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ABSTRACT

The generalized likelihood ratio (GLR) technique has been
suggested for detecting failures in linear dynamical systems.
This thesis reports a study of this technique in an effort to
provide a framework in which one can systematically study the
various tradeoffs involved in the design of GLR failure detection
systems. Some performance indices are defined. Important ques-—
tions related to the performance of the detection scheme such as
the detectability and distinguishability of failures are examined.
Possible modification of the original scheme for improved per-
formance is also considered.
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CHAPTER 1

Introduction

1.1 Motivation

Many aspects of recent developments of systems theory are con-
cerned with the improvement of the performance of control systems. One
such concern is the detection of abrupt changes in dynamical systems.
Examples of abrupt changes are actuator or sensor failures in an air-
craft and sudden changes in the rhythm of cardiac activities as measured
on an electrocardiagram [6]. For simplicity, all such abrupt changes
will be termed as "failures" even though a physical failure may not be
the cause of the abrupt change. The detection of failures may be
viewed as consisting of three tasks: set off an alarm when a failure
develops, then isolate the failure type, and estimate the extent of the
failure.

Most of the failure detection analysis has been performed in the
context of a state space description of a linear dynamical system as
follows:

State Equation:

x(k+1) = @(k)x(k) + B(k)u(k) + w(k) (1-1)

Sensor Equation:

z(k) = H(k)x(k) + J(k)u(k) + v(k) (1-2)

where u is a known input, w and v are independent, zero mean, white



gaussian random sequences with covariances:

i E{v()v'(x)} = RS,

E{x(j)w'(k)} = @6 Sk

Sk (1-3)
where ij is the Kronecker delta.

Abrupt changes of the system may appear in (1-1) ("actuator
failure") or in (1-2) ("sensor failures"). Actuator failures may take
the form of a shift in the control gain matrix B, a bias on the right
hand side (RHS) of (1-1) or a change in the process noise, correspond-
ing, for example, to the failure of the actuator or control surfaces on
an aircraft, a leak in the thruster of a space vehicle and a sudden
shift in wind conditions (in an aircraft control situation) respec-
tively. In these cases, an accurate knowledge of the failure is clearly
vital (assuming there is a re-organizational procedure to compensate
for the failure), as an undetected failure could easily lead to the
loss of the vehicle. Changes in sensor noise and the H and J matrices
ére examples of sengér‘failures. These are the causes of erroneous
state estimates and produce very undesirable effects in a feedback
control system that utilizes these sensor outputs in the feedback loop.

Recent studies have provided different approaches to the problem
of detecting failures. The "failure sensitive" filter developed by
Beard [1l] and Jones [2], the voting system studied by Broen [3] and
the multiple hypotheses filters employed by Gustafson, Willsky and
Wang in the classification of rhythms and detecting rhythm shifts in
electrocardiagram [6] are examples of some failure detection schemes.

Very often, the tradeoffs among the various approaches are detector



complexity vs. detector sensitivity and detector sensitivity vs. detec-
tor false alarm rate. Hence the applicability of the different schemes
depends on the particular situation and the performance criteria under
consideration. With the decreasing cost of digital hardward and in-
creasing availabiltiy of computers, many of these detection methods are
becoming feasible for on-line implementation.

In [4]1, [5], Willsky and Jones have suggested the generalized
likelihood ratio (GLR) approach to failure detection. As noted by
Willsky [2], the GLR approach can be applied to a wide range of actuator
and sensor failures. The method also provides an estimate of the
failure size which is useful in system reorganization after the failure
is determined to have occurred. The technique may be simplified in a
number of ways making it more attractive from an implementation point of
view. 1In addition, the tradeoff between complexity and performance may
be studied analytically. In this thesis research, the GLR approach to
failure detection is studied to obtain insights into its limitations
and to develop some guidelines in the design of GLR failure detection

systems.

1.2 Description of the GLR Technique

The GLR failure detection system assumes a linear system des-
cribed by (1-1), (1-2) and a Kalman Bucy filter (that assumes no failure)
characterized by the following:

x(k+1]k) = o(k)x(k|k) + B(k)u(k) (1-4)
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2(k|k) = R(k|k-1) + K(k)Y(k) (1-5)

YX) = z(k) - H(k)®(k|k-1) - J(k)u(k) (1-6)

where x(i|j) is the mean of x(i) given z(0), z(1), ..., z(j) and P(i]3)
is the associated error covariance. The quantity Y is the zero mean,
white gaussian innovations process (or the residual) with covariance V.

K is the Kalman Bucy filter gain cdmputed as follows:

P(k+l|k) = ®(k)P(k|k)®' (k) + Q (1-7)
V(k) = H(k)P(k|k-1)H'(k) + R (1-8)
K(k) = P(k|k-1)H' (k) V T (k) (1-9)
P(k|k) = P(k|k-1) - K(K)H(k)P(k|k-1) (1-10)

The four basic failure types (modes) under consideration are

modeled as:

Type 1: state jump

x(k+1l) = (k) x(k) + B(k)u(k) + w(k) + v6k+1;9 (1-11)
Type 2: state step
x(k+1l) = ®(k)x(k) + B(k)u(k) + w(k) + v6k+1;9 (1-12)
Type 3: sensor jump
z(k) = H(k)x(k) + J(k)u(k) + v(k) + vék;e (1-13)
Type 4: sensor step
z(k) = H(k)x(k) + J(k)u(k) + v(k) + \)Sk;e (1-14)
where

1 if k=26

$ = (1-15)

0 otherwise
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o = (1-16)

Thus 0 has the meaning as the "failure time" and V is the failure vector
of appfopriate dimension. We note that the original GLR method devised
by Willsky and Jones [4], [5] was developed for type 1 failures.

Due to the linearity of the system and filter, in the event of

a failure, the residual can be expressed as:
Y() = Y(k) + G, (ki®)V (1-17)

where ; is the residual in the absence of any failure. Gi is a matrix
(i=1,2,3,4, denoting the failure type). The equations that one can use
to compute the Gi are given in Section 2.1. Then Gi(k;e) is the effect
of the type i failure V that occurred at time @ on the residual at
time k. We can establish two hypotheses:

_Ho : no failure has occurred

Hi : a failure of type i (V and © unknown) has occurred.

Then the generalized likelihood ratio (GLR) is defined by

PO, eee, YO [E, 8= B0, v =3k
py(1),..., Y(k)IHO)

Li(k) = (1-18)

where p denotes probability density function; @(k) and v(k) are the
maximum likelihood estimates (MLE) of V and 6 assuming Hi to be true

defined by:

8x), V() = arg max p(Y(1), ... YO [H, 8 =8, v=") (1-19)

B,v
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Given Hi is true, the residual is

Y() = Y(k) + G, (ki®)V (1-20)
for some unknown € and V. When H0 is true, the residual becomes
Y (k) = v(k) (1-21)

Using the fact that the Y's are gaussian independent variables and
equations (1-20) and (1-21), the logarithm of (1-18) can be expressed

as

li(k) 2 4n Li(k)

k

}E: S
Y'(3)v Ty(3)

j=1

k
- v -6, (BN T00 1L () [y () -6, (ki Bk D) 1

j=1
(1-22)
To choose between H0 and Hi we use the decision rule:

H,
i
>

li(k) < € (1-23)
Hy

where € is some predetermined threshold. Hence §(k) and G(k) also

maximize li(k). Also, V(k) can be solved as an explicit function of

8 (k) :

~

V(k) = ci'l(k; 8(k)) 4, (ks 8(x)) (1-24)

where Ci(k; 0) is the matrix
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™M

()
l
(=]

c, (ki ) 6,"(5: 0 Ve 6 (1-25)

and di(k; 0) is a linear combination of the residuals:

k
d; (ki 6) 2 G, 'Gi BV Y (1-26)
=1

Then 9(k) is the value of 0 < k that maximizes Qi(k; 8) :

= U (1. 1. . -
Ki(k, 8) = di (k; G)Ci (k; 9) di(k' 0) (1-27)

Therefore, the GLR system {(also known, for reasons that will become
clear, as full GLR) will declare a type i failure G occurring at 6 if
Qi(k; 8) > ¢ and Ri(k; 8) > li(k; 0) for 1 <0 < k. As time progresses,
the number of possible values of 6 increases. Hence, the implementation
of this scheme involves a growing bank of filters. (See Figure 1.)

When detectors for different failure types are implemented
simultaneously, one is confronted with the additional problem of
deciding among the failure types. A simple maximization of Zi(k; 0)
over Vv, 0 and i may not provide satisfactory isolation of the failure
type. In the following, the subscript i is dropped for the sake of
simplifying the notation.

A number of simplifications of the approach have been suggested
by Willsky and Jones [5] such as the finite window assumption where @
is restricted to a range, k-M 5_6 < k-N. The physical assumptions made

here are: 1) no decision can be made with less than N observations (an

observability constraint), 2) failures before time k~M should have been
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detected at an earlier time and compensated for already (a limitation
imposed by computational complexity). Both of these assumptions are
reasonable, and the resulting "sliding window" reduces the computational
burden imposed by the growing bank of filters described earlier (where
calculation of 2(k; 6) for 6 = 1, ..., k is required). When the system
under consideration is time invariant and the associated Kalman-Bucy
filter (KBF) has reached a steady state, the G and C matrices become
dependent on k-9 only. Thus, these matrices may be computed once and
stored, greatly simplifying the required calculations. To reduce
required calculations even further, one may wish to consider approxi-
mating G and C (by polynomials, for example). Of ¢éourse this will
degrade the quality of the estimate of V.

Another simplification is the constraineleLR (CGLR) which in-
volves the assumption that v = afj (where o is a scalar and fj is one
of a finite set of directions). Thus, in computing G(k), we require
it to be along one of these directions and estimate its magnitude (q).

