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Abstract

A novel class of models of the electrocardiogram using interacting Mar-
kov chains is developed and used as a basis for signal processing. The
modeling methodology emphasizes a balance between the inclusion of phy-
siological detail and practicality for signal processing. In order for
signal-processing algorithms based on the model to achieve accurate,
detailed classification of the electrocardiogram, it is pecessary to
include physiological detail in the model. On the other hand, in order
to make the signal processing practical, the models are restricted by
imposing spatial, temporal, and hierarchical decompositions.

A signal-processing algorithm for a wave tracking problem relevant to
rhythm classification is proposed. The algorithm is decomposed to mir-
ror the spatial decomposition of the model. Limited simulationms indi-
cate that reasonable performance may be attainable.

Thesis Supervisor: Alan S. Willsky, Ph.D.
Title: Professor of Electrical Engineering

Thesis Supervisor: Robert R. Tenney, Ph.D.
Title: Lecturer in Electrical Engineering




Acknowledgements

I would like to thank my thesis supervisors, Professors Alan S.
Willsky and Robert R. Tenney, for their unflagging interest over many
years in this project. Professor Willsky first introduced me to the
problem of electrocardiogram rhythm classification and encouraged me to
pursue research in the area. Professor Tenney made crucial contribo-
tions to the modeling methodology (especially to the structure of the
Markov chain) and to the signal processing techniques (especially the
estimation goals, the subdivision of the estimators, and the modeling of
communication). In addition, his help in defining the thesis scope and
direction is greatly appreciated. The knowledgeable reader will recog-
nize their mark on the thesis document itself; hopefully, their efforts
will ease the reader’'s task.

I would also like to thank my thesis readers, Professors Sanjoy K.
Mitter and Roger G. Mark. Professor Mitter's encouragement and interest
in my education throughout my graduate school career and his faith that
I could do something interesting have been invaluable to me. In addi-
tion, his support as Director of the Laboratory for Information and
Decision Systems allowed me to finish this document in a timely manner.
Professor Mark's generosity in providing the use of the Biomedical
Engineering Center's DEC PDP 11/44 computer made it possible to pursue
this thesis.

While the extensive software has been downplayed in the following
chapters, several thousand hours of CPU time have been consumed in writ-
ing the code and generating the results. At many times during the
course of the computer work I have benefited greatly from the advice and
friendship of David A. Israel, Paunl Albrecht, and George B. Moody. That
the B.M.E.C. computer is a Pleasant, productive computation facility is
largely to their credit.

I would 1like to express my sincere appreciation for Arthur J.
Giordani's care and patience with my myriad illustrations. His effort
has much improved the presentation of this work.

I am sincerely grateful for the generous support, first of the Fan-
nie and John Hertz Foundation and them of the M.D. - Ph.D. Program at
Harvard University (funded in part by Public Health Service, Natiomal
Research Service Award 2T 32 GM07753-06 from the National Institute of
General Medical Science). I thank them for their continued confidence
in me. In addition, Professor Willsky's time and a portion of the
drafting expenses were defrayed by Air Force Office of Scientific
Research Grant AFOSR-82-0258 while Professor Tenney's time was supported
by the Department of Electrical Engineering and Computer Science at
M.I.T.




Contents

Introduction

Description of the Problem

Approach

Thesis Outline

Cardiec Anatomy and Physiology

Cardiac Anatomy and Mechanical Function

Cardiac Control

The Fundemental Process

Outline of the Conduction System

Structure and Function of the Conduction System

Origin of the ECG

Mechanisms for Abnormal Cardiac Control

Summary of Rhythm Csusation and Implicetions for

Modeling

Lewis or Ladder Diagrams

11

12

15

16

18

18

20

20

23

26

32

33

36

37



5 I

1.2,

1.2.1.

.1.2.2.

.1.3.

.7.1.

1.2,

Terminology

Electrocardig;tnn Models
Literature Review

Phjsiologicnl Models
Signal-Processing Models
Digitizer-Sample Models
VWave-Arrival Models

Summary of the Literature Review
Introduction to the ECG Model
The Upper Hierarchical Level

The Lower Hierarchical Level
Level of Modeling Detail

The Microscopic Model--Structural Elements
Examples of ECG Models

Normal Rhythm

Normal Rhythm with Ectopic Focus PVCs

38

40

40

41

46

46

47

62

63

66

70

78

80

94

95

99



.1.3.

.T.4.

.7.5.

4-6-
Ventricular Oscillation
Wolff-Parkinson-White Syndrome
Summary of Sectiom 3.7
An Example ECG Model--Wenckebach

Summary of Chapter 3

Signal Processing I: Mathematical Model and

Performance Assessment

Review of the Mathematical Model
The Dynamics

The Observation Process

Comments on the Mathematical Model
Estimation Goals

Performance Measures for the Wave Tracking Prob-

lem
Association Rule
Association Rule--Phase Shift Limits

Association Rule--Summary

108

116

127

127

142

143

143

144

147

150

151

153

156

160

162



.3.4,

.3.5.

.3.6.

.

Distinguished Patterns in the Associated Events

Confidence Limits

Robustness

Signal Processing II: Design Approach
Estimator Design Philosophy

Optimal Designs

Suboptimal Designs

Local Estimation

Global Estinate.Reconstrnction

Design Model élasses

The LEs’ Models and the ICS

Specializations of the DM3 Architecture to DM2

and to DMl

Summary of Chapter §

Signal Processing III: Implementation and Case

Studies

163
166

169

171
171
171
173
180
183
185

187

1917

203

204



.10.

.11,

12,

.13,

.14,

The PO Class of Chains

The P1 Class of Chains

The P2 Class of Chains

Numerical Results for Design-Model Class DM1--

Introduction

The P1 Chain

The P2 Chain

Augmented Interactions--LE 1 Pass 0 to LE 0

Pass 1

The PO Chain

Robustness to Incorrect Modeling

Performance as a Function of Design Model

The P4 Class of Chains

The P3 Class of Chains

Numerical Results for Design-Model Class DM2--

Introduction

Augmented Interactions—-LE 0 Pass 1 to LE 1

Pass 2

204

210

213

217

223

230

237

248

263

276

276

279

282

285



7

7

.15.

.16.

7.

.18.

.19.

.20,

.21,

.22,

.23.

.24,

1.

2.

-9 -
The P3 and P4 Chains
Less Deterministic Design Models
Consistency of the Global Estinat§

Numerical Results for Design Model Class DM3--

Introduction

Simpler Suboptimal Estimators for DM3-Class

Design Models

Robustness Performance of Estimators Modeling

Behavior Not Seen in the Observations
A Realistic Estimation Example
Delay-Line Topology

Utility of the PO-P4 Chains

Implementation Computation for the Nonoptimal

and MAP-Based Estimators

Conclusions and Future Research
Conclusions

Future Research

298

305

i

314

320

328

337

352

354

366

372

372

375




10.

11.

- 10 -

Appendix A: The Association Rule

Appendix B: Modifications to the Definition of

T in the Association Rule

Appendix C: The Suboptimal Matching Algorithm

References

381

387

390

393



- 11 -

1. Introductjon

Many investigators have studied automatic rhythm interpretation of
electrocardiograms (Thomas, 1979: Feldman, 1977; Oliver, 1977; LeBlanc,
1973; Cox, 1972; Proceedings of the IEEE Computers in Cardiology Confer-v
ence, 1974-1984+).[1] However, at present there is no completely suc-
cessful system capable of giving detailed rhythm classifications. We
attempt to improve on previous work by eapplying statistical signal-
processing ideas to models of the observed electrocardiogram signal

where the models represent the rhythms in detail.

This thesis presents a model of the electrocardiogram (ECG) that is
oriented toward detailed rhythm classification. Based on this model, a
subproblem within the antomatic rhythm-classification problem is formu-
lated mathematically. Signal-processing algorithms solving this problem
are developed. In simulations, these algorithms provide satisfactory

performance. Evaluation on real ECGs has not been performed.

The ECG modeling methodology emphasizes the role of timing and
causality since these characterize a rhythm. Furthermore, the methodol-
0gy emphasizes that complex rhythms can be built up out of interactions
between a few simple building blocks. By changing the building blocks,

some of these modeling ideas may also be useful in other applications.

(1] In this thesis, references are cited by first avthor and date.

Section 1.
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The emphasis on tﬁe problem rather than the possible mefhods of
solution required the developﬁent of new signal-processing techniques.
These teqhniques emphasize the structure in the model. As with the
modeling ﬁethodology. these ideas may 2lso be useful in other applica-

tions.

Signal processing based on a mathematical model of the observed

signal, as outlined above, was called model-based signal processing in

Willsky (1982). This approach differs somewhat from the more usual
approach to ECG processing. More specifically a common element in many
investigations is an attempt to mimic, at least in part, the human
expert’'s apﬁroach to the problem. Due to this qualitative difference in
approach, we do not review the bulk of the ECG signal-processing litera-
ture. Rather, the relevant literature is that concerning the modeling
of the ECG, especially models oriented toward signal processing. This

literature is reviewed in Section 3.1.

1.1. Description of the Problem

The ECG, an example of which is shown in Figure 1.1, is the surface
recording of electrical-potential fluctuations due to the currents that
flow in the heart muscle as it contracts. The term rhythm refers to the
sequence and relative timing of the contraction of different parts of

the heart. A disturbance of the normal rhythm is called an arrhythmia.

In a normally functioning heart, the ECG is made up of a sequence
of discrete waveforms called P, Q, R, S, and T waves as illustrated in
Figure 1.2. The waveforms differ greatly in signal to noise ratio (SNR)

and, in more complex ECG’s from arrhythmic hearts, multiple waveforms

Section 1.1.




Figure 1.1 The Normsl Electrocardiogram.
(From Schluter (1981), Figure 3a, p. 31).

can be superimposed. In each subject, different occurrences of the same
wave are relatively similar though somewhat differemt from those of
another subject. Even in an arrhythmic heart, the waveforms can often
be classified as P, Q, R, S, and T though often several subtypes of a
waveform must be introduced.

-

In a qualitative sense, the goal of rhythm interpretation is to
monitor the behavior of the electrical conduction system of the heart.
This conduction system controls the contraction of the heart muscle.
Defects in the conduction system are associated with changes in the pat-
tern in time of the observed waveforms and with the shape of each wave.
Therefore the goal of rhythm-interpretation signal processing is to
determine the correct pattern of timing and shape--the pattern that is
actually occurring in the data—-—and to estimate several continuous
parameters which characterize the pattern. An example of a continuous
parameter would be heart rate, which primarily affects the pattern

through a time normalization.

Arrhythmias are often divided into two categories--persistent and

transient (Gustafson, 1978s, 1978b). A persistent rhythm is a rhythm

where the pattern possesses some regulatity or repetitive property which

Section 1.1,
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Figure 1.2 Waveform Definitions for One Beat of &t Tdealized.,
Normal ECG.

1asts for st least 6-10 heart peats. A transient rhythm is an abrupt
change OF irtegulsrity 1asting less thap sbout 6 heart beats. Common
occurrences ijn ECGs are ongoing persistent rhythms interrnpted by trap~

sient events. An example of such 8 case is sbown jn Figure 1.3.

The shape of an ECG waveform 1is called its morphology- As indi-
cated pteviously. morpholo8y apnalysis ijs of use ijn rhythm jnterprets”
tion. For example, morphology is jmportant in distinguishing pvC

2}

beats from normal beats. However. the subject of morphology
analysis also addresses 8 large pumber of questions that are not
relevnnt'to rhythm interpretation. For example. the jocation of tissue
damaged jn 8 heart attack, the enlnrgement of one OF more of the
chambers of the peart, and diseases of the heart muscle jtself are all
reflected by changes in morphology and therefore are among the topics
studied 1in morpholOBY analysis, though their connection with rhythm

—

———""%0 ———
[2] See Chapter 2 for an introdnction to cardiac bebavior and the
definition of terms such as this.

Section 1.1.
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Figure 1.3 An Isolated PVC Beat Interrupting Normal Rhythm.
(From Chou (1979), Figure 18-3B, p. 416).

analysis is rather distant. In our work on rhythm analysis, we address
only those aspects of morphology analysis that are directly relevant to

rhythm analysis.

1.2. Approach

Our approach to modeling emphasizes a tradeoff of physiological
detail and practicality for signal processing. We have emphasized the
event structure of the ECG, as these events completely characterize car—
diac rhythms, and thus their characterization is the goal of signal pro-
cessing. Furthermore, we have chosen to use models that match the spa-
tial structure of the heart and that allow us to focus on two issues,
namely timing of events in differemt parts of the heart and control,
which corresponds to the electrical interactions of different portionms

of the heart (e.g. contraction of one part of the heart can cause a dif-

ferent part of the heart to contract).

Another reason for using models which mirror the spatial structure

of the heart is our desire to obtain computationally feasible solutions
to estimation problems. Our approach to signal processing is to mirror

this spatial decomposition in the architecture of the estimator. More

Section 1.2,




- 16 -

specifically, the overall estimator is broken into subestimators
corresponding’to each of the submodels. Each subestimator is primarily
concerned with the submodel to which it corresponds. An important issue
is how to represent, for a given subestimator, the remainder of the
model. The processing within each subestimator consists of a fixed
sequence of passes through the data. A second important issue is the
communication within subestimators and among the several subestimators
between successive passes. If we ;sed a single estimator based on the
complete model (which is the natural approach if the model lacks struc—
ture) and considered models of the complexity described in this thesis,
it would be more difficult to achieve computationally feasible solutions

to estimation problems.

1.3. Thesis Outline

In the following chapter we give an overview of cardiac anatomy and
physiology. This information provides the physical bisis for our
models. Then, in Chapter 3, we review and critique other approaches to
ECG modeling and present our approach which we feel represents a contri-
bution to the modeling of ECGs for signal-processing purposes. More-
over, the approach to modeling and the mathematical structure used may
be applicable to other event-oriented systems, but that possibility is

not explicitly explored.

Chapters 2 and 3 are optionmal for readers primarily interested in
the signal processing since the mathematical formalism of the model is
reviewed in the first section of Chapter 4. Succeeding sections of

Chapter 4 describe our estimation goals and performance measures.

Section 1.3.
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Chapter 5 presents our design methodology. Chapter 6 describes a series
of case studies which are an attempt to justify our approach. Finally,
Chapter 7 presents our conclusions and several directions for further

research.

Section 1.3,
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2. Cardiac Anatomy and Physiology

In this chapter, we present an outline of cardiac anatomy and phy-
siology, concentrating omn those aspects that are important for under—
standing cardiac rhythms. This information forms the physical founda-
tion for our mathematical models of the electrocardiogram. As refer-

ences, we have relied onm Chou (1979), Katz (1977), and Marriott (1977).

2.1. Cardisc Anatomy and Mechanical Function

The heart‘is 2 four-chambered organ (right and left atria and right
and left ventricles) which is divided into two pumping units. The right
atriom and right ventricle form a unit which receives deoxygenated blood
at low pressure (5 mmHg) from the systemic venous system and pumps it
into the moderate-pressure (cyclicly 10 to 25 mmHg) pulmonary artery.
From the pulmonary artery, the blood flows to the lungs and is oxy-
genated. The left atrium and left ventricle form a unit which receives
oxygenated blood at low pfessure (5 mmBg) from the pulmonary venous sys-—
tem and pumps it into the high-pressure (cyclicly 80 to 120 mmHg) aorta.
From the aorta, the blood flows peripherally to the entire body.
Because the left ventricle pumps into a higher pressure system than the

right ventricle, the left ventricle has thicker, more muscular walls.

Both the right and left pumping units operate in the same cycle.

In a normal beart, the cycle is:

Section 2.1.
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(1) The atria are passively filled by the returning venmous blood which,
after the ventricle relaxes from the previous cycle’'s contraction,
flows on through the atria, the tricuspid valve (right pumping
unit) or the mitral valve (left pumping unit) and into the relaxed

ventricles, partially filling the ventricles.

(2) The atria contract, emptying their contents into the ventricles
through the tricuspid valve or the mitral valve. This completes

the filling of the ventricles.

(3) The ventricles contract. Increased ventricular pressure closes the

valves that allow communication with the atria (tricuspid and

mitral valves) and opens the valves leading to the outflow arteries
(pulmonic valve leading to the pulmonary artery in the right pump-

ing unit, sortic valve leading to the aorta im the 1left pumping

unit).
(4) While (3) is occurring, the atria relax.

(5) The ventricles relax. Decreased ventricular pressure allows the
valves leading to the ountflow arteries to close, thereby preventing
backflow from the high-pressure outflow arteries into the 1low-
pressure ventricles, and also allows the valves closing the connec-

tion with the atria to open, thereby starting ventricular filling.

In addition to following the same cycle, the right and left pumping

units operste im synchrony.

Section 2.1,
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2.2. Cardiac Control

The initiation and coordination of the cardiac function described
above is performed by a complex electrical conduction system embedded in
the muscular and structural elements of the heart. First we give a very
phenomenological overview of the fundamental electrical process by which
cardiac behavior is coordinated, that is, fluctuationm of the electrical
potential across cell membranes. Then we give an outline of the struc-
ture and function of the conduction system in a normal heart. In the
following section, we look in more detail at the elements of the conduc-
tion system. Many of the molecular mechanisms of these processes are at
least partially known but are not relevant to modeling for signal-

processing purposes, and discussion of these is omitted.

2.2.1. e Fundamental Processv

The elementary process by which the heart is coordinated 1is the
fluctuation of the electrical potential across the cell membranes.
These voltage fluctuations occur across the membranes of both the modi-
fied muscle cells of the conduction system and the muscle cells that
perform the actual work of contraction. In the following descriptionm,
the transmembrane potential is measured as interior potential minus

exterior potential, which is the standard physiological convention.

The basic order of events for some patch of cell membranme is
described in the following paragraphs. In its resting state, the cell
membrane potential is approximately -90 mV. If an external depolariza-
tion wave arrives at this patch of cell membrane and the inward depolar-

izing current is sufficient to reduce the membrane potential to a

Section 2.2.1.
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threshold voltage that is approximately -75 mV., then a series of events

called an actjon potential ensues. A diagram of am action potential is

shown in Figure 2.1.

At a given patch of cell membrane, the first event in a cardiac
action potential is a rapid depolarization of this patch of cell mem-
brane to approximately +20 mV. (region (a) in Figure 2.1). Thus the
depolarization wave propagates. Furthermore, propagation is
regenerative——irrespective of the magnitude of the initial depolariza-
tion current, so long as it was enough to move the transmembrane poten—
tial over the threshold, the depolarization achieves approximately

+20 mV. Thus the propagating wave does not lose amplitude.

A complication of the regenerative propagation mechanism is signi-
ficant to ECG rhythm interpretation. If the initijal transmembrane vol-
tage is less polarized, for example only -80 mV., then, if a supra-
threshold depolarization wave arrives, the resulting depolarization of
this patch of membrane is slower. Furthermore, the terminal value of
the depolarization is unchanged so that the magnitude of the voltage
change is reduced. This behavior has the effect of decreasing propaga-
tion velocity or even terminating propagation altogether. One mechanism
wvhich produces this partial depolarization is a bombardment of the patch

of membrane with subthreshold stimnli.

The second event in a cardiac action potential is a brief, rapid
repolarization to approximately 0 mV. (region (b) ;n Figure 2.1). The
third is a lonmg plateau at this membrane voitage (region (c) in Fig-
ure 2.1), and the fourth is a slower repolarization back to the resting

voltage of approximately -90 mV. (region (d) in Figure 2.1). Thus the

Section 2.2.1.
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-100 + | ! (e)
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o) 300
Figure 2.1 A Typical Cardiac Action Potential.

repolarization is avtomatic and does not require & second external

trigger. The entire cardiac action potential takes about 300 msec.

A second, modified type of membrame also éxists which, even when
unexcited by external depolarization waves, does not maintain a -90 mV.
membrane potential. Instead it slowly depolarizes until it reaches
threshold and thereby triggers its own action potential. This depolari-
zation is due to a slow ion leakage through the membrame. A cell with

this type of membrane is called autorhythmic. Such cells form the

pacemakers of the heart.

During the action potential, the patch of cell membrane undergoing

the action potential is first absolutely and then relatively insensitive

Section 2.2.1,




- 23 -

to additional stimuli. This is called the refractory state and occurs
for both types of cell membrane which were discussed above. From the
initial stimulus until midway through the final repolarization (about
250 msec.) is the effective refractory period (region (e) in Fig-
ure 2.1). During this period a stimulus will not elicit a propagating
action potential. However, late in this period, a stimulus can evoke a
local response--a transient depolarization that is not propagated.v This
local response is important because it can effect the membrane'’s
response to later stimuli by altering membrane properties temporarily.
After the effective refractory period is the relative refractory period
which lasts until nearly the end of the action potential (region (f) in
Figure 2.1). During this period, only an abnormally strong stimulus
will evoke a propagated response and the response will have both a slow
and low-amplitude initial depolarization, and hence a low propagation
velocity. The final period is the suprapormal period which lasts ; few
tens of msec. past the ?nd of the repolarization (region (g) in Fig-
ure 2.1). In this period, a subthreshold stimulus is able to elicit a
propagated response which, however, has a low-amplitude initial depolar—
ization. The net effect of these refractory periods is to disable, for
typically 300 msec., the patch of membrane through which the action
potential has propagated. This behavior is obviously important in

understanding the cardiac control system.

2.2.2. Outline of the Conduction System

Now we outline the structure and function of the conduction system

of the normal heart. The cells in the sinoatrial node (SA node),

located in the right atria, are autorhythmic <cells and wundergo

Section 2.2.2.
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spontaneous, cyclic action potentials which are propagated throughout
the heart by the bheart's conduction system and which control the muscu-
lar activity of the heart. On leaving the SA node, the propagating
action potential causes the depolarizltion of the right and left atrial
muscle (atrial myocardium). This causes the contraction of the atria
(event (2) in Sectionm 2.1). The propagation of this depolarization
through the atrial muscle results in a potential fluctuation that can be

observed in the ECG. In the ECG, this fluctuation is called the P wave

(see Figure 1.2). After depolarizing the atria, the propagating action
potential reaches the atrioventricular node (AV node) which, in a heart
with normal anatomy, is the only electrical connection between the atria
and the ventricles. In the AV node, the depolarization wave travels
with a much reduced velocity, leading to a delay of 70-80 msec. in
traversing the node. This delay allows the atris to complete the fil-
ling of the ventricles bgfore the ventricles themselves begin to con-

tract.

On leaving the AV node, the depolarization wave enters the special-
ized ventricular conduction system which will depolarize the right and
left ventricular muscle (ventricular myocardium). The conduction path-
way starts with the bundle of His which splits into the right and left
bundle branches and then the left bundle branch splits into the anterior
and posterior radiations. The bundle branches and radiations terminate
in the many-branched Purkinje network which distributes the depolariza-
tion wave to the muscle cells of the innmer side of the v;ntricular wall
(endocardium). Finally, by muscle cell to Quscle cell conduction, the
remainder of the ventricular myocardiom is depolarized. The depolariza-

tion of the ventricular myocardium causes the contraction of the

Section 2.2.2.
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ventricles (event (3) of Sectiom 2.1). Analogous to the atrial-
myocardial depolarization generating the P wave of the ECG, the
ventricular-myocardial depolarization generates the R wave (see Fig-
ure 1.2). Because the muscle mass of the ventricles is much greater
than the muscle mass of the atria, the R-wave potential fluctuations
have much greater amplitude than those of the P wave and hence the R
vave has a much higher signal to noise ratio than the P wave. As indi-

cated in Figure 1.2, the Q and S waves are respectively the initial and

final fluctuations associated with the R wave and the entire waveform is

referred to as the QRS complex.

Simultaneously with the venmtricular contraction, the atrial myocar-
dium repolarizes. This is event (4) of Section 2.1. While this repo-
larization also generates a surface potential fluctuation, it is smaller
in amplitude than the P-wave fluctuation and is masked by the R-wave
fluctuation generated by the ventricles. As discussed above, this repo-
larization is a local phenomenonm, that is, it is not triggered by any
global control mechanism but rather is the final event in the

depolarization-repolarization cycle for any patch of cell membrane.

Finally, the ventricular myocardium repolarizes. This is event (5)
of Section 2.1. This repolarization generates a surface potential fluc-
tuation which, when measured in the ECG, is called a I wave (see Fig-
ure 1.2). This repolarization is also a local phenomenon, similar to

the atrial repolarization.

Section 2.2.2.
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2.3. Structure and Function of the Conduction System

With the outline of the previous section in mind, we now look in

more detail at the conduction system.

An important concept is the gradjent of nutorhzthmicitx. Experi-
mentally, it has been observed that many of the elements of the conduc-
tion system (in addition to the SA node) exhibit spontaneous, cyclic
cell-membrane depolarizations that can then be propagated through the
~conduction system to depolarize the entire heart (i.e. they are
autorhythmic). However, the rate of these depolarizition cycles is dif-

ferent for different elements. Those elements that are more distal im

the conduction system, that is, those elements that are later in the

[11

depolarization sequence outlined above, have lower rates. This
relationship between location and rate is the "gradient”. For exemple,
the SA-nodal cells cycle at 60-100 cycles per minute while Bundle of His
cells cycle at 35-45 cycles per minute. Thus there exits a competition

between the SA node and other, distal, autorhythmic centers for conatrol

of the heart.

The competition discussed in the prior paragraph is wusually
resolved in favor of the SA node by the following mechanism. When an
autorhythmic cell is depolarized by the arrival of an external depolari-
zation wave, the timer controlling when the next spontaneous depolariza-

tion will occur, which is physically a slow ion leakage across the cell

[1] The converse of distal is proximal. Thus a proximal structure
is a structure that is depolarized early in the normel depolariza-
tion sequence and structure x is proximal to structure y if struc-
ture x is depolarized, in the normal depolarization sequence, be-
fore structure y.

Section 2.3.
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membrane (see Subsection 2.2.1), is reset. Thus, for example, if a
Purkinje cell is depolarizing at a rate of 20 cycles per minute and is
2.5 seconds into a cycle when an external wave of depolarization
arrives, the next spontaneous depolarization of the cell will not occur

in 0.5 seconds but rather in 3.0 seconds.

When a node is reset, a phenomenon called stunning can also occur
vhere the time until the next spontaneous depolarization is increased
over the nominal time. The stunning phenomenon can be seen in the ECG
in some situations where the SA node itself is reset. In the normal
heart, because of the reset phenomenon, the SA node is able to retain
control of the heart in spite of the competition from the other
autorhythmic centers by continually resetting them before they have an

opportunity to spontaneously depolarize.

While we have described unidirectional propagation of the depolari-
zation wave through the conduction system in what is called the
antegrade direction, the system is also capable of conduction inm the
reverse direction, called the retrograde direction. This is very impor-
tant in cases when the cell membrames of the conduction system are not
in a refractory state and a depolarization wave is initiated in a distal

structure.

We now consider the elements of the conduction system in more

detail.

(1) Sinoatrial node
This node is located in the wall of the right atrium near the

entrance of the superior vena cava (one of the main conduits for
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systemic venous return). It is autorhythmic with a rate that is
typically in the range of 60-100 cycles per minute. The actual
rate is under the control of the sympathetic and parasympathetic
nervous innervation of the node‘and the blood-borne hormone levels
in the node. This node, as discussed above, is the primary

pacemaker in a normal heart.

Internodal tracts

These are functionally defined, in contrast to anatomically
defined, preferred conduction pathways between the SA and AV nodes
and between the two atria. There are three tracts: anterior, mid-
dle, and posterior. The middle and posterior tracts serve only as
preferred conduction pathways between the SA and AV nodes while the
anterior tract branches so that it can also served as a preferred
electrical pathway between the two atria. This connection serves
to synchronize the contraction of the two atria. If it is broken,

the left atrial contraction lags the right atrial contraction.

Atrial Myocardium

The atrial myocardium, in addition to its mechanical role, acts as
a part of the conduction system. The depolarization wave is spread
directly from the SA node and also from the internodal tracts by
cell to cell conduction in the atrial myocardium with a velocity of

1.0 m/sec.

Atrioventricular Node (AV node) and the Bundle of His
These structures are collectively called the AV junction. In the
enatomically normal heart, the bundle of His is the only electrical

path from the atria to the ventricles. Depolarization waves enter
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the bundle of His via the AV node whick is a small mass of special-
ized nyﬁelrdinm located above the coronary sinus on the posterior
wall of the right atrium. There are three anatomically defined
subdivisions of the AV node. From most proximal to most distal
they are atriomodal, nodal, and nodal-His. Autorhythmic activity
has been demonstrated in the atrionodal and nodal-His regions of
the AV node (normal rate of 45-60 cycles per minute) and in the
bundle of His (normal rate of 35-45 cycles per minute). It has not
been demonstrated in the nodal region of the AV node (Chou, 1979,
pp. 393, 397). As discussed above, the propagation velocity for a
depolarization wave in the AV node is slow (0.05-0.1 m/sec) leading
to a delay before the action potential reaches the bundle of His,
where the propagation velocity is 1.0-2.0 m/sec, and, eventually,

the ventricles.

Anatomic Variants in Atriovenmtricular Conduction
There are at least three anatomic variants that affect the electri-

cal connection between the atria and the ventricles.

(a) Bundle of Kent
The bundle of EKent is a direct connection between the atria
and ventricles that completely bypasses the AV node and the
bundle of His. Thus in a subject with this anomaly, both the
normal AV-nodal delay is avoided and the various regions of
the ventriculer myocardium are excited in an abnormal
sequence. Because of the abnormal excitation sequence, the

QRS-complex morphology is sbnormal.
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(b) Bypass Fibers of James
The bypass fibers of James are a direct connection between the
atria and the distal third of the AV node or the bundle of
His. Thus in a subject with this anomaly, the normal AV-nodal
delay is decreased or absent. However, the ventricular myo-
cardium is activafed in the normal sequence via the bundle of

His. Therefore, the QRS-complex morphology is normal.

(¢c) Bypass Fibers of Mahaim
The bypass fibers of Mahaim are a direct comnection between
the lower AV node or the bundle of His and the ventricular
‘'septum (the muscular wall dividing the left and right ventri-
cles). Thus, in a subject with this anomaly, the normal AV-
nodal delay is present but the ventricular myocardium is
excited in an abnormal sequence. Therefore, the QRS-complex

morphology is nérnal.

Because these three anomalies have a common embryologic basis, mix-
tures are common. The freqﬁency of this class of anomalies has not
been accurately estimated anatomically. However, the incidence of
the Wolff-Parkinson-White syndrome, which is explained in terms of
these anomalies, is estimated at 0.15 to 0.2 peréent of the general
population (Chou, 1979. p. 489). In order to illustrate the gen-
erality of our modeling approach, we propose a model for this syn-

drome in Subsection 3.7.4.
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Left and Right Bundle Branches, Anterior and Posterior Radiations

The Bundle of His divides into the left and right bundle branches,
and then the left bundle branch divides into the anterior and pos-—
terior radiations. The 1left bundle branch and its radiations
activate the Purkinje network of the left ventricle while the right
bundle branch activates the Purkinje network of the right ventri-
cle. The depolarization-wave propagation velocity in these struc-
turés is 1.0-2.0 m/sec. They contain antorhythmic cells whose nor-
mal rate is similar to the normal rate of cells in th? Bundle of

Bis.

Purkinje Network

The Purkinje network branches from the left and right bundle
branches and the anterior and posterior radiations. It activates
the interior surface of the ventricular myocardium (endocardium).
The depolarization-wave propagation velocity in the Purkinje net-
work is 4.0 m/sec. It contains autorhythmic cells whose normal

rate is the slowest such rate of any class of cells in the heart.

Ventricular Myocardium

The ventricular myocardium, in addition to its mechanical role,
acts as a part of the conduction system. The depolarization wave
started by the Purkinje network in the endocardium propagates from
cell to cell in the ventricular myocardium with a velocity of
0.5 m/sec until all of the ventricular myocardium has been depolar—

ized.
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2.4. Origin of the ECG

The flow of charged ioms across the cell membrame, which is the
rhysical mechanism for all depolarizations, is a time-varying impressed
current density in a conducting medium. In the quasi-static limit this
current density gives rise to a (time-varying) potential field. Poten-
tial differences between fixed, chest-wall sampling locations then give
the ECG. The electromagnetic origin of the ECG is discussed quantita-
tively and in some detail in Plonsey (1969). The cell-membrane area of
the myocardium is much greater tham the cell-membrane area of the
remainder of the conduction systen. Furthermore, the electrodes in the
standard ECG recording arrangement are relatively distant from the
entire heart. Myocardial depolarization thus dominates changes in the
distribution of the impressed current density and hence in the voltage

fluctuations seen in the standard ECG recording arrangement.

Clearly, changes in the time course of the impressed current den-
sity will result in changes in the ECG fluctuations and such changes can
occur because the depolarization propagates through the myocardium in
unusual directions. As discussed in Section 1.1, the analysis of the
shape of the ECG voltage fluctuations is called morphology analysis.
¥Vhile morphology end rhythm analysis are interrelated, in this work we
are separating them tq‘the greatest extent possible. (We only use mor-
phology information when it is important for rhythm diagnosis. For
example, the correct élassificntion of a slightly premature R wave as
belonging to a normally-conducted beat versus a premature ventricular

contraction requires morphology information).
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.5. Mechanisms for Abmormal Cardiac Control

(134
>

The evolution of arrhythmias is strongly influenced by three gen-
eral mechanisms: retrograde conduction, reset/stunning, and the gra-
dient of sautorhythmicity, all of which are physiologically normal and
have been discussed above. These properties intefact with two broad
categories of physiologicnllyAlbnormal properties—-—decreased conduction

and increased or decreased autorhythmicity—-to generate arrhythmias.

Decreased conduction cam occur in several different forms which can
also be mixed. The following forms are all invoked to explain various

arrhythmias:
(1) Total block of all depolarization waves.

(2) Unidirectional block of all depolarization waves coming from a par-
ticular direction. This is explained in terms of an asymmetric

severity of tissue damage (see Katz, 1977, pp. 310-314).
(3) Decreased propagation velocity.
(4) Increased refractory time.

Increased (decreased) antorhythmicity refers to an increased (decreased)

rate of autorhythmic depolarizations.

Typical causes for these abnormalities are drugs and decreased
blood flow to the affected portion of the cardiac tissue. The abnormal-
ities can be transient, lasting from minutes to days, or permanent. See

the references for details.
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Explanations of arrhythmias in terms of the previously discussed

causes (e.g. the increased refractory time of a certain volume of myo-

cardium) are at a low level of abstraction. That is, the discussion

focused on specific cellular causes of these phenomena. At a higher

level of abstraction (i.e. mechanisms that could have several different

cellular origins), a common explanation for many cardiac arrhythmias is

the idea of reentrant depolarization waves. There are many detailed,

cellular mechanisms that have been proposed. Three typical mechanisms

are the following.

(1)

(2)

Inhomogeneity of Repolarization

An area of myocardinm‘vith delayed repolarization adjoins an area
with normal repolarization. An ipitial wave of depolarization pro-
pagates through both areas. Because of the asymmetry in repolari-
zation times, the mnormal myocardium recovers its excitability
before fhe delayed-repolarization myocardium has repolarized. This
allows the delayed-repolarization myocardium to reexcite the normal
myocardium. Thus the depolarization wave reenters the normal myo-
cardium and eventually this local depolarization can evolve into a

second general depolarization.

Unidirectional Block with Conduction Delay

An area of unidirectional block with conduction delay can lead to a
reentrant depolarization wave if the initial wave is incident in
the blocked direction. In Figure 2.2, the depolarization wave is
incident at p. It is blocked in branch 1 by the unidirectionmal
block between A and B. However, it is free to propagate through

branch 2 and then around to reach branch 1 from the opposite
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Figure 2.2 A Hechanig- for Reentrant Depolarization.

direction. (Along the way, the depolarization wave excites the gq
and r branches). In this direction, the depolarization wave is not
blocked between A and B. However, its ‘arrivnl at A has been
delayed by the circuitous path taken. Thus when it reaches A, the
normal myocardium onm which it is mnow incident is repolarized.
Hence the depolarizgtion wave is able to reenter this myocardium
and eventually reexcite at least the P branch. Depending on the
exact timing, this process camn continue for multiple loops, or it
may terminate. While this geometric pattern of muscle fibers seems
complex, it is 8 reasonable idealization for some patterns actually

seen in the myocardium.

Slow Repolarization

In the same Figore 2.2 used in part (2), replace the
unidirectional-block area with an ares of slow repolarization.
Now, if this area has not had time to repolarize after the prior
depolarization wave when the current wave arrives, the same

sequence of events described in part (2) can occur. Now however,
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one needs to assume that the slow repolarization region has
regained excitability by the time that the detoured depolarization
wave reaches it for the second time (i.e. after the wave has passed

through branch 2).

Note that a microscopic reentrant system has many of the properties
of an autorhythmic cell. Thus there is an overlap between the classes
of events that can be explained in terms of microscopic reentry and in
terms of increased autorhythmicity. In explanations of some other
events, the reentrant system is macroscopic. Amn example of a macros-
copic reentrant pattern would be one including both the atria and the

ventricles through the bundle of Kent.

