
February 1993 LIDS-TH-2164

Research Supported By:
Office of Naval Research
Grant N00014-91-J-1004

Air Force Off ice of Scientific Research
Grant F49620-92-J-0257DEF

National Science Foundation
Grant MIP 9015281

Parallel Algorithms for 2-D
Boundary Value Systems

Michael M. Daniel



February 1993 LIDS-TH-2164

SWnsor AAnowledgments

Office of Naval Research
Grant N00014-91-J-1004
Air Force Office of Scientific Research
Grant F49620-92-J-0257DEF

National Science Foundation
Grant MEP 9015281

Parallel Algorithms for 2-D
Boundary Value Systems

Michael M. Daniel

This report is based on the unaltered thesis of Michael M. Daniel submitted to the Department of
Electrical Engineering and Computer Science in partial fulfillment of the requirements for the Degree
of Master of Science at the Massachusetts Institute of Technology in February 1993.

This research was conducted at the M.I.T. Laboratory for Information and Decision Systems
with research support gratefully acknowledged by the above mentioned sponsors.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA



Parallel Algorithms for 2-D Boundary Value Systems

by

Michael M. Daniel

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1993

Michael M. Daniel, MCMXCIII. AR rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Author ...........................................................................
Department of Electrical Engineering and Computer Science

December 18, 1992

Certified by ......................................................................
Alan S. Willsky

Professor
Thesis Supervisor

A ccepted by ......................................................................
Campbell L. Searle

Chairman, Departmental Committee on Graduate Students



Parallel Algorithms for 2-D Boundary Value Systems

by

Michael M. Daniel

Submitted to the Department of Electrical Engineering and Computer Science
on December 18, 1992, in partial fufillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

The objective of this thesis is to develop and investigate efficient, direct, and parallelizable
algorithms for 2-D boundary value systems, particularly in the context of 2-D digital filter-
ing. FIR filters appear to be the preferred form of implementation in 2-D signal and image
processing applications not only because they have desirable attributes like stability and
efficient solutions, but also because the properties of 2-D IIR implementations are not well
known. In this thesis we provide a framework for efficiently implementing 2-D IIR filters
specified by a 2-1) linear difference equation constrained by boundary conditions. A direct
solution is developed whose performance is comparable to the nested dissection algorithm,
and whose approximate solution is is more computationally efficient than nested dissection
for filter systems identical to strictly diagonally dominant systems of equations.

Thesis Supervisor: Alan S. Willsky
Title: Professor



Acknowledgments

If you need a change, just stand here, by God, and you'll get it.

So turn once again, back up

the driveway, thinking, as lately you've come to,

that you can still make a wrong step,

on rough ground, in the dark, and not

quite cripple yourself. Porchlights, left on to show you the way

home, shine right in your eyes, and you

can't see a thing, but you'll get there.

-Henry Taylor, from The Flying Change

I first would like to thank Alan for providing me with inspiration, support, serious base-

ball dialogue, and loads of patience. The work in this thesis is, if anything, my manifestation

of his ideas.

I would also like to thank Prof. Jacob White for always taking the time to answer my

questions, and for being an incredibly nice guy.

This work would have been a dreary task without the support of my fellow LIDS mem-

bers. In particular, thanks to Mark and Eric for office dialogue and direction. And for

entertainment, I thank the nerdy duo at 25 Lime St.

Finally, I give thanks to my parents for their love, support, and endless supply of plane

tickets, and thanks to my Porchlight, S.

This research was benevolently supported by:

Office of Naval Researcli, Grant No. N0001,1-91-J-1004

Air Force Office of Scientific Research, Grant No. F49620-92-J-0257DEF

National Science Foundation, Grant No. MIP-9015281



Contents

I Background and Motivation 10

1.1 Boundary Conditions and Acausal Systems . . . . . . . . . . . . . . . . . . 11

1.2 Algorithms for Acausal HR filters . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Direct Algorithms for 2-D Acausal Filters 22

2.1 Casting 2-D Filters into I-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Solving I-D Acausal Systems with Growing State Size . . . . . . . . . . . . 32

2.2.1 Block LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 An Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Local Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Inter-processor Communication . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Computation and Storage . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Efficient Algorithms 57

3.1 An Approximate LU Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Approximating the Inter-processor Communication Step . . . . . . . 65

3.1.2 Implementing the Approximate LU Algorithm . . . . . . . . . . . . 70

3.2 Nested Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 An approximate solution derived from Nested Dissection . . . . . . . 79

3.3 Exam ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Setting up the examples . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Numerical stability of mesh partitioning algorithm . . . . . . . . . . 91

3.3.3 Performance with approximations . . . . . . . . . . . . . . . . . . . 101

4



4 Conclusions and Future Research 110

A Coefficients for NNM with Radial Mesh Ordering 115

B NNM Parameters Causing Singularities 120

5



List of Figures

1-1 Parallel implementation for a general 1-D IIR Filter . . . . . . . . . . . . . 16

2-1 Rectangular mesh on which Dirichlet conditions are imposed . . . . . . . . . 24

2-2 Hexagonally sampled space on which Dirichlet conditions are imposed. . . . 25

2-3 Rectangular inesh on which Neumann conditions are imposed .. . . . . . . . 25

2-4 States x. containing x [i, j] at equal oo-norm distance from the center. 30

2-5 States TP containing T [i, j] at equal 1-norm distance from the center. 30

2-6 Radial ordering of the variables for a square 7-by-7 mesh . . . . . . . . . . . 39

2-7 Mesh variables remaining after the first variable has been eliminated. . . . . 39

2-8 Mesh variables remaining after the first two variables have been eliminated. 40

2-9 Constraint yielded after xO and x, have been eliminated. For a 7-by-7 mesh,

this is also the constraint propagated to the boundary edge . . . . . . . . . . 41

2-10 Partitioning of 2-D filter dynamics among 4 processors . . . . . . . . . . . . 42

2-11 Results of eliminating variables ordered radially in each local mesh . . . . . . 43

2-12 Pairwise (East/West) communication between local processors to provide a

constraint on a larger boundary . . . . . . . . . . . . . . . . . . . . . . . . . 45

2-13 Pairwise (North/South) communication between local processors to provide

a constraint on the global boundary . . . . . . . . . . . . . . . . . . . . . . . 46

3-1 Structure of the constraint between TP and xp+l after each factorization step

of the Block LU Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-2 Grey scale magnitude plot of the elements in D10 for an NNM with n = s = e = w =.15.

The magnitude of the diagonal elements relative to the elements just of the

diagonal is: h 10(i, i ± 1) - -610(i" O * (-. 154) . . . . . . . . . . . . . . . . . . 60

3-3 Location of non-zero elements in approximate matrix with B = 1 .. . . . . . 62

6



3-4 Location of non-zero elements in approximate matrix with B = 3 .. . . . . . 62

3-5 Location of non-zero elements in L and UT of LU factorization of approximate

m atrix with B = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3-6 Location of non-zero elements in approximate matrix with B = 3, including

extra coefficients near the corners Of XN . . . . . . . . . . . . . . . . . . . . . 65

3-7 Grey scale magnitude plot of the elements in Q22 with L = 10 for an NNM

with n=s=e=w= .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3-8 Location of non-zero elements in matrix approximating 022, with B = 3 and

L = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-9 Dependence structure of a difference equation leading to linear system of

equations to be solved by the nested dissection algorithm . . . . . . . . . . . 75

3-10 The dissector S, divides the mesh into two disjoint sets, one which contains

the variables in C, and the other those variables in C2 .. . . . . . . . . . . . 77

3-11 Adding a second (nested) level of separators . . . . . . . . . . . . . . . . . . 77

3-12 Structure of the non-zero elements in A after nested dissection ordering of a

10-by-10 mesh. (The underlying boundary value system is a Discrete Poisson

with Dirichlet conditions.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3-13 Order of variables in nested dissection and mesh partitioning . . . . . . . . . 80

3-14 Coupling between variables in a dissector, just before the dissector is to be

eliminated in the factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3-15 Grey scale magnitude plot the diagonal sinusoid for Ni = 2 and Nj = 32. . 86

3-16 Grey scale magnitude plot the rectangular sinusoid for Ni = 2 and Nj = 32. 86

3-17 The magnitude plot of the 32-by-32 point DFT of a low pass filter described

by an NNM with n = s = e = w =.15 . . . . . . . . . . . . . . . . . . . . . . 87

3-18 The contour plot of the magnitude of the 32-by-32 point DFT of a low pass

filter described by an NNM with n = s = e = v? = .15 . . . . . . . . . . . . . 88

3-19 The contour plot of the magnitude of the 32-by-32 point DFT of a low pass

filter described by an NNM with n = s = .2 and e = w = .1 . . . . . . . . . . 88

3-20 The contour plot of the magnitude of the 32-by-32 point DFT of a low pass

filter described by an NNM with n = e = .13 and s -_ w = .18 . . . . . . . . 89

3-21 The magnitude plot of the 32-by-32 point DFT of a low pass filter described

by an NNM with n = e = s = w =.05 . . . . . . . . . . . . . . . . . . . . . . 89

7



3-22 The magnitude plot of the 32-by-32 point DFT of a high pass filter described

by an NNM with n = s = e = w = -. 15 . . . . . . . . . . . . . . . . . . . . . 90

3-23 The magnitude plot of the 32-by-32 point DFT of a filter described by an

NNM with n = s = -. 14 and e = w = .16 . . . . . . . . . . . . . . . . . . . . 90

3-24 Fourier Transform of the diagonal sinusoid for Ni = Nj = I/2 = 32 and

fl = [1, 64] X [1, 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3-25 Fourier Transform of the diagonal sinusoid for Ni = Nj = I/16 = 4 and

Q = [1, 64] X [1, 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3-26 Fourier Transform of the diagonal sinusoid for Ni = Nj = I/31 = 64/31 and

Q = [1, 641 x [1, 64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3-27 Fourier Transform of the rectangular sinusoid for Ni = Nj = I116 = 4 and

SI = [1, 64] x [1, 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3-28 Contour plot of a diagonal sinusoid (truncated at the boundaries) with Ni =

Nj = 1/2 and Q = [1, 64] x [1, 641 . . . . . . . . . . . . . . . . . . . . . . . . 98

3-29 Fourier Transform of a diagonal sinusoid (truncated at the boundaries) with

Ni = Nj = I/2 and Q = [1, 641 x [1, 64] . . . . . . . . . . . . . . . . . . . . . 98

3-30 Contour plot of the output to a low-pass IIR filter with zero Dirichlet condi-

tions and an input of a diagonal sinusoid (truncated at the boundaries) with

Ni = Nj = I/2 and fl = [1, 64] x [1, 64] . . . . . . . . . . . . . . . . . . . . . 99

3-31 Fourier Transform of the filter output with zero Dirichlet conditions. . . . . 99

3-32 Contour plot of the output to the low pass filter when the Dirichlet conditions

are derived from the filter input . . . . . . . . . . . . . . . . . . . . . . . . . 100

3-33 Fourier Transform of the filter output with Dirichlet conditions derived from

the filter input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3-34 Contour plot of the output to a low-pass IIR filter with zero Dirichlet concti-

tions and. an input of a diagonal sinusoid (truncated at the boundaries) with

Ni = Nj = 1/2 and SI = [1, 250] x [1, 2501 . . . . . . . . . . . . . . . . . . . . 101

3-35 Log plot of d2(Xl, X2) when c n = s = e = w and B = 5. The diagonal

dominance ratio is then q 103
41cl . . . . . . . . . . . . . . . . . . . . . . . .

3-36 DFT of u -- 0.2u3 + u5 with Ni = I/31 and Nj = I/2 which is used as an

input to the mixed filter .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8



3-37 DFT of the "exact" output of the mixed filter driven by u = O.2U3 + U5 with

Ni = I/31 and Nj = I/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3-38 DFT of approximate output of the mixed filter driven by u = 0.2U3 + U5 With

Ni = 1/31 and Nj = 1/2 with B = 5 . . . . . . . . . . . . . . . . . . . . . . . 106

3-39 Contour of high-pass filter output (approximated with B = 5) when driven

by the input U - U4 with Ni = Nj = I/2 . . . . . . . . . . . . . . . . . . . . 106

3-40 DFT of high-pass filter output (approximated with B = 5) when driven by

the input U = U4 with Ni = Nj = I/2 . . . . . . . . . . . . . . . . . . . . . . 107

3-41 Log plot of d2(Xl, X2) for the NNM n = s = e = w = .15 . . . . . . . . . . . . 108

A-1 A possible ordering of states xO, xj, and X2 for an oo-norm radial ordering

of the m esh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9



Chapter 1

Background and 1\4otivation

This thesis aims to develop efficient, direct (non-iterative), and parallelizable algorithms for

acausal two-dimensional HR filters described by partial difference equations constrained by

boundary conditions. There appear to be a wide range of applications, from computer vision

problems like edge detection [18] to oceanographic signal processing [36] to the familiar

discrete Poisson equation [5, 9, 17, 16], in which one is given a difference equation and

a set of boundary conditions, and must then efficiently compute the output for any given

input. While such acausal systems have numerous elegant solutions in 1-D, the problem can

become extremely complex and computationally demanding for two or more dimensions.

In one dimension, both FIR and IIR filtering systems have efficient solutions, and their

relative desirability depends upon the applications. In 2-D, however, FIR filters are ahnost

exclusively preferred to their IIR counterparts. Although there exist important differences,

2-D FIR filters are nearly identical to their I-D counterparts in that they are always stable,

have straightforward implementations, can be implemented efficiently using the 2-D DFT,

and have an output area of support determined exclusively by the area of the input and the

order of the filter. Many "discrete-time" systems and discrete approximations to continuous-

time systems, however, are most naturally represented as an IIR filter specified implicitly

by a 2-D linear difference equation [4, 10, 22, 20, 24, 25, 39]. One common example is a

partial differential equation (P.D.E.), such as Poisson's equation [5, 9, 1T], approximated

by finite difference methods. Unfortunately, the solution to such a 2-D IIR system does

not readily follow from 1-D filtering theory, and the computational complexity in obtaining

the solution increases dramatically with the size of the 2-D region of support. To further

10



complicate analysis, the stability of such filters is often difficult to characterize.

Is is possible to overcome these barriers? A major premise of this thesis is that the

extension of 1-D IIR filtering theory developed within a uniprocessor environment to 2-D

has stifled the development of more natural frameworks for analyzing and solving 2-D

IIR filtering systems. Because a 2-D partial difference equation constrained by boundary

conditions (B.C.'s) is just a sparse system of linear equations, a starting point for building

a new framework would be to apply, adapt, and extend some of the powerful sparse system

techniques from numerical linear algebra to 2-D IIR filtering. In particular, direct algorithms

like nested dissection and LU factorizations resulting from minimum degree orderings are

known to be the most efficient direct solutions to partial difference equations [14, 13].

1.1 Boundary Conditions and Acausal Systems

With any system of linear equations Ax = b, A must have full rank in order that the problem

be well-posed (x has a unique solution). Any linear filter in the form of a difference equation

can be cast as a system of linear equations, but the system is not well-posed without a set

of auxiliary conditions. For instance, a 1-D difference equation of the form

x[n] = ax[n - 1] + bu[n]

does not alone define a system, since there is not a unique output sequence x[n] for any given

input u(n] unless auxiliary conditions are specified. Usually for a 1-D filter, the auxiliary

conditions are initial conditions, and the independent variable (index n) is time. For the

causall first-order filter given in (1.1), an initial condition such as x[O] = c allows one to

uniquely determine the output x[n] for n > 0 given u[n] for n > 0 by recursively propagating

the initial condition forward in time. For acausal 1-D filters, however, initial conditions are

not an appropriate choice of auxiliary conditions, since the output response x1n] is usually

non-zero for infinite extent in both directions (n E [-00, 00]), which is often the case when

n no longer represents time.

For example, suppose that one is given a stable linear shift-invariant (LSI) discrete-time

1h 1-1), a causal filter is oite which has -m impulse response which is tioii-zero mily for n > 0. Aii
anti-causal rifter has zm impidse respoiise which is jimi-zero otily for n < (). Aii acausal filter has ait impulse
rc-pouse which ca-ii be imi-zero for iiifiiiite extent. itt either direction of n.



system specified by its system function, H(z):

H(Z) = I + az (1.2)
1 - az-1 - az

= Hi (z) + H2 (Z)

X(Z) = H(Z)U(Z) (1.3)

where X(z) and U(z) are the Z-transforms of the system output and input, respectively.

Any 1-D IIR filter's system function can be decomposed into a parallel combination of a

causal and an anti-causal IIR filter. Assuming jai < 1 and filter stability, the causal filter

takes the form

Hi (Z) (1.4)
1 - az-1

and the anti-causal filter is then

az
H2 (Z) - - (1.5)

1 - az

Taking the inverse transform of (1.2) gives the system in the form of the difference equation

_QXIn + 1] + (I + a2)x[n] - ax[n - 1] = (I _ a2)u[n] (1.6)

For many image processing, and non-real-time I-D signal processing and estimation prob-

lems, one is only concerned with the outputs over a specific window. Consider the case in

which one would like to solve for x[n] over the interval N, < n < N2 given u[n] over this

same interval [Nj, N21. The auxiliary conditions required to accomplish this then come in

the form of boundary conditions, where x[n] is constrained at the boundaries of the re-

gion of support [Ni, N21. The boundary conditions constrain two degrees of freedom in the

second-order difference equation given in (1.6), and come in two general forms, separable

and non-separable. Separable B.C.'s constrain the ends of the interval independently, such

as

x[Nij ci (1.7)

x[N21 C2 (1-8)

12



and non-separable constrain x[n] at each of the boundaries simultaneously, such as

C x[Ni] (1-9)

x[N21
t. J

where C is a 2 x 2 non-singular matrix. The boundary conditions specify a system which has

a completely different flavor from the causal system given by (1.1) and its initial condition.

The solution to the system defined by (1.1) is found by recursively propagating the initial

condition for n > 0. Likewise, if the system corresponding to (1.2) were instead considered

to be a causal (but necessarily unstable) system, the auxiliary conditions would be initial

conditions, such as x [ - I I -_ c - 1 and x [ - 2] = C - 2, which could be recursively propagated by

casting (1.6) as the computational procedure in (1.10).

1 + a 2 2
X[nj = x[n - 1] - x[n - 2] - u[n] (1.10)

a a

Such systems are called recursively computable (10], because each step of the solution involves

recursively computing a value of the output, x[n], using previously computed outputs (in

Equation (1.10), x[n - 1] and x[n - 2]).

One should also note that for acausal systems the imposition of stability requires a

particular form of boundary conditions. Stability allows one to separate a filter into its

causal and anti-causal components, as was done in Equations (1.4) and (1.5). This de-

composition is discussed for general acausal systems in [34]. Under stability, the boundary

conditions must be specified such that the causal filter satisfies initial rest conditions and

the anti-causal filter satisfies final rest conditions.

The point of this section is to emphasize that a system is a combination of a difference

equation and a set of auxiliary conditions. A 1-D system's properties depend upon both its

difference equation and its auxiliary conditions. In particular pole placement is determined

by the difference equation. Whether a system is causal or acausal depends upon the form

of the auxiliary conditions. Initial conditions were shown to yield causal systems, while

boundary conditions yield an acausal system. The same is true for 2-D systems, except for

the fact that poles are more difficult to identify, and there is more flexibility in specifying

the auxiliary conditions.

13



1.2 Algorithms for Acausal IIR filters

Aside from determining system properties, the form of a system's difference equation and

boundary conditions determine the form of the solution. 1-D and 2-D IIR filters are imple-

mented with either direct or iterative solution algorithms. Direct implementations produce

a system's exact solution, excluding errors due to finite-precision- arithmetic, in a finite

number of steps [14]. Iterative implementations converge towards the solution with each

step, yet ideally take an infinite number of steps to obtain the exact solution. For one

and two-dimensional IIR filters constrained by initial conditions, the solution is generally

obtained with a direct form algorithm in which a new output value is obtained at each

step of the algorithm. The only "memory" required for such algorithms is a finite set of

previously obtained output values. As was stated in the preceding section, these systems

are referred to as being recursively computable. IIR filtering systems which are constrained

by boundary conditions are not recursively computable. In 2-D these acausal systems have

traditionally been solved with iterative algorithms, yet efficient direct algorithms do exist.

Direct algorithms which are suitable implementations for acausal IIR filters have for the

most part been confined to the field of numerical linear algebra, such as [14, 161, and have

been neglected in the 2-D signal processing literature [10, 26, 25].

For 1-D acausal IIR filters, there exist three general implementations (2 direct, 1 itera-

tive) whose relative utility depends upon the nature of the application. The first approach

relies upon the Fundamental Theorem of Algebra, which allows any univariate polynomial

to be factored into a product of first-order polynomials. A convenient property of 1-D LSI

IIR filters specified by difference equations is that their system functions are always rational

functions of z,

H(z) = b(z)
a(z)

meaning tbat a(_z) and b(Z-) can be expressed as prodticts of first-order polynomials. Tbe

poles and zeros of a system can be readily determined from such a factorization, which

assuming stability allows H(z) to be expressed as a sum of one causal and one anti-causal

filter. The system function given in (1.2) was expressed as a parallel combination of the

causal filter (1.4) and the anti-causal filter (1.5). The acausal IIR filter can then be imple-

mented by running the casual filter forward in n, using the following difference equation

14



derived from Hi (z)

x1[n] _- axi[n - 1] + u[n]

and running the anti-causal filter backwards in n, using the following difference equation

derived from H2(Z)

X2[n] = aX2[n + 1] + au[n +

The causal filter must be at initial rest (xi [n] = 0 for n < Ni) and the anti-causal filter must

be at final rest (X2[n] = 0 for n > N2). These two auxiliary conditions are the boundary

conditions of the acausal filter. The acausal filter output x[n] is just the sum of xi[n] and

X2[n] (see Figure 1-1 for an illustration). Assuming stability, one can thus always compute

the outputs of an acausal I-D IIR filter system by breaking it into its causal and anti-

causal components, initializing each filter with a subset of the B.C.'s, and then summing

the outputs of the sub-filters to produce x[n]. In the context of optimal estimation, such a

filter is known as a Mayne-Fraser two-filter algorithm Q38, 37]).