The CGLR detector takes the form:

k) = 2k g(k)’ Jik))

, A (1-28)
a(k; 0(k), j(x))
where 8(k) and g(k) are the quantities that maximize
b2(k- 9, J)
L(k; 0, j) = —izr J) (1-29)

a(k; er J)

where

atk; 0, ) f;C(k; G)fj (1-30)
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b(k; 6, j) = f3 d(k; 9) (1-31)

and d(k; 0) is defined by (1-26). The decision rule is:

R(k; B(x), 30 € (1-32)

IAV I

0
If v is further restricted to be some constant vo, one has the
simplified GLR (SGLR). We note that SGLR does not require maximization

over V and hence 2(k; 8) becomes

k
UG 0) = 3 12v(3) - GG VIV NG By, (1-33)
j=1
Both CGLR and SGLR require less computation than full GLR. How-
ever, they are directionalized, i.e., most sensitive to certain direc-
tions only. This limits their ability to detect failure of other
directions. Conseqﬁently, they may be suitable only for a certain class
of failure detection problems.
From the above discussion, it is clear that the GLR method offers
a range of impleméntétions from the point of view of cdmputational
complexity. In order to develop a useful detector design methodology,
one must study much more carefully the properties of the GLR method
and the tradeoffs involved in the design. The purpose of this research
is to study certain of these issues in order to provide some guidelines
for the use of the GLR technique. Our aim is to develop an analytic

framework in which one can systematically study the various tradeoffs
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involved in the design of a GLR failure detection system.

1.3 Overview of the Research

The two aspects of the performance of the GLR detector most
closely examined in this research are the detector's sensitivity to
failures and its ability to isolate the types of the failures. Effec-
tively, the GLR detector concentrates failure information into the
variable, 2(k; 6) as the decision rule considers only these quantities.
Hence, a starting point in the analysis of the GLR detection scheme is
the study of this random variable.

In Chapter 2, we present the static analysis where we consider
the %'s as static variables, i.e. the correlation among them is not
considered. There, we derive expressions for probabilities such as the
probability of correct detection and the probability of false alarm.

We also consider the questions of the detectability of failures by a
GLR detector and the ability of the detector to, in some way, dis-
tinguish among the different types of failure.

In Chapter 3, we study the correlation behavior of the %'s in an
attempt to obtain more precise performance indices, such as the pro-
bability of time to detection and to derive more information about the
failure from the temporal behavior of the likelihood ratios.

Finally, in Chapter 4, a summary of the study is presented along
with a numerical example (failure detection for a simplified aircraft
model) illustrating the performance of the GLR technique. We also

outline several directions in which we feel further work should be done.



CHAPTER 2

Static Analysis

2.1 Summary of the GLR Equations

The implementation of GLR detectors requires the G matrices
described in Section 1.2, In this section, we present the equations
necessary for computing these matrices for the four basic failure types
(state jump, state step, sensor jump and sensor step) as modelled by
equations (1-11), (1-12), (1-13), and (1-14). The unfailed dynamical
system is represented by equations (1-1) and (1-2) which are repeated
here for easy reference.

x(k+1) = ®(k)x(k) + B(k)u(k) + w(k) (2-1)

z(k) = H(k)x(k) + J(k)u(k) + v(k) (2-2)

The associated KBF:

X(k+1]k) = ®(k)x(k|k) + B(k)u(k) (2-3)
X(k|k) = %(k|k=1) + K(k)vy(k) (2-4)
Y(k) = z(k) - HK)x(k|k-1) - J(k)u(k) (2-5)

where K is the filter gain computed from equations (1-7), (1-8), (1-9)
and (1-10).

Since the failures under consideration do not involve the known
control u, the control terms in the above equations may be omitted to
simplify the mathematics. However, the subsequent analysis is still
valid for cases where the control is present due to the following

reason. Since u is deterministic, its effects may be computed exactly;

%:EE:AMMH
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by linearity of the system and filter, the control effects may be

added directly to the uncontrolled system and filter to obtain the
controlled situation. Consequently, the analysis throughout this
report assumes the absence of controls without sacrificing the validity

of the results for systems with deterministic controls.

2.1.1 The General Case

The linearity of the system and the KBF enables us to mathemati-

cally decompose the residual y and the state estimate x(k]k) into two

parts:
(k) = vy (k) + v, (k) (2-6)
x(k[k) = % (k) + %) 0[k) (2-7)

when the variables with subscript 1 denote the residual and state esti-
mate when no failure has occurred and the subscript 2 denote the "bias"
developed in the KBF due to failures. (Note that Yl is the same as

; defined in 1.2.) Similar decomposition is also applicable to x and z.

In addition, we find that for the four failure types:

Yo (k) = G(k; 6)v (2-8)

x, (k[k) = F(k; 8)v (2-9)

where G and F are matrices that are functions of the system and filter
matrices, K, 6 and failure type.

After some manipulation of equations (2-3), (2-4) and (2-5), we
obtain a recursive expression for §(k|k):

X(k[X) = O(k-1)%(k-1|k-1) + K(k)Z (k) (2-10)
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where

O(k-1) = [I - K(k)H(k)]®(k-1) (2
To simplify some of the notations, we define

0k, j) = 0(k-1)0(k-2) ... 0(3) (2

ok, ) @(k-l)@(k—Z) R 1 &) ‘ (2

Now, we are ready to consider the effects of the four types

failures.

State Step Failures

-11)

-12)

-13)

of

Consider a state step failure. Its effect on the system can

be described by

x2(k+1) = ®(k+1, k) x2(k) + ok+l,ev ’ x2(0) =0 (2-14)
zz(k) = H(k)xz(k) (2-15)
Thus
z,(k) = x,(k) =0 k < 0 (2-16)
k
x?(k) = Z d(k, i)v k >8 (2-17)
- i=6
k
z, (k) = :E: H(k)®(k, i)V k > © (2-18)
i=0
‘The éffect on the filter:
§2(k|k) = Ok, k-1)&, (k-1]k-1) + K(k)Z,(k), #,(0/0) =0 (2-19)

We then calculate
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%,(k|k) =0 k <8 (2-20)
k
%, (k|x) = Z Ok, 3K (3)Z,(3) k>0
j=0
k
-
= 7 0(k,3)K(5) }.,, H(3)®(3,1i)v
=6 i=6
k k
= :E: :E: O(k,3)K(HH(F)(F,i)v (2-21)
i=0 j=i
Hence
§2(k|k)'= F(k; 0)V (2-22)
0 k <6
F(k; 0) = K . (2-23)
Z Z Ok, NK(NH(N (5, V) k > 8
i=0 =i
From the definition of the residual (2-5), we have
Y,(k) =2, (k) - H(k)O(k, k—1)§2(k—1|k-1) (2-24)
Y, (k) = G(k; O)v (2-25)
0 k <6
G(k; 6) = X
H(k) [ :E: @(k,j)-@(k,k—l)F(k-l;G?] k>
j=0
(2-26)

Following similar calculations, we obtain the expressions of

the F and G matrices for the other failure types [7].
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State Jump Failures
0
F(k; 0) = X
Y 0k, HKRHEEG 6, 0)
j=6
0
G(k; 0) =
H(k) [®(k,0) - &(k,k-1)F(K-1; 0)
Sensor Step Failuresl
0
F(k; 0) = X
Z O(k,3)K(3)
=
0
G(k; 0) = (I
I-H(k)®(k,k-1)F(k~1; 6)
Sensor Jump Failures

F(k;

G(k;

0
0) =
Ok, 6)K(B)

0

8) I

-H(k)®(k, k-1)F(k-1; 6)

k <8

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)
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We note that the matrix G is essentially the only quantity that
is needed in the implementation of the GLR detector. The matrix F is
important in the implementation of a mechanism for compensation follow-
ing detection. Examples of such a mechanism are discussed in [4] and
are not pursued here.

Due to the fact that G(K; 6) = 0 for k < 8 and for all types of
failures, the summation in the expression of C(k; 8) (1-25) need only
be performed from j = 0 to k instead of j = 1 to k.

k

C(k; 6) = :E: 6 (5; BV Ya(3; O (2-33)
5=6

2.1.2 Steady-State, Time-Invariance Simplification

When the system (2-1) and (2-2), under consideration is time
invariant and the associated KBF has reached a steady state, ®(k) and

O(k) become constant matrices & and O respectively. Then

ok, §) = &3 (2-34)
ok, §) = &~ 3 (2-35)

Substituting (2-33) and (2-34) in the expressions of F and G, one
finds, after some simple manipulation, that these matrices become
dependent on the value k-6 instead of k and 6 explicitly. Letting
r = k-6, we summarize the expressions under the steady-state time-

invariance assumption in the following.
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State Step Failures

F(r)

G(x)

_2 4_
0
0" Jkue? Tt
i=0  j=i
0

State Jump Failures

F(r)

G(r)

Sensor Step

0

r
Z 0" Ixuo)

‘0

lH[Qr - OF(r-1)]

Failures

F(r)

é(r)

0

r

2. o
3=0

0

I

I - HOF(r-1)

Iv

| v

[v

| v

(2-36)

(2-37)

(2-38)

(2-39)

(2-40)

(2-41)
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Sensor Jump Failures
0 k <8
F(r) = (2-42)
0"k k > 0
0 k < 6
Glr) = 1 k =9 (2-43)
~HOF(r-1) k > 0

We further note that under the same assumpticn the matrix C(k; 0)

as defined in 1.2 becomes dependent on r (r = k-0):

r
C(r) = Z G; () v 16 (3) (2-44)
3=0

where V is the steady state covariance of the residual under no failure.

