means in some projected domain. For example, consider

the generalized projection operators

XI = 9X (X) Y1 - 9Y (Y) J� = 'H X (8.19)
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Research into the multiscale framework before the work of this thesis essentially

assumed 9,, = 'H., - 1, gy = I. Similarly Chapter 6 of this thesis develops

the special case that g., is one-to-many, gy is one-to-many and projects onto

the finest scale only, and that 'H,, is many-to-one. The development of more

general projection schemes, and an analysis of their properties, may lead to

more powerful and more insightful multiscale implementations.

8.2.5 Surface Reconstruction

The success of the development of a multiscale counterpart to variational models

for surface reconstruction motivates a search for other common variational models

for which suitable multiscale representations can be found. To be sure, the results

of Chapter 7 apply to a broader class of variational problems than just those as-

sociated with the surface reconstruction problem. On the other hand, only those

variational problems made up of a sum of quadratic penalties on linear functionals of

measurement and state elements have linear, Gaussian statistical counterparts, so the

extension of Chapter 7 to a broader class of variational problems will be challenging.
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Appendix A

General 1\4ultiscale Engine

t an early stage in this thesis, the need developed for a software imple-

mentation of the multiscale estimation and likelihood calculation algo-

rithms. These algorithms did not originate in this thesis and have been

implemented by others, however an investigation of these implementations showed

each of them to be rather specifically targeted to a particular estimation problem.

At that point in my thesis, no particular assumptions had yet been made regarding

the trees and models which might be of ultimate interest, and so the development of

such targeted code was inappropriate. On the other hand, estimation code having no

built-in assumptions tends to execute very slowly and is complicated to use, since the

tree and its model need to be specified in arduous detail. What I developed instead

was a completely general piece of code which could, in a sense, adapt itself to certain

assumptions at compile-time, thus allowing the program to remain computationally

efficient and competitive with more targeted implementations. This philosophy has

proven to be extremely effective, in that a single piece of multiscale code, written

near the beginning of this research, has been capable of being applied to all of the

estimation problems of this thesis - from simple 11f -like scalar models to overlapped

canonical-correlations based Markov random field models.

The purpose of this appendix, then, is to give a high level view of the multiscale

framework implementation (i.e., the philosophy of the previous paragraph). It is

hoped that this discussion may make the nature of the implementations in Chapters 3
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through 7 a little more concrete.

Figure A-1 presents the highest level view of the software architecture. There are

four levels to the hierarchy:

1. Implemented in MATLAB, this level contains commands issued directly by the

user. A typical set of commands might be

Load(Topex-Poseidon)

Format-Matrices(Topex-PoseidonDataData-Variance)

Multiscale-Estimate (DataData-VarianceEstimatesEstimates-Variance)

Contour-Plot(Estimates)

It is significant to note that the overlapping-tree parameters (Chapter 6) are

relevant only at this top level. That is, once a multiscale tree with an associated

multiscale model and measurements has been defined (based on the overlap

parameters as described in Appendix E), pieces of code lower in the hierarchy

are just aware of some given multiscale tree; on lower levels of the software

hierarchy, no distinction is made between overlapped and non-overlapped trees.

2. Each call from the MATLAB environment (such as Multiscale-Estimateo

from above) to any of the multiscale algorithms is made via a function written

in the "C" language. Direct access of the multiscale algorithms to the MAT-

LAB environment seems inconceivable (or at least impractical) since MATLAB

supports only two-dimensional matrices; the greater flexibility of the "C" data

types makes them a much more practical choice.

Each "C" function parameterizes the multiscale tree structure, model, and ob-

servations into a small set of parameters which are supplied by the user from

MATLAB. A variety of "C" functions have been implemented, supporting a

range of tree structures and multiscale models (e.g., scalar vs. vector states,

isotropic vs. heterogeneous models).

3. At present four interfaces have been developed, each, of which supports differing

degrees of multiscale-tree generality. The interfaces are not pieces of code,
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rather they are sets of "macros" ("C" language compile-time definitions) which

redefine the behavior of the multiscale engine, asserting various assumptions of

the multiscale tree as appropriate.

The assumptions inherent in the four interfaces, and an example of the function

invocation for the multiscale estimator in each case, are shown in Figures A-2

through A-5.

4. The lowest level of the hierarchy contains a set of tree initialization routines

(which may depend on the interface used), a small matrix library, and com-

pletely general implementations of the multiscale estimator, likelihood calcula-

tor, error cross-covariance calculator, and sample path generator.

All operations that depend in any way on the multiscale tree structure or model

are accomplished via the macros defined in the interfaces. In particular, each

node on the tree is parameterized by its scale m, and by its index 8 within that

scale, and all quantities (e.g., the A, B, C, R matrices) are indexed with respect

to these parameters. For example, if at node m, s on the tree the dynamics

matrix at the parent of m, s is required, then the matrix is referenced as

A Om - 1, Parent (s)) (A. 1)

where the nature of the macro "Parent" will vary from simple to complex, de-

pending upon the simplicity of the tree (and hence upon the selected interface);

furthermore, the invocation "AO" is itself a macro. The interpretation by the

compiler of (A.1) under the different interfaces should serve to make this point

clear:

In interface 1 the dynamics matrix is constant over the entire tree; the tree

itself is assumed to be two-dimensional and regular. Thus (A.1) would be

converted at compile-time into

A Om - 1, Parent (s)) Co er a (A.2)
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where a is the actual, constant, matrix passed by the user (see Figure A-2).

• In interface 2, the dynamics matrix is permitted to vary with scale and

with the cardinality of each descendant, but not arbitrarily over the tree:

A(m - 1,Parent(s)) C' (A.3)

a[m - 1] (sdy[m - 1] + 8 %dx[m - 1]) * dy[m - 1])
sizey [,rn]

where % represents the modulus operator, dx[m], dy[m] represent the num-

ber of offspring of each node on scale m in the x, y directions respectively,

and sizey[m] represents the total number of tree nodes along the y direction

on scale m.

