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Abstract

In this work we study an inverse conductivity problem in which the fundamental
problem is one of estimating the conductivity, a 2D function, in a bounded domain
based on excitations and measurements along the boundary of the domain. The
estimation problem is non-linear and the number of degrees of freedom in the pa-
rameter is extremely large. We investigate the idea of estimating the conductivity
at multiple spatial resolutions in an attempt to control the large number of degrees
of freedom. We derive performance bounds for specific cases that show how mea-
surement noise limits estimation performance for a particular scale. These bounds
provide a way of characterizing what scale a set of excitations and measurements
supports. We also develop a multi-resolution algorithm that estimates the conduc-
tivity at successively finer scales. At each scale the algorithm consists of a sequence
of linear relaxation schemes which are extremely parallelizable. We demonstrate
the success of our algorithm on synthetic data while exploring algorithmic issues
and studying the effects of noise on algorithm performance.
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Chapter 1

Introduction

1.1 Introduction

Inverse problems are particularly difficult for a variety of reasons. For example, if we
view inverse problems from a system identification standpoint there exists the often
non-trivial task of choosing a parametrization of the system, i.e. a formal model,
which can be used in performing parameter estimation. Once a parametrization is
chosen, in order to do parameter estimation one must then choose a criterion of
optimality for the estimate. Given a useful parametrization of the system and cri-
terion of optimality the parameter estimation problem itself may still be formidable
with repect to the task of developing a good algorithm for computing the optimal
estimate. This is especially the case when the parameter has a large number of de-
grees of freedom. One such case arises when the parameter is a spatial function of
more than one dimension. Failing to address properly the fact that there are a large
number of degrees of freedom in a problem can lead to unsuccessful algorithms. In
particular, the attempt at processsing all the degrees of freedom at once often leads

to numerically unstable and computationally inefficient algorithms.

11



CHAPTER 1. INTRODUCTION 12

In this thesis we look at an inverse conductivity problem with our focus being
on the parameter estimation aspect of this problem. The fundamental problem is
one of estimating a 2D conductivity function in a bounded domain based on a set of
excitations and measurements along the boundary of the domain. Our work suggests
a way to control the number of degrees of freedom in this problem by estimating
the parameter at multiple spatial resolutions. We derive the maximum-likelihood
solution for the problem and present a multi-resolution algorithm for computing
this solution based on the idea of estimating the conductivity at successively finer
spatial scales.

At each scale the algorithm we develop is composed of a sequence of linear, highly
parallelizable relaxation schemes. In particular, we develop an iterative, relaxation
approach to solving for the best conductivity estimate at several spatial scales, with
estimates from coarser scales used to guide the finer scale iterations. The sequence
~ of steps at any scale consists of the solution of linear estimation problems and also
can be directly implemented in a highly parallel fashion. We demonstrate the results
of our algorithm on synthetic data.

We also derive analytical bounds on estimation performance for a variety of
cases. We have numerical results which demonstrate the usefulness of these bounds
and in particular their ability to give further insight into the approach of estimating
the conductivity at various spatial scales. These bounds also provide a useful tool

for determining what scale a set of excitations and measurements support.
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1.2 Problem Motivation

The idea of imaging the electrical conductivity in a cross-section of an object by nu-
merical inversion of low-frequency, electromagnetic boundary data has applications
in various fields of engineering; e.g. medical imaging and exploratory geophysics.
For example, a particular geophysical scheme proposed for use in mapping conduc-
tivity within core samples can be found in [3]. In this scheme electrodes are placed
around the boundary of the cross-section of a core sample. The voltages of each
electrode are independently controlled and measurements of the current at each
electrode are made. From these boundary data the conductivity image within the
cross-section is to be inferred.

In [3] the conductivity image is modelled as a network of resistors. Then, Kir-
choff’s current law is used to relate the data(volatages and currents on the bound-
ary) to the unknowns(resistances and interior voltages in the network). The solution
is obtained by iterative optimization of this non-linear function. Because the prob-
lem involves a large number of unknowns for reasonably fine grid resolution, the
resulting algorithm is computationally intensive involving the repeated inversion of
large matrices. Also, the optimization scheme is prone to giving solutions corre-
sponding to local minima of the cost function if not intitiated close to the solution.
These pitfalls are indicative of some of the issues with which we are concerned in
our research.

This thesis focuses on the inverse conductivity problem stated as follows: esti-
mate the conductivity within the unit square, a 2D scalar function, based on a set
of experiments, each of which consists of applying a known potential distribution

along the boundary and measuring the current normal to the boundary. We view
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the inverse problem as essentially one of multi-dimensional parameter estimation
where the conductivity represents the parameter to be identified. Our solution is
stated in terms of optimality with respect to a criterion that relates the parame-
ter to be estimated with both the data and the physics of the problem. A similar
approach to inverse problems in geophysics is discussed in [10], [11].

The particular criterion of optimality we choose is based on a likelihood function
which we maximize in determining the optimal estimate. This maximum-likelihood
approach can also be viewed as a weighted least-squares approach for the case
of Gaussian measurement noise. Ultimately, we solve an optimization problem in
which we minimize a cost function with certain constraints on the parameters. We
solve this constrained problem by minimizing an augmented cost function in which
a penalty function is used to represent these constraints!. The reason for choosing
this penalty method is that it allows us to spatially separate the problem into a
collection of simpler subproblems.

In seeking a computationally efficient algorithm we explore the idea of solving the
inverse problem at various spatial resolutions, starting at a very coarse resolution
then progressing to finer and finer resolutions. The main idea is that by starting
at coarse resolutions involving fewer computations, then building up to finer and
finer resolutions using information from previous resolutions, we arrive at a more
computationally tractable algorithm, one that converges faster than an algorithm
aimed at solving the problem exclusively at the finest resolution. Moreover, it is
reasonable that a multi-resolution method would help in avoiding local minima.

The idea is that by solving a sequence of problems at successively finer scales the

1For this approach to yield the precise solution we must in principle solve a set of problems in
which the weight on the penalty term approaches inf. Obviously, we stop well short of this and
consequently the constraints in the problem are only approximately satisfied.
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estimate is likely to be guided towards the global minimum of the problem at the
finest scale.

Aside from computational efficiency, the idea of being able to estimate the pa-
rameter at various scales is useful in its own right. The fact that estimating at
a very fine scale may be difficult should not prohibit estimating features at very
coarse scales. Our approach suggests a way of estimating coarse scale features ef-
ficiently, while also being able to estimate finer scale features by using information
from coarser scales.

We are also interested in the issue of determining the scale at which inversion is
supported by a particular set of excitations and measurements. Our approach is to
derive Cramer-Rao bounds on estimation performance that show explicitly how the
physics of the problem, the experiments performed, and measurement noise limit
performance at a specific scale. The computation of these bounds at various scales
essentially gives us the ability to determine the scale at which our measurements
allow us to estimate the parameters.

The idea of performing computations on a parameter at various scales has been
successfully implemented in a variety of problems under the general name of multi-
grid methods [2]. The use of multigrid methods has been explored to a large extent
in the solution of partial differential equations with much work being done on ellip-
tic PDE’s [5], [8]. The methods have also been applied to image processing where
typically problems are ill-posed and solutions are presented in terms of variational
calculus [12]. The use of multigrid methods in image processing up to this point has
been confined mainly to forward problems, i.e. the solution of PDE’s with possible

constraints.
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Our problem can be viewed as one of estimating the coefficients(in fact spatially
varying in this case) of a PDE based on a set of Dirichlet boundary conditions
considered to be known excitations and a set of Neumann boundary conditions
considered to be measurements. The choice of parametrization and criterion for
solution in this case is much less obvious than in the case of solving the forward
problem, i.e. solving the PDE based on boundary conditions and known coefficients.

One last note with regard to the relationship of our work to the work being done
on multigrid methods. Whereas in multigrid methods the algorithms developed
move from both coarse to fine scales and fine to coarse scales, the work in this thesis
concentrates on the direction of coarse to fine. We acknowledge this difference as
indication that further work on investigating a full multigrid implementation for

this problem is highly warranted.

1.3 Thesis Overview

The following is an overview of the thesis describing the contents of each chapter.
In Chapter 2 we formulate the problem in an estimation-theoretic framework
using the appropriate equations of mathematical physics and a 2D piecewise con-
stant parametrization for the conductivity function. Based on this parametrization
and a model for our observations we derive the optimization problem that yields the
maximum-likelihood estimate for the 2D piecewise constant conductivity function.
In Chapter 3 we describe our multi-resolution algorithm. The algorithm consists
of a sequence of iterative algorithms generating estimates at successively finer spatial
scales. The estimate at each scale is used to initialize the iteration at the next scale.

The iterative algorithm at each scale consists of an alternating sequence of linear
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estimators, each of which is iterative and highly parallel. We give proofs of the
convergence of these algorithms.

In Chapter 4 we study the case of estimating a constant conductivity back-
ground. We consider the effects of estimating a constant background when in fact
the true background is spatially varying. Based on a linearization of the PDE we
derive approximations to the bias and mean-square error for this case. We also plot
performance characteristics based on Monte-Carlo simulations.

In Chapter 5 we study the case in which the conductivity is piecewise constant in
four distinct regions. We derive the Cramer-Rao lower bound on the mean-square
error of the estimate and numerically compute this bound for various excitation
schemes and various conductivity backgrounds. In this chapter we also demonstrate
the performance of our algorithm on synthetic data.

Chapter 6 focuses on the the case in which the conductivity is piecewise con-
stant in sixteen distinct regions. We demonstrate the performance of our algorithm
on synthetic data. We compare the performance, i.e. speed of convergence and
accuracy, of our algorithm when we use information from the previous scale to the
performance of our algorithm when we don’t use this information. We also examine
the ill-posedness of the problem by investigating the presence of local minima of
the cost function.

Finally, Chapter 7 summarizes the conclusions made in the previous chapters

and gives suggestions for future research.



Chapter 2

Problem Formulation

In this chapter we set up the basic problem with which we will be dealing for the rest
of this thesis. We describe both the mathematical physics of the problem, the basis
of our model for this problem, and the measurement scheme used for estimation.
We also formulate the problem in terms of Maximum-Likelihood estimation and
derive a solution in these terms. We follow this by a discussion of our 2D piecewise
constant model for the conductivity field, o(z, y)(we will also refer to this sometimes
as o(r) for short). This model forms the basic framework in which we can discuss
estimating o(z,y) at different scales. Finally, we derive a useful mapping between
two different boundary conditions along a square and include a section on notation

and indexing conventions.

2.1 PDE and Measurements

Consider the unit square in which we wish to estimate a 2D conductivity func-
tion. Within this domain the equations governing the physics of this problem are

Gauss’ Law,

V.-J=0 (2.1)

18



CHAPTER 2. PROBLEM FORMULATION 19

where J is the vector current density function in 2D and Ohm’s Law,
J=o(z,y)E (2.2)

where o(z,y) is the unknown conductivity function and E is the electric field, which
can be related to the potential function as E = Vé(z,y). We adopt the experiment
scheme used in (3] in which voltages are applied and currents are measured along the
boundary. The potential on the boundary of the square is applied and is therefore
a known quantity. Corresponding to each set of independent boundary excitations,
a set of measurements is made of the currents normal to this boundary. We con-
sider these measurements to be noisy. The fundamental problem is to estimate
o(z,y) within the unit square by applying potentials along the boundary and tak-
ing measurements of the normal current along the boundary. In estimating o(z,y)
we wish to use our knowledge of how the excitations relate to the measurements as
manifested by the mathematical physics.

The mathematical physics for the problem can be concisely described by a partial
differential equation(PDE) which must be satisfied within the unit square. The
excitations for each experiment provide boundary conditions on the PDE. If we

substitute eq.(2.2) into eq.(2.1) we obtain the following PDE:
V-o(z,y)Vi(z,y) = 0 (2.3)
for0<z<1,0<y<1with boundary conditions,
$i(s) = Bi(s) (2.4)

where sel', T being the boundary of the unit square, and B; is the applied potential

function along I'. The subscript 7 indexes the boundary conditions and potential
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for a particular experiment. As it will be useful to do so later on we rewrite eq.(2.3)

as
V24i(z,y) + Vino(z,y) - Véi(z,y) =0 (2.5)
Our measurements can be concisely described by the following observation equa-
tion,
a i\Z,
Ri(s) = o(s)# +n; (2.6)

where R; is the observation function, 7 indexes the particular experiment, and n; is
the additive noise function associated with the observation. Figure 2.1 illustrates
the setup for the problem.

A few points are in order with regard to the structure of these equations. The
relationship between B; and &Lf,('?lla is implicitly defined through the solution of
the PDE, eq.(2.3). Note that the PDE for this problem is linear with respect to
¢(z,y) conditioned on knowing o(z,y); i.e. the forward problem is linear. However,
in the inverse problem, where we must solve for the unknown o(z,y), the PDE
is non-linear with respect to o(z,y). Since the potential, ¢;(z,y), is a function
of o(z,y) for a particular set of boundary conditions, the observation equation,
eq.(2.6), is also a non-linear function of o(z,y). Hence, the problem of estimating
o(z,y) is inherently nonlinear. Finally, we should note that for each set of boundary
conditions the potential within the unit square is unknown; in particular it is defined
implicitly as the solution to the PDE. Therefore in estimating o(z,y) within the
unit square we must also be concerned with estimating the potential therein. In
terms of parameter estimation the unknown interior potential can be considered as
a nuisance parameter; i.e. although the fundamental problem is to estimate o(z, Y),

the structure of the problem is such that we must estimate ¢;(z,y) as well.
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Apply Measure
Bi(s)  Ri(s)

L]

V.o(z,y)Vei(z,y) =0

Figure 2.1: Illustration of a Particular Experiment

21
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2.2 Maximum-Likelihood Estimation

In terms of parameter estimation we view the problem as being one of Maximum-
Likelihood(ML) estimation. The optimal ML estimate is defined to be the value of
the parameter which maximizes the likelihood function. The likelihood function is
defined to be the conditional density, p,,(R|o), where r = {ry,...rpr}, the set of M
observations [13].

From our observation equation, eq.(2.6), where the set of observations consists of
the observation functions R;, we can derive the likelihood function and in particular

the natural log of this function, the log-likelihood function, takes the following form.

Inp,,(Rlo) = —Z/rdu\ll,-(u)./I:K‘-'l(u,v)dv\ll.-(v)
+ a (2.7

where

a¢| (z’ y) | )

Vi(s) = (Ri(s) —o(s) —— (2.8)

and sel’, T' being the boundary of the unit square. The constant a is a normal-
ization term which does not depend on 0. We have assumed the noise functions
from experiment to experiment are independent, jointly Gaussian functions and the

covariance function of each noise function is K;(u,v).
E {n.-(u)n,- (v)} = J;jK.' (u,v) (2.9)

For the case where the Gaussian measurement noise is correlated from experiment to
experiment we would simply replace the summation in the log-likelihood function
by a double summation, taking into account cross terms of i; weighted by their

correlations between experiments.
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The maximum-likelihood solution results from maximizing the log-likelihood

function, eq.(2.7), with respect to o(z,y). That is,
&m1, = argmax {In p,,(R|0))} (2.10)

The ML estimation problem is fundamentally an optimization problem whereby
one obtains an optimal solution by maximizing with respect to the parameter of
interest. What makes the optimization non-trivial in our case is the fact that the
normal derivative function, &L:;,(r?ll,, in the log-likelihood function is non-trivially
related to the boundary conditions and the interior o(z,y). However, this rela-
tionship is implicitly defined through the solution of the PDE, eq.(2.3), for each
set of Dirichlet boundary conditions, eq.(2.4). We wish to exploit this structure in

developing an optimization scheme for finding 6z

2.3 Optimization Scheme

In this section we describe an optimization problem whose solution yields &asy.
The choice of cost function for the optimization is guided by the structure of the
problem; it is chosen so as to combine the likelihood function with the PDE. In
keeping with this structure we consider the two sets of parameters with respect to
which we optimize to be: 1) o(z,y), the conductivity function which we wish to
estimate 2) ¢;(z,y), the unknown interior potential function for each set of Dirichlet
boundary conditions.

The likelihood function is the basis of the cost function. We choose to imbed the

information contained in the PDE as an additional quadratic penalty term. This
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term penalizes failure to satisfy the PDE. The resulting cost function is as follows:

flo,d) = 2‘;{/I‘du\ll,-(u)-/ll‘K,-_l(u,v)dv\Il.-(v) (2.11)

+ NIV - o(z,4) Vi(z, )|}

where
Wi(s) = (Ri(s) - o(e) 22i28) (2.12)

and sel’, T' being the boundary of the unit square. The value of di(z,y) on T is
known for each experiment. The subscript ¢ is used to index the sth experiment
and the weight A is a non-negative real number.

The first term is the negative log-likelihood function for the case where the
noise functions from experiment to experiment are independent, jointly Gaussian

functions and the covariance function of each noise function is K;(u,v).
E {n,-(u)nj (v)} = 6.-,-K.-(u,'v) (2.13)

The second term of eq.(2.11) is a penalty term which is meant to represent the degree
to which the parameters satisfy the PDE for each set of boundary conditions. The
higher value of A the higher the degree to which the PDE must be satisfied.

The values of 0, ¢; which minimize the function f represent the optimal solution.
As we increase A the optimal solution satisfies the PDE to a greater degree. As A

approaches infinity the optimal solution approaches the ML solution for o.

2.4 Pixelating o(r)

Our approach to estimating o(z,y) begins with a 2D piecewise constant model for

o(z,y). The domain, the unit square, becomes a grid of pixels in which the value
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of o(z,y) within each pixel is a constant. For example Figure 2.2 illustrates the 4
by 4 case. When we speak of multi-resolution estimation we are referring to various
resolutions of o(z,y) pixelated in this 2D piecewise fashion.

The PDE for the case of this pixelated o(z,y) has an interesting interpreta-
tion. Referring to eq.(2.5) we see that for constant o(z,y) the PDE becomes

Laplace’s Equation independent of o(z,y).
Vi¢=0 (2.14)

This means that within each of the squares of our pixelated domain, where o(z,y)
is a constant value, Laplace’s Equation holds.

Along the edges of each square there exist discontinuities in o(z,y). By using
the integral form of Gauss’ Law we get constraints on boundary conditions along
each interior edge. Namely, the normal current must be continuous across each
interior edge. The normal current along an edge is simply equal to the derivative
of #i(z,y) in the direction normal to that edge multiplied by the value of o(z,y)
in the square to which the edge is associated. Note that for o(z,y) discontinuous
across an edge V¢;(z,y) is also discontinuous across that edge, making what one
calls the normal derivative of ¢;(z,y) along an edge dependent on the side of the
edge to which one is referring. Figure 2.3 illustrates this for a particular vertical
edge.

