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ABSTRACT

The use of weak couplings and time scale separation as tools for
model simplification is considered. Unifying and conceptually
clarifying existing approaches, a new problem formulation is proposed
and a uniform asymptotic approximation to exp{A(e)t} (under a certain
multiple semistability condition) is developed which clarifies the
relationships among weak couplings, singular perturbations, time-scale
separation, aggregate models and asymptotic approximations.

As a result of this asymptotic approximation, an algorithm for the
calculation of a hierarchy of aggregated models of a given linear
system is obtained.

A more detailed analysis is conducted for two special class of
models: finite-state Markov processes (FSMP's) with rare events,
and linearized "swing" equations for electric power networks. It is
shown that any singularly perturbed FSMP can be hierarchically ag-
gregated and that in turn, the aggregated models can be combined to
produce an approximation of the original process uniformly valid
over t€[0,®). The properties of stochastically discontinuous FSMP's
are analyzed and interpreted as the limiting behavior of singularly
perturbed FSMP's. Coherence phenomena in electric power networks
are explained in terms of weak interactions among groups of generators
and the determination of coherence areas is shown to be equivalent



to the aggregation of FSMP's. Coherence-area based models are shown
to be asymptotic approximations of a peculiar kind.

Finally, the use of aggregated models in filtering of singularly

perturbed FSMP's is explored together with the trade-offs
involved in the detection of rare events.

Thesis Supervisor: Alan S. Willsky

Title: Associate Professor of Electrical Engineering and
Computer Science
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"The so-called concern about Science
and Technology pei ¢ -the belief that .
they are value free and politically
neutral, and that their "advancement"
is a good and desirable thing because
knowledge ¢an always be put to good
uses, even if it is not, presumably-

is nothing but an {deofogy of self-
justification which tries to hide the
subservience of science and technology
-in their priorities, their language,
and their utilization- to the demands
of capitalist institutions and domination.

Technical and scientific culture and
competence bear the mark of a social
division of labor which denies to all
workers, including the intellectual
ones, the insight into the system's
functioning and overall purposes, so as
to keep decision-making divorced from
productive work, conception divorced
from execution, and responsibility for
producing knowledge divorced from res-
ponsibility for the uses knowledge will
be put to."

Andne Gonz



CHAPTER I:

CHAPTER II:

CHAPTER III:

TABLE OF CONTENTS

INTRODUCTION

1.1 Motivation and Goals
1.2 Description of Results
1.3 Thesis Outline

PREVIOUS WORK AND RELATED LITERATURE

Introduction

Asymptotic Analysis of Singularly
Perturbed Differential Equations

Markov Process Aggregation

Order-Reduction and Aggregation Methdds
in Filtering and Control

MATHEMATICAL PRELIMINARIES

3.1
3.2

3.3

3.4

Introduction
Linear Operators in Finite Dimensional
Spaces
3.2.1 Normal Vector Spaces
3.2.2 Linear Operators
3.2.3 BAnalysis with Operators
3.2.4 The Resolvent
3.2.5 Operators with Semisimple
Null Structure

Asymptotic Analysis

3.3.1 Orders of Magnitude
3.3.2 Asymptotic Expansion

Perturbation Theory in Finite Dimensional
Spaces

3.4.1 The Problem

3.4.2 Perturbation of the Eigenvalues

PAGE

13

13
21
28

30

30

31

38
40

44

44
44

44
45
48
50
54

57

58
60

6l

61
63



PAGE
3.4.3 Perturbation of the Resolvent 65
3.4.4 Perturbation of the Eigenprojections 67
3.5 Linear Dynamical Systems 72
3.5.1 Stability and Semistability 73
3.5.2 Flow-Invariant Subspaces and 75
Splitting of Evolutions
3.5.3 Positive Linear Systems 76
CHAPTER IV: MULTIPLE TIME SCALE BEHAVIOR OF SINGULARLY 82
PERTURBED LTI SYSTEMS
4.1 Introduction and Overview 82
4.2 Singularly Perturbed LTI Systems 83
4.2.1 Regular and Singular Perturbations, 83
and Time Scales
4.2.2 Eigenvalues and Time Scales 84
4.3 Literature Survey 85
4.4 The Multiple Semistability Case: Complete 98
Time Scale Decomposition
4.4.1 The Multiple Semisimple Null Structure 98
and the Multiple Semistability Condition
4,4.2 Uniform Asymptotic Approximation of 116
exp{Ao(e)t}
4,4.3 Multiple Time Scale Behavior and 120
Reduced-Order Models
4.4.4 Necessity of the Multiple Semistability 127
Condition
4.4.5 Computation of the Reduced-Order Models 139
4.5 Partial Time Scale Decomposition 149
4.5.1 TUniformly Stable Systems 151
4.5.2 Non-Uniformly Stable Systems 156
162

4.6 Summary and Conclusions



CHAPTER V:

CHAPTER VI:

CHAPTER VII:

HIERARCHICAL AGGREGATION OF FINITE STATE
MARKOV PROCESSES

Introduction and Overview

Literature Survey

A Motivating Example

Stochastically Discontinuous FSMP's

5.4.1 TImplications of Stochastic
Discontinuity

5.4.2 Aggregation of Stochastically

Discontinuous FSMP's

Singularly Perturbed FSMP's and Aggregated
Models

Example

SCALES AND COHERENCE AREAS IN POWER SYSTEMS

Introduction
Linearized Swing Equations
A Motivating Example

Multiple Time-Scale Behavior of Linearized
Swing Equations

AGGREGATE FILTERING FOR SINGULARLY PERTURBED

FSMP'

s

Introduction

The Optimum Filter Equations: Qualitative
Analysis

The Hypotesis Testing Problem

7.3.1 Boundary Classification

7.3.2 Probability of Error Versus Mean
Time to Detection

7.3.3 Probability of Large Deviations

PAGE

166

166
166
171
177

183

187

194

203

212

212
214
221
232

239

239
246

257

260
262

264



CHAPTER VIII:

REFERENCES

_10_

7.4 Detection of Rare Transitions

7.4.1 The Effect of the Perturbation:
Boundary Classification

7.4.2 Mean Time Between False Alarms
versus Mean Time to Detection

7.5 Hierarchical Filtering

7.5.1 Filtering with Aggregated Measurements

7.5.2 Filtering with Aggregated and Decentral-
ized Measurements

Appendix 7.A One dimensional diffusions in
bounded domains: Definitions

and Basic Results

Appendix 7.B Expected time to detection for the
hypotesis testing problem

Appendix 7.C Mean exit time from the boundary

Appendix 7.D Mean time between false alarms

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

PAGE

266

267

273

282

282
295

303

312

314

317

319

328



FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

1.1

5.1:
5.2
5.3

6.1:

-11-

LIST OF FIGURES

A finite state Markov process with diagonally

dominant structure

The decoupled approximation

Approximation of nE(t) based on aggregation
A network with fast and slow modes
Approximation obtained by taking r 0

Approximation obtained by taking R

Illustration of Proposition 4.4.3

The array of matrices Aij
Different cases studied in chapter 4

The process ne(t)
' . €
typical sample function of n (t)
A sample function of the limiting process

, €
n (&) = limn (t/€)
eY0 R
The aggregated model nl(et)

€ . .
The process N (t) considered in the example
in Section 5.6

The unperturbed process of no(t)

Aggregate model valid at time scale t/€
, , 2

Aggregate model valid at time scale t/e

. . 3
Aggregate model valid at time scale t/E

Pole structure of a 16 machine linearized
power system model

A three machine example. (Taken from [Avr 801])

 The process discussed in Section 7.1 and (b)

its aggregated model

The two state process discussed in Section 7.2

PAGE

18

18
18
20
20
20

110
140

le4

172
173
174

176

204

205
207
209
211

213

222

241

248



-12-

PAGES
FIGURE 7.3 Potential for p(t)=1 and p(t)=0 253
7.4 Qualitative performance measures 255
7.5 The Hypotesis Testing Problem 258
7.6a The drift coefficient 269
7.6b Potential‘and noise intensity for the rare 269
transitions case
7.7 Scale density 270
7.8 Steady state probability density assuming 274
pe(t)=1 for t>0. |
7.9 The process pe(t) considered in Section 7.5.1 283
and its aggregate approximation Be(t)
7.10 Optimum filter with perfect aggregate 297
observations
7.11 Hierarchical filter | 298

7.12a . True process and (b) erroneous model 301



-13-

CHAPTER I: INTRODUCTION

1.1 Motivation and Goals

An important part of today's engineering activity is devoted to
the development and understanding of models for the operation of
complex interconnected large-scale systems. The process of modelling
is always difficult because, as with any abstraction, it involves a
compromise between accuracy of representation and complexity. Overly
detailed and comprehensive models are generally of little use since
they often lead to intractable problems.

The predicament of the system's engineer is to overcome this dif-
ficulty by devising relatively simple models and techniques of analysis
and design which, in an approximate way, still capture the relevant
factors to be considered in a given situation and which lead to a satis-
factory design or explanation of the system under consideration.

In the course of his work the engineer develops a "feeling" for which
are the relevant factors in different problems, and using heuristic,
sometimes ill-defined, concepts; manages to arrive at solutions that, at
;east under normal circumstances, meet the requirements. The articula-
tion and systematization of this tacit knowledge into a "theory" is
usually a slow and intricate process, the development of which

traditionally has been the role of academia.
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Consider for example one of the most complex man-made systems:
electric power networks. Hundfeds of generators are tied together
with hundreds of thousands of conduction lines supplying energy to
millions of users who can switch loads at will. The analysis, design
and operation of such a system involves many individuals none of whom
has a complete pibture of the whole system. The enginéer'designing the
control for the turbines of a given generator, for example, views the
rest of the system as something which is not affected by the workings
of his controller whose mission is to keep vapor pressure and
temperatufe within specified bounds. In contrast, the operator at a
central control room is concerned about daily load fluctuations and
the distfibution of load among different power generating stations.
For him the turbine that worried our first engineer no longer exists
as it is a microscopic detail in his view of the system. At a dif-
ferent level, we can imagine the maintenance department or the board
of directors deciding on inspection requirements or new installations,
Daily scheduling is not of detailed concern with regards to these issues
because they deal with aspects of the system's behavior which are
relevant only over much longer periods of time.

As another exémple, consider the economic system. One could
attempt to deal with individual producers and consumers and trace all
interactions among different economic agents. This being an obvious

imposibility, however, we rapidly turn to the use of aggregated



-15-

variables such as the total output of different economic sectors,
aggregate consumption Or aggregate investment, and the objective is then
to find "macroeconomic laws", i.e., a model in terms of the aggregate
variables.

Two basic concepts are routinely used in the modelling process
mentioned above: weak couplings and Lime scale separation. A system
is heuristically decomposed into subs&stems which are assumed, on the
basis of practical experience or physical considerations, to interact
weakly. That is, changes in one of the subsystems have only minor ef-
fects on other parts of the system. This notion leads to the classifica-
tion of variables into a smaller number of groups. The interactions
within each group are studied as though interactions among groups did
not exist and the interaction among groups is described by means of
aggregate variables without regard for interactions within each group,

Along with this "spatial" aggregation usually goes a notion of
time scale separation. Some phenomena are known to be very fast while
others manifest themselves only on the long run. Accordingly, in
studying the fast phenomena the slow variables are taken as constants
while in the analysis of the behavior of the system over long periods
of time, only the average effect of the fast variables, and not the
details of their evolution, are assumed to be of relevance.

As pointed out in [Sim 61], this reasoning, when explicitely

spelled out, seems rather bold and yet we implicitily use it
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every time we deal with a large-scale system. To date, there is
no body of theory that would explain in a satisfactory way the
following questions:
a) under what conditions is this approach justified?;
b) what is the nature of the approximation involved?
(clearly the conditions for exact aggregation are
very severe and restrictive;
c¢) what rules and criteria can we use to determine what
variables can be aggregated together?, and
d) how satisfactory, in terms of error or loss of per-—
formance for example, can we expect this approximation

to be?

Building upon the work of many researchers, this thesis repre-
sents a contribution to the on-going effort directed at filling this
yvoid. The fundamental objectives of the research reported here
have been:

a) to formalize the concepts of weak couplings, time
scale separation and aggregate modelling;

b) to determine conditions under which ailinear time
invariant system is amenable to aggregate analysis;

c) to develop a systematic methodology for the derivation

of the aggregated models; and
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d) to expiore how problems posed for large-scale
systems can be approximately solved using aggregated

models.

To motivate the specific problem formulation used for the pur-
poses outlined above we discuss two simple examples. Consider first
the finite state Markov process ne(t) shown in Figure 1.1 as an
example of a system with a structure that is clearly amenable to the
aggregation philosophy we have just described. The process nE(t)
can be thought of as modelling a system with the following charac-
teristics: it may operate in two different modes corresponding to the
two sets of states X, = {1,2} and'X2 = {3,4} ; Some rare event
(notice g << Ai) results in a change in the operating mode, i.e., in
a transition between Xl and X2. If the matter of interest is the
detailed behavior of the system when in a given mode, ana the period
of concern is small compared to l/g, then the model obtained by putting
'€=0; as in Figure 1.2, is a satisfactory approximation. If, on the
contrary, one is mainly concerned with thé long run characterization of
changes in the mode of operation, then the process in Figure 1.3 seems
to be an adequate simplification, provided the aggregated parameters
A' and A" are properly adjusted. As we will see, this reasoning can
be rigorously founded and, more importantly, we will show that although

the two simplified models in Figuresl1l.2 and 1.3 give only partial
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Figure 1.1: A finite state Markov process with diagonally
dominant structure.
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Figure 1.2: The decoupled approximation.
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Figure 1.3: Approximation of ne(t) based on aggregation.
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pictures of the behavior of ne(t), they can be combined to produce
an approximation that captures all aspects of the evolution of ne(t).

-The example above is a trivial one in a crucial aspect: a quick
look at Figure 1.1 reveals how the system should be partitioned and
what should be the structure of the aggregated model. In fact, linear
systems with "N diagonally dominant blocks" have for some time been
the object of study in large scale systems because of the ease with
which a meaningful decomposition of the syétem can be found. This
assumption, however, begs all questions. A fundamental goal of this
thesis is to do away with this requirement, and to develop a methodo-
logy for aggregation based on a deeper understanding of the causes and
effects of weak couplings and time scale separation.

Consider next the electric network shown in Figure 1.4 that was
proposed as a suggestive example in [Kok 80]. This system has two
eigenvalues of order -R and two more of order -r giving an indication
of time scale separation: some modes are fast and some are slow (the
former approximately decay as e_Rt, the latter as e_rt). In the
search for a simplified ﬁodel, we could argue for the substitution of
the small resistors r by shortcircuits, arriving at the model in
Figure 1.5. Another colleague, however, may argue equally fércefully
that it is preferable to keep the small resistors r but, instead, to

consider the large resistors R as open circuits, proposing the
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Figure 1.4: A network with fast and slow modes.

Figure 1.5: Approximation obtained by taking ra 0.

Li*L,

r r Lytl,

Figure 1.6: Approximation obtained by taking R~ .
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circuit in Figure 1.6 as another approximate model. Who is right?
The answer is, of course, nobody and everybody. The circuit in
Fig. 1.5 gives a good approximation of the fast behavior of the
network while the circuit in Fig. 1.6 is appropriate if the subject
bf interest is the behavior of the network on the long run. A
complete picture of the different phenomena that occur in the netwogk
requires a combination of both reduced-order models.

The two examples just discussed can be fit into a single problem
formulatioﬁ which is the main object of study in this thesis.
Specifically, we focus most of our attention on the asymptotic analysis

of the system

x5 (t) = ale)x(t) : (1.1.1)

{where €>0 is‘a small parameter) in the limit as €¥0 and over the

time interval J[0,®). The small parameter € that enters in the system
matrix models the presence of weak couplings between different variables
of the system. The interval of study [0,®) reflects our interest in

all phenomena, fast or slow taking place in (1.1.1) and we seek

aggregated models that are good approximations in the limit as €VO.

1.2 Description of Results

Motivated by simple examples such as those discussed in the
preceeding section, we have undertaken a detailed analysis of the

equation:
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() = Ao(e)xg(t) (1.2.1)

or, equivalently, of exp{Ao(e)t} for
Tk
Ao(e) = Z € Ako (1.2.‘2)

and €€[0,€o] a small parameter.

The central result in this thesis - a fundamental theoretical
result which constitutes the foundation for the entire thesié - is
a uniform asymptotic approximation of exp{A(e)t} that we obtain under
a certain multiple semistability condition (Theorem 4.4.4). In

essence, the result states, in a precise way, that:

~ m : m-1
exp{Ao(e)t} «-exp{Ame t}exp{Am_le t}... exp{Alet}exp{Aot} (1.2.3)

where the Ak are matrices whose computation we describe. Equation
(1.2.3) explicitely decomposes exp{Ao(E)t} into a set of evolutions
taking place at different time scales. Each of the matrices Ak
determines a reduced-order* model of (1.2.1) and the combined dimen-

sionality of these models equals the dimension of the original system.

*
In the control literature the expression "reduced-order models" is often

preferred to "aggregated models". The former refers to any model sim-
plification that involves a reduction in dimensionality while the latter
(almost exclusively used in the economics literature) is usually restric-
ted to a special type of reduced-order models in which the variables of
the simplified model are obtained by simply adding groups of variables of
the original system. We use them interchangeably.
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The innovative aspects of this formulation and of the result
mentioned are threefold:

i) We do not require that the state variablesin (1.2.1)
be chosen so as to display the time scale structure
of the system; rather the determination of this
structure is one of the oufputs of our construction.

ii) We can handle systems with multiple time scales
(m>1), and we obtain a unifo/m asymptotic expansion
on [0,x).

iii) We give an algorithm to compute the set of
increasingly simplified reduced-order models valid

at progressively slower time scales.

From a mathematical point of view, this is a result on singularly
perturbed ordinary differential equations, its novel aspect being
the uniform nature of the asymptotic approximation over the infinite
time interval [0,»), as opposed to pointwise approximations that have
typically beeniused. From this point of view, we prove that (1.2.1)
is singularly perturbed if and only if the rank of Ao(e) changes at
=0, and we show that only singular perturbations result in multiple
time scale behavior.

Further analysis of the significance of the €-dependence in
(1.2.1) for modelling purposes shows that in addition to time scale

separation, models of this type can also exhibit unbounded amplitudes
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as €¥0. 1In this respect, we show that the multiple semistability
condition referred to previously is indeed necessary and sufficient

for the e—dependehce in (1.2.1) to model time scale separation
exclusively (Theorem 4.4.9) and that only under this condition is it
possible to perform a complete time scale analysis of (1.2.1). A
prief consideration of the difficulties encountered when this condition
is violated closes our analysis of the general LTI system case;

An application of particular interest to us has been the ag-
gregation of finite state Markov'processesA(FSMP's) with rare trans-
itions (modelled, as in the simple example given in Section 1.1, by
small transition rates). If AO(E) denotes now the matrix of trans-
ition rates of a FSMP nE(t), its matrix of transition probabilities

is given by

pe(t) = exp{Ao(e)t} (1.2.4)

and thus all results mentioned for the general LTI system case

have a direct interpretation for FSMP's. Indeed, stronger results

are found to hold in this particular case: every singularly perturbed
matrix of transition rates satisfies the multiple semistability
condition and every singularly perturbed FSMP can be hierarchically
aggnegated. (Theorem 5.5.3). That is, the reduced-order models Ak
that appear in the approximation (1.2.3) can be interpreted as the

transition rates of a FSMP obtained by collapsing several states of
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the original process ne(t) into one state of the aggregated model.
The sequence of models Ak' k=0,1,...,m, forms a hierarchy because
each of ‘the aggregated models can be obtained by collapsing some states
of the (alreadyvaggregatgd) model that precedes it. These models are
adequate to classify events in ne(t) according to their rarity and they
descfibe changes in ne(t) with an increasingly lower degree of detail.
The interpretation of limiting results and aggregation for
FSMP's is shown to be greatly facilitated by the introduction and
detailed considerationAof 4Iochabiica££y discontinuows processes (i.e.,
processes with instantaﬁeous transitions). As part of our work on
FSMP‘S the usual continuity conditions imposed on FSMP's have been
relaxed to allow for instantaneous transitions, and a full analysis of
the properties of such processes has been conducted. As a result, we
have established that in the general case the matrix of transition pro;

babilities of a FSMP is of the form:

P(t) = I exp{at} (1.2.5)

where I is a projection (in contrast to P(t) = exp{At} for the usual
stochastically continuous case) and that every stochastically dis-
continuous FSMP is uniquely determined by its ergodic projection at
zero, I, and an aggregated version of the process that is stochastically

continuous. Specifically,

P(t) = Il exp{at} = v exp{UAvVt}U (1.2.6)
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where U and V are certain aggregation matrices that are obtained
by decomposing II=V-U and UAV is the matrix of transition rates
of the aggregated version (Theorem 5.3.5).

Another area in which an aggregation operation based on time
scale separation seems to be possible and useful, the use of
coherence area models for electric power systems, has been explored.
We have shown that if a small parameter € is introduced iﬁ the
approximated version of the linearized swing equations used in power

systems analysis as indicated below:

0 al(e)
xS () = x5 (t) (1.2.7)

then an aggregated model of (1.2.7) can also be constructed and
this model can be interpreted as replacing groups of generators of
the original system (i.e., a coherent area) by single equivalent
generator, which is precisely the heuristic way in which coherence
area approximations are though of and used in practice. Because
under certain conditions, usually met in practice, the matrix A(eg)is
also the matrix of transition rates of a FSMP, the coherence area
aggregation of (1.2.7) is found to be completely equivalent to the

hierarchical aggregation of FSMP's.
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In addition to interpreting the aggregated model of (1.2.7)

we have also indicated the nature of the approximation involved.

The system (l.2.7) violates a basic condition required for the

general result (1.2.3) to hold and thus the coherence area ap-
proximation is nof a unifoim asymptotic approximation. Rather, it
must be interpreted on an entry by entry basis, and the interval of
validity is different for different entries. Aside from the relevance
of these results for the coherence area problem, they are also im-
portant because they give an indication of how (1.2.3) should be
modified to accommodate systems in which the e-dependence produces
high-amplitudes in addition to time scale separation.

We have also éxplored the use of aggregated models in the
construction of hierarchically structured suboptimal filters for
singularly perturbed FSMP's through a simple example, we have intro-
duce several qualitative performance measures for such filters and we
have analyzed the trade-off between detection delays and the occurrence
of false alarms in the detection of rare events. We have also shown
how to build a detector for rare transitions that gives a correct
reading "most of the time" (a new performance criterion that we
introduce). For filtering problems with 6bservations that only convey
information about slow, aggregate changes we have indicated how to
construct a filter using an aggregate model of the process to bé
estimated, and we have shown that it must be near-optimal "most of

the time."
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Finally, we discuss hierarchical filters with two channels
of information (aggregate and decentralized measurements), mainly
in heUristic terms, with the objective of suggesting further work
along these lines. Several conjectures are stated for that purpose

in the final pages of Chapter VII.

1.3 Thesis Outline

Thé thesis is organized in eight chapters. Following this
introductory chapter we present a survey of relevant literature in
Chapter II. Work that is related to our research is mentioned and
briefiy commented upon. Several specific references mentioned‘ih
Chapter II are reviewed with more detail in Chapters IV and V where
they are contrasted with our results. For the reader's convenience
we have put together in Chapter IIIFa summary of'thé basic mathema-
tical tools that we use in the rest of the thesis: Perturbation
Theory for Finite Dimensional Linear Operators. Alsc included in
this chapter the reader will find the definitions and notation we use
for asymptotic analysis and a brief development of several non-standard
topics in linear dynamical systems.

Chapter IV contains our basic results on the asymptotic analysis
of LTI systems. The definition of time-scale behavior is introduced,
the importance of the multiple semistability condition is established

and the basic theorems on the asymptotic behavior of singularly
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perturbed LTI systems are proven. In Chapter V FSMP's with rare
traﬂéitions are studied in detail. It is shown that this claés of
models is especially suited for the multiple time-scale analysis
developed in Chapter IV because the technical conditions required for
the general results to hold are found to be satisfied always for
FSMP{s. As a tool in the development of aggregation techniques for
FSMP's and also as an interesting result in itself, we present in
Chapter V a complete analysis of stochastically discontinuous FSMP's.

Chapter VI deals with thé multiple time scale anaiysis of the
"swing" equations fbr electrical power networks and shows how the
notion of coherence afeas can be made precise our results on ag-
gregation of FSMP;s are crucial here. Chapter VII is of a more ex-
ploratory nature andvrepresents an attempt to use aggregated mode1$
to simplify filtering problems for FSMP's. Several initial results
and specific open questions are presented.

Finally, in Chapter VII we summarize the main contributions
of this thesis and suggest possible research directions motivated

by our work.
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CHAPTER II: PREVIOUS WORK AND RELATED LITERATURE

2.1 Introduction

A large number of reséarchers have contributed to the developmént
and application of diffefent aspects of the aggregation philosophy
exposed in Chapter I and a comprehensive survey of all this work is
beyond‘the scope of this thesis. In this chapter we will ;efer; how-
ever, to several survey papers and books for the reader interested in
exploring the field in depth. The contributions and applications are
scattered throughout several disciplines: econometrics [Chi 76],
operation research -[Zip 80], control theory [Kok 76],_chemica1 engineering
[Hil 77], stochastic processes [Cur 77], differential equations I[Hop 711,
linear algebra [Vis 60], functional analysis [Kor 78], etc., and, as a
resﬁlt, they are difficult to master and be put into context by a single
researcher. Here we focus on the areas specifically relevant to the
work described in this thesis.

Our purpose in this chapter is to provide an overview of a variety
of results in the literature. In subsequent chaptefs we will discuss
in more detail specific results related to our ﬁork in order to establish
a clear picture of how our results relate to previous developments. In
Section 2.2 we review previous work in the general area of singularly
perturbed differential equations. In Section 2.3 we discuss several

investigations on aggregation of Markov processes and finally in Section 2.4
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we briefly mention several applications of these ideas to filtering

and control problems.

2.2 Asymptotic Analysis of Singularly Perturbed Differential
Equations :

In the early stages of research into the properties of differential
equatiqns, it was recognized that exact closed-form solutions are
possible only for a limited number of special equations and therefore
the question of approximate solutions was immediately considered as
a main area of research. Until the emergence of the digital computer
(which made possible numerical methods), the most popular methods were
asymptotic methods. The object of study was assumed to be a

differential equation of the form:

x5 (t) = £(x5(8),t,¢) (2.2.1)

where xe(t) is a vector and € a small parameter. What is meant by the
term "asymptotic solution" is a function X (t,€)such that the difference
x(t,e) - ¥(t,e) is small (in some norm) in a given domain of interest.
Furthermore, in this specific context what was sought were asymptotic
solutions that could be expressed as combinations of solutions to
equations that could be solved in terms of elementary functions.

Originally, equation (2.2.1) was exclusively studied over the
interval [0,T] and it was soon established that if the right hand side
depends continuously on €, then the solution alsc depends continuously
in €, which is a nice but not terribly interesting feature from a

mathematical viewpoint. Motivated by problems in fluid dynamics,
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non-linear oscillations, etc., Wasow and Tihonoﬁ (see [Was 44],

[Was 65], [Vas 67] and references therein) shifted the attention of
research to the case where the right hand side of (2.2.1) is singular
at €=0. Specifically, they pointed out that a number of physically
motivated problems reduce to diffe:ential‘equations containing small

parameters multiplying the derivatives as follows:

x(t) = F(x(t),y(t),t,e)
(2.2.2)

ey (t) = G(x(t),y(t),t,€)

and the study of this pair of differential eéuations became the
paradigm that for nearly 50 years has dominated research in the area
of singularly perturbed o.d.e.'s. Literally thousands of papers have
been written on this subject and the reader is referred to [Vas 63,76,
78], [But 70], I[¥is 62], I[Hop 711, [Lag 72], for comprehensive surveys
and to [Was 65], [Nay 73], [Ben 78] and [Eck 79] for more pedagogical,
book-length expositions.

For our purposes, we want to émphasize two main limitations of the
- formulation (2.2.2)} First, it assumes that a partition of the state
space between the fast components (i.e., y(t)) and the slow components
(the vector x(t)) is readily available, and, second, by studying the
equation for t€[0,T], it singles out a specific time scale of interest
neglecting the evolution of the system at slower time scale (T=t/e
for example) or faster time scales (T'= te for example). The result

generally sought is a differential equation of the form:
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%(t) = F(X(t),t) (2.2.3)

that approximates the behavior of the slow component x(t) and this

can be considered a technique for order-reduction based on time-

scale separation but with the limitations mentioned above.
Hoppensteadt recognized the need to go‘beyond the bounded inter-

val [0,T] and in [Hop 66] and [Hop 71] be studied the behavior of

(2.2.2) over the interval téIO,w). Under certain stability conditions

hevconstructed an asymptotic approximation to the solution of (2.2.2)

by combining the solution of the following two reduced-order problems:'

Slow time scale

x(t) = F(x(t),y(x(t)),t,0)
(2.2.4)
0 = G(x(t),y{x(t)),t,0)
Fast time scale
x(t) =0
7(£) = Gx,y(t) ,t,0) (2.2.5)

The uniform asymptotic approximation involves a combination of a fast
component y(t) and a slow component x(et) that only evolves at the

slow time scale t/e. This work clearly indicated the need to use more and
one reduced-order model of a system (equations (2.2.4) and (2.2.5) in this

case) to produce a good approximation of all the features of the system

eyolution.
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The inherent difficulty of nonlinear equations and the richnees
of results obtained using the formulation (2.2.2)* kept researchers
away from examining problems involving more than‘two time scales and
also away from formulations which do not assume an apriori.known
separation between slow on a fast states. With hindsight it seems
rather strange that, as a first step towards the understanding of

(2.2.1), the linear, constant coefficient case

x(t) = A(e)x(t) (2.2.6)

was not studied in deﬁail. One must remember, however, the original
motivation for asymptotic methods. Equation (2.2.6) can in principle
be solved exactly for any value of €, in terms of well known
exponential functions and therefore, from the point of view of the
early investigations, no asymptotic approximations were required. It
took again another class of problems with no closed-form solution,
evolution eguations in abstract Banach (i.e., infinite dimensional)
spaces to focus attention on equation (2.2.6), and it waé also
Hoppensteadt who took the lead in [Hop 75] studying the asymptotic

behavior of

$Ee) = a(e)xS(t) + G(x(t),e) (2.2.7)

*The results of Hoppenstead refer only to the case where the equation
G(x,v,t)=0 has a unique solution y(x). A wealth of interesting cases
occur if several isolated solutions are possible (bifurcation theory)
or a continuum of solutions exist ([Vas 78]). Accordingly, most of the
research was directed towards those problems rather than reconsidering
the formulation (2.2.2).
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over the time interval t€[0,®). (For purposes of comparison to
our work can set G(x,e)=0).

Hoppensteadt recognized that even if A(g) depends continuously
on €, the solution xe(t) may actually depend on € in a gquite singular
way if analyzed over the infinite time interval and he studied several
examples where a uniform asymptotic approximation can be constructed
~as a (finite) sum of functions, each depending regularly on a different
time scale, and each approaching a steady state as its time scale
approaches infinity. For his development, he assumed that a decomposition

of A(€) in the form:

- m
ate) =3 @@ ea @ @...(® €a_(© (2.2.8)

was available with Ai(e) continuous in and stable, and he showed
that a uniform asymptotic approximation of xe(t) can be obtained as

a linear combination of the solutions to the reduced-order models:

x (t) = A (0)x_(t)

(o] (o] (o]

xl(t) = €A1(0)xl(t) (2.2.9)
x (t) = €2 (0)x_(t)

m : m m

Hoppensteadt's work is significant in several respects:

i) it points out the importance of considering approximation

that are uniformly valid over the infinite time interval;
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ii) it points out that even if the right hand side of

(2.2.9) depends continuously on €, the perturbation

may have dramatic effects on xe(t) if the whole

interval [0,®) is considered; and

iii) it shows that in general several time scales are needed
to describe completely the asymptotic behavior of a
perturbed linear system.

The direct application of Hoppensteadt's work to the decomposition
and»aggregation problem 'described‘in Chapter I is not possible,‘however,
because his starting point (equation (2.2.8)) requires that the designer
knows a priori how the system should be decomposed. From this pers-
pective, our work can be seen as providing a systematic procedure for
obtaining a decomposition as in (2.2.8) starting from an arbitary A(e).

The asymptotic analysis of abstract evolution equations without
the a priori decomposition assumption has been carried out by several
authors (see [Pap 751, [Dav 77,80] and [Kor 78]). In all cases, however,
at most two time scales have been considered and no uniform approximation
valid over [0,*) has been sought. For the finite dimensional case that
is the subject of this thesis, the work of Campbell and Rose (see
[Cam 78a,78b,79,80]) represents a first attempt to analyze the
equation

x5(e) = ale)x"(¢) (2.2.10)
without a priori assumptions on the structure of A(g). These authors
give several conditions under which the limits

lim x°(t/€") (2.2.11)
YO0
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exist pointwise (i.e., for a given t, not uniformly in t) for dif-
ferent r, and they also give an expression for the limits. We
diséuss their work in more detail in Section 4.3 where we will
contrast it with ours. In general terms, we can say that although
the limits (2.2.11) can be iﬁterpreted as a time scale characterization
of the system (2.2.10), the treatments in [Cam 78a,78b,79,80] do not
addresé‘the question of how many and which time scales a system has
and, more fundamentally, the question of asymptotic approximation or,
equivalently, the question of how to combine the behavior of the
system at several time scales to produce an approximation that is
valid over the infinite time interval [0,%®).

In summary, from the viewpoint taken in this thesis there are two
reépects in which the existing literature on singularly perturbed
o.d.e.'s leaves important questions partially answered: (1) in the
problem formulation, in particular with regard to the assumption of a
priori known time scale decomposition; and (2) in the interpretation
of the results in terms of uniform asymptotic approximations combining
behavior at several time scales. Our work is an attempt to answer
these questions for finite-dimensional linear systems and to provide
some insight into the problem of asymptotic approximations, by
revealing the underlying pattein when multiple time scale behavior
is present and by clarifying the intimate relationship between weak
couplings, time scales, reduced-order modelling and asymptotic

approximations.
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2.3 Aggregation of Markov Processes

When in 1961 Simon and Ando ([Sim 61]) first made explicit
the reasoning behind approximations based on aggregation ideas, they
chose a Markov chain example to clarify their presentation. The as-
sociation of each variable with a state of the process and the use of
diagrams to visualize transitions between states make the idea of
aggregation very intuitively appealing as a way to obtain coarse des-
criptions for such models. Furthermore, for reasons not clear then
(which will be made clea; to the reader in Chapter V) it was noticed that
systems described by stochastic matrices were easier to aggregate thén
other linear systems. It is thus not sﬁrprising that most of the
theoretical results on aggregation have been obtained by researchers
working in one way or another with stochastic processes.

The first rigorous result was presented in [Kor 69] where it was
shown that a Semi-Markov process with a matrix of transition probabil—
ities of the form P(g) = P+ €Q with P_ = aiag{pol,poz,... ,Pom}
(i.e., diagonally dominant) could be aggregated by collapsing states
belonging to a group determined by, séy, POj into a single state of
the aggregated process. If the system under consideration is ag-
gregated according to this partition then in the limit as £¥0 the
transitions between giaoups  of states follow .a markovian law with ag-

gregated parameters that can be computed from the detailed model of
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the process. Different versionsof the same basic idea were
repeatedly presented in several papers by KorolYuk and coworkers
(see [Kor 70],[Gus 71], [Tur 71] and [Kor 76,78]),and also in
[Pex 74], [Gai 751 and [Cur 77].

As in the literature on singular perturbations, no attempt
was made in the literature cited above to analyze the general case
'where the matrix of transition probabilities (or transition rates for
continuous time processes), P(€), is not assumed to have the special
diagonally dominant structure. As a result, only one aggregated model
of a system was considered and only one time scale (besides the natural
one) was ever considered. The idea of a hierarchy of models tied to an
asymptotic approximation of the process is not present in the works
mentioned above.

Only recently in [Cas 80] and [Del 82] the existence of a hierarchy
of models in the general, not diagonally dominant case has been suggested.
These works, whose relationship to our results is discussed in more
detail in Section 5.2 stop short of providing a clear interpretation
of the aggregated models nor do they make a rigorous connection between
the aggregated models and an asymptotic approximation of the original
process which is valid on the infinite time interval [0,®). These are

precisely the motivations behind our work presented in Chapter V.

i
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- 2.4 Order-Reduction and Aggregation Methods in Filtering
! and Control Theory

The aggregation technique discussed in Chapter I is mainly a
methodology for model simplification. Such methodologies are of
practical significance to the extent that they are useful in simplify-
ing the solution of problems posed for the detailed model of the
systém. Ideally, an aggregation methodology such as the one Attempted
in this thesis, in addition to showing how to decomposed a model for a
given problem, should also indicate how to define a set of problems
posed for the aggregated models whose solutions can then be used to
approximate the solution to the original problem.

In this thesis only minor attention hés been given to this
aspect of aggregation which is treated in Chapter VII in connection
with some filtering problems. Here we briefly mentioned the use of
of aggregated models by other researchers ih control and filtering
applications.

The introduction of singular perturbation techniques in the area
of filtering and control is due to Kokotovic and Haddad (see [Kok 70]
and'[Had 711). A two time scale system represented by the pair of

equations

x(t) = F(x(t),y(t),t,€)

Il

ey (t) = G(x(t),y(t),t,€)



-4]1-

was introduced to justify the classical "dominant mode" techniques
which neglect "high-frequency" parts and retain "low-frequency"
components of models. The pioneering work of Kokotovic and Haddad
signaled a new approach to modelling that has since then been the
subject of intense research (see for example the classic survey
[Kok 76] and the collection of papers in [Kok 80]). The standard
model for linear systems with two time scales that was popularized

by these authors has the following form:

. _ .
xl(t) Allxl(t) Alzxz(t)
(2.3.1)
£x, (t) A2lxl (t) A22x2 (t)
and. from it to reduced-order models are obtained:
Slow model
() = (A, -A. ATAa )x. (t)
1 11 12 22 21" 1
-1 (2.3.2)
X, (8) = -A 5B, 1%, (B)
Fast model
xl(t) =0
(2.3.3)
x2(t) = A22x2(t)
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Under the conditions usually assumed (A22 ahd A22A11—A12A;;A21
stable), the System (2.3.1) exhibits only two time scales énd (2.3.2)
and (2.3.3) are reduced-order models that adequately describe the slow
and fast behavior respectively.

Filtering and control problems>posed for (2,3.1) have been suc-
cessfully decomposed into separate problems posed for (2.3.2) and
(2.3.3) (see for example [Kok 72], [Phi 801, [Had 77], [Ten 77]). 1In
practicél situationé, however, the aApriori decomposition assumed in
(2.3.1) has been a source of difficulties when trying to épply these
results. Attempts to decomposed models of electric power systems in
the canonical form (2.3.1) have shown that this is by no mean a simple
matter (see- E [Avr 80] and [Win 80]). Ad-hoc algorithms have
been proposed but definite results are not available. We think that
because our formulation does not require the model to have any specific
structure, it may facilitate the ‘application of theoretical tesults to

‘practical systems. We, however, do not deal with this problem here.