• Finally, in interface three, the dynamics matrix is permitted to vary arbi-

trarily over the entire tree. In fact, as shown in Figure A-4, the matrix is

specified via a user supplied function (*a):

A(m - 1,Parent(s)) C' r (A.4)

(*a) m - , 8%sizey[m] + s/sizey [m] sizey[M - 11
dy[m - 11 dx[m - 1]

That each of the above three possibilities, from trivial to completely general,

can be captured by the same code statement attests to the power of this ap-

proach. An enormous number of such "macro" substitutions occur throughout

the code; the above examples represent by a single macro, however we hope

that this discussion has been sufficient to elucidate the nature of such macro

substitutions. The significant point, of course, �is that all of these interpreta-

tions are accomplished at compile-time; the effect of such interface-dependent

compilation is to leave us with a conspicuously efficient run-time program under

interface 1, and a powerfully general program under interface 3 or 4.
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Figure A-1: A high level overview of the multiscale engine structure, and the interface
to it from a high level application such as Matlab.
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interface 1 - Observations permitted at finest scale only

Constant C matrix over finest scale

Tree structure completely homogeneous and 2D

Constant A matrix over entire tree

Process noise B matrix constant over each scale

#define Smoother smthl(

int x-size, /* state vector length

int y-size, /* observation vector length

double *x-prior, /* prior values at coarse scale

double **x-est, /* multiscale estimated values

double *y-obs, /* finest scale measurements

double *r-obs, /* measurement covariances

double **p-cond, /* multiscale error variances

double **p-serr, /* mult. smoothed error varianc

double *po, /* root node apriori variance

double *a, /* A matrix

double **bb, /* B*B1 matrices

double *c, /* C matrix at finest level

int scales, /* number of scales

int *dx., /* subgrid elements along x

int *dy /* subgrid elements along y

Figure A-2: Interface I assumptions and estimator parameters.
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interface 2 Measurements permitted on all scales
C matrix must be constant over each scale
Tree structure is homogeneous on each scale, 2D
A matrix may vary with scale and orientation:

dx*dy A matrices specified per scale
(one A matrix per descendant orientation)

#define Smoother smth2(
int *x-size, /* state vector length
int *y-size, /* observation vector length
double *x-prior, /* prior values at coarse scale
double **x-est, /* multiscale estimated values
double **y-obs, /* state measurements
double **r-obs, /* measurement covariances
double **P-cond, /* multiscale error variances
double **P-serr, /* mult. smoothed error varianc
double *po, /* root node apriori variance
double ***a, /* A matrices
double **bb, /* B*B1 matrices
double **c, /* C matrices over scales
int scales, /* number of scales
int *dx /* subgrid elements along x
int *dy /* subgrid elements along y

Figure A-3: Interface 2 assumptions and estimator parameters.
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interface 3 - Measurements permitted on all tree scales.
Tree structure is homogeneous on each scale, 2D.
The A, B, C matrices may vary arbitrarily over

the tree, except that the state length and
the observation length be fixed on each scale.
These matrices are specified as external
functions.

#define Smoother smth3(
int *x-size, /* state vector length
int *y-size, /* observation vector length
double *x-prior, /* prior value at coarse scale
double **x-est, /* multiscale estimated values
double **y-obs, /* state measurements
double **r-obs, /* measurement covariances
double **P-cond, /* multiscale error variances
double **p-serr, /* mult. smoothed error varianc
double *po, /* root node apriori variance
double *(*a)(), /* A matrix function
double *(*bb)(), /* B*B1 matrix function
double *(*c)(), /* C matrix function
int scales, /* number of scales
int *dx, /* subgrid elements along x
int *dY /* subgrid elements along y

Figure A-4: Interface 3 assumptions and estimator parameters.

248



interface 4 Measurements permitted on all tree scales.
Tree structure is homogeneous on each scale, 2D.
All system matrices may vary arbitrarily over

the tree, except that the state length must
be fixed on each scale.

The following parameters are supplied as
external functions:

Measurement state length
Observation matrix C
Measurement
Measurement covariance
Dynamics matrix A
Process noise matrix B

#define Smoother smth4(
int *x-size, /* state vector length
int (*Ysiz)(), /* observation vector length
double *x-prior, /* prior value at coarse scale
double **x-est, /* multiscale estimated values
double *(*y)(), /* state measurements
double *(*r)(), /* measurement covariances
double **p-cond, /* multiscale error variances
double **p-serr, /* mult. smoothed error varianc
double *po, /* root node apriori variance
double *(*a)(), /* A matrix function
double *(*bb)(), /* B*B1 matrix function
double *(*c)(), /* C matrix function
int scales, /* number of scales
int *dx, /* subgrid elements along x
int *dy /* subgrid elements along y

Figure A-5: Interface 4 assumptions and estimator parameters.
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Appendix B

1\4ultiscale Estimation Equations

his appendix describes the algorithm that implements our multiscale

estimation scheme. The description below is complete but terse; in-

YN terested readers are referred to [14, 15, 62] for a more thorough de

velopment. Similarly, interested readers are referred to Appendix C and [65] for

a description of the multiscale likelihood calculation algorithm, and to [64] for the

derivation of the smoothing error model which enables the calculation of off-diagonal

entries in the estimation error covariance matrix.

The multiscale smoother is basically the same as the Rauch-Tung-Striebel

smoother operating in one dimension (along scale) with the addition of a merge

operation that combines the information of multiple child nodes into one parent node

(upwards pass), and the addition of a split operation which distributes information

from a parent node to its multiple child nodes (downwards pass).

A certain amount of notation is required in order to describe the relative positions

of state nodes on a tree; Figure B-I shows the various relations:

8 is an abstract index for identifying nodes on the tree

,�y7 is the raising operator; i.e., s,;7y is the parent of s

� is the sibling operator; i.e., s6 is the sibling node next to s

a is the lowering operator; i.e., sa, is the n'h child of s

q is the order of the tree; i.e., the number of descendants of each parent
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Coarse Scales

s T

s (X s U 4 S (X Fine Scale

Figure B-1: Simple multiscale tree demonstrating node nomenclature

M is the number of scales on the tree

Note that operators can be cascaded, e.g., 8';::Y-6a2. The terms "upwards" and "down-

wards" are used with respect to the tree of Figure B-1; that is "upwards" implies a

movement towards coarser scales, and "downwards" towards finer scales.

The tree process and observation relations are described as follows:

x(s) A(s)x(s,;zy) + B(s)w(s) (B. 1)

y (8) C (S) x (8) + V (S) (B.2)

where the process noise satisfies

E[w(s)] - 0 E [W(S)W(t)'] - 16"t (B.3)

and with a prior covariance at the root node

[X(O)X(O)T] pE[x(O)] -- 0 E (B.4)
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From [15], corresponding to any choice of a downwards model in Equation B.1,

we have the following upward model:

x (s,;�I) F (s) x (s) + Cv (s) (B.5)

Y(s) C(s)x(s) + V(s) (B.6)

F(s) P,;� A' (9) P,-' (B.7)

E [,FV (S),j-V T (8) P,;-y (I - A T (s)P-'A(s)P (13.8)

Q(S) (B.9)

P, is the prior variance of the state x(s). To make the estimator equations more

compact, additional notation is required at this point:

Y, = f y (a) 1 a is a descendant of s (B.10)

:�(a I s) = E [x(a) a E Y, U y(s)] (B. I 1)

'�(a I s+) = E [x(a) a c: Y,] (B.12)

P(a IS) = Cov [X(,7) -:�(u Is)] (B. 13)

P(07 1 S+) Cov [X(07) - '-�(a I S+)] (B. 14)

The algorithm now proceeds in three steps, outlined below.