In summary, satisfying the PDE in the unit square for a pixelated o(z,y)
amounts to, for a given set of Dirichlet boundary conditions along the unit square,
satisfying Laplace’s Equation in each square while also satisfying the condition that
the normal current be continuous across each internal edge.

The pixelation of o(z,y) also lends itself to an interesting interpretation of the
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o1

O16

Figure 2.2: Pixelated o(r)
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o_ o4
2z — 9%i(z) z, = 9%i(z.)
oz r=a— + oz Z=a+
O_2_ =042,

Figure 2.3: Continuity of Normal Current Across an Edge
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overall estimation problem. We can think of the overall problem as being a col-
lection of smaller problems defined on each square. Within each square we have
the problem of estimating a constant value of o(z,y) given the potential and the
normal current along the edges. For squares adjacent to the boundary of the unit
square the potential along the edges adjacent to the boundary is known(it is in fact
the Dirichlet boundary condition) while the normal current along these edges are
actual measurements. Along the remaining edges in these squares as well as the
edges in all squares non-adjacent to the boundary of the unit square, the potential is
unknown while the normal current is dependent on the values of o(z,y) and %(:4’1
on the other sides of these edges.

The basic structure of the estimation problem consists of the following. Within
each square we must estimate the value of o(z,y) in that square and as a nuisance
parameter the potential along the edges non-adjacent to the overall boundary, T,
of the large unit square. The potential along I' is applied and therefore known.
Our observations consist of the normal currents along the edges. In the cases
where the edges are adjacent to the boundary the observations consist of actual
measurements. In the remaining interior edges we actually have what we can think
of as pseudo-measurements consisting of quantities associated with adjacent squares.
This overall structure is suggestive of a highly distributed algorithm for performing
the optimization necessary in computing the ML estimate of o(z,y).

Our next step is to write the cost function for the optimization problem in the
case of our piecewise constant o(z,y). Before doing this we spend the next section

developing notation and defining relevent quantities.
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2.5 Notation and Definitions

In discussing various aspects of the problem of estimating a piece-wise constant
o(r) it becomes necessary to define certain quantities along edges of the piece-wise
constant squares as well as certain conventions pertaining to the numbering of these
quantities. In this section we establish notation and numbering conventions that

will be used in this thesis.

2.5.1 Numbering Squares

A square refers to a patch that exists as a result of subdividing the unit square so
that o(r) is 2D piecewise constant. For example the four square case refers to the
case where we discretize o(r) into four equal, piecewise constant regions in the unit
square. Figure 2.4 illustrates the numbering convention to be used in referring to
quantities associated with a particular square in the four square case. For example
o1 refers to the value of o(r) defined in the region encompassed by square 1, o,
the value in square 2, etc. For cases where the number of squares is greater than
four we will index the squares and quantities associated with them in lexicographic

order(from top left to bottom right).

2.5.2 Definition of the Normal Derivative Function

We refer to the derivative of the potential along the edge of a square as the normal
derivative function. Normal derivative functions are defined to be the dot product of
the gradient of the potential, a 2D vector function, and the unit normal vector along
the edge of a square. The unit normal vector points in the increasing z direction if

the edge is vertical and in the increasing y direction if the edge is horizontal.
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Square 1

Square 2

Square 3

Square 4

Figure 2.4: Four Square Numbering Convention
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2.5.3 Defining Functions Along Edges of a Square

There are two functions of interest defined along the edges of each square. One is
the normal derivative function which we call by the variable z. The other is the
potential function for which we assign the variable b.

Normal derivative functions defined along a particular edge are indexed by two
subscripts; the first subscript, n, indexes the square on which the function is defined,
the second subscript, j, indexes the particular edge of the square on which the
function is defined. The function 2, ; for example refers to the normal derivative
function on the jth edge of square n. Figure 2.5 illustrates the clockwise edge
numbering convention used for a particular square.

Note with this double subscript convention it may seem odd that the interior
edges are named twice depending on the square to which one associates the function.
However, recall that for a piecewise constant o(r) the normal derivative function will
in general have a different value on the two sides of each edge. This fact necessitates
giving names to two functions, one defined to lie on one side of the edge and another
defined to lie on the other side.

For convenience, we also use double subscripts for the potential functions de-
fined along edges even though these are the same on either side of the boundary.
For example, b,; refers to the potential function on the jth edge of square n as

illustrated in Figure 2.5.

2.5.4 Discretizing Functions

In our development we consider a discretized version of the problem in which the

potential functions and normal derivative functions along edges become vectors
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Figure 2.5: Normal Derivative and Potential Functions Defined on Edges of a Square
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whose elements are equally spaced samples of the corresponding functions. The
elements of these vectors are indexed such that the first element corresponds to the
sample defined at the lowest value of z(or y) while the last element corresponds
to the sample defined at the highest value of z(or y). For example for a vector of
length N, the elements of the vector indexed 1 to N correspond to equally spaced
samples of a function from left to right along a horizontal edge, from bottom to top
along a vertical edge. Figure 2.6 illustrates this for potential vectors defined along
the edges of a square.

We discretize our measurements along the boundary by splitting the observations
into four vectors; one corresponding to the top of the unit square, one for the

bottom, and one for the right and left sides as follows.

Rl = top (2.15)
R2:, = right
R3!, = bottom

R4, = left

where the superscript ! indexes the experiment and the subscript m indexes the
subportion of the vector that ranges from the (m — 1)r + 1th entry to the mrth
entry; r is equal to the length of the vector divided by the number of o pixels along
an edge of the unit square(we assume this is an integer). These vectors represent
samples of the corresponding measurement functions, sampled according to the

previously described conventions.
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bn1[1] bn,1[N]
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b, s[1] bn3[N]

Figure 2.6: Discretized Functions on Edges of a Square
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2.6 Cost Function for Piecewise Constant o(r)

Armed with the notation and definitions of the previous section we are ready to
write down the cost function, eq.(2.11), for the case of a piecewise constant o(r). In
rewriting eq.(2.11) we simply acknowledge the interpretation the PDE has for our
pixelated domain. Namely, satisfying the PDE is equivalent to satisfying the conti-

nuity of the current density across each internal edge. We arrive at the following!.

flo,d) = Z{ [ duiw) [ K (w,v)avwi(v) (2.16)

N-1N(t+1)-1 ' '
+ Z E ||"mz;n,2 - am+1z;n+l,4”2
t=0 m=tN+1
N-2 N(t+1) )
+ E E |‘7m 0m+Nz:n+N,l“2}}
t=0 m=tN+1
where
Wi(s) = (Ri(s) — o(s)Zi(s) (2.17)

and sel', T' being the boundary of the unit square. The superscript 7 on the terms
z;',m- for j = 1,...4 is used to indicate that these normal derivative functions are
associated with the ith experiment.

The first term is the negative log-likelihood function as before. The other two
terms, representing the penalty term, consist of the square of the L, norm of the

difference between the normal currents along each interior edge of the unit square.

!Note that although o is considered to be pixelated, all other quantities are still considered to be
continuous and the norm || - || is the continuous L; norm.
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2.7 Dirichlet to Neumann Map

In dealing with a piecewise constant o(r) we will often need to know the rela-
tionship between the potential vectors and the normal derivative vectors along the
edges of a piece-wise constant patch or square. In this section we derive the explicit
mapping between the Dirichlet boundary conditions and Neumann boundary con-
ditions on a square whose sides are of some length a. We do this using the fact that
Laplace’s Equation holds within a square of constant o(r) and furthermore that it
is an equation for which a closed form solution exists. By sampling the continuous
solution and using the discrete sine transform we obtain a linear matrix relationship
between samples of the potential and normal derivative functions along the edges
of the square.

We can solve Laplace’s equation in a square with edges of length « analytically
using separation of variables giving a simple expression for the potential throughout
the square as a function of the potential on the boundary of the square. The solution

to Laplace’s eq., ¢,, in such a square is given by [1],

mnzx
a

bs(z,y) = i: By (m) sin( )mh(% (2.18)

mmy

)

)sinh(%(a ~ )

X . . mnz, .
+mz—:_1bz(m)smh( » ) sin( 2

mnzT
a

+ i;l bs(m) sin(

+ 3 by(m) sinh(%(a — 1)) sin(%)

m=1

be(s) sin( s ds (2.19)

b(m) = gy o «
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fort =1,2,3,4 where

bi(z) 0<z<a y=a
b(z) 0<y<a z=a«
bs(y) 0<z<a y=0
ba(y) 0<y<a z=0

¢a=

The functions b; and I;t are defined to be the potential function and the weighted
sine transform of the potential function respectively along the edges of the square.
We now take the normal derivative of (2.18) along each edge then sample the

resulting functions uniformly along each edge to form the normal derivative vectors.

That is,
z[f] = 28 -4 T=1ixt

dy
1 94s(z) g —
2] = az YT 'Ny» TT @

2.20
z3[i] = 8e(24) o —, =12 (2.20)

z4t] = e y=15% =0
for : =1,...N. Note 2, for t = 1,...4 are N X 1 vectors whose entries consist of the
normal derivative functions sampled symmetrically along the edges of a square; i.e.
the number of entries on one side of the midpoint of an edge equals the number of
entries on the other side.

Note that the normal derivative vectors defined in eq.(2.20) depend on the func-
tions b. The functions b in turn depend on the potential functions along the
boundary, b, through the continuous sine transform, eq.(2.19). We approximate
eq.(2.19) using the discrete sine transform. We form N x 1 potential vectors by
sampling their corresponding potential functions along the edges in the same man-
ner as described for the normal derivative vectors. We define the following N-point

discrete sine transform.

() = = 0 sin(7) (2.21)
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for k,l =1...N.

If we substitute eq.(2.21) into eq.(2.20) and explicitly write each relationship,

we arrive at the following.

mnzT

ali) = 3 (%) (m) sin( ") cosh(rmn) (2.22)
a2l = 3 (% )ha(m)cosh(m) sin( 22

sl = 3= (~Z)bs(rm) sin("2%) coshm)

il = 3 (=2 bu(m) coshmr) sin( "2

We can rewrite eq.(2.22) as a linear matrix relationship between the potential vec-

tors and the normal derivative vectors of the square as follows.

z D H, -S, H, by
=z | | #, D H, -5, by
=z | | s H, -D H, bs
24 H, S, H;, -D by

a

where the N x 1 vectors b; and 2; are the boundary potential and boundary normal
derivative vectors of the square. Note the subscript a is used to denote the length
of the edges of the square being considered.

The following matrices are N X N where N represents the number of samples

along an edge of the square.

iy

S,'_j = Sln(N T 1) (2.23)
D = DS (2.24)
2jm cosh(jm) sin(ﬁ'.{"_’—1

D(i,7)

a(N + 1) sinh(jn)
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for:,7 =1,...N.

Hto

)‘(ta(ia J)

= S5
2j7rsin(1—:}%

a(N + 1) sinh(j7)

= )’(os
B 25 sinh(ﬁ%)
a(N + 1) sinh(j7)

= )(t.,S
2jmsinh(jm(1 — N;-H))
a(N + 1) sinh(57)

= .5
_ 2jmcos(j)sinh(F%
~ (N +1)sinh(j7)

ﬂtos
2jm cos(jm) sinh(jr(1 — Nf,.l )

a(N + 1) sinh(j7)
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(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



Chapter 3

A Multi-Resolution Estimation
Algorithm

3.1 Introduction

In this chapter we describe an algorithm with which we propose to compute the
ML estimate of 0. The algorithm is hierarchical in nature, consisting of two main
levels: 1) At the top level, where we incorporate the multi-resolution estimation
idea, the algorithm moves from coarse scales of o to successively finer ones. The
algorithm begins by estimating a constant o then moves to estimating o at finer and
finer scales. The change of scales is performed by using solutions at coarse scales
to initiate iterations at finer scales. 2) At a particular scale of o the algorithm
determines the ML estimate of o for that scale. The algorithm for computing the
ML estimate at a particular scale is iterative and highly distributed. The algorithm
alternates between finding the linear least squares estimate of o conditioned on

knowing ¢(z,y) and finding the linear least squares estimate of ¢(z,y) conditioned

on knowing o.

In addition to these two main levels there is also the issue of controlling the

40
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value of the coefficient of the penalty term, A\. We allow for the value of A to vary at
two levels. We can increase A with each change in scale of o, forcing the constraints
on o to be satisfied more and more as we get to finer and finer resolutions of o.
We can also increase A during the course of iterations at one scale. In this case
we increase A gradually in order to force the constraint of the PDE to be satsified
more and more with each iteration. Figure 3.1 is a flow chart illustrating the main
structure of the algorithm. Note that G-S stands for Gauss-Seidel, referring to the

type of algorithm used.

3.2 Multi-resolution Scheme

The main idea of our a multi-resolution scheme is to compute the ML estimate
of o at a reasonably fine scale by computing the estimate for a sequence of scales
starting with a very coarse scale then moving to successively finer scales. The hope
is that by doing enough iterations at coarse scales we can minimize the number of
iterations performed at fine scales where the computations are intensive. Also, the
use of such a multi-resolution approach should prevent the desire to estimate fine
detail from corrupting estimates of coarser scale features. We propose a scheme
that solves a sequence of ML problems at successively finer scales. At each scale
we initiate the iteration using the computed ML estimate for o from the previous
coarser scale.

The sequence of estimates at successively finer scales is computed using the

following algorithm(refer to Figure 3.1).

1. Compute & for constant o throughout.

2. Subdivide each existing square into four equal squares. Initialize the value of
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Go to
Finer Resolution

Initialize o
Using Previous
Resolution

G-S for ¢

}

G-S for o

}

Stop or Raise A

Raise A

Figure 3.1: Structure of the Multi-resolution Algorithm
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o in each of these four squares with the value of & computed for the larger
square at the previous scale. Given these initial 0, initialize the edge potential

vectors by optimizing with respect to é.

3. Compute 4, qAS using iterative and distributed(Ga.uss-Seidel-like) algorithms

described in the next section.
4. If finer resolution is desired, repeat steps 2 and 3. Otherwise, stop.

The structure of the above algorithm suggests the following. At the finest res-
olution if the initial point chosen for o at the start of the iteration is close to g,
the total number of iterations at this resolution, where computations are relatively
expensive, will be small. In addition by gradually moving towards the global min-
imum at the finest resolution by first estimating at coarse scales then moving to
successively finer scales, we expect to stand a better chance of avoiding local minima

than we would if we’d started our algorithm immediately at the finest resolution.

3.3 Estimation at One Scale Using Gauss-Seidel

Relaxation Schemes

At each scale of ¢ the algorithm computes the ML solution for o using the cost
function, eq. (2.16). In developing an algorithm for computing the optimal solution
for o at a single scale we take advantage of the following rather key structure in the
cost function. As we will show in this section, the problems of minimizing the cost
function with respect to o holding ¢ constant and minimizing with respect to ¢

holding o constant are each linear problems. By taking advantage of this structure,
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we develop an algorithm for minimizing the overall nonlinear function by solving a
sequence of linear problems.

This method of optimization can be viewed as a type of coordinate descent as
described in [7] where one attempts to minimize a cost function by making descents
sequentially along different directions in the state space. From the standpoint of es-
timation our algorithm at a particular scale of o consists of a sequence of estimators
alternating between finding & conditioned on knowing ¢ and finding ;b conditioned
on knowing o in which each of these estimators is a simple linear estimator.

The algorithms we develop for computing these linear estimators are both it-
erative and distributed. Jacobi and Gauss-Seidel relaxation schemes [4] are useful
in that they are both iterative and highly conducive to distributed computation.
The main idea of these algorithms from the standpoint of optimization is as follows.
Suppose we have a parameter vector for which we would like the optimal solution.
Relaxation schemes work on the principle that if we can optimize with respect to
each entry of the vector regarding the other entries as known quantities, then by
solving for each entry of the vector and repeating this for many iterations we hope
to converge to the optimal solution. If optimization with respect to each entry
lowers the overall cost function, then repeated iterations gradually lower the cost
function until a minimum is attained. The global minimum is attained if the cost
function is strictly convex.

The difference between Jacobi and Gauss-Seidel schemes is simply in the updat-
ing of the entries of the parameter vector. In Jacobi schemes the parameter vector
isn’t updated until each entry of the parameter vector is optimized once. This

scheme is conducive to parallel computation since the entire parameter vector can
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be updated simultaneously. In Gauss-Seidel schemes on the other hand a parameter
entry is updated immediately after it has been optimized or computed.

It seems the Gauss-Seidel scheme is not conducive to a parallel implementa-
tion because it is inherently serial. However, many physical problems exhibit local
dependencies; e.g. in our problem these localities are exhibited in our cost func-
tion. This suggests the organization of the parameter vector into subsets, each of
which contains entries that do not depend on each other. This allows the entries of
each subset to be updated simultaneously. When these subsets are large, of course,
parallel computation is beneficial. The organization of the parameter vector into
subsets of non-dependent entries is called a coloring scheme. In order to maximize
the benefit of a parallel implementation for a specific problem one would naturally
desire the fewest number of colors. A good example of this, in which the number of
colors is just two, is in the solution of Poisson’s equation using Gauss-Seidel with
red-black coloring.

Because of the immediate updating of each entry of the parameter vector, the
convergence of the Gauss-Seidel scheme is better than that of the Jacobi scheme.
Because of this and the fact that our problem is conducive to a good coloring
scheme, we choose to investigate Gauss-Seidel schemes in solving the ML problem
at a single scale. Note that the convergence of both schemes can be accelerated
using successive-overrelaxation(SOR).

We describe in the next two subsections the Gauss-Seidel relaxation schemes
used to solve the problem of optimizing with respect to ¢ knowing o and the problem

of optimizing with respect to o knowing ¢. We will consider the scale to be such

that o is N x N.
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3.3.1 Optimizing with Respect to ¢

Let us consider the problem of lowering the overall cost function, eq.(2.16), with
respect to ¢ conditioned on knowing o. Furthermore, let us consider lowering
eq.(2.16) with respect to ¢ along a single edge assuming we know ¢ on every other
edge. That is, we wish to lower the cost function with respect to bfm- for some
measurement k£, 1 < k < L, some square n, 1 <n < N? and some edge j,1 < j < 4
assuming o, to be known for n = 1,...,N? and assuming b‘ ; to be known for
every (m,1,l) not equal to (n,7,k). Note that for each edge of every square we
have L different potential vectors, each of which corresponds to one of L different
experiments. Let us rewrite the cost function, eq.(2.16), explicitly as a function
of all the b, ; using our Dirichlet to Neumann map that relates 2/ ; to b, ;. For
convenience we rewrite the map using a different notation to give us the following

relationship on square m for experiment ! between b}, ; and 2}, ; for some 1.