The control of Markov chains with a decomposable structure has
also been studied by seﬁeral fesearchers recently (see [Ten 80],

[Del 81] and [Phi 8l1]). A diagonally-dominant structure has routinely
been assumed in these papers and the time scale separation has beeﬁ
shown to lead to hierarchical algorithms in which fast subsystem optimi-
zations are cootdinated ét a slower aggregated level. Our results on

FSMP's aggregation should facilitate the decomposition of control
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algorithms for general, not necessarily diagonally-dominant
processes and should give rise to hierarchical optimization algo-
rithms with a multilevel hierarchy. We comment more on this in

Chapter VII when discussion filtering problems for FSMP's.
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CHAPTER III: MATHEMATICAL PRELIMINARIES

3.1 Introduction

Thié chapter establishes notation and nomenclature while providing
the reader with a concise presentation of several results that constitute
the starting point for the theory developed in latter chapters. Most of
these results are a&ailable in the literature; proofs are given only for
those which are not readily availéble in the desired form. Basic results
on linear operators and perturbation theory in finite dimensionél spaces
are reviewed in Sections 3.2 and 3.4 following [Kat 66]. The definitions
and notation for asymptotic analysis of singular perturbations introduced
in Section 3.3 are those of [Eck 79]. Section 3.5 contains standard
definitions and results in dynamical systems and positive linear systems

as given for example in [Lue 79].

3.2 Linear Operators in Finite Dimensional Spaces

We assume that the reader is familiét with elementary notions of
linear algebra and analysis although some fundamental results are collected
for the convenience of later reference. The eigenvalue problem is dealt
with in more detail since it is extensively used in subsequent chapters.
The approach is analytic rather than algebraic, depending on a function-

theoretic treatment of the resolvent.

3.2.1 Normed Vector Spaces

Let V be an n-dimensional vector space. For a fixed basis {vj} and
n
(2]
u € V, denote by ||u|| the & norm of u, i.e., if u = z ujvj, aj € C then
j=1

[Tul| = max |, | (3.2.1)
J
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With this definition V becomes a normed vector space. A sequence

{u } of vectors in V is said to converge to u, and we write un > u, or
n>0

1lim u =u, if
n->oo ‘n'

Lin | |u_-u||=o (3.2.2)
n->00

@
The convergence of an infinite series ) u i the continuity
n=1

of a function wu(t) defined for a real or complex variable t and taking
values in V; and the derivative and the Riemann or contour integrals of
u(t), are all defined as in the scalar case.

When u(t) is defined and differentiable everywhere in a domain D of
the complex plane, u(t) is said to be analytic (regular) orn hoLomorphic
in D. Thrxoughout this thesis we use standard definitions and results of
complex function theory such as Cauchy's integral theorem, Laurent'z
expansions, etc. as given, for example, in [Kno 45]. We also apply these

results to vector- or operator-valued functions without particular comments.

3.2.2 Linear Operators

Let V and W be two vector spaces and T:V-W a Linear operator. The
image of I/ under T is called the range of T and is denoted by R(T). The
dimension of R(T) is called the rank of T; we denote it by rank T. The
inverse image of the zero element of Wis called the null space of T and is
denoted by N(T). The dimension of N(T) is called the nullity of T which

we denote by nul T. A basic result in linear algebra is:

rank T + nul T = dim V ‘ (3.2.3)
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If T maps V onto W in a one to one fashion, the inverse operator
Tt W+ is well defined and T is said to be non-singular, otherwise is
séid.to be singular. With the obvious definitions for addition, scalar
multiplication énd product, the set of linear operator on V to itself is

an algebra (non-conmutative if dim ¥ > 2). I aﬁd 0 will denote the
identity and the zero elements respectively.

If dim |kn and dim (=m then T can be represented by an (mxn) matrix
for given bases for V and W. Conversely, any (mxn) matrix determines a
iinear operator with respect to the given basis. We will often work with
the matrix representation of linear operators.

Let X and Y be two subspaces of | such that each u € V can be uniquely
decomposed in the form u=u'+u" with u' € X and u" € Y, i.e., V=X@ y. |
The linear operator P: U»V, Pu = u' is called the projection on X along y

~and we have R(P)=X, N(P)=Y. P is Ldempotent, i.e., P2=P and conversely

any idempotent operator is a projection. More generally

= X 3.2.4
Ve X® e @ X, @.2.
=u_ +...+ u, u, € X, and the operator P, defined by P.u = u, is the

1 S i i J J J

projection on Xj along Xl @ cen @Xj_l ®Xj +1 @ cen @XS. Furthermore,

we have

S ,
Z P_ = I (3.2-5)
j=1

PP =86 P, (3.2.6)
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Conversely, any set of operators Pj satisfying (3.2.5) and (3.2.6) is a
family of projections that determine the direct sum decomposition (3.2.4)

with X, = R(Pj). A basis'{vj} of V is said to be adapted to the decomposition
(3.2.4) if the first nl=dim Xl elements of’{vi} belong to Xl' the following

n2=dim X2 ones belong to X2 and so on.

A subspace X of I/ is said to be {nvariant under a linear operator
T: V>V if TXCX. In this case T induces a linear operator T : X=X
defined by T,u = Tu for u € X which is called the patt of T in X . T is
said to be decomposed by a set of subspaces {Xi} if (3.2.4) is satisfied
and all the Xi are invariant under T. In this case T is completely deter-
mined by its parts Txi and if‘{Pj} is the set of projections corresponding
to (3;2.4), then T commutes with each Pi' Conversely, T is decomposed by

{Xj} if it commutes with all the Pj' The operator P,T = TP, = P TP,
coincides with T and with Txi when applied to u € Xj; it is sometimes
identified with Txi when no confusion is possible.

A linear operator T:V~V is called nilpotent if T'=o for some positive
integer r. A nilpotent operator is necessarily singular.

For future reference we will need the following lemma on the full-

rank factorization of singular matrices.

Lemma 3.2.1
i) Let T be an (nxn) matrix of rank ¥<n. Then there
exist matrices F and G, (nxr) and (rxn) respectively,

of rank r, such that
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ii) Let the square matrix T have full rank factorization

Proof: See [Ben 80], pages 22 and 49. O

3.2.3 Analysis with Operators

The set of all linear operators on V to W is a normed vector space with

norm induced by the vector norms in |V and [y as follows:

||z|| = sup Tiglrr = sup ||Tul| (3.2.7)
uel u uel
uFo | [u] [=1

If (Tij) is the matrix representation of T in the given basis, then

Alzf] = max ] [ (3.2.8)
1 J
As a feature of the induced norm, note that
[lzs|] < [lzl]-]]s]] (3.2.9)

The convergence of a sequence of operators, {Tn} and that of an

o0}
infinite series of operators X Tn is defined as in the vector or scalar
n=0

cases. Similarly, the absofute convergence of such series means that the

(o] B o«
series z ||Tn|| is convergent. In this case z Tn is convergent with
n=0 n=0

® S
2 o= kIl
n§0, n n=0 n
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Example 3.2.2: Exponential function

expire} & 7 L P (3.2.10)

This series is absolutely convergent for any complex number t because

II%T'TntnII < %TIIITIIn|t|n and we have

||exp{Tt}||5_exb{||T||-t} (3.2.11)

Example 3.2.3: Neumann series

. o] .
-1 n
(I-T) = ) T (3.2.12)
This series is absolutely convergent if ||T||n<l. In this case

I -m 7] < -]zl h™t (3.2.13)

Operator-valued functions T(t) defined for a real or complex
variable t (such as (3.2.10) for example) can be defined and treated as
vector-valued or scalar functions. The following lemma dealing with

projection-valued functions will be useful in latter chapters.

Lemma 3.2.4: ([Kat 66] p.34)

Let P(t) be a projection depending continuously on a
parameter t varying in a (connected) region of real or com-
plex numbers. Then the ranges R(P(t)) for different t are
isomorphic to one another. 1In particular, dim R(P(t)) is

constant.
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3.2.4 The Resolvent

Let T be a linear operator on ! to itself. A complex number ) is

called an eigenvalue of T if there exists a non-zero vector u such that

Tu = Au (3.2.14)
u is called an e{genvector of T with eigeﬁvalue A. The subspace of eigen-
vectors of T with eigenvalue ) is called the geometric eigenspace for A
and its dimension the geometrnic multiplicity of A. Eigenvector with dif-
ferent eigehvalues are linearly independent and thefefore there are at
most n=dim V eigenvalues of T. The set of all eigenvalues of T is called
the épeﬁtnum of T; we denote it by o(T).

If X is an invariant subspace of T then any eigenvalue [eigenvector]
of Ty (the part of T in X) is an eigenvalue [eigenvector] of T. An
eigenvalue of T, is called an eigenvalue of T in X. If P is a projection
that commutes with T, T is decomposed according to ~V=X(:)V, X=R(P), Y=N(P).
It is éometimes convenient to consider the eigenvélue problem for the parts
of T in X and Y separately. As said before, the part of T in X, T, , may
be identified with TP=PT=PT§. It should be noticed, however, that if Tx
has an eigenvalue zero with geometric eigenspace Lo then the geometric
eigenspace of the zero eigenvalue of TP is V + Lo'

The operator-valued function

R(E,T) = (T—EI)_:L S (3.2.15)

is well defined for any complex number & € p(T) = C-0(T) and it is called

the nesolvent of T. The set p(T) is referred to as the resolvent sef of T.



-5]1-

R(E,T) satisfies the so called resolvent equation
R(El.T)—R(Ez,T) = (gl - gZ)R(gl,T)R(Ez,T) (3.2.16)

which, in particular, implies that R(El,T) and R(EZ,T) commute. The
resolvent is an analytic function with isolated singularities at precisely
the eigenvalues Ak' k=0,1,...,s, of T.

The Laurent series of R(§,T) at Xk~has the form:

m -1
R(E,T) = —(E-A ) 'p - E -2 )" P
e k k k k
n=1
o (3.2.17)
‘ . n n+l
+ ) (E-A)" s,
n=0
where
P -—if R(E,T)dE (3.2.18)
k 2mi ! e :
1qk

(with erapositively oriented contour enclosing Xk but no other eigenvalue
of T) is a projection called the eigenpnojection for the eigenvalue Ak,of T;
m, = dim R(Pk) is the algebraic multiplicity of Kk;

1

Dk=—2—ﬂif (E-A )R(E, TVaE , .(3'2'19)
T

k

is the elgenmnilpotent (Dknkfa) for the eigenvalue Ak of T; and

1

-1
Sk = ZH-/I: (E—?&k) R(E,T)dAE (3.2.20)
k
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It is not difficult to see that the following relations hold:

Pk Sk = Sk Pk =0 (3.2.21)
Pk Dk = Dk Pk = Dk (3.2.22)
PT = TP ’ (3.2.23)
(T—?LkI)Sk = I—Pk (3.2.24)
(T—AkI)Pk = Dk (3.2.25)
Pkpl = akQ Pk . (3.2.26)
§ .

p =1 (3.2.27)

k=1 k

From (3.2.26) and (3.2.27) it follows that

V=M® ... OM (3.2.26)

with Mk = R(Pk). Since the Pk commute with T and with one another, the

Mk are invariant subspaces for T. Mk is called the algebraic eigenspace

for the eigehvalue lk of T. It follows from (3.2.22) and (3.2.25) that

TPk = PkT = PkTPk = Akpk + Dk (3.2.29)

which together with (3.2.27) gives the canonicaf foam or spectral

nepresentation of T:

S
T= )} (P

+D. ) (3.2.30)
k
k=0

k
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An eigenvalue Ak is said to be semisimple if the associated eigen-
nilpotent Dy is zero and sdmple if in addition mk=1. T is said to be
diagonable if all its eigenvalues are semisimple. If all eigenvalues of T

are simple T is itself called s«mpfe; in this case T has n eigenvalues.

. For any polynomial p(z) = a°+alz +...+ qmzm we define the operator

p(T) = OLOI + Ol.lT +...F ame : (3.2.31)

Making use of the resolvent we can define more general functions of T as
follows: Suppose that ¢ (&) is analytic in a domain A of the complex plane
containing all the eigenvalues Ak of T, and let ICA be a positively-
oriented contour enclosing all kk in its interior. Then ¢(T) is defined

by:

Ty = - L
o(T) = zﬂifd)(E)R(E,T)dE (3.2.32)
T
This definition coincides with (3.2.31) when ¢(T) is a polynomial and it

provides a useful representation for the exponential function whose

equivalent series definition was given in (3.2.10). That is,

1 gt

exp{Tt} = - i ] e R(E,)GE (3.2.33)
T
s
If T = z (AkPk+Dk) then the spectral representation of ¢(T) is
k=1 '

given by:

S
¢(T) = } (9OP

+ Bk) (3.2.24)
k=1

k
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where

(mk—l)(kk) mk—l
D (3.2.35)

(mk-l)! k

¢

D, = ¢' oot
D [0} (Ak)r)k
are nilpotents commuting with each other and with the P

K

3.2.5 Operators with semisimple null structure

In this section we analyze a class of linear operators that play a
special role in the theory of aggregation developed in later chapters.
The importance of this class of operators in aégregation problems ik
emphasized in [Kor 78], where the more general case of operators in infinite
dimensional spaces is treated. We give here simplified proofs of the basic

results for the finite-dimensional case.

Definition 3.2.5 A linear operator T  on I to itself is

said to have semisimple null structure (SSNS) if zero is a

- semisimple eigenvalue of To.

By convention we will refer to non-singular operators as having SSNS. The

following lemma establishes some properties of operators with SSNS.

Lemma 3.2.5 The following are equivalent statements:
i) T0 has SSNS

ii) V = R(r ) ®N(T)
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i1i)  R(T) = R(TY)
o] (o]
. 2
iv) rank T = rank T
(o] 0]

v) N(T ) = N(T?)
(o] o]

Proof: 1i)=pii). Using the canonical form (3.2.30) for T, with
s

s
X0=O we have kzl (XkPk+Dk) and V =k20(:)R(Pk). Clearly R(PO)C:N(TO).

on the other‘hand, Tou=0 implies Akuk + Dkuk=0 for uk=Pku, k=1,...,s and

because Dk is nilpotent we have uk=0, k=1,...,s giving R(Po) = N(To).

S S
also, R(T ) C kzl®R(Pk) and ii) follows from dim R(T_) = dim k§1®R(Pk).

ii) =»iii). Obviously R(TO)C:R(TO) and u=T 2z implies u=Toz‘, z'€R(TO)
2
thus R(T) = R(T)).
o o
iii)=>iv) trivially.
2
iv) =v). Clearly N(TO) C N(To) and dim N(To) = n-rank T_ = n-rank Ti =
2 s
dim N(TO) thus giving v).
v) =1i). Suppose DO#O, then DE#O for k=1,...,m-1 and D:=0 for some
. m-2 m—-1 .
integer m>1. Choose v such that Do v # 0 and D0 v # 0 and define

m-2 m-1 m .
u=0>D v. We then have Tou = Do v # 0 and Tju =D v = 0, a contradiction.

O

It follows from the proof of ii) in Lemma 3.2.6 that if To has SSNS then
Po, the eigenprojection for the zero eigenvalue of To' is also the projection

on N(T ) along R(T ). Let Q =1I-P , then P T =T P =0 and
o o O o o O o O
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Theorem 3.2.7 1If T has SSNS then T, + Po is non-singular.

Proof: Denote by @o the restriction of T0 on R(To). %o is invertible

because T R(T ) = R(T ). Let u=u'+u" with u'€R(T ), u"eN(T ) and
o o o o o

;I\‘—l

. ~ , ~ ~=1
define T = u' + u". Then (T + P )JTu =T T u' + u"=u and
u o o o o o

=1 ~ -1
T Tu' +u"=u. Thus T = (T +P ) . 0
o o o o

T(T0+Po)u
#

Define the opérator Tﬁ by TO = (T0+Po)—l-P6. The following lemma

gives several properties of this operator.

Lemma 3.2.8

# = T#P =0 (3.2.37)
O O o O
ii) QOTi = TﬁQO = Tﬁ (3.2.38)
C # # _
iii) ToTo = ToTo = Qo (3.2.39)
C oy ~=1 . .
w [ = R (3.2.40)

Proof: Let u=u' + u" with u € (To) and u'e€ (To). By definition

Tﬁu = T;lu' and i) to iv) follow immediately.
# _ # # _ _# :
It follows from lemma 2.3.8 that T TT =T, TTT =T and
o oo o "o oo o
# # # # . Lo
TT =TT =TT. T 1is thus the group generalized inverse of T (see
oo oo o o o} o

[Cam 79a]); we will refer to it simply as the generalized Lnvernse of T -
The following lemma shows that if To has SSNS thenPo and Tﬁ fully determine

the Laurent expansion of the resoclvent R(A,To) at zero.
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Lemma 3.2.9: If To has SSNS, then for O<|A|<||T§||_l

we have

P <]
N +
R(A,T ) = - Xg + ) A (o) K+l (3.2.41)
o o
k=0
P
-1
= - XQ + o z-arh (3.2.42)
o o
# -1 . . -
Proof: For O<]X|<||T0|| the above series is absolutely convergent

and the equality between (3.2.41) and (3.2.42) follows from (3.2.12).

On the other hand, it follows from Lemma 3.2.8 that:

P [o]
(TO—XI)(- —+ 1 Ak(Tﬁ)k+l) =
k=0 )
o, L X (Tﬁ) L) Kk(Ti) =
k=0 k=1

o+ ) Feht e - ) NCHEEE:
k=1 © ° k=1 ©

d

+ z Ak # k+1

.. o | _ -
and similarly (- 5 Lo (TO) ) (To AL) I.

3.3 Asymptotic Analysis

In this section we introduce the basic definitions of asymptotic
analysis: the concepts of orders of magnitude, of asymptotic approximations

and asymptotic expansions. These concepts, although elementary, must be
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used carefully, especially when one wishes to study (as we do in subsequent

chapters) vector-valued functions ¢(t,€), t € DCC, € €(0,€o] for evo0.

3.3.1. Ordersof magnitude

Consider two real continuous functions f(g) and g(g), €€[0,Eo]- The
behavior of these functions as €¥0 can be compared using the order symbols

0, o and 0S defined below.

Definition 3.3.1

i) f=0(g) for €40 if there exists positive constants
k and C such that |£(€)|< k|g(e)| for oO<e<c.

ii) f=o(g) if 1lim f(e)/g(e)=0.
evo

iii) f=Os(g) if f£=0(g) and f#ol(g).

O

We will say that S8(g) is an onden 5unct£on if it is real, positive,

continuous and monotonic, and if 1lim §(e)=0. Order functions can be used
evo

to analyze the way a function f(e) tends to zero as €fo. We shall almost

exclusively use 6n(€)=€n as order functions in the chapters that follows.
When studying the asymptotic behavior of vector-valued functions

¢(t,e) of more than one wvariable, Definition 3.1 can be applied when consid-

ering any arbitréry but fixed value t=t_. In this way we obtain pointwise

order of magnitude estimates.
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Definition 3.3.2 Let §(e) be an order function.

i) d(t,e) = 0(S) at t=to if there exist positive

constants k and C such that ||¢(to,€)||§_k6(e)

kfor o<e<C.

ii) ¢(t,€) = o(8) at t=t_ if lim ||¢(to,€)||/6(8)=0

eYo

iii) ¢ (t,€) 05(6) at t=to if, at t=to

0(8) and ¢(t,c) # o(fd).

¢ (t,€)

When not only the behavior of ¢(t,e) at t=to for €Yo is of interest
but also the behavior of ¢(t,€) in a domain DC C, uniﬁonm order of

magnitude estimates are used.

Definition 3.3.3. Let 8(€) be an order function.

i) d(t,e) = 0(8) uniformly in D if there exist

constants k and C independent of t such that

for all tep, ||¢(t,e)|]|< k §(e) for o<e<c.
ii) ¢ (t,e) = o(8) uniformly in D if

lim ||¢(t,e)||/8(e)=0 uniformly in D.
evo

iii)  ¢(t,e) = 0_(3) uniformly in D if

d(t,€)
d(t,g) # o(§) uniformly in D.

0(S8) uniformly in D and
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3.3.2 Asymptotic expansions

The objective of asymptotic analysis is to find "good" approximations
of a function ¢(t,€) for small €. In this section we make this notion

precise.

Definition 3.3.4 i) Let ¢(t,e) be a function such that

¢(t,e) = Os(l) at t=to. A Function ¢a(t,€) is an
asymptotic approximation of ¢lt,e) at t=t if

d(t,e) - o3(t,e) = o(1) at t=t_.

ii) Let ¢(t,e) be a function such that ¢(t,eg) = Os(l)
uniformly in D. ¢a(t,e) is a uniform asympfotic
approximation of ¢lt,e) in D if ¢(t,e) - ¢ (t,€) = o(l)

a
uniformly in D.

[oo]
Let {Gn(e)}n_o be a sequence of order functions such that

6n+1(€) = o(Gn(E))-

N .
Definition 3.3.5 i) ) 6n(€)¢(n)(t,€) is an asymptotic
n=0o
expansion to N+1 terms of ¢(t,e) at b=t _ if

N (n)
b(t,e) - ) 8 ()¢

n=o

(t,e) = 0(6N+1) at  t=t_.

N
ii)y ) Sn(e)¢(n)(t,€) is a undifoum asymplotic expansion
n=0

to N+1 terms of ¢(t,e) in D if

: N
- . (n) _ . .
b(t,e) - nzo § ()¢ (t,€) = o(8 ;) unifornly in D. _
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If in the definition above, N can be taken arbitrarily large then

infinite asymptotic expansions are obtained. We will denote then by:

¢(t,e) = J 6n(e)¢(n) (t,€)

n=0
although nothing is implied about the convergence of these series.
The question of coﬁvergence is of no particular interest in asymptotic
theory. It is important, however, to keep in mind the difference between

[= o]
convergent and asymptotic series: If Z Gn(€)¢(n)(t,€) is a con-
n=0

vergent series then for a g{ven value 0§ € the difference between

N
z Gn(€)¢(n)(t,€) and the series limit is arbitrarily small provided
n=o

N is Large enough; if on the other hand ) Gn(e)¢(n)(t,e) is a series
n=o

asymptotic to ¢(t,€), then for a gi{ven N, the difference between

N
2 Gn(€)¢(n)(t,e) and ¢(t,e) is arbitrarily small provided & 44 small
n=o

enough.

3.4 Perturbation Theory in Finite Dimensional Spaces

3.4.1 The problem
Let T be a linear operator on a finite dimensional space V to
itself. 1In this section we consider how the eigenvalues and eigenvectors

(or eigenspaces) change when T is subjected to a small perturbation. In
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dealing with such a problem it is often convenient to consider a family
of operatbrs of the form T(€) = T + €T' where € is a scalar parameter
supposed to be small. T(0)=T is called the unperturbed operator and
eT' the pentunbation. An interesting question is whether the eigenvalues
and eigenvectors of T(e) can be expressed as a power series in € in the
neighborhood of €=o. If this is the case, the change of the eigenvalues
and eigenvectors is of the same order of magnitude as the perturbation.
As we shall see below, this is not always the case.

In general we will assume that an operator-valued function T(g€) is
given which is continuous in a neighborhood of e=o, say for e€[0,e'],

and we will distinguish two cases:

a) T(e) has an absofutely convergent power series expansion

for €€(0,e'], i.e.,

T(E) =T + ) 1™ ror celo,e] (3.4.1)
n=1

@ <]+ T 1T |2 y(e)<e for eelo,e'] (3.4.2)
n=1

b) T(e) has an asymptofic expansion in powers of € for

eYo, i.e.,

v (n) -N
lim||T(e)-1- ) €' |]- € =0 VN>0 (3.4.3)
eYo =1
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which we will also denote by

) =T+ ) etr® (3.4.4)
n=1

The proof of perturbation results for cases a) and b) are very similar
and we will carrxy them in parallel highligthing the differenceswhenever
they occur. If no mention is made about the convergent or asymptotic
character of a series, it will be understood that the result applies to
both cases. Obviously, any result proved for b) also applies to. a)
which will be referred to as the analytic case.

We reproduce here several results in [Kat 66] extended in some cases

to the non—analytic (i.e., asymptotic) case.

3.4.2 Perturbation of the eigenvalues

The eigenvalues of T(€) satisfy the characteristic equation:

det (T(e)-EI)=0 (3.4.5)

If T(e) is analytic this is an algebraic equation in § of degree

n=dim V, with coefficients which are analytic in €. It foilows from a
well known result in function theory (see [Kno 45]) that the roots of
(4.5) are branches of analytic functions of € with only algebraic
singularities and therefore the number of (distinct) eigenvalues of T(g)
is a constant s independent of €, except at some special values of €.

There are only a finite number of such exceptional points in a compact
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interval €€[0,€']. We will assume that €' is small enough so that
[0,€'] contains only one exceptional point which, without loss of
generality, we take as €=0.

In a neighborhood of the exceptional point, the eigenvalues of T(g)
can be expressed by s analytic functions Al(e)""'xs(e) with

A, (e) # A (e) for h#k which can be grouped in the manner:

v{Al(E)I'f{IAp(E)}I {Ap+l(€),---,lp+q(€)],.-- (3.4.6)
in such a way that we have Puiseux series:

S h 1/p 2h _2/p
A (€) = A +owe”” +aw e .. (3.4.7)

h=0,1,...p-1

where ) is an eigenvalue of the unperturbed operator T(0) and

w = expl2mi/p}. Each group is called a cycﬂe and the number of elements

its period. It should be noticed that the Xn(e) are continuous at

€=0; A=Ah(o) will be called the cenfer of the cycle under consideration.
In general there are several cycles with the same center A. All

eigenvalues beloging to cycles with center A are said to depart from the

unperturbed eigenvalue A by Apﬂétting at €=0. The set of these eigen-

values will be called the A-ghoup since they cluster around A for €

small. There is always splitting at and only at an exceptional point (i.e.

at €=o0 under our assumptions). Equation (4.7) shows that

A (e) - A =0 (7P
h s

). If p>2, therefore, the rate of change at =0 of
the eigenvalues of a cycle of period p is infinitely large as compared with

the change in T(g).
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In the non-analytic case the number of eigenvalues may change with €
quite irregularly; the splitting and coalescence of eigenvalues taking
place in a very complicated manner. it may even happen that in no interval
of the form (o,€l is the number of distinct eigenvalues constaﬁt. In
dealing with non-analytic perturbations we will restrict ourselves to the
case of constant number of eigenvalues for e€(o,e']. This assumption
simplifies the analysis and nevertheleés provides a sufficiently general

setting for applications.

3.4.3 Perturbation of the resolvent

The resolvent of T(g)

R(E,T(e)) = (T(e)-E1) " (3.4.8)

is defined for all £ € € not equal to any of the eigenvalues of T(g).
The following lemma gives an expression for R({,T(€)) as a power series

in € with coefficients depending on £.

Lemma 3.4.1 Let

T(e) =T + ) e () (3.4.9)
n=1
If £ € p(T) then for, € small enough, say ee[O,eol,
£ € p(T(e)) and
S n_(n)
R(E,T(e)) = R(E,T) + ) e'R™ (E) (3.4.10)

n=1
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where
(v,) (v,) (v)
R(n)(E) = :E: -DFPRE, T 1 R(E,T)T 2 .p P R(E,T)
V1+...+vp=n - (3.4.11)
v, >1

the sum being taken for all combinations of positive

integers p and v ,...,vp such that 1<p<n,

1
Vl+...+vp=n.

The series (4.10) is uniformly convergent on compact
subsets of p(T) if (4.9) is convergent and it is uniform
asymptotic series for R(§,T(g)) in compact subsets of

p(T(e)) if (4.9) is an asymptotic series. o

Proof: Let § € p(T) and define A(e) = T(e) - T. We then have
T(e)-EI = (I+A(e)R(E,T)) (T-EI)
Let €  be such that ||a(e)R(E,T) || < 1 for €€[0,e_ ]. Then

oo

(T+A()R(E,1) * = T (-A(e)R(E,T(e)™
n=0

is well defined and we have
-1 -1
(T(e)-€I) = = R(E,T) (I+A(e)R(E,T))

for €€[O,€é].

Let now I' be a compact subset of p(T). on I', ||R(E,T)|| is bounded above
and therefore HR(«E,T)H_l has a positive minimum on I' attained say

at §=€o.
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Let eo be such that

[z@-t| |<| [r€_,m |I<|[RED||™", &I, eelo,e]

Then VEel' and €€[0,€o],

R(E,T(€)) = R(E,T) ) (-A(e)R(E, ™"
n=o
or
0 N n
R(E,T(E)) = R(E,T) ) |- (Z EkT(k)+rn(€))R(E,T)
=0 k=1

where rN(E) + 0 as N> for a fixed € if (4.9) is a convergent series

N . . . .
and rN(E) = o(e) if (4.9) is an asymptotic series. Collecting terms

in like powers of € we have

v N )
RE,T()) = RE,D + ) R @) + r (e,
n=1

. .. A
where the re51dua} rN(E,E) satisfies ||rN(g,g)||§J|rN(g,go)||=
fﬁ(e) and fﬁ(E)'+0 as N»>» for a fixed €€[0,€o] in the analytic case and

N . . .
rN(e)/e * 0 as €¥0 for a fixed N in the non-analytic case.
w]

3.4.4 Perturbation of the eigenprojections

Let A be an eigenvalue of T=T(Q), with multiplicity m (meaning algebraic
multiplicity unless otherwise stated). Let I' be a closed positive contour in
p(T) enclosing A but no other eigenvalues of T. It follows from Lemma 4.1
that for € small enough R(§,T(€)) exists for £€I' and therefore there are

no eigenvalues of T(e) on T.
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The operator

P(e) %/ R(E,T(€))aE (3.4.12)
r

is a projection that commutes with T(e) and is equal to the sum of the
eigenprojections for all the eigenvalues of T(g) lying inside T.
Integrating (3.4.10) term by term we get

P(g) =P + z EnP('n)

n=1

ee[Q,eO] o (3.4.13)

where

1 ., .
P = - m/ R(E,T)dE (3.4.14)
T ;

is the eigenprojection for the eigenvalue A of T, and

(n) R (n)
P = - 2wifR (£)ag (3.4.»15)
. r

Again, (3.4.13) is convergent in the analytic case and asymptotic in
the non-analytic case. In both cases, however, P(€) is continuous in
a neighborhood of zero and it follows from Lemma 3.2.3 that the range

of P(g) is isomorphic to the range of P; in particular,

dim R(P(e)) = dim R(P)=m (3.4.16)
and since (3.4.16) is true for all € small enough, it follows that all

eigenvalues of T(g) lying inside I' form exactly the A-group. For this
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reason P(g) will be called the total profection, and R(P(g)) the
eigenspace for the A~group.
The next lemma gives a series expression for (T(e)-AI)P(e) that

will play a central role in latter chapters.

Lemma 3.4.2 Let

T(E) =T + ) ™

n=1

(3.4.17)

Let A be an eigenvalue of T with multiplicity m
and let P(g€) denote the total projection for the

~A-group. Then

€ 2miE
T

(D(e)-MP(e) _ _ 1 f(&—A)R(E,T(e))dE =

ni(n)

tulllw}

e€(0,¢e_] (3.4.18)

[~}
+ . z €
n=0
where I' is a closed positive contour enclosing )\

but no other eigenvalues of T, D is the eigennilpotent

for A and %(n) is given by:

n+l (k) (v) (k) (k) v)Ik )
~(n) _ P 2 : 1 1 2 P p o ptl
TV =~ ] DT — ., _ S T s .. YT s

p=1 1 p
kl+...+kp+l=p-l

(3.4.19)
v.>1,k.> -m+l
1= 3=
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with ' = —p(o)= -p, s'-p¥, k1 ana ™= &,
k>1 for
s =3t [EnREDa 5
= 2mi / R(E,T)AE (3.4.20)
T

Again, (4.18) is a convergent or an asymptotic

series according with the nature of the series (3.4.17).

Proof: Let YUT be a contour that encloses all eigenvalues of T with
Y and ' disjoint and I' enclosing A but no other eigenvalue of T. For
€ small enough YUT encloses all eigenvalues of T(e) and it follows

from (3.2.32) that

1
T(E) = - oo f ER(E,T(€))ak (3.4.21)
yuT

on the other hand

2

2
T(e)P(e) = (ﬁ) fsn(a,T(e))R(c,T(e))a;dg +
T °T
L f/ER(F,,T(e))R(C,T'(e))dCdg (3.4.22)
27i TYY

where I' has been slightly expanded to I'' in the definition of P(g) to
facilitate the integration. Using the resolvent equation (3.2.16) and
the Cauchy's integral theorem (3.4.22) becomes

1

T(e)P(e) = - H/ ER(E,T(€))dE (3.4.23)
T
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and therefore

1

(T(€)-MP(e) = - 5o

./f (E-MR(E,T(e))dE (3.4.24)
T

or, using Lemma 3.4.1,

(T(e)-A\)P(e) _ D
€ (4

¥ n-(n) 1
+ ) eT V= - m/(&—}\)rN(E,E)dE
- T (3.4.25)

where rN(e,E) is the residual of a convergent or asymptotic series

(uniform in any case in I') depending on the nature of (3.4.17), and

~ (v.) (v )
T 2% E : -1)f f (E-MR(E,T)T L ...r P R(E,T)dE
T

V. +...+V =n+l
1 P

v.>1
* (3.4.26)

To evaluate this integral, we substitute R(£,T) by its Laurent
expansion (3.2.17) at A, which we write for convenience in the form:

R(E,T) = [ (-1 %g L)

=~

(3.4.27)

with s'0= _p, 57K _ ok, k>1 and sk

=Sk for S as in (3.4.20).
Substitution of (3.4.27) into the integrand of (3.4.26) gives a Laurent
series in (£-A) of which only the term with the power (E-A)—l contributes
to the integral. The result is giveﬁ by the finite sum (3.4.19). The

convergence or asymptotic properties of (3.4.25) follow from the limiting

properties of the residual rN(€,E) and the compactness of T.
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In the following chapters we will be mainly interest in (3.4.18)
for the case of A=0 and semisimple. Under these conditions, it follows

from Section 3.2.5 that (3.4.18) reduces to:

o0}
T(e)P(e) _ 3 €n%(n) (3.4.28)
€
n=0
for
n+l (k,) (v.) vy (v )
oy (P z: s tr b g P
= +.. .4V _=n+
p=1 vl vp n+l
+...k_, . =p-
kl kp+1 p-1
v.>1l, k.>0 (3.4.29)
i= 3=
with S(0)= -P, S(k) = (T#)k. P being the projection on N(T) along

R(T) and T# the generalized inverse of T.

3.5. Linear Dynamical Systems

We are interested here in linear ordinary differential equations

of the form:

;:(t) Ax(t) te€ R

4 (3.5.1)
X
o

x(0)

where x(t)€ R and A is a given linear operator (constant real (nxn)
matrix). The literature of linear dynamical systems is extensive and
we do not review it here in detail. Only a few non-standard topics

are developed. In Section 3.5.1 we discuss the stability properties, i.e.,
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the behavior of x(t) as t>® of such systems introducing the concept of
" semistability. The splitting of (3.5.1) into set of lower-dimensional
evolutions in invariant subspaces is reviewed in Section 3.5.2.

Finally, in Section 3.5.3 the properties of systems which mantain non-

negativity of every component of the state vector are analyzed.

3.5.1 Stability and Semistability

We will say that (3.5.1) is a 4fabfe system if ||x(t)||< k, t>0.

If, in addition,

lim x(t) = 0O (3.5.2)
o0

then we will say that the system is asymptotically stable. Tt is well
known that (3.5.1) is asymptotically stable if and only if all eigen-
values of A have negative real parts. We will say in this case that A
itself is asymptotically stable.

As a generalization of the asumptotic stability concept, consider

the following:

Definition 5.1 The system (3.5f1) will be called

semistable if the following limit exists:

X, = lim x(t) . (3.5.3)
o0

for any initial state X
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The following lemma gives necessary and sufficient conditions on

the system matrix A for semistability.

Lemma 3.5.2 i) The system (3.5.1) is semistable iff A has
SSNS and all its non-zero eigenvalues have negative real
parts. If (3.5.1) is semistable then 1lim x(t):Poxo where

>0
P is the projection on N(a) along R(a).

Proof: 1i) The solution to (5.1) is given by

x(t) = eAtx
[e)

, s

Let A = z_(AkPk+Dk) be the spectral decomposition of A. Suppose that
k=0

‘ Xo=0 and denote by m the multiplicity of Ak' It follows from (2.34)

and (2.35) that

- s _ At .
x(t) = (p+D )x_ + Z (e ™ P +D )x_
k=1
where
_ mk;:]. tj e)\kt J
D = T (D, )
k j=1 J k

Clearly, if D0=O and Re Ak< 0, k=1,...,s then
lim x(t) = P x
oo oo
otherwise the limit does not exist. It follows from Lemma 3.2.5

that P_ is the projection on N(a) along R(a). o
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If a matrix A has SSNS and all its non-zero eigenvalues have

negative real parts, A will be called semisiable.

Lemma 3.5.3
If A is semistable then there exist positive constant
o and M such that:

| x(e)-p x_|[< m ™ (3.5.3)

Proof: Follows immediately from the spectral decomposition used in the

proof of Lemma 3.5.2. O

Notice that the only difference between stable and semistable
systems is the presence of purely imaginary eigenvalues. Thus, if a
system is stable and has no purely imaginary eigenvalues then it is

semistable.

3.5.2 Flow-invariant subspaces and splitting of evolutions

Consider the linear dynamical system (3.5.1) and let W C R be a
subspace. We will say that W is a §{Low-Lnvariant subspace of (3.5.1)

if xoe W implies x(t)e W t>0. If

n
RE=Ww ®--- W, : (3.5.4)
with Wj flow-invariant subspaces of (3.5.1) we will say that the

decomposition (3.5.4) Aplits the evolution (3.5.1).
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Clearly, W is a flow-invariant subspace of (3.5.1) if ana only
if W is invariant under A, and (3.5.4) splits this evolution if and

only if A is decomposed by (3.5.4).

. r
Let {Pk} denote the set of projections determined by (3.5.4)
k=1

suppose that (3.5.4) splits the evolution (3.5.1) and define

%, (z) = P, x(t). The component %, (t) will be called the part of x, (t) that

evolves Ain Wk and it satisfies:

(t) = P AP. x (t) k=1,...,r
Tk ki k ok (3.5.5)
xk(O) B kao
Using a basis adapted to (3.5.4) Pk and PkAPk are of block diagonal

form with only one non-zero black, i.e.,

r‘¢' -
.-¢ o
P, = .
¢ 0
L d)—
r‘ —
¢l
. )
- ¢
PP =
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and therefore the evolution of x(t) can be computed by combining a set of
lower dimensional evolutions each taking place in a different flow-invariant

subspaces.

3.5.3 Positive Linear Systems

A positive linear system is a linear dynamical system which preserves
'non-negativity of the state variables, i.e., if x_ > 0¥ then x(t)> 0, t>0 .
Such systems arise frequently in applications, since in many real systems
the state variables represent physical quantities which have no meaning un-
less they are non-negative. 1In addition to this practical relevance, positive

systems have particular characteristics that makes them specially amenable to

analysis.
The following lemma gives necessary and sufficient conditions on the
systen matrix A for a linear dynamical system to be positive.