1. Initialization

At each finest-scale node s, assign the following prior values:

i(s 0 (B.15)

P(S S+) P, (B. 16)

2. Upward Sweep

The upward sweep operates much like a Kalman filter operating along scale with the

addition of a merge step. The Kalman filter update step is performed at all nodes:
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s) :�(s I s+) + K(s) [y(s) - C(s).,�(s I s+)] (B.17)

P(s Is) [I - K(s)C(s)] P(s I s+) (B.18)

K(s) P(s I s+)C'(s)V-'(s) (B.19)

V(S) C(S)P(S I S+)C'(s) + R(s) (B.20)

The Kalman filter prediction step is applied at all nodes except for leaf nodes

(which were initialized as outlined above):

.�(s I sai) F(saj).,�(saj I sai) (B.21)

P(s I sai) F(sai)P(sai I sai)F'(sai) + Q(saj) (B.22)

Finally, at all nodes except leaf nodes, the merge step combines predicted estimates

from offspring (I ... q) into a single prediction to be used in the update step:

q
��(s I 8+) P(s I 8+) P-1 (S I saj).-�(s I sai) (B.23)

q
P(s I 8+) (I - q)P,-' + P-I(s I scei (B.24)

3. Downward Sweep

The termination of the upward sweep gives the'smoothed estimate -�(O) = -�(O I 0) at

the root node. The remainder of the smoothed estimates are found by propagating

information back down the tree:

(S) = (8 I 8) + IJ (S). ['-� (S�) - '-� (8� I 8) (B.25)

jT
P (s) = P (S I 8) + i (8) [P (8'�) - P- (8,7y 1 S) (B.26)

J (8) -- P(s I S)F'(s)P'(s,;�y- I s) (B.27)

The smoothed measurements are given by Jc(s); the corresponding estimation error

variances are given by P(s). Cross covariances are not computed explicitly, rather
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the means for their computation is implicit (although by no means obvious) in the

above algorithm. The multiscale form of the smoothing error[64] is as follows:

j� (s) = P (s I s) F' (s) (s;�y I s):� (s,;y-) + tb (s) (B.28)

(S) = x (S) - -� (S) (B.29)

where &(s) represents white noise.
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Appendix C

1\4ultiscale Likelihood Calculation

Equations

hereas Appendix B outlined the multiscale estimation algorithm,

this appendix gives a parallel description of the likelihood calcu

/A lation scheme. The description below is sufficiently complete for

implementation purposes, however it is terse and it does not present any insights

into the equations themselves; interested readers are referred to [62, 65] for a more

thorough development.

Let 0 represent the multiscale model parameters (e.g., the model parameters

A(s), B(s), C(s), R(s), P,, and possibly other parameters which specify the structure

of the tree such as q) I and let Y represent a stacked vector of multiscale measurements.

Then the likelihood function L(O) is given by

L(O) logpylo(YIO) (C. 1)

I I yT
-- log jAyj - - A-1Y - "Y'' log IF (C.2)

2 2 y 2

where JJYJJ counts the number of elements in Y, and where Ay represents the covari-

ance of random vector y. The difficulty in determining L(O) directly from (C.2) is that
is a full matrix, making the direct computation of A-1 or JAyj a computationally

y y

difficult task, requiring O(IIYII') computations. The matrix Ay does possess a great
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deal of structure, inherited from the multiscale tree, and so a much more enlightened

approach is possible.

Specifically, by whitening the measurement residuals, the computation of the like-

lihood function becomes trivial. We require an invertible transformation between

the measurements Jy(s)J and a set of measurement residuals Jv(8)J such that the

covariance A, is diagonal. Given the construction of such a sequence, the likelihood

function is readily calculated

I
,C(O) = __ 1: �J v(s) log 27r + log IA,(,)l + v'(s)A-1)v(s)J (C.3)

2 V(S
.5E0

The multiscale likelihood calculator operates in a manner similar to that of the

multiscale smoother, except that the tree is traversed in a "depth first" manner, rather

than uniformly by scale. The reader is referred to the beginning of Appendix B for a

summary of the required multiscale notation. Although the equations below will use

unfamiliar superscript/subscript conventions, we choose not to define these conven-

tions because their definitions are complicated and not necessary for the implemen-

tation of the algorithm.

The tree process and observation relations are described as follows:

x(s) A(s)x(s,;:y-) + B(s)w(s) (C.4)

Y (8) C (S) X (8) + V (s) (C.5)

where the random variables Jw(8)J and Jv(s)J are jointly normal, such that

w (s) , Ar (0, I) E [w(s)w(t)'] -_ 168,t x (0) - A1(0, P.) (C.6)

v(8) - JV(O, R(8))' . E [V(S)V(t)'] -_ Mst (C-7)

Corresponding to (C.4) we have an upward model described by F(s), Q(s):

T (8) p,- 1F (s) -_ P,;zy A (C.8)
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Q (s) P,,� (IT - A T (s)P,-'A(s)P (C.9)

P, is the prior variance of the state x(s):

P, = A(s)P,;-,A(s)' + B(s)B T(S) (C.10)

The whitening algorithm now proceeds in three steps, outlined below.