The second approach to solving acausal 1-D IIR systems involves recursively propagating

the boundary conditions at one end of the region of support through the filter dynamics

to the other end, then recursively solving for the system outputs with a filter running in

the opposite direction. For instance, consider an acausal filter similar to that given by the

difference equation (1.6), rewritten as

aix[n + 1] + aox[n'] + a-ix[n - 1] - u[n] (1. 1

with the separable boundary conditions

cox[Ni] + cix[Ni + 1] C2 (1.12)

dIx[N2 - 11 + dox[N2] d2 (1.13)

To obtain the filter outputs over n G [Ni, N21 given u[n] for n E [N1 + 1, N2 - 1], one can

start by combining (1.12) and the difference equation (1.11) evaluated at n = (NI + 1) to

eliminate x[NiJ. This combination yields a new boundary condition of the form

1Nix[Ni + 11 + IN,2X[Ni + 2] _- bN, (1.14)

15



output is zero

Causal for n < N,+ I

filter

u[n] x[n]

Anti-causal

filter output is zero

forn>N- 1
2

Causal Filter

u[N wi u[N)

Anti-causal Filter

Figure 1-1: Parallel implementation for a general 1-D IIR Filter

16



The constraint (1. 14) is then substituted into the system dynamics (I. 1 1) at n = (Ni + 2), to

yield yet another boundary condition which is one step closer to N2. The process is repeated

recursively until the other side of the region of support is reached, yielding a constraint of

the form

IIV,,X[N2 - 11 + IN,2X[N2] = b1V2 (1.15)

Solved simultaneously with Equation (1.13), Equation (1.15) can be used to obtain the filter

output at n = N2 and n = (N2 - 1). The propagated constraints, like equations (1.14)-

(1.15), are then used to solve recursively for x[N2 - 2), x[N2 - 31, ... , x[Ni + 1], whereupon

x[Ni + 1] is substituted into (1.12) to yield the final output, x[N,].

One can visualize this algorithm as a filter running forwards in n, propagating the B.C.

(1.12) at n = N, to n = N2, followed by a filter running backwards in n, which back-

substitutes the solution found at n = N2 into the constraints obtained by the forward filter.

Such a filter is commonly referred to in the context of optimal estimation as a Rauch-Tung-

Striebel (RTS) filter ([37, 381). Note the difference from a Mayne-Fraser (MF) filter, which

has both a forward and backward filter running in parallel, whereas the RTS filter consists

of a forward sweep of the dynamics followed by a backward filter.

Although both MF and RTS algorithms have linear-algebraic interpretations, only that

of the RTS will be discussed herein. Casting (1.1l)-(1.13) as a system of linear equation

yields

Ax b (1.16)

CO el 0 0 ... 0 x[Ni] C2

a-, ao a, 0 ... 0 x[Ni + 1] u[NI + 1]

0 a-, ao a, ... 0 x[Ni + 21 u[NI + 2]

0 ... 0 a-, (7o a, x [N2 - 11 u[N2 - 11

0 ... 0 0 d-1 do x[N21 d2

Obtaining the solution is now seen as inverting A to obtain x. For (N2 - NI) large, one

can save considerable computational effort and storage by not accessing the many zero

elements in A. Many sparse matrices with structure, like the tri-diagonal A, can be inverted

without ever storing, manipulating, or writing over the zero-entries. Conveniently, the LU

17



factorization of A,

A=LU

is such that L is bidiagonal and lower-triangular, and U is bidiagonal and upper-triangular.

No fill-in has resulted from the factorization. Multiplying both sides of (1.16) on the left by

L-1 to obtain Ux = y (where Ly = b) is in fact identical to the forward filter of the RTS

algorithm. Solving first for x[N21, the backward filter of the RTS algorithm is the same as

just back-substituting from the "bottom-up" in Ux = y to obtain x. The RTS algorithm is

an alias for Gaussian elimination followed by back-substitution.

The MF and RTS algorithms are direct algorithms. The third solution algorithm is

iteration, and it is the preferred solution method for a large number of problems in which

it produces an acceptable solution extremely fast. Gauss-Seidel, SOR (Successive Over-

relaxation), Multi-grid, and Preconditioned Conjugate Gradient methods are connnon it-

erative algorithms for solving linear systems of the form Ax = b [161, a form in which any

linear filter can be cast. Iterative algorithms are often preferred for their simplicity. Unlike

many direct schemes, they are easy to implement. They also require minimal amounts of

storage (approximately twice the amount necessary to store the input), as well as producing

a solution of acceptable accuracy faster than or equal to direct algorithms for a wide range

of applications. These algorithms, however, often suffer convergence problems, and fail to

produce solutions for a large class of filters [14, 16].

Unfortunately, the story is completely different when switching from one dimension to

two. Acausal 2-D IIR filtering systems are often considered intractable, especially for large

boundary sizes. A solution for 2-D filters analogous to that which relies upon splitting a 1-D

acausal filter into its causal and anti-causal parts does not exist. The method of breaking

a filter into its causal an acausal components relies solely upon the ability to factor the

denominator of H(z) into a product of first-order univariate polynomials. A 2-D system

function has the form

H(zi, Z2) = b(zi, Z2)

a(zl, Z2)

where a(zl, Z2) and b(zl, Z2) are both polynomials in two variables. Unlike the 1-D case,

the polyvariate polynomials a(zl, Z2) and b(zl, Z2) do not in general factor into a canonical

form of products of lower order terms. This implies that the polynomials do not in general

18



separate into a product of univariate polynomials, such as

a(z,,Z2) = c(zl)d(Z2)

A filter which can be separated in this form is called separable, but is rarely encountered

for systems naturally described by 2-D difference equations [7, 10]. Separable filters usually

result as an artifice of filter design techniques. The lack of a theorem for polyvariate

polynomials analogous to the Fundamental Theorem of Algebra rules out the possibility

of developing a direct algorithm for 2-D acausal IIR filters similar to the MF, and it also

accounts for difficulties in testing 2-D systems for stability. Most useful stability tests for

2-D DT filters only apply to recursively computable (causal) systems [25], and even then

"The complexity of testing a 2-D system's stability explains, in part, why 2-D

FIR digital filters, which are always stable, are much preferred over 2-D IIR

digital filters in practice. The preference for FIR filters over IIR filters is much

more marked in 2-D than in 1-D signal processing applications [25, p. 124]."

The difficulty in testing for stability can be explained in part by observation that recursive

computation can be done in an infinite number of directions for 2-D causal systems. Recur-

sively computable systems in 1-D had only two directions of recursion, causal or anti-causal.

For acausal 2-D systems, stability is an unclear concept.

The third general solution mentioned for 1-D acausal IIR filters is iteration. Iteration is

in fact the preferred form of implementation for many 2-D difference equations constrained

by boundary conditions [40], and maintains the desirable properties characteristic of iter-

ative 1-D algorithms (ease of implementation, minimal storage, and fast convergence for

a number of applications). The question which now must be asked, however, is whether

iterative or direct methods are better, in terms of storage, computational complexity, and

accuracy. As is noted in the first chapter of [14], the answer depends both upon the co-

efficients of the 2-D IIR filter (namely, the characteristics of A when the filter is cast in

the form (1.16)), and the suitability of the direct algorithm. Iterative algorithms almost

always require less storage than direct algorithms, yet how much less depends heavily upon

the ordering of the difference equation coefficients in A [141. In terms of computational

complexity, the comparison again depends upon the characteristics of A, for iterative meth-

ods have convergence problems for a large class of systems, whereas direct algorithms take

19



a predetermined, finite number of steps for any given system. The real payoff for direct

methods comes

"in some situations, such as in the design of mechanical devices... many systems

of equations having the same coefficient matrix must be solved. In this case,

the cost of the direct scheme may be essentially that of solving the triangular

system given the factorization, since the factorization cost amortized over an

solutions may be negligible... In addition, there are situations where it can be

shown quite convincingly that direct methods are far more desirable than any

conceivable iterative scheme. [14]"

This sentiment is echoed in [19]. Iterative methods can and do provide efficient solutions

to many of the 2-D acausal IIR filtering systems considered in this thesis [40], but it is

believed that direct methods will provide a novel analytical framework from which to solve

such systems.

It has been noted a number of times that any discrete-time linear filtering system, of any

order or dimension, can be represented as a (sparse) system of linear equations. Because

the RTS algoritlun is just a specific form of Gaussian elimination, one should expect to be

able to extend the algorithm from one to two dimensional systems. Two-dimensional IIR

filters, however, are much more complex than their 1-D brothers. When a 1-D filter is cast

in the form of (1.16), where the variables in x are ordered sequentially in n, the bandwidth

of the matrix A is strictly bounded by the order of the filter. This tight bound guarantees,

without any reordering of the variables and equations in Ax = b, an LU factorization in

which the sum of the number of non-zero elements in L and U is equal to the number of

non-zero elements in A (assuming none of the filter coefficients are zero) [14]. One thus has

a direct algorithm of minimal storage and complexity by simply casting the I-D acausal

filter as a banded system of equations. In two dimensions, however, the storage required

to represent A and the amount of fill-in which occurs in its factorization depends heavily

upon the ordering of the equations in A and the variables in x. Furthermore, for a region of

support of N x N points, the coefficient matrix A contains N4 elements (including zeros),

meaning that intelligent orderings in the equation Ax -_ b are required to allow for efficient

storage and factorization schemes for regions of support of even modest size.

This thesis begins by first extending the ideas in [37] to develop an RTS algorithm for 2-D

acausal IIR filtering systems, and then evaluates its complexity. A parallel implementation

20



of the algorithm is then given, which happens to be extremely similar to the nested dissection

algorithm. Because in digital signal processing and estimation applications accuracy is

often sacrificed when designing a system, such as a low-pass filter with a transition band,

accuracy might also be sacrificed for efficiency in the solution algorithm. Algorithms are

thus developed which are an approximation to the 2-D RTS algorithm, where accuracy in

the solution is traded for both efficiency and ease of implementation. Finally, the thesis

concludes with a comparison of some known direct and iterative algorithms, as well as giving

some numerical results on a few example filters.

21



Chapter 2

Direct Algorithms for 2-D Acausal

Filters

Whenever solving a large, sparse system of equations of the form Ax = b, the objective is

usually to produce a solution for x with minimum error using as little computational and

storage resources as possible. This goal is usually accomplished in direct implementations

by reordering the variables in x such that the LU factorization has minimum fill-in [14,

151; the savings can be extraordinary. This chapter takes a somewhat different approach,

desiring not only efficient algorithms, but also an intuitive framework from which to analyze

2-D acausal IIR filters; therefore, it is a given that the initial developments win discuss

algorithms which are sub-optimal in terms of both computational complexity and storage

demands. From this framework, however, it is believed that more powerful algorithms can

be developed for signal processing and estimation applications.

The RTS algorithm in Chapter I provided an intuitive model for acausal 1-D filters by

propagating boundary conditions through the dynamics. In this chapter, we begin by show-

ing how to cast any 2-D filter as a I-D dynamic system of growing state dimension, which

can then be solved by algorithms similar to the RTS. A parallel version of the algorithms

is then given.

22



2.1 Casting 2-D Filters into 1-D

The difference equation for 2-D IIR filter is usually given as a 2-D LSI system in the form

M N P Q

E E aklx[i - kj - 1] = E E bklu[i - k, j - 1] (2.1)
k=-M 1=-N k=-P 1=-Q

where u[ij] is the filter input and x[ij] the filter output, which is also referred to as a mesh

variable [14]. The order of (2.1) will be defined in this thesis as maxj2M, 2NI, for reasons

which will become clear later. The difference equation alone, of course, does not define a

system, as auxiliary conditions must also be specified.

A simple second-order 2-D IIR filter is the Nearest Neighbor Model (NNM) shown below

in (2.2).

x[i, jj = Nx[i, j + 1] + Sx[i, j - 1] + Ex[i + 1, j] + Wx[i - 1, j] + Bu[i, j] (2.2)

where the coefficients N, S, E, and W denote dependencies of x[ij] on neighbors to the

north, south, east, and west, respectively. One should note that the input u and the output

x can have arbitrary dimension in (2.2), yet most of the derivations in this thesis are for the

scalar case. The NNM has been shown to model a large nmnber of physical phenomena,

and is a useful paradigm for analyzing signal processing and estimation applications, such

as Markov Random Fields [4, 6, 8, 24, 41]. The NNM is also a natural by-product of

approximating PDE's by finite-difference methods [24]. For these applications, the auxiliary

conditions are generally in the form of boundary conditions.

One has a considerable amount of flexibility in specifying B.C.'s for 2-D acausal systems.

In this thesis, the assumption is made that the B.C.'s are given. Two common forms are

discrete versions of Dirichlet and Neuniann conditions. If one is given the difference equation

(2.2) and the inputs u[i, j] over (i, j) G [2, I - 1] X [2, J - 1], and would like to solve for the

output x over (i, j) E [1, I] x [1, J], then Dirichlet conditions consist of initializing the filter

outputs which encircle this region of support (ROS). Nainely, x[i, j] would be initialized for

all

(i, j) E J(i E 11, II n j = [2, J - 11) U (j G 11, JI n i = [2, 1 - 1])}

For a rectangular sampling of 2-D space, Dirichlet conditions are illustrated in Figure 2-1

23



J

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(0'%J

Figure 2-1: Rectangular mesh on which Dirichlet conditions are imposed.

as those points in the mesh which are shaded, while the output must be solved for those

points which are not shaded. Note that, as with any choice of B.C.'s, the extent of the

Dirichlet conditions grows proportionally to the size of the ROS. If the difference equation

were of higher order, the Dirichlet condition would grow in thickness by initializing more

output variables at the edge of the ROS. Furthermore, note that the shape of the Dirichlet

conditions depends not only upon the order of the filter, but also the shape of the boundary

of the ROS, yet they always consist of auxiliary constraints which initialize the filter outputs

at the edge of the RO S. A hexagonally sampled mesh might also yield a difference equation

in the form of (2.2), and Dirichlet conditions will then have the shape of a diamond. The

initialized points of the diamond are illustrated with dark circles in Figure 2-2.

A second conunon form of B.C.'s, Neumann conditions, are just a linear constraint on

the output values which lie on both the exterior and interior edges of the ROS, reflecting a

discretization of the gradient normal to the boundary of the ROS. For an NNM defined on a

rectangular mesh with the input again given for those (i, j) where (i, j) E [2, I - 1] x [2, J - 1],

Neumann conditions are just a linear constraint on the output values shown by shaded circles

24



0

0 0 9

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0

0

,O)

Figure 2-2: Hexagonally sampled space on which Dirichlet conditions are imposed.

A j
J-

W 40 0 0 0 0 0

0 0 0 0 0 4 0 0

le I 0 0 0 0 0 4 0 0

0 0 0 0 0 4 i 0

0 0 0 0 0 0 4 i 0

0,O) i

Figure 2-3: Rectangular mesh on which Netuiiann conditions are imposed.

25



in Figure 2-3. Stated as a formula, Neumann conditions come in the form

Vxij + Wxi-,,j-l = d (2-3)

where the vectors xij (the outermost edge of the rectangle) and xi-,,j-l are defined as

follows

x[i, A c xrj iff (i, j) E I(i = 1 u i = i) n i E [2, J - I]j U

JiE [2,I-iln(i = lui = j)j

x[ij] E xi-lj-l iff (ij) E I(i 2 U i = I - 1) n i E [2, J - 1]1 U

ji [2,I - ij n (i = 2 U j = J - 1)1

d Rfdim(xjj)-4jx1

The important requirement is that both Dirichlet and Neumann B.C.'s be specified such

that the overall system, Ax = b, including the B.C.'s is wen-posed.

This purpose of this discussion of boundary conditions is not to highlight the finer points

of B.C. design, but to allow the formulation of a canonic 2-D acausal IIR filter. Once one

is given a 2-D linear difference equation constrained by B.C.'s, the next task is to develop

a framework and algorithm for which to solve such systems. One would like to be able to

propagate the B.C., as was done for I-D acausal systems, but the boundary is no longer

two points at opposite ends of a line; instead it is a continuous region which grows in size

with the ROS. The 2-D boundary, however, can be treated as an end-point of an interval

on the 1-D line by casting the 2-D IIR filtering system into a one dimension.

One method, used in [5, 9, 16, 20, 24], of casting 2-D acausal IIR filters as 1-D acausal

filters is to perform a column-stacking transformation of the mesh. Consider again the

acausal NNM filter (2.2) constrained by Neumann B.C.'s, where the output is to be solved

over the finite rectangle Q = [1, I] x [1, J] (ininus the four corner points, as was illustrated

in Figure 2- 1). The input is given over the rectangle [2, I - 11 x [2, J - 1]. The input and

26



output are stacked into columns xi and ui such that

x [i, 01 U[i, 1]

Xi X[i, 1] Ui u[i, 2] (2.4)

X[i, J] U[i, J - 1]

xi E R(J+1)Xl Ui C R(J-l)xl (2.5)

The Neumann conditions are written in [241 as

VLxOJ + IVLxlj + VRXIJ + WRxj-,,j dHJ (2.6)

for 0 < j < J, and also as

T'Bxio + WBxil + VTxii + WTxij-l dvi (2.7)

for 1 < i < I - 1. Equations (2.6) and (2.7) are identical in form to Equation (2.3), but

in different guise. The subscripts L, R, T, and B denote the left, right, top, and bottom

edges of the rectangle Q, respectively. With the mesh variables augmented into coltunns,

the 2-D system can then be rewritten as the following 1-D system

O+xi+l + Ooxi + OxiI = ni 1 < i < I - 1 (2.8)

where ni is a vector combination of both ui and dIIi from the right-hand-side of the "vertical"

boundary condition (2.7) (the matrices 00, O+, and 0- are augmentations of the coefficient

matrices given in (2.2) and (2.7); the elements of each matrix in Equation (2.8) are described

in detail in [241). Note liow Eqiiafion (2.8) is a cotipling of adjacent columns in the mesh,

which reflects the dynamics of a second-order 2-D difference equation. Since Equation (2.7)

is incorporated into the dynamics (2.8), the boundaryconditions for this 1-D difference

equation (2.8) are just the non-separable B.C.'s given in equation (2.6). Having a 1-D

difference equation with B.C.'s, one can then effectively propagate the B.C. in Equation (2.6)

through the dynamics (2.8) to produce a constraint at one end of the 1-D interval (which end

depends upon the direction of propagation), and then back-substitute to obtain the solution.

27



This algorithm falls under a more general class of solutions called Marching Methods [1, 2],

which have been used to solve P.D.E.'s. However, this RTS algorithm, where the state xi

is multi-dimensional, does not in general exist, since or any matrix in the B.C.

propagation can be singular. For most NNM models, efficient, general solutions do exist

(see [24]) when a 2-D acausal filter is cast into a I-D filter with columns as the state, but

there are significant drawbacks.

One drawback to the direct solutions given in [24] is that for regions of large size the state

xi will become proportionately large, and so will the matrices 00, 0+, and 0- Operating

on such large matrices is both computationally expensive and can create extremely large

storage demands. The algorithms in [24] are applicable to a large number of systems,

but undoubtedly sacrifice computational efficiency in their generality. Furthermore, the

column-stacking transformation creates a 1-D system in which a subset of the 2-D boundary

conditions are combined with the filtering dynamics (through the vector ni and the three

matrices). A subset of the boundary conditions must then be accessed each step of

the solution algorithm, a requirement which will later be shown to hamper the creation a

parallel, data partitioning algorithm.

An ordering of the output variables x [i, j] which avoids combining the B.C.'s with filter

dynamics is given in [37]. A 2-D filter, such as the NNM, is a linear constraint among vari-

ables in a local neighborhood of the mesh. A natural state augmentation is to sequentially

order variables in local neighborhoods of the 2-D mesh. One example is column-stacking,

which is a sequential listing of neighboring columns. In [37], the mesh variables x[ij] are

ordered into concentric states x., where x. contains all the mesh variables which lie at radial

distance of p from the center of the mesh. Such an ordering, as will be seen, allows one to

formulate the 2-D dynamics as I-D dynamics with varying state size, which are specified

independently from the boundary conditions.

For a systein with NN1U dYnarnics, a square ROS where (ij) G [1, I] x [1, I] (assume

for simplicity that I is even), inputs given over [2, I - 1] x [2, I - 1], and Neumann B.C.'s, a

starting point for the radial ordering is to shift the indices such that (V, j') (i - I/2, j -

I/2). The center of the mesh is now (V, j') = (0, 0). The first state, X. at p 0, consists of

x[O, 0), since it is obviously at a radial distance of zero from the center of the mesh. If one

then decided to use the oo-norm to define radial distance from the center of the mesh, x.

28



would be defined as follows:

X[i1'j11 C Xp iff Ij[i1j1]TIj.=P (2.9)

where II [i, j,] T II... is the oc-norm of the index vector. The input is augmented similarly as

u[i',j']Eu. iff jI[jjjTII.=P (2.10)

The first few states x. from the center of the mesh are illustrated in Figure 2-4. From

Figure 2-4 it can be seen that the state dimensions are defined by

XP E P up C Rnp (2.11)

71p = 8p + b(p) (2.12)

(6(p) is the Kroneker delta function).

Another possible radial ordering, which might be more appropriate for 11R filters derived

from a hexagonally sampled space, is to use 1-norms to define radial distance. If the outputs

are again indexed such that the center is (V, j') = (0, 0), the states xp and up become

x[i', j'] E x. iff 11[ij,]Tlll=p (2.13)

11[i', /I E up iff 11[ij,]Tlll=p (2.14)

Xp E Rnp up E Rnp (2.15)

where the dimension np is now derived from

np = 4p + 6(p) (2.16)

The first few states containing the output variables which are of equal 1-norm distance

from the center of the mesh are illustrated in Figure 2-5. Note that for any radial ordering

of concentric states in the mesh, two-dimensional space has been mapped onto a I-D line

where the index is p. Such a mapping is similar to that given by the column-stacking, yet

XP now grows in dimension with p (the columns have fixed dimension),

For the square region [1, I] x [1, I], p varies from 0 at the center of the mesh to R

29



0 0 0 0 0 0 0 0 0

N
0 0

0 0
E

0 S 0

X[11 X[21 X[31 P
/-I -:,,.0 G- I--,

o 0

0 0----O----C)---O0

0 0

0 0 0 0 0 0 0 0 0

Figure 2-4: States x. containing x[ij] at equal oo-norm distance from the center.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 O' 0 0 0

p0 0

0 0 0

0 0 O 0 0

0 0 0 O 0 0 0

0 0 0 0 0 0 0 0 0

Figure 2-5: States x,, containing x [i, j] at equal I-norm distance from the center.

30



(I - 1)/2 at the square's edge, where R can be considered to be the radius of the ROS.