2.2 Static Probabilities

As some measures of performance of a detection system, the pro-
babilities of correct detection (PD), false alarm (PF), cross detection
(PCD), wrong time (PWT) and time to detection (PTD) are defined as
follows:

P (k, o, 8, V) 2 Prob (L(k:0) > ela, 6, V) (2-45)

P.(k, o, 6) & prob (2(k:0) > ela, 0) (2-46)

PTD(T, a, 9, v) é Prob (2(k;09) > € for some k < T|a; 8, v)

(2~-47)

Bk, a, 8, v, 8) 2 Prob (4(k:8) > ela, 8, W) (2-48)
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where 0 is the actual type of the failure of size V and is also the

failure type the GLR detector hypothesizes, 0 is the true time of

failure and 6 is the hypothesized time of failure. Also, we define:

PCD (k, o, B, 6, V) & Prob (&(k;8) > €|a, B, 8, V) (2-49)

where O is the failure mode the detector assumes, B is the actual
failure mode, 6 and v are the time of failure and the failure vector

respectively. We note that

Py ke, 0 8, V) =Py (k, 0 0, V) (2-51)
PWT (kr G, er vV, e) = PD (k, a, el V) (2-52)

There are many aspects to the evaluation of a defection scheme
and a single index is not sufficient to indicate the quality of the
scheme. The above defined probabilities are some convenient quantities
defined to provide some insights into GLR detectof performance. PD is
a measure of detector sensitivity, since it is the probability of
detecting a failure when a failure actually occurred. PF measures the
negative quality of the détector, as it is the probability that a
failure is signaled when none has developed. Both PCD and PWT are
more subtle measures of performance, since they pertain to the ability
of the detector to distinguish failures of different types and different
failure times respectively. PTD is the probability of the time delay

until detection and therefore is a measure of the speed of detection.

This quantity is of obvious importance in evaluating detector performance.
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Excepting PTD' thése probabilities are defined at each point in
time assuming no knowledge of the 2(k; 6) at other timés. It is evident
that the variable 2(k; 8) is correlated with the values of l(kl; Gl) for
kl # k and 61 # 6. Thus a better set of performance measures may take
this temporal correlation into consideration. PTD is an example of one
such measure. The correlation behavior of the £'s will be investigatéd
in Chapter 3.

In this chapter, we study the performance of the GLR detectors
as measured by the above defined probabilities. The probability density
of 2(k; 0) is shown in sections 2.2.1 and 2.2.2 to be chi squared (XZ)
and gaussian for full GLR and SGLR respectively. As the density is

determined, the required probabilities may be com?uted relatively

easily.

2.2.1 Full GLR: X2 Probabilities

Consider a detector that hypothesizes a type i failure with
failure time = 0 while an actual failure vV of type j occurred at Gt. The

actual residuals and GLR outputs then are given by

Y(k) = Y() + Gy(k; 8V (2-53)
k
d(k; 0) = Z Gi'(s;e)V_l(S)Y(S)
s=0
k
= Ve, -1 . -
= sge Gi (s;0)V ~(s) [Y(s)+Gj(s,9t)\)] (2-54)
L(k; 8) = @' (k;0) Cilgl(k;ele)d(k;ﬁ) (2-55)



T W e = e

e

o -

-28-

where
Gj(k; 0) is the G matrix corresponding to a type j failure, y(k) is

the unbiased white part of the residual, and

k
(ki 8]0) < :E: G, '(ss e)v'l(s)ci(s; 8) (2-56)

Cill
m=0

Note that cili(k; 8lo) = C.(k; B) of a type i detector.

Since the sensor noise covariance, R, is symmetric and positive
definite, V-l(m) is a positive definite symmetric matrix. Therefore,
Cili(k; GIB) is positive semi-definite and symmetric. Then there exists
an orthonormal matrix T such that

— _1 : - —
» Aili(k; 6l6) =T cili(k, ooyt (2-57)

where Aili(k; 9[9) is a diagonal matrix and the diagonal elements are

the eigenvalues Al‘ A

g e An of Cili(k; 6]6) (n is the dimension of

Ci|i(k; 6]6)). Assuming C-li|i(k; 6]6) exists (we will consider this

existence question later), define

2(k; 0)

{a' (x; e)T}'{T'lci|i(k; 8l6 )T} {T lawk; ©))

>

1 . -1 . ' . -
vi(k; 0)A ili(k' el)V (k; 02) (2-58)

Then v(k; 6) is a gaussian random vector:

k
vik; ) = T :E: G, "' (s G)V_l(S) [;(s) + G.(s; 6,)v] (2-59)
=6 1 J t
k
I . = v 1 o -1 . é ' .
E{v(k; 8)} =T S;g G;'(si BV (5)Gy(si O =T ci]j(k, elet)v
(2-60)
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E{v(k; B)v'(k; 0)}

T'Cili(k; gleyr + T‘vCin(k; 9|6t)C'ilj(k;6]0t)v'T

Byppte 8]0) + [E{v(k;6) M [E{v(k;0) }]" (2-61)

Hence Ai|i(k; 6|8) is the covariance of v(k; 6). Since

» Aili(k; ele) is diagonal, elements of v(k; 6) are independent of one

another. Also, R(k; 8) can be expressed as the summation:

n
2(k; 0
gk ) = :E: (2-62)

where vs(k; 0) is the sth component of v(k; 0). Then each term in the

above summation is the square of a gaussian random variable with unit
v, (ki 0)
variance and mean of ———— (vs (k;0) is the mean of Vs(k; 0)).

\/Ts
Therefore, &(k; B) is a noncentral xz random variable with n degrees
of freedom [10]. The noncentrality parameter (62) can be computed as
follows.

N =
2Ly LD

s=1 : s

[E{v(k; 8)}1" Ailll‘k’ 6]6) [E{v(k; 8)}]

' . -1 . . -
vcilj(k, elet) |3 (k: 6]0) Cilj(k, 6le,)v (2-63)

The expected value of L(k; 6) is then simply n + 62.
Note that no assumption is made on i, j, 6 and et. The deriva-

tion includes the conditions defining PD’ P_, PCD' and P as special

F WT

cases as well as others which are not considered presently. For
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instance, i may be different from j while 6 is different from et (but
the G's are computed according to the same system and filter). This‘
corresponds to a case of wrong time cross detection and it could be

of interest. The associated prcbability (of wrong time cross detection)
may be greater than the probability of correct time cross detection
implying that a mismatched failure is more likely to be regarded as a
matched failure but at a failure time different from the true one. 1In
any event, 2(k; 6) is a noncentral X2 random variable with n degrees

of freedom and a noncentrality parameter 52 dependent on the conditions
hypothesized.

Specializing to the four cases of current interest, we have,

Correct Detection

6=9, i=3

2 . .
8 = Ve (ki 8|6 v | (2-64)

False alarm

§ =0 (2-65)

2(k; 6) becomes a central X2 random variable

Cross Detection

i#3, 0=0

8% = vier Lk 8|8 c Y ki By, . (ki8]0 v (2-66)
1|J lll l|J

t

Wrong time

i=7 8 #6,
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Note that the different relationships among 6, Gt, k have different

physical interpretations, for instance,

<
k < et <8
k <9 f-et ‘ not meaningful

< <
6.<k < )
b <k < et false alarm
et <8<k

wrong time (2-67)

6 <o <k

then under the wrong time assumption and (2-66),
2 [Pl | - - . -
8¢ =v HAC 6|9t)ci|i(k, GIS)CiIi(k, elet)v (2-68)

The probabilities, P_, PF, P and P can be computed by simply

D CD WT

integrating the chi squared densities with the appropriate degrees of
freedom and noncentrality parameters from £ = € to £ = +o. There are
computer subroutines for computing central xz probability [13]. An
algorithm for computing noncentral x2 probabilities has been developed

and is described in the appendix.

2.2.2 BSGLR: Gaussian Probabilities

Consider a simplified GLR detector set to detect a failure
vO of type i with failing time 6 while a true failure v of type j
actually occured at Ot. The actual residuals and log likelihood ratios

are given by
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Y(K) = v(k) + 65 (ks BV (2-69)

M=

ol .
2(k;0) [2Y(S)-Gi(579)\)0] v (s)Gi(S.e)\)O

6

n
I

M-

a1
625{'(5)V (s)Gi(s;e)\)O

n
Il

+
[\

k
TG Y -1 .
sg v Gj(s,Bt)V (S)Gi(s,e)\)o

T

s=0

@)

Gi'(s;e)v'l(s)ci(s;e)vo

M~

' ' . -1 y
‘ 2 V' G (s;0)V " (s)Y(s)

s

+2 v, Cilj(k; e|et)v - v, Cili(k; e]e)vo (2-70)

Since ?(s) are zero mean, independent gaussian random vectors, 2(k;0)

. . ., . . 2
is a gaussian random variable with mean (m) and variance (07):

0

m = E{2(k;0)} = 2v CHMCE 88,0V = vy

'cili(k; 8[0) v, (2-71)

2

® = B{[0(k;0) - m%}

k
4 VO'[E Gi'(m;e)V-l(m)Gi(m;G)] Vo

m=0

4 vo' Cili(k;e)vo (2-72)

Note that the variance is the same for all cases whereas the

mean varies. For the four cases of interest:
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Correct Detection

i=43,0-= st, Vo= vo

m= v, Cili(k; 6le) v, (2-73)

False Alarm

M-
1

=9, v=0

(2-74)

m = —\)O' Cili(k; 6[8) \)0

Cross Detection

i#3, Vv# vo, 6 = et

m=2Vv'C .k 6[6)v-v (2-75)
l|]

. A 8l6) v

0 0

Wrong Time

m= 2V s ki 8]8V - v

o' cili(k; e|e)vo (2-76)

]
o Ci
Then the desired probabilities can be obtained by integrating

the appropriate gaussian densities. This involves the evaluation of

error functions.

2.2.3 Discussion

For chi squared densities, the probabilities PD' , are

Pep’ Fur
. . . . 2 .
increasing functions of the noncentrality parameter §° for a fixed

threshold € (see Figure 15 ). For SGLR, a similar relation between

the probabilities and the mean of £ holds. The variance of the likeli-
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hood ratio of a SGLR set to detect a particular failure is a constant
for all different time failures. Only the mean m varies with the time
failures. Hence, both 52 and m are (alternative measures of GLR per-
formance.

When considering PD' 62 takes the form v'C(k;0)v, where v is the
true failure. Then for any threshold, the probability (PD) of detecting
this failure v is directly determined by the effect of v on 62. The

. . 2
failure becomes more "detectable" as V results in a larger §  and con-

sequently a higher P

p- A zero 52 will make P, equal Po signifying that

the detector is unable to tell between the failure and the noise in the
system. Hence, a failure V that occurred at 0 is viewed as "undetec-
table" at time k if V'C(k;8)V (the 82 for computing PD) is zero.