‘Lemma 3.5.1

The system
x(t) = Ax(t) £>0
is positive if and only if the elements of A, aij' satisfy:
> for i#j
aij_ o i#j A

Proof: See [Lue 79]

A matrix will be called posifive (non-negative) if all its elements are

*Positivity or non-negativity of all elements of a vector or matrix will be
denoted by the corresponding sign symbol applied to the vector or to the
matrix itself.
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positive (non-negative). A matrix with all off-diagonal terms non-
negative will be called a Metzfer matrix. Notice that A is a Metzler
matrix iff A+cI > o for some c>0. The theory of positive systems is
built upon the rich theory of positive matrices whose cornerstone is

the Perron-Frobenius theorem (for several different proofs see [Bel 60]):

Theorem 3.5.2

i) If A>0 then there exist Ao>0 and a vector xo>0
such that
‘a) Ax = A x .
o oo
b) If A#Ao is any other eigenvalue of A,
then |Al< A .
o

c) Ao is semisimple.

ii) If A>0 then there exist A >0 and a vector x >0
2 ; s o

a) AX = A X
o) oo

b) If X#AO is any other eigenvalue of A, then

A< Ay -
h (o]

The equivalent result for Metzler matrices is the following:

Theorem 3.5.3

Let A be a Metzler matrix. Then there exists a
real uo and a vector xozp such that:
= X .
a) AX uo
b) If u#uo is any other eigenvalue of A, then

Re ()< W -
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Proof: See [Lue 79].

The Perron-Frobenius theorem thus guarantees the existence of a
dominant eigenvalue in positive systems. This eigenvalue and its as-
sociated eigenspace determine the long term behavior of a positive
system. The following lemma states a stability property of positive

systems that we will use in subsequent chapters.

Lemma 3.5.4.

A stable positive system is semistable.

Proof: If the system

x(t) = Ax(t)

is stable then all eigenvalues, A, of A satisfy Re(A)< 0 and if zero
is an eigenvalué of A it must be semisimple. If in addition A is a
Metzler matrix then it follows from Theorem 5.3 that all non-zero

eigenvalues satisfy Re(A)< 0. -

This corollary indicates that a Continuous time stable positive
system cannot have sustained oscillations. Notice that even though
positivity is apparently a base-dependent characteristic, the fact
that a system is positive in some basis has some base-independent

implications such as the eigenvalue structure on the imaginary axis.
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In the following chapters we will need to deal with systems which
preserve non-negativity only for certain initial conditions. ILet the
decomposition R" = W + y split a given dynamical system with system
matrix A and denote by P the projection on W along V. We will say that
the system is positive in W if there exists a basis in which the part
of x(t) that evolves in W, i.e., Px(t), remains non-negative for any
non-negative initial condition. .Notice that such a system is positive
if the non-negative initial condition is restricted to W. The following
lemma gives necessary and sufficient conditions for a dynamical system

to be positive in an invariant subspace.

Lemma 3.5.5
n L. .
Let R = wl@... @wr be a decomp051tlo: in
terms of invariant subspaces of A and let {Pk}
k=1
be the corresponding projections.

i) The system

x(t) = Ax(t) £>0

is positive in wk if and only if there exists

a basis for which szp and APk + cPkZp for

some czp.

Proof: i) Suppose first that ka(t)g_o t>0 and for arbitrary x(0)>0.

For t>0 we have:

PkeAtx(O) = (AP

of |

: ka(t) =

ot | =

1 O (t)
+ T Pk)x(O) + —

k
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and therefore for t small enough, say t<to'
1
AP tP,O

Conversely, suppose that sz 0 and AP, + cP > 0 for some c>0, then:

At -ct (A+cI)t -ct '
e e( ) = e P z k— t Z O

We next extend Lemma 3.5.4 to systems which are positive in an

invariant subspace.

Lemma 3.5.6
Let II>0 be a projection commuting with A. If

HeAt.z 0 and ||HeAt||§_K then IIA=All is semistable.
Proof: HeAt = eA]It - I+l and therefore ||eAHt|| < K. thus implying
that All is stable. By the positivity condition IIA+cll > 0 (for some
c>0) it follows from Theorem 3.5.3 that IIa+cll has a real maximal
eigenvalue Xo or, because (Ila+cll) X, = ono" implies IIAxO = (Ko-c)xo,
that IIA has a real maximal eigenvalue. Thus, if I[A is stable it is

also semistable. o

This semistability property of stable positive system will play
a basic role in Chapter V where it is used to prove aggregation results

for such systems.
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CHAPTER IV: MULTIPLE TIME SCALE BEHAVIOR OF
SINGULARLY PERTURBED LTI SYSTEMS

4.1 Introduction and Overview

In this chapter we develop a methodology for the asymptotic analysis
of linear systems with multiple time scales, establishing the basic
results that will be used in subsequent chapters,

In section 4,2 we discuss the relationship among the concepts of
weak couplings, singular perturbations and multiple time scale behavior
in LTI systems. The focus of our analysis is the wvector differential
equation:

dxs(t)
dt

= Ae)x" (t) (4.1.1)
where € is a small parameter modeling weak couplings among different
parts of the systeﬁ. We argue that this formulation is appropriate

to model systems with phenomena occuring at different time scales, and
that it includes most of the formulations used in the past for this
purpose. A literature survey is presented in Section 4,3,

Our main results are developed in Sections 4.4. and 4.5 where it is
proved that, under a certain "multiple semistability condition" on the
system matrix A(e), an asymptotic approximation to xe(t), uniformly valid
for t>0, can be constructed which clearly displays the multiple time
scalé behavior of xs(t), In Section 4.5 the equations that describe
the evolution of xe(t) at different time scales are interpreted as

reduced-order models of the system (4.1.1) each valid at the corresponding

time scale,
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The conditions required for these results to hold are discussed
in Section 4.6 where it is argued that they are in fact necessary if
xe(t) is to have well defined behavior at all time scales. Wevéive
examples of systems which do not satisfy these conditions and we suggest

extensions of our results to these cases,

4.2 | singularly Perturbed LTI Systems

4.2,1 Regular and singular perturbations, and time scales

We consider here semistable LTI systems of the form:

ax” (t)

€ €, . ,
Tt ‘-A(e)x (t), x (0)= X (4,2.1)

€ . ,
where 86[0'86] x (t)e R and the matrix A(g) is assumed to have a power

series expansion in €, i.,e.,

[ee]

ae) = ) €fa (4.2,2)

p=o ©

This series can be either a convergent series (and we will refer to

this as the analytic case), or an asymptotiq series. If (4.2.2) is an
asymptotic series, then we will also assume that rank A(g) is constant
for EG(O,sO] (which it necessarily is in the analytic case). In both
cases we will refer to this constant as the”noﬂmaﬂ nahk of A(g) and we

will denote by nrank A(g),
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€
Our objective is to analyze the behavior of x (t) as &¥0 on the
time interval [O,w). The system (4.2.1) can be viewed as a perturbation

of

o, :
t o o

and one of the obvious questions to be addressed is that of the relation~
ship between xe(t) and xo(t) for small €. Specifically, under what
conditions is xo(t) a good approximation of xe(t)? ;f it is not, how
can we construct such an approximation? The first question is resolved
in this section and the rest of the chapter deals with the second
question.

The following proposition states that xo(t) is a uniform asymptotic
approximation of xe(t) on any compact time interval [O,T]. (thice

that for this result no stability condition is required).

Proposition 4.2.1

If A(e) is as in (4.2.2) then
lim  sup 11 exp{A('_e)t}-exp{Aot}I |=0 (4.2.4)
eto tefo,T]

for any T<e,

Proof: It follows from (3,2,33) and the fact that the eigenvalues of

A(e) are continuous in e for ee[o,eo], that:

1 At

exp {A(e)t} = - e” R(A,A(e))a)
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where T is positive contour enclosing all eigenvalues of A(o). From
Lemma 3.4.1 it follows that ||R(1,A(€)) - R(}, Ao)||+0 as eYo

uniformly on [, and therefore

| |exp{n(ert} - exp{Aot}|| 5_K(€)eqt

for some K(g€)> 0 as €¥0 and for some real 0, thus proving (4.2.4).
o

In general, however, as the simple example below shows, it is not

true that

lim sup ||exp{a(e)t} - exp{a t}||=0 (4.2.5)
et t>0 °

. () . . .
and therefore, in general, x (t) is not a good approximation to xe(t) over

the infinite interval [O,w) no matter how small € is.

Example 4.2.2

Let A(e)= -¢€

sup Ilexp{A(E)t} - exp{A(o)}tll - sup 1!e-€t 1

t>0 - >0 0

If eq. (4.2.5) is satisfied, we will say that (4,2.1) is a regularly
pertunbed version of (4.2.3), otherwise we will say that it is singalarly
pentunbed. In what follows we will deal primarily with singularly
perturbed systems because, as we will now see, it is only in this case
that we can talk ;bout different behavior at different time scales,

Let us first formalize the notion of multiple time scale behavior,
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Definition 4.2,3',
Let xe(t) be the solution of (4.2.1) and let a(g)
be an order function,” We will say that xe(tl has a well
defined behav.ion at time scale t/d(e) if there exists
a bounded continuous function y(t), called the evolution

€ )
of x (t) at this time scale, such that:

lim  sup | |x"(t/a(e)) -y (1) ||=0 (4.2.6)
£¥0 te[G,Tj

v8>0, VT<w, VX
Equivalently, we will say that the LTI system (4{2;1) has
a well defined behavior at time scale t/o.(€) if there exists

a bounded continuous matrix Y(t) such that

lim  sup _ ||exp{a(e)t/a(e)} - v(t)||=0 (4.2.7)
evo te[s,T]
V8>0, yT<eo 0

According to this definition, the system in Example 4.2.2 has well
defined behavior at time scale t/€ and its evolution at this time scale
is given by:
y(t) = e "
Although in this example the convergence condition (4.2.6) is satisfied
even for §=0, it will beéome clear later on that in generai an arbitrarily
small interval around zero must be excluded to obtain uniform convergence.

The next proposition shows that semistable regularly perturbed

systems have trivial and uninteresting time scale behavior.



-87-

Proposition 4.2.4

If A(e) is a regularly perturbed matrix which is
semistable for ee[o,eol then, for any order function

a(E) ]

lim suwp | |explate)t/a(e)} - 2 ||=0 (4.2.8)
evo tel§,T] °
V8>0, YT<w

where Po is the eigenprojection for the zero eigen-

value of Ao = A(0).

Proof:

Notice first that:

| |expia(e) t/a(e) }—Pol |<| |exp{a(e) t/a(e) }—eXP{AOt/a(s)}l | +
||exp{Aot/u(€)} - POII

It follows from the fact that A(g€) is regularly perturbed that the first
term of the right hand side sum converges to zero uniformly for t>0 as

evo. To estimate the second term notice that

- 1 At
exp{Aot} =P -3 f e R()\,Ao)d)\
T

(@]

where Fo is a positive contourn enclosing all non-zero eigenvalues

of AO. By the semistability property of Ao' TO can be chosen to lie



i

-88-

in the left half plane and therefore:
;

||exp{Aot/d(ie)} -e |lsx o~ B-8/0.(e)

t €[§,]

for some (<0, thus proving (4.2.8). o

Tt follows from the above proposition that, if properly modeled;
a system with a non-trivial multiple time scale behavior will result
in a singularly perturbed o.d.e. The next proposition gives necessary

and sufficient conditions on A(e) for (4.2.1) to be singularly perturbed.

Proposition 4.2.5

The equation (4.2.1), with A(e) semistable for
€€[O,EQ] and of the form (4.2.2), is a singularly
perturbed o.d.e. iff rank A(g) is discontinuous at

€=0.

Suppose that rank A(g) = rank Ao »for €€[0,€o]. Then there is no
splitting of the zero eigenvalue and therefore, for € small enough, the
only singularity of RCX,A(E)), inside a positive contour Yo enclosing
the origin but no other eigenvalues of Ao' is at zero. By semisimplicity
of the zero eigenvalue of A(g), this singularity is a simple pole with
residual Po(e), the eigenprojection for the zero eigenvalue of A(g).

We thus have:

1 At _ .
- Eﬁf MR(,A())AN = B_(e) (4.2.9)

Yo
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It follows from eq. (3.4.13) that Po(e) - Po as ¢€¥0, where Po' the eigen-

projedtion for the zero eigenvalue of Ao satisfies:

o 27T 27T

p =--2 | RO\,A AN = - — fe)‘tR()\,A )d) (4.2.10)
. (o] (o]
YO YO

We thus have that, for € small enough,
| |exp{a(e)t} - exp{Aot}Il <

2% / | IR\ A(e))-R(A, A )IleRe)‘tdA + o(1)
T o]

o
where Po is a positive contour enclosing all the non-zero eigenvalues of
Ao. By the uniform convergence of R(A,A(g)) to R(X,AO) on Po and by the
semistability of Ao that allows us to choose Po in the left-half plane,

it follows that

lim sup ||exp{A(€)t} - exp{a t}ll =0
gyo t>o °

and therefore if (4.2.1) is singularly perturbed then rank A(e) must be
discontinuous at zero. Conversely, suppose that (4.2.1) is regularly

perturbed then,

lim P(e)é lim 1lim exp{A(e)t }= 1lim exp{Aot} = P (4.2.11)
eYo eYo towo o0

where P(g) and Po are the eigenprojection for the zero eigenvalue of A(g)
and Ao respectively. Thus, rank P(€) is continuous at €=o. Also,
rank P(e) = null A(e) and therefore (4.2.11) implies null A(e)= rank P(g)

rank P = null A . o
o o
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As a corollary to the above proposition notice that if Ao is
asymptotically stable then any perturbation is regular. In effect,
if Ao is asymptotically stable so is A(€) for € small enough and therefore
nﬁll Ao = null A(e)=0 for EG[O,EO].

We have so far established that the analysis of semistable LTI
systems with multiple time scale behavior corresponds to the study of
singqlarly perturbed o.d.e.'s and that the presence of weak couplings may
produce well defined behavior at several time scales only if the pertur-
bation changes the rank of the system matrix A(g). To keep this
discussion clear we have only considered systems for which A(g) is semi-
stable for 86[0,60]. As we will see in the following sections, this is
a necessary (although not sufficient) condition for the system to have well
defined behavior at all time scales. Extensions of the results derived
for semistable systems to some classes of nqn—semistable systems are
considered in Chapter VI.

The problems on ﬁhich we focus in the following sections can be
formulated as follows:

i) Under what conditions does a singular perturbed

system have well defined behavior at several

time scales?

ii) What are those time scales? Is there a finite
number of fundamental time scales at which the

system has a non-trivial evolution?

iii) Is it possible to combine the evolutions of a
system at its fundamental time scales to produce
. . . . € .
a uniform asymptotic approximation to x (t) valid

on [0,»)?
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As a way of getting some insight into these questions we discuss
in the next sectiqn the relationship between the multiple time scale
behavior of (4.2.1) and the asymptotic behavior of the eigenvalues of

A(e).

4.2.2 Eigenvalues and time scales

As we mentioned in Chaptef I, the notion of multiple time scale

behavior of a system is associated with the existence of widely separated

eigenvalues. In this section we make the connection between this notion
and our analysis of multiple time scale behavior as a problem in singular
perturbation.

We again refer to the system

ax” (t)

Tt A(e)x (t) , X (,0)‘:~:(J (4.2.12)

which is assumed to be semistable for €€IO,€°] and with system matrix
of the form (4.2.2). Assume for simplicity that A(g) is diagonalizable
and let A}#E)' h=0,1,...,s be its distinct eigenvalues. 7Using the

spectral representation of exp{Aa(e)t} we get:

‘ , s Xk(e)t
exp{a(e)t} = ) e P, (€) (4.2.13)
h=0

where‘Ph(e) is the eigenprojection for the eigenvalue Ah(e) of A(g).
It is clear from (4.2.13) and the semistability assumption that for

exp{A(e)t} to have a non-trivial, well defined behavior at time scale,
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say, t/oe), it is necessary that there exists some eigenvalues Ah(e)

such that Ah(e)/ate)-*uh as eYo. Thus, for a system to have multiple

time scale behavior in the sense of Definition 4.2.3, it must have
eigenvalues of different orders of magnitude in €. Our formulation is
therefore in accordance with the notion of time scales as a manifestation
of eigenvalue separation.

This point of view provides some insight into our discussion in
Section 4.2.1 and into the questions raised there; First, the existence
of eigenvalues of A(€) that converge to zero as €Yo implies that zero
itself must be an eigenvalue of A and that rank A(e) must be discontinuous
at zero as stated in Proposition 4.2.5. Second, as indicated in (3.4.7).
thé eigenvalues of A(€) aiways ha&e a power series expansion in fractional
power of €. Therefore, it is logical to conclude that the fundamental
time scales of (4.2.12) must be of the form t/eq, for some rational q.
Furthermore, only a finite number of them can exist (at most one per each
distinct eigenvalue). |

In addition to the eigenvalue structure, the existence of the limit
of exp{A(e)t/a(e)} as €40 élearly depends on the structure of the
eigenspaces, i.e., on the behavior as €¥0 of Ph(e) in (4.2.13). For
example, the eigenprojections Ph(e) (and also the eigennilpotents in the
general non~diagonalizable case) have algebraic singularities at €=0

if Ah(e)—*o (see [Kat 66]) and therefore the above limit may not exist
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even if there are eigenvalues of order Os(a(e)). It is this aspect
of the time scale problem that is overlooked in the heuristic view
éf time scales as eigenvalue separation and onto which we will focus
our attention in the following sections.
We will first give conditions under which all eigenvalues of
A(é) that converge to zero satisfy
Kh(E)

lim
e¥0 kh

= uk (4.2.14)

for some integer kh > 0, and we will show that systems which satisfy

these conditions have well defined behavior at all time scales, with
k

t/€ h being the fundamental ones. We will also show that if these

conditions are violated then at certain time scales t/o(g) the'limit

of exp{A(e)t/u(e)} as eEY0 does not exist and we will provide several

examples to illustrate what happens in these cases.

4.3 Survey of Related Literature

We review in this section some work of Hoppensteadt and
Campbell and Rose ([Hop 75], [Cam 78a,78b,79]), with whom we share a
similar problem formulation and similar goals. These treatments have
alreédy been briefly discussed in Chapter II; here we will focus on
the connections between their results and ours with specific

references to later results in this chapter.
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In [Hop 75] the author deals with singularly perturbed

evolutions in Banach spaces of the form:
v(t) = A(e)v(t) + G(v(t),E) (4.3.1)

For the purposes of comparison with our work, we will take
G(v,€) = 0 and will assume A(€) to be a finite dimensional operator.
Hoppensteadt starts by assuming that A(€) is stable for €>0 and that
it can be written in the form
r r
a(e) = Ao(e) ®c 1A1(€) @®...0¢ mAm(E) (4.3.2)
with Ai(e) also stable and continuous in €. He then constructs a

undform asympfotic approximation of the solution of

€ €
v (t) = A(e)v (t) (4.3.3)
of the form:
e m
T(r) = ) V.(0,) + o(l) (4.3.4)
. il
i=0
r.
where Oj =g ] are the different time scales and Vj(t) are the
solutions of:
Vj(t) = Aj(O)Vj(t) j=0,...,m (4.3.5)

It is thus established that (4.3.3) has well defined behavior at time
r,
scales t/e J j=1,...,m in the sense of Definition 4.2.3, and that

the behavior of (4.3.3) at different time scales needs to be considered
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in a uniform asymptotic approximation. In fact, prpensteadtis
the onﬂy author known to us to have considered asymptotic approximations
uniformly valid on [0,).

The crucial assumption made by Hoppensteadt in equation (4.3.2)
is avoided in our work. We start with an arbitrary matrix A(e) and
we give a necessary and sufficient condition for a uniform asymptotic
‘approximation of exp{A(e)t} in terms of several time scales to exist.
We give.a comstructive method to compute thé decomposition (4.3.2)
and the integers rj,.j=l,...,m that determine the different time scales.
See Section 4.4.1 and more specifically equations (4.4.26)-(4.4.28).
From'an applications viewpoint this represents a major advantage since
our starting point is closer to the way real systems are specified.

Campbell and Rose in [Cam 79] analyze the limiting behavior of:

exp{ (a+eB) t/c} (4.3.6)
as €¥0 proving that a well defined pointwise limit exists if and only
if A is semistable. In this case the limit is given by:

D
e(A/€+B)t _ e(I—AA )Bt

lim (1-aaP) (4.3.7)

evo
where AD is the Drazin increase of A. This result gives a necessary
and sufficienf condition for A(e) = A+eB to have well-defined behavior
at time scale t/e. Given the pointwise nature of the limit and the

fact that attention is focused a priori on one particular time scale,
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nothing is implied about the existence of well defined behavior at
slower time scales. One major consequence of this is that the
question of a uniform asymptotic approximation of exp{A(é)t} is not
addressed.

In [Cam 78] the case of

A(e) = A+ e + 5 lc+ Sp (4.3.8)

for s>r>1 is analyzed focusing now on time scale t/es, The
objective is to determine conditions under which the pointwise limit

lim exp{a(e)t/e"} ; (4.3.9)
Y0

exists, i.e., conditions are sought under which A(g) will have well
defined behavior at time scale t/es. Several sufficient conditions
for (4.3.9) to exist afe obtained in terms of the matrices A, B and C
but the deVelopment is quite complicated and no underlying patter is
readily appearent or exposed when there is behavior at several time
scales.

Campbell, in summary, concentrates his attention'in obtaining
pointwise Limits forn a given time scale. The question of how many and
which time scales a system exhibits and the construction of uniform
asymptotic approximations obtained by combining the different pointwise
limits is not éddress in his work. The limiting results obtained by
Campbell are also obtained as corollaries of Theorem 4.4.4 proved in

the next section (in particular, see Section 4.4.3). We also show
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that the conditions under which we prove well-definéd multiple time
scale behavior are necessary and sufficient. (see Section 4.4.4).
This chapter can thus be seen as a clarification and significant

‘extension of the work of Hoppensteadt and Campbell in three ways:

1) In derdving rather than assuming a decomposition of A(g) that
clearly displays its time scale structure. In this way we overcome the
ériticism often directed at work such as that of Hoppensteédt that as-
sumes an»a-anOAL knowledge of the time scale sfructure of the System.

2) In establishing a necessary and sufficient condition for the
existence of well defined multiple time scale behavior.

3) in producing a uniﬂoﬂm asfmptotic approximation rather than

pointwise approximations.
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4.4 The Multiple Semistability Case: Complete Time Scale Decomposition

*
In this section we study singularly perturbed LTI systems( )
ax” (t) €
R-radi Ab(E)x (t) (4.4.1)

which satisfy a multiple semistability condition to be specified in
Section 4.4.1. These systems have well defined behavior at all time
scales and have non-trivial evolution at a finite number of fundamental
time scales which are of the form t/ek, for a set of integers k. 1In
Section$4.4.2 and 4.4.3 we compute explicitly the evolutions of (4.4.1)

at the fundamental time scales and we show that they can be used

a) to construct an asymptotic approximation of xe(t)

uniformly valid on [0,®) and
b) to define a set of reduced-order models of (4.4.1)
each valid at a different time scale.
Finally, in Section 4.4 we show that such a complete time scale

decomposition is possible only under the multiple semistability condition.

4.4.1 The multiple semisimple null structure and the multiple
semistability conditions

Let Ao(e), €€[0,€0] be a semistable matrix with a series expansion
(convergent or asymptotic) of the form:

o 0]
A(e) = ) € (4.4.2)
o op

p=o

*

( )We change here our notation from A(g) to Ao(e) because we need to cons-
truct a sequence of matrices Ak(e) the first = of which will be the system
matrix in (4.1).
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In this section we specify two conditions that will be seen to play a
basic role in the and normal rank d multiple time scale behavior of
(4.4.2).. For our development we first need to construct a sequence of
matrices Ak(e), k=1,...,m, obtained recursively from AO(E) as indicated
below.

Let Po(e) denote the total projection for the zero-group of eigen-
values of Ao(e). It follows from Lemma 3.4.2 that, if Aoo has SSNS,
the matrix

P (e)A (e} A (e)P (g) P (e)A (e)P (&)
o o o o o o

) 0 — =
A (e c . - (4.4.3)

has a series expansion of the form:

- P |
a (e) = ) € AL (4.4.4)
p=o

If the resulting first order term in (4.4.4), A also has SSNS we

10’

define the next matrix Az(e) as in (4.4.3), i.e.,

P. (e)A. (g) P.(e)P (e)A (g)
AZ(E) = 1 1 = 1 02 o = Z QPAZ (4.4.5)
€ e p=o0 P

where Pl(E) is the total projection for the zero-group of eigenvalues

of Al(e). The recursion ends at

P (e)a (g) P (e)p (e)...P _(e)A (e)
a (e) 2 m-1 m-1 - m-1 m-2 o) o) (4.4.6)
m € m
€
= z €P
p=o e

if the matrix Amo does not have SSNS.



-100-

Before proceeding with several propositions that establish properties
of the sequence of matrices Ak(e) and Pk(s), we provide some insight
vinto the recursive process outlined above, and a preview of the results
that follow. The contruction of the matrices Ak(e) can be interpreted
as a way of grouping the eigenvalues of AO(E) according to their
asymptotic behavior as €¥0. By definition, Po(e) is the sum ofAthe
eigenprojections for tﬁe eigenvalues of Ao(e) that converge to zero as
€¥0 (the zero-group). Thus, Qo(e) = I—Po(e) is the sum of the eigen-
projections corresponding to the order one eigenvalues of AO(E). The
subspaces R(Po(e)) and R(Qo(e)) are invariant subspaces‘of AO(E), and
PO(E)AO(E) is the part of Ao(e) in R(Po(a)) in the sense that all
eigenvalues of Ao(e) in the zero group are also eigenvalues of
PO(E)AO(E) (with the same eigenspaces) but none of the order one eigen-
values of AO(E) is an eigenvalue of Po(e) Ab(E)' The matrix
Al(e) = PO(E)AO(E)/E has the following eigenstructure: an eigenvalue at
zero with eigenspace R(Qo(e))(:) N(Ao(e)) and the nonzero eigenvalues
that are the zero-group eigenvalues of Ao(e) scaled by a factor of 1l/¢
with the corresponding eigenspaces unchanged. For example, the order
one eigenvalue of Al(e) are the order € eigenvalues of AO(E) and
R(Ql(e)) is the corresponding eigenspace. At the next step we construct
the matrix

P (s)Al(s) Pl(e)Po(E)AO(E)

A2(€) = < = >
€




-101-

which has a zero eigenvalue with eigenspace R(QO(E))(:> R(Ql(e)).

Its nonzero eigenvalues are the eigenvalues of Ao(e) that converge to
zero‘faster than €, scaled by 1/€2. Thus, the order one eigenvalues
of AZ(E) are the order €2 eigenvalues of AZ(S) and the corresponding

eigenspace in R(QZ(E)).

This recursive grouping is possible as long as the semisimple
null structure condition is satisfied at each stage. If this condition
is not violated then for some m < rank AO(E), Am+l(8)=0, i.e., the
recursion has a finite number of stages and each eigenvalue of Ao(e)
belongs to one of the above mentioned groups. The case where the
recursiqn ends at k=m because Ak,o ‘does not héve SSNS is discussed
in Section 4.5. 3.

The following proposition establishes several basic properties

of the matrices Ak(e) and Pk(e).

Proposition 4.4.1

Let Ak(e), k=0,1,...,m,be the sequence of matrices
constructed above, and let Pk(e), k=0,1,...,m be the
corresponding total projections for the zero-groups of
eigenvalues. Define Qk(e) = I—Pk(e). Then, for €

small enough, say €€[0,€l], we have:
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1) P(e)P(e) = (e)P, () i,3=0,1,...,m (4.4.7)

i) 9, (e)g; (e)=0 i# 1,3=0,1,...,m (4.4.8)

iii) R'=R_ (€)@ .. (DR () (DRE_(€)..P, (e)) (4.4.9)
k=0,1,..,m

iv) rank Qk(e) = rank Ak,o (4.4.10)

and for €€(0,€l],

v) 9 (e)A_(e) = Qk(e)ekAk(E) - ekAk(e)Qk(E)

(4.4.11)
= AO(E)Qk(e)
k=0,1,...,m

Proof:
Remember that if lep(Ako) then, for € small enough, Aep(Ak(e)).

In what follows, all statements involving € apply, unless otherwise

stated, for €€[O,€l] with €. assumed small enough so that Aep(Ako)implies

1
Aep(Ak(E)) for k=0,1,...,m.

To prove i) notice that by definition of Al(E), Po(e) and Al(e)

),

commute and therefore for Aep(AlO

(a, (€)-ADP _(e)R(A,A, (€)) = P (€) =

1

(3, (E)-AI)R(A, A, (€))P_(€)
or

(8, (€)-A1) [P_(€)R(A,A; (£))-R(\,A, (€))P_(£)1=0
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which implies that PO(E) and R(A,Al(e)) commute because (Al(e)—KI) is

invertible. We thus have

- - Yan =
P_(€)P (e) = m[ P_(e)R(\,A (€))ar =
1

1 (4.4.12)
- Smi s R(A,Al(e))dXPo(s) = Pl(e)Po(e)
1
where Yl is a positive contour enclosing the origin but no eigenvalues of

AlO different than zero.

To prove 1ii) notice first two facts:

a) For AGD(AIO)

Q (g)
P (e)R(A,A (e)) = R(A,A, (g)) + — (4.4.13)
o 1 1 A

which is obtained by multiplying both sides of:

Qo(e) ‘
3 (AI—Al(e))

Po(e) =1~

by R(K,Al(é)). (The above inequality follows from

the fact that Qo(e)Al(€)=0).

b) For Aep(Al(e)),
P (e)R(A,A_(e)) = eR(e),A (£))P (g) ' (4.4.14)
o) . 1 o (o}
which is obtained by multiplying both sides of
(A (€)-eAI)P (e)R(A,A_(€)) = P (g)
[} : o 1 o
by R(eA,AO(e)).

Combining (4.4.13) and (4.4.14) we get:

0 (g)
R(AA (€)= R(eA,A_(e))P_(e) - °_ (4.4.15)
: : o o A
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Now, it follows from the definition of Ql(s) A I-Pl(e) and (3.4.12)

that

o 1 .
Q,(e) = - 5= R(A,a, (€))ar
1

where Pl is a positive contour enclosing all eigenvalues of AlO

except the zero eigenvalue, and therefore using (4.4.15) we have:

: 1
9, (e) = - 22= f eR(EN,A_(€))P_(e)d) +
T
1 . o M)
2,ri_/1: — dA (4.4.16)
1

The second integral is clearly zero because Pl does not enclose the

origin, and multiplying (4.4.16) by QO(E) we get:

Ql-(e)QO(E:) = -

211 ./F. €R(€7\,Ao(€))d)\ PO(S)QO(€)=O

1
That Qo(e) and Ql(e) commute follows from (4.4.12). The direct sum
iii) follows immediately from the fact, that Qo(e), Ql(e) and
Po(s)Pl(e) are projections that anihilate each other and add up the

identity.

We now proceed with the recursion assuming that i)-iii) are
satisfied for m=%. From the commutativity property of Pk(e), k=0,1,..%,

and the definition of A 1(E) if follows that

2+

Pj(e)AMl(e) = AQ'_I_l(E)Pj(E:) = A, .(€) j< &+1 .

2+1
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and therefore for A€p(A ) we can write:

£+1,0

(A£+1(€)-KI)Pj(e)R(A,A2+l(€)) = Pj(€) (A£+l(€)-AI)R(K,AR+l(€))Pj(E)

i< &+l
As before, the invertibility of (A£+l(€)-AI)»implies that'Pj(E) and
R(A,A2+l(e)) commute V3j < &+1 and therefore i) is satisfied for
fL=m+1.

To prove ii) for f=m+l notice that a recursive use of (4.4.15) gives:

2+1

_ 2+1
R(A,A (e)) = €7 "R(e K.AO(S))PO(E)Pl(E)...Pl(e)—

2+1

1 2
3 [Qp.1(E)+eQ (e)P, , (e)+e Qz_l(e)Pl(e)P2+1(e)+....

L
+ € Qo(E)Pl(E)"'Pz+1(E)]

We thus have:

1 +1_ f+1

Q1 (8) =~ ooy f e R(eT A,A_(e))Ak B_(€)....P, (€)
rIL+1

readily giving Qﬁ+l(€)Qj(€)=o' V3i<& and proving that ii) is also satisfied

for m=2+1.

Finally, to extend iii) to m=2+1 notice that using the fact that

Pj(E)QZ+1(€) = Q£+l(e) Vi<% we get
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(e) + Po(€)...P2+l(€) =

QSL+1
Q£+1(€) + PO(E)...PQ(E) - Po(e)...Pg(e)Q2+l(e) =

PO(€)...P£(€)

or
%
I= _Z Q () + B (e)...P (e) =
j=o
2+1
.Z Q () + P_(e)..Py  (€)
j=o

which together with i) and ii) gives iii).
To prove 1iv) notice that Qk(e) is continuous at €=o and therefore, by

Lemma 3.2.4 and for € small enough,we have:
= = —_ P = Y :
rank Qk(s) rank Qk(O) n-rank " rank Ako

where Pk = iig Pk(e) is the projection on N(Ako) along R(Ako).

To-prove' v) notice that ii) implies:

Q9 (€) k#J

0 k=7

Qk(E)Pj(E) Pj(e)Qk(e) = {

and therefore

_ k
Q (E)A_(e) = (e)P, _,(e)...P (e)A_(€) =Q (e)e A (€)
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The following proposition establishes that the sequence Ak(s)

always terminates at some finite m.

Proposition 4.4.2

Let Ak(e), k=0,1,... be the sequence of matrices
defined by (4.4.6). One of the following two conditions
(or both) occur at some finite m:

i) A does not have SSNS

14

.. =*
ii) Am+l(€) 0

In the analytic case, ii) is equivalent to:

m
ii') ) rank =d (4.4.17)
k=0 Ak,o

Proof: We only need to prove that ii) or, equivalently, ii') will occur
if i) does not. Suppose that all matrices Ako' k>0 have SSNS, then for

V320,
n
R = R(Q (EN®... @R(Qj (e)) DRE@_(e) -+ (€)) (4.4.18)

and because rank Qk(E) = rank Ak o only a finite number of Ak 0'5 can
[ r

be nonzero. Let m be such that Am O#O and Ak o=0, k>m. Notice that

’

Pk(e)=I if Ak,o=° and therefore Ak,o=° for k m implies Am+l(€)=0

(Am+l(€)-0 if (4.4.2) is not convergent). Consider now the analytic case.

—
¢ )TQ be interpreted as Am+l(€)~—0 if (4.4.2) is an asymptotic series.
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Because
Ab(E)Po(e)Pl(e)...Pm(e)

€

r

Am+l(€) =

Am+l(e)=0 implies R(Po(e)...Pm(e))(: N(Ao(e)). Oon the other hand, if

xeN(Ao(e)) then x€N(Ak(€)) and therefore Pk(e)x=x. Consequently,
N(AO(E)) = R(Po(e)...Pm(s)) and from (4.4.18) it follows that

ii) implies ii'). Conversely, if ii') is satisfied, it follows from
(4.4.18) that dim R(Po(s)...Pm(e)) = n-d = dim N(Ao(e)) which together
with N(&_(£))CR(P_()...P_(e)) again implies N(A_(e)) = R(P_(e)...B_(e))

and therefore Am+1(€)=0. o

We will say that a matrix A _(e) satisfies the muwltiple semisimple
nullstructure (MSSNS) condition if the sequence of matrices Ak(e) can be -
constructed up to a stage k=m for which (4.4.17) is satisfied with all

matrices

P (g)...P _(e)A (g)
_oqa k-1 o o _
Ak,o = 1lim T k=0,1,...,m

eYo €

having SSNS. If AO(E) satisfies the MSSNS condition and in addition all

matrices Ak o k=0,1,...,m, are semistable we will say that Ao(e) satisfies
14

multiple semistability (MSST) condifion. Although in rest of Section 4.4

we mainly deal with matrices which satisfy the MSST condition, all the

preliminaxy results developed in this section hold for the less restrictive
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MSSNS condition and will be used in Section 4.5 to partially extend some
of the asymptotic results derived for MSST systems to a larger class of
systems.

. The following proposition provides some insight into the structure
of the matrices Ak(e), k=1l,...,m, and into how they relate to AO(E).
(See also Figure 4.1 for a graphic diagram of the geometric content of

Proposition 4.4.3).

Proposition 4.4.3 .

1f Ao(e) satisfes the MSSNS condition then, for some

€l>0,

i) Ak(e), k=0,1,...,m have SSNS for ee[O,el].

ii) For €€(0,€l];

R(a (€)) = R(Q (eN(®.... (DRI (e)) k=0,...,m (4.4.19)

N, (e)) = R(Qo(e))@...@R(Qk_l(e)) N(a_(e)) (4.4.20)
k=1,..,m,

N(AO(E:)) = R(Po(e)...Pm(e)) (4.4.21)

iii) If A(e) is an eigenvalue of Ak(e) not belonging
its zero-group then Ekl(e) is an eigenvalue of
Ao(e) in R(Qk(s)). Conversely, if p(e) is an
eigenvalue of AO(E) in R(Qk(e)) then e-ku(e)
is an eigenvalue of Ak(e) not belonging to its

Zero-group. .
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R"=RQpEN® - - - - - - DEQENDE(QEN DA (AgfE)

R(AE)) - Nage)
R (AE) A
R (A (E) A, (€)
A(Am(E)  MAE)

Figure 4.1: TIllustration of Proposition 4.4.3.
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- Proof:
We have already seen in the proof of Proposition 4.4.2 that
(4.4.17) implies (4.4.21). Now, if yeR(Ab(e)) then y=Ao(€)x and

it follows from (4.4.9) and the fact that Pk(€)A0(€)=AO(€)Pk(€), that

m
y= ) 0 ()A (e)x
k=0 k [o}

which implies yeR(QO(E))(:)...(:)R(Qm(e)). This together with

m m
rank A_(g) = ) rank A, = ) dim R(Qk(E))
k=0 k=0
implies
R(a_(e)) = R(Q () (®...(DR(Q_ () (4.4.22)

which finishes the proof of i), ii) and iii) for k=0.
Consider now N(Ak(e)). By definition of Ak(s), we clearly have that,

for € small enough but not equal to zero,

N, (e)) DN (e)) DR(Q () D ... DR(Q_, () (4.4.23)

Establish inclusion in the other direction by contradiction. Let
xeN(Ak(E)) but not to the right hand side of (4.4.23). From (4.4.9)

we have:

R = Rig_(e) D --- DRig_()) DN&_(e)) (4.4.24)
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Hence, write x=x1+x2 with xle R(QO (e)) @ .o ®R(Qk—l (e)) @

N(Ao(e)) and Ofx, € R(Q (€)) ®--- @R(Qm(a)) with P (e)x=x if f<k.

Now, X € N(Ak(e)) implies that

Ao(e)Po(a)..

k
€

.Pk_l(e)

0 = Ak(e)x

A (e)P_(e)...P,

= X
ER 2

A (g)
(o]
X

k 2
€

i.e., x2€ N(AO(E)) thereby yielding a contradiction. This establishes

(4.4.20). To prove (4.4.19), note that by definition of Ak(e)

R(Ak(e))(Z R(p_(e)...P, ,(€))NR(A_(€))

and, it follows from Proposition 4.4.1 and the SSNS of Ao(e) that

R(®_(€)...B,_, ()R () = R(Q (€N(D---DRIQ (€))

and

dim R(Ak(e)) n-dim N(Ak(e))

k-1

- -( 1

rank Q. (g) + (n-d))
Jj=0 J .

m
= ) rank Q.(g)
j=k ’

= dim R(Po(e)...Pk_l(e))r\R(Ao(e))
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This implies that

R(a, (e)) = R(Q (€)@ ... DR(Q _(e)) (4.4.25)

Equation (4.4.24) together with (4.4.20) and (4.4.25) gives
R'= R(a_(e)) DN (@& () k=0,1,...,m

proﬁing that for € small enough but not zero the matrices Ak(e), k=0,1,..,m
have SSNS. By the MSSNS condition, the matrices Ak(O) for k=0,1,...,m
also have SSNS which completes the proof of 1i). To proveiii) notice

that if Ak(e) u = A{e)u and A(e) does not belong to the zero group of

eigenvalues of Ak(e) then Qk(s) u=u and therefore it follows from that:
A (€)u =2 ()0 (€)u= A (€)0 ()u =
o o k Ak k -
K .
€ Ak(e)u = ekMe)u
Conversely, let Ao(e)u = p(e)u with u€R(Qk(€)) then,

e ¥ (e)u = e'kAo(e)Qk(em = A (€)0, (e)u = A (e)u .