1. Initialization

At each leaf node s, assign the following prior values:

,�(S Y101q) = 0
(C. I

P(S YO1q) = P, (C. 12)

2. Upward Sweep

Kalman filter update step:

'�(S 1q)]

Y1q) C (s)1-(s + K(s) [y(s) (C. 13)

P(S Ylq)CI(S) [C(S)fl(S I Ylq)CI(S)K(s) + R(s)] (C. 14)

Y1q)P(s I Y,) [I - K(s)C(s)] P(s (C. 15)

Kalman filter prediction step (applied at all nodes except for leaf nodes):

.�(s Yai) F(saj).-�(saj Yai) (C. 16)

P(s Yai) F(saj)P(saj Yaj)F'(Saj) + Q(saj) (C. 17)

Finally, at all nodes except leaf nodes, the merge step combines predicted estimates

from offspring (1 ... i, I < i < q) into a set of conditional predictions:

4S I Y"i) (S I YO'i -'(S I Y�aq)-'�(S YOZj) (C. 18)
j=1

P(S I Y'Cli) (I - OPI-1 + P-'(s I Y'aj) (C.19)
j=1
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3. Downward Sweep

The termination of the upward sweep gives the conditional estimate -�(s I Y,'i) and

conditional error smoothed estimate P(s I Yci) at each node s. The downward sweep

is initialized at the root node:

'q0 I YO) = 0 (C.20)

PO I YO) = P. (C.21)

< i < q (C.22)(O VO Yocli) - (O I VI
P (O YO Y001i) - P (O I Yocli < i < q (C.23)

The essence of the downward sweep is captured by the following:

:�(Sozj I f"aj) A(saj),-�(s �P,) i - I (C.24)
A(8aj):�(s Y�,, YOi-1) 2 < i < q

T(Sa,)A(saj)P(s Y,)A
P(Saj I Y�aj) A - - I)AT(Sa,) + B(sai)B T (sai) 2 < i �C.25)(Saj)p(s Y" YCi- - -q

Finally, at each node on the tree below the root we merge the information from

the upward and downward stages:

(8 I 1), I YIN = P (S I t I Y101i) Ya*-�('s I Y�ai) vs)--4s

(C.26)

P(S Y" Y"i) = [P-1 (8 I YCli) + P-1 (8 PI-, (C.27)

for I < < q.

The computation of the whitened residuals follows trivially from the results of the

above merge step:

y C (8) Y1q) (C.28)

C YC'q) CT + R(s) (C.29)

The computation of v(s), A,(,) then leads directly to the likelihood function via (C.3).
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Appendix D

Proofs of Overlap Propositions

his appendix extends in greater detail some of the analytical results of

Chapter 6. Section D.1 presents a proof of the propositions in Chap-

ter 6 that the estimates produced using an overlapping framework are

optimal under certain conditions. Section D-2 presents a somewhat more involved

deductive proof that leads to the same conclusions, but which adds certain insights

not found in the proof of the propositions in Section D.1.

D.1 Sufficiency Proof

This section' establishes the validity of (6.32) and (6.33), thereby proving the Propo-

sition in Section 6.2.3. Our proof is facilitated by the following identity:

(CpCT T(Clp+ R) GY 1CJT + Rj)-1GY (D. 1)

Proof of (6.32):

L pCT(CpCT + R)-'

pCT G T (Cl Pi CjT + Rj) GyY

'A large fraction of the results of Section D.1 are due to the efforts of W. Irving. The section is
included here for completeness; the essential results of this appendix, in Section D-2, are the work
of the thesis author alone.

261



APPENDIX D. PROOFS OF OVERLAP PROPOSITIONS

PG T CT (C, Pi CT + R,) G, (D.2)

= Hx Pi C1T (Ci Pi C1T + Ri) G,

= HxLiGY

Proof of (6.33):

P-LCP

HxPHT - HxLGYCP

HxPHxT - H.LCGxP (D.3)

Hx (Pi - Li C, Pi) HxT

Hx)', H,,T.

D.2 Constructive Proof of Overlapping Conjec-

tures

This section provides an alternative proof to that of Section D. 1. The proof is included

for two reasons:

1. Its assumptions are slightly weaker than those of the proposition of Section 6.2.3,

and may lead to interesting generalizations.

2. The work of this section actually preceded most of the development of Chap-

ter 6; several of the insights in Chapter 6 (in particular, the structure of Ri)

were acquired in the process of developing this proof. Thus, while the proof of

Section D.1 is succinct and more easily understood, it did not play as significant

a role in the development of the sufficient conditions of Section 6.2.3 and in the

definition of the overlapping framework.
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Proposition:

Given an estimation problem:

Y = CX + V E[x] 0, cov(x) = P, E[v] = 0, cov(v) - R

P, R nonsingular, R diagonal

C a weighted selection matrix

Then, given projection matrices G, Hx, Gy to/from the lifted domain,

y, = Gyy, xi = Gxx, x _- H�,.-�i

such that the projection matrices satisfy

G, GY have full column rank

Gy is a one-to-many operator, the elements of Gy are zero or one

and which define the lifted-domain estimation problem

Yi - Cixi + Vi E[xi] - 0, cov(x) = GxPG T, E[vi] = 0, cov(v) Ri

P, R nonsingular, R diagonal

C, a weighted selection matrix

Then the selection of H, C1, R, as described in Section 6.2.2 is sufficient to ensure

that the optimal estimate,

'� = Ly

and the projection of the optimal estimate from the lifted domain,

x = Hx-,'-, -- HxLyl

both yield the same, optimal result:

x - x

We will first present the estimation procedure of interest in the original domain

in order to introduce the appropriate nomenclature, followed by a general description

of the redundant estimation domain and a development of its properties.
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Pseudoinverse Properties

The following development will require the use of Moore-Penrose pseudoinverse

matrices[2], certain properties of which are summarized below. Let A, B be real

matrices, and represent their pseudoinverses by A+, B+ respectively; let Nu(A) rep-

resent the nullspace of matrix A; then

A+A (A+A)T , AA+ (AA+ )T (DA)

+) T T) +(A - (A (D.5)

AA+A - A (D.6)

A+AA+ = A+ (D.7)

Nu(A T) = fol AA+ = I (D.8)

Nu(A) = f 01 A+A = I (D.9)

Nu(A) - f0j A+ - (A T A)-'A T (D.10)

Nu(A T) - �01 A+ = A T(AA T)_1 (D. I 1)

E Rmxn C
A , B : Rnxp (AB)+ = B+A+ (D. 12)
rank(A) = rank(B) - n

Finally, suppose that

Y = CX + V E[v] = 0, cov(v) -- I (D. 13)

where C is any real matrix. Then the least-squares minimum-norm solution for x is

given by [21

C+Y (D.14)
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Estimation in Original Domain

We would like to perform least-squares estimation of a random vector x, governed by

a prior model P, and based on observations y having measurement error covariance

R; i. e.,

X r,1A`(0, P)
CX + V (D-15)

V 11-1 Ar(O, R)

where A� denotes a Gaussian distribution. The problems of interest are those in which

C is a selection matrix (i.e., each row of C is a multiple of a unit vector), the prior

covariance P is nonsingular, and in which the measurement covariance R is diagonal

and nonsingular.

We are interested in projecting the above estimation problem into a "lifted" do-

main, in which the state and measurement vectors possess a redundant representation,

yielding a singular estimation problem.