Converting the NNM difference equation to a dynamic relationship among the augmented

states x., one obtains (for both 1-norm and oo-norm orderings)

DPXp = Fp+lxp+l + Gp-lxp-l + Hpup for p = 1, 2,..., R - 1 (2.17)

Doxo = Fix, + Houo (2.18)

where the coefficient matrices DP, FP, GP, and Hp are defined in Appendix A, and the

dimension of xP is given by Equations (2.12) and (2.16) for oo-norm and 1-norm radial

orderings, respectively. The boundary conditions of Neumann form can be stated exactly

as in (2.3) (since XR and XR-1 in (2.17) contain the same elements as xlj and xi-,,j-,,

respectively, in (2.3)) and will be written as

VXR + WXR-1 _- d (2.19)

If the acausal system's auxiliary conditions were Dirichlet conditions, which for a second-

order 2-D system just initialize the outer edge of the square ROS, one would have the

B.C.

XR = d (2.20)

For any radial ordering of concentric neighboring states, the dynamics win have the exact

same form as those in Equations (2.17)-(2.18), as long as the shape of the boundary is such

that the farthest radial state from the center contains the output variables x[ij] which

comprise the boundary edge, and even in those cases where the boundary has a shape

unlike that of the radial orderings, a little extra work win allow one to cast the filter in this

form.

With the B.C. at one end (p = R) of the 1-D interval given by the 2-D system's bound-

ary conditions, Equation (2.19) in this example, the boundary condition at the other end

of the 1-D interval (p -_ 0) is given by the NNM dynamics in the center of the mesh, Equa-

tion (2.18). Given this I-D second-order acausal system of growing state dimension defined

by the difference equation (2.17) and the separable B.C.'s, Equations (2.18) and (2.19), the

next section discusses one possible implementation of the solution.

31



2.2 Solving 1-D Acausal Systems with Growing State Size

In [37], 1-D acausal systems with growing state dimension are discussed in the context

of optimal estimation, while side-stepping how to implement the solution of such systems

in deterministic form. In Section 1.2, two direct algorithms for scalar 1-D acausal systems

were proposed. One method, the Mayne-Fraser, splits the dynamics into its causal and anti-

causal components. The RTS algorithm propagated a boundary condition through the filter

dynamics to produce the solution at one end of the 1-D interval, and then back-substituted

to obtain the solution. For the 1-D system of growing state dimension, created from a

2-D NNM constrained by Nemilann conditions over a square region (i, i) E [0, I] X [0, I]

and rewritten in Equations (2.2l)-(2.23), we restrict our development to RTS algorithms,

although MF algorithms might also yield suitable solutions.

Filter Dynamics: DPXp Fp+lop+l + Gp-lop-, + Hpup (2.21)

for p 1, 2,..., R - I (R = 1/2)

(Dynamic) B.C. at 2-D center: Doxo Fix, + Houo (2.22)

(2-D) B.C. at 2-D boundary: VXR + WXR-1 = d (2.23)

Xp E Rnp up G Rnp (2.24)

The MF algorithm is discarded as a viable solution to a 1-D filter of growing state dimen-

sion, in part, because it is not clear how to decompose the dynamics in Equation (2.21) into

causal and anti-causal recursive filters. Another reason that these algorithms are not con-

sidered is that the boundary conditions for the original 2-D NNM, given in Equation (2.23),

are needed to initialize the anti-causal filter (anti-causal in p); yet, as will become more clear

in Section 2.3, a parallel algorithm which physically partitions the filter dynamics cannot

use the B.C.'s from the original 2-D system during the initial steps of the algorithm. The

same drawback was mentioned for the column-stacking algorithm in Section 2.1.

An algorithm derived from the RTS class can always be developed for a linear filtering

system, since RTS algorithms are just variants of Gaussian elimination. Furthermore, while

there is no apparent advantage to using the RTS algorithm for scalar 1-D acausal filters,

they appear to be ideal frameworks for 2-D acausal filtering. Because RTS algorithms

involve operations on sets of linear equations, the 2-D NNM filtering system is first shown

32



using Equations (2.2l)-(2.23) as a single matrix equation of very large dimension

Ax Hu (2.25)

Do -Fi 0 0 ... 0

-Go Di -F2 0 ... 0

0 -Gi D2 -F3 ... 0
A

0 ... 0 -GR-2 DR-, -FR

0 ... 0 0 W V

XO UO

Xi Ul

X2 U2
X U

XR-1 UR-1

XR d

H diag{Ho, Hi,..., HR-1, 11

Equation (2.25) is a block tri-diagonal system of equations with varying block size (the

blocks are defined in Appendix A). The contents of the individual blocks is determined by

the radial ordering. For the overall system to be well-posed and well-conditioned, the B.C.'s

(matrices V and W) and the NNM coefficients must be defined such that A is invertible and

sufficiently well-conditioned. It is noted in [241 that, for large sparse systems of equations

like (2.25), very efficient iterative methods like SOR and preconditioned conjugate gradient

can Produce solutions for sorne NNM's. Iterative inediods, however, can be slow for a large

class of NNM models, and direct methods will be superior when the costs of the factorization

can be amortized over a large number of inputs.

2.2.1 Block LU Factorization

The most straightforward solution to a system like (2.25) is to perform an LU factorization

of A (Cholesky factorization if A is symmetric positive definite). A Block LU factorization

33



is considered first in this thesis, not only for its simplicity, but also because there has

been little study on the properties of I-D acausal systems with growing state dimension,

with the exception of [31, 37]. The properties of 1-D acausal systems with fixed state

dimension, however, has been studied extensively under the name of descriptor systems in

[23, 24, 28, 27, 34, 33, 32, 38], and it is likely that much of this work will extend to the

varying-dimension case.

When A in the linear system Ax = b is block tri-diagonal with regularly sized blocks

and sufficiently well-conditioned, there exists a block LU factorization which efficiently

manipulates the sparse structure of A [16, 171, although it doesn't make use of any possible

sparsity in the blocks DP, FP, or GP. Furthermore, an allusion to the existence of a block

LU algorithm for tri-diagonal systems with irregular block size is made in [17]. Such a

factorization is given in (2.26) and is similar to the algorithm for regularly sized blocks

given in [161.

I 0 0 ... 0 0 Do -F, 0 0 ... 0

Li I 0 ... 0 0 0 f) 1 -F2 0 ... 0

0 L2 I 0 0 0 0 D2 -F3 ... 0
L U (2.26)

0 ... LR-1 I 0 0 0 0 DR-1 -FR

0 ... 0 LR I 0 ... 0 0 0 DR j

where A LU and

Lp+,Dp = -GP (2.27)

DP = DP + LpFp (2.28)

For simplicity in not;ation, the inatrires DR and GR-i in Equations (2.27) and (2.28) are

equivalent to V and TV, respectively, in the large matrix A.

The recursive procedure defined in Equations (2.27) and (2.28) is initialized for p = 0

by the fact that Do = Do -- 1. For radii p larger than zero, however, the recursion depends

upon the ability to invert D, in order to yield meaningful numerical results. There are

NNM parameters (N, S, E, TV) detailed in Appendix B for which DP is singular or poorly-

conditioned, yet for most NNM parameters it can be assumed that DP is wel.1-conditioned

34



for all p (see examples in Chapter 3). The recursive procedure given by Equations (2.27)

and (2.28) can be used to form an RTS algorithm which propagates the B.C. at p = 0,

Equation (2.22), through the dynamics to the other end of the 1-D interval (at p = R).

Substituting Equation (2.22) into the dynamics at p = I yields

Dix, = F2X2 + GO(F1X1 + Houo) + Hjul

(Di - GoF,)xl = F2X2 + GoHouo + Hjul

Dix, - F2X2 + T1 (2.29)

where IF, -- GoHouo + Hjul

Note that Di can also I)e derived from (2.28). The B.C. at p = 0 has been propagated to

p = 1 to yield the constraint in (2.29). Given this constraint, one is then only concerned

with the dynamics for p E [2, R - 1]. Substituting (2.29) into the dynamics at p = 2 yields

D2X2 = F3x3 + Gif)-'(F2X2 + Ti) + H2U2

D2X2 = F3X3 - L2F2X2 - L2'P1 + H2U2 (2.30)

where L2 can also be derived directly from (2.27). Letting %F2 = -L2T, + H2U2, one gets

from (2.30) the following

f)2X2 = F3X3 + XF2 (2.31)

At the n-th step of the algorithm, one substitutes the constraint

Dn-lxn-1 = Fnxn + 'kn-1 (2.32)

into the dynamics (2.21) at p = n to yield

f)n-Tn = Fn+lXn+l + Tn (2.33)
-1 Tn-1 + HnUn

Tn = - Gn- 1 f)n- 1

This process continues recursively until one finally has

f)R-iXR-1 = FRXR + TR-1 (2.34)

35



which can then be combined with the Neumann or Dirichlet conditions to obtain XR. Before

back-substitution begins, one has the following block upper-triangular system

UX = T (2-35)

To

T,

T 2
T

TR-1

TR

where U is defined in (2.26) and T = L-lHu (found by substituting (2.26) into (2.25) and

inverting L, although one never explicitly inverts L). The elements of %P can also be derived

from the recursive relation

%gap = LPIQpj + Hpup (2.36)

Once T and U have been computed, the back-substitution follows from Equation (2.35) as

XP = f)-'(F,+lxp+l + Tp) (2.37)P

The block LU algoritluil can then be summarized by the two steps: (1) Factoriza.

tion - propagating the B.C. at p = 0 with the recursions given in Equations (2.27), (2.28),

and (2.36) (2) Back-substitution - Solving for XR and using it to initialize the recursion given

by Equation (2.37), yielding the rest of the output. The factorization and back-substitution

steps together correspond to Block Gaussian Elimination.

The block LU algorithm has many undesirable properties, especially for large mesh

sizes. Tbe first problem is that a great deil of storage is reqiflred for the factorization. The

factorization yields the constraint given by Equation (2.37), which must be stored for an

p in [0, R - 1]. Required storage is dominated by storing the matrix (f)-'F,+,) for all p,P

which can be found in Appendix A to have the dimension nP x np+,. The total number of

elements to be stored is then approximately

R
712E PP=O

36



which for oo-norm ordering becomes (remember that R = 1/2)

R
E(8p + 1)2 _ 8J3 + 2I 2 = O(J3)

P=O 3

The reason for this tremendous growth in storage is that, while A and its blocks becomes

more sparse for larger 1, the matrices DP and their inverses are full; namely, the Block LU

algorittu-ns creates a lot of fill-in of the zeros in A. Note that the factorization would also

require 0(13) storage elements if column-stacking were used. For large-sized ROS, these

storage requirements can become overwhelming. With double precision arithmetic (8 bytes

storage require per matrix entry) and mesh of size 256 x 256 (I = 255), the total amount

of storage required is approximately 45 MB.

Another drawback, which is a direct result of the fill-in created in the factorization, is

growth in computational complexity. The computational requirements are dominated by

inversions of DP, which must be found to compute (b-1Fp+j) in Equation (2.37). BecauseP

Fp+l is extremely sparse, creating the matrix (f)-'Fp+,) essentially amounts to computingP

the inverse of DP. Computing the inverse of a dense matrix of dimension n x n generally

requires 2/3n3 flops [16], so to compute the inverse of D. for all P E [0, R] will take on the

order of O(I4) flops. The derivation of this bound uses the fact that n. is a linear function

of p, and hence
R 2nP3

E 3 = O(J4)
P=O

Note that, because the state xP becomes very large near the boundary (p = R), the com-

putations are dominated by inverting hp near the boundary. The fact that the number

of arithmetic operations is O(I4) and the storage required is O(P) prevents any practical

consideration of the block LU algorithm for large mesh sizes.

A final (Irawback mentione(I Parlier in this section is that for some combinations of

NNM parameters (N, S, E, W) the matrix D- P in Equation (2.2T) will become either poorly-

conditioned or singular. A small but significant listing of those parameters which lead to

singularities is provided in Appendix B, while a complete listing is beyond the scope of this

thesis. For most NNM filters of interest, however, DP is well-conditioned for all p, while

in some other cases, singularities in DP can be avoided by changing the radial ordering,

such as from a 1-norm to an oo-norm ordering. Changing the radial ordering is similar to

37



pivoting in an LU factorization, since one is changing the order of the equations in Ax = b.

In spite of the many drawbacks, the Block LU algorithm is numerically stable for "most"

NNM parameters, in which case it produces higWy accurate solutions. Furthermore, this

algorithm is able to produce solutions for a large class of models in which iterative schemes

fail. More general solutions, which side-step the singularity constraint, can most likely

be found in the Descriptor Systems literature, such as [24]; yet the Descriptor Systems

literature fails to overcome the massive storage and computational requirements needed

to implement a 2-D IIR filter given on a mesh of appreciable size. In the remainder of

this thesis, a number of algorithms which are much more efficient than the straightforward

Block LU algorithm will be discussed, all of which have highly parallel implementations.

In particular, a parallel Block LU algorithm based upon partitioning the 2-D mesh will

be developed in Section 2.3, and a less general yet more efficient approximation to the

algorithm is detailed in Chapter 3. These algorithms are then compared to the nested

dissection algorithm, which is known to be the most efficient algorithm for solving sparse

linear systems generated by discretizations of P.D.E.'s. Nested dissection requires as little

as O(J3) arithmetic operations and 0(12 In I) storage elements [13].

2.2.2 An Simple Example

Before motivating the parallel version of the LU algorithm, it is worthwhile to use a simple

example to explain in a little more detail how the mesh variables are eliminated radially

from the center. From the recursion given by Equations (2.27)-(2.28), one obtains the fac-

torization shown in (2.26). The matrix U in (2.26) effectively yields constraints between

neighboring states xP and xp-,. These constraints are used for the back-substitution recur-

sion. This process is identical to the propagation mentioned in Chapter 1 of B.C.'s from

one end of an interval to another for acausal 1-D systems.

Looking a little niore closely at the Caussian elimination process, consider an NNM

constrained by Dirichlet conditions on a square region of size n-by-n. For n = 7, an 00-norm

radial ordering of output variables is shown in Figure 2-6. State xO contains the first element

in Figure 2-6, and state x, contains elements 2 through 9. The NNM difference equation

evaluated at the center of the mesh gives a constraint between xO and xj. The first variable

eliminated in the LU factorization is xo, yielding the new mesh given in Figure 2-7. As was

given by Equation (2.29), a constraint.now exists solely between X2 and xj. The second

38



29 28 27 26 49 48 47
0 0 0 0 0 0 0

12 11 10 25 24 46
0 0 0 0 0 0

31 13 3 2 23 45
0 0 0 0

32 14 22 44
0 0 0 0

33 1 6 7 21 43
0 0-0 0 0

34 16 1711 20 42
0 0 0 0 0

35 36 37 38 39 40 41
0 0 0 0 0 0 0

Figure 2-6: Radial ordering of the variables for a square 7-by-7 mesh.

29 28 27 26 49 48 47
0 0 0 0 0 0 0

12 11 10 25 24 46
p y 0�0-0-? 0

31 13 3 2 2 45
0 y 0- 0

32 14 44
0 0

33 5 6 7 21 48
0 ��0- y

34 16 17 18 19 20 42
0 0�0�0-0-0 0

35 36 37 38 39 40 41
0 0 0 0 0 0 0

Figure 2-7: Mesh variables remaining after the first variable has been eliminated.

39



29 28 27 26 49 48 47
0 0 0 0 0 0 0

3 12 1 1 10 25 24 46
0_0_0�? 0

31 13 3 2 45

0 T 0
32 14 44
0 0
�3 5 6 7 21

T T
16 17 18 2 42
0-0-0-- 0

35 36 37 38 39 40 41
0 0 0 0 0 0 0

Figure 2-8: Mesh variables remaining after the first two variables have been eliminated.

element is then eliminated from the mesh, with the remaining variables shown in Figure 2-8.

Eliminating elements 3 through 9 gives a constraint between X3 and X2, shown in Figure 2-

9. For a mesh of large size, this process of variable elimination would continue recursively

(unless a zero pivot is encountered) in a direction radially outward from the center of the

mesh to yield a constraint between the two outermost states xR and xRj, which in this

example (R = 3) are X3 and X2, respectively. The outermost radial state, x3, is given by

the Dirichlet condition, and the rest of the solution is obtained by back-substituting in a

direction radially inward towards the center of the mesh.

2.3 Parallel Algorithms

2.3.1 Local Factorization

hi the Block LU algorithm, the 2-D boundary conditions are needed for only one step of the

algorithm - to initialize the back-substitution. For the factorization step, one only needs

the filter constraints (dynamics), and for the back-substitution one only needs the the con-

straints created by the factorization, respectively. The factorization and back-substitution

step can thus be done in parallel by giving each processor access to a local set of the dynamic

constraints. The mesh can be divided equally among the processors, and each processor

40



29 28 27 26 49 48 47
0 0 0 Q G Q -0

12 11 25 24 48
!�-O 0

31 13 2 45

32 14

15 Al

Y
1� 17 20
0 -0- 0

35 36 37 38 39 40 I
0 e e e e e 0

Figure 2-9: Constraint yielded after xO and x, have been eliminated. For a 7-by-7 mesh,
this is also the constraint propagated to the boundary edge.

will order the mesh variables radially with respect to a local center. Given access to the

filter constraints on this local mesh, variable elimination then follows in a direction radially

outward from the local center, as was done in the previous section with one processor.

For instance, consider an NNM difference equation constrained by Dirichlet conditions

on a square mesh of size 14-by-14. A natural partitioning of the filter dynamics is shown

in Figure 2-10, where each processor is assigned a local mesh of size 7-by-7. The radial

state x, is marked in Figure 2-10 for each processor. The factorization step of Gaussian

Elimination is then done simultaneously for each local mesh in exactly the same manner

as was illustrated in Figures 2-6 through 2-9. The result of the local factorizations is to

produce a constraint on the boundary of each processor's mesh, as is illustrated in Figure 2-

11, which can be seen as a parallel version of Figure 2-9. Furthermore, a radius L can be

defined for the local mesh. In this example, L = 3. For the time-invariant NNM filter, the

local constraints all have a form identical to that of Equation (2.34), namely

-6L-lXL-1 = FLXL + 'FL-1 (2.38)

where XL contains the mesh variables at the boundary edge of a local mesh. The equations

stored as a result of the local factorizations will be identical in form to Equation (2.37) for

41



Processor 1 Processor 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 --- O- 0 0 0 0 C---O- 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0- 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Processor 3 Processor 4

Figure 2-10: Partitioning of 2-D filter dynan-ucs among 4 processors.

42



Processor I Processor 2

e e 0

C 0 C

O C C C C C

C C C C C

G I C C C C

C G 0 C 0 G Q G 0 C

0 Q 0 0 0

0 e e e e �0-1 e IO

C C

G C C C� C C

C C C C C

C C C I C

e e--O C 0 0 e e 0 C

0 Q--O 9 0 0

Processor 3 Processor 4

Figure 2-11: Results of eliminating variables ordered radially in each local mesh.

43



each processor, except that the vectors %FP will differ among the processors. The vector T.

is a linear combination of the input variables for the local mesh, yet the matrices (b -1 Fp+,)P

where p E [0, L - 1]) are a function of the NNM parameters; hence, only one set of these

matrices needs to be computed or saved for all of the processors.

2.3.2 Inter-processor Communication

At this stage of the algorithm, back-substitution cannot begin, since the 2-D filter's B.C.'s

are given at the global boundary only. Also, the processors cannot eliminate any more

variables if they are assumed only to have access to local data. What must follow is

comnitinication between the processors, such that the constraints on the local boundaries

can be combined into a constraint on the global boundary (2.34); yet, the local constraints

alone do not determine the constraint on the global boundary. Instead, the NNM constraints

which were not accessed during the local factorizations are used to eliminate the variables

x(i, j] in the local boundaries which are not part of the global boundary. A simple parallel

algorithm can be derived from [37] which combines the local constraints pairwise.

For instance, consider the set of local constraints illustrated in Figure 2-11. Processor 1

could "coinmunicate" with processor 2 by combining their local constraints with the filter

dynamics which form constraints involving mesh variables in both local boundaries. One

can then derive a constraint on the boundary of the union of the two local meshes covered by

processors 1 and 2. Similarly, processors 3 and 4 can be "communicating" simultaneously

with the exchange between processors 1 and 2. This pairwise combination of "east" and

44west" local constraints is illustrated in Figure 2-12 for a local mesh of radii L = 7. The

arrows represent the NNM dynamics which link the two meshes, and the hollow circles

indicate the mesh variables which are to be eliminated by the pairwise combination. As a

result, a constraint will be produced among the variables represented by dark circles.

After these two pairwise combinations have occurred, the 14-by-14 mesh is effectively

divided into two halves, where the mesh variables at the boundaries of both halves are

constrained by the results of the first inter-processor communication step. These two con-

straints can then be combined in the same pairwise fashion, as is illustrated in Figure 2-13.

The NNM dynamics which link the boundaries between the north and south halves of the

mesh are illustrated by the arrows in Figure 2-13, and the hollow circles represent the vari-

ables from the local constraints which are to be eliminated. Once these variables have been

44



Local Mesh (Processor I or 3) Local Mesh (Processor 2 or 4)

0 0

0

9 0 0 0 0 .. 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-12: Pairwise (East/West) communication between local processors to provide a
constraint on a larger boundary.

eliminated, one has a constraint on the two states at the global boundary.

There are a number of ways to implement the inter-processor communication steps of the

factorization illustrated in Figures 2-12 and 2-13. A simple option follows, which leads to a

more efficient algorithm which is described in Chapter 3. Since any east-west combination

is identical in form, only a general derivation is given. For our example 14-by-14 mesh, the

local constraint produced in the west half of the mesh by either processor 1 or 3 has the

form

DL-1X'Lj = FLx' + %P' (2.39)

and the corresponding constraint produced in the east half of the mesh by either processor 2

or 4 has the form

DL-IX'L-l = F'LX'L + T' (2.40)

Combining Equations (2.39) and (2.40) with the NNM dynamics which link the two meshes,

one obtains the large matrix equation

ZXew = Tew (2.41)

45



North

....... .... .... .... ..... .... .... ..... ....................

-0- South

0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Figure 2-13: Pairwise (North/South) communication between local processors to provide a

constraint on the global boundary.