It follows from (4.4.11) and (4.4.21) that, if Ao(e) has MSSNS then

m
k
A(e) = ) € a (e)Q (e) (4.4.26)
[o) k
k=0
This decomposition can be interpreted as a decomposition of AO(E)

according to the direct sum

n
R' = R (€)@ ... DR(Q () DR _(€)...E_(£)) (4.4.27)
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as follows:

a(e) =B (e @er @) ®...(Med (D0 (4.4.28)
where ik(e) denotes the restriction of Ak(s) on R(Qk(e)).
The eigenvalues of AO(E) can thus be divided into {(m+l) groups cor-

responding to the eigenvalues of Ao(e) in each of the invariant

J for some

subspaces R(Qk(e)). Each eigenvalue of Ao(e) is of order ¢
integer j>0 and the eigenvalues of order Ek coincide with ak times the
eigenvalues of order one of Ak(e). Figure 4.1 illustrates the structure
of the matrix Ak(e): its null space includes, in addition to the null
space of Ao(e), the eigenspace of AO(E) corresponding to all eigen-

values of order 0(1), O(E),...,O(ek—l) while its range includes the
eigenspaces of Ao(e) for all eigenvalues of order o(Ek_l). The cons-
truction of the sequence Ak(e) can thus be viewed as a way to separate

the eigenvalues of Ao(e) in different groups according to their asymptotic
order as >€¢0. The actual calculations required to compute the matrices
Ak(e) will be discussed in Section 4.4.5.

The following theorem illustrates the consequences of the MSSNS

condition for the multiple time scale behavior of exp{Ao(e)t}.

Theorem 4.4.4

If AO(E) satisfies the MSSNS condition then:

m
exp(ag el [ o (e)exp{a (e)e“th+p_(e)..P () (4.4.29)
T k
= ) exp{Q (e)A (e)e t}-mI (4.4.30)

k=0
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m

kEo eXP{Qk(S)Ak(E)Ekt} (4.4.31)

T k
exp { ) 9, (E)A ()€ t} (4.4.32)

k=0

Proof:

Write

exp{Ao(e)t} = Po(e)exp{Ao(e)t} + Qo(e)exp{Ao(e)t}

A simple algebraic manipulation gives (remember, Po(e) is a projection

that commutes with Ao(e)):

exp{Ao(E)t} = exp{Al(e)et} - QO(E) +

Qo(e)exp{AO(e)t} (4.4.33)

Repeating the same manipulation with exp{Al(e)t} we obtain
2
exp{Ao(E)t} = exp{A2(€)€ t} - Ql(e) - QO(S) +

o, (e)exp{a, (e)et} + Qo(e)exp{Ao(ejt}

By the MSSNS condition satisfied by Ao(e) this process can be repeated

m times giving:

m+1 &
£} - ) 9 (e) +

exp{Ao(e)t} = exp{Am+l(€)€ L

m
0 (e)exp{a (g)e e} (4.4.34)
k Ay

k=0
As we have already shown in the proof of Proposition 4.4.2 the

rank condition (4.4.17) implies Am+1(€)=0 and therefore (4.4.34)
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proves (4.4.29). Using the identity

- k. , k
0, (e)exp{a (e)e t} = explg (e)A (e)e't} - I + Q, (€)
m
in (4.4.29) and the fact that P_(e)...P (&) = I- ] Q (e) we get (4.4.30).
. m k=0
Equation (4.4.28) gives (4.4.32) and the product formula (4.4.31) follows

now from (4.4.32) by the commutativity properties of Qk(e)Ak(e):
Qk(e)Pﬁ{(e)-Qj(e)Aj(e) =0 j#k
which results from (4.4.8) and (4.4.11).

Equation (4.4.29) corresponds to the splitting of exp{Ao(e)t}
according to the direct sum decomposition (4.4.26). Under the condition
‘of MSSNS, this splitting corresponds also to a decomposition into parts’

of exp{Ao(e)t} that evolve at different time scales. For example,

: k k
Qk(E)exp{Ak(E)e t} does not change significantly until t is of order 1l/e .

Theorem 4.4.4 thus gives a consistent spatial and temporal decomposition of
of eq. (4.4.1) which as we will see is very convenient to study the multiple
time scale behavior of (4.4.1) and also to derive uniform asymptotic

approximations of exp{Ao(a)t}.

4.4.2 Uniform asymptotic approximation of exp{Ao(e)t}

As we have proved in Proposition 4.2.1, exp{A(o)t} is a uniform
asymptotic approximation to exp{A(€)t}on any compact time interval [0,T].

It is quite clear, however, that this approximation does not capture the
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multiple time scale behavior of a singularly perturbed system. To

construct an approximation which captures this behavior, we have to

requi:e it to be uniformly valid over the infinite time interval [O,“).
The next theorem gives the desired approximation under the assumption

that AO(E) satisfies the MSST condition.

Theorem 4.4.5

Let Ao(e) satisfy the MSST condition and let Ak(e),
Pk(e) and Qk(a), k=0,1,...,m, be the sequences of
matrices constructed in Section 4.4.1. Then,

lim sup ||exp{a (e)t}-¢(t,e)]|=0 (4.4.35)
gYo t>o °

where ¢(t,e) is any of the following expressions:

m
: k
d(t,e) = ) Q0 exp{Ak’oe th+ P_...P - (4.4.36)
k=0
= k
= Eo exp{Ak'oe t} - mI (4.4.37)
m k
= 1 exp{Ak of t} (4.4.38)
k=0 !
o x
= exp {7y A€ £} (4.4.39)
=o f

i = 1i = lim P 4
with Ak,o ;iz Ak(e), Pk iiﬂ k(E:) an

Qk = lim Qk(t-:).
gYo
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Furthermore,

m
n
R = R(Aoo)(:)...CDR(Am'Q)C) (;:L N(Ak’oﬁ (4.4.40)
Proof:

Let us first prove (4.4.35) for ¢(t,e) as in (4.4.36).

Using Theorem 4.4.4 we can write:

exp{Ao(e)t} - ¢(t,e) = (Po(e)...Pm(e)—Po...Pm) +
T - k » k
kZO(Qk(E)exP{Ak(E)e t} - Qk exp{Ak'oe t}h

There is no problem with

P (g)...P () - P ...P
o] m o m

because 1lim (P (e)-Pk)=0 by definition. To estimate each of the
Evo
other terms write:

| , k - k
v (k0 4 o (e)expln (e)e e} - o expln_ "t} -

k
1 et .
- 55 f "€ ¥ ®O,A (€)-RAA_ A\

I‘k
where Ik is a contour that encloses all non-zero eigenvalues of

Ak,o' By semistability of Ak,o’ Tk can be taken to lie strictly

inside the left half plane and therefore for some 0<0
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k
1 OE t
e e[| 52 5= & .{ ||R(A.Ak(e).-) - R_(,?\,Aklo).ll_d?\
k
which gives
[y e}l < E2L?f [|ROA_(€)) - R, A ) ]aA
I\k J IO

From Lemma 3.4.1 it follows that R(R.Ak(e)) converges to R(K.Ak o)

uniformly on Pk and therefore

[y ko) || < Re)> o as  eto

proving (4.4.35). To establish (4.4.40) notice that from (4.4.9) we

have

R = RO (€N D ... DRQ, (€) DRE (). B (€))

and using the fact that Qk(s) and Pk(e) are projections which are

continuous in €, we obtain

R = RQ) @ -.- ORQ) OR_...2 ) (4.4.42)
By definition Qk is the projection on R(Ak o) along N(Ak o) and

therefore R(Qk) = R(Ak 0) thus (4.4.42) can also be written as
14

m
n
R = R(Ao,o)@...@R_(Am,o)@(QN(Ak'O)) (4.4.43)
Now,

9 exp{Ak oekt} = exp'{Ak oekt} - I+,
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which proves (4.4.37). The equivalence of the expressions (4.4.37),

(4.4.38) and (4.4.39) follows immediatly from (4.4.43) i.e., from the

 fact that

Ak,o Aj,o =0 j#k
(®]
As the above theorem shows, the sequence of matrices Ak,o' k=0,1,..,m,
completely determines an asymptotic approximation to exp{Ao(e)t} which
captures its multiple time scale behavior. In the next section we use
this result to determine the complete multiple time scale behavior of

ax” (t)

_ €
at = Ao(e)x (t) | (4.4.44)

and to define a set of reduced-order models of (4.4.44).

4.4.3 Multiple time scale behavior and reduced-order models

In this section we use Theorem 4.4.5 to show that systems which
satisfy the MSST condition have well defined behavior at all time
sca}es and that the matrices Ak,o determine a set of reduced-order
models of the system.

The following corollary of Theorem 4.4.5 gives an explicit formula

for the evolutions of exp{Ao(E)f}-
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Corollary 4.4.6

Let A (e) satisfy the MSST condition and let Ak ,P
[o} i 0k
and Qk, k=0,1,...,m, be the sequence of matrices

specified in Theorem 4.4.5. Then,

: k
i) lim sup ||exp{a (e)t/e }- & (t)]|]|=0
Yo  §<t<T o k (4.4.45)
V&8>0,VT<e
k=0,1,...,m-1
' . : m
ii) lim sup ||exp{a (e)t/e }-® (t)]|=0
Vo  8<t<e o m (4.4.46)
V§>0
where Qk(t) is either of the following expressions:
o (£) =9 exp{Ak,ot} + P_...P (4.4.47)
=P ...B exp{Ak’ot} (4.4.48)
k=0,1,...,m
Proof
From Theorem 4.4.5 we have
. k k-1 . k-2
exp{a_(e)t/e"} = ] @, expla, t/e” "} + o exp{a  t}+
2’=o v 14 4
(4.4.49)

m 2~k
+ z Ql exp{Aﬁ 0€ £} + Po...Pm + o(1l)

2=k+1

uniformly for t€[0,®). Now, by the semistability of AZ o we have
r

- I St y
9, exp{a, t} = - o= f "ROA, Y
T

L
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for some TQ in the left-half plane, and by boundedness of R(A,Az o) on
Ny

Tl'

| -0t
12, eXP{Azlot}||5,M2 e

for some Mg' o >O, We thus get

'3
k-2
| k-4 -0 6/€
sup ||Q2exp{A£ o t/e” T} |< M, e
§<t<o !
which gives
k-1 k=1
lim sup z Q exp{Ag ot/€ }=0 (4.4.50)
gYo O<t<e f=o !
On the other hand, it is clear that
. 2-k v
lim sup ||exp{a e "t} -1||=0 V>k (4.4.51)
geYo o<t<T %ro
<t Y T<o

and using (4.4.50) and (4.4.51) in (4.4.49) we get (4.4.45) and

(4.4.46) with

m

® (t) = Q exp{ t} + z Q. +P ...P
k k Ak,o Q=k+1 % o m

Equality of this expression with (4.4.47) and (4.4.48) follows from

the direct sum decomposition (4.4.42). : 0
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It is now immediate from (4.4.47) and (4.4.36) that the evolutions
of exp{Ao(s)t} at time scales t/ek, ¢k(t), k=0,1,...,m can be
combined to produce a uniform asymptotic approximation to exp{Ao(s)t}

as followé:

_ m k m-1
exp{a (e)t} = ) & (et) - )§ PP ...P_+ o(l) (4.4.52)
o : k ol k
k~o k=0
This equation shows that only the behavior at time scales
k
t/e , k=0,1,...,m, is needed to capture the main features of the evolution
of exp{Ao(e)t} over the infinite time interval [0,®). It is clear from
the proof of Corollary 4.4.6, however, that the limit

v lim exp{Ao(E)t/q(E)}
eYo

k .
exists for any order function G(€). Indeed, if ak(e) = o(g ) and

&t 0(0, (€)), k=0,1,...,m-1, then

lim exp{Ao(e)t/uk(e)} =P_...P

eYo ‘ k

and for a(e) = O(ém)p

ii? exp{AO(e)t/a(e)} =P_...P_

Thus the system has well defined behavior at all time scales even though
only a finite number of them, that we will call the fundamental time

scales, are required to capture the main features of the system's evolution.
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At a given time scale all modes that evolve at faster time scales
will have reached steady state (remember the multiple semistability
condition) while modes which evolve at slower time scales have yet to
depart from their initial conditions. A reduced-order model derived
from Ak,é can then be associated with the modes that evolve exactly at
time scale t/ek.

To interpret the matrices Ak,o as reduced-order models of the
system

ax® (t)

_ (LE €,y _
e = Ao(e)x (t) x (0) xQ (4.4.53)

valid at different time scales, notice the the asymptotic approximation

m
. . k
exp{Ao(_e)t} = kzo 9 exp{Ak'oE: t} + P_.-+P+ 0(1) (4.4.54)

and the direct sum decomposition:

R =R )@ - BDRQIDRE_...2)
imply that if x8(0)€ R(Qk)) then x° (t) remainé in R(Qk) for all t>0
except for terms which are uniformly negligible as €%0. Thus
R(Qk), k=0,1,...,m and R(Po...Pm) can be though of as aflmost Lnvariant

subspaces of the system (4.4.53). Furthermore, the parts of x%(t) that
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evolve in different subspaces do so at different time scales. To
describe the part of xe(t) that evolves at time scale t/ek to first

order approximation, the following model can be used:

dy, (t)
k — —
T = pﬁ{,o Yk(t) k=0,1,...,m (4.4.55)
If yk(o) = QkxO then
yk(ekt) = Qkxe(t) + o(1) k=0,1,...,m (4.4.56)

uniformly for t>0, and once again a uniform approximation of xe(t) can
be constructed by combining the solutions of the reduced-order models

(4.4.55) as follows:

m

X)) = ¥ v (%) + P ...p x + o(l) (4.4.57)

k o m o
k=0
Notice also that:
m
z rank Ak = rank A (g) (4.4.58)
,0 [}
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and therefore the combined dimensionality of the reduced-order models
(4.4.55) équals the dimension of the exact model.

This decomposition of (4.4.53) into a set of reduced-order models
is more easily visualized using an appropriate change of basis. From

Theorem 4.5.1 we have

In
R =R@, I@-..ORB, VO (

N, 00 (4.4.59)

k=0

and by the SSNS property of the matrices Ak o it follows that:
14

m

N("Ak,o)F R(AO.O)‘ @ ®R(‘Ak—l,o) ®R(Ak+l,o)' @ Tt ®R(Am,o) @ ( ° N(;H"-ro))

k=

If we now choose a basis adapted to (4.4.59), the matrix A o will have,
’
in this new basis, a block diagonal form with only one non-zero block.

That is, if T denotes the change of basis matrix, then

...l . ~
TAk’OT = dlag{0,0,...,O,Ak,O,...,0}

where ik is a full rank square matrix of dimension equal to rank Ak o
14

Using this change of basis we can write (4.4.39) as follows:

m

-1k
Z T T "¢ t}T + o(l)
N

T exp {

exp{Ao (eyt}

= At Klet Kme t
T"diag{e °© e  eea,e ,I}T + o(1) (4.4.60)

1l
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showing that, to first order approximation, the system (4.4.53) can be

thought of composed of (m+1) uncouplfed subsystems

d§k(t)
—a = Akyk(t) k=0,1,...,m
each running at a different time scale.
In the next section we show that such a complete decomposition is
possible only if Ao(e) satisfies the MSST condition and in Section 4.4.5

we describe an algorithm for the computation of the matrices Ak o
r

4.4.4 Necessity of the multiple semistability condition

In Sections4.4.2 and 4.4.3 we have shown that if a singularly
perturbed LTI system satisfies the MSST condition then it has well defined
behavior at all time scales and that there exist a set of €-independent
reduced-order models which describe the system's evolution at each of its
fundamental time scales. Here we will show that if the MSST cénditidn is

violated then at least for some time scale, t/a(e), the limit

lim exp{Ao(E)t/oc(e)}
eYo

does not exist. 1In this case a complete time scale decomposition of the
type developed in pfevious sections ‘is not possible. Some partial extensions
to systems that violate the MSST condition are, however, possible and will

considered in Section 4.5 and in Chapter VI.
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Two examples will shed some light as to what happens when the

MSST condition is violated:

Example 4.4.7

Consider the matrix

e 0 -2€
Ao(E) _|€e € -2
1 1 -2

Tt is semistable for €€[0,1] and it has three real eigenvalues

o . — 2 2
AO 0; Xl— 2 + o(l); Az € + o(e”)

The matrices Ao and Al o (see Section 4.4.5 for an algorithm to compute

’ ’

them) are given by:

0 0 0 0 -1 0
A =] 0 0 0 |5 A = 0 0 0
0,0 1,0
1 1 -2 0 -1/2 O
and the MSST condition is violated because Al o does not have SSNS (it is
14

nilpotent). A direct computation of exp{Ao(e)t} gives:

— -
(As=A)) At e(e=\.) At
22 L - XE (e 1 -1) —__X—l_ (e . -1)
1 1
ALt ' 1
exp{A (e)t}= o 1 At =
o 0 (e Al 2)e 2ce 1 Az Al
At ALt
| 0 -e 1 (E—Xl)e 1 —
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r‘Az-Al c Azt s(Az-e) Ayt 7
— o (e ™ -1) o (e -1)
2 2
1
LA At At
0 (A2-€+2)e -2¢ce
Azt Azt
L. O e (Az—e)e — (4.4.861)

and we have the following time scale behavior:

1 0 0
lim exp{A (&)t} = exp{a ¢} ={o0 1 0
o) " *"0,0
evo
0 (1-"2%) /2 o2t
1 t/2 ¢]
iizg exp‘[Ao(E)t/E:}= Po exP{Ao,lt} = 0 1 0

Notice the term t/2 in the behavior of the system at t/e. It is
. . . 2 .
this unstable entry which when seen at time scale t/e will diverge.

To see that the limit

lim expia (€)t/€2} (4.4.62)
eYo ©
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does not exist, let us look at the entry (1,2) of QXP{AO(e)t/eZ};

2
. A t/e
(eXP{AO(;s),t/ez}) = ;f— (‘e 2 -1) -
" 1,2 2

2 N
A.t/e
()

>a|m

1

2 2 ‘
Because 12=-€ + o(e ) the first term in (4.4.63) is of order 1/€ as
evo and therefore (4.4.62) diverges. Thus, (4.4.61) does not have well
2
defined behavior at time scale t/€ even though it has a real negative

. 2 L
eigenvalue of order € . This is so because

||exp{Ao(€)t/€2}|| + ® as eYo

This behavior does not contradict the stability properties of Ao(e)

because even though for every €€][0,1]

sup ||exp{a (e)t}]|| = K(e)< = vt>o
° i
t>o
the upper bound K(g)>» as evo. This example illustrates one reason

why even systems which are semistable for €€[O,€o] may fail to have
well defined behavior at some time scales. The next example illustrates

another such reason. 0
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Example 4.4.8

Consider the matrix

(2 0 o]
Ao(e) = o -52 e
2
0 -£ -€
- -

2
9\0—'2’ 7&1'2 = - € + 1€
The matrices Ao and Al for this example are:
’ r
-2 0 0-1 0 0 OT
A = 0 0 0 ; A =| 0 0 1
0,0 1,0
0 0] 0] 0 -1 0
b — b =

and the MSST assumption is violated because A has purely imaginary

1,0
eigenvalues.
A simple calculation gives:
— -2t —
e 0 0
XpiA t} = - - )
exp{ 0(8) } 0 e et cos €t e sin €t
_2 _ 2
O e € sin €t e € tcos et _|
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Clearly the system has well defined behavior at time scales t and t/e€
but exp{Ao(E)t/ez} does not have a limit as €Yo because of the presence
of terms of the type e—tsin(t/é). (m]
This example illustrates that the existence of slowly attenuated
oscillations (reflected as purely imaginary poles in one of the matrices
Ak,o) impedes the existence of well defined behavior at time scaies at
which these oscillations are at frequencies that increase without bound as
€Yo without conmeasurate increase in damping.
Examples 4.4.7 and 4.4.8 illustrate the two basic pﬁenomena that
occur whenever the multiple semistability condition is violéted. If it is

violated because zero is not a semisimple eigenvalue of, say, Ak o’ this

14
R S :
is indicative of terms of the type €t e which increase without

k+
bound as €Yo for times of orxder t/€ l. If, on the other hand, the

semistability condition is violated because Ako has semisimple purely
imaginary eigenvalues, then the system does not have well defined

Kk+1 kel
behavior at time scale t/e because of terms of the type e € sin(€g t)

The only other possibility, that Ako has multiple, non-semisimple,

purely-imaginary eigenvalues exhibits features of the two basic cases

k+1
-€ . k
described above. With terms of the type € t e t sin(€ t), the system

. . k+1
has growing oscillations of increasing frequency at time scale t/e .
The next theorem establishes the fact that for an arbitrary‘Ao(e),

MSST is a necessary condition for exp{Ao(e)t} to have well defined behavior

at all time scales.



-133-

Theorem 4.4.9

Let Ao(e), €€[O,€o], be a semistable matrix with a series
expansion in powers of € and let Ak o k>0, be the
. , Z
sequence of matrices constructed in Section 4.4.1.

is

are semistable but A
2’10

If A A ceesA
£ o,0" "1,0' "“9-1,0
not, then the limit

lim exp{AO(E)t/eq} t>0
eYo

does not exist for any 2<q<f+l. Furthermore, if Ay o
r
has a pole on the imaginary axis (zero included) which

is not semisimple then:

lim sup ||exp{Ao(€)t}|| =®
evo t>0

Remarks

(1) Notice that even though in general a perturbed matrix AO(E) may have
eigenvalues with expansiéns in fractional powers of €, no singularly per-
turbed linear system can have a fundamental time scale at time scale

t/eq for g non-integer. This is so because eigenvalues in fractional
powers of € may occur only if at some stage, Ak,o does not have SSNS.
Thus, eigenvalues in fractional powers of € go hand in hand with unbounded
amplitudes (as €Yo).

(2) The proof of Theorem 4.4.9 is long and it brakes the flow of ideas

‘exposed. The reader may want to skip it on a first reading. If so,

please move to page .
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Proof:
We first construct the proof for £=0 by contradiction. Suppose

that the limit:

9}

lim exp{AO(E)t/E (4.4.64)

eYo
exists t>0 and some 0<g<l. If this limit exists, so does the

limit of exp{Po(E)Ao(E)t/Eq} as e¥0 because:

lim P (e)exp{A (E)t/eq} =
o o

eYo
. X Iy _
‘llm exp{Po(E)Ao(E)t/E } %
eYo
Define
PO(E)AO ()
FO(E) =
€q

The next step is to prove that U(Fo(e)) remains bounded as e¥0.
Take any O#A(g)e€ O(PO(E)AO(S)) and let ¢(€) be an eigenvector with

A(e) normalized so that ||¢(€)||=1. Then,

exp{Po(e)Ao(e)t/eq}¢(e) =

exp{Re A(E)t/Eq} - exp{i Im K(E)t/Eq} - ¢ (g)

and, if e + 0 is a sequence for which ¢(€m) converges, then

exp{Re K(em)t/eg }, exp{i Im A(em)t/eg} . ¢(€m) (4.4.65)
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must also converge as mP®. Notice that because the trace Ao(e)
has a series expansion in integer powers of € and all its eigenvalues,
u(e), have non-positive real parts there can be no cancellations and

therefore,
o k
Re p(e) = Os(e )

for some integer k>0. Thus, from A(g)=o, we conclude

ReA (E_)
_m

> 0 as me
d

m

€

From the fact that (4.4.65) converges it follows that Im }‘(Em)/ean
must also converge as m?*®. Thus G(Fo(e)) remains bounded as €Yo

and it is therefore possible to choose t such that

1

| Im q(Fo(e)t1)| <7

for € small enough. Now, if Ln denotes the principal branch of the
logarithmic function, we obtain:
. DO A A
‘ = = — + 4.
In exp{Fo(e)tl} Fo(e)tl (Eq Go(€))tl (4.4.66)
The last equality following from Lemma 3.4.2 with D, being the

eigennilpotent for the zero eigenvalue of Ao

and GO(E) a function
14

of e, continuous at €=0. The limit
A

lim In exp{Fo(e)tl} = B(tl)
eYo
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is well defined because of the boundedness of O(Fo(e)tl). Now, taking
limits as eto in (4.4.66) we get a contradiction unless Do=0; We thus
conclude that for the limit (4.4.64) to exist, Ab o must have SSNS.

r
Suppose now that Ao ° has some purely imaginary eigenvalue J.
14
Then there exists an eigenvalue J(e) such that p(e)>y as €¥0. Let
$(e) be an eigenvector with eigenvalue u(e) and ||d(e)|| =1.  Pick a

se@uence em+ o for which'¢(em) converges as m*®. Then, if (4.4.64)

converges so must do

T - . q = e q
¢(e ) exp{Ao(em)t/Em} ¢(em) exp{u(gm)t/gm }

which is a contradiction. We have thus shown that if A o is not
r
semistable then (4.4.64) does not exist.
To prove the theorem for an arbitrary £ notice that by the

semistability property of Ao seessA , we can construct the

,O Qz-llo
matrices Ak(e), k=0,...,%, as in Section 4.4.1, and using the same

algebraic manipulations as in the proof of Theorem 4.4.4 (see eg.

(4.4.34)), we can write:

2-1
exp{A (e)t/eq} = exp{a (E)t/sq_g} - Z o (g) +
o 2 K=o k

-1
g-k
+ kZO 0, (e)exp(a, (e)t/e™ "} (4.4.65)

Suppose now that

lim exp{a_(e)t/e} (4.4.66)
e+0
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exists for all t>0 and some {<g<f+1. Using (4.4.65) it is easy

to see that this implies that

1lim exp{Al(e)t/eq_g'} <g<L+1 (4.4.67)

ev0

also exists (the second and third terms in (4.4.65) have well defined
;imits because Ak,o' k=0,...,2-1 are semistable). But (4.4.67) is
the same kind of limit as (4.4.64) and we have already seen that its
existence implies Al,o semistable which is again a contradiction
indicating that, under the conditions of the theorem, (4.4.66) cannot
coﬁverge as €¥0.

To prove the second part of the theorem suppose thaf Aﬁ,o has

an eigenvalue on the imaginary axis which is not semisimple. Then

VM<® there exists a T<® such that

||exp{AQ’0T}|| > M
and because

Ilexp{AR(E)T} - exP{AQ,o.T}|I + o0 as eYo
we conclude that

||exp{A2(€)T}|| > M/2

for € small enough.
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Thus,

lim sup Hexp{Az(e)t}ll = oo (4.4.68)
gYo t>o

From eq. (4.4.65) we have:

sup Ilexp{AR(E)t}|] = sup ||exp{AR(€)€Zt}|| <
£>0 t>o0
-1
sup ||exp{a (e)e}|| + Z |]Q£(€)|| +
t>o °© k=0
-1 X
sup z ||Qk(€)exp{Ak(€)€ t}| | (4.4.69)
t>o k=0

and by semistability of Ak o k=0,...,2-1, it follows from (4.4.41)
4

that:

sup ||Qk(€)exp{Ak(€)€kt}l| <M < (4.4.70)
t>o

Taking limits as €Yo in (4.4.69) and using (4.4.70) and (4.4.68)

- we get the desired result:

lim sup ||exp{a (e)t}|| = =
efo t>o © a]

The results in Sections 4.4.2 and 4.4.3 together with Theorem

4.4.9 indicate that multiple semistability is a necessary and sufgicient
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condition for a system to have a well defined multiple time scale
behavior. From a modeling viewpoint it implies that if the system
matrix of a linear time-invariant system has small entries that

result in nearly decoupled evolutions taking place at different time
scales then, proper modelling will result in a singular perturbed

sYstem satisfying the MSST condition. Also, as we will see in Chapter V,
there are certain classes of systems which afways satisfy this con-
dition. In general, however, the dependence of the system's matrix on

a small parameter will more likely be based on physical considerations
about several parameters of the system. In this case, one needs to
compute the matrices Ak,o to determine whether a time scale decom—
position of the system is feasible. In the next section we address this

aspect of the problem.

4.4.5 Computation of the reduced-order models

It follows from our development in previous sections that the
matrices Ak,o play a fuﬁdamental’role in the asymptotic analysis of
sihgularly perturbed systems. We now focus on an algorithm for the
computation of these matrices.

It is convenient to think of the sequence of matrices
Ak(e), k=,1,...,m, constructed in Section 4.4.1 as defining a rectangular
array of matrices Aij' i=0,1,...,m, 3>0, as shown in Fig. 4.2. By

definition of the matrices Ak(e), it follows from Lemma 3.4.2 and eq. (2.4.29)
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Ao(e) Aoo A°1 Aoz ooooooo Aom .....
A,(€) A Apgeecereess Ap m-g e
A,(€) Apgr s s eres e Apm-z® e

A (€) Ar.no ......

Figure 4.2: The array of matrices Aij'



-141-

: t
that the (i+l)—2- row in Fig. 4.2 can be computed from the i-EE

row using the formula:

j+l P (kl) (k)
A, .= - (-1) 2 : S. A, S, “...A, s
i+k,] p=1 VoH...+v =41 T 1V, 1 1oV
1 p
+o..4k_ _=p-1
k1 kp+l P
v,>1, k.>0
i—" = (4.4.71)
i=0,1,..,m
j>0
where
s _ p
1 1
k
s = ¥ K50
1 1,0

(remember, P, is the projection on N(aA., ) along R(a, ) and A#
i i,o ~ i,o i

r

denotes the genefalized inverse of Ai o)' Notice that the structure
,o
of (4.4.71) permits us to grow the array Ai 3 triangularly: AlO is
! 14
_ computed from Aoo and Aol; A20 requires AlO and All which in turn

involve Aoo' A in general, to compute the first column up

and ;
ol n Ao

2!
to Ako involves the matrices Aij' i=0,...,k, j=0,...,k-i. As we
have already seen in Proposition 4.4.2, only a finite number of matrices

Ako need to be computed and it thus follows from (4.4.71) that to do

so requires only a finite amount of ceomputational effort.
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Although algorithm (4.4.71) is attractive for its recursive nature,
a closer look at the structure of (4.4.71) reveals that it involves a
large number of superflows computations. Without addressing the general
issue of the most efficient way to compute the matrices Ako' we Will now
.give an explicit expression for the matrices Aoo' AlO, A20 and A30 in
terms of the first row in Fig. 4.2 using formula (4.4.71) and will conjec-
ture a simplified version of (4.4.71) that excludes terms which are
cancelled in the course of the recursion.

To proceed with the computation of Ako for k=0,1,...,3, use

(4.4.71) to write:

= P 4.4,
Aii1,0 = Filtia®y (4.4.72)
A =PA. P, - PA. .P A # - A# A..P.A..P. -

i+l,1 i7i2 i i1l 1 ll io io il i il i
P.A. A# A._P. (4.4.73)
i"il 10 il 1
A =P, A. . P. - P.A..P.A A# - A#'A P.A,. P, -
i41,2 - Tiliati T BiBiiFiBiofio T BioPiaFitiofs
# # #
T e P R D R P P L L
P.A, A# A, + P.A._.P.A A#
i“i2i0 1 i i"i17i7i17io
# # # #
PiAilAioAilPiAilAio M TS L L LT PN
# # # #
P. + A A. A, A,._P.A, P
AloAllplAlIAloAll i io il io il i il
# # # 2
PR R P11 T PiBiiPiRia iR By -
$ 2 4 2
PiBiPyByg By ) APy - PyA, (B )R PIAGP

(A ) A lP A, lP A, 1Pl (4.4.74)
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To simplify these expressions remember that the direct sum

decomposition

m
n
R —R(Aoo)@....®R(Amo)®( N(Ako))

k=0

together with the SSNS of Ako imply

Ny ) =RAD®..-ORGB_, ) @Qra, VO ---@R@B

and therefore,

We now use these properties to simplify (4.4.73) and (4.4.74).

(4.4.76) and (4.4.78) in (4.4.73) and (4.4.74) we get:

#

= P . - A, _A, A, P.
Aivi,1 - PiBin 7 ByiBioRig) B
# # # #
= P _ -— + ) -
Bivi,2 - BiBysm BiaRioBioT BioBiRint RiaRioRiiPioti
# .2 # 2
A PR (B )Ry~ Ay (ByG) AGPLAIP,

Still more cancellations occur when these expressions are used

recursively to compute the matrices Ako as we will now see.

m

@ Nay)

k=0

(4.4.75)

(4.4.76)

(4.4.77)

Using

(4.4.78)

(4.4.79)
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Proposition 4.4.10

Let Ao(e) be given by

2

3 - 3
AO(E) =A 4+ €A + €A _+ €A _ +o(e)

00 ol o2 o3

then the matrices Ako' k=0,1,2,3, are given by:

A
[o]e)
=P P
A10 vol o
A _=PP (A _-A At a )P P
20 1l o 02 ol oo ol o'l
A =PPP (A -A A# A _-A A# A+
30 271 o0 703 ol oo o2 02 oo ol
# # #
Bo1B00Po1Poool T Po2P10M02
# # # #
A2P10%01200%01 T Po1Pooto1P10®02
# # #

AolA'ovolAlOAolevol)PoPlPZ

Proof:
Equation (4.4.81) follows directly from (4.4.72).

(4.4.82) use (4.4.72) to write

Byo T F1P1aPy

and now substitute A__, using (4.4.79) with i=o:

11

#
= PP -
A20 1 O(AOZ Ablevol)PoPl

To prove

(4.4.83)
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To prove (4.4.83) use (4.4.72) again with i=2 and (4.4.79)

with i=1:

30 = FoPaiPo
#

P2P1(A12 - AllAloAll)PlP2 (4.4.84)

il

Let us now compute the first term in (4.4.84) using (4.4.80) with

i=o,
PPA P P_=PPP (A - A A#A - A A#A +
211212 210" 03 ol oo 02 02 oo ol
# # # .2 # .2
A - A _P -
ol oo ol oo ol ol vol(Aoo) Aol Aol(Aoo) AolPvol)PoPlP2
(4.4.85)
We can simplify this expression by noting that
P1A10 = PlPvolPo - PvolPopl =0
resulting in
PPA PP =PPP (A - A A#A - A A#A +
271121 2 21 o o3 ol 00 02 02 o0 ol
A A#A A#A )P P_P (4.4.86)
0l 0o 0l oo 0l 012
To compute the second term in (4.4.84) substitute All by (4.4.79)
with i=0. This together with (4.4.86) gives (4.4.83). o

Equations (4.4.81)-(4.4.83) give an explicit expression for the

first four reduced-order models in terms of the given data Ao X
r’
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To obtain explicit expressions for reduced-order models beyond the
fourth time scale, a huge amount of algebraic manipulation is required.
Of course, it is always possible to use the recursive formula (4.4.71)
for specific examples, but the computational cost of this method, seems
to be quite high. We now proceed to describe a conjectuted, simplified
version of (4. 4.’_71;). .

By»comparing (4.4.79)-(4.4.80) to (4.4.73)-(4.4.74) it is clear
that a large number 6f terms in (4.4.71) can be immediately discarded
because they get cancelled at one stage or another of the recursion.
Furthexmore, nofice by comparing (4.4.80) to (4.4.81)-(4.4.83) that no
term containing powers of a group inverse appears in the final result.

.

- The foxrmula,

j+l __
=- J -DF PR
p=1 VpHe v =it tote

at NS
i,o i,o 1,VP i

A
P41, 5
i J 1

(4.4.87)

does not contain any of the terms in (4.4.73) or (4.4.74) that get
cancelled in the recursion process and in fact results in the same
expression (4.4.81)-(4.4.83) for Ako'=££o' k=1,2,3. This together with the
arguments given in [Del 82], in the context of Markov chains, using a

totally different approach lead us to the following.

Conjecture 4.4.11

The recursion formulas (4.4.71) and (4.4.87) result in the same

matrices in the first column of Table 4.2, i.e.,

A< Xio k=0,1,...,m



-147-

Remark: Notice that the conjecture refers only te the first column
of Table 4.2 but certainly not to the other matrices. It is quite
clear that formula (4.4.87) cannot be used to compute the matrices
Ak(e)vgppearing in the exact time scale decomposition of exp{Ao(s)t}
(i.e., in Theorem 4.4.4). Tt seems plausible, however, that both
formulas will produce the same asymptotic approximation. (For sure in
systems with four or less time scales).

There are certainly more issues to be explored before the computa-
tional complexity of the multiple time scale and aggregation methods
proposed in this thesis can be ascertained. This aspect of the
problem remains open and beyond the scope of this thesis.

To conclude this section we derive simple upper bounds for the
number of fundamental time scales, i.e., the number of non-zero

r and for the slowest time scale, that is,

matrices in {A_ 6}i;o
,0 k=

t/sm. Remember that under the MSST condition, the sequence Ak o ends
r?

at some k=m for which

m

2 rank Ak o

k=0

nrank A (g)
(o)

or

jll

m
L rank A rank A (g) - rank A_(0) (4.4.88)
k=1 o © ©

ee(0,e 1]
(o]
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and therefore the maximum number of fundamental time scales in
addition to time scale t equals the size of the rank discontinuity
of AO(E) at €=o. To find an upper bound for m consider first the

linear perturbation case, i.e., let Ab(E) be given by:

A () =aA + €A
o) 00 ol

The eigenvalues of AO(E)'= At eAO are the solution of a poly-

1
nomial of degree n with coefficients that are themselves polynomials

in- € of degree < n. A simple argument shows that there can be no

eigenvalue, A(€)#0, of Ao(e) such that A(g) = o(En). In effect, let

n n-1
s + pn_l(E)s +...+pl(€)s + po(e)—o

be the characteristic polynomial of Aoo + erl. The coefficients

Pn_i(e) are polynomials in € of degree < i. Then,

p_(€)
n-1 n-2 o _
Alg) +p _;(€)A(E) +...+ py(€) + NG (4.4.89)
If A(ge) were of order o(an) and po(e)#o then po(e)/k(s)+w'as Yo
and (4.4.89) cannot be satisfied. If po(e)=0 then the same can be
set about
p, (€)

MO P @@ ap(e) + G =0 (4.4.90)

which cannot be satisfied unless p1(€)=0. Proceeding in this way

it is concluded that if A(g) = o(€n) then A(e)=0. If then follows
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from Proposition 4.4.3 -iii) that Ak(€)=o for k>n and therefore
m<n. Similarly, in the case of a non-linear perturbation of finite

order,

we have m<n-p.

4.5 Partial Time Scale Decomposition

In this section we analyze the multiple time scale behavior of
semistable singularly perturbed systems that do not satisfy the MSST
condition. In general, these systems have well defined behavior at
some time scales but not at all time scales, and their behavior over
the infinite time interval [0,«) cannot be reconstructed from their
evolutions at different time scales. It may still be useful, however,
to isolate the time scales at which they have well defined behavior
and to compute their evolutions at these time scales. This is the
problem we address here.

Let Ao(e) be the system matrix under consideration and let
Ako' k=0,1,...,m Dbe the sequence of matrices derived as in Section 4.4.1.
To analyze the different possibilities that may occur if the MSST con-

dition is violated, we distinguish the following cases:
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Case 1:
The matrices Ako' k=0,1,...,m, satisfy the MSSNS condition. All

of them, except Alo' are semistable but Alo violates the semistability

condition because it has some purely imaginary eigenvalues. The purely
imaginary eigenvalues are semisimple. For reasons that will become clear

later, we will refer to this case as the uniform stability case.