Zh 1 Tha -+ Tha bt
=1 : : (3.1)
24 Tyg -+ Tya b4

where T, , for 1 < 0<4,1<p<4isan M X M matrix and M is the number of

samples per edge. By substituting eq.(3.1) into eq.(2.16) we obtain,

L
flod) = Y { W (3.2)
=1
N- 1N(t+1) 1
+ A ||0mZTz. m i 0m+1ZT4,: m+1.||2
t—O m—tN+1 i=1 =1

N-2 N(t+1) 4 4
+ Y D llom D Tabl; —omin D Tl.-'b'mm,.-llz} }

t=0 m=tN+1 i=1 i=1
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where
N 4
U = ) |RL, —om ) Tibl,l (3.3)
m=1 =1
Y l - ! 2
+ Z ”R2N+1—t — ON+(t-1)N E Tz.-'bN+(t—1)N,a'||
t=1 =1
M l : 12
+ > | B3 n -1y — Om D T,ibl il
m=N(N-1)+1 i=1
o 1 - ! 2
+ D lIR4y 1o — Ore(e-yn ) Taibyy -yl
t=1 =1

For simplicity we have assumed the noise to be independent and identically dis-
tributed from experiment to experiment. We have also assumed that the distri-
bution of the measurement noise along the boundary for each experiment is white
with variance y71.

Note that eq.(3.2) is quadratic in bf ;. To illustrate this consider the part of

eq.(3.2) that depends on the particular vertical edge potential vector bﬁ'z.

F(br2)

(0nT2,2 — Ont1Tua)b5 , — da|?

4
+ D lleaTiabk; — da|?

i#£2

4
+ D lleaTiabk , — ds|? (3.4)

iZd

where
€1 = Op or 3o,
€2 = Opy1 OF §0n+1
for 1 <n < N? nmod N = 0. The vectors dj, ...,ds do not depend on bfm-.
In order to lower the cost function, eq.(3.2), with respect to the edge vector bﬁ,z

we can find the value of bﬁ,z that minimizes eq.(3.4); i.e. by minimizing eq.(3.4)
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with respect to bﬁ,z while considering everything else to be known, we make a
descent along the surface of the overall cost function. To do this we take the partial
derivative of eq.(3.2) with respect to bf, and set the result equal to zero. This
results in a set of necessary conditions for the minimum of eq.(3.2) with respect to
bﬁ'z. If we take the derivative of eq.(3.4) with respect to the vertical edge vector
bﬁ,z and set the result equal to zero, we obtain the following set of equations which

we solve for b ,.

9
(a,z,Al +02,,A2 - a,.a,,+1A3) bﬁ,z = Z ) (3.5)
=1
where
4
Al = Y o()T{,T;, (3.6)
=1
. .
42 = 3 B()TLTia (3.7)
=1
A3 = T4"4T2_2 + T£'2T4,4 (3.8)
4 4
vl = _arzl E a(l) Tl'.z Z Tl.jbﬁ,j (3.9)
=T
4 4
v2 = _0:+1 Z s(l) Tt'4 Z Tl.:'bﬁ+1,j (3.10)
=1 iz
4 4
v8 = OnOni1 [Tad Toibf; + T2 Tasbii; (3.11)
= i
T I=1 n=1,..N
1 1=3 N(N-1)+1<n<N?
il l=4 nmod N=1
1 otherwzse
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and

v4

v5

v6

v7

v8

v9

\

1 l=1 n=1,..N

B) = I i=2 (n+1)mod N=0
1 1=3 N(N-1)+1<n < N?
1 otherwise

(
(%)GNT4'2R4IkV_((n_1)/N) n mOd N =1
4

! k Y
0n0n-1 | Ty, > T2,b,_1; | otherwise
i=1

(:1‘)0"1.1T2'.4R25‘v_((n+1)/‘~)+1 (n + 1) mOd N = 0

4
! k .
Opnt10n+2 T2.4§ T4'jbn+2’j otherwise
i=1

(}onT} ,R1k n=1,..N

4
OnOn-N (Tl'.2 > T bk N,J-) otherwise

i=1

($)onTs 2R3 _nwv-1) N(N-1)+1<n<N?

4
0nOnsn | Ts, D> T 505, N,,-) otherwise
i=1

($)ons1 T} JR1E n+l1=1,..N
4

Ont+10n-N+1 | T1 4D Tg,,-bﬁ_NH,j) otherwise
=1
(3)onn1Ts 4R35,y _nv-1) N(N-1)+1<n+1<N?

4
! k .
Ont10niN+1 | T34 T+ N1 | otherwise
i=1
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We can use an analogous argument to derive equations for lowering the overall

cost function with respect to an horizontal edge potential vector. Specifically, if we

take the derivative of the cost function with respect to the horizontal edge vector

bﬁ,_,, and set the result equal to zero, we get the following set of equations which we
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solve for bf ;.

0
(cr,z,Bl + o2 yB2 — a,.a,.+NB3) Vs =) w
1=1

where
4
Bl = Za(l)Tl',sTl.S
=1
4
B2 = Z.B(l)Tll,lﬂ,l
=1
B3 = Ty,Ts3+T35T1s
4 4
wl = —op3 a(l) | T > Ttk ;
=1 =1
J#3
2 = —o,3 ! '4T-b"
w2 = —op N B | T D Tiibkn,;
= 5
4 4
w3 = OnOnt+N T{,IETS’jbﬁJ+Té,3ET1.jbﬁ+N,j
7 o
'} l=1 n=1,..N
1 ] = _
o) = {2 =2 nmod N =0
I l=4 nmod N =1
| 1 otherwise
(1 1=2 nmod N =0
Bl = 4 3 1=3 N(N-1)+1-N<n<N!-N
T l=4 nmod N =1
| 1 otherwise
and
(})anT{,sRlﬁ n=1,..N
wd =

4
OnOpn-N T{_ssz,,-bﬁ_N’j) otherwise
j=1
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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/

(})on+nT3 1 R3} v _n(n-1) N(N-1)+1<n+N<N?
ws = 4 4 :
OntNOntan | Tgy D T1 bk o ;| otherwise
\ j=1
(%)0’,.TL3R45‘V_(("_1)/N) n mod N =1
wb = ﬁ L - . .
0nOn-1 | Ty3D Tojbh ;| otherwise
\ J=1
wl = , x )
OnOni1 | Tog > Ty bk +1, | otherwise
\ Jj=1
(})O'n+NT4"1R4]kv_(("_1)/N)_1 n mod N = 1
w8 = 4
On+NOn-14N | T4y Tz,,‘bﬁ_l_'_N"-) otherwise
\ j=1
(3)ontn T3 1 R2K_((niny/my 1 nmod N =0
w9 = ' 4 k .
OntNOnt14N [ T51) Tajbiiy,n ;| otherwise
\ i=l1

The solutions of eq.(3.5) and eq.(3.12), if they exist, determine vertical and hor-
izontal edge potential vectors, respectively, that minimize the overall cost function
conditioned on knowing ¢ on every other edge and ¢ in each square. Note that
solving eq.(3.5) and eq.(3.5) require solving a set of systems of M equations in M
unknowns where M is the number of samples per edge.

We now examine the conditions under which eq.(3.5) and eq.(3.12) have solutions
and the conditions under which these solutions are unique. Let us first consider
eq.(3.5). Let

A=02A1+4 02 A2 — 0,0,41A43 (3.19)

Note that from the structure of our Dirichlet to Neumann map as derived in Chap-
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ter 2 we know that T3 2 = —T44. This allows us to write eq.(3.19) as

4
A = o> a()T;,Tis (3.20)
iz
3
+ 0:+1 Z ﬂ(’)Tl',-tTl.‘i
=1
+ Q
where
Q@ = ((on + 0n41)T2,2)' ((0n + nt1)T22) (3.21)

We now examine the question of whether there exists a solution to eq.(3.5) and if
so, whether the solution is unique. Note eq.(3.20) shows A to be the sum of matrices
multiplied by their transposes. Equivalently, 4 is a sum of positive semi-definite
matrices. If any one of these positive semi-definite matrices is strictly positive
definite, then A is strictly positive definite. This would imply that the matrix A is
non-singular and eq.(3.5) has a unique solution. But, as we show in Appendix B,
the matrix T3z is non-singular. This implies the matrix Q is non-singular and hence
€q.(3.5) can always be solved uniquely.

A similar argument can be made with regard to eq.(3.12). The proof in this
case requires that the matrix 77 ; be non-singular. But this is true since Ty = Ty p.
Therefore, eq.(3.12) can always be solved uniquely.

Suppose we wished to minimize the overall cost function with respect to ¢ along
every edge conditioned on knowing 0. We use a Gauss-Seidel type of algorithm
to solve this problem which we call GS-¢. The idea of the GS-¢ algorithm is to
minimize eq.(3.2) with respect to the potential along a particular edge holding the
potential along the remaining edges constant using eq.(3.5) for vertical edges and

eq.(3.12) for horizontal edges. By doing this for each successive edge and each



CHAPTER 3. A MULTI-RESOLUTION ESTIMATION ALGORITHM 53

measurement set, and cycling through the entire set of edges and measurement
sets for many iterations we hope to converge to a solution set of edge potentials
that minimizes the overall cost function given a particular 0. Note the fact that
solving either eq.(3.5) or eq.(3.12) results in a unique solution guarantees that these
solutions resul‘t in a descent of the overall cost function. But the algorithm GS-¢
simply consists of a sequence of solutions of either eq.(3.5) or eq.(3.12). Therefore,
GS-¢ converges to a minimum of the overall cost function conditioned on knowing
o.

One possible version of GS-¢ can be summarized as follows:

1. Solve the normal equations, eq.(3.5), for each of the vertical edges, bf 5.

2. Solve the normal equations, eq.(3.5), for each of the horizontal edges, bﬁ,s-

3. If adequate convergence has occurred then stop. Otherwise, repeat steps 1 and 2.

Note the ordering of the edges in the above algorithm is arbitrary. The convergence
rate, however, inevitably depends on the ordering. This issue deserves further
investigation, as it would be useful to be able to order the relaxation so as to give

the best convergence rate.

3.3.2 Optimizing with Respect to ¢

We now discuss the problem of lowering the cost function with respect to o con-
ditioned on knowing ¢ on every edge. Analogously to the case of optimizing with
respect to ¢ we begin by discussing the problem of lowering the overall cost function
with respect to o in a particular square conditioned on knowing ¢ on every edge

and o in every other square.
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We begin by considering the cost function, eq.(3.2). We rewrite eq.(3.2) so that

it is a function of o conditioned on knowing ¢ on each edge. Since the b‘m',-’s are

known and there is a mapping from bf,n,,- to zin,,- we can rewrite eq.(3.2) as follows:

L

flo,e) = > { 1w (3.22)
=1
N—1N(t+1)-1
+ A E Z ||°mz:n.,2 - Um+lz:n+1,4||2
t=0 m=tN+1
N-2 N(t+1) ’ 1
2
+ Z Z ”‘7mzm,s - 0m+sz+N,1”
t=0 m=tN+1
where
N
¥ = Z ”Rl’m - amen,lllz (3.23)
m=1
Y ! 1
+ Z ”R2N+1—t - "N+(t—l)NzN+(t—1)N,2”2
t=1
N2
+ >, ”Rsin—N(N—l) - °'m"""£n,3”2
m=N(N-1)+1
Y l ! 2
+ E [ R4n41-¢ — 01+(t-1)Nzl+(t—l)N,4"
t=1

We now consider lowering the overall cost function with respect to ¢ in a par-
ticular square. By taking the dervivative of eq.(3.2) with respect to o,, the value of
o in the nth square, and setting the result equal to zero we obtain an equation for
finding the value of 0, that minimizes eq.(3.2). Since o, is a scalar, computations
are much simpler than in the case of optimizing with respect to ¢; i.e. we needn’t
solve a system of linear equations.

on = (ficn(z:,.-)'z:,.-)_lfiwﬁ)'z:,.- (5.21)

k=1i=1 k=1:=1
where

o {(})Rlﬁ 1<n<N
ko

On-NZi_ng Otherwise
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0

N

g
o§={
o!;:{

c1

and

C2

C3

C4

(2)R2% _(umysr (nmod N) =0

k
Ont12n41,4

otherwise

(})R3;_yw_yy N(N-1)+1<n<N?

OniNZELN 1 otherwise

(3) B4 _((n-1yv) (nmod N) =1

k
On-12p_12

I
e N, gt N, et s, et

>R = R - - 2

[

otherwise

1<n<N

otherwise

(nmod N) =0
otherwise
N(N-1)4+1<n< N?
otherwise

(nmod N) =1

otherwise
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We now examine the questions of existence and uniquess of solution with regard

to eq.(3.24). A necessary and sufficient condition for the existence of a unique

solution to eq.(3.24) is that the inverse in eq.(3.24) exists. Note that the inverse

exists if and only if zf,‘,- is not equal to the zero vector for all kK = 1,..., K, and all

¢ = 1,..4. But the condition that the vectors 2%, are all zero corresponds to the

case of zero excitations, which is a degenerate case. Therefore, for any non-zero set

of excitations eq.(3.24) has a unique solution.

We now present an algorithm for minimizing the overall cost function with re-

spect to o in every square conditioned on knowing ¢ on every edge. We call this

the GS-o algorithm. One possible version of GS-0 can be summarized as follows:

1. Solve eq.(3.24) for 0, n =1,...N2.
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2. If adequate convergence has occurred then stop. Otherwise, repeat step 1.

As in the case for GS-¢ the order of performing a sweep through the entire grid of
o, affects the rate of convergence.

We now show that this algorithm converges to the global minimum of the cost
function, eq.(3.22), with respect to o conditioned on knowing ¢ on every edge
for each experiment. The fact that the solution to eq.(3.24) is unique for non-
zero excitations guarantees that it lowers the cost function. This implies that by
successively solving eq.(3.22) for each o, we must converge to a minimum. But the
cost function, eq.(3.22), is strictly convex(see Appendix A) implying it has a unique
global minimum. Therefore, the algorithm GS-o converges to the global minimum

of the cost function, eq.(3.22), with respect to o.

3.3.3 Overall Algorithm at One Scale

We have shown that solving the optimization problem at one scale can be broken
into two subproblems. One subproblem is to optimize with respect to ¢ holding ¢
constant and the other is to optimize with respect to ¢ holding ¢ constant. Each
of these subproblems is an optimization problem with respect to a quadratic cost
function which an be interpreted as a linear least squares estimation problem. Our
overall algorithm at one scale consists of alternating between optimizing with respect
to ¢ and optimizing with respect to o.

ALGORITHM 1
1. Initialize o, b ;, for k=1,..,K,n=1,..,N% i=1,..4.

2. Solve eq.(3.24) for o, for n = 1,..., N? until convergence using GS-o.
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3. Solve eq.(3.5) and eq.(3.5) for b} ; for k = 1,...,K,n =1,..,N%, i =1,..4

until convergence using GS-¢.

4. If all 0, and bﬁ’,- have reached adequate convergence then stop. Otherwise,

repeat steps 2 and 3.
ALGORITHM 2
1. Initialize 0,, bt ;, for k=1,..,K,n=1,..,N?,i=1,...4.

2. Solve eq.(3.24) for o, for n = 1,..., N?%, i.e. one sweep through the set of N2

squares.

3. Solve eq.(3.5) and eq.(3.5) for bk ; for k =1,..,K, n =1,..,N% i = 1,...4,

i.e. one sweep through the set of 2N (V — 1) edges.

4. If all 0, and bﬁ__,,- have reached adequate convergence then stop. Otherwise,

repeat steps 2 and 3.

3.4 Appendix A: Proof of Strict Convexity

In order to prove that the overall cost function is strictly convex with respect to
o conditioned on knowing ¢ we prove that the cost function, eq.(3.22), for a sin-
gle experiment is strictly convex. The strict convexity of €q.(3.22) over all the
experiments then follows from the fact that it is a sum of strictly convex functions.

Let us begin by reinterpreting the cost function, eq.(3.22), for a single experi-
ment. We can think of optimizing over eq.(3.22) as solving a weighted least-squares

problem. The weighted least-squares problem amounts to minimizing the weighted
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quadratic form of the error vector ¢ with respect to our parameter of interest.
Specifically,

6 = argmin€ Qe (3.25)
where the matrix @ is symmetric positive definite.

For our problem we can divide € into two main parts. One part is what is known
in the system identification literature as the prediction error, which we will denote
as €,. For our problem this consists of the difference between what we predict to be
the normal current on the external boundary, I', and what we actually measure. The
other component of € consists of the error due to failing to satisfy the constraints
of our PDE. We denote this component as eppg.

€y
e=1| ... (3.26)
€PDE

Since €, and eppg represent two different types of error, we weight them dif-
ferently. We weight €, by the inverse covariance matrix of the measurement noise
while we weight eppr by the weighting term A. This is manifested by the following
partition of the overall weighting matrix Q.

Q= ( K™ o ) (3.27)
0 Al
where the dimension of the square matrix K~! equals the length of €, and the
dimension of I equals the length of eppg.

Let us define ¢,. This vector consists of the difference between the normal

derivative vector along each exterior edge scaled by the value of o at that edge and

the vector of measurements along that edge. We can express this as follows.

€ = 005:0 — by (3-28)
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where
( 21,1 0 )
0 2ZN,1
0 ZN2’2
0 ZNi-ng - O
0 z oo 0
O.ar = 2 (3.29)
ZN(N-1)+1,3 O
0 0 oo Zyag
0 o 2N(N-1)+14 0t O
0 *** 2ZN(N-1)+1-N4 °*° 0
\ 21,4 “oe 0 }
and
R,
bezt = E (3.30)
R,

We now derive an expression for eppg. Let us begin by considering the con-
straints due to the PDE. Essentially, the constraints are that the normal current
across each internal edge be continuous. This translates to the condition that the
normal derivative vector on one side of an edge scaled by the value of o on that
side must equal the normal derivative vector on the other side of that edge scaled
by the value of o on that other side. This is illustrated in Figure 2.3. If we take
the difference between the predicted currents on the two sides of each interior edge

as the error in satisfying the PDE, we get the following.
€pDE = Oineo (3.31)

The matrix 6;,; consists of two submatrices one of which represents the constraints



CHAPTER 3. A MULTI-RESOLUTION ESTIMATION ALGORITHM 60

on the vertical edges the other on the horizontal edges. Specifically,

v
0int

Oz = | --- (3.32)
6h

tnt

The matrix representing constraints on vertical interior edges is defined as follows.