46



DL-I -FR 0 0 XW WL--1 L-1

0 0 DL-1 -FR XW TeL L-I

eZ, Z2 0 Z3 XL-1 diagIB, B,..., BJuw

Z4 Z5 Z6 J Xe diagIB, B,..., BlUe jL 0 L J

Z C R2(IOL-9)x16(2L-1) pe TW g?8(L-1)x1 Z, C �?(2L-1)xi i
L_J� L-1 E

Xe'Xw E g?8Lxl e W R8(L-l)xl Uw, Ue g?(2L-1)x1
L L XL -JIXL -1 E E

where the last two block rows of (2.41) correspond to the NNM constraints which link

the east and west meshes. These two block rows have the same form as the rows of A in

Equation (2.25), where the elements in any row sum to (I - N - S - E - W). This sum

is determined by the coefficients in the difference equation (2.2). The vectors uw and Ue

just correspond to the inputs to the NNM constraints along the west and east local mesh

boundaries, respectively, which link the two local meshes. Given Equation (2.41), it is now

possible to eliminate those mesh variables which correspond to the hollow circles in Figure 2-

12. These variables can be I'Lunped into the state Xli,. The two concentric rectangles of

mesh variables which remain (illustrated with dark circles) can be lumped into the states

Xin and Xout, corresponding to the inner and outer rectangle, respectively. The elements

in Xin and X,,ut can be ordered counter-clockwise like those in Appendix A. A permutation

matrix P, can then be found such that

Xelim

Pi Xew Xin (2.42)

XOUt

pTp I
J 1

XIm C R4(2L-3)xl Xin E g?6(2L-l)xl Xt Ej R2(6L+l)xl

The permutation given by P, is defined such that the variables in Xin and X"ut are ordered

counter-clockwise, as are the variables in x,, given the orderings in Appendix A. With the

47



permutation P1, Equation (2.41) becomes

(ZPT) (pi X-) = 'F e-

If the matrix DL-1 is diagonally dominant, it is desirable (as win be shown in Chapter 3)

to maintain this structure in Z. The permuted matrix ZPjT, however, is unlikely to exhibit

any diagonal dominance. A row permutation P2 of Equation (2.41)

(p2ZpT
)(PlX") = P2T"' (2.43)

Xelim
Q11 Q12 0 Telim

Xin (2.44)
Q21 Q22 -Fo.t i j L Ti. i

XoUt

Q11 E g?4(2L-3)x4(2L-3) Q22 (E R6(2L-1)X6(2L-1) Fout Eg?6(2L-1)X6(2L+1)

can be created such that Q22 is diagonally dominant if bL-1 is diagonally dominant. The

permutation P2 follows from the observation that if the element with maximum magnitude

in row i of ZPjT is in column j, then row i of ZPjT becomes row j of P2ZPT (of course, one

would never implement these permutations as matrix multiplications!). One should note

that because Z is not square, the dimensions of the permutations P, and P2 differ.

dimjPj) = (dimjX,,jimj + dimjXin} + dimIX,,ut} )2

dimIP21 = ((fimjXjim} + dim{Xinj )2

The first step of inter-processor communication attempts to obtain a constraint between

Xi,, and X,,t, which can be obtained by eliminating Q21 from (2.43).

Finding the Schur Complement [12] of the matrix

Q11 Q12 (2.45)

Q21 Q22

48



one gets

022 = Q22 - Q21Q11-'Q 12 (2.46)

Using the Schur Complement in Equation (2.43) yields

Q11 Q12 0
Xi. (2.47)

L 0 Q22 -Ft L fi. i

L XOut j

!'in = Tir, Q2lQl-l'P,,Ii,. (2.48)

The bottom block row of (2.41) gives the desired constraint between the two states, Xin

and Xut, which comprise the boundary of the union of the east and west local meshes.

Also note that this block row is identical in form and function to Equation (2.38). Note

that, since at this stage of the algorithm only those mesh variables interior to the state

Xin have been eliminated, the block matrix F,,,,t in Equation (2.47) is identical in function

to the F,, in the dynamics given in (2.2i)-(2.22), thus the name. The matrix F"ut can be

derived directly from the NNM parameters, as is shown in Appendix A.

After the first inter-processor communication step in our 4-processor example, one has

two equations like (2.47), one for the north and one for the south half of the mesh. The

second inter-processor conununication step is identical to the first, beginning with the con-

straint produced by communication between processors I and 2 and that from processors 3

and 4. The constraint from processors 1 and 2 has the following form, with the superscript

n denoting variables in the north half of the mesh.

Q22Xi'n = FutXo' t + ly� (2.49)U in

Siniflarly, the constraint produce(] I)y cornmimication between processors 3 and 4 is as

follows, with the superscript s denoting variables in the south half of the mesh.

t + (2.50)Q22X%'n = FutXo'u in

These constraints are combined with the NNM dynamics which link the north and south

halves of the mesh to produce a constraint on the global boundary. This constraint is iden-

49



tical to that given in (2.34), since both are constraints on the two outermost states at the

global boundary. In particular, 022 for the last inter-processor factorization step must equal

to DR-1 obtained by the straightforward factorization, since both factorizations manipulate

the same set of equations. If one were to divide the mesh into more than four sub-regions,

which will be shown to be a more efficient implementation, more inter-processor commu-

nication steps are required. In fact, for 2 N local meshes, (N - 1) inter-processor steps are

needed. With more than 4 local meshes, the inter-processor communication steps continue

recursively in the form given by Equations (2.4l)-(2.47), alternating between pairwise east-

west and pairwise north-south combinations of constraints. When the global boundary is

reached, the constraint (2.34) is obtained.

Back-substitution follows easily from the permutations and the results of each inter-

processor communication step, stored in the the form of Equation (2.47). Given the values

at the outermost state X,,,t, the interior rectangle Xi, can be found from Equation (2.47)

as

Xi,, = Q-'(F,,,.tX,,.t + (2.51)

and Xli,, is then given by

Xelim = Q 1 -Q12Xin + +e1im) (2.52)

Note that Q11 and Q22 have been assumed to be non-singular in this algorithm, which

is the case for most filters. Also note the similarity between the inter-processor back-

substitution steps and the local factorization back-substitution step given by (2.37). The

back-substitution steps of inter-processor communication begin at the global boundary and

end with the output values at all the points in the local boundaries (those points in Figure 2-

11 for our example). Back-substitution for the local processing can then begin, propagating

the Imown vabies at the local bmindaries radially inward toward the local centers.

2.3.3 Computation and Storage

In this thesis, the number of computations generally refers to the number of floating point

divisions and multiplications required to compute the factorization of the matrix A in

Ax = b. This convention is used in many numerical linear algebra texts [14, 16], and can

be thought of as an on-line measure of complexity for solving 2-D boundary value systems.

50



However, in many filtering applications, the costs of the factorization can be amortized over

a large number of inputs. For these off-line solutions, the computational complexity of the

algorithm is determined by the back-substitution processing of the input data.

For any 2-D IIR filter with a mesh of finite size I implemented with the parallel mesh

partitioning algorithm, there must be an optimal number of processors which produces

the maximum savings in computation and storage over the straightforward uni-processor

implementation. This optimal number will undoubtedly depend upon the size of the mesh

I and the number of partitions M, but will also depend upon the processor network's

characteristics, such as latency and bandwidth. Without knowing these factors a priori, a

general measure of complexity and storage is difficult to specify. However, we can assume

that the number of computations generally takes the form

I K, (I)
S = M + K2 (I) 109(M) (2.53)

where the first term expresses the fact that for any given mesh size 1, the number of compu-

tations required for local processing decreases with the number of partitions. However, the

number of computations due to inter-processor communication should grow logarithmically

with M for a given mesh size I. This contribution is expressed by the second term of S. Two

extreme examples of fine and course grain parallelism give a flavor of what computational

savings are to be expected from the partitioning.

Assume a square mesh of size I x I. To simplify our analysis without losing any general-

ity, it will be assumed throughout this discussion that the dimension I is such that the local

meshes are square and their edges have an odd number of points. This requirement allows

for the radial oc-norm orderings to fit "evenly" within the local mesh, as in Figures 2-6

and 2-10.

Consider a nieqh square mesh of size 1-by-I where I = 2(2L + 1). The global radius of

the mesh is then R = 2L, and the mesh can be divided into four local meshes of radius L.

As is mentioned in Section 2.2.1, the number of computations for the straightforward single

mesh factorization is dominated by the computation of.D-1 at each step of the factorization.P

Sumn-ling over p = 1, 2,. . ., L - 1, it was shown in Section 2.2.1 that the total number of

51



computations for the factorization is bounded by

R 2n3
C, = E '-P = O(J4) (2.54)

P=O 3

Furthermore, the number of storage elements required is dominated by storing the fun

matrix D-lFp+l at each step of the factorization. The total number of storage elementsP

required was shown to be

R 8
SI = E(8p + 1)2 _ �J3 + 2J2 = 0(13) (2.55)

P=O

However, if one decides to implement the Block LU algorithm by dividing the mesh into

four equal meshes of radius L, which is an example of course-grain parallelism for large I,

the computational and storage requirements are quite different.

With 4 local mesh, the number of computations at each step of the local factorization

is dominated by the computation of D- where p = 1, 2,..., L = R/2. Sun-u-ning over the

local factorizations (note that for a linear shift-invariant difference equation, the matrix

D-1 is the same for each local set of data) one obtainsP

L 2n3 O(J4)SL ___P = O(L 4) = _ (2-56)
4 E 3 16P=O

computations. If the filter is not shift-invariant, one would multiply the number SL by4

four to indicate that local factorizations are unique for each local mesh. For each of the

two inter-processor steps, the total number of computations is dominated by computing the

inverses of the matrices C222 and Q11 in Equation (2.47). The dimensions of these matrices

are given after Equation (2.44). We note that for the first inter-processor factorization step

dinif 0221 - diniff)3R/41 dim{Q111 - dimIDR/21

There would be two sets of these matrices-one for the north half of the mesh and one for

the south-if the filter is not shift-invariant. For the second inter-processor communication

step, since 022 must be equal to DR-1, the dimension of the matrices follow as

(fiMI0221 = dimff)R-11 dimjQjjj _- dimIDR-11

52



These dimensions are illustrated in Figures 2-12 and 2-13. Note that the size of the matrix

Q22 grows much more rapidly with each inter-processor factorization step than does the size

of D. with each local factorization step (the same can be said in the growth of the state

Xi,, vs. the growth of the state x.). Hence, the total number of computations is

_ 1))3 ))3
SL + 2(8(R 2(8(3R/4 - 2(8(R/2))3 4

S4 - 4 3 + 3 + 3 = O(I (2.57)

The total number of computations still grows at the same rate as it does for the single mesh

implementation, yet the total number of computations drastically decreases since one only

needs to perform four matrix inversions between p = L and the global boundary, p = 2L.

When R is large, these savings can be tremendous.

The total number of storage elements required for the 4 mesh algorithm can sirnilarly

be shown to be considerably less than in the single processor case, yet the number is still

O(J3).

To see if the savings in storage and computations increases with the number of local

meshes, consider a boundary value system with a constant-coefficient difference equation

supported on a mesh of size I x I, where I = 3(4m). The mesh can be partitioned into at

most 4M local regions, where each of the 4M meshes is a square of size 3-by-3. In this case,

there is no local processing to be done, since the filtering constraint gives a relationship

between the two outermost states xo and x, of each local mesh. This implementation

is in fact very similar to the nested dissection algorithm given in [14, 13] and discussed

in Chapter 3, although there is more fill in the factorization for the algorithm given in

this chapter. The parallel implementation in this case consists entirely of inter-processor

factorization (combining boundaries) and back-substitution steps. Such a partitioning of

the mesh requires M east-west and M north-south inter-processor conununication steps

before reaching the global boundary. In the first step of the algorithm, 4M local constraints

are combined pairwise (east-west) into 2 * 4"-f -1 constraints. The north-south combination

step then reduces the the number of constraints to 4M-1. This process continues recursively

until the global boundary is reached. Note that, as can be seen from Figures 2-11 through 2-

13, the size of the boundary increases approximately by a factor of two with each succession

of east-west and north-south combinations. The dimension of the constraints also increases

by a factor of two with each two steps. In particular, if before an east-west combination

53



step Xin has dimension L, then after the east-west combination it will have dimension 3L.2

Yet after the proceeding north-south combination it will have dimension 2L.

As was the case with the inter-processor steps for the previous example in which the

mesh was divided into 4 local regions, the computation requirements of each inter-processor

factorization step are dominated by inverting the matrices Q11 and 022 found in Equa-

tion (2.47). Because the difference equation is constant-coefficient, these coefficient matri-

ces are the same for each processor. Let the dimension of 022 at each east-west step of

the algorithm be n, x n, (rn = 1, 2, 3,. .. , M). Then at each north-south factorization

step the matrix 022 will have dimension 3- x -3n (?n = 1, 2, 3,..., M). At the boundary,2 2

m = Al and 022 has dimension proportional to the size of the boundary. Inverting 022 at

the boundary will thus take O(J3) computations. Noting that the dimension of the bound-

ary doubles with each two inter-processor steps, the matrix dimension n, will also double

with each two steps. Hence, the total number of computations needed to invert Q22 over

all the factorization steps can be approximated as

M )2) 2 3
Sf ine E (I + (3/2 -n nrn 1, 2, 4,..., 2M

M=0 3
26 M )3
- E (2m
27 m=0
M
E 8M
M=0

8M
I - 8

8M

where M log I. The number of computations required to invert Q11 must also be included

in the approximation, yet these computations will be less than double Sf in,; hence, the total

number of computations is 0(13). Storage requirements are more difficult to analyze, but

can similarly be argued to take O(J2) storage elements. These results compare favorably

with nested dissection, which takes as little as O(J3) computations and O(J2 ln(I)) storage

elements.

These measures of computational complexity reflect the total number of computations

required for the fine-grain parallel mesh partitioning algorithm when the difference equation

is constant-coefficient. One must then ask how the number of computations will change if the

54



factorization is implemented in parallel and/or the 2-D difference equation is shift-varying.

First consider a parallel implementation of the mesh partitioning algorithm for the

constant-coefficient difference equation. For the on-line solution, because the matrices D.,

Q22, and Q11 are the same for each local mesh, the time to create and factor these matrices

will be the same if one processor factors them or if all the local processors factor them inde-

pendently. The only real increase in performance resulting from a parallel implementation

will be in the manipulation of the local input data during the back-substitution steps. For

the on-line filter implementation, these computations are a minor contribution to the total

number of computations required for the factorization. However, for an off-line implementa-

tion, the back-substitutions and similar manipulations of the input data comprise the bulk

of the computations, and a parallel implementation will produce sizable savings. For digital

filtering applications, in which the matrix factorization can generally be done off-line, the

computational savings will be even greater. For such applications, the number of compu-

tations is determined by the number of storage elements required for the back-substitution

step.

If the difference equation is not constant-coefficient, the computational and storage

requirements for a single processor implementation differ from those given for the constant-

coefficient filter. For instance, because the matrices D. and Q22 differ for each local mesh, a

set of coefficient matrices must be stored for each local mesh during the factorization. The

number of storage requirements for the factorization of a space-varying filter system is thus

significantly more than the O(J2 ) required for the constant-coefficient system. Similarly,

the total number of computations for the factorization will increase beyond that given for

constant-coefficient case due to the fact that the local factorizations and inter-processor

communication factorizations must be calculated for each local mesh. However, the per-

formance of the algorithm will increase significantly when implementing the algorithm in

parallel. The computational complexity of implementing the shift-varying filter system in

parallel is essentially identical to that of the constant-coefficient filter due to the fact that

all the local factorizations and inter-processor communication steps can be done in parallel,

even though the coefficient matrices differ for each mesh. Note that there are sizable savings

in a parallel implementation of both the off-line and the on-line solutions.

The mesh partitioning algorithm has thus been shown to be a vast improvement over

the single processor block LU algorithm (obtained by one radial ordering of the mesh).

55



Chapter 3 details an approximate solution to the mesh partitioning algorithm which can be

shown for some cases to yield significant improvements in performance.

56



Chapter 3

Efficient Algorithms

It was demonstrated in Chapter 2 that the parallel Block LU algorith-ni is a significant

improvement over the algorithm given in Section 2.2. Even when implemented on a sin-

gle processor, the inethod of dividing the mesh into local regions, solving for a constraint

on the boundary of each of these regions, and then combining the constraints into a con-

straint on the global boundary is superior to the straightforward algorithm in terms of both

computation and storage requirements. However, despite the number of local regions or

processors used, the majority of the computations occur during the last few steps of the

factorization, when large states of mesh variables comparable in size to the global boundary

are 44 eliminated". In the local processing described in Sections 2.2.1 and 2.3.1, the number

of computations is dominated by the construction of the inverse of D. at each step of the

factorization in Equation (2.37), and each inter-processor step described in Section 2.3.2

is dominated by inverting 022 in (2.51). For a large number of filters, these full matrices

can be approximated by sparse matrices which can be inverted much more efficiently while

having negligible or marginal impact on the solution.

For those interested in "exact" numerical solutions to P.D.E.'s or linear systems of equa-

tions, the approximate solutions produced by the algoritluns developed in this chapter might

not be palatable; yet, for many signal processing an estimation applications, one might be

willing to make approximations that those solving P.D.E.'s would not. For instance, ap-

proximations are inevitably made when transferring from desired frequency response char-

acteristics to the FIR or IIR implementation as a difference equation. It seems reasonable

to expect, especially in 2-D, that one might then sacrifice some additional accuracy in the

57



solution for computational savings.

In this chapter, the approximate LU algorithm is developed from the algoritluns given

in Chapter 2 and can be used to provide highly accurate solutions to 2-D boundary value

systems which lead to diagonally dominant systems of equations. The performance of the

algorithm on these difference equations is then compared to nested dissection.

3.1 An Approximate LU Algorithm

Given once again the 2-D acausal NNM filter system described in Section 2.2, assume that

the mesh variables have been ordered into concentric squares and that the factorization given

by the recursion in Equations (2.32)-(2.33) has proceeded for N steps, where N < R - 1.

After N steps, one has the constraint

f)NXN = FN+lxN+l +TN (3.1)

between the states at radii p = N and p = (N + 1). The matrix FN+1 is sparse and

can be derived directly from the filter coefficients (see Appendix A). The matrix bN is

full (a majority of its elements are non-zero), since eliminating the mesh variables interior

to XN creates fill. This fullness is undesirable, since the next step of the factorization

requires that N be inverted. When XN is approximately the size of the global boundary

XR (R = I/2), this inversion alone will take 0(13) operations. Fortunately, for many sets

of filter coefficients, DN can be replaced with a sparse approximation. In fact, for all

radii p except those near zero, DP can be replaced with a sparse approximation. Thus the

approximate algorithm involves replacing the fuH matrixbP at each step of the factorization

for p > N with a sparse and easily invertible approximation.

The coupling given by Equation 3.1 between the states XN and xN+1 is illustrated

in Figure 3-1. The variables contained in XN are connected in the figure with a solid-

line square, whereas those in XN+1 are connected with a dotted-line square. The arrows

extending from the inner to the outer square in the figure show which variables in XN are

coupled through FN+1 with those in XN+1. Because -6N is full, however, every variable

in XN is directly coupled with every other variable in xN; yet, for most filters, one would

expect that each variable x[ij] in XN is coupled most strongly to the other variables in

XN which are geographically closest to x [i, j]. In fact, in some cases, the coupling decays

58



0 ------- 0-------0-------0 ------ 0-------0-------0

Strong
0

Coupling

�0�0_

0 ....... 0....... (b

Figure 3-1: Structure of the constraint between xP and x,,+, after each factorization step
of the Block LU Algorithm.

extremely fast with the distance between variables in the mesh. This decay is illustrated

in Figure 3-1, where the variable represented by the shaded circle is strongly coupled with

its nearest neighbors in XN, yet is only very weakly coupled to those variables farther away.

As N increases, so will the maximum distance from one variable to another in xN, and the

coefficients in DN will decrease accordingly.

The approximate algoritluii treats those coefficients in bN which represent couplings

between variables separated by more than a "small distance" in the mesh as zero. One can

think of this approximation as modeling f)NXN in (3.1) as a low-order 1-D IIR filter around

XN. After the approximation, DN is sparse and its inverse can be found much more quickly.

Furthermore, if we make a similar approximation at each step of the factorization where

p > N, the total ntmiber of computations should drop dramatically- Before discussing the

implementation and accuracy of the approximate algorithiii, however, we need to first decide

how to make the approximation (i.e. if only those coefficients corresponding to coupling

between variables separated by less than a small distance are kept, what distance metric is

used?). In this work, the approximation to DN was developed based upon heuristic ideas

and empirical evidence, and its structure can be best illustrated by example.

A class of filters for which the approximation algoritlu-n works well results from a dis-

59



Figure 3-2: Grey scale magnitude plot of the elements in D_ 10 for an NNM with
n = s = e = w =.15. The magnitude of the diagonal elements relative to the elements just
of the diagonal is: .610(i, i ± 1) -'Z:� D10(i, i) * (-.154).

cretization of the following PDE

V2X(q, V) + kx(q, v) = u(q, v) (3.2)

where q and v are continuous spatial coordinates. Equation (3.2) will be referred to in this

chapter as a damped Poisson, although it is better known as the Helmholtz equation when

k > 0. Discretizing (3.2) by finite-difference methods (q = hi, v = hj), one obtains an

NNM difference equation (2.2). The difference equations which result from a discretization.

of Helmholtz's equation are low-pass filters, yet the approximation works wen for other

classes of frequency-selective filters, some of which are analyzed in Section 3.3.

As k increases from zero, the overall filter system Ax = b becomes more diagonally

dominant and the approximation's accuracy increases proportionately to k. (A matrix is

diagonally dominant if the sum of the absolute values of the off-diagonal elements for every

row and colunm is less than or equal to the absolute value of the element along the diagonal.

If the inequality is strict, the matrix is strictly diagonally dominant.) For instance, when

k = 0 and hq - h,, one obtains an NNM difference equation corresponding to a discrete

60



Poisson (n = s = e = w = 1/4). In this case the overall system is diagonally dominant (not

strictly diagonally dominant), but significant errors are introduced by the approximation.

However, as will be shown in Section 3.3, when k increases slightly such that (3-2) discretizes

to an NNM filter with the coefficients n = s - e = w = .15, a simple approximation to DN

can be found which has minimal effects on the accuracy of the solution. For this difference

equation, a grey-scale plot of the magnitude of the elements in _bN for N = 10 is given in

Figure 3-2. The matrix D10 has dimension 80-by-80 (see Appendix A), and note that the

variables in xN have been ordered counter-clockwise, as is illustrated in Figure A-1. From

Figure 3-2, one can see that the off-diagonal elements decay quickly to zero with distance

from the diagonal. The "large" values in the upper-right and lower-left corners of D10

represent the fact that the first element in x1o is physically located next to the last element

in x1o (see Figure A-1), hence, they are strongly coupled. In other words, because XN is a

closed square in the mesh, the matrix bN has circular structure, and one would expect the

approximation to also be circular.

From Figure 3-2, one can see that a natural approximation to the fun matrix blo is to

zero those elements which are more than a distance of one from the main diagonal or from

the upper-right and lower-left corners of the matrix. The accuracy of the approximation

could be increased by setting to zero those elements which are more than a distance of B

from the diagonal or from the upper-right and lower-left corners of the matrix. Can B the

bandwidth of the approximation.