Case 2:

As Case 1 but some purely imaginary eigenvalue of Alo is

not semisimple.

Case 3:

The matrix Amo does not have SSNS.

These three cases indicate the basic possibilities that may occur
when the MSST condition is violated. In a given matrix Ab(e)' any
combination of them may occur at different stages of the sequence Ako'
but the analysis of this general case can be decomposed into the single
feature cases described above.

The results in Section 4.4 can be extended with minor modifications
only to the uniform stability case and this is done in the next section.
In Section 4.5.2 we briefly discuss the difficulties encountered in

Cases 2 and 3.
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4.5.1 TUniformly Stable Systems

To provide some motivation for the result of this section, consider
a matrix Ao(e) which is semistable for ee[O,eo]. Semistability implies

uniform boundedness of exp{Ao(E)t} with respect to t, i.e.,

sup llexp{A (e)t}]]| = R(e)< » (4.5.1)
t>o ©

But, as shown by Example 4.4.7, in singularly perturbed systems K(g)
may become unbounded as eYo. This kind of behavior indicates that in
some systems the €-dependence, in addition to generating eigenvalues of
different orders of magnitude in € (that is, different time scales),
also produces amplitudes that become unbounded as €v0.

As we have seen in Section 4.4.4, the presence of increasingly
large amplitudes as €Y¥0 impedes the complete multiple time scale analysis
of these systems. Here we analyze the multiple time scale behavior of
systems in which the €-dependence does not give rise to unbounded
amplitudes as €V0.

We will say that a stable system with system matrix Ab(s) is
uniformly stable in € or, in short, that A_(e) satisfies the unifonm

stability (US) condition if:
|lexp{a_te)t}|| < V£>0 veelo, e ]

for some K>0 independent of €. The following Proposition establishes a
link between the US condition and the spectrum of the matrices Ako k=0,1,..m

derived from AO(E).
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Proposition 4.5.1

If Ao(e) is uniformly stable then it also satisfies
the MSSNS condition and if any of the reduced-order models
Ako has eigenvalues on the imaginary axis they must be

semisimple.

Proof:

From Prop. 4.2.1. we have

exp{Ao(e)t} > exp{Ao(O)t} as €Yo, Vt>0

and therefore

A
~

| |exp{Ao(€)t}| | <
implies
| lexp{a_t}|]| < x

which indicates that all eigenvalues of Aoo on the imaginary axis (zero
included) must be semisimple. Doing the same manipulation as in (4.4.33)

we get:

exp{Al(e)t} = exp{Ao(e)t/s}+ Qo(e) - Qo(e)exp{Ab(e)t/e}

and uniform stability of Ao(e) plus continuity of QO(E) imply that

Al(e) is U.S., i.e.

exp{Al(E)t}.g K,
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As before this implies that all imaginary axis poles of AlO are semi-
simple and the same process can be repeated to prove that all Ako's

satisfy this property.

Uniform stability guarantees MSSNS but not MSST because some of
the matrices Ako may have purely imaginary eigenvalues. However,
MSST implies US.

Uniformly stable systems may fail to have well defined behavior at
certain time scales because of the presence of oscillatory modes in some
of the reduced-order models Ako' These oscillations becéme of infinite
frequency when seen at slower time scales. It is important to notice
that the appearanée of such unattenuated oscillations in some of the
reduced-order models does not necessarily imply that the matrix AO(E) has
some purely imaginary eigenvalues. Instead, they could as well correspond
to eigenvalues with a negative real part that converges to zero faster

2
than its imaginary part. As, for example, in modes like e €t sin et.
This mode is seen as purely oscilatory at time scale t/e€ and when the at;
tenuation effects are beginning to be felt, at time scale t/€2, the
oscillations become of infinite frequency.

To avoidvthis lack of well defined 1limit the oscillatory modes must
be excluded before analyzing the system at slower time scales. The

following Proposition indicates how can this be accomplish.
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Proposition 4.5.2

Let Ao(e) be uniformly stable and suppose that all

the reduced order models Ako' k=0,1,...,m, are semi-

stable except Alo' Then:
i)

lim sup [|Plexp{Ao(€)t}-¢g(€.t)|l =0

e¥0 t>0
where’

% T k
(e, k) = ) Q. exp{Ako €t} + PP ---P
k=0
k#L

ii) k

lim  sup ||6XP{AO(€)t/E } - Qk(t)ll =0

eYo 6<t<T

v38>0, VT<eo
k=0,1,...,2
lim sup IIPZ exp{Ao(E)t/Ek} - @k(t)ll =0
eYo. O<t<T
V§>0, yT<®
k=2+1,...,m

wherxe:

@k(t) =Q exp{Akot} + P ..-P

=P ---B exp{Akot}
Proof:

||Pl exp{a_(e)t} - ¢£(€,t)|| <

%
||p, (erexpia_ (e)t} - ¢'(€,t)||+|I(PQ(E)—Pz)exp{Ao(e)t}|l

(4.5.2)

(4.5.3)

(4.5.4)

(4.5.5)

(4.5.6)
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From the proof of Corollary 4.5.1 it follows that

lim sup ||P£(€)exp{Ao(E)t} - ¢£(€,t)|l =0
geo t>o

and because AO(E) is Us,

lim sup || (P, (e)-P)exp{a (e)t|| <
€fo >0 . 2 °

lim X ||p, (e)-P || = 0
gevo k %

proving (4.5.2). From (4.5.2), (4.5.3) and (4.4.50) it follows that

m

o exp{A t}+ ) Q+P ...P + o(l)
k Ako p=k+1 o m

P exp{Ao(E)t/ek}

%

Q. exp{Akot} + P ...P * o(l)

uniformly on [§,T] proving (4.5.5). The proof of (4.5.4) has already

been given in Proposition 4.5.1. d

It is a simple matter to extend the above proposition to the case in
which several of the matrices Ako fail to be semistable. Eq. (4.5.2)
still holds if exp{Ao(e)t} is multiplied by the corresponding projections
and we will now have a sequence of results similar to (4.5.4) and (4.5.5)
with an increasing number of projections used as slower and slower time

scales are considered.
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In any of the cases indicated at the beginning of Section 4.5, one
can alWays think of eliminating the modes that violate the MSST condition
by using the correct eigenprojections to annihilate them. 1In general,
however these projections will be given by an infinite series in powers
of €‘and it is not clear how many terms in these series are needed to
keep the contribution of the undesirable modes within o(l).

The fact that in the case analyzed here the projections required to
annihilate the undesired modes are €-independent makes Proposition 4.5.2
the most natural extension of the results derived for MSST systems. In
Chapter VI we present an application of this idea to the determination

of coherence areas in electric power systems.

4.5.2 Non Uniformly Stable Systems

Consider now Cases 2 and 3 specified at the beginning of Section 4.5.
In both cases the matrices Ak o k=0,1,...,%-1 are assumed to be semi-
14

stable but the MSST condition is broken by A in a different way for

2,0
each case. As established by Theorem 4.4.9 we have under this circumstances

that:

lim exp{a_(e)t/e’} 23q<R+1 (4.5.7)
eYo

does not exist and, furthermore, that:

lim sup Ilexp{A (S)t}ll = o (4.5.8)
eYo t>o ©

A full time scale decomposition and uniform asymptotic approximation is pos-

sible only up to time scale t/eg, and it is given in the following proposition.
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Proposition 4.5.3

Let A (e) be such that the matrices Ak , k=0,1,...,%-1
o /0

are semistable, then:

lim sup . |Iexp{Ao(E)t}-¢£(€,t)||=O (4.5.9)
€Yo te[o0,T/e7]
where
3 X | X
o (e, t) = kgo lexp{Ak’OE t}+ PP -y (4.5.;0)
Proof:

This is essentially a reduced version of Theorem 4.4.5 and it is

proven the same way. » O

Beyond time scale t/ez little can be said in general terms. 1In
Case 2, the matrix Ao(e) still satisfies the MSSNS condition and the
following proposition shows how, at least in principle, one can go
time t/gg by using the appropriate projection to annihilate the modes

that produce unbounded amplitudes as ¢€+0.

Proposition 4.5.4

Let Ao(e) satisfy the MSSNS condition and let Ako
k=0,1,...,m be the matrices defined in Section 4.4.1.
Suppose that Ay k#%, are semistable. Then,

i)

lim sup [|Pz(e)exp{Ao(e)t}—¢z(e,t)||=O (4.5.11)
EY0 t>0
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where
¢2(€ t) = ? exp{ ekt}+ PP P (4.5.12)
& o Qe*pIAE ik PP ... By o
k#%
ii)
lim  sup |Iexp{Ao(e)t/Ek}Q@k(t)||=0 (4.5.13)
gYo 8<t<T
V§>0,yT<>
k=0,...,%
. k
lim  sup IIPQ(E)exp{A (e)t/e"}-9 (¢)[[=0 (4.5.14)
evo  6<t<T °
Y§>0, VYT<w
k=2+1,...,m
where
o, (t) = lexp{Akot} + PP (4.5.15)

P --.P ) exp{Akot}

Proof:
From Theorem 4.4.4 and the fact that Pl(E)Qk(E) = Qk(E) if
k#% and Pi(e)Q£(€)=O (see Proposition 4.4.1-iii) we have:
v k
= + ...P
P, (e)exp{a_(e)t} kzo 0, (B)exp{a (e)e"t} + P_(e)...P ()
k#2
and because Ako' k#%, are semistable it follows as in the proof of

Theorem 4.4.5 that

IIQk(e)exp{Ak(e)ekt} - lexp{Akoskt}lLi K(e)> 0 as eto (4.5.16)
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which proves (4.5.1).
By the MSSNS of AO(E) it follows from the proof of Theorem 4.4.4
(see 4.4.33 and 4.4.34) that

k

exp{Ao(e)t/ek} = exp{Ak+l(t-:)et} + Qk(e)exp{Ak(e)t} - Q, (€)
p=o
k-1 .
T 0 (e)exp{a (e)t/e" ¥} (4.5.17)
= P P :
k=0,1,...,m
Clearly,
lim sup ||exp{ (e)et}-1}|=0 (4.5.18)
EY0  OSE<T !
Also, from Proposition 4.2.1,
lim sup IIQk(E)exp{Ak(E)t}— lexp{Akot}ll=0 (4.5.19)

eYo o<t<T

If k<% in (4.5.7), then using (4.5.6), (4.5.8), (4.5.2) and (4.4.50)

we get (4.5.3). To prove (4.5.4) notice that

k

A k N
P, (e)expla_(e)t/e }=Pl(€)exp{Ak+l(e)et}+Qk(€)exP{Ak(€)t}- PZOQP(S)
- _ p#%
k-p
+ 2 Q (e)exp{a (e)t/e” ~}
g < P

p=0
pAL k=2+1,...,m

and using again (4.5.6), (4.5.8), (4.5.9) and (4.4.50) we get:
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Pg(e)exp{Ao(€)t/€k} = P£ + lexP{Akot} - Eo Qp
ot
k
=TI+ lexp{I-H{ot} - ) Q,
p=0

lexp{Akot} + P ...P

O

The above proposition differs from Proposition 4.5.2, proved for the
US case, in the requirement that the exact expression for PQ(E) be used
in (4.5.11) and not its zeroEE- order approximation, Pl(O), as in (4.5.2).

For Case 2 the problem is created by modes of the type

+
ki e_eg ¥ in M ' (4.5.20)
At time scale t/ek they look like growing modes tk sint and even
though they are eventually attenuated, the time scale at which the
attenuation takes place depends on the value of p. Furthefmore, the
maximum amplitud achieved before dying down goes to infinity as €¥O.

By using the projection PQ(E) as in (4.5.11), we anihilate the

term
: 2
le(e) exp{Ai(e)e t} (4.5.21)

in (4.4.29), which is the one responsible for unbounded amplitudes

as €¥0. It is possible to reduce these modes to o(l) quantities
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w 0
(e) =2, + ] elp
j=1

(3)

using only a finite number of terms in P o

% but the

number of terms required depends on the order of magnitude in € of:

sup ||Q2(€)exp{A£(€)€lt}||+ o (4.5.22)

€20 eYo

and this, in turn, depends on the values of k and p in (4.5.20).

Thus, it is possible to substitute PQ(EJ in (4.5.11) and (4.5.14) by

3p ()

N N
Pk(e) =P, + Z € .

27 h

provided N is such that

sup ||P1;(e) -0 (€)exp{A£(€)€2't}|]= o(1) (4.5.23)

£>0 %

but the value of N depends on the specific structure of AZ(E)' This
concludes our discussion of Case 2.
Suppose now that Ao(e) is such that the sequence Ak o k=0,1,...,
: ’

ends at k=% because A does not have SSNS, and that

2,0

L
<

z rank Ak,o' n rank Ao(e) (4.5.24)
k=0

There is no problem in performing a time scale analysis up to time

scale t/ek, as state in Proposition 4.5.3. Equation (4.5.24) indicates,

. %
however, that there are eigenvalues of Ao(e) that of order o(€") whose
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effect will not be captured by this partial time scale anélysis. On

2+l} as €30

the other hand, although the limit of exp{Ao(e)t/e
cannot exist because |lexp{Ao(€)t/€2+l}|L+W, it may well be possible
that the system has well defined behavior at slower time scales, when
the effects of high amplitude transients have dissapeared. The
techniques we have used, however, do not seem to be adequate to treat
this case.

The asymptotic analysis of singularly perturbed systems that
violate the MSST condition remains largely an open question. See,
ﬁowever, Chapter VI for an indication of how this analysis could be

carried out, and the work of [Ver 81] and [Sas 80 for related results

from a singular systems and root-loci point of view respectively.

4.6 Summary and Conclusions

In this chapter we have studied the asymptotic behavior of

exp{Ao(e)t}over the infinite time interval [0,®) for

k
A(e) = ) €4
o
We have formalized the notion of multiple time scale behavior

and that of reduced order models of the system

dx (t)

at = Ao(e)x(t)
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valid at different time scales, and we have identified several
conditions on Ab(e) which give rise to qualitatively different
asymptotic behavior of (5.19). The hierarchical relationship among
these conditions is visualized in Fig. 4.3.

The most important result is probably the fact that multiple
semistability is a necessary and sufficient condition for a system
to have well defined behavior at all its time scales, and that the
fundamental time scales of such systems are of the form t/ek, with
k integer. If a system does not satisfy the multiple semistability
condition then a time scale analysis of it will not be adequate
to capture completely all the features of the system's behavior.
Conversely, from a modelling viewpoint, if a system has a well defined
multiple time scale behavior, then proper modelling must result in a
system matrix that satisfies the MSST condition.

For MSST systems we have developed a methodology for the com-
putation of the different reduced-order models of a system which
describe its evolution at different time scales, and we have shown
that these-reduced-order models can be combined to approximate the
original system.

In the next chapter we show that for an important class of
systems, namely, those modelled by Finite St;te Markov Processes

(or any other positive uniformly stable system), the MSST condition
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MSST
-
US
/ NoT MSST
MSSNS
NoT US
AO(E)
NoT MSSNS

MSSNS = Multiple Semisimple Nullstructure
us = Uniform Stability
MSST = Multiple Semistability

Figure 4.3: Different cases studied in chapter 4.
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is always satisfied indicating that the results developed in this
chapter have indeed a wide range of applicability. Furthermore,

in these cases we can give important and useful interpretations

of the hierarchy of reduced-order models in terms of the aggregation

of the processes they represent.
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CHAPTER V: HIERARCHICAL AGGREGATION OF FINITE
STATE MARKOV PROCESSES

5.1 Introduction and Overview

In this chapter we apply the results developed in Chapter IV
to singularly perturbed Finite State Markov Processes (FSMP's). We
show that for this important class of models the complete time scale
decomposition of developed in Chapter IV can alwayb be performed.
Furthermore, as we will see, the reduced-order models introduced in
Section 4.4.3 have in this setting a strong intuitive appeal forming
a hierarchy of aggregated models.

After a review of other author's work in this area an a motivating
example, the bulk of the results is presented in Sections 5.4 and 5.5.
The asymptotic approximations and the multiple time scale behavior
introduced in Chapter IV lead to the consideration of stochastically dis—v
continuous Markov processes which in the past have received little at-
tention. In Section 5.4, such processes are studied and we interpret

their properties as the limiting behavior of FSMP's with rare events.

5.2 Survey of Related Work

We discuss here in more detail the work of Delebecque [Del 82]
mentioned in Chapter II. This work addresses the same problem we
consider in this chapter, i.e., the asymptotic behavior of a FSMP with

generator
oo

A(e) = ] €fa (5.2.1)
(o] op
p=o
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Delébecque deals mainly with the discrete time case while we
consider the continuous time case, but this does not prevent a com-
parison of approaches and results.

There are two basic methodologic differences between our ap-
proach and that in [Del 82]. We do all our analysis in the time
domain using the results in Chapter IV that we have derived using
Kato's perturbation theory. Delebecque, on the contrary, works in
the frequency domain (i.e., dealing with convergence of expressions
involving the resolvent matrix) and it states several resuits
obtained by 6oﬂma££y equating terms in series in powers of €.

Starting from (6.2.1) he formally introdiucesa "reduced" series
€A (5.2.2)

as follows:

P A
10 o olPo
- #

PpA P -PA _A
11 o o2 o o ol oo ol o

>
Il

p+l

|
]
b
J

r=1 k_+...k =n+l
1 r
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where Po is the ergodic projection of the unperturbed chain

A (0) = A , and he shows that A =P A
o o0 oo

P can be interpreted
lo o

1

as the generator of a Markov chain in the Aoo—invariant subspace
R(PO) which has one state per each ergodic class of.Aoo. Repeating

now the same construction with the series Xi(e) he arrives at a new

chain A = P_A__P. defined now on range of P

2% 1211%1 the ergodic projec-

ll
tion of the previous chain Kio and the recursion can go on up to a

certain stage A
. mo

This construction is very similar to the recursion process we
have discussed in Section 4.4 and that we apply in this chapter to

analyze FSMP's. Both schemes result in the same matrices Kio'

A2o"°"£ﬁo which are proven to be Markov generators although
Delebecque's series probably involves less computations (we have
already discussed this point in Section 4.4.5).

Delebecque's main result ([Del 82], Theorem 1) is that the
matrices Eio’ Xéo""'gﬁo define a sequence of Markov generators
each with a number of states equal to the number of ergodic classes
of the preceeding chain. A result that our analysis in this chapter
confirms.

Other claims made in [Del 82] do not seem to be as well subs-
tantiated. For example, it is claimed that Kl(e) itself is a Markov
generator for vye > 0 but the proof given seems to imply only that

Alo + eAll is such a generator. Furthermore, the interpretation of
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the sequence of generators Eko as limiting aggregated models is in
some senses incomplete and does not expose the basic strycture and
concepts in a clear fashion. It is claimed that if ne(t) is the
chain with generator AO(E) then ns(t/ek) converges weakly to a
FSMP with generator X%o' This is not possible since the limit process
 has different number of states than the chain with generator Eko'

An aggregation operation is needed to collapse several states of
ne(t/ek) into a single state before interpreting the limit results.
In this respect, Delebecquec's work lacks the notion of stochastic
discontinuity that we use in Section 5.4 to introduce the need for-
aggregation.

The results presented in this chapter include those in [Del 82]
and go beyond in several respects:

i) We give a precise interpretation of the aggregated
chains as the limiting behavior of aggregatedvversions of the
original process ne(t); and, more importantly,

ii) we show that these aggregated models can then be
combined to produce an asymptotic approximation of the original
process which is uniformly valid over t€[0,).

iii) From a technical viewpoint our derivations are not formal
as in [Del 82] but one rigorously based on Kato's perturbation theory

of linear operators and they are seem to be a particular case of a

. n - semm e st e SR T v W B evm %t . o ———— 4
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more general aggregation methodology for linear systems. Our
methodology is more powerful and leads to precise statements
which provide a very clear and complete picture of the multiple
time scale structure not found in any other work.

iv) Our analysis in the time domain leads to the consideration
of stochastically discontinuous processes which aside from being
interesting in their own, are found to play an important role

in approximations involving multiple time scale behavior.
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5.3 A Motivating Example

Consider the process nE(t) portrayed in Figure 5.1 and suppose that
e .
n (0) € {el,ez} . For € > 0, the process will spend a random amount of

_and e_ and eventually it will get trapped in

time switching between e

2

e, Tt is clear that we can identify phenomena occuring at two time scales.

At the "fast" time scale only transitions between e, and e, occur and
no(t) (in which there is no possibility of transition to e3) is a good
model for that. At the "slow" time scale the important phenomena is a
transition to state ey- Suppose we are interested only in the phenomena
occuring at the slow time scale and for € very small. It is then logical
to study the process ne(t/e) in the limit as €V0.

Figure 5.2 shows a typical sample function of ne(t/e). Each sojourn in
states e and e, has an average duration of order €, and oh the order of
1/€ such sojourns take place before absorption. In the limit as €vO0
the sample functions of ne(t/e) approach functions with an infinite number
of discontinuities on finite time intervals. In fact, as we will see in
Section 5.5, the finite dimensional distributions of ne(t/a) converge to
those of a stochastically discontinuous Markov process nl(t) with sample
functions of the type showﬁ in Figure 5.3. Furthermore, the time to
abSorption, TE, is the sum of a geometrically distributed number of i.i.d.

positive random variable and it has mean of order 1. Using results in

[Kei 78] we can conclude that it converges to an exponentially distributed
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The process ne(t).
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! —i f—O(€)
LT ]

. €
Figure 5.2: A typical sample function of n (t/€)
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Figure 5.3: A sample function of the limiting process
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random variable T. Therefore, if we define a new process ﬁl(t)
by

A . f . , -
e i nl(t) € {e1 e2}

np ey =g i€ N (6) = e,

it is clear that ﬁl(t) is the Markov process shown in Figure 5.4
which can be thought of as an approximate, aggregated model for the
slow behavior of ne(t).

This example indicate the need to deal with stochastically
discontinuous processes when analyzing the multiple time scale
behavior of singularly perturbed FSMP's. Stochastic discontinuity
reflects the fact that when a specific time scale is selected, each
transition that is likely to occur at a faster time scale (if any)
appears to occur instantaneously upon entering some state. Aggregation
in this context is simply the avoidance of stochastic discontinuity by
discarding the details modeled by these faster, asymptotically dis-
continuous transitions.

The rest of this chapter is devoted to making these ideas precise,
and to showlthat they generalize to arbitrary FSMP's with generator

of the form

ale) = ] ea (5.3.1)

and phenomena occuring at several different time scales.
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\ e'\b/ez €5
\ 1 /
g /
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Figure 5.4: The aggregated model ﬁl(et).
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5.4 Stochastically Discontinuous FSMP's

We consider here continuous-time, stationary, finite-state Markov
processes {n(t), t>0} that may undergo an infinite number of trans-
itions in finite time intervals. Such processes violate the continuity

condition:

lim Prin(t) = n(O)} = 1
£40

and, accordingly, are referred to as stochastically discontinuous [Dyn 65].
They were first analyzed in [Doe 38] and [Doo 42] but were considered
pathological from an applications view point and since then stochastic
continuity has been a standard assumption in the literature (see for
example [Sko 65] and [Wil 79]. As we have indicated in Section 5.3 ,
however, stochastically discontinuous processes are obtained as limits of
Markov processes with transition rates of different orders of magnitude
and the stochastic discontinuity property has a natural and important
interpretation in this context.

In fhis section we carry out an analysis of FSMP's along the same
lines usually followed for stochastically continuous processes (as in
[Doo 53], for example), but for the general, stochastically discontinuous
case.

A stationary Markov process.{n(t), tzp} taking values in a finite

state space E =‘{el,e2,...,en} is completely described by its transition
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probability matrix P(t) whose elements are the transition probabilities:

By (8 = pr{n(t) = § |n(0)=1i} i, € E, >0

An (nxn) matrix-valued function P(t), t>0 1is a transition
probability matrix of some FSMP if and only if it satisfies the

following conditions:

i) P(O) = 1 (5.4.3)
ii)  P(t)> 0, vt>0 (5.4.4)
iii) P(t) - = " (5.4.5)

iv) P(t)P(1) = P(t+1) , vt, T>0 (5.4.6)

In addition, it is known (see [Doe 38], [Doo 42]) that if P(t) is
the transition probability matrix of a FSMP then it is continuous for
t>0 and the limit

lim P(t) =1 (5.4.7)
t+0

always exists. It follows from (5.4.4)-(5.4.6) and the continuity

of P(t) that Il satisfies:

I> Ol H' = ’ II = ]-[ (5.4-8)

and also

NIP(t) = P(t)II = P(t) (5.4.9)

T
=[1,1,...,1].
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If II is the identity matrix then the process n(t) with transition pro-
bability matrix P(t) is called stochastically continuous otherwise it

is called stochastically discontinuous.

Theorem 5.4.1

Tf P(t) is the transition probability matrix of a
FSMP then,
P(t) = I exp{at} t>0 (5.4.10)

for a pair of matrices II,A satisfying:

(1) m>o, I - (5.4.11)
(ii) TA = Al = A ; o (5.4.12)
(iii) A - =0 (5.4.13)
(iv) A+ cll >0 for some c¢>0 . (5.4.14)

Conversely, any pair of matrices A, Il satisfying
(i)-(iv) uniquely determine a FSMP with transition

probability matrix given by (5.4.10).

Proof: The proof of (5.4.10) given here adapts a more general result on
semigroups in [Hil 53] to the context of FSMP's. By the continuity

properties of P(t) we have:
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t+h P(t) if t>0
P(Tt)dt =
t I if t =0

lim
h¥0

ol i

for some Il satisfying (5.4.8) and (5.4.9).

It follows from (5.4.6) and (5.4.9) that Vt>0,

t t t

/ P(h+T)daT —/ P(t)dr = (P(h)-H)fP(T)dT
0 0 0

which gives

t+h h t

1
f P(tiat - 7 /P(T)d’[ = = (P(h)-ID fP(T)dT (5.4.15)

t 0 0]

5
ol I

As h¥0 the left-hand side converges to P(t) - Il and therefore
-1
1im K(hgl—é A (5.4.16)
h¥o
exists. Taking limits as h¥0 in (5.4.15) we get

t
P(t) =11 + A /P(T)dT Vt>0
0

establishing (5.4.10). Definition (5.4.16) together with (5.4.8)
and (5.4.9) give (5.4.12), and (5.4.13) follows immediately from

(5.4.10) and the fact that I = . The positivity of P(t), i.e.,
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1

1 1
h P(h) = n I exp{At} = E41+A + >0 for h > 0

o(h)
h

implies that for h small enough A + II/h > 0 establishing (5.4.14).
To prove the converse suppose now that I and A satisfy (5.4.11)-
(5.4.14). Then, P(t) =1 exp{At} clearly satisfies (5.4.5) and (5.4.6)

and the positivity condition follows from (5.4.14) as indicated below:

Texp{at} = et exp{ @+ cI)t}
T (Al + ol
_ e—ct T z ( nT cll) 0 >0
=0 °

We shall refer to the projection II = lim P(t) as the engodic
ty0
profection at zero and to the matrix

A = lim K(h;l;n (5.4.17)
h¥0

as the Anfinitesimal generaton of P(t). o

Remark:
1) It follows from (5.4.11) that II is the matrix of ergodic pro-
pabilities of a Markov chain and as such it determines a partition of

E in terms of ergodic clases, E;, i=1,...,s, and transient states,

E%,



-182-

that we will refer to as the ergodic patition at zero. BAs we will

see later, this partition corresponds to a classification of states
into different types. While the process is in absorbing state

(i.e. in an argodic class E; with a single element), the process
behaves as a stochastically continuous FSMP. Instantaneous trans-
itions occur between states belonging to the same ergodic class at zero,
and transient states are visited only during transitions between

ergodic classes, with no time spent in them.

2) For stochastically continuous processesll= I and conditions

(1) - (iv) only require that the rows of A add up to zero and that

all its off-diagonal entries be non-negative. 1In the general case some
off-diagonal entries of A can be negative provided the corresponding
entry in Il is non-zero (see Example 5.4.2 below). The usual interpreta-
tion of aij as the rate of transitions from state i to j is thus no
longer valid in the stochastically discontinuous case. To interpret
these entries it is first necessary to perform an aggregation as

discussed later in this section.

Example 5.4.2

The following is a stochastically discontinuous transition pro-

bability matrix:
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-
b o TIE At Lot
1 Py
Plo) = -\t -\t e | BtPy =1l 20
p,e p,e l-e -
0 0 0
i _

with initial projection and infinitesimal generator given by:

{-pl P, 0 P, A PA A
I[= ; A=
P, P, 0 -plk pzk A
0 0 1 0 0 0
- - L .

For Pl =p, = A =1/2 this is the stochastically discontinuous limit

process nl(t) described in Section 5.4.1.

5.4.1 Implications of Stochastic Discontinuity

If we consider a separable version of a stochastically continuous
FSMP then its sample functions are easily visualized as Piecewise
continuous functions taking values in E [Doo 53]. The evolution of the
process can be thought of as succession of stays in different states

of E, each being of random duration and exponentially distributed.
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The sequence of states Qisited follows a Markov chain law with one-
step transition probabilities determined by the entries of the generator
A. On the contrary, the sample functions of a stochastically discontinuous
process are much more irregular. As we will now prove, these processes
have instantaneous states, i.e., states in which the process spends no
time with probability one. Furthermore, in general, a stochastically
discontinuous process spends a non-zero amount of time switching among
instantaneous states. The sample functions are therefore nowhere continuous
on certain time intervals.

Consider a separable version of A FSMP n(t) with initial projection
H‘and generator A, and let N be a separating set. For t>0 and n=0,1,..,

take

= ‘ < ...< t =t
0 ton < t1n nn

in such a way that the sets
= {t t
An { On’

ln,...,tnn}

increase monotonically and kJAn = AN[0,t]. Then we have:

prin(t) = i, v7elo,t] |n(0) =i} =

pr{n(t) = i, vtelo,t] N Aln(0) = i}

Lim Pr{n(0) = i, vt €l0,e1NA _|n(0) = i} =

n—-o

n—-1

( t ) =

Lim Ye+l,n” Tx,n’

Fii
n-—+o k=0
| n-1
exp{ lim ) 1log Pii (i1 n = T n)} (5.4.18)
n‘+® k=0 L] r
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where Pii(t) are the diagonal elements of P(t) = II exp{at}.
Equation (5.4.18) facilitates a classification of the states of
n(t) according to the diagonal entires, ﬂii, of II. 1If Wii=0 then

pii(h) > 0 as h »~ 0 and therefore (5.4.18) gives:

prin(t) = i, VTE€LO,t] |n(0) = i} = 0 Vt>0

If, on the other hand, O < ﬂii < 1 use (5.4.17) to write:

p;; (h) %ii
T=1+Fh+0(h)
11
or
%14
=1 i + —/— h + h
log pii(h) og .. “ii o(h)

and it follows from (5. 4.18) that

prin(t) = i, vtelo,t]|n(0) = i} =

(5.4.19)

Definition 5.4.3

A state i will be called Anstantaneous if L <1
and regular if ﬂii = 1. An instantaneous state j will

be called evanescent if ﬂjj = 0.
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Remarks

(1) Notice that this classification is based on the ergodic
partition at zero.

(2) We have just seen that the sojourn time in instantaneous
states is zero w.p.l.

(3) Also, the sojourn time in regular states is exponentially
distributed. All states of a stochastically continuous
process are regular.

(4) In Example 5.4.2, states {1,2} are instantaneous, non-
evanescent states while 3 is regular.

(5) Even though the duration of stays in a given instantaneous
state is zero w.p.l, there is, in general, a non—éero
probability of finding the process in an instantaneous
state at any given time (as in states {1,2} of Example 5.4.2).

(6) The probability of finding the process in an evanescent
state at any given time is zero. This follows from the
fact that LT 0 implies ﬂji =0 j=1,...,n (i.e.,
evanescent states are transient states of the chain II) and

because:

P(t) = llexp{at} = Tlexp{at} Vt>0

we have

pji(t) =0, Yt>0, j=1,...,n .
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The evanescent states can thus be neglected in the sense that there
exists a version of the process n(t) with the same finite dimensional
distributions which does not take values in the set of evanescent

states.

As we will see, the evolution of a stochastically continuous
FSMP can be thought of as follows: While in a regular state, it
behaves as a stochastically continuous process. TUpon entering a state

belonging to, say, Eﬁ, for some s+l < k < r, the process starts
switching instantaneously among states in EP.  The amount of time
spent in Eﬁ is exponentially distributed and after a random stay in

E?

& the process jumps to some state in E - Eﬁ. Evanescent states may

be visited during transitions between ergodic classes but, as we said,
they can be pruned without affecting the finite dimensional distribu

tions of n(t).

5.4.2 Aggregation of Stochastically Discontinuous FSMP's

We prove now that all probabilistic properties of a stochastically
discontinuous process can be derived from its ergodic projection at zero
plus an aggregated version of the process that is stochastically
continuous.

The following well known proposition establishes notation that

we use in the sequel.
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Proposition 5.4.4

Let II be the ergodic projection at zero of a FSMP

then, by an adequate ordering,

Hll 0 ceen 0
0 Il e
- 22 0 (5.4.20)
. Hss 0
0
1-[l,s+1 e l-[s,s+l ‘0
A T
with Hkk = . uk, k=1,...,s, for some vector uk>0 such that
T _ T _
uk = ; and nk,s+l—6k Wy v k=1,...,s for a set of vectors
8§, >0 such that S 8= .
= X
k k21 k

Furthermore, define the (nxs) matrix V and the (sxn)

matrix U as follows:

. . 0
w0 ... 0 0
o 1
T
v=l, o ... u=|0 W, ... 0 0 (5.4.21)
T
L By eeee B >o 0 ... ou 0 |
then,
v.us=T (5.4.22)
U-vs=r1l

Proof: See [Doo 42]. The vector uk is the vector of ergodic pro-

babilities of a Markov chain with state space Eﬁ and transition matrix

Hkk' The vectors Gk are the trapping probabilities from transient

states to ergodic classes.

Remark: Notice that the structure of (5.4.20) makes explicit the

ergodic partition at zero.
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We shall refer to (5.4.22) as the canonical product decomposition

of II. Notice that U and V satisfy

U- = (5.4.23)
v . = ‘ (5.4.24)
u-I=2u0 (5. 4.25)
I.-v=yv (5. 4.26)

Theorem 5.4.5

Let P(t) = II exp{At} be the transition probabil-
ity matrix of a FSMP n(t) taking values in
E = {el,...,en} and let s be the number of ergodic
classes at zero. Let I = V - U be the canonical pro-

duct decomposition of II. Then:

P(t) a U P(t) V = exp{UAVt} Vt>0 (5.4.27)

is the transition probability matrix of a FSMP

taking values in E = {81,...,es} and

P(t) =V P(t) U V>0 | (5.4.28)

~

Proof: ﬁ(t)z_o, ﬁ(t) . = and ﬁ(t)P(t) = P(t+1) follow imme-
diately from positivity of U ande, from (5.4.23) and (5.4.24), and
from (5.4.9) and (5.4.22), respectively. Use now I = UllV and

A = VUA to write
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A ® k -—
P(t) =ullv+ J —— ua (voa) * "y
o1 k!
- X (5.4.29)
t k
=1+ ) + (UAV)" = exp{uav t}
k!
k=1
To prove (5.4.28) notice that
v13(t)U = VUP(t)VvU = IIP(£)Il = P(t) (5.4.30)
n]

Equation (5.4.27) can be interpreted as performing an aggregation
operation that masks the stochastically discontinuous nature of P(t).
Define the aggregated process ﬁ(t) taking values in E =‘{81,...,gs}

as follows:
nit) = ei if n(t) = E; i=l,...,s (5.4.31)
Assuming that we deal with a versibh of n(t) which does not take

values in E%, ﬁ(t) is well defined for t>0.

Corollary 5.4.6

A
The aggregated process N(t) is a stochastically continuous FSMP

with transition probability matrix P(t), i.e.,

pri{n(t) € Ej'ln(o) =e€E} = pr{n(t)= ejln(0)=ei} = pij(t) vt >0

Proof: Follows directly from (5.4.31) and the structure of the matrices

U and V.
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Note also that (5.4.28) can be interpreted as follows:

prin(e) = e, [n(0) = e} = g - prin(e) = & [N = ép} (5.4.32)

e. €E°, e, € E®
3 o) i L

i, .th . ‘1
where Ho 1s the i component of the ergodic probability vector
My That is, the transitions between the ergodic classes E; are
governed by the aggregated process while, once in one of the classes

E;, the ergodic probabilities u; are immediately established due to

the instantaneous nature of the transitions.

Example 5.4.7

Consider the process T(t) in Example 5.4.2. Its ergodic

partition at zero is
E? = ; E2 =
1= 131 o = 11,2}

A
Its aggregated version N(t) has two states one of which corresponds
to the consolidation of states 1 and 2 of n(t). The canonical product

decomposition of II is

1 o0
= 1]1 0
0 1

and matrix of transition rates for the aggregated process n(t) is

-plx -pzx A -A A
A=0U"- —plx —pzk A -V =

0] 0 0
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In view of the interpretations described above, we shall refer
to (5.4.27) as the aggregation operation and to (5.4.28) as the
disaggregation operation. These operations can also be interpreted
from a geometrical point of view. Notice that the stochastically
discéhtinuous transition probability matrix P(t) = II exp{at}
defines a transition matrix on R(Il) which is continuous at zero. By
construction, the matrix V maps R° into R(l) on a one-to-one basis
and U maps R(Il) back into R° also one-to-one. We thus have the fol-

lowing diagram:

m

R —> R
¥ exp{at}
P(t) R(I)
¥ U
m
R

From this point of view the aggregation operation is interpreted as
a:réstriction to the range of Il of the domain of definition of the
génerator A.

To conclude this section notice that all relevant information
about a stochastically discontinuous process is contained in its
aggregated version and its ergodic projection at zero. Therefore,
the analysis of such processes can be reduced, using Theorem 5. 4.5,
to the well known stochastically continuous case. As an example of

reduction consider the following corollary of Theorem 5.4.5.



-lg3-

Corollary 5.4.8

If P(t) = Hexp{At} is the transition probability matrix of a FSMP

then the limit

é [oe]

lim P(t) Il (5.4.33)

oo

always exists and satisfies

0 2 .
i) e > o, I* - = , (I®) =1

ii) I° P(t) = P(t) T° = II®

iii) Al® = T™A = 0

1

iv) ™I

n

- = Wﬁ

Proof: Follows from (5.4.28) and the fact that (5.4.33) always exists
for stochastically continuous processes [Doo 53]. o

In the sequel we shall refer to II® as the ergodic projection at o.