Simplified GLR behaves in a similar manner. In considering

ol

PD for SGLR, 0O is ZVGE, and thus %-= (which represents effective
SGLR signal to noise ratio). Hence, an increase in m will give a
larger PD for any threshold. The only difference is as follows. Here,
the mean value (m) of the likelihood ratio takes the same form as 62
for full GLR. A failure V that causes a zero m will make O zero and
consequently 2%(k;0) zero deterministically and independent of the
residuals. In this case, failure detection is clearly meaningless.

As the C matfix is closely related to the detectability of
failures, it is studied in section 2.3 to explore its significance and

behavior as functions of k and 6. 1In section 2.4, the C matrix is

examined to determine undetectable failure directions.
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After consideration of P and PW

cD similar to that of PD in the

T
2 . . s

above, we note that the §” associated with these probabilities and con-

sequently the Ci 3 matrix are crucial factors of the detector's ability

to "distinguish" between different failures and failure times. This

issue is further explored in section 2.5.

2.3 The Information C Matrix

The C matrix is called the failure information matrix for reasons
that will become apparent. In addition to its relation to the proba-
bility of correct detection, the C matrix has one other important
property. In section 2.3.1, we will show that C—l(k; B) is the error
covariance of the MLE of the true failure assuming that the full GLR
detector has determined thée true failure type and failure time.

The general time varying situation is too complex for initial
analysis. To obtain some basic understanding of the behavior of C(k;0)
as a function of k and 6, we have turned to the time invariant, steady
state situation. In 2.3.2 we will discuss the asymtotic behavior of

C(k-0).

2.3.1 C-l(k;e): the Error Covariance of v

Consider the situation where a full GLR detector has determined
the type of a true failure Vv and the true failure time ©. Then the MLE
of Vv is Vv as described by equation (1-24).

J5=ctx: o) ax; 0) (2-77)



fg‘

-36-

For easy reference, we repeat the definition of C and d here.

k

C(k; 0) = Z G'(3; 9 v'l(j)G(j; 0) (2-78)
j=6
k

atk: 8) = Do a'(i OV EHT(G) (2-79)
36

where
Y = Y(3) + G(5; 8)v (2-80)

The actual residual Y contain a zero mean white independent component vy
with covariance V and a bias G(j; 0)v due to the actual failure. We

also define

k
d(k; € = Z G'(j; e)v'l(jﬁ/(j) (2-81)
j=6

The 5 is also zero mean, white independent with covariance:

e{d(k; 8)d'(k; 8)} = Clk; 6) (2-82)
Furthermore, we have

dk; 6) = a(k; B) + c(k; B)v (2-83)
We can compute the error covariance of the MLE G as follows:

E{V - V) (U =)'} = w' - E{Ov') - E{w'} + E{0v'} (2-84)
Second term on the RHS of (2-82):

E{c 1 (k;0)a(k;6)v'}

E{ov'}

B{cT (k;0) A0k;0)v' + ¢ L (ki0)Clki0) W'}

! : (2-85)
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Third term:

E{w'} = E{Gv‘} v= ! (2-86)

Fourth term:

E{vo'} = B{c T (k:6)d(k0)dk;0)C L(k;0) )

c'l(k;e)E{[E(k;e) + C(k;06)V] [E(’k;e) + C(k;e)v]'}c'l(k;e)

c 1 x:0) E{A(k;0)d" (k;0) + d(k;0)v'C(k;:6)

+ C(k;0)val(k; 0) + C(k:0)w' C(k;0)} C L(k;0)

¢ Hki0) [Cxi0) + Clki0) W' C(ki8)] C L(k;0)

cHki8) 4wy (2-87)
Summing up the terms,

E{(G -V -V} = C-l(k; 8) (2-88)

Under the assumption that the full GLR detector has decided on
the true failure type and failure time (8), we have shown that C_l(k;e)
is the error covariance of the MLE of the true failure. From the
theory of linear algebra [16] we know that both C and C“l have the same
eigenvectors and that these eigenvectors are orthogonal to one another
since the matrices C and C-l are symmetric. Suppose a failure V lies
in the direction of an eigenvector Xy of C corresponding to a large
eigenvalue Al«(k >> 1). Then 62 ( = vV'CV) and P_ for this failure is

D

- -1 .
large. The error covariance of the MLE of V is Xl 1 (= xiC xl) which

is small. The failure direction X, is a detectable direction as it

can be detected easily as well as estimated accurately. If v lies in

the direction of an eigenvector X, with small eigenvalues Ay (Mg << 1),
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the associated 62 is small and consequently PD is close to PF. In
addition, the error covariance'of the MLE of v, 12_1, is large. Hence,
the failure direction X, is "less" detectable. Indeed, the matrix C
describes the directional sensitivity of GLR.

We will describe a failure direction as undetectable if it results
in a zero 62. Thus a direction is detectable if it produces a nonzero
62. In order to gain insight into the detection problem, it is appro-
priate to study the subspace of undetectable directions (which is similar
to the concept of uﬁobservable subspace in linear systems). By under-
standing it one can provide an analytical foundation for questions
such as the distinguishability of various failure modes. Note that the
set of detectable directions is not a subspace and two directions are
totally indistinguishable if they differ by an undetectable direction.
With this idea as a foundation, one may be in a position to define a
concept of distance between failure directions -- i.e., a measure of the
degree of distinguishabiliy (see section 2.5).

For full GLR, we have assumed the existence of C_l. (Otherwise,

a pseudo inverse may be used [5].) When C is noninvertible, it must have
some zero eigenvalues. If we allow some eigenvalues of an invertible C
to approach zero, the noninvertible situation is reached. By a limit
argument, the above discussion may be extended to a noninvertible C
matrix and hence leads to the notion of undetectable direction mentioned

earlier. The relationship between invertibility of C and detectable

failure directions is further examined in 2.4.
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2.3.2 Asymptotic Behavior of C(r)

In a time invariant system, C(k; 0) becomes dependent on the
difference between the true failure time and observation time (k-6).
For conveniénce, we let r = k-0. Furthermore, we assume the associated
Kalman filter has reached a steady state. The four different types of

detectors are considered separately.

State Jump Detector

r

F(r) = :E: 0¥ ko] (2-89)
j=0

where © = [I - KH]1®; K is the steady state Kalman gain, ® is the system
matrix and H is the observation matrix.
Both the system and the filter are assumed to be stable. Then

the magnitude of the eigenvalues of ¢ and @ is strictly less than 1, i.e.

A @] <1 i=1,2, ...n (2-90)

2 @] <1 i=1,2, ...n (2-91)

]I

where li(Q) and Ai(O) denote the i*h eigenvalues of © and O respectively

and n is the dimension of ¢ ana ©. Consider the norm ||-|| of an nxm
matrix A, 1
||A|| = max (x'A.'Ax)2 (2-92)
1] [=1

where X is an m-vector.

For a square matrix A with all eigenvalues of magnitudes less

than 1, it can be shown that ||a|]| < 1.
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For a jump in the state,
¥
Flr) = 9 0 xno? (2-93)
3=0
r r
s ~
e ] < 2 e Fxmod|| < O || |oF
§=0 3=0
= ||xal| (r+1)p” (2-94)
where p = max {||®||, ||0]|} . since p < 1, there exist an a > O
such that p = e-a. Then
e || < ||x]| (r+1)e™F (2-95)

The RHS goes to zero as r > ®. Therefore

lim F(r) =0 (2-26)
Yy > 0

Similarly, for G(r),

|lex) || = ||HI®" - oF(x-1)1]]
<l dlel® + |lel| |lre-1 1
< [la]] " + [|xa|| zo"] (2-97)

Hence G(r) also approaches zero as r + ®©, Now consider C(r). Define

Ac(rx,s) = C(xr) - C(s) , ¥ <s
| S
- Y eovi
= G'(JHV "G(I) (2-98)
j=r+1
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S .

4 _ 5 . »
lacte,o || < S TV 1al[? 00 + [[xa]] 3072
j=r+l
< VT E? teoo” + x| (s-0) 2oy
(2-99)
As r > «©, the terms in the bracket approach 0. Hence

lim ||AC(r, s)|| =0 r <s (2-100)

r > ®

This shows that {C(1), C(2), ... C(r) ...} is a Cauchy sequence and hence
converges to a finite constant matrix. This has the implication that
62 in the state jump case will approach a finite limit; as this limit
is reached, we are getting no more information about the jump from v.
Thus, waiting further will not improve PD nor the error in the failure

estimate. Therefore, the rate of convergence of C(x) to its limit may

'be used in determining the length of the detector window (i.e., the

value of M for the window: k-M < 8 < k-N).

Step in the state”

r r 3

Fir) = 2, D oF d wupd™t o Y ot > xuot
i=0 j=
r

j=i j=0 i=0

= Z 0° 3 mmrr-o3*t) (1-971
5=0

r r
=D o k-1t - . o xuedtl [1-gy7L
=0 =0
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L

" = [1-0""1Yy [r-e1 Ykmrr-e17t - 1 QL ¥ Ikmeljerr-e1Tt  (2-101)
i j=0
]
- -1 -1
i’ As r >+ o, the first term becomes [I-0} "KH[I-0] and the second goes
# to 0 following the reasoning for the state jump case. [I—(:)]-l and
b [I-0]"1 exist because X, @ ]<1, [A (&) <1 fori=1,2, ...n.
- i 471
Fm;
A r
] G(r) =H [ :E: ot - dF (r-1)]
1 §=0
- = m[I-0*Y [1-0171 - HOF(r-1) (2-102)

As r » o, the firét term becomes,H[I-<I>]—l and the second,
- H@[I—@]-lKH[I-Q]_l. Hence G(r) reaches a constant, H{z-@[:—e]'l}[1—¢]'1
: as r > ®, G'(j)V-lG(j) is positive semi-definite and attains a steady
: state value G'(W)VrlG(m). Thus at least some eigenvalues of C(x)
Eﬂ‘ grow as r increases indicating that some failure vectors will cause a
: growing 62. Therefore, an actual failure lying in the direction of an
]

eigenvector of G'(W)V_lG(m) with a nonzero eigenvalue will cause PD
- to approach 1 as the waiting time (r) increases.
i

Jump in Sensor

i = 13 "R = 0
Y = Y > ©
lim G(r) = lim -HOF(¥x-1) = O (2-104)

.r Y > @ Y > ©
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Hence sensor jump C(r) behaves much like that of state jump failures:

C(r) approaches constant as r approaches .