B, 0 -.-0
0 B :
0:',11# = . : (3‘33)
: . 0
0 0 By
where
Zjz —%+14 0 0
0 z. _z- LR ) 0
B; = ) 7+1,2 . j+2,4 . . (3'34)
0 0 Zj4N-2,2 —Zj+N-14
and j = ({ —1)N + 1 for ¢ = 1,...N. The matrix representing constraints on

horizontal interior edges is defined as follows.

zs 0 .- 0 —2z14+N1 O - 0
0 23 0 --- 0 _2 e 0

=] . 7 S (3.35)
0 ZN(v-1)3 O e 0 —zy2,

Let us arrange our expressions for the error vector as follows.
e=00—b (3.36)

where
0ezt
o=1 ... (3.37)

0int
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and

b= ... (3.38)

We now substitute eq.(3.36) into our weighted least squares equation, eq.(3.25), to

get the following.
& = argmin {0'0'Qbc — o'0'Qb + b'Qb} (3.39)

Since b'Qb does not depend on o we can rewrite eq.(3.39) as
6 = argmin f (0) (3.40)

where
f(o) = {d'0'Qbc — o'0'Qb} (3.41)
Note that eq. (3.41) is precisely our discrete cost function, eq.(3.22) for one exper-
iment.
Note that # has full column rank for non-zero z;;’s and the matrix Q is symmetric

positive definite. This implies §'Q0 is positive definite. It follows that eq.(3.41) is

a strictly convex function with respect to o.

3.5 Appendix B: Proof of Non-singularity of Ma-

trix T,',,' for : = 1,...,4

Referring to the notation in Section 2.7 we see that the matrix T;; for 1 = 1, ...,4
is equal to either D or —D. Therefore, proving T;; is non-singular for 7 = 1,...,4

is equivalent to proving that the matrix D is non-singular. We can decompose the

N x N matrix D as follows:

D=SVS (3.42)
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where

Si;j = sin(3&5) for i,j=1,.,N (3.43)

and V is a diagonal matrix such that

tx cosh(ix .
Vie = JTI)Z“%(%) for i=1,..,,N (3.44)

It can be shown that the matrix S is orthogonal [6]. The matrix V is clearly non-
singular. Therefore, the matrix D, the product of three non-singular matrices, is

non-singular.



Chapter 4

Estimating a Constant Background o

4.1 Introduction

In this chapter we study the problem of estimating the conductivity image, o(r),
where we assume a constant value of o in the entire domain. This case represents
the coarsest scale at which we would estimate o(r) where in fact the problem now
becomes one of scalar estimation. More importantly, it represents a problem from
which we can gain insight into the performance of estimating o(r) at a scale coarser
than that of the true o(r). In studying this case we hope to understand precisely
the relationship between the coarse scale estimate of o and the true o at a finer
scale. The main result of this chapter is a careful study of the problem of trying to
estimate a constant o(r) when in fact the true conductivity piecewise constant in
four distinct regions. We pose a simple stochastic model for o(r) and characterize
estimation performance as a function of the statistics of o(r).

The following issues will be explored in this chapter.

e 1) If the true conductivity is constant, i.e. o(r) = ¢ in the unit square,

and there is additive measurement noise, we write down explicitly the linear

63
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least-squares estimate & and the meansquare error E{(c — 6)?}.

e 2) We perform a linearization of the PDE in the case where o(r) is piecewise
constant in four squares in order to get an approximate relationship between
o(r) and the normal derivative of the potential on the boundary which we

then use to obtain analytical bounds on performance.

¢ 3) We investigate how the estimate behaves in the presence of modeling error;
i.e. for the problem of estimating a constant o(r) we see how the mean-square
error and the bias are affected when in fact the actual conductivity is not
constant. We focus on the case where the actual conductivity is piecewise

constant in four squares.

e 4) We extend our analysis of the four square case and consider ¢ to consist
of random independent perturbations about a constant background in each of
the four squares. We describe analytically and plot via simulations how the
bias and the mean-square error of the estimator behave as functions of the

variance of o in the four squares.

4.2 Constant ¢ Problem Formulation

Let us first consider the case where o(r) is truly constant in the unit square and
we wish to estimate this constant based on a number of independent excitations
and measurements. In the case of a constant background where o(r) = o, the PDE

simply becomes Laplace’s equation, independent of o.

Vi(r) =0 (4.1)
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with Dirichlet boundary conditions ¢(s) where s is restricted to the boundary of
the unit square.

The following is the measurement equation for experiments involving multiple
excitations and measurements along the boundary of a unit square given constant

o in the entire square.

vi(s) 0Z;(s) + ni(s) (4.2)

E {ni(u)n;j(v)} = 6&;R(u,v)

where 1 < ¢ < M, M being the number of independent experiments made. y,Z,n
represent observation, normal derivative, and noise functions, respectively, defined
along the boundary of the unit square, I', where Z;(s) = L":;,(%QL on I and ¢;(z,y)
satisfies eq. (4.1) for a particular set of Dirichlet boundary conditions. The function
R(u,v) is defined to be the covariance function of the zero-mean noise function n(s).

The linear least squares estimate(LLSE) of o is the following.

6= (i/;duZ.-(u)/rdvR'l(u,v)Z.-(v)dvdu)_liﬁduzg(u)/I“dvR'l(u,v)y.-(v)

(4.3)

The estimate is unbiased and has the following meansquare error.
E{(c-6)*} = (f /r Zi(u)du /r dvR (u,v)Zi(v)) (4.4)

i=1

We see that for this simple case of a constant background o(r) we have a linear
estimation problem. As one would expect the meansquare error goes down as
the number of independent measurements, M, goes up. Note that in the case of
Gaussian n; eq.(4.3) is also the maximum likelihood estimator and is an efficient

estimator.
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4.3 Linearization of the Four Square Case

Now we consider the case where o(r) is not truly constant in the unit square but
rather a 2D function piecewise constant function. In particular we consider the case
where o(r) is piecewise constant in four equal subdivisions of the unit square. In this
section we solve a linearized version of the problem where the linearization is about

some nominal constant background, 0,. We produce a closed form approximation to

)

the solution of the PDE which is numerically computable. This will be useful later in
computing approximate performance characteristics. Referring to Figures 4.1, 4.2
and 4.3 we define the following quantities. For convenience we have adopted a

single subscript notation for indexing b.

0; = 09+ ébo; (4'5)
b = b+ 6b; (4.6)
Zij = z?’,- + 62.',_.,' (4.7)

Note that we are linearizing the problem about the same value of ¢ in each square,
i.e. 0g. Our objective is to solve for the potential along the interior boundaries(b;’s)
as a function of o; and the Dirichlet boundary conditions. Once we know the b;’s we
can use these as boundary conditions for solving Laplace’s equation in each square,
thus giving us the normal derivative of the potential along any boundary. The
quantities b? and z?,’- are the potential and normal derivative of the potential along
the interior boundaries for constant oo background. They are obtained from the
solution of Laplace’s equation and can be considered to be known. These quantities
can be thought of as background field components.

For piecewise constant o(r) solving the PDE for this problem is equivalent to
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oo + 60 oo + 603

0o + 603 0o + 604

Figure 4.1: o; Defined on the Unit Square
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bl—'

Figure 4.2: b; = b) + 6b; Defined on the Unit Square
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21,4—» 212—se——224 —— 22,2
213 223
| |
I T
231 24,1
234 —» 232 —»e—244 24,2

Figure 4.3: 2;; =

243

2); + 62z ; Defined on the Unit Square
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matching boundary conditions along each interior boundary. If we require the
normal current to be continuous across each interior boundary we arrive at the

following four equations.

01212 = 02224 (4.8)
02233 = 0424 (4.9)
03231 = 01213 (4.10)
04244 = 03233 (4.11)

The above equations are nonlinear with respect to o; since the normal derivative
functions z;; are functions of o;. If we linearize the equations with respect to o;

about the nominal point oy we get the following equations.

0
621'2 - 622’4 = 2—:)-(60'2 - 60’1) (4.12)

0
622,3 - 624'1 = %(60’4 - 60’2) (4.13)

0
523'1 - 6Z1l3 = :_—3(60’1 - 60‘3) (4.14)
0

0
624,4 - 6Z3'2 = :—2(503 - 504) (415)

Since the z’s are field solutions for a constant background and can be considered
known, independent of the o;’s, we confirm that the § 2;;’s as approximated in eq.’s
(4.12)-(4.15) are indeed linear functions of the §a;’s.

Note that for the case of a constant oo background 2{, = 22, and for convenience
will be denoted as 2{. Similarly, 205 = 23, = 29, etc. The 2{’s are defined shown
in Figure 4.4. The above equations give us the necessary equations to solve for
6b; provided we know the relationship between 6b; and 6z; ;. This relationship can

be derived from the fact that Laplace’s equation holds within each square; we are
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essentially looking for the map from one set of boundary conditions(Dirichlet) to
another(Neumann). If we consider the discrete problem so that the b; ;’s and z; ;’s
are now vectors of equally spaced samples of their corresponding functions along
the edges of each square, we can use the relationship between Dirichlet(b; ;) and
Neumann(z ;) boundary conditions for the problem of Laplace’s equation in the
square of length o as derived in Chapter 2 (note we are now using the double

subscript notation for both the potential and normal derivative vectors along each

edge). »
2n1 D ff o —S, fI to bn,l
Zn2 | _ H, D H, -5, bn,2 (4.16)
Zn3 S H, —D H,, bn,3
Zn4 H, S, H, -D br.4

[+ 2
for n = 1,...,4 where the particular value of a, i.e. the length of each interior edge,

for the case of the unit square being divided into four squares is equal to 1/2.
If we make the appropriate substitutions into eq.’s (4.12), (4.13),(4.14), and

(4.15), we arrive at the following linear system of equations for 6b,,...,6b4.

2D -H, H, o0 &by (60, — b0y)
Hto —2D 0 _ﬁ-to 6b2 _ 1 22(60'4 — 60’2) (4 17)
~H, 0 2D H, 6bs oo | 23(60s — b0oy) '
0 Ho —'IA{O —-2D 6b4 22(60'1 - 50’3)
which we can abbreviate as
1
Féb=—Géo (4.18)
0o
where
&b,
6b
6b = ? (4.19)
6bs

6by
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* 24

Figure 4.4: Normal Derivative Functions z{ Defined Along Interior Edges
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( 6oy
5
so 2 (4.20)
60’3
\ 50’4
(2D -H, H, o0
H, —-2D 0 —H,,
F ! L (4.21)
~H, 0 2D H,
\0 H, —H, —2D
(=22 22 0 o
0 =220
G . “ . “ (4.22)
zz O —23 0
kO 0 2 -2

It can be shown that F is nonsingular(see appendix) and hence we have the
following linear relationship between the perturbed interior potential, §b, and the

perturbed conductivity, éo.

6b = lF‘lG'éSa

p” (4.23)

4.4 Estimator Sensitivity to Modeling Error

We now consider the problem of estimation in the presence of modeling errors in
o. For the general development in this section we consider o(r) = 0o + 6o (r) where
8o(r) is a general spatially varying function defined on the unit square. In the next
section we specialize the results of this section to the case of o(r) being piecewise
constant in four squares. We begin by considering the following measurement equa-
tion for the problem of multiple excitations and measurements along the boundary

and 6o(r) some arbitrary function.

¥i(s) = (00 + 60(8))(Z2(s) + 6Z:(s)) + ni(s) (4.24)
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where s is the restriction to the boundary, T, and the noise statistics are the same as
before. We define the function Z? to be the constant oy background field along the
boundary due to the sth excitation; the function §Z; is the corresponding perturbed
field due to a spatially varying éo.

The main question is how does our estimator, derived under the assumption
of a constant background conductivity, oo, perform on data generated from a do-
main consisting of a constant o, plus deviations §o(r) throughout the domain? The
problem is fundamentally one of modeling error; i.e. what we’re interested in is
the sensitivity of the estimator to a particular error in the modeling of the con-
ductivity. Let us characterize this sensitivity by carefully determining the statis-
tics E'{(o0 — &)|0} and E {(oo — )*|0}, where the expectations are taken over the
conditional density p,|,(Y |o)(the only random quantity here is noise and we are
conditioning on a particular o = 0¢ + 60).

The estimate is clearly biased with respect to oo; this is easily shown by evaluat-
ing E {(00 — 8)|o}. Substituting eq.(4.24) into eq.(4.3) then taking the expectation

we arrive at the following.

E{8]6} = oo (4.25)
+ (g /r Z0(u)du fr dvR‘l(u,v)Z,p(v))'lg [r Z°(v)du fr dvR™(u, )60 (v) 2°(v)
+ (,é [ 2w | dvR‘l(u,v)ZP(v))‘lgoo [ 22 wdu [ dvR*(u,0)52i(0)
+ (fi [ Z@)du [ doR (u,0) 20(0)) % [ 7w [ doR"w,0)60(0)62(0)

If the bias is defined to be E {(0o — )|o}, the last three terms of the above
expression is the negative bias. From these three terms we see that the bias is small

if 60 and 6Z are small. This analytical expression for the bias is conditioned on



CHAPTER 4. ESTIMATING A CONSTANT BACKGROUND o 75

knowing é0; recall § Z; is a function of éo.

Determining E {(0o — 6)?|o} is straightforward. Note the random variable (oo — &)
in this perturbed case differs from that in the case where o(r) is truly constant only
in mean. In other words the perturbation only shifts the probability density of the

error. Hence, the variance of (6o —4&) is the same in both perturbed and unperturbed

cases.

Var{(oo —6)lo} = E{(o0—8)*} —{E{(00 - 8)}} (4.26)
= [ 22w [ avR(u,0)20(0))

The mean-square error can then be written as

E{(00— 6)*|o} = (g /F duZ?(u) /r dvR™*(u,v) 20 (v)) " +{E {(o0 — 6)}}* (4.27)

The modeling error essentially contributes the square of the bias to the meansquare

€ITOT.

4.5 o as a Random Variable

In the previous section we treated o(r) as being non-random and we derived mea-
sures of performance conditioned on knowing o(r). We now extend our analysis
by considering the case where o(r) is a piecewise constant random field, and we
proceed to take expectations of the conditional measures of performance over an
assumed density for o(r). We concentrate on the case where o(r) is piecewise con-
stant in four equal squares. Associated with each square, indexed by the subscript
j, is a o; where o; is a random variable. Let us consider the case where the o;’s

are each independent Gaussian random variables with mean oy and variance g;.



CHAPTER 4. ESTIMATING A CONSTANT BACKGROUND o 76

Alternatively, o; = 0¢ + 60; where the é0;’s are independent, zero-mean Gaussian
random variables.
We define the following boundary functions relevant to the four square case.

They represent functions defined on subsets of the boundary, T'.

T = boundary of the unit square (4.28)
T; = ( boundary of jth square ) (T) (4.29)
so(v) = ,é S0;u;(v) (4.30)

u;(v) = { (1) :Zﬂfl’;m (4.31)

2(v) = 2°(v)u;(v) (4.32)

522(v) = 62°(v)u; (v) (4.33)

n5(o) = n(v)u(v) (4:34)

R;(u,v) = E {nj(u)n;(v)} (4.35)

We rewrite the expectations, eq.’s (4.25) and (4.26), for the case of four squares
treating them as conditional expectations conditioned on the four o;’s. For sim-
plicity we take the number of measurements, M, to be 1. Note in the following the
subscript, 7, indexes the square on which the associated functions is defined; it is

not to be confused with the subscript, ¢, used previously to index measurements.



CHAPTER 4. ESTIMATING A CONSTANT BACKGROUND o 7

E{él6} = a0 (4.36)

4
+ 7 60; | duzl(u dvRY(u,v)28(v
360 [ dusfle) [ Ry 0)<500)
s 0 1
duz; dvR; " (u,v)éz;
+ '7;:100/1‘,' uz;(u) -/I-‘,- VR (u,v)62;(v)

+ 'yi&w,-/ duzg(u)/ dvR;*(u,v)62;(v)
j=1 Ly L;
where
N = (f; / duz)(u) /' dvR; (u,v)20(v)) (4.37)
oI r;

In Section 4.3 where we linearized the PDE about a nominal constant back-
ground oy, we came up with analytical expressions for an approximation to the
solution of the PDE as a function of the perturbations in go. The case of o(r)
being piecewise constant in four squares was considered where o; = 0¢ + 60; for
J = 1,...,4. We can now substitute these expressions into eq.(4.36), giving us an
expression for E {6|o} explicitly as a function of the perturbations éc;. This will
allow us to take the expectation of E {6|0} with respect to the densities of the 60;’s.

Again, we consider the discrete case where the vectors z;.’, 6z; consist of equally
spaced samples of their corresponding functions. The covariance matrix, R;, is the
discrete version of the covariance function, R;(u,v). Recall eq.(4.23), which is a
linearized expression for the interior potential vector, 6b, as a function of the per-
turbations, 6o. From our earlier expression relating Dirichlet to Neumann boundary

conditions, eq.(4.16), 6z, is just a linear function of 6b. For example, referring to

6z = ( bz1a ) (4.38)

5 21,4

Figure 4.3 for 62 ;, if we let



CHAPTER 4. ESTIMATING A CONSTANT BACKGROUND o 78

we obtain the following expression,

1
6z, = L;—F'Géo (4.39)
Oo
where
Hy 0 —-S, 0
Ly=|"° (4.40)
So 0 Hto 0

Similarly, we can come up with expressions for L;...L,.
Substituting the above expressions for §2; into eq.(4.36) then taking the expec-

tation of the result over o(r) we get the following.

E,{E{6lo}} = oo (4.41)
4
2 -1_0
4
v = ()R (4.42)
=1

6l = {L,-(F‘IG)}M

where “jth” denotes the jth column of the associated matrix. Note eq.(4.41) is not
exact in the sense that we have used linearized expressions for the 62;’s. What we

have then is the following analytical approximation to the bias.

bias = E,{E{(oo—6)|o}} (4.43)

= —li:q-ﬁl'.R._lzq
00 = 70 24

As for the mean-square error rewriting eq.(4.27) for the four square case we

have,

E{(oo—6)|o} = v+{E{(00 —5)|o}}’ (4.44)
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=1

4
+ +? {E bo; ./I‘,- duz](u) ./I:,- dvR;l(u,v)z_?(v)
: 0 1
+ 1200 -/;j duz;(u) -/I-‘,- dvR; " (u,v)62;(v)

2
4
+ E&TJ‘ /I‘,- duz_?(u) /I-‘,- dij-l(u,v)sz(v)}

Let us rewrite eq.(4.44) as follows.
E{(0o-8)"0} = y+u (4.45)
4
v = ~* {Z&ajA duz?(u)/l-‘ dvR;l(u,v)z?(v)
j=1 J J

4
+ ZUO/I: duz?(u)/r dvR;(u,v)62;(v)
i=1 J 7

2
4
+ jglﬂa,- /F:' duz(u) /r,- dvR_,,-_l(u,v)6zj(v)}

Let us also define the expectation of eq.(4.45) over o(r).