2.6. Summary of Rhythm Caunsation and Implications for Modeling

Based on a study of the referemces cited previously, we have con-
cluded that cardiac rhythms can usually be explained in terms of just a

few mechanisms. These mechanisms are:
(1) directional conduction,

(2) conduction delay,

(3) reset/stunning,

(4) refractory period,

(5) autorhythmicity, and
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(6) unusual anatomic structure.

Therefore, these are the properties that our mathematical formalism must

be able to capture.

Forthermore, we have observed the importance of interactions
between the abnormal and normal parts of the heart. That is, many of
the changes in an arrhythmic ECG are dﬁe to how the ibnormll substruc-
ture affects the normal substructures rather than to a direct change in
the ECG caused by the depolarization of the abnormal substructure. It
is possible to pursue an approach in which one proposes completely new,
ad hoc models for arrhythmias. However, we choose to model arrhythmias
by introducing amomalies into submodels in a manner that exactly paral-
lels the cause of the arrhythmia in the actual heart. Therefore, our
model must capture interactions so that we may develop models for
arrhythmias by making changes in the model of normal rhythm, where the
changes should be conceptually limited to those parts of the model

corresponding to the abnormal substructures.

2.7. Lewis or Ladder Diagrams

A Lewis diagram, also called a ladder diagram, is a simple way, in
common clinical use, to diagram the activities of the cardiac conduction
system. We will have occasions to use thesé diagrams in subsequent
chapters. The vertical axis is the location of the depolarization wave-
front, and the horizontal axis is time. Four lines indicating three
subdivisions are used to indicate location onm the vertical axis. The
uppermost line represents the SA node, and the three sfnces represent,

from top to bottom, the atria, the AV junction, and the ventricles.
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Thus a ladder diagram fof several beats conducted in the normal manner
appears as in Figure 2.3: the depolarization front originates in the
SA node, rapidly traverses the atria (nearly vertical linme) slowly
traverses the AV jnnction (angled line) and finally, rapidly traverses

the ventricles (nearly vertical linme).

2.8. Terminology

The following definitions are common terminology used in describing

ECGs.

(1) Coupling Interval: The length of time between a particular depo-
larization of some structure and the most recent previous depolari-

zation.

(2) x-y Interval: the x-y interval is the length of time between the x

event or wave and the subsequent y event or wave.

(3) Escape Beat or Rhythm: A beat or rhythm initiated by a distal
pacemaker because either all proximal pacemakers failed to depolar-
jze or because the depolarization was not trensmitted to the distal

structure.

!

(4) Ectopic Pacemaker: Any pacemaker, except the SA node, which is

successful in initiating the depolarization of some structure.

(5) Fusion Beat: A depolarization of a specified structure in which

the depolarization originates from more than one source.
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Atrig = =---

SA node --- \ \ \

AV node --~{ \ | \ \

Ventricles --{ \ \

(6)

(7

(8)

Figure 2.3 A Ladder Diagram for a Sequence of Normal Beats with
the Corresponding Idealized ECG.

Aberrant Conduction: An aberrantly-conducted depolarization is a

depolarization that does not propagate through the standard conduc-

tion pathways of some structure.

Supra-ventricular: An adjective referring to all structures proxi-

mal to the ventricles.

PVC: An abbreviation for Premature Ventricular Contraction, which
is a contraction of the ventricles for which the source of the
depolarization is within the ventricles. Since it precedes the
next expected (i.e. done to the underlying persistent rhythm) ven-

tricular contraction, it is called premature.
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3. Electrocardiogram Models

Iﬁ this chapter we describe a new modeling methodology for ECGs.
Afteg a review of past literature on ECG modeling, we describe our
approach to modeling and give five examples. Each example considers s
different rhythm. The fifth example, which is considered in signifi-
cantly more detail than the pfior four, includes simulations to demon-—
strate the descriptive power of our models. The ideas of Chapter 2,

especially in the summary in Section 2.6, are basic to this chapter.

Jw
—

Literature Review

This review of the ECG modeling literature has two purposes..

(1) We attempt to motivate the structure of our model by describing
physiologically oriented models. Simultaneously we try to point

out why these other models are not suitable for signal processing.

(2) We illustrate what we believe are limitations of the signal-
processing-oriented models described in the past. We believe that

some of these shortcomings are rectified in our models.

An underlying theme throughout this review is that models created
for one specific purpose are often mnot appropriate for some other pur-—

pose.
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3.1.1. Physiological Models

Electromagnetic models of the heart were originally developed in
order to understand what the ECG and later the magnetocardiogram (MCG)
wvere actuvally measuring. Text and review article references include
(Geselowitz, 1979), (McFee, 1972), (Plonsey, 1966, 1969, 1971, 1979),
- (Tripp, 1979), and (Wikswo, 1979). As such, these models are oriented
toward deriving spatial transfer functions from quasi-static electromag-
netic sources (impressed currents across cell membranes) to measured
variables (surface potentials for ECG and surface magnetic fields for
MCG). Extensively studied questions include source models (Geselowitz,
1967; Plonsey, 1969, 1974; Spach, 1979), the effects of chest geometry
and inhomogeneities (Barr, 1977; Coffin, 1977; Hosaka, 1976; Rudy, 1979;
Rﬁsh, 1971), measurement number and locationm (Barr, 1971; Lux, 1978),
and inverse methods (i.e. calculating impressed sources from observa-
tions instead of visa versa) (Baker, 1974; Baldwin, 1979; Barr, 1969,
1970; Brody, 1972; Cuffin, 1978; Martin, 1972, 1975; Miller, 1974;

Schloss, 1971).

Excepting some inverse calculations, these models do not presc:ibe
how the source evolves over time--any impressed current source distribu-
tion can be used. Thus, while they are important for relating the depo-
larization of some volume of tissue to its ECG manifestations, they

themselves do not provide rhythm models.

The remaining models described in this review are models for ECG
behavior over a period of time. That is, in terms of the prior para-
graph, the evolution of the source over time is prescribed for at least

the duration of a single beat.
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Many investigators have described finite—element models for dif-
ferent aspects of cardiac behavior. Miller and Geselowitz (Miller,
1978a, 1978b) described a single-beat model for body-surface potential
maps. It combines a realistic finite-element model of the electromag-
netic properties of the torso with experimentally‘ determined

depolarization—-time and action-potential-duration data.

Vinke and bis collaborators (Vinke, 1977) described a deterministic
finite-element model of ventricular timing for a single normal beat.
Each element has three states—-resting, active, and refractory. The

different depolarization-wave velocities are modeled in moderate detail.

Moe and Mendez (Moe, 1966) developed a stochastic two-dimensional
model of atrial depolarization inm atrial fibrillatiom. The form of the
model is similar to that of Vinke (Vinke, 1977) except that the refrac-
tory state, which is no longer a trapping state, is modeled in much
greater detail and there is no conduction system. The stochastic‘nspect
is modeled by a parameter in the refractory period (for each element)

which is constant throughout the simulation.

Cohn and his associates (Cohn, 1982) developed a model combining a
finite—element timing model (similar to Vinke, 1977) and e finite-
element electromagnetic model (similar to Miller, 1978a, 1978b). This

is a deterministic model of a single beat and was used to study T waves.

Smith (Smith, 1982) developed a model combining finite-element tim—
ing and finite-element electromagnetic models. Unlike Cohn (Cohn,
1982), this is a model for a complete rhythm. Smith’'s interest is in

the mechanisms of arrhythmias. Again, each element can be in one of
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three states, and is modeled using a random, constant parameter for the
refractory period. The electromagnetic model contains a very simple

torso model since Smith was concerned with rhythm and not morphology.

The previously described models have hundreds to thousands of ele-
ments. Models have also been proposed with only tens of elements, where
each element models a specific substructure in the cardiac ana tomy.
Rosenberg and his associates (Rosenberg, 1972) proposed a model of nor-
mal rhythm constructed from 13 dipoles. The dipoles are of fixed loca-
tion and orientation but variable moment which, along with the inter-
dipole timing, is fixed by a coupled collection of second-order relaxa-
tion oscillators. Each oscillator and its dipole model one anatomic
substructure of the heart. The uncoupled oscillation frequencies of the
relazxation oscillators follow the gradient of autorhytbmicity. Thus,
when they are coupled, the SA-nodal oscillator -entrains all of the
oscillators modeling more distal structures. By adjusting the proper-
ties of the relaxation oscillators, Rosenberg is able to adjust the time
course of the dipole moments such that they generate quite realistic ECG

beats.

In Zloof (Zloof, 1973) this model was further developed. By intro-
ducing more complex relaxation oscillators for the AV junction, the
overall model is able to simulate various types of first-, second-, and
third-degree AV block. The type of AV block generated depends on the

value of a continuous parameter.

The Rosenberg-Zloof model was further modified in Thiry (Thiry,
1974, 1975). 1In this work, the timing mechanism is separated from the

mechanism determining the dipole magnitudes. The dipole magnitudes were
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then determined based on idealized geometry and experimental data.

These models, which were developed for other purposes, have major

drawbacks if one were to consider using them as the basis for signal

processing. In order to place our approach to modeling in perspective,

we now list several of the limitations (as far as signal processing is

concerned) that are common to onme or more of the models are described

previously.

(1)

(2)

(3)

Models which assume deterministic behavior preclude the considera-
tion of ensembles of waveforms that are close in a probabilistic

sense but differ in detail.

The ECG morphology information is deeply embedded in the model and
is tightly coupled to the timing information. While this coupling
is more realistic than a hierarchical arrangement which decouples
the timing from the ECG-morphology properties, if makes the signal
processing more complex. Specifically, adapting the morphology
generated by the model to the actual morphology observed in the
subject is a very complex undertaking, which may not have a unique
solution and which will also alter the timing. Furthermore, the
absence of this hierarchical structure obviously precludes our tak-

ing advantage of it to devise efficient, hierarchical algorithms.

The model is (probably) not completely observable from the
surface—-electrical-potential output. That is, knowing the output
and the structure and parameters of the model is not sufficient
information to uniquely reconstruct the value of all internal vari-

ables. Furthermore, even if the model were completely observable,
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estimation based on the model would involve estimation of far too

many quantities, most of which are of no direct importance for

rhythm diagnosis.

Note that several features of these models are important for our

purposes in and approach to modeling:

(1)

(2)

(3)

(4)

The models capable of generating rhythms are often stochastic. The
way in which randommess is introduced in the models described to
this point is typically limited (e.g. by a stochastic initial
choice of parameters; the vast number of interacting variables in
these models then evolve in a deterministic but very chaotic
appearing way). In our approach we introduce randomness in a more

fundamental way.

The models often have different levels of detail for timing effects
than for electromagnetic effects. Furthermore, these two aspects
are sometimes treated hierarchically: the timing model drives the
electromagnetic model which generates weveforms through a mechanism
completely independent of the timing model. Our models will have

the same features.

The models are divided into tems to thousands of interacting submo-
dels. Our models will be divided, though into a far smaller number

of functional submodels.

Interactions between the submodels of (3) are infrequent but
strong. Again, this will be a feature that is highlighted in our

models.
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3.1.2. Signal-Processing Models
We divide signal-processing models into two broad categories:

(1) models that specify the ECG on a digitizer sample by sample basis

and

(2) models that specify the ECG on a wave-arrival event by event basis.

3.1.2.1. Digitizer-Sample Models

Many aunthors have used digitizer-sample models of jndividual ECG
beats. For exnmplé, Marcus (Marcus, 1982) and Uijen and his associates
(Uijen, 1979) used such models to evaluate the performance of QRS-
complex detectors. Soramo and his collaborators (Sornmo, 1981) used
such & model to evaluate the performance of QRS-complex feature extrac—
tors for pattern recognition. Murthy and coworkers (Murthy, 1979) used
such a model tovdevelop cepstral-based features for discriminating dif-
ferent QRS-complex morphologies by pattern recognition. Because they do

not model cardiac rhythms, we do not review these models.

Several autbors have considered digitizer-sample models of complete
rhythms (Borjesson, 1982; Haywood, 1970; Richardson, 1971). These
models are oriented toward R wave detection. They make very limited
rhythm assumptions and do not include other waves. The fundamental
problem with the rhythm assumptions is the lack of a simple underlying
physical model to gemerate the probability mass function (pmf) on the
wave arrival times. While the actual physicai mechanism may be describ—
able in simple terms, it may generate a very complex R-wave arrival dis-

tribution, which one cannot practically assume as the first principle
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since it would create an unmanageable number of free parameters. There-
fore, when the pof is simply assumed, one is driven to use a very simple
pmf. For similar reasons, ome is forced to comsider only ome type of
wvave arrival. Thus, while these models may be of value in improving R-
wave detection and characterization performance (perhaps combined with
methods for QRS-complex morphology analysis as mentioned above), the
level of aggregation and simplification involved precludes their use in

eéxtracting more detailed information concerning cardiac rhythms.

3.1.2.2. VWave-Arrival Models

The remaining models to be described in this review specify the ECG

On a wave-arrival event by wave-arrival event basis.

Gersch and his associates (Gersch, 1970, 1975) and separately Tsui
and Wong (Tsui, 1975) have developed three-state Markov chain models of
R wave arrival times in Qnrious arrhythmias. The states of the chains
are the intervals between saccessive R waves, coarsely discretized into

three ranges: S (short), R (regular), and L (long).

In Gersch’s work (Gersch, 1970, 1975), the sample size is fixed and
a8 maximum-likelihood estimate of the correct rhythm is made. In
(Gersch, 1970), a formulas for an information-theoretic distance between
the various pairs of rhythm models is derived. 1In that paper, six

rhythms are considered:

(1) atrial fibrillation,
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(2) atrial premature contractions and ventricular premature contrac-

tions,
(3) bigeminy,
(4) sinus tachycardia with occasional bigeminy,
(5) sinus tachycardia, and
(6) ventricular tachycardia.

Transition probability matrices are estimated from training data in
which QRS complexes were detected by a threshold om the first derivative
of the voltage with respect to time. The resulting R-R intervals were
then grouped into the three ranges, S, L, and R and transition rates
were estimated. Application of the algorithm to the training data

resulted in 100 percent correct performance.

In (Gersch, 1975) a bound, exponmential in sample size, is developed
on the probability of misclassification in a binary hypothesis test
between two Markov chain models. In this paper, two rbythms are con-—

sidered:
(1) Atrisl fibrillation (AF).

(2) Atrial fibrillation with occasional PVC's (AFOCC). "Occasional” is

defined as less than 1 PVC per 25 R-R intervals.
Transition probability matrices were estimated as in (Gersch, 1970).

Two experiments were performed and reported. In the first experi-

ment, the data used to estimate the transition probability matrices was
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classified by the elgorithm. In summary, detection was correct im 30
out of 42 cases (71%) when the sample size was 100 R-R intervals and
correct in 17 out of 21 cases (81%) when the sample size was 200 R-R

intervals.

In the second experiment, the AF transition probability matrix was
fixed and the AFOCC transition proﬁlbility matrix was varied in order to
consider how changes in the relative self-entropy of the AF and AFOCC
hypotheses effected the probability of error. The actual tramsition
probability matrices (tpms) gsed were not completely reported. Exten-
sive simulations were performed which indicated that performance
increased rather dramatically when the difference in the self-entropies

increased.

Finally, in a third incompletely reported experiment, the sensi-
tivity of the probability of error to small changes in the definitiom of
the R, S, and L symbols in terms of the observed interval durations was
evaluated. This was donme using the real data. Gersch (Gersch, 1975)
summarized the results by stating that "classification error performance

was not very critically dependent upon the transformation parameters.”

Tsui and Wong (Tsui, 1975) use the same type of three-state Markov
chain utilized by Gersch (Gersch, 1970, 1975). However, instead of con-
sidering maximum likelihood estimation of the correct rhythm, as is done
by Gersch (Gersch, 1970, 1975), Tsui comsiders only binary hypothesis
testing problems and uses Wald’'s sequential probability ratio test
(SPRT). He derives a formula for the expected number of R-R intervals
observed before the SPRT terminates and uses this as ; measure of the

separability of the two hypotheses.
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Using unreported methods, Tsui generates probability transition

matrices for three rhythms:
(1) atrial fibrillation,
(2) normal sinus rhythm, and

(3) premature atrial and ventricular contractionms in the presence of

normal sinus rhythm.

Calculation of the bound for the expeéted number of observations
until termination of the SPRT for each pairwise combination of these
three rhythms indicated that the average number of observations to
achieve classification would not exceed 20 observations when the proba-
bility of error was restricted to less than 0.1 percent. If the bound
is tight, then this formulation of the problem leads to a signal-
processing algorithm that is rather slow to make a decision from the
applicition point of view. No experimental results on real data were

reported.

For an application of Gersch's work (Gersch, 1970, 1975) to the
detection of atrial fibrillation, see Shah et al. (Shaw, 1977). For ean
extension of the Gersch-Tsui-Wong model see White (White, 1976). For a
deterministic finite-automata approach using the S, R, and L symbols as

input see Hristov et al. (Hristov, 1971).

Note four limitations of the Gersch-Tsui-Wong model:
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It cannot correctly model all R-R interval patterns. For example,
consider second-degree AV block Type II with 4:3 conduction. This
is shown schematically in Figure 3.1. In terms of S, R, and L, the
thythm is:
++« RRRLRRRLRRRL...

In the Gersch-Tsui-Wong model, every occurrence of R (for example)
is equivalent to every other since it corresponds to a unique state
and the transition probabilities out of that state are constant.
However, in the 4:3 rhythm exhibited above, each R is obviously not
equivalent. This point is also sketched by Strand (Strand, 1973).

Therefore consideration of more complex states is necessary.

The transformation to S, R, and L obscures certain rhytbhms. For
example, in an interpolated PVC, two § intervals would be observed.
If more detail were retained, it would be observed that these two
intervals add Gp to ome of the usual R-R intervals. However, this

detail is lost.

The model hes no physical basis. It is essentially an elegant,
empirical way to account for certain statistics in the observed
interval sequences but it is not a description of why these statis-

tics occur.

Several further limitations are described in a general critique of
& number of methods at the close of this snbsiction. Briefly, the
limitations are the inadequate observation models which do not
allow for missed waves or extra deteciions. the failure to use
rhythm information to assist in wave detection, and the lack of a

rational way to add additional waves (e.g. P waves) to the model.
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Figure 3.1 Ladder Diagram for Second-Degree AV Block with 4:3
Conduction.

In the previously-discussed ECG models, in which the ECG was
modeled in terms of wave-arrival events, the inter-event times were
coarsely discretized into three levels. Now we consider several models
in which the inter-event times are not discretized. Because of the vast
increase in the number of possible inter—event times in this approech,
the Markov chain models of Gersch-T;ui-Wong are no longer practical

since they require a state for each possible inter-event time.

Grove, Haywood, Richardson, Murthy, and Harvey (Grove, 1978; Hay-
wood, 1977; Richardson, 1976) have considered autoregressive and one-lag
nonlinear Markov prediction models for R-R intervals. The two models

are:

(1) Autoregressive:

x(n)-p= S lm(x(n-m)-u)+e(n)'
m=1

e(.) a zero-mean white Gaussian sequence with variance 52 and x(.),

e(.) ER
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(2) Nonlinear One-Lag Markov:

x(n+1)=£f(x(n))+e(n)

e(.) a zero-mean white Gaussianm sequence with variance o2 and x(.),

e(.) €ER

In their work with the nonlinear one-lag Markov model, the steady-
state probability density for the state of the process is identified
with the experimental histogram of R-R intervals. This work was
motivated by noting the bimodal character of some such R-R interval his—
tograms. By fitting the model in this way, the investigators ignore the
temporal patterns in the datas. That is, they match the statistics on
x(n), although the important statistics are the statistics on x(n) com-
ditioned on x(n-1), x(n-2), ... . Furthermore, the nonlinear mechanism

has no physiologicll interpretation.

The work of Grove, Haywood, and Richardson with autoregressive
models seems inconclusive. The model is fit by least squares tech-
niques. The results are complicated by the question of nonstationary
statistics. Furthermore, the empirical time-series-analysis approach
does not use the aveilable a priori information concerning the dynamics
of ventricular rhythms, such as in ventricular bigeminy. Correspond-
ingly, the parameters of the autoregressive model have no physiological
significance. In nome of these papers are any applications made of the

models.

Most rhythm analysis systems have some model of the R-R interval

duration in order to predict whether the just observed interval is or is
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not "normal”. A standard approach is to use the average of the interval
durations of a certain number of "normal” preceding beats (Feldman,
1971; Schluter, 1981; Shah, 1977). This obviously only makes sense for
a limited class of rhythms. Other authors have models to address very
specific subquestions within a larger rhythm nnalyﬁis algorithm. The
work of Shah (Shah, 1977) on atrial fibrillation was noted previously.
To detect atrial fibrillation, Schluter (Schluter, 1981) uses the pred-
iction errors for a set of estimators that estimate the current R-R
interval by computing averages at different lags of prior intervals.
Large errors for all estimators imply that the rhythm is atrial fibril-
lation. In nome of the investigatiﬁns mentioned above is the model in
eny sense a complete description of all that is known a priori about a

cardiac rhythm

Gustafson and his collaborators (Gustafsom, 1977, 1978a, 1978b,
1978c, 1979, 1981) have' developed an extensive set of models and
signal-processing algorithms for ECG interpretation. This thesis is
mo;ivated in large part by the successes and limitations of their work.
Therefore, it is described in more detail than the other investigations
mentioned in this review. However, even the following descript;on

includes only a portiom of the rhythm classification part of their work.

Gustafson's models are linear vector Markov models. The components
of the vector state are differemt interval durations (e.g. R-R, P-R).
Detection of the ECG wave-arrivals necessary to compute the intervals is
described in (Gustafson, 1975) and (Wang, 1976) for R waves and (Gustaf-
son, 1979, 1980) for P waves. In the early work (Gustafson, 1977,

1978a, 1978b) omnly R wave events are considered while in later work
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(Gustafson, 1978c, 1979, 1981) P wave events are also included.

In the work based on R-R intervals only, four persistent rhythm
classes are defined. Each class corresponds to several separate cardiac
arrhythmias whose subclassification usually depends on more information
than is available from R-R intervals alome. The exception is the dif-
ferentiation of sinus bradycardia, normal sinus rhythm, and sinus techy-
cardia which are distinguished by heart rate within a single model. The

four models are Small Variation, Large Variation, Period-Two Oscillator,

and Period-Three Oscillator. We describe only the Small Variation model

(which is required for the discussion of the transient rhythm models)
and the Period-Two Oscillator model. Conceptually, the other two are

similar.

In rhythms modeled by the Small Variation model, the R-R intervals
exhibit small random deviations around their mean value, which is con-
stant. Among the clinical syndromes included in this class are normal

sinus rhythm, sinus tachycardia, and sinus bradycardia. The model is:
x(k)=x(k-1)
y(k?=x(k)+v(k)
Cov[v(k)]=Rs
where the observation y(k) is the observed value of the k'l R-R interval

and the observation noise sequence v(.) is a scalar zero-mean white

Gaussian random sequence.
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In the Period-Two Oscillator, the R-R intervals are alternately
long and short. Among the clinical syndromes included in this class are
ventricular bigeminy and second degree AV block with 2:1 conduction.

The model is:
1= z-»
y(k)=[1 0]x(k)+v(k)
Cov[v(k)}=k2

where the observation y(k) is the observed value of the xt? R-R interval
and the observation noise sequence v(.) is a scalar zero-mean white

Gaussian random sequence.

In the work of Gustafson et al., four transient rhythm models are
defined as well. These transient events are modeled relative to the
underlying normal rhythm pattern. Each occurrence of a tranmsient rhythm
is a single isolated change that can extend over one to three beats.
The change affects the underlying persistent rhythm, it is not simply a
superimposed event. The four transient rhythms are Rhythm Jump, Non-

Compensatory Beat, Compensatory Beat, and Double Non-Compensatory Beat.

We describe only the Non-Compensatory Beat model. Conceptually, the

other three are similar.

Let © be the unknown time of occurrence of the transient, y is the
unknown amplitude of the transient, and 8(i,j) is the Kronecker delta

function. The observation y(k) is the observed value of the 2 R-R
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interval and is given by the observation equation of the Small Variation

model above. In events modeled by the Non-Compensatory Beat model,

there is an isolated short or long R-R interval. The mean R-R interval,

excluding this interval, remains constant. Clinical events included in

this class are an atrial premature contraction which resets the SA node

(y<0), an isolated failure of AV conduction (y>0), or sinus arrest

(y>>0). The model is:

x(k)=x(k-1)+y(8(0,X)-5(0,k-1)).

All of the persistent and transient rhythm models, including those

not described above, share several desirable features.

(1)

(2)

(3)

None of these models actually define the lengths of the intervals.
Rather, they just state that a specific pattern exists. The
optimal estimator estimates the actual lengths for any particular
ECG. Thus the lengths are not locked into the model which, for
example, allows the models to avoid requiring parameters reflecting

heart rate.

The state of the models in some cases retains several of the most
recent R-R intervals. This is necessary to model oscillatory
phenomena, which cannot be dome if the state is only the last R-R

interval as in the methods described previously.

All the parameters have physiological meaning; nonme are set by

empirical curve-fitting techmiques.
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Using standard statistical signal-processing fechniqnes (KEalman
Filter, Anderson, 1979; Multiple Model Hypothesis Test, Lainiotis, 1973;
and Geperalized Likelihood Ratio Test, Willsky, 1976) and insight into
the behavior of the different models and algorithms, Gustafson and his
collaborators have developed rhythm—classification algorithms for these

classifications that are quite successful.

In ordef to achieve a finer classificntioﬁ of arrhythmias, it is
necessary to include some information concerning morphology or atrial
activity. In (Gustafson, 1978c, 1979, 1981), the previous work is gen-
eralized to include P waves. Now there are two types of wave-arrival
-events--P waves and R waves. The modeling framework and signal-
processing techniques are carried over intact from the prior work based

on R-R intervals alone.

This work does not encompass all possible patterns of P waves and
R waves. Rather, it is oriented toward rhythms for which the analysis
of P-R intervals is appropriate. For instence, sinus arrhythmia is
included but third-degree AV block is not. The focus om this class of
rhythms allows Gustafson to continue ﬁsing models in which the time
index is a counter of R wave arrivals. This becomes clearer when the

basic outline of the algorithm is presented:

(1) Find, using heuristic techniques described in (Gustafson, 1975) and

(Wang, 1976), the next R wave.

(2) Using statistical techniques (Gustafson, 1979, 1980), subtract out
the R wave and locate all P waves (before, in, and after the

R wave) in the beat.
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Define the P-R interval for the beat to be the interval calculated
from the P wave whose location is nearest the R-wave location. The
P wave used in the P-R interval calculation may come from the set
of P waves detected in (2) for one of the neighboring beats if, for
example, no P wave is detected in the current beat. Finally, if
required by the previously described rules, a single P-wave loca-
tion can be used to calculate the P-R interval for more than one

R wave.
Cse the R-wave-P-wave pair of (3) as input to the rhythm analysis,

The models for this work are much less convincing than the models

based on only R wave arrivals for several reasons:

(1)

(2)

Because each increment of the discrete time index k in the per-
sistent rhythm model now generates a new P and a new R observation,
the models are not able to properly model rhythms with unequal P

and R rates. Thus, for example,

(a) There is no model for second-degree AV block with 2:1 block

that includes the extra (unconducted) P waves.

(b) Similarly, for third-degree AV block, there is no model that

includes the P waves.

The transient rhythm models, being additive terms to the persistent

 rhythm model for normal rhythm as before, share the same difficulty

of having to predict paired P and R waves. Thus, in the "Interpo-
lated R” nodel.\vhich models an interpolated PVC, the PVC is also

forced to have a P wave associated with it. Furthermore, even
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without proper modeling of phenomena like retrograde conduction,
there are a large number (seven) of transient models and some of

the subdivisions are not very meaningful physiologically.

The persistent rhythm models do not have the proper causal rela-
tionships. That is, in the model, the R-R intervals are the basic
cycle and the P wave locations are specified in temrms of P-R inter—

vals. Physiologically, this is backwards.

Finally, we have two observations that apply to both the R-R inter—

val only and the R-R interval plus P wave models:

(1)

(2)

Transient rhythms are only considered relative to the normal-rhythm
persistent rhythm model. Clinically, this is the most important
case. However, it is also necessary, and very difficult, to detect
certain transient rhythms relative to non-normal-rhythm persistent
rhythms. For example, the detection of PVC’'s relative to a per—

sistent rhythm of atrial fibrillation is important.

Transient rhythms due to the same cardiac abnormality but whose
(secondary) ECG manifestations differ must be modeled separately.
For example, whether a premature beat resets the SA node or not

separates into two different transient events.

In summary, the work of Gustafson and his collaborators on per-

sistent and transient rhythm classes described by R wave arrivals is

very elegant and successful. The extension to classes requiring P wave

arrivals is limited in the rhythms it can model and its relationship to

underlying cardiac phenomena is, in places, quite tenuous. Throughout,

a striking aspect of Gustafson's work is the absence of free parameters
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requiring empirical estimation.

We now discuss several features common to many of the models

described above.

(1)

(2)

All models described are wave-arrival event models. Therefore,
from a signal-processing point of view, these are models of the
output of a wave-detector preprocessor. When evaluating an ECG,
cardiologists use their accumulated rhythm information to assist in
wave detection, especially for the 1low amplitude P waves. Thus
there is feedback of high-level rhythm informatiom into the wave-
detection preprocessor. Similar feedback occurs in optimal
signal-processing schemes based on the true observable quantities~
—the ECG voltages. This feedback does not occur in any of the
investigations reviewed here because a preprocessor—-postprocessor
structure is implied. (One exception is a simple ad hoc type of
feedback, discussed previously, which is used by Gustafson (Gustaf-
son, 1979) to aid in the detection of P waves). This is not
surprising since all of the investigations described here emphasize
R waves for which feedback is not very important. Our interest in
more detailed rhythm clnssiéication implies a concern with P waves

for which, as mentioned previously, such feedback is essential.

Closely related to (1) is the issue of how to model the observa-
tion. Specifically, in reality, there are two types of errors the
preprocessor can make: small timing errors and missed or extra
arrivals. However, for the models described here, at most small
timing errors are included. This is a natural sinplific-tion in

the case of R wave arrivals but it is inappropriate for P wave
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arrivals.

(3) All of the models described here use R wave arrivals as the "time”
index. To model general arrhythmias in detail, it is necessary to
model a variable number of P waves for each R wave. In all of the
models described here, such a change would require the addition of
detail in the state space. However, nome of the approaches gives
any guide to how the enlargement should be performed, and in any
case, one would expect such extensions to have an even more tenuous

connection with cardiac behavior.

3.1.3. Summary of the Literature Review

From the perspective of this thesis, none of the existing models
with a signal-processing orientatiom models the ECG in sufficient
detail. Furthermore, it is not clear how to extend them. We believe
that the difficulty in extending the existing models is the inability to
rationally increase the level of internal detail. For example, the
Gersch-Tsui~-Wong approach does not provide any guidance concerning what
new states should bevadded to the Markov chain if P waves are to be
included in the model. On the other hand, the models with a physiologi-
cal orientation, while they contain the detail, are unmanageably complex
for signal processing. The goal of our modeling is to achieve a balance
between physiological accuracy and level of detail appropriate for sig-
nal processing. In fact our modeling methodology, which is described
next, allows great flexibility in trading off model detail versus
complexity——from very complex models which are closely related to car-

diac behavior to more aggregate models that focus on the major events to
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be detected and tracked.

3.2. Introduction to the ECG Model

We have tried to incorporate basic cardiac anatomy and physiology
into our models of the ECG. This approach is motivated by three obser-

vations.

(1) Estimator intelligibility: If an estimator is based om such a
model, it is genmerally straightforward to explain the behavior of

the estimator in terms of cardiac structure.

(2) Low dimensional parameterization: It is generally easier to
achieve a parsimonious parameterization of a model if the parame-
terization is done in terms of physically meaningful variables
rather than some ad hoc corve-fitting parameterization. Also, it
is generally good engineering practice to develop designs with a
minimum of adjustable parameters where, furthermore, each parameter

can be directly related to process behavior.

(3) Incorporation of a priori information: The anatomy and physiology
of the heart constrain the signals that it can produce. The incor-
poration of these constraints into a model is of obvious value in

achieving high levels of estimator performance.

However, unlike a physiologist, we are concerned with models for
signal processing. Therefore, we are concerned with computational
feasibility and we desire that the model include only enough detail to
allow successful signal processing. In order to achieve computational

feasibility, we emphasize decompositions. More specifically, we
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emphasize spatial, time-scale, and hierarchical decompositions. In
order to controi the level of detail, we have developed a class of
models suitable for a wide range of detail. The appropriate level of

detail can then be chosen based on signal-processing goals.

The spatial and time-scale decompositions have a physiological
basis. The basis of the spatial decomposition is the anatomic division
of the heart into subunits which have relatively few interactions. The
basis of the time-scale decomposition is the different rates at which
events within an anatomic subunit and interactionms between anatomic

subunits occur.

The hierarchical decomposition we have developed is not entirely
accurate physiologically but is flexible enough to allow us to mimic
cardiac behavior quite accurately. Its two levels are based on a
separation of discrete events from the generation of ECG waveforms. The
discrete events are the interactions between anatomic subunits of the
heart and the initiation of waves in the ECG. This hierarchy separates
the high-level events we wish to detect and track from the actual
observed voltages, and this separationm is useful for signal-processing

purposes.

A three-submodel example of a spatial and hierarchical decomposi-
tions is shown in Figure 3.2. The square boxes at the upper level of

the hierarchy comprise -the discrete-state physiological model, which

captures the sequential evolution of high level events in the heart.
Each submodel represents a functional anatomic structure (e.g. the

atria, the ventricles, etc.). The directed solid lines indicate the

initiator and recipient of control inputs, which we call interactionms.
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electromagnetic submodel affects any other electromagnetic submodel.
Note also that the unidirectional interactions between levels occur omly
between the two levels of a single submodel (i.e. events in a submodel

corresponding to the atria cannot initiate an R wave).

Finally, recall from Sectiom 2.6 that the abnormal aspects of an
arrhythmic ECG occur because there is some abnormal anatomic substruc-

ture in the heart which
(1) makes a direct abnormal contribution to the ECG and/or

(2) interacts with other normal parts of the heart causing them to make

an abnormal contribution to the ECG.

In our models of arrhythmias, we take the same approach. That is, we
begin with a normal rhythm model which is transformed into an arrhythmia
model by altering the appropriate submodel. The contribution of the
altered submodel and its interactions with the unaltered submodels
create the arrhythmic ECG. In order for the interactions to occur, we
often must gemeralize the normal submodels. The alterations are to
include properties which were left out initially because, in the normal

rhythm, they were unobservable or did not occur.

3.3. The Upper Hierarchical Level

In this section we discuss the upper hierarchical level, which we
have called the physiological model. Because this level is concerned
with discrete events, we have chosen a Markov chain model. Based on the

spatial decomposition ideas, we have chosen a highly structured class of

chains described in the following.
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The state space of the Markov chain is the cross product of a set
of spaces corresponding to the "states” of subprocesses which comprise
the overall chain. Each subprocess corresponds to one of the amatomic
subunits of the heart. Furthermore, there is a direct correspondence
between each state of a subprocess and a physical state of the
corresponding anatomic subunit. We call each subprocess a submodel. We

often refer to an element in the subprocess "state” space as a state.

In this chapter we present an informal discussion of the mathemati-
cal formalism associated with our modeling approach. We made this
choice so that we can provide a clear picture of the important features
of our models without distracting mathematical detail. 1In Section 4.1
we give a detailed presentation as a prelude to the discussion of esti-
mation algorithms. However, no where do w; give a rigorous presenta-

tion.

Let X, be the state of the overall Markov chain which consists of a

set of N subprocess demoted x:. i=0,...,N-1 and let p(n) be the pmf on
X¥,. Since x  is a Markov chain, p(n+1)=Ap(n) where A is a stochastic

matrix. That is, the elements of A are the values of p(xn+1|xn) as x|

and X,+1 range over all allowed values.

A key feature of our models is that p(xn+1|’n) has a great deal of

structure. Specifically:

(1) Given X,» the transitions of each of the component subprocesses are

independent. That is,
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i =
p(xn+1|!n)=p(xn+1. i"Op- . .‘,N—llxn)

N-1 i
=ir='[op(xn+1 |xn) .

(2) For each subprocess there are far fewer values of p(x:+1|xn)
i i o= ) i .
p(xn+1|xn. j=0....,N-1) than there are values of x> j#i. That is,
i _ i igi i wiged 54
we assume that p(xn+1|xn) = p(xn+1|xn.hn) where hn h (xn. j#i)
denotes the net interaction of all other subprocesses with the ith
subprocess. Here hi may take on values 0, 1, 2, ... but the

assumption is that the number of possible values of hi is far less

than the number of possible values of {xi, jEiY.

(In an abuse of terminology, we often refer to the individual subprocess

as Markov chains).