The interest in such a domain stems from the results of Chapters 6 and 7, which

suggest that desirable smoothness properties may be obtained by applying the mul-

tiscale estimation framework directly in the lifted domain.

We will be needing a fairly general estimation formulation (specifically, one tol-

erating measurement and prior model singularities) once this problem is projected

into the lifted domain. To anticipate this need we rewrite the estimation problem

(D.15) more generally (although still assuming that PR are invertible) as the fol-

lowing equivalent maximum likelihood statement by incorporating prior knowledge

as additional measurements:

Y - C X + V Ar 0, R (D. 16)
0 P

If we define L such that

T RLL (D. 17)
P
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then the following estimation problem is equivalent to (D.16),

-1 Y CL 0 = L-1 I X + V= V r,,.,Ar(O, 1) (D.18)

Since the estimation problem (D. 18) has a diagonal, unit-variance measurement error

covariance, then from (D.14) the least-squares solution is straightforward:

L-' C L-1 Y (D.19)
I 0

Since

L-1 C (D.20)
I

has full column rank, by using property (D.10) the above result reduces to the ex-

pected classical least-squares estimation formula:

-C T C_ T
L-1 L-1 L-1 C L-1 Y (D.21)

- I I - I 0

(CT R-1C + P-1 Y 1 CT R-ly (D.22)

Estimation in Lifted Domain

We define.the "lifted" domain as a domain possessing a redundant representation of

the elements of x. The specific distribution and usefulness of the added redundancies

will, of course, be highly dependent on the intended application. The nature of the

redundancy is parameterized in terms of the following projection operations between

the lifted and origina1 domains:

• A projection of the unknown process into the lifted domain: x, Gxx

• A projection of measurements into the lifted domain: y, GYY

0 A projection of estimates from the lifted domain: J� H..-�,
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The subscript 1, as in x1, denotes vectors and matrices of the lifted domain. There

are two assumptions imposed on these projections:

1. Each row of Gy copies a measurement from one element of y into one element

of y, in the lifted domain; i.e., each row of Gy is a row vector with one element

equal to one, and the remaining elements equal to zero.

2. Gy has full column rank.

3. Gx has full column rank.

Using these projection matrices and the estimator from (D.16) we can express the

estimation problem in the lifted domain:

y, G Y
Y + (D.23)

0 Gx X

Gy C X + (D.24)
Gx I

Gy C G+Gxx + (D.25)
Gx I X

G CG+ G RG T
Y X xl+� Ar Y Y T (D.26)GxG+ GxPGX X

where, by (D.9), G+Gx = 1. We propose to determine an estimator for the problem

of (D.26) in a manner analogous to Ai7). Let

L, -- Gy L (D.27)
Gx

Premultiplying (D.26) by L+:1

G CG+
L+ Y' =L+ Y X x, + L+� (D.28)

1 0 1 G G+ 1X X

This operation is invertible, since (D.23) is recoverable from (D.28); specifically,

= GyG+Gyy = Gyy = y,LIL+ Y' Y (D.29)
1 0 0 0 0
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where, by (D.9), GyG+ - 1. Since L is invertible and G, Gy have full column rank,Y

by (D. 12)

G+L+ - L-1 Y (D.30)
G+X

Thus the covariance of L+� in (D.28) possesses straightforward statistics:

G RG TL+� Ar 0, L+ Y Y L+T (D.31)
GxPG T I

X

G+ G RG T G +T
A( 0, L-' Y Y Y Y L-' D.32)

G+ G PG T G +TX X X X

Ar (0, 1) (D.33)

where, by (D.9), G+Gy = G T G+T - IT and G+Gx = G T G +T = I. By (D. 14) theY Y Y X X X

estimator for x, immediately follows as

G CG+ +
&I L+ Y X L+ Y' (D.34)

GxG+ 0

G + G CG+ + G + Y1
Y L Y X Y L (D.35)

Gx GxG+ Gx 0

I G+GyCG� + G+Y1
L- Y L-1 Y (D.36)

G+GxG+ 0
X X

CG� + G+Y1
L-1 L-1 Y (D.37)

G+ 0

Once the estimates :�, have been computed in the lifted domain, an associated set of

estimates in the original domain are determined by the projection

X - Hx.-� 1 (D.38)

Our goal is to be able to apply our multiscale framework (Section 2.4, Appendix B)

to the estimation problem in the lifted domain. The multiscale framework leads to an

extremely efficient estimation, algorithm. if certain constraints are met. Specifically,
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the algorithm is capable of efficiently solving the estimation problem

Y1 C, RI
XI + W w - Ar 0, (D.39)

0 11 Pi

under certain conditions for C, and RI:

1. The observation matrix C, is a weighted selection matrix; that is, each row of

C, contains exactly one non-zero element.

2. The observation error covariance matrix RI is diagonal.

From Section 2.5.2 multiscale techniques exist to model arbitrary prior covariance

functions (at least in principle), so for the time being we place no restrictions on PI

and presume that PI = GxPG T can be modeled exactly.

Our goal is to determine conditions on the projection matrices GY) Gx, Hx such

that the estimation problem (D.36) in the lifted domain maps into the class of prob-

lems which we can solve using multiscale techniques.

Condition 1: Hx--�l

That is, we wish that -�, the optimal estimate of x in the original domain, equals X^'

the projection (D.38) of the optimal estimate of XI from the lifted domain. Let us

apply the projection H,, to the estimator for -�, from (D.37):

X H.,- (D.40)

CG� G+Y1Hx L-1 L-1 Y (D.41)
G+ 0

then, since L is invertible and G+ has full row rank,

C + G+GYY
X HxGx L-' L-1 Y (D.42)

I 0
HxGx--' (D.43)

269



APPENDIX D. PROOFS OF OVERLAP PROPOSITIONS

from which it follows that

H�,Gx = I (D.44)

is sufficient to satisfy the given constraint.

Condition 2: RI is diagonal

The value of RI from (D.39) enters into the lifted domain estimator (D.36) only

implicitly. Recall that RI represents the measurement error covariance of yj; i.e., the

statistics of the noise term � in (D.26) are

Ar 0, c0v(Yj) (D.45)
cov(Xj)

Ar 0, RI (D.46)
QPG TX

The estimate produced by (D.36) is the same for any RI such that satisfies (D.33);

i.e., when

L+ RI L+T I (D.47)
1 GxPGT

X

Substituting the expression for L' from (D.30),

G+RjG +T
L- Y Y L-' I (D.48)

Gx+GxPG T G +TX X

G+RjG +T R
Y Y (D.49)

P p

+Twhich is true whenever G+RG R.'A sufficient condition for RI to satisfy (D.48)Y Y

is that

T + aaTRI G RG ozi E Nu G+ (D-50)Y Y i Y)
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where the symmetrical form aiJ is required to maintain the symmetrical form of R1.