As can be found in Appendix A, the matrix D-N has dimension 8N-by-8N, so its ap-

proximation D'P' of bandwidth B can be derived from the following relationN

Dapx(j, j DN(i, j), ji - jj < B or ji - jj > 8N - B (3-3)
N

0, otherwise

To illustrate the structure of the approximation matrix, take the nearly full 32-by-32

matrix b4, which is produced after four steps in the LU factorization. Its approximation

D apm has the structure shown in Figure 3-3 for B = 1 and that shown in Figure 3-4 for4

B = 3. (Note that there are zeros within the bandwidth B of the main diagonal for D ap,4

in Figure 3-4. These elements were zero in D4 before the approximation was made.)

Given the non-zero sparse structures shown in Figures 3-3 and 3-4, inverting D apx willN

take much less than O(J3) operations. Using the formula given in [13] for determining the

61



Non-zeros in approximate matrix with B=1

5 -

9 0 0

to -

0 0 0

15 -

20 -

25 -

30 -

0 5 1� 1 "5 20 25 30

Figure 3-3: Location of non-zero elements in approximate matrix with B

Non-zeros in approximate matrix with B=3

5-

0

10 -

0 0 0 0 0 0

0 : : 0 0 0 0
15 - 0 0 0 0 0 0

0 0 * 0 * 0
0 0 0 0 0 0

0 0 0 0 0

20 - 0 0
0 0

0 0 : : : 0
0 0 0 : : 0

25 - 0 0 0 0 0 0 0

41 00 10, : : : 0
0 0 * 0 0 * 0

0 0 0
30 - 0 0 0 0 0 0 0 -

0 0

0 5 10 15 20 25 30

Figure 3-4: Location of non-zero elements in approximate matrix with B 3.

62



Location of non-zeros in L and transpose(U)

5 -

10 - 0 0 0
9 0 0 0

90 0

15 -

20 -

25 -
0 0

30 - 0 0 0 9 0 0 0 0 0 0 0 0 0 9 9 9 9

0 5 10 15 20 25 30

Figure 3-5: Location of nonzero elements in L and UT of LU factorization of approximate

matrix with B = 3.

number of operations required to factor a sparse matrix while not operating on the zero

elements, the number of operations required to factor D ap-- isN

0 = (N - 1)(2B(2B + 3)) (3.4)

which asymptotically reduces to O(B2N) computations. Such matrices can also be factored

very efficiently in parallel with a variant of cyclic block reduction given in [16], or the

inward/outward processes given in [33]. For B = 3, the non-zero structure of L and UT

in a straightforward LU factorization of D ap, is given in Figure 3-5. One can see that fill4

ap,
from even the simplest factorization occurs in only the last B rows of D4 . In fact, for any

N, the fill froin factoring D ap, will only occur in the last B rows of L and UT. Therefore,N

the factors L and U of D ap, will become more sparse (a greater percentage of the matrix'sN

elements will be zero) as N increases. When B is small, inverting DIP' (p > N) willP

essentially take 0(p) operations.

Although using the approximation given by Equation 3.3 at each step of the LU fac-

torization does not significantly perturb the solution to a number of filter systems, even

when B is equal to one, there exists a modification which increases the accuracy of the

63



approximate algoritlun by an order of magnitude without significantly increasing the com-

putational requirements. In other words, there is still a significant amount of information

in the "dark" area of the plot in Figure 3-2. The approximation can be improved by finding

which coefficients in the dark area significantly affect the accuracy of the solution.

The approximation given by Equation 3.3 keeps those coefficients in DN which represent

a coupling between variables in XN separated by a distance less than or equal to B, where

distance in this case is the minimum number of mesh points along the square XN that one

must travel to get from one variable to another. However, the decay of the coefficients

DN also depends upon the 2-D distance between points in XN- Variables in the "corners"

Of XN are closer to more points in xN than those which lie in the middle of the edges

of the square; hence, variables at the corner are tightly coupled to more variables in XN.

The approximation is improved by adding more coefficients around the diagonals of DN at

indices which correspond to corners in XN- One such improvement to (3.3) which will be

shown in the next section to work well is given by

apx2 apD = D x + D"nPro've (3.5)N N N

where D improve DO, j) if and only if (i, j) falls into one of the following "squares"N (il j)

of indices:

(i, j) E [cl - (B + 1),cl + (B + 1)] x [el - (B + 1),cl + (B + 1)]

IC2 - (B + 1),C2 + (B + 1)] x [C2 - (B + 1),C2 + (B + 1)]

IC3 - (B + 1),C3 + (B + 1)] x [C3 - (B + 1),C3 + (B + 1)]

IC4 - (B + 1),C4 + (B + 1)] x [C4 - (B + 1),C4 + (B + 1)]

where el, C2, C3, and C4 are the indices of variables of the four corners in XN, and D apxN

is given by (3.5); otherwise D`Prove(ij) is zero. The indices of the four corners in xNN

resulting from the counter-clockwise ordering given in Appendix A are

N+I

C2 3N+1

C3 5N+I

64



Location of non-zeros in improved approximation to DIO

10 -

20 -

30 - Mt..

40 -

50 -

:M:
60 - M.

70 - U
MI Ili

80 I:- I
0 10 20 30 40 50 70 80

J

Figure 3-6: Location of non-zero elements in approximate matrix with B 3, including

extra coefficients near the corners Of XN-

C4 = 7N+1

XN C R8Nxl

As an example, approximating the elements in DN with Equation (3.5), the structure of

the non-zero elements in D p,2 for N = 10 is shown in Figure 3-6. In this figure one canN

see the squares of non-zeros centered about (4 i) = (Cl, Cl), (C2� C2)i (C3, c3), and (C4, C4)-

These squares give improved accuracy by extending the coefficients in the approximation

which constrain elements at the corners of x1o. Note that the number of additional non-zero

,p,2
elements in D attributable to D"P"' is independent of N, meaning the inversion ofN N

D pX2 will still require O(B2N) computations.N

3.1.1 Approximating the Inter-processor Communication Step

Fortunately, an identical approximation exists for each inter-processor communication step

detailed in Section 2.3.2. The majority of the computations at each step of the factorization

given by Equations (2.39)-(2.47), excluding reordering and inter-processor communication

costs, is dominated by the computation of Q22 in Equation (2.46). Furthermore, the inverse

of both 022 and Q11 must be computed for the back-substitution steps (2.51) and (2.52).

65



These operations will be computationally expensive, since both Q22 and Q11 in the left-

hand side of Equation (2.44) are full and have very large dimension. Equation (2.44),

however, is just a permutation of Equation (2.41). Without using the approximation given

by (3.5) in the previous section, all the block elements of Z in (2.41) are sparse, except

for bL-1. But as we have just seen, there are filters for which the matrix DL-1 can be

approximated accurately by the sparse matrix D p,2 when L - 1 > N (we are assuming

that no approximation is made for the first few steps of the LU factorization, since the

matrices have small dimensions). After approximating DL-1, all the block elements of Z

are now sparse and, hence, so are the block elements Q22 and Q11 in the permutation of Z.

The matrix 022 in (2.46) can then be computed efficiently. The last remaining bottleneck

for the inter-processor communication step is that 022 will in general be full. This fullness

results from the fact that the inverse of a sparse matrix, which in this case is Q` in11

Equation (2.46), is generally full.

To compute the inverse of Q22 in (2.51) while still maintaining an efficient algorithm,

an approximation to 022 follows by noting that the last two block rows of Equation (2.47)

Q22XIn = FtXoW + Tir, (3.6)

are identical in form and function to the constraint given by (3.1). Like the matrix FN+1

in (3.1), the matrix F,,,,t is very sparse and can be generated from the filter coefficients (see

Appendix A). More importantly, the full matrix 022 has a sparse structure identical to

that of DP, where the coupling between variables in Xi, decreases with the 2-D distance

between the variables.

The elements Xi, and X,,.,,t for the first inter-processor communication step are illus-

trated in Figure 2-12, where Xi, contains the mesh elements in the inner dark rectangle

and Y,,,,t contains those in the onter rectangle. Furthermore, the permutation PI in (2.42)

is defined such that the mesh variables in Xi,, and Xut are ordered counter-clockwise in

the mesh. Since for most filters the coefficients in 022 decrease rapidly in magnitude with,

distance from the diagonal and upper-right and lower-left corners of the matrix, the problem

of approximating 022 is identical to that of approximating DN in (3.1).

Consider again the NNM difference equation with n = s = e = w = .15, where the local

radius L is defined to be 10. A grey-scale plot of the magnitude of the elements in Q22 for the

66



Figure 3-7: Grey scale magnitude plot of the elements inQ22 with L 10 for an NNM with
n=,g =e =w =.15.

first inter-processor step is given Figure 3-7. As with b the most natural approximation

to Q22 is given by (3.3), yet again one must correct for the increased coupling at the corners

of the state Xi,. The only difference, then, in approximating 022 in lieu of DP is that the

state Xi, is rectangular and not square; hence, the indices of the corners in (3.5) differ from

those given for XN. The non-zero structure of the approximation to the matrix Q22 is shown

in Figure 3-8. The fact that Xi, is rectangular and not square is evidenced in Figure 3-8,

where the "corners" of Xi,, are not evenly spaced as they are in Figure 3-6.

In order to state the approximation of Q22 more formally, one has to define an ordering

of the mesh variables in Xi,, which in turn determines the structure of the equations

in 022. However, whether the elements in Xi,, and X,,,,t are ordered clockwise or counter-

clockwise is arbitrary, as is the determination of which mesh variable in each state should be

indexed first. For this chapter, assume that the permutation PI for the first inter-processor

67



Location of non-zeros in approximation to Q;2, where L10

list

102 -

40 -

60 -

411
80 -

M

100 - %J11

0 20 40 60 80 li�

Figure 3-8: Location of non-zero elements in matrix approximating Q22, with B 3 and
L = 10.

communication step is defined such that the first element in Xin is the centermost element

(geographically) which lies on the northern edge of Xi, inTigure 2-12 (actually, there are

two elements in the center of each edge, so we can choose the element lying in the west half

of Xin). Relabeling the variables Xi, and X,,.t from the first inter-processor communication

step as X� and X1 t, the indices of the corner elements in X� follow asin OU in

cl = 2L

C2 = 4L-2

C3 = 8L-3

C4 = 1OL-5

X� C g?6(2L-l)xl
in

For the second inter-processor communication step, which is illustrated in Figure 2-13, the

first element of X� is also a member of the interior shaded square of Figure 2-13. Callin
the interior square of mesh variables X? and the outer square X2

in Utl which for the four

processor example in Section 2.3 is the global boundary. Note that unlike V from the

68



first inter-processor factorization step, X?, is square. Choosing the first variable in X� toit in

be the first variable in X7 , and again ordering the rest of the variables counter-clockwise,

the corner indices follow as

el = 2L

C2 = 6L-1

C3 = 1OL-2

C4 = 14L-3

X? E R(16L-4)xl
in

Let Xi be the interior rectangular state of mesh variables generated by the i-th inter-in

processor communication step. When i > 2, the corner indices of Xi can be found similarly.in

QapmThe approximation 22 to the matrix Q22 generated by each inter-processor comniunica-

tion step then follows from (3.3) and (3.5) as Qa,,(i, j) 22 (i, P if and only if one of the22

following is satisfied:

Ji-jJ < B

Ji - ji > dirnJXinJ - B

(i, i) E [el - (B + 1), el + (B + 1)] x [el - (B + 1), el + (B + 1)]

E [C2 - (B + 1), C2 + (B + 1)] x [C2 - (B + 1), IC2 + (B + 1)]

E [C3 - (B + 1), C3 + (B + 1)] x [C3 - (B + 1), C3 + (B + 1)]

E [C4 - (B + 1), C4 + (B + 1)] x [C4 - (B + 1), C4 + (B + 1)]

otherwise Qapx(i, j) = 0. If more than fair processors are used, east/west and north/South22

combinations of constraints follow recursively until the global boundary is reached, so the

corner indices can be easily derived from those given above by just redefining L.

After this somewhat laborious discussion of how to approximate the matrices 022 and

D. in the block LU algorithm, we now turn to the performance of the algorithm. The

next section discusses possible implementations of the approximate algorithm and gives

some estimates of the computational and storage requirements, which are shown to depend

69



heavily upon the implementation.

3.1.2 Implementing the Approximate LU Algorithm

Consider again the NNM filter given in Section 2.1 defined on a square mesh. Also assume,

without loss of generality, that the mesh can be divided evenly into 4M square sub-regions

of local radius L. After ordering the local mesh variables and filter dynamics radially into

the form of Equations (2.2l)-(2.23), the parallel block LU algorithm with approximations

follows as:

9 Local Factorizations - Perform the following recursive procedure on each of the 4M

sets of local data for p 1, 2, . . .,L - 1, initializing the recursions with To = HOuO

and Do -_ 1:

TP = GP-lf)-'JTP-l + HPUP [Equation (2.36)]P_

If p �! N, replace D with Dapx2 given by Equation (3.5).P P

DP = DP - Gp-,Dp-,Fp [Equations (2.27)-(2.28)]

(where the matrices used in each of the 4M processors are the same, assuming a

constant coefficient difference equation, although, of course, each processor has its

own set of local data (input data) in Equation (2.36))

* Inter-processor Factorizations - Given the constraints produced on the boundaries

of the local meshes, it takes M east-west and M north-south inter-processor factor-

ization steps to form a constraint on the global boundary. The first inter-processor

step is detailed in Section 2.3.2, yet a general form is not given. Because the form

of the equations does not change from those given in Section 2.3.2 for inter-processor

steps after the first, the superscript j is added to denote the states and coefficients at

step j. Without detailing the permutations (reordering of the equations) involved in

between inter-processor communication steps, the following recursive procedures are

performed for i -_ 1, ... , M:

j -_ (2i - 1)

As is illustrated in Figure 2-12, 4"1-'+l constraints are combined pairwise east/west

with the unused constraints which link each pair of constraints to yield 2 * 4M-i sets

70



of equations of the form

X3
elirn

0
Qj11 QJ12 X? elin [Equation (2.44)]

Q321 QJ22 _Fo-t xi. L in j

L nut i

One then coinputes:

Qil(Q3,)-'T3,in [Equationn in 2 1 (2.48)]

022 QJ22 QJ21(Q'1)- Q'12 [Equation (2.46)]

Replace Qj22 with its approximation (Qj2)"". One then has 201--i

2 constraints

22X� - F.,,,tX-' t + ij

?n ou in

which are to be combined north-south pairwise with the unused constraints which link

the states in each pair as in Figure 2-13 to yield 4AI-i constraints of the form

oj+lxj+l p+122 in - Fj+1 Xi+' + (3.7)out out in

If i = M, then Equation (3-7) is equivalent to (2.34).

e Inter-processor Back-Substitution - The recursion follows for i = M,..., 2, 1 and

is initialized by the Dirichlet conditions which specify XR = X02UMt

j -_ (2i - 1)

North-south back-substitution

X� .-4-1 - '+I

- M2n 22 )-'(Fj+'Xj+l + V+') [Equation (2-51)]out out in

xi+1 - (Qj+l)-l(-Qj+lxj+l + V+1 ) (Equation (2.52
elim - 11 12 in elim

The east-west back-substitution step has the identical form

X3 I )-'(F-7 3 [Equation(2.51)]in = M 2 outxout + T1,"

71



X3 [Equation (2.52))- (Q31) -Qj2Xi,, + XP31iln)elim 1 1 e

Local Back-Substitution - For each of the M sets of local data, the solution is

found for p = L - 1, .. -, 2, 1 with the following recursion, where XL is given after some

rearrangement of the variables by the last inter-processor back-substitution step:

- D- l(Fp+lxp+l + Tp) [Equation (2.37)]P P

The storage and computational requirements of this algorithm depend upon a variety of

parameters, such as the bandwidth of the approximation and bow the coefficient matrices

are stored for the back-substitution step. Note that the back-substitution steps given in

Equations (2.51), (2.52), and (2.37) require the matrices [(Q j ] j ]22)_1F .1 I 1(Qj11) 1

(D-'F,+,), respectively, at each step. Both (h-1F,,+,) and Nil) _1Qj2] are computed dur-

ing each local and inter-processor factorization step in Equations (2.27) and (2.46), respec-

tively, and thus can be stored during the factorization. However, the matrix [(Cj _1r"'j.22) t

is not computed during the factorization steps. One only needs to store the sparse ap-

proximation to Oj22, since Fjt can be generated from the filter parameters during the

back-substitution. The algorithm's storage requirements are then dominated by saving the

dense matrices 1(Qj11) _1Qj2] and (,D-'F,+,) after each factorization step.

A minor question regarding implementing the algorithm is then whether to store the

dense matrices [(Qj _1Qj2] and (D-1Fp+j) during the factorization steps, or to save the11) 1 P

sparse matrices D. (,-after it is approximated) and Q'j and recompute the relevant matrices1

during the back-substitution step. The former method is obviously more computationally

efficient and is the method used for all the examples in Section 3.3, yet the latter method

might be preferred when storage is a serious concern. The storage requirements demanded

by the former implementation can become particularly acute when the filter is space-varying.

If storing the large, dense matrices is a serious bottleneck, one can think of two al-

ternative implementations which reduce, the memory requirements; one implementation

sacrifices computational efficiency, and the other sacrifices accuracy. The first alternative

implementation has already been discussed, in which the approximation to Dp given by

(2.27)-(2.28) is stored after each factorization step, in lieu of storing (D-1Fp+j). Also, afterP

each inter-processor communication step, one stores Qj instead of (Qj1) 1

72



computational requirements of this algorithm are alleviated somewhat by a second alterna-

tive implementation. For this implementation we note that if an approximation exists for

D a similar approximation should exist for (f)-1Fp+j). Yet, because the most efficient
P7 P

implementations use a large number of partitions, meaning that (f)-1Fp+j) will only needP

to be computed for a small number of steps, this additional approximation to (D-1Fp+j)P

is unlikely to be worth pursuing.

Dropping implementation intricacies related to storage, it should now be apparent from

the discussion in this section that the approximate algorithm offers significant improvements

in storage and computation requirements over the Block LU algorithm, given any degree

of parallelism. Exact performance measures are beyond the scope of this thesis, since there

are a number of variables which must be considered (e.g. the degree of parallelism, the

bandwidth of the approximation. in addition to the size of the 2-D input). One can however,

make some significant observations about the total number of computations required by the

approximate algorithm.

For the algorithms given in Chapter 2, the computational requirements are dominated

by producing the inverse to D, at each local factorization step and producing the inverse to

Q11 and 022 at each inter-processor back-substitution step. Without any approximations,

these matrices are dense. After approximating DP and 022 with the algorithms given in

this section, however, all the inversions involve sparse, structured matrices. For any of these

matrices which has dimension n-by-n, the number of computations required to compute its

inversion reduces from O(n-) to O(B 2 n), after an approximation of bandwidth B. Consider

now the example given in Section 2.3.3 in which only local factorizations are performed. This

implementation was shown to require 0(14) computations, yet with the approximations the

number of computations reduces to

R
E B 2n,, -_ 0 (B 2I2) (3.8)
P=O

In other words, for a mesh of size I-by-1 and a small approximation bandwidth, the ap-

proximate block LU factorization requires essentially O(J2) computations, which is an order

of magnitude less than that required by nested dissection. With the approximation, the

back-substitution steps and the sparse matrix multiplications needed to compute D. now

comprise a significant amount of the total computations for both the on-line and off-line

73



implementations.

For implementations in which the mesa is partitioned, the computational savings due

to tile approximations are niore difficult to quantify. Consider the finest-grain partition-

ing which involves only inter-processor communication steps. Without approximations,

the factorization is dominated by the computation of the factorization of Q22 and Q11 at

each inter-processor step. For each Of tile Matrices, these computations were shown in

Section 2.3.3 to require

M 2
Scamp E (I + (3/2 )2 ) _713 n. - 1, 2, 4,..., 2M

m =0 3 m

8

0(_[3

computations. With approximations, the number of computations required for inverting

022 at each step of the algorithm becomes

Af

scamp 1: (I + (3/2 )2 )B2n, n,.n = 1,2,4,...,2M

m=0

B 22A'

O(B 2j)

which is a significant improvement. However, the sparse matrix Q11 does not have the simple

banded structure of 0 22; thus the complexity of its factorization is difficult to measure. After

the approximation, the matrix 022 is banded because it represents the approximate coupling

among the variables in the inner rectangle of Figure 2-12. The matrix Q11 represents the

coupling among the variables represented by hollow circles in Figure 2-12, which are to be

eliminated by the inter-processor communication step. This set of variables, however, has

thickness, suggesting that a tailored ordering be used for Q11 similar to that developed for

Q22 and DP, For large mesh sizes, Q11 will essentially be banded about the diagonal after a

few inter-processor communication steps. In any case, the approximation yields significant

computation savings for the fine-grain partitioning case.

The next section discusses nested dissection, a well-known direct algorithm for solving

large, sparse systems of equations, such as those which result from discretizing elliptic

P.D.E.'s by finite difference methods. The performance of the algorithms developed in this

74



0 0

0 file]

0

Figure 3-9: Dependence structure of a difference equation leading to linear system of equa-
tions to be solved by the nested dissection algorithm.

thesis is then compared to that of nested dissection in Section 3.3.

3.2 Nested Dissection

Since the development of nested dissection in [131 in 1973, the algorithm has been known as

the most elegant and efficient (asymptotically) direct solution to matrix problems arising

from finite difference applications, where the system of equations Ax = b is such that

the matrix A has symmetric structure with a localized dependence graph. One example

might be the set linear system which results from a 2-D IIR filter described by a low-

order symmetrically structured difference equation. Because nested dissection is clearly

detailed and simulated in [14, 13], the objective of this section is foremost to give a brief

synopsis of the algorithm and to contrast is with the algorithms given in Chapter 2 and

Section 3.1. We also hope to be suggesting how nested dissection, which has traditionally

been used to solve P.D.E.'s, allows for efficient implementations of 2-D IIR filters described

by difference equations and boundary conditions. Some low-order filter applications are

given in Section 3.3, but the larger question of whether or not one can design meaningful

2-D 1IR filters with boundary conditions is pondered in the conclusions.

It is shown in [14, 13] that the factorization of any matrix which is the result a boundary

value system with a second-order 2-D difference equation, such as the NNM or that given

by the dependence graph in Figure 3-9, applied to a domain of size N-by-N must take at

least O(N3) computations and O(N 21092 N) storage elements. Nested dissection is optimal

in that it asymptotically matches these lower bounds, and no other direct algorithm will

75



do asymptotically better, unless one is willing to make approximations. For some systems,

the approximations given in Section 3.1 allow one to beat these bounds while bearing sinall

errors in the solution.