Step in Sensor

lim  F(r) = lim Z(PJK
r —> oo r—>00

(2-105)
= [1-0] Tk
lim G(r) = lim [I-HOF (r-1)]
r = o r > © (2—106)

I—H@[Fe]'lK

Therefore, the sensor step C(r) behaves in a manner similar to that of

the state step C(r) as r approaches «.

2.4 Undetectable Failure Directions

One mément's reflection upon the physical meaning of an unde-
tectable failure leads us to believe that a failure is not detectable if
it cannot be observed by the system's se;sors. Therefore, state failures
that lie in the unobservable subspace are not detectable and all sensor
failures are detectable as they have direct effects on the sensor outputs.
From the discussion in 2.3.1, all failure directions are detectable if
C is positive definite (i.e., invertible). Now we will determine the
condition for C to be invertible under the time invariant steady state
assumption.

The positive semi-definite synmetric matrix C(r) may be re-

written as
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G(r) =
[G'(0) § G'(1) | .us i GU(2)] vt i (G (0)]
- . - . ‘l 0 o e an
| {6
o .
| v e
A
= G (x) VG (x) (2-107)

Since V"Pl is positive definite, V is also positive definite. It is clear
that C(r) is positive definite if and only if the null space of G(x) is

{0}. we will examine G (r) for the four different failure types separately.

State Jumps

After some manipulation of the expression of Glr) (2-39), we can

wiite G(r) as a product of two matrices:

G(x) =
I 0 ] H |
-mék I HO
ootk -H0OTTOK .- ] .

é Al(r) B(x) (2-108)
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Al(r) is a lower triangular matrix with identity blocks on the diagonal

and is thus of full rank. On the other hand, the null space of B(r) is

the null space of G(r). We note that B'(r) B(r) is the observability
gaussian.. Therefore, C(r) is positive definite if the system is observable
in r steps. Since the unobservable subspace in r steps is the null space

. of B(r) and G(r), the observable subspace coincides with the "undetectable
subspace”. One other property of system observability maybe applied here,
i.e., if an n dimensional constant system is not completely observable

in n-l steps, it will never be completely observable. Then if C(r) of

an n dimensional system is not invertible for r = n-l, it will not be
invertible for r > n-1. Hence, after waiting n-1 steps (r = n-1), the
undetectable subspace becomes constant. However, C(r) may be noninvertible
for r < r, but invertible for r > g and r, < n-1. These last two pro-
perties of state jump detection may be used to determine the value of N

in the window k-M < O < k-N.-

That is, if a jump V is in the nullspace of C(r-1) but C(r)v # 0,
we will certainly take N > r when looking for a jump of this type. In
SGLR and CGLR (where we prespecify failure direction), we will set different
window constraints for different jump directions, depending upon their
observability. In full GLR, the failure direction (as well as magnitude)
is determined on-line. One obvious design concept for full GLR is to
choose N large enough so that C(N) is invertible (assuming the system is

observable). If, because of a desire to detect certain failures more quickly,
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we choose N such that det C(N) = 0, we must take care in utilizing the
full GLR equations given earlier. That is, we must replace C':l by a

~
pseudo-inverse and should take care in making sure that V lies in the

orthogonal complement of the nullspace of C (as it will if we use the

standard Penrose inverse).

State Stegs

G(r) =
B h - —
I 0 H
I-HOK I HO

r-1 r-2 *
I-H® E o'k I-H® E 0%k ... T H@U
L §=0 §=0 J N

é A2(r) B(r) (2-109)

Ar(r) is of full rank. B(r) is identical with that of the state jump

cases. Therefore, similar comments applies here also.

Sensor Jumps and Steps

Upon examining the expressions of G(r) (2-40) and (2-41) of these
two failure types, we find that G(0) = I for both types. Consequently,
the null space of G(r) is {0} implying that C(r) is always invertible

for sensor failures.
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The above discussion on staﬁe jump, senior jump’and sensor step
failures maybe extended easily to the general time varying cases. It
is clear that in the state jump case, observability has to be considered
for a time varying system and the value of r for which C(k; k-r) is in-
vertible will generally vary with time k.

For state steps in an n dimensional time varying systems, the in-
vertibility of C(k; 0) is related to the observability of an augmented
system. An n dimensional system with state step failures (2-110) (2-111)
can be represented by a 2n dimensional system with state jump failure;

(2-112) (2-113).

An n dimensional system with state step failure

x(k+1) = &(k) x(k) + v0k+l,9 (2-110)
z(k) = H(k) x(k) (2-111)
An augmented system with state jump failure
% (k+1) ® (k) I % (k+1) 0

= . " 1) (2-112)

b 0 I b v| X*lr©-l
z(k) = [H(k) 0] [x(k)” (2-113)

b

Recall that in the state jump case, a failure direction is undetectable
if it lies in the null space of the corresponding C matrix., Then, jump

failures of the form as desc¢ribed in (2-112) i.e., [0, V]!, are detectable
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if they do not lie in the null space of the state jump C matrix of the
augmented system. Therefore, we deduce that the state step C matrix of
the original system is invertible if the null space of the state jump C
matrix and hence the unobservable subspace of the augmented system does
not contain directions of the form [0, V]'.

Furthermore, we have made the following observation. Suppose all
state jumps in the original system are detectable. Then if some state
jumps in the augmented system are not detectable, we know either or both
of the following are true:

1. At least some state steps in the original system are
undetectable. -

2. Certain state steps cannot be distinguished from jumps
in the original system, e.g., consider the 2 dimensional

system
x(k+1) = [1 1] x (k) (2-114)
0o 1
x(k) = [1 0] x(k) (2-115)

This system is observable hence all state jumps are detectable.
But a jump in the second state is indistinguishable from a step in the
first. A check of the observability grammian of the augmented system
shows that the augmented system is not completely observable i.e., some

state jumps here are undetectable.
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2.5 Distinguishability of Failures

Recall that when the likelihood ratio crosses the threshold, a
failure is declared: in full GLR, a failure (size and direction unknown)
of the type hypothesized is declared while in SGLR, a failure of the
hypothesized type and direction (size unknown) is declared. However,
there are many possible causes of the likelihood ratio's exceeding the
threshold e.g., a noise spike, an actual failure of the hypothesizéd
type or another type of failure. Therefore, failures other than the
ones hypothesized by the detector can be mistaken as the hypothesized
failures. The sensitivity of a particular detector to other types of
failures makes it difficult to distinguish between various failure modes.
In this section, we will make a first attempt to consider this problem
analytically in order to provide basis for detector design and reliability
analysis.

Consider a SGLR detector that is set to detect a failure in the
direction f, of type i. Then the probability of detecting f. when it

1 1

occurs is PD. In the event that another failure in direction f2 of

type j occurs , the probability that the SGLR declares a failure in the

direction f1 of type i is P Clearly the quantity PCD provides a

cD’

measure of how distinguishable various failure modes and directions are.

If P <P

oD , the modes are distinguishable. If P > P the modes are

F CD D

correlated and the size of PCD is a measure of the degree of the indis-

tinguishability between the failure modes.
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Since full GLR is sensitive to failures in all directions of the
specified type, we should only consider the distinguishability of dif-
ferent failure types. Suppose we have a type i full GLR and a type j
failure of size f occurs. Since full GLR will choose the most likely
failure direction Let us find the direction Vv of type i failure for
which SGLR has the highest PCD under the failure f. Then this highest
PCD is a measure of how distinguishable the type of failure of size f
is to full GLR of type i. To obtain this quantity, we need to maximize
PCD over all directions V. Thus it is clear that full GLR will have more
complicated distinguishability problems than SGLR. The analytical study
of these problems is beyond the scope of this thesis. But we will con-—
sider SGLR as it should provide insights into the problems in full GLR.

Although the foregoing discussion concerns the cross detection
situation, the same reasoning is applicable to wrong time detection
where PWT is the measure of distinquishability between true and
hypothesized failure times. A more general situation is the wrong time
cross detection. This is also an important case. The physical in-
terpret;tion of the situation is that a particular failure mode may
not look much like another one occurring at the same time, but it
may be highly correlated with the other mode started at a different
time (e.q: ,sin(wit+9) is uncorrelated with cos wit for 6=0 but they are
highly correlated for 0=m/2). 1In the following, this general case is

considered and the wrong time and cross detection cases may be regarded

as specialized results of this general one.
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Now consider the situation where a SGLR (D1) is set to detect

a type i failure V.. From equations (2-71) and (2-72), the mean (m

1 1y

and variance (Oi) of Z(k;el) of D1 when V. occurs at 61 are given by

1

m =V

1/1 l'Ci/i(k;el/el)vl (2-116)

[\¥)

1 4 ml/l (2-117)

Q
I

In the event that another failure vz of type j occurring at

. 2 .
0., the variance of ﬂ(k;el) of D1 is still 0, while the mean is m

2 1 1)2°
— ' . - -
ml/2 Zvl Ci/j(k,el/ez)\)2 ml/l (2-118)
We define
m é v, 'C (k;6_./6.) v (2-119)
1,2 1 7°i/3 1772 2
Then it follows that
m1,2 = m2,l (2-120)
7 = -—
ml/l ml,l (2-121)
For a fixed threshold, PCD is an increasing function of ml/2,
or equivalently, ml'2 (as ml/l is fixed for Dl). Therefore, ml'2 is

a key (wrong time) cross detection parameter and a measure of dis-
tinguishability.