For future reference it is important to notice that because

P(t) = Il exp{at} =exp{at} -1 + I

equation (5.4.33) implies that generators of FSMP's are semistable matrices.
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5.5 Singularly Perturbed FSMP's and Aggregated Models

. . . €
Consider now a stochastically continuous FSMP N (t) that takes

values in E_ ='{el,...,en } with infinitesimal generator of the form:

0
o0}
_ p
A, (e) pZO S e€[0,¢e ] (5.5.1)

The small parameter € models rare transitions in ne(t) and we shall refer

to ns(t) for €>0 as a perturbed version of the process no(t). Let

Ps(t) and Po(t) denote the transition probability matrices of ne(t) and

no(t) respectively. Our objective is to analyze the behavior of ne(t)

{or equivalently, that of Pe(t)) as €Y¥0 on the time interval [O0,«).
First, it follows from Proposition 4.2.1 that on any interval of the

0 .
form [0,T]1, ne(t) can be approximated by n (t). Precisely,

lim  sup ||P¥(0) - PPe)]] =0 yoce (5.5.2)
EY0 0<t<T

i.e., the finite dimensional distributions of ne(t) converge to those

of no(t) uhiformly on [0,T]. However, as indicated by the example in
Section 5.3 and by our results in Chapter 1y. the behavior of nE(t) on the
infinite time interval [0,») may differ markedly from that of no(t).
Following Section 4.2,we shall say that nf(t) is regularly perturbed if

1im sup ||PS(e) - PPw)|| =0 (5.5.3)
e¥0 >0
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otherwise, we will say that the perturbation is sdingufat. In what
follows we focus on the singularly perturbed case, since failure of
(5.5.3) is symptomatic of the existence of distinct behavior at dif-

ferent time scales.

FPirst, consider the adaptation of the multiple time scale behavior

concept to FSMP's.

Definition 5.5.1

. £ . . .

We will say that N (t) has well defined behaviorn at
time scale t/Ek, k>0, if there exists a continuous, time-
dependent matrix Yk(t) such that for any 6>0, T<o,

lim  sup ||PS(t/ed) - v ]| =0 (5.5.4)
€40  §<t<T .

Remarks :

1) It is readily verified that the limit matrix Yk(t) in (5.5.4) must
be the transition probability matrix of some FSMP nk(t) taking values in
EO. Thus (5.5.4) is equivalent to say that ne(t/ek) converges to some

FSMP'nk(t) as e¥0 in the sense of finite dimensional distributions.

2) As we will see next, lim Pe(t/a(e)) exists for any order function
eYo
+ ' . .
ol(e) (a: [0,80]-+R , 0.(0) = 0 and 0,(*) continuous and monotone increasing).

It turns out, however, that only the limits Yk(t) for a finite number of

positive integers k=0,1,...,m are required to construct an asymptotic
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approximation to Pe(t) uniformly valid for t>0. We shall call
£, £/ ,....t/€" the fundamental on natural time scales of the process
n°(e).

3) Regularly perturbed processes have trivial time scale

behavior. For any order function a(g)

lin sup ||PS(t/a(e))|]- T2|| = 0 (5.5.5)
eY0 t>0

where Hg is the ergodic projection at « of the unperturbed process

no (t).

Proposition 5.5.2

€
The process N (t) is singularly perturbed if and
only if the number of ergodic classes at « of the perturbed
process ne(t) is different than that of no(t) or,

equivalently, if rank Ao(e) # rank AOO for €>0.

Proof: This is a refrasing of Proposition 4.2.5 in the context of FSMP.
The statement in terms of the number of ergodic classes at o follows

from the fact that this number equals nul Ao(e). O

In Chapter IV we indicated that if a matrix Ao(e) satisfies the MSST
property then exp{AO(s)t} has an asymptotic approximation that clearly

displays its multiple time scale behavior. We now prove that generators
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of FSMP's always satisfy the MSST condition and we construct a uniform
asymptotic approximation of singularly perturbed FSMP's based on a
hierarchy of aggregated models.

The basic result is the following:

Theorem 5.5.3

Let ne(t) be a singularly perturbed stochastically

continuous FSMP na(t) taking values in E_ = {l,2,..,n0}

0
with transition probability matrix PE(t) = exp{Ao(e)t}
and infinitesimal generator AO(E) of the form (5.5.1).
Denote by Ak, Pk' k=0,..,m, the sequence of matrices
constructed from Ao(e) as indicated in Section 4.4.1.

Then,

i) A and T A p P....

of1 Pk-l are respectively the

infinitesimal generator and the ergodic projection at

zero of some FSMP nk(t) taking values in E_, and

0’

Lim sup ||P€(t/€k) - erxp{Akt}ll =0 (5.5.6)
evy0 teld,T] .

for V4§>0, T<» and k=1,2,...,m (T can be taken equal
to «» for k=m). Furthermore, let Hk = Vk . Uk be the

canonical product decomposition of Hk.
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Then,
ii) PE(e) = exp{Ao(e)t} =
m : k
= ) exp{A et} - mI + o(l) (5.5.7)
X
k=0
= 3 m@“&et}+ouj (5.5.8)
k=0
= exp{a t} + kzl(vkexp{Ake t}u - ) + o(1) (5.5.9)

. ~ A .

- > =
uniformly for t>0, where Ak UkAka is the
infinitesimal generator of a stochastically continuous

FSMP nk(t) taking values in E

o {l,2,...,nk} and

k-1
=n - rank A (5-5.10)
nk 0] pZO P

Proof: The first step is to prove that AO(E) satisfies the MSST property.

We use induction. Suppose that A, A ""'Al are semistable. Then, by

0 1
Proposition 4.5.3 the limit

Lim P(t/eY) = b P ...P expla

} &p (t) vVt>0  (5.5.11)
01 %
e¥0

JL+1t 2+1

is well defined. Clearly, P, . (t) = ., PR+l(t)Z-O and

2+1

P, ,(£) -« P, . (T) = Pl+1(t+T) (remember that the projections

2+1 2+1

Pj' j=0,l,.;.,£ commute with each other and with A£+l)' Therefore

(t) is the transition probability matrix of a FSMP and it follows from

P!Z,+1
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Corollary 5.4.8 that A must be semistable. Because AO is semi-

2+1
stable, MSST is proven, and this together with Theorem 4.4.5 gives
i). The second part of the theorem follows from (4.4.35) and the fact

that, by Theorem 5.4.5
exp{Akt}= I- Hk + Vkexp{ﬁkt}uk

with Ak = UkAka being the infinitesimal generator of ‘a stochas-

tically continuous FSMP with n = rank Hk states. Equation (5.5.10)

then follows from:

k-1
rank Hk = dim R(POP1'°'Pk—1) = n0 - z rank Ap
p=0
0O
Remarks
1) The matrices Hk = Vk - Uk and Ak satisfy:
a) Hknl = Hlnk = Hk k>4 (5.5.12)
b) Uknl = Uk k>% (5.5.13)
LV, = Yy k>4
Ay k<f
c) HkA£ = AQHk = (5.5.14)

0] k>L
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2) Part i) implies that the finite dimensional distributions

of ns(t/ek) converge to those of nk(t) which is, in general, a sto-
chastically discontinuous process.

3) As shown in Section 5.4.2, each of the ergodic projections at zero
Hk' k=1,2,...,m, determines an aggregation operation performed byb
collapsing all states that belong to a given ergodic class of Hk into a

‘single state. If ns(t) is aggregated according to the partition specified

by ]Tk, we get
U Pe(t)V = exp{A ekt} + o(1) (5.5.15)
N X Ak , .5.

uniformly on [0,T/€°]. (This follows using (5.5.13) and (5.4.14) in
(5.5.9)). Thus, tﬁe aggregation partition specified at stage k isolates
transitions between groups of states that are likely to occur over time
T/ek but not over shorter time intervals. In addition, and to first
approximation, these transitions follow a markovian law with rates
specified by ﬁk' It is in this sense that we refer to ak(t) as an
aggnregated model of n®(t) valid at time scale t/e°.  If such aggregation
is not performed, the approximate model for time scale t/Ek, nk(t), is
stochastically discontinuous because transitions that occur at slower time
scales look as instantaneous in the limit as €vO.

4) The sequence of aggregated models @k. k=1,...,m, is a hierarchy. We
have already seen that the sequence ny is non-increasing. Furthermore,

(5.5.12) implies that if two rows of Hl are equal, the corresponding two
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rows in Hk are also equal Vk>% and therefore if two states are ag-
gregated together at a certain stage then they are also aggregated
together at all stages thereafter.

4) >In establishing Theorem 5.3.11, the two key properties of FSMP's
used are: i) the fact that transition probability matrices are contrac-
tions, and ii) positivity. The first property implies MSSNS while
positivity aséures that the matrices Ak will not have purely imaginary
eigenvalues. It is thus clear that any uniformly stable positive system
satisfies the MSST condition (see Lemma 3.5.6) and therefore that a
result analogous to Theorem 5.5.3 holds for such systems. However, no
interpretation of the reduced-order models as some kind of physically
interpretable aggregated models is possible in general terms. Any full
rank factorization of the projections Hk (see Lemma 3.2.1) can be used
to write a formula analogous (5.5.9) but the interpretation of the reduced-
order models gk will depend on the full rank factorization used and

on the specific application analyzed.

5) Some aspects of the recursive computation of ﬁk have already been

diséussed in Section 4.4.5. Thus, for example:

Ay = By T Boo

Al = UlAlVl = UlAOlvl
& =UAV._=U (A _ - A A#A W
2 2722 2702 01 001" "2
A # # # #
B 3 _— — p— +
Ay = UAV, = Us(Bg, = Ao RgAg, = BooBoRoy + By BoRaiRoBo1
# # # #
= AgpPiRos T BgoRBo1PoRo1 T Ro1PoPoit1Po2
- A A#A A#A - A A#A A#A A#A Y%

01001 102 ol"0011 01001 '3
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In addition to the matrix multiplications and additions indicated above,
each aggregation stage involves computing a new projection Hk and a
new generalized inverse Ai_z. Such calculations can be carried out
with mafrices of increasingly smaller dimension. At the first stage we

need to compute Hl and A#

o and even though these are (noxno) matrices

their computation can be decomposed into a set of smaller problems
(essentially one per ergodic class of the unperturbed process). At the

second stage, H2 can be computed as,

H2 = lim Hl exp{Alt} =V, ( 1lim exp{Alt}) U

t->c0 t~0 1

and therefore only the ergodic projection of the agghegated model ﬁl

needs to be calculated. Similarly with the generalized inverse Af,

~ At = At
A#=— (el-P)dt= (VelU + I -1, - P_)dt
1 1 1 1 1 1
0 0
o ;’Lilt R »
= - /Vl,(e - B)Udt = VAT,
0
~ -.I A ~

which requires only A# = (A1 + Pl) - P

1 , Where Pl is the ergodic projec-

1

A
tion of the aggregated process A.. The canonical product decomposition of

1
H2 can also be computed from that of Hl and that of §l = GlUl as follows:
=B = ViV - 9%
Ny —
v U
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In summary, the complexity of the computations required decreases with
the number of states of the succesive aggregated models and they can
be implemented in a recursive fashion. We illustrate this procedure with

an example in the next section.

5.6 Example
€ . . .
Consider the process 7 (t) in Figure 5.5. A guick look at the
unperturbed version in Figure 5.6 will convince the reader of the singular

nature of the perturbation. The ergodic projection at « of no(t) is

given by

1 o o o o0 o0 0|

1 o o 0 O 0 o©

o o 1 0o 0 0 0.

o o o o 1 0 0

m,=fo o o o 1 o o

/20 0 0 1/2 0 0O
o 0o o o o o 1 _]

and its canonical product decomposition is given by:

1 0 0o 0o o o o0 1 oo o |
1 0 o 0 o0
Ul=o 0 Vl=1 o0 o0
o o o 0 1 0 0 o 10 o0
o o 0o o 0 0 1 o o0 1 o0
L -
o o1 o
1/2 0 1/2 0
o o0 o0 1
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€ € € €
Q@ P @ P @ ——tl— @ —f— @
€ \,/.ez €3 e4\>/95
| | 1

Figure 5.5: The process ne(t) considered in the example
in Section 5.6.
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o | o ) ®
e\ 3 e, Ses
1 [

Figure 5.6: The unperturbed process of no(t) .



-206-

The ergodic partition at zero has four classes El = {1,2},
E2 = {3}, E3 = {4,5} and E, = {7} and a transient state ET = {6}.
The aggregated model ﬁl(t) valid at time scale t/e is portrayed in

Figure 5.7 and it has the following infinitesimal generator:

0 o o 0]
Ajrupv ={12 -1 12 o0
0 o o0 0

0 o o 0|

Notice that the aggregation operation in addition to collapsing
{1,2} and {4,5} into two states also prunes the evanescent state {6}.

To compute next partition, use the ergodic projection of Alr

2. 1 0 o0 0]
P o=lime ™ =[12 0o 12 o
o
0 0o 1 0
o 0 0 1

to get the canonical product decomposition of H2 = V1P1U1

= (Vlvl)'(U Ul) from

1

(=P

]
©o o ~
o o o
o + O
= O O
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o~

7,(1)

i, 2} <t {a,5)
3

Figure 5.7: Aggregate model valid at time scale t/e.
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et 0] 07

/2 1/2 O

<>
Il

0 1 0

[ o 0 1

The resulting partition is:

Ei = {1,2} , E, = {4,5}, Eg = {7} , E; = {3,6}

. 2 ~
and the aggregated model valid at time scale t/e , nz(t),

represented in Figure 5.8, has generator:

~-1/2 1/2 0
A--um'sy = | 12 -12 o
2 2 0 2 ’ )
L 0 0 0
Finally,
X gzt 1/2 1/2 0
P2 = lim e =\|1/2 1/2 0
o0 '
0 0 1
leads to the next aggregation partition: EI = {1,2,3,4,5,6},
E, = {7}. The aggregated model valid at t/€3 has rates
-1/2 1/2
A = - u.sa'sy. Aty safmv. = / /
3 30 1110 3

0] 0
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[ N

1/2

1/72

. 2
Figure 5.8: Aggregate model valid at time scale t/e.
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and it is portrayed in Fig. 5.9. The hierarchy of models ends here

because

rank A, + rank ﬁl + rank 32 + rank A, = 6 = rank AO(E), £> 0

This example illustrates how a comparatively complex singularly pex-
turbed FSMP can be asymptotically approximated by a collection of very

simple FSMP.
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-

+1/2 7,7\3(1)

G I,2,3,4,5,6D

Figure 5.9: Aggregate model valid at time scale t/€3.
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CHAPTER VI: TIME SCALES AND COHERENCE AREAS
IN POWER SYSTEMS

6.1 Introduction

In the multiple time scale techniques developed in Chapter IV
modes are considered fast or slow according to the rate at which they
decay to zero which, of course, is specified by the real parts of the
eigenvalues. This analysis can adequately be characterized as a
decomposition "along the real or O-axis". There is, however, another
possible view of separation of time scales that concentrates on the
imaginary parts of the eigenvalues. From this point of view, modes are
considered to be fast or slow depending on their oscillation frequency.
We will refer to the later as separation of time scales "along the
jw-axis".

The results presented in Chapter V can be interpreted as saying
that for positive systems, time scale separation always takes place
along the O-axis. At least one class of important models, however,
exhibit separation of time scales along the jw-axis: linearized
"swing" equations for electric power networks. A quick look at
Figure 6.1, portraying the pole structure of a 16 machine model [Avr 80],
will convince the reader that this is indeed the case.

Practicioners in the electric power industry, have for a long time
observed that in post-fault transients certain groups of generators

"swing together" with an "in-phase" motion of slow frequency [Pod 78].
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10

-

Re A

Figure 6.1:

Pole structure of a 16 machine linearized
power system model.
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Each of these groups of generators is considered to be a cohereht
area and is replaced by a single "equivalent" machine in reduced-
order models used in the analysis of post-fault transients [Avr 80].
In practical terms what is :equired is an algorithm to identify the
groups of generators that will swing coherently for a given disruption
in the system (i.e. for a given linearized model of the system), and
the parameters of the equivalent machines that represent each coherent
area.

Implicit in this heuristic reasoning is the notion of a spatial
aggregation associated with a time scale separation. Conceptually,
this notion is close to the aggregation idea rigorously formalized in
Chapter V for FSMP's. 1In fact, both problems have much in common as
we indicate in the sectionsthat follow.

The ideas and results presented in this chapter can also be seen
as an extension of the results obtained in Chapter IV to certain
types of systems that violate the MSSNS condition. They are important
both, for the insight they provide into the coherence area problem, and
also because they suggest a way to carry out a more general extension

of the asymptotic results developed for the MSST case.

6.2 The Linearized Swing Equations

We review here the model used in the analysis of transients in

an n-machine power system} “We closely follow [Avr 80].



-215-

The intermachine phase variations in a power network are
largely determined by the natural frequencies and the mode shapes of
the linearized electromechanical model around the stable equilibrium

values of the rotor angles 6; and machine speeds mz. The linearized

model is:
AS. = Aw, (6.2.1)
i i
. n . i=1,2,...,n
20, Aw, =-d . Aw, - ) vY..AS, (6.2.2)
i i i i . iji 3
3=l
where
A6i = deviation from the equilibrium rotor angle of
machine 1i.
Awi = deviation from the egquilibrium machine speed of
machine i.
Hi = inertia constant of machine i.
di = damping constant of machine i.
Yij = matrix of interactions between different

machines.

The eigenvalues of the above system are of the following three
types (see Fig. 6.1):
i) a zero eigenvalue corresponding to the fact that
one of the machines angle can be chosen arbitrary.

ii) a small negative real eigenvalue corresponding to the

collective loss of speed by all the machines, and

iii) (n-1l) pairs of lightly damped oscillatory modes.
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Modgls involVing more details would still contain this basic
eigenvalue structure with slight modifications mostly in the damping
and‘not in the frequencies of the modes. Furthermore, since it is
known that the small damping constants di do not significantly alter
the frequencies of the oscilatory modes we neglect the damping altogether

arriving at the following model:

A 0 A Aw

] = (6.2.3)
AS I 0 AS

where
Al %—H_ll" (6.2.4)
H = diag{Hl'HZ""'Hn} (6.2.5)
I'= (y,.) = V.V.B,, cos(87-8%) (6.2.6)
ij i'jij i3

It is clear from (6.2.3) that the properties of this model
depend exclusively on the structure of the matrix A whose entries

are given by:

N

a.. 8y v.B, . cos(87-8%) i3 (6.2.7)
ij i i34 i3

a,; = - ) a,. (6.2.8)
. 5#i
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where Vi and Vj are the node voltages, Bij is the imaginary part of

of the admittance between node i and node j, and 8:, 6; are the
stable equilibrium rotor angles of machines i and j. If ﬁhe network
is assumed to be lossless, with no phase-shifters and with the machine
angle difference lying in a m/2 -polytope (i.e., ISi—6;|§_W/2, Vi,
then A is diagonalizable and all its nonzero eigenvalues Gi are real
and negative. The eigenvalues of (6.2.3) are then i_/El and they
aré on the imaginary axis close to the slightly damped eigenvalues of
(6.2.1) and (6.2.2). The double eigenvalue at zero corresponds now to
the fact that the rotor angle and absolute speed of one of the machines
are taken as reference.

In addition, and under the conditions stated, all off diagonal
terms in A are positive and all its rows sum up to zero. That is,

A 48 also the matrnix of thansition rates of some FSMP. It is precisely
this structure exhibited by the matrix A that will allow us to use the

ideas, techniques and results presented in Chapter V in the analysis of
coherence phenomena in power systems.

To introduce the notion of time scales in (6.2.3) we will assume
that A=A(g) where € is a small parameter. This small parameter models
the fact that that interactions between certain generators may be much
weaker than others a feature always present in systems with coherence
phenomena. In the sections that follow we will argue that a coherence
analysis of the equation:

. 0 A(Ee)
x(t) = x(t)
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is in fact equivalent to the performing the hierarchichal aggregation
described in Chapter V on A(g).
For latter reference it is convenient to relate the structure

of the eigenprojections and eigennilpotents of the matrix

o = (6.2.9)

to -the corresponding quantities for A.

Proposition 6.2.1

Suppose that A is the diagonalizable matrix of
interconnections of a power system introduced above.
Denote by As¢0, s=1,...,r 1its non-zero eigenvalues and
by PA the cofresponding eigenprojections. Then i)/xs

S

are semisimple eigenvalues values of ./ with eigenprojec-

tions given by:

sz A PAS
37; = %’ (6.2.10)
s LPA/QKS Pk
S S
Pk —/xs PK
_ 1 S S
Sﬁks =3 (6.2.11)
—PA//XS P,
| s s
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Let the zero eigenvalue of A, A°=0, have multiplicity
mr then zero is a non-semisimple eigenvalue of &/ with
algebraic multiplicity equal to 2m0 and the corresponding

eigenprojection and eigennilpotent are given by:

PAO 0
9&0 =
0 Py
L (0]
K¢ 0
gzo -
P 0
RS

Proof:

the matrices PA , s=0,1,...,¥r, we have:
s
r + _
H LG P
o s=1 s s
and
P P =0 P .
« s )\ i
vhi_ Aj ij | N i#j
Also,
l
de@ = +
A = \/xs 33

(6.2.12)

(6.2.13)

Note first that by the spectral decomposition properties of

(6.2.14)

(6.2.15)

(6.2.16)
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and

Thus

' r
_ \/_ + —
A=D, + ] ( N \/ngks (6.2.18)

o s=1 s

+
and because @)\ commutes with 9’; the uniqueness property of
o s

the spectral decomposition (6.2.18) gives the desired result.

Remark: The above proposition indicates that it is not possible to
conduct a multiple time scale analysis of

0 A(€)

A (g) = I 0

along the lines followed in Chapter IV because neither .«(0) nor
«Z () have semisimple nullstructure. Furthermore, we will see that

even if the fixed double pole at zero is excluded the remaining

\ =£DA (6.2.17)

matrix does not satisfy the MSST condition. However, given the struc-

ture of Z(g) it is nevertheless possible to develop some analogous

results for this special case of a non MSSNS system and, in addition,

to relate these results to the coherence area analysis that is

usually performed in practical situations.
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In the next section we carry out a complete analysis of a
simple example and in Section 6.4 we outline the approach for the

general case.

6.3 A Motivating Example

Consider the three-machine example shown in Figure 6.2.
For the given numerical values the undamped linearized model turns

out to be:

-14.3 5.5 8.8
U ! -42.2  35.1 (6.3.1)
5.8 81.5 -87.3

The reader will notice that A is the matrix of transition rates

of a FSMP with states 2 and 3 strongly interacting and with weaker
connections to state 1. Based on this observation we can attempt

to decompose A into a form A0+€B which separates the strong and

weak interactions. One such decomposition is:

0 0 0 -71.5 27.5 44
A(e) = 0 -35.1 35.1 +e 35.5 -35.5 0]
0] 81l.5 -81.5 29 0 -29

ne>

A + ¢B (6.3.2)
o
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H(sec)=3.01

v2=1.012+j0.1648pu

H(sec)=6.4 o0 )
D(pu)=2.5 pu)=1.0
2 8 7 6 3
i l.63pu—e I I I I I 0.85pu
: 5 'o;—
0-0654pu —~e I H - | % 0.1095pu

v3=1.022+j0.08292pu
1.0+j0.35pu

= e—

9

5 e

! !

1.25+j0.50pu 0.90+3j0.30pu

NOTE: ALL LOAD FLOW INFORMATION
IS FOR PREDISTURBANCE CONDITIONS.
THE BASE POWER IS 100MVA.

4

| —— \71=1. 04+30pu

t ! ’ H(sec)=23.64
0.723pu 0.2703pu D{(pu)=9.6

Line# From To R(pu) X (pu) B/2(pu)

1 1 4 0 0.0567 0

2 4 5 0.017 0.0567 0.079
3 5 6 0.039 0.170 0.179
4 3 6 0 1.0586 0

5 6 7 0.0119 0.1008 0.1045
6 7 8 0.0085 0.072 0.0745
7 8 2 0 0.0625 0

8. 8 9 0.032 0.161 0.153
9 9 4 0.01 0.085 0.088

Figure 6.2: A three machine example. (Taken from [Avr 801).
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with € = 0.2%

The eigenvalues of Ao(e) are Ao=0, Al(e) = -116.6 + o(l) and
Az(e) = -104-€ + o(e) and those of
0 Ao(e)
bmg(e) = (6.3.3)
I

are A =0, A. _(g) = + 10.81i + o(1l) and A_ (g) = + 10.2 /2 i +
o 1,2 — - 3,4 -

’
of /E). The coherence area problem, as usually stated, is to cons-
ﬁruct a reduced—ofder model of (6.3.3) by combining different
generators on a coherence area in such a way that the simplified
model approximateiy retains the slow-eigenvalues eigenstructure,
i.e., the eigenvalues A3'4(€) = + 10.2 VE + o(VE ).

Consider now aggregating AO(E) using the methdology developed in

Chapter V. The aggregated model valid at time scale t/e is found

to be:
-71.5 71.5

A = U.BV. = (.3.4)
33.5 -33.5

*The problem of how to decompose a given matrix into its weak and strong
interactions is not treated in this thesis. The reader is referred to
Chapter VIII for our point of view on this important problem and some
suggestions for future work in this area. For the case in hand, let us
just say that the basic point to be made with the example does not depend
on the detailed values assigned to the entries of AO and B, but only on

separating states 2 and 3 from state 1 in the unperturbed matrix Ao.
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and it has two eigenvalues'ﬁo=0 and Xl=—104, Notice that
oA (e) = (6.3.5)

are the swing equations of an electric power network with two
generators which, except for terms of order o(/E‘), has as eigen-
values of gﬁi(e). Furthermore, as indicated in Section 5.5 the order
reduction frombﬁz(e) toni(e) is readily interpreted as consolidating
generators 2 and 3 ofbg%(e) into generator 2 ofddi(e). Let us
emphasize that it is the structure of the matrix of interconnections
A(€) what permits ﬁs to dinectﬂy use the resultg on FSMP aggregation in
the coherence area problem.

This reasoning thus "solves" the coherence problem as usually
stated: Given the linearized swing equation of a power network find
a reduced-order model which preserves the slow eigenstructure by
consolidating groups of generators into an equivalent generator. It
also shows that in general it is possible to think of a hierarchy of
coherence area models corresponding to the hierarchical aggregation
of AO(E).

The link betweencg%(e) and the coherence are model Jal(e) as
establish above is nevertheless incomplete because the question as

to what is the relationship between expﬂﬁg(s)t} and exp{dal(E)t}
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is not addressed. Based on the aggregation results presented in
Section 5.5 we could expect that there exists an aggregation

operation (i.e., a pair of matricesqgi and 11) such that
%lexp{do(e)t} Vl &exp{ﬂl(e)t} (6f3'6)

with the precise nature of this approximation to be determined.

Notice that (6.3.6) cannot be an asymptotic approximation of the type
developed in Chapter IV because both od;(E) andaﬁi(e) fail to satisfy
the MSSNS condition and therefore both sides of (6.3.6) grow unbounded
in norm as e€vo. Instead, as we will now see, each entry of
exp{dﬁi(e)t} is found to be the dominant term of a series (in general
a Laurent series) expansion of the corresponding entry in

U expl Jio(e)t}’¢1-

First we need to establish some notation. Let

AO =0

)\l(e) = €>‘1 + o(e)

AZ(E) = AZ + o(1)
be the three eigenvalues of Ao(e) and denote by PXO(E)’ Pkl(E)
and PA2(€) the corresponding eigenprojections.

It follows from Section 3.4 that
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EkP(k)

é ~ [ee]
P (e) = PAO(E) +‘PA (e) =2+ ) o

1 k=1

where PA and Po are respectively the eigenprojections for the
2

eigenvalues AO=O and Xz of AO(O) = AO. Furthermore, it follows

from [Kat 60, p. 69-70] that

lim P, (e} =P
EY0 Ao Ao

is well defined and therefore we have

Po = PX + PA (6.3.7)

We are now ready to write the spectral decomposition of

exp{do(s)t}:
exp{vzio(e)t} = @o(e)t +

N o
PX (e)costk(E)t Xk(e) »ka(E)COSV)\k(E)t

k

k

k=1 P)\ (€) P. (g)cos VA (e)t
k indh (&) A k
———— sin )\k(e)t

Ak(t-:)

(6.3.8)
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where
0 0
o (€) =
e}
PA (e) 0
o
is the eigennilpotent for the zero eigenvalue ofgw%(e). Retaining

the dominant term in €, 4in each entry of the above matrices, we

have:
0 0
expl Z (e)tl~ t +
°© P 0
A
e}
Pllcos VEX& t Ekl lecos /EX; t
+ +
P
Al
sin/EXl t PA cos/EXi t
Vekl 1
szcos /i;t \/AZ szcos Vﬁz t
+
P>\2
sin vV A. t P, cos ¥ A.t
. 2 12 2
2
L - (6.3.9)

Notice that this approximation still retains the complete eigen-
structure ofd&;(e): a double pole at zero a pair of fast eigen-

values and a pair of slow eigenvalues. The approximation consists
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in keeping only the dominant terms in € in the eigenvalues XS(E)
and in the eigenprojections Pl (e).
- 's
To isolate the slow modes in (6.3.9) we use the aggregation

operation determined by the eigenprojection for the zero eigenvalue

of dgg(O), i.e.,

Q
Il
Il
<
c
N
N

(6.3.10)

where PO = Vl-Ul is the canonical product decomposition introduced

in Section 5.4. We thus have:

0 0
U, expld ()t} ¥ ~ t o+
1 © 1 U.P., V 0
') 1
(0]
UlP>\1vl cos/ekl t €>‘1 UlPklvl cosu/e)\l t
+

U.P, V
12,1 —

1 sin/Ek, t UlPAlVl cosved, t
Vekl

(6.3.11)

To establish that the two matrices in the right-hand side of

A
(6.3.11) equal exp{aﬁi(e)t} we only need to show that zero and Al
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are eigenvalues ©f A; and that ULPAOV1 and ULP?\lV1 are their

respective eigenprojections. First,

(U Pk.vl).(Ulpk.Vl) =UlP P. +P )YP _v =

1 A, Fa By 0B Y
i B § o 1 3
. (6.3.12)
= .U.P
83U N1
B
and
+ U.P = U,P =
UlP}\ v Ul A Vl Ul Ovl I
o 1
Thus, U.Py, V. and U_P, V are mutually annihilating projections
1 ko 1 1 Al 1
that sum up to the identity. Further,
R PO(E)AO(E)
Al = 1lim Ul . €— Vl
eYo
= U, - lim 1 (P, (e)+P, (e))A () | -V
TNl € A A o 1
eYo o 1
= U, * lim L (ex (e)P, (€))- V
1 €40 € 1 Xl 1
= . 6.3.13
)‘1 UlPAlVl ( )

Equation (6.3.13) is the spectral decomposition of Al and

we finally conclude

@/lexp{do(e)t} “//l X exp{dl(e)t} (6.3.14)
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in the sense that each entry of the aggregated model in the right hand
side coincides with the first order term in € of the corresponding
entry of the left hand side matrix.

Notice that this asymptotic approximation, in contrast with
those developed in Chapter IV, does not imply well defined time scale
behavior in ﬁhe sense of Definition 4.2.3. The limit

lim expleZ (e)t/a(e)} (6.3.15)
ev0 °

does not exist for any order function 0(€)*0 among other things because

of the double pole at zero that produces the nilpotent block

P (e)t = t (6.3.16)

P)\ (g) 0
- o

This mode with linear growth in t is a characteristic feature of the
linearized éwing equations that both the complete and the aggregated,
coherence-based model should (and do) exhibit. Because fhis
unavoidable, common unstable mode impedes uniforﬁ asymptotic approxi-
mations it is convenient to deal with it separately, and to focus
our attention on the oscilatory modes.

It follows from (6.3.8) and (6.3.11) that
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02/1[exp{ do(e)t} - go(e)t]”l/l“’-

exp{.,éi(a)t} - Q?ot =

UlPAlVl cos/gxlt Jﬁ—l UlPA Vl cos/r— t
Ulpxlvl
sin/Exlt . UlPA V cos/_x t
= /e_xl 1 -
(6.3.17)

isolating in this way the slow frequency modes associated

with the coherence area approximation. Even with this modification,
however, there is no well defined behavior at the time scale at
which the slow oscillations take place, i.e., t//Fl This is so
because the entry (2,1) in (6.3.17) implies

lim | |exp{ .,d (e)t/ve} -9 (e)t/Vel|= =
eYo

for any t>0, a manifestation of the observed fact [Cha 8I]that the
slow oscillations due to coherence phenomena have large amplitudes.
This example illustrates that coherence area models are a
natural extension of the aggregation results presented in Chapter V
and, more importantly, the example gives a clear indication of the
nature of the approximation: it consists of retaining the dominant

term An each entry of the transition matrix. This approximation is
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peculiar in two ways. First, it maintains the complete mode
structure independently of the order in € of the different modes,
and, in this sense, it is a very natural approximatioh. On the other
hand, it is not a ﬁniform approximation in t, i.e., no matter how
small € is, the error gets arbitrarily large as t?>® in some modes.
Thus, care must be exercise in evaluéting the interval of validity

of the approximation.

6.4 Multiple Time Scale Behavior of Linearized
Swing Equation

Asisuggested by the example above, linearized swing equations are
a class of noﬁ—MSSNS systems for which the results developed in
Chapter IV extend in a natural way. We now discuss this point in more
detail.

Suppose thatddg(e) is a (2nx2n) matrix of the form:

0 A (g)
(o]

”&B(E) = (6.4.1)
I 0

with Ao(e) an (nxn) matrix that satisfies the MSSNS condition. Let
Pk(e), Qk(e) and Ak(e), k=0,1,...,m, be the sequence of matrices

constructed from Ao(e) as in Section 4.4.1, i.e.,
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m
k
a(e) = ] €9 (e)a (e) (6.4.2)
o k
k=0
and Pk(e) = I-Qk(E) . The result below generalizes Theorem 4.4.4

to systems of the type (6.4.1)

Theorem 6.4.1

Letd{O(E) be as in (6.4.1) withAo(e) MSSNS.

Then,
o k
expl ()t} = kzo 2 (e)expld (e)e'th Z(e).. P (&)
m k
=) exp{Qk(E)dk(E)e }- mI
k=0
o k
= I exp{2 (e)z (e)e t}
k k
k=0
0 k
= exp{ ) Qk(e)dk(e)s t} (6.4.3)
k=0
where,
Pk(e) 0
%(E) =
0 Pk(e)
Qk(e) 0 (6.4.4)

Qk(e) = I—?i{(e) 0 Qk(E)
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0 A (e)

A _(g) =
k k
P (e)...n _,(e)/e 0

(6.4.5)

Proof: The proof is based on the same manipulations used in proving
Theorem 4.4.4. We sketch here the first step.

Define
P (g) 0
(o]
P (e) = i 2 (e) = I- &£ (¢)
o o o

then
exp{adg(e)t} = Sz(a)expﬂxg(e)t} +£go(€)expﬁﬂ€(€)t}
can also be written as,

exp{be;l)(e)t} = exp{,?(;(i—:)d%(e)t} -2 (e) + Qo(e)exp{d{)(e)t}

Nextf
0 PO(E)AO(E)
e5/7?)(8).,«:10(6) =

p (g) 0

O
) Al(t-:)

= = e.,dl(e)

P (€) 0

(o]

The successive steps and the proof that the different expressions
given for expﬁxg(e)t} are equivalent follow immediately as in the

MSSNS case.
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As discussed at length in the preceeding section, even if
Ao(e) is MSST we cannot have a result similar to Theorem 4.4.5 for
exp{u&;(e)t} . The example analyzed in Section 6.3, however, lends

strong support to the following conjecture.

Conjecture 6.4.2

Letda;(e) be as in (6.4.1) with AO(E) MSST.

Then
.
m 0 € By
exp{ (e)t} =~ ) @ exp ty\ - 2...
0 = k o m
k=0 P ...P 0]
| o k-1
— k —_
m ° € A
= z exp t} - mI
k=0 P ...P 5 0

- k —
m 0 By

1l
=
2
o]
o

(6.4.6)

Where the approximation is again to be interpreted as consisting

of the dominant term in €, entry by entry. o

Remarks
1) For systems with two times scales the above conjecture is readily

proved following the same steps used in the example of Section 6.3.
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For systems with more than two time scales this method of proof
leads to quite involved notation and manipulations. If the
conjecture is true, it would be preferable to find a different, more
elegant approach.

2) The difficulty in proving Conjecture 6.4.2 is due to its entry
by entry nature. Different entries are of different order of
magnitude and the result cannot be established using any kind of
convergence in any matrix norm. Matrices cannot be manipulated as
-such but instead each entry must be analyzed individually.

3) If the conjecture is correct then it is possible to define a
hierarchy of coherent are a models, i.e., a hierarchical sequence

of aggregations of the type

Uy, exp{u%(e)t} Y, = exp t (6.4.7)
k=1,2,...,m

exactly as in the FSMP case. The usefulness of this hierarchy for
power systems analysis seems, however, quite limited given the fact
that the linearized model used most likely loses validity over such
long time intervals. It is nevertheless conceptually useful in the
situation where the number of slow poles in the system does not match
the observed number of coherence areas [Avr 80]: Some very slow poles
correspond in this case to coherence areas at a higher level of

aggregation.



-237-

To conclude this chapter let us emphasize what we see as our
contributions in the coherence area analysis for power systems:

1) Our main contribution is of a conceptual and interpretative
nature: Starting with a system matrix of the for A0+8B we show
that, under certain condition, the system's evolution exhibits
coherence area phenomena. We give a methodology for the construction
of an aggregated model, and we give an interpretation of this
reduced-order model as an asymptotic approximation of a special kind.
It is an asymptotic approximation valid on an entry be entry basis,
and it is not uniformly valid over [0,®). The nature of the approxima-—
tion and the lack of a result similar to the MSST case is a manifesta-
tion of the practical observation that slow oscillations among coherent
areas are of large amplitude if left uncontrolled [Chan 81], behaving
as unstable modes on the short run. An observation that our analysis
confirms.

2) Beyond that,we provide a clear focus of what must be done
to determine groups of coherent generators. Namely, that the problem
is totally equivalent to the fundamental guestion in multiple time
scale analysis of how to decompose the matrix of a system into AO+€B
with € small and B chosen so that it really captures the singular
nature of the perturbation that gives raise to time scale behavior.

The theoretical analysis and perspective developed in this chapter

cannot be found in the power systems literature where several authors
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(see for example [Pod 78], [Avr 80], [Win 80]), have proposed time-
scale based "grouping algorithms" which, although they attempt a
decomposition of the sort AO+€B, they do so indirectly and without
focusing on this as theykey point. We fell that our wviewpoint can
be of help in reinterpreting and possibly modifying these algorithms
ﬁhich are of the utmost practical importance. We should also mention
that other authors (see [Sas 81] and references therein) take a dif-
ferent view of coherence, more directly reiated to the kinds of
disturbances experienced by the powér system, which does not involve
notions of time scale separation. Our analysis belongs more ap-
propiately to the group of authors mentioned first.

Finally, aside from the direct contributions to the coherence
area problem, the results of this chapter provide a first indication
of how should one proceed to generalize the results in Chapter IV
to non-MSSNS systems: |

1) Unbounded amplitudes as €¥0 mut be accomadated in the def-
inition of well defined multiple time scale behavior and in the
asymptotic approximations, and

2) Because in general the entries of exp{Ab(E)t} will be of
differeht orders of magnitude as e€V0, the asymptotic approximations

must be interpreted on an entry by entry basis.
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CHAPTER VII: AGGREGATE FILTERING FOR SINGULARLY
PERTURBED FSMP's

7.1 Introduction

In this chapter we explore the possibility of using aggregated
models to simplify the structure of filters for singularly perturbed
FSMP's. Let pe(t) be a FSMP's with infinitesimal generator‘A(E) and
suppose that we observe pg(t) in white additive noise, i.e., suppose

that we have observations:

dy(£) = h(p®(t))dt + B(e)dw(t) (7.1.1)
where y(t)G Rn, h(-) is a vector valued function and w(t) is a vector
of independent, standard Wiener processes. The standard filtering

problem consists of computing the a posteriori probabilities:

Tri(t) = Pf{pe(.t)=i]Y(T), o<t<t}
from the observations y(T), 0<1<t.