In obtaining these lower bounds, nested dissection orders the elements in A such that the

amount of fill which occurs during its LIT factorization is minimal. It has been mentioned

throughout this thesis that the amount of fill which occurs during a matrix's factorization

to a large extent determines the number of storage elernents and computations required

to perform the factorization. Minimizing the amount of fill is accomplished with the use

of separators (dissectors), which dissect the inesh into disjoint sets (disjoint in the sense

that the difference equation does not couple variables in one set with those in the other).

For a difference equation with the dependence shown in Figure 3-9 applied to a 2-D region

with 9-by-9 elements, a separator (dissector) is illustrated in Figure 3-10. The dissector,

S1, in effect disconnects the variables in C, from those in C2. Namely, if the factorization

is performed such that the variables in S, are ordered last, the matrix A takes the form

Al 0 Z,

A 0 A2 Z2 (3.9)

W, TV2 A3

where the matrices Al, A2, and A3 represent coupling between variables in the same set.

The significance of the dissector is that if A in (3.9) is factored, the block zeros will be

preserved during the factorization (i.e. no fill will occur in these locations).

Since sets C, and C2 can be viewed as meshes by themselves, the dissection can continue

recursively by placing separators in the middle of both C, and C2, as is illustrated in

Figure 3-11. If variables in the the separators S2 and S3 are ordered last in sets C, and C2,

respectively, both Al and A2 will also have the form of A in (3-9). One can see that for any

domain size, the elements in A can be ordered by recursively dissecting the mesh Until no

more dissections are feasible. The matrix A then takes a fractal structure like that given in

Figure 3-12. The nested dissection ordering of the 10-by-10 element rnesh used to order A

in Figure 3-12 is given in Table 3.1.

Because the block zeros created by each separator are preserved during the factorization,

it is shown in [14, 13] that the nested dissection ordering of A requires O(N3) computations

and O(N2 1092 N) storage elements to factor.0ne might now ask how the nested dissection

76



11'�
0 0 0 0 0 0 0 0 0

SI
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

C, C2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Dissector

Figure 3-10: The dissector SI divides the niesh into two disjoint sets, one which contains
the variables in C, and the other those variables in C2.

el�
0 0 0 0 0 0 0 0 0

SI

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

OS2 00 )0 (00 S300

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 '?J0 0 0 0

Figure 3-1 1: Adding a second (nested) level of separators.

77



1 1 3 5 6 91 41. 42 5T 49 50
2 1 4 1.1 1.2 9 2 47 48 58 55 56
3 15 9 7 93 45 43 59 53 5 1
4 1 6 1 0 8 94 46 44 60 54 52

3T 38 39 40 95 86 8T 88 89 90
1 7 23 2 1 19 96 63 61 81 T3 71.
1 8 24 22 20 9T 64 62 82 T4 T2
33 34 35 36 98 69 70 83 79 80
25 3 1 29 27 99 67 65 84 77 75
26 32 30 28 100 68 66 85 78 76

Table 3. 1: Nested dissection ordering of a 10-by-10 niesh.

0

:Vo
00

M

20

40
WO 0

0:0,
,:000 0 00.
0060 .00:0,0 0 0

ON 0 0

::O* 0 0
4'q 0

0 *9 0
0080 0 "O 0

"M

0 HO0
0 0 0 M

0 I'M
0::O:o00 0

look 0 0
0 20 40 60 80 100

Figure 3-12: Structure of the non-zero elements in A after nested dissection ordering of a
10-by-10 mesh. (The underlying boundary value system is a Discrete Poisson with Dirichlet
conditions.)

78



ordering compares to the finest-grain partitioning of the mesh given in Section 2.3. The last

variables eliminated in a nested dissection factorization are the N variables which dissect

the mesh into two halves, while the last variables eliminated for the mesh partitioning

algorithm are the 4N - 2 variables on the boundary of the N x N mesh. Yet as the

dissection and mesh partitionings continue recursively, one can see from Figure 3-13 that

orderings begin to look somewhat alike. The orderings, however, produce significantly

different algorithms. For instance, the nested dissection ordering must only be done once

before the factorization begins, yet as was shown in Section 2.3 for mesh partitioning, the

remaining mesh variables must be reordered after each factorization step. These differences

suggest that performance measures in addition to computational complexity and storage

requirements must be considered when comparing the two algorithms.

3.2.1 An approximate solution derived from Nested Dissection

By noting another similarity between nested dissection and mesh partitioning, an approx-

imate nested -dissection solution can be developed. It is likely that the approximate algo-

rithin developed in Section 3.1 can be extended to nested dissection for 2-1) boundary value

applications which are equivalent to diagonally dominant matrix equations.

The approximate algorithm for nested dissection begins with the observation that just

before the variables in the primary dissector 51 (see Figure 3-10) are eliminated during the

matrix factorization, the block matrices VV1 and W2 in (3.9) have been zeroed. In other

words, Gaussian Elimination has proceeded to the point where (3.9) becomes

U, 0 Z,

A 0 U2 Z2 (3.10)

o o A3

where (71 and U2 are upper-triangular. The block element 113 will be full due to fill-in

during the factorization. Because the dissectors contains N elements for an N-by-N mesh,

factoring A3 alone will take approximately 2N3 computations [161. Hence, one would like a3

sparse approximation to A3 similar to that given for D. and Q22 in Section 3.1. Because

A3 represents the coupling between elements in the dissector S, after an the other variables

in the mesh have been eliminated, one would expect for diagonally dominant systems of

79



Mesh Variables
Remaining before... Mesh Partitioning Nested Dissection

-------------

the last factorization

step

-------------

- - - - - - - - - - - - -

the second to last

factorization step

- - - - - - - - - - - - -

the third to last

- - - - - - -- - - -

- - - - - - - - - - - - -

fourth to last

- - - - - - - - - - -

n F-I F]
fifth to last nnl-ln

F 17 F-I F-I
11000-

Figure 3-13: Comparison of nested dissection and mesh partitioning (see Section 2.3). Mesh
variables lie along solid lines in figure.

80



0 0 0 O O O O O O
SI

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Weal: Coupling
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Strong Coupling
0 0 0 0 0 0 0 0

Strong Coupling
0 0 0 0 0 0 0 0

0 0 0 0 �� � 0 0 0 0

Dissector

Figure 3-14: Coupling between variables in a dissector, just before the dissector is to be
eliminated in the factorization.

equations that the coupling decays rapidly with physical distance between variables in S1.

This decay is illustrated in Figure 3-14, which conveys a message identical to that given in

Figure 3- 1.

Unlike the radial states described in Chapter 2, S, is not circular and A3 will not be

circular. The approximation then follows as a simple modification to the approximations

for hP and 022 as

A.3(ij), ii-A <_ B
approx(A3) - (3.11)

0, otherwise

where B is again the bandwidth of the approximation. Furthermore, since A in (3.9) has a

self-similar structure after nested dissection ordering, the blocks Al and A2 have the same

form as A. The blocks Al and A2 represent coupling between elements in C, and C2 of Fig-

ure 3-10, whose dissectors will contain approximately N12 elements. Hence, at some point

in the factorization, the matrices resulting from factoring Al and A2 will both contain full

matrices with dimension N12 x N12. These matrices and all similar matrices resulting from

dissections with significant dimension can be approximated by (3.11). Because factoring

these full matrices obviously dominates the O(N 3 )computations required for the nested

81



dissection factorization, the approximation should significantly reduce the total number of

computations. The questions which must then be answered are

0 How good is the approximation for a given bandwidth and degree of diagonal domi-

nance?

0 How do we determine the resulting approximate algorithm's computational and stor-

age complexity?

9 How does the nested dissection approximation perform relative to the mesh partition-

ing approximation given in Section 3.1?

Full answers to such questions are beyond the scope of this thesis. However, since nested

dissection is more efficient (in terms of both computation and storage) than mesh parti-

tioning, the approximate nested dissection algorithm will also be more efficient than the

approximate mesh partitioning algorithm for any given approximation bandwidth; but the

relative accuracy of the approximations is unknown. Furthermore, the approximate nested

dissection is much easier to implement, since only the initial ordering is required, and the

approximation consists of a simple banding of a matrix about the main diagonal.

3.3 Examples

The purpose of this thesis is to develop a direct, efficient, parallelizable algorithm for 2-D

acausal IIR filters. The block LU algorithm, as well as a parallel version, were derived in

Chapter 2 as a framework for solving 2-D acausal IIR filters. These algorithms led to a more

efficient approximate algorithm which works well for 2-D boundary value systems equivalent

to diagonally dominant matrix equations. Such systems are a common by-product of dis-

cretizing many elliptic P.D.E.'s with finite difference methods. This section illustrates some

possible applications of the approximate algorithm, such as digital filtering, and compares

the results to the solution obtained by the nested dissection algorithm.

3.3.1 Setting up the examples

For the examples, we again consider a filter described by an NNM difference equation

x[i, j] -_ nx[i, i + 11 + sx[i, 11 + ex[i + 1, j] + wx[i - 1, j] + u[i, j] (3.12)

82



constrained by boundary conditions. tTnless stated otherwise, the boundary conditions are

Dirichlet-type and are derived from the input as follows: if u[i, j] is given over the square

Q = [1, I] x [1, I], then x[i, j] = u[i, j] along the boundary of 11. One must then solve for

x [i, j] over the square Q, -- [2, 1 - 1 ] x [2, 1 - I].

The applicability of the NNM difference equation was detailed in Chapter 2. However,

it is also worth noting that when n = s and e = iv, the NNM corresponds to a zero-

phase filter. One of the reasons that FIR filters are preferred to IIR filters is captured in

[10] where it is written that "One of the biggest advantages that FIR filters enjoy over

HR filters is the fact that iniplenientable FIR filters can be designed to have purely real

frequency responses", hence, zero-phase. Yet, ignoring the filter design issue, some efficient

algorithms have already been developed in this thesis which implement the solution to a

zero-phase (which implies acausal) IIR filter. Nested dissection is one such solution which

has been known by those solving P.D.E.'s since the early I 70's'.

Although some very general results are obtained regarding the performance of the ap-

proximate algorithm, it is beyond the scope of this thesis to develop any analytic bounds on

the performance of the filter implementations developed in Chapters 2 and 3. The lack of

any closed-form measures of performance is in part due to the large number of parameters

which must be considered when measuring the algorithm's performance. Those parameters

which impact the efficiency and accuracy of the algorithms developed in this thesis are as

follows:

0 the filter coefficients n, s, e, and ity

9 the input characteristics (e.g. the 2-D DFT of the input)

0 the size of the filter domain, I

* the number of local regions, 2"", which can also be seen as the degree of parallelism

in the algorithm

0 the radius N at which the approximations begin, i.e. approximate D. for all p > N

The coefficients chosen for the filter are particularly important, since they determine the

filter's properties (e.g. frequency response or the possibility of diagonal dominance in the

augmented linear system of equations); yet, they span and infinite set of possibilities. The

following examples attempt to evaluate the performance of the filter as these parameters

83



vary. It should be noted that the value chosen for N in the approximate algorithm has

surprisingly little effect on the performance of the algorithm. For ease in programming, the

following examples use the convention N = B + 1.

All of the examples are implemented on a SUN Sparc2 with 64MB of RAM using MAT-

LAB 4.0. Nested dissection is implemented using the sparse matrix pack -age of MATLAB

4.0 (which is a very nice programming environment for handling sparse matrix operations,

particularly inversions). All algorithms are thus implemented on a single processor.

Error Measures

Three measures of error are used in this section, although the utility of any given error

measure depends heavily upon the nature of the application. One measure, the maximum

percentage error is defined to be

di(x,,X2) = max IX1[ii] - X2[i, ill

1<i'j'<1 I xi [i, A I

where xi will be considered in this section to be the output obtained from nested dissection

and X.2 is the output obtained from one of the algorithn-Is developed in this thesis. This

error measure is particularly demanding, and will produce spurious results when xl[ij] is

either 0 or very small.

Another measure of error attempts to reduce the affect of outliers on d, due to very

small values of xi [i, j]. This error measure uses the 2-norm, but first we stack the variables

xl[ij] and X2[ij] over the rectangle Q into the colunm vectors xi and X2, respectively.

The second error measure d2 is then

d2(X1, X2) HX1 - X2112

lIX1112

which is similar to a signal to noise ratio.

A third error classification is

d3(X1, X2) HX1 - X211.

11X111-

This measure is similar to the first, except that it does not take into consideration large

percentage errors at pixels which have insignificant values. Note that all three error measures

84



are in some sense invariant to the amplitude of the system input.

Inputs

In addition to error measures, we also define a set of inputs which attempt to demonstrate

the algorithms immunity to variations in the input characteristics. Define the following

inputs:

• DC: ul [i, j for all (i, j) E Q

• III) Gaussian Noise: t/2[ij] is an independent, identically distributed, zero-mean

normal process where each pixel has a variance of I.O.

• High Frequency Noise: 11.3[ii] is obtained by taking the second difference of U2

(where U2 is the I + 2-by-I + 2 niatrix of the input U2[i, j]) in the j direction followed

by the second difference in the i direction. The MATLAB operation is (1) '1U2

randn(I + 2, I + 2)", followed by (2) "[�3 = diff(diff(U2, 2)', 2)".

• "Diagonal" Sinusoid: 114[ii] __ sin(27r(i/Ni + jINj)), for varying Ni and Nj.

• "Rectangular" Sinusoid: u5[i, il sin(2ri/Ni) sin(2rj/Nj), for varying Ni and

Nj.

For SI = [1,64] x [1,641, Ni _- 2, and Nj 32, the a grey-scale plot of the diagonal and

rectangular sinusoid are illustrated in Figures 3-15 and 3-16, respectively. These inputs are

combined to form a variety of other inputs.

Difference Equations

Finally, a set of 2-D difference equations must be given. Since one of the motivations

for this research is to develop direct solutions to 2-1) IIII. filters constrained by boundary

values, a set of second-order frequency-selective 2-D filters is given. For instance, if one

desired to remove high-frequency noise from a 2-D image while passing low frequencies

and preserving phase, a possible low-pass filter is given by the NNM with the coefficients

n = s = e = w = .15. The magnitude of the 2-D DFT for such a filter is given in Figures 3-

17 and 3-18. A 2-D low-pass filter whose DFT has a more elliptic contour plot is given by

an NNM with the coefficients n = s _- .2 and c _- w = .1. The frequency response of this

85



Figure 3-15: Grey scale magnitude plot the diagonal sinusoid for Ni 2 and Nj 32.

Figure 3-16: Grey scale magnitude plot the rectangular sinusoid for Ni 2 and Nj 32.

86



2.5

2

1.5

1

0.5
4

4

2

0

-2

Wj -4 -4 Wi

Figure 3-17: The magnitude plot of the 32-by-32 point DFT of a low pass filter described

by an NNM with n = s = e = uY = .15.

elliptic low-pass filter appears similar to that in Figure 3-17, yet its contour plot given in

Figure 3-19 displays an asymmetry not present in Figure 3-18. Another possible low-pass

filter is that given by the coefficients n -_ c -- .'13 and s -_ w _- .18, also has a frequency

response similar to that given by Figure 3-17. The contour plot of this skewed LPF (low

pass filter) is shown in Figure 3-20. Note that unlike the previous two low-pass filters, the

skewed filter of Figure 3-20 does not have zero-phase. One final low pass filter is that given

by the NNM with n = s -_ e -- w _- .05, whose frequency response is shown in Figure 3-21

to have nearly linear roll-off on the interval [-r, 7r].

A crude high pass filter can also be implemented with the simple NNM difference equa-

tion. When n -_ s = e = w -_ -. 15, the filter has the frequency response given in Fig-

ure 3-22. A mixed filter can also be designed using the NNM coefficients n = S = -. 14 and

w = e = .16 which essentially passes high frequencies in wi and low frequencies in wj, as is

shown in Figure 3-23. Note that both the mixed filter is not zero-phase.

Two other systems which will be considered in this section are used primarily to examine

the numerical stability of the algorithms developed in Chapter 2 for difference equations not

equivalent diagonally dominant systems. As is shown in Appendix B, the block LU algo-

rithms developed in Chapter 2 can become singular for a countable set of NNM parameters,

87



3

0.8

2

2

0

-2

0.8

-2 I 0 1 2 3
Wi

Figure 3-18: The contour plot of the magnitude of the 32-by-32 point DFT of a low pass

filter described by an NNM with n s e ?v .15.

3 0.8

2

0.8

I

7 0

-2 0 3
Wi

Figure 3-19: The contour plot of the magnitude of the 32-by-32 point DFT of a low pass

filter described by an NNM with n -- s = .2 and e = w

88



3

2

2
0

-2 -

-2 I 0 1 2 3
Wi

Figure 3-20: The contour plot of the i-nagnitude of the 32-by-32 point DFT of a low pass
filter deqcrihed hv an NNM with n. r .13 and A 717

1.3 ,

1.2 ,

1.1

I

0.91

0.8
4

2 4

2
0

Wi

Figure 3-21: The magnitude plot of the 32-by-32 point DFT of a low pass filter described
by an NNM with n = e -- s -- w =.05.

89



2.5

2

1.5

0.5
4

4

2

0

Wj -4 -4 Wi

Figure 3-22: The magnitude plot of the 32-by-32 point DFT of a high pass filter described
by an NNM with n s e w

2.5

2

1.5

0.5
4

4

2

0

Wi -4 -4 Wi

Figure 3-23: The magnitude plot of the 32-by-32 point DFT of a filter described by an
NNM with n = s = -. 14 and e -- w -- .16.

90



Table of Systems/Filters rising the NNM

System Class Description NNM coefficients jn,.seu)1
Low-Pass Filter Poisson/Laplacian 1.25,.25,.25,.251

circular contour f .15,.15,.15,.151
elliptic contour j.2,.2,-1,-1j
skewed contour 1.13,.18,.1.3,.181
linear roll-off 1.05,.05,.05,.051

High-Pass Filter circular contour J- 15,-. 1 5,-. 15,-.151
Mixed Filter High pass along i-axis j-.14,-.14,.16,-16j
"Near" Singular System {-49,.49,.49,.49j
Non-physical system 110,10,10,101 _j

Table 3.2: Systems described by NNM difference equations to be used in the examples.

such as when n = s -_ e _- w = .5. However, one would like to show that the algorithms are

numerically stable for difference equations "near" these ill-conditioned problems, such as

when n = s = e = w = .49. In addition, the system given by the NNM difference equation

n = s = e = w = 10 is also considered, although such a system appears to have no physical

interpretation (as a finite difference approximation). A summary of the preceding difference

equations is given in Table 3.2.

The numerical results of this chapter can essentially be divided into two parts. Note

that when no approximations are made, nested dissection is the choice of implementation.

However, in the first part the boundary value systems are implemented with the algorithms

of Chapter 2 making no approximations in order to demonstrate the numerical stability of

these algorithms. The stability of both the local factorizations (block LU factorization for

a single radial ordering) and the inter-processor factorization steps is given. The second

part of the results uses the approximations made in Section 3.1 and describes the accuracy

of the solution both when the mesh is partitioned and when it is not.

3.3.2 Numerical stability of mesh partitioning algorithm

In demonstrating the numerical stability of the mesh partitioning algorithm, we essentially

seek to demonstrate empirically that the errors do not increase appreciably as the number

of local and inter-processor factorization steps increase. Let x, correspond to the filter

output obtained by nested dissection and X2 contain that produced by the mesh partitioning

algorithm of Section 2.3. Observations on numerical stability can then be drawn from

91



Table 3.3, which shows the solution errors obtained when a number of systems (sampled

from Table 3.2) are driven by the input u = (0-511,2 + U4) with Ni = Nj = 1/8. Note that

when M = 0-when there are no partitions-the simulations are only done for meshes of

size I < 61, because the memory and computational requirements increase rapidly with the

number of local factorization steps.

It is apparent from Table 3.3 that the errors do not increase appreciably as the nurnber

of local or inter-processor communication steps increase. In other words, even for those

NNM parameters near those which cause singularities, the mesh partitioning algorithm is

numerically stable. One should also note front Table 3.3 that for a given mesh size I, the

errors are independent of the number of partitions, or equivalently the number of inter-

processor communication steps.

Knowing that the magnitude of the errors is independent of the size of the domain 0-

independent in the sense that, the errors d2(X1, x,) and d3(xl, X2) do not increase significantly

when increasing from I = 32 to I = 128-one would also like the errors to be invariant of

the form of the input for any given system. As an example, we investigate for some low-

order filters how the errors vary as the input moves from the stop band to the pass band of

the filter. Consider the circular contour low-pass filter given by an NNM with coefficients

in, s, e, wj = 1.15,.15,.15,.151, whose 2-D Fourier Transform is illustrated in Figures 3-

17 and 3-18. A possible input is the diagonal sinusoid U4 with Ni -_ Nj, whose Fourier

Transform consists of two impulses along the line wi -- wj equidistant from the center of the

frequency plane at (Lv wj) = (0, 0). When Ni = Nj varies from I to 2, the impulses move

from the low-pass filter's pass band near (wi, Lvj) = (0, 0) along the line wi = (A;j to the stop

band near (wi, wj) -_ (±r, ±r). The Fourier transform of the diagonal sinusoid is shown

for varying frequencies in Figures 3-24 to 3-26 when I = 64. The rectangular sinusoid u5

has a Fourier Transform which can be derived directly from that of the diagonal sinusoid

with the same Ni and Nj by adding the two impulses obtained by reflecting the DFT of

the diagonal sinusoid about the wi or wj axis. The transform of the rectangular sinusoid

obtained from Figure 3-25 is given in Figure 3-2T.