Before discussing the connection between the two levels of our
hierarchy or the mathematical structure of the lower hierarchical level,
we now consider a very much simplified model for normal rhythm in order
to fix these ideas about interacting chains. This model has two submo-
dels, éorresponding to a division of the heart into two anatomic sub-
structures. The first anatomic substructure, which we call the SA-
atrial substructure, is composed of the SA node and atria. The second,
the AV-ventricular substructure, is composed of the AV junction and ven-
tricles. As in thé normal heart, the SA-atrial submodel originates
interactions with the AV-ventricular submodel. This interaction

corresponds to a supra-ventricular depolarization propagating through

Section 3.3,




- 69 -

the AV junction in an antegrade direction. For simplicity we assume
that the AV-ventricular submodel never initiates an interaction 'ith the
SA-atrial submodel. This means that no retrograde conduction through
the AV junction is modeled. The two submodel chains are shown in Fig-
ure 3.3. Because we discuss this example further after presenting the
connection between the physiological and electromagnetic models, these
connections are included in Figure 3.3. The interpretation is as fol-

lows,

In the SA-atrial submodel (Figure 3.3(b)), the state tramsition
from 0 to 1 represents the firing of the SA node and the atrial depolar-
ization. State 1 representsvthe SA node immediately after repolariza-
tion. State 0 represents the SA node when its membrane potential is
just below the firing threshold. The time required for the state to
travel from state 1 to state O models the random time required for the
slow ion leakage to decrease the membrane polarization from fully repo-
larized to threshold. Finally, by assuming that the atrial conduction
velocity is infinite (an idealization), state 1 also represents the

excitation of the AV node by the atrial depolarization.

Now consider the AV-ventricular submodel (Figure 3.3(c)). That
state 1 (in the SA-atrial submodel) represents the excitation of the
AV node is reflected in the differing probabilities assigned in the AV-
ventricular submodel depending on whether the SA-atrial-submodel state
is or is not in state 1. AV-ventricular-submodel state 0 represents the
fully repolarized state. If the AV-ventricular submodel is in that
state and the SA-atrial submodel moves into state 1, them the AV-

ventricular-submodel state transitions into state 1. This transition
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models the excitation of the AV node by the atrial depolarizationm. If
the AV-ventricular substructure is not receptive to a depolarization
(i.e. is refractory), then the submodel state will not be in state 0 and
the change in the probabilities dﬁe to the SA-atrial-submodel state
occupying state 1 will have no effect on the evolution of the AV-
ventricular subprocess. Then, in the AV-ventricular submodel, the time
required for the state to travel through states 1 and 2 represents the
(deterministic) AV-junctional delay time. The transition from state 2
to state 3 represents the initiation of ventricular depolarization.
Finally, the time required for the state to travel through states 3, 4,
and 5 represents the (random) AV-junctional and ventricular repolarize-
tion time. After the repolarization is completed, the state traps in

state 0 awaiting another excitation from the SA-atrial sobmodel.

3.4. The Lower Hierarchical Level

We now discuss-the lower level in our hierarchy, which we call the
electromagnetic model. The spatial decomposition fhat was imposed on
the upper hierarchical level is also imposed on the lower hierarchical
level. As in the upper hierarchical level, we use the term submodel for
the deéomposed elements. The reason that the hierarchical decomposition
carries through is that the individual waveforms in the ECG that are
modeled by the electromagnetic level are each doe to a single anmatomic

subunit.

As mentioned previously, the strict hiernrchicai nature of the
physiological/electromagnetic model decomposition is reflected in the

facts that:
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SA-atria
submodel
(submodel 0O)

y

AV-ventricles
submodel

(submodel 1)

Electromagnetic
——>1Submodel: >
P wave

(b)

Electromagnetic
Submodel:

QRS complex and
T wave

Figure 3.3 A Simple Model for Normal Rhythnm.
(a) Submodel Block Diagram.

(b) SA-atrial Submodel.

(c) AV-ventricular Submodel.
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(1) submodels within the electromagnetic model do not interact,

(2) each electromagnetic submodel is driven only by the corresponding

physiological submodel, and
(3) no electromagnetic submodel affects any physiological submodel.
These relationships are illustrated diagrammatically in Figure 3.2.

Each state of each physiological submodel has a physical interpre-
tation. Certain transitions between states correspond to the initiation
of waves, so these transitions are used to driv; the corresponding elec-
tromagnetic submodel. The output of each of the electromagnetic submo-
dels is a linear superposition of signals with shifted origins. The

unshifted signals are called signatures. The origin is the time at

which the initiating tramsition in the corresponding physiological sub-
model occurs. Each signature is a shift-invariant finite-durational
deterministic function with additive white zero-mean Gaussian noise
(signature noise) where the additive noise is independent from one

(1]

occurrence of the signature to the next. Finally, the outputs of the

individual electromagnetic submodels are linearly superposed and the
result is observed in additional, exogenous, white Gaussian noise

(observation noise).

[1] The statement that the signature is a deterministic signal ob-
served in additive white zero-mean Gaussian noise is exactly
equivalent to the statement that the signature is a white Gaussian
signal. That is, the signature could equivalently be described as
a8 shift-invariant finite-durational white Gaussian signal. The
reason for using the prior, onwieldy description is that it em-
phasizes the nonzero mean.
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To be somevhat more precise, let S} k be the signature from the ith
electromagnetic submodel when the itk physiological submodel makes a
transition from J tok. Let v be the white Gaussian observation noise.

The observation y is then

y(t) =) 2 sk (t-n) + v(t).
in

To illustrate our ideas concerning the interaction of the physio-
logical model with the electromagnetic model, let us continue with the
discussion of the simple model of normal rhythm that is illustrated in
Figure 3.3. In the SA-atrial submodel (Figure 3.3(b)), as discussed
previously, the state transition from O to 1 represents the firing of
the SA node and the atrial depolarization. Thus, as indicated in the
diagram, the electromagnetic-model response to this transitiom is the
P wave of the ECG. (We have chosen not to model the low-amplitude
atrial repolarization wave since it is obscured by the much largef vol-
tages of the succeeding QRS complex. However, if we wished to include
it, we could, for example, model the repolarization wave as determinis-
ticly coupled to the P wave. The electromagnetic-model response to this
transition would them be the entire depolnrization—repélarization
sequence). The form used in Figure 3.3(b) will be our standard way of
indicating what transition has a particular effect on the electromag-
netic model. The electromagnetic—-model response to the other transi-
tions, for example to the state transitions from 2 to 3 or from 2 to O,

is identically zero and hence not indicated.

In the AV-ventricular submodel (Figure 3.3(¢)), as discussed
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previously, the tramsition from state 2 to state 3 represents the ini-
tiation of the ventricular depolarization. Hence the electromagnetic~
model response to the corresponding transition is the QRS complex and
the T wave. Here, we are modeling the QRS complex and T wave as deter—
~ministicly coupled waveforms—-the ST interval duration is not random.
Note that a more complex model of the same type could allow a random
coupling. The electromagnetic-model response to the other transitions
generated by the AV-ventricular submodel is identically zero and hence

is not indicated.

In the following paragraphs, we make several comments on the elec-

tromagnetic model.

(1) Note that some anatomic subunits do not cause waves in the ECG
(e.g. the AV node). For such subunits, the corresponding elec-
tromagnetic submodel does not exist. Similarly, in the remaining
physiological submodels, most transitions do not correspond to the
initiation of a new wave in the ECG. Rather, they model the timing
between wave and interaction initiationms. Therefore, most transi-
tions of a physiological submodel have no effect on the correspond-

ing electromagnetic submodel.

(2) The randomness in the signatures models the beat-to-beat variation
in the morphology of the ECG waveforms for a single subject. The
wvhite-Gaussian assumption clearly limits the type of randomness
that can be modeled by this mechanism. However, a second mechanism
is also available. Consider a generalized electropngnetic submodel

in which the deterministic portion of the signntnre'is replaced by

@ random function. The random function is constructed by choosing
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one of a finite set of fized deterministic functions. The pmf for
the choice among the elements in this set is taken to be time
invariant and the choice is remade each time the signature occurs.
This situation is shown in Figure 3.4(a). By augmenting the sub-
process state ;ptce and making appropriate use of the choice pmf,
we can lift the process of choosing from the electromagnetic model
into the corresponding physiological submodel, as skown in
Figure 3.4(b). Using identical methods, one can also include vari-
ation in the statistical properties of the additive noise component

of the signature.

The additive white Gaussian noise v that is added to the summed
output of the electromagnetic submodels models all noncardiac con-

tributions to the observed signal. Such noise sources include:
(a) electromyogram signals,

(b) electrode artifacts,

(¢) 60 Hz., lead pickup,

(d) digitization quantization error, and

(e) electronics mnoise.

The white—-Gaussian assumption is clearly s gr?at idealization.
Given the linearity postulated throughout the electromagnetic
model, this is a natursl assumption and we conjecture that it may
be sufficient for signal processing. However, the primary reason
we have chosen to use this assumption is to avoid obscuring the

main focus of our investigation--demonstrating the utility of our
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A Portion of Chain i Generalized Electromagnetic Model
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Figure 3.4 Lifting the Generalized ELectromagnetic Model Into the
Physiological Model.

(a) Physiological Model with Generalized Electromagnetic Model.
(b) Generalized Electromagnetic Model Lifted Into the Physiologi~
cal Model.
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approach to modeling and estimation. If a more complex noise model

is warranted, it certainly canm be included.

The linearity assumption within each electromagnetic submodel has a
physical basis. Specifically, the physical processes are low-
field-strength electromagnetic processes so that Maxwell's equa-
tions with linear constitutive relations apply. These equations
are linear in the charge and current sources. Furthermore, we can
choose states and their physiological interpretations in each sub-
model of the physiological model such that each transition which
has a non-zero effect on the electromagnetic model marks the depo-
larization of a different volume of heart tissue. Therefore, the
response should also be linear in the transitions. The linearity
assumption for the combination of the outputs of the electromag-

netic submodels has the same justificationm.

The dimension of the observation is not specified (i.e. we could
consider one or several ECG leads at one time), and correlations
between the componments (i.e. different leads) are modeled by the
of f-diagonal elements of the covariance matrices that determine the

Gaussian noises.

The Markov chain cycle interval need not equal the signature sam-
pling interval. Typically, the Mafkov chain cycle interval can be
taken to be substantially larger than the signature sampling inter—
val. This reflects the difference in time scale between interac-
tion events (which set the Markov chain cycle interval) and events
internal to the anatomic submodels (which set the signature sam-—

pling interval). It is for this reason that the variable t in the
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previous equation defining y is not described in detail (i.e. it
could be continumous or discrete and if discrete, perhaps with a
sampling interval not equal to the Markov chainm cycle interval).

For an example, see the Wenckebach model of Section 3.8.

Signatures can only be initiated at Markov chain cycles. However,
by a suitable artifice (reﬁlicating signatures and inserting onme or
more leading zeros into the signature), signatures can be made to
start at arbitrary signature samples. This is donme in the Wenck-

ebach model of Sectiomn 3.8.

An individual signature may last several Markov chain cycles.

A single state transition in the overall model may initiate as many

signatures as there are submodels.

Level of Modeling Detail

The level of detail in our model is controlled in two places,

The number of submodels can be varied. If there are hundreds to
thousands of such sobmodels, then our approach is essentially a
finite-element model of the heart. Such models were described in
Section 3.1, and thus we can in fact view these models as (extreme)
special ca#es of our models. Note that in such cases, the elec-
tromagnetic model is essentially trivial, as the physiological
model contains all of the information, and individual state transi-

tions generate small increments of signature waveforms.
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(2) The number of submodel transitioms which initiate non-zero waves in
the ECG can be varied. That is, each wave can be broken up into

subwaves which are each initiated by a different transition.

Not only can the level of detail be controlled, but we believe that
a clinically appropriate level of detail is achieved at a practical
level of complexity. Here we use the ladder diagram (see Sectiom 2.7)
as a definition of clinically appropriate detail. In order to substan-
tiate this claim, we will describe several models in detail. In Sec-
tion 3.7 we present four models which meet or exceed ladder diagram lev-
els of detail and which are still reasonably simple, though physiologi-
cal accuracy and not simplicity was the primary goal. In Section 3.8 we
present a fifth model which also meets or exgeeds ladder diagram levels
of detail and which is quite simple. In this example, significant
attention was paid to achieving as simple a model as possible which

could produce realistic tracings of the Wenckebach rhythm.

As a final point, note that our model always specifies the proba-
bilistic properties of the observed signals completely. That is, from
our model it is theoretically possible to calculate the implied proba-
bility distribution on any set of events defined within the model. In
practice, due to unavoidable inaccuracies in the model, it is undesir
able to allow estimators to depend om to much of the detail implied by
this specification. For example, if the estimator made critical use of
the joint pmf for the ktD transition in submodel 1 and the k+94th tran-
sition in submodel 2, then the estimator would never be successful when
processing real data. Therefore, the study of robustness (see Sec-

tion 4.3.6) is an important issue in estimator performance.
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3.6. The Microscopic Model--Structural Elements

The chains of our physiological model are typically constructed
from structural elements of a very few types. These structural elements
and their interconnections are immediately implementable as parts of
chains. There are two fundamental structural elements, which are essen-
tially elapsed time clocks, out ofvwhich three other structural elements

are constructed.

The first struoctural element is the delay line (DL). V¥hen the
state of a chain enters the first state of such an element, denoted j,
it undergoes a random time delay and then arrives at the final state
denoted 9. The delay is called the tramsit time. The pmf on the tran-

sit time is'specified and unaffected by events in the other chains.

(To describe complex models, some notation is helpful. We use
superscripts to indicate submodels and subscripts to indicate DLs within
a submodel. In block diagrams we use the symbol shown in Figure 3.5 for

a DL, where i and o have the meanings defined previously).

Given a desired transit-time pmf, a basic issuwe is how to implement
a DL that realizes this pmf. There are two major approaches, dis-
tinguished by the topology of the intercondections in the DL. That is,
‘they are distinguished by the class of transitions which can have posi-
tive probability. In the tapped delay-line topology, no state cam be
occupied more than once in l.single transit of the DL. Therefore, the
set of transitions with positive proﬁability can not contain any loops.
In the feedbsck topology, there must be at least one state which can be

occupied at least twice during a single transit of the DL. Therefore,
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- D op>

Figure 3.5 Delay Line Symbol.
i = initial state and o = final state.

there must be at least one loop. An example of each topology is shown

in Figure 3.6,

Each topology has advantages and disadvantages. The feedback
topology cannot represent transit-time pmfs with finite support and it
is relatively difficult to choose the transition probabilities. The
tapped delay-line topology can represent any transit-time pmf for
bounded transit times and the calculation of the appropriate transitiom
probabilities 1is straightforward. However, the number of states
required may be large. Since no transit-time pmf can be exactly
represented by both topologies, the choice of topology is intertwined
with the choice of desired transit-time pmf. (However, the choice
between the two topologies also has signal-processing implications.
These implications, which led us to use the tapped delay-line topology

exclusively, are discussed in Chapter 6).

The second structural element is the resettable delay line (RDL).
We often use the term delay line as a generic name for both DLs and
RDLs. The differences between the RDL and the DL are that there are two
different mechanisms for the state to exit an RDL and an RDL has tramsi-

tion probabilities that are controlled, in a very simple and specific
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(a)

(b)

Figure 3.6 Examples of Feedback and Tapped Delay-Line Topologies.
(a) Feedback Topology.
(b) Tapped Delay-Line Topology.

way, by interactions initiated by another subprocess in the overall Mar—

kov chain. Specifically, the possible interactions impinging on a chain

containing an RDL are divided into two classes denoted normal and sbnor-

mal. Within each class the transition probabilities in the RDL are con-

stant. VWhen the interaction is in the normal class, the RDL behaves as
a DL, possibly exiting through a final state denoted state o. However,
when the interaction is in the abnormal class, a second set of transi-
tion probabilities is wsed for the next transition. The second set of

transition probabilities forces the state to leave the RDL and enter a

state, external to the RDL, called the reset state.

As in the DL we denote the initial state as state i. As described
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previously, the final state (assuming the impinging interactions
remained in the normal class) is state o. We define a control input ¢
which takes the value R (for "reset”) if the current impinging interac-
tion is in the abnmormal class and R (for "not reset”) if the curreat
impinging interaction is in the pormal class. In order to describe
models containing RDL(s) we use the same notation introduced for
describing DLs without distinguishing whether a particular delay-line is
a DL or a RDL. In block diagrams we use the symbol shown in Figu:e 3.7
for a RDL, where "i”, "o”, and "c" are as defined previously and "r" is
attached to the reset state, which is external to the RDL. The imple-

mentation issues for the RDL are the same as for the DL.

An RDL can be used, for example, to model the time-delay behavior
of the AV node of a model where retrograde AV conduction is allowed.
Such & model needs two RDLs, ome for the antegrade conduction direction
and onme for the retrograde conduction direction. The reason for using
two RDLs is to allow for the possibility of colliding depolarization
waves, one from the atria and ome from the ventricles. VWhen such a pair
of waves collide, they extinguish each other since both lack polarized
tissue into which they can continue to propagate. Therefore, though the
AV node is completely depolarized, neither depolarization wave reaches
the other end of the AV node where it co;ld excite the succeeding ana-
tomic substructure. Such multisource deolarizltions are referred to as
fusion depolarizations. In the model, a fusion depolarization
corresponds to a situation where the state is in either the antegrade or
retrograde delay liﬁe and & wave enters from the opposite direction. In
this case, the state is shunted to a common reset state that is the

start of a third delay line modeling the refractory delay. Thus neither
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|
]
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o
r
~ Figure 3.7 Resettable Delay Line Symbol.
i = input, o = normal output, r = reset output, and ¢ = control
input. :

depolarization wave arrives at the other end of the delay line. VWith
the level of physiological detail modeled here, this shunting occurs
immediately after the initiation of the depolarization wave from the
opposite direction--the time required for the two waves to meet is not

included in the model.

The third structural element is the autorhythmic element. This
element is constructed from DL(s) and/or RDL(s). The basic idea is to
attach the input and output of a DL together, as in Figure 3.8. If a DL
is used, then this specifies the entire chain. If a RDL is used, then
it is also necessary to specify the identity of the reset state (see the
following examples). The choice‘of DL versus RDL depends on what phy-

siological process is being modeled.

1

The SA node can be modeled using such an element. If the SA node
is to be modeled as non-resettable, them we base the model on a8 DL, as
in Fignre 3.9(a). The initial state (i) of the delay line corresponds
to the polarized membrane potential state.  The polarization decays
toward the firing threshold due to ion leakage. The time required to

~decay to threshold ' is modeled by the DL transit time. Thus the DL

transit-time pmf is the SA-SA interval pmf. After this delay, the
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Figure 3.8 Basic Autorhythmic Element.
SA node fires, thereby starting a depolarization wave in the atria,
This is modeled by the final state (o) of the DL. Occupancy of this
state, through the standard interaction mechanism, alters the tramsitionm
probabilities in the atrial submodel in order to model the initiation of
a depolarization wave in the atrial submodel. Finally, the SA node
repolarizes. This is modeled by the transition from the final state (o)

to the initial state (i) of the DL.

In the case where the SA node is to be modeled as resettable but
not stunnable, we use an RDL and make the reset state of the RDL the
same as the initial state (i) of the RDL, as in Figuore 3.9(b). Thus,
when reset, the next SA impulse will occur a time t after the reset

where t is a random variable chosen from the SA-SA interval pmf.

In the case where the SA node is to be modeled as resettable and
stunnable, we also use a RDL (labeled "C”) but now make the reset state
of the RDL the same as the initial stat; of a second DL (labeled "S")
whose final state is comnected to the initial state of the first RDL, as
shown in Figure 3.9(c). Thus, when reset, the next SA impuise will
occur a time t after the reset where t is the sum of two random vari-
ables, one from the usual SA-SA interval pmf (delay line C) and one from

the stun time pmf (delay 1line S). Note how all three of these

autorhythmic submodels are constructed purely from DL and RDL structural
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Figure 3.9 SA-Nodal Models.

(a) Non-Resettable SA-Nodal Model.

The comments indicate the correspondence between the physical
processes and the model.

(b) Resettable But Not Stunnable SA-Nodal Model.

(c) Resettable And Stunnable SA-Nodal Model.
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elements. This illustrates a basic property of our modeling methodol-
ogy: we build models for complex phenomena by using interconnections of

a small set of elementary models.

The fourth structural element is the passive transmission 1line
(PTL). This element is comstructed from a DL or a RDL. Ve describe the
DL case in Figure 3.10. A PTL is a connection of a single state, called
the resting state, to the inmitial state of a DL. The only allowed tran-
sition out of the resting state is into the DL. The transitiom proba-
bility ‘for this transition, denoted p, depends on the value of the
current interaction impinging om the submodel containing the PTL. The
possible values of the impinging interaction are partitioﬂed into two
disjoint sets called the autonomous and nonautonomous sets. When the
current impinging interaction is in the autonomous set, p=0. That is,
the resting state is a trapping state. In the other case (nonauto-
nomous), p>0. In most instances, we take p=1 in the nonautonomous case.
This corresponds to a determimistic coupling of events in the chains
that initiate and receive the interactions. In other instances, we take

p<1 thereby allowing some randomness in the coupling.

A PTL can be used, for example, as a part of an overall submodel
for atrial activity. Specifically, consider the SA-nodal submodel (SAN)
and the atrial submodel (A) within an overall model of the heart
corresponding to normal rhythm (Figure 3.11). Ia this moael the SAN
initiates interactions with the A, which is a PIL. For most states in
the SAN, the interaction is in the autonomous set. Therefore, p=0 and
the resting state is a trapping state in the A. This models the unex-

cited atria: whatever was happening, for instance the passing of the
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Figure 3.10 Passive Transmission Line.
previous depolarization wave, eventually is completed, leaving the atria
in the resting state. VWith the level of physiological detail that is
modeled here, it would remain in the resting state forever unless the
SAN initiates an interaction setting p#0. (In actuality, even if the
SAN does not change the interaction, i.e. in the absence of external
excitations, the atria would be excited by an internal autorhythmic
source, which might be modeled as a separate submodel if deemed impor-

tant).

For the remaining states in the SAN, the interaction initiated with
the A is in the nonautonomous set. Therefore, p>0 and, for simplicity
in this discussion, we take p=1. An interaction in the nonautonomous
class models the attempt of the SA node to excite the atria. Suppose
that the atria are repolarized and receptive to a deﬁolarization wave

from the SA node. In the model this corresponds to the state of the A
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SA-nodel submodel: x°

SSAN SSAN

Atrial submodel: x!

O

0

o ={o if x0 e s?AN
1 Uotherwise

Figure 3.11 A Portion of an Overall ECG Model for Normal Rhythm,
Illustrating the Use of a PIL. '

occupying the resting state. Therefore, p=1 forces a transition into
the DL. This transition initiates a P wave from the electromagmetic
model. On the other hand, suppose that the atria are not repolarized
when the SA node attempts to excite the atria. In this case the excita-
tion attempt fails. In the model, this corresponds to the state of the

A not occupying the resting state. Therefore, p=1 has no effect.
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In the previous example, P=1 when the interaction was in the nonau-
tonomous set. A value of p less than one might be used in the situation
where an arrhythmis is explained by postulating that a normal or an
ectopic node is sometimes unable to excite a region even though, viewed
as a whole, the region is not refractory. This behavior is due to inho-
mogeneities within the region and could be modeled by a finer discreti-
zation of thé anatomic substructure. The use of p less than one is
qualitatively an averaging of this finer detail to yield a coarser model
vhich, however, has sufficient detail to allow us to achieve our

signal-processing goals.

The fifth structural element is the bidirectional refractory
transmission line (BDRTL), which is a complete submodel. As indicated
in Figure 3.12, the BDRTL is constructed from three delay lines (labeled

"A", "R”, and "F") and one additional state labeled "r”.

The state r corresponds to the repolarized resting state of the
enatomic substructure. Two of the three delay lines (A and R) are RDLs.
One RDL corresponds to antegrade conduction (A) while the other
corresponds to retrograde conduction (R). In accordance with these
correspondences, the BDRTL attempts to excite the submodel(s)
corresponding to the adjacent distal (progimal) anatomic substructure(s)
whenever the BDRTL state occupies state °A (oR), the final state of the
antegrade (retrograde) conduction RDL. We refer to this as the
antegrade (retrograde) output of the BDRTL. RDLs are used here in order
to model the collision of two depolarization waves, one in the antegrade
and onme in the retrograde direction. The relationship between state r

and the RDLs A and R is a simple generalization of the PTL structural
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Figure 3.12 Bidirectional Refractory T;ansmission Line.
element. The third delay line (F), a DL, corresponds to the refractory
period. A nonresettable delay line is used because, at the level of
physiological detail that we are modeling, the duration of the refrac-

tory period is independent of all external events.

The state transition probabilities pr,A' Pr R’ and and the RDL
state transition probabilities (controlled exclusively through ¢, and
°R) are the only probabilities that depend on the states of other submo-
dels, that is, on the interactions impihging on the BDRTL. We npow
describe the effects of these impinging interactions. In the absence of
external excitationms, Pra = Pr,R = Prp = 0 and €y = cg = R. "If the
BDRTL is excited from the antegrade direction but not simultaneously
from the retrograde direction, then pr,A =1, Pr,R = Pr,p = 0, cy = R
and °k = R. For the reverse case (i.e. excited from the retrograde

direction but not simultaneously from the antegrade direction), the
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values are p_p =1, Pr,A=P,,p=0, cg =R and ¢, = R, Finally, if
the BDRTL is simultaneously excited from both the antegrade and retro-

grade directions, then P.p=1, P AP gp=0, and c), =cp =R,

Depending on what anatomic substructure the BDRTL models, it may or
may not contain tramsitions which generate a non-zero response in the
electromagnetic‘nodel. If the BDRTL does contain such tfansitions, then

there are three basic situations:

(1) Antegrade conduction without a reset (e.g. a normally conducted

P wave from an atrial submodel).

(2) Retrograde conduction without a reset (e.g. a retrograde P wave

from an atrial submodel).

(3) Reset antegrade or retrograde conduction which generates a fusion
depolarization (e.g. a fusion P wave from an atrial submodel due to

joint SA-nodal and retrograde—AV-jnnction depolarizations).

Though it is not the only possible choice, we have always used the
transitions described in the following to initiate the various
waveforms. The tramsitions r to i, and r to ip semerate the nonreset
antegrade-conduction and nonreset retrograde-conduction electromagnetic

.
model responses respectively. In this case we are committed to generat-
ing the nonreset response before we know whether the conduction will
actually be nonreset. Thus, if it is reset, we must have the transi-
tions from the states internal to the RDL to the reset state (which is
iF) generate the desired fusion-depolarization response minuns whatever
part of the nonreset response that we wish to delete. This deletion can

only be done exactly if two conditions hold:
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(1) The RDL must have the tapped delay-line topology. Only in this
case can the resetting transition represent the time interval since
the delay line was entered and thus how far the resulting

electromagnetic-model signature has progressed.

(2) The Gaussian signatures must have zero covariance and therefore

actually be deterministic.

The fusion-depolarization response can be made to depend on the relative
fractions of the substructure depolarized by each of the two depolariza-
tion waves. The relative fraction is reflected in the relative timing
between the two excitations, which in turn is represented by the iden-

tity of the state occupied in the RDL when the RDL is reset.

The BDRTL models presented in the following section are less
detailed models than those in the above discussion. Specifically, we
have not separately included fusion depolarizations (from resetting the
delay lines) in the glectromagnetic model. Instead, we have taken the
fusion-depolarization response to be identical with the response from
whichever was the earlier of the two depolarization waves. With this
simplification, the disadvantages of the approach discussed previously
vanish, and we have used this approach i? the models described in Sec-

tions 3.7 and 3.8.

In this section, we have discussed five structural elements, the
building blocks of our submodels. In the following section (Sec-
tion 3.7), we give four examples of detailed ECG models constructed from
submodels which are in turn made up of these structural eleﬁents. Then,

in Section 3.8, we present a fifth example which includes simulations.
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The simulations indicate that our modeling approach can realistically

capture complex cardiac behavior.

3.7. Examples of ECG Models

In this section we present models for four different conditions:
(1) Normal Rhythm,

(2) Normal Rhythm with Ectopic Focus PVCs,

-

(3) Ventricular Oscillation, and
(4) Wolff-Parkinson-White Syndrome.

The models described in this section are specified at the level of the
structural elements described in Section 3.6. The details of the Markov
chains and signature morphologies are not specified. Rather our objec—
tive herg is to demonstrate the flexibility of our approach and its

ability to include anatomic and physiological detail.

A simple, graphical, abstract notation for classes of models is
helpful in describing both the models and (later) the estimators. This
paragraph describes such a notation by example. Figure 3.13 describes a
class of models, each of which has exactly four submodels. The boxes
labeled CO, ..., C3 denote these submodels. The directed lines between
boxes indicate the existence of an interaction in the indicated direc-
tion. Thus, for example, submodel CO initiates an interaction with
submodel Cl. The number of values which the interaction can take on is
not specified. The wavy lines terminating in SO, ..., S3 indicate that

the submodel of the originating box contains ome or more transitions
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Figure 3.13 An Illustration of the Block Diagram Description of a
Class of Models.

which initiate @ signature whose name is the label at the end of the

arrow.

3.7.1. Normal Rhythm

The clinical rhythm modeled here is a prototypical normally con-
ducted rhythm. A block diagram of the model and a listing of the
inter—submodel interactions is given in Figure 3.14.[2] As seen in Fig-
are 3.14, we have divided the heart into four anatomic substructures—-—
SA node, atria, AV junction, and ventricles—-each of which is modeled by

a separate submodel. .

Qualitatively, the model behaves in the following manner. The SA-
nodel submodel initiates a depolarization wave. This is the only way in
which a depolarization can be initiated. The depolarization them pro-

pagates antegrade through the atrial submodel, producing the P wave; the

[2] In each sobsection of Section 3.7, all figures appear at the
end of the subsection.
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AV-junctional submodel, which makes 8 zero contribution to the ECG; and

finally the ventricular submodel, producing a QRS-T complex.

Because only antegrade conduction is included in the model, several

aspects of the model should be noted. Specifically:
(1) submodel 0 is not resettable

(2) submodels 1 and 2, which would be BDRTLs if retrograde conduction

were included, are instead simple arrangements of delay lines.

SA node @)

Atria { s—=P

AV junction 2

Ventricles 3 = R

T

Figure 3.14 A Model For Normal Rhythm.
Part (a): Submodel Structure.
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Submodel O: SA-nodal Substructure

Subrodel 1: Atrial Substructure

4 - 3 " .
| Z1ectromacnetic I'odel: |
P wave

Submodel 2: AVY-junctional Substructure

sutmede) 2: Ventrizular Substructure

‘ Zlecsrormacnetic 'wael:
2RS-7 complex

Figure 3.14 Continued.
Part (b): Block Diagram.
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Submodel O:
Submodel for the SA-nodal Substructure

This submodel is antonomous.

~ Submodel 1:

Submodel for the Atrial Substructure

|1 if xOG[oo]

1 _
r,A | otherwise

P

Submodel 2:

Submodel for the AV-junctional Substructure

‘[1 if x'€lo})
p? =
r,A I.0 otherwise

Submodel 3:

Submodel for the Ventricular Substructure

1 if x2€[0§1

p3=

P ——— —

0 otherwise

Figure 3.14 Continued.
Part (c): Intersubmodel Interactions.
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jw
1~3
N

Normal Rhythm with Ectopic Focus PVCs

The clinical rhythm modeled here is ome in which the basic pattera
is normal, but which contains superimposed occasional PVCs. The PVCs
need not have constant coupling intervals to the prior QRS complex.
Because of the non-constant coupling intervals, these PVCs are modeled
as arising from an ectopic center rather than through a reentrant
mechanism. In this model, all possible levels of retrograde conduction

are modeled.

In order to develop a model for this arrhythmia, we have modified
the normal-rhythm model in two ways. First, we have modified the part
of the normal-rhythm model which corresponds to the part of the heart
which exhibits the abnormal physiology. Therefore we replaced the ven-
tricular snﬁmodel by a new ventricular submodel and anm ectopic ventricu-
lar pacemaker submodel. Second, we have modified, as required, the ’
remaining parts of the normal-rhythm model so that they cam interact
with the part modified in the first step. The primary purpose of these
modifications is to allow retrograde conduction and resetting of the

SA node.

A block diagram of the model and a listing of the inter—-submodel
interactions is given in Figure 3.15. As seen in Figure 3.15, we have
divided the heart into five anatomic substructures--SA node, atria,
AV junction, ventricles, and ectopic ventricular pacemaker—-each of

which is modeled by a separate submodel.

Qualitatively, the model’'s behavior is based on the competition for

control of the heart between the two autorhythmic submodels--the SA-
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nodal and the ectopic-ventricular-pacemaker submodels. Specifically, if
the depolarization originating in the SA-nodal submodel propagates
through the model and reaches the ventricular submodel, then a normal
beat results and the ectopic~ventricular-pacemaker submodel is reset.
On the other hand, if the depolarization originating in the ectopic-.
ventricular-pacemaker submodel propagates through the retrograde pethway
of the ventricular submodel, then a PVC results. This depolarization
Mmay or may not be able to propagate all the way retrograde and reset the
SA-nodal submodel, due to the possibility of collision with antegrade
depol;rization wvaves initiated by the SA-nodal submodel. Thus{n very
complex pattern is set up that depends on the transit—time pmfs of all

the delay lines in the model.

The ventricular and ectopic-ventricular-pacemaker submodels require
comment. First, note the symmetry between the SA-nodal and atrial pair
of submodels and the ventricular and ectopic-ventricular-pacemaker pair
of submodels. By reusing large portions of models in this manper we
develop greater insight into the behavior of specific arrangements and
thereby develop greater understanding of the functioning of signal-
Processing algorithms based om such models. Also, the development of a
“library” of large fragments of models 1ith well-understood behavior

simplifies the development of models for new rhythms,

Second, note that a ventricular ectopic pacemaker can have a wide
variety of locations in the ventricles. Its location will affect how it
interacts with the ventricles and, through the ventricles, with the rest
of the heart. That is, the location controls the depolarization-wave

trajectory which in turn controls
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(1) the morphology of the resulting PVC,

(2) the possibility of reentrant depolarization waves within the ven-

tricles (a possibility not modeled here), and

(3) the timing of the interactions with the remainder (i.e. non-

ventricular part) of the heart.

In our models we can essentially control (1) and (3) independently: (1)
through choosing the PVC signature in the electromagnetic model and (3)
through choosing the structure and parameters of the physiological
model. The dominant way in which the location of the focus affects the
observable ECG is through the ECG morphology. Therefore, a model in
which the timing is independent of, but the morphology is dependent on,
the focus location may prove to be a sufficiently good approximation.
Note that making the morphology dependent on focus location implies
adapting the morphology model to individual subjects, which is something
that a practical system must eventually deal with. Thus we have chosen
the structure presented in Figure 3.15 because it is simple, plausible,
bas arisem previously, and, in our opinion, should prove to be adequate

for our signal-processing purposes.

Section 3.7.2.



- 102 -

SA node 0

"o,

Atria | | [_<—=retrograde P

AV junction 2

Ventricles 3 [ s=PVC
y

Ectopic 4

Ventricular

Pacemaker

Figure 3.15 A Model For Normal Rhythm With PVCs Generated By An

Ectopic Focus.
Part (a): Submodel Structure.
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Submodel 0: SA-nodasl Substructure

1
r o] =-o--c°
[]

Submodel 1: Atrial Substructure

1 1 1
L=Pep~Per” Pr F

1 1
Proa o PR S'lec:mgnen: togel :J_,
wave
Pl
A F r.F R Electromacnetic “oael:
1 Retrograde ° wave

- - - :K

q
- 0o
-
o
o

Subrodel 2: AV-junctional Sudstructure

Cp === [

Suomooe! 1: Ventricular Supstructure

T o
2, R Zlectromacnetic “oaei:
s75- zomplex

crromagnetic 'odel.
- i L.-
—d

Ile
' oyC

N -
luumogel 2t Sghgnic-ventricuiar-taceTaxer fiostructure

! 1
r O cre==c
o

Figure 3.15 Continued.
Part (b): Block Diagram.
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Submodel 0:

Submodel for the SA-nodal Substructure

[i if xle(ol)
0| R
¢ ={R otherwise

Submodel 1:

Submodel for the Atrial Substructure

!1 if xoe[oo} and x2£[o§]

pf'A={0 otherwise

[1 if 105{00] and 12€{o§]

|
oRq{O otherwise

Il;[ if xoe[oo} and xze[oil

|
:F={O otherwise

[- if xzc[oﬁl

cl-l
= | ] .
A lR otherwise

Figure 3.15 Continued.
Part (c): Intersubmodel Interactions.
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0

L if 2%(0%}

cR=lR otherwise

Submodel 2:

Submodel for the AV-junctional Substructure

{1 if xIGIOi] and xsﬁ(og]
{0 otherwise

{1 if xletoi} and x3€{oa}
{0 otherwise

[1 if xleloi} and x3G[oa}
{0 otherwise

R otherwise

{“ if x3£[o;}
|
L

R if xletol)

{R otherwise

Figure 3.15 Continued.
Part (c) Continued.
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Submodel for the Ventricular

Figure 3.15 Continued.