EU{E{(UO—&)zlo}} = q7+e¢ (4.46)

€ = E,{v}

We see that E, {E {(do — 6)%|0}} is the sum of two terms, vy and €. Note ~ is the
mean-square error for the case where there exists no modeling error. This term owes
its contribution entirely to the measurement noise. The term € on the other hand
is due entirely to errors in modeling o(r). Note for the case of R;(u,v) = pb(u,v)
where u is the noise variance the effect of the measurement noise covariance on €
cancels out in the term ¢; i.e. the term ¢ does not even depend on u. The particular

R;(u,v) considered amounts to the case where the noise is white along the boundary.
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We could proceed to substitute our linearized expressions for §z; into eq.(4.44)
then take the expectation of the result over o(r) as we did for the bias. The resulting
expectation would consist of 2nd, 3rd, and 4th order moments of éo; along with
various cross products of these moments(see appendix). Note the final expression
would again be an approximation since we have based our analysis on the linearized
PDE.

In summary what we have derived are approximations to the bias and the mean-
square error as a function of the statistics of a four square model for o(r) based on
a linearization of the PDE. These expressions can be numerically computed to give
estimates of performance in the presence of errors in modeling o(r). One could also

approximate these performance measures using the following Monte-Carlo method.

1. Generate synthetic data based on the four square model of o (r) where the §0;’s

are generated with a random number generator with appropriate statistics.
2. Compute ¢ using the estimator equation, eq.(4.3).
3. Compute (0o — &) for the bias, (0o — 6)? for the mean-square error.
4. Repeat first three steps until the number of trials is sufficient.

5. Form computed expectations

-

L
Z (0‘0 - 6’)
n=1
and

1 & 3
EZ("O-U)

n=1

where L is the total number of trials.
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This method essentially computes the expectation of the conditional bias and mean-
square error over o by computing the bias and mean-square error conditioned on
specific values of 60; over many trials then averaging the results qf those trials.
The computations become more accurate as the number of trials increases. Note
for white measurement noise along the boundary the estimator equation, eq.(4.3),
the conditional bias equation, eq.(4.36), and v in eq.(4.45), do not depend on the

value of the noise variance.

4.6 Numerical Computations-Simulations

In this section we explore the effects of modeling errors in o(r) on bias and mean-
square error by numerically computing some of the expressions derived in the pre-
vious section and also by running large numbers of Monte-Carlo trials on simulated
data. These computations will help to quantify the effects of modeling error on bias
and mean-square error and in doing so allow us to compare these two performance
measures to those in the absence of modeling error. In the case of bias we wish to
see how significant the effect is compared to the unbiased, modeling error-free case.
With regard to the mean-square error we wish to compare the magnitudes of the
contributions due to measurement noise and to modeling errror. It would be useful
to see, for example, how severe the modeling error must be before the mean-square
error exceeds that in the absence of modeling error in which case the mean-square
error is due solely to measurement noise. The modeling error being considered in
all computations to follow is precisely the one developed in Section 4.5; i.e. in
estimating o(r) one assumes a constant background, oy, when in fact o(r) is piece-

wise constant in four squares and the value of o(r) in each square is an independent
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Gaussian random variable with mean ¢y and variance ¢; where j indexes the square.

The synthetic data used in performing the Monte-Carlo trials is generated on
a 64 by 64 point grid using a five-point finite difference scheme representating an
approximation of the PDE with a truncation error of order O(h?) where h = 1/N
and the grid is N by N. We run Monte-Carlo simulations in order to come up
with plots of the bias and the mean-square error as functions of the variance of
o(r) in each of the four squares. In all of our computations to follow we consider a
single measurement scheme with the following boundary excitations defined along

the boundary of the unit square.

sin(2rz) y=1, 0<z<1
—sin(27y) 0<y<1, z=1

¢(z,y) = , (2ry) ’ (4.47)
—sin(27z) y =0, 0<z<1

—sin(2ry) 0<y<1, z=0
4.6.1 Bias

We compute our linearized approximation to the bias using the expression in eq.(4.43).

Note from eq.(4.43) the bias is linearly related to the variance of §o;. That is

bias = E,{E {(00—6)|o}} (4.48)

= —liq-ﬁl'.R.—lzq
00j=1 YR I B |

Using our boundary conditions, eq.(4.47), and letting g; be the same for j = 1, ..., 4,
we compute %SI}z? where we have taken R; to be the identity matrix. The field
components making up elements of the matrix G as defined in eq.(4.22)) are com-
puted by solving Laplace’s equation using a five-point finite difference scheme. For

a discretization of 64 by 64 we obtain the computed quantities in Table 4.1. We see
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81429 -1.22626e-09
51529 3.959146e-10
51429 4.181981e-08
60,28 5.910316e-08
y 4.56513e-05
¥ Y=y 61529 | 4.56936e-12

Table 4.1: Relevant Quantities in Computing the Bias

from above that the slope,

v ‘ 0
=Y 62T

, is on the order of 1072 /gy. This shows that at least to first order the bias is
insignificant for this particular set of boundary conditions, eq.(4.47). This would
seem reasonable and to be somewhat expected considering our boundary conditions,
which probe the region symmetrically about the boundary.

In order to verify this effect for even larger perturbations we can simulate the bias
using Monte-Carlo trials and averaging results. The result is the plot in Figure 4.5.
The plot shows negligible bias for even large variances of o giving further indication
of the fact that the estimator is strongly unbiased with respect to modeling errors.
Again, this is not surprising given that the excitations are symmetrical about the
boundary and the deviations in ¢ are independent and identically distributed in

each square.

4.6.2 Mean-square Error

We now examine the mean-square error as a function of the variance of o in each
square, ¢. We consider the case in which the measurement noise is white along the
boundary. Looking at the expression for the mean-square error, eq.(4.46), we see

that it is a sum of two terms; a term due to noise, vy, which can also be thought
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Figure 4.5: Bias vs. p, 1000 trials
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of as the mean-square error in the absence of modeling error, and the term, e,
which accounts for the modeling error. The mean-square error term, ¢, is solely a
function of the distortion in modeling o(r). In our case the distortion consists of
modeling o(r) = oo when in fact o(r) is piecewise constant in four squares. The
mean-square error term, -, on the other hand, is solely a function of the signal to
noise ratio(SNR). We wish to compare these two terms, € and ~, in order to see
how estimation errors due to modeling distortions compare to errors due solely to
measurement noise.

We compare these two terms by plotting the percentage error, \/€/0o, as a
function of the percentage distortion in o(r), p/oo, where p is the square-root of ¢,
and comparing this to a plot of ,/7/0go versus the inverse SNR. The SNR is defined
to be the root mean-square of the signal, oz, along the boundary, divided by the

standard deviation of the additive white measurement noise. Specifically,

signal rms
SNR = (4.49)
notse dev

signal rms = \/i/(o(s)zo(s))zds

We use eq.(4.37) to compute . We see from eq.(4.37) that for the case of white
measurement noise with covariance function R(u,v) = ué(u,v) v is proportional to

u so that
4
v=u(} [ du()) (4.50)
j=1"T;
Computing v requires only the normal derivative vectors for the constant back-
ground case. We use Monte-Carlo trials in order to compute e.

Figure 4.6 is a plot of ¢/o¢ as a function of p/oo. On this plot we have also

indicated «/0g for various levels of inverse SNR. Figure 4.7 is a plot of v/op as a
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Figure 4.6: €¢/0q vs. p/0o, 1000 trials
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function of (SNR)~!. On this plot we have also indicated €/o, for various levels of
distortion, p/0y. Finally, Figure 4.8 is a plot that combines the two previous plots
into one by plotting both €/oq vs. p/op and v/0g vs. (SNR)™1. We see from these
three plots that the mean-square error term due to modeling error is actually less
than the term due to noise when the distortion due to errors in modeling o is equiv-
alent to the inverse SNR. Specifically, if the inverse SNR is equal to the percentage
distortion in o, p/oo, the ratio between the two errors, €/v, is approximately 3/5.

This indicates that the estimator is quite robust with respect to modeling errors

in o.

4.7 Conclusions

In this chapter we have studied estimation performance for the problem of estimat-
ing o(r) assuming a constant o, background when in fact it is not constant. We
studied the effects of this modeling error on the bias and the mean-square error in
the specific case in which the true conductivity is piecewise constant in four squares.
A linearization of the PDE provided expressions for Cramer-Rao-like bounds on es-
timation performance.

We see from simulations and resulting plots that the estimator is quite robust
with respect to modeling errors; i.e. for the case of o(r) being piecewise constant in
four squares we can allow the variance of o(r) in each square to be quite large(i.e.
on par with the noise) without significantly affecting the mean-square error. Also,
the estimator is strongly unbiased in the presence of modeling errors. This is not
surprising since we are applying excitations symmetrically about the boundary.

Consequently, the net effect of the modeling error, i.e. using symmetric boundary
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excitations to estimate a constant o(r) when in fact it is piecewise constant in four
squares, is essentially the addition of a “noise” term to the mean-square error.

As a final note we mention that we have analytical expressions for the bias and
mean-square errors as functions of the deviations of o(r) from a constant back-
ground. As we discussed in Chapter 1 this may suggest a way of developing true
multi-grid estimation schemes [2] in which iterations proceed both from coarse scales

to fine scales and from fine to coarse.

4.8 Appendix: Expectation of Mean-square Er-

ror Over o

We rewrite our expression for the conditional mean-square error, eq.(4.44), as fol-

lows.
E{(o0 - 8)*lo} = ~ (4.51)
4
+ "12 {Z 60‘_-,'(!,'
i=1
+ X
4 4 2
+ 00) ) Bjibo;
j=1i=1
where
a; = -/r,- duz(u) /r,- dvR; (u,v)2](v) (4.52)
0 1 2
Bii = /I.‘:' duzj(u) /;‘, dvR; " (u,v) E&r,-w,- (4.53)

4 4
X = Zéajzﬂj_.-lio,- (4.54)
=1 (=1
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and w; can be derived from our linearization techniques. By performing an expec-

tation over o we get the following:

E, {E{(c0-8)*|0}} = ~ (4.55)

4 4 4 4
+ doalgi+og ) > BBt
j=1 k=1ji=1i=1

4 4 4 4
+ 209 E Z Bjicigi + 2E, {ao E E ﬂ,-_.-éa.-X}

j=1li=1 j=1i=1
4
+ 2E, {Z 5a,-a,-x} + E, {x?}
i=1

where
0 for t1#
g;i for 1=

This expression can be simplified, making it a function solely of second order mo-

E {é0;60;} = { (4.56)

ments, by using Gaussian moment factoring. The result is the following:

E,{E{(00—6)*l0}} = ~ (4.57)

4 4 4 4
+ Do algi+og Y D Bribist
i=1

k=1 j=1¢=1

4 4
+ 200) ) Bjioug;

j=1l¢=1

4
+ Z 33;2,;"1:'2

i=1



Chapter 5

Estimating Four Squares

5.1 Introduction

In this chapter we assume a model for o that is piecewise constant in four squares
and study the problem of trying to estimate o in those four squares. We analyze
estimation performance bounds for this problem in a manner similar to that of the
last chapter. However, in this chapter we focus on the problem of estimating o when
in fact it is piecewise constant in four squares. We derive the actual Cramer-Rao
bound for estimating four squares in the absence of any modeling errors. Although
there is no modeling error in this case, the problem is nevertheless one of non-linear
estimation. We are once again led to performing a linearization of the PDE in order
to derive bounds on estimation performance. We also explore the performance of
our algorithm for the first time; i.e. accuracy and speed of convergence of the
algorithm.

The following issues will be explored in this chapter.

e We derive the Cramer-Rao bound for estimating o in the case of four squares

via linearization of the PDE about four nominal values o9,...,02.

92
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e We compute the bound for various 09,...,00. In particular we investigate the
effect of these various backgrounds on the mean-square error in estimating
01,...,04. We also investigate the correlation between the errors in estimating

O140.+,04.

e We compute the bound for various excitations, demonstrating the effects of

the excitation scheme on performance.

e We perform numerical experiments based on two excitation schemes, one sin-

gle, the other multiple, in order to study the performance of the algorithm

based on synthetic data.

5.2 Problem Formulation

The fundamental problem is one of estimating o(z,y) in the unit square when
our model for o(z,y) consists of a 2D piecewise constant function as illustrated in
Figure 5.1. We define o, the vector which we are interested in estimating, as follows.

o1

o=| 7 (5.1)
02

04
Since the primary purpose for deriving the Cramer-Rao bound for this problem
is to compute the bound, for convenience we focus from the start on the discrete
problem. We consider the unit square to be an N x N grid. Potential and normal
derivative vectors represent equally spaced samples of their corresponding func-

tions along edges of each square indexed according to the conventions described in
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o o2

o3 04

Figure 5.1: Four Square o(z,y) Defined on the Unit Square



CHAPTER 5. ESTIMATING FOUR SQUARES 95

Chapter 2. Since an edge of the unit square is of length NV samples and the edges
corresponding to each square is half this length, these vectors are N /2 x 1.

We have the following observation equation:
re = {hi(0)} + (5.2)

for k = 1,...,L, where L is the number of experiments. The vectors ry, and ny
are each 4N x 1. The row vector hi(o) is 1 x 4N. We assume the vectors ny,
for k = 1,...,L are zero-mean, jointly Gaussian such that E {nmn.} = Rpbmn for
m,n = 1,...,L; i.e. the vectors are uncorrelated from experiment to experiment.
The vector hi(o) consists of normal derivative vectors multiplied by the value of
o(z,y) in the square to which the vector is associated. We define hi(o) in the

following way.

{he(0)} = Sz (5.3)
where
(on] 0O 0 O
S = 0 oI O 0
0 0 o3l O
\ 0 0 0 0'4.[
( 21,4 W
211
221
7 = | (5.4)
233
23,4
24,2
\ 243 k

(5.5)
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where [ is the identity matrix of dimension N. As consistent with indexing con-
ventions established in Chapter 2 the vectors z; ;j are as shown in Figure 5.2. For
ease of notation rather than add another subscript to each of the vectors z; we
have simply subscripted the entire vector z; to denote that each of the vectors 25
correspond to the normal derivative vectors for experiment k.

We also have the PDE which must be satisfied within the domain for each
experiment. The solution of the PDE can be obtained by matching boundary
conditions along each internal edge. As in Chapter 3 these boundary constraints
are represented by the following four equations where the z; ;’s represent normal

derivative vectors for a particular experiment.

01212 = 03234 (5.6)
03233 = 0424, (5.7)
03231 = 01213 (5.8)
04254 = 0323 (5.9)

Given the observation equation, eq.(5.2), and the constraints of the PDE, eq.’s
(5.6),...,(5.9), for an arbitrary number of experiments, the objective is to come up
with an estimate of the vector . In the next section we come up with a lower
bound on the performance of such an estimate based on the linearization of the

PDE about some nominal background o(z,y).

5.3 Cramer-Rao Bound

The Cramer-Rao bound gives a lower bound on the error covariance of an estimate

based on the conditional density, p,;(R|c), where ¢ is our 4 X 1 parameter vector
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21,4—> 22,2

23,4 —» «—— 24,2

233 243

Figure 5.2: Normal Derivative Vectors z;; Defined on the Boundary of the Unit
Square
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and r = {ry,...,7L}, the set of L observation vectors [13]. For the multiple parameter
case the Cramer-Rao bound provides a bound on the covariance matrix of the error
in estimating the parameter vector. The diagonal elements of the bound are bounds
on individual parameter error variances while the off-diagonal elements give us an

indication of the correlation among these errors.

Let

Q
Il

(5.10)

denote an unbiased estimate of 0. Let us also define the following error vector and

its associated covariance matrix.

61 — 01
dy — O
e=| 1 7* (5.11)
O3 — O3
64 — 04
and
A =E {e'} (5.12)

The following bound on the error covariance matrix exists [13].
A>J? (5.13)
where the 4 X 4 matrix J, the Fisher information matrix, is given by

JAE({Vs [lnpyo(Rlo)]} { Vo [npro(Rl0)] }) (5.14)
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and the partial derivative operator, V,, is defined as

2
801
R
V.A "5: (5.15)
do
85

EEN

This operator when applied to a 1 X m row vector

a= ( ay .. Qp ) (5.16)
yields
8a; Bapy
801 e 301
Vea=|: (5.17)
[-I'3 dam

ad" b ad‘

From the observation equation, eq.(5.2), we can derive the log of the conditional

density. Specifically, we have the following..

L
lnpyo(Rlo) = —% S (rs =~ Voms(o)) B rh = Vea(e))  (5:18)

+ a(Rk,L)

where a is a normalization term which does not depend on o. If we substitute
eq.(5.18) into eq.(5.14) and use the fact that the noise vectors are uncorrelated
from experiment to experiment in performing the expectation, we obtain
L
J= {"2_:1 V,h,,(a)R,;‘(V,h,,(a))’} (5.19)
We now focus on deriving expressions for V,hi(c). Taking the dervivative of

hi(o) with respect to o we obtain the following.

Vohi(o) = ML+ S'(V,2.) (5.20)
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where

(5.21)
0 0 S
234 k

(5.22)

Note with regard to the matrix M} the subscript k signifies that the normal deriva-
tive vectors that make up the entries of M are defined for the kth experiment.

In eq.(5.20) the quantities M and ¥ are well defined. The matrix M contains
normal derivative vectors along the edge of the unit square for some background
0. The matrix ¥ is made up of entries of this background 0. We do not, however,
have an expression for the matrix V,z}, which must also be evaluated for some
background o. As in Chapter 3 we linearize the PDE with respect to o in order
to come up with an approximate solution based on a linearization about some
particular background o. This first order solution will in fact enable us to derive
an expression for V,z,.

In the following discussion we focus on an individual experiment in order to
derive an expression for V,z}. One must keep in mind that when computing the
Fisher information matrix the quantity V,z} must be computed for each exper-
iment. Since our discussion focuses on quantities associated with an individual

experiment, for ease of notation we drop the subscript k from these quantities.
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The set-up is identical to that for the four square problem described in Chapter 3
except for the fact that we no longer assume a constant background throughout;
i.e. in linearizing the problem we now allow perturbations in o about arbitrary
nominal values in each of the four squares. We define the following quantities for a

particular set of boundary conditions.

oi = o)+ 6bo; (5.23)
b = b +6b; (5.24)
Zj = z0;+6z; (5.25)

where 4,7 = 1,...,4. The scalars, o;, and the N/2 x 1 vectors, b; are defined as
illustrated in Figure 5.3. The N/2 x 1 vectors z ;, which are normal dervative
vectors for the interior edges, are defined as illustrated in Figure 5.4.

Let us define the following 4 x 1 vectors.