Fixing the size of the filter domain to Q -_ [1, 64] x [1, 64], the errors are given in Table 3.4

for both the low-pass filter of Figure 3-17 and the high-pass filter of Figure 3-22 as the inputs

U4 and u5 move from the pass to the stop bands of both filters. For both the high-pass

and low-pass filters, the value of the error is both small and relatively independent of the

92



NNM Parameters I Al dl(xlx2) d2(Xl,-T2) d3(XIX2)

in, 3, e, wl Mesh Size (2m Partitions)

1.25,.25,.25,.251 9 0 1.07e-14 3.02e- 16 4..35e-16
Poisson 3 1 0 3.05e- 13 9.55e- 16 1.01e-15
LPF 6 1 0 2.16e- I I 2.74e-14 2.06e- 14

1 6 1 5.75e- 14 2.22e-16 1.86e-16
32 1 9.32e-12 4.05e- 15 2.4 5e- 15
64 1 4.53e-10 7.17e- 14 1.36e-14
32 2 9.02e-t I 7.37e-15 Looe-14
64 2 I.;jIeUU 6.68e- 15 1.22e-

128 2 1.47e-10 1.27e-14 3.6le-14

15, -. 15, -. 15, -. 151 9 0 2.09e-15 3.14e- 16 3.10e-16
HPF 3 1 0 3.54e- 13 4.96e- 16 9.19e- 16

6 1 0 4.02e- 13 5.5le-16 1.2le-15
1 6 1 1.77e-15 2.13e- 16 9.06e- 16
3 2 1 6.04e- 14 5.00e-16 1. 1 7e- 15
64 1 8.73e- 13 5.53e-16 1.2le-15
32 2 4.84e- 13 4.64e- 16 8.69e- 16
64 2 4.76e-12 5.53e-16 1.2le-15
128 2 1.40e-12 5.62e- 16 1.18e-15

{.49,A9,.49,.49j 9 0 1.57e-13 1.3le-15 1.50e-15
3 1 0 2.40e-12 5.87e-14 4.59e- 14
6 1 0 5.25e- 10 2.58e- 12 2.96e- 12
1 6 t 6.63e-13 5.90e-15 4.18e- 1 5
32 1 3.04e-12 7.34e-13 1.76e-13
64 1 3.97e-11 1.35e-12 9.02e-13
3 2 2 1. 6 le- 1 1 1.63e-14 1.99e-1.4
64 2 7.10e-11 1.33e-13 1.27e-13
128 2 1.15e-07 5.48e- 1 2 6.13e-12

110, to, 10,101 9 0 5.60e- 14 3.94e-15 1.11e-14
3 1 0 3.39e-11 5.99e-14 4.58e- 14
6 1 0 3.82e-09 8.57e-13 8.65e-13
1 6 1 5.74e- 14 4.04e- 14 1.8le-14
3 2 1 3.40e- 1 1 4.45e- 14 2.28e- 14
64 1 4.56e-09 6.36e- 1 3 4.55e-13
3 2 2 1.08e-11 3.46e-14 4.39e- 14
64 2 6.10e-09 4.7te-13 2.96e-13
128 2 2.12e-08 3.82e-12 4.19e-12

Table 3.3: Changes in error with the size of the domain 9 - [1, I] x [1, I] and the number of
local and inter-processor factorization steps. The input is it -_ 0.5U2 + U4 with Ni = Nj
I/8.

93



2500

2000AIt
tLS 1500
za

1000

5

4

2

-2

-4 -3 -2 I 0 1 2 3 4

wi

Figure 3-24: Fourier Transform of the di4gonal sintisoid for Ni
841 f I641. Nj I12 32 and

2500

2000

S 1500

1000

500

0
4

0 1 2 3 4
Wi -4 -3 -2 -1

wi-Figure 3-25: Fourier Transform of the diagonal

[I, 64] x [I, 64]. Sinusoid for Ni = Ni 1 6 4 and

94



2500

2000

1500

1000

50o

0
4

2

0

Wi T

Fig"Te 3-26- -4 -3 -2 -1 0 1 2 3

f 1 - 641 Fourier Transforr wi
641. a Of the

nal sinusoid for Ari Ni 1131 64131 aid

1200

1000

800

600

4

20

0
4

0

Wi T

-Pigttre 3-27, -4 -3 -2 -1 0 1 2 3 4
p

X
, 64]. rallsforrn of the recta,,,,64] O"rier T

lar Sinusoid for I 4 an

95



NNM paranieters--_7 Input Ni = Nj lil(X-I, X2) d&l, 2-2) d3(;rl, X2�j

U4 1/2 0.136 4.37e-16 1.82e-15
diagonal 1/8 2.02 4.90e- 16 1. 76e- 15

Low Pass sinusoid 1/16 0.137 5.02e- 1 6 2.3 7e- 1 5
Filter 1/31 0.007 6.59e- 16 2.45e- 15

115 1/2 0.385 5.27e-16 t.82e-15
rectangular 1/8 2.02 4.90e- 16 1. 76e-'I 5

sinusoid I/16 1.83 4.77e-16 1.72e-15
1/31 1.63 6.79e- 16 1.94e-15

-. 15, -. 15, -. 151 Z14 1/2 1.55 6.5le-16 2.45e-15
diagonal 1/8 0.416 5.99e- 16 2.54e-15

High Pass sinusoid 1/16 0.183 4.92e- 16 1.60e-15
Filter 1/31 0.111 4.39e-16 1.82e-15

1/2 1.25 6.80e- 1 6 1.94e-15
rectangular 1/8 3.037 5.83e-16 2.07e-15

sinusoid 1/16 0.478 5.3�e-16 1.60e-15
1 1/31 1.25 5.19e-16 I 1.73e-15

Table 3.4: Error in response of high and low pass filter to diagonal and rectangular sinusoids
when M = 2 (four partitions) and I -_ 64.

frequency of the input. The large errors in Table 3.4 for error measure d, (x 1, X 2) are outliers

due to this error measure's sensitivity to near zero output values.

The niesh partitioning algorithm has been shown for a number of systems to be immune

to input variations, and exhaustive simulations indicate that this invariance is a property

of most NNM boundary value systems. However, in the context of filtering, one is not only

concerned with how closely x approximates the exact solution to Ax = b, but one also would

like to know the form of x when a filter system (which is a difference equation and bound-

ary conditions) is driven by a complex exponential input ej(Wjnj+'02n2). The filter system

frequency responses shown in Figures 3-17 through 3-23 only have significant meaning if

complex exponentials are eigenfunctions of the filter system. Complex exponentials, such

as diagonal sinusoid, are eigenfunctions to systems described by linear constant-coefficient

difference equations when the input is defined over the entire discrete plane in R 2, but we

are using boundary conditions to window the region over which the output is to be corn-

puted. The question then is whether or not the boundary conditions can be chosen such

that the filter output corresponds to a weighted sum of the individual harmonics of the

input. Namely, do the frequency responses of the filters, which are derived from the 2-D

96



difference equations, correspond to the eigenvalues of the system.

As was mentioned in Section 3.3.1, all of the previous examples used Dirichlet conditions

in which the output values along the boundary were set to the input values continued to

these locations in the mesh. Such boundary conditions are appropriate if all the input

harmonies lie entirely within the pass band of the filter (and the filter pass-band has a

magnitude of one), yet would be inappropriate if all of the harmonics are outside the pass

band, since one would then expect the output to be near-zero along the boundary and in

the interior. Dirichlet conditions which zero the filter output along the boundary would

be inappropriate for similar reasons. The following example, however, illustrates that a

sinusoidal input to a 2-D 11R. filter with boundary conditions is seen at the filter output as

essentially a sinusoid of the same frequency and desired attenuation with slight distortion

at the boundaries.

Figures 3-28 to 3-33 show the contour lines and corresponding Fourier Transform of the

input and output to the low-pass filter defined by an NNM with the coefficients in, 8, e, wl =

1.15,.15,.15,.151 when the input is a diagonal sinusoid in the filter's pass-band. It can be

seen from the figures that if the boundary conditions are chosen properly, the sinusoidal

output will have little distortions. Yet even for the zero Dirichlet conditions in which the

distortions are greater, the distortions are present primarily at the boundaries of the 64-

by-64 mesh. Furthermore, as the size of the mesh increases, the distortions become less

noticeable. This decrease is illustrated in Figure 3-34, which shows the output from the

filter computed over a 250-by-250 mesh with zero Dirichlet conditions.

The Fourier Transforms of the outputs when -1 -_ 64, illustrated in Figure 3-31 and 3-33,

confirm that the outputs are basically diagonal sinusoids at the same frequency as the input,

and with magnitudes amplified by the magnitude of the low-pass filter's Fourier Transform

(see Figure 3-17) at these frequencies. Hence, even for these primitive boundary conditions,

the outputs to the 2-D IIR filters are the desired diagonal sinusoids with small distortions

near the boundaries.

These cases in which the inputs are confined entirely to the pass or stop bands of a filter,

however, is unrealistic. More appropriate boundary conditions for filtering applications

might be Neumann conditions, which are detailed in Section 2.1. With large sized mesh,

one would expect that the output from a low-pass filter will change "slowly" in any spatial

direction, so a reasonable boundary condition is to assume that the gradient of the output

97



60

50

40.

30

20

10

10 20 30 40 50 60
i

Figure 3-28: Contour plot of a diagonal sinusoid (truncated at the boundaries) with Ni
Nj I/2 and Q 1, 641 x 1, 641.

2500

V 2000,

1500,

1000,

500

4

0

0 1 2 3 4-4 -3 -2 1

Wi

Figure 3-29: Fourier Transform of a diagonal sinusoid (truncated at the boundaries) with
Ni -- Nj -- I/2 and Q = [1, 64] x [1, 641.

98



60

50

40 -

3 0

20

10

10 20 30 40 50 60

Figure 3-30: Contour plot of the output to a low-pass IIR filter with zero Dirichlet conditions
and an input of a diagonal sinusoid (truncated at the boundaries) with Ni Nj I/2 and
0 [1, 64] x [1, 64].

5000

v 4000

8 3000

2000

1000

4

2

0
-2

Wi -4 -2 -1 0 1 2 3 4

Wi

Figure 3-31: Fourier Transform of the filter output with zero Dirichlet conditions.

99



60

50

40

30

20

10

10 20 30 40 50 60

Figure 3-32: Contour plot of the output to the low pass filter when the Dirichlet conditions
are derived from the filter input.

5000,

4000,

A
'O 3000
A
t

2000,

1000,

0
4

2 4
20

0

-2

Wi -4 -4 Wi

Figure 3-33: Fourier Transform of the filter output with Dirichlet conditions derived from
the filter input.

100



240
230
220
210 -
200 X
190
180
170
160
150 -
140
130
120
HO
100
90 -
80
70
60
5 0
40
30

20 -
10

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240
i

Figure 3-34: Contour plot of the output to a low-pass IIR filter with zero Dirichlet conditions

and an input of a diagonal sinusoid (truncated at the boundaries) with Ni = Nj = 1/2 and

SI = [1, 250] x [1, 2501.

normal to the boundary of the rnesh is zero. In other words, the output values along the

boundary equal their nearest neighbor just inside the boundary. For a high-pass filter, an

appropriate boundary condition might be to constrain the output values along the boundary

to be equal the negative of their nearest neighbors just inside the boundary. In general, the

appropriate choice of boundary conditions will depend upon the filtering application.

3.3.3 Performance with approximations

Assuming that one is willing to sacrifice accuracy for computational savings, this section

then details by example the level of accuracy which can be achieved for a given savings in

computation. This section also attempts to define the class of filters for which the errors

are acceptable when implemented with the approximate mesh partitioning algorithm. Note

that for the examples in this section, x, is still the solution obtained by nested dissection,

and X2 is now that obtained by the approximate mesh partitioning algorithm.

Since the only filters discussed in this thesis are those implicitly defined by a NNM

difference equation with scalar coefficients (n, S, C, W), it would suffice in this context to

define the set of NNM coefficients for which the approximation performs well. Ideally, one

101



would like an analytic expression of the form

f (n, s, e, uy, B) < d2(X1, X2)

from which one could determine the accuracy of an approximate implementation with band-

width B for any given difference equation. Such a rigorous derivation is beyond the scope of

this thesis, yet very strong statements can be made about the applicability of the approx-

imation for any NNM difference equation based upon the degree of diagonal dominance of

the filter (if the 2-D filter is augmented into the large systems of equations Ax = b, any row

in A other than those given by the boundary conditions will sitm to (1 - n - s - e - w)).

The accuracy of the approximation algorithm, for any fixed bandwidth, turns out to be

proportional to the ratio

q InI + Isl 4- Jel + IwI

which is simply a measure of the diagonal dominance of the system. When q > 1, the filter

system is defined to be diagonally dominant and when q > 1 the filter system is defined to

be strictly diagonally dominant. The errors introduced by the approximation algorithm are

essentially discontinuous at q = 1. Namely, for q > 1, the errors decrease rather smoothly as

q increases. Yet for any reasonably small approximation bandwidth, the errors introduced

by the approximation jump dramatically near q = 1. The relationship between diagonal

don-dnance and errors in the solution due to approximation is given in Figure 3-35 for

NNM filters in which n -_ s _- e = w. (The errors in Figure 3-35 were obtained without

partitioning the mesh (M -_ 0), with the approximation bandwidth B = 5, Q = 40 x 40,

and the input is given by ul). The data in this figure is obtained for filters in which all the

filter coefficients are equal. Let c -_ n -_ s = e -_ uy, then q = -1 - Note that in this case,
4M

q = 1 corresponds to the Discrete Poisson equations system for which the approximation

algorithm was stated in Section 3.1 to produce unacceptable errors in the solution. Note

that although the results given in Figure 3-35 are for filters in which all the coefficients are

equal, a similar relationship is characteristic of diagonally dominant systems which do not

exhibit this symmetry.

Again, since this thesis is partly concerned with filtering applications, one again would

like to know how well suited these approximate solutions are for filtering applications.

Namely, one would like a sinusoidal input to appear at the output as scaled version of

102



10 Error in approximation for B=5 vs. diagonal dominance of system
10

to5

bb -5
0 10

10
10 -

lo- 15 _

lo-20

-0.4 -0.3 -0.2 -0. I 0 0.1 0.2 0.3 0.4
c (where q 1/(4*lcl))

Figure 3-35: Log plot of d2(X1, X2) when c n = s = c w antl B 5. The diagonal
dominance ratio is then q -- 1

41cl'

103



the input, hoping that the approximation does not introduce any distortions beyond those

mentioned in the previous section. The following example investigates how well a NNM

filter can extract noise from a pure sinusoid without corrupting the Sillusoid. Consider the

zero-phase (in the sense that the filter frequency response is zero-phase without considering

boundary conditions) mixed filter given in Table 3.2, which has the frequency response

illustrated in Figure 3-23, driven by the input u _- 0.4u3 + u5 with Ni = 1/31 and Nj = 1/2

on a mesh of size Q -_ [1, 64] x [1, 64]. The frequency response of this input is given in

Figure 3-36, which consists of a rectangular sinusoid embedded in high frequency noise.

Because the rectangular sinusoid is in the pass-band of the mixed filter, the filter can

be used to remove a significant portion of the noise. The filter output obtained by the

mesh partitioning algoritlirn (Al -- 2) without any approximations is given in Figure 3-3T,

and that obtained by the approximate algorithm with B -_ 5 is given in Figure 3-38. The

transforms of the output testify to the fact that the mesh partitioning algorithms, both with

and without approximations, essentially attenuate the high frequency noise and scale the

rectangular sinusoid by the magnitude of the filter in the pass band. The B.C.'s used in this

case were again Dirichlet conditions derived from a continuation of the input. The errors in

the approximation for this example are d, (x 1, x,) -_ 1.20 x10-6 and d3(X1, X2) = 2.10 x 10-6.

With the high frequency noise added to the input, it is difficult to detect the distortions

in the output sinusoid introduced by the Dirichlet conditions when implementing the filter

with the approximate mesh partitioning algorithm. Instead, consider the again the high-

pass filter from Table 3.2. For an input which again is the low-frequency rectangular sinusoid

given in Figures 3-28 and 3-29, the output is found with an approximation bandwidth of

B = 5. The contour of the approximate output and its Fourier Transform are given in

Figures 3-39 and 3-40. One can see again from the contour plot and Fourier Transform that

the output is essentially a scaled version of the input. If the boundary conditions were not

chosen to be a properly scaled extension of the sinusoidal input. as woii1d be. fbe case for any

general application in which the input is composed of a superposition of complex exponential

at many frequencies, more distortion would be evident at the boundaries. One would instead

design more general boundary conditions for the application, such as Neumann conditions

for a low-pass filter.

In these filtering examples it was shown that even for small approximation bandwidths,

low-order filters can be implemented which essentially attenuate the harmonics in the input

104



1200,

1000,

800,

600,

400,

200,

0
4

4

2

0

-2

Wj -4 -4 Wi

Figure 3-36: DFT of u 0.2113 + 115 with Ni 1/31 and Nj I/2 which is used as an
inplif in fhPn-6-rPrI filtPr

3000,

2500

2000,

1500

1000,

500,

0
4

2 4

Wj -4 Wi

Figure 3-37: DFT of the "exact" output of the mixed filter driven by it 0.2u3 + ur, with
Ni -- I/31 and Nj = I/2.

105



3000 ,

2500 ,

2000 ,

1500,

1000,

500,

0
4

2 4

2

0

Wj -4 -4 Wi

Figure 3-38: DFT of approximate output of the mixed filter driven by u 0.2U3 + U5 with

Ni 1/31 and Nj I/2 with B 5.

60

50

40

30

20

10

10 20 30 40 50 60

Figure 3-39: Contour of high-pass filter output (approximated with B 5) when driven by

the input U - U4 with Ni = Nj - I/2.

106



1400,

1200,

1000,
A

800

600,

400

200

4

2

-2

_j -4 0 2 3 4
-4 -3 -2

Wi

Figure 3-40: DFT of high-pass filter output (approximated with B 5) when driven by
the input U = U4 with Ni -_ Nj = I/2.

by the amounts given by the Fourier Transform of the system function. However, the larger

question of how the approximation errors vary with the bandwidth and size of the mesh

has not been answered. The following example illustrates that errors in the approximate

solution drop exponentially with the bandwidth of the approximation.

Fix the size of the filter domain to Q _- 128 x 128, and consider the low-pass filter

with In,sewj = 1.15,.15,.15,.151 driven by the diagonal sinusoid with Ni = Nj. For

sinusoidal inputs which vary between the pass and stop band of the low-pass filter, the

error d2(X1, X2) is plotted in Figure 3-41 versus the bandwidth of the approximation. Note

that the figure shows that in general, for the same bandwidth approximation, the errors are

slightly more pronounced in the pass-band than in the stop-band. Yet the most striking

conclusion to be drawn is that for any input the errors decrease exponentially with tile size

of the approximation bandwidth, and that very small errors can be obtained for bandwidths

as low as B -_ 3. Similar results can be found for other diagonally dominant filters.

The final example gives a relationship among input domain size, the number of local fac-

torization and inter-processor communication steps, and the approximation error. Varying

the mesh from size I -_ 32 to I _- 256, Table 3.5 gives the errors incurred with an approxi-

mation bandwidth of B = 5 when two filters are driven by the input u = 0.2U3 + U5, + 115,

107



-2 Error vs. Bandwidth for n s e w 15, I 128
10

o: Ni = Ni = 1/2

+: Ni = Ni = 1/8
-4

10 x: Ni = Ni = I/32

Ni Nj I/64

41
10-6

10
Q

to X10

12
10

-14
10

10 -16

0 2 4 6 8 10 12 14 16 18 20
B: bandwidth of the approximation, (B=20 is no approximation)

Figure 3-41: Log plot of d2(xl, X2) for the NNM n -- s c -- w =.15.

108



NNM Pararneter, M lil(XlX2) d2(X1, X2) (13(-T-1, X2)

1.13,.18,.13,.181 32 0 0.0026 4.72e-06 5.88e-06
Skewed LPF 61 0 0.0076 5.09e-06 8.19e-06

32 2 0.0020 1.92e-06 3.08e-06
64 2 0.0302 2.80e-06 4.4le-06
128 2 0.0140 3.12e-06 5.84e-06
256 2 0.0315 4.13e-06 6.44e-06

15,-.15,-.15,-.151 32 0 0.0011 1.8le-06 3.24e-06
HPF 61 0 0.0499 2.01e-06 2.08e-06

32 2 0.0037 1.30e-06 3.32e-06
64 2 0.0160 1.80e-06 3.24e-06
128 2 0.020T 1.92e-06 5.19e-06
256 1 2 0.0460 1.99e-06 2.40e-06

Table 3.5: Errors vs. I and Al, which together determine the number of local and inter-
processor factorization steps. B = 5.

where u5, is a rectangular sinusoid with Nj = Nj - I/2 and u5, is a rectangular sinusoid

with Ni = Nj = I/8. One can see from Table 3.5 that as the mesh size varies from 32-by-32

to 256-by-256 the errors remain relatively constant. The large error given by d, can be

shown to be due to a very small number of outliers at mesh locations where the output is

small.

These examples have demonstrated the general numerical accuracy of the approximate

algorithm for the second-order NNM filter, and also how the approximation improves with

the degree of diagonal dominance and the bandwidth. In fact, even for small bandwidths,

such as B = 3, the approximation produces a highly accurate solutions for meshes with large

size and up to four partitions. Similar results should hold for a more finely partitioned mesh.

It also seems reasonable that similar relationships hold for higher-order 2-D filters which

exhibit diagonal dominance.

109



Chapter 4

Conclusions and Future Research

The objective of this work was to develop and investigate efficient, direct, and parallelizable

algorithms for 2-D boundary value systems, particularly in the context of digital filtering.

A few algorithms were discussed which appear to be provide a suitable framework for im-

plementing 2-D IIR filters. One such algorithm, the mesh partitioning algorithm developed

in Chapter 2, was shown to be similar in form and performance to nested dissections

common algorithni used to solve P.D.E.'s and finite element applications. Although neither

of these direct solutions to 2-D boundary value problems is a novel approach, using these

algorithms to implement 2-D IIR filters is undoubtedly new to those in signal processing.

These implementations are very efficient when the costs of the matrix factorization can be

amortized over a large number of inputs. Furthermore, for those willing to make approx-

imations, an approximate factorization requiring significantly less computations was given

for both nested dissection and mesh partitioning.

The mesh partitioning algorithm developed in Chapter 2 is based upon the parallel

estimation algorithms given in [37]. By partitioning the elements in a mesh of size I-by-I,

one obtains an ordering of the matrix equations which allows for the factorization of the

matrix in O(I3) computations requiring O(P) storage elements. The examples of Chapter 3

and extensive simulations beyond those explicitly illustrated in this thesis show that the

performance of the mesh partitioning algorithm is excellent for a large class of 2-D boundary

value systems and a large number of inputs.

After developing the mesh partitioning algorithm in Chapter 2 and its approximation at

the beginning of Chapter 3, the focus of this thesis then shifted nested dissection. Although

110



mesh partitioning appears to be very similar to nested dissection, nested dissection results

in a different ordering of the system of equations which can be factored in O(I3) compu-

tations requiring 0(12 In I) storage elements. It is shown in (14, 13] that these asymptotic

performance measures are optimal for a direct solution to any low-order boundary value

system similar those defined in this thesis. Nested dissection is also easier to implement

than mesh partitioning, since only an initial ordering of the equations is needed, yet it is

unknown how well nested dissection performs when making approximations.