Part (c) Continued.
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Substructure

if xZG[oi} and x4G{o4]

otherwise

if xzﬁ[oi} and re(o*)

otherwise

if sz{oi] and x4€{o4]

otherwise

|

3 'ﬁ if x*€(o%)

A"IR otherwise

L

llﬁ if x’€(02)

{R otherwise
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Submodel 4:

Submodel For The Ectopic-ventricular-pacemaker Substructure

!ﬁ if x3e(o})
c4=|

lR otherwise

Figure 3.15 Continued.
Part (c¢) Continued.
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3.7.3. Ventricular Oscillation

The clinical rhythm modeled herq is a rhythm in which a normal beat
is followed by a variable number of premature ventricular contractioﬁs.
For any fized set of parameters (i.e. delay-line transit~time pmfs and
other probabilities), the number of PVCs which follow each normal beat
will not vary significantly and the coupling interval between the normal
beat and the first PVC and the coupling interval between the PVCs will
both be approximately constant. Because of the constant coupling intér-
vals, the premature beats are modeled through a ventricular reentrant-
pathway mechanism. In this model, all possible levels of retrograde

conduction are modeled.

In this rhythm, the abnormal physiology is the existence of a ven-
tricular reentrant pathway. Therefore our modifications to the normal-
rhythm model discussed previocusly are restricted to adding a reentrant
ventricular pathway, implemented by a new ventricular submodel and the
ventricnlar—reentrnnt-pathvay submodel, and modifying the neighboring

submodels so that they cam interact appropriately.

A block diagram and a listing of the inter-submodel interactions is
given in Figure 3.16. As seen in Figure 3;16, we have divided the heart
into five anmatomic substructures--SA node, atria, AV junction, ventri-
cles, and reentrant ventricular pathway——each of which is modeled by a
separate submodel. We have based the reentrant ventricular pathway on

the unidirectional-conduction-block mechanism,

Qnalitativelj, the model operates in the following manner. The SA

node initiates a depolarization wave which propagates antegrade through
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the atria and the AV junctiom in the normal manner. On reaching the
ventricular substructures, it is successful in depolarizing the ventric-
ular substructure but is unsuccessful in depolarizing the reentrant-
ventricular-pathway substructure due to the umidirectional conduction
block. However, as the ventricular substructure depolarizes, eventually
the reentrant-ventricular-pathway substructure is successfully excited
in the retrograde direction. Conduction im the reentrant-venmtricular
pathway substructure is very slow and while it occurs, the ventricular
substructure repolarizes. Then the depolarization wave exiting the
reentrant-ventricular-pathway substructure is able to reexcite the ven-
tricular substructure in the retrograde direction. This produces a PVC
and, depending on how far retrograde the depolarization can propagate,
may produce other effects. Depending on the duration of the reentrant-—
ventricular-pathway-substructure refractory time, the reentrant-
ventricular-pathway substructure can be reexcited by the retrograde ven-—

tricular depolarization leading to the possibility of multiple cycles.

As in the previous model (normal rhythm with ectopic focus PVCs),
we have great latitude in choosing the submodel structures and the
inter-submodel interactions required to create the reenmtrant pathway.
Ve have chosen a simple but physiologicn{ly reasonable arrangement that

can generate a large variety of ventricular oscillation rhythms.

The only submodel that requires explanation is the reentrant-

ventricular-pathway submodel. State t4 is the usual resting state
modeling the polarized state awaiting an excitation. The excitation,
which controls p4. can come from either the retrograde output or the

antegrade output of the ventricular submodel. This models the
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assumption that the pathway has a unidirectional conduction block but,
as a depolarization wave reach?s all the ventricular tissue, will even-
tually be excited. ‘Therefore. every time the ventricular submodel is
depolarized, whether from the antegrade or from the retrogradevdirec-
tion, the ventricular submodel will try to excite the reentrant-
ventricular-pathway submodel. The delay line 1labeled ”C” models the
conduction delay through the reentrant pathway. Thus, when the state
occupies the final state of the delay line (state oé). the reentrant-—
ventricular-pathway submodel attempts to reexcite the ventricular suﬁmo-
del. Finally, the delay line labeled "R" models the refractory-period

duration.

SA node O
y
P
Atria | |_s—=retrograde P
A
AV junction 2
\
‘ R
Ventricles 3 [s=PVC
: ]
Reentrant
Ventricular 4q
Pathway

Figure 3.16 A Model For Ventricular Oscillation.
Part (a): Submodel Structure.
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Subsodal 0: SA-nocal Substructure

Q
i = == C

-
00—
o

Subrodel 1: Atrial Substructure

Eleczromagnetic Model .
P wave .

Electromagnetic “ode!l:
Retrocrage ° ~ave

Submodel 2: AV-junctional Substructure

Suprodel 3: Ventricular Substruciure

]l 3 23
L= a - ?en™ %0
3 s ;
o) . r °lp Tmmacnetic ooel |
CRS-T onmiex ["
L - 3:_‘ : 0
A F . ! ZTectromacnetic ‘cce .|
. 1 ol ) . ~C b
;:——1c o r Dl r 0 Ca=-=:3
° o | 2 .

Jenmtrart-venT=14Lpar-tatiual Substructiure

Tuorogel 4
. a
. =2
Q : C 1
”
%, i O ob i 0 a

Figure 3.16 Continued.
Part (b): Block Diagram.
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Submodel O:

Submodel for the SA-nodal Substructure

= 1 1
[R if x G[onl

o !
¢ ‘{R otherwise

Submodel 1:

Submodel for the Atrial Substructure

|-1 if»xoe[ool and 12E[o§}

pr-A={0 otherwise

[1 if xOE{ool and xze[ogl
{0 otherwise

!1 if 2°€(0%) and 2%€(0d)
{0 otherwise

[ﬁ if x2€(02)
c1=|

A LR otherwise

Figure 3.16 Continued.
Part (c): Intersubmodel Interactions.
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L IR if 20¢(00)
co=
R {R otherwise

Submodel 2:

Submodel for the AV—jhnctionnl Sobstructure

[1 if x'€lo}} and 2€(0})
{0 otherwise

[1 if ,lﬁ{oi} and xae[o;}
|
L

0 otherwise

!1 if xIG[oi] and xse[oil
{0 otherwise

!ﬁ if x3e[o§}
{R otherwise

[ if clecol
IR if x G[oA}

{R otherwise

Figure 3.16 Continued.
Part (¢) Continued.
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Submodel for the Ventricular

Figure 3.16 Continuned.

Part (¢) Continued.
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Substructure

if ,2e[o§} and x‘ﬁ[og}

otherwise

if 12€(03) and xtelof)

otherwise

if xZG{oi} and x‘G[oé]

otherwise

if x4e{ogl

otherwise

[ﬁ if xzﬁfoi]

c3-|
R -
LR otherwise
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Submodel 4:

Submodel For The Ectopic-ventricular—pacemaker Substructure

1 if x°€lo3,03)

0 otherwise

|
pi=|
L

Figure 3.16 Continued.
Part (c) Continued.
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3.7.4. Wolff-Parkinson-White Syndrome

The model discussed in this subsection describes the Wolff-
Parkinson-White Syndrome in terms of the ectopic atrial-ventricular con-
duction pathways which are the physiological cause of the syndrome. The
primary modification that we have made to our normal-rhythm model in
order to model this syndrome is the introduction of a submodel for the

bundle of Kent. Furthermore, in order to easily model

(1) ventricles with two excitation sources (and which therefore have

the possibility of undergoing a fusion depolarization) and

(2) a reentrant pathway made up of (primarily) the bundle of Kent and

the AV junction,

we have subdivided the ventricular anatomic substructure into two ana-

tomic substructures in the following manner.

(1) The portion of the ventricles responsible for the delta wave (the
portion which lies at the distal terminus of the bundle of Kent)
together with the portion of the ventricles lying between the
distal termini of the bundle of Kent and the AV junction are lumped
into ome anatomic substructure called the delta substructure.
(Note that the two volumes described'above are not disjoint).

(2) The remainder of the ventricles excluded from (1) is a single ana-

tomic substructure called the ventricular substructure.

Finally, we have incorporated retrograde conduction into the SA-nodal,

atrial, and AV-junctional submodels.
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A block diagram and a listing of tye inter—submodel interactions
are given in Figure 3.17. As seen in Figure 3.17, we have divided the
heart into six anmatomic substructures--SA node, atria, AV junction, bun-
dle of Kent, delta, and ventricles——each of which is modeled by a
separate submodel. Qualitatively, the model operates in the following
manner. The SA node initiates a depolarization which propagates through
the atria in the normal mannmer. It then enters both the AV junction and
the bundle of Kent. However, because of the AV-nodal delay, transmis-
sion through the bundle of Kent is muoch faster than through the
AV junction. Thus the bundle of Kent (rather than the AV junction)
first excites the ventricles and this excitation occurs in the delta
substructure. This generates the short P-R interval and the delta wave.
Finally, due to the eventual arrival of the depolarization from the
AV junction, the remainder of the ventricles (ventricular submodel) is
depolarized through the normal pathway. Thus the entire ventricles
(delta plus ventricular submodels) are excited from two sources (bundle
of Kent and AV junction) to generate a fusion depolarization. However,
the latter excitation (AV junction) becomes dominant because it feeds
the preferred high-speed ventricular depolarization pathways (e.g. the
Purkinje system). As seen in Figure 3.17, there is also the possibility
of reentrant depolarizationms, propngating.in either direction, through a
pathway made up from the bundle of Kent, delta, and AV-junctional submo-
dels and also the possibility of bizarre QRS-T morphology due to depo-
larization of the ventricles (delta plus ventricular submodel)
exclusively through the bundle of Kent. The actual occurrence of these
later two phenomena depends on the details of the pmfs for the various

delay-line transit times.
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The delta and the ventricular submodels require further comment.

The delta submodel is a BDRIL with an arbitrary choice for the

‘antegrade/retrograde designations. We have assigned antegrade to con-

duction from the distal end of the bundle of Kent toward the distal end
of the AV junction. From a design point of view, this substructure

performs two tasks:

(1) It plays a major role in modeling the fusion depolarization of the

entire ventricles (delta plus ventricular submodels).

(2) It closes the bundle-of-Kent-AV-junctional reentrant-pathway loop

in both conduction directions.

The antegrade excitation source for the delta submodel is the antegrade
output of the bundle-of-Kent submodel. This models the conduction pat-
tern of a standard Wolff-Parkinson-White Syndrome beat and a link in the
abnormal reentrant pathway in which conduction is antegrade in the bun-
dle of Kent and retrograde in the AV junction. A successful excitation
results in the transition r4 to i:. Therefore this tramsition generates
the delta wave in the electromagnetic model. The depolarization
described here evenfnally reaches all the ventricular tissue included in
this submodel. At that point, the delta-submodel state occupies state
oz. Then the depolqrization wave attempts to continue into the
remainder of the ventricles and retrograde into the AV junction. If it
excites the remainder of the ventricles (modeled by the ventricular sob-
model), a Q'RS-T with bizarre morphology will be formed due to the use
of abnormal depolarization pathways. (Q'RS-T instead of QRS-T because

this is the ECG fluctuatiom due to only a part of the ventricular

myocardium--that part modeled by the ventricular submodel which does not
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include the part modeled by the delts submodel). Therefore, when khe
delta-submodel state occupies state 01, it attempts to excite, via the
interaction mechanism, the retrograde path of the AV-junctional submodel
and the bizarre Q'RS-T pathway (see the following) of the ventricular

submodel.

The retrograde excitation source for the delta submodel is the
antegrade output of the AV-junctionmal submodel. This models a link in
the abnormal reentrant pathway im which conduction is antegrade in the
AV junction and retrograde in the bundle of Kent. A successful excita-
tion in the retrograde direction results in the transition r4 to i;.
Therefore this transition generates the "retrograde delta wave"” in the

electromagnetic model. Note that the depolarization modeled here is a

part of the normal AV-junction-initiated ventricular depolarization.

The present ventricular submodel is a slight generalization of the
ventricular submodel of the normal-rhythm model. Instead of having only
one transition which generates a non-zero response from the electromag-
netic model, the present submodel has two. One transition generates the

normal Q'RS-T morphology. The transition producing this wave (rs to ns)

5 L)

is in what we call the normal Q'RS-T pathway (rS to 23 to i° to o° to
rs). This pathway models excitation of the ventricles through the nor-
mal conduction pathway starting from the distal end of the AV junction.
The second transition which generates a non—zero response from the elec—

tromagnetic model genmerates a bizarre Q'RS-T morphology. The transition

producing this triplet (r3 to ) 1lies in what we call the bizarre

5 Sy,

Q'RS-T pathway (£3 to b3 to i’ to o° to r This pathway models the

excitation of the ventricles through an abnormal pathway starting at the
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distal terminus of the bundle of Kent, traversing the tissue modeled by
the delta submodel, and then continuing into the tissme modeled by the
ventricular submodel. The normal Q'RS-T pathway is taken if the excita-
tion comes from the AV-junctional submodel or simultaneously from both
the AV-junctional and delta submodels. The bizarre Q'RS-T pathway is

taken if the excitation comes exclusively from the delta submodel.

SAnode |O
+ {; > P wave
retrograde Pwave
| o |
Atria i
—
-

Bundle of Kent | 2 3 | AV junction

{ \,

Delta 4 | | 5 | Ventricles
delta wave <—'\J . ’ RS-T complex
retrograde delta wave bizzarre RS-T complex

Figure 3.17 A Model For The Wolff-Parkinson-White Syndrome.
Part (a): Submodel Structure. :
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Block Diagram.
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Submodel O:

Submodel for the SA-nodil,Snbstructure

e—

R if.xlﬁfo;]
0
c =

P ——

R,othervise

Submodel 1:

Submodel for the Atrijal Substructure

{1 if 20€(0%} and (xze{oﬁl and x3e{o§})
1 |
pf-A {0 otherwise

—

1 if x0€[00} and (xzefoﬁl or x3€{og])

1
pr.R

0 otherwise

e — e

—

1 if 103{00] and (sz{ogl or xaefog])

1
pr,F

0 otherwise

[ c—— —

—

R if 2’€(02) and x3€(0})

cls
A 'R otherwise
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Figure 3.17 Continued.
Part (c): Intersubmodel Interactions.
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L IR if x02(0%)

Cco=
R {R otherwise

Submodel 2:

Submodel for the Bundle-of-Kent Substructure

[1 if (x'€lo}) or 13€lod)) and x*€log)

2 .
pf:A {0 otherwise

1 if (xlﬁ[oi} and xaé{oa)) and x4€[oa]

2
pr,R

0 otherwise

[
|
-
1

!1 if (xlefoi} or 136{0;}) and x4€{o;l

2 =
Pr,F {0 otherwise

[ﬁ if x4£{o§l

lR otherwise

[ﬁ if xle{oi} and xaeto;}
c2=|
R .

lR otherwise

Figure 3.17 Continued.
Part (¢c) Continued. '
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Submodel 3:

Submodel for the AV-junctional Substructure

i (x'€lo}} or 1%€(o2}) and x'eloh)

5 |
P =
r,A
L

0 otherwise

, !1 if (x'€lo}} and x2€(02)) and x*e(of)
pr-R=IL0 otherwise
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0 otherwise
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{R otherwise
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R otherwise
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Figure 3.17 Continued. '
Part (c) Continued.
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Submodel 4:

Submodel For The Delta Substructure

{1 if xzeloil and x3£{oi}

{0 otherwise

if ,Ze(oi) and x3e(oi}

otherwise

[1 if £2€lo2) and x3€(0})
{0 otherwise

[— : 3 3
|R if x"€lo,}

A {R otherwise

{ﬁ if x2€[oi}

{R otherwise

Figure 3.17 Continued. .
Part (c) Continued.
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Submodel §5:

Submodel for the Ventricular Substructure

|.1 if xaG[Oi]

|
P .n={0 otherwise

[

|1 if x‘G(o:} and xaﬁfoil

.b—{O othervise,

Figure 3.17 Continued.
Part (c) Continued.
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3.7.5. Summary of Sectionm 3.1

In this section, we have presented four examples of our ECG models.
However, in none of these models did we specify the delay-line transit-
time pmfs of the physiological model or the morphology of the elec-
tromagnetic model. In the following section, we present one additional
example, a model for the Wenckebach rhythm, in which these quantities

are specified and for which simulations are included.

3.8. An Example ECG Model--Wenckebach

In this section we present a model for the Wenckebach arrhythmia.
This arrhythmia is also referred to as Mobitz Type I. In the ECG,
Wenckebach is characterized by a multibeat cycle in which the P waves
are repeated at constant intervals but the P-R interval grows until, inm
the final beat of the cycle, the R wave is dropped. Then the cycle
begins again with the P-R interval reset to its initial small value.
The increase in the P-R interval from beat to beat is usually greatest
at the beginning of the multibeat cycle. The multibeat cycle is typi-

cally three or four beats long.

Physiologically, the cause of Wenc{ebnch is a defective AV node.
Specifically, the AV node is such that it has a long relntive refractory
period. At the beginning of the multibeat Wenckebach cycle, the AV node
is at rest. The first excitation occurs and is transmitted to fhe ven-
tricles and the AV node enters its refractéry period. Because the
refractory period is prolonged, the second excitation from the atria
reaches the AV node during its relative refractory period. The impulse

is still able to excite the AV node and through it the ventricles since
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the effective refracgory period is past. However, the early excifation
- of the AV node has two effects: the following P-R interval and the fol-
loying refractory period are both prolonged. Thus the third excitation
occurs evenvearlier in the relative refractory period. This lengthening
of the P-R interval and refractory period continues until finally a
depolarization wave attempts to excite the AV node during its effective
refractory period and is not conducted at all. This leads to the
dropped R wave. Because the AV node is not excited during the dropped
beat, the occurrence of the dropped beat gives the AV node time to com-—
plete its refractory period. Therefore, the P-R interval and refractory
period for the succeeding depolarization of the AV nod? are reset to

their initial (i.e. small) values.

As we have emphasized previously, our approach to ECG modeling is
to use models of realistic physiological mechanisms to induce the
arrhythmic behavior of the complete model. Thus, for Wenckebach, abmor-
malities are introduced into the submodel for the AV node.b The overall
model is made up of three submodels: SA-nodal/Atrial (SAN/A), AV-nodal
(AV), and ventricular (V) submodels. Since retrograde conduction does
not play a role in Wenckebach, it is not included in the model. The

resulting submodels and their interactions are shown in Figure 3.18.[3]

A more detailed block diagram of the model, in terms of the struc-

tural elements of Sectionm 3.6, is shown in Figure 3.19.

The SAN/A submodel is simply the autorhythmic structural element

[3]1 A1l figures and tables for Section 3.8 appear at the end of
the section.
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described earlier. The SAN/A submodel attempts to excite the AV submo-
del whenever the state of the SAN/A submodel occupies state O. In this
model we are in effect assuming that the transmission of the depolariza-
tion wave across the atria is instantaneous. Therefore, the initiation
of the P wave, which occurs on tramsition out of state 0, and the
attempt to excite the AV node, which occurs om occupancy of state 0, are
essentially simultaneous. Physically, this amounts to lumping the time
to depolarize the atria and the AV-junctional delay time together and

calling the resulting time the AV-junctional delay time.

The AV submodel must exhibit the complex behavior described above.
Specifically, early excitation (that is, excitation during the relative
refractory period) must lead to a prolonged AV-junctional delay time
followed by a prolonged refractory period. The correspondence between

parts of the submodel and physiological events is as follows.

(1) AV-junctional delay time: a transit time through one of the four
DLs labeled AV,, ..., AV,. The transit-time pnf for AV; is biased
toward smaller values than is the pmf for AV2, Likewise for the
pair AV, and AV; and the pair AV, and AV,. Thus, in the sense of

typical transit times, AV1 < AV, C AV, < AVy.

(2) Attempt to excite the ventricles: occupancy of any of the states

labeled 1, 2, 3, or 4.

(3) Effective refractory period: the total time spent in the DLs

labeled ARI, AR,, ARj, and AR,. Note that in some situations, dis-
cussed in more detail in the following, this total time will not

have contributions from all of these DLs.
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(4) Relative refractory period: The total time spent in the RDLs
labeled RR , RR,, and RR;. Note that the RDLs are reset if and
only .if the SAN/A submodel attempts to excite the AV submodel.
Note also that each of the three RDLs has a different reset state.

- This is discussed in more detail in the sequel.

(5) Resting state: occupancy of state 0. Note that state 0 is a trap-
ping state except when the SAN/A submodel attempts to excite the AV
submodel. In that case the state, if it is occupying state O,

transitions into the delay line AV1 with probability one.

We now describe a Wenckebach cycle. Initially the AV node is at
rest: x1=0. When the AV submodel is excited, the state transitions
into the AV1 DL. The transit time for this DL is the AV-junctional
delay. A transit time from the AV1 bL is biased toward shorter values
than a transit time from any of the other AVi DLs. Therefore, as
desired, this is the shortest possible AV-junctional delay. After the
AV-junctional delay, the AV submodel attempts to excite the V submodel:
xl=1. Then the AV' submodel enters the effective refractory period.
Note that the effective refractory period contains a transit-time com—
tribotion only from the AR4 DL and therefore the effective refractory
period is short. Following the effective ;efractory period is the rela-
tive refractory period, the total time spent in the RRI' RRZ‘ and RRS
DLs. If the next excitation of the AV submodel is sufficiently delayed,
the AV submodel’s state will pass through the three RDLs labeled RRI‘
RR2. and RR3 and reenter the resting state (state 0). However, that is
not what usually occurs. Rather, the refractory period duration is such

that the next excitation of the AV submodel generally occurs during the
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relative refractory period. More specifically, because this first beat
of the cycle had a short AV-junctional delay (used delay line AVI) and a
short effective refractory period (avoided delay lines ARI' ARZ' and

AR3). the next excitation of the AV submodel generally occurs while the

AV submodel's state is in the final RDL of the relative refractory
period, namely RR;. Therefore, the excitation of the AV submodel forces
the AV submodel’s state to transition into the AV2 DL, leading to a
somewhat longer AV-junctional delay than in the first beat of the cycle
and subsequently to a somewhat longer effective refractory period (AR3

and AR, delay lines).

In this stage of the cycle the state is typically in the RR2 DL
when the following excitation occurs. Therefore, the state is reset
into the AV, DL. This leads to s still longer AV-junctional delay (AV,
delay line) followed by a longer effective refractory period (ARZ, AR5,
and AR, delay limes). The state is typically in the RR; RDL when the
following excitation occurs. Therefore, the state is reset into the AV4
DL producing a long AV-junctional delay followed by & long effective
refractory period (ARI. AR,, AR3, and AR, delay lines). In this part of
the cycle the state is typically still in one of the effective-
refractory-period DLs when the following, excitation occurs. Therefore
this excitation has no effect on the AV submodel. Rather, the state of
the AV submodel continues through the effective-refractory-period DLs,
the relative-refractory-period RDLs, and finally traps in the resting
state (state 0). It remains in the resting state until the succeeding
excitation occurs. Therefore, the excitatiom which should have started
beat five does not get passed on to the venmtricles. That is, beat five

is dropped. Finally, because the state of the AV submodel is able to
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reach the resting state (state 0), the Wenckebach cycle is restarted.

The V submodel is simply a PTL (state O and delay line RT) whose
output is commected to a DL (Rv)‘vhose output is in turn connected to
the input of the PTL. The correspondence between parts of the submodel

and physiolbgical events is as follows:

(1) Ventricular depolarization corresponds to the transit time through

the RT delay line.

(2) Ventricular refractory period corresponds to the time spent in the

Ry delay line.

(3) The resting state corresponds to occupancy of state O. Note that
state O, which is the resting state of the PTL, is a trepping state
except when the AV submodel attempts to excite the V submodel. In
that case the state, if it is occupying state O, transitions info

the RT delay line with probability onme.

The operation of this submodel is obvious. The only point of note
is that the two delay lines have transit-time pmfs such that the state
of the V submodel has almost always returned to the resting state before
the succeeding attempted excitation b} the AV submodel occurs. There-
fore, dropped beats are due to events in ghe AV submodel and not in the

V submodel.

The actual Markov chains and signatures are shown in Figure 3.20.
They were chosen based on an nominal heart rate of 60 beats per minute
with a Markov chain cycle period of 1/25 second and a signature sampling

period of 1/100 second. Note the multiple copies of the P wave
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signature with one, two, or three leading zeros. These were introduced
so that P waves could begin at any signature sample rather than at only
every fourth signature sample (i.e. at a Markov chain transition).

Similar remarks apply to the V and T waves in the V submodel.

Table 3.1 gives a summary of a few successive Wenckebach periods.
Note the lengthening P-R intervals followed by a dropped beat. Note
also that the model is not deterministic. For example, sometimes the

Wenckebach cycle is four beats long and sometimes it is five,.

Finally, Figure 3.21 gives the actual simunlated ECG corresponding

to the data in Table 3.1.

This completes the discussion of example ECG models based on the

approach developed in this thesis.

SA-Atria [S T

!

AV

Figure 3.18 A Model For Wenckebach.
Submodel Structure.
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Figure 3.19 A Model For Wenckebach.
Block Diagram.
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SA-Atrial: x©
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Figunre 3.20 A Model For Wenckebach.
Markov Chains.
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| P wave Time P-R Interval Time Since Last |
| Number (sec.) (sec.) P wave (sec.) |
I o 0 .13 |
| 1 .99 .21 .99 |
| 2 2.07 .27 1.08 |
| 3 3.03 dropped .96 |
| 4 3.94 .12 .91 |
| s 4.89 .23 .95 |
| 6 5.96 .24 1.07 |
| 7 7.01 .33 1.05 |
| 8 8.05 dropped 1.04 |
| 9 8.99 .16 .94 |
| 10 9.99 22 1 |
| 11 10.99 .23 1 |
| 12 11.91 dropped .92 |
| 13 12.89 .18 .98 |
| 14 13.94 .22 1.05 |
| 15 14.98 .24 1.04 |
| 16 16.02 .28 1.04 |
| 17 16.96 dropped .94 |
] 18 17.95 .09 .99 |
| 19 18.93 .26 .98 |
| 20 19.96 .3 1.03 |
| 21 20.97 .34 1.01 I
| 22 21,92 dropped .95 |
| 23 22.88 .13 .96 |
| 24 23.96 .25 1.08 |
| 25 25.06 .29 1.1 |
| 26 26.04 .35 .98 |
| 27 27.08 dropped 1.04 |
| 28 28.13 .16 1.05 |
| 29 29.12 .27 .99 |
| 30 30.17 .27 1.05 |
| 31 31.11 dropped .94 |
I 32 32.12 .17 1.01 |
| 33 33.2 .21 1.08 |
| 34 34.26 .28 1.06 |
| 35 35.32 .35 1.06 |
| 36 36.43 dropped 1.11 |
| 37 37.49 .16 1.06 |
| 38 38.41 .23 .92 |
| 39 39.46 .32 ' 1.05 |

Table 3.1 VWenckebach: P-P and P-R Intervals.
The simulated ECG from which this interval data was computed is
shown in Figore 3.21.
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Figure 3.21 Wenckebach: ECG. '
The interval data for this simulated ECG is tabulated in
Table 3.1.
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Figure 3.21 Continued.
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Figure 3.21 Continued.
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3.9. Summary of Chapter 3

In this chapter we have described a modeling methodology. From the
point of view of the ECG application, it emphasizes fhe event-oriented
nature of the arrhythmia problem, the importance of causality, and the
construction of models for complex rhythms out of interactions betweenm a
few simple building blocks. From the point of view of signal process-
ing, it emphasizes decompositions (spatial, time-scale, and hierarchi-
cal) and control of the level of detail included in the model. This

methodology may be applicable to other event-oriented systems but that

'possibility is not explored.
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4. Signal Processing I: Mathematical Model and Performance Assessment

In previous chapters we have described the physiological motivation
and mathematical formalism of our models. In the remainder of this
thesis, we describe the design of signal-processing algorithms which
exploit the mathematical properties of these models. In the present
chapter we review the formalism of the mathematical model and then
present the estimation goals and performance measures used in this
thesis. In Chapter 5 we describe our design approach. Finally, in
Chapter 6, we discuss the implementation of our design approach and

present several case studies.

4.1. Review of the Mathematical Model

In the previous chapter a mathematical model of the ECG was pro-
posed. This section reviews the mathematical structure of the model and

fizes notation to be used throughout the remainder of this thesis.

Globally, the model has two types of structure: a spatial decompo-
sition into interacting submodels and a two-level hierarchical decompo-
sition within each submodel. (See Figure 4.1). Collectively, the upper

hierarchical level of the submodels is called the physiological model

1

and describes the dynamics. Mathematically, this is a discrete-time
finite-state Markov process. The lower hierarchical level of the submo-

dels forms a part of the electromagnetic model, which describes how

events in the physiological model give rise to observed waveforms. The
electromagnetic model is a linear superposition of signals with shifted

origins which 1is additively observed in white Gaussian noise. The

unshifted signals are called signatures. Each signature is a shift-
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Figure 4.1 Global Structure of the Mathematical Model.
Note that the interactions among Phy O, ... , Phy N-1 are not
shown.

invariant finite-durational deterministic function observed in additive

white zero-mean Gaussian noise.ll] All parameters throughout the entire

model are assumed known.

4.1.1. The Dynamics

The central feature of the physiological model is its spatial
decomposition. This decomposition is reflected in the structure of the
state space and transition probabilities. The state space, denoted S,
is the Cartesian product of N subprocess state spaces, denoted Si. Each
subprocess state space represents one (or an aggregation of several) of
the anatomic subunits of the heart. ‘Because of the model's decomposi-

.

tion, the transition probability matrix on S, denoted P, is most easily

described in terms of the Si. The matrix P has a structure (described

[1] The statement that the signature is a deterministic signal ob-
served in additive white zero-mean Gaussian noise is exactly
equivalent to the statement that the signature is a white Gaussian
signal. That is, the signature could equivalently be described as
a8 shift-invariant finite-durational white Gaussian signal. The
reason for using the prior, unwieldy description is that it em-—
Phasizes the nonzero mean.
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in the following paragraphs) related to the si subprocess state spaces
because an important function of P is that it captures the interactionms
between the subprocess state spaces, corresponding to the interactionms

between the anatomic subunits of the heart.

Let x(n) denote the state at time n, a random variable taking
values in S. In terms of the factors of the state space S, we write
this as x(n)=(x%(n),...,xN"1(a)), xi(n)eSi. For the reslizations of
these random variables, which are numbers, we use the notation x  and

xl.
n

The interactions are defined through partitions of the subprocess
state spaces. Specifically, for each ordered pair of submodel indices
(i,j), there is a mutually exclusive, collectively exhaustive partition
of the subprocess state space Si into pi‘j subsets., Let the disjoint
subsets be denoted Ui'j‘k. k=0, ..., pi'j-l. By definitiom, submodel i
transmits interaction k to submodel j when xi€ui i-k  (Note the direc-
tionality of the interaction). The definition of these interactions
allows us to model the propagation of a depolarization wave across the

boundary between the ith and jth

anatomic subunits. Because these
interactions are sparse, pi'j is typically 1 or 2. (Note that pi'j=1
corresponds to a constant interaction,. which is equivalent to mno
interaction at all). In any case, the limited number of types of
interactions between submodels implies that pi'j is small compared to

card(Si). The fact that pi'j is small in this sense is central to our

suboptimal estimators.

The actual interaction which submodel i tr?nsmits to submodel j at

time n is demnoted hi'j(n). This is a deterministic function of the
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random variable xi(n).’ Its realization, a number, is denoted h:’j. The
| . i,j,n20d
above definition of the interactions states that x;GU .

The structure of P is defined by imposing two assumptions:

(1) given the collective past, the next transition of each submodel is
chosen independently of the next transition of all other submodels

and

(2) for a particular submodel i, the current impinging interactions and
current submodel state form a sufficient summary of the collective
past insofar as the single-step evolution of submodel i is con-

cerned.

The above definition of P states that each element satisfies the equa-—

tion

N-1 . .
Pr(x(n+1)=xn+1Ix(n)=xn)=ig%Pr(xl(n+1)=x;+1|x(n)=xn) (assumption 1)

N-1 . . . .. .
=i=0Pr(x‘(n+1)=x;+1le(n)=x;,h1-l(n)=h%.l. j=0,...,N1 (j#i)) (assumption 2).

Note that if pi'j=1 for all i,j then P will simply be the Kroneckef
product of individual tranmsition probability matrices pi for each submo-
del. This is the degenerate case in which the submodels do not
interact. (This case is not common, though it can occur, as in a model
of third degree AV block containing two submodels--one for the SA node

and atria proximal to the block and ome for the ventricles distal to the
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block). Another special case arises in the situation where there exists

. .
an i. such that pi '3 and pj'i are 1 for all j. This is a situationm

where one submodel (submodel i‘) neither initiates nor receives interac-

: .
tions. In this case P is the Kronecker product of P! with the overall

.
transition probability matrix for all the submodels except i . This

case occurs in our estimators-—-see Chapter 6.

In addition to the transition probability matrix P specified above,
an initial condition must be specified. Since the model is time-
invariant, the time of the initial comdition is arbitrarily set to be
time -1. This thesis has not been concerned with initial transients due
to the initial conditions. Therefore little attention has been paid to
their choice. Primarily for convenience, we have assumed that they fac-

tor over the individual subprocess state spaces. That is,

N-1 : .
Pr(x(-1)=x_1)= 9 Pr(xl(-1)=x:1) .
i=0

However, this assumption is not crucial to anything that follows.

This completes the description of the discrete-state physiological

A

model.

4.1.2. The Observation Process

The electromagnetic model describes how events in the physiological
model give rise to waveforms in the ECG. The submodels of the elec-

tromagnetic model are in one-to—-one correspondence with the submodels of

the physiological model. Furthermore, the state of an electromagnetic
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submodel does not affect the state of any other submodel (electromag-
netic or physiological) and is affected by only the corresponding phy-
siological submodel’s state. Specifically, each electromagnetic submo-
del is driven by the state transitions of the 6orresponding physiologi-
cal submodel. The outputs of the electromagnetic submodels are linearly

superposed in additive white Gaussian noise to create the observation.

The output of the ith‘submodel of the electromagnetic model is a
linear superposition of finite-durational signals. Each signal is a
different realization of a stochastic process for which the probability
1aw(s)>(the;e can be more than one class of signal per submodel) are
time invariant. The stochastic process(es) defined by the probability
law(s) are called signatures. More specifically, if the ith submodel of
the physiological model undergoes a. state traﬂsition from j to k at
time t, then the contribution at time n to the linear superposition is
the signal r(n;i,j,k,t). The signal r(n;i,j,k,t) is a realization of a
stochastic process whose probability law is time invariant (i.e. it
depends on n and t only through the differemce n-t). The probability
law is finite-durational deterministic function plus additive white
zero—mean Gaussian, which is equivalent (as noted in the previous foot-
note) to white Gaussian. Furthermore, the signal r(n;i,j,k,t) is
independent of the signal r(n;i,j,k,t') for t#t'. Let N(q,Q) (x) be the

Gaussian distribution of mean q and covariance Q evaluated at the point

x. The signal r satisfies the following relationships:

(1) finite durational:
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r(n;i.j-k.t)=0 nf[t.....t*-u} k-ll and

(2) time-invariant probability law described previously:

P (rt.....r

r(t:i.j,k.t).....r(tﬂI} k-l;i.j,k.t) t+Ml -1

ik
i -

L .
mgo N(qj,k(m)'oj,k(m))(rt+n)

" where q} k(m) and Q} k(n) are the known mean and covariance functions of

the signature.

Def ine Mi= max MI:' th

jx F

of the physiological model be Xg N~ [xé....,xél. Then the output,

Let the state trajectory of the i submodel

denoted ei(n). of the ith submodel of the electromagnetic model at

time n is

(3) 1linear superposition:

el(n)= S r(n;i.xi(t-l),xi(t).t)
t=0

= ¥ rminste-naio.n.

t=n-M?
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Finally, the output of the entire electromagnetic model, denoted v,
is the 1linear superposition, with additive stationary white Gaussian

noise, of the outputs of the submodels:

(4) 1linearly superposed in additive noise:

y(n)=§ei(n)+v(n).
i

The additive white Gaussian noise, denoted v, has mean 0 and covariance

Typically, for each submodel of the physiological model, most state
transitions (i,j) do not initiate signatures. More precisely, they map
to a signature that has zero mean and zero covariance. Such signatures
have no effect on the observation and are included for notational con-

venience only. In the sequel, they are referred to as null signatures.

4.1.3. Comments on the Mathematical Model

Note several aspects of this model:

(1) The dimension of the observation vector y is not specified. Sta-
tistical correlations between the components of the added noise v
are modeled through the off-diagonal elements of R. Similarly,
statistical correlations between the components of r are modeled

through the off-diagonal elements of Qi

Jik(')'
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(2) The Markov-chain cycle interval need not equal the signature sam-
pling interval. However, the larger must be an integer multiple of
the smaller. Note also that signatures can only be initiated at
Markov chain transitions. The use of different rates allows the
events within the physiological model and the waves in the ECG to

be modeled with different levels of temporal resolution.
(3) An individoal signature may last many Markov chain cycles.