Given that we know that the process ps(t) admits a hierarchical
description in terms of a set of simplified models, it is reasonable to
attempt to find a filter design that reflects this structure. Such a
filter would be composed of a hierarchy of filtering algorithms, each
layer running at a different time scale, each using a model that describes
pe(t) with a different degree of aggregation, and with some coordination

among the different levels of the algorithm.
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An example will clarify this idea. Suppose that pe(t) is the
process depicted in Figure 7.1(a). It undergoes fast transitionsbetween
states 1 and 2 or 3 and 4, while transitions between Xl = {1,2}
and X, = {3,4} are rare. We can think of a filter in which at a higher

level only the rare transitions between X. and X2 are to be detected and

1
which uses the model in Figure 7.1(b) for this purpose. Provided that

information about changes between X

1 and Xz is supplied by the measurements

(7.1.1) and at a rate that is high compared to the transition rates
€A' and €l'', this filter will be able to determine quite precisely

€ . . . : ’ .
or p (t)e X2. This information can then be fed into

whether pe(t)e Xl

a low level fast filter that tries to keep track of the fast transitions
. € . . ‘ .

in p (t). The fast filter will use a two state model of the system which
at time t has parameters Al and Az or ul and uz according to whether the

or pe(t)e X, .

. . . €
upper filter estimates p (t)e€ X, 5

It is clear that other factors, in addition to the multiple time
scale structure of the process pe(t), need to be considered when trying
to decompose a filtering problem in the way we have Jjust described.

In our view, these factors are: Zthe structure of the measurements, and
the nate at which information about certain changes in p°(t) is supplied
by the observations y(t). "Information rate" is a term to be made
precise that refers to the magnitude of the signal-to-noise ratio for
certain transitions relative to the rate at which these transitions occur,

while the "structure of measurements" refers to the relationship between
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o~ S’
~ -~
2 T —=o>-——"4
€7a
(a)
’
e\
A
Rlet)
n
€N
(b)
Figure 7.1(a): The process discussed in Section 7.1 and (b)

its aggregated model.
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the values taken by the observation function h(p) and the
partitions specified by the hierarchical structure of pe(t).
For example, suppose that we have the following two measurements

of the process in Figure 7.1:

_ €
dyl(t) = hl(p (t))dt + bldwl(t) (7.1.2)
_ €
dy2(t) = h2(p (t))dat + bzdwz(t) (7.1.3)
with
hl(l) = hl(2) = oy
_ A
h1(3) = h1(4) - az
and
_ A
h2(l) = h2(3) = Bl
- A
h2(2) = h2(4) = 82

The structure of the observation function hl(-) is such that no
information at all is supplied by yl(t) about fast-transitions in
pe(t). On the contrary, yz(t) mostly carries information about the
fast transitions in pe(t) and only over longer periods of time it
does provide some information about the slow transitions through the
different average behavior due to differences in the transition rates
Al' Xz and Myr Hye In this case, the structure pf the functions
hl(-) and hz(-) is compatible with the time-scale decomposition of

€
of the process p (t) and illustrates the role of the measurement

structure in decomposing the filter.

(7.1.4)

(7.1.5)
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Consider next the notion of information rate, also for this

example. The larger the difference is between . and uz,'the stronger

1

. and X

the effect will be of a transition between X1

5 on the measurement

yl(t). A measure of the signal-to-noise ratio in yl(t) that we

will find convenient is the following

2
[ e )
Af 7172
K = 5 (7.1.6)
1
The larger Kl is the better we can discriminate between pE(t)e xl
pe(t)e X,. A measure of how well we can track transitions between

2

Xl and X2 should involve, in addition, the rate at which such
transition take place. A parameter that will appear in later computa-
tions is the ratio between the signal-to-noise ratio Kl' and the

rate of transitions. For the measurement yl(t) this

ratio is
Yl = — 7 (7.1.7)

where A is some number of the same érder of magnitude as A' and

A'' (for example, (A'+A'')}/2). We will refer to ratios of this
form as informgtion rates. For a given signal-to-noise ratio Kl,
the information rate, Yl' supplied by measurement yl(t) ié very high
if the transitions to which it refers are rare (¢ << 1). This high
information rate in turn suggests that the higher level estimator

for pe(t) will perform very well at least for long periods of time in
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which no rare transitions take place. Such near perfect performance
is a good argument in favor of a hierarchically structured filter.
If, on the other hand, the difference ql—az is very small, say of

order €, the information rate Y, will be small (also of order €)

1
indicating a poor performance of the higher level filter. 1In this
circumstances a hierarchical filter does not seem advisable.

In general, therefore, a judgement about the hierarchical decom-

position of a filter must be based on:

a) the time scale structure of the process to be
estimated;

b) the structure of the measurements; and

c) the rate at which information about different

transitions is supplied by the measurements.

In addition, a fourth issue must be considered when trying to asses

the performance of a hierarchically decomposed filter:

d) In what sense are we goingvto judgevan estimator
to be good or bad?
Hierarchical filters may perform badly at some times. For example
when ,due to a false alarm at some high level filter, wrong models
are used in the lower levels. The frequency of occurrence of such
events and their effects have to be quantified, and for that purpose,
the standard pointwise minimum mean-sqguare error criteria is not

appropriate.
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A comprehensive study of the filtering problem for the general
case is beyond the scope of this thesis. Instead, our goal in this
chapter is to develop some intuition and insight into the issues
arising in this problem through the analysis of the example we have
just discussed and some related topics motivated by it.

In Section 7.2 we carry out a qualitative analysis of the -
filtering equations for a two state process with rare transitions.
Several additional aspects of this example are developed in Section 7.3
and 7.4. This example motivates the introduction of the signal-to-

noise ratio parameter K. and of the information rate Yl as fundamental

1

quantities, and it illustrates the trade-off involved between detec-—
tion delays and false alarm probabilities. This trade-off is important
in hierarchical filtering because a false alarm (i.e. an erroneous
detection) at some high level filter quickly propagates through lower
levels ana has significanﬁ effects on the performance and dynamic
behavior of the filter. On the other hand, detection delays at a given
level adversely affect overall performance because during this delay,
the models used in lower level filters are erfoneous.

The qualitative behavior bf a hieraféhical decomposed filter
for the process shown in Fig. 7.1 is discussed in Section 7.5 together

with some suggestions for future research on these problems.
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7.2 The Optimum Filter Equations: Qualitative Analysis

€ .
Let p (t) be a singularly perturbed FSMP taking values in
E = {0,1,2,...,n} and with infinitesimal generator A(€). Suppose

that the following observation is avaiiable.*

dy(t) = h(p®(t))dt + b dw(t) | (7.2.1)

The vector of a-posteriori probabilities:

moe) = (), 4 pr{p®(t)=i|y (1), o<t<t} (7.2.2)

satisfies the following stochastic differential equation [Lip 78]:

am(t) = A(E)TTT(t)dt + 1—2 g(m(t)) [dy(t)—E(ﬂ(t))dt] (7.2.3)
b
where:
(g(m(e))), = T () (h(i) - h(m(£))) - (7.2.4)
and
h(m(t)) = ) h{i)m, () | (7.2.5)
i€E t

The first term on the right hand side of (7.2.3) corresponds

-to the evolution of T(t) if no measurements were present (the Chapman-

Kolmogorov equation) while the second term, the innovations term,

*
For simplicity we take the observation to be one-dimensional.
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represents the effect on T(t) of the measurements. For purposes of
analysis, it is convenient to rewrite (7.2.3) as a non-linear dif-
fusion driven by the observation noise. This is easily done by

substituying dy(t) in (7.2.3) by its expression (7.2.1) as follows:

ar(t) = {a(e)Tn(t) + 1—2 g(m(£)) [h(pS(£))-h(m(£))]}at

b

+ % g (T (£) ) dw (t) (7.2.6)

Written in this form the filtering equations (7.2.6) are seen to be
non-linear diffusion with a drift that depends on the process to be
estimated, p(t). Furthermore, because T(t) is a vector of probabilities,
the diffusion (7;2.6) must take place inside the n-dimensional unit
simplex, i.e. it is a diffusion in a bounded domain. Notice that in
contrast with (7.2.3), equation (7.2.6) is not written in a realizable
form (i.e., it cannot be implemented as given)Abecause its coefficients
involve the unobservable process p%t). This explicit dependence on
the process to be estimated, however, makes this equation very useful
for purposes of analysis and also gives insight into the filter
performanée.

To uﬁderstand better the way filters for FSMP's work we analyze
in detail the filtering equations for the two staté process indicated
in Figure 7.2. For this simple process, the filter is one-dimensional

and in its realizable form is given by:
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N p(t)

Figure 7.2: The two state process discussed in Section 7.2.
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dﬂl(t) = [—Aﬂl(t) + X(l—ﬂl(t))]dt

4 iE-Ih(l)-ﬁ'(nlttm @y (£)-h(m (£))at) (7.2.7)
b
ﬂb(t) = 1—nl(t).

where

h(nl(t)) = h(l)'rrl(t) + h(0) (l—'nl(t)) (7.2.8)

Written as a diffusion driven by the measurement noise, (7.2.7)

takes the form:
dﬂl(t) = [—Xﬂl(t) + A(l-ﬁl(t))]dt

h(1)-h(0) } -
+ S T () (1 (6) (e (6))-h(m (€)) Tat

b

h(1)-h(0) _ ,
+ IS T () (1- (£) ) aw (t) (7.2.9)

The right hand side of equation (7.2.9) has three terms.

The first term,
[—Awl(t)+k(l—wl(t))]dt (7.2.10)

corresponds to the a-priori evolution of the probability and it

would be the only one if measurements were not present. The second,

b 1 1 1
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is a drift term introduced by the measurements. It is the only term

affected by a change in the process to be estimated pe(t) and

therefore it is most important for the filter performance.

the noise term:

h(1)-h(0)

5 ﬂl(t)(l-ﬂ(t))dW(t)

Finally,

reflects the fact that measurement noise affects filter behavior.

(7.2.12)

An understanding of the qualitative behavior of the filter can

be gained from the shape of the drift and noise coefficients.

“Suppose that p(t)=1 over the interval of interest. Then ﬂl(t)

evolves according to:

dwl(t) = [—Xﬂl(t)+l(l—ﬂl(t))]dt

2
+ K2, (8) (1-T (£)) %at
1 1 :
+ K1Tl(t) (l—Trl(t))dw(t)
where the only parameter appearing in this equation:
b

2
K2 A [h(1)-h(0) )

has a direct interpretation as the signal-to-noise ratio.
Similarly, if p(t)=0 over a certain interval, then ﬂl(t)

according to:

evolves

(7.2.13)

(7.2.14)



-251-

am, (t) = [-?cnl (£)+A (1-m (£))]dt

2 2
- K Wl(t) (l-ﬂl(t))dt

+ KM (£) (1= (£))dw () (7.2.15)

In both cases the noise intensity is maximum at ﬂét):l/Z
(the point of maximum uncertainty where maximum weight is given to
the measurements) and it becomes zero at the end points of the
interval [0,1] where the drift in both cases points towards the
interior of the interval. This is the mechanism that keeps the dif-
fusion confined to the ynit interval. 1In the interior, the drifts
of equations (7.2.13) and (7.2.15) have unique stable points at

m* and ﬂ; respectively that are the solutions of the following

1

equations:
If p(t)=1
A (2 4w a-rh? = o (7.2.16)
2 17
If p(t)=0
-K—é (1-2w0)—(n0)2(1-1r0)=o (7.2.17)

If the parameter

2

K .
= —— .2.18
Y =3 (7 )
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that we term an "information rate", is large,then W; ~ 1 and

ﬁ; = 0. If, on the contrary, Yy is small WI o~ n; ~ 1/2. Thus,a

large Y indicates that the output of the filter will have a tendency

to remain close to the correct end point of the interval [0,1]
according to the value of p(t), while a small value of Yy indicates that
the measurements do not provide enough information for the filter to

be able to track the change in p(t), stabilizing instead around the
ergodic probabilities of p(t). The location of the stable point of a
filter diffusion is one of the parameters that we will use in a
gqualitative analysis of the filter.

A better idea of the behavior of the filter inside the interval
[0,1] and of the effect of a transition in p(t) can be gained by
plotting the drift coefficients of eguations (7.2.13) and (7.2.15).
Figure 7.3 portrays the potentials (i.e., the functiéns whose gfadients
are the drifts) corresponding to the drift coefficients of the filter
for p(t)=0 and p(t)=1, and for a value of Y relatively large (y=10).
Suppose that we have a situation with a quite high signal to noise
ratio, K2>>l, and that we are trying to detect transitions thét are
quite rare, i.e., A<<1l. Suppose further that p(t) has stayed at
p(t)=1 for some time and that at +=0 there is a transition to p(0+)=0.
The behavior of the filter will be as follows: Because K2>>'l and the

process has remained for some time at p(t)=1 before switching,
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(a) Potential for equation (7.2.13)

- 22
Y(z) =f()\(1-2x)- K x° (1-x) ) dx

172

1T1‘

1

K2}
p (t)=1
o |
0 m
P (1)=0

]

o m

172

|
L ]
o

0

(b) Potential for equation (7.2.15)

Figure 7.3: Potential for p(t)=1 and p(t)=0.
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ﬂl(t) will have remained close to ﬂI= 1 on the average. (see

Figure 7.3(a)). At t=0, when p(t) jumps from state zero to state 1,
the drift changes from that in Figure 7.3(a) to that in Figure 7.3 (b)
and, gs a consequence, ﬂl(t) will start moving from a neighborhood of
ﬂ; to a neighborhood of ﬂé, following, on the average, the trajectory
determined by the potential well in Figure 7.3(b).

The above discussion together with Figure 7.4(a) suggest the

following qualitative measures for the performance of the filter

discussed:

a) FILTER BIAS: The distance between the equilibrium points of
the filter diffusion and the extremes of the interval [0,1] or,
equivalently, the distaﬂce between equilibrium points for different
values of P(t) give an indication of how well the filter can discri-
minate between different states of p(t) over the long run.

b) NOISE AT EQUILIBRIUM: The variance of the noise around the
equilibrium points gives an indication of the noise intensity present
at the output of the filter, on the average (i.e., between transitions
and far from large deviétions).

c) DETECTION DELAY: The time it ﬁakes for the filter to evolve

from, say, ﬂ; to WI following the corresponding transition in p(t).
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"AVERAGE" NOISE INTENSITY
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(a) Qualitative measure of filter performance
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p
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FALSE ALARM

(b) Detector output for given detection levels 80 and 81

Figure 7.4: Qualitative performance measures.
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d) PROBABILITY OF FALSE ALARM/MEAN TIME BETWEEN FALSE ALARMS:
.Given two detection levels, say 66 and 61 (see Figure 7.4(b)), the
probability of a false alarm before a change in p(t) occurs and the
mean time between such false alarms are well defined quantities. In
general, 60 and 61 are design parameters that are chosen according
to a trade-off between delay time to detection and false alarm
probabilities.

The filter bias can be obtained from equations (7.2.16)
and (7.2.17). 1If the parameter Y=K2/X is large (high quality

measurements) the bias is seen to be:

W; = l—w; = A/K2 = 1/y (7.2.19)

while for 7y small,

™ = 1-1F = 1/2 (7.2.20)
o 1

In what follows we will mainly study the high quality measurement
case (as for example, when trying to detect very rare transitions,
A<<1). Thé noise intensity at the output of the filter, away from
times at which p(t) makes transitions or when the filter experiences

large excursions, (i.e., false alarms) is approximately given by:

2
0% = (K-T*(1-m%)) "= A (7.2.21)
av 1 1

As indicated, this average noise intensity is independent of the

, 2 R . s
signal to noise ratio K and it is small only if the transition to be

detected are rare.
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The calculation of false alarm probabilities, mean time between
false alarms and detection delays, and the evaluation of the trade-
offs involved in selecting the detection leyels 50 and 61 are more
complex and require a detailed analysis that we develop in the
sections that follow, starting with the standard hypothesis testing

case, i.e., with A=0.

7.3 The Hypothesis Testing Problem

In this section we study the detection problem for A=0, as a
preliminary step in order to understand the trade-off involved in the
detection of rare events. For A=0, p(t) = p(0), and suppose, as in

Section 7.2, that we observe:

dy(t) = h(p(0))dt + b dw(t) (7.3.1)

Suppose further that we use the filter (7.2.7) with A=0 to
compute ﬂl(t) = Pr{p(0)=l|y(T), 05;5;} and that we want to decide
between p(0)=0 and p(0)=1 according to whether the level 60 or 51
is‘first crossed (see Fig. 7.5).

The detection scheme just described performs a sequential test
of the kind introduced by Wald [Wal 47). 1In his work and in subsequent
research in hypothesis testing problems with the length of observa-
tions not fixed a priori, performance analysis has typically been

based on a trade-off between two parameters: probability o4 an

eroneous decision and mean time to decision. In our case, this means
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Figure 7.5: The Hypotesis Testing Problem.
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that the filter output Wl(t) would be observed only until it exits
the interval [60,61] when é decision would be made. We develop this
classical analysis for the proposed filter in Section 7.3.2.

Our objéctive, however, is not to analyze the hypothesis testing
problem per Ae but rather to expose the dependence on several critical
parameters and to use this as a first step when we view the problem
as the limit of a filtering problem with very rare fransitions. From
this perspective, it becomes necessary to analyze the evolution of
ﬂl(t) over the infinite time interval [0,®). Specifically, we are
interested in the probability and the frequency of occurrence of £ange
deviations in Wl(t). For example, assuming that p(0)=1 and that the
level lehas already been reached, what is the probability that ﬂl(t)
will cross the level 60?, If this probability is positive, what is
the expected time between such large excursions?.

To our knowledge these questions have not been addressed in the
sequential analysis literature. We develop them in Section 7.3.3.

The results obtaiﬁed there are useful because, as we will see in
Section 7.4, these large excursions produce false alarms when the
filter ﬂl(t) is used to detect rare transitions.

Given the symmetry of the problem, we choose 60=6 and 61=l—6, and

we do all our analysis assuming p(0)=1. Thus, the filter equation is:

2 2
am, (£) = Km (€) (-7 (£)) “ae + K (8) (1-m () aw(t) o 5 o

and we take ﬂl(0)=1/2 as initial condition.
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Equation (7.3.2) is a diffusion confined to the interval [0,1].
The behavior of one-dimensional diffusions in bounded domains is well
understood (see for example [Kar 81]), and the performance parameters
adequate for this case - probability of false detection, mean time to
detection and mean time between false alarms - can be analyzed using
standard results from stochastic process theory.> We have summarized
the results needed from this theory in Appendix 7.A where we also

establish the notation used in the sequel.

7.3.1 Boundary Classification

As discussed in Appendix 7.A, the nature of the boundaries is of
crucial importance in the analysis of diffusions in bounded domains.
We now compute the scale function and the speed density function for

the process (7.3.2) whose drift coefficient is:
2 2 .
M(x) = Kx(1-x) (7.3.3)
and noise intensity is

Gz(x) = K2x2(1—x)2 (7.3.4)

The scale function is then found to be:

n
/ 21(6) dafdn B}

X
1 1
vlp_zy_ ali (7.3.5)

X
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and the speed density

m(x) = L - (7.3.6)
cz(x)expj_ J e dif K (1-x)
(&)

Notice that m(x)=w at x=1 while it is finite at x=0. According to
the interpretation given to m(x) in Appendix 7.A, this means that
the process moves very slowly near 1 while it moves at a certain
speed when it is close to zero, suggesting that ﬂl(t) tends to stay
close to 1. In fact, és defined in Appendix‘7.A, 1 is an attracting

boundary but zero is not, because

S(0,x] = lim S(x)-S(a) = «
a>0
SIx,1) = lim S(b)-S(x) = i-l«o x50

b>1

However, although 1 is an attracting boundary, it is not reached in

finite time because

b
Z(l)_= lim sIn,1)m(n)dn = o«
b1 A

and therefore 1 is unattainable. Furthermore,

b

MI[x,1) = lim f2—12=°°
b>1 . K (1-x)
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which implies that if ﬂl(t) is started at the boundary ﬂl(0)=l,
it does not reach the interior in finite time. The conclusion is
that 1 is a natuwwal boundary for ﬂl(t).

As said in Appendix 7.A the nature of these boundaries implies
that

lim ﬂl(t) =1
o0

with probability one, i.e., the filter eventually converges to the
correct probability. It is clear that the trade-off involved in the
selection of the detection level § is between the expected time to
detection and the probability of a false detection, the larger &

is the faster the detection is made but the larger is the error
probability. Again, we can use the results in the Appendix 7.A to

quantify this trade-off.

7.3.2 Probability of Error Versus Mean Time to Detection

Assuming P(0)=1 and Wl(0)=1/2, the probability of an erroneous
detection is the probability that Wl(t) will exit (§,1-8) through
the lower and 8. It is given by:

o L
S(1-8)-s(1/2) 1-§

20178 = g Te sy - T -
1-8

1=y 1 (7.3.7)
$
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The expected time to detection, on the other hand, turns out to be:

1-§
&) = o1 1 dag
vy (8:1-8) = 2 -8 © % 2 (1-5) 2
1/2
1/2
11 at
A £ 8] g2

‘and the evaluation of these integrals (see Appendix 7.B) shows that:

= of- s
2(6,1—6) = 0of- Kz (7.3.8)

Vl/
Notice that the probability of a false detection does not depend
directly on the signal-to-noise ratio, only the mean time to detec-
tion does. This fact seems to go against the usual view that high
signal-to-noise ratio should result in low error probabilities.
There is however, no contradiction. The results should be inter-
preted as saying that we can achieve an arbitrary small false alarm
probability provided we are ready to wait a long period before making
a decision. On the other hand, for a given mean time to detection
(say 1), the detection level must be chosen of order exp{-Kz} and in

: 2
this case the error probability is also of order exp{-K } which

shows the usual pattern.
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7.3.3 Probability of Large Deviations

To conclude our analysis of the hypothesis testing problem we
study the occurrence of large deviations from the average behavior
of the filter. As we said before this issue is not typically looked
at in hypothesis testing problem as it has no relevance in those
problems. We will find it useful, however, when contrasting the
behavior of the filter for a process with rare transitions with the
no-transitions case.

Suppose that ﬂft) has reached the detection level 1-8 correspond-
ing to the correct decision p(0)=1 and consider this hitting time to
be the new time origin, i.e., m(0) = 1-8. What is the probability
that m(t) will have a large deviation and cross the level § before
converging to 1? If such a largé excursion occurs, what is the expec-
ted time until it takes place?

The probability of a large excursion is:

S(1)-s(1-9)

1
1 2
= 116 - S , = 0(8%) (7.3.9)
-1 (1-8)

and, assuming that such excursion takes place, the expected exit

time is given by (see eq. (7.A.9)):
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1-§
vl_a(a,l) = 2 / [S(E)-S(S)Im(E)ag
§
1-§
- 2/ [5-515—
2 1-268 . 2 S 1-28
= . === 4 Z [_29n 24 =0
Kz 62(1—6) K2 1-6 §(1-6)

0< ; 2) as &¥0
§°K

Notice that in the above equation a high signal-to-noise ratio
seems to have an adverse effect by reducing the expected time to a
large excursion. Indeed that is the case if § is keep fixed and
K>oo, The explanation is that at high signal-to-noise ratios a large
confidence is posed on the measurements and as a result the measure-
ment noise is more likely to produce large excursions over long time
intervals. If, on the other hand, the detection level § is chosen,
as discussed before, to be of order exp{—Kz}, then the mean time to a

large excursion

2
v, «(8,1) = 0(%§2£35_}
1-6 0 2
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goes to © as K»*©, clearly indicating the positive effect of large
signal-to-noise ratios.

To conclude our analysis of the A=0 case let us briefly sum-
marize the basic ideas and results. We have established that the
output of the filter (7.3.2) will converge towards the correct end
point of the interval [0,1] according to whether p(0)=0 or p(0)=1.
We have quantified the trade-off between the error probability and
the mean time to detection in terms of the selection of the detection
level §. For G6<<1, the probability of an erroneous detection has
been found to be of order § and the mean time to detection of order
Qn(l/G)/KZ.' Large deviations after a correct detection have been
shown to occur with probability of order 62 with a mean time between
large deviations of order 1/62K2. In the next section we will use

these results to analyze the rare transitions case‘(1<<l).

7.4 Detection of Rare Events

We now go back to the analysis of the filtering equations for a
two state process when transitions between these two states are pos-
sible but rare. To make explicit the fact that we are interested in
the filter performance in the limit as these transition rates become
very small, we will assume that the process to be estimated, pE(t),,

has transition rates €A as opposed to A. The goal is then to study
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the limiting behavior of the qualitative performance measures
proposed in Section 7.2 in the limit as eVO.

These performance measures depend now on the signal-to-noise
ratio K2 and on the information rate Y=K2/€A. As we will see, they
clearly signal the trade-off between detection delays and false
alarm probabilities and rates characteristic of detection problems.
The asymptotic calculations as Y0 are first carried out for a fixed
value of K and afterwards a dependénce on € is also introduced in

the signal-to-noise ratio to model different limiting situations.

7.4.1 The Effect of the Perturbation: Boundary Classification

In the presence of rare transitions, the filter equation

(assuming pg(t)=l) becomes:

€ _ _ €
am (£) = eA(l-2m (£))dt

2 € - 2
+ K (t) (1 TTl(,t)) dt

+ xS (t) (1-F (£)) aw (£)
1 1
and the only difference with the hypothesis testing problem (see

€
equation (7.3.2)) is the addition of the small term}ek(l—Zﬂl(t)) to

the drift coefficient.
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As indicated in Figure 7.6, this small term affects the
evolution of the a-posteriori probability ﬂlit) only in boundary
layers close to the end points 0 and 1. As we will now see, however,
the perturbatioﬁ is singular and fundamentally alters the nature of
these boundaries and the filter behavior.

Assume again that pe(t)=l. The drift coefficient is now:
€ A 2 2 ,
(%) = € (-Ax+A(1-x)) + K x(1l-x) (7.4.1)
while the noise intensity remains unchanged:
o(x) = Kx(1-x) (7.4.2)

Unfortunately, the scale function and the speed measure can no
longer be given in a closed form, and the computations of exit pro-
babilities and exit times becomes quite involved. To keep the flow
of ideas clear we relegate the details of these computations to
several appendices at the end of the chapter.
The scale density (see Appendix 7.C) is found to be:
2e) 2n-2n2—1

€ 1
s (n) = —= exp{- — (7.4.3)
2 K2 n(n-1)

3

Figure 7.7 shows that se(n) closely resembles the scale density
for the no-transition (€=0) case except in boundary layers of width

2 .
€A/K~ = 1/y around O and 1. Precisely,
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Lim gup s%(n)- 1—2' =0 (7.4.4)
ev0  nelbAd, 1-by Y n
vb>0, 05g<l
The speed density,
expi 2e) ( 2x-2x°-1 )E
e K2 x(x-1)
m (x) = (7.4.5)

K2(l—x)2

also exhibits this boundary larger behavior and,in contrast with
the €=0 case (see eq. (7.3.6)), it is now zero at the two boundaries
indicating that neither of them is attracting. As we will now see,
these layers radically change the nature of the boundaries no matter
how small € is. On the other hand, exit probabilities and mean exit
times which do not involve states inside the boundary layers can be
well approximated by the corresponding quantities computed for e=0.
To determine the nature of the boundaries requires that one
consider in detail the behavior of se(x) and me(x) inside the

*
boundary layers. It is clear that for wvwe>O0,

N
1 1
2€A
s€la,1] = [smdn a [ expl® L lgn - » (7.4.6)
g2 N1
a a
*
The approximation made is the replacement of
2N 2n2 1 1 1
=1 - ith - —— or = for close to 1 or O respectively.
nm-1 n-1 n n P y

o Y I - 4 g vapn et <5 Y b e s =
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and

n

b b
s¥(0,p] = f sT(madn =f 1 eod2E8 L.
) L2 CFT2 o n

Thus, both boundaries are non-attracting. Intuitively, the boundaries
should be entrance, i.e., even if we start with perfect knowledge
(ﬂi(t)=0 or 1), wi(t) should evolve to the interior of [0,1l] in a
finite time. ©Notice, on the other hand, that the boundaries are never
reached from the interior.

In Appendix 7.C it is hown that

1 g
N° (1) =f f sS(mdn - m (£)af < M-1/e (7.4.7)
X X

which establishes that 1 is indeed an entrance boundary‘for any €>0
(the same computations can be performed to show that NE(O)< ®) .
Notice that NE:(l)->°° as €*0 because, as we have seen, 1 becomes a
natural boundary. The inequality (7.4.7) also indicates that starting
at 1, the mean hitting time to an interior state X is at most of order
1/ as €¥0.

It follows from the above discussion that in the presence of
rare transitions the a posteriori probability ﬁi(t) does not converge

to the appropriate and point of [0,1] although it tends to remain
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most of the time very close to it. For example, assuming that no
cps . € ‘s
transitlion occurs in p (t), the probability ﬂi(t) settles to an

invariant measure given by:

i 2€X 2x—2x2-l§
P

2 2 x(1-x)
we(x) (1-x) K
1
f 1 expgzek 2x—2x2-l§dx (7.4.8)
0 (l—x)2 K2 x(1-x)

which (see Figure 7.8) is very skewed for —%- small aroundthe stable
K

Ao, 2
point WI =~ 1-YA/K” . These are however heuristic notions which
say little about the dynamic behavior of the filter as far as, for

example, how should we select levels for detection purposes and how

will the filter perform in terms of false alarms probabilities and

detection delays. We address these issues in the following sections.

7.4.2 Mean Time Between False Alarms and Mean Time to Detection

Suppose that p€(0)=1 and, as in Section 7.3, suppose that
crossing levels § and 1-6 are chosen for detection purposes. If
W1(0)=l/2, the probabiiity of a correct detection, i.e., the pro-
bability of hitting 1-8 before §, is (for € small enough) close to the
same quantity for €=0. That is, of order 0(1—6)? After the first
detection, however, the behavior of the filter for €>0 differs markedly

from the limit case £=0.

*
Notice that these estimates refer to a double limit in the following order:
lim 1lim .

S¥0 €Yo
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Y(x) 0

2-“:0]

O 0.5

1 izex 2x—2x2—1§
ex

2 2 x(1-x)
‘Pa(X) - (i X) K
1 ex 2e) 2x—2x2-1 dx
0 aem? 12 x(1-x)

Figure 7.8: Steady state probability density assuming

0 (£)=1 for t>0.

—
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The main difference is due to the change in the nature of the
boundary 1 from absorbing to entrance. As we will see, ﬂi(t) can
now have relatively frequent large excursions producing false alarms
between transitions in pe(t). The frequency of such false alarms
depends on the values of K and § and our goal in this section is to
show that by making the detection level § a function of €, it can be
adjusted to keep the false alarm rate at a tolerable level without
loosing the ability to keep track of changes in pe(t).

To estimate the mean time between false alarms, we compute the
mean time to crossing the level § assuming ﬁe(0)=l—6 and that

pe(t) remains at state 1. This quantity is given by:

1-6 £

vi’_c[G,l) =2 f f se(n)dn ms(n)dg (7.4.9)
8

S

and because se(n) and me(g) converge uniformly on [§,1-8] as e¥0
to the corresponding quantities for €=0, it follows from equation
(7.3.10) that the mean time between false alarms satisfies

. £ 1
1lim Vl_a[(s,l) =0 > 2

40 §°K

(7.4.10)

. C s . € .
Thus, because the mean time between transitions in p (t) is of
order 1l/€, for fixed § and K and small €, a large number of false
2.2 .
alarms (of the order of § K /e) occurs before the correct detection

of a transition in p (t). Notice that as in the hypothesis testing
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case a large signal-to-noise ratio seems to have an adverse effect
by reducing the mean time between false alarms. Again, the same
comments apply. The real positive effect of high signal—to—noiée
ratios will be appearent when the detection level § is properly
adjusted.

Obviously, a detection threshold 6(g)}0, as €¥0, is required to
avoid these multible false alarms caused by large deviations of
ﬂi(t). With a detection level very close to the boundaries, however,
the detection delay is increased, pointing out again the familiar
trade-off in detection problems.

To compute the detection delay we assume that at time t=0
pe(t) jumps from ps(o_)=0 to pe(0+)=1. The filter output ﬂi(t) is

assumed to be at its equilibrium point ﬂ; = ‘/E%- at t=0 and the
K

quantity of interest is the expected value of the time it takes for

*

o’ and that pe(t) remains at 1.

Wi(t) to reach 1-6(g) assuming Wi(O) =T

The quantity of interest is then given by

expi 2eA _1_§
1-6(e)  1-8(e) S 2 L€

v, (0,1-6(e)] f 1_2exp12§>‘ 1fn2. - andE
0 ﬂ; n K K (1-¢)

(7.4.11)

and its asymptotic evaluation depends on the order in € of the

threshold 6(€). Based on the shape of the drift u(x) (see Fig. 7.6)
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we choose a detection level close to the stable point df the

diffusion, i.e.

(A = Q(J%) (7.4.12)
K

which gives:

exp{gga- E%E} = Q(1) as €Y0
K%

uniformly over [ﬂs,l—é(e)]. Using this approximation, the detec-
tion delay can be computed as for the hypothesis testing problem

(see Appendix 7.B) giving:

1-G(e) 1-8(g)
Vi (0, 1-0(e)] = f f Lan =L ar = of- 8

o
g
0 2 (7.4.13)

Thus, if a threshold &§(g)= O(V.EX/KZ)is chosen, the detection
delay goes to infinity as €¥0 at a rate -(log 6(8))/K2.

Notice, however, that this delay is still small compared to
the interval between transitions in pe(t) which is of order 1l/e.
Thus, when the delay is normalized to the time scale at which
pe(t) jumps, the delay goes to zero as e€Y0 and therefore the filter
is able to track pe(t) in the sense that it is correct "most of the

time".
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Let us now compute the mean time between false alarms for
§(e) as in (7.4.12). Assuming p€(0)=1, no transitions in pe(t),
e
and ﬂl(O) = 1-6(e), we want to estimate the mean hitting time to

§(€) which is given by:

1-8 (g) g
Vi-s(e) [0/ 1) = / _/ s“(m)an m° (£)dg (7.4.14)

S (g) S (€)

As shown in Appendix 7.D, the asymptotic behavior of (7.4.14) is

*
found to be:

) .
v [(e),1) = 0(-—————-) = Q0(1l/e (7.4.15)
1-8(e) sz(e)z ( )

We now have all the ingredients to evaluate the trade-off
between false alarm and detection delays. By choosing a detection

threshold &(e) of order SX/K2 , the mean time between false alarms

*
It is interesting to note the difference in order of magnitude

of this escape time with the exponential order exp{- 1/e2} obtained
by Ventcel and Friedlin [Ven 70] for diffusions with small noise
intensity (or order €). Although the noise intensity around the

*
stable point ﬂl is of order € in the problem we consider, it is
. € .
not uniformly small over the interval [0,1] and once ﬂl(t) exits a
neighborhood of FI the noise intensity rapidly increases making large

excursions more likely.
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is of order l/g,4ndependent of the signal-to-noise ratio K2.
This mean time between false alarms is comparable to the length of
the time interval between transitions to be detected. Thus, there
is a certain probability of a false alarm before a transition in
pe(t) occurs and is detected, but this probability neither becomes
zero nor one as €¥0. The probability of more than one false alarm,
however, converges to zero as €¥0. The precise value of the faise
alarm probability depends on the proportionality constant used in
§(e) and on parameters like X and KZ. For given parameters, its
determination requires the numerical evaluation of integrals like
(7.4.14).

Multiple false alarms have been avoided at the cost of a delay
T(€) in detécting transitions of the order of

AE

n K2

K2,

T(g) = 0\-

The detector however is right "most of the time" in the sense that
the ratio between lengthkof time in which the detector gives a
false reading (delay in detection plus false alarms), and the interval

of time with correct detection converges to zero as €Y¥0:

2 2
lim n VK /Ae /K , =0 (7.4.16)
et 1/er-in VK /Ae/x
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Notice that in the numerator of (7.4.15) we have used the fact that
a false alarm produces an erroneous reading during an interval of
time of the same order of magnitude as the detection delay.

From the analysis presented above we conclude that when trying
to detect rare transitions the thresholds used in the detector must
be chosen to be commensurate with the rarity of the events to be
detected. Otherwise, a probability of false alarm very close to 1
can be expected. This choice for the threshold increases the detec-
tion delay but this delay is still negligible when compared with
the length of the time interval between transitions. It is in this
sense that wé can think of high inférmation rates (of the order of

Y = KZ/EA in this case) as resulting in near perfect detection. It
must be noticed, however, that this good detector performance does
not exclude sporadic, short-duration false alarms.

Instead of thinking in terms of rare transitions, we can inter-
pret a high information rate Yy = Kz/ek as resulting from a problem
with transitions of rate A and high signal-to-noise ratio
K2(€) = K2/€. If the detection level § is chosen independent of €,
the mean time between false alarms (see eq. (7.4.10)) turns out to
be of order e/Ssz. Thus, as in the low rate case, a large number of
false alarms occur before a transition is detected (the inter-

pretation is that high signal-to-noise ratios open up the bandwidth
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of the filter and, as a result, the measurement noise is more likely
tq produce large excursions in the output of the filter); Following
the same reasoning as before, we should choose a detection level
S(e) = O(VEX/KZ) . In this way, we avoid multiple false alarms
and the detection delay, of order -g log 6"(6)/K2 (see eq. (7.4.13)),
is, as before, negligible when compared to the interval between
transitions. The detector is again correct "most of the time."
In fact, this case in which A(€)=K and K2(€) = Kz/s is obtained
simply by changing the time scale from t to €t in the problem for-
mulated earlier with A(e) = €} and Kz(e) = K2.

To close this séction let us briefly summarize the main ideas
and results presented. We have shown that in the detection of
rare events there is a fundamental trade-off between detection delays
and the probability and frequency of false alarms. We have estab-
lished‘that by choosing the detection levels conmensurate with the
rarity of the transitions to be detected, this frade—off can be
resolved in such a way that the mean time between false alarms is of
the same order of magnitude as the mean time between transitions to
be detected, and, at the same time detection delays are negligible
when compared to this mean time between transi;ions. This has lead
us to introduce the notion of measuring a filter or detector per-
formance in terms of whether or not it is right "most of the time."
We will use this notion in the section that follow to argue for fil-

ters with a hierarchical structure.
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7.5 Filtering with Aggregated Measurements

In this section we propose a filter decomposition based on
aggregation ideas for the example discussed in Section 7.1 (see
Fig. 7.9). We first analyze in Section 7.5.1 the case in which only
information about the slow transitions between groups of states is
available. For this case, a reduced-order filter is proposed to
estimate the aggregated probabilities and the results in Section 7.4
are used tovasses the performance of such filter.

In Section 7.5.2 we consider the case with separate channels of
information for the slow and fast transitions and a hierarchical
filter is proposed. The discussion in this latter section is
heuristic and qualitative and it is mainly intended to suggest ideas

for the future work in this area.

7.5.1 Filtering with Aggregated Measurements

Consider the process pe(t) € {1,2,3,4} shown in Figure 7.9(a)

and suppose that we observe

dy(t) = h(pe(_t))dt + bdw (t) (7.5.1)
with
1% = A
h(l) = h(2) = al
and
A
h(3) = h(4) = o
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€Yo €
A A2 H1 H2 PN

(b)

Figure 7.9: The process pe(t) considered in Section 7.5.1 and its

aggregate approximation ae(t).
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These observations contain no information at all about the
faét transitions in pe(t) but they carry significant information
about the slow transitions (with signal-to-noise ratio
K2 = (0(.1-0L2)2/b2 and information rate of order K2/€). It thus seems
reasonable to expect that the only meaningful information about the
evolution of pe(t) that can be extracted from y(t) refers to transi-
tions between {1,2} and {3,4} which occur only at the slow time scale
t/€.