[ o?
0
o = | (5.26)
o3

\ o4

( boy
s = | % (5.27)
50’3

\ 50’4

(5.28)

Let us also define the following 2N x 1 vectors.

b1
b= |5 (5.29)
bs

by
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b]_‘—‘

Figure 5.3: Interior Potential Vectors b; Defined on the Unit Square
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21,2—se——22.4

211,3 sz’,s
2.
231 4,1

232 —ste——244

Figure 5.4: Interior Normal Derivative Vectors 2;; Defined on the Unit Square
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(5

0 b3

b’ = (5.30)
b3

\ 5

[ &b,

b,

6bs

\ 6b,

éb =

Recall that the Dirichlet to Neumann map derived in Chapter 2, eq.(4.16), gives
a linear relationship between the potential and the normal derivative of the potential
along the edges of each square. Therefore, there exists a linear relationship between
z, the normal derivative of the potential along the boundary of the entire unit
square, and the potential vectors defined along the edges of each square.

The vector b contains the potential vectors along each of the interior edges. Let
us also define the vector d, which is to contain the potential vectors along each of

the exterior boundary edges; i.e. the Dirichlet boundary conditions for an individual

experiment.

( by )
621
b22

b
s (5.31)
bsy
byz
b43

\ bue )

We can write the linear relationship between z and the two vectors b and d as
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follows.
z="Tb+ Tyd (5.32)
where
(s, 0 0 H, )
H o o0 -5,
H, -S, 0 0
r=| % Ho 0 0 (5.33)
0o 0 H, S
o o S H,
o H, -5, 0
\0 S, H, 0
and
(HL 0 0 0 0 0 0 -D)
D o o o o o0 0 AH,
o D H Lo 0 ©O0 0 o0
Ty = 0 H D 0. 0 0 0 0 (5.34)
o 0 0 H, -S,0 0 0
0 0 0 —-D H, 0 0 0
0O 0 0 0 O H, -D 0
L0 0 0 0 0O 5 H, 0 |

Let us premultiply the transpose of each side of eq.(5.32) by the operator V, .

Noting that T3d does not depend on o, we get the following relationship.
V.2' =V,b'T (5.35)

Now our problem of finding an expression for V,z' amounts to finding an expression
for V,b'.

Recall that the PDE is such that the interior potential, the vector b, is a non-
linear function of the vector 0. We have defined b = b°® + éb such that éb is a

perturbation of b about the nominal point b°. For small perturbations is a good
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approximation to the linear or first order term of the Taylor Series expansion of the

vector b with respect to o. Specifically,
éb = {V,b"} |, b0 (5.36)

In order to find an expression for V,b' we linearize the PDE so that there is a
linear relationship between 6§b and 6o then identify this approximate relationship
as V,b'.

We proceed to linearize the PDE. Recall that solving the PDE amounts to
satisfiying the conditions in eq.’s(5.6)-(5.9). If we substitute eq.’s(5.23)-(5.25) into
eq.’s(5.6)-(5.9), we obtain the following:

(0? + 6o1) (zi"2 +6z12) = (07 + 602)(,?2'4 + 622,4) (5.37)
(09 +602) (295 + 6223) = (0% + 604) (291 + 6241) (5.38)
(03 + 60s) (25, + 6251) = (094 601) (205 + 6218 (5.39)
(00 +604) (284 + 6244) = (09 + 603)(25, + b2s.2) (5.40)

If we multiply out the terms in eq.’s(5.37)-(5.40) and keep only the linear terms,
we arrive at the following set of equations relating the first order perturbations

of the interior normal derivative vectors to the first order perturbations of the

conductivity.
06212 — 096224 = 602294 — 60122,2 (5.41)
096233 — 036241 = 604z2'1 — 60323 5 (5.42)
036231 — 036213 = 601203 — 60323, (5.43)

096244 — 096232 = 60323, — 60425 (5.44)
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We can use our Dirichlet to Neumann map, eq.(4.16), to write the first order
perturbations of the normal derivative vectors in eq.’s(5.41)-(5.44) as functions of
first order perturbations of the interior potential, §b;. Specifically, we arrive at the

following linearized equations.

F,06b = G0 (5.45)
where
( (694 03)D —0lH,, 0%, 0
9H,, —(og +04)D 0O —o0H,,
Foo = | 72" (02 +03) LA (5.46)
\ 0 olH, —odH, —(ag +09)D
( —202 24 O 0
0 _ 0 0 0
& = | %23 ; 41 (5.47)
21'3 0 _23'1 0
K 0 0 zglz _22.4

For invertible F,o we can solve for éb.
= (Fy0)'G%0 (5.48)

We have a linear relationship between éb and 6o and from eq.(5.36) we can deduce

the following.
{V.b'} |, =F3'G° (5.49)
Finally, we can derive our expression for V,z;. Substituting eq.(5.49) into
eq.(5.35) we get,
Vozi |, = (G°) (F2) |, (5.50)
Note that the matrices F,o and T are constant matrices independent of the ex-

periment. However, as one can see from eq.(5.47) the matrix G° contains normal
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derivative vectors which must be computed for each experiment. Therefore, for

notational purposes we let G® = G}, so that
Vot |, = GUER) |, T" (5.51)

In summary, we can compute the Cramer-Rao bound by taking the inverse of the
Fisher information matrix. We can compute the Fisher information matrix, J, in
the following way. We first substitute eq.(5.51) into eq.(5.20) in order to compute
the matrix V,hi(o) for a particular experiment. We then substitute the matrix
Vohi(o) into eq.(5.19) for each experiment and perform the specified summation

over all the experiments. Note that the bound is computed for a specific set of

nominal values ¢, ...,09.

5.4 Numerical Computation of Bound for Differ-

ent Backgrounds and Excitations

A measure of estimation performance for an unbiased estimate of ¢ is the error
covariance matrix A. On the basis of the Cramer-Rao bound, eq.(5.13), we can
expect the inverse Fisher information matrix J~! to give us a reasonable indication
of A.

In this section we numerically compute the matrix J~! using the expressions
derived in the previous section. In our computations we take the unit square to be
a 32 X 32 grid. We use a five-point finite difference scheme to solve the PDE for
specific 0p’s in order to compute the necessary normal derivative vectors required
in forming the matrices My and G;. In computing J~!, using the expression for

J, eq.(5.19), we need a value for the error variance of the noise vector for each
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experiment, R;. We assume R, = ul; i.e. the noise is white with variance u for
each experiment. Our definition for the SNR is as defined in Chapter 3; i.e. it is the
ratio of the root mean-square of the signal to the standard deviation of the noise.

Specifically,

SNR = {[ Z(hk(a)h (a))/uv] /u} (5.52)

where L equals the number of experiments.
A useful statistic in indicating how well correlated two random variables are is
the normalized correlation between the two or correlation coefficient. The correla-

tion coefficient 7,; between two random variables, z; and z;, is defined as follows.
ni; = E{ziz;}/(E{z}}E{z}})3 (5.53)

where
Inis| <1 (5.54)

Based on the correlation coefficient we define a normalized J =1, P. The entries of

P are defined as follows. For ¢,5 = 1,...4,
= JF /(I3 T (5.55)

We compute J~! and P for various ¢° backgrounds, i.e. for various values of
03,...05, in order to investigate how these backgrounds affect estimation perfor-
mance. We also compute the matrix for various boundary excitations to illustrate
the effects of boundary excitations on performance. Finally, by observing the mag-
nitudes of the correlations between the errors in estimating each square(the off

diagonal terms of the inverse Fisher Information matrix) we get an idea of how cor-

related the error in one square is with that in another. This is of particular interest
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in the context of our multi-resolution estimation approach in that low correlation
among the performances in estimating each square would justify an approach that

tries to break the problem down by subdividing the domain and trying to extract

features within each domain.

5.4.1 J! for Various Excitations

We ﬁrét compute J~! for the sinusoidal boundary conditions,

sin(2rz) y=1, 0<z<1
—sin(2mry) 0<y<1, z=1

¢(z,y) = , (2my) ’ (5.56)
—sin(27z) y =0, 0<z<1

—sin(27y) 0<y<1, z=0

The following is J~* for a constant background, ¢? = o9 = 0 = 09 = 1, and

SNR = 1.

3.213024e — 02  —4.489673e — 04 —4.489673¢ — 04 1.769225¢ — 05
—4.489673e — 04 3.213024e¢ — 02  1.769223¢ — 05 —4.489673¢ — 04
—4.489673e — 04 1.769223¢e — 05  3.213024e — 02 —4.489673¢ — 04

1.769225¢ — 05 —4.489673e — 04 —4.489673e — 04 3.213024e — 02
(5.57)

The following is the corresponding matrix of correlation coefficients, P.
1 —1.397336e — 02 —1.397336e — 02 5.506416e — 04
—1.397336e — 02 1 5.50641e — 04 —1.397336e — 02

—1.397336e — 02 5.50641e — 04 1 —1.397336e — 02

5.506416e — 04 —1.397336e — 02 —1.397336e— 02 1
(5.58)

As we would expect the correlation between the errors in squares one and four
is less than that of squares one and two due to the proximities of the squares; i.e.

Jit < Ji!. The symmetry of this particular excitation scheme is exhibited by the
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1

equivalence of the correlations between adjacent squares, i.e. JR =Jpl =Jgt =
Jal, and diagonally opposing squares, i.e. J = Jzs', and the fact that Ji is
independent of 7. Note also that the magnitudes of the offdiagonal terms of P are
quite small indicating very low correlation of errors between squares.

Next we compute J~! for a boundary condition consisting of an impulse in the

upper left corner.
6(z) y=1

(5.59)
0 elsewhere

#(z,y) = {

The following is J~! for a constant background, ¢? = 0 = 09 = o) = 1, and

SNR = 1.

7.813642¢ — 03 0.15047 0.15047 0.26502

0.15047 38631.4 265.971 12691.5 (5 60)
0.15047 265.971 38631.4 12691.5 |
0.26502 12691.5 12691.5 2.897401e + 05
The following is the corresponding matrix of correlation coefficients.

1 8.660616¢ — 03 8.660616e¢ — 03 5.569841e — 03

8.660616e¢ — 03 1 6.884837e¢ — 03 0.11996 (5.61)

8.660616e — 03 6.884837¢ —03 1 0.11996 ]

5.569841e — 03 0.11996 0.11996 1

Notice J;;' < Jy' < J;'. This indicates that the performance degrades as one
gets further away from the impulse. This is reasonable since the energy from the
impulse dies away quite quickly; i.e. for a constant background where the PDE is
simply Laplace’s Equation, we have an analytical solution, eq.(4.1), from which it
is easy see that the potential decreases exponentially away from the source.

Once again, the magnitudes of the offdiagonal terms of P are quite small indi-

cating very low correlation of errors between squares.
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Finally, we compute J~! for a multiple experiment scheme consisting of 16
independent impulses symmetrically distributed about the boundary. We define

#r(z,y), the boundary condition for the kth experiment, as
bz—%) y=1 1<k<4
Sly-—&2) z=1 5<k<8
b(z— &%) y=0 9<k<12
Sly— 1)) z=0 13<k<16

Sr(z,y) = (5.62)

The following is J~* for a constant background, ¢? = o) =03 =0 =1, and
SNR = 1. |
2.023046¢ — 03 —3.557312e — 05 —3.557306e — 05 1.224941e — 06
—3.557312e¢ — 05 2.023046e — 03 1.22494¢ — 06 —3.557306e — 05
—3.557306e — 05 1.22494¢ — 06 2.023046e¢ — 03 —3.557312¢ — 05
1.224941e — 06 —3.557306e — 05 —3.557312¢ — 05 2.023046e — 03

(5.63)
The following is the corresponding matrix of correlation coefficients.
1 —1.758394e — 02 —1.758391e — 02 6.054933¢ — 04
—1.758394e — 02 1 6.054928¢ — 04 —1.758391e — 02
—1.758391e — 02 6.054928e — 04 1 —1.758394¢ — 02
6.054933e — 04  —1.758391e — 02 —1.758394e — 02 1
(5.64)

We see from the diagonal entries of J~! that performance is better than that of
either of the previous two single experiment schemes. This comes as no surprise
since we are using 16 times as many measurements. It is interesting to compare the
values of the diagonals of J~!, which are all equivalent for excitations symmetric
about the boundary, for the two symmetric cases; i.e. sixteen measurement case and
the single measurement sinusoidal excitation case. The ratio of the error variance
in the sixteen measurement case to the error variance in the single measurement

case is roughly 1/16.
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As in the case of the two single experiment schemes, the magnitudes of the
offdiagonal terms of P are quite small indicating very low correlation of errors

between squares.

9.4.2 Effect of Background o on J-!

We wish to characterize J-1 a5 a function of the conductivity values about which
we are linearizing, i.e. o, ..., ad, by considering two different situations. In the first
situation we consider the case of a background in which 0 = 0o+ 60; for { = 1,...,4
where 0y is the same for all four squares and the 60i’s are independent identically
distributed perturbations. We plot the square-root of the average mean-square er-
ror, i.e. 337 J7!, as a function of the magnitude of the standard deviation of
60;. In the second situation we consider the case in which the value of o in three
of the four squares are equal while the fourth square is randomly perturbed. We
plot the square-root of the average mean-square error as a function of the stan-
dard deviation of this perturbation. In both cases we use the multiple experiment
scheme consisting of the 16 independent impulses symmetrically distributed about
the boundary of the unit square.

We begin with the constant background case. Consider the case where 0; =

0o + 60; where the 60;’s are zero-mean, jointly Gaussian and
E {60’,’60’,‘} = q6.-,- (5.65)

To get an idea of the average performance in each square we define the following

quantity.

r= {E B > J.-.*‘]}% (5.66)



CHAPTER 5. ESTIMATING FOUR SQUARES 114

We can use Monte-Carlo trials in order to plot 7/0p as a function of the distortion

in o, p/oy, where

P=+\/q (5.67)
The result is shown in Figure 5.5.

The plot in Figure 5.5 indicates that the average performance in a square is a
monotonically increasing function of the distortion in the background. This indi-
cates that the errors in estimating each square get larger as the variation in the
background increases. However, the range of the errors, .0045 - .00495, compared
with the range of the distortion in the conductivity background, 0.0 - 0.6, indicates
that the bound is fairly insensitive to the values of ¢ in each square.

Let us also look at the correlation coefficients as a function of the distortion for
this case. We can estimate the correlation coefficients from looking at the matrix
P as defined in eq.(5.55). The symmetries in the boundary conditions give rise
to a highly structured P in that the cdrrela.tions in any two adjacent squares are
equivalent and likewise for any two diagonally opposing squares. Therefore, we need
only look at P;; and P, 4.

Figure 5.6 is a plot of P 3, the correlation between the errors in squares one and
two, as a function of the distortion in o, p/00, generated using Monte-Carlo trials.
The plot indicates that the errors in adjacent squares are essentially uncorrelated.
However, the correlation, in this case it is negative, increases as the variation in the
background increases.

Figure 5.7 is a plot of P; 4 as a function of the distortion in o, p/oo, generated
using Monte-Carlo trials. We can see that correlation between diagonally oppos-

ing squares is two orders of magnitude less than that of adjacent squares. The
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0.0049
0.0048

0.0047

T/0'0

0.0046

0.0045

0.0 0.2 0.4 0.6
P/

Figure 5.5: 7/0g vs. p/og for 100 trials, SNR=10
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Figure 5.6: P; 2 vs. p/og for 100 trials, SNR=10
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correlation decreases as a function of the variation in the background.
We now consider the case where o(r) is constant in three of the four squares
and free to vary in the fourth square. Consider the case of 01 = 03 = 03 = 0p and

04 = 09 + 60 where 60 is a zero-mean, Gaussian random variable with
E{60®} =4 (5.68)

Let us once again investigate the average performance in each square, as defined
in eq.(5.66), as a function of the distortion in 04. We use Monte-Carlo trials in order
to plot 7/0y as a function of the distortion in oy, p/00, where once again p = V4
The result is shown in Figure 5.8.

The range of magnitudes of the mean-square errors in Figure 5.8 is roughly the
same as the range in Figure 5.5. This further indicates that the Cramer-Rao bound
is insensitive to the values of o in each square.

Let us now look at the correlation coefficients as a function of the distortion in
square four. Figure 5.9 is a plot of P, as a function of the distortion in o, p/oo,
generated using Monte-Carlo trials. Figure 5.10 is a plot of P, 4 as a function of the
distortion in o, p/0o, generated using Monte-Carlo trials. As in the case where we
added random perturbations to all four squares, the values of Py, and P, 4 range
over very small values. This gives further indication that the errors in estimating

each square are essentially uncorrelated with each other.

5.4.3 Conclusions

Our numerical computations have demonstrated both the usefulness and the versa-
tility of the Cramer-Rao bound. We were able to explore quantitatively the effects

of excitations on estimation performance. We were also able to explore the depen-
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Figure 5.7: P4 vs. p/op for 100 trials, SNR=10
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Figure 5.8: 7/0g vs. p/o, for 100 trials, SNR=10
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Figure 5.9: P, 2 vs. p/op for 100 trials, SNR=10
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Figure 5.10: Py 4 vs. p/op for 100 trials, SNR=10
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dency of estimation performance on the particular values of the parameters we are
estimating. In fact our plots indicate that the dependency of the error variance
on the background conductivity is relatively small. We also produced plots that
indicate that the errors in estimating each square are approximately uncorrelated.

As a final note on our work with the Cramer-Rao bound, we point out that
this method can be easily extended to cases of higher pixel resolution. Though
the numerical computations would of course become more intensive, the general
method we have outlined is valid for determining the bound on the error variance
in estimating o at any scale. This is useful in addressing the question of what spatial

resolution of o the data supports.

5.5 Numerical Investigation of Algorithm Perfor-

mance

In this section we demonstrate the performance of our algorithm on synthetic data
for the four-square case. Again we assume white measurement noise along the
boundary with variance x uncorrelated between experiments. We use eq.(5.52) for
our definition of SNR. We use a 16 by 16 point discretization. Synthetic data was
generated using a five-point finite difference scheme to solve the forward problem.
We use an excitation scheme consisting of 16 independent impulse excitations sym-
metric about the boundary as described in €q.(5.62). The following four square

conductivity image is used.