(4) A single global state transition may initiate as many shifted sig-

natures r(.;i,j,k,1) as there are submodels.

This completes the description of the mathematical model.

F
)

Estimation Goals

The estimation goals of this thesis are to solve an interesting
subset of ECG rhythm-analysis problems. Specifically, the only estima-
tion problems considered in this thesis are those that can be reduced to
the wave tracking problem. That is, given an ECG and a single com-
pletely known model, we seek to determine the number of waves and the
time of occurrence and type of each individoal wave. We have chosen
this problem because it is relevant to the arrhythmia classification
problem, it is relatively simple, and it is a necessary component of

more complex problems.

The wave tracking problem is clearly not the entire arrhythmia
classification problem since the wave tracking problem assumes a

specific model for the ECG. As discussed in Chapter 1, the long range

goal of the research program of which this thesis is a part is the
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classification of ECGs into arrhythmia classes (persistent rhythms) and
the location of ectopic events (transient rhythms). As in Gustafson
et al. (Gustafson, 1978a, 1978b), the hypothesis test required for per—
sistent rﬁythn classification involves likelihood ratios. The optimal
computation of likelihood ratios involves a set of processors, one for
each hypothesis (equivalently, ECG model), where the dimension of each
processor’s state equals the cardinality of the overall Markov chain
state space for that model. Therefore, for computational reasons, the
calculation of exact 1likelihood ratios is not practicsal. A npatural
approximation, however, involves the solution of the wave tracking prob-
lem considered in this thesis. Specifically, in order to calculate the
likelihood of a particular hypothesis, each of the optimal processors
performs a recursive summation of conditional likelihoods over all pos-
sible state trajectories in the overall Markov chain. A natural approx-
imation is to include only the probabilisticly important trajectories.
That is, a standard way in which hypothesis testing is‘often performed
is to design tracking filters based on each of the hypotheses. Then,
the relative "likelihoods” of the various hypotheses are deduced by com-
paring how well each of the tracking filters is performing. In the ECG
context such a system would consist of a bank of wave trackers of the

type that are developed in this thesis.

Now consider the problem of tramsient rhythm analysis. There are

two approaches to this problem.

(1) As in Gustafson et al., we can model transients as switches from
one model to another. The approximate calculation of the likeli-

hood ratios im this .approach again involves wave tracking
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estimation for the patterns before and after the transient.

(2)‘ ansider trﬁnsient rhythms which do not correspond to a lasting
rhythm change (e.g. a change in heart rate). In this case, essum
ing that we include the mechanisms for such transients inm our model
of the identified persistent rhythm class (e.g. inclusion of reen-
trant pathways or ectopic foci), then detecting such transients is

purely a wave tracking problem.

Thus we see that wave tracking is anm essential ingredient in rhythm
analysis and represents a natural first step in developing this approach

to ECG analysis.

4.3. Performance Measures for the Wave Tracking Problem

The performance measures by which estimation algorithms will be
evaluated fall into two classes: those relevant to the application and
those relevant to the internal workings of the estimator. The later
depend on the details of the estimator and are discussed in the sequel.

In this section, measures relevant to the application are discussed.

From the arrhythmia classification point of view, the relevant
measures are concerned with the type agd time of occurrence of the
waveforms in the ECG. The type of a waveform is specified by the submo-
del from which the non-null signature was generated and the specific
transition within the submodel that initiated the signature--i.e. the
old and the new state in the subprocess state space. The ordered qua-
druple of submodel, old state, new state, and time is called an annota-

[2]

tion.

[2] Other applications ;equire different performancé measures.,
For example, the ECG morphology problem is concermed with wave
Section 4.3,
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As-described below, all performance measures for the specific esti-
mators we have developed have been evaluated via simulation. Further-
more, all the performance measures calénlated are probabilities of par-
ticular events. Therefore the following discussion is oriented toward

the simulation method for evaluating probabilities.

The evaluation of probabilities by simulation requires four basic

steps:

(1) Generation of a sample path of the stochastic process. A realiza-
tion of the random variables has been chosen using a pseudo-random

number generator.

(2) Application of the estimator under evaluation to the simulated

data.

(3) Association of annotations in the simulated data with annotations

in the estimate. This requires an association rule (described in

the following subsections). Since estimators will generally not be
perfect, not all events in the simolated data will have correspond-
ing events in the estimate and likewise not all events in the esti-
mate will have corresponding events in the simulated data. Thus
the association rule must deal with different numbers of annota-

tions, as well as different types and times.

shape and thus with wave shape estimation, for which an appropri-
ate performance measure could be mean squared error.
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(4) Counting the number of times certain patterns occur in the associ-
ated events. This requires a set of selected patterns (described
in Subsection 4.3.4) that represent important characteristics of
estimator behavior. Properly normalized, these counts are the

desired probabilities,

It is steps (3) and (4), the association rule and the selected pat-
terns, which define the performance criteria. Step (1), the calculation
of the sample path, was discussed at length previously (Chapter 3 and
Section 4.1) while step (2), the estimator, is discussed in Chapters §

and 6. Steps (3) and (4) are discussed here.

The development of meaningful association rules and the specifica-
tion of patterns that are appropriate indicators of estimator perfor-
mance are not simple problems. The solution is a procedure for the com-
parison of two $equences of annotations--one for the actual simulated
data and one for the estimator. Because there are several possible sig-
nature types, each of which may occur a random number of times with each
occurrence falling at an uncertasin time, we see that a major issue is
"lining up” the annmotations in the true and estimated sequences and in
identifying resulting paired annotations as one of several selected pat-
terns. For example, if a particular estimated annotation corresponding
to the start of a QRS complex occurs M time units after the actual
QRS complex, and if the duration of the complex is K cycles, then
whether we wish to call this an "error” or not depends on whether M is
small or large compared to K. Furthermore, an error in the QRS-complex
annotation may very well be coupled with an error in the preceding P-

wave eannotation. Do we classify this as one type of error or do we
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classify them individually? We have developed a specific approach to
association and have chosen a classkof selected patterns on which to
base our performance comﬁntations that we feel are appropriate for the
types of questions ome would typically like to answer in evaluating an
ECG waveform tracker. In the remainder of this chapter we describe our

approach to addressing these issues.

4.3.1. Association Rule

An association rule is an algorithm. Its input is & pair of anno-
tation sequences. One annotation sequence represents the truth
corresponding to the observed data, and the other represents the esti-
mate provided by an estimator. The output of the association rule is a
sequence of matched annotations. A match consists of ome truth anmnota-
tion, onme estimated annotation, and a phase shift between the two,

corresponding to the timing error in locating the event.

Consider the motivating examples in Figure 4.2. In this figure,
the tick marks indicate the passing of discretized time and the dashed
lines connecting tick marks have been included to facilitate visual
alignment of the time axes for the simulated data (labeled "Truth”) and
the output of the estimator (labeled ”Esfiplte"). The truth trajectory
consists of five atrial depolarization (P waves) of which four result in
ventricular depolarizations (R waves). The remaining atrial depolariza-

tion is blocked.

For the (PI'R1) beat the desired association is clear since each

estimated wave is perfectly aligned with the corresponding truth wave.

The sitoation for the (Pz.Rz) beat is slightly more complex. In this
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Figure 4.2 Motivation for the Association Rule.
case, the estimator has two anmotationms ;t one instant in time,
corresponding to estimated events in two submodels, i.e. the occurrence

A ~
of both a P wave (P,) and an R wave (Ry). Clearly what one would want

to occur in this case is for the association algorithm to associate P2

with bz and R, with ﬁz. The reason for desiring this association is

based on morphological comsiderations--i.e. the R wave and the P wave

look very different, and thus since both amnotations are present, it

makes little sense to match R2 with 92 and P2 with ﬁQ.

Continuing on, P, does not match at all because there is no
estimated wave sufficiently close (clearly a quantitative meaning must

be given to "sufficiently close”). Such an unmatched truth annotationm

is called a false negative.

For the (P4.R3) beat, the decision again should be based on mor-

Phology considerations. Based purely on phase shift considerations, P4
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could match with either f‘3 or ﬁ3. However, it should match with IA>3, the
more distant choice, because of the superior morphology match. Having
matched P, and 93. ﬁB cannot also match with P, which is the pearest
troth annotation (though a poor match from the morphology point of

view). Therefore, R3 matches with ﬁ3.

N A Y
In the (PS.R4) beat, Pg matches with P; rather than P, because P
) A
is closer. R4 matches with R, leaving N unmatched. The only candidate
A
for P4 is Py but the phase shift is much to great so they both remain

unmatched. Such an unmatched estimated annotation is called a false

positive.

Based on this set of examples, it is clear that the desired associ-

ation rule must have several characteristics:
(1) It must weigh both timing and morphology (wave type).
(2) At some point, a large phase shift must disallow a match.

(3) Between two candidates either of which could be matched to & third
signature, a superior morphology match must sometimes be able to
override a poorer temporal match——i.e. it must attempt to match

‘wave types within some bounds of reasonableness on relative timing.

We have tried to capture these characteristics in a simple rule.
The rule teakes the form of an optimization problem. The optimization is
over all possible pairings of a truth annétntion (or false positive)
with an estimated amnotation (or false negative). The reward functiom
is an additive function with one term for each matched pair of truth and

estimated signatures plus additional terms for each umnmatched truth or
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estimated signature. The key to the rule is how to jointly weight

differences in morphology and phase shifts.
The rule used in this thesis has two subrules:

(1) Matches between nonoverlapping signatures are not allowed. This is

the specific interpretation of (2) above. Therefore, the reward

for such a match is -=,

(2) The reward for a match between ammotations with overlapping signa-
tures is equal to the crosscorrelation function between the truth

and estimated signatures evaluated at their relative phase shift.

In more detail, the reward in subrule (2) for matching a truth sig-
nature of type m, (which is initiated by transition j; to k; in submodel
i1) with an estimated signature of type m, (which is initiated by tran-
sition j2 to k, in submodel iy) where the relative phase shift is < sig-
nature samples and the signatures overlap (2 situation illustrated in

Figure 4.3) is

2
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The functions q} x °ond Q} g Yere defined in Section 4.1--they are the
mean of the Gaussian signal in the model used to generate the simulated
data and in the model used by the estimator respectively. (These two
models need pot be the same--e.g. the estimator may use simplified tem-

plates). The range of each summation is over those n for which the
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- Figore 4.3 Calculation of the Reward.

summand is nonzero.

The first subrule limits the maximum phase shift. The second
subrule rewards matches between annotations whose signatures are morpho-
logically similar in spite of the phase shift. Therefore, for some sig-
nature morphologies, the penalty for phase shifts increases much more

rapidly than for other morphologies.

A complete definition of the association rule 1is given in

Appendix A.

4.3.2. Association Rule--Phase Shift Limits

-t = e i et it —————. | ——
L

The patterns used in the final step of the performance calculation,
as described in the ‘follo'ing subsection, typically depend upon the
phase shift between matched annotations. For small phase shifts such
that the signatures remain overlapped, the association method of the
prior subsection is applicable. Furthermore, larger phase shifts typi-

cally seem unphysical--rather than match two such distant waves it seems
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more reasonable to label one s false positive and ome a false negative.
Therefore, the association method of the prior subsection appears gen-
erally applicable--it will allow phase shifts up to the overlap limit.
However, there is one situation which we have encountered where associ-
ating annotations with nonoverlapping signatures is necessary. Specifi-
cally, in our development of an estimation methodology we have con-
sidered a sequence of cases, each of which is more complex than the one
that preceded it. In the first few cases we considered very simplified
waveform structures in which "P” and "R"” waves are only one sample long.
Clearly, if the signatures are only ome sample long, them any nonzero
phase shift makes them nonoverlapping. However, it seems unreasonable
not to allow small phase shifts (i.e. +1) since their exclusion is due
to the extraordinary idealization of the signatures. In other words,
the overlap-based notion of a reasonable phase shift is directly tied to
. the length of the signatures so that if the signatures are made artifi-
cially short, this method of calculating a reasonable phase shift
becomes grtificial. Two options which recover a reasonable definmition
of maximum phase shift in these situations while remaining within the
framework of the present association method are briefly described in the

following.

(1) Pad with zeros the trailing edg; of the one sample 1long
signature(s) and proceed with the association method of this sub-

section.

(2) Add ennotations for artificial, zero signatures one sample long to
submodel transitions which deterministically precede or follow the

transition(s) which initiate(s) nonzero one-sample-long signatures.
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Then proceed with the association method of this subsection. By
examining the resulting matches (which are all zero-phase shift
matches) it is possible to recover the phase shift informatiom——
i.e. the matching of one of these artificial annotations with an

actual wave would correspond to a phase shift of +1.

These two options need not generate precisely the same results.
Hovever.‘we believe that either is an equally satisfactory defimition.
In all of our computation with signatures that are only on? sample long,
we have used the second option. Furthermore, when evaluating the effect
of signature length on performance, we have maintained comsistency by
using the second method for all computation if any signature in any case
was only one sample long. Note that if nonzero signatures are more than
one sample long, the zero-signature method can be ambiguous. For exam-
ple, suppose a nonzero signature overlaps two different zero signatures
(which start at different times), but overlaps mo nonzero signature with
which it has a positive correlation coefficient. In order to remove the
ambignity, we have required that all matches with artificial annotatioms
be zero-phase-shift matches (which are what naturally occur when all
signatures, zero qnd nonzero, are omne sample long). Further discussion
of zero signatures and of the exact-match requirement is contained in

T

Appendix B.

4.3.3. Association Rule--Summary

In the prior two subsections an association rule based on an optim-—
ization problem is proposed. We also discussed several slight varia-

tions in the general framework (e.g. the =addition of artificial
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annotations). Most of these variations have no effect on the results
presented in the Chapter 6, because these results are for models with

very few signatures which occur well dispersed in time.

4.3.4. Distinguished Patterns in the Associated Events

This subsection describes the class of associated-event patterns
which will be considered in evaluating estimator performance. For all
vave tracking problems, the most basic performance measures are the pro-
babilities of matching a truth annotation of type ¢, at time n with an
estimated annotation of type G, at time n+t where t is the phase shift.

These probabilities are called the misclassification probabjlities.

Therefore the first class of patterns is the class of all possible

truth-estimated annotation matches at a given phase shift <.

More aggregated performance measures can be computed from these.
For example, a false positive and false negative probability can be com-
puted for each type of annmotation. Consider a specific annotation type,
denoted a. Each of these probnbilities is calculated as a ratio of
event counts. The numerator of the o false negative probability is the
number of times an a truth annotation is not matched with an a estimated
annotation within a given phase shift. The denominator is the number of
e truth annotations. The numerator of the a false positive probability
is the number of times amn a estimated annotation is not matched with an
@ truth ennotation within a given phase shift. The denmominator is the

number of a estimated annotations.

These definitions imply characteristics of the false positive eand

false negative probabilities. First, note the different normalizations.
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The false negative normalization is the traditional hypothesis—test nor-
malization. The false positive normalization was chosen differently, as
described above, so that the resulting probability reflects the proba-
bility of false positives that a further interpretation algorithm

operating on these detections would have to deal with in its input.

Second, consider a mismatched truth and estimated anmotation pair,
that is, a match in which the truth and estimated signatures are not of
the same type. The definition of false positive and false negative pro-
babilities splits such a match into a pair of false positive and false

negative detections.

When the model used to generate the simunlated data contains only

[3]

one signature type, the false negative and positive probabilities
described above are the only performance measures to be considered.
Vhen the model used contains two different signature types, we have con-
sidered examples that are strongly motivated by the normal ECG. That
is, the two signatures are meant to represent the P and R waves. There-
fore, the P wave has a lower signal-to-moise ratio (abbreviated SNR)

than the R wave, the P wave precedes the R wave, and the P wave is

causally related to the R wave.

The basic performance measures for models with both P and R waves

[3] Note that in many of the cases we have considered there are
several different state transitions within a particular submodel
that produce the same signature (which is one method for modeling
variability im signature initiation time). Using the definitions
we have given, each of these differemt initiating transitions
would produce a distinct annotation. Clearly one would not want
to consider a match of two of these annotations as an "error”, and
our method of event counting takes this into account.
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are still the misclassification probabilities described previously.
However, in this more complex problem, there are also additional meas-
ures of importance. For example, in order to locate the low SNR
P waves, the estimator must essentially extrapolate backwards from its
estimate of the R wave location in addition to weighing the data around
the P wave itself. The extrapolation depends on inverting the causality
relationship between the P and the R waves. (Note that this backward
extrapolation is exactly what a human does when faced with this task).
Because of our interest in this mechanism, two additional performance
measures are calculated. They are both misclassification probabilities
where the events are sequences of annotations rather than individual

annotations. Specifically, estimates are calculated of

(1) Pr(estimated annotation pair is A1‘A2Itrnth annotation pair is P,R)

(2) Pr(estimated annotation matched to truth P is Al

truth annotation pair is P,not R)

where "P, not R"” denotes the situation in which there is is a dropped
R wave. Here AI' A2. and A can be P- or R-wave annotations or they can
denote no amnotation--i.e. s missed detection. Thus probability (1)
tells us something about the correlatiom in our ability to detect P and
R waves that occur in the normal, paired fashion, while probability (2)
tells us how well we do in locating P waves that have not led to suc-

cessful ventricular contractions. The patterns and normalization
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factors required to estimate these two probabilities are chosen analo-

gously to the false positive/false negative statistics.

4.3.5. Confidence Limits

VWhen estimating a quantity, such as the performance probabilities
described previously, it is also necessary to calculate some measunre of
confidence in the estimate. Our confidence measure is & quantity

denoted fractional standard deviation, which measures the accuracy with

which a probability is estimated.

In order to compute confidence limits, we assume a simple model for
the occurrences of patterns in subsequences of the matched (i.e. paired
actual and estimated) annotation sequence. An example pattern is false
positive R waves. Here the corresponding subsequence is that of matched
annotations in which the estimated annotation is an R wave. We model
the occurrences of the particular pattern in the relevant subsequence

and our estimate of its probability of occurrence as follows:

(1) The sequence of occurrences of the specific pattern in the subse-
quence of matched annotations is modeled as a Bermoulli process
with parameter p. That is, at the kth matched annotation in the
subsequence we assign a random variable b(k) which takes the value
1 with probability p (corresponding to am occurrence of the pat-
tern) and the value 0 with probability 1-p. Furthermore, b(k) is
independent of b(m), m#k. The realization of b(k) (i.é. the actu-
ally observed sequence of occurrences and "non-occurrences” of the

pattern) is denoted bk'
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(2) The estimate p of P is calcunlated as

Let n, be the number of times that by takes on the

value 1,
k€{1,...,n).

Then S cen also be written as

It is simple to show that

E(S—p)2=%p(1-p).

The fractional standard deviation d is defined as

Therefore,
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= -p]1/2.
R

\la

Note that, for our problem, d is an optimistic assessment of the accu-
racy of p because our observations--i.e. the sequence of occurrences of

the pattern——are not strictly independent.

According to the previous formula, the calculation of d requires
that we knoy the value of p. However, we do not know p. Therefore, the
best we can do is to compute an estimate of d. The estimate we choose,
denoted 3. is the estimate calculated by replacing p by p in the previ-

ous formula. That is,

Now consider an example. Assume that we are processing data which
contains 1000 truth R waves. Assume further that our estimator
correctly detected 980 R waves, had 22 additional R wave detections
(false positives), and missed 20 R waves (false negatives). Then we
would compute the probability of a false positive R wave detection as

fpR = 22/(980+22) = .0220 with estimated fractional standard deviation
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of (1/22 + 1/(980+22))1/2=.211. The probability of a false negative
R wave detection would be fnR = 20/(980+20) = .0200 with estimated frac-
tional standard devistion of (1/20 + 1/(980+20))1/2=.221. Note, as
described in the previous subsection, that different values of n are
used in the false positive and false negative calculations. The
interpretation of these numbers is that, for imstance, fpR lies in the

range .0220 + (21.1 percent of .0220) with probability .68.[4]

Because our estimators perform well on realistic data, the error
probabilities are small nupbers and therefore it is difficult to get
high accuracy estimates of them by simulation. In order to alleviate
this problem we often use models with nrtificiully high noise levels.
Furthermore, we emphasize comparison with thg performance of the global

{51

MAP estimator on the identical sample realization and study of plots

of the data with both true and estimated annotations indicated.

4.3.6. Robustness

As we will describe in subsequent chapters, our approach to defimn-

ing estimators is based on the use of a hypothesized design model--i.e.

a specific model of the type described in Chapter 3. We will call such
an estimator a matched estimator if the data on which it operates is a

realization of the stochastic process defined by the identical design

[4] Here we make the further assumption that & central limit
theorem holds, and therefore the probability within plus/minus one
standerd devistion of the mean is .68.

[5] Throughout this thesis, "global MAP estimator” is the wave-
tracking estimator im which first the global MAP staste-trajectory
estimate is computed and then the wave-tracking estimate is com-
puted from the state—trajectory estimate. Note that this estima-
tor is not optimal for the wave-tracking problem.
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model on which the estimator was bused. In any real world problem, an
estimator is never precisely matched because the data is not a realiza-
tion of any particular design model. This is especially true in the ECG
where the mechanisms are complex and poorly understood. Therefore it is
crucial to evaluate the effect of mismatch on performance. This issue

is termed robustness.

A realistic assessment of robustness depends on the recognmition of
which features in a design model are heavily relied upon by the estima-
tor. Especially important are situations where such features are
clearly idealizations of the ECG. For example, in a normal rhythm
model, such an idealized feature might be the assumption that every
P wave is followed by an R wave. Given such a special feature, a second
design model can be defined in which that feature is modified. Then the
altered design model can be used to create simulated data, which is then
processed by the estimator designed using the original, idealized model.
Comparison of the resulting performance statistics then indicates the

robustness of this estimator to this particular idealization.

Generally, recogﬁition of some aspect of a design model as am
jdealization whose consequences must be investigated also indicates
which performance criteria are most important in assessing robustness.
In the previous example where the feature is every P wave followed by an
R wave, the important statistics are the joint P,R statistics described

previously.
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3. Signal Processing II: Design Approach

3.1. Estimator Design Philosophy

In this section, we describe the estimator design philosophy of
this thesis. First, the possibility of globally optimal designs is con-
sidered and rejected. S;cond. we discuss the philosophy of the subop-
timal approach adopted for this thesis. Throughout the discussion of
the suboptimal approach, it is importamt to keep in mind that there are
certainly many alternatives to the specific design choices that have
been made. Simulation results presented in Chapter 6 illustrate the
level of performance that can be achieved with this particular set of
choices. For Qome aspects of the design, simulation results are

presented to illustrate an alternative design choice. However, we in no

sense consider all reasonable approaches.

5.1.1. Optimal Designs

Optimal solotions to signal processing problems in which the goals
are closely related to those in our wave tracking problem and the class
of models is identical to the class of our design models are well known.

An example is described in the following paragraphs.

The physiological model (i.e. the system's dynamics) is simply a
finite-state Markov chain. The electromagnetic model (i.e. the observa-
tion process) is simply a superposition of finite-durational Gaunssian
signals whose parameters depend on the most recent Markov chain transi-
tions. Furthermore, by simple transformations, the design model can be

brought to a form where the Markov chain cycle interval and the

Section 5.1.1.




- 172 -

signature sampling interval are equal and where each signature (still

Gaussian) lasts exactly ome sample.

Our wave tracking problem is concerned with the tracking of annota-
tions. A closely related'problem is tracking states of the overall Mar—
kov chain. Given an estimate of the state trajectory, it is straight-
forward to generate a solution to the wave tracking problem, since the
annotations are deterministic functions of the state transitions. One
approach to specifying a state trajectory estimate is by imposing a

(1]

minimum probability-of-error optimization criterion.

The combination of a minimum probability-of-error optimization cri-
terion applied to state trajectories and a model in which the most
recent transition of a Markov chain determines the observation probabil-
ity distribution function (pdf) at the next sample (Gaussian pdfs are
not required) is a solved problem. Furthermore, the solution, a MAP
estimator, has en efficient implementation—--the Viterbi Algorithm (For-

ney, 1973).

We do not pursue such a global optimization approach because, as
argued in Section 6.24, the computational burden is prohibitive. How-

ever, in spite of the facts that

[1] Note the difference between the minimum probability-of-error
criterion applied to state trajectories versus the same criterion
applied to anpotation sequences. An estimator that optimizes the
criterion for one case gemerally does not for the other.
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(1) we do not wish to pursue a global optimization approach and

(2) the minimum-probability-of-error state-trajectory problem described

above is not the same as our wave tracking problem,

we frequently compute the answer to the minimum-probability-of-error
state-trajectory problem in order to have an absolute (rather than a

relative) benchmark for our suboptimal algorithns.lzl

3.1.2. Suboptimal Designs

A successful suboptimal design methodology must exploit the struc-
ture in the design model. The most pervasive structure in the design
model is the subdivision into interacting submodels. Therefore, this
thesis is focused on exploiting the interacting submodel structure. The
approach is to mirror the submodel structure of the design model in the
architecture of the estimator. More concretely, the estimator is par-
tioned into snbestimators‘vhere each subestimator corresponds to, and is
primarily concerned with, a single submodel of the design model and thus
a single anatomic subunit of the heart. These estimators interact, and

finally their individual results are combined to give a global solution.

Each such subestimator is called a local estimator (LE). Its total

a priori knowledge is called the local estimator’'s model (LE's model).

., | ———————. o e b\ ISt

The definition of the information exchanged between LEs is called the

intercommunication structure (ICS). Bach LE is concerned with a

[2] It is the annotation sequence estimator in which the estimate
is the annotations implied by the minimum-probability-of-error
state-trajectory estimate that we call the global MAP estimate.
Note that it is pnot MAP for the anmotation sequence.
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particular submodel of the design model. The additional submodels of

the design model are referred to as the remainder model of that LE.

Note that if a design model has n distinct submodels, then it also has n

distinct remainder models, one for each LE.
There are several intertwined issues to be considered.

(1) Local Estimator Models: What is a local estimator's model? Our
philosophy suggests that it includes the corresponding submodel,
but it may also include a portion of the LE's remainder model.
Each LE’'s model can have input channels which, when the estimator

operates, receive observations and/or receive values generated by

the ICS.

(2) Intercommunication Structure: What is the intercommunication
structure? The ICS has input channels which, when the estimator
operates, receive particular results calculated by particular LEs.
The ICS itself conveys these values to the input channels of other

LEs.

The reason that aspects of the remainder model may need to be
included comes directly from the presence of interactions between the
submodel with which an LE is primarily concerned and the remaining sub-
models. However, as we have indicated, a fundamental premise in our
work is that the state of the overall design model is too large to be
estimated all at omnce. Therefore it follows that the LE must use an
aggregate version of its remainder model, capturing those aspects of
importance im tracking the submodel with which it is primarily con-

cerned. In this case the input channels to the LE contain information
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from other LEs concerning interactions impinging on the first LE's sub-
model and, perhaps, information concerning signature initiations else-
where in the model. Thus the purpose of the ICS is to provide such

coordinating information to each LE from the other LEs.
We now continue with the list of issues.

(3) Local Estimator Algorithm: Given the a priori knowledge of (1) and
(2), the observations, and the information provided by the ICS,
vhat does each LE do? That is, what estimation problem does each
LE solve? 1In particular, how does it incorporate both the actual
measurement (from the electromagnetic model) and the information

provided by the other LEs through the ICS?

(4) Global Estimate Reconstruction: How should the outputs of the
individual LEs be combined into a solution of the wave tracking

problem?

The focus of this thesis is organizational issues--the local esti-
mator models, the intercommunication structure, and the global estimate
reconstruction. The local estimator algorithm is designed by tradi-
tional means (i.e. to optimize a traditional performance criterion) but
it is limited to the scope of the LE’'s model. In other words, we are in
essence viewing classical estimation algorithms soch as the Viterbi
algorithm as primitives. Our estimators are comstructed by intercon-
necting such primitives (applied to manageable-size pieces of the
overall problem), and the critical issues to be investigated involve the
nature of how we interconnect these primitives. The remainder of this

subsection provides an overview of the LE’'s model, the ICS, and the
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global estimate reconstruction procedure. The design problem on which
the local estimator’'s algorithm is based is discussed in the next sec-

tion.

The following paragraphs give an overview of a LE's actions as a
first step in describing its model and the ICS. The basic notionm is
iterative refinement of an initial estimate—-i.e. each LE will process
‘data several times, where each successive processing stage uses informa-
tion provided from previous processing by other LEs. The iterations are
referred to as passes. The number of passes for a given LE is fixed but

the number need not be the same for all LEs.

Each LE makes an initial pass based only on the ECG and a priori

[3]

knowledge from the design model. That is, the LEs do not communi-

cate.

Following the initial pass, each LE then makes further passes based
on the knowledge used for the first pass together with additional

knowledge of the following types:

(1) an a priori description of the nature of the information to be
received from the ICS (e.g. knowledge that this information will
provide estimates of interactions with other submodels), including

meesures of its quality, and

[3] More precisely, the starting point in the design of all LEs is
a design in which there is a nontrivial initial pass for each LE
Later steps in the design procedure are a set of rational guide-
lines for the removal of selected passes and the rearrangement of
the ICS, and in these steps the initial pass of some of the LEs is
often deleted.
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(2) the actual communicated values of the information.

The sources of the information transmitted by the ICS are the previous
passes of particular LEs. (Information can be transmitted from the pre-
vious pass to the present pass of the same LE. This pathway is lumped
into the ICS even though it is intra- not inter-LE). Note that the
a priori ﬁescription of information to be communicated th;ongh the ICS
is a description of the performance of the prior LE passes which provide
the information. The basic restriction on the ICS that we have con-
sidered is that a given pass of a given LE may not send information to

an earlier pass of any LE.

The following paragraphs give an overview of the LE's model and the
ICS. Because of the multiple-pass structure of the LE, there are really
multiple models, one model for each pass. As mentioned above, communi-
cation between sequential passes of the same LE is treated as a part of
the ICS. The following describes a single model for a particular pass

of a particular LE. Such a model is called a local estimator pass model

(LEPM) .

Recall that LEs are in one-to-one correspondence with submodels of
the design model. The LEPMs of a LE corresponding to a given submodel
need not be provided with the exact submodel and/or the exact remainder
model. Rather, each may be given approximations, denoted as the local

submode] and local remainder model respectively (as we have argued pre-

viously the local remainder model will typically be a drastically aggre-

gated version of the full remsinder model).

The situation with respect to the local suobmodel is simple.
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Because tﬁe LE is focused om its submodel, it is reasonable to provide
each LEPM with the most detailed available a priori information concern-
ing its submodel. Therefore, all estimators described in tﬁis thesis
have local submodels that are idemtical to the corresponding submodels

of the design model.

As we hive discussed previously, in general a non—trivial remainder
model is required. The requirement stems from the fact that the local
submodel is qot complete--descriptions of the impinging interactions and
the contributions to the observation from the other submodels in the
design model are not included. The representation of these effects are
the first and second tasks of the local rémninder model. Note that the
representation can include informationm received from the ICS (e.g. com-

cerning times at which interactions have occurred).

An important point to note is that there is valuable information in
the knowledge not only of interactions impinging on a particular submo-
del but also of inteiactions initiated by the particular submodel (e.g.
the contraction of the ventricles in a normal heart provides information
about atrial behavior pfior to the contraction). Specifically, from the
point of view of the LE corresponding to the initiating submodel, the
initiated interactions are essentially an observation of the state of
its local submodel. Therefore, when available, the ICS communicates
such information. The third task of the local remeinder model is to

represent this information.

The mathematical structure of the LEPMs making up the LE's model

has not been discussed. Because the local submodel is identical to the

submodel itself, ome part of the model has the mathematical structure
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familiar from the design model. However, the local remainder model
could have a radically different structure. In the work reported in
this thesis, this possibility has not been exploited, as a small gen—
eralization of the design model’s structure has been sufficient to

create local remainder models with the desired characteristics.

The generalization is thaf in addition to channels on which Gaus-
sian signatures are observed, there are also separate channels on which
integer-valued rendom variables, whose pmf depends on the prior state
transition, are observed. This generalization, introduced so that the
LEs can communicate, is discussed in detail in Chapter 6. The design of
specific local remainder models is highly problem-dependent, and discus-

sion is deferred to Sections 5.5 and 5.6 and to Chapter 6.

As described previously, the global reconstruction combines the
outputs of the LEs into a single global estimate. All estimators dis-—
cussed in this thesis use the same method. For each LE there is a dis-
tingoished pass, usually its final pass, from which the global recon-
struction collects information. The information is a state-trajectory
estimate for the local submodel of the LEPM. [Recall that the local
submodel of each LEPM of each LE is identical to the submodel (in the
design model) to which the LE corresponds]. The collection of these
trajectory estimates is a state trajectory estimate for the complete
design model. This estimate is then used to determine the amnotations

which are the solution to the wave tracking problem.’

This completes the overview of our approach to suboptimal estima-—
tors. Sections 5.2 and 5.3 discuss local estimation and global estimate

reconstruction in detail in a general context. We follow this with a
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discussion of the reduction of design models to the models used by LEs.
- This discussion proceeds by example. The examples are drawn from three
classes of design models yhich are introduced in Sectiom 5.4. The local
estimator models and the intercommunication structure, which are
strongly dependent on the particular design model, are introduced in
Sections 5.5 and 5.6. Details and illustrative case studies are given

in Chapter 6.

5.2. Local Estimation

In this section we describe the estimation problem solved by each
LE. From the previous section, the LE's model for each pass is a par-
ticular LEPM, which is a Markov chain with transition-dependent observa-
tion pdfs. The final output of each pass of each LE is a state trajec-—
tory estimate for the local submodel. Mathematically, this problem is
very similar to the solved problem posed in Section 5.1.1. The differ-
ence is that here we are focusing on the state of a reduced model rather
than the state of the entire design model. Since the size of the LE's
model is significantly less than that of the complete design model, the
implementation of optimal estimators for these submodels is within rea-
son, and this is essentially what we will do. Following the approach of
Section 5.1.1, the minimum probability of error optimization criterionm
can be imposed on the LEPM state-trajectory estimate, implying the use
of a MAP estimator with known implementations (in particular the Viterbi
slgorithm). While nothing in the previous discussion requires it, all
passes of all LEs, not just the final pass, compute the MAP e;timate of

the LEPM state trajectory. The purposes to which the results of the

early passes are put is complex (since they are the input to the ICS
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which in turn provides information to future passes of the LEs) and
dependent on the design model. The ICS, aloh; with the structure of the

LEPMs, is described in Sections 5.5 and 5.6 and in Chapter 6.

Thus, at each pass of each LE, an optimal signal processing problem
is solved. That optimal signal processing problem is defined by the
choice of the LEPM and the ICS. All algorithms for MAP estimation, of
course, yield identical results. However, the choice of algorithm for a
particular pass of.a particular LE may influence the information pro-
vided to the ICS from that pass, because certain quantities are natural
byproducts of particular algorithms, but not of others. Therefore, the
choice of algorithm may, by influencing the information availsble from

the ICS, affect the choice of LEPM in subsequent passes.

The estimators described in this thesis all employ the Viterbi
Algorithm (VA) (Formey, 1973) implementation of the MAP estimator.
Three qualitative characteristics of the VA that are stromgly reflected

in the LEs are described in the following paragraphs.

The VA does not naturally retain a "second best” trajectory.
Specifically, if there are M states in the Markov chain then there are M
retained trajectories. [Each retained trajectory is the best choice
given that it must terminate on a given state. However, the "second
best”, trajectory terminating on the same state is not retained. The
. cause for this behavior in the Viterbi tlgorithm is that no future
iﬁformation could possibly make the "second best” trajectory more likely
than the "first best”, and the justification of this stems directly from
the notion of state in a Markov chain. However, in our case, each LE in

essence has only a "local state” and thus it is not true that future

Section 5.2.




- 182 -

information (available at the next pass) could not reverse the positions
of first and iecond best. Thus there are reasons for expecting that one
could improve performance by exchanging a second best trajectory or a
trajectory that is most likely among those that differ "radically” (inm
the sense of the interaction sequences they specify) from the most
likely. For example, such information might be of value in avoiding
catastrophic error propagation from one LE to the next. While such
local processing and information exchange might be of value, we have not
considered them but rather have relied solely on Viterbi algorithms for
the locel processing. Thus, since 'second best” trajectories are mnot
available, all algorithms described in this thesis exchange information

extracted from the local MAP trajectory only.

The VA does not naturally provide a measure of confidence in its
estimate. Therefore, when exchanging information, LEs send only the
value, not the value and an on-line confidence measure. However, as we
will see in our case studies the local remeinder models may contain
a priori information concerning the acénracy of communicated informa-

tion.

The VA requires an observation model in which observations at dif-
ferent times are conditionally independent given their corresponding
state transitions. Therefore, multicycle signatures are not permitted.
As discussed previously (Section 5.1.1) this is not a fundamental prob-
lem since the state space can be augmented in many ways to overcome it.