Label the columns of GY as follows:

Gy - [91 92 ... 9N] (D.51)

and let rjj represent the 3"h diagonal element of R; thus

G RGT g3r3j T (D.52)
Y Y 9j

Recall that we have restricted ourselves to projection matrices Gy such that each row

of Gy is a unit vector; consequently each column of GY may be written as

Mi
gj - ef (j'i) (D.53)

where ei represents the Z"h unit vector (i.e., a column vector with a '1' in the ith

position and zeros everywhere else), and where

f (3-, i) - f (k, 1) iffj=k, i=1 (D.54)

implying that the single observation y[j] is mapped to observations

Yi[f(jl)], y1[f(',2)], ... , y1[f(jMj)] (D.55)

in the lifted domain. The pseudoinverse G+ and its nullspace follow immediatelyY

from (D.53):

TIM,
91
TIM2

+ 92
UY ... (D.56)

TIMN
9N

Nu (G+) - span Mefu'-) - ef(ib)) I I < j < N, I < a =A b < MjJ) (D.57)Y

Based on this nullspace, each of the products gjrjjgjT can be diagonalized as follows:
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Mi-i M3

Dj:-:-- gjrjjgjT + E E rjj(ef(j,,) - ef(j,.))(ef(jj) - ef(j,.))' (D.58)
1=1 M=1+1

where Dj is diagonal, and each of the nonzero diagonal entries take on the value

Mjrjj. Consequently the following expression results in a diagonal Rj:

N Mi-I Mj

R, = G RG T + rjj (ef (jj) - ef (jm)) (ef (jj) - ef (jm) )T (D.59)Y Y
3'=1 1=1 M=1+1

where each diagonal entry is equal to the In' ultiplicity Mj of the corres ' onding obser-

vation, multiplied by the original error variance r --33,

A more intuitive version of the above argument goes as follows. Without loss of

generality we can reorder our observation vector yj in the lifted domain, such that

the columns of Gy possess the following regular structure:

gi el+... em, (D.60)

92 emj+j +... em,+M2 (D.61)

Then G RG' is a block diagonal matrix such as the followingY Y

Ml M2 M3

Ml

(D.62)
M2

M3 73]3

where Fr denotes a square matrix with all elements equal to r. It is easy to see that
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M1_1 mlgirligT+ E - en) (em - en )Tril (em (D.63)
m=1 n=m+l

is diagonal, where the nonzero diagonal elements are equal to Mjr1j. Applying the

above notion to each of the blocks in (D.62) yields the expected diagonal form for R1.

Condition 3: C, is a selection matrix

Let us define the region of support of a vector (or matrix) to be the set of indices

(or index pairs) associated with its non-zero values. Let us write GY, C, and G+ asX

follows:

6jeT hTZ1 1
TGy - [ 91 92 ... C 62eT G+ h (D.64)

Without loss of generality, we assume that i,, ib iff a = b, that is, the rows of C are

all different - there are no repeated measurements of the same element of x (if repeated

measurements were present they could be collapsed into a single measurement).

Under the following two conditions,

T1. PI GxPGX

YT T + CeT +2. R, G RG + ala a2 ai c Nu G+Y Y 1 2 Y)

(i.e., the condition from (D.48))

we can determine the estimate produced by the multiscale estimator. From the above

conditions, the noise covariance of (D.39) satisfies

L+w , Ar(O, -1) (D.65)
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Then, paralleling the development from (D.28) through (D.36),

L+ L+ Y' (D.66)I, I 0

GY + C, GY + Y1
Q, L L 0 (D.67)

G+ C, G+ Y1L-1 Y L- Y (D.68)
G+ G+ 0

X X

GY+ C, + G+Y1
L- L-1 Y (D.69)

G+ 0

The difference between this estimator and the desired form in the original domain

(D.36) is due to the undetermined observation matrix C, in the lifted domain. The

two expressions (D.36),(D.69) are equivalent under the following sufficient condition:

G+C1 - G+G CG+ (D.70)Y Y Y X

Condition (D.70) is satisfied by observation matrices having the form

C, = G CG+ + E 0",XT 0,, E Nu(G+) (D.71)Y X M Y
M

We need to determine conditions on Gx such that the set of satisfying C, matrices in

(D.71) include a selection matrix.

Consider the following product:

CG+ - G 62eT G+ ,g. .6. hT (D.72)

Y X - Y Z2 X 7-
n n

Since the regions of support of all of the columns of GY are disjoint, it follows that

the regions of support of all of the �n matrices are disjoint. Thus the product G CG+Y X

can be transformed into a selection matrix as in (D.71) only if the same is true for

each of the �n individually.
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For C, to be a selection matrix, each row of C, contains exactly one non-zero entry.

TConsider + T,,,, 0,,X where �, Nu(G+); there are three cases to consider:

1. The size of the region of support of g, is smaller than that of hin

Since g,, 0 Nu(G+), (,, can have no columns equal to zero, and thus containsY

at least size(support(hin)) non-zero elements; however for (" to be a selection

matrix, it can have at most size(support(g,,)) non-zero elements, leading to a

contradiction.

2. The size of the region of support of g,, is greater than that of hi,,,,.

A selection matrix (,,, having more rows than columns must either have repeated

measurements (linearly dependent rows) or zero rows; neither of these possibil-

ities present intrinsic difficulties, but these cases are not of particular interest,

and we disallow them for the sake of brevity.

3. The size of the region of support of g,,, is equal to that of hin and equals M,,.

Suppose that

M1. Mll�'
gn E ef hi,,, - E -y.,.ep(.,m) (D.73)

M=1 M=1

where the -yn,, are a set of scalar weights determining the non-zero elements of

hin . Then it is easy to see that

Mnef(nm) - gn E Nu(G+) 1 < m < Mn (D.74)Y

and thus one possible choice of (n becomes

M.
(n M,6n-Ynmef(n,,) eT (D.75)p(nm)

M=1

It should be noted that the above result does not imply that the regions of support

of the rows of G+ need to be disjoint.
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There is one special case of interest which is the case considered in all of the

applications of the overlapping framework throughout this thesis:

• The elements of C, must equal their counterparts in C; i.e., the elements of

are either zero or 6,,. From (D.75) this implies that

I
'Ynm - (D.76)

M.