From (2-60), we have
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k

' . -1 .
Ci/j(kiel/ez) = E Gy (5,61) v " (s) Gj(s,Bz)

s=61
Since for k < 8 and i = 1,2,3,4,

G.(k;08) =0
i

equation (2-122) may be expressed as

k
-1
Ci/j(k.91/92) = E Gi(s;el) vV T (s) Gj(s,e2)
s=0
where
8 = max {61, 62}
Then we can express m as
1,2
v NP Sy . .y [ -1
m o=V [G,'(0:8,)1G," (B+:0)+.o .-Gy (k; QY ()
L 0

----------

é 1 L} - - ° - .
=V, Gi (k,e,el)t/(k,e) Gj(k,e,ez) v,

(2-122)

(2-123)

(2-124)

(2=125)

(2-126)
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Since V(k;0) is a positive definite matrix, is in fact an inner

™ ,2

product:

A 0. . -
ml'2 = <Gi(k,e,el)vl, Gj(k,e,ez)vz > Vik:0) (2-127)

To simplify notations, the explicit arguments of Gi and Gj are suppressed

in the following. Hence

A

= < > -
m 5 Givl' GjV2 V(k;0) (2-128)
Now suppose that a second SGLR (D2) is set up to detect the failure

. 2
v2. When v2 occurs at 92, the mean (m2 2) and variance (02) of ﬂ(k,Sz)

/
of D2 are:
m2/2 = \)2 cj/j (k;ez/ez) \)2 (2-129)
2 2 (2-130)
O, =4m,y, ‘

If in reality vl occurs at 6, instead of v2 at 62, the variance of

. . 2 .
ﬂ(k,ez) of D2 is still o, but the mean is m2/1'
- ' . - -
m, = 2V, Cj/i(k,ezlel)vl ™ (2-131)

If we assume that we design the magnitude of the assumed failures

vl and v2 so that

ml/1 = m2/2 (2-132)
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we than have equivalently set the Po's of both SGLR (D1 and D2) to be

equal. Physically, this means that at time k, D1 is as sensitive to
vl that occurred at 91 as D2 is sensitive to v2 that occurred at 62.

From the Schwartz inequality, we have

(2-133)

2
CiVir BV, > Yiigy S GV Gy > Vo) < %5Y20 @5Y2 > yise)

A closer examination of ml/l is appropriate here. By equations (2-121)

and (2-127), we have

m = <Giv1, Gi\)1> V(k;el.) (2-134)
If 61 = 0, then
ml/l = <Givl, Givi> Vik;0) (2-135)

Suppose 91 < 8, then

(2.136)
k.

6-1
_— \ t - '-l - 1 - —1 -
My = VLY G 18 Ve TG (5:0)) + 3 6, (s18))v(s) TNo, (856,01,
s=6 s=0

The second term in the bracket is actually <Givl, G'vl>U(k;9;‘ Since

the first term in the bracket is a positive semi-definite matrix,

m1/1 > <Gi\)1, Gi\)1> V(k;0) (2-137)

Both (2-135) and (2-137) are summarized in (2-137).
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Then we have

< -
ml'2 —-ml/l (2-138)

M2 ST (2-139)

Now we have arrived at the following result. For a fixed thres-
hold e that is common to both D1 and D2, the failures v, at Gl and
v2 at 92 resulting in the same mean value for the £ of their matched
detectors (dl and D2 respectively) will give the same PD. Furthermore,
the wrong-time, cross-detection probabilities af both detectors (with
respect to the above failures) are not greater than PD' From another
point of view, this result -- i.e., the cross correlation (2=127)
provides a measure of the degree of indistinguishability between failures
(and failure times) under the assumption (2-134). This result may be
extended to inclgde cases of more than two detectors and provides a
first step for the development of method for designing "mutually dis-
tinguishable" detectors.

It is desirable for the mutually distinguishable detectors to
have the same PD and PF for all times. This means that we can detect
smaller failures in the "more sensitive" directions as well as we can
detect larger failures of "less sensitive" types and directions. We
note that the sensitivity of SGLR to different type and size failures

varies with time (depending upon the shape of the GU's). 1In order to

maintain the constancy of PD and PF over a period of time, we may have
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to scale the V's of the‘SGLR detectors in a time-varying manner. This
can be done by normalizing the G's appropriately. This problem is an
interesting one for future research. In addition, once mutually
distinguishable directions are dtermined, one will probably find it
more useful to use constrained GLR tan full GLR. This question is also

of interest for thé future.



CHAPTER 3

Correlation Studies

In the previous chapter, we have derived some properties of the
GLR failure detection system by studying the statistical properties of
Z(k; 6). The likelihood ratio L(k; 0) was treated as a static variable,
i.e. it was regarded as a function of the fixed time parameters k and 0.
The %'s at different k's and 0's are clearly correlated. Hence the
study of the correlation is important in the understanding of the
behavior of the %'s with respect to k and 6. This will clearly be
important in the development of a reliable detection rule. In full GLR,
2(k; 0) is a X2 random variable and the correlation study of such vari-
ables is difficult. However, SGLR provides a very manageable situation
as the {'s are gaussian random variables. Thus we will focus mainly
on the correlation of the 2's in SGLR. In section 3.1, we will derive
the covariance function. ’Some additional probabilities such as PTD and
their computations are discussed in 3.2. As the behavior of the L's as
functions of k and 6 are known, possible modified décision rules for

GLR failure detection systems are discussed in section 3.3.

3.1 The Covariance of f(k; 6)

Consider two likelihood ratios of a SGLR detector at different
k's and 0's under a certain failure condition. By equation (2-69),

these %'s have the following expressions:

-57-
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K
Ve, -1, .- .
s=81
2 (kai0.) = 2V E Gl (£:0.)V L ()Y (t) + m.(k.,0..6,,9,9)
2'27 2 0 =B itr2 2V 2 T2 e
2

(3-2)

where Y is the zero mean, independent, white gaussian sequence, et is
the true failure time of the type j failure VvV, and the m's are the

expected values of the £'s as given by (2-71).

The cross covariance (Rlz) of 21 and 22 can be simply computed as:

kq k)
- 4\J(‘)Eiz > 6] (5:0)V T (8) Y(8)Y' (B)V T ()G, (£56,) {v
=8. t=0. ° i 0
2
k
— v ' . -1 .
= 4\)0[2 G} (s:6)V (s)Gi(s,e)]\)o
s=0
= 4v6ci|i(k; 88y v, (3-3)
where
k = min {kl, k2} (3-4)
8 = max {el, 62} (3-5)

The third equality in (3-3) is a result of the whiteness of Y and the

. = < . = > .
fact that G(s; 9) 0 for s 0 Note that R12 R21 and R12 >0

R, 1is zero if Vo lies in the null space of Ci[i(k; 8|6), i.e. if Vo
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is not observable on the interval [k; 6]. Therefore, ll(kl; 61) and
lz(kz; 92) are not correlated if vo is not observable on the common
interval [k; 6] with k and 6 defined by (3-4) and (3-5).

Since the density function of a gaussian random vector is deter-
mined by its mean and covariance, the joint density function of the

likelihood ratios at different k's and 8's under the same failure

condition may be constructed as in the following. We define

A 1
L= [ll(klf el)‘, 22(k2; 62), ceer Rn(kn; en)] (3-6)
m é e{L} (3-7)
r & E (L-m) (L-m) ' (3-8)

The elements of m can be computed using (2-71). The matrix R is
symmetric with the diagonal elements as the variance (02) of the &'s

and the off diagonal elements as the cross covariances of the 's. The
variances and cross covariances can be determined using (2-72) and (3-3).
Then the probability density function of L is

n

1
~2 ) 1 Lo-1
p(L) = (2m) “(det R) ~ expl- 5 (L-m) 'R 7 (L-m) ] (3-9)
An assumption on the failure determines the expected values of
the %'s. Therefore, under such an assumption, the statistical pro-
perties of the likelihood ratios of a SGLR detector are determined by

their joint density (3-9).
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3.2 Some Additional Probabilities

With the joint density function of the likelihood ratios, we are
now able to compute prcbabilities such as PTD' Recall the definitions

of PD and PTD'

P (k, o, 8, V) & Prob (2(ki &) >ela, 8, V) (3-10)

PTD(T, o, 9, V) a Prob (&(k;0) > € for some k < T|a, 6, V)

(3-11)

where 0 denotes the failure type the GLR detector hypothesizes (which is
the actual failure type here where we are considering delay in correct
detection), V is the true failure, and O is the true failure time. To
simplify notations, we will suppress the dependence of the probabilities

on 00 and V. Thus we have

PD(k, 8) = PD(k, o, 6, V) (3-12)

PTD(T’e) PTD(T' o, 6, v) (3-13)

In the case where the parameter N of the detector window,
k~-M 5_6 < k-N, is nonzero, decision concerning whether a failure has
occurred at the hypothesized failure time 0 cannot be made until time
® + N has been reached. With this observation and definitions (3-10)

and (3-11), we find that

PTD(6+N, ) PD(e+N, 0) (3-14)

Prp(T+L, 8) = Py (T,0) + AP (T,6) T > 04N (3-15)

where
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APTD(T,G) = Prob (A(k;0) <€ for 8 <k < T

and £ (T+1; ©) > g) (3-16)

The computation of PD .....
The quantity APTD(T,G) is the integral of the joint density of

20(6+N,6), L2(6+N+1, 0), ..., lr(T, 0), 2r+l(T+l,6) as follows (r = T-N):

© r e € €
= .- 2 % L 2 aL 2 gl
APTD(T'G) J; j_'oo J_w._l; p( o1 r'£r+l)d od 1"'d rd r+l

(3-17)
The joint density p for SGLR can be derived using the method described

in the last section. Hence the probability of time to detection (PT

D)
for SGLR can be computed using equations (3-14), (3-15), and (3-17).

The expression (3-17) is generally very difficult to evaluate
even for the simplest nontrivial case:

ae g
APTD(9+N, 9) =J‘€ -[w p(,Q,O, gl)dzodnl (3-18)

However, intuition may be developed by examining the behavior of the

integral. In this case, we define

[oe]

A
P(L, > e|5LO) =J; P2, L)) an, (3-19)

Then (3-18) can be written as

€ oo
AP (641, 6) [w p(RO)j; p(ﬂ.llﬂ,o)dﬂ,ldﬂ,o

€
f P(L )P, > g[8 a, (3-20)

—00
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Note that the conditional density p(ﬁlllo) has a constant variance and
20 and 21 have fixed means. Therefore, for a fixed €, the probability
P(ll > €|ZO) is an increasing function of the conditional expectation

of 21, i.e. E(llllo). Since 20 and ll are always nonnegatively corre-

N . .
lated (R.Ol > 0), E(Zl|£0) increases with 20 and we have

APTD(6+N,9).§ P(R, > s[lo = e)P(&, < €) (3-21)

In the case of the correct detection of the same failure, we would
indeed éxpect a 21 that has a larger QO to be greater than the 21 that
has a smaller 20.