Examples of this are discussed in Chapter 6.
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5.3. Global Estimate Reconstruction

This section discusses the creation of the final annotation trajec-
tory estimate from the results of the individuel LEs. Recall from Sec-
tion 5.1 that the global estimate reconstruction provides an anpnotation
trajectory estimate by collecting each submodel state-trajectory esti-
mate from the corresponding LE and then applying deterministic opera-
tions to the state trajectory to get an anmotation trajectory. Thus all
the work of reconciling local information is done by communication
between the LEs and nothing is left for the global estimate reconstruc-

tion step.

Aﬁ important implication of this reconstruction method is the fol-
lowing. Based on the examples in Section 3.8 and in Chapter 6, it is
generally the case th;t manpy global state trajectories are impossible
(e.g. in a normal heart inm which each ventricular contraction is caused
by an atrial ‘contraction. the P and R waves cannot occur simultane-
ously). However, there is no reason to expect that locally produced
estimates of parts of the global state will be compatible in the sense
that once adjoined, the resulting global trajectory has nonzero proba-

bility. This is the issue of consistency.
There are three levels of inconsistency.

(1) No inconsistency: the global state-trajectory estimate produced by
combining local state-trajectory estimates has positive probabil-

ity.
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(2) Partial inconsistency: each estimated submodel trajectory has
positive probability for omne or morev possible trajectories of
interactions impinging on that submodel. However, for at least one
submodel there is an incomsistency in that the state-trajectory
estimate for this local submodel is not possible for the set of

interactions specified by the actual state—trajectory estimates of

the other submodels.

(3) Totel inconsistency: one or more estimated submodel trajectories
has zero probability for all trajectories of interactions impinging

on that submodel.

In the estimators studied in this thesis, total inconsistency can
never occur because in all LEs the local submodel is identical to the
submodel in the design model. However, because the global reconstruc-
tion procedure is trivial, it does not exclude or correct any possible
partial inconsistency. Therefore, whether the estimate is comsistent or
only partially consistent depends entirely onm the LEs, specifically on
communication between the LEs during intermediate stages of the estima-

tion procedure.

The LE intefcommunication described in this thesis is not suffi-
ciently sophistigated to guarantee a consistent global estimate. Furth-
ermore, we do not understand how to achieve such communication without
essentially using a global optimization solution. Therefore, we are
forced to accept estimates that may be partially incomsistent. A par-
tially inconsistent (or even totally inconsistent) estimate can still

have long consistent segments, Furthermore, note that an inconsistent

state trajectory estimate may still imply an wave tracking estimate that
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bhas positive probability, i.e. the estimate is consistent from the point
of view of the annotations rather than the state. Even if it is incon-
sistent, the performance of such an estimator may still be quite good,
vhere by "performance” we refer to the probabilistic measures (false
positive/false negative, etc.) described in Chapter 4. Since such meas-
ures are our fundamental concern we will focus on them rather than on

the issue of comsistency.

5.4. Design Model Classes

The discussion of the comstruction of the LE structure starting
from a given design model proceeds by example. This section introduces
and motivates (from an ECG point of view) the three classes of design
model from which the examples used in this and the next chapter are
drawn. The three classes also represent a logical sequence of models
with increasing complexity which successively introduce new issues to be

considered in the estimation process.

Figure 5.1 shows the three classes of design models. The block
disgram notation used in Figure 5.1 was used previously in Chapter 3.
In the sequel, these classes are referred to as DM1, DM2, and DM3.
Because the focus of this thesis is on organizational issues, no design
models with only one submodel are discussed. Furthermore, design models
with three or more submodels are also not discussed because all
phenomena with which this thesis is concerned cam be illustrated in less
complex sitvations. The following discussion provides an ECG motivation

for each of these classes.
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{ Ls—=St,typically R

(a) Design-Model Class DM1

0 | =S, typically P

{ Ls=S2,typically R

(b) Design-Model Class DM2

O Ls™ Si,typically P

{ > S2, typically R
i } S3, typically V

(c) Design-Model Class DM3

Figure 5.1 Design-Model Classes.

An ECG motivation for DM1 is normal rhythm with P waves .disre-
garded. Furthermore, by including a second signature type in Cl, simple
models of some ventricular arrhytbmias, such as ventricular oscillation,

fall into this class. A motivation for DM2 is normal rhythm complete
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with P waves. Furthermore, some AV-nodal rhythms, such as first degree
AV block, fall into this class. Similar to DM1, the addition of a
second signature from Cl allows the modeling of some ventricular
arrhythmias. Finally, a motivation for DM3 is any ventricular arrhyth-

mia which can propagate retrograde.

LV ]

.5. The LEs’' Models and the ICS

The design of an estimator’s architecture requires the transforma-
tion of a design model into a set of LEs and an ICS, and a specification

of the set of LEPMs which make up each LE’s model.

The basic approach is to provide a gemeric set of components from
which local remainder models can be built and a generic set of intercon-
nections for the ICS. The designer, keeping in mind the properties of
the design model, can propose g&n initial estimator architecture using
these building blocks. The initial estimator can then be refined by

experiment.

In spite of the greater simplicity of the DM1 and DM2 design—modef
classes, the discussion begins with the DM3 design-model class, with the
further assumption that both signatures have equal SNRs. The reason for
starting with this case is that it is the simplest case in which the
submodels of the design model are symmetric. Therefore it is the sim
plest case in which one can reasonably seek estimator architectures with
symmetry between the LEs. After sketching the estimator architecture in
the symmetric case, the specializations to the asymmetric cases will be

sketched.
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Focus on DM3. As described in Section 5.1.2, each LE makes an ini-
tial pass (pass 0) based only on a priori information and the ECG. That
is, no portion of the ICS conveys information to a pass 0. Due to the
symmetry, only LE O is described. A block diagram of the complete LE 0

pass O LEPM is given in Figure 5.2.

As shown in Figure 5.2 and discussed in Sectiom 5.1.2, the local
submodel for the LE O pass 0 LEPM is submodel O from the design model.
By this choice the state space of CO, the number of transition probabil-
ity matrices (tpms) for CO and their values, and the number of interac-
tions PO initiates with CO (which equals the number of tpms for CO) are

all specified.

The local remainder model for the LE O pass O LEPM must therefore

model

(1) any interactions impinging om submodel O and

(2) any contribution of submodel 1 in the design model to the ECG (i.e.

signature S1).

The ECG contributions due to submodel 1 are modeled (that is, the LE is
made aware of the other signature type) in order to keep the LE from
confusing occurrences of the signature SO, with which it is primarily
concerned, with occurrences of S1. As shown in Figure 5.2, aspects (1)
and (2) are dealt with by different chains: the impinging interactions
are modeled by chain PO and the contribution to the ECG is modeled by
chain P4, The state spaces and tpms for PO and P4 and the interactions

initiated by PO are described later.

Section 5.5.



Mlocal submodel” a

| l
I
! co F=+s0 |
I t
I
I pCo.Po — :
R N . 4
i- p S KPO:C0 local remainder model'-:
|
!
|
: PO P4 St
| |
S S J

Figore 5.2 Design Model DM3, LEPM for LE O Initialization Pass.

As described in Section 5.1.2, the initial pass of each LE is fol-
lowed by a sequence of refinement passes. For a given LE, all LEPMs for‘
refinement passes have the same structure. However, they have different
parameters and are attached to different parts of the ICS. As was done
for the initial pass, only the LE O LEPM and its portion of the ICS are
described for the gemeric refinement pass. The configuration for LE 1

follows from symmetry.

A block diagram of a refinement pass LEPM for LE 0 is given in Fig-
ore 5.3. As in the initial pass LEPM, the local submodel is submodel 0O
from the design model. However, the local remainder model is substan-—
tially more complex than the local remainder model of the initial pass

LEPM.

In a refinement pass, the LE receives a posteriori information
through the ICS. As in the initial pass, the local remainder model must
model interactions received by submodel O and the contribution of submo-
del 1 in the design model to the observation (i.e. signature S1).
Information concerming both of these aspects is available through the
ICS. For example, the result of the initili pass of the LE concerned
with submodel 1 implies (hopefully accurate) estimates of times at which

submode] 1 initiated interactions with submodel O and times at which the
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Figore 5.3 Design Model DM3, LEPM for LE O Refinement Pass.
signatore S1 was initiated. Furthermore, there is also information
available through the ICS concerning the interactions initiated by sub-
mﬁdel 0. For example, the result of the initial pass for the LE con-
cerned with submodel 0 produces estimates of the times at which submo-
del 0 initiated interactions with submodel 1. Note that in the imitial
pass of LE O, such information om O-to-1 interactions was not available
and thus the LEPM did not account for it. In & refinement pass such
information is available and therefore the local remainder model must
also include a model of this information. Finally, the LE is also pro-

vided with a priori information and with the observationms.
In summary, for each refinement pass, the ICS provides

(1) an estimate of the interactions initiated by submodel O, augmented

with an estimate of further information as described below;

(2) an estimate of the interactions received by submodel 0, again aug-

mented; and
(3) an estimate of the times at which the signature S1 was initiated.

The total information im (1) or (2) is referred to as an augmented

interaction. The signal in (3) is referred to as a binary annotation
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(i.e. a yes or no decision at each time corresponding to whether signa-

ture S1 was or was not initiated at that time).

The following paragraphs describe the source of the augmented

interaction estimate and the nature of the augmenting information.

While one can imagine very complex ways to extract the information
in (1) and (2) from prior passes of multiple LEs, we have always chosen
to use a single pass of a single LE, though the pass and LE may differ
for (1) in comparison to (2). When possible, the interactiom informa-
tion is taken from the prior pass of the LE responsible for the submodel
which initiates the interaction. Therefore, (1) comes from LE 0 while
(2) comes from LE 1. The selection of this source for the interaction
information was motivated by the method of calculating the interaction
estimate. Specifically, the interaction estimate is deterministically
calculated from the state estimate for the portion of the LEPM which
corresponds to the initiating submodel in the design model. Therefore,
the interaction estimates are (presumably) most reliable when the por-—

tion of the LEPM involved is the local submodel since it is only in this

situation thet the chain involved is carried over without severe aggre—

gation from the design model.

The augmenting information referred to im both (1) and (2) is the
state of the local submodel in the LEPM of the LE pass providing the
interaction information. Therefore, in (1) the augmenting information
is the state of the CO chain in the prior pass of LE 0 while in (2) it
is the state of the Cl chain in the prior pass of LE 1. Again, this

portion of the LEPM was chosen because it is the only portion carried

over unchanged from the design model. A more detailed motivation and
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discussion of why this augmentation is performed is presented in

Chapter 6 in the course of the case studies.

If one were to implement the full version of our approach—-i.e.
every LE is implemented for every pass——then it is always possible to
take the interaction information from the prior pass of the LE that is
responsible for the submodel that initiates the interaction. As we will
see, typically there are several LE passes that are eliminated from the
design, as they are either redundant or of inconsequential value to
overall performance. In these cases, it becomes necessary to determine
alternative sources for the interaction information in subsequent
passes., In the fdllowing paragraphs we describe two examples. These
ideas are discussed further in Chapter 6 in which we describe specific

designs in great detail.

In all passes of all LEs for the symmetric DM3 case described here,
the interaction information can always be taken from the prior pass of
the LE responsible for the submodel initiating the interaction. In this
case, the state information with which the interaction informationm is
augmented includes the interaction information (as the latter is a

deterministic function of the former).

In other situations, the interaction information must be obtained
from a different source. For example, consider a DM1 class design model
for pormal rhythm. Submodel O (submodel 1) corresponds to the atria
(ventricles). The R wave initiated by the ventricles is modeled (signa-

ture S1 from submodel 1) while the P wave is not modeled.

Focus on LE 0 pass 1. Because the local submodel initiates no
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signatures, LE O pass 1 requires a local remainder model, which conveys
information from the ICS concerning the interactions submodel O ini-
tiates with submodel 1. This interaction information camnot come from
the prior pass of the LE that is responsible for the submodel that ini-
tiates the interaction (i.e. pass O of the atrial LE, LE 0), because
LE 0 pass 0 is of no value at all since its LEPM has no observations.
(Recall that the P wave is not modeled). Therefore, the interaction

estimates must be taken from LE 1 pass O.

Return now briefly to the genmeral case. When an alternative LE
must be used as the source of interaction information, as in this exam-
ple, the interaction information is still deterministically calculated
from the portion of the LEPM which correspogds to the initiating submo-
del in the design model. Because a different LE is used, this portion
of the LEPM is no longer the local submodel but rather is now a part of
the local remainder model, and therefore is always highly aggregated.
The augmenting information is still the state estimate for the local
submodel. Therefore, the interaction and augmenting information are not

redundant,

Continuing with the example, comsider LE 1 pass 0. The LEPM for
this pass requires & remainder model, which is an aggregated model of
submodel O (corresponding to the atria), in order to provide a mechanism
to excite chain C1 (corresponding to the ventricles). The O-to-1
interaction estimates, which are taken from this pass, are determinis—
ticly computed from the state trajectory estimate through the highly
aggregated version of submodel 0. Because submodel 1 is affected by the

interactions only when its state occupies a particular state (the
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resting state) we are more likely to believe the estimate of O0-to-1
interactions derived from the highly aggregated version of submodel 0 in
the local remainder model of LE 1 pass 0 if the estimated excitatiom
attempt occurs at a time when the state of chain C1 is im the resting
state. This motivates the communication of both the estimated interac-
tion and the estimated state of chain C1, that is, the communication of

the augmented interactions defined previously.

In a similar manner, the binary annotation indicating that annota-
tion S1 did or did nof occur is taken from the prior piss of the LE
responsible for the submodel initiating S1. Therefore, in (3) above,
the signal is taken from the prior pass of LE 1. In the design models

considered in this thesis, this is always possible.

The information received through the ICS can always be modeled as a
noisy observation of a state transition in some subprocess state space

of the LEPM. These non-ECG observations are called pseudo-observations.

All of the pseudo-observations are modeled as arising from the local
remainder model. In this thesis, they have all been discrete valued but

that is not crucial.

Since the LE receives three types of information from the ICS there
are correspondingly three pseudo-observations labeled Z1, Z2, and Z3 in
Figure 5.3. Pseudo-observation Z1 models the information concerning
jnteractions initiated by submodel 0. This i; reflected in the CO-to-P1
direction of the interactions in the LEPM. Likewise, pseudo-observation
Z2 models the information concerning interactiOns'inpinging on submo-
del 0. Finally, pseudo-observation Z3 models the information concerning

occurrences of S1.

Section 5.5.




- 195 -

Since Z1, Z2, and Z3 are estimates from the prior pass, a descrip-
tion of the statistics of Z1, Z2, or Z3 is a description (from a partic-
slar point of view) of thg performance of the prior pass. For example,
the tpms on the chain of P1 and the pmfs for Z1 given the last state
transition of Pl are a description of the performance of the prior pass
with respect to estimating the interactions initiated by submodel O.
The subprocess state spaces and tpms for P1, P2, and P3 and the interac-

tions initiated by P2 are described later.

The estimators described in this thesis all include two refinement
passes following the initialization pass. Therefore, for DM3, the com-
Plete estimator up to the global reconmstruction step is as shown in Fig-
ure 5.4. As before, straight solid lines indicate interactions between
submodels in the LEPMs and wavy solid linmes indicate signatures ini-
tiated by the corresponding submodel. The ICS is shown in dashed lines.
Note the symmetry in the ICS between passes O and 1 and passes 1 and 2.
The léading superscripts indicate the identity of the LE and the pass
number. For example, I'OQSI is the estimate of the state of chain C1 at
time n computed by LE 1 pass 0. Otherwise the h and x notation is as in
Section 4.1 with carets added to indicate that these are estimates. The
notation Si,Si where i is 0 or 1 is used to emphasize the binary values
of the binary annotations. Finally note that the Pi boxes with the same
name (e.g. the four instances of P2) are each different chains. The
common name refers to the common method used to create these chains from
other information and reflects the common role (with respect to the

local submodel) played by members of each class of chainm. These five

methods (for PO, ... , P4) are described later.

Section §5.5.
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As ‘described in Section 5.3, the global recomstruction step is
extremely simple. First a global state-trajectory estimate is formed by
taking the state trajectory estimate for chain CO from LE O pass 2 and
for chain C1 from LE 1 pass 2. Then this global state-trajectory esti-
mate is deterninis;icly transformed into a solution to the wave tracking

problem by simply attaching appropriate annotations to the corresponding

transitions in the state trajectory.

This concludes the sketch of the architecture of the DM3 estinntot!
In Chapter 6 we present case studies for particular DM3 design models in
which the SNR of the S1 signature is much lower than the SNR of the S2
signature. While we do not describe this specialization of the DM3
estimator, the corresponding specialization of the DM2 estimator is
described in the following section, and based on that discussion the DM3

case follows analogously.

5.6. Specializations of the DM3 Architecture to DM2 and to DMI

e T e et . —— S gt T

The estimator architecture proposed for the DM3 design-model class
can be specialized to the DM2, and then further to the DM1, design-model

classes,

In the DM2 case, the interactions are unidirectional. Therefore
certain elements of the LEPMs simply drop out. The resulting estimator
up to the global reconstruction step is shown in Figure 5.5. The global

reconstruction step is unchanged.

However, even further simplifications, as shown in Figure 5.6, can

be made when other aspects of the ECG problem are considered. For

Section 5.6.
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example, the SO signature is the atrial activity (P wave) and the S1
signature is the ventricular activity (R wave). Therefore the magnitude
of the SO signature is much lower than the magnitude of the S1 signa-
ture. Considering this case, it is cienr that LE O pass 0 is essen-
tially useless since in that LEPM fhe low magnitude SO signature is
 modeled in detail, but the model for the high magnitude S1 signature is
very crude. Specifically, there are no causality constraints relating
the SO and S1 signatures andktherefore no reliable mechanism keeping
estimated SO (S1) signatures near troe SO (S1) signntufcs. Rather, the
estimator, which (intuitively) attempts to explain energy in the signal
as waves, may use estimated occurremces of the SO signature to account
for the random portion of true S1 signature occurrences. Therefore LE 0

pass O should be deleted.

The deletion of LE O pass O forces changes in the ICS, as was noted
in the previous section with respect to DM1 design models. Specifi-
cally, in LE O pass 1, the information concerning the interactions ini-
tiated by submodel O car no longer be obtained from LE O pass O. There-

fore, it must be obtained from LE 1 pass 0. Thus the transmitted infor-

mation, formerly the CO-to-Cl interaction estimate

[4] °'°%§°'C1 aug-

O'OQSO. is now O.IQ:O.CI and O'IQSI.

mented by the CO state estimate

Note that with this new interaction information, the augmenting informa-

tion 0,1951 does not include the interaction estimate O‘Iﬁ:O'CI.

[4] Note that chain C1 which receives these interactions does not
occur in the LEPM for LE O pass O in Figure 5.5. However, the in-
‘teractions initiated by CO and impinging on Cl1 canm still be com-
puted because they only depend on the state of chain CO.

Section §5.6.
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LE O pass 2 is also essentially useless. LE 1 pass 1 essentially
replicates LE 1 pass O (since the deletiom of LE 0 pass 0 leaves them
with essentially the same inputs). Therefore, LE 0 pass 1 and LE O
pass 2 also have essenti;lly the same inputs. For this reason, LE O
pass 1 and 2 should be combined and, since they have identical struc-
tore, the combined pass would be the same as LE 0 pass 1. (Here the
phrase "essentially the same inputs” applied to two LE passes means that
the ECG observations and information transmitted from other LEs via the
ICS are approximately the same for both). Therefore LE 0 pass 2 should
be deleted. The deletion of LE O pass 2 forces no changes in the ICS
and also allows the deletion of LE 1 pass 1 (since the results of LE 1
pass 1 are no longer used). Therefore the DM2 estimator up to the glo-
bal reconstruction step for this SNR situation has the architecture
shown in Figure §5.6. The global reconstruction step is slightly
changed. Since LE O pass 2 no longer exists, the state-trajectory esti-

mate for CO is taken from LE O pass 1 instead.

Specializing to the DM1 case, the SNR of signature SO goes to zero.
Therefore, chain P4 of LE 1 pass 0O, chain P3 of LE O pass 1, and chain
P3 of LE 1 pass 2 drop out; and chain CO of LE O pass 1 no longer ini-
tiates a signature. Note that LE O pass 1 has only pseudo-observations.
The architecture of the resulting estimator up to the global reconstruc-
tion step is shown in Figure 5.7. The global reconmstruction step is

unchanged from the prior case.

Section 5.6.
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3.7. Summary of Chapter 5

This chapter has proposed a general approach to the design of esti-
mator architectures, and a specific architecture for design-model class
DM3 in the case where the SNRs of the two signatures are approximately
equal. This architecture was then specialized to the DM2 case, the DM2
case with unequal signature SNRs (motivated by the ECG problem), and the
DM1 case. The discussion began with the complex, symmetric DM3 case
because of the symmetry of the design model. The symmetry was repro-
duced in the archit?cture of the estimator. In the ls?mmetric DM3, DM2

and DM1 cases, the estimators also lack symmetry.

The latter discussions have shown how a complex architecture can be
simplified using judiciously chosen rules of thumb. While this seems to
be true for a number of design models relevant to the ECG problem, and
may be applicable in other areas, this demonstration by example is as

formal as the gemeral design process will be taken in this thesis.

Section 5.7.
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6. Signal Processing III: Implementation and Case Studies

Torning from the general con;iderations of Chapter 5, this chapter
illustrates their application in specific ECG case studies. The struc-
ture of the gemeric PO-P4 chains and the organization of the ICS is dis-
cussed in detail and exemplified in a series of case studies, beginning
with design models drawn from the simplest class of design models: DM1,
Each of the P0-P4 chains is introduced when the increasing complexity of
the design model first requires it, alomg with the related ICS issues.
Finally, the last sections of the chapter consider several miscellaneous

issues.

6.1. The PO Class of Chains

The creatioﬁ of a PO chain is described in the context of the ini-
tial pass of LE 1. This is the case occurring in the DM1 estimator of
Figure 6.1.[1] The PO chain models the interactions impinging on submo-
del 1 in the case when no information is available through the ICS. As

such, it is only used in the initial pass of a LE.

The subprocess state space of the PO chein was taken to be the
coarsest possible aggregation of the subprocess state space of submo-
del O consistent with the full range of possible interactions imitiated
by submodel 0 and impinging on submodel 1. Thus, all states of submo—
del 0 in Uo'l'i are coalesced into state i of the PO subprocess state

space. The notion of a map T from the states in the submodel O

[1] In each section of Chapter 6, all figures appear at the end of
the section.

Section 6.1.
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subprocess state space to states in the PO subprocess state space is
useful. The flgt that the map represents an aggregation is reflected in
the fact that it is onto but not ome-to-ome. This thesis has only con-
sidered design models in which the interaction submodel O initistes with
submodel 1 takes two values, so that the subprocess state space of PO
has two states. Intermediate levels of aggregation, which would require
additional states in the PO subprocess state space, are possible but

have not been considered in this thesis.

The interactions which PO initiates with C1 follow from the defini-
tion of the PO subprocess state space. Let xpo(n) be the state in the
PO subprocess state space and hPO‘CI(n) be the interaction PO initiates

with Cl. For submodel O the interactions ho'l(n) are defined by
0,1
20(n)ep0. 1.0 " (2)

nP% Cl(a)

Correspondingly, the interactions trapsmitted by PO are

defined by

2P0(n)=0F0:Cl(py

That is, in submodel 0O, the same interaction canm occur when the submo-
del 0 subprocess state occupies a number of different states. Thus we
use the values of the interactions ho'l(n) to index a partition of the
subprocess state space of submodel 0, specifically the sets Uo'l'i as
the interaction i ranges over all possible values. In the aggregated PO

subprocess state space, each state corresponds to a different interac-

tion. Finally, PO does not initiate interactions with any other chsain

Section 6.1.
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in the LEPM.

The interlctions received by PO are identical to the interactions
received by submodel d. Two methods for choosing a tpm (or a set of
tpms) for the subprocess state space of PO have been considered. They
are both based on the notion of preserving selected statistics between
the aggregated and unaggregated chains, that is, under thevnction of the
map T. More concretely, the value of some statistic which can be

0,1,i

described in terms of the U sets in the submodel O subprocess state

space is calculated. Then the tpm on the subprocess state space of PO

is chosen so that the corresponding statistic has the same value.

The first method we have considered preserves the aggregated ver—

sion of

lim Pr(z%(n)€00:1:31x%(n-1) €00 1. 1),
n->o

That is, the tpm on the subprocess state space of PO is chosen so that

Pr(xP0(n)=;12P%(n-1)=1) = 1im Pr(x%(2) €00 1+ [:Oa-1) €0 2o 1y
n-)e ‘

For each i and j, the left hand side of this equation is exactly the i,j

element of the tpm for the PO subprocess.

The second method preserves the aggregated version of

Section 6.1.
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lim Pr(xo(n)GUO'l'i)

n—r>o

in a similar way. Preservation of this statistic does not provide suf-
ficient equations to determine a unique tpm for the PO subprocess.
Therefore, we have also imposed the side condition that all rows of the
tpm are equal. This choice was made primarily because it is simple and
provided reasonable performance, which is our chief criterion. Like all
of the aggregation ideas, this particular aspect is an area open for
future research. Finally, note that in both cases, if submodel O
receives interactions from submodel 1 (e.g. in DM3), the aggregation is

performed independently for each of the tpms of submodel O.

For all design models discussed in this thesis, preservation of
statistic (1) always yields a tpm with the structure shown in Fig-
ure 6.2. The reason is that all submodels discussed in this thesis
which are transformed intoc PO type chains initiate two interactions.
Therefore, there are two states in the PO chain. Furthermore, one of
the interactions can never occur twice in a row. Therefore, there is an
on-diagonal zero in the tpm. In the tpm of Figure 6.2, there is a sin-
gle parameter p. Method (1) described above will produce a specific
value of p for each impinging interaction. In addition, in our estima-~
tion case studies, we have also considered p as an independent design
parameter in order to determine how its value can influence estimator

performance. Thus our third method is optimization of the parameter p.

Finally, a fourth method is needed for cases discussed in later

sections where the first two are clearly not appropriate. The problem

Section 6.1.
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is in the steady-state assumption built into the definition of the
statistics. Specifically, consider a submodel which both receives and
initiates interactions. Furthermore, assume that the received interac-
tions are constrained (by their initiating submodel) such that a certain
tpm is applied rarely and only for brief intervals. In this case the
assumption that the submodel reaches steady state under this tpm (an
implicit assumption in both of our analytical approaches to computing
tpms for PO) is clearly inappropriate. These situations are considered

on a case~-by-case basis when they arise.

Since the PO chain does not initiate any signatures, its structure

is completely determined at this point.

Section 6.1,
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=)

2.

The creation of a Pl chain is discussed in the context of pass 1 of
LE d. This is the case occurring in the DM1 estimator of Figure 6.1,
From the initial pass of LE 1 it is possible to extract information
relevant to estimating the interactions submodel O initiates with submo-
del 1. (As discussed previously, in more complex estimators such as the
DM3 estimator of Figure 5.4, this estimate may come from the initial
pass‘of LE 0). The purpose of the Pl chain is to use this information,

received through the ICS, to assist pass 1 of LE O.

The information provided by the ICS is an estimate of the angmented
interactions described in Sectiom 5.5. Furthermore, since the informa-
tion provided by the ICS is based on a prior pass through the observed
data, there is no reason that the ICS must provide this information in a
causal manner. That is, at time n, the ICS.may present the estimated
augmented interaction at time n+m, m a constant integ;r not restricted

to negative values. The implications of m nonzero will be discussed

Section 6.2.
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later.

The P1 chain has a single pseudo-observation denoted Z1 which is
obtained from the information received from the ICS. There are no Gaus-
sian observations initiated by P1. The Pl chain receives interactions

from the CO chain but it does not initiate any interactions.

The following formalism applies to pseudo-observations initiated by
the P1, P2, or P3 type of chains. At each time sample, the pseudo-
observation is a single, scalar, integer-valued random variable whose
pmf is determined by the previous state transition in the subprocess
state space of the chain which initiates the observation. The pmf is
given explicitly by specifying its value for each permissible value of

the integer—valued random variable.

The tpns of P1 and the pmfs of the pseudo-observation Z1 together
model the information provided by the ICS. The information is used as
&n observation of the interactions submodel O initiastes with submodel 1.
Since this information is just anm estimate created by a previous pass,
the P1 chain is actually modeling the performance, in a specific sense,

of all the LE passes which contribute to the estimate.

An important point to note is the following. The information we
are trying to capture consists of estimates of the interactions ini-
tiated by submodel 0. Since these interactions are completely deter—
mined by the state of submodel 0, one ;ight think that the interaction
estimates from the prior pass could be successfuolly modeled as direct
observations on the CO chain. This, however, neglects the major aspects

of the dynamics of the estimation procedure used to obtain these
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estimates. In particular, without including some additional memory
(which we accomplish by introducing the P1 chain), we cannot model phase
shifts between actual and estimated interactions. By capturing such

phase shifts we obtain a far more accurate and useful characterization

of the performance of the prior pass.

As we have just indicated, the purpose of the Pl chain is to intro-
duce memory into the model. To do this, we proceed as follows. The
interactions which CO initiates with P1 are identical to the interac-
tions which submodel O initiates with submode 1 in the design model.
The subprocess state space and tpms of Pl are chosen so that Pl acts as
8 shift register for these interactions. That is, at each tramsitiom P1
throws out knowledge of the oldest interaction and adds in knowledge of
the newest interaction. The length of the‘shift register plus one is
the duration of the model’s memory. The additional one unit of memory
is due to the fact that the observation pmf for the pseudo—observation
Z1 is dependent on the most recent state tranmsition, not on the present

state.

Consistent with our previous notation, let Z1(n) be the random
variable corresponding to the information received through the ICS at
time n and let Zln be its realization. Let K be the length of the shift
register. In light of the previous description of the states of P1, the

observation pmf at time n has the form
- 0,1,0,1 40,1
Pr(Zl(n)-ZlnIhn ’hn- .....hn_x).

1

This pmf can be directly interpreted as a quantification of the dynamic
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performance of the prior pass. In all the work reported on in this

thesis, this pmf is evaluated vis simulation.

The one remaining piece of information we must specify is the
nature of Z1(n). Tﬁe most obvious choice is to let Z1(n) be the esti-
mate of ho'l(n) from the prior pass. However, as we have indicated, we
have the ability to use the ICS information in a noncausal manner.
Furthermore, since the estimation algorithm we will use (the Viterbi
algorithm) is a smoothing algorithm, it is natural to characterize our
performance in estimating ho‘l(n) as a functiom of the actual interac-

tions at times before and after n. Thus, we may more generally wish to

take Z1(n) as the estimate of KV’ 1(p-J) for some J>0. In the work
reported in this thesis, K is two and the estimated augmented interac-
tion is delayed by ome (J=1) so it is centered in the window of three

interactions represented by each transition in the Pl chain.

6.3. The P2 Class of Chains

The creation of a P2 chain is discussed in the context of pass 2 of
LE 1. This is the case occurring in the DM1 estimator of Figure 6.1.
From pass 1 of LE 0 it is possible to extract information relevant to
estimating the interactions which submodel 0 initiates with submodel 1.
The purpose of the P2 chain is to use this information, received through

the ICS, to assist pass 2 of LE 1.

The P2 chein draws on ideas already seen in the PO and P1 chain
cases. Specifically, like PO, the purpose of P2 is to model received
interactions. However, unlike PO, P2 has an observation. Like P1, the

oObservation is a pseudo-observation supplied by the ICS. The
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information received is also analogous to the P1 case. Finally, 1like
P1, the P2 chain acts as a shift register memory, storing a sequence of
0-to-1 interactions. However, unlike P1, the interactions P2 stores are

genernted internally.

Exactly as in the P1 case, the information provided by the ICS is
an estimate of the augmented interactions (possibly shifted in time as
with Z1(n)) described in Section 5.5. The only difference is in the
source of the estimate. The pseudo-observation (described above) from
the P2 chain is denoted Z2. The P2 chain has no Gaussian observations.
It initiates interactions with Cl’but does not receive interactions from

any submodel.

The single tpm of P2 and the pmf of the pseudo-observation Z2 model
the information provided by the ICS. The information is used as an
observation of the interactions submodel O initiates with submodel 1.
Since the information is just an estimate created by a previous pass,
the P2 chain (like the Pl chain) is actually a model of the performance,
in a specific sense, of all the LE passes which contribute to the esti-

mate.

In the P1 case, as discussed previously, if a zero—memory model of
the estimates received through the ICS were sufficient, them Z1 could be
directly initiated by CO. In the P2 case, even if a zero-memory model
is sufficient, it never makes sense to imitiate Z2 directly by Cl1. The
reason is that the O-to-1 interactions that the Z2 pseudo-observation
represents are not functions of the state transitions in the Cl subpro-
cess state space. Rather, in-the P2 case, the natural ;ero-memory model

is a model with a time-varying tpm for Cl corresponding to the estimated

Section 6.3,
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O-to-1 interactions. That is, the tpm at time n would be determimed by
the estimated augmented interaction at time =n. This is directly
motivated by how the true interaction at time n determinmes the tpm of
submodel 1 at time n--i.e. truth is simply replaced by an estimate.
However, since the estimates from prior passes typically contain phase

shifts, a zero-memory model typically yields poor performance.

The purpose of the P2 chain is to introduce memory into the model.
Specifically, eacﬁ state of the P2 subprocess state space represents a
particular state of a shift register memory. The contents of the shift
register memory are the interactions which submodel O initiates with
submodel 1. This is quite similar to the P1 case. However, in the P1
case the interactions were received from an external source and simply
stored. In the P2 case there is nd external source and the chain must
generate the interaction sequences based on a priori information. Let 5
be the length of the shift register. Let bi.....bé_1

register contents represented by the state labeled "i” in P2. The i,j

be the shift
element 9; i of the tpm for P2 is calculated as

q, .=1imPr(a®' Y(a+1-k)=bd _ | k=0.....K-1]
U R K-1-k

2% -0 =bi L k=0,....k-1).

1-k

Note that for the tramsition from i to j to have positive probability,

it must satisfy by_;=b,, k€{1,...,E-1}. In this case,
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- 0,1 —ni 0,1, _+y_pni = _
qi.j_:_i_)mopr(h (n+1) bx_l Ih (n k)-bx_l_kl k op....x 1).

Autonomous transitions under this tpm generate a sequence of interac-

tions based on a priori information.

Consider next the way in which P2 initiates interactioms with Cl1.
To allow for noncausality in the use of informatibn provided by the ICS
we proceed as follows. Let K‘ be a distinguished element (usually cen-
tered) in the shift register memory, so K‘G[O,....K-ll. When the state

of P2 is i, the interaction P2 initiates with C1 is defined to be bi..
K

UPZ‘CI‘k in the subprocess state space of P2, which

Therefore, the sets

define the P2-to-Cl interactions, are

)

As in previous notation, let Z2(n) be the random variable
corresponding to the information received throuéh the ICS at time n and
let Z2 bve its realization, an integer. In 1light of the previous
description of the subprocess state space of P2, the observation pmf

(for the tranmsition from state i to state j) has the form

= cosy _ j i i i
Pr(z2(n)=22 1j,i) = Pr(Z2(n)=22 lbg_;.bg_;.bg_,.....bg).

(Note that on the right-hand side we have used the fact that b{_1=b:.
k=1,...,K-1 in order for the transition to have positive probability).

Note, as in the Pl case, that while the length of the shift register is
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K, the duration of the model’s memory is K+1. 1In all the work reported

on in this thesis, this set of pmfs is calculated by simulation.

Because of the freedom to choose I‘. the ability to have the ICS
present time-shifted estimated augmented interactions is less important
in the P2 than in the Pl case (i.e. by using K‘(K-l we have already
included some noncausality in our model). Ia the work reported om in
this thesis, K is two, K. is one, and the augmented interaction is
delayed by one (J=1). Therefore, as in the P1 case, the observation is
centered in a window of three interactions represented by transitions in

the P2 chain.

6.4. Numerical Results for Design-Model Class DMl--Introduction

In this and the following sections we present and discuss numerical
results for several design models belonging to class DM1. A historical
approach is followed in describing numerical results for all design-
model classes. This approach was chosen because it clearly presents the

reasons behind the evolution of the estimators.

In the DM1 estimator of Figure 6.1 there are five design choices

that require experimental justification. They are

(1) PO, the a priori model of interactions impinging on sobmodel 1

(used in LE 1 pass 0);

(2) Pl1, the a posteriori model of interactions initiated by submodel 0

(used in LE O pass 1);
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(3) P2, the s posteriori model of interactions impinging on submodel 1

(used in LE 1 pass 2);

(4) the precise definition of the augmented interaction informationm

transmitted by the ICS from LE 1 pass O to LE O pass 1; and

(5) the precise definition of the augmented interaction information

~transmitted by the ICS from LE O pass 1 to LE 1 pass 2,

Historically, (5) evolved based on DM2-class design models and is
discussed in a later section. In the following sectioms, (1)-(4) are
discussed. The discussion of (1) is placed after the discussion of
(2)-(4) because our discussion of (1) focuses on its affect on overall
global estimator performance. We also include discussions of the varia-
tion of performance (for a fixed estimator structure) as the design

model changes and of some robustness issues.