The regions of support of the columns of G,, (i.e., the rows of G+) are disjoint.

It follows immediately from (D.73), (D.76) that

Mn

hi,, - Y, ep(nm)/Mn (D.77)
M=1

which leads to a simple form for G+, specifically

+T +TX 1 2 ...G+ - 1h h (D.78)

htT - I:Mn 1 ep(nm) (D.79)4, M=

and a corresponding form for Gx:

hT
I

G., = h T (D.80)
2

for which satisfying matrices HxGx -- I (from Condition 1) are straightforward to

calculate and visualize (the topic of Appendix E).

Estimation Error Covariance Calculation

Consider the estimation problem,

Y C X + V (D.81)
0
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and a proposed unbiased estimator,

A Y (D.82)
0

Since the estimator is unbiased,

E[x E -A C x + V (D.83)
I

I-A C x 0 (D.84)
I

that is,

A C I (D.85)
I

The estimation error variance is given by

P E X)('-� _ X)Tj (D.86)

T-

E A Y _x A Y _x (D-87)
0 0

T-
C C

E A I - I x+Av A I I X+AV (D.88)

AE [VVT ]AT (D.89)

where the last step follows from (D.85).

Now consider the application of (D.89) to our estimators in the original and lifted

domains. From (D-19) the estimator in the original domain is characterized by

C +
A = L-' I L-1 (D.90)

When all of the three earlier conditions (D.44), (D.59), (D.75) are satisfied, then the
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estimator in the lifted domain, from (D.35), is characterized by

G + G CG+- + G +
Al Y L Y x Y L (D.91)

Q, GxG+ Gx

G+ G C + G+
L-1 Y Y G+ L- Y (D.92)

G+ G x G+x x x

G+Gx L-1 C L-1 Y (D-93)
G+x

The above forms AA1 for the estimators allows us to establish a relationship

between the estimation error covariances in the original and lifted domains:

A R AT (D.94)
P

C +L-1 R L-1 L-1 C +T (D-95)
I P I

+ G+ R, G+ T +THx Y Y -1 L-1 C T TGx L-' C L-1 + L Gx HxG+ Pix x
(D-96)

HxA1 R, A THT (D.97)
Pi 1

H. Pi HT (D.98)

That is, the estimation error covariance in the original domain is just the projected

version of the error covariance determined by the estimator in the lifted domain.
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Appendix E

Overlapping Framework Details

n this appendix we will make explicit two aspects of the overlapping frame-

work: Section E-1 details how an overlapping tree structure 0 may be

selected, and Section E.2 details how the projection operators G,,, Gy, H.

may be determined from 0.

Throughout this discussion we will make the assumption that the overlapping tree

is regular: the tree lies in d-dimensional space, has M scales, and each node above

the finest scale has q - q, - q2 - ... - qd offspring.' An example of a two-dimensional

regular tree is shown in Figure E-1.

E.1 Overlap Structure Determination

As is suggested pictorially by Figure E-1, each of the nodes on the multiscale tree is

associated with a bounded d-dimensional cube 2 in the original domain. Now consider

the notation described in Figure E-2. The regularity of the tree implies that the cubes

associated with the multiscale nodes on the same scale all have the same shape and

size; for those cubes associated with nodes on scale m, we denote by w,,,,i the length of

those cube edges parallel to dimension i. Next, the cubes associated with the children

'That is, the offspring of any node s (except for nodes on the finest scale) form a d-dimensional
regular finite lattice having qi lattice points along dimension i.

2That is, the logical extension of a cube to d-dimensional space: a solid, regular shape, such that
any two faces of the cube are either parallel or oriented at right angles to each other.
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Z

I-7Z -7
142

2
2

n =3
1

Figure E-1: A simple example of a two-dimensional regular tree.

of a common parent may overlap. Consider two multiscale nodes on scale m which

have a common parent, and which are neighbors along dimension i,' then the amount

of overlap, measured along dimension i, between the two cubes associated with these

two nodes is denoted by o,,,i. It immediately follows that

w.-,,i = qiwmi - (qj - I)omi (E.1)

(a recursion which is made clear by Figure E-2). Furthermore, let

Omi
Wmi (E.2)

that is, 0mj represents the fractional overlap of neighboring nodes along dimension i

on scale m.
rcu-be an ensembe,

Suppose we are given an "image' h:y p'e" i � 1 of pixels on a

finite, regular lattice) in d-dimensions over which we wish to define our overlapping

'Suppose two nodes, s, and 82, have a common parent 8 = 8 IT = 8 2,;;�/. The descendants of 8
form a d-dimensional lattice; s, and S2 are neighbors along dimension i if they occupy positions
in this lattice separated by one unit along dimension i and separated by zero units along all other
dimensions.,

280



E.1. OVERLAP STRUCTURE DETERMINATION

W

scale (m-1)
Parent

goo, Scale rn
Child q

Child 1

0 Wm, i
M91

Dimension i

Figure E-2: The basic overlap notation required for the purpose of this appendix.

tree model, such that the image has Ni pixels along edges parallel to the axis of

dimension i. Furthermore, suppose that we are also given an M-level multiscale tree

having order

q :-- q, qd, (E.3)

We need to solve the following problem: determine a suitable overlapping framework,

parameterized by 0 = f o,,i I,' which establishes a mapping between the multiscale

tree and the image hypercube such that

1. The coarsest scale of the multiscale tree aggregates the whole image:

woj = Ni 1 < i < d (E.4)

2. The nodes on the finest scale of the multiscale tree correspond to individual

image pixels:

WM-1'i 1 < i < d (E.5)

3. The fractional overlap (E.2) is nearly a constant function of scale for each di-

41f the overlap is not a function of dimension, i.e., o,,i = o,,, then the parameterization simplifies
to 0 o, 1, which was the parameterization used in Chapter 7.
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mension:

�b""i - �i 1<,m<M-1, I<i<d (E.6)

The number of scales in the multiscale tree, M, regulates the tradeoff between

smoothness and computational effort. M may be freely chosen within the following

constraints:

• The multiscale tree must have a sufficient number of scales to be able to repre-

sent the whole image cube: 5

11 + 109q, Nil (E.7)

• The image regions aggregated by neighboring nodes cannot completely overlap,

i.e., omj < wmi; thus

wm-,,i > wmi + qj (E.8)

woj - Ni > I + (M - 1)(qj - 1) (E.9)

M < inin Ni - I +1 (E. I 0)
i qj - I

Given a value of M satisfying (E.7),(E.10) it is relatively easy to determine 10.,il

to satisfy (E-4)-(E-6): 6

Let wm-,,i - 0
For m M - 1, M - 2,. . I in decreasing order:

Ni

qiw.,i-W"-"i w_'i < i < d (E. 1 1)
qi-1

0 -min
Ml - I (WM'j - 1), max [0, bi]

wm-,,i =:= qiwmi - (qj - I)omi

That is ideally Nj�(m_'); this ideal value for �bj is asserted in the expression for

5rx] represents the smallest integer equal to or greater than x'.
6Similarly, Lxj represents the greatest integer equal to or less than x.
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bi; the approximation comes about due to the constraint that o,,i be integer.