Thus, in order to use this correlation analysis for detailed
system analysis, one will need to develop approximation methods.
Arguments such as those above should be useful in obtaining bounds.
Specifically, the shape of E(llllo) as a function of %0 and the more
complex version E(Zillo,..., %,_y) should be the crucial factor in this
analysis.

From the definition (3-11), PTD(T,G) is the probability of
declaring a failure before or at time T when a failure v of the hypo-
thesized type occurred at 6. This probability becomes a measure of
false alarm rate if we allow V = 0. Under this assumption, the quantity
PTD is the probability of a false alarm being signalled before or at T.
We call this the probability of false alarm in an interval (PFI) and it
is defined by

PFI(k, a, 6) = PTD(k, a, 6, 0) (3-22)
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Note that for SGLR, the covariance of the %'s under no failure is the

same as under a failure. Only their means are different and these can
be computed via (2-70).

From (3-15), it is clear that the probability of declaring a
failure when one actually occurred (PTD) increases as the observation
is continued. By the same token, in the case of no failure, the
probability of declaring a false alarm (PFI) also increases as more

observations are made. Hence, P and PF

™ represent a pair of tradeoff

I
factors in GLR design, especially in choosing the threshold € and the
window size.

Similar to PTD’ another useful probability can be defined - the

probability of detection over the window PDW:
PDW(k' M, N, o, 6, V) 4 Prob(2(k;8) > £ for some 6
s.t. k-M < 6 < k-N|a, 8 <k, V)
(3-23)
where o, 6 and v denote the same quantities as in the definition of
PTD (3-11). Where PTD dealt with fixed 6 and variable k, PDW deals
with fixed k and variable 0, reflecting the fact that signals at times
other than 0 may be important. Here M and N are the parameters defining

the data window: k-M 5_9 < k=N of the GLR detector. Recall the

definition of PWT:

Bk, @ 0, v, 8) = Prob (2(ki8) > ela, 8, V) (3-24)

We will suppress the arguments o, 8, Vv and N of the probabilities.
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Hence,
PDW(k’ M) = PDW(k' M, N, o, 6, V) (3-25)
PWT(k, 0) = PWT(k, o, 6, v, 6) (3-26)

Then PDW can be computed in a manner similar to that of PTD as follows.
PDW(k, k-N) = PWT(k, k-N) (3-27)
Py ks T-1) = P (k, T) + AP (k, T) k-M < T < k-N (3-28)

PWT(k, k-N) can be calculated using methods described in section 2.2.
The quantity APDW(k, T) is the integral of the joint density of

lp(k, k-N),le(k, k-N-1), ..., zr(k, ™, lr+1(k’ T-1)

- ®© ;e € [
Ap_ e, T) = fa J:m f_m Lo Doy reen sl ) 00al AL at

- (3-29)
where r = k - T - N,

For a nonzero failure v, P is the probability that the detector

DW

will declare a failure in the window and therefore, is a measure of the
detector's sensitivity to failures. A more interesting situation is
when no failure has occurred and, in this case, we define the pro-

bability of false alarm over the window (PFW):

A
PFW(k, M, N, o) = PDW(k, M, N, o, 6, 0) (3-30)

Then PFW is a measure of false alarm rate over the window. Since (3-26)

implies that both PDW and PFW increase with larger windows, the size of

Pow is an additional consideration in setting a detector window size.
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3.3 Other Possible Decision Rules

The decision rule used so far in GLR design is the comparison
of a single likelihood ratio with a constant threshold. As we have
studied the %'s and have a better understanding of their behavior, we
are able to exploit this knowledge to construct other decision rules
that improve certain performance criteria such as the reduction of
false alarm rate. Depending on the system and failures under considera-
tion, many different decision rules are possible. To illustrate the
idea, one such possibility is discussed here.

Consider a GLR detector and the associated #'s with the same 6.
Suppose a matched detectable failure occurred at 6. These 's (i.e.,
2(k;0) for k > B) are now expected to be larger than in the case of no
failure as the mean values of these &'s are larger, But in the case
of a noise disturbance at 6 without a failure, 2(6;0) may be large while
subsequent £'s will become small again as their mean values are indeed
small, i.e. the effect of a burst of noise will be localized in time,
while the effect of a failure will persist in time. With this qualita-
tive insight, we can devise the following "interval decision" rule. A

failure is declared if Kl (Kl_i T) or more of the &'s of the set

'{ﬁ(ko;e) |6 is fixed, k-T < k_ < k} exceed the threshold. This decision

0

rule will specify a set of possible failure times (8's). The failure
time is determined by the 6 in the set of O's that has the largest value

< k).

of L(ki ) (k-T Sk 2

By implementing the interval decision rule, we hopefully have
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reduced the false alarm rate. However, the speed of detection is
decreased as the detector must wait at least Kl observations after the
occurrence of the failure before it can detect it.

Associated with this decision rule, the probability of correct

detection (PDI) and false alarm (PFI) can be defined as measures of the

performance of the modified GLR detection scheme.

I

PD (kr Tr Kl' e' Qs et' \))

4 Prob (Kl of the &'s in'{l(ko;e)le fixed, k-T 5_k0 < k}
exceeds €]Kl <T, 0, Gt, V) (3-31)
I A I )

PF (k, T, Kl, 6, a) = PD (k, T, Kl' 8, d, et, 0) (3-32)

where Gt is the true failing time, and 0 and V denote quantities as
defined in section 3.2.

It is clear that the calculation of these probabilities require
infegrating the joint density of the %'s. The actual computations
involved are very complex. A general formula for such computations is
impractical and is not pursued here. Intuitively, one would expect PFI
to fall off rather rapidly as a function of Kl’ while the effect of a
persistent failure (G(k;8) not decaying too rapidly) will probably only
make PDI a modestly decreasing function of Kl'
Similar to the interval decision, a window decision’rule could

be devised - here we consider the %'s in a window at one given time k

< k)

in the same manner as we consider the £'s in an interval (k-T f_ko <

for fixed 6. Therefore, the window decision will declare a failure if
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K2 of the {'s in the window at time k exceed the threshold. The failure
time might then be chosen as that value of 6 in the window with the
largest 2. The performance of the detection system using this rule can
also be evaluated by computing the corresponding probabilities of
correct detection and false alarm.

It is clear that many modifications of the decision rule are now
possible. The resulting performance may be evaluated with the correspon-
ding probabilities of correct detection, false alarm, cross detection,
etc. as in the original detection system. The probability computations
generally require the joint density of the £'s. Such a density is

difficult to obtain for full GLR. But in SGLR, the joint density can

be obtained via the method discussed in section 3.1.



CHAPTER 4

A Numerical Example and Conclusions

4.1 A Simplified Aircraft Model

In order to gain some practical insights into the nature of the
GLR detection scheme, we proceed to examine GLR failure detections for
a second order dynamical system. The simplified longitudinal dynamics
of an aircraft as examined in [8] is the subject of the numerical
studies. The pitch rate (g, in radians/sec) and angle of attack (o, in
radians) are considered to be the two states constituting the linearized
longitudinal dynamics. Furthermore, we assume a sensor for each state
and the dynamics and sensor outputs are assumed to be affected by
additive white noise. After appropriate discretization (sampling period

of 1/32 second), we have obtained the following model.

q(k+1) 0.9826  -0.14657 [q(k) 0.0226 0
= + w (k)
o (k+1) 0.0306 0.9179 a(k) 0.0043 0.0002
(4-1)
Zl(k) 1.000 0 g (k) 0.0087 0
= + v (k)
Z2(k) 0 16.15 o (k) 0 0.06
(4-2)

where w and v are zero mean, independent, white gaussian sequences with

unit covariance. The steady state gain (K) and the inverse of the

-68-
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residual covariance (V_l) of the associated KBF have been computed to
be:
0.7535 0.04631

(4-3)
0.1353 0.0128 |

_ 3234.6 -607.0
v~ o= (4-4)
- 607.0 220.6
The system (4-1) has eigenvalues of 0.977 + 0.0667 and hence is stable.
To facilitate the numerical studies, we have developed a Fortran
computer package consisting of the Multiple Detector Simulation Program
(MDSP) and routines for computing different types of probabilities

(e.g., P_, PF' etc.). The MDSP is used to compute all the detector

D
matrices (G's, C's, etc.) and to simulate the full GLR detection
mechanism for all four basic types of failures in a time-invariant
system with KBF at steady state. (MDSP is fully documented in [8]. The
documentation of the remaining routines will appear in an Electronic
Systems Laboratory research report in the near future.) This computer
package is, therefore, capable of providing analytical data (e.g., the
probabilities) as well as simulation results.

To illustrate some of the issues brought forth in this thesis,
we will discuss the analytical data generated for the simplified air-
craft model. This data is presented here in graphical form in Figures
2 to 1l4.

In Figures 2 to 9, the elements of the G and C_1 matrices of each

type of failure are plotted against the elapsed time r (r = k-6). It is
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Fig. 3 Sensor Jump G(r)
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Fig. 4

State Step G(r)
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Fig. 5 Sensor Step G(r)
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evident that all elements of the G's of jump failures tend to zero while
at least some elements of the G's of stepAfailures are non-diminishing.
This is in agreement with intuition and the arguments in Section 2.3.2.
Since both the system and the associated KBF are stable, the effect of
a jump (either in state or in sensor) on the residual is expected to
decay to zero as the elapsed time increases. The fact that the system
and KBF behave like low pass filters enables them to track certain
types of steps. Consequently, .the effect of steps (in state or sensor)
of at least some directions on the residual is non-diminishing. The
problem of finding out precisely which directions lead to nonvanishing
G's can be solved by examining the figures or by evaluating the steady-
state G as described in Section 2.3.2.