45.8927 | 91.1246
103.463 | 100

Table 5.1: True oy, ...,04
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The following is a table of the percentage estimation errors for each of the four
squares after a given number of iterations of the algorithm. There are four cases
ordered in decreasing values of SNR. An initial value of 0 = 100 is used in each
square to start the iteration at this scale. The value of { is fixed to be 1. The second

version of the two single scale algorithms is used; i.e. Algorithm 2 in Chapter 2.

| iteration [ 5 |
4.68089e-05 -6.43654e-05
-7.20061e-05 | -3.941219e-05

[ iteration 10 |
2.642314e-05 | -3.023373e-05
-4.06811e-05 | -3.317543e-05

| iteration |20 B

2.296145¢-05

-1.180416e-05

-1.810873e-05

-1.369082¢-05

| iteration | 30 ]
1.541231e-05 | -5.003927e-06
-8.675999¢-06 | -6.134511e-06

[ iteration

5.528373e-06
-2.318928e-06

| 50 |
-1.120088¢-06
-1.503834-06

Table 5.2: Noiseless Data

From Tables 5.2-5.5 we see that the algorithm converges very quickly for this
four square case. In each table we can see that near convergence is achieved after
only 5 iterations. The algorithm demonstrates good performance even for an SNR
as low as 2. The success of the algorithm at this scale is not surprising considering
each square touches the external boundary, on which we have measurements. The
problem becomes much more difficult when we introduce internal squares that do

not have direct contact with measurements as we shall see in the next chapter.
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| iteration

|5 ]

3.703576e-03

2.721963e-03

3.39146e-04

3.622481e-03

| iteration

| 10 |

3.684357e-03

2.776592e-03

3.780045e-04

3.624302¢-03

| iteration

[ 20 |

3.674152e-03

2.815012¢-03

4.051386e-04

3.632788e-03

mera.tion

| 30 ]

3.658201e-03

2.830112e-03

4.144929e-04

3.63143e-03

Literation

T50 ]

3.638269e-03

2.839538e-03

4.192376e-04

3.626659¢e-03

Table 5.3: SNR = 10

iteration

5

7.356638e-03

5.510119e-03

7.358055e-04

7.325821e-03

| iteration

| 10 |

7.351087e-03

5.58565e-03

7.915342e-04

7.323798e-03

meration

20 |

7.340818e-03

5.637447e-03

8.290836e-04

7.315819e-03

Literation

[ 30 |

7.314838e-03

5.653806e-03

8.38593e-04

7.299293e-03

| iteration

| 50 l

7.280291e-03

5.660676e-03

8.401449e-04

7.277789¢-03

Table 5.4: SNR =5
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| iteration

| 5 l

1.830088e-02

1.388103e-02

1.831383e-03

1.868888e-02

| iteration

[ 10

1.840937e-02

1.402192e-02

1.993039e-03

1.867902e-02

| iteration

[ 20

1.843799e-02

1.407471e-02

2.096677e-03

1.858983e-02

| iteration

| 30

l

1.837196e-02

1.405326e-02

2.108236e-03

1.849114e-02

| iteration

| 50

|

1.826622e-02

1.400461e-02

2.091093e-03

1.837635e-02

Table 5.5: SNR = 2
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Chapter 6

Estimating Sixteen Squares

6.1 Introduction

In this chapter we demonstrate the performance of our algorithm on synthetic data
generated using a sixteen-square parametrization for 0. The sixteen-square case
provides a good test for the algorithm because it is a case in which there are four
interior squares whose edges do not coincide with the external boundary. Since
these interior squares are not in direct contact with the measurements, one would
expect the estimation performance in these squares to be inferior to that of squares
that are in direct contact with the measurements. We would also expect the ill-
posedness of the problem to manifest itself in the existence of local minima of the

cost function. We numerically explore the following issues.

e 1) A comparison of convergence properties of the two versions of the algorithm,

Algorithm 1 and Algorithm 2.

e 2) We investigate the presence of local minima by plotting the cost function,
evaluated using noiseless data, along certain trajectories of the parameter

space.

126
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e 3) The influence of coarse scale information on performance at a finer scale.

o 4) Performance of the overall algorithm at 3 separate scales using both noise-
less and noisy data. For the case of noisy data we let the penalty weighting
coefficient A increase gradually during the iterations at the sixteen-square
scale and investigate the performance characteristics. We also give an exam-
ple in which the noise level is extremely high in order to illustrate the resulting

degradation in estimation performance.

e 5) The effects of noise on the performance of the algorithm as a function
of location in the ¢ image. In particular we compare the performance of
estimating the inner squares to that of estimating the outer squares. We also
plot the performance for the problem of estimating the inner four squares
as one square, i.e. estimating the mean of the four squares, and compare
this with both the performance of estimating the inner squares and that of

estimating the outer squares.

In the experiments to follow we use the same set-up as in Chapter 5; i.e. white
measurement noise along the boundary, uncorrelated between experiments. A five-
point finite difference scheme is used to solve the forward problem in order to
generate synthetic data. A 16 by 16 point discretization is used for both generating
the synthetic data and implementing the estimation algorithm. We use the excita-
tion scheme consisting of 16 independent impulse excitations symmetric about the
boundary as described in eq.(5.62). In all experiments involving noiseless data the

value of } is fixed to be 1.
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6.2 Comparison of Performances of Algorithms 1 and 2

In this section we compare the rates of convergence of the two versions of the algo-
rithm, Algorithm 1 and Algorithm 2, on noiseless data. Because we are simply in-
terested in the convergence properties at a specific scale we do not run the full multi-
scale algorithm. Instead, we run the algorithms exclusively at the sixteen-square
scale. In order to initialize the iterations at this scale for both Algorithms 1 and 2
we use as the starting point for o the average of the true o at a four-square scale.

Algorithm 1 essentially alternates between solving two subproblems. One prob-
lem is that of finding the optimal ¢ conditioned on knowing ¢; the other is the
problem of finding the optimal ¢ conditioned on knowing 0. If we think in terms
of the cost function, the algorithm alternates between going to the minimum of
the cost function conditioned on ¢ and going to the minimum of the cost function
conditioned on o.

Algorithm 2 on the other hand alternates between single relaxation sweeps with
respect to o and ¢. It alternates between making moves downward along the cost
function in the direction of ¢ and making moves downward in the direction of
¢. Another way of distinguishing between Algorithm 2 from Algorithm 1 is that
instead of solving each subproblem fully, as Algorithm 1 does, Algorithm 2 solves
each subproblem partially.

We compare the two algorithms by applying both of them on data corresponding
to the conductivity image in Table 6.1. For each algorithm we iterate until the
average percentage error of the inner squares reaches a certain certain levell. Since

the total number of iterations required to attain a certain percentage error gives

1 We use the performance of the inner squares as our criterion since the errors there dominate the
errors of the outer squares.
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a good indication of the performance of an algorithm, we compare the number of
iterations required for each algorithm to attain a certain percentage error. We do

this for several values of percentage error in order to compare their performances

over a range of errors.

56.7142 | 92.8996 | 102.77 | 100
117.513 | 68.5311 | 110.48 | 133
140.345 | 64.9578 | 122.151 | 86.9013
134.194 | 106.852 | 100 135.18

Table 6.1: True o

For the case of Algorithm 2 a single iteration is well defined; i.e. an iteration
consists of one sweep with respect to o and one sweep with respect to ¢. For the
case of Algorithm 1 a single iteration consists of two sub-iterations, one for o and
one for ¢. The number of iterations involved in each of these sub-iterations is the
number required for convergence in each case. We first define convergence for the
two sub-iterations.

With respect to o we take adequate convergence to be the point in the iteration
at which the percentage change of o in the inner squares falls below a certain
threshold. With respect to ¢ we take adequate convergence to be the point in the
iteration at which the percentage change in ¢ along the edges of the inner squares
falls below a certain threshold. In our examples we take the value of the threshold
to be .0001 for both cases.

For a given percentage error criterion we compare overall performance by looking
at two different measures: a) the total number of o iterations performed in Algo-
rithms 1 and 2 b) the total -number of ¢ iterations performed in Algorithms 1 and 2.

Figure 6.1 is a log-log plot of the total number of ¢ iterations performed for the
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following 4 percentage error criteria: .5, .05, .005, .0005%. Figure 6.1 is a log-log
plot of the total number of ¢ iterations performed for the same set of percentage
error criteria.

Note that in both Figure 6.1 and Figure 6.2 Algorithm 2 shows better perfor-
mance characteristics than Algorithm 1 does, i.e. the total number of iterations
is fewer, down to a certain level of percentage error. These plots indicate that for
percentage errors down to approximately .001 Algorithm 2 performs better than
Algorithm 1. For percentage errors lower than this, however, Algorithm 1 performs
better than Algorithm 2, but the difference in performance decreases considerably.

These results indicate that down to a reasonably small percentage error criterion
it is not productive to spend too many iterations on minimizing the cost function
with respect to either o conditioned on ¢ or ¢ conditioned on o. Rather, faster
convergence is attained by alternating between single relaxation sweeps with respect
to 0 and ¢. Below a certain percentage error the difference becomes neglibible.
Note that for noisy data we would not expect to achieve very low percentage errors.
Therefore, in cases where the noise in the measurements is significant one would
use Algorithm 2.

For the case of low measurement noise, one can imagine using a two phase
algorithm in which we start with Algorithm 2 until a certain percentage error is
achieved then switch to Algorithm 1 for fine tuning. Alternatively, one could use
an hybrid algorithm that slowly increases the number of iterations in o and ¢ at

each stage.

2These percentage errors are expressed in absolute units rather than in units of percent. We will
henceforth adhere to this convention.

s e e = e =8 % e menn n — mee
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Figure 6.1: Log-log Plot of Total Number of o Iterations Performed For 4 Different
Percentage Error Criteria
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Figure 6.2: Log-log Plot of Total Number of ¢ Iterations Performed For 4 Different
Percentage Error Criteria
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6.3 Presence of Local Minima

In this section we investigate the presence of local minima by plotting the cost
function, evaluated using noiseless data, along certain trajectories in the parameter
space. It is clear that if we consider the parameter space to include both the
unknown interior ¢ for each set of experiments as well as the unknown o image,
the nﬁmber of degrees of freedom in the cost function is extremely large. Hence, we
would expect the cost function to exhibit local minima along various trajectories in
this space.

We define our parameter space to be the space of vectors, z, comprised of both

T = (:) (6.1)

where o is a vector comprising the values of the conductivities in each of the sixteen

o and ¢. Specifically,

squares and ¢ is a vector comprising samples of the potentials along each edge for
each set of experiments.

Figure 6.3 is a plot of the cost function with respect to a line in the space of
parameters going from the true parameter(the point at which f = 0), zo, to an
arbitrary parameter far away from z,, which we denote . In particular, the plot
shows the cost function, f(z;t), as a function of the scalar parameter ¢, which

parametrizes the line as follows.
z=(1—1t)zo +t% (6.2)

where the parameter t varies from 0 to a positive value at which no entry of the

o part of the corresponding vector z goes negative®. The o associated with % is

3We do not plot in the domain of z where there exists negative o since this corresponds to a
non-physical situation.
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depicted in Table 6.2. The interior ¢ associated with % is set to 0.

1040 |90 |10
25130 (49 |640
81100121 |10
16 | 196 | 20 | 560

Table 6.2: o corresponding to z

Note that the plot in Figure 6.3 reveals the presence of a local minimum. This
minimum occurs at ¢ = .93 corresponding to Z. Note that % is not a feasible solution
with respect to our cost function as A approaches infinity, but indicates that local
minimum structure is encountered when o and ¢ are allowed to vary arbitrarily, as
they are in each stage of our algorithm which involves finite values of ).

We now consider the structure of the cost function from the true parameter,
To, to a parameter having a constant o image. Let the true parameter have a o
component associated with the o image in Table 6.3. Again, we plot along a line, this
time from the vector z, to the vector which we call z. The vector % is composed of a
constant o image of value 2500 and its associated ¢ components consist of solutions
to the PDE with this constant o(in this case these are the samples of the solution
to Laplace’s equation along each edge for each experiment). The plot is shown in
Figure 6.4.

Note that the plot in Figure 6.4 is convex, even though the ¢ images correspond-

ing to zo and % differ greatly. The ¢ associated with %, however, was not randomly

134.283 | 857.993 | 1055.41 | 1000
1350.26 | 370.622 | 1209.6 | 1660
1806.9 | 299.156 | 1443.02 | 738.026
1683.87 | 1137.04 | 1000 1703.6

Table 6.3: True o
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Figure 6.3: Cost Function vs. ¢; Z corresponds to ¢t = .93
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Figure 6.4: Cost Function vs. t; £ corresponds tot =1
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chosen this time. Rather, it was chosen to satisfy the PDE. Results from additional
experiments of this type indicate that for zo and £ with greatly differing o images,
if the ¢ corresponding to % satisfies the PDE the cost function along the resulting
trajectory is convex.

Additional experimentation with plots along numerous trajectories of the type
shown in this section indicate that there are trajectories which exhibit local minima
in the cost function. However, by confining oneself to vectors z in which ¢ must
satisfy the PDE associated with the corresponding value for o, the cost function
appears to be convex. For the sixteen-square scale the presence of local minima
seems to be an issue only when ¢ is allowed to vary greatly and does not even
approximately correspond to the solution of the PDE. Since our algorithm starts
each scale with o and ¢ that match and each successive relaxation step keeps ¢ and
¢ close, we would not expect it to fall into local minima when applied to noiseless
data. All of our experiments on noiseless data seem to support this claim.

Note that for higher resolutions one would expect the issue of local minima to
become increasingly more important. Note also that the presence of measurement

noise, even at the sixteen-square resolution, may very well introduce local minima.

6.4 Using Coarse Scale Information to Initiate

Fine Scale Iteration

In this section we wish to demonstrate the effects of coarse scale information on the
performance of the algorithm at a fine scale by considering how the number of itera-
tions at the sixteen-square scale required to meet a certain performance criterion(e.g

percentage error) might be reduced by initiating these iterations using coarse scale
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10.5 | 12.5 | 105 | 75
95 (7.5 (95 |125
95 80 15 | 10.6
105 [ 120 | 5 9.4

Table 6.4: True o for Section 6.4

information. We do this by considering the performance of the algorithm at the

sixteen-square scale for the following initial conditions.
1. Random initial o.

2. Constant initial o where the constant equals the mean of the sixteen values

of the true o image.

3. Initial o is constant over blocks of four squares such that the resulting four
blocks can be thought of as corresponding to a four-square scale of the image.
The constant for each of these four blocks is equal to the mean of the four

squares in each block of the true o image.

One can think of the second set of initial conditions as corresponding to information
at a constant scale and the third set as corresponding to information at a four-square
scale. We apply Algorithm 2 in each case to noiseless data generated using the true
o image in Table 6.4. Since we are using noiseless data 1 is fixed to be 1.

In order to compare performance under the different initial conditions, we apply
the algorithm to the data until a certain percentage error is achieved. Specifically,
we stop the algorithm once the average percentage error in the four inner squares
reaches 5 percent. We compare the performances under each set of initial conditions
by plotting for each case the average percentage errors of the inner four squares as a

function of the number of iterations. We essentially compare how the errors decrease
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10.4998 | 12.4903 | 104.998 | 75.0003
9.49703 | 8.45016 | 94.8412 | 125

95.0018 | 79.7948 | 13.9734 | 10.6021
105 120.008 | 5.00385 | 9.40003

Table 6.5: Random Initial o, Example 1.

10.4998 | 12.4901 | 104.999 | 75.0003
9.49697 | 8.46586 | 94.7443 | 125.001
95.003 | 79.624 | 14.049 | 10.6019
105 120.01 | 5.00391 | 9.40003

Table 6.6: Random Initial o, Example 2.

as a function of the number of iterations for each set of initial conditions.
We begin with case of random initial 0. We give two examples, each of which

uses random initial o with the following statistics.

o; = 100+ bo; (6.3)
i = 1,..,16
where
(B{se2})? = 40 (6.4)

E{&O‘.‘&)‘j} = 6.','

Tables 6.5-6.6 show the initial o images used for the two examples.

Next, we consider the case of initial conditions at a constant scale. In this case
the initial o is constant over the sixteen squares where the constant is equal to the
mean of the sixteen squares of the true 0. Table 6.7 shows the initial conditions
used for this example.

Finally, we consider the case of initial conditions at a four-square scale. In this

case the initial o is constant over blocks of four squares where each of the four blocks
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55 [ 55 | 55 | 55
55 | 55| 55|55
55 [ 55 | 55 | 55
55 [ 55 | 55 | 55

Table 6.7: Constant Scale Initial o

10 |10 | 100 | 100
10 (10 (100 | 100
100 | 100 | 10 | 10
100 | 100 | 10 | 10

Table 6.8: Four-square Scale Initial o

corresponds to a square at the four-square scale. The value of the constant in a
block equals the mean of the corresponding four squares of the true o. Table 6.8
shows the initial conditions used for this example.

Figure 6.5 is a plot of the log of the average percentage error in the inner four
squares versus the number of iterations for the four different initial conditions.
This plot illustrates the performance of the algorithm under the various initial con-
ditions. The performance using constant scale initial conditions is far better than
either of the two performances using random initial conditions. The performance
using four-square initial conditions is much better than that using constant scale
intitial conditions. This plot inidicates that coarse scale information in initiating
iterations at a finer scale does help overall performance at that fine scale. Fur-
thermore, while constant scale initial conditions provide significant improvement
in performance over the case of using random initial conditions, four-square initial
conditions provide an even greater improvement.

The numerical examples in this section support the idea that coarse scale infor-

mation is useful in helping performance at a fine scale. Coarse scale information can
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be used to provide a starting point for iterations at a fine scale that is closer to the
global minimum than a point provided randomly. This idea is all the more valuable

in view of the fact that computation at coarse scales is considerably cheaper than

computation at fine scales.

6.5 Performance of the Overall Algorithm on Noise-

less and Noisy Data

In this section we demonstrate the performance of the overall algorithm on both
noiseless and noisy data. The overall algorithm consists of estimating o at three
different scales starting from a constant o, then proceeding to a four-square o, and
finally culminating in a sixteen-square o. For the case of noiseless data we simply
demonstrate the success of the algorithm and give an indication of its performance
characteristics at the various scales. For the case of noisy data we wish to explore
the effects of measurement noise in corrupting the performance of the overall algo-
rithm. The presence of noise in the measurements also makes the issue of varying
3} important. We investigate the effects of varying % over the course of iterating at
the sixteen-square scale by applying Algorithm 2 with a particular % schedule for a
moderate noise level(SNR = 50). We also give an example in which the noise level
is particularly high(SNR = 10); this illustrates the effects of high noise levels on
algorithm performance.

Let us start by considering the overall algorithm applied to noiseless data gen-
erated using the o image in Table 6.9. This table shows o represented at three
separate scales: constant, four-square, and sixteen-square. The constant and four-

square scales represent the true sixteen-square image averaged at the appropriate
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83.9145 | 111.563
111.587 | 111.058

56.7142 | 92.8996 | 102.77 | 100
117.513 | 68.5311 | 110.48 | 133
140.345 | 64.9578 | 122.151 | 86.9013
134.194 | 106.852 | 100 135.18

Table 6.9: True o for Section 6.5; 3 Separate Scales

scale.

We run Algorithm 2 using the full multi-resolution scheme over the 3 separate
scales. Since we are using noiseless data, 1 is fixed to be 1. The implementation of
the overall algorithm can be summarized as follows where we denote the estimated
o as J;. The subscript ¢ denotes the scale where : = 0 is the constant scale, 1 =1

is the four-square scale, and ¢ = 2 is the sixteen-square scale.