The parameters 0 o,,i I are a parameterization of the overlapping tree, suffi-

cient to guarantee a unique tree structure if the regularity assumptions are met. The

next section will describe the determination of the projection operators from 0.

E.2 Projection Operator Determination

This section will specify explicit definitions of G,,, GY and H.,. We will first consider

the case of one-dimensional trees, from which the extension to d-dimensional trees

will be straightforward due to the assumed regularity of the trees. The material of

this section is similar to that of Section 6.3, however there are two differences:

1. The notation is extended to allow d-dimensional trees.

2. The definition of H., is more general and explicit.

Let 0 = (01i 027 ... i OM-1) represent the overlapping tree structure for a one-

dimensional tree with order q. Furthermore, suppose that the observation matrix in

the original domain is the following weighted selection matrix:

TOle,

C (E. 12)
T

OKe rK

where ei represents the ith unit vector.

Consider any node s on the finest scale of the tree; we can explicitly write s as a

descendant of the root node as

8 - 0ail 0Zi2 ... aiM-1 I,-, qJ (E. 13)

i.e., the vector j = (ii, im - 1) uniquely parameterizes s. Let

M-1
P(j, q) - E (j. - I)qm-71-1 (E. 14)

M=1
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1 2 3 1 1 1 1 1
Child j I i i i 000

000 i i i Child j+1
1 1 1 1'1'3'2'1

4 �f -4
F-7-i One finest scale pixelkL,-

Figure E-3: The relative weights applied to two neighboring, overlapping regions

should vary linearly over the overlapping portion, as shown.

M-1

P J) - E 0'-'-� - 1) (W. - 0"') (E. 15)
M=1

where the explicit parameterization in terms of j and q (as opposed to (6.41) and

(6.42)) will be necessary when we consider the extension to d-dimensional trees. From

(E. 14) and (E. 15), p represents the position of s along the finest scale of the tree, and

node s corresponds to the pth element of the original one-dimensional process being

represented by the overlapping tree (i.e., p indexes the elements of xi, and p indexes

the elements of x). With these interpretations of p-,p in mind, the projection matrix

Gx is given by

I if :Ij D p(j, q) -_ a, p(j) - b

Gx (a, bl) 0 otherwise (E. 16)

and the corresponding measurement projection operator Gy is given by

< a < qM_1
Gy (a, b) - Gx (a, Cb) (E. 17)

1 < b < K

that is, Gy is just a reordered subset of the columns of Gx, with one column selected

per measurement.

The smooth projection operator Hx used throughout this thesis is one in which

the relative weights, applied to neighboring overlapping tree nodes, taper linearly

across the overlapping region, as sketched in Figure E-3. A precise definition of Hx

is as follows. Let

6M-1 - 0 6M-1 - OM - 1) (Wm - Om) + 6M (E. 18)
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1; 6M < Wm - Om

0_+1 im 6M ��' Wm - Om
I I < I.m<q; OM_<6M<WM-0M
'w-6- < j,, <q; 6m > max(o, w. - Om)h,. (j, q) 0_+1 (E-19)
6_+1 < jm < q; 6,, < min(om, w,, - om)0_+1
w11'_0- I<jm<q; wm-o,,<6M<0M0_+1
I im q; 6M > Om

'-+' j,-,-� q; 6M < Om0_+1

(the above expression for h,, is essentially a mathematical description of the weights

in Figure E-3) then the smoothing matrix H., is given by

1Jm-'hmJq) if:JjDPJq)=apJ)=bH,,(b, a) M=1 (E.20)
0 otherwise

This completes the specifications of the projection operators for the case of a reg-

ular one-dimensional tree. The extension of these results to the case of d-dimensional

trees is straightforward when such trees are viewed as a product of d one-dimensional

trees. As in (E.13), we describe each node s on the finest scale explicitly as a descen-

dant of the root note:

8 = 0% 1,01,2 ... ild 03'2,1 ... 3'2,d ... % M-1,1 ... jM-ld qif (E. 2 1)

where ai-j ... j-,d represents a d-dimensional descendant operator, specifying the de-

scendant at position Umj, ... ) imd) in the d-dimensional finite lattice of descendants

of each node; i.e., the operator specifies the jmith position along each dimension i.

Now consider the projection of the descent (E.21) onto dimension i; then (E.21) would

look like the following sequence of one-dimensional descent steps

-7 _1'i ohi ... %M-1,i (E.22)

Since this holds for each dimension I < i < d, we see that a node s on the finest scale

of the d-dimensional tree can be indexed as a d-tuple of one-dimensional tree indices.
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Specifically, define the following (M - I)-tuples:

il = (ilj, i2j, jM-1,1)

(E.23)

id = (ild, j2,d, iM-1,d)

We can use these vectors to define the operators G, H,,, and GY, G., and H., are now

projection operators from one d-dimensional space to another d-dimensional space,

thus Gx and H., are no longer matrices; instead, G_-(a, b) and H,,(b, a) are real

functions of two discrete, d-di mensional vectors a, b:

1 if 3fjjl D JPJ1, q1), - - ', Aid, qd)J = a
Gx (a, b) = Wil), -,PJA = b (E.24)

0 otherwise

11m-'hJ,,q1).....h.(idqd) if3fiijD fpjl, ql),. Xid, qd)J = a
Hx (b, a) = Wil), ... PJA = b

0 otherwise

(E.25)

Furthermore, under the assumption that the d-dimensional observation operator is a

weighted selection operator (where the operator is a mapping from a d-dimensional

lattice to a one-dimensional vector of observations), the operator can be written in

the following product form:

T T T
oleel'i e,1,2 eC1,d

C x x ... x (E.26)
OKeT CT eT

CKJ CK,2 CKd

The operator GY, viewed as a projection from a one-dimensional vector of observations

into d-dimensional space, is then defined as

Gy (a, b) Gx (a, (Cbl, Cb,2, Cbd)) Va E [I ... q1] x ... x [I ... qd] (E.27)
V1 < b < K
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