As the effect of jump failures on the residuals decreases with
the elapsed time, less information about the failure is available to
the detector. As a result, one would expect the estimate of the failure
to improve very little after some initial period. In fact, the
accﬁracy of the estimate reaches a limit as shown in Section 2.3.2.
Figures 6 and 7 display such behavior for the C_1 matrices (error
covariance matrix of the failure estimate).

Since some step failures have non-diminishing effect on the
residual, the detector is provided with more information about these
failures as time progresses. Therefore, an improvement of the failure
estimates as the elapsed time increases is possible. Indeed, the error

covariances of the estimates of failures in these directions do go to
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zero as time progresses. The fact that some elements of c~l of both
sensor and state step failures in Figures 8 and 9 tend to zero is
evidence of this behavior.

Figures 10 to 13 are plots of 62 (of the correct detection cases)
and PD of full GLR versus r for the four failure types. The PD's are
computed for a threshold € of 5. With this threshold, we have a PF of
0.082. For each failure type, a failure in o alone, (O, vz)' and a
failure in q alone, (vl, 0) ' are separately considered in the computation
of 62 and PD. For jumps, we have set the failure to take on the size
of 5 0's (5 standard deviations) of the noise affecting that component

of state or output vector and the step failure sizes are of 10. The

following is a summary of the failures considered.

a jump in g state Vv (.1129, 0)'
a jump in o state v = (0, 0.0217)'
a jump in g sensor v = (0.0437, 0)°
a jump in o sensor v = (0, 0.3)'

a step in g state v = (0.0226, 0)'

a step in o state Vv = (0, 0.0043)°

a step in g sensor V = (0.0087, 0)'

a step in O sensor V (0, 0.06)"

With a threshold of 5, all jump failures considered yield a high
PD immediately after the failure has occurred. If we only consider the

PD's, the different detectors seem to be equally "sensitive" to their
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matched failures. However, an examination of the 62 reveals a‘different
fact. Sensor jump 62's reach steady state values almost immediately
and have smaller values than the 62 of state jumps of the same "size"
(i.e., 50 of the corresponding noise). State Jjump 62'5 actually grow
with r, at least in the range of r considered, reflecting the different
nature of state jumps and sensor jumps and hence the difference in sen-
sitivity between state jump and sensor jump detectors. Due to the
growing nature of 62 within the range of elapsed time (0, 10), a state
jump failure that causes a small initial 62 (and PD) will probably have
a larger PD as r increases implying that if this failure is not de-
tected immediately, the probability of its being detected increases as
one waits. But the same does not apply in the sensor jump situation
because 62 practically stays at a constant value.

All step failures considered here have growing 62'5 except the
step failure in the o sensor. Let us consider this exception. As a
first order approximation, the angle of attack (0) is the integral of
the pitch rate (q). Hence, a jump in the g state and a step in the
0 sensor produce similar effects on the residual. Therefore, the infor-
mation about the failure in the residual diminishes with time for both
failures, and we should anticipate the 62 due to a step in the 0 sensor
to reach a steady state value (Figure 13) in a way similar to the jump
in the g state situation.

Finally, in Figure 14, we present a plot of the wrong time cross

detection 62 and probabilities of two full GLR detectors having the same
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window and threshold (€ = 5). The detectors considered are a state
step detector and a sensor step detector. 1In this figure, the ordinate
represents the noncentrality parameter and probability. The abscissa
represents the hypothesized failure times (8) of the detector window
which is taken to be k-40 < 0 < k (here k is fixed). A 0.10 g state
step failure is assumed to have occurred at 6 = k-30.

The 62 profile of both detectors over the window are very much
alike, signifying a strong correlation between sensor step failure
and the g state step failure and, therefore, the indistinguishability
between them. We note that full GLR may often have severe cross-
detection problems. Suppose an actual failure Vv of type i occurs. If
any failure V of type j is correlated with the true failure, we will have
cross-detection problems since full GLR is designed to choose the most
likely direction. Thus, CGLR may be useful in avoiding the cross detec-
tion problem and this idea should be investigated in the future.

We also note that the 62 of the state step detector across the
window peaked at the true failure time while the sensor step detector
does not have a distinct peak in 62. This indicates that the sensor
step detector will have more difficulty in determining the true failure
time (of the q state failure).

In Figure 14, k is fixed. As k varies, the 62 for both detectors
will vary accordingly (and the matched (state step detector) 62 profile
will probably remain very peaked) . Thus, examining the 62 behaviqr as

a function of k and 6 may lead to some rules for distinguishability
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(essentially hypothesis testing on the &'s).. For instance, the 62
profiles mentioned above are indications of correlation of the failures‘
over a window aﬁd in turn may be used to determine the type of the true
failure by distinguishing between the shapes of the likelihood ratio

profiles.

4.2 Conclusions and Suggestions for Future Research

Having recognized that the likelihood ratio %(k; 0) is a crucial
quantity in the GLR detection scheme, we have studied its properties in
this research. In Chapter 2 where the {'s were treated as static random

variables, we have considered probabilities such as P_ as performance

D
measures of the GLR system. As a result, we were able to determine
some guidelines for setting detector window sizes and threshold. We
were also able to gain some insights into two important questions re-
lated to the performance of the deteétion system, namely, the detecta-
bility and distinguishability of failures. A relationship between the
detectability and observability of failures has been determined. But
we were only able to make an initial study of the distinguishability
issue and further investigation of this subject is necessary to achieve
an "optimal" performance GLR detection system.

In Chapter 3 where the £'s were fegarded as a random sequence,
we have studied the correlation behavior of the 2's at different obser-
vation time (k) and hypothesized failure time (8) in SGLR. As a result

of this study, we were able to consider more "precise" performance
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measures such as the probability of time to detection (PTD). We have
also developed a framework in which we can consider modified and im-
proved decision rules that involves the temporal characteristics of the
f's. But we have only laid out some groundwork and much remains to be
done (in particular we need algorithms for approximating certain inte-
grals of Gaussian random variables).

As we have gained some understanding of the GLR technique, we
are also confronted with questions that require additional studies. In
concluding this report, we now outline the areas that we feel require
further investigation.

The first major area of future research is the indistinguish-
ability problem; A better understanding of the nature of this problem
is desirable to fully utilize the GLR technique. Insights may be
obtained by following research directions similar to the approach dis-
cussed in Section 2.5 and by the study of the correlation behavior of
the L's and 62 for the wrong time cross detection situation. Such a
study will provide information about the degree of correlation between
different failures. This information may be used to distinguish
different failure modes, for instance, in an interval decision rule
detector scheme.

As pointed out in Section 2.5, once the mutually distinguishable
failure directions are determined, it is more appropriate to use CGLR.
As this thesis research did not consider this scheme, an analysis of

CGLR similar to the one performed for full GLR and SGLR is desirable (and
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the present work provides all the tools needed for such a study) .
There, we can develop similar performance measures and modified decision
rules. As CGLR has an indistinguishability problem of its own, we will
have to consider it also, and, in‘fact, the choice of detector assumed
failure directions will be governed by distinguishability considerations.
Lastly, the joint density functions of the 's in full GLR is a
valuable piece of information to obtain. As the L's here are xz, we
expect the joint densities to be complicated and, therefore, approxima-
tions are necessary. After these densities have been determined, modi-
fied decision rules as discussed in Section 3.3 may be developed for full

GLR performance.



APPENDIX

The Chi Squared (xz) Random Variable

: 2 . . .
The central X~ random variable u with n degrees of freedom is
the sum of squares of n independent, zero mean, unit variance gaussian

Yandom variables or more precisely,

2
u = X.
i

n
i=1

where x; ~ N(0, 1) and E{xixj} =0 for i # j. Then the density func-

tion of u is [10]:

nu n _ 1
1 e-2 u2 u >0
. n/2 1
2 T'(=
£ (w = G
u
0 u<o

where I'(+) is the gamma function.

There is a FORTRAN subroutine (CDTR) in the IBM Scientific
Subroutine Package that can be readily used to compute the integral of
the above density, i.e. the quantity

. ) [ . €
Pz(u <g) = foo fz(u)du =j(; fz(u)du

Then the false alarm probability (PF) of a detector set to detect

a n dimensional- failure is

n
=1 - <
Pp=1-P (u<e.

-90-
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2 . . .
The noncentral X random variable w with n degrees of freedom is
the sum of squares of n independent, nonzero mean, unit variance gaussian
random variables with the noncentrality parameter defined as

n

62 - (B(x,)1°

i=1

with 62_ = 0, w is central Xz. The density for ®w is [10]:

1 -%(62+w) % 5-0: ((Szw)jl"(j%)
fn (W) = n/2 w . . N w>0
2 VT2 3=0 (23) 1T (3+5 n)
w,d 2
0 w<o
Recall
1
P(E) =T
Then
1.2 n
-=8 =+ 3-1 5w
£ W =e 2 2(52)30.)2 e ? X
S 3=0
273 (23-1) (23-3) ... (D WT
2 . . . 1,.,.,1
27 (25) (25-1) (23-2) ... (2) (l)T'(E)I'(j""Z" n)
1 .2 b n 1
=0 N —+3-l — W
- o 2 (63 - L w2 e 2
j=0 -+ 2j
j1 22 T (543 n)
1 .2 ©
=6 2.3 .
- e 2 _(_(5_) fn+2j ()
j=0 2751 "
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Hence
l 52 * (ﬁ)J
- +27
P" (w<e) =’ 2 2 ™ w<e
85 T j=0 7

Therefore, Pn 5
w,$ N n
series. We note that P. (u < g) =P =0 (w<eg).
u - 2 =
w,§
In Figure 15, we have plotted Px versus € for various values

(w £ €) can be easily calculated by summing the above

of 62 and P is defined as

P Si-pn 5 W<
w,§
Note that
lim P =1 fixed €
2 X
§¢ =+
lim P =0 fixed 62
€ > o

Figure 15 may be used to determine the variouslprobabilities définéd’iq

section 2.2 once the noncentrality parameters are determined.
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