1. Solve PDE for constant o case(Laplace’s equation) for ¢ corresponding to

each set of excitations.
2. Solve for dy - linear least squares problem.
3. Initiate all four squares of d; with dj.
4. Initialize ¢ at this scale; i.e. solve PDE for ¢ for each set of excitations.

5. Alternate between optimizing for o and ¢ using Algorithm 2. Continue until

adequate convergence has occurred.
6. Initiate blocks of four squares of d; with corresponding values of 4.

7. Initialize ¢ at this scale; i.e. solve PDE for ¢ for each set of excitations.
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5 iterations

19 iterations
-0.10365 | -4.757537e-02
0.16729 7.239e-02
1072 iterations
3.22905e-08 2.5241e-06 -5.208323e-06 | 7.516032e-09
1.242908e-06 | -3.154515e-04 | 8.111469e-04 | -4.790822¢-06
-2.214538e-06 | 4.80085e-04 -1.502684e-03 | 6.174205e-06
-5.050663e-08 | -1.63544¢-06 | 6.160476e-06 | 7.208871e-08

Table 6.10: Full-scale Algorithm on Noiseless Data; 8 = .0001

8. Alternate between optimizing for o and ¢ using Algorithm 2. Continue until

adequate convergence has occurred.

We take adequate convergence to be the point in the iteration at which the per-
centage change of &; in the inner squares falls below a certain threshold which we
call B. Table 6.10 gives results for an example where # = .0001. This table shows
the number of iterations required for convergence corresponding to § and the final
percentage error at each scale.

Table 6.10 illustrates the performance of the multi-resolution algorithm on noise-
less data. Note that the percentage errors increase as the scale gets coarser. This
essentially shows the effects of modelling error(i.e. o varies at a finer scale) and in
particular the fact that this error gets worse as the scale gets coarser. Note also the
small number of iterations required at the constant and four-square scale. These
rather inexpensive computations provide a way of initiating the iterations at the
sixteen-square scale. As we saw in Section 6.4 coarse scale information helps to
start the optimization at a fine scale closer to the global minimum than could be

done by just randomly choosing the initial point.
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Let us now introduce measurement noise into our data. With the introduction
of measurement noise, we must concern ourselves with varying +. We consider
varying it over the course of iterations at the sixteen-square scale. In particular we
supply a schedule for varying 1 such that the algorithm at the sixteen-square scale

is implemented in the following way.
1. Initialize § =1
2. Perform Algorithm 2 until adequate performance is achieved.
3. Decrease 1.

4. Repeat step 2.

5. Stop

Table 6.11 gives an example of a particular schedule for 3 at the sixteen-square
scale. The full multi-resolution algorithm is applied to noisy measurements where
the SNR = 50. The value of 1 is changed after convergence is reached to within
.001 percent. The table shows the percentage errors in the image for each value of
I, the number of iterations required at each stage, the value of the penalty term,
and the average percentage errors in the inner four squares.

We can see for this example that as one would expect, as A increases(} de-
creases) the value of the penalty term decreases. We can also see that increasing
the weighting of the penalty term helps to decrease the average percentage error
in the inner squares; i.e. as A increases the average percentage error in the inner

squares decreases steadily, slowly converging to approximately 7 percent. Note,
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1=1
)

no. iterations = 146, penalty term = 14953
average percentage error in inner squares = .0841124

1.116865e-03

3.573474e-03

5.468815e-03

-1.209706e-03

2.928781e-03 | -5.457093e-02 | -0.11152 2.732688e-03

1.092839e-03 | 7.3854e-02 -9.650476e-02 | 1.143622e-03

-4.23279e-03 | -1.082793e-03 | 5.147992¢-04 | -2.631879e-04
1=01

no. iterations = 19, penalty term = 849.412
average percentage error in inner squares = .078456

1.384348e-03

4.028474e-03

5.519846e-03

-1.594384e-03

2.758936e-03

-4.819568e-02

-0.11222

3.861575e-03

9.992681e-04

5.797102e-02

-9.543775e-02

2.589183e-04

-4.341527e-03

-1.501125e-03

4.857844e-04

-2.630233e-04

3 = 1.e-02
no. iterations = 3, penalty term = 511.132
average percentage error in inner squares = .0778334

1.509411e-03 | 4.771796e-03 | 6.151331e-03 | -1.955762e-03

2.337945e-03 | -4.717167e-02 | -0.11184 4.813939¢-03

9.467833e-04 | 5.658424e-02 | -9.573809¢e-02 | 3.098729¢-04

-4.428486e-03 | -2.019515e-03 | 2.331867e-04 | -5.84557e-04
} = 1.e-03

no. iterations = 29, penalty term = 57.783
average percentage error in inner squares = .0747858

3.10745e-03 7.596387e-03 | 8.599716e-03 | -2.781739e-03
2.280133e-03 | -4.063808e-02 | -0.107 9.097123e-03
3.643813e-04 | 5.183566e-02 | -9.96698e-02 | 3.801678e-04

-4.753442¢-03

-4.770085e-03

-1.250691e-03

-2.010307e-03

1=1.04
no. iterations = 10, penalty term = 29.1853
average percentage error in inner squares = .0743213

3.493694e-03 | 8.072462e-03 | 9.009605e-03 | -2.861106e-03
2.368201e-03 | -3.952806e-02 | -0.1062 9.74429e-03
2.505082e-04 | 5.119723e-02 | -0.10036 4.006887e-04
-4.768379e-03 | -5.251727e-03 | -1.496641e-03 | -2.286959¢-03

Table 6.11: Percentage Errors at Sixteen-square Scale After Each Change in 3; SNR
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however, that the bulk of the decrease in the error has occurred during the iter-
ation at which 7 = 1; in particular, at the end of the iterations at this stage the
average percentage error in the inner squares is roughly 8 percent. This indicates
that although increasing A helps in enforcing the PDE constraint more and more, as
evidenced by the decrease in the penalty term, the effects in the percentage errors
of the inner o is relatively small.

The errors of o in the outer squares actually increases slightly with increasing \.
Note, however, that these errors are an order of magnitude smaller than the errors
of the inner squares. The effect of increasing ) is to improve the performance of the
inner squares at the expense of a slight decrease in performance of the outer squares.
But the errors of the inner squares dominate the errors of the outer squares, and
the average error among all the squares actually decreases with increasing ).

The results in Table 6.11 show that although overall performance is improved by
increasing A, this improvement is relatively small. From an algorithmic standpoint,
one does fairly well iterating at the sixteen-square scale while keeping 1 fixed to be
1; i.e. one makes relatively small gains in performance by increasing A.

We now consider the same schedule applied to data of a lower SNR. Table 6.12
shows results for the algorithm applied under the same conditions as for Table 6.11
to data in which the SNR is equal to 10. Note that the penalty term is decreasing
as we increase A indicating that our PDE constraint is being enforced gradually.
Note also, however, that the average percentage error in the inner squares is ac-
tually increasing with each increase in A\. The algorithm is converging to a point
in which the errors on the inner squares is relatively large. This is an indication

of the ill-conditioning of the problem for data in which there is a low SNR. Note,
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1=1
A

no. iterations = 3305, penalty term = 3.750448e+05
average percentage error in inner squares = .8188875

5.150245e-03 | 1.83985e-02 | 3.144681e-02 | -6.073196e-03

1.60879¢-02 -0.24051 -0.68039 1.695653e-02

1.025042e-02 | -0.54712 1.80753 -5.425443e-04

-2.088104e-02 | 6.341654e-04 | -2.637193¢-03 | -1.258177¢-03
1=01

no. iterations = 8302, penalty term = 8661.59
average percentage error in inner squares = .93955

6.577001e-03 | 1.416598e-02 | 2.855178e-02 | -6.305037¢-03
1.528711e-02 | 0.13215 -0.62046 1.551851e-02
8.512232e-03 | -0.51042 2.49517 -2.325263e-03

-2.12778e-02

4.696011e-04

-3.509145e-03

-1.192344e-03

3 = l.e-02
no. iterations = 2, penalty term = 3681.05
average percentage error in inner squares = .940305

6.636289e-03 | 1.567911e-02 | 2.98482e-02 -6.995385¢e-03
1.386343e-02 | 0.13374 -0.62066 1.664483e-02
8.066284e-03 | -0.51147 2.49535 -2.214647e-03
-2.159426e-02 | -9.814331e-05 | -3.775518e-03 | -1.68347e-03

3 = 1.e-03
no. iterations = 191, penalty term = 50.6249
average percentage error in inner squares = .9464425

9.157433e-03

2.277429e-02

3.557535e-02

-1.061865e-02

1.5214e-02

0.18388

-0.59652

2.810223e-02

4.915636e-03

-0.52192

2.48345

-3.245904e-03

-2.161407e-02

-2.831905e-03

-5.024187e-03

-5.430857e-03

T = l.e-04
no. iterations = 25, penalty term = 32.7646
average percentage error in inner squares = .9468125

9.471466e-03

2.320997e-02

3.583852e-02

-1.083947e-02

1.542539e-02 | 0.18621 -0.59581 2.86109e-02
4.739987e-03 | -0.52216 2.48307 -2.952086e-03
-2.166181e-02 | -2.873671e-03 | -5.055524¢-03 | -6.06941e-03

148

Table 6.12: Percentage Errors at Sixteen-square Scale After Each Change in T; SNR

=10



CHAPTER 6. ESTIMATING SIXTEEN SQUARES 149

however, that the errors in the outer squares remain small. This indicates that
the performance of the outer squares is robust with respect to measurement noise,

whereas the performance of the inner squares is not.

6.6 The Effects of Noise on Algorithm Perfor-
mance and the Use of Inhomogeneous Spatial

Scales

In this section we apply our algorithm to noisy data and characterize performance
in terms of the average mean-square error of the estimate. Since our interest in
this section is primarily on the effects of noise on estimation performance, and in
particular the comparison of this performance for the case of outer squares versus
the case for inner squares, we choose the following algorithmic implementation. We
use Algorithm 2 exclusively at the sixteen-square scale, initiating the iteration using
good initial conditions; i.e. using the average of the true ¢ in blocks of four. In each
case we fix ] to be 1 and run the algorithm using an arbitrary number of iterations.

In particular we plot the average mean-square error of the conductivity estimate
for a variety of values of SNR. By comparing plots of this type for estimates of
the outer twelve squares with those for estimates of the inner four squares, we
characterize the effects of noise on estimation performance as a function of distance
from the overall boundary. We would expect performance to be better for the
squares that have direct contact with the measurements than it would be for the
inner squares.

Since we would expect the performance of the inner squares to be inferior to

that of the outer squares, we also investigate the notion of treating the inner four
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squares as one square, i.e. thinking of these squares as existing at a coarser scale
than that of the outer squares. We do this by plotting the performance of estimating
the mean of the inner four squares. Specifically, we plot the mean-square error as
a function of SNR where the error is now the difference between the mean of the
true values of the inner four squares and the mean of the estimated values of the
inner four squares.

We consider a sixteen-square ¢ image in which the value of ¢ in each square
is the sum of the average value 0o and an independent, Gaussian disturbance of
standard deviation p. We use an image in which p/oy is thirty percent. The value
of the estimate 6 corresponds to the value of 0 computed using Algorithm 2 after 20
iterations. The reason for keeping the number of iterations low is to keep the number
of computations required for the Monte-Carlo runs from being prohibitively large.

Experiments generating a few points using a large number of iterations indicate

that this is justified.

We define the following statistics.
_J]1 E:E 5.)2 : 6.5
€ = Eo [(Uo—ﬂa)] ()
1 L
€ = {Z z E [(a.- - &) ]} (6.6)

e = {E [(% Soi- %z‘:a.-)Z] } 6.7)
where

0¢{1,2,3,4,5,8,9,12,13,14,15,16} (6.8)

and

i€{6,7,10,11} (6.9)
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The statistic €; represents the average of the root mean-square error of the estimate
over the twelve outer squares, while ¢, is the average of the root mean-square error
of the estimate over the four inner squares. The statistic €3 the root mean-square
of the error between the average of the four inner squares and the average of their
estimates. We compute the expectations using Monte Carlo trials.

Figure 6.6 is a plot of the statistics €, €2, and €3 normalized by oy, i.e. the per-
centage errors, as a function of SNR where the SNR varies from 1 to 100. Figure 6.7
is a plot of the same thing with focus on the range of SNR from 1 to 50.

Figures 6.6 and Figure 6.7 show the outer squares to have much better perfor-
mance than the inner squares. The statistic €; /0o converges towards an error of
approximately .25 percent for large SNR whereas €3/0, converges towards approxi-
mately a 22 percent error. This indicates a wide disparity between performance of
the outer squares and performance of the inner squares.

Note the similarity in performance between the statistic €3 and the statistic ¢;.
For SNR = 100 e3/0 is approximately .6 percent, which is on the order of the
value of €;/0p for the same SNR. Clearly, the performance of statistics €; and ¢; is
far better than that of statistic €;. This indicates that by treating the four inner
squares as one large square we can estimate the mean of these squares with the
same order of error variance as that for the outer squares.

In summary, the plots in this section indicate that the performance of the al-
gorithm on outer squares is much better than the performance on inner squares,
in fact by as much as two orders of magnitude. This gives evidence of the fact
that estimation performance deteriorates at points removed from the boundary, on

which there are excitations and measurements. If we treat the four inner squares as
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Figure 6.6: Plot of the Statistics €;/00, €2/00, and €3/0¢ vs. SNR
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Figure 6.7: Close-up of Figure 6.6
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one large square, however, the performance in estimating an average conductivity
for this large square is on the same order as the performance for the outer squares.
This result suggests the possibility of treating the inner squares at a coarser scale

than that of the outer squares.

6.7 Conclusions

Numerical results show that good convergence is obtained by doing single relaxation
sweeps in 0 and ¢. The results in Section 6.2 indicate that spending too much
time on either optimizing with respect of o or optimizing with respect to ¢ is not
beneficial for the case in which we are trying to achieve a percentage error above a
small threshold; this case occurs for instance when there is noise in the data and
hence, we would not expect to achieve percentage errors below some threshold. For
the case of data of extremely high SNR in which we might expect to achieve very low
percentage errors we can imagine an algorithm that starts with single sweeps in ¢
and ¢ then gradually increases the number of sweeps per iteration as the percentage
errors decrease.

Our plots of the cost function for noiseless data along various trajectories in the
state space indicate the presence of local minima when o and ¢ are allowed to vary
arbitrarily. The presence of local minima for the noiseless case does not seem to be
an issue, however, when ¢ is chosen to solve the PDE associated with o. Since our
algorithm starts each scale with ¢ and ¢ that match and each successive relaxation
step keeps them close, we would not expect to encounter local minima for relatively
noise-free data.

Numerical results support the idea that coarse scale information helps in speed-
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ing up the convergence of the algorithm at a fine scale. The closer the scale of
the information to the fine scale, the better the improvement obtained by using
this information in initiating fine scale iterations. This supports the idea of the
multi-resolution algorithm being computationally efficient.

With regard to the issue of varying J, it seems for relatively low noise levels the
effects of increasing A from a performance standpoint are not great. One achieves
relatively good performance by iterating sufficiently while fixing 1 to be 1. By
increasing A one can decrease the average error, but this decrease is not great.
Our experiments show that at the sixteen-square scale by fixing 3 we can achieve
relatively low errors, despite the fact that the PDE constraint is not satisfied as
strictly as in the cases where ) is increased toward infinity.

And finally, our experiments with noisy data confirm the idea that estimation
performance degrades at points removed from the boundary, on which there are
direct measurements. Our experiments with high noise levels indicate that while
the performance on the outer squares is rather robust, the performance on the inner
squares is quite sensitive to these noise levels. This suggests the idea of treating
inner squares at a coarser scale from that of outer squares. Our experiments on the

performance of the mean of the inner four squares show this idea to have merit.



Chapter 7

Conclusions

This thesis has presented a way of controlling the large number of degrees of free-
dom for an inverse conductivity problem by estimating the conductivity at various
spatial scales. We have developed a multi-resolution algorithm that is based on a
nested sequence of highly parallelizable relaxation schemes and have demonstrated
the success of this algorithm on synthetic data as well as investigated various al-
gorithmic issues. We have also produced analytical results based on Cramer-Rao
bounds that characterize estimation performance at various scales. These results
provide a way of determining the scale which a particular set of excitations and
measurements supports. And finally, we have explored the effects of noise on algo-
rithm performance. In particular we have shown how performance suffers for points

removed from the boundary.

7.1 Thesis Contributions

We now summarize the main results of this thesis. The following is a list of the

contributions made in the order of their presentation in the thesis.

156
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1. We presented a maximum-likelihood formulation of the inverse conductivity
problem for the case of a 2D piecewise constant conductivity image. In our
formulation we solve an optimization problem in which we minimize a cost
function, the negative likelihood function, with constraints on the parameters
in the form of a PDE. We parametrized the problem in such a way so as to
solve the constrained problem by minimizing an augmented cost function in
which a penalty function is used to represent these constraints. This resulted
in an optimization problem that is spatially separable and highly conducive

to a parallel computational scheme.

2. We presented a multi-resolution algorithm that solves the ML problem at the
finest scale by starting at a coarse scale then moving to successively finer
scales. The algorithm at each spatial scale is highly iterative, consisting of a
nested sequence of simple, linear relaxation algorithms which are extremely

parallelizable.

3. We presented numerical results that characterize the problem of estimating
at a coarser scale than that of the true conductivity by studying in detail the
problem of estimating a constant ¢ when in fact o is piecewise constant in

four squares.

4. We presented a general method for computing the Cramer-Rao bound for
estimating the conductivity at a particular scale. We presented numerical
results for the four-square case. Our method is equally applicable to finer
resolutions and provides a way of characterizing estimation performance for

an arbitrary scale of o.
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5. We demonstrated the success of our algorithm on synthetic data for low noise
levels and explored various algorithmic issues. Our results in general show
the multi-resolution approach to have merit. We have also shown how per-
formance deteriorates at points removed from the boundaries for sufficiently

high noise levels.

7.2 Swuggestions for Future Research

e There is room for improvement of the convergence properties of the ¢ and
¢ Gauss-Seidel iteration schemes. A successive-overelazation(SOR) method

would be helpful in speeding up convergence [4].

¢ An interesting area for future research would be to pursue the idea of develop-
ing an algorithm that moved from fine scales back to coarse scales as well as
from coarse to fine. This would coincide more with the multi-grid philosophy

of doing coarse grid corrections based on iterations at fine grids [2], [5].

e Our experimental results for the sixteen-square case indicate that it may be
fruitful to aggregate the pixels more coarsely as one moves inward from the
boundary. This is reasonable given that the performance deteriorates moving
inward from the boundary. A possible area of research is the investigation of
an algorithm that pixelates the o more coarsely at points removed from the

boundaries.

e Our multi-resolution estimation approach suggests possible application to var-
ious other inverse problems in which the number of degrees of freedom in the

parameter is large.
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