It follows from our results in Chapter V that as far as slow
traﬁsitions in pe(t) are concerned the model pe(t) shown in Figure
7.9(b) is a good approximation for € small. The question thus arises
as to whether a filter constructed using Be(t) as a model to estimate

the aggregated probabilities.

pr{p®(t)e{1,2} |y(r), o<t<t}
prip®(t)e{3,4} |y(1), o<t<t}

will have a performance close to that of the optimal filter tha;
uses the detailed model of pe(t). The analysis of the optimum
filter equations that we now develop strongly suggests that it is
indeed the case.

The optimum filter equations written as a diffusion driven

by the observation noise are:
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(A+€B) T (t) dt

+ = g(m(e) In(e®(®))-h__(m(t))1at
b av

+%gmwnmu)

where T(t) and g(m(t)) are vectors with components:

(m(e)),
i

mo(t) = pr{p®(t)=i|y (1), o<t<t}

(g(m(£))), = m, (£) (h(i)-h__(m(t)))
1 1 \'4

. . L e
A(e) = A+eB is the matrix of transition rates of p (t), and

a

4

h (m(t)) = )} h(i)m, (t)
av . 1

i=1

Define the vector of aggregated probabilities

T 2 0,7, w017

as follows:

nl(t) + wz(t)

W3(t) + w4(t)

(7.5.2)

(7.5.3)

(7.5.4)

(7.5.5)
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and use the aggregation matrix

1 o0
v é 1 0
0 1
0 1
to write
— T
m(t) = v m(t) (7.5.6)

FPor further reference it is convenient to write a stochastic
differential equation for Ekt) obtained by using (7.5.6) into

(7.5.2) as follows:

am(e) = V' (a+eB) Tm(t)at

) _
* 3 Vig(m(t)) [n(p®(£))-h__(m(t))lat

+ 2 vThme))aw(e) (7.5.7)

o |

This eqﬁaﬁion.can be simplified by noting that
VAT =0 (7.5.8)

Also, because the structure of the measurements is compatible with

the aggregation (7.5.6) we have:

h  (m(t))
av .

4
Y n(i)m, ()
i= *

1

o ﬂl(t) + o

1 ﬂz(t) = hav(ﬂ(t)) (7.5.9)

2
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and

T _ .
(v g(ﬂ(t)))l ﬂl(t)(al-h v(1T(t))) + ﬁz(t)(al—hav(ﬂ(t)))

a

ﬁl(t)(al-hav(w(t)))

Similarly,

T — —
(v g(ﬂ(t)))2 = ﬂz(t)(az—hav(ﬂ(t)))
and therefore

Vig(m(t)) = g(m(t)) (7.5.10)

Using (7.5.8)-(7.5.10) in (7.5.7) we arrive at:
— T
dam(t) = v Bm(t)dt

1 = € =
+ ;§'g(ﬂ(t))[h(p (t))-hav(ﬂ(t))]dt

+ % g (T (£) ) aw (£) (7.5.11)

Equation (7.5.11) is the equation satisfied by the aggregate
probabilities Fkt) computed from the output of the optimum filter

that uses the detailed model of Qe(t). Notice that if it were

not for the order € term in the drift coefficient in (7;5.11), we
would be able to construct a one dimensional Opiimaﬂ filter to compute
the a-posteriori aggregate probabilities (instead of the three

dimensional filter (7.5.2) followed by the additions specified by
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(7.5.6)). This feature is a direct consequence of the fact that

the aggregated structure of the measurements coincides with the
partition determined by the time scale structure of the process to

be estimated. Notiée also that the two terms in right-hand side of
(7.5.11) due to the presence of measurements can be written entirely
invterms of the aggregated probabilities Ekt). This is a reflection
of the fact that the measurements carry no information at aff about
fast transitions. The only term in the filter involving the vector

of detailed probabilities m(t) is the one corresponding to the a-priori
evolution of these probabilities.

Equation (7.5.11) that computes the a-posteriori aggregated
probabilities is coupled through T(t) to equation (7.5.2). The
computation of Ekt) by means of an uncoupled equation involves an
approximation that we now discuss.

Suppose that instead of pe(t) we use the aggregated model Be(t)
as the process to be eStimated. Given the structure of the obser-

vation function h(-), the measurement (7.5.1) can also be written as

dy (t) = h(p(t))dat + b aw(t) (7.5.12)

and therefore the optimum filter, assuming that the approximate

model 48 valid is given by (in its realizable form):
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am(t) = evTBTUTﬁ(t)
1 . ~ v
+ 5-g(ﬂ(t))[dy(t)—fav(w(t))dt] (7.5.13)

where €A = gUBV is the matrix of transition rates of 6€(t) written
in terms of the aggregation matrices introduced in Chapter V.
Writing this filter as a diffusion driven by the measurement noise

we get:

ar(t) = evTBTUTﬁ(t)dt

1 ~ € ~
+ ;§-g(w(t))1h(p (t))—hav(w(t))]dt

+ %-g(ﬁ(t))dw(t) | (7.5.14)

The filter (7.5.14) derived using the aggregated model for
pe(t) would coincide with the optimum filter (7.5.11) for the ag-

gregated probabilities, if the following approximation is made:

T_
m(t) = U T(t) (7.5.15)
This approximation is readily interpreted. 1In effect, it corresponds

to the following:

R

ﬂl(t)

R

m, (€ AL\

2
=]
@

ﬂ3(t)-

R
3
«

ﬂ4(t)
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That is, the a-posteriori probability of being in a given state

of the detailed model is approximated by the a-posteriori pro-
bability of being in the corresponding aggregate state times thé
ergodic probability of the detailed state achieved due to the fast
transitions inside the aggregate state.

Given that the observations do not contain any information about
transitions inside the aggregate state the approximation must involve
;ittle error. To asses the loss in performance, notice that, as we
have seen in Section 7.4, the €-order terms in the filter driftbare
relevant only when the probability vector m(t) is very close to the
boundaries of the unit simplex where it evolves. 1In other words,
the approximation (7.5.15) will not be accurrate at times when we
know that pe(t) is in one of the detailed states with high probability.
This may happen during an interval around t=0 if we start the filtering
with such knowledge, or immediately following a rare transition in
pe(t) if the measurements y(t) provide enough information to rapidly
detect such a transition. 1In this case, detecting a transition between
aggregate states may also provide some information about which of the
detailed states is océupied following the rare transitions. For
example, suppose that in Figure 7.9 Y3=0- Immediately following a
detected transition {1,2}~+{3,4}, the optimum filter will increase
w3(t) relative to W4(t) because {3,4} can only be entered through

state 3. The probabilities ﬂ3(t) and ﬂ4(t) will then evolve at a fast
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time scale, towards their steady state values uz/(ul+u2) and
ul/(ul+u2) respectively which are precisely the values assigned to
them by the suboptimal aggregate filter.

This difference between the optimal and suboptimal filter can
only have, in general, minor effects on the filter performance for
two reasons. First, in general, the entrance probabilities will not
be concentrated in one state as in the example discussed above and
therefore an aggregate transition will convey little information
about the detailed states occupied immediately after this transition.
Second, as we have shown in Section 7.4, there is a certain delay
associated with the detection of rare transitions. This delay,
although short in comparison with the interval between aggregate transi-
tions, it is quite long when compared to the rate at which the fast
transitions occur. Thus, except in extreme cases with a very high
signal-to-noise ratio at the aggregate level, when the optimal filter
has decided that an aggregated transition has taken place the detailed
information will have dissapeared with the result that the ergbdic
probabilities are essentially the best estimate for the detailed
states. This is precisely what the suboptimal filter does all the
time.

This discussion leads us to the following:

Conjecture 7.1

The diffusion Ekt) specified by equations (7.5.2) and (7.5.11)
converges weakly to T(t) in (7.5.14) as e¥0, except perhaps

. . €
at some order one intervals around the slow jumps of p (t). o
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A good place to start looking for techniqués to establish
this result or a similar one is in the work of Papanicolau and
co-workers, especially [Pap 76]. Notice that eveﬁ though for
clarity we have derived the aggregate filter for the example in
Figure 7.7a, the same results are valid for an arbitrary n-dimensional
process ne(t). The above conjecture refers to the general case.

As an alternative to trying to prove the near-optimality (in
the sense stated above) of the aggregated scheme, we can use the
results derived in Section 7.4 to estimate the performance of the
suboptimal, aggregate filter (7.5.14). We can think of (7.5.14) as
a filter to estimate transitions of the two state Markov process
Se(t) in Figure 7.9 (b) which is precisely the problem studied in
Section 7.4. The approximation involved in this analysis is the
fact that changes in h(pe(t)) are not exactly markovian and only in
the limit as €40 is h(pT(t)) a good model for h(pS(t)). Notice,
however, that in the computation of performance measures in Section 7.4,
we have not used at alf the markovian character of the slow transi-
tions. Most of these measures depend only on the behavior of the
filter diffusion for a fixed value of the process o (t) and only thé
onden of magnitude of the interval between the slow transitions enters
in those performance measures. Thus,‘our results in Section 7.4 direc-

tly apply to the aggregate suboptimal filter T(t) and therefore,
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pxoperly chosing crossing levels 60 = 6(e) and 81 = 1-6(e), we can
construct a detector using the output of the aggregate filter
(7.5.14) which gives the correct reading of h(pE(t)) "must of the
time". The length of intervals when the reading is erroneous con-
verges to zero as €¥0 when measured in the time scale at which
changes in h(pe(t)) occur, i.e., at time scale t/e.

This almost perfect detection of the rare transitions provides
the justification for a hierarchical decomposition of filters that
we develop in the next section where, in addition ﬁo aggregate
measurements, we also introduce a separate channel of information
about the fast transitions.

To close this section we state two more conjectures about the

near—-optimality of the aggregate filter.

Conjecture 7.2

The orders of magnitude of the quantities involved in the
trade-off between detection delays and frequency and pro-
bability of false alarms for the optimal filter T(t) are the
same as these of the corresponding quantities for the ag-
gregate filter T(t). Thus, our results in Section 7.4 also
apply to the optimum filter Eft), and in this sense our sub-

optimal filter is essentially as good as the optimal one.
o a



-294-

This conjecture is based on our discussion about the
negligible amount of additional information used by the optimal
filter. The following conjecture refers to the occurrence
of large deviations resulting in false alarms and it is based on
the fact that the same noise (on a sample function basis) drives
equation (7.5.11), i.e., the optimal filter and equation (7.5.14),

the aggregate filter.

Conjecture 7.3

FPalse alarms in detectors based on Eft) and T(t) respec-
tively, occur almost simultaneously. That is, conditioned
on a iarge excursion of T(t) at time T, the probability
that T(t) will not experience also a large excursion on
'[T-S,T+6] goes to zero as €¥0 for an arbitrary but fixed

$>0.

Notice that Conjecture 7.3 is very strong. Together with Conjecture
7.2 it states the following: not only does the suboptimal filter perform
as well as the optimal filter in terms of the proportion of time they
are correct, but if one of them has a false alarm, the other one will
at the same time.

Both conjectures would probably be corollaries of the weak
convergence result stated as Conjecture 7.1 if this result can be

established.
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7.5.2 Filtering with Aggregated and Decentralized Measurements

Consider again the process pe(t)€'{1,2,3,4} shown in Figure 7.9(a)

but suppose now that in addition to the aggregate measurements
€
dyl(t) = hl(p (t))dt + bldwl(t) (7.5.106)

with hl(l) = hl(2) = 0. and hl(3) = hl(4), a second channel of

1

information is available with observations

_ €
dyz(t) = h2(p (t))at + bzdwz(t)' (7.5.17)
where
h2(l) = h2(3) = Bl
h2(2) = h2(4) = 82

We will refer to y2(t) as the decentralized measurement because it
mainly conveys information about the fast transitions. Slow
transitions have only an indirect effect on yz(t) through the change
in transition rates from Al and AZ to My and uz. This information
however is supplied at a slow rate because it involves observing
the average behavior of y2(t) over time interval large compared
to the rate of fast transitions.

Our objective is to argue that a hierarchical filter organized
in two levels, each processing one of the information channels is

justified as a simplified suboptimal filter.
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Suppose first that the slow transitions between>{l,2} and {3,4}
are observed perfectly (for example if bl=0). In this case the optimum
filter has the structure shown in Figure 7.10. The perfectly observed
changes in‘the aggregate state act as a switch changing the parameters
of the fast filter. Only one filter for a two state process (i.e.,
a one dimensional diffusion) is required. The parameters in this filter

change between Al' A_ and pl, uz following jumps in yl(t).

2

If the observations yz(t) are noisy the situation is more complex
and the exact filter equations do not seem to lend themselves to a
hierarchical decomposition. It seems nevertheless reasonable to at-
tempt such a decomposition by activating the switch in Figure 7.10 by
the output of a detector based on yl(t), as indicated in Figure 7.11.

The detector filters the observations yl(t) us;ng equation
(7.5.14) and then it makes a zero/one decision about whether
pe(t)€'{1,2} or {3,4}, by observing the crossing of the filter output
T(t) through detection levels chosen according tq our discussion in
Section 7.4. The rest of the filter works as in the case of perfectly
observed aggregated transitions.

There are two sources of suboptimality in this design. First, the
detector for the slow transitions will give erroneous readings due.to
false alarms and detection delays. As we have argued repeatedly,
howevér, the ratio of the length of time with erroneous reading to

that with correct readings goes to zero as e€¥0. The effect of these
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dy,(t)
] 1 1
| Filter *i using Filter¥2 using

model model

A2 K2
O <>

)fi My

dy,(t) > - (J

v

Filter outputs

Figure 7.10: Optimum filter with perfect aggregate observations.
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dy,(t)
t I l
Filter *1 using Filter 2 using
model model

’\a He
® o ®
D >
Ay . Ky
Detector using K , ) 4
egate model
dy, () [*99"¢9 .
—

s |

Filter outputs

Figure 7.11: Hierarchical filter.
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errors is the use of the wrong set of parameters in the fast filter
and its seriousness will depend on the signal-to-noise ratio in the
measureﬁent y2(t). If this ratio is high the a-priori description
of the process does not influence much the filter's evolution. 1In
any case, the detector will give a'correct reading most of the time.
The second source of suboptimality is the fact that the

structure proposed in Fig. 7.11 does not make use of any information
about the slow transitions supplied by the decentralized measurements
y2(t). If the rates Xl'and Az differ from My and U, respectively,

there is some information in y2(t) about whether pe(t)e {1,2} or

pe(t)e {3,4}. This information is provided, however, at a slow rate
because to extract it requires an averaging of yz(t) over a time
interval large compared to the rate at which the fast transitions in
pe(t) occur. On the other hand, and unless the signal-to-noise ratio
in yl(t) is zero, information about slow transitions is provided by
yl(t) at a much higher rate.. Our analysis thus suggests that exqept
in extreme cases this indirect source of information can be discarded
without much loss in performance.

To validate the above discussion we suggest the following tasks.
Assuming that the high level aggregate filter gives a correct reading,

establish the following:
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Conjecture 7.4

During the interval of time when the high level filter
gives a correct reading, the hierarchically decomposed
filter is near optimal, i.e., the mean square difference
between the output of the optimal filter and that of the

aggregate filter converges to zero as €eYO0. @)

If this conjecture is proved, then it will mean that the hierarchical

filter is near optimal "most of the time." To evaluate the loss of
performance due to an erroneous detection at the high level filter
(i.e., during detection delays are false alarms, it will probably be
useful to start analyzing the loss in performance due to an erroneous
model. Suppose that a filter for a two state process as that in
Figure 7.12a is built, but using as a model the process in Figure
7.12b. The loss in performance clearly depends on two parameters:
the difference between the rates A and Y and the signal-to-noise
ratio of the available observations. For high signal-to-noise ratios
and small values of ]A—ul, the performance loss should be small.
Estimate the asymptotic order of magﬁitude of the performance loss
when the high level filter gives an erroneous reading for high signal-
to-noise ratios in the decentralized observations and/or small dif-

ferences in the fast transition rates in different aggregate states.
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}

p(t)

{

(a)

it

0

(b)

Figure 7.12(a): True process and (b) erroneous model.
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In this connection we have the following conjecture:

Conjecture 7.5

The hierarchical decomposition is near optimal at afl
Zimes in the limit as the high level transitions become
increasingly rare and the signal to noise ratio of the
detailed, decentralized measurements becomes larger

2,2 2
(take, for example, (61—62) /b2 = KZ/E)-

Based on the above discussion we believe that the use of
hierarchical structures in filters for singularly perturbed FSMPS's
is a valid eﬁgineering approach. The clarification of the circums-
tances under which it is a near-optimal strategy, and a rigorous
theoretical basis for it still require, however, substantial research
effort. It is our hope that other researchers will find the problem
interesting and challenging, and that they find the ideas and

insights provided here useful.
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APPENDIX 7.A One-Dimensional Diffusions in Bounded Intervals

We summarize here the notation and basic results used in the
analysis of filtering equations carried out in this chapter. We
mostly follow [Kar 81].

Consider the stochastic differential equation:

dx(t) = p(x(t))dt + o(x(t))daw(t) (7.a.1)
in the>interval I=[2,r]*. We assume that the infinitesimal drift
H(x) is continuous in (%,r) and that the noise coefficient o(x)
satisfies oz(x)zzo for x€(l,r). We are interested here in cases
where due to the behavior of HU(x) and o(xX) near the end points of I,
the process x(t) is "naturally" confined to evolve in I. Most of
what follows is devoted to analyzing the behavior of x(t) near the

boundaries.

7.A.1 Basic Definitions

Hitting times of points and sets play a fundamental role in the
analysis of diffusions. We define the hitting time of x(t) to the

level b starting at x(0)=x, by

Tx(b) = if x(t)#b for 0<t<ew

inf{t>0; x(t)=b} otherwise

* .

For the development that follows we could allow #=-® and/or r=» but
for our purposes it is enough to think in terms of the bounded interval
case.
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and T_(a,b) for x€(a,b) is used to denote the exit time of the
interval (a,b):
A
T (a,b) = min{T_ (a),T_(b)} (7.A.3)
b4 x x
Two especially important functionals are the following:
i) The probability of exit through one of the end points,

ux(a,b) = Pr{Tx(b)<Tx(a)|x(O)=x} x€(a,b) (7.A.4)
and
ii) The mean time to exit

v_(a,b) = E{T (a,b)lx(0)=x} (7.a.5)
X X

They are the solution of the differential equations:

2
a 1.2 du_
M (x) ix + > o7 (x) 5 0 x€(a,b) (7.A.6)
u(a)=0, u(b)=1
dv 1 2 d2v
}_[(X) d_X + 5 o (x) ;x—z- = -1 x€(a,b) (7.A.7)

v(a) = v(b)=0

‘WhiCh,Can be explicitly solved to give:

S(x)-S(a)

ux(a,b) = S-S (a) a<x<b (7.A.8)
b
vx(a,b) = Z{ux(a,b)./f [S(b)-S(E) Im(E)dg
x

X
+ [1-ux(a.,b)]/ IS(g)-s<a)]m(_€)d€} (7.3.9)
a
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where
X n X
S(x) = feXPi—f 2121( ) dg%dné fs(n)dn
o (&) (7.A.10)
L<x<r
is called the scafe function of the process,
. 1 i
m(x) = —/——m——— 2<x<r (7.2.11)
0 (X)s(x)
is called the speed density and s(n) the scale density. For
notational convenience we will also use the scafe measwre
b
sla,b] = S(b) - S(a) = f s(n)dn (7.A.12)
a
and the Apeed measure
b
Mla,b] = fm(x)dx , (7.3.13)

a

The name of scale function for S(x) derives from the fact that
if we use S(x) to rescale the state space [2,r] by defining the process
y(t) = s(x(t)), the hitting probabilities for y(t) are proportional to
distances. The process y(t) is then set to be in natural or canonical
scale. If a process is in natural scale, the gquantity m(x)E:2 is the
order of the expected time the process spends in the interval
(x-€, x+€) given x(0)=x before departure thereof. This interpretation

motivates the name speed density for m(x).
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The scale measure Sla,b] is monotonic in a for a fixed b

and viceversa. Therefore, we can define:

S(%,b] = 1im Sla,bl< <«
e (7.n.14)
sla,r) = lim Sla,blg

bl

and similarly M(&,b] and M[a,r).

To finish this section we discuss the hitting time for a
boundary point, say Tx(r). For a given x<b<r, Tx(b) is a mono-
tonically non-decreasing function of b. It follows that we may
define the random time

Tx(r') = lim T_(b)
: b*r
and by continuity of the sample functions, Tx(r—) = Tx(r), the
hitting time to the boundary r. Notice that the hitting time
T%(r) is defined even when r is not a state of the process (and in

this case Tx(r)=w).

7.A.2 Boundary Classification

We now give conditions that provide a way to determine whether or
not the process x(t) will hit the boundaries, whether or not, it will

do so in a finite time, and what is the behavior of the process if
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started at the boundary points. We state the results for the
right boundary but they also apply to the left boundary with the

obvious modifications.

Lemma 7.A.1

i) Let S[x,r)< o for some x€(%,r). Then
Pr{T (r)< T (a)lx(0)=x}> 0
x = x

for all f<a<x<r

ii) Let S[x,r)=» ‘for some x€(%,r). Then
Pr{T_(r)< T_(a)|x(0)=x} =0
x X

for all f<a<x<r.

In view of the above lemma we will say that r is an atfhacting
boundary if S[x,r)<e . (This criterion applies indepéndently-of
x€(%,r) in that if it is finite for some x, it is finite for all
values of x). Notice that even though there is a positive probability
that the process will "exit" (a,r) through the attracting boundary r,
this boundary need not be a state of the process because the probability
of reaching it in a finite time may be zero. The following lemma
gives a necessary and sufficient condition for an attracting boundary

to be reached in finite time.
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Lemma 7.A.2
Let r be an attracting boundary and suppose f<a<x<r.

Then the following are equivalent statements:

1) Pr{Tx(r)<w|x(O)=x}> 0

ii) E{T_(a,x) [x(0)=x}< «

r
iii) ‘Z(r)éf SIE,r)m(E)dE <
P-4

Based on the ébove result we will say that an attraéting
boundary is attainable if E}r)<®, otherwise we will say that it is
unattainable. (again, EXr) depends also on x but not the criterion).
Attainable boundaries are reached in a finite time with positive
probability. On the contrary, the time to reach an unattainable
boundary is always infinite.

Roughly speaking, Ekr) measures the time it takes to reach the
boundary r starting at some interior point xX. To analyze the behavior
of the process if it starts at a boundary we need to introduce two

more quantities:

M[a,r) = lim M[a,b] (7.4.15)
b>r
and
r

hag
N(r) = f S[x,EIm(E)4dg =/ M[n,rls(n)dn (7.2.16)
X X
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Ml[a,r) measures the speed of the process near r and N(r) roughly
measures the time it takes to reach an interior point x starting at
the boundary r.

The modern classification of boundaries is based on the boundedness
or unboundedness of the four functiocnals S[x,r), ZXr), N(r) and
M[x,r). These functionals are not independent and there is a total
of six possible combinations which correspond to different kind of
bbundary behavior. For our purpose we only need to consider two of
them.

a) Entrance boundary

An entrance boundary cannot be reached from the interior of
the state space, but it is possible, and in many applications quite
natural, to consider that the process starts at the boundary. If the
process starts at an entrance boundary then it guickly moves to the
interior never to return to the entrance boundary.

To show that a boundary r is entrance it suffices to establish
that

S[x,r) = « (7.2.17)

while

N(r)< o (7.A.18)
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b) Natural (Feller) boundary

A natural boundary cannot be reached in finite mean time
and if the process is startgd at such a boundary it does not reach
the interior in finite mean time. Natural boundaries are omitted
from the state space or are considered as separate absorbing states.
To establish that a boundary r is natuyral in the Feller

sense one needs to show that

> (x)

N(r)

Il
8

(7.2.19)

1
8

(or M[x,r)=x) (7.A.20)

7.A.3 Boundaries and Stationary Measures

Only in the case of a process with two entrance boundaries

does a stationary measure necessarily exist.

Lemma 7.A.3
If the two boundaries 2 and r of the process x(t)
are entrance, then x(t) is strongly ergodic and its

stationary density is given by:

m(x)

J/. m(§)ag

2

(7.2.21)

P (x)



-311-

When both boundaries are natural boundaries and, although &

and r are both unattainable, neither of the possibilities

Prob{ lim x(t) = r|x(0)=x} = 1 (7.7.22)
£

Prob{ lim =x(t) = &, Iiﬁ-x(t) = rlx(0)=x} =1 (7.A.23)
oo o0 :

is precluded. There may or may not exist a stationary measure
approached as tw,

Of special interest here is the case when one of the boundaries
say &, is an entrance boundary, and the other is a natural and at-
tracting boundary. In that case, although the attracting boundary
r cannot be reached in finite time, it will be reached in infinite

time with probability one, i.e.,

prof{ lim x(t) = r|x(0)=x} = 1 (7.2.24)
t£—>c0

To prove the above assertion we need the following:

Lemma 7.A.4

If S[x,r)< o then

Prob{ lim x(t) = rlx(0)=x} >0
oo

Now, because % is an entrance boundary, x(t) cannot converge to %

with positive probability. Therefore, starting at x the process will
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APPENDIX 7.B: Expected Time to Detection for the Hypothesis
Testing Problem

The expected time to detection assuming ﬂl(O) = 1/2 is given

by the foliowing integral:

1-§ :
§ ,1-8) = 2 1 1 d
vl/2( ) / (_ 5t E) g :

i K (1-£)
1/2
1 1 dag (7.B.1)
+ 28 S ) - L
'6/. ( 3 ‘S)Kz(l-g)z

Because we are interested in an asymptotic evaluation of vl/2(6,1—6)

as OY¥0, the second term in (7.B.1) can be neglected. We thus have:

1-§
- A iy ¢ o _
vy p(8,1-8) ~ 2 / ( Tt E)kz(l-g)z
1/2

' 1 1 1 S 1-8 1/2
o1 (L )L zn| ] -
(1-8) K (6 ) K [ 1-6 S /4 :l

(o) et Lt
- K (1-8)K K :

And in the limit as &v0,

ln(l/G))
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return to X in a finite time, unless it converges to r. At this
point, the cycle starts again with a given probability of convexrgence
to r and, if this convergence does not occur, a further finite-time
excursion that will lead the process again to X. This is a sequence
of Bernouilly trials which will result in x(t) eventually converging

to r as (7.A.24) states.
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APPENDIX 7.C: Mean Exit Time from the Boundary

The diffusion under consideration has drift coefficient.

ue(t) = gA(l-2x) + sz(l—x)2
and noise

o(x) = Kx(l-x) .

We first compute its scale density:

€ ;o2
s (x) = exp j—f u_2—_dT£ (7.c.1)
o~ (1)
The integral in the exponent of (7.C.1l) is evaluated as follows:
X
./r e X b4
o f S a f 2a
o (1) K T (1-1)
X X
%[ Y (N N SR
K T (1-1) T(1-1)
= ﬁ _1__. !‘.. —221’1 _]i +2)Q’nl__x _2L + 2n X2
K2 1-x X 1-x

Giving:

sEx) = if exp; -
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Next we establish that:

1 g
f f se(n)dn . mE(E)dE <
X P-4

Ne(l)

where:

2
£ 1 2ed  2n-2n"-1
s (n) ~—— exp 3— — z
n2 k2 n(1-n)

2
€ 1 2€A 2E-2E7-1 2
m (&) ——— exp
x? (1-£) 2 z K2 £1-8)

As indicated by the shape of se(n) and mE(E) (see Fig. 7.6) the
main contribution to the above integral comes from a boundary layer
close to &=1 (in fact the lower limit x is arbitrary and can be taken

arbitrarily close to one). The following approximations are - thus

warranted:
2
2n-2n -1 . _ 1
n(l-n) 1-n
1
5 = 1
n

Using these approximation in Ne(l) we have:

3

1
€ - 2eA 1 1 2Xe 1
N~ (1) —f fexpi 2 I idn 5 exp;— > 1-f idg

x vYx K K2(1—£) K
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Changing variables to

I S
T 1 YT 1%
we get
o Y
€ 2)\€
N (1) = — =5 eXp{ = (z-y) dzdy
1 *
1-x 1-x

A second change of variables in the inner integral gives

S
¥m 1%

0 1
1 2
N€(1)= - —1 expi{- 22e opdo dy
K2 (o- )2 2
1 0 ¥
1-x

K

The next step is to bound the inner integral. Pick

O<T<y - i%;— and write

-1
Y pS

I

2

exng —Ag-ci do <
K

(G—Y)

y- ——
_2Ae . 2\e

(T-y)

2 -— T
. 2 (l'e : )—Kz— +e x* (1-x) -
(T-y) 2\€

T ==
1 K2 K2 J(. 1
—2- e do + e e
T
0



Choosing T=y/2 we get

€ 1
K

1
1-x

and also,

[oe] o0
€ 2
< — -
N (1)< e f ; iy + 12x f
1 vy 1
l_ —

X

4
2
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Ae
> Yy
K

((1-x)- %) dy
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APPENDTX 7.D: Mean Time Between False Alarms with Raye Transitions

The mean time between false alarms is given by,

1-6(e) &
Vi_s (e [0(€) /1) = f _/ s“(n)dn n°(©)at (7.D.1)
s(e)  S(e)

where §(g) is chosen of order 0 €A/K2 ). We are interested here
in the asymptotic behavior of vl_a(E)IG(E),l) as €¥0. Substituying

ss(n) and me(E) in (7.D.1l) by their expressions we have:

1-8(e) & »
= 1 2ex
Vi-g(e) 1OE 1) = f f 3 exp;Kz q(n)gdn
§e) S(e) M
exp’% q(E)f
K
dg
k2 (1-£)2
where
S
- 2N-2n -1
aM = oD
In the interval ne[d(e), 1-6(e)],
exp 2’? q(n\)} = 0(1) as €Yo
K
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Thus
1-6(g) g 1 1
v, [§(e),1)= —dn - —S———— df =
"1-8(e) n2 Kz(l_g)z
§(g) S (g)
1-S(e)
( - —)—l——— ag (7.D.2)
§(g) 2 2 te
S(g) K (1-8)

and evaluating the right hand term of (7.D.2) we get:

1 1 1
Vi-8(g) [6(6)'1)( Kza(e) S(e) 1-5(e))'

-5 (—.Q,n 8(e) , 1-8(e) | , 1-8(e) _ §(e) )
K

1-8(e) S (g) S(e) 1-6 (g)

giving the desired result

1
v [6(e),1) =0
1-6(g) (Kzé(s)z)
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CHAPTER VIIT: CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

In the course of the research reported here we have developed
a methodology for aggregation of linear systems with multiple
time scales. Our intention has been to formalize and articulate
concepts and approximations widely used in a heuristic manner in the
analysis and design of large scale interconnected systems. The

major contributions of this research are:

a. Conceptual Contributions

a.l) An adequate problem formulation for the analysis of time-
scale phenomena and aggregation methods as a problem in singular
perturbations. This problem formulation has been shown to unify and
extend previous work and has proved to be of great help in providing
conceptual clarification of the relafionships between weak couplings,
singular perturbations, time-scale separation, aggregated models and
asymptotic approximations.

a.2) The notion that sipgular perturbation can model not only
time~scale separation but also near-instabilities.

a.3) The idea that reduced-order modelling based on time-scale
separation can be though of as a problem in uniform asymptotic

approximation.
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a.4) The awareness that it is important to distinguish between
two kinds of time scale separation: in the attenuation raté and in
the frequency of oscillations.

a.5) To make evident the need to deal with stochastic dis-
continuity in the approximation of Markov processes with rare
events.

a.6) To propose a model for the analysis of coherence phenomena
in elecfric power networks that:
i) links coherence to the presence of weak couplings
between groups-of generators;

ii) shows that finding coherence areas is equivalent to
aggregating FSMP's; and

viii) interprets aggregated models based on coherence areas

as asymptotic approximations to the system's behavior.

a.7) To point out that time-scale separation is not enough, in
general, to decompose the solution of filtering (and control) problems.
In addition, the structure of the obse;vations (and control actions)
available and the rates at which information about different events is
collected needs to be considered.

a.8) The introduction of several qualitative performance measures
for filters for FSMP"s, and a criteria for judging detectors to be

correct "most of the time".

b. Specific Results

b.1) A necessary and sufficient condition for a singularly per-

turbed LTI system to have well defined multiple time scale behavior.
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b.2) A method to compute different reduced-order models of
‘an LTI system with well defined multiple time scale behavior.

bf3) A uniform asymptotic approximation to exp{a(e)t}.

b.4) A complete characterization of stochastically discontinuous
FSMP's.

b.5) A method to produce a hierarchy of aggregated models for
arbitrary singularly perturbed FSMP's.

b.6) A method to construct an aggregated model of an electric
power network based on a coherence area approximation.

b.7) ‘A criterion for fixing crossing levels for the detection
of rare eyents, in such a way that the resulting detector does not
have multiple false alarms and gives a correct reading "most of the
time".

b.8) A filter to detect rare transitions in singularly perturbed
FSMP's that uses the aggregated model of the process to be estimated
and which we show to perform néar optimally "most of the time" for

a simple example.

If is the author's felling that the most important point made in
this dissertation is the conceptual value of the approach taken and thé
clarification of the intimate relationship between weak couplings, sin-
gular perturbations, time-scale separation, aggregated models and asym-
ptotic approximations. In establishing the results mentioned above we
have used tools from the perturbation theory of linear operators in

finite dimensional spaces to a far greater extent that is customary in
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the System's Theory community. We hope to have brought to the at-
tention of researchers in this field the relevance of Kato's work for
the kind of problems at hand. In addition, it is hoped that future
work using similar tools in an infinite dimensional setting, such as
those found in [Kat 60], [Kor 78] and [Dow 80], will yield significant
results extending the range of application of the ideas developed
here to encompass time-varying, non-linear systems and continuous-
state Markov processes. Our work on FéMP's also provides per-
suasive arguments that the ﬁse of analytic and asymptotic methods,
as opposed to purely probabilistic ones, can be of great help in the
study of Markov‘processes.

The following is a par£ia1 list of future research topics

related to the problems and approaches discussed in this thesis.

c. Extensions and Technical Points

c.l Reproduce the development of Chapters IV and V for discrete

time systems. Study the difference equation:

. e
x (t+1) = A(e)x (t) (8.1)
We conjecture that under multiple semistability conditions, the

following asymptotic expansion is valid:

t
xT(t) = ale) " x5(0) =
2 m
. A et A"t AEt
= Ao e ) ve. € + o (1) (8.2)

(uniformly for t>0), where the matrices A are obtained using a

construction similar to that used in the continuous time case.
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Notice that the above expansion approximates the élow evolutions of
discrete time systems by differential equations, an attractive
feature for applications. See in this connection [Hop 77], [Com 76],
[Jav 79] and [Del 82].

c.2) Suppose that Ao(e) is upiformly stable but not MSST, i.e.,

suppose that the matrices A_,A ,....,Am are all semistable except A

"1 .

which has purely imaginary eigenvalues. The conjecture here is that
by keeping a few extra terms in AR(E) we can get the following

uniform asymptotic approximation:
’ r

Yy a, €°
o Pp

exp{Ao(e)t} = exp{AOt} ... exp ezt ...exp{Amemt} + o(l)

(8.3)
This conjecture is based on the fact that an approximation
which only keeps the zeroth order terms in all the Ak(e)'s is not
uniformly valid because the term exp{AQEQt} includes some unattenuated

oscillatory modes instead of the slightly attenuated modes of the form

Lt+s
- R s . .
e sin € t that it is suppose to approximate. By keeping enough

terms ip the expansioh of Az(e) this problemris corrected and the
validity of the appfoximation extended.

c.3) Study the non-US case, i.e., systems with high amplitude
transients. It is not clear if in this case a product decomposition
of fhe form

exp{AO(E)t} ~ exp{AOt} . exp{iz(e)gzt} e éxp{imemt} (8.4)

N

I al .
high amplitude transients

is possible in this case and it is not clear what kind of approximation
can we obtain. Some suggestions on these issues are continued in Chapter

VI in connection with our discussion of aggregation of models for

interconnected power systems.
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c.4) Higher-order terms in the asymptotic expansion. Our
results give only the dominant term in a power series expansion of
explA(e)t}. To improve the approximation it may be worthwhile to

compute more terms (see for example [Cam 78]). Is it true that:

m k
exp{AO(e)t} kEo exP{Qk(e)Ak(e)e t}

- X

m P T o\ k } r
kr=[0 eXP{( XOQk'PE ) (pZO%'PE - Et(+ o(e)

p:

(8.5)

c.5) Aggregated models of FSMP's with €-dependent rates. The
aggregated models we derive in Chapter VI are e€-independent. They
describe the behavior of the process at a given time scale but give
no clue as to what may occur at even slower time scales. It is
intuitively appealing to think of e-dependent rates {n the agghregated
models which will indicate the presence of transitions which are rare
at the time-scale under consideration but that will eventually take
place. This e-corrections to the aggregated models can thus be seen
as higher-order approximations of the kind mentioned in c.4).
Specifically, it would be interesting to prove or disprove Delebequec's

claim [Del 82] that:

UkAk(e)Vk (8.6)

is a Markov generator for ee[o,eol.
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d. Applications Related Tasks

d.1l) 1In applications, it is rarely the case that the system
under analysis is explicitely given as a function of a small para-
meter €. Therefore, in order to apply the methodology proposed in
this thesis a set of rules must be developed for the decomposition
of a matrix A into the form A;A0+€B. This is a fundamental problem
in multiple time scale analysis. It must first be determined if a
given‘matrix is amenable to time scale decomposition and if so how to
effect the decomposition.

Obviously, the decomposition is not unique and some error
criteria is required to judge the appropriateness of the innumerably
possible combinations.

d.2) Aside from providing help in the decomposition process
mentioned above, error bounds are important in their own to provide
an estimate of the losses incurred when using a time-scale decomposition.

An estimate of the type

. m .
|]exp{A0(_e)t} - I exp{Akekt}l |< x - g(e)
k=1

for some computable K and some function g(g) will bé of utmost

value.
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c.6) Multiple time scale analysis of singularly perturbed

semigroups. Suppose now that

xF) = ale)xS(v) (8.7)

is a differential equation in a Banach space with A(g) the dif-

. . S .
ferential generator of a semigroup T (t). Under what conditions do
the finite dimensional results generalize and we have a time-scale

decomposition of the form:

(o)

€)= 79 (gy. o1

T (m)

(et) ... ™) + o(1) . (8.8)

for a collection of semigfoups T(k)(t) that describe the evolution

of (8.7).

c.7) Characterize stochastically discontinuous Markov processes
defined on more general spaces, i.e., study the properties of
positivé, contraction semigroups T(t) such that

lim T(t) = 1I

t¥o
Show that such a process is also uniquely characterized by its ergodic
projection at zero, II, and an aggregated version of the process.
Generalize the aggregation and disaggregation matrices U and V by
introducing the corresponding operators U,V such that II = V-U
u-y = 1.

c.8) Analyze the hierarchical filtering problems posed in Section

7.5. Prove of disprove the conjectures stated there.
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d.3) The computational complexity of the algorithm proposed to
calculate the reduced-order models Ak needs to be evaluated and
Conjecture 4.4.11 should be proved or disproved. The numerical
aspects of the computation of the group inverse of a matrix and of

its eigenprojections also need to be studied.
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