When one is willing to accept small errors in the solution, as is the case in many

filtering applications, an approximate yet more efficient algorithm might be preferred. For

difference equations resulting in diagonally dominant systems, it was shown in Chapter 3 for

the mesh partitioning algorithm that approximations can be made during the factorization

which significantly reduce the required number of computations. The mesh partitioning

algorithm orders the variables along the mesh boundary last, meaning that they are the

last variables eliminated. Therefore, boundary conditions are invoked only at the last step

of the factorization, such that the property of diagonal dominance depends only upon the

coefficients of the difference equation. To measure the accuracy of the approximation,

the degree of diagonal dominance q (determined by the difference equation coefficients)

and an approximation bandwidth B were defined in Chapter 3. The examples showed

that, as q-1 decreases linearly to zero from one, the errors in the approximate solution

decrease exponentially. Also, as B increases linearly, the errors decrease exponentially, while

the computational complexity of the full matrix inversions within the mesh partitioning

algorithm increase as B 2. The errors in the approximate solution were found to be robustly

invariant to the form of the inputs and the size of the 2-D mesh.

These two direct factorizations, both with and without approximations, provide efficient

solutions to low-order 2-D boundary value systems and are well-suited to cases in which the

costs of the factorization can be amortize(I over a number of inputs. The approximate mesh

partitioning algorithm applies to a smaller class of 2-D boundary value systems than those

solved by mesh partitioning without approximations. Yet this class appears to include

a ntu-nber of important applications, such as physical oceanography [36] and 2-D signal

processing. The examples focused on some simple 2-D signal processing applications in

which the filters were implemented with NNM difference equations constrained by boundary

conditions. The examples showed that the response of a filter to a pure sinusoid is a sinusoid



at the same frequency with attenuated magnitude and small distortions along the boundary.

However, these distortions are small and become less noticeable when the size of the mesh

increases. In other words, as the boundaries extend in all directions towards infinity, the

boundary conditions appear to have less effect on the output values near the center of the

mesh. This observation is very similar to the notion of stability given for 1-D two-point

boundary value systems in [34], except that for the systems in [34] the dimension of the

boundary systems remains constant as the size of the filter output region increases.

The filtering examples lead to two possible areas of future research. First, all of the

frequency responses given in the examples were for diagonally dominant systems, a class

whose system properties might account for the observed "decay" in the effect of the bound-

ary conditions on the filter output. This "decay" is analyzed in [34] as a notion of stability

for 1-D boundary value systems which have constant-coefficient dynamics with constant

state dimension. One would like to extend this framework to 2-D boundary value systems,

where the dimension of the boundary now grows with the size of the computed output.

Such a frarnework would allow one to determine the effect of a 2-D IIR filter system's

boundary conditions on the filter output for large mesh sizes. Secondly, 2-D IIR filter appli-

cations which are more complex than those found in this thesis call for boundary conditions

more complex than the simple Neumann and Dirichlet conditions described in the exam-

ples. One could investigate how suitable boundary conditions can be chosen for general 2-D

IIR filters. These two areas of research essentially seek to answer how appropriate direct

implementations of 2-D IIR filters are for 2-D signal processing applications.

When extending the mesh partitioning and nested dissection algorithms to boundary

value problems in higher dimensions, the computational complexity and storage require-

ments of the direct factorizations increase dramatically. For these reasons, iterative solu-

tions are strongly preferred over direct solutions to 3-D boundary value problems (29, 301.

For a ciibe with I x I x I elements, nested dissection requires 0(1') computations, which

is an unreasonable number even for small cubes. Iterative solutions can be found requiring

much less computational complexity. Even in 2-D, simple iterative schemes like Gauss-

Jacobi and Gauss-Seidel [16] are guaranteed to converge for strictly diagonally dominant

systems of equations (proven with a simple application of the Gerschgorin Circle Theorem),

which then begs the question regarding 2-D IIR filters as to how the direct implementations

given in this thesis compare to iterative implementations, such a Preconditioned Conjugate

112



Gradient methods [16]. One would also like to know how the 2-D IIR implementations com-

pare to their FIR counterparts, which can be implemented efficiently with the 2-D FFT.

Finally, the feasibility of implementing 3-D boundary value systems with the approximate

direct algorithms could be investigated.

There are a few more questions which were raised but unanswered in the body of the

thesis, yet could be the subject of future research. First, it was emphasized in Chapter 2

that for some difference equations the block factorization will fail due to singularities in

the leading principle sub-niatrices of the large matrix A in Equation (2.25). These sys-

tems are singular in the sense that the boundary conditions cannot be causally propagated

through the dynamics due to singularities encountered during the propagation. The sys-

tem's dynamics (see Equations (2.21)-(2.23)), however, are extremely difficult to analyze

since the state has growing dimension. There has been a significant amount of research

[28, 27, 34, 33, 32] for singular systems (often referred to as Descriptor Systems) when

the system can be expressed as a constant-coefficient constant-state dimension dynamical

system constrained at the boundaries. There has been little effort to describe and analyze

singular systems with varying state dimension, so one could extend the stochastic theory

given in [31] for I-D boundary value sytems with time-varying state dimension to provide

a deterministic framework for boundary value systems with varying state dimension.

Another area of possible research is to better understand the properties of the approxi-

mations made in Chapter 3. A first step would be to implement the approximation described

in Section 3.2.1 for nested dissection and to compare the accuracy of this algorithm with

that of the approximate niesh partitioning algorithm.

A better understanding of the approximations might lead to fast iterative solutions to

elliptic P.D.E.'s. For diagonally dominant systems, one might use the solution obtained by

an approximate direct factorization to Ax = b to initialize an iterative algorithm. If X,,PP is

the solution obtained by the approximate algorithm, then express xapp as

XPP A-lb (4.1)

where we let A, = A - A. The matrix A represents the perturbation in the system due to

the approximation. Noting that

(A, + A)x = b (4.2)

113



the following iterative scheme can be derived

Xk+l = -(A-'A)Xk + A-'b (4-3)

XO = XaPP (4.4)

One must then obtain bounds on the spectral radius of the matrix (A-'A) to see how fast

the errors in the original estimate x,,PP decay to zero.

The approximate factorizations might also suggest an iterative solution to 2-D boundary

value systems which are not diagonally dominant. Consider a boundary value system in

which A is not diagonally dominant (or "just barely" diagonally dominant), yet can be

expressed as A = (Add + A6), where Add is strictly diagonally dominant and Ab is a relatively

small perturbation. One has the relation

(Add + Ab)x = b (4-5)

A = Add+ Ab (4.6)

where the system AddX = b corresponds to a 2-D filter system in which Add can be factored

efficiently by one of the approximate algorithms of Chapter 3. One can then obtain efficiently

x = -A-' A6x + A-'b (4.7)dd dd

which suggests the following iteration

Xk+l = -A-'AbXk + A-lb (4.8)

These two iterative solutions are only suggestions which might lead to more interesting

and efficient iterative solutions to low-or(ler 2-D bonn(lary value problems. These algorithms

also might be of interest by themselves to the linear algebra conimunity.

114



Appendix A

Coefficients for NNA4 with Radial

A4esh Ordering

The form of the coefficient matrices DP, Fp, GP, and H,, in Equations (2.17)-(2.19) is

described in this appendix for both 1-norm and oc-norm. radial orderings. With np given by

(2.12) and (2.16) for scalar x [i, j], the dimensions of the coefficient matrices are as follows:

DP EE nnpxno (A. 1)

GP E Rnp+i xnp (A.2)

Fp E Rnp-1 xnp (A.3)

Hp E Rnpxmp (A.4)

Hp = diagIB, B,..., BI (A.5)

where mp is the dimension of the input vector up, For inputs u[ij] equal in dimension to

X[ilill MP and np are equal. Also, due to the the titue-inwtriance of the NNA1, an operator

will be defined such that

IN*, S*, E*, W*, II - IST, NT, WT, ET, II (A.6)

For the purposes of this thesis, the effect of the * operation is that for a matrix Q whose

elements consist only of N, S, E, W, I, and 0, then Q* equals Q with N interchanged with

115



0 0 0 0 0 0 0

3 2 1 16 15

0 0

1 N8 14
0 4 0

X[1] X[2]
0 5 3 7 13 0

center

0 6 C /-----O 12
4 5 6

0 0

7 8 9 10 11

0 0 0 0 0 0 0

Figure A-1: A possible ordering of states xo, xi, and X2 for an 00-norm radial ordering of
the mesh.

S, W interchanged with E, and all of the elements transposed. Equation- (A.6) gives the

relationship

FP+1 = jGTj* (A-7)
P

which means that it is sufficient to specify the matrices F,, without explicitly describing G,,.

For oo-norm orderings, in order to give a more detailed description of D" and F", one

must first specify the ordering of the mesh elements within xP. The ordering assumed for the

rest of this appendix is illustrated for xi and X2 in figure A-1. Generalizing to larger states,

the first element of x. is the mesh variable at a radial distance p from the center which lies

directly north of the center. The rest of the elements follow by stepping counter-clockwise

around the radial square.

In the following matrices, without any loss of generality, only the scalar form of (2.2) is

shown, and the capital NNM coefficients from Equation 2.2 become the scalars n, S, e, and

116



w. An ordering like that in figure A- I gives the following matrices for p0, 1, and 2:

Do (A.8)

I -W 0 0 0 0 0 -e

-e 1 -S 0 0 0 0 0

0 -n 1 -S 0 0 0 0

D, 0 0 (A.9)

0 0 0 -w I -e 0 0

0 0 0 0 -w 1 -n 0

0 0 0 0 0 -s I -n

-W 0 0 0 0 0

1 -W 0 0 0 0 0 0 0 0 0 0 0 0 0 -e

-e 1 -W 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -e 1 -S 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -n I -S 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -n I -S 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -n 1 -3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -n 1 -e 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -W I -e 0 0 0 0 0 0 0
D2

0 0 0 0 0 0 0 -W 1 -e 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -w 1 -e 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -w 1 -n 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -j 1 -n 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -s 1 -n 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -s 1 -n 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -S 1 -W

-W 0 0 0 0 0 0 0 0 0 0 0 0 0 -e 1

Fi= n 0 w 0 s 0 e 0 (A. I 0)

117



n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 it0 w 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 w 0 s 0 0 0 0 0 0 0 0
F2

0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 s 0 e 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 e 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e 0 n

0

e

0
Go (A.12)

n

0

w

0

118



0 0 0 0 0 0 0

0 S 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 e 0 0 0 0 0 0

0 0 e 0 0 0 0 0

0 0 0 e 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 n 0 0 0 0
G, (A.13)

0 0 0 0 n 0 0 0

0 0 0 0 0 n 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 W 0 0

0 0 0 0 0 0 W 0

0 0 0 0 0 0 0 W

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 S i

Matrices corresponding to greater radial distances from the origin can be easily induced

from those above, or one can refer to [37] for a algorithmic description of the matrices for

arbitrary p.

With I-norm radial orderings, DP - I. Fp follows a similar a pattern similar to the Fp

created by oo-norms, and will be left to the reader to formulate. (Again, an algorithmic

description of the matrices in A for I-norms is given in [37]). Note also that one can easily

modify the coefficient matrices given in this appendix to represent an NNM difference

equation like that in (2.2), but with time-varying coefficients.

119



Appendix B

NNA4 Parameters Causing

Singularities

As is mentioned in Chapter 2 the block LU factorization exists if and only if the leading

principal sub-matrices of A in Equation (2.25)

Do -F, 0 0 ... 0

-Go Di -F2 0 ... 0

0 -G, D2 -F3 ... 0

AP (B.1)

0 ... 0 --Gp-2 Dp-1 -Fp

0 ... 0 0 _Gp-1 Dp j

are non-singular for all p 0, . . ., R = I/2. It can be shown that if the leading principal sub-

matrix AP in nonsingular, then DP is also nonsingular. Namely, if the Block LU algorithm

has progressed for (p - 1) steps without having encountered a singularity, then DP will be

singiflar if and only if AP is singiflnr. This clah-n is proven as follows: first, express A. in

block form as

A All A12 I 0 All A12

'O A21 A A2,A-' I 0 U22
L 22 i L 11 J L i

where

All AP-1 (B.2)

120



A21 = [01 01 ... I -Gp-11 (B-3)
T

A12 = 10,01 ... I -. FPT] (B.4)

A22 = DP (B.5)

U22 = A22 - A21A-1A12 (B.6)

U22 is known as the Schur Complement [12] of this block factorization. Since All is non-

singular, then the matrix U22 is singular if and only if A. in singular. The matrix U22,

however, is equal to DP, as can be shown by making the proper substitutions into (B.6) and

comparing it with (2.28), (which concludes the proof).

Taking the determinant of AP in (B.1) and setting it equal to zero allows one to solve

for the model parameters at which the block LU algorithm will fail due to a singularity in

D., In this section, the analysis is limited to oo-norm radial orderings, although one could

painstakingly derive similar results for 1-norm orderings. Using Appendix A, one can see

that the determinant will be solely in terms of the NNM parameters, n, s, e, and e, and

is independent of the inputs, boundary conditions, and input parameter b. As would be

expected from the symmetric structure of the NNM, the determinant of A is symmetricP

about the values of n and s, and about e and w, such that

detjApj = fp(n, s, e, w) = fp(s, n, e, W) = fp(n, s, w, e)

Furthermore, setting the polyvariate determinant fp(n, s, e, w) equal to zero yields roots in

the form

ns = gp((ew )1/2) (B.7)

ew = gp((ns )1/2) (B.8)

where gp(x) is a second-order polynomial in r. Specifying the roots of the determinant of

AP is, therefore, identical to specifying the all of the functions gp(x). Let Sp be the set of

all functions gp(x). From the set Sp one can then determine all of the NNM parameters

which cause the matrix DP to be singular. With some symbolic manipulation (using the

application MAPLE), the sets S for p = 0,...,4 are shown in Equations (B.9)-(B.13),P

where So is obviously the null set since Do = 1. The roots then follow from (B.7) and (B.8).

121



so = 0 (B.9)

Sl 1 2 X2±2 V'-2-x+l (B.10)
29 2

S2 1 1, 3 x 2 ± 2 V"3-x + 1 x 2 ± 2x + 1, 3 X2±2 V3-x+l X2±2x+l (B.11)31 1 3 9 3

1 2±V2-
21 2 1

2 X2±2 V2-x+l
2 1

(6+4 Vj-) X2 ± 2 vl-2 Vrl 0 �+7 V2- x+ (2 + V2-) (6 - 4 �,/-2) X2 ± 2 -,/-2 V""I 0 - 7 V-2 x+ (2 -
2 2

S3 .2 - X2 (B.12)
(2+,/-2) ± 2 V/2 + v-2x + 1 (2-,-2) ±2 V2-,-2x+l.l

2 2

2 X 2 ± 2 ,52 V"2 + v2 x + 2 + v2 2 X2 ± 2 /2-V"2 - 52 + 2 - /2-
2 2

(4 + 2 vf2-) x 2 ± (4 + 4 v/-2) x + 2 + vr2 (4-2 VI-2) X2±(4-4 V2-) x+2-N/-2
2 2

3 ± Vr-, 5:�
2 10

v/-2 V"5 + vf5-V-6.T + 5 + V-5 10 X2 ±2 v'-2N/ 5 -175V + r, - V15
10 I 10

(10+4 v"5-) X2 ±2 V-2vr25+ll vTx+3+,'_5 (1 0 - 4 v'6-) _- 2 ± 2 V2- Vr2 5 �-l I v5 x + 3 - v/-r>
2 2

(5 + V5-) X 2 ± 4 Vr5 + 2 /5- x + 3 + V5- (5 - v/5-) X2 ± 4 V"5 - 2 /5-� + 3 - /-5
2 2

,54 (15+5 V-5) x2 ±4 Vr5+2 V-5v/-5 x+5+V-5 7 (1 5 - 5 /5-) .2 ± 4 V�5 - 2 /5-,/5- + 5 - /-5 (B.13)
10 10

2 X 2 ± 2 V2-113 + /5- +3+V-5 2 x 2 ± 2 v/2- V.5- + 3 - N/6-
2 2

5 + V5-) X 2 ± 4 v/-5 x + 5 - V'5- (5_V/5) X2±4 V5 x+5+v/5
1 0 1 10

(1 0+4 V/'5-) X2 ±(10+6 v'5-) x+ 5 +v5 1 0 - 4 Vf5-) x 2 ± (1 0 - 6 v/5-) T + 5 - V5-
10 10

(7+3 V15) X2 ±(8+4 V/-5) x+3+V5 (7-3 V5-) X2 ±(8 -4 v/-5) x+3 - V5-
2 2

122



The ideal results from the symbolic manipulation would be that the collection of sets

SP for all p is finite, or that a discernible pattern emerges where S" could be described in

closed form as a function of p. For the moment, however, perhaps due to a lack of insight

and motivation, specific comments can only be made with respect to the sets above. A

pattern does appear to be emerging, and finding it might be the subject of future endeavors.

However, one can use 1-norm radial orderings or alternative algorithms for those NNM

parameters in which oo-norm orderings lead the Block LU algorithm to failure. Also, the

four sets S1-S4 have proven empirically to be an excellent and surprisingly comprehensive

guideline for weeding out those NNM filters ill-suited for the block LU algorithm. For these

two reasons, this issue is not pursued any further.

123



Bibliography

[11 R. E. Bank. Sparse Matrix Computatious. Academic Press, New York, 1976. pp.

293-307.

[2] R. E. Bank. Marching algorithms for elliptic boundary value problems. SIAM Journal

on Numerical Analysis, 14:792-829, Oct. 1977.

[31 Diniltri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:

Numerical Methods. Prentice Hall, Englewood Cliffs, NJ, 1989.

[4] A. C. Bovik, M. Clark, and W. S. Geisler. Multichannel texture analysis using localized

spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990.

[5] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods for solving Poisson's

equations. SIAM Journal on Numerical Analysis, 1970.

[61 M. Clark and A.C. Bovik. Texture segmentation using gabor modulation demodulation.

Pattern Recognition Letters, 1987.

[7] M. Y. Dabbagh and W. E. Alexander. Multiprocessor implementation of 2-d denomi-

nator separable digital filters for real-time processing. IEEE Transactions on Acoustic$

and Signal Processing, June 1989.

(8] H. Derin and P. A. Kelly. Discrete-index Markov-type random processes. IEEE Pro-

ceedings, 1989.

[9] Fred W. Dorr. The direct solution of the discrete Poisson equation on a rectangle.

SIAM Review, 1970.

[10] Dan E. Dudgeon and Russell M. Mersereau. Multidimensional digital signal processing.

Prentice Hall, Englewood Cliffs, NJ, 1984.

124



(111 David G. Feingold and Richard S. Varga. Block diagonally dominant matrices and

generalizations of the gerschgorin circle theorem. Pacific Journal of Math, 1962.

[121 F. R. Gantmacher. Matrix Theory, volume 1. Chelsea Publishing, NY, NY, 1959.

[131 Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on

Numerical Analysis, 1973.

[14] Alan George and Joseph W. Litt. Computer Solution of Large and Sparse Positive

Definite Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[15] Alan George and Joseph W. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 1989.

(161 Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins,

Baltimore, 1990.

[171 Don Heller. Some aspects of the cyclic block reduction algorithm for block tridiagonal

linear systems. SIAM Journal on Numerical Analysis, 1976.

[18] Berthold K.P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1987.

[19] Mathworks Inc. Matlab User's Guide. Natick, MA, 4.0 edition, August 1992.

[20] Anil K. Jain. Partial differential equations and finite-difference methods in image

processing, part 1: image representation. Journal of Optimization Theory and Appli-

cations, 1977.

[21] Anil K. Jain. Partial differential equations and finite-difference methods in image

processing, part II: image restoration. IEEE Transactions on Automatic Control, 1978.

(221 Anil K. Jain. A(Ivances in matheniatical models for image processing. Proceedings of

the IEEE, 1981.

[231 A. J. Krener. Acausal realization theory, part i: Linear deterministic systems. J.

Control Optimiz., 1987.

[24] Bernard C. Levy, Milton B. Adams, and Alan S. WiUsky. Solution and linear estimation

of 2-d nearest-neighbor models. Proceedings of the IEEE, 1990.

125



[251 Jae S. Lim. Two-dimensional signal and image processing. Prentice Hall, Englewood

Cliffs, NJ, 1990.

[26] Xiaojian Liu and Alfred Fettweis. Multidimensional digital filtering by using parallel

algorithms based on diagonal processing. il-fulitidimensional systems and signal pro-

cessing, 1990.

[271 David G. Luenberger. Dynamic equations in descriptor form. IEEE Transactions on

Automatic Control, 1977.

[28) David C. Luenberger. Time-invariant Descriptor Systems. Automatica, 1978.

[29] Keith Nabors, Songmin Kim, and Jacob White. Fast capacitance extraction of general

3-d structures. IEEE Transactions on Microwave Theory and Techniques, 40(7), July

1992.

[30] Keith Nabors, T. Korsmeyer, and Jacob White. Fast capacitance extraction of general

3-d structures. Submitted to SISSC, 1992.

[31] R. Nikoukhah, A. S. Willsky, and B. C. Levy. Kahilan filtering and riccati equations

for descriptor systems. IEE Transactions on Automatic Control, 1992.

[32] Ramine Nikoukhah. Boundary-value descriptor systems: well-posedness, reachability

and observability. International Journal of Control, 1987.

[33] Ramine Nikoukhah. A deterministic and stochastic theory for Two-Point Boundary-

Value Descriptor Systems. LIDS-TH-1820, 1988.

[34] Ramine Nikoukhah, Bernard C. Levy, and Alan S. Willsky. Stability, stochastic station-

arity, and generalized Lyapunov equations for Two-Point Boundary-Value Descriptor

Systerns. IE EE Transactions on A idomatic Control, 1.989.

[35] Alan V. Oppenheim and Ronald W. Schafer. Discrete-time signal processing. Prentice

Hall, Englewood Cliffs, NJ, 1989.

[36] Jens Schroter and Carl Wunsch. Solution of nonlinear finite difference ocean models

by optimization methods with sensitivity and observational strategy analysis. Journal

of Physical Oceanography, 16(11), November 1986.

126



[37] Darrin Taylor. Parallel estimation on one and two dimensional systems. LIDS-TH-

2092,1992.

[38] A. H. Tewfik, B. C. Levy, and A. S. Willsky. Parallel smoothing. Systems and control

letters, 1990.

[39] J. M. Varah. On the solution of block-tridiagonal systems arisin' from certain finite-

difference equations. Mathematics of Computation, 1972.

[401 Richard S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, NJ, 1972.

[41] J. W. Woods. Two-dimensional discrete Markovian fields. IEEE Transactions on

Information Theory, 1972.

127