The experiments for DMl-class design models are based on two design
models. Figure 6.3 shows a very simple DMl-class design model for nor-
mal rhythm. Like many of the design models to be described, this design

model has a number of free parameters. . Specifically, there are seven

free parameters: Pg.o' Pg.O' P<1>.2' 95.0' MR+ OR. and o, . The proba-

bilities pg'o and p2.0 determine the pmf on the period between SA-nodal
depolarizations, the probability pé'z sets the AV-junctional delay-time
pmf, and the probability pglo determines the ventricular refractory—-
period pmf. The mean mp and standard deviation op describe the R wave,
vhich is ome sample long. The standard deviation %ps describes the

observation noise (which has zero mean). The sets of values for these

seven parameters that were used in our experiments are listed in
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Table 6.1.

Figure 6.4 shows a second DMl-class design model for normal rhythm.
This design model is essentially the same as the design model of Fig-
ure 6.3 except that there are approximately twice as many Markov chain
cycles between occurrences of an R wave signature. The increased tem—
poral resolution makes it possible to conmsider phase shifts and multiple
Markov-chain cycle signatures in a more realistic sitvation. For exam-
ple, in this design model the R wave signature is two Markov-chain
cycles long. Only one set of parameters are considered for this design

model, and they are indicated in Figure 6.4,

Section 6.4.
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Submodel O:

-Submodel 1:

if 2°=0: if x#0:

1-P30 1-P30
3 —(a (3) -
1 {]
Pio Pio

The Markov chain interval is 160 msec.

Submodel 0 has no Gamssian observations. There is a Gaussian observa-
tion from submodel 1, queling the R wave. The signature sampling
interval is 160 msec. The R wave signature is one sample long, with
mean mpy and standard deviation Op* The Gaussian observation noise has
mean 0 and standard deviation %bs"

Figure 6.3 A Normal Rhythm Design Model.
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Model Number

: } 1 2 3 4 5 6 7 8 :
Ir pg.oi 25 .25 .25 .25 .28 .25 .25 .25 i
l 92'0 : .6667 .6667 .6667 .6667 .6667 .6667 .6667 .6667’
: pg'z = S RS U SRS SR | 0 0 0 :
:,,.r...,t,, P3.0 ! 5 s .5 .5 5 5 5 .5 :
| L = 10 5 4 3 2 5 3 2 |
i onl\l'?\ls\ls\lsxls\l.s \Is\l‘fi
L % bs L 1 1 1 1 1 1 1 1 %

Table 6.1 Parameters for the Design Model of Figure 6.3.
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Submodel O:

Submodel 1:

_J

_/

/
A Y,

'_{1ifx°e[0}

p'=
0O otherwise

Figure 6.4 A Normal Rhythm Design Model with Twice the Temporal
Resolution of the Design Model of Figure 6.3.
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Markov chaim cycle interval = signature sampling interval = 1 (normal-

ized time).

R: 2 samples long, each sample having mean 2 and standard deviation

\I7S.

Observation noise: mean 0 and standard deviation 1.

Figure 6.4 Continued.

e P1 Chain

Jon
.
[V

In the estimator of Figure 6.1, the purpose of LE 1 pass 0 is to
calculate estimates of the augmented interactions impinging on submo-
del 1, i.e. to estimate when the atria (submodel 0) have excited the
ventricles (submodel 1). The estimates are the realization of the
pseudo-observations in the LE 0 pass 1 LEPM. In our initial attempt to
provide useful information to LE 0 pass 1, we used estimates of the O-
to-1 interactions alone. As discussed earlier in this chapter, we found
that in order to incorporate these pass O interactionm estimates into
pass 1 it was necessary to model the dynamics of the pass O estimation
procedure. Specifically, we consistently observed phase-shifted

interaction estimates in LE 1 pass O,

To illustrate the natore of this phase-shift phenomenon, we
describe in some detail a particular example. Consider the design model
of Figure 6.3 with the parameter values of Table 6.1 column 1. A par-
ticular realization of the stochastic process defined bf Figure 6.3 and
Table 6.1 column 1 is shown in Figure 6.5. We now describe the LE 1

pass O estimator for this example. Recall that LE 1 pass 0 has only the

Section 6.5.
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original Gaussian measurements (i.e. there are no pseudo-observations)
and the LEPM consists of the chains PO and C1. Such a LEPM is depicted
in Figore 6.6. Chain Cl1 is carried over directly from the design model.
The methodology behind the specification of chain PO has been generally
described previously, and more specifics will be discussed in the

sequel.

The performance (with respect to the interactions impinging om sub-
model 1) of the LE 1 pass 0 of Figure 6.6 on the simulated data from the
design model of Figure 6.3 and Table 6.1 column 1 is described in
Table 6.2. This table is a matrix each element of which is the number
of times a certain event occurred during the simulation. The events are
all 24 possible ordered quadruples of estimated interactions at time n
(I‘OQ:O'CI. 2 possible choices) and truth interaction at times n-1, n,
and n+l (hgii. hg'l. hg;i: 23 possible choices). Recall from the design

model definition that

0.1 [0 if submodel O attempts to excite submodel 1
A t=

n L1 otherwise

and likewise for I'OGEO'CI.

Note that certain truth interaction tri-
plets (namely those with more than ome zero interaction) have zero pro-
bability of occurring. These appear in the matrix as all zero columnms.
In subsequent tables such columns are. suppressed. In columns (1,1,0),
(1,0,1), and (0,1,1) the sum of the elements is not exactly equal from
column to column due to edge effects at the beginning and end of the

simulation. The choice of a triplet of truth interactions was made

because the chains are so small that longer intervals are difficult to
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interpret. The desire to include both lead and 1lag phase errors
motivated the use of a symmetric triplet. Tables of this type occur

frequently in the sequel.

The (0,(1,1,0)) entry (i.e. the entry with 136 elements) is a par-
ticular type of phase error. The estimator claimed that submodel 0
attempted to excite submodel 1 ome Markov chain cycle before the true
attempt at excitation. Note that the corresponding lag (rather than
lead) error, which is (0,(0,1,1)) never occurred. This indicates that
the estimator has a tendency to produce an early estimate of excitation

time.

The (1,(1,0,1)) entry (i.e. the entry with 338 elements) is due to
twvo mechanisms. Of the 338 occurrences, 136 are due to the type of
phase error described in the previous paragraph. More specifically, at
the time sample following each (0,(1,1,0)) error, a (1,(1,0,1)) error is
guaranteed to occur. This is an example of entrainment of errors and
illustrates the need to consider errors in a dynamic fashion. The
remaining 338-136 = 202 errors are misclassification errors. That is,
the estimator erroneously claimed that submodel 0 did not attempt to
excite submodel 1. In terms of the design model, such errors are to be
expected because the R wave can actually be dropped. That is, if 11.
the state of submodel 1, takes on ome of the values {1,...,4) at the

time of the excitation attempt, the R wave is dropped. Such events are

poorly observable and therefore the estimates are often in error.

This point is worth some amplification. Specificglly. recall that

in DM1 there are no P waves. Thus, if an R wave has been dropped, we

have only the presence of a long R-R interval and the a priori knowledge
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of submodel 0 timing to provide any indication that amn excitation
attempt was made and failed. However, we have only made use of submo-
del O finin; in a yvery crude way (via P0O) and thus, one might expect
there to be numerous errors at this 'stage. Many of these may be
corrected in LE O pass 1 where we make use of detailed submodel O tim
ing. Note that in any event, the presence of such errors—-even if they
are not corrected in a later pass——is of no real significance. If
P waves are present--as in DM2--these errors do take on more signifi-
cance, but we would also expect better performance since LE O pass 1 can
use both a priori submodel O timing information and the Ganssian obser-
vations to estimate times at which P waves occur and submodel 1 excita-

tions are attempted (when one of these occurs, so does the other).

While pure misclassification errors can be modeled by a zero-memory
model, the phase-shift errors require a more complex model with memory.
Such a model is provided by chains of type Pl which can model arbitrary
phase errors up to any pre-specified lead and 1lag. All estimators

described in this thesis use P1 type models.

Recall from Section 6.2 that Pl chains are parameterized by the
len#th of the shift register. In the work reported here, the shift
register is two truth interactions long. Therefore, the pseudo-
observation pmf, which depends on state transitions, is conditioned on a

triplet of truth interactioms. This decision is based on four factors.

(1) Given that both leading and lagging errors are to be modeled, a

triplet is the smallest possible choice.
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The chains considered in this thesis are rarely large enough for
longer sequences of truth interactionms to make sense. That is,
longer sequences would represent a substantisl fraction of the R-R

interval.

The size of the P1 chain grows as the length of the shift register
increases, Therefore, the computational complexity of the Viterbi
algorithm, and hence that of the implementation of the estimator,
increases., Thus there is strong motivation to minimize the amount

of memory in the Pl chain.

The number of conditional observation pmfs for the pseudo-
observations of chain P1, namely Pr(pseudo-observation|interactions
in the shift register), increases as larger shift registers are
considered. Furthermore, the pmfs contain probabilities of pro-
gressively rarer events. Since we calculate these probabilities by
simulation, this implies that longer simulations are required in
order to achieve the same level of confidence. Therefore the com-

putation required to design the estimator increases.
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A
A

Figure 6.5 A Realization of the Stochastic Process Defined inm
Figure 6.3 and Table 6.1 Column 1.
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Chain PO:
.750255
.249745
Chain C1:
if x¥0-0; if 2¥040:
—sR
i-p! R {-p! {-p!
Poz ~ 1l 1t P P30
0 2 3 3
pc',‘2 /J
| ]
P10 P30

The Markov chain interval is 160 msec.

Chain PO has no Gaussian observations. There is a Gaussian observation
from chain C1, modeling the R wave. The signature sampling interval is
160 msec. The R wave is one sample long, with mean 10 and standard
deviation \|5. The Gaussian observation noise has mean 0 and standard
deviation 1.

There are no pseudo-observations from either chain.

Figure 6.6 LE 1 Pass 0 LEPM for the Design Model of Figure 6.3
and Table 6.1 Column 1.
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' ~ 0,1,0,1.0,1
= truth interaction triplet (hn:l,hn' ’hnll) |
| (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)
I |
| estimated 0] 0 ()} 0 136 0 1654 0 o |
| interaction |
LI.OQPO.Cl 1l o 0 0 1856 0 338 1993 4019

n

Table 6.2 Statistics on Interaction Estimates From LE 1 Pass O.

Jon
Ion

The P2 Chain

In the estimator of Figure 6.1, LE O pass 1 has two purposes:

(1) it provides the final state-trajectory estimate for submodel O and

(2) it provides estimates of the augmented interactions impinging on

submodel 1.

The estimates of the augmented interactions are provided as the realiza-
tion of the pseudo-observation for LE 1 pass 2. As in the evolution of
the modeling of communicated information that led to the Pl chain, our
initial efforts involved estimates of interactions only, that is without
any augmenting information. Im order to create a LEPM for LE 1 pass 2
that allowed it to make effective use of the unaugmented interaction

information, we were led to the development of the P2 chain.

As in the P1 case, the reason for using such a complex observation
model in the LE 1 pass 2 LEPM is that calculations on simulated data
showed a large number of phase-shifted interaction estimates from LE 0
pass 1. To illustrate this, consider again the design model and partic-
ular realization used in the discussion of the Pl case. This design

model is described in Figure 6.3 and Table 6.1 column 1, The LE 1
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pass 0 estimator was discussed previously and is shown in Figure 6.6,

The LE O pass 1 estimator results from applying the definition of the P1

chain to the design model of Figure 6.3 and Table 6.1 column 1, with

pseudo-observation observation pmfs derived from Table 6.2. The result-

ing LEPM for the LE 0 pass 1 estimator is shown in Figure 6.7.

Several aspects of the LEPM shown in Figure 6.7 require brief com-

ments:

(1)

(2)

(3)

In chain Pl, the self loop on state O when xEO=0 is irrelevant
(except during an initial transient) because, due to chain CO con-
straints, it is impossible to have the state of chain Pl in state 0
eand simultaneously receive an excitation attempt from chain CO. In
order to create a valid tpm, some definition forbtransitions out of
state 0 had to be made and a self transition was the simpliest

choice.

For transitions which have positive tramsition probabilities but
which can never occur (i.e. 0->0 and 1-30 in chain Pl), the
pseudo-observation observation pmf is arbitrarily chosen to be umi-

form.

For transitions where the simulation statistics indicate that one
or the other possible value of the pseudo-observation can never
occur, a zero is not placed in the pseudo-observation observation
pmf. Rather, the zero is replaced by a small quantity (in this

instance .001).

The conventions on how to define a row of a tpm which will never be used

(except perhaps for an initial transienat) (i.e. (1) above), the

Section 6.6.
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implications of (1) for the choice of pseudo-observation observation
pmfs (i.e. (2) above), and transitions whose measured statistics are
singular (i.e. (3) above) have evolved in the course of the thesis. The
LEPM in Figure 6.7 is a result of using the final form of the rules.
Simulation results presented in this section, however, use aﬁ earlier
form of these rules. The differences among the various rules result in

at most a difference in an initial transient.

In Table 6.3 we display the performance of LE 0 pass 1 in estimat-
ing interactions impinging on submodel 1. Note that to create
Table 6.3, we have simulated the concatenation of two passes: LE 1
pass 0 and LE O pass 1. Table 6.3 has exactly the same format as
Table 6.2. The error entries are (0,(1,1,0)), (0,(0,1,1)), (0,(1,1,1)),
and (1,(1,0,1)). Based on these results, the need for an observation
model with memory to model phase-shifted errors is clear. Such a model
is provided by chains of type P2. In the work reported in this thesis,
balanced triplets of truth interactions are always used. The reasons
for this choice are the same as the reasons for the corresponding choice

in chains of type Pl.

Unlike the Pl case, we have explored an alternative observation
model (that is, an alternative to the P2 chain) for the estimated imp-
inging interactions om submodel 1 in LE 1 pass 2. The alternative
{(called the zero-memory model) is to assume that the estimates are
exact. The estimates are used deterministically to switch between the

various submodel 1 tpms. This arrangement was discussed in Section 6.3.

For the comparison of the P2 and the zero-memory models in LE 1

pass 2, consider again the design model of Figure'6.3 and Table 6.1

Section 6.6.
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column 1. Both estimators have identical LE 1 pass O and LE 0 pass 1
LEPMs which were shown previously. For the estimator using the P2
model, the LEPM for LE 1 pass 2 is shown in Figure 6.8, It i: based on
the definition of the P2 chain applied to the design model of Figure 6.3
and Table 6.1 column 1, with pseudo-observation observation pmfs derived
from Table 6.3. For the zero-memory model, the LE 1 pass 2 LEPM is sub-
model 1 of the design model (Figure 6.3 and Table 6.1 column 1) where
the choice of tpm is determined by the estimated interactions communi-

cated by the ICS.

Table 6.4 shows statistics on the misclassification performance
when both estimators are applied to the same realization used previ-
ously. Note that the signature is only ome sample long, so only zero
phase-shift matches afe allowed. In each table, fp (fn) stands for
false positive (false negative) while cs (rs) stands for column (row)
sum—-the suom of all the elements in that column (row). Furthermore, fpR
(fnR) are the false positive (negative) rates for R waves when misclas-
sifications are not allowed. Here, with only one wave type, misclassif—-
ications are not possible. The numbers in parentheses are the estimated
fractional standard deviations discussed in Section 4.3.5. Finally, teR
is the total error rate for R waves, again when misclassifications are
not allowed. The superiority of the estimator using the P2 model is

obvious.
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Chain CO:
| 1 | { 1-p30 —~ 1-P2,
O ——(D——@—— D@ 05
o
p3,0
o)
Ps,0
1
Chain P1:
if 1¢0=0: ; | if x€0%0;
1 1 1
S0LOJJ6 OO0 T O
1

In terms of the interaction doublets (old interaction, new interaction),
the states of chain Pl are defined as follows:

| state interaction doublet |
[T o (1,0) I
| 1 (0,1) I
| 2 (1,1) |

where interaction O is an excitation attempt.

The Markov chain interval is 160 msec. There are no Gaussian observa-
tions for either chain and chain CO also does not have any pseudo-
observations.

Chain Pl initiates a binary pseudo-observation. The observation pmfs of
the pseudo-observation, conditioned on the state transitionm, are:

| conditioning state tramsition pseudo-observation pmf |
L (old state, new state) (value at O, value at 1) |
|0 0 .5 .5 |
| O 1 .830321 .169679 |
|1 0 .5 .5 |
| 1 2 .001 .999 |
| 2 0 .068273 .931727 |
| 2 2 .001 .999 |

Figure 6.7 LE O Pass 1 LEPM for the Design Model of Figure 6.3
and Table 6.1 Column 1.
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| truth interaction triplet (ho 1 ho 1.h2+i) |

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

estimated o] o 0 0 107 0 1824 55 1 |

interaction | |

0,1pP0,C1 1 0 0 0 1883 0 165 19358 4012
n

Table 6.3 Statistics on Interaction Estimates From LE O Pass 1.
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Chain P2:

. Chain C1:

if P2=0: "
—=R

{-p! :
a2 { {
G n

0, 2
p! th

02

In terms of the interaction doublets (old interaction, new interaction),
the states of chain P2 are defined as follows:

| state interaction doublet |

| o (1,0 |
1 (0,1) |
2 (1,1)

where interection O is an excitation attempt.
The Markov chain interval is 160 msec.

Chain P2 has no Gaussian observations. There is a Gaussian observation
from chain C1, modeling the R wave. The signature sampling interval is
160 msec. The R wave is ome sample long, with mean 10 and standard
deviation \|5. The Gaussian observation noise has mean O and standard
deviation 1.

Chain P2 initiates a binary pseudo-observation. The observation pmfs of
the pseudo-observation, conditioned on the state transition, are:

| conditioning state transition pseudo- observat1on paf |
l (01d state, new state) (value at 0, value at 1) |
|o 1 917044 .082956 |
| 1 2 .027638 .972362 |
| 2 0 .053769 .946231 |
| 2 2 .001 .999 |

Chain C1 initiates no pseudo-observations.

Figure 6.8 LE 1 Pass 2 LEPM for the Des1gn Model of Figure 6.3
and Table 6.1 Column 1.

Section 6.6.




- 237 -

P2 Model: Zero-Memory Model:
Estimated Estimated
R fn rs R fn rs

R | 1788 0 1788 R | 1787 1 1788
Truth fp 0 0 Truth fp 49 49

cs l 1788 0 cs l 1836 1
fpR = 0/1788 =10 frR = 49/1836 = .0267(.141)
faR = 0/1788 =0 foR = 1/1788 = ,000560(1.00)
teR = (0+0)/1788 = 0 teR = (49+1)/1788 = .0280

Table 6.4 Estimator Performance for the Comparison of the P2 and
the Zero-Memory Models in the LEPM for LE 1 Pass 2.

6.7. Augmented Interactions—-LE 1 Pass 0 to LE 0 Pass 1

Consider the design model of Figure 6.4. A reasom for considering
augmented interaction estimates from LE 1 pass 0 to LE 0 pass 1 is the
observability issue mentioned in Section 5.5. Note first that interac-
tions cen only be observed indirectly via submodel 1 since submodel 0
initiates no signatures. Furthermore, when xi#o. submodel 1 is not
affected at all by the impinging interactions. Note that when xi#O, the

1

pmfs for the time since 1 was last 0 and the time when xi is next O

depend on the present value of xi. Therefore, it is reasonable to anti-
cipate that the quality of the interaction estimate at time n depends on

the state of chain Cl1 at time n.

A second reason for considering augmented interactions is to
ameliorate the effects of the aggregation of submodel 0 in LE 1 pass O.
Note first that during a conducted beat in the design model, the states
of submodel 0 and submodel 1 are highly correlated. That is, the global
state (xg,xi) starts at (0,0) and, until x2=6. the global state is with
high probability either (i,i) or (i,i+l1). Therefore, knowing xi implies

a great deal about xg. Now assume that LE 1 pass O gives reasonable
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1

C1 .
is near‘to xn

performance inm the sense that Qn most of the time. In

this case the estimate Q:l implies a great deal about xg. Consequently

it should be possible to use this information to refine the interaction

estimate computed from Qio. Specifically, in PO chains of the form

shown in Figure 6.2, the information derived from le can indicate which

interactions are due to spurious returns of x:O

to state 0. As dis-
cussed in the next sectiom, spurious returns to state 0 in the PO chain
are common when p (in Figure 6.2) is larger that a certain threshold.
In spite of this, such p are important because they contribute to supe-

rior performance for other reasons. By providing information useful in

-C1

isolating the spurious excitation attempts indicated by Q:O

PO

essentially circumventing the aggregation used to transform xg into x

1 0

by exploiting the stromg correlation of x with T in the time interval

including and immediately after a successful excitationm.

A particular realization of the stochastic process defined by the
design model of Figure 6.4 is shown in Figure 6.9. For this design
model, a LE 1 pass O estimator was constructed analogous to the estima-—
tor shown in Figure 6.6. Statistics on the augmented interaction esti-
mates from this estimator are shown in Table 6.5. VWhen using unaug-
mented interactions, the relevant statistics are the marginal statistics
(where the state estimate has been summed out of the joint statistics of
Table 6.5). These marginal statistics are shown in Table 6.6. The

increased information in the more detailed statistics is dramatic. For

example, if the ICS transmits the information that

1,04P0,C1_; , 4
n

n =6, then the LE O pass 1 estimator is essentially assured that the
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A
truth interactiom triplet is (1,1,1). If omly 1.0h£0,C1=1 is transmit-

ted, the uncertainty is much greater.

While the augmented interaction estimates carry more information,
it is pot guaranteed that the estimation algorithms we propose are able
to use this additional information to achieve a useful gain in perfor-
mance. In fact, as we will ﬁov describe, it is only when the tpm for
the PO chain is simultaneously altered that we achieve decidedly supe-
rior performance by including augmented interaction information. Conm-
sider the estimators described in block diagram form in Figures 6.10 and
6.11. The only difference inm the structure of these two estimators is
that in one (Figure 6.10) the ICS communicates augmented estimated
interactions from LE 1 pass 0 to LE O pass 1, while in the other (Fig-
ure 6.11) only the estimated interactions themselves are used. The LEPM
for LE 1 pass O is the same in both estimators. The parameters of the
LEPMs for LE O pass 1 and LE 1 pass 2 are different since the parameters
depend (through the pseudo-observation observation pmfs) on the statis-—
tics of the communicated quantities. Table 6.7 shows the final wave-
tracking misclassification results for these two estimators based on the
same simulated ECG used to compute the statistics of Tables 6.5 and 6.6.
Two sets of statistics for each estimator are shown. Since the signa-
tore is only one sample long, in one set (labeled without phase shifts)
no phase-shifted matches are allowed. In the second set (labeled with
phase shifts), phase shifts of +1 Markov chain cycle are allowed. The
performance with angmented interactions is disappointing as it is essen-

tially unchanged from the performance with interactions alone.

Chenging the PO tpm (see the following section) obviously changes
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the statistics of both the augmented and unaugmented interaction esti-
mates. In the estimators considered so far (i.e. the estimators whose
performance is indicated in Tables 6.5, 6.6, and 6.7), the value of p in
the>LE 1 pass 0 LEPM of Figure 6.6 was p=.105258. In order to demon-
stratélthat nngne;ted interactions can provide significantly improved

performance, we now consider a new value of p, specifically p=.39997§.

Simulations equivalent to those generating the statistics of
Tables 6.5-6.7 were performed for the new value of p. These statistics
are shown in Table 6.8 (for the angmented interaction estimates from
LE 1 pass 0), Table 6.9 (for the unaugmented interaction estimates from
LE 1 pass 0), and Table 6.10 (for the wave-tracking misclassification
performance). Tables 6.5 and 6.6 are compared with Tables 6.8 and 6.9
in the following section. In this section we focus on the comparison of

Table 6.7 and Table 6.10.[2]

Retorning to the suboptimal estimator, note that the performance of

the estimator using augmented interaction estimates and the new value of

[2] Table 6.10 actually corresponds to only one half of Table 6.7.
We were unable to calculate the results for the estimator based on
communicating unaugmented interactions becsause the Viterbi algo-
rithm tree (see Formey, 1973) for LE O pass 1 exceeded the memory
limitations of our computer. The reason for this difficulty is as
follows. For all LE O pass 1 estimators in the DM1 class of
design model, the pseundo-observation is the only observation. For
this specific example the observation pmfs (comstructed from the
data of Table 6.9 and shown in Table 6.11) for the pseudo-
observations are almost independent of the underlying truth in-
teraction triplet. That is, the pmfs conditioned on the pair of
triplets (1,1,0) and (1,0,1) are almost identical, as are those
for the pair of triplets (0,1,1) and (1,1,1). Furthermore, the
differences between the two pairs of pmfs are small. Therefore,
the Viterbi algorithm must process a large number of observations
before it is able to make a decision, and the resulting tree
exceeds the available storage. Said another way, the pseundo-
observation has a very low SNR.
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p in the LEPM of LE 1 pass O is a substantial improvement over the per-
formance of either estimator (i.e. using either augmented or unaugmented
interaction estimates) using the old value of p in the LEPM of LE 1
pass 0 (compare Tebles 6.7 and 6.10). Therefore, in the sequel, aug-
mented interaction estimates are used because they allow greater freedom
in the choice of the tpm for the LEPM of LE 1 pass 0 and this freedom
can be exploited to achieve superior performance. This performance

improvement can be understood in the following manner.

(1) Looking ahead to the following section, increasing p provides

better performance because it decreases the entrainment of PO and

C1.

(2) However, increasing p leads to many spurious excitations. But it
is exactly these spurious excitations which augmented interactions

are most effective in suppressing.

Thus there is a substantial synergistic effect between increasing p and

transmitting augmented interaction estimates.
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Figure 6.9 A Realization of the Stochastic Process Defined in
Figure 6.4,
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| ] truth interaction triplet |
| 1] I
| I (a0-3,02:1,30:1) |
| i g s )
— —— u (1,1,0) (1,0,1) (0,1,1) (1,1,1
- | 0l 58 348 364 81 |
| | 1] 0 ) 0 o |
l 0 | estimated 2 H 0 0 0 0 ,
| : state 1/03C1 A . : : : |
| I . |I . . . . l
| H 10 || 0 0 0 o |
1
: estinted I g Il 1273 125: 1022 sosg :
interaction
l1 oApo.Cl : 2 |l 50 57 348 397 |
| l 3l 3 50 57 742 |
} | estimated ; H 2 g 5g 799 :
1 1,04C1 848
I } state ~'"x - 6 Il 0 1 0 8s1 |
[ ' 7 1l 20 0 1 831 |
| ' sl 40 13 0 769 |
. s il 1m 40 13 s9g |
L | 10|l 282 134 36 309 |
Table 6.5 Statistics on Augmented Interaction Estimates From LE 1
Pass 0,
: = “truth interaction triplet :
0,1.0,1.0,1
: = 0 2T M Sty :
| _l._(.1,0) (1,0,1) (0,1,1) (1,1,1) ]
| | |
:estimted 0 : 58 348 364 81 :
interaction
il,oi;po,a 1 { 1844 1554 1539 14202 }
n

Table 6.6 Statistics on Interaction Estimates From LE 1 Pass 0
(based on Table 6.5).
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Estimator of Figure 6.10

With phase shifts ' Without phase shifts
Estimated Estimated
R - fn rs R fa rs
‘ R I 1238 518 1756 R I 1082 674 1756
Truth fp 25 25 Truth fp I 181 181
cs I 1263 518 cs 1263 674
fpR = 25/1263 = ,0198(.198) fpR = 181/1263 = ,143(.0688)
foR = 518/1756 = ,295(.0369) fnR = 674/1756 = .384(.0302)
teR = (25+518)/1756 = .309 teR = (181+674)/1756 = .487
Estimator of Figure 6.11
With phase shifts Without phase shifts
Estimated Estimated
R fa _Is_ R fn _Is_
R l 1207 545 1752 R | 1062 690 1752
Truth fp 20 20 Truth fp 165 165
cs l 1227 545 cs l 1227 690
fpR = 25/1227 = ,0163(.222) fpR = 165/1227 = .134(.0724)
faR = 545/1752 = .311(.0356) foR = 690/1752 = .394(.0296)
teR = (20+545)/1752 = ,322 teR = (165+690)/1752 = ,488

Table 6.7 Comparison of Augmented and Unaugmented Interactions
for Communication Between LE 1 Pass 0 and LE 0 Pass 1.
‘Performance.
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: ﬂ truth interaction triplet :

| I alladiagh |

.___________ R IL(1,1,0)_(1,0,1) (0,1,1) (1,1,1) |

{“"“"“‘_ - | - “6‘”"’?53""”63""'i??“"’?ﬁﬁf’]
1 0 0 0 0

: : 2 H 44 73 390 515 }
3 3 28 33 296

| | . 41| 5 8 50 985 |

t ted

I 0 : e e S 1 1 3 352 |

= l state X 6 " 6 5 5 1037 =
7 9 0 1 347

| } 8 |l 47 18 4 911 |

| . 9 || 42 7 9 252 |

| atersction | 10l 203 79 33 357 |

| 1,02p0 c1 H oll 649 488 449 3934 |

*“pt0, |

| n , 11l 73 390 432 127 |

} I 2 ” 34 35 174 143 :
3 8 50 75 915

| = estimated 4 ll 1 3 29 329 |

I 1] 1o0.c; S 5 5 8 1035 |

I | Stete TTxg 6 1l 0 1 1 355 |

| I 7 1l 34 6 5 1008 |

| I g |l 7 9 0 300 |

[ o Il 202 47 18 7119 |

L ! 10 || 103 42 7 160 |

Table 6.8 Statistics on Augmented Interaction Estimates From LE 1
Pass 0.

| | truth interaction triplet |
| | |
0,1,0,1.0,1
; : (hn-l'bn 'hn+1) I
I 1 (1.1,0) (1,0,1) (0.1,1) (1,1,1) |
[ | T
| estimated 0| 785 825 704 5254 |
| interaction | |
| 1,04P0,C1 1 ; 1116 1076 1198 9025 {
l n

Table 6.9 Statistics on Interaction Estimates From LE 1 Pass 0
(based on Table 6.8).
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Estimator of Figure 6.10

With phase shifts Without phase shifts
Estimated Estimated
R fa rs R fn TS _
R I 1364 395 1757 R I 1186 571 1757
Truth fp 58 58 Truth fp 234 234
cs I 1420 395 cs l 1420 571
fpR = 58/1420 = .0408(.129) fpR = 234/1420 = ,165(.0597)
foR = 395/1757 = ,225(.0443) foR = - 571/1757 = .325(.0344)
teR = (58+395)/1757 = .258 teR = (234+571)/1757 = .458

Table 6.10 Comparison of Augmented and Unaugmented Interactions
for Communication Between LE 1 Pass 0 and LE O Pass 1.
Performance of the Estimator Communicating Augmented Interactions.

I | |
1,00C0,P1_,, P1 _P1
{ = Pr( h- -hlxn_l.xn )I
I L L | po b=1 ___:
i (1,1)-3(1,0) i .413 .587 '
| spyte tpynsition (1,0)-»(0,1) ' .434 .566 T
x 0 -dx (0,1)->(1,1) | .370 .630
| = n 51.1)-)(1.1)_1 .368 .632 |

Table 6.11 Observation Pmfs for the Psendo-Observation of LE O

Pass 1 When Communicating Unangmented Interaction Estimates From
LE 1 Pass O.

6.8. The PO Chain

In Section 6.1, all aspects of the PO type chains were fized except
for the tpm(s). Recall from Sectionm 6.1 that three algorithms were pro-

posed for choosing these tpms:

(1) preservation of 1iulpr(x°(n)€Uo'1'i |xo(n—1)€Uo‘1'j),
n->o .
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(2) preservation of 11.,pr(g°(n)€Uo'1'i) with the additional constraint
n-J>o

that the tpm have equal rows, and
(3) optimization over the parameter p in the tpm of Figure 6.2.

Recall also the (1) leads to tpms with the structure shown in Figure 6.2

so that (1) is a specific choice of p in (3).

Initially,ive considered methods (1) and (2). Therefore the com-
parison between these two methods is based on estimators of the type
shown in Figure 6.11. That is, the comparison is based on estimators in
which the ICS does not communicate augmented interactions. Consider the
design models of Figure 6.3 and Table 6.1 columns 2-5. Thesg design
models differ from each other solely due to changes in the R wave mean.
Realizitions for each different R wave mean are shown in Figure 6.12.
Table 6.12 1lists the performance of the entire estimator for both
methods (1) and (2) in terms of fpR, fnR, and teR as the mean of the

R wave varies.

On the basis of the results shown in Table 6.12, method (1) is at
least as effective as method (2). Therefore, method (2) was not con-

sidered further.

At a later point in the investigation we again considered tpms for
PO. At this point we considered method (3) and based the comparison on
estimators of the type shown in Figure 6.10. That is, the comparison is
based on estimators in which the ICS communicates augmented interaction
estimates from LE 1 pass 0 to LE 0 pass 1 and unaugmented interaction
estimates from LE O pass 1 to LE 1 pass 2. Recall from the prior sec-

tion that communication of augmented interaction estimates from LE 1
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pass 0 to LE O pass 1 was necessary for certain choices of tpm in the
LEPM of LE 1 pass O since the unaugmented interaction estimates provided
very little information. The design model used is shown in Fijure 6.4,

A realization is shown in Figure 6.5.

Estimated statistics on the wave-tracking performance of the com-
plete estimator in terms of fpR, fnR, and teR as p varies are shown in
Table 6.13 and plotted in Figures 6.13 and 6.14. Results on the global

MAP estimatorts]

are included for comparison. The case p=.105258 is
method (1). In the previous sections estimators using method (1) and

using p=.399975 were discussed.

The reason for the unusual choices of p is that these choices give

integer (or half integer) increments in the value of 1unpr(xpo(n)=0) in
n->e

comparison with the value implied by method (1). The ratio betweem the
probability for some arbitrary p and for the p implied by method (1) is
denoted a in Table 6.13 and in the remainder of the thesis. The parame-
ter a therefore compares the & priori probability of an excitation
attempt in the design mddel and in the LE 1 pass O LEPM. (Calculations
not reported here indicate that the optimal value of a is quite variable
for different design models and therefore the discussion in this thesis

emphasizes p and not a).

Performance can be dramatically improved by the proper choice of pP.

In the example for which results are shown in Table 6.13 and

[3] Throughout this thesis, “global MAP estimator” is the wave-
tracking estimator in which first the global MAP state-trajectory
estimate is computed and them the wave-tracking estimate is com-
puted from the state-trajectory estimate. Note that this estima-
tor is not optimal for the wave-tracking problem.

Section 6.8,
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Figures 6.13 and 6.14, the optimal value of p is near .6. We do not
have a method (except simulation) for determining the optimal value of p
given a design model and the structure of our estimator. However, in
the remainder of this section we point out two qualitative aspects of

our estimator that might be relevant to such a method.

The PO chain (shown in Figure 6.2) has two basic types of behavior
depending on the value of p. In the first case, for p small, the chain
prefers to remain in state 1. In fact, the a priori maximum probability
trajectory is for the state to remain forever in state 1. Therefore, in

the LE 1 pass O estimator, the observations must outweigh the a priori

trajectory information in order for Q:o to ever leave state 1 and
attempt to excite chain Cl1., This explains why the statistics on the
estimated augmented interactions for p=.105258 (see Table 6.5) are

nonzero only for 1‘°§£1=0.

The second qualitative type of behavior, for p large, is a period-
two oscillation between states 0 and 1. In this case the effect of the
observations is to counteract this predisposition in order to cause a
self-transition at 1 in order to adjust the phase of the next excitation
attempt (that is, residency in state 0) or to caunse several self-
transitions at 1 in a row in order to avoid exciting the lower chain.
An example of an instance in which the estimator must make several
self-transitions at 1 in a row is a dropped R wave. This explains why
the statistics on the estimated augmented interac;ions for p=.399975

(see Table 6.8) are nonzero for many values of I'OQSI.

The break point between the two types of behavior occurs when the
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probability of the state trajectory 1->0->1 equals the probability of

the state trajectory 1-31-31, This occurs when p is a root of the equa-

tion p=(1-p)2. The only root in [0,1] is a:%'152.381966. This value of
p lies between the two values used in the prior section (i.e. .105258
and .399975) and ;herefore the statistics shown in Tables 6.5 and 6.8
have the properties noted in the previous paragraphs. Since the optinnl

value of p lies near .6, it seems that the second type of behavior is

preferable,

In methods (1) and (2), the tpm for PO is chosen so that certain
properties of submodel 0 are preserved by the PO chain. Therefore, some
properties of the interactions impinging on submodel 1 are preserved.
Bowever, the properties chosen may not be the appropriate properties for
overall performance considerations. For example, preserving the mean
rate of excitation attempts [as is done in method (2)] does not make any
statement about the pmf on the interarrival times between excitation
attempts. However, it is the almost periodic arrangement of excitation
attempts by submodel O that makes most excitation attempts successful.
In light of these ideas it may make more sense to preserve properties of
successful excitation attempts or equivalently (in these design models)
R waves. (Note that this is a statistic that is not a function of onmly

the subprocess state space being aggregated).

In the design model of Figure 6.4, the steady state probability of

an R wave occurring at any particular time is 1nnpr(x1(n)=4). which is
n->o

approximately .08732. Table 6.13 and Figure 6.15 give the corresponding
Probability for the LE 1 pass 0 LEPMs derived from this design model

under different choices of P. Based on these results, a velue of p

Section 6.8.
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somewhere in the range (.23,.40) would give a LE 1 pass O LEPM with a
steady-state R wave probability equal to the steady—state R wave proba-
bility of the design model, that is .08732. However, since the optimal
value of p lies near .6, it is not clear that this discussion of alter—
native statistics for preservation under the submodel O to PO aggrega-

tion contributes toward an understanding of the optimal value.

The selection of p, given a design model and an estimator architec-
tore, is still an open question. However, the discussion of this sec-

tion does serve to illustrate two important points.

(1) The choice of aggregation can have a major effect om signal-

processing performance.

(2) The proper (i.e. best signal-processing performance) choice of
aggregation may not be an aggregation which preserves am obvious

property of the design model.
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Figure 6.12 A Realization of the Stochastic Process Defined in
Figure 6.3 and Table 6.1.
Part (a): Parameters from Column 2.
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Part (b): Parameters from Column 3.
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Figure 6.12 Continued.
Part (¢): Parameters from Column 4.
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Figure 6.12 Continued.
Part (d): Parameters from Column §.
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| q LE 1 pass O tpm method 1 : LE 1 pass O tpm method 2 I
fpR fnR teR fpR ———_foR _____~ teR
%_‘ --‘.-%_-_ —— F -_.___—____ﬁ.
| 51110/1779 19/1788  (10+19)/1788 | 10/1799 19/1788 (10+19)/1788
| l=.00562 =.0106 =.0162 | =.00562 =.0106 =.0106
: ” (.315)  (.228) I (.315) (.228) |
| 4ll52/1781 59/1788 (52+59)/1788 | 50/1772 66/1788  (50+66) /1788
| Il =.0292 =.0330 =.0621 | =.0282 =.0369 =.0649 |
| Il C.137)  (.128) I (.139)  (.121) |
I mean . I l
| 3l1135/1759 164/1788 (135+164)/17881156/1770 175/1789 (156+175)/1789 |
| Il =.0767 =.0917 =.167 | =.0881 =.0978 =.185 |
{ {:(.0827) (.0744) :(.0765) (.0718) :
| 211387/1698 475/1786 (387+475)/1786|365/1635 517/1787 (365+517)/1787 |
| | =.228 =.266 =.483 | =.223 =.298 =.494 |
| Il (.0447) (.0393) | (.0461) (.0371) |
L I l |

Table 6.12 Comparison of Methods (1) and (2) for the Choice of a
Tpm for Chains of Type PO.
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| With Without |
I : phase shifts phase shifts ;. p ( Cl(yy)_4|
| P a fpR fpR a- |
| fnR foR IA"LE 1 Pass 0 |
| teR teR |
| |
| 1 5.250233 .0360(.139) .165(.0604) no steady state |
| .238(.0427) .340(.0332) |
: .267 .471 |

|
| .909014 5 .0331(.145) .159(.0618) .1066452 |
| .231(.0437) .331(.0341) |
| .257 .457 |
| |
| .749942 4.5 .0382(.132) .170(.0582) .1045658 |
| .210(.0463) .319(.0349) |
| .242 .458 |
| |
| .615341 4 .0393(.130) .172(.0577) .1019672 |
| .206(.0469) .315(.0352) |
| .238 .457 |
| |
| .399975 3 .0408(.129) .165(.0597) .09446312 |
| .225(.0443) .325(.0344) |
| .258 .458 |
| |
| .235281 2 .0215(.184) .148(.0654) .08169435 |
| .249(.0415) .346(.0328) |
| .266 .459 |
| |
| .105258 1 .0198(.198) .143(.0688) .05748526 |
| .295(.0369) .384(.0302) |
I .309 .487 I
| |
| MAP estimator .0375(.131) .174(.0564) |
| .181(.0507) .297(.0367) I
| .213 .445 |
L |

alp)=1im Pr(xF%(n)=0;p)/ 1im Pr(xF%(n)=0;.105258)

n->e

n->®

Table 6.13 Method (3) for the Choice of a Tpm for Chains of Type

PO.
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Figure 6.13 Performance as a Function of p when Phase-Shifted
Matches are Allowed.

One sigma bounds derived from the estimated fractional standard
deviation are included. The horizontal line indicates the perfor-
mance of the global MAP estimator.
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Figure 6.14 Performance as a Function of p when Phase-Shifted
Matches are Not Allowed.

One sigma bounds derived from the estimated fractional standard
deviation are included. The horizontal line indicates the perfor-
mance of the global MAP estimator.
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6.9. Robustness to Incorrect Modeling

Analytic ECG models are obviously more constrained than real ECGs.
Consequently an important issue is the robustmness of an estimation algo-
rithm designed using such an analytic model. This‘section presents an
example in which the suboptimal estimator is shown to be more robust
than the global MAP estimator. Specifically, we define two classes of
design models. Each design model im the first class is paired with a
design model in the second class and visa versa. For each pair, we com-
sider the performance of an estimator designed using the selected design
model when the data is a realization of the same design model and when
the data is & realization of the other design model of the pair—-i.e.

the matched and mismatched cases.

One set of design models, called the class of random P-R design
models, is the set of design models of Figure 6.3 and Table 6.1 columns
2, 4, and 5. As noted previously, the pn?ameter sets differ only in the
choice of the R wave mean. Example realizations for each design model

are given in Figure 6.12.

The second set of design models, called the class of determinmistic
P-R design models, is the set of design models shown in Figure 6.3 and
Table 6.1 columns 6-8. The difference between the random P-R and deter—
ministic P-R sets of design models is the delay line in submodel 1
between state 0 and state 2. This delay 1line represents the
excitation-to-R-wave coupling interval. In the ra;don P-R design model
the interval is random while in the deterministic P-R design model it is
deterministic. Example realizatioms for each determiﬁistic P-R design

model are shown in Figure 6.16.
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For the two cases in which the data and estimator are based on the
same design model, the performance statistics are shown in Tables 6.14
and 6.15 and Figures 6.17 and 6.18. The performance statistics for the
important case in which the data is based on the random P-R design model
and the estimator is based on the deterministic P-R design model are
shown in Table 6.16 and Figure 6.19. The performance statistics for the
reverse case are shown in Table 6.17 and Figure 6.20. In all cases, the

suboptimal estimator has the block diagram shown in Figure 6.11.

Figures 6.17-6.20 show that the suboptimal estimator is insemsitive
to’both mismatches. On the other hand (Figures 6.17-6.20), the global
MAP estimator is insensitive to the mismatch in which the data is based
on the deterministic P-R design model while the estimator is based on

the random P-R design model, but it is sensitive to the other mismatch.
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Figure 6.16 A Realization of the Stochastic Process Defined inm
Figure 6.3 and Table 6.1,
Part (a): Parameters from Columnm 6.
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Figure 6.16 Continued.
Part (b): Parameters from Column 7.
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Figure 6.16 Continued.
Part (c): Parameters from Column 8.
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|| Nonoptimal Estimator | MAP estimator
L __fpR faR teR | fpR __ £oR teR
F’“#: —— 1 |
SI110/1779 19/1788 (10+19)/1788 | 18/7159 62/7203 (18+62)/7203
=_,00562 =,0106 =,0162 | =.00251 =.00861 .0111
(.315) (.228) | (.235) (.126)

| =.0530
(.0744) { (.101)

=.0917 =.167 .0805

(.0799)

.132

——————

=,266
(.0393)

=,228
(.0447)

=.483 | =.165
| (.0550)

=.221
(.0444)

=.375

|
|
|
2]1387/1698 475/1786 (387+475)/17861276/1670 395/1789 (276+395)/1789{
|
|

Table 6.14 Robustness.

Truth Design Model:

Random Excitation to R wave Couplinmg.

Estimator Design Model:

Random Excitation to R wave Coupling.
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Nornoptimal Estimator MAP Est imator
3.5 logpizkl;s.ev;:o.srintive 8.5 logpic;lbs.evicrs:“tlve
-1.8 -1.8
-1.5 -1.8
-2.0 -2.0
+

-2.5 -2.5
-3 o +—+—F+—+—+—F+—+—+——+—+ -3.0
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Figure 6.17 Plots of the Statistics in Table 6.14.
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] Nonoptimal Estimator | MAP estimator |

51117/1770 21/1774  (17+21)/1774 |
Il=.00960 =.0118 =,0214 |
1l (.241)  (.217) |
I

311144/1754 164/1774 (144+164)/17741 80/1730 125/1775 (80+125)/1715

18/7084 47/7111 (18+47)/7111
=.00254 =.00633 =.00914
(.235) (.149)

mean |l =.0821  =.0924 =.174 | =.0462 =.0704 =.115§ |
} }:(.0798) (.0744) } (.109) (.0862) =
| 211400/1731 441/1772 (400+441)/17721252/1686 341/1775 (252+341)/1775 |
| Il =.231 =.249 =,475 | =.149 =,192 . =.334 |
| [l (.0438) (.0413) | (.0581) (.0487) |
L ] ]

Table 6.15 Robustness.

Truth Design Model: Deterministic Excitation to R wave Coupling.
Estimator Design Model: Deterministic Excitation to R wave Coun-
pling. '
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Figure 6.18 Plots of the Statistics in Table 6.15.
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| Nonoptimal Estimator | MAP estimator |
L_____ll foR £aR teR ]__fpR £aR ___ _ teR N
{ T |
| 5]]66/7133 134/7201 (66+134)/7201 |166/7101 268/7203 (166+268)/7203 |
I ||=.00925 =.0186 =,0278 | =.0234 =.,0372 =.0603 |
I I| (.123)  (.0856) | (.0767) (.0599) |
| ll | |
| 3||1282/3517 361/3596 (282+361)/3596|222/3457 362/3597 (222+362)/3597 |
| pean Il =-0802  =.100 =.179 | =.0642 =.101 =.162 |
| [1(.0571) (.0499) | (.0649) (.0498) |
! Il | |
| 2|(360/1677 465/1782 (360+465)/1782|285/1679 395/1789 (285+395)/1789 |
| I =.215  =.261 =,463 | =.170 =.221 =.380 |
{ |I(.0467) (.0399) ] (.0540) (.0444)

Table 6.16 Robustness.

Truth Design Model: Random Excitation to R wave Coupling.
Estimator Design Model: Deterministic Excitation to R wave Cou-
pling.
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Figure 6.19 Plots of the Statistics in Table 6.16.
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| i Nonoptimal Estimator | MAP estimator |
L___ Il fpR __ fnR___ teR __ __fpR £ teR |
— - — T B = -1
| s{l 73/7137 46/7110 (73+46)/7110 | 19/7080 50/7111 (19+50)/7111 |
| Il =.0102 =.00647 =.0167 =.00268 =.00703 =.,00970 |
= Il ¢.116) (.147) : (.229) (.141) :
| 311367/3600 318/3551 (367+318)/35511162/3439 273/3550 (162+273)/3550 |
| pean |l =.102  =.0896 =.193 | =.0471 =.0769 =.123 |
= :l(.o495) (.0535) !(.0767) (.0581) I
| 211357/1679 450/1772 (357+450)/17721256/1672 359/17175 (256+359)/1715 |
| Il =.213 =.254 =.455 | =.153 =.202 =.346 |
l» :i(.o470) (.0407) ; (.0575) (.0471) i

Table 6.17 Robustness.
Truth Design Model: Deterministic Excitation to R wave Coupling.
Estimator Design Model: Random Excitation to R wave Coupling.
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Figure 6.20 Plots of the Statistics in Table 6.17.
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6.10. Performance as a Function of Design Model

— — —— S =

In this thesis, we present estimation results for just a few design
models, though we claim that our estimation approach has general util-
ity. In order to give an idea of the variety of design models con-
sidered, we now describe some additional design models that are variants
of the design model of Figure 6.3. For each of these design models, the
suboptimal estimator of Figure 6.11 has been applied with results simi-

lar to those described previously. The four variants are:

(1) Variation in the pmf for the interval between excitations of submo-

del 1 (Pg 0’ pg o)+ (If there were P waves, then this would be the

P-P interval pmf).

(2) Variation in the pmf for the interval between excitations of submo-
del 1 and R waves (pé 2). (If there were P waves, then this would

be the P-R interval pmf).
(3) Variation in the ventricular refractory-period pmf (pg o) -

(4) Variation in the SNR for all of the above (mR),

6.11. The P4 Class of Chains

The creation of a P4 chain is described in the context of the ini-
tial pass of LE 1. This is the case occurring in the DM2 estimator of

Figure 5.6. The case of LE 0 is identical.

The estimation performed by LE 1 would be simplified if we could
provide LE 1 with an ECG from which all signatures due to submodel O had

been removed (i.e. SO0). However, due to the stochastic nature of the
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signal, this is not possible. Therefore, we introduce the P4 chain.
The intended purpose of the P4 chain is to estimate the times when the
SO signature occurs and to use these estimated times in essence to sub-
tract the mean of the SO signature and adjust the variance of the
remaining signal to reflect the additional randomness due to the sto-
chastic portion of the SO signature. Therefore we call P4 a subtractor
chein. (Note that the subtraction and adjustment occur based on am

estimated event time, which niy be in error).

Note that the P4 chain models the contribution of a single signa-
ture to the observation. The P4 chain does not utilize any a posteriori

information from the ICS, so it is only used in the initial pass of a

LE.

The P4 chain strongly resembles the PO chain. The difference is
that the P4 chain is concerned with the contribution of a signature to
the observation while the PO chain is concerned with the interactions
impinging on some second chain. Furthermore, the P4 chain is always

autonomous.

In the PO chain, the subprocess state space was fixed and a variety
of schemes for choosing the tpm(s) were proposed. In the P4 case, both

the subprocess state space end the tpm are fixed for this thesis. Let

NSl(n) be the time of the nth S1 annotation. Let the nth

interarrival
time 131‘51(n) be defined by 181’Sl(n)=NSI(n+1)-NSI(n). Assuming that
the design model bhas a steady-state state distribution, there is a

steady-state pmf on Ts1,81° That is, ij:LPr(tSI,Sl(n)=k) exists for

all k. The basic idea for the P4 chain is to choose the subprocess

state space, tpm, and signatuore-initiating transitioms such that the
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steady—state expected value of tSi s1 in the P4 chain and in the design

‘model are equal.

Implementation of the basic scheme for P4 chains r?quires a chain
with at least two states. Since use of a chain with more that two
states requires more coﬁputation when implementing the estimator and
additionﬁl constraints when designing the estimator, we have used

exclusively chains with two states,

Even in the two state situation, the ability to independently
specify two transition probabilities requires that a second design con-
straint be imposed. VWe have chosen to require that the value of
liguPr(rSI,51(n)=1) in the P4 chain equal the value in the design model.
p—dm \

Therefore, the steady—stage distribution on *s1,s1 1S matched exactly at
short interarrival times and in an average sense at long interarrival

times. The two-state P4 chain which satisfies these constraints is

shown in Figure 6.21.
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NSl(n) = time of nth S1 annotation

P = 1- lim Pr(t51'51(n)=1)
n-y>e

- 2
llm Etsl ‘Sl(n)-l
n->e

where

E"s1,s1(‘”=k21"1”(‘s1.s1‘“)=“’-

Figure 6.21 Definition of the P4 Chain.

6.12. The P3 Class of Chains

The creation of a P3 chain is described in the context of pass 1 of
LE O, as in the DM2 estimator of Figure 5.6. From the initial pass of
LE 1, it is possible to extract estimates of the times when S1 annota-

tions occur. The purpose of the P3 chain is to use this information,
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received through the ICS, to assist pass 1 of LE 0. Therefore, the P3
and P4 chains share a common purpose. For this reason, the P3 chain is
also called a subtractor chain. The only difference between the P3 and

P4 chains is that the P3 chain incorporates a posteriori information.

The P3 chain strongly resembles the P2 chain. It is an autonomous
chain with a single pseudo-observation, denoted Z4, which conveys the
~information provided by the ICS. The information received from the ICS
is a (perhaps phase-shifted) estimate of the binary annotations for sig-
nature S1. Let the binary annotation for signature S1 at time n be

denoted aSI(n). Recall from Section 5.5 that this signal is defined as

s1 [1 if an S1 annotation occurred at time n
a" " (n)= .
L0 otherwise

Each state of the P3 subprocess state space represents a particular
state of a shift register memory. The contents of the shift register
are the birary annotations. Denote the length of the shift fegister as
K. Let bg.....bé_l be the shift register contents represented by state
i. Analogous to the P2 case, the i,j element of the tpm for P3 is cal-
culated as

lim pr(.SI(n+1)=bé . ,381(n+1—x+1)=bg|

n-)c _11 .

251 (p)=pd

S1, i
x_lpnnnn. (n x+1)-bo)-

As in the P1 and P2 cases, a mnecessary

Denote this probability pfaj

condition for p§3j>o is b)_,=bi, k€(1,...,K-1}.
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A P3 chain initiates Gaussian signatures which, though they may be
initiated by several differemt transitions, are all identical. In the
context of LE O pass 1, this signature is the S1 signature. Thus we
need only to describe which transitions imitiate the signatures. Let
K‘G[O....,[—l} be a distinguished elenen; in the shift register memory.
x* is introduced to allow for the possibility of noncausality). A

P3

transition from i to j initiates a Gaussian signature if P j)O and

i
vl -1,

K

As in previous mnotation, let Z4(n) be the random variable
representing the estimated binary annotation received through the ICS at
time n, and let Z4  be its reslization. Im 1light of the previous
description of the subprocess state space of P3, the observation pmf
(for the transition from state i to state j) has the form

iy

by

- j i i
Pr(Z4(n) ZAnbe-l'bK-l'bK-Z""
As in the Pl and P2 cases, the duration of the model’'s memory is K+1 in
spite of the fact that the duration of the shift register memory is only
K. In all the work reported on in this thesis, this set of pmfs is cal-

culated using simulation.

Throughout the work reported in this thesis, K is two; £* s one;

and when forming Z4(n), the estimated binary interactions are not

shifted. That is, Z4(n)=381(n) where QSI(n) is the estimate of aSI(n).
Therefore the observation is centered in a three element window of
binary amnotations. This completes the discussion of the P3 type of

chain, the last of the five genmeric estimator chains (i.e. PO, ..., P4)
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to be presented.

6.13. Numerical Results for Design-Model Class DM2--Introduction

Numerical results for design models belonging to class DM2 were

used to address three issues:

(1) the definition of the sugmentation for interactions transmitted
from LE O pass 1 to LE 1 pass 2 (recall that this issue, which also
applies to DM1 design models, was not discussed in the preceding

sections because historically it was a later innovation);

(2) the necessity, in models motivated by the ECG problem, of having

subtractor chains (i.e. P3 and P4);

(3) the performance of both the suboptimal and the global MAP estima-
tors for three design models which do not exhibit the determinism
of the design models considered previously (e.g. those shown in

Figure 6.4); and
(4) the consistency of the global estimate.

The basic design model is shown in Figure 6.22. Several different
sets of parameters are shown in Table 6.18. The models of Figure 6.22
and Table 6.18 columns 1-4 gare models of normal rhythm, including both
the P and the R waves. The models of Figure 6.22 and Table 6.18
columns 4;7 are design models which do not exhibit the determinism of

the design models shown in Figure 6.4.
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Submodel O

Submodel 1
e oo
if xX°=0 R

1-4q, R

5667,

q 1 1 ] ] 1 . .
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Figure 6.22 A Normal Rhythm Design Model With Both P and R Waves.
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Markov chain cycle interval = signature sampling interval = 1 (normal-

ized time).

P: 2 samples long, each sample having mean B, and standard deviation

T,

R: 3 samples long, with means By, my, and m3 and common standard devi-

ation \I75.

Observation noise: mean O and standard deviation 1.

Figure 6.22 Continued.
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Model Number
1 2 3 4 5 6 7

0
P14,15 1 1 1 1 .95 1 1
9 .25 .25 .25 .25 .25 .25 .2375

1 .95 1

parameter Ty .6 .6 .9 .9 .6 .6 .6

——_———_——————_ﬂ——
N3
[y
(=)
[y
[
————-—-————-———L—

B, .5 .18 .5 .15 .75 .15 .75
n, 3 4.5 3 4.54.54.5 4.5
m, .5 .15 .8 .75 .15 .15 .75

Table 6.18 Parameters for the Design Model of Figure 6.22.

6.14. Augmented Interactions——LE O Pass 1 to LE 1 Pass 2

Consider the design model of Figure 6.22 and Table 6.18 column 1.
In these design models, signature SO (2 Markov-chain cycles in duration)
corresponds to the low SNR P wave while signature S1 (3 Markov-chain
cycles in duration) corresponds to the high SNR R wave. A sample of the
stochastic process defined by this design model is shown in Figure 6.23.
Two different estimators for DM2-class design models are shown in Fig-
ures 5.6 and 6.24. The only difference between these two estimat;rs is
whether the ICS link between LE O pass 1 and LE 1 pass 2 transmits aug-

mented or unaugmented interaction estimates.

Statistics on the augmented interaction estimates for LE O pass 1
in the estimator of Figure 5.6 (which are identical to those in the
estimator of Figure 6.24 since these two estimators only differ in later
passes) are shown in Table 6.19. The corresponding statistics for
unaugmented interactions, shown in Table 6.20, were 6bt;ined from the

statistics in Table 6.19 by summing up the columns. Note first that the

Section 6.14,



- 286 -

estimated interaction 0,1ﬁ§0.?1 is redundant if the estimated state

O,l;:o is known. This true because O.IQSO,PI is defined as

[

I 0, 1Aco -0
0 lﬂco P1_,

|

L

0

n 1 otherwise

This explains the all-zero rows in Table 6.19.

The reason for considering the augmented interactions is again one
of phase errors. Consider the (1,0,1) column in Table 6.19. Assume
that the LE O pass 1 estimator is doing feirly well. Then most of the

time, 0'1§50=0 when truth interactiom O occurs (i.e. the actual interac-
tion is hg'1=0). This explains the 611 entry, which is by far the larg-
est entry in the (1,0,1) column. However, sometimes the estimated state

leads the true state by one cycle and in this case there is a

corresponding lead between 0'1Q§°=0 and the truth interaction, producing
the 297 entry. A lead of two cycles generates the 109 entry. Similarly

there can be lag situations, which lead to the 159 and 171 entries.

o ’ 1/‘\C°

What is uncommon is a large mistake such as x =9 when a truth

interaction occurs. Correspondingly, the entries for 0,1%50.P1=1’

0'1§£°€[4,....13] (still in column (1,0,1)) are all very small. When

using unaugmented interactions, the probabilities of the relatively com—
mon small-phase errors are summed together with the probabilities of the
uncommon large errors. This results in the misleading statistics shown

in Table 6.20.
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The implications of this can be seen from the following example.
Suppose that the interaction estimate that is transmitted is a 1. The
LE 1 pass 2 estimator must decide which of the four possible actual tri-
plets (1,1,0), (1,0,1), (0,1,1), and (1,1,1) caused this 1. If the
estimator is given only the unaugmented interaction, then, using the
statistics of Table 6.20, it assigns conditional probabilities of .792,
.573, .805, and .984 respectively to these four possibilities. If, in
addition to the interaction estimate, the estimator is also given the

0,1AC0
x

augmenting information n ’ then we often obtaim far more decisive

information. For example, if 1, then from Table 6.19, the esti-

0,1,C0
x =
n

mator assigns conditional probabilities of .0762, .208, .427, and .0264

which are only moderately different from the values with unaugmented

interactions. This is the case because, from Table 6.19, we see that

0,1~C0
x =
n

the maximum ambiguity occurs when 1. On the other hand, if

0'1§:0=9. then we know with virtuoal certainty that the actual interac-

tion triplet was (1,1,1).

Statistics on the global wave-tracking estimate from the estimators
of Figures 5.6 and 6.24 are shown in Tables 6.21 and 6.22. Statistics
for the global MAP estimate are also shown in these figures. Table 6.21
shows two misclassification tables for each estimator. The difference
between the contents of the two tables is in the annotation matching, as
in one case phase-shifted matches are permitted while in the other they
are not. Also shown are six sets of false positive, false negative, and

total error probabilities for both P and R waves.

The P wave estimates for the two suboptimal estimators are identi-

cal because the P wave estimates are constructed from the results of
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LE O pass 1 which are the same in both estimators. Based on teP in the
case when phase-shifted matches are allowed, the global MAP estimator\
performs (.334-.204)/.334 = 39 percent better than the suboptimal esti-
mators. When considering the utility of this level of performance with
respect to the ECG problem, note that the data is unrealistically noisy.
The noise level was chosen so that a statistically significlnf number of
errors‘wonld occur within a Siqnlntion of practical duration. In Sec-
tion 6.21, we consider a more detailed example with more realistic noise

levels.

With respect to the R wave performance of the suboptimal estima-
tors, there are two effects. Both favor the estimator using augmented
interaction estimates (i.e. the estimator of Figure 5.6). The two

effects are:

(1) The total error probability (phase-shifts allowed) declines by

(.0573-.0488)/.0573 = 15§ percent,

(2) The imbalance between fpR and fnR declines. In the phase-shift-
allowed case, the decline is from 9:65 to 27:36. That is, there is
8 greatly reduced tendency to reject actual R waves compared to the

tendency to produce false detections.

We consider the decreased imbalance of (2) to be desirable for two

reasons:

(1) A false positive detection could be found and deleted by further
processing which can be limited to the times when waves were
detected. On the other hand, retrieving an event that was not

detected (i.e. a false negative detectiom) requires considering
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all times at which no R wave was detected, s much larger set of

times.

(2) Some false positives and false negatives are pairs. That is, they
result from a wave detection too far from the true locatiom to be
considered a match, yet still nearby. On the basis of examining
isolated plots of data, truth annotations, and estimated annota-
tions, we believe that this is an important error mechanism. Ve
have not, however, defined and collected statistics that would sup-
port this assertion. If a majority of the errors are paired, then
it is natural to prefer a fpR:fnR ratio of 27:36 rather tham 9:65
because the former would correspond to a significantly lower actual

error rate (where an error pair is counted as a single error).

Now consider the better suboptimal estimator (i.e. the estimator of
Figure 5.6) and the global MAP estimator. Based on teR in the case when
phase-shifted matches are allowed, the global MAP estimator performs

(.0488-.0348)/.0488 = 29 percent better than the suboptimal estimator.

Table 6.22 shows the joint P and R wave statistics described in
Section 4.3.4. The tables for conducted be;ts are made from the sub-
class of matched truth and estimated annotations where, in the truth
annotations, P is followed by R. The tables for dropped beats are made
from the subclass where, in the truth annotations, P is not folloved by
R. (In these simple design models, that means it was followed by
another P). As before, tabulations based on matches inm which phase-

shifts are and are not allowed are both shown.

The P wave estimates are the same for both suboptimal estimators.
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With respect to R waves, the chief difference between the two cases is
that (in the phase-shift-~allowed tables) 24 (P,fn) pairs are transformed
info (P,R) pairs and 5 (fn,fn) pairs are transformed into (fn,R) pairs.
This reflects the improved R wave performance seen in the misclassifica-

tion tables.

Now compare the better suboptimal estimator (i.e. the estimator of
Figure 5.6) and the global MAP estimator. The dramatic difference is
superior P wave performance in the global MAP estimator. Consider the
tables based on matches in which phase shifts are allowed. For con-
ducted beats, 57 of the 166 (fn,R) pairs of the suboptimal estimator are
transformed into (P,R) pairs for tﬁe global MAP estimator. For dropped
beats, 33 of the 54 fn detections in the suboptimal estimator become P
detections in the global MAP estimator. While the global MAP estimator
provides superior performance, the actual performance of the suboptimal
estimator with respect to P waves is not bad. For example, in conducted
beats where the R wave was correctly detected, only 166/1254 = 13 per-
cent of the true P waves are not matghed to estimated P waves (all of
these errors ire false negatives). The corresponding numbers for the

global MAP estimator are 109/1251 = 8.7 percent.

On the basis of these results, the communication of augmented
interaction estimates between LE 0 pass 1 and LE 1 pass O was chosen as

the standard procedure.
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Figure 6.23 A Realization of the Stochastic Process Defined in
Figure 6.22 and Table 6.18 Column 1.
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i truth interaction triplet I
]
0,1.,0,1.0,1
:: (hnfl’hn 'hn+1) }
_ (1,1,0) _(1,0,1) (0,1,1) (1,1,1) |
- I o 0 297 611 279 44 |
I il 0 0 0 o |
0 | estimated 2 ” 0 0 0 0 I
| state 0-13C0 Il . o
= - N i . . .
! 16 |l 0 0 0 o |
i oll 0 0 0 o |
I 1l 109 297 611 414 |
| 2 ” 16 109 297 1009 l
. 3 1 16 109 1305
timated
intersction = 4l 1 1 16 1341 |
0,12co0,P1 I sl 1 1 1 1330 |
b I 6 |l 0 0 1 683 |
| estimated ; ” 0 g 8 gg }
L1 seate 00350 oy (1) 2 o 1428 |
} " 10 1l 0 0 2 1428 |
I 11 |l s 0 0 1425 |
' 12 16 5 0 1409 |
I 13 1l 43 16 5 1366 |
I 14 1l 159 43 16 1212 |
151l 475 159 43 753 |
— | 16 |l 307 171 52 189 |
Table 6.19 Statistics on Augmented Interaction Estimates From
LE O Pass 1.
| T | truth inter;ctio;-;;zgizz.-_]
| | |
0,1 ,0,1,0,1
: { (hn—l'hn 'hn+1) :
I _ 2] (1.1,0) (1,0,1) (0,1,1) (1,1,1) |
— T
| estimated o | 297 611 279 244 |
|interuction | |
| 0.1,C0,P1 1 } 1134 820 1153 15412 }
R |

Table 6.20 Statistics on Interaction Estimates From LE O Pass 1

(based on Table 6.19).
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Estimator of Figure 5.6

Without phase shifts

Estimated Estimated
P R fa rs P R fn rs
P|1190 9 230 1429 PI 639 5 785 1429
2 1255 34 1291 11230 60 1291
255 Truth ¢o! 789 47 836

Truth fpl 237 18
1429 1282 264

fpP =  239/1429 =
faP =  239/1429 =
teP = (239+239)/1429 =
fpR = 27/1282 =
foR = 36/1291 =
teR = (27+36)/1291 =

With phase shifts
‘Estimated
P R fan

1429 1282 845

P 1190 7 232
Rl 72 1226 63
cs| 1429 1235 295

fpP =  239/1429 =
faP =  239/1429 =
teP = (239+239)/1429 =
fpR = 9/1235 =
faR = 65/1291 =
teR = (9+65)/1291 =

.167(.0590) fpP = 790/1429 = ,553(.0238)
.167(.0590) fnoP = 790/1429 = ,553(.0238)
.334 teP = (790+790)/1429 = 1.11
.0211(.190) f£pR = 52/1291 = .0403(.136)
.0279(.164) fnR = 61/1282 = .0476(.125)
.0488 teR = (52+61)/1282 = .0881
Estimator of Figure 6.24
Without phase shifts
Estimated
rs_ P R fa rs
1429 P 639 3787 1429
1291 R 11208 82 1291
239 Truth g0l 789 24 813

csl 1429 1235 869

.167(.0590) fpP = 790/1429 = .553(.0238)
.167(.0590) foP = 790/1429 = .553(.0238)
.334 teP = (790+790)/1429 = 1.11
.00729(.332) fpR = 27/1235 = .0219(.190)
.0503(.121) fnR = 83/1291 = .0643(.106)
.0573 teR = (27+83)/1291 = 0852

Table 6.21 Estimator Performance.
Misclassification Statistics.
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Global MAP Estimator

With phase shifts Without phase shifts
Estimated Estimated
P R .fa rs P R fa rs
P |1285 3 143 1431 P | 764 2 664 1430
: R 0 1252 40 1292 Rl 0 1231 61 1292
Troth o0 146 148 Truth 667 24 691
1431 1257 183 |1431 1257 725
fpP = 146/1431 = ,102(.0784) fpP = 667/1431 = .466(.0283)
faP = 146/1431 = ,102(.0784) faP = 666/1430 =-.466(.0283)
teP = (146+146)/1431 = ,204 teP = (667+666)/1430 = .932
fpR = 5/1257 = ,00398(.446) fpR = 26/1257 = ,0207(.194)
faR = 40/1292 = ,0310(.156) fnR = 61/1292 = ,0472(.1258)
teR = (5+440)/1292 = .0348 teR = (26+61)/1292 = .0673

Table 6.21 Continued.
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Estimator of Figure 5.6

Conducted Beats

Vith phase shifts Without phase shifts
Est. Anno. Matched Est. Anno. Matched
With Truth R Anno. With Truth R Anno.
P R fa rs P R fa rs
Est. P 0 1088 22 1i10 Est. PO 583 18 601
Anno. R l0 0 5 5 Anno. R I0 0 4 4
Matched fn'2 166 7 175 Matched fnll 646 38 685
With cslz 1254 34 With csll 1229 60
Truth P Truth P
Anno. l Anno. I
Dropped Beats
With phase shifts Without phase shifts
Est. Anno. Matched Est. Anno. Matched
With Truth P Anno. ' With Truth P Anno.
P R fn rs P R fo rs
80 4 54 138 38 1 99 138

Table 6.22 Estimator Performance.
Joint P and R Wave Statistics.
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Estimator of Figure 6.24

Conducted Beats

With phase shifts Vithout phase shifts
Est. Anno. Matched Est. Anno. Matched
With Truth R Anno. With Truth R Anmno.
P R fn rs P R fn rs
Est. P |0 1064 46 1110 Est. PO 569 32 601
Anno. |0 0 4 4 Anno. R'O 0 3 3
Matched fn|2 161 13 176 Matched fn'l 638 47 686
With cs|2 1225 63 With cs;1 1207 82
Truth P Truth P
Anno. | Anno. I
Dropped Beats
With phase shifts Without phase shifts
Est. Anno. Matched Est. Anno. Matched
With Truth P Anmno. With Truth P Anno.
P R fn rs P R fn rs
80 3 55 138 38 O 100 138

Table 6.22 Continued.

Section 6.14._



- 298 -

MAP Estimator

Conducted Beats

With phase shifts Without phase shifts
BEst. Anno. Matched Est. Anno. Matched
With Truth R Anno. With Truth R Anno.
P R fn rs P R fn rs
Est. P |0 1142 25 1167 Est. |0 671 23 694
Anno. R,0 0 1 1 Anno. R |0 0 1 1
Matched fn|0 109 13 122 Matched ntO 559 37 596
With cs|0 1251 39 With cs|0 1230 61
Truth P Truth P
Anno. I Anno. ,
Dropped Beats
With phase shifts Without phase shifts
Est. Anno. Matched Est. Anno. Matched
With Truth P Anno. ' With Truth P Anno.
P R fn s P R fn _rs__
117 2 21 140 70 1 68 139

Table 6.22 Continued.

6.15. The P3 and P4 Chains

In this section we present results indicating that the subtractor
chains (i.e. P3 and P4 chains) are not necessary for the ECG-motivated
design models that we have considered. While this may seem clear for

the low-energy P waves, it is somewhat surprising for the high-amplitude

R waves.

In Chapter 5 we proposed a estimator, shown in Figure 5.6, for the
DM2 design-model class. Here we call that estimator the nominal estima-—

tor and consider five variations, where each variation corresponds to
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deleting ome or more of the P3 or P4 chains. Since these chains are
autonomous, no further change in the estimator is required. The five

variants are listed in Table 6.23.

Consider the design model of Figure 6.22 and Table 6.18 column 4.
A sample of the stochastic process defined by this design model is shown
in Figure 6.25. The global wave-tracking estimate for the nominal esti-
mator of Figure 5.6 and for each of the five variants described in
Table 6.23 were computed. The global wave-tracking estimate of the glo-
bal MAP estimator was also computed. The misclassification statistics
for these seven estimators, based on annotation matches in which phase
shifts are allowed, are shown in Table 6.24. These statistics indicate
that all six suboptimal estimators provide equal performance. The per—
formance of the global MAP estimator is provided for comparison. The
misclassification statistics based on annotation matches in which phase
shifts are not allowed and all of the joint P and R wave statistics
indicate the same conclusion. Based on these results, we have done most

calculations using estimators without subtractor chains.

The lack of subtractor submodels means that each pass of each LE
processes data in which there are unmodeled signals. In the case of
LE 0 pass 1, the unmodeled signal is the R wave which contains much more
energy than the modeled P wave signal. The equal performance achieved
by estimators with and without this subtractor therefore requires expla-

nation.

We believe that it is the presence of pseudo-observations in LE O
pass 1 that makes the subtractor chain superfluous. Intuitively, the

pseudo-observations create a window, for the LE, during which the
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estimator essentially cannot estimate a P wave, and (when LE 1 pass 0 is
working well) this window usually coincides with the R wave. To see
this, assume that the augmented interaction estimates are exact and that

ve do not round-up zeros in the pseudo-observation observation pmfs.

Therefore, at each truth interaction, must be in state 0. There-

O.IQCO